Technical Reference Guide for Site Studio
11g Release 1 (11.1.1)
E10615-03
November 2011
Oracle WebCenter Content Technical Reference Guide for Site Studio, 11g Release 1 (11.1.1)
E10615-03
Copyright © 1996, 2011, Oracle and/or its affiliates. All rights reserved.
Primary Author: Sean Cearley
Contributors: David Peterson, Brian Cheyne
This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.
The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.
If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable:
U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.
This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications..
Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks of their respective owners.
This software and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.
The Oracle WebCenter Content Technical Reference Guide for Site Studio contains information to assist developers and administrators responsible for the implementation of Web sites managed by Site Studio.
This document is intended for those people identified in the organization who are responsible for developing and deploying Web sites managed by Oracle Site Studio.
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
.
Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.
For more information, see the following documents in the Oracle Site Studio documentation set:
The following text conventions are used in this document:
Convention	Meaning
boldface	Boldface type indicates graphical user interface elements associated with an action, or terms defined in text or the glossary.
italic	Italic type indicates book titles, emphasis, or placeholder variables for which you supply particular values.
monospace	Monospace type indicates commands within a paragraph, URLs, code in examples, text that appears on the screen, or text that you enter.
This guide is built up as follows:	
This guide provides a broad technical overview of Site Studio and how it creates web sites. It also provides technical information about the project file, markers, tags, service calls, and Idoc Script extensions used by Site Studio. To get the most out of this guide, you should have knowledge of HTML, JavaScript, and server-side Idoc Script; play the role of webmaster or web developer at your organization; and have coding experience.	
Before reading the guide, you should have read the Oracle WebCenter Content User's Guide for Site Studio Designer and Oracle WebCenter Content User's Guide for Site Studio Contributor. You should also have built one or more web sites with Site Studio. The guide will illustrate the scripting syntax used by Site Studio, so that you can build upon the existing framework and customize the product to suit your needs.	
The Technical Reference Guide for Site Studio describes the more technical aspects of site construction, maintenance, and consumption using Oracle Site Studio 11gR1, including information on how to customize Site Studio functionality. While Site Studio 11gR1 supports web sites created with Site Studio 10gR3 and earlier, such web sites are considered legacy web sites. For technical information on legacy sites, see the Technical Reference Guide for Site Studio 10gR3.	
This section covers the following topics:	
The site assets in Site Studio allow for a very modular, customizable method of easily maintaining the content separate from the presentation. The relationship between the templates and the definitions, such as how they are connected across many different pages, may be necessary to know when you want to make specific changes to individual assets in the site.	
Site assets are used to directly control the visual presentation of the site, and the actual content on the web pages (the "information"). In this way, the content and the presentation are separate, and can be maintained and modified without affecting each other.	
The files that maintain the structure and presentation of the web site are the templates: page templates, subtemplates, and region templates. Cascading style sheets can also be used to control structure and presentation and managed with Site Studio. The files that maintain the content are the definitions: placeholder definitions, region definitions, and element definitions. With these definitions, you control how the content is maintained.	
The content itself is stored in content files: contributor data files, native documents, images, and any other related media (such as Flash) which you may use on your site. Contributor data files are XML formatted files that are generated by Site Studio. Contributor data files are edited using the Site Studio Contributor application. Native documents are files created using familiar third-party applications such as Microsoft Word. Native documents are converted to HTML format using Dynamic Converter, and they are edited using their associated application. Contributors are expected to be in charge of the content, and thus contributor data files are edited through Contributor. Native documents and other files can be edited through the associated third-party software (for instance, Microsoft Word or Adobe Photoshop) and then added to the site by the contributor. The files that the contributor may add can be easily controlled by the designer or administrator.	
In addition, there are several control and configuration files used to ensure that the site works as it should. These control files are described in other chapters of this guide.	
Templates are used to arrange available site assets. They are all sections of HTML (or in the case of page templates, complete HTML pages) where the tags describing the related content are stored.	
The three types of templates used are:	
Templates allow the data to be placed in a certain manner. The definitions define which site assets are available to place on a template, as well as how the assets can display.	
Page templates are the only templates that are complete HTML pages. Generally, the best use of Site Studio is to maximize reuse of assets, the page template should be looked at as a framework for the other templates; the subtemplates and region templates used to specifically align the content. Page templates and subtemplates additionally define the placement of the contribution regions.	
Each section in the hierarchy can have - and typically will have - a page template assigned as the primary page for that node. The root section of the site hierarchy is where the home page of the web site is located. Just as with the other sections in the hierarchy, the Primary Page and Secondary Page entries in section properties display the page templates used for the primary and secondary pages of the each second, including the root.	
The data associating a page template with a primary or secondary page in a section is stored in the project page. Assigning a primary and secondary page is done in the properties pane.	
Placeholders on a page template are ultimately placed using the wcmPlaceholder script extension. Placeholders themselves are not a site asset, placeholders are simply a defined area on a page template or subtemplate where you can use a placeholder definition to determine how content is reused in the specific placeholder.	
Subtemplates are, simply, page templates that do not have a <HEAD> section. They can contain a contribution region, and are most commonly used to break one contribution region on a page template into multiple parts.	
Tags can be inserted on a subtemplate the same way they would be on a page template. However, any instance of reference to the <HEAD> tag on a subtemplate will generate unanticipated results. This is most common when using fragments on a subtemplate that have multiple snippets where one refers to the head.	
Region templates help define where the elements and the associated content display. The region template is selected based on the region definition used.	
Region templates are used to arrange the elements as they will display on the consumer page. The elements available to use are defined by the region definition. Not all elements available must be used, which allows for creating region templates that can have multiple layouts for the same named element definitions. Using the same element definitions by name, but a different data file, allows for the easy reuse of the site assets.	
Definitions are used to define which assets are available to use and how they can be used.	
This section contains the following topics:	
The placeholder definition controls the allowed actions within the contribution region, including if contributors can modify data, if the metadata can be modified, if the associated data file can be switched or removed, and other actions.	
The placeholder definition is associated to a placeholder in code (a tag), in a section property, the global mapping property, or as the default placeholder. When there is more than one listed association of a placeholder definition to a placeholder, then they are determined in that priority; that is, association in code takes precedence over the section property, which takes precedence over the global mapping property, which takes precedence over the default placeholder.	
The <complexProperty name="flags"> is the collection of allowed (and disallowed) actions when the placeholder definition is used.	
The <mappings> tag lists the allowed region definitions (using the <regionDefinition> tag) and their associated region templates (using the <regionTemplate> tag). Additionally, the default region template for a given region definition is coded within the <regionTemplate> tag. Similarly, the available subtemplates (if any) are listed under the <subTemplates> tag.	
These are handled in the Designer UI through the Placeholder Definition dialog. The source code for definitions can be viewed in Designer by selecting the Source tab.	
You can see in the section of XML that each placeholder definition associates region templates with a region definition, and additionally marks which region template is the default template for that region definition within the scope of the placeholder definition. It follows that if you use a different placeholder definition, a different association could be in place.	
The region definition is used to map the content (any content, including contributor data files, native documents, and so forth) through the placeholder definition to get to the appropriate region template.	
The region definition used in an instance can be defined in one of two ways. First, the region definition can be explicitly called in the wcmPlaceholder	
tag when written in a page template or a subtemplate.	
More commonly, the region definition is loaded based on the value of the metadata field xRegionDefinition	
for the data file used in the placeholder.	
This particular example is a region definition with five element definitions referenced. Each <elementReference>	
tag has additional <property>	
tags defining the value for the label, which will also display in Contributor when the region is opened for editing, and the value for the description, which is the tooltip text displayed when the contributor hovers the mouse over the label. For more information about Contributor, see the Oracle WebCenter Content User's Guide for Site Studio Contributor.	
The <dataProperty name="metadata">	
tag is the location for any exceptions to enabling metadata modification. This is done in the Designer UI through the Enable Metadata Modification dialog (see the Oracle WebCenter Content User's Guide for Site Studio Designer).	
The <complexproperty name="switchregioncontent">	
tag is the location for the content the contributor is allowed to access via the Switch Region Content dialog. This is done in the Designer UI through the Region Content Options dialog (see the Oracle WebCenter Content User's Guide for Site Studio Designer).	
This section covers the following topics:	
Each Site Studio asset has information associated with it called metadata. Metadata is used by the Oracle Content Server to help you manage the multiple resources and site assets.	
The metadata associated with the Site Studio assets you will create, edit, and use to construct your web site are necessary for efficient storage as well as maintaining the relationship between assets. This is especially important with the methods used in Site Studio 11gR1, where each asset can be used and reused. The metadata fields help maintain the structure of which asset is used with other assets. The metadata is also used other things, such as relevant filtering during searches.	
Five custom metadata fields, created by the Site Studio component, are required by the Site Studio product:	
The xWebsiteObjectType metadata field is used to indicate what type of web site–related item the managed document is. The field is an option list containing the following values for possible managed objects:	
See the Oracle WebCenter Content User's Guide for Site Studio Designer for detailed explanations of each of these file types.	
The xWebsiteSection field is used to determine which web site section should be used to display a managed item if a link to that item is generated but does not explicitly include a target section already. This is primarily used for contributor data files and native documents. Internally, it contains a siteId:nodeId value, and the Site Studio component overrides the standard content server pages to provide a more friendly user interface for picking a site and section.	
The contents of this field become important when understanding the different URL formats available in Site Studio. These are described in detail later in this document.	
The xWebsites field is used to determine which web site (in the content server) the managed document belongs to. Internally, it is a comma-separated list of site identifiers, and the Site Studio component overrides the standard content server pages to provide an easier-to-use list of site names.	
Each web site has its own ID. When an action is performed within either the Designer or Contributor application that involves a managed document (typically adding or editing an asset), the current site identifier is automatically appended to the xWebsites field for that managed document, if it did not already exist. This means that when you use any managed document within a site in the Designer or Contributor application, that managed document will automatically become part of the site.	
It is important to realize that the site identifier will never be automatically removed from this field once it has been added because it is currently impossible for Site Studio to know all of the places that a managed document might be referenced from. Designers can use the site assets pane within the Designer application to manually add and remove managed items to and from their web site.	
The xDontShowInListsForWebsites field lists the web sites for which a contributor has specified, through the user interface, that a contributor data file or native document should not display in dynamic lists on the web site. This field allows the "Include/Exclude in Dynamic List" feature to work properly.	
When a contributor excludes a file from a dynamic list, the web site ID is added to this value. If the contributor later re-includes the content in dynamic lists for the web site, the web site ID is removed from this metadata field and the content becomes available to the dynamic lists again.	
Note: If a web site value displays in this metadata field for a particular data file or native document, then that piece of content will not display in any lists on the site; however, it will still display in search results for the site.	
The xRegionDefinition metadata field specifies the region definition that a contributor data file is associated with. A data file can be associated with only one region definition, but a region definition may be associated with many data files.	
Region definitions define the types of content used on a web site. They could be thought of as 'content classes'. They are essentially groups of individual elements which define the various chunks of reusable information for a particular site content type. For example, there could be a region definition ('content class') called "Press-Release," which consists of the elements Title, Subtitle, Intro-Text, Body-Text, and Image. Contributor data files are associated with a region definition to store the data for each element in the region definition. (What a contributor can do with the data is controlled by element definitions.)	
In addition to defining site content types in terms of its constituent parts (elements), region definitions also specify the content creation and switching options available to contributors for its associated contribution region(s). For example, if a contribution region is set up to allow contributors to switch the content of that region, they might be allowed to use existing contributor data files on the server only (not native documents or new contributor data files). (Please note that placeholder definitions control whether contributors can actually switch content in contribution regions.) Finally, region definitions also set the default metadata for content in contribution regions as it is checked into the content server.	
See the Oracle WebCenter Content User's Guide for Site Studio Designer for more information about region definitions.	
This section covers the following topics:	
There are many ways to make a link in Site Studio. You use the expected HTML path-based link, as well as some Site Studio extensions that maximize the portability and reusability of the architecture in Site Studio 11g.	
Within the Site Studio-specific methods, there are three main types of links. There are links to a content file (such as a data file or a native document), links to a node, and links to a static resource, such as an image.	
A path-based link is simply a link using a path. You can use Idoc Script variables to replace a section of the path if you wish. The variable will be evaluated by the server and replaced in the served HTML.	
Path-based links can be written as absolute or relative. Relative links, as well as links using an Idoc variable, are recommended because they are more portable. Absolute links are very easily broken when the site is modified. The only time an absolute link is recommended is when linking to an outside website.	
When a path-based link is created using the Link Wizard, the portion of the path from the server to the web site root is replaced with an Idoc variable.	
Examples	
The basic path-based link is a full URL just as expected:	
The same link created using an Idoc variable (specifically ssServerRelativeSiteRoot	
) would look like this:	
Note that the content in the variable includes the final "/" in the path segment.	
Relative paths are used as they would be in any static HTML instance:	
In some examples, you may see the angle bracket used (for example, <!--$wcmUrl('nodelink', '30)-->	
), and in other examples, you may see the square bracket used ([!--$wcmUrl('nodelink', '30)--]	
. Site Studio writes the square bracket to XML files and other places where an angle bracket might cause escaping problems, and it writes the angle bracket to templates. You should know that they can be used interchangeably; however you should keep in mind which instance might cause a problem with escaping when you choose to use one or the other.	
A server-side script link is a link that is written in script, but is then evaluated by the server and replaced in the displayed HTML. If someone chooses to view the source of the displayed page, they will only see the URL (either a relative or a full URL).	
The server-side script links are written in Idoc Script. Whether it is a variable or a function call, the server-side link evaluates on the server and you will never see it in the displayed Web page's source.	
Contains these topics:	
This is a script-extension designed to encapsulate the other link forms, specifically the server-side ssNodeLink, ssLink, and ssWeblayoutUrl. This is the recommended link format to use with Site Studio.	
It only requires one parameter, the type. The other parameters may or may not be required depending on the type specified.	
The wcmUrl script extension is a server-side script link that incorporates the functionality of the script links listed in Section 4.3, "Using Server-Side Script Links." Maintaining them all using one script extension makes it easier to search out the links in a content file or template.	
Parameters	
[nodelink	
link	
resource	
]
Nodelink
is used to create links to sections, which by default end with index.htm.Link
is used to create links to content, which by default end with contentId.Resource
is used to link to weblayout static resources, such as images.
nodelink
or link
.nodelink
or link
.link
or resource
.Examples
Before evaluation:
These examples use single quotes for the parameters. Other examples may show double quotes. Both work, however, just as with the angle bracket and square bracket, there may be some instances where using one instead of the other will help prevent possible escaping problems.
Evaluated by the server:
The first line shows a link to a content file referenced by the dDocName, the second is a link to a node referenced by the nodeId, and the third is a path to an image file on the Oracle Content Server.
If a value for a link evaluates as bad, such as when it is linked to a resource that is no longer there, then the link evaluates as a token link. For more information, see Section 4.4.3, "Token Links Generated From Server-Side Links."
The ssLink script link is used to create a server-side link to a data file, such as a native document. The target object is referenced by the dDocName.
Parameters
Examples
Before evaluation:
(where the dDocName refers to a content file at /support/switched_region)
Evaluated by the server:
Note: If the link generated by ssLink is bad, then a tokenized link using ssLINK will be used in its place. This means that a broken link will not stop the page from being generated and delivered, but the broken link is still discoverable if clicked on. |
The ssNodeLink script link is used to create a server-side link to a web site section.
Parameters
Examples
Before evaluation:
(where the /support/CRM folder on the web site has a nodeId of 30)
Evaluated by the server:
Note: If the link generated by ssNodeLink is bad, then a tokenized link using ssNODELINK will be used in its place. This means that a broken link will not stop the page from being generated and delivered, but the broken link is still discoverable if clicked on. |
The ssWebLayoutUrl is used to create a server-side link to a weblayout rendition of the document. This resource/rendition can be referenced by either the dDocName or the path to the resource.
Parameters
Examples
Before evaluation:
Evaluated by the server:
Token links (also known as late-resolving links) are not resolved until they are actually clicked. View source would reveal a URL that has ssLINK or ssNODELINK in the URL. Token links are not resolved until they are clicked (thus the term "late-resolving," as the link resolution happens after the page is served). By comparison, the script links are resolved on the server before serving the Web page.
You should be aware that ssLINK and ssNODELINK are token links; although ssLink and ssNodeLink have the same name as ssLINK and ssNODELINK, the camel case ssLink and ssNodeLink are script links.
Token links are a recommended way of including a link in a native document. Because the Word doc goes through Dynamic Converter and converts to HTML, it is much easier to write them with token links. It is possible otherwise, but this way is simpler.
This section contains these topics:
Used to create a late-resolving link to a data file. Unlike ssLink, the late-resolving link is not resolved until the link is clicked.
Parameters
Example
Note that the ssLINK is still in the URL. It will be visible this way to any browser, either by hovering on the link or by viewing the source. Once the link is clicked, the Oracle Content Server will evaluate the dDocName, determine what the friendly URL would be, and redirect to it.
Used to create a late-resolving link to a web site section.
Parameters
Example
Note that the ssNODELINK is still in the URL. It will be visible this way to any browser, either by hovering on the link or by viewing the source. Once the link is clicked, the Oracle Content Server will evaluate the nodeId, determine what the friendly URL would be, and redirect to it.
Token links are returned in situations where the server-side link (for example, ssNodeLink) fails. The replacement is done to ensure that the page delivery is not hampered by a bad link.
When the server evaluates the server-side link, and the link is faulty (for example, the dDocName is bad), then the server returns the link parameter value with the token link. The result is that the Web pages are still delivered without substantial errors, however, the users will then see the token link in the source (or by hovering their pointer on the link), just as they would if a token link had normally been used.
Example
The parameter value for the passed server-side link is retained. If the following is passed to the server to evaluate:
then the server will return, in the source of the served Web page
This prevents the server from erroring out the entire Web page when trying to evaluate the link. Clicking the returned tokenized link, however, will display an error page from the server.
This will also happen for any wcmUrl script errors, as in these cases the wcmUrl is a thin wrapper for the server-side script link.
It is possible to use JavaScript to enter a link in a site asset. This is not recommended, but is still available as a possible method.
The links are used just as you would use ssLINK or ssNODELINK, with the same parameters. And like ssLINK and ssNODELINK, JavaScript links are late-evaluated. The only difference is in explicitly calling them as JavaScript.
Examples
This section covers the following topics:
Site Studio depends on a collection of runtime files to deliver a fully-functioning web site. When you change the site hierarchy of a web site, these files are affected, which is why you are prompted to update the runtime files when you change the site hierarchy in Designer.
The runtime files are stored in the runtime folder for the web site (where cs_name is the name of your content server and siteid is your web site):
The following files are automatically generated:
The sitenavigation.js file contains the necessary JavaScript to define the web site hierarchy. Some of the navigation fragments in Site Studio were designed to read the information from this file and dynamically generate a navigation scheme for the web site using client-side JavaScript.
Sitenavigation.js contains the NavNode object definition, which represents a single node (also referred to as a "section" in the Designer interface) of the site hierarchy. It has properties that are generated from the true section properties stored in the web site project file.
In addition to these standard properties, the NavNode object also contains a member variable for every custom section property that has been assigned a value for this section. The naming convention for these variables is "cp_XXX" (where XXX is the custom section property name). These data members are constructed by parsing the additional parameters passed to a NavNode constructor; the format for the additional parameters are "name==value" strings (see definition of g_navNode_0_0 in sample code below). These additional parameters are automatically generated by Site Studio when you regenerate your runtime JavaScript files.
The sitenavigation.js file also contains the declaration for the active site hierarchy in terms of NavNode objects, which are defined from a single root node using a well-known name (g_navNode_Root). This value is then made available to the navigation fragments to examine, as appropriate.
Here is an example:
The NavNode definition and the JavaScript methods in the sitenavigation.js file are obtained from the Site Studio component resources each time the runtime files are regenerated. Only the hierarchy of NavNode objects is generated dynamically. If you want to change any of the other JavaScript, you need to update or override the component resources.
The sitenavigationfunctions.js file provides methods used for client-side JavaScript navigation mechanisms. The definitions for the client-side ID-based hyperlink functions, link() and nodelink() methods, for instance, are both stored in this file.
The sitenavigation.xml file contains an XML definition of the active site hierarchy, which can be made available to server-side script. Some navigation fragments are built to read the information provided by this file. They then use the information to dynamically generate the navigation scheme for the web site with server-side script instead of client-side JavaScript.
The XML definition has a single <site> tag as the root. This tag contains a hierarchy of <section> tags to define each section.
Here is an example:
The sitenavigation.hda file contains a persistent representation of the SiteStudioNavNodes ResultSet that can be made available with the ssLoadSiteNavResultSet() script extension. It contains a definition of the active site hierarchy, which can be made available to server-side script. Some navigation fragments are built to read the information provided by this ResultSet. They then use the information to dynamically generate the navigation scheme for the web site with server-side script instead of client-side JavaScript.
The "SiteStudioNavNodes" ResultSet has five columns:
The sitenavigation_co.hda file contains the same structure as the sitenavigation.hda file, but the "SiteStudioNavNodes" result set also includes contributor-only nodes.
The wcm.toggle.js file contains the JavaScript necessary to provide contribution functionality on a web site. Most significantly, the wcm.contributor.OnKeyDown()
function, which is where the keyboard sequence to enter contribution mode (Ctrl + Shift + F5) can be changed to another sequence, if desired.
To change the default keystroke combination, perform these tasks:
CS-Dir
\custom\SiteStudio\publish\resources\wcm\sitestudio\
This function uses virtual key codes to determine the key combination entered by the user. The default value is Ctrl+Shift+F5. The F5 key has a virtual key code of 116 (or 0x74 in hexadecimal). The codes for the other typical function keys, F1 through F12 are 112 (0x70) through 123 (0x7B), respectively.
Note: The next time you upgrade Site Studio or install a patch, you may need to perform these steps again to retain your keystroke combination. |
Note: The key codes used to determine the keystrokes should be given special consideration in instances where contributors may use different operating systems, since the virtual key codes may vary among operating systems. |
This section covers the following topics:
A fragment is a self-contained snippet of HTML or script (including client-side JavaScript and server-side Idoc) that may have value in being reused in more than one template on a web site.
A fragment may contain references to other files, too, with tags like , <SCRIPT SRC=xxx>, and <$ docLoadResource(xxx) $>. Externally referenced files or resources serve as a fragment asset and therefore need to be made available whenever the fragment is used.
Simple fragments may contain atomic content that can be inserted anywhere in a template. More complex fragments require some content to be placed in the <head> of the page and other content to be placed in the <body>. In the <body>, content may be placed at the top of the page, the bottom of the page, or at the cursor's current position. A fragment, therefore, may contain multiple fragment snippets.
While it is possible to include multiple <body> snippets with a <head> snippet, this is discouraged. Primarily because fragments that use the <head> of a page cannot be placed in a region template or a subtemplate. This is because neither region templates nor subtemplates are full HTML pages, and do not contain a <head>. Fragments should be created using just the <body> to best fit with the flexible nature of Site Studio architecture. Using just a <body> would allow the fragment to be used on page templates, subtemplates, and region templates.
A page template does contain a <head>, and fragments can have both a <head> and <body> when used in a fragment. However, these fragments will create an <ssinfo> XML data island. For more information, see Section 6.8, "Fragment Instance Structure in the <ssinfo> XML Data Island."
The designer may want a fragment to take on a different look and feel or behavior depending on where it is used on the web site. This functionality is made available by the use of fragment parameters. With fragment parameters, the creator of a fragment can specify certain variable parameters, and the site designer can choose from these parameters when the fragment is actually added to a template.
From a high level, fragments contain:
It is common for a fragment to consist of two snippets. The first, usually found in the <head> of the page, may reference a CSS file, which will format the page, or a JavaScript file, which will provide some or all of the fragment's implementation. The second, usually found in the <body> of the page at the drop-point, contains the presentation for the fragment. It may be as simple as a JavaScript call of a method provided by the included .js file, or it may contain a collection of HTML, JavaScript, and Idoc Script.
Site Studio stores individual fragments in fragment libraries. You can store each fragment in its own library or store related fragments together in the same library. Fragment libraries are stored as managed objects in the content server in the following way:
Oracle Content Server manages content items as either primary or alternate files, or both (see Oracle Content Server Help). These files are unrelated to, and should not be confused with, primary and secondary pages in Site Studio.
Note: The fragment asset zip file that is checked in as the Primary file above should not be confused with a fragment library zip file that contains both the fragment assets and the fragment definition file. The fragment library zip file is what is used with the Designer's Upload and Download fragment library utilities and provides a simpler way to manage fragment libraries. You will only need to manage fragment asset zip files if you are accessing the managed fragment libraries directly in the content server instead of using the Designer's fragment management utilities. |
The fragment definition file contains the root element <fragments>, which includes one or more <fragment> elements to define each fragment in the library. The exact syntax of the fragment definition file is described in the Fragment Definition File. For more information, see Section 6.7, "The Fragment Definition File."
To add a fragment library to the content server, you won't use the standard content server check-in page. Instead, you use the "Upload Fragment Library feature in Designer. This feature checks in the managed content items and ensures that a copy of the fragment asset zip file is extracted to the appropriate runtime weblayout directory (where CS_name is the name of your content server):
This path can then be referenced by server-side Idoc Script in a fragment by using one of two Idoc variables:
The root <fragments> element within the fragment definition files (sample fragments) that ship with the product are given a read-only attribute to prevent them from being edited or erased within the Designer application. There is no GUI exposed to set or clear this attribute: it is simply intended to avoid changes being made to the out-of-the-box fragments because they will be overridden when upgrading to future versions of Site Studio.
Designers, of course, can copy and edit these fragments and make modifications to their own copy.
While the Toolbox allows for quick and simple drag-and-drop placement of fragments on a template, some prefer to use the scripting method to place a fragment directly in the source.
The wcmFragment script is used on templates to add a fragment. If the tag is used on a region template or subtemplate, only the first drop-point snippet will be used.
If the tag is used on a page template, then a legacy <ssinfo> XML data island is inserted by Site Studio. For more information, see Section 6.8, "Fragment Instance Structure in the <ssinfo> XML Data Island."
Parameters
Code Example
Each fragment contains a snippet defined by the fragment definition file for the fragment library. A fragment snippet can be included in a fragment in one of three ways:
It is highly recommended that you use reference as the include mechanism for all but the most trivial of snippets. This way you can manage the snippet content in a single place even if the fragment is used many times across the site.
The exact syntax for the special markup surrounding inline and reference snippets can be found in Section 9.14, "ssIncludeXml." For snippets included by reference, the snippet is added to the layout page using a script extension called ssIncludeXml().
This script extension provides an Idoc mechanism for including elements from a managed XML file and placing them in a layout page. The parameters for the ssIncludeXml() include the dDocName of the fragment definition file of the fragment library and an XPath expression for the XML node to be extracted. (More parameters are explained in Section 9.14, "ssIncludeXml"). The content of the XML node extracted is further evaluated in the scope of the current template and therefore can include additional server-side Idoc Script, if necessary.
Custom section properties can be defined by the Designer and unique values can be assigned to each property for each section of the web site (see the Oracle WebCenter Content User's Guide for Site Studio Designer). The definitions and the values are stored in the web site project file.
By themselves, custom section properties are useless. Only when a custom property is referenced by client-side or server-side script within a layout page (or more typically, within a fragment snippet), does it become useful. There are two primary ways to access custom section property values: client-side JavaScript and server-side Idoc Script.
The client-side runtime generated file sitenavigation.js contains an array of NavNode objects containing a definition for the current web site hierarchy (See Section 5.2.1, "sitenavigation.js"). Each custom section property that has a value for the current section will be contained within the NavNode object for that section in a member variable whose name begins with cp_.
The most typical use of these client-side representations of the custom section properties is within navigation fragments. When a navigation fragment is iterating through the NavNode objects, it can detect the existence of the cp_XXX member variables and use them to customize the navigation scheme being displayed. Since the cp_XXX member variable may or may not exist, accessing the parameter is made easier through the use of two JavaScript methods provided by Site Studio:
You can see these two methods in action in the CSP Sample Navigation (client) fragment that ships with Site Studio (for more information, see the Oracle WebCenter Content User's Guide for Site Studio Designer).
There are a number of ways to access custom section properties using server-side Idoc Script:
You can see these in action in the CSP Sample Navigation (server), CSP Sample Dynamic List, and Sample CSP Page Title fragments, which ship with Site Studio (see "Sample fragments" in the Oracle WebCenter Content User's Guide for Site Studio Designer).
The custom section properties are also stored in the XML rendition of the site hierarchy in the sitenavigation.xml file (see Section 5.2.3, "sitenavigation.xml"). So if you are building a navigation fragment that uses server-side script to parse this XML file, you will also have access to the custom section properties for each section.
The name of the property MUST be in quotes. Thus, if you wanted to get the label property of a specific node, you would write:
A fragment definition file is a pure XML file containing content that inherits its structure from the contribution region that the file is assigned to. From a coding view, a fragment definition file for a fragment library looks like this:
The fragment definition file typically contains the following tags:
The <fragments> tag represents a fragment library.
Parameters
The <fragments> tag contains a collection of one or more <fragment> child tags.
The <fragment> tag represents a single fragment definition.
Parameters
Icon name | Image |
---|---|
region | |
wysiwyg | |
plaintext | |
image1 | |
image2 | |
list1 | |
list2 | |
list3 | |
list4 | |
list5 | |
list6 | |
tree | |
horizontalrule | |
nonbreakingspace | |
linebreak | |
span | |
div | |
heading1 | |
heading2 | |
heading3 | |
heading4 | |
heading5 | |
heading6 | |
copyright | |
flash | |
companylogo | |
documents |
The <fragment> tag contains the following child tags:
The <parameter> tag represents a single parameter of a fragment. Its attributes are:
Parameters
The <parameter> tag may contain text representing the default value (if any) for the parameter. It may also contain the following optional child tags:
The <option> tag represents a single option in a choice list and applies only to parameters of the type text. The <option> tag should contain text that will display in the choice list. Its single attribute is:
For example:
or
The <querytext> tag represents the query parameter to use when performing a search in the content server and applies only to parameters of the type manageddoc or managedurl. The tag contains the query text within a CDATA section. It has no attributes.
For example:
This section covers the following topics:
Native documents are a part of many web sites. While many native documents are typically word processing files or presentations, native documents can be most any type of document.
When placed in a web site, the native documents are converted to a string of HTML, and inserted in the region template.
The wcmDynamicConversion method uses Dynamic Converter to convert the document into HTML so that it can be viewed on the web site.
Note that if you are using Native Docs with the WCM_PLACEHOLDER service then the wcmDynamicConversion tag on the Region Template must specify the dDocName of the conversions definition file as follows:
Document conversion must be listed in the properties pane. The most common reason that a native document does not convert as expected is because the conversion isn't properly listed.
In Designer, the conversion definition is found in the first section of the properties pane. Select an item in the site hierarchy. The conversion must be listed there to work.
However, if wcmDynamicConversion is used, then the item listed in the conversion definition in the panel will not be used. The wcmDynamicConversion tag allows you to explicitly state the rule. When you associate a dynamic conversion with a region definition and region template (rather than explicitly coding it), the conversion must be stated in the properties pane. When you use wcmDynamicConversion, this is not necessary as you are explicitly stating the rule you wish to use. You can even use a rule not stated in the dynamic conversion listed in the conversion definition in the properties pane.
For more information, see the Oracle WebCenter Content User's Guide for Site Studio Designer.
Generally native documents are easy to implement in Site Studio. Site Studio is constructed so that all of your conversion rules are contained in one conversion definition. It is not recommended to keep different conversion files for different rules; all rules should be listed in one conversion definition.
This definition should be listed in the Conversions Definition property in the properties pane for the web site. Not listing the conversions definition here is the most common reason for native documents not appearing as expected in a web site. This is true even if you use the WCM_PLACEHOLDER Idoc script extension to explicitly state the conversion rule.
This section covers the following topics:
A custom element is a user-defined Site Studio element. In addition to the other productized Site Studio elements, the custom element provides a way to extend the Site Studio product to suit individual business needs.
From a code perspective, custom elements are essentially full HTML type files (for example, htm, hcsp, jsp, and so forth) that reside within an IFRAME in the contributor form. A custom element uses an API and implements a hand-full of callbacks in order function correctly as a Site Studio element.
In order for a custom element to function properly in a contributor form, a custom element must utilize an API and implement a hand-full of callbacks. The ElementAPI object is a JavaScript object explicitly loaded into the custom element page that facilitates communication between the Contributor form and the custom element. The ElementAPI provides methods for custom elements to communicate to the Contributor form and a callback mechanism for the Contributor form to pass notifications to the custom element.
This section contains the following topics:
Before the ElementAPI and its supporting libraries can be used; the ElementAPI must first be loaded into the Custom Element page. After the ElementAPI is loaded, the Custom Element should continue with page initialization and notify the Contributor form that the Custom Element is loaded.
When the ElementAPI is loaded into the Custom Element page, so are the ElementAPI dependent scripts. These scripts contain most of the JavaScript WCM library and is also available to use in authoring custom elements. The following is a list of script files loaded into a custom element.
As with other custom scripts, you can modify any of these as you need and place the modified script in the /custom directory.
The contributor form communicates to a custom element by executing functions implemented by the custom element. As part of the initialization process, a custom element needs to register these functions by passing their function pointers to the contributor form.
This section contains the following topics:
The contributor form communicates to a custom element by executing functions implemented by the custom element. As part of the initialization process, a custom element needs to register these functions by passing their function pointers to the contributor form.
The following is a list of functions that can be registered with the contributor form. None of these functions need to be implemented by the custom element; however, a few of them are required if the intention is to collect and save data from a Contributor user. Furthermore, all of these functions except the IsDirty() function, when executed, will be passed a callback function pointer to execute when the task is complete. This allows for asynchronous communication if a custom element needs to perform an asynchronous task during execution.
Function | Description |
---|---|
CanCloseElement(callback); | The contributor form will execute this method when the contributor updates information within the element. The implementation of the function should calculate whether the custom element can be safely closed. For instance, if the data does not pass validation, then the custom element should indicate that it cannot be closed. |
GetElementContent(callback); | The contributor form will execute this method when the contributor updates information within the element. The implementation of the function should pass back string content to be saved. |
Hide(callback); | The contributor form will execute this method whenever the form performs a DHTML task that overlays a HTML element over the custom element. For instance, this method will be executed when the metadata tab is activated and the contributor elements are obscured. This method was introduced specifically for the Ephox-based elements, because Java applets always have top z-index. All other elements (HTML-based elements) can ignore this method. |
Show(callback); | The contributor form will execute this method whenever the form performs a DHTML task that removes an overlay that makes custom elements reappear. This method was introduced specifically for the Ephox-based elements, because Java applets always have top z-index. All other elements (HTML-based elements) can ignore this method. |
IsDirty(); | The contributor form will execute this method whenever the form popup is closed. The custom element should calculate whether or not unsaved changes exist and then notify the contributor if there are unsaved changes. |
The following is a JavaScript code snippet of how a custom element can register functions with the contributor form:
A custom element initiates communication with the contributor form by using the ElementAPI JavaScript object. The following is a list of available ElementAPI methods.
Function | Description |
---|---|
ElementAPI.GetDefaultData(); | Retrieves the default content stored in the data file. |
ElementAPI.SetHostHeight(height); | Sets the height of the elements containing IFRAME. |
ElementAPI.SetRequiredIndicator(isRequired); | Toggles the Required graphic indicator in the Contributor Form UI. |
ElementAPI.GetSite(options); | Displays the Choose Website picker UI. |
ElementAPI.GetSection(options); | Displays the Choose Website Section picker UI. |
ElementAPI.GetColor(options); | Displays the Color picker UI. |
ElementAPI.GetFont(options); | Displays the Get Font picker UI. |
ElementAPI.GetSearchResults(options); | Displays the Oracle Content Server's Get Search Results page. |
ElementAPI.GetQueryText(options); | Displays the Get Query Text UI. |
ElementAPI.CaptureQuery(options); | Displays the Oracle Content Server's Capture Query page. |
ElementAPI.GetHyperlink(options); | Displays the Hyperlink Wizard UI. |
ElementAPI.FocusForm(options); | Focuses the parent window thereby blurring the Element window. |
All custom element forms created with Site Studio releases 10gR3 (10.1.3.3.2) and earlier are not compatible with Site Studio 11gR1 and will need to be manually upgraded (re-authored). The primary reason for not maintaining backward compatibility is Site Studio's prior dependency upon Internet Explorer's proprietary window.external functionality. The window.external functionality of custom elements used in Site Studio release 10gR3 and earlier is blocked at the point of code execution and is not easily duplicated in a cross-browser and cross-platform DHTML solution.
The upside to breaking backward compatibility is that current custom elements are much more flexible, and better integrated into the Contributor application architecture (in addition to being a cross-browser and cross-platform solution).
This section contains the following topics:
A custom element form created using Site Studio 10gR3 (10.1.3.3.2) or earlier (that is, a legacy custom element form), if loaded into the Contributor application with the SSValidateCustomElements flag is set to true
, will be detected. An error message will be displayed in its place within the contributor form.
The Contributor application does this by first downloading the custom element form, parsing the source code, and determining whether or not the custom element form is compatible with the new Contributor application.
The functionality and overhead to detect legacy custom element forms is unnecessary on production installations and is turned off by default. To turn on legacy custom element form detection, add the following line to Oracle Content Server's config.cfg file and restart the server:
Any custom element forms created using a Site Studio release up to 10gR3 (10.1.3.3.2) are not compatible with Site Studio 11gR1. They must be manually upgraded and re-authored. The primary reason for not maintaining backward compatibility is Site Studio's prior dependency on Internet Explorer's proprietary window.external functionality (due to the ActiveX control used for the legacy Contributor application). This functionality was removed from Site Studio as a result of the browser-independent, JavaScript-based Contributor application that is used in Site Studio 10gR3 (10.1.3.3.3) and higher (including 10gR4 and 11gR1).
Site Studio uses several Idoc Script extensions that are used to run a web site:
Note: These script extensions are subject to change with each release of Site Studio. |
Idoc Script is the server-side custom scripting language for Oracle Content Server. It enables you to reference variables, conditionally include content in HTML pages, and loop over results returned from queries.
When a component is installed on Oracle Content Server, the component can add extensions to the Idoc Script and variables, allowing for further customization.
Idoc Script is used primarily for the presentation of HTML templates and configuration settings. The Site Studio component adds a number of script extensions which are described in this section.
Description
The wcmPlaceholder() function defines an area on the page that will hold content. The actual content that the placeholder will display depends upon the data file, subtemplate, and other web site objects associated with the placeholder.
Parameters
Each selection corresponds to the checkbox for the action in the design view of the placeholder definition in Designer.
If you use parameters that do not work together (for example, specifying a subtemplate as well as a region definition), then the script will execute based on the order of parameters listed above.
Code Examples
Description
The wcmElement() script inserts an element in a region template. The element does not have to be listed in the region definition.
This script allows you to retrieve out of the data file the content associated with the named element. This is only for WYSIWYG, Image, Text, and Custom elements. The content of the element that is inserted will be further evaluated in the scope of the current layout page and therefore can include further server-side Idoc Script, if necessary.
Parameters
Code Example
Description
This function defines the start of a List element.
Parameters
Code Example
Description
This function defines the end of a list element.
Parameters
Code Example
Description
This performs the same function as wcmElement but it is for placing static list element content into the region template. This script allows you to retrieve out of the data file the content associated with the named static list element. The content of the element that is inserted will be further evaluated in the scope of the current layout page and therefore can include further server-side Idoc Script, if necessary.
Parameters
Code Example
The above example uses only elementName and rowNum.
Example within context:
Description
This script retrieves the number of rows in the list element. An integer value is returned.
Parameters
Code Example
Example within context:
Description
Prepares the service binder for a call to SS_GET_SEARCH_RESULTS by retrieving the search parameters from the named dynamic list element. It returns a Boolean indicating success or failure.
Parameters
Returns
This returns a Boolean value indicating success or failure.
Code Example
Example within context:
Description
This script allows the contents of an element to be displayed outside the context of the region. When an element is in the context of a region (that is, in a region template), then there is an implied data file association based on that region template.
With wcmIncludeElement, you can force a data file association when the element is outside the context of a region.
Parameters
Returns
The contents of the element are returned.
Code Example
Description
Used to create a dynamic conversion of a native document.
Parameters
Returns
The HTML generated by the dynamic conversion based on the parameters.
Code Example
Using the default:
Including a type value:
Description
This tag is used to retrieve the static list content, and the content available as a ResultSet.
Parameters
Returns
This returns a Boolean value indicating success or failure.
Code Example
Description
This tag is used on templates to add a fragment. If the tag is used on a region template or subtemplate, only the first drop-point snippet will be used.
Parameters
Code Example
Description
This is a single script which can be used to make all link formats. Legacy sites required three different scripts to generate the different types of links available in Site Studio.
Parameters
Code Example
Links to sections; by default these links end with index.htm.
Links to content; by default these links end with a contentId.
Links to weblayout static resources; for example, images.
See also Section 9.40, "ssWeblayoutUrl."
Links to a DAM rendition:
Description
This script extension is a core Site Studio method that allows any element within a managed XML file to be extracted and returned in an Idoc string variable, which can be placed directly on a web page as an HTML snippet. The content of the XML node that is being extracted will be further evaluated in the scope of the current layout page and therefore can include further server-side Idoc Script, if necessary.
Parameters
Returns
The content of the element listed in the Xpath.
Code Example
Description
This script extension retrieves a DOC_INFO result set for the named dDocName.
Parameters
Returns
A boolean value indicating the success of the operation.
Code Example
Description
This script extension returns a count of the number of repeating instances of a given element within a managed XML file. This is used primarily in the implementation of static list fragments to display a set of repeating contribution elements.
Parameters
Returns
The integer value of the number of rows in the list.
Code Example
Description
This script extension can be used to perform a dynamic conversion of a native document where the resulting HTML is returned in an Idoc string variable that can be placed directly on a web page in the form of an HTML snippet. This method allows the caller to specify the managed conversion template and conversion layout to be used.
Parameters
Returns
An HTML string snippet of the document conversion.
Code Example
Description
This script extension, like the ssIncDynamicConversion extension, can be used to perform a dynamic conversion of a native document where the resulting HTML is returned in an Idoc string variable that can be placed directly on a web page, in the form of an HTML snippet.
Unlike ssIncDynamicConversion, this extension uses a specified rule from the Dynamic Converter rules engine in order to decide which conversion template to use. It therefore does not require the caller to specify a managed conversion template or conversion layout.
Parameters
Returns
An HTML string snippet of the document conversion.
Code Example
Description
This script extension, like the ssIncDynamicConversion extension, can be used to perform a dynamic conversion of a native document where the resulting HTML is returned in an Idoc string variable that can be placed directly on a web page, in the form of an HTML snippet.
Unlike ssIncDynamicConversion, this extension uses the normal Dynamic Converter rules engine in order to decide which conversion template to use. It therefore does not require the caller to specify a managed conversion template or conversion layout.
Parameters
Returns
An HTML string snippet of the document conversion.
Code Example
This script extension, like the ssIncDynamicConversion extension, can be used to perform a dynamic conversion of a native document where the resulting HTML is returned in an Idoc string variable that can be placed directly on a web page, in the form of an HTML snippet. Unlike ssIncDynamicConversion, this extension uses a built-in blank template for the dynamic conversion and therefore does not require the caller to specify a managed conversion template or conversion layout.
Parameters
Returns
An HTML string snippet of the document conversion.
Code Example
Description
This script extension can be used to detect whether a managed document is to be considered a native document, and thus available for dynamic conversion, or a contributor data file, which requires no conversion.
The comparison is not an inclusive test for a native document; the test is an exclusive test for data files. The return of yes as a result means that the document was shown to not be a data file.
Parameters
Returns
Boolean value [1 | 0].
Code Example
Description
This script extension is used to generate a random number.
Parameters
It has no parameters.
Returns
A non-negative integer value random number.
Code Example
Description
This script extension can be used to obtain a node property for either the current section or an explicitly specified section. It is typically used to access custom node properties.
Parameters
Returns
Returns the value of the specified property. If "label" is used, the section label will be returned, but other properties can be specified.
Code Example
For example, the following command will retrieve the section label for the current section:
While the following command will retrieve the section label for section 474:
Description
This script extension can be used to tell the difference between a site node (the root of the hierarchy) and a regular section node. It can also tell the difference between an ASP and a non-ASP site or section node.
Parameters
Returns
The return value is one of the following:
Code Example
Description
This script extension can be used to obtain the major version of the underlying content server.
Parameters
It has no parameters.
Returns
Oracle Content Server major version number.
Code Example
Description
This script extension can be used to split a string into segments based on a specified delimiter.
Parameters
Returns
The return value is an integer indicating the number of segments that were split out of the supplied string. The extension also generates a ResultSet with one column, named String, listing the split strings.
Code Example
Description
This script extension can be used to obtain the web site name for any web site on the content server.
Parameters
The parameters are:
Returns
The web site name (label) of the siteId.
Code Example
Description
This script extension can be used to obtain a site property for any web site on the content server.
Parameters
Returns
The property listed in propertyName
, as a string.
Code Example
Description
This script extension can be used to obtain the identifier (nodeId) for the root node of any web site on the content server.
Parameters
Returns
The Id of the first node.
Code Example
Description
This script extension can be used to obtain the identifier (nodeId) of a node relative to a given node.
Parameters
Returns
The nodeId of the node that has the stated relationship to the context node, or an empty string if there is no node with that stated relationship.
Code Example
Description
This script extension can be used to create a "SiteStudioNavNodes" ResultSet in the Idoc execution environment that will contain the active hierarchy for any web site on the content server.
Parameters
Returns
A ResultSet of the web site hierarchy, called "SiteStudioNavNodes."
The "SiteStudioNavNodes" ResultSet has 5 or more columns, depending on the settings of the configuration flag SSAdditionalNavResultSetFields (For more information, see Section 12.14, "SSAdditionalNavResultSetFields"):
Code Example
Description
This script extension can be used to generate a server relative URL to the primary layout for a specified node, including the trailing urlPageName (usually index.htm).
Parameters
Returns
A full friendly URL relative to the server.
Code Example
Description
This script extension can be used to generate a server relative URL to the primary layout for a specified node, excluding the trailing urlPageName (usually index.htm).
Parameters
Returns
A full friendly URL relative to the server, not including the page name.
Code Example
This script extension can be used to obtain the urlPageName for a specified node.
Parameters
Returns
The urlPageName of the node. Usually this is index.htm.
Code Example
Description
This script extension can be used to obtain the label for a specified node.
Parameters
Returns
The label of the specified node.
Code Example
Description
This script extension can be used to obtain a "/" separated string relative to the root of the web site that can be used for a GUI label (for example, "/products/servers/web server").
Parameters
Returns
The script returns a string separated by "/" of the folders in the stated node in the stated web site.
Code Example
Description
This script extension can be used to generate a ResultSet containing a list of all available web sites.
Parameters
Returns
The list of all available web sites on the server is returned in a ResultSet.
Code Example
Description
This script extension is used to generate a path-based URL to a named document. This is deprecated in preference of wcmUrl (see Section 9.13, "wcmUrl").
For more information, see Section 4.3, "Using Server-Side Script Links."
Parameters
Returns
A string which is the friendly link to a specific piece of content.
Code Example
Description
This script extension is used to generate a path-based URL to a specified node. This is deprecated in preference of wcmUrl (see Section 9.13, "wcmUrl").
For more information, see Section 4.3, "Using Server-Side Script Links."
Parameters
Returns
The friendly link to the primary (or landing) page of a node.
Code Example
Description
This script extension is used to determine the full web address of a file from either the path or dDocName. This is most typically used for paths to images in data files. This is deprecated in preference of wcmUrl (see Section 9.13, "wcmUrl").
For more information, see Section 4.3, "Using Server-Side Script Links."
Parameters
Returns
A path-based weblayout URL.
Code Example
Site Studio uses several Idoc variables that are used to run a web site:
Note: These variables are subject to change with each release of Site Studio. |
Idoc script variables are used to give you more flexibility and customization when running your web site. Many of the variables are used to store the HTTP location of different folders on the Oracle Content Server.
Defines the full HTTP location for the Site Studio websites folder. The typical location (where server is the name of the machine and instance is the name of the instance of the content server) is:
Defines the relative HTTP location for the Site Studio websites folder. The typical location (where instance is the name of the instance of the content server) is:
Defines the full HTTP location for the Site Studio fragments folder. The typical location (where server is the name of the machine and instance is the name of the instance of the content server) is:
Defines the relative HTTP location for the Site Studio fragments folder. The typical location (where instance is the name of the instance of the content server) is:
Defines the protocol, server name, and port number (if applicable) for the current machine. For example (where server is the name of the server):
Defines the root portion of a path-based URL for the current web site relative to the server. Will contain one of the following values:
The urlDirName of the root node will override siteId if a value is present.
Site Studio introduces a number of new services in Oracle Content Server, which are used specifically to run a web site. The most important ones are detailed here.
This section contains the following topics:
Note: These services are used by the Site Studio Designer and Contributor applications as well as by the Site Studio component. They are subject to change with each release of the Site Studio application. |
A service is an HTTP request to the Oracle Content Server to perform an action. Each service has a defined set of actions (for example, database transactions, executing a piece of code, queries, and so forth).
When you install the Site Studio component, many services are added.
These services are used with Site Studio Contributor:
These services are related to Site Studio Designer:
These services are related to Site Studio Manager:
These services are related to the use of the Switch Content Wizard:
These services are related to constructing and modifying links in Site Studio:
This list of services includes the most useful ones to customize Site Studio, especially to use it with third-party software:
. . .
The same information will be returned in the SiteIds result set.
Either ssDocName or ssTargetNodeId must be specified.
Note: While these parameters are passed in the service call, they are not used. |
Note: While the nodeId, link, and target parameters are passed in the service call, they are not used. |
The core service SS_GET_PAGE was created specifically for Site Studio. It performs a central function for the product by dynamically generating a single web page from its many component parts.
In Site Studio version 7.2.1 and earlier versions, the SS_GET_PAGE service was used directly to browse to a Site Studio web page URL. For the current version of Site Studio version, the SS_GET_PAGE service will rarely be used in the web page URL directly. Instead, web pages are accessed using more standard path-based URLs.
However, the core SS_GET_PAGE service call still exists to perform the work behind the scenes for these URLs. In addition, we now have a web server filter plug-in that intercepts all path-based Site Studio related URLs and converts them to their component parts before passing them on to the underlying SS_GET_PAGE service call. As a result, this core service continues to be described here.
The SS_GET_PAGE service requires one of the following, mutually exclusive parameters as part of the query string:
It is also possible to retrieve the node's secondary page, instead, by specifying the "useSecondary=true
parameter in the URL. In this case, the service will retrieve the node's secondaryUrl property and serve up the secondary page. This feature is used primarily by the Designer application.
It then performs a decision-making process to determine whether it should display the section's primary or secondary page by parsing the sections primaryUrl and secondaryUrl properties. Once the decision is made, the correct page can be served up.
In the Site Studio Designer interface and in the Oracle WebCenter Content User's Guide for Site Studio Designer, a site hierarchy is described as having "sections" that make up the web site. These were originally called "nodes" when the product was first developed, and, as such, many behind-the-scenes features like the SS_GET_PAGE service still refer to them as such. In Site Studio terminology, a "node" is the same as a "section."
Three Rules for Reusing Content
When SS_GET_PAGE is used with the nodeId parameter, the service is told explicitly to display the primary page of the specified section, and no more decisions are needed. But when SS_GET_PAGE is used with the ssDocName parameter, the service must determine which section to display the document in, and this is determined by the following three rules:
All of this allows contributors to share and reuse content (contributor data files and native documents) in different sections of the same site and even different sites on the same content server (see "Sharing region content using target sections" in the Oracle WebCenter Content User's Guide for Site Studio Designer).
Once the SS_GET_PAGE service (using an ssDocName parameter) has determined which section to display the managed document in, it still needs to determine whether it should serve up the primary or secondary layout page. The following algorithm controls this:
The above description assumes that the ssDocName parameter points to a contributor data file or native document. If the ssDocName parameter points to a layout file, then a different decision-making process occurs, whereby Site Studio walks the site hierarchy until it locates a section using that layout. However, a direct link to a managed layout is rare; it is typically used internally by Designer.
In addition to nodeId, ssDocName, ssTargetNodeId, and ssSourceNodeId, the SS_GET_PAGE service also recognizes the following optional URL parameters or cookie values:
You should not be using this parameter directly.
An error can occur at any point during the SS_GET_PAGE service call. For example, if a REPLACEABLE region is required but has not been specified for a particular section, you may encounter an error. Normally, if these types of errors occur, they are shown within a standard content server error page, which takes the consumer out of the context of the web site.
In order to show the error, but remain within the context of the web site, one section within the site can be specified as an Error Handler section in Designer. If an error occurs within the SS_GET_PAGE service, then the consumer is redirected to the primary layout page associated with the error handler section. Two Idoc variables are available for the layout page displaying error information:
Internally, when setting the error handler section, a site property, errorNodeId, is set to contain the nodeId of the error handler section.
In Site Studio, the potential list of error codes includes:
ssErrorCode | ssErrorMessage |
---|---|
-0x100 | "No Layout page specified for this part of the web site." |
-0x101 | "Failed to locate document information for document with content ID" |
-0x102 | "Document with Content ID '{1}' does not match the Primary or Secondary Url at section '{2}' (Id={3}) and there is no Replaceable Region defined." |
-0x103 | "Link to Section '{1}' (Id={2}) failed because there is no Primary URL defined for the section." |
-0x104 | "Link to Section '{1}' (Id={2}) failed because there is no Secondary URL defined for the section." |
-0x105 | "The Section '{1}' (Id={2}) is not part of a Site Studio web site." |
-0x106 | "Layout with Content ID '{1}' is not filed in a Site Studio web site." |
-0x107 | "The Layout with Content ID '{1}' was not found in any section Url of any web site." |
-0x108 | "Unable to identify in which web site section to display document with Content ID '{1}'." |
-0x200 | "An unknown error has occurred in the SS_GET_PAGE service call." |
To display the primary (splash) page of a section:
To display a particular document in a section:
This requires one of the following:
Or
True alters the QueryText with a clause for xWebsites.
False does not alter the QueryText for xWebsites.
-1 alters the QueryText with a <not> clause for xWebsites.
These parameters are all in addition to those required by GET_SEARCH_RESULTS.
If the requested site property does not exist, this parameter will not be returned, but the service call will succeed.
For this service to work with a site, the site must be marked with the Enable Publish Site action in Site Studio Designer to work.
The two above values are obtained with the check-out of the data file.
. . .
nodeIdN
. . .
propertyN
. . .
valueN
This service is a specialization of SET_ELEMENT_DATA, where the data is saved in a preview location and not checked in.
For more information, see Section 11.7.67, "SS_SET_ELEMENT_DATA."
This service evaluates a placeholder, allowing the contents of the placeholder to be retrieved directly from anywhere the Oracle Content Server can be seen from.
This allows you to create a third party application on top of xml data files that are managed by the Oracle Content Server and can be edited by the Site Studio Contributor, without being forced into using a full Site Studio web site.
Parameters:
Each selection corresponds to the checkbox for the action in the design view of the placeholder definition in Designer.
These are the same parameters required by the wcmPlaceholder script extension.
This service can be used with webcache and Edge Side Includes (ESI) for partial page caching. When the page is rendered in an ESI environment, the ESI server can cache the request for placeholder contents.
This service displays the Site Studio Contributor, allowing the user to edit the specified data file.
Parameters
When you check the file in, if it is no longer the head revision, then you cannot complete the check-in.
Note: This service should rarely, if ever, be called directly. Consider calling WCM_BEGIN_EDIT_SESSION instead. |
This service can be used to check out a data file before editing it with the WCM_EDIT_DATA_FILE service. WCM_BEGIN_EDIT_SESSION will automatically redirect to WCM_EDIT_DATA_FILE after the checkout.
This section covers the following topics:
Site Studio supports configuration flags that can be used to customize the operation of Site Studio. These flags allow you to finely control the operation of Site Studio both on the Oracle Content Server as well as for designers and contributors. Whenever you change a flag, you should restart the Content Server.
Perform these steps to add configuration parameters for Oracle UCM:
http://
Host_Name
:
Port
/cs
The default protocol for Oracle Content Server is http, and cs is the default http relative web root for Oracle Content Server. The default port number is 16200.
Flags that have no default value must be added to the configuration file, they are not included in the config.cfg file when shipped.
This flag prevents pages from opening in contribution mode. All methods of switching to contribution mode are blocked. This can be useful when creating production or read-only web sites.
Values
Boolean
Default
no
This flag is used to control if a message is shown in contribution regions with empty data file assignments.
Values
Boolean
Default
no
This flag is used to control if element definition files are validated against the XSD schema.
Values
Boolean
Default
yes
This flag is used to control if region definition files are validated against the XSD schema.
Values
Boolean
Default
yes
This flag is used to control if placeholder definition files are validated against the XSD schema.
Values
Boolean
Default
yes
This flag is used to control if conversion definition files are validated against the XSD schema.
Values
Boolean
Default
yes
This flag is used to control if data files are validated against the XSD schema.
Values
Boolean
Default
yes
This flag is used to control if project files are validated against the XSD schema.
Values
Boolean
Default
yes
This flag is used to define a header string to search for in http responses. If found, this will be replaced with the value of the flag SSAccessDeniedReplacementHeader (see Section 12.11, "SSAccessDeniedReplacementHeader").
Values
String
Default
401 Access denied
This flag is used to define a header string to use as the replacement for the value of SSAccessDeniedHeader (see Section 12.10, "SSAccessDeniedHeader").
Values
String
Default
499 Oracle SSO
This flag is used to set a comma-separated list of values that, if found in the HTTP-USER-AGENT header, will nullify the SSChangeAccessDeniedHeaders flag (see Section 12.28, "SSChangeAccessDeniedHeaders") for the particular request.
Values
CSV String
Default
No default value.
This flag is used to control if the <welcome-file> mechanism of WLS-based content server is accommodated.
Values
Boolean
Default
yes
This flag is used to specify a comma-separated list of additional section properties to add to the standard set of properties in the SiteStudioNavNodes ResultSet used with the ssLoadSiteNavResultSet Idoc function (see Section 9.31, "ssLoadSiteNavResultSet").
Values
CSV String
Default
No default value.
This flag is used to specify if a dID value of 0 is placed in the ResultSet used to check user access to sections. This was needed for operability with some early versions of Records Management.
Values
Boolean
Default
no
This flag is used to specify a comma-separated list of site properties to send to the SSAfterProjectLoaded PluginFilter used with Site Studio for External Applications.
Values
CSV String
Default
siteLabel,siteType,isExternal
This flag is used to enable or disable Idoc evaluation of definition files loaded from disk.
Values
Boolean
Default
yes
This flag is used to specify if a landing page is delivered for an incoming URL with an empty value for Url Page Name. In previous versions of Site Studio, the behavior was to do a redirect in these circumstances to generate the full landing page URL. Set the option false to restore that old behavior.
Values
Boolean
Default
yes
This flag is used to override customized behavior for Site Studio Publisher Utility. The SSPETag flag is used to return a 304 to indicate that the result from a GET_FILE URL has not changed. Use the SSAllowNotModifiedHeader flag to disable this behavior on >= 7.2 servers.
Values
Boolean
Default
yes
This flag is used to specify the name of the metadata field to use for alt tag tags on images inserted via Contributor.
Values
String
Default
dDocTitle
This flag is used to specify whether or not to record the "server config" in a backup archive.
Values
Boolean
Default
no
This flag is used to specify whether or not the Site ID is always used in the link format.
Values
Boolean
Default
no
This flag is used to determine if the content of files with the extension .xml are encoded in UTF-8 format. With the flag set to yes, making this assumption speeds the processing of XML files by avoiding the inspection of the encoding declaration in the file itself.
Values
Boolean
Default
yes
This flag is used to set the minimum time duration (in seconds) before the auto check-in mechanism attempts a check-in of a project file. This prevents two nodes from trying to check the project file in at the same time.
Values
Integer
Default
30
This flag is used to override the name of the Site Studio backup collection used with Archiver.
Values
String
Default
No default value.
This flag is used to provide the same cache-control header on every response. It replaces anything that would be provided by the maxage and maxagesecondary node properties. See also Section 12.86, "SSIgnoreMaxAgeNodeProperties."
Values
String
Default
No default value.
This flag is used as a global override for the Generate Unique Data Files option in the Region Menu in Design mode. When set to yes, the option is available for Design mode.
Values
Boolean
Default
yes
This flag is used to control whether 401 responses will be changed to 499 responses for use with Oracle SSO.
Values
Boolean
Default
no
This flag is used to check the dDocNames assigned to the primary or secondary url for security access. This check happens during the actions part of SS_GET_PAGE, so the error page can be shown.
Values
Boolean
Default
no
This flag is used to indicate whether or not to produce server relative site root values with respect to the browser URL. If set to no
, the server-relative URL prefix will be generated from the default site address.
Values
Boolean
Default
yes
This flag is used to add the site ID to ID-based links if it is determined that the node ID is not unique on the server. If set to yes
, the check is made and if necessary, the site ID added to the link. If set to no
, no check is made, and no site ID is added to the link.
Note: You should consider using this flag only if you know you have non-unique node IDs. Since this requires checking each node on the server, it can become an expensive call if there are many sites. |
Values
Boolean
Default
no
This flag is used to activate security checking for website objects. Normally, since use of a website object by the component/server while delivering a page doesn't really constitute end-user access to the resource, there are no security checks on these objects. Setting this flag to true will activate security checking for each website object.
Values
Boolean
Default
no
This flag is used to forcibly remove the existing xWebsites values when importing a definition archive.
Values
Boolean
Default
no
This flag is used for additional arguments passed to the JavaScript compressor's process.
Values
String
Default
No default value.
This flag is used as a command-line replacement to launch the JavaScript compressor's process.
Values
String
Default
No default value.
For more information on the string value that would be used, see the README file located in the wcm\tools\yui-compressor\doc\ folder on the Oracle Content Server.
This flag is used as an override for the JavaScript compressor's implementation location.
Values
String
Default
<weblayout>/resources/wcm/tools/optimize
This flag is used as an override for the JavaScript compressor's Rhino jar file location.
Values
String
Default
<weblayout>/resources/wcm/tools/rhino/rhino1_7R2/js.jar
This flag is used as an override for the JavaScript compressor's main class.
Values
String
Default
org.mozilla.javascript.tools.shell.Main
This flag is used to override the JavaScript compressor's minimum amount of time allowed (in seconds) for the process to complete.
Values
Integer
Default
900
This flag is used to override the length of the JavaScript compressor's process sleep interval (in seconds).
Values
Integer
Default
10
This flag is used to override the JavaScript compressor's file lock wait duration.
Values
Boolean
Default
no
This flag is used to determine the directory within the <weblayout>/resources directory where the Contributor JavaScript code is referenced.
Values
String
Default
wcm
This flag is used to determine the default permission a user needs to access custom node properties.
The values are one of the following four:
Values
Integer
Default
2
This flag is used to override the default documents fields. Enter the default documents fields to use.
Values
CSV String
Default
No default. Values entered are field names.
This flag is used to specify the base editor for the Contributor application.
Values
String
Default
fck
This flag is used to specify a string (possibly a partial URL) to prefix evaluated wcmUrl links of type resource that have a dDocName parameter. This is used when delivering content through the WCM_PLACEHOLDER service where there might be a need to alter the URLs produced.
Values
String
Default
The evaluation of <$HttpAbsoluteWebRoot$>
This flag is used to specify a string (possibly a URL Query segment) to affix to evaluated wcmUrl links of type resource that have a dDocName parameter. This is used when delivering content through the WCM_PLACEHOLDER service where there might be a need to alter the URLs produced.
Values
String
Default
No default
This flag is used to specify a string to use when evaluating <$ssServerRelativeSiteRoot$>. This is used when delivering content through the WCM_PLACEHOLDER service where there might be a need to alter the URLs produced.
Values
String
Default
No default
This flag is used to specify a string (possibly a partial URL) to prefix evaluated wcmUrl links of type resource that have a partial weblayout path parameter. This is used when delivering content through the WCM_PLACEHOLDER service where there might be a need to alter the URLs produced.
Values
String
Default
The evaluation of <$HttpAbsoluteWebRoot$>
This flag is used to SPECIFY a string (possibly a URL Query segment) to affix to evaluated wcmUrl links of type resource that have a partial weblayout path parameter. This is used when delivering content through the WCM_PLACEHOLDER service where there might be a need to alter the URLs produced.
Values
String
Default
No default
This flag is used to override the placeholder definition.
Values
String
Default
SS_DEFAULT_PLACEHOLDER_DEFN
This flag is used to override the default region template.
Values
String
Default
SS_DEFAULT_REGION_TEMPLATE
This flag is used to change the value of the default url page name. This allows files other than those named index.htm to be the default page for a section of a web site.
The flag SSUrlPageNames (see Section 12.125, "SSUrlPageNames") allows additional url page names to be used to deliver the primary page.
Values
String
Default
No default value.
This flag is used to specify if the encoding of web site objects have their encoding determined or not.
Values
Boolean
Default
no
This flag is used to specify a default Placeholder Definition name to be used in Doc Info Contribution.
Values
String
Default
SS_DEFAULT_PLACEHOLDER_DEFN
This flag is used to specify which file extensions are delivered directly. If the flag is not listed in config.cfg, then PDF files will still pass via direct delivery, and other native documents will follow conversion rules.
When the flag is present, all file types listed here (by filename extension) will be delivered directly. File types not specifically listed will be displayed via conversion. This includes pdf files, if the flag is present but pdf files are not listed.
Values
CSV String
Default
This flag is used to specify which custom section property is used to override the global values of the section. The property named in the flag should use a boolean value indicating if the global values should be overridden or not.
Values
String
Default
OverrideDirectDeliveryExtensions
This flag is used to specify the name of a custom section property. This property identifies the file extensions to deliver directly from this particular section.
The file extensions listed here will override the global list in SSDirectDeliveryExtensions (see Section 12.56, "SSDirectDeliveryExtensions").
Values
String
Default
DirectDeliveryExtensions
This flag is used to specify file types that are always to be delivered by direct delivery. The file extensions listed here are not overridden by those listed in SSDirectDeliveryProperty (see Section 12.58, "SSDirectDeliveryProperty").
Values
CSV String
Default
This flag is used to enable or disable deferred node expansion. The Xerces parser's deferred node expansion feature is known to be a very inefficient feature for small DOMs, so setting this flag to no
might impede performance.
Values
Boolean
Default
yes
This flag is used to control if extracted content from data files is cached. This cache makes retrieval of content from data files much faster.
Values
Boolean
Default
no
This configuration flag is used to reduce site lock contention during page assembly. When the flag is set to yes, it prevents the Idoc script extensions ssLink and ssNodeLink, as well as the wcmUrl equivalents wcmUrl('link'... and wcmUrl('nodelink'..., from synchronizing their accesses of internal web site information structures. This can improve performance by reducing lock contention, which then allows multiple requests to process simultaneously. However, this comes at the risk of producing inaccurate links in a changing web site.
Setting the flag to yes is most useful when the Oracle Content Server is run under the following conditions:
Values
Boolean
Default
no
This flag is used to control whether DOM nodes will be expanded in memory during the loading of XML files, or if the node content will be loaded on-demand.
Values
Boolean
Default
yes
This flag specifies the default file size value to multiply the file size by to obtain a cache size.
Values
Numeric
Default
2.0
This flag defines a comma-separated list of file sizes and multipliers that control the computed cache size.
For example, the following string
1000,6.0,10000,2.7,50000,2.1,100000,1.9,300000,1.6
multiplies files sized [0..999] by 6.0,
multiplies files sized [1000..9999] by 2.7,
multiplies files sized [10000..49999] by 2.1,
multiplies files sized [50000..99999] by 1.9,
multiplies files sized [100000..299999] by 1.6,
Files outside the range above are multiplied by the value of SSDomCacheDefaultFileSizeFactor (see Section 12.64, "SSDomCacheDefaultFileSizeFactor").
Values
CSV string
Default
No default value.
This flag is used to define a lower bound on the reported cache size.
Values
Numeric
Default
6000
This flag is used to set a multiplier on the computed cache size to arrive at a final value reported to the cache. The cache will then multiply the reported value by 10 in its computations.
Values
Numeric
Default
0.1
This flag specifies the number of bytes to count per DOM node.
Values
Numeric
Default
12
This flag specifies the number of bytes to multiply string lengths in the DOM by to produce the string size.
Values
Numeric
Default
2
This flag specifies the number of bytes to add per string in the DOM.
Values
Numeric
Default
24
This flag is used to compute a cache size based on an enumeration of the XML DOM.
Values
Boolean
Default
no
This flag is used to compute a cache size based on the size of the file.
Values
Boolean
Default
yes
This flag is used to override the Ephox editor's debug level.
The available values are http, debug, info, warn, error, and fatal.
Values
String
Default
No default value.
This flag is used to enable ASP support in Site Studio 11gR1 and above. In the 11gR1 component and later, ASP support is disabled by default.
Values
Boolean
Default
no
This flag is used to control direct delivery. Direct delivery alows you to link to a native document content file for download, rather than having it display in the page using conversion rules.
For more information, see the Oracle WebCenter Content User's Guide for Site Studio Designer.
Values
Boolean
Default
no
This flag is used to allow interoperability with the ExtranetLook component, as well as to preserve friendly URLs when certain Single Sign On (SSO) systems are used.
Values
Boolean
Default
no
This flag allows Folios assigned to a Site Studio region or placeholder to be edited.
Values
Boolean
Default
no
This flag is used to override including the Form Editor option in the Region Menu. Setting the flag to yes includes the Form Editor in the menu.
Values
Boolean
Default
no
This flag enables the JavaScript compression from the Site Studio Administrator pages in the Oracle Content Server.
Values
Boolean
Default
yes
This flag is used to ensure that xRegionDefinition has the same case-preserving aspects as dDocName.
Values
Boolean
Default
yes
This flag is used to ensure that nodeIds are unique server-wide. If set to boolean no, the nodeId only be unique within each project. This latter action mimics older Site Studio behavior.
Values
Boolean
Default
yes
This flag is used to hide the filename field when creating a new web asset. This helps to avoid modifying the the name to something inappropriate.
Values
Boolean
Default
no
This flag is used to direct Site Studio Contributor to the help file location.
Values
String
Default
<$HttpWebRoot$>help/
This flag is used as an alternate HttpLayerManager. Using this can be useful with some implementations with Ephox.
Valid values for Ephox include default and sun.
Values
String
Default
No default value.
This flag is used to set the value that determines if a web site object contains Idoc Script code or not, and thus if it is a candidate for Idoc parsing and evaluation.
Values
String
Default
!--$
This flag is used to override the maxage and maxagesecondary node properties.
While you might want these properties to generate cache-control headers on your live system, it could be desirable to disable that behavior on the development environment. See also Section 12.26, "SSCacheControlOverride."
Values
Boolean
Default
no
This flag is used to override any errors caused with default project metadata. Normal behavior is to throw an exception if the default project metadata has not been set. Override that by setting this option to boolean yes
.
Values
Boolean
Default
no
This flag is used to override section level settings for Ready to Replicate. Setting the flag to yes will cause all sections to be replicated regardless of section level setting.
Values
Boolean
Default
no
This flag is used to import only the latest revision when importing an archive. The default behavior when importing an archive is to import everything.
Values
Boolean
Default
no
This flag is used to include inactive nodes in the ssNavNodes result set. By default the ssNavNodes result set does not include inactive nodes.
Values
Boolean
Default
no
This flag is used to include inactive nodes in the navigation XML file. By default the navigation XML does not include inactive nodes.
Values
Boolean
Default
no
This flag is used to determine if region templates are included in definition bundles. The default behavior is to include Region Templates in a definition bundle. Omit them by setting this option false.
Values
Boolean
Default
yes
This flag is used to set the file type that data files are transformed into when transformed. The transformation can be specified as xml, xhtml or html.
Results may change considerably by modifying this flag.
Values
String
Default
HTML
This flag is used to format the XML file to include indentations. This allows the XML code to be printed in an indented format, rather than as a single line.
Values
Boolean
Default
no
This flag is used to override what Java executable to use for the JavaScript compressor implementation. This flag should be used when the default (java.home environment variable) should not be used.
The default variable for this flag should be changed if you intend to use the flag.
Values
String
Default
java.home env variable
This flag is used to override the JSON content type.
Values
String
Default
application/jsonrequest
This flag allows custom elements to be fully loaded when all standard elements are loaded on demand. Custom elements provide their own UI so if they are loaded on demand they will have no preview. In general custom elements load more quickly than standard elements so allowing these to load fully should not have a large impact on the load time performance of the Contributor form.
Values
Boolean
Default
yes
This flag is used to override the loading of projects at startup. If there are a substantial number of projects in the system, this could prevent the Oracle Content Server service from starting as a service under Windows.
Values
Boolean
Default
yes
This flag is used to load uncompressed FCK Editor source code. This is a debugging aid to FCK Editor.
Values
Boolean
Default
no
This flag is used to override the use of the XML parser to validate unique nodeIds. Certain implementations will validate large projects slowly when using the XML parser, so the default value is to not use it.
Values
Boolean
Default
yes
This flag is used to override the maximum node ID value length.
Values
Integer
Default
30
This flag is used to override the maximum site ID value length.
Values
Integer
Default
30
This flag is used to set the maximum number of web sites that can be displayed in the websites menu.
Values
Integer
Default
No default value.
This flag is used to override the maximum number of Placeholder nestings.
Values
Integer
Default
200
This flag is used to set he name of the collection that will be used for backup archives.
Values
String
Default
The value of the content server "Instance Name".
This flag is used to omit the fragment libraries in a backup archive. The default setting is to include them.
Values
Boolean
Default
no
This flag is used to set the number of elements that must be present in a contribution to cause the elements to load on demand in Contributor.
Values
Integer
Default
6
This flag is used to generate and populate values for the Url Dir Name section property with Site Studio web sites before version 7.5.
Values
Boolean
Default
yes
This flag is used to set the time interval (in seconds) the project file is automatically checked in.
Values
Integer
Default
600
This flag is used to specify a NAME of a tracing section to be used to dump diagnostics when a project load error occurs. By default these exceptions will always be dumped. Use this flag to selectively dump them when you enable the specified trace section.
Values
String
Default
No default value.
This flag is used to set the time in seconds to sleep while waiting for project release. See also Section 12.112, "SSProjectReleaseWaitTime."
Values
Integer
Default
3
This flag is used to set the time in seconds to wait for a newly committed project file to become "released" during an archive operation. See also Section 12.111, "SSProjectReleaseSleepTime."
Values
Integer
Default
30
This flag is used to set the template used as the Quick Diff's region template.
Values
String
Default
SS_DEFAULT_REGION_TEMPLATE
This flag is used to enable or disable the Assignment tooltip while in Contributor mode. When set to yes, the tooltip will display when hovering over the region marker.
Values
Boolean
Default
no
This flag is used to control the query in SQL searches. When the SQL contains operator is not available for the xWebsites or xDontShowInListsForWebsites columns.
Setting this flag to no uses the like query; setting it to yes uses the contains query.
Additionally, there can be problems for some queries used by Site Studio if Site Id values contain the "_" character. These problems are caused by the fact that the "_" is used as a word break character at indexing time and as a wildcard character at query time.
To avoid these issues Site Studio can be told to not use a contains query but to instead use a four-part like query.
Values
Boolean
Default
no
This flag is used to set the dDocName of a content item defining a page to be returned if you try to access a web site that has been stopped.
Values
String
Default
No default value.
This flag is used to prevent images that are linked to from being marked as part of the current web site. When linking to an image, Site Studio normally marks that image as part of the current web site, which requires write permission on the image. Use this flag to not mark the image.
Note that this image will not be picked up by site archives if this is used.
Values
Boolean
Default
no
This flag is used to enable or disable the CSS optimization calculation. The optimization calculation happens in Contributor mode, rather than when the Contributor form is being rendered so that the Contributor form loads faster.
When this flag is set to yes
, the calculation will be used.
Values
Boolean
Default
no
This flag is used to override for the time (in seconds) to leave temp project files after they have been checked in to the content server.
You must use extreme caution if you change this.
Values
Integer
Default
120
This flag is used to set which metadata field is used for title tags.
Values
String
Default
dDocTitle
This flag is used to specify the name of the metadata field to use for title tags on images inserted via Contributor.
Values
Boolean
Default
yes
This flag is used as an override to enable tracking of fragments with Tracker.
Values
Boolean
Default
no
This flag is used as an override to specify a metadata field name to be used instead of dDocName when producing the page identifier in URLs. Specifiy a name without the leading x
, for instance Foo
, not xFoo
.
Values
String
Default
No default value.
This flag defines a list of string values that will be compared against links during link fixup to see if the link should be excluded from the fixup process. It should be noted that the links will be compared in a lower case manner; that is, the link being examined will be lower cased first and therefore the exception values specified should all be lower case.
The link http://download.oracle.com/groups/public/documents/database.docx is excluded from the fixup process in any of the following examples:
Values
String, values separated by 'pipes': |
Default
No default value.
This flag is used to nominate other allowable URL page names that will deliver the primary page. This is helpful if there are existing data files with path-based links using the previous default URL page name.
The default URL page name is whatever is specified in each section property, otherwise, it is index.htm. The related flag SSDefaultUrlPageName (see Section 12.53, "SSDefaultUrlPageName") allows you to specify a default file that is not index.htm.
Values
CSV string
Default
No default value.
This flag is used to override to restore previous Site Studio versions behavior of redirects. The current default and recommended value is to redirect to a relative URL. When this flag is set to Boolean yes, all redirects will use absolute URLs.
Values
Boolean
Default
no
This flag is used to determine if ASP uses the callback type of reporting content access for tracker. The default is to enable content access tracking. To enable the callback type that is potentially more accurate, but much slower, then enable this flag.
Values
Boolean
Default
no
This flag is used to determine default value for the SSDefaultExternalDocNamePrefix configuration entry if it is not specified.
Values
Boolean
Default
yes
This flag is used to determine if the default value for the SSDefaultServerRelativeSiteRoot configuration entry if it is not specified.
Values
Boolean
Default
yes
This flag is used to determine if the default value for the SSDefaultUrlPrefix configuration entry if it is not specified.
Values
Boolean
Default
yes
This flag is used to generate a tokenized link in the cases where a computeUrl function does not have a target. If the target dDocName or the target nodeId no longer exist, then a replacement URL will not be generated. The default action of the flag computes a tokenized link to avoid script extension errors.
Values
Boolean
Default
yes
This flag controls the creation of the menus in Contributor. When a page has multiple placeholders, a lot of DOM manipulation is required to construct the popup menus for each placeholder marker. When using Internet Explorer this process can take a long time and cause the CPU to spike to 100%. When this flag is set to yes, the creation of the menus is delayed until the user actually clicks on the icon.
Values
Boolean
Default
yes
This flag allows the URL to determine which mode you are in by including an extra path segment. (For example: contributor/design/preview<previewId>)
Values
Boolean
Default
no
This flag is used to determine whether or not a custom element validates the compatibility of a custom element form. This feature was intended for notifying users to upgrade their legacy custom element forms. This flag should be set to false for performance reasons.
Values
Boolean
Default
no
This flag is used to specify which folders to have the web server filter plugin ignore. This allows domain based sites to address resources external to the Oracle Content Server.
Values
String
Default
No default value.
This flag is used to allow dDocNames to be used in place of weblayout paths with ssWeblayoutUrl and corresponding wcmUrl('resource' ...) links.
Values
Boolean
Default
yes
This flag is used to specify the welcome file, a URL suffix automatically generated by WLS. This will typically be portal.htm, which will not match any of Site Studio's URLs.
Values
String
Default
/portal.htm
This flag is used to specify the replacement for the welcome file to use when matching the incoming URL against the project hierarchy.
Values
String
Default
/
This section covers the following topics:
Site Studio web sites are dynamic web sites that allow for the quick delivery of different forms of content within each different page. But there are some portions of Site Studio that can be customized to allow for even better performance.
Some of the web sites you create and maintain may not be used often. In these cases, it would be easier to keep the server from loading these sites into memory until they are actually requested, improving the server performance through memory management.
The sites you want to load only when requested can be marked as such in the Administrator, using on-demand management you can select which sites load when the server boots, and those that load when requested.
When a site has been requested, it then stays in memory as the other sites.
For more information on On-Demand web sites, see the Oracle WebCenter Content Administrator and Manager's Guide for Site Studio.
Contributor can occasionally take some time to load if there are a large number of elements in a contribution region. This is to be expected. There are some configuration flags in Site Studio that can be set to allow for faster loading of Contributor by using on-demand editors.
This section covers the following topics:
Site Studio uses a large number of configuration flags for different actions. Since there are so many flags, only those used in the most common instances will be described.
Contributor loads an editor for each element in a contribution region, whether or not it displays on the page. When there are a large number of elements, this can cause much longer loading and waiting times for the contributors.
There are flags that can be modified to allow for the use of on-demand editors in Contributor. The on-demand editor shows a preview of the data contained in the element, but the editor will not load until requested.
This configuration flag is used to enable the on demand editors in Contributor only when there are a certain number of elements to load. When you set this flag to a certain number n, the elements will become on demand elements when there are n+1 elements in the contribution region.
Values
Integer
Default
5
There are substantial portions of the code in Contributor that are based on JavaScript and CSS. This code can be optimized.
Optimized Contributor source code is JavaScript and CSS code that has been compressed and consolidated. Optimized source code improves the Contributor application's load time and execution speed in the browser. By default, Site Studio is initially configured to use un-optimized source code for debugging and configuration purposes.
This section includes the following topics:
The build process requires a JDK for Java that implements the 1.5 or greater specifications.
It is important to note that the build system will only work correctly by default if the tools directory resides just within the root directory of the Contributor application. In most cases, the tools directory will reside in the following location:
Note: If the computer is configured to use a default Java Runtime Environment with a version less than 1.5, the invocation of the compression module in the WCM.Compress function in the build.js script should be changed to reference a compliant runtime environment. Specifically, the first parameter to the runCommand function should be changed from java to a full path reference to the java executable version 1.5 or greater. |
All the logic to build optimized Contributor source code is located in build.js, written in JavaScript. The build process uses Rhino , a JavaScript interpreter, to execute the build script to create optimized Contributor source code. The build.js script file is located in following directory:
The build process first makes a duplicate copy of the un-optimized code. By default, the destination directory will be called 'wcm_min' and will reside just outside the root directory of the Contributor application in the following location:
After that, the build process manipulates the newly copied code into optimized source code by compressing all JavaScript and CSS files, then scanning each HTM file, and finally concatenating all JavaScript and CSS files referenced in the HTM file. The build process reads the HTM files at run-time and enumerates all the JavaScript and CSS files in the HTM file that reside within a well-known comment syntax.
For example, all the JavaScript references within the following comment syntax
are compressed, concatenated, and referenced as
Similarly, the following CSS references within the following comment syntax:
are compressed, concatenated, and referenced as
To run the build process on Windows, double-click the shell-build shortcut in the following location:
Use the following command line to run the build process on other Site Studio supported platforms, including Windows:
When running the build process from the command line, it is important to ensure that the execution working directory is that of the build script's directory. For instance, if executing the build from a shell, be sure to change directories to that of the build script (\tools\optimize) before executing the command line.
The process can also be run from the Manage Fragment Libraries page in Site Studio Administration. Click Compress Contributor JavaScript to start the process.
To run the visual debugger on Windows, double-click the shell-debug shortcut in the following location:
Use the following command line to run the visual debugger on other supported platforms, including Windows:
When running the visual debugger from the command line, it is important to ensure that the debugger's execution working directory is that of the build script's directory. For example, if executing the debugger from a shell, be sure to change directories to that of the build script (\tools\optimize) before executing the command line.
Once the optimized Contributor source code is built, Site Studio can be configured to use the optimized source code by changing the SSContributorSourceDir value. This value can be set in the following configuration file:
Within sitestudio.cfg, set SSContributorSourceDir to the value wcm_min
:
Customizations made to the Contributor source code will be picked up by the build process automatically as long as the JavaScript and CSS file references reside within the special comment syntax. In addition, if newly added HTM files contain the special comment syntax around the JavaScript and CSS file references, then the build process will perform optimizations on those files.
The build script can also be modified to suit a user's customization needs. For instance, the output directory name or location can be changed. In addition, there are regular expression filters to determine which files get copied, compressed, or concatenated. These filters can be updated to suit any customizations as needed.
The use of memory in cached data can affect how responsive Site Studio is. One method of controlling this is done in the Site Studio program itself, where the memory requirements for the Site Studio structures were reduced by incorporating different changes.
Some of these changes include: disabling the Xerces deferred DOM loading and removing extraneous whitespace text nodes from the Project File DOM, among other changes.
The memory usage can also be controlled in the use of flags. This section covers the following topics:
The Xerces parser's deferred node expansion feature is known to be a very inefficient feature for small DOMs. However, it can be controlled via a flag.
The algorithms that compute the size of the items in the DOC_INFO cache, can be fine-tuned in two ways. The first way is to use a multiplier on the file size. The second is to enumerate the DOM. The following configuration flags are available:
Note: These flags are used in Site Studio 10gR4, but not in Site Studio 11gR1. |
The algorithm that computes the amount of space that a SSXPathCacheEntry consumes in the ResourceCache, can be fine-tuned in two ways. The first way is to use a multiplier on the file size. The second is to enumerate the DOM. The following configuration flags are available:
For example, the following string
1000,6.0,10000,2.7,50000,2.1,100000,1.9,300000,1.6
multiplies files sized [0...999] by 6.0,
multiplies files sized [1000...9999] by 2.7,
multiplies files sized [10000...49999] by 2.1,
multiplies files sized [50000...99999] by 1.9,
multiplies files sized [100000...299999] by 1.6,
(files outside the range above are multiplied by the value of SSDomCacheDefaultFileSizeFactor.)
This section covers the following topics:
JSON is the acronym for JavaScript Object Notation, which is a language that is used for light data exchange. This makes it easy for machines to parse and generate, but it is also easy for humans to read and write. JSON is language-independent, but uses conventions based in C and other programming languages in that family (for example, C++, Java, Python, Perl, and others).
JSON is used in Site Studio as an easy method to maintain passing the data to and from Contributor.
When Contributor is opened, the JSON configuration object passes flags for reset, update, and preview.
Although JSON is the data transfer format; the data binder concepts of LocalData, ResultSets, ResultSet, fields and rows still exist. Also, some configuration information is passed to the Contributor without the data binder concepts.
The console will display all activity between the Contributor and the content server. Here is an example of the JSON passed requesting that a content item be checked out.
For more information on the console, see Chapter 15, "Contributor Console Window."
This section covers the following topics:
The Contributor console window is the Contributor application's cross-browser and cross-platform logging mechanism. The Contributor console window is specially suited to accommodate logging and to facilitate JavaScript code execution across multiple HTML windows from within a single browser window.
All instructions logged to the Contributor console window's logging window (the top portion of the Contributor console window) display the time of execution and the context in which the instruction was executed. The lower portion of the window (the command window) is used to execute JavaScript.
Note: The Contributor console window needs to be the root browser window in order to accommodate logging and to facilitate JavaScript code execution across multiple contexts. For more information, see Section 15.4, "Using the Contributor Console Window." |
This section covers the following topics:
The upper portion of the Contributor console window is the logging window. Each instruction logged displays the time of execution and the context of the instruction. From the logging window's toolbar, you can clear the logging window and filter the list of logged items by selecting the different logging types.
The lower portion of the Contributor console window is the command window. The command window is where arbitrary JavaScript code can be executed. Code can be executed within any context in the Contributor application by specifying a context ID in the command window's context field. A list of available contexts can be viewed by executing the following code snippet in the command window:
Either the context's file name or the context's ID can be used in the command window's context field. When the command window's toolbar context field is properly set, all code executed in the command window executes within the designated window object's context.
The Contributor console window has a very simple interface.
Figure 15-1 Contributor Console Window
Element | Description |
---|---|
Filters | Select the message types to display. |
Clear | Clears the logging window. |
Close | Closes the Customize dialog. |
Execute | Executes the code entered in the command window. |
Clear | Clears the command window. |
Context field | Enter the context (file name or ID) to execute within. |
Command | Enter the command or scripts to run. |
The availability of the Contributor console window is optional and is not deployed to by default. To deploy the Contributor console window, you must do it from the General Component Information window of Site Studio Administrator, and click the (Enable) link on the Contributor Console Enabled line.
It is also possible to disable the console from the same location in Administrator.
For more information, see the Oracle WebCenter Content Administrator and Manager's Guide for Site Studio.
Once enabled, there are two ways to launch the Contributor console window: navigating to the Contributor console URL, or using the key commands.
Navigating to the Contributor Console Window's URL
Users can navigate directly to the Contributor console window if its URL is known. The following URL is where the Contributor console window usually exists in a Site Studio installation:
http://server_name/instance_name/resources/wcm/base/wcm.console.htm
From within Contributor, the key command Ctrl+Alt+Shift+C or Ctrl+Alt+Shift+E will launch the Contributor console window. The latter key command displays all the runtime errors in addition to opening the Contributor console window, if it is not already open.
Note: If the Contributor console window is not installed in the weblayout, then Ctrl+Alt+Shift+E opens a generic error dialog if there are runtime errors. The error dialog only displays runtime errors, not runtime logging. |
Using a key command, a Contributor console window can be launched from any web page containing a reference to wcm.js. This means that you can launch the Contributor console window from any Contributor-enabled page that is in focus; for example, contribution mode, the contributor form, the static list's row editor, the link wizard, and so forth.
When the Contributor console window is launched via a key command, it iterates through the linked list of contexts looking for the root context. When the root context is located, the Contributor console window is launched from that page and all logging instructions iterate through the linked list of contexts and log to the open Contributor console window.
The Contributor console window must be the root browser window to accommodate logging and to facilitate JavaScript code execution across multiple contexts. If the Contributor console window is not the root browser window, or the chain of linked window objects is broken, the Contributor console window can become 'orphaned,' and will no longer work properly.
This section covers the following topics:
Individual HTML window objects exist within every browser window, every HTML FRAME element, and every HTML IFRAME element. Site Studio hosts many contexts and many additional contexts are created and destroyed during the course of contribution.
In order for these windows to communicate with each other, the contexts must be from the same domain. Since Contributor's contexts are of the same domain, the application can dynamically iterate through a linked list of contexts to locate and log to an open Contributor console window.
You will not encounter an orphaned Contributor console window scenario if you establish the Contributor console window as the root browser window and then launch new browser windows from the Contributor console window. All new windows, as well as their spawned child windows, will log to the Contributor console window.
Establishing the Contributor Console Window as Root Browser Window
To establish the Contributor console window as the root browser window, you must navigate directly to the Contributor console window file on the server. Navigating to the Contributor console window will open a Contributor console window in a new browser window. Make sure you close the other window behind the Contributor console window if it is not needed.
Launching a New Browser Window from the Contributor Console Window
When you launch new browser windows from the Contributor console window, you ensure that the Contributor console window is the root window. To launch a new browser window from the Contributor console window, enter the following JavaScript code snippet in the command window and click Execute:
The launched window, as well as its spawned children, will all log to the Contributor console window. All spawned windows will log to the Contributor console window if they are of the same domain.
There are some shortcuts to consider when establishing the Contributor console window as the root window is a re-occurring scenario. You can bookmark the URL of the Contributor console window for easy access. Once the Contributor console window is open, you can type the following in the command window to open a blank web page:
Passing no parameter to the launch method will pop up a blank web page, then you can use the bookmark to navigate to the desired page.
When you launch the Contributor console window from any Contributor-enabled page that is in focus, the web page in contribution mode is the root context, not the Contributor console window.
If the page in contributor mode is closed or refreshed, the Contributor console window is orphaned, meaning the Contributor console window no longer works. The link between the open Contributor console window and the root context (the contribution mode web page) is broken. In order to re-establish a link, you must close the orphaned Contributor console window and use the key command again to open a new Contributor console window.
For most logging and debugging purposes, you should not encounter an orphaned Contributor console window. However, if you want to avoid opening a new Contributor console window over the course of several contribution sessions, then the Contributor console window must be established as the root context.
The Contributor console window has the ability to log color-coded lines within the logging window to easily identify certain types of messages. Furthermore, these messages can be filtered by the Contributor console window.
The lines display in these colors:
Message Type | Display color |
---|---|
Log | Black |
Note | Purple |
Error | Red |
Warning | Dark Red |
Todo | Green |
Test | Blue |
Executed command | Grey |
Request | Blue (italics) |
Response | Dark red (italics) |
The following JavaScript file must be loaded into the html page context in order to enable logging. This file defines the JavaScript functions used for logging purposes.
Enter the following into the command window and click Execute to demonstrate the different logging types:
The time it takes to perform a certain action can be measured by using the Contributor console window's time profiling mechanism. Insert the following start and stop methods around the desired action and the minutes, seconds, and milliseconds will be logged to the open Contributor console window after the stop method executes.
The start and end methods can reside in separate window contexts, as long as the same profile ID is passed as the first parameter. For example:
In addition to executing arbitrary JavaScript code in a given context and the previously mentioned logging types, the command window can execute known helper functions. The following is a list of built-in helper functions.
Type any of the following into the command window and click Execute:
Function Signature | Description |
---|---|
$D().clear(); | Clears the logging window. |
$D().launch(); | Launches a new popup browser window with a blank page. |
$D().launch(url); | Launches a new popup browser window and navigates to the passed-in URL. |
$D().contexts(); | Displays a list of available contexts in the logging window. |
$D().setContext(context); | Sets the command window's context field. |
$D().data(); | Logs the runtime data of all the available contexts at a given moment. |
$D().data(context); | Logs the runtime data of the specified context at a given moment. |
The following is a list of available keyboard commands:
Function Signature | Description |
---|---|
Ctrl+Alt+Shift+C | Opens the Contributor console window if it is not already open. |
Ctrl+Alt+Shift+E | Logs all errors to the command window. This command also opens the Contributor console window if it is not already open. |
Ctrl+Enter | If the command window's text box is in focus, then this keyboard command executes the code within the command window in the specified context. |
Ctrl+Alt+Shift+T | If the Contributor console window is in focus, this keyboard command shows (toggles) the raw log content in a text box. This allows you to easily copy and paste the content of the Contributor console's log window. |
This section covers the following topics:
The manager settings file is an XML file that provides a number of configuration options that site designers can use to control the available features in Manager.
Designers can modify a number of settings in this file using a Form view that appears when the file is edited from the Site Assets pane. More advanced settings can be made when editing this file in Source view.
The <ssm:settings> tag is the root XML element within a Manager Settings file.
Parameters
Child Tags
The <ssm:settings> tag can contain the following optional child tags:
The <ssm:general> tag contains general purpose configuration settings.
Parameters
Child Tags
The <ssm:general> tag contains no child tags.
The <ssm:addSection> tag contains configuration settings for the Add New Section feature.
Parameters
Child Tags
The <ssm:addSection> tag can contain the following optional child tags to control the behavior of the Add New Section feature:
The <ssm:removeSection> tag contains configuration settings for the "Remove Section" feature.
Parameters
Child Tags
The <ssm:removeSection> tag contains no child tags.
The <ssm:moveSection> tag contains configuration settings for the "Move Section" feature (including drag & drop moves).
Parameters
Child Tags
The <ssm:moveSection> tag contains no child tags.
The <ssm:setErrorHandler> tag contains configuration settings for the "Set Error Handler" feature.
Parameters
Child Tags
The <ssm:setErrorHandler> tag contains no child tags.
The <ssm:editProperties> tag contains configuration settings for editing the standard section properties.
Parameters
Child Tags
The <ssm:editProperties> tag can contain the following optional child tags:
The <ssm:editCustomProperties> tag contains configuration settings for the Custom Properties feature.
Parameters
Child Tags
The <ssm:editCustomProperties> tag contains no child tags.
The <ssm:primaryLayout> tag contains configuration settings to control the behavior of the Choose Primary Layout feature.
Parameters
Child Tags
The <ssm:primaryLayout> tag can contain the following optional child tags.
The <ssm:secondaryLayout> tag contains configuration settings to control the behavior of the Choose Secondary Layout feature.
Parameters
Child Tags
The <ssm:secondaryLayout> tag can contain the following optional child tags.
The <ssm:sectionOverride> tag contains configuration settings for a particular web site section that override the default settings described earlier:
Parameters
nodeId
: the ID for the section that is being overridden.Child Tags
The <ssm:sectionOverride> tag can contain any of the following optional child tags. The details of which have already been described in these sections:
The parameters and contents of the subsections within the <ssm:sectionOverride> are identical to their use in the general case with the following exception:
Site Studio and Content Tracker can be used together to generate reports for a Site Studio web site. You can customize the integration of the two products using several configuration flags. The configuration flags control the data that is reported.
Using Content Tracker (the Data Engine Control Center), you can control the data that is tracked and where that data is tracked for each service call.
This section covers the following topics:
There are two types of site accesses that are tracked:
Hierarchy Access | Content Access | SS Variable | CT Field Name |
---|---|---|---|
dDocName of layout page | dDocName of data file, native doc or fragment library | targetPage | sc_scs_dDocName |
dID of layout page | dID of data file, native doc or fragment library | targetdID | sc_scs_dID |
Site id | Site id | targetSiteId | extField_1 |
Node id | Node id | targetNodeId | extField_2 |
Is secondary page | Is secondary page | targetIsSecondary | extField_3 |
Website object type | Website object type | targetWebsiteObjectType | extField_4 |
contribution mode | contribution mode | SSContributor | extField_5 |
[Not used] | dDocName of layout that data file, native doc or fragment is being used on | targetContentId | extField_6 |
Site relative url | Site relative url | siteRelativeUrl | extField_7 |
If errors occur, then the following values are included in the Content Tracker database:
Error Type | SS Variable | CT Field Name |
---|---|---|
Error | SS Variable | CT Field Name |
The original site relative URL that was received at the server and could not be resolved. | originalSiteRelativeUrl | extField_8 |
Whether or not the original URL was invalid | invalidSiteRelativeUrl | extField_9 |
If the site has an error handler page and that page gets accessed, the siteRelativeUrl will be set to the URL of the error page. The original URL that caused the error will be set as the originalSiteRelativeUrl value. The invalidSiteRelativeUrl value will be set to 1.
If the site has no error handler page and an error occurs, then the original URL will be recorded as the siteRelativeUrl, and the invalidSiteRelativeUrl value will be set to 1. In this case the originalSiteRelativeUrl value will be empty.
The following configuration flags (set in config.cfg) control the data that Site Studio tracks and how it tracks that information.
This specifies whether content access is enabled. The default setting is true. If you set it to false, then only hierarchy access is tracked.
This specifies whether to record access to fragment libraries. The default setting is false.
This specifies the number of days to go back for a content access type report that is accessed using a popup menu from the contribution icon. The default setting is 7 and n is a positive number (in days).
Site Studio 11gR1 (11.1.1.4 and higher) can work with site assets and content managed by Oracle Content Server 10gR3. However, some manual steps are required for this to work.
This section covers the following topics:
Site Studio 11gR1 will work with Oracle Content Server 10gR3. However, some additional components to the server must be downloaded and installed in order to use Site Studio.
The following must be installed and enabled on Oracle Content Server 10gR3:
If you are planning to use dynamic conversion of native documents on your Site Studio web sites, then you need to configure Dynamic Converter in Oracle Content Server.
The Site Studio Designer 11gR1 client installer is checked in to the content server when the SiteStudio component is installed and enabled. You can download the installer from Oracle Content Server's configuration information page and run it to install Site Studio Designer 11gR1 on a client computer.
Additionally, the following must be completed:
The necessary Oracle components are available from the Oracle WebCenter Content Universal Content Management section of the Oracle Technology Network (OTN):
When you install the SiteStudio 11gR1 component on Oracle Content Server 10gR3, the Site Studio Designer 11gR1 installer is checked in to the server as a content item. You can download the Site Studio Designer installer from Oracle Content Server's General Information page. For information on how to use the Designer 11gR1 application, see the Oracle WebCenter Content User's Guide for Site Studio Designer.
When you create a new Web site in Site Studio, a new project file is created and checked into the content server for you. Thus, before you can create Web sites, you must specify the metadata that will be assigned to the new project files. You do this on the Set Project Default Document Information page in the content server.
To set the default metadata used for Site Studio project files, perform these tasks:
The Site Studio Administration page is displayed.
The Set Default Project Document Information page is displayed, where you assign the default metadata for new projects generated by Site Studio.
This returns you to the Site Studio Administration page.
If you are using an Apache web server as your web server, you should update the configuration file to take advantage of the path-based URLs in Site Studio. If you are not using Apache as your web server, you can skip this section.
To edit the Apache web server configuration file, perform these tasks:
Note: On UNIX, the LoadModule line refers to IdcApacheAuth2.so. |
Notes
For information on changing Web site URLs in Site Studio, see the Oracle WebCenter Content User's Guide for Site Studio Designer .
If you are using a Sun ONE web server as your web server, you should update the configuration file to take advantage of the path-based URLs in Site Studio. If you are not using Sun ONE as your web server, you can skip this section.
To edit the Sun ONE web server configuration file, perform these tasks:
where Site_ID is the web id of your web site, and Weblayout_Dir is the full path to the web-viewable file repository.
When you install the Site Studio component, several metadata fields are added to the content server. Some of these must be configured as zone fields to ensure that they are full-text indexed.
Make sure that the DBSearchContainsOpSupport component is installed and enabled on the content server. This component ensures that the zone fields are full-text indexed properly, which is required for Site Studio sites to work correctly. If this component is not installed and enabled, you should install and enable it. You can find the component zip file in the \packages\allplatform directory of the Oracle Content Server distribution package.
Configuring Site Studio Metadata Fields as Zone Fields
To configure Site Studio metadata fields as zone fields, perform these tasks:
You do not need to rebuild the search index after enabling these fields as zone fields.
Adding a Setting to the Content Server Configuration File
To add a setting to the Content Server configuration file, perform these tasks:
The status page for the selected content server instance is displayed.
The General Configuration page is displayed.
This improves the responsiveness of queries performed by Site Studio Designer and Contributor.
If you plan to use JavaServer Pages in Site Studio, you must enable JSP on the content server. This enables you to access and modify content and services (personalization, security definitions, predefined variables, and so on) on the content server. For more information on enabling JavaServer Pages, see the Getting Started With the Software Developer's Kit (SDK) guide, which is part of the Content Server documentation set.
If you enable any JSP groups after you enable the Site Studio component, you must configure the JSP support so the JSP fragments function properly.
Important: JSP is supported only in legacy Site Studio projects; that is, projects that use the pre-10gR4 architecture. These are typically projects that were created in a Site Studio release before 10gR4 and that are opened in Designer 10gR4. |
Configuring JSP Support for a New JSP Group
If you install the Site Studio component and then add a group to the list of JSP Enabled Groups in the content server, you must redeploy the JSP support files for that group to allow Site Studio JSP fragments to work correctly.
To configure JSP support, perform these tasks:
The JSP support files are extracted to the required directories on the content server.
This section covers the following topics:
If you are upgrading from a Site Studio release before 7.5, you must upgrade your web sites before you can use them with Site Studio 11gR1. This is because Site Studio versions 7.5 and 10gR3 have some important architectural changes, including:
It is important to realize that, after upgrading, the upgraded projects will work as "legacy" projects in Site Studio 11gR1; that is, they will use the pre-10gR4 architecture and they will not take advantage of the new architecture and features in Site Studio 10gR4 and 11gR1. The same is true of projects that were created using Site Studio 7.5 or 10gR3. They do not need to be upgraded per se and you can use them with Site Studio 11gR1, but they will continue to function in "legacy" (that is, pre-10gR4) mode.
When you upgrade your pre-7.5 Site Studio release and your web sites, the following tasks are performed automatically:
Action | Description |
---|---|
Folders-based sites upgraded to project-based sites | The existing hierarchy in the folder structure is reproduced in the project file. The root "dCollectionName" is used as the "siteLabel," the root "dCollectionID" is used as the "siteId," the "originalCollectionID" project attribute is set, and the site type is transferred from the root section to the project. |
Custom section properties in new sites updated | The custom section properties of type "siteid" and "url" are updated (adding friendly URLs, where necessary). |
Fragment instance parameters in layout pages updated | Parameters of type "managedurl" and "url" are updated. |
Metadata populated | If the Create Project Files option is enabled, the "xWebsiteSection" values are populated (derived from "xCollectionID"). |
Links in layout pages and data files updated | If the Upgrade Layouts and Upgrade Data Files options are enabled, the weblayout links in layout pages and contributor data files are updated to include the HttpRelativeWebRoot token; optionally, the javascript links are updated. |
Navigation updated | The navigation files for the web site are regenerated. |
Note: Custom elements cannot be upgraded automatically. For more information, see Section B.4.4, "Updating Your Custom Elements." |
The task of site upgrade begins with upgrading the Site Studio component on each of the content servers you are using, and then upgrading the web sites stored on the content servers:
Although the Folders component is not used in Site Studio version 7.5 or later, you must retain folders during the upgrade of your web sites so that each site can be migrated from a folders-based hierarchy to a project-based hierarchy.
You can then disable the Folders component. If you want to continue using Folders, you must configure them with the appropriate metadata (see Section B.4.5, "Assigning a Web Site Section to Your Folders").
Note: When you follow the upgrade steps, every web site on the server is upgraded. If you want to upgrade only selected sites, then you must create a copy of the other sites on another server. |
If your web sites are stored on a single content server, the upgrade consists of:
You may have sites on multiple content servers, each serving a different purpose, such as a development server, a contribution server, and a production server.
Figure B-1 Multiple Content Server Instance Illustration
The content on each server (source server) gets copied to the next server (target server) using the Archiver/Replicator utility. As such, it is important to carefully plan and upgrade the sites on each server without encountering replication problems.
On the First Two Instances of the Content Server
On the Source Instance of the Content Server
Then:
On the Target Instance of the Content Server
On Both Instances of the Content Server
Once the new component has been installed on all instances of the content server and web sites have been upgraded as indicated above, you can begin replicating your sites again.
You can use the replication feature in Site Studio (see the Oracle WebCenter Content Administrator and Manager's Guide for Site Studio). Or, if you have been using Archiver/Replicator and want to continue using it, you can do so as long as you modify the archive query to include Site Studio project files.
On the Next Target Content Server (Downstream in Replication)
Note: In this case, your source server (Box 2) was the target server in the previous steps, and your target server (Box 3) is the next server down the line (downstream) in your replication. |
Then:
Then:
Repeat this last procedure for each target instance of the content server downstream in your replication.
A full upgrade of the content server is required in the case of single-server setup. It is also required for the source server in the case of a multi-server setup. (All other servers in a multi-server setup require a minimal upgrade.)
When you upgrade your site, Site Studio turns your existing folder-based site into a project-based site. When it does this, it creates a project file as a managed item in the content server. As such, you must identify the metadata that you would like assigned to the project file that will represent each web site.
During the upgrade process, the content server attempts to index content that gets changed, which could take considerable time and resources. You may want to temporarily disable automatic indexing before you begin the upgrade process and then re-enable it when you are done. (See the Oracle Content Server administration documentation for further details.)
You should have already installed and enabled the new Site Studio component on the server before you start a full upgrade.
To perform a full upgrade, perform these tasks:
The Set Project Default Document Information page opens. This is where you assign the default metadata for the new projects that you create in Site Studio.
This returns you to the Site Studio Administration page, where you can begin the upgrade process.
You see the individual files that must be upgraded on this page. Wait until you see the message that says that the upgrade process was completed.
Note: The site upgrade automatically updates the site hierarchy and its many links, and the Web Sites menu in the content server now lists your sites. |
A minimal upgrade is required in the case of a multi-server setup and applies to all target servers; that is, the server that has web sites being replicated to it.
You should have already installed and enabled the new Site Studio component on the server before you start a minimal upgrade.
To perform a minimal upgrade, perform these tasks:
The Set Project Default Document Information page opens. This is where you assign the default metadata for the new projects that you create in Site Studio.
This returns you to the Site Studio Administration page, where you can begin the upgrade process.
Note: This upgrades project files and populates the "Web Site Section" metadata value. |
Wait until you see the message that says that the upgrade process was completed.
The Web Sites menu in the content server now lists your sites.
Once you have upgraded your web sites, there are still several steps that you must perform manually, including the following:
After upgrading a pre-7.5 web site, you must update its navigation files. You can do this in Designer (using the Update Navigation button) or on the Site Studio Administration page (specifically, the Manage Web Sites page). This step is necessary for Contributor to function correctly on the site.
After upgrading a pre-7.5 web site, you may need to rebuild the content server index. If your content server has been set up to use database search and indexing (full-text or metadata-only), you do not need to rebuild the search index. If you are using a different search engine, you must rebuild the search index. This is necessary because Site Studio updates the xWebsiteSection metadata field for all content items residing in folders on your site.
Caution: Rebuilding the search index may be a very time-consuming process, depending on the number of content items managed by your Oracle Content Server instance. It is therefore recommended that you perform this rebuild during off-peak hours of Oracle Content Server use (typically at night or on the weekend). |
See the Oracle Content Server administration documentation for more information on rebuilding the index.
Most of the manual updates you must perform after upgrading your pre-7.5 web site involve modifying your custom fragments. If you are currently using the predefined fragments that came with Site Studio, you do not have to do this because an updated version of each fragment is included with each Site Studio release.
Most likely, you have customized the fragments or introduced new ones to meet a specific purpose for your organization. There are three things you must do with the fragments so that they work in the latest version:
The <base> tag that points to the content server's web-accessible directory ('weblayout') is no longer used. During the site upgrade, Site Studio updates the necessary code in your layout pages and contributor data files, but you must perform this step manually in your custom fragments and scripts.
You can do this by re-authoring hand-coded links that are relative to the URL in the <base> tag and use the HttpRelativeWebRoot server-side variable instead.
Example
Say, you have a link to a graphic that looks something like this:
You must then replace it with the following:
If any existing fragments use SS_GET_PAGE, javascript:link, or javascript:nodelink style hyperlinks, you may want to change them to path-based URLs to take advantage of their many benefits. (For more information, see the Oracle WebCenter Content User's Guide for Site Studio Designer.)
Example
Consider a link that looks something like this:
It must be replaced with the following:
Any fragment that used the GET_SEARCH_RESULTS service will continue to work, but will not take advantage of the features provided by Site Studio 7.5 and 10gR3 until it is upgraded to use the SS_GET_SEARCH_RESULTS service (for more information, see Section 11.7.43, "SS_GET_SEARCH_RESULTS") .
Using the SS_GET_SEARCH_RESULTS service has several advantages:
Fragments that use the GET_SEARCH_RESULTS service are typically dynamic list fragments and search results navigation fragments. The updates required differ depending on the version of the Site Studio release that you are upgrading from:
In both cases above, you must update those fragments to remove the old limitscope and dontshowinlists logic from them and to use the new SS_GET_SEARCH_RESULTS service, which now provides this functionality internally.
Example
In Site Studio 6.5, the Standard Dynamic List fragment includes the following code for the SSLimitScope parameter. This should be removed:
In Site Studio 7.2, the Standard Dynamic List fragment includes the following code for the SSLimitScope parameter. This should be removed:
Once the old limitscope logic is removed from the fragment, change the GET_SEARCH_RESULTS service call to use SS_GET_SEARCH_RESULTS. Before you invoke the SS_GET_SEARCH_RESULTS service, however, you should set the following parameter values:
Parameter | Description |
---|---|
ssLimitScope | Specifies that the limitscope logic should be applied by the SS_GET_SEARCH_RESULTS service. Typically this true/false value is supplied by a fragment parameter value. |
ssDontShowInLists | Specifies that the dontshowinlists logic should be applied by the SS_GET_SEARCH_RESULTS service. Typically this true/false value is set to "true" in all fragments. |
ssTargetNodeId | Specifies the node ID that is used to display the search results. The "ssTargetSiteId" can also be used to generate links to other web sites on the content server. If the "ssTargetSiteId" is not specified, the generated link assumes the same site that originated the link. |
ssTargetSiteId | Specifies the site ID that is used to display the search results. The "ssTargetNodeId" parameter must also be used to fully qualify the target node. |
ssSourceNodeId | Indicates the node ID for the current page containing the link. |
ssSourceSiteId | Indicates the site ID for the current page containing the link. |
ssWebsiteObjectType | Specifies that the search results should be limited to a specific Website Object Type. Typically you leave this value empty. |
ssUserSearchText | Specifies any user text to perform a full text search. Typically, this only applies to Search Results fragments where the value is provided by a consumer entering a value in a Search Box fragment. |
When looping through the results of the SS_GET_SEARCH_RESULTS service call, you typically use the new ssUrl column of the result set if you want to create hyperlinks to that item. This ensures that full path-based URLs are used instead of cryptic ID-based URLs.
Additionally, these URLs should be appended with parameters that describe the source location of the link. This allows error pages to be generated properly when there are invalid links.
The following parameters should be affixed to the URLs.
Parameter | Description |
---|---|
ssSourceNodeId | Declares the source node ID. Used to generate friendly URLs if both ssTargetNodeId and xWebsiteSection are blank. |
ssSourceSiteId | Declares the source site ID. This allows the error page to be displayed if the target page cannot be found. |
Here is a simplified example using Idoc script:
For more details, refer to the dynamic list and search results fragments that are provided with the Site Studio product.
Any custom element forms created using a Site Studio release before 7.5 are not compatible with Site Studio 11gR1. They must be manually upgraded and re-authored. The primary reason for not maintaining backward compatibility is Site Studio's prior dependency on Internet Explorer's proprietary window.external functionality (due to the ActiveX control used for the Contributor). This functionality was removed from Site Studio as a result of the browser-independent, JavaScript-based Contributor application that is used in Site Studio 10gR3 (10.1.3.3.3) and higher.
Site Studio no longer uses the Oracle Content Server folder features (Folders component) to organize and manage your site hierarchy. If a web site created in a Site Studio release before 7.5 is upgraded, content that resides in a folder has a new metadata value (Web Site Section) assigned to it so that it is recognized as part of the upgraded site.
Any new content added to the folder, after the upgrade, will not receive this metadata value. As such, if you want to continue using folders to add content to your site, you must assign a Web Site Section value to each folder.
To assign a Web Site Section value, perform these tasks:
If you have created JSP code based on SiteStudio.SSNavigationBean and SiteStudio.SSNavigationNode objects, references to these objects must be changed so that "sitestudio" is all lowercase, as follows:
sitestudio.SSNavigationBean
sitestudio.SSNavigationNode
Copyright © 1996, 2011, Oracle and/or its affiliates. All rights reserved. |