Publishing Reports to the Web with Oracle Reports Services
11g Release 1 (11.1.1)
B32121-05
November 2011
Oracle Fusion Middleware Publishing Reports to the Web with Oracle Reports Services, 11g Release 1 (11.1.1)
B32121-05
Copyright © 2003, 2011, Oracle and/or its affiliates. All rights reserved.
Primary Author: Swati Thacker
Contributing Author: Gururaj B S, Usha M P, and Ingrid Snedecor
Contributors: Rajesh Ramachandran, Rajiv Malhotra, Ratheesh Pai, Vidya Viswanathan, Suma Shanthappa, Vikram Nanda, Pankaj Yadav, Balaravikumar Shanmugasundaram, Hariharan Srinivasan, Vinod Murthy, Nagesh Patange, Navneet Singh, Rohit Marwaha, Prabakara Reddy, Philipp Weckerle, Kumar Dhanagopal
This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.
The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.
If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable:
U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software License (December 2007). Oracle America, Inc., 500 Oracle Parkway, Redwood City, CA 94065.
This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.
Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks of their respective owners.
This software and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.
This manual describes the different options available for publishing reports with Oracle Reports Services, as well as how to configure the Oracle Reports Services software for publishing reports.
Note: For the portable document format (PDF) version of this manual, when a URL breaks onto two lines, the full URL data is not sent to the browser when you click it. To get to the correct target of any URL included in the PDF, copy and paste the URL into your browser's address field. In the HTML version of this manual, you can click on a link to directly display its target in your browser. |
This manual is intended for anyone who is interested in publishing reports with Oracle Reports Services. To configure Oracle Reports Services, it is useful to have a solid understanding of the following technologies:
This manual will guide you through configuring components related to these technologies.
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website at http://www.oracle.com/us/corporate/accessibility/index.html
.
Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For information, visit http://www.oracle.com/support/contact.html
or visit http://www.oracle.com/accessibility/support.html
if you are hearing impaired.
For more information about Oracle Reports, refer to the following resources:
http://www.oracle.com/technology/products/reports/index.html
) The following text conventions are used in this document:
Convention	Meaning
boldface	Boldface type indicates graphical user interface elements associated with an action, or terms defined in text or the glossary.
italic	Italic type indicates book titles, emphasis, or placeholder variables for which you supply particular values.
monospace	Monospace type indicates commands within a paragraph, URLs, code in examples, text that appears on the screen, or text that you enter.
monospace italic	Monospace italic type indicates variables or user-supplied names.
[]	Brackets enclose optional clauses from which you can choose one or none.
Part I contains information about Oracle Reports and Oracle Reports Services to get you ready to start publishing your reports:	
This chapter provides an overview of Oracle Reports, the reporting component of Oracle Fusion Middleware:	
Oracle Reports is Oracle's award-winning, high-fidelity enterprise reporting tool. It enables businesses to give immediate access to information to all levels within and outside of the organization in an unrivaled scalable and secure environment.	
Using Oracle Reports, you can rapidly develop and deploy sophisticated Web and paper reports against any data source (including an Oracle database, JDBC, XML, and text files). Leveraging Java EE technologies such as JSP and XML, you can publish your reports in a variety of formats (including HTML, XML, PDF, Enhanced Spreadsheet, Spreadsheetdata, delimited text, delimiteddata, PostScript, and RTF) to any destination (including e-mail, Web browser, WebDav, FTP, Oracle Portal, and file system) in a scalable, efficient manner.	
Oracle Reports consists of Oracle Reports Developer (a component of the Oracle Developer Suite) and Oracle Reports Services (a component of Oracle Fusion Middleware).	
Oracle Reports Developer includes the following component:	
Oracle Reports Services is the focus of this manual. It executes, distributes, and publishes your reports for enterprise wide reporting. Using Oracle Reports Services to deploy your reports results in gains of flexibility, time savings, and processing capacity. It includes the following components:	
For more resources for information about Oracle Reports, refer to "Related Documentation" in the Preface.	
As its name implies, Oracle Reports Builder (rwbuilder	
) is the report-building component of Oracle Reports. Report developers use the Oracle Reports Builder design-time user interface to create and maintain report definitions, using:	
For more information, refer to the Oracle Reports online Help (select Help > Contents in Oracle Reports Builder), and the Oracle Reports Building Reports manual.	
Oracle Reports Bridge (rwbridge	
) provides functionality for discovering a Reports Server across farms. For more information, see Section 2.3.4.1.2, "Server Discovery Across Subnets".	
Oracle Reports Client (rwclient	
) provides a command-line interface to send a report to a remote Reports Server (rwserver	
).	
rwrun	
(Reports Runtime) runs a report by starting its own in-process server (not to be confused with the default in-process Reports Server), which runs in the same JVM as the rwrun	
process. The configuration file for this in-process server is rwbuilder.conf	
and trace files are saved in the rep_	
machinename	
-rwbuilder	
directory.	
Note: It is recommended that you userwrun for testing purposes only. Use rwservlet and rwclient in your production environment to take full advantage of the power of Oracle Reports Services.	
Oracle Reports Servlet (rwservlet	
) is a component of Oracle Reports Services that translates and delivers information between either a Web Server or a Java EE Container (for example, Oracle WebLogic Server) and the Reports Server, enabling you to run a report dynamically from your Web browser.	
Oracle Reports Server (rwserver	
) is a component of Oracle Fusion Middleware that provides reporting services to execute, distribute, and publish your reports for enterprise-wide reporting. This component processes client requests, including user authentication, scheduling, caching, and report distribution. Use Oracle Reports clients such as Oracle Reports Servlet (rwservlet	
), Reports JSP, and Oracle Reports Client (rwclient	
) to send a report to Oracle Reports Server (generally referred to as Reports Server).	
Oracle Reports 11g Release 1 (11.1.1) provides many new features and enhancements. The primary themes of this release are:	
Table 1-1 details the new functionality in Oracle Reports 11g Release 1 (11.1.1), along with the equivalent 10g Release 2 (10.1.2) functionality, when applicable. The new features and enhancements are grouped into the following categories:	
Table 1-1 11g Functionality vs. 10g Functionality	
11g New Features and Enhancements	Equivalent 10g Functionality
---	---
Install and Upgrade	
Flexible Install types. In Oracle Fusion Middleware 11g, the install type contains Oracle Reports, Forms, Portal, and Discoverer. In the installer, you can selectively install any one of these products or all of them.	Predefined install types only.
Separate installation of binaries from configuration, allowing shared binaries across servers. Oracle Installer allows for install only and then configuration only as two separate steps. For more information, see Section 3.2, "Understanding the Oracle Fusion Middleware Installation Structure".	Single ORACLE_HOME installation including both binaries and configuration.
New and improved management screens in Oracle Enterprise Manager. Oracle Enterprise Manager provides enhanced usability for all the administration, monitoring, and diagnosability operations. For more information, see Chapter 7, "Administering Oracle Reports Services Using Oracle Enterprise Manager".	Oracle Enterprise Manager Application Server (AS) Control, and modifying configuration files.
Fully automated upgrade from 10g Release 2 (10.1.2.x). For more information, see Section 3.6, "Upgrading from the Prior Release".	Not Applicable (N/A)
For more information about installation, see Chapter 3, "Verifying Your Installation". See Also: Oracle Fusion Middleware Quick Installation Guide for Oracle Portal, Forms, Reports, and Discoverer	
Monitoring and Management	
New rich and customizable Oracle Enterprise Manager user interface, providing:	
For more information, see Chapter 7, "Administering Oracle Reports Services Using Oracle Enterprise Manager".	Enterprise Manager Application Server (AS) Control and manually editing configuration files.
New trend graphs, key statistics. Anticipation of common problems with early symptoms.	N/A
Job Administration and Scheduling	
Advanced job queue administration. Comprehensive job queue management user interface in Oracle Enterprise Manager (search and filters, resubmit the job, view errors, and more).	Basic job queue user interface.
Rich calendar-based scheduling user interface. Comprehensive Reports Server job scheduling in Oracle Enterprise Manager.	Reports job scheduling done through Oracle Reports Queue Manager (
For more information about job administration and scheduling, see Chapter 7, "Administering Oracle Reports Services Using Oracle Enterprise Manager".	
Security	
A standards-based Java EE security model through Oracle Platform Security Services. This provides a flexible, simple to administer, and high performance security mechanism.	Reports Server authentication restricted to use only Oracle Internet Directory. Authorization of Reports Server required OracleAS Portal-based security model (using Portal metadata repository for checking authorization).
Oracle Enterprise Manager advanced user interface. Administrators can use Oracle Enterprise Manager to more easily define and manage granular security policies for reports, Web commands, and folder access. For more information, see Section 7.8, "Securing Oracle Reports Services" in Chapter 7, "Administering Oracle Reports Services Using Oracle Enterprise Manager"	Basic UI in OracleAS Portal for defining the policies. Hard-coded Web command access to the Oracle Reports seeded roles. Access policies at file (report) level only, not folder level.
Read/write access to directories at Reports Server level. Administrators can control the input folders from which reports can be served and output folders to which the output of reports servers can be pushed. This ensures there is no security vulnerability.	
Database proxy authentication. Support for database authentication using proxy users:	
N/A	
Security check for distribution destinations. Ability to define security policies for distribution jobs. For example, you can define a security policy that specifies report output may not be burst to	No security check performed for destinations specified in the distribution XML file.
Security check for system parameters. A security check is performed for all system parameters, including those specified in the report definition as well as on the command line.	No security check performed for system parameters.
Security auditing. Audit authentication and authorization on the Reports Server.	
Security for report output from Oracle Forms Services. With no configuration required, support for intermediate-level security even when Oracle Forms Services and Oracle Reports Services are not secured.	Anyone is able to see anyone else's report output by "guessing" the job ID based on sequential job ID assignment.
For more information about security, see Chapter 15, "Securing Oracle Reports Services"	
High Availability	
Database-backed job queue repository. Use of the database as the job repository provides the following High Availability (HA) benefits:	
The administrator must view the job queues for each Reports Server separately. If the Reports Server where a job is scheduled goes down, the job is left waiting until that Reports Server comes back up to start executing the job again.	
Oracle Reports Server cluster with shared job repository and cache, including Java Object Cache. Reports Servers communicate via peer-to-peer mechanisms for job management, to minimize manual administration and for automatic failover of jobs. Access to cached output even when the Reports Server that processed the master job is not available.	Use of Oracle Reports caching mechanism. Cache not shared among Reports Servers. Cached output is not available to other servers if the Reports Server where it is cached goes down. Proprietary clustering and HA mechanism.
For more information about High Availability, see Section 2.5, "Setting Up a High Availability Environment".	
Font Management and Support	
Cross-platform support for TrueType Fonts (TTF) and TrueType Collections (TTC). Report output is in most cases identical on UNIX as on Windows, allowing for simplified cross-platform deployment. Oracle Reports reads the font metrics from the appropriate TTF files to correctly format the report output. This eliminates the issue of text misalignment due to font metrics mismatches. Fonts for which TTF files are available are found automatically. Note that if a TTF font file is not found, then the font lookup mechanism reverts to the pre-11g implementation. New environment variables REPORTS_ENHANCED_FONTHANDLING and REPORTS_FONT_DIRECTORY.	Possible mismatches between fonts in report output on UNIX and Windows due to different font mechanisms on Windows and UNIX. Font aliasing was required, along with PDF font subsetting. Support for older font file types (for example, AFM) supported. Difficult to get these font types for all fonts. Conversion of TTF to AFM required in many cases, but even these files did not provide the exact output as on Windows.
Support for all character sets in PDF. With the new font model, no misalignment will be seen in the PDF subsetted report output. Support for Unicode font subsetting in PDF on UNIX.	Only multibyte reports supported. PFM and PFA files must be created to resolve text misalignments in UNIX output. Dependence on AFM files. Variable width font output was especially problematic, because Reports was unable to get width of characters beyond the first 256 characters in the file, and assumed fixed width for all these characters, resulting in misalignment.
Simplified font management and configuration through Oracle Enterprise Manager. Use Oracle Enterprise Manager to modify aliasing and subsetting entries in	Configure fonts in
PDF, password protection, and security. Specify new command line arguments to password-protect PDF reports generated from Oracle Reports. You can also suppress certain permissions to provide security for the generated PDF reports.	No capability to encrypt PDF reports or specify security permissions.
Font diagnostics. Easy to understand tracing for diagnosis of font issues. Reporting of fonts used, and other debugging tools.	Difficult to diagnose issues.
For more information about fonts in Oracle Reports, see Chapter 9, "Managing Fonts in Oracle Reports" and Chapter 11, "Using PDF in Oracle Reports".	
Distribution and Bursting	
Full support for bursting and distribution to all destinations and output formats, including:	
Limited destinations and output formats for bursting and distribution.	
System parameters in report definition honored for distribution. Distributed output honors the For example, if you define system parameters in the report:	
the report output is generated and distributed using these values without the parameter values needing to be specified in the distribution XML file or on the command line. Additionally, if users change the values of	Values for system parameters
Security check for distribution destinations. Ability to define security policies for distribution jobs. For example, you can define a security policy that specifies report output may not be burst to	No security check performed for destinations specified in the distribution XML file.
Other improvements such as tolerance support for burst jobs and improved diagnostics.	N/A
For more information about distribution and bursting, see Chapter 20, "Creating Advanced Distributions".	
ENHANCEDSPREADSHEET Output Format	
Support for large data sets output to spreadsheets. Significantly enhanced support for large data sets (up to 75,000 rows) and matrix reports with new For more information, see the Oracle Reports online Help and the Oracle Reports Building Reports manual.	Failed attempts to generate output for large data sets to
Graphing	
New graph types: New funnel and curved line graph types allow for more variety in graphing.	N/A
Enhancements for existing graph types. Support for number formatting in the Graph Wizard (independent of the Data Model), and plotting irregular time periods on the time-axis.	Restrictions on plotting time data.
Scalable Vector Graphic (SVG) image support. SVG provides for high resolution and smaller file size in graph output. Graph image output scales up better without losing resolution.	Support for only PNG, JPG, and GIF output formats.
For more information, see the Oracle Reports online Help and the Oracle Reports Building Reports manual.	
Diagnosability	
Log files in ODL format. All Oracle Reports log files follow Oracle Diagnostic Logging (ODL) format, the standard across Oracle Fusion Middleware, for log format, message types, and log management directives. The log file entries are in Text format (default) or XML format. Searching of log files from Oracle Enterprise Manager is easy and effective	N/A
More comprehensive choices for tracing:	
N/A	
Enhanced trace viewer and search. New tracing options, levels, log file sizes, and so on can all be specified, viewed, and searched using Oracle Enterprise Manager.	Tracing options specified in configuration files or on command line.
Extensive diagnostic enhancements. Improved actionable errors with cause and action, job-level tracing, critical errors logged even when tracing is off, better health check mechanisms, and hyperlinks to contextual help and error message registry.	N/A
For more information about diagnosibility, see Chapter 24, " Diagnosing and Tuning Oracle Reports" (Section 24.3.2, "Log Files" and Section 24.3.7, "Tracing Report Execution").	
Forms-Reports Integration	
Forms-Reports non-SSO security. With no configuration required, support for intermediate-level security even when Oracle Forms Services and Oracle Reports Services are not secured. Other users are not able to see the report output, as job IDs can be random non-sequential numbers.This setting is optional. For more information, see Section 17.6, "Oracle Forms Services Security Considerations".	Anyone is able to see anyone else's report output by "guessing" the job ID based on sequential job ID assignment.
Pluggable destinations support from Oracle Forms Services. Report requests can be submitted to all destinations, including any Oracle Reports-registered pluggable destinations from Oracle Forms Services using For more information, see Section 13.1.1, "Pluggable Destinations from Oracle Forms Services.".	Report requests can be submitted to a fixed specific set of destinations, so newly defined destinations can not be used for report output from Oracle Forms Services.
JVM pooling. Oracle Forms Services uses the shared JVM controller for all Oracle Reports requests, reducing memory consumption.	
Server Stability	
Database-backed job queue repository. Use of the database as the job repository helps to avoid Reports Server DAT file corruption, and also ensures no loss of scheduled jobs. It is also easier to manage jobs in the database.	Only file system-based DAT file repository.
New command line argument: JOBRETRY. When specified, this value takes precedence over the	Number of times to retry a failed job can be specified in the server configuration file using the
For more information about Reports Server, see Chapter 2, "Understanding the Oracle Reports Services Architecture".	
Service-Oriented Architecture (SOA) Integration: Oracle BPEL Process Manager	
Oracle BPEL Process Manager integration. Users can submit Oracle Reports jobs using the Oracle BPEL Process Manager to automate and monitor reporting requirements. For more information, see Section 18.9, "Running Reports Using Oracle BPEL Process Manager".	
Enhanced Printing Support Based on Common UNIX Printing System (CUPS)	
CUPS Support Standard and modularized printing system that can process numerous data formats on the print server and also supports Internet Printing Protocol (IPP). For more information, see Section 10.5, "Enhanced Printing on Linux Using CUPS".	
Others	
Internet Protocol Version 6 (IPv6) Support IPv6 support is available out-of-the-box. For more information about IPv6, see Request for Comments (RFC) 2460 at http://www.ietf.org/rfc/rfc2460.txt. For more information about IPv6 Support in Oracle Fusion Middleware 11g Release 1 (11.1.1), see Oracle Fusion Middleware Administrator's Guide.	
This chapter describes the architecture of Oracle Reports Services and its components. It also outlines considerations when setting up your Reports Server environment.	
This chapter includes the following sections:	
Oracle Reports 11g Release 1 (11.1.1) is integrated with Oracle Fusion Middleware and Oracle WebLogic Server, which provide the architectural enhancements listed in Table 2-1 (a subset of Table 1-1, "11g Functionality vs. 10g Functionality"):	
Table 2-1 11g Architecture Features vs. 10g Functionality	
11g New Features	Equivalent 10g Functionality
---	---
Server Stability	
Database-backed job queue repository. Use of the database as the job repository helps to avoid Reports Server DAT file corruption, and also ensures no loss of scheduled jobs. It is also easier to manage jobs in the database.	Only file system-based DAT file repository.
New command line argument: JOBRETRY. When specified, this value takes precedence over the	Number of times to retry a failed job can be specified in the server configuration file using the
High Availability	
Database-backed job queue repository. Use of the database as the job repository provides the following High Availability (HA) benefits:	
The administrator must view the job queues for each Reports Server separately. A scheduled job is lost if the Reports Server where the job was scheduled goes down.	
Oracle Reports Server Cluster with shared job repository and cache, including Java Object Cache. Reports Servers communicate via peer-to-peer mechanisms for job management, to minimize manual administration and for automatic failover of jobs. Access to cached output even when the Reports Server that processed the master job is not available.	Use of Oracle Reports caching mechanism. Cache not shared among Reports Servers. Cached output is not available to other servers if the Reports Server where it is cached goes down. Proprietary clustering and HA mechanism.
For more information about High Availability, see Section 2.5, "Setting Up a High Availability Environment".	
Oracle Reports 11g Release 1 (11.1.1) is integrated with Oracle Fusion Middleware and Oracle WebLogic Server, which results in simpler administration of complex topology and deployments. You can manage and monitor Oracle Reports components using either:	
For complete overview and conceptual information about Oracle Fusion Middleware, refer to the following manuals:	
The script content on this page is for navigation purposes only and does not alter the content in any way.	
Oracle Reports Services is the reports publishing component of Oracle Fusion Middleware. It is an enterprise reporting service for producing high quality production reports that dynamically retrieve, format, and distribute any data, in any format, anywhere. You can use Oracle Reports Services to publish in both Web-based and non-Web-based environments.	
Read this section to learn more about Oracle Reports Services:	
Oracle Reports Services provides a scalable, flexible architecture for the distribution and automated management of report generation engines on the same server and across multiple servers. Additionally, it caches report output for reuse on similar requests. It integrates into standard Web environments with JSPs, Java servlets, and Web Services. It enables you to run reports on both local and remote application servers and to implement a multitiered architecture for running your reports.	
When used in conjunction with JSPs, Java servlets, or Web Services, Oracle Reports Services enables you to run reports on any platform from a Web browser using a standard URL syntax. For Oracle Reports Servlet (rwservlet	
) implementations, the in-process Reports Server is available for faster response and easier administration. The in-process Reports Server cuts down on the communication expense between processes and consequently shortens response times.	
Oracle Reports Services handles client requests to run reports by entering all requests into a job queue. When one of the server's engines becomes available, the next job in the queue is dispatched to run. As the number of jobs in the queue increases, the server can start more engines until it reaches the maximum limit specified in your server configuration. Similarly, engines are shut down automatically after having been idle for a period of time that you specify (see Chapter 8, "Configuring Oracle Reports Services").	
Oracle Reports Services keeps track of all jobs submitted to the server, including jobs that are running, scheduled to run, finished, or failed. The showjobs	
Web command (through rwservlet	
), the Web Services interface, the Oracle Reports Services pages in Oracle Enterprise Manager, the Reports Queue Manager (Windows), and the Reports Queue Viewer (UNIX) enable you to view information on when jobs are scheduled, queued, started, finished, and failed, as well as the job output and the final status of the report.	
With Oracle Reports Services, job information is persistent. This means that if the Reports Server is shut down then restarted, all jobs are recovered,Foot 1 not just scheduled jobs.	
When used in a Web environment, the Oracle Reports Services architecture consists of four tiers:	
Note: The term tier refers to the logical location of the components that comprise the Oracle Reports Services architecture. Each of the tiers, though, can reside on the same machine or on different machines.	
When used in a non-Web environment, there are three tiers (a Web server being unnecessary):	
The client software could be:	
rwclient	
The way you set up the tiers can range from having all of them on one machine to having each of them on a separate machine. Additionally, you can have multiple Web servers on multiple machines as well as multiple application servers on multiple machines. Refer to the Oracle Fusion Middleware Installation Planning Guide for more information on sample topologies.	
If you choose to have your Web server on multiple machines, you can cluster and load balance multiple Oracle Fusion Middleware instances for a highly available, fail-safe environment.	
Note: Do not use "server=clustername " statements while calling jobs from an HA Reports Sever. For calling jobs from an HA Reports server, you must use a load balancer. Refer to the Oracle Fusion Middleware Installation Planning Guide for information on load balancing. Refer to the Oracle Fusion Middleware Enterprise Deployment Guide for Java EE and Oracle Fusion Middleware High Availability Guide for information on enterprise deployment architectures and high availability.	
Oracle Reports Services provides event-based reporting. This uses database events to trigger the generation of a report. For example, you can define an event that signals a change in revenue levels above or below a particular watermark. If the change occurs in the database (the event), a report is automatically generated. This feature is discussed in detail in Chapter 21, "Using Event-Driven Publishing".	
Oracle Reports Services includes a distribution module that uses XML to define unique configurations for the distribution of reports. Call the desired XML file from the runtime command line or URL to generate one report, and let the server handle diverse outputs and destinations. Processing time is significantly reduced and configuration changes can all be handled within the XML file. This feature is discussed in detail in Chapter 20, "Creating Advanced Distributions".	
Figure 2-1 illustrates the components of a working Oracle Reports Services environment. This includes:	
The security service offers authentication based on the following methods:	
The security service offers authorization based on the following methods:	
The bursting and distribution service enables the distribution of reports to multiple destinations, such as wireless, printer, FTP server, Portal, WebDAV, browser, and e-mail. The publishing service publishes Reports into multiple output formats, such as PDF, HTML, XML, and spreadsheet.	
The Reports Server also spawns runtime engines for generating requested reports, fetches completed reports from the Reports Server cache, and notifies the client that the job is ready. Reports output can be stored in the Reports cache or on a physical disk.	
In addition to the Reports Services components, Figure 2-1 depicts the following:	
Additionally, the Oracle Reports Bridge provides functionality for discovering a Reports Server across Farms. The Oracle Reports Bridge acts as a gateway for packets that are broadcast by Reports Server/Reports Client across Farms. The Oracle Reports Bridge mechanism is not shown in Figure 2-1; for more information, see Section 2.3.4.1.2, "Server Discovery Across Subnets".	
The various components of Oracle Reports Services contribute to the process of running a report as follows:	
rwclient	
. rwservlet	
, both associated with the Oracle HTTP Server. The requests go to mod_weblogic	
. (For jobs that run as JSPs, mod_weblogic	
uses OJSP to translate the JSP into a servlet.) The URL may contain runtime parameters or a keyword that refers to a runtime parameter configuration section within the cgicmd.	
dat key map file file (for more information, see Section 18.13, "Using a Key Map File"), or it may contain both, though parameters explicitly named in the URL must not also be present in the relevant keyword section of cgicmd.dat	
.	
rwclient	
goes directly to the Reports Server. The command line may contain runtime parameters. If you have a lot of runtime parameters, you can create a batch file or shell script that contains the rwclient	
command along with a string of parameters.	
rwservlet	
component translates and delivers information between either a Web server or a Java EE Container (for example, Oracle WebLogic Server) and the Reports Server: Server requests from Reports JSP or rwservlet	
can be run by the in-process Reports Server or as a standalone Reports Server process (recommended), whichever is specified in the Oracle Reports Servlet (rwservlet	
) configuration file (DOMAIN_HOME/config/fmwconfig/servers/<WLS_SERVER_NAME>/applications/reports_<version>/configuration//rwservlet.properties	
). An in-process Reports Server requires less maintenance than a standalone Reports Server because, unlike the standalone Reports Server, it starts automatically in response to requests from the client. An in-process Reports Server cuts down on the communication between processes. A standalone server, on other hand, provides better control outside the rwservlet	
process with the ability to separate out server process from the WebLogic Server instance. For information about specifying an in-process Reports Server and default naming, see Section 8.3, "Oracle Reports Servlet Configuration File".	
If the request includes a TOLERANCE	
option, then the Reports Server checks its cache to determine whether it already has output that satisfies the request. If it finds acceptable output in its cache, then it immediately returns that output rather than rerunning the report.	
Note: For any job request that you send to the Reports Server, you can include aTOLERANCE option. TOLERANCE defines the oldest output that the requester would consider acceptable. For example, if the requester specified five minutes as the TOLERANCE , the Reports Server would check its cache for the last duplicate report output that had been generated within the last five minutes. An EXPIRATION option defines the point in time when the report output should be deleted from the cache (for example, EXPIRATION might equal a specific date and time for when the output should expire). For more information, see Section A.8.22, "TOLERANCE" and Section A.6.6, "EXPIRATION".	
If the request is the same as a currently running job, then the request will reuse the output from the current job rather than rerunning the report.	
If neither of these conditions is met, then:	
rwservlet	
) is SSO-enabled, it checks for authentication. A secure Reports Server then authorizes the user using Oracle Internet Directory. If Oracle Reports Servlet (rwservlet	
) is not SSO-enabled, a secure Reports Server authorizes and authenticates the user. cgicmd.dat	
file (URL requests only). Another way to create a report is through event-driven publishing. With event-driven publishing, the client is the database (rather than the end user). Events are defined through the Event-Driven Publishing API. The event invokes a database trigger, an advanced queuing application, or a PL/SQL package that calls the Event-Driven Publishing API to submit jobs to the Reports Server. Event-driven publishing is discussed in detail in Chapter 21, "Using Event-Driven Publishing".	
For information about running reports with Oracle BPEL Process Manager, refer to Section 8.10, "Configuring Oracle Reports to Communicate with Oracle BPEL Process Manager".	
Oracle Reports replaces the use of Borland's VisiBroker with Sun Microsystems' industry-standard Java Developer's Kit Object Request Broker (JDK ORB), providing support for Reports Server requests from clients across subnets, and using the broadcast mechanism for dynamic Reports Server discovery both within a subnet and across subnets.	
With Oracle Reports 11g Release 1 (11.1.1), you can use the built-in broadcast mechanism, available out-of-the-box, for dynamic discovery of Reports Servers. You can also choose to use the Common Object Service (COS) naming service orbd, provided by Sun Microsystem's JDK ORB, for Reports Server discovery.	
Note: It is recommended that you use the built-in broadcast mechanism for dynamic discovery of Reports Servers. Use the Common Object Service (COS) naming service for Reports Server discovery only when the built-in broadcast mechanism is not suitable for your environment, as in the following scenarios:	
This section discusses the two methods of Reports Server discovery	
Note: Oracle Reports 11g Release 1 (11.1.1) containsrwdiag executable to provide diagnosis for the JDK ORB implementation. Using rwdiag, you can replace the functionality of osfind available in the prior VisiBroker implementation, providing information about which ORB applications are running and options for logging ORB-related network traffic	
With the broadcast mechanism, Reports Server discovery can occur within a subnet or across subnets:	
Note: The Oracle Reports built-in broadcast mechanism requires the host machine to be inside a network. Thus, following are two scenarios in which the broadcast mechanism may not work, including the solutions for each scenario:	
Within a subnet, the client broadcasts a packet with the name of the Reports Server to which it wants to connect. A Reports Server with that name will respond if it exists in the network. The client then connects to the Reports Server to run the report request.	
Using the example of running a report request with server=rep_server	
, the following numbered steps map to the numbers in Figure 2-2:	
getServerRef	
rwclient	
, rwservlet	
, or rwrqm	
) broadcasts a packet containing the name of the server to which it wants to connect. In this case, the packet contains the name rep_server	
. rep_server	
in the network responds back with its Interoperable Object Reference (IOR). runReport	
executeReport	
Oracle Reports provides the Oracle Reports Bridge mechanism for connecting two or more non-secured subnets. An Oracle Reports Bridge running in one subnet will contact Oracle Reports Bridge running in another subnet to obtain Reports Server references. For configuration details, refer to Oracle Reports Bridge Configuration Elements.	
Using the example of running a report request with server=rep_server	
, the following numbered steps map to the numbers in Figure 2-3:	
getServerRef	
rwclient	
, rwservlet	
, or rwrqm	
) broadcasts a packet containing the name of the server to which it wants to connect. In this case, the packet contains the name rep_server	
. bridge1	
intercepts the packet and passes it to bridge2	
. registerServerRef	
bridge2	
broadcasts the packet in dom2	
, and rep_server	
in dom2	
responds back with the Interoperable Object Reference (IOR). bridge2	
passes the IOR back to bridge1	
, and bridge1	
passes it to the client using the broadcast mechanism. runReport	
executeReport	
Note: Numbers in blue color in Figure 2-3 are shown for the case where the Oracle Reports client is indom2 and Reports Server is in dom1 .	
Alternatively, you can use the JDK-provided Common Object Service (COS) naming service to access a Reports Server in the same subnet, as well as across a non-secured subnet. To configure the naming service, refer to Section 8.5.1, "Network Configuration Elements".	
Note: It is recommended that you use the built-in broadcast mechanism for dynamic discovery of Reports Servers. Use the Common Object Service (COS) naming service for Reports Server discovery only when the built-in broadcast mechanism is not suitable for your environment, as in the following scenarios:	
To control the COS naming service through OPMN, refer to Section 8.8.1.4, "COS Naming Service Specification"	
Using the example of running a report request with server=rep_server, the following numbered steps map to the numbers in Figure 2-4	
registerServer	
server=rep_server	
. getServerRef	
server rep_server	
. runReport	
executeReport	
Note: Numbers in blue color in Figure 2-4 are shown for the case where the Oracle Reports client is indom2 and Reports Server is in dom1 .	
Footnote Legend	
Footnote 1: Only synchronous jobs and jobs that are currently running are lost in this case.The way you set up Oracle Reports Services can vary widely depending upon the requirements of your system. Before you set up Oracle Reports Services, you must make some decisions based upon your requirements. By making these decisions beforehand, you can greatly simplify the setup process.	
The following subsections discuss some of the decisions involved in:	
Oracle Reports Services can be configured to accept both Web and non-Web job requests.	
In the Web case, you can run reports by clicking or typing a URL in a Web browser. Depending on the URL, the report output is then served back to you in your browser or sent to a specified destination (for example, a printer). To enable users to launch reports from a browser, you will use either Oracle Reports Servlet (rwservlet	
) or a JSP with your Web server. One or the other of these components must be present on the Web server to enable communications between it and Oracle Reports Services and to enable the processing of report requests from Web clients.	
Note: For more information, refer to Section 2.4.2, "Choosing Oracle Reports Servlet, JSP, or Web Services".	
In non-Web cases, you can send job requests using the rwclient	
component, installed on each of your user's machines.	
From the perspective of configuration, these are the key differences between enabling Web and non-Web requests:	
rwservlet	
) or JSP for the server side, but eliminates the need to install any client software beyond a standard Web browser. The client software could be:	
rwclient	
or rwrun	
. The Web case is clearly the most cost effective because it reduces client maintenance costs. But there might be cases where launching non-Web requests is a necessity. Oracle Reports Services supports the implementation of both Web and non-Web requests in a single deployment environment.	
To use Oracle Reports Services in a Web environment, you must use Oracle Reports Servlet (rwservlet	
), Reports Web Services, or Reports JSP.	
Between Oracle Reports Servlet (rwservlet	
) and Reports JSP there are additional considerations. A JSP-only implementation means that you can publish a layout that is optimized for Web delivery (that is, the Oracle Reports Web Layout). Oracle Reports Servlet (rwservlet	
) enables you to include paper layouts in your report publishing solution and fully leverage the distribution features of Oracle Reports Services.	
Using Oracle Reports Servlet (rwservlet	
) does not imply that you cannot also use JSP files, because JSP files can contain both Web and paper layouts. When you run a report stored in a JSP, you specify the servlet in the URL and call the JSP with the command line option report=	
myreport	
.jsp	
. In this case, report output is created based on the paper layout.	
For more information on running reports, see Chapter 18, "Running Report Requests".	
You can place Oracle Reports Services on the same machine as your Web server or on a different machine. Both scenarios have pros and cons.	
For example, while it's true that having Oracle Reports Services and the Web server on the same machine requires more of the machine's memory and disk space, it's also true that such an implementation reduces network traffic. This is because requests traveling between the Web server and the application server do not have to travel across a network, only incoming requests must do so.	
If you are using the in-process Reports Server (available only with Oracle Reports Servlet (rwservlet	
) implementations) you can further amplify the performance advantages of a single machine. The in-process Reports Server speeds up processing time by allowing for faster and more efficient communication between Oracle Reports Services components. We recommend that you use the in-process Reports Server unless you will not use Oracle Reports Servlet (rwservlet	
) to deploy reports.	
On the other hand, if you have a single machine configuration and that machine fails, everything fails.	
While there is a greater amount of network traffic when the Web server and the application server are on different machines, you also benefit from the increase in system resources, in the form of additional CPUs, more disk space, and more available memory. Even in a multiple machine configuration, the in-process Reports Server will aid performance by speeding communication between Oracle Reports Services components.	
Another possibility is placing your Web server and your application server each on multiple machines. This will require additional configuration, but it enables you to implement load balancing on the Web server.	
By using the environment switching feature it is possible to spawn Reports Engines with different environment settings, including language, in the same Reports Server. Refer to Section 8.2.2, "Dynamic Environment Switching" for more information.	
11g Release 1 (11.1.1) provides numerous high availability (HA) enhancements, as listed in Table 2-1 in Section 2.1, "What's New In This Release?".	
This section discusses the following topics pertinent to establishing a high availability environment:	
Oracle Fusion Middleware consists of many components that can be deployed in distributed topologies. The underlying paradigm used to enable high availability for Oracle Fusion Middleware is clustering, which unites various Oracle Fusion Middleware components in certain permutations to offer scalable and unified functionality, and redundancy should any of the individual components fail.	
Note: Refer to the Oracle Fusion Middleware Enterprise Deployment Guide for Java EE and Oracle Fusion Middleware High Availability Guide for more information on the various solutions and techniques to achieve high availability in Oracle Fusion Middleware.	
Perform the following steps to configure the rwservlet.properties file:	
cluster name	
should be same in all rwservlet.properties files. Cluster nodes	
should include in-process server names which are part of the cluster except the current one. More than one server should be separated by a colon.	
Alternatively, you can configure a cluster through Oracle Enterprise Manager:	
The System MBean Browser page is displayed.	
The Application Defined MBeans: Report sApp:rwservlet page is displayed.	
The Operation:addCluster page is displayed.	
For more information about the rwservlet.properties file, refer to Section 8.3.1.1, "rwservlet"	
To configure Reports Server for high availability by using the database as the job repository, perform the following steps for each instance:	
rwserver.conf	
file of all Reports Servers. Note that in 11g Release 1 (11.1.1) the server configuration file must correspond to the rwserverconf.xsd	
file (refer to Section 8.2.1, "Reports Server Configuration Elements"), which means that the order in which different entries appear inside the server configuration file is no longer random, but fixed by the XSD. As a result, the following element must be added immediately before the <connection>	
element in the server configuration file:	
For information about adding a password key in the credential store, see Section 15.1.4, "Credential Store".	
Alternatively, you can configure the database job repository through Oracle Enterprise Manager:	
The Reports Application Advanced Configuration page is displayed.	
CacheDir	
or JOCCacheDir	
property to the <cache>	
element of each of the server configuration files, For example,	
on Windows:	
on UNIX:	
where, "/usrs/tmp"	
is a shared location when Reports Server is running on different machines and has write privileges.	
Note:	
Alternatively, you can specify the value for JOC Cache directory through Oracle Enterprise Manager:	
The Reports Application Advanced Configuration page is displayed.	
Note: You can use the System MBean Browser to add JOC Cache directory for the first time.The High Availability parameters section in Enterprise Manager is displayed only when the server is part of the HA cluster and the in-process server is running.	
For information about the JOCCacheDir	
and CacheDir	
properties (new in Oracle Reports 11g Release 1 (11.1.1), refer to Chapter 8, "Configuring Oracle Reports Services".	
rw_server.sql	
file to a database (this file is included with your Oracle Reports Services installation: ORACLE_HOME\reports\admin\sql)	
This creates a schema that owns the report queue information and has execute privileges on the server queue API.	
TNS_ADMIN	
and ORACLE_HOME	
in the shell and start the node manager ($FMW_HOME/wlserver_10.3/server/bin/startNodeManager.sh	
). This is required for the reports in-process server to connect to the database. For more information, see "TNS_ADMIN".	
You can use Oracle WebCache as a load balancer. For more information, see Oracle Fusion Middleware Administrator's Guide for Oracle Web Cache	
When High Availability is setup across two different domains in Oracle Enterprise Manager, you need to configure the Enterprise Manager settings. This enables both the domains to access the data from all the servers.	
In ORACLE_INSTANCE/bin	
of each domain	
When you have finished configuring the Enterprise Manager settings for both the domains, the Enterprise Manager console monitors and manages jobs in the job queues of all the HA servers.	
After installing Oracle Reports 11g Release 1 (11.1.1), read through the section in this chapter to verify you are ready to use Oracle Reports Services to publish your reports:	
Oracle Reports 11g Release 1 (11.1.1) provides the installation and upgrade enhancements listed in Table 3-1 (a subset of Table 1-1, "11g Functionality vs. 10g Functionality"):	
Table 3-1 11g Install Features vs. 10g Functionality	
11g New Features	Equivalent 10g Functionality
---	---
Flexible install types. In Oracle Fusion Middleware 11g, install type contains Oracle Reports, Forms, Portal, and Discoverer. In the installer, you can selectively install any one of these products or all of them.	Predefined install types only. For example, you can not install Oracle Reports alone or Oracle Reports and Oracle Portal alone.
Separate installation of binaries from configuration, allowing shared binaries across servers. Oracle Installer allows for install only and then configuration only as two separate steps. For more information, see Section 3.2, "Understanding the Oracle Fusion Middleware Installation Structure".	Single ORACLE_HOME installation including both binaries and configuration.
New and improved management screens in Oracle Enterprise Manager. Oracle Enterprise Manager provides enhanced usability for all the administration, monitoring, and diagnosability operations. For more information, see Chapter 7, "Administering Oracle Reports Services Using Oracle Enterprise Manager".	Oracle Enterprise Manager Application Server (AS) Control, and modifying configuration files.
Fully automated upgrade from 10g Release 2 (10.1.2). For more information, see Section 3.6, "Upgrading from the Prior Release".	Not Applicable (N/A)
In prior releases, Oracle Reports Services was installed in a single Oracle home (ORACLE_HOME	
), including all files (both binaries and configuration). Oracle Fusion Middleware 11g Release 1 (11.1.1) introduces the option to split installation into an Oracle home (ORACLE_HOME	
) and an Oracle instance (ORACLE_INSTANCE	
) to separate binaries from configuration, and allow shared binaries across servers.	
The new Oracle Fusion Middleware installation option provides several advantages:	
ORACLE_HOME	
contains binary files, which can be shared across multiple ORACLE_INSTANCEs	
, reducing the footprint and management of each ORACLE_INSTANCE	
. ORACLE_HOME	
without needing to reconfigure. ORACLE_INSTANCE	
is easier and lightweight. For complete information about the new installation structure, including how to create a new Oracle instance, refer to Oracle Fusion Middleware Administrator's Guide.	
Make sure Oracle Reports components are created out-of-the-box (OOTB), and are available and ready to use after installation and configuration in the following way:	
In Oracle Enterprise Manager, navigate to the following pages to manage and view Oracle Reports components:	
Use these pages to perform checks and verifications, start a standalone Reports Server, shut down the standalone Reports Server, and run a report using rwservlet	
and the in-process Reports Server.	
For more information, see Chapter 7, "Administering Oracle Reports Services Using Oracle Enterprise Manager".	
Oracle Reports Services report requests flow from the Oracle HTTP Server component, to Oracle Reports Servlet, to Reports Server. Before sending report requests to Reports Server, verify that the environment is up and running:	
Before starting Reports Server through Oracle Enterprise Manager, you must verify that your Oracle HTTP Server is running. For more information about performing this task in Oracle Enterprise Manager, refer to your Oracle Enterprise Manager documentation.	
Alternatively, you can verify that the Oracle HTTP Server is running by navigating to the following URL:	
To verify that Oracle Reports Servlet (rwservlet	
) is running, navigate to the following URL:	
where	
host	
is the server that is allotted.	
port	
is either the OHS port or the WebLogic Server port.	
Note that the URL is case-sensitive. If this URL executes successfully, you should get a help page describing the rwservlet	
command line arguments	
To verify that Reports Server is running, navigate to the following URL:	
where	
host	
and port are as described in Section 3.4.2, "Checking Oracle Reports Servlet".	
server=	
server_name	
is not required if you are using the default Reports Server name (rep_	
machine_name	
) or the Reports Server specified in the Oracle Reports Servlet configuration file (rwservlet.properties	
).	
If this URL executes successfully, you should see a listing of the job queue for the specified Reports Server.	
Note: For more information about the Oracle Reports Servlet configuration file (rwservlet.properties), see Section 8.3, "Oracle Reports Servlet Configuration File".	
In Oracle Reports 11g Release 1 (11.1.1), by default Reports Server is secure out-of-the-box using Oracle Portal-based Security Services. During installation, you can specify any LDAP server (including Oracle Internet Directory) to be used as the policy store. Confirm that security is enabled in either of the following ways:	
In Oracle Enterprise Manager, select Reports > Administration > Advanced Configuration to display the Reports Server Advanced Configuration Page:	
On the command line, navigate to the following directory to open the in-process Reports Server configuration file to verify it is configured with the RWJAZN security:	
The presence of "<security id="rwSec" class="oracle.reports.server.RWSecurity"/>	
" in the configuration file confirms that RWSecurity is enabled.	
Upgrading from Oracle Reports 10.1.2.x to 11g Release 1 (11.1.1) is fully automated:	
Oracle Reports 11g Release 1 (11.1.1) is fully backward compatible and interoperable with 10.1.2.x:	
Note: This interoperability scenario requires the Patch 7597820 to be installed. You can download this patch from the following URL:http://updates.oracle.com/download/7597820.html. This patch is required to address the CORBA IDL changes between the two releases for the Job Status information. If you want to use rwservlet of Reports 10g Release 2 (10.1.2.3) with the Reports 11g Release 1 (11.1.1) Server, ensure that you install this patch on your 10.1.2.3 installation. You can download this patch from http://metalink.oracle.com.	
A user who installed the Oracle Reports components can access them, by default. If you want to allow other users to run rwbuilder	
, run the following commands at the command prompt:	
Then you can change the location of logs to a user-readable and writable location in $ORACLE_INSTANCE/config/ReportsToolsComponent/ReportsTools/logging.xml	
by changing the "path	
" property of runtime_trace_handler	
and zrcclient_trace_handler	
.	
The Oracle Fusion Middleware Upgrade Assistant automates the upgrade of many aspects of Oracle Application Server 10g environment. The Oracle Fusion Middleware Upgrade Assistant is installed automatically into the bin directory of Oracle Fusion Middleware Oracle home.	
The Oracle Fusion Middleware upgrade Assistant guides you through the process of upgrading from previous versions of Oracle Application Server instance to Oracle Fusion Middleware 11g Release 1 (11.1.1) instance.	
The following table summarizes the steps in the process of upgrading Oracle Reports from Oracle Application Server 10g instance to Oracle Fusion Middleware 11g Release 1 (11.1.1) instance.	
Table 4-1 Upgrade Process Overview	
Step	Description
---	---
Review Upgrade Concepts in the Oracle Fusion Middleware Upgrade Planning Guide	The Oracle Fusion Middleware Upgrade Planning Guide provides a high-level overview of how to upgrade your entire Oracle Application Server environment to Oracle Fusion Middleware, including compatibility information and instructions for upgrading any databases that support your middleware components
Understand the upgrade starting points	Before planning your upgrade, you should be familiar with the supported starting points for an Oracle Portal, Forms, Reports, and Discoverer upgrade.
Decide upon an Oracle Reports Topology	With the introduction of Oracle WebLogic Server, the topologies for Oracle Portal, Forms, Reports, and Discoverer have changed somewhat. Before you begin an upgrade, make sure you are familiar with the basic topologies in Oracle Fusion Middleware 11g.
Install New 11g Middle Tiers	Use the Oracle Portal, Forms, Reports, and Discoverer installer to install your new Oracle Fusion Middleware middle tiers.
Run Upgrade Assistant for Each Middle Tier	The Oracle Fusion Middleware Upgrade Assistant copies configuration data from your existing Oracle Application Server middle tiers to the newly installed Oracle Fusion Middleware middle tiers.
Perform Any Required Post-Upgrade Manual Steps for Each Middle Tier	The Upgrade Assistant automates many of the upgrade tasks, but there are cases where you must manually modify the configuration settings after running the Upgrade Assistant.
Use Upgrade Assistant to Verify Upgraded Environment	The Upgrade Assistant provides a feature that will verify the upgraded environment to make sure specific components and URLs are functional.
Upgrading Oracle Reports using Upgrade Assistant involves the following steps:	
Note: For more information on upgrading Oracle Reports using Upgrade Assistant, see "Task 6: Use the Upgrade Assistant to Upgrade the Required Schemas and Middle Tiers" in Oracle Fusion Middleware Upgrade Guide for Oracle Portal, Forms, Reports, and Discoverer.	
The following Oracle Reports Components and elements are upgraded to the new Oracle Fusion Middleware 11g Release 1 (11.1.1) environment.	
Table 4-2 summarizes Oracle Reports files, including the configuration files, which are upgraded during the upgrade process, as described in Table 4-1.	
Table 4-2 Upgraded Oracle Reports Files	
11g Target FIle Name	11g Target Configuration Path
---	---
Migration of Standalone Server configuration. Exception:	
Migration of configuration for in-process server. Exception:	
J2SE: J2SE: J2SE: J2EE:	Migration of network configuration to Standalone Server, Reports Bridge, Reports tools and In-process Server. Exception: Channel and port attributes in
J2SE: J2SE: J2EE:	Migration of configuration to Standalone Server, Reports tools and In-process Server.
J2SE: J2SE: J2EE:	Migration of configuration to Standalone Server, Reports tools and In-process Server.
J2SE: J2SE: J2EE:	Migration of configuration to Standalone Server, Reports tools and in-process server.
J2SE: J2SE: J2EE:	Migration of configuration to Standalone Server, Reports tools and In-process Server.
Migration of configuration to in-process server. Exception:	
Migration of configuration to Reports Bridge.	
Migration of configuration to In-process Server.	
Copy all files to target location.	
Copy all files to target location.	
Migration of Reports specific entries.	
On Windows: On UNIX:	Copy file to target location.
Copy file to target location.	
Copy file to target location.	
Copy file to target location.	
Copy all files in source location to target location.	
Copy all files in source location to target location.	
Copy all files in source location to target location.	
Copy all files in source location to target location.	
Copy all files in source location to target location.	
Copy file to target location.	
Copy file to target location.	
Copy file to target location.	
Windows Registry	Migration of Windows registry entries. Only Reports specific registry entries are migrated.
After you upgrade to OracleAS Reports Services 11g, review the following sections, which provide information about typical post-upgrade tasks for OracleAS Reports Services users:	
When you upgrade to Oracle Reports 11g, the security configuration is not upgraded. As a result, the security configuration of Oracle Reports 11g remains the same as it was before the upgrade.	
For information about the security features available in Oracle Reports 11g and how to configure them, see Chapter 15, "Securing Oracle Reports Services".	
The following sections describe some other common post-upgrade tasks to complete after upgrading to OracleAS Reports Services 11g:	
Any shell scripts that are stored in the bin directory of the Oracle Reports 10g Oracle home, such as reports.sh	
, rwrun.sh	
, and rwserver.sh	
are not upgraded automatically during the upgrade process. Instead, you must change these scripts manually, as needed. After the upgrade, you can find these scripts in the following Oracle Fusion Middleware 11g directory:	
ORACLE_INSTANCE/config/reports/bin	
OracleAS Reports Services DAT files are upgraded during the upgrade process. However, if job command entries in the DAT files contain references to old Oracle Home path names or invalid path names, then those jobs will fail. Therefore, you must reschedule any such report jobs.	
In OracleAS Reports Services 10g, the in-process server target appears in the Oracle Enterprise Manager Application Server Control as Reports Server.	
However, after you upgrade to OracleAS Reports Services 11g, the in-process server does not appear as Reports server in Oracle Enterprise Manager Fusion Middleware Control. Instead, it appears as a Reports application, called reports, and you can manage the in-process server target and the Reports servlet on the Reports application page.	
Cached Reports output files are not upgraded to Oracle Reports 11g.	
This chapter discusses interoperability scenarios and considerations for Oracle Reports 11g Release 1 (11.1.1).	
It includes the following sections:	
Oracle Reports 11g Release 1 (11.1.1) interoperates with Oracle Reports 10.1.2.3. If you are using Oracle Reports 10.1.2.3 client with Oracle Reports 11g Release 1 (11.1.1) server, you must install a patch. For more information about this interoperability scenario and patch requirements, see Oracle Fusion Middleware Release Notes for Microsoft Windows.	
Oracle Reports 11g Release 1 (11.1.1) interoperates with other Oracle components, such as Oracle Portal, Oracle Internet Directory, Oracle Forms, OracleAS Single Sign-On (SSO), Oracle BPEL Process Manager, and Oracle Application Server WebCache.	
The following are the interoperability scenarios:	
For more information, see:	
This chapter provides information on starting and stopping Oracle Reports Services. It includes the following main sections:	
Note: The examples in this chapter use ORACLE_HOME to denote where Oracle Fusion Middleware is installed. This includes Oracle Reports Services.	
The best way to run Reports Server is through the Oracle Process Manager and Notification Server (OPMN). OPMN provides a centralized mechanism for initializing, maintaining, and shutting down your Oracle HTTP Server, Oracle WebLogic Server processes, and OracleAS Reports Services. For more information on configuring Reports Server through OPMN, see Section 8.8, "Configuring Reports Server with the Oracle Process Manager and Notification Server and Oracle Enterprise Manager"	
Important: You must start or stop a Reports Server registered with Oracle Enterprise Manager only through Oracle Enterprise Manager 11g or OPMN. OPMN automatically restarts Reports Server if it stops responding for some reason. OPMN runs as a Windows service on Windows.In Oracle Reports, running Reports Server as Windows service is no longer supported (
For more information about the obsolescence of running Reports Server as a Windows service, see A Guide to Functional Changes Between Oracle Reports 6i and 10g on the Oracle Technology Network (OTN).	
When the standalone Reports Server is configured through OPMN, you can start, stop, and restart it through Oracle Enterprise Manager	
Note: The in-process server is available as part ofwls_reports and thus registered with Oracle Enterprise Manager during installation of Oracle Application Server. If you add any Reports Servers after installing Oracle Application Server, you must register the new server(s) in the Oracle Enterprise Manager's targets.xml file and the Oracle Process Manager and Notification Server's opmn.xml file. For more information, see Section 8.8, "Configuring Reports Server with the Oracle Process Manager and Notification Server and Oracle Enterprise Manager"	
To start, stop, or restart a Reports Server:	
Before you start the Oracle Reports Server with Oracle Process Manager and Notification (OPMN), you must add the Server to OPMN, as shown in the following example:	
You can use the following command lines to start, stop, and restart Reports Server if it was configured through the Oracle Process Manager and Notification Server:	
The Reports Server name must match the name in the ias-component id in the opmn.xml	
file.	
You can also query the status of the Oracle Process Manager and Notification Server, by using the following command:	
For more information on configuring Reports Server through the Oracle Process Manager and Notification Server, see Section 8.8, "Configuring Reports Server with the Oracle Process Manager and Notification Server and Oracle Enterprise Manager"	
If you choose not to run Reports Server through OPMN and maintain it through Oracle Enterprise Manager, you can use these older methods of running Reports Server:	
Important: Beginning with Oracle Reports 10g Release 2 (10.1.2), running Reports Server as a Windows service is no longer supported, as mentioned at the beginning of this section.	
If you are using Reports Server as an in-process server (the default configuration), sending a run report request starts the in-process server; however, if you are sending a request through a command line, the servlet must be invoked first using either the run report URL or the Web command URL. When you have successfully started the servlet, this also means you have successfully started the in-process server.	
To directly start the in-process server from a URL, enter the following from your Web browser:	
Before you start the Reports Server from command line, you must set the COMPONENT_CONFIG_DIRECTORY	
environment variable as follows:	
COMPONENT_CONFIG_DIRECTORY=ORACLE_INSTANCE/config/ReportsServerComponent/<reports_server_name>	
To start Reports Server as a standalone server on Windows, use the following command:	
Add the BATCH	
command line keyword to start up the server without displaying dialog boxes or messages.	
You can run this command on UNIX using the following syntax:	
Or:	
Important: IfDISPLAY is not set, you must start Reports Server in batch mode (batch=yes). For more information about removing DISPLAY and printer dependencies in UNIX systems, see Section 10.8. For more information about the REPORTS_DEFAULT_DISPLAY environment variable, see Appendix B.	
You can run this command from any directory as long as the shell script can be reached in your PATH	
environment variable.	
There are several ways to stop Reports Server on Windows and UNIX, as follows:	
rwserver.sh	
, click Shutdown in the Reports Server dialog box. Note: On UNIX, use rwserver.sh instead of rwserver.	
Before you shut down the server, you must set the COMPONENT_CONFIG_DIRECTORY	
environment variable as follows:	
COMPONENT_CONFIG_DIRECTORY=ORACLE_INSTANCE/config/ReportsServerComponent/<reports_server_name>	
To shut down the server normally (that is, finish pending jobs and then stop):	
To shut down the server immediately (that is, stop without finishing pendingjobs):	
To shut down the server without displaying any related messages:	
The keywords used with the rwserver command are described in Appendix A, "Command-Line Keywords"	
Note: authid is Reports Server's administration user name and password. In Oracle Reports 11g Release 1 (11.1.1), the default security is based on standards-based Java EE security model through Oracle Platform Security Services. For a non-secure Reports Server, this user is defined in the identifier element. The following bullet contains more information on how to stop a non-secure Reports Server using the command line.	
rwserver.sh	
or rwrqv.sh	
, you must provide a valid authid, which must match the value set in the identifier	
element in the server configuration file. However, the identifier	
element is set during Reports configuration while installing Oracle Application Server and encrypted by Reports Server. You can reset the identifier element to any value. If you have registered this Reports Server with Oracle Enterprise Manager and OPMN, you must also change the corresponding properties in targets.xml	
for Oracle Enterprise Manager integration to work. Perform the following steps: server_name.conf	
, modify the identifier element to specify the username/password	
and set the encrypted	
attribute to no. For example: Note: You must restart Reports Server for any configuration changes to take effect.	
Reports Server will now encrypt the username/password value of the identifier element. After Reports Server reads the changes made in the server_name.conf, the following commands should execute successfully (with scott/tiger	
as the username/password):	
argets.xml	
file (in $ORACLE_INSTANCE/EMAGENT/emagent_asinst_1/sysman/emd	
) using any text editor, as follows: TYPE="oracle_repserv"	
and DISPLAY_NAME="Reports Server: server_name"	
. UserName	
property and the Password	
property to the same user name and password as in the identifier	
element in the server_name.conf file. Set the ENCRYPTED	
attribute to FALSE	
for these two properties. You should now be able to stop and shut down a non-secure Reports Server using Oracle Enterprise Manager.	
Note: These steps are required only for a non-secure Reports Server and not for secure Reports Servers.	
The Oracle Reports bridge is used to connect two subnets. It acts as a gateway between Oracle Reports components running in different subnets.	
Note: In Oracle Reports 11g Release 1 (11.1.1), the Oracle Reports bridge is integrated with Oracle Enterprise Manager 11g. Therefore, you can see the Oracle Reports bridge status or start and stop it from the Oracle Enterprise Manager.	
For troubleshooting scenarios and diagnosis, see Appendix D, "Diagnosing Oracle Reports Bridge Problems".	
Before you can start the Oracle Reports bridge with Oracle Process Manager and Notification (OPMN), you must add the bridge to OPMN, as shown in the following example:	
To start the Oracle Reports bridge if it was configured through the Oracle Process Manager and Notification (OPMN) Server, use either of the following commands:	
To stop the Oracle Reports bridge, use the following command:	
To restart the Oracle Reports bridge, use the following command:	
The Oracle Reports bridge name must match the name in the ias-component id	
in the opmn.xml	
file.	
You can also query the status of the Oracle Process Manager and Notification bridge, using the following command:	
For more information on configuring the Oracle Reports bridge through the Oracle Process Manager and Notification Server, see Section 8.8.1.3, "Oracle Reports Bridge Specification"	
It is recommended that you use Enterprise Manager or OPMN to start and stop Oracle Reports components.	
You must set the following environment variable before you start or stop the Reports Bridge component:	
COMPONENT_CONFIG_DIRECTORY=ORACLE_INSTANCE/config/ReportsBridgeComponent/<reports_bridge_name>	
To start the Oracle Reports bridge from the command line, use the following commands:	
On Windows:	
On UNIX:	
For example, to start an Oracle Reports bridge named foo	
on Windows, use the following command:	
For more information about the rwbridge executable, see Section A.2.7, "rwbridge"	
Oracle Reports creates a configuration file, rwbridge.conf	
when the Oracle Reports bridge is started for the first time. This file is generated based on the settings in the rwbridge.template	
file and is located in the ORACLE_INSTANCE\config\ReportsBridgeComponent\bridge_name	
directory. Edit the rwbridge.conf	
file to specify remote Oracle Reports bridges to connect to other subnets.	
Note: You must restart the Oracle Reports bridge for any configuration changes to take effect.	
To stop an Oracle Reports bridge, use the following command:	
On Windows:	
On UNIX:	
For example, to stop an Oracle Reports bridge named foo	
on UNIX, use the following command:	
In the configuration file, repbrg_bridgename.conf, modify the identifier element to specify the username/password	
and set the encrypted	
attribute to no. This is to indicate that the password is not encrypted. This password will be encrypted once the Oracle Reports bridge is started.	
For example:	
Usage Notes	
authid	
For more information see, Section 8.2.1.19, "identifier"	
When a Reports instance is shut down, you can bring up the Reports components as follows.	
To start Reports Servlet in an expand cluster, complete the following steps:	
cd $FMW_HOME/wlserver_10.3/server/bin	
ORACLE_HOME	
environment variable to your Oracle Home directory TNS_ADMIN	
environment variable to your TNS_ADMIN	
directory. LD_LIBRARY_PATH	
environment variable on the command line as follows: setenv LD_LIBRARY_PATH $ORACLE_HOME/jdk/jre/lib/i386:$ORACLE_HOME/jdk/jre/lib/i386/server:$ORACLE_HOME/jdk/jre/lib/i386/native_threads:$ORACLE_HOME/lib32:$ORACLE_HOME/lib:/usr/X11R6/lib:/usr/openwin/lib:	
./startNodeManager.sh	
cd $FMW_HOME/user_projects/domains/<domain_name>/bin	
./startWebLogic.sh	
WLS_REPORTS	
from the WebLogic Server Administration Console. http://host:7001/console	
). The Summary of Deployments screen is displayed.	
To start the Reports standalone server, complete the following steps:	
cd $ORACLE_INSTANCE/bin	
.	
opmnctl startall	
All Reports components, including the Reports Standalone server, are started.	
The Common Object Service (COS) naming service orbd, provided by Sun Microsystem's JDK, can be used for Reports Server discovery instead of the default broadcast mechanism. Refer to the JavaIDL page on Sun Microsystem's Web site (http://java.sun.com	
) for more details on the orbd	
executable.	
To start the naming service, use the following commands:	
On Windows:	
On UNIX:	
To use OPMN to control the naming service, refer to Section 8.8.1.4, "COS Naming Service Specification"	
All start and stop operations on Oracle Reports components can be performed using Oracle Enterprise Manager. Refer to Section 7.4, "Starting, Stopping, and Restarting Oracle Reports Components".	
If you are using Reports Server as an in-process Reports Server (the default configuration), sending a run report request starts the in-process Reports Server. However, if you are sending a request through a command line, Oracle Reports Servlet (rwservlet	
) must be started first using either the run report URL or the Web command URL. When you have successfully started rwservlet	
, you have successfully started the in-process Reports Server.	
You can also start an In-process Reports server through Enterprise Manager:	
The Reports application is started.	
The In-process Reports server is started.	
To directly start or stop the in-process Reports Server using a URL, enter the following in your Web browser:	
OracleAS Reports Services depends upon the Oracle HTTP Server component. Before starting Reports Server through Oracle Enterprise Manager or OPMN, you must verify that your Oracle HTTP Server is running. For more information about performing this task in Oracle Enterprise Manager, refer to your Oracle Enterprise Manager documentation.	
Alternatively, you can verify that the Oracle HTTP Server is running, in your browser, by navigating to the following URL:	
To verify that the Reports Servlet is running, navigate to the following URL:	
Note that the URL is case sensitive. If this URL executes successfully, you should get a help page describing the rwservlet	
command line arguments.	
To verify that Reports Server is running, navigate to the following URL:	
The server=	
server_name	
argument is not required if you are using the default Reports Server name (rep_	
machine_name	
) or the Reports Server specified in the servlet configuration file, rwservlet.properties	
($DOMAIN_HOME/config/fmwconfig/servers/<WLS_SERVER_NAME>/applications/reports_<version>/configuration	
). If this URL executes successfully, you should see a listing of the job queue for the specified Reports Server.	
Note: You'll find more information about the servlet configuration file in Section 8.3, "Oracle Reports Servlet Configuration File".	
Part II provides information about administering Oracle Reports Services:	
Oracle Reports 11g Release 1 (11.1.1) is integrated with Oracle WebLogic Server, which results in simpler administration of complex topology and deployments. You can manage and monitor Oracle Reports components using either:	
This chapter describes how to manage and monitor Oracle Reports components using Oracle Enterprise Manager. It includes the following main sections:	
Note: Where needed, Oracle Reports Services pages in Oracle Enterprise Manager include context-sensitive Help topics that provide more information about the items on those pages. Click the Help icon to display the corresponding help topic.	
See Also: For more information on Oracle Enterprise Manager, refer to the Oracle Fusion Middleware Administrator's Guide, available on the Oracle Fusion Middleware documentation CD.	
Oracle Reports 11g Release 1 (11.1.1) provides significant enhancements to Oracle Enterprise Manager, including pages to administer and configure Oracle Reports Services through the Oracle Enterprise Manager user interface, rather than by editing configuration files, as summarized in Table 7-1 (a subset of Table 1-1, "11g Functionality vs. 10g Functionality"):	
Table 7-1 11g Oracle Enterprise Manager Features vs. 10g Functionality	
11g New Features	Equivalent 10g Functionality
---	---
Monitoring and Management	
New rich and customizable Oracle Enterprise Manager user interface, providing:	
Enterprise Manager Application Server (AS) Control and manually editing configuration files.	
New trend graphs, key statistics. Anticipation of common problems with early symptoms.	N/A
Job Administration and Scheduling For more information, see Section 7.7, "Administering and Scheduling Jobs".	
Advanced job queue administration. Comprehensive job queue management user interface in Oracle Enterprise Manager (search and filters, resubmit the job, view errors, and more).	Basic job queue user interface.
Rich calendar-based scheduling user interface. Comprehensive Reports Server job scheduling in Oracle Enterprise Manager.	Reports job scheduling done through Oracle Reports Queue Manager (
Security For more information, see Section 7.8, "Securing Oracle Reports Services".	
Oracle Enterprise Manager advanced user interface. Administrators can use Oracle Enterprise Manager to more easily define and manage granular security policies for reports, Web commands, and folder access.	Basic UI in OracleAS Portal for defining the policies. Hard-coded Web command access to the Oracle Reports seeded roles. Access policies at file (report) level only, not folder level.
Reports Server is automatically registered with Oracle Enterprise Manager during installation of Oracle Fusion Middleware.	
If you add any Reports Servers or other Oracle Reports components after installing Oracle Fusion Middleware, do the following:	
Oracle Reports 11g Release 1 (11.1.1) provides better framework to view the topology of the components.	
To view the topology of the instance in Oracle Enterprise Manager:	
To start, stop, and restart Oracle Reports components:	
To start, stop, and restart in-process servers:	
Navigate to the component's home page and select reports (Managed_Server_Name) > Administration > Start /Stop /Restart In-process Reports Server.	
Beginning in Oracle Reports 11g Release 1 (11.1.1), it is recommended that configuration should be done only through Oracle Enterprise Manager.	
Using Oracle Enterprise Manager and JMX Console, you can view and update configuration using the following menu selections in Oracle Enterprise Manager:	
Table 7-2 Configuration Menu Selections	
Select	To Display
---	---
Reports > Administration > Basic Configuration	Reports Server Basic Configuration page.
Reports > Administration > Advanced Configuration	Reports Server Advanced Configuration page. Includes Help icon for detailed page information.
Reports > Administration > Forms/Reports Common Configuration	Forms Reports Common Component Configuration page (
In target navigation pane, Farm_ClassicDomain > Reports > Reports Tools component node	Reports Tools Component Configuration page (
Reports Bridge > Administration > Bridge Configuration	Reports Bridge Configuration page.
On Reports Application page, for example reports (WLS_REPORTS): Reports > Administration > Basic Configuration	Reports Application Basic Configuration page.
On Reports Application page, for example reports (WLS_REPORTS): Reports > Administration > Advanced Configuration	Reports Application Advanced Configuration page. Includes Help icon for detailed page information.
On Reports Server home page: Reports > Logs > Log Configuration	Reports Server Log Configuration page.
On Reports Tools home page: Reports > Logs > Log Configuration	Reports Tools Log Configuration page.
On Reports Application home page:	Reports Application Log Configuration page.
On Reports Bridge home page:	Reports Bridge Log Configuration page.
Note: For those pages that include a Help icon, click the Help icon to access the page-level help. Complete the elements on the page using the descriptions in the Help topic for the page.While you are accessing the Reports application configuration pages in Enterprise Manager, if an application is shut down from Enterprise Manager, you may see an error message that states that the Reports configuration Mbeans are not found. This message is displayed because the Reports configuration Mbeans are not available when an application is down. When you refresh the page or return to the page again, Enterprise Manager displays a user-friendly message about the Reports application being down and the inability of Enterprise Manager to edit the configuration of the applilcation. When you start the Reports application again, the editing of its configuration becomes possible. Starting with the Oracle Fusion Middleware 11.1.1.3.0 release, the version of the Reports application in Enterprise Manager is shown as	
Oracle Reports 11g Release 1 (11.1.1) provides the option to configure the Mail Server element from Enterprise Manager. To configure the Mail Server element, complete the following steps:	
The Reports Server Basic Configuration page is displayed.	
In 11g Release 1 (11.1.1), Oracle Enterprise Manager supports three kinds of administration roles: Administrator, Operator, and Monitor. An Administrator role has full privilege for performing any operations, including security-related operations. Whereas, an Operator has a few privileges and the monitor has a limited set of privileges. If a user doesn't have permission, the functionality is either invisible or greyed out.	
The improved user interface in Oracle Enterprise Manager provides advanced job queue management (search and filters, resubmit the job, view errors, and more), as well as rich calendar-based scheduling for Reports Server jobs.	
To retrieve information about one or more jobs (for example, status, errors for failed jobs, trace information):	
The Jobs page displays for the category of jobs selected in the Show list.	
New in Oracle Reports 11g Release 1 (11.1.1) is the database-based shared job repository, which provides the ability to display a consolidated view of job queues using Oracle Enterprise Manager:	
The Jobs page displays for the category of jobs selected in the Show list.	
You can also use rwservlet	
and the SHOWJOBS	
Web command to display a consolidated job queue, as shown in Section A.8.8, "SHOWJOBS".	
Note:	
To perform operations on jobs, such as resubmitting (retrying) a job:	
The Jobs page displays for the category of jobs selected in the Show list.	
For example, select a finished job and click Rerun Report to rerun the job.	
Note: When you try to perform a Reports operation from Oracle Enterprise Manager, ensure that the id store used by the Reports server contains the same user name/password that you used to log in to Enterprise Manager.	
To define job scheduling options:	
The Reports Job Scheduler page displays.	
Note: For elements that specify a time, the time will automatically adjust for Daylight Savings Time (DST), if necessary. For example, if a job is scheduled to run daily at 5:00 a.m., it will run at that time beginning with the scheduled start date, and adjusting when DST begins or ends so that it will continue to run at 5:00 a.m. as expected. Time entries in past jobs queue are not modified (for example, job enqueue time, start time, finish time).	
Note: If you select a scheduled job and click Edit, you can change the options for the scheduled job. When you click Submit, the messageJob Id nnn has been re-scheduled successfully displays. Oracle Enterprise Manager cancels the original scheduled job and moves it to the Failed Jobs queue, and creates a new scheduled job with the modified parameters. The new job has a different job ID than the original job.	
In 11g Release 1 (11.1.1), Reports Server is secure out-of-the-box using the Oracle Platform Security Services, which accomplishes both authentication and authorization. Oracle Reports uses this Java EE-based security model to allow you to create security policies for running report jobs and Web commands.	
In prior releases, Reports Server authentication was restricted to use only Oracle Internet Directory. Authorization of Reports Server required an Oracle Portal-based security model (using Portal metadata repository for checking authorization). If you want to revert to the security mechanism of prior releases, refer to Section 7.8.1.1, "Switching to Oracle Portal Security".	
In Oracle Reports 11g Release 1 (11.1.1), administrators can use Oracle Enterprise Manager to more easily define and manage granular security policies and file system access:	
To enable or disable security for the Reports Server or Reports Application:	
The Advanced Configuration page is displayed.	
The steps for deploying reports in Oracle Portal is the same in 11g Release 1 (11.1.1) as in prior releases, as described in Chapter 16, "Deploying Reports in Oracle Portal". However, the security mechanism underlying the deployment has changed. In that, authorization is enabled out of the box, but during installation if only Oracle Internet Directory is specified and Portal is not installed, authorization using Oracle Portal is disabled. The default installation of 11g Release 1 (11.1.1) accomplishes both authentication and authorization through Oracle Platform Security Services	
You can continue to use the security features in Oracle Portal from prior releases for backward compatibility. To switch from the new 11g Release 1 (11.1.1) Oracle Platform Security Services to pre-11g Oracle Portal metadata repository-based security:	
The Reports Server Advanced Configuration page is displayed.	
Note: If you enable Oracle Portal security features, then Oracle Portal must also be configured during installation for authorization to occur:	
As administrator, you can specify the reports to which a particular user/role has access by creating security policies for each report. In the security policy, you can also specify the server, destination name (desname
), destination type (destype
), and other parameters. An authenticated user is authorized against these security policies.
To define security policies for reports for Reports Server or Reports Application (in-process Reports Server):
The Security Policy Configuration for Reports page is displayed.
Click the Help icon on the page to access the page-level help.
Perform the following to complete the elements on the page,
/myreports/runtime/reports/*
. Separate multiple entries with a comma (,). All fields on this page require a restart to take effect.
where
host
is the machine where the Oracle Instance is set up
port
is the OHS main port
Note: The security policies defined in Oracle Enterprise Manager are stored in the policy store configured by the user. The idstore contains information on the users and the policy store contains the security policies configured by the user. |
In certain cases, you will want to give a particular user access to multiple related reports. Rather than specify a security policy for each report, you can collect all the reports in a single directory, then specify a security policy for the directory. Again, the security policy is checked when the user provides the user name and password.
As an example, imagine that there are 15 finance reports, for which you want to give access to the FINANCE role, and there are 12 Human Resources reports for which you want to give access to the HR role. Rather than specify 15 security policies for FINANCE role, and 12 policies for HR role (one policy per report), you can collect all finance reports in one directory, and collect all the HR reports in another directory, then specify only 2 policies (one per directory). Instead of specifying the report name, you will specify the directory name in the security policy.
To define a security policy for directories:
The Security Policy Configuration for Reports page is displayed.
Click the Help icon on the page to access the page-level help.
Perform the following to complete the elements on the page,
/myreports/runtime/reports/*
. Separate multiple entries with a comma (,). All fields in this page require a restart to take effect.
Now, to use the defined directory access control at the Reports Server level, refer to Section 7.8.1, "Enabling and Disabling Security" to confirm that security is turned on.
Note: The security policies defined in Oracle Enterprise Manager are stored in the policy store configured by the user. The idstore contains information on the users and the policy store contains the security policies configured by the user. |
You can also specify the Web commands to which a particular user/role has access by creating security policies for each Oracle Reports Servlet (rwservlet
) Web command. The security policy is checked when the user provides the user name and password.
To define security policies for Web commands:
The Security Policy Configuration for Web Commands page is displayed.
Click the Help icon on the page to access the page-level help.
Perform the following steps to complete the elements on the page,
All fields on this page require restart to take effect.
showjobs
Web command from your browser using the following URL: where,
host
is the machine where the Oracle Instance is set up.
port
is the OHS port.
Note: The security policies defined in Oracle Enterprise Manager are stored in the policy store configured by the user. The idstore contains information on the users and the policy store contains the security policies configured by the user. |
As an administrator, you can specify read/write access for Reports Server, Reports Application (in-process Reports Server), or Oracle Reports Runtime to directories. This feature only checks whether Reports Server, Reports Application, or Oracle Reports Runtime is authorized to read from or write to a specified directory, and is unrelated to security policies that check the user name and password.
For example, a malicious user may specify the following keywords to run a report on Windows:
This would generate an error stating that there was an error in the syntax of the file. To avoid this, enable file system access control to specify read directories that do not include system directories.
For example, a user may run a report to the following destination on Windows:
desname=C:\Temp
This would overwrite a system file unless file system access control was enabled to specify write directories that do not include system directories.
To define read/write access to directories for Reports Server, Reports Application, or Oracle Reports Runtime:
The Advanced Configuration page displays.
read
and write
sub-elements of the folderaccess
element in the configuration file. Read Directories: To avoid the security issue of exposing sensitive content of files, enter the names of the directories from which Reports Server is allowed to read. Separate directory names with a semicolon (;).
Write Directories: Enter the names of the directories to which Reports Server is allowed to write. Attempts to write to other folders will return an error.
If you plan to take advantage of Oracle Application Server Single Sign-On, you can use Oracle Enterprise Manager to set the SINGLESIGNON
parameter in the rwservlet.properties
configuration file. SINGLESIGNON=Y
ES
by default on installation. For more information about Single Sign-On, refer to Chapter 17, "Configuring and Administering OracleAS Single Sign-On".
To enable Single Sign-On:
The Reports Application Advanced Configuration page displays.
Oracle Access Manager is a component of Oracle Fusion Middleware that you can use in place of OracleAS Single Sign-On 10g to implement centralized authentication, policy-based authorizations, delegated administration, and so on.
You can use the Oracle Fusion Middleware Upgrade Assistant to upgrade from OracleAS Single Sign-On 10g to Oracle Access Manager 11g. For more information about upgrading to Oracle Access Manager 11g, see the "Upgrading Your Oracle Single Sign-On Environment" chapter in the Oracle Fusion Middleware Upgrade Guide for Oracle Identity Management.
This section explains how to use the oracle Enterprise Manager to manage credentials in a domain credential store.
To add a new key to a credential map:
Note: In CSF, the Reports Server can access credentials only from the Reports folder, hence you must create credentials under the Reports folder. |
To add a new key to a credential map:
For more information about Reassociating the Credential Store, see Oracle Fusion Middleware Security Guide.
In Oracle Reports 11g Release 1 (11.1.1), administrators can use Oracle Enterprise Manager to simplify configuring fonts and diagnosing font issues:
For more information about fonts, refer to Chapter 9, "Managing Fonts in Oracle Reports".
To configure font subsetting and aliasing information:
The Forms Reports Common Component Configuration page displays.
screenprinter.ppd
file. Use the Printer Configuration and Font Configuration sections to modify the uifont.ali
.
For more information about fonts, refer to Chapter 9, "Managing Fonts in Oracle Reports".
To diagnose issues with fonts in your report output:
The Reports Advanced Configuration page displays.
TRACE:1
and click Apply. Oracle Enterprise Manager uses Dynamic Monitoring Service (DMS) metrics service to allow you to easily monitor the performance metrics and Reports Server information:
The Performance Summary page displays, showing metrics such as Average Response Time, Job Load, and Failed Jobs Ratio.
Additionally, many new metrics are available in Oracle Reports 11g Release 1 (11.1.1). Refer to the online help for detailed descriptions of each of the available metrics.
When you use Oracle Enterprise Manager to monitor an instance of Oracle Reports that has been configured to use Secure Sockets Layer (SSL), some performance metrics for Oracle Reports may not display.
To correct this problem, you must allow Oracle Enterprise Manager to recognize the Certificate Authority that was used by the website to support HTTPS. You must add the Certificate of that Certificate Authority to the list of Certificate Authorities recognized by Oracle Enterprise Manager.
To configure Oracle Enterprise Manager to recognize the Certificate Authority:
The browser displays the Certificate dialog box, which describes the Certificate used for this website. Other browsers offer a similar mechanism to view the Certificate detail of a web Site.
reports_certificate.cer
. The content of the certificate file will look similar to the content shown in Example 7-2.
b64InternetCertificate.txt
file in the following directory: ORACLE_INSTANCE/EMAGENT/<emagent_name>/sysman/config/b64InternetCertificate.txt
This file contains a list of Base64 Certificates.
orapki
utility. orapki
utility to update the monwallet
Oracle wallet by using the following command: ORACLE_HOME/bin/orapki wallet add
-pwd
<password>
-wallet ORACLE_INSTANCE/EMAGENT/<emagent_name>/sysman/config/monwallet
-trusted_cert
-cert
certificate_location
When you are prompted for a password, enter the password for the monwallet wallet. The default password is welcome
.
In the example, replace certificate_location with the full path to the text file that contains the certificate you saved earlier in this procedure. For example:
/dua0/oracle/reports_certificate.cer
ORACLE_INSTANCE/EMAGENT/emagent_name/sysman/emd/targets.xml
file, for oracle_repapp
, oracle_repserv
targets, change http references to https and http port references to https port, as in Example 7-1. Example 7-1 Changing HTTP References
Change:
to the following:
./opmnctl stopproc ias-component=emagent_name
./opmnctl startproc ias-component=emagent_name
After you restart Oracle Enterprise Manager, it detects your addition to the list of Certificate Authorities, and you can successfully monitor the Oracle Reports metrics using the secure Oracle Enterprise Manager Console.
Oracle Reports 11g Release 1 (11.1.1) provides improved diagnosability through logging and tracing enhancements.
All Oracle Reports log files follow Oracle Diagnostic Logging (ODL) format, the standard across Oracle Fusion Middleware, for log format, message types, and log management directives. The log file entries are in Text format (default) or XML format. For detailed information, refer to Oracle Fusion Middleware Administrator's Guide.
For information about log file enhancements, see Section 24.3.2, "Log Files"
Note: If you change the log path for the in-process server engine (that is, oracle.reports.engine logger), ensure that you make similar changes in the logmetadata.xml file. This file resides in the same directory as logging.xml. |
To view and search log files in Oracle Enterprise Manager:
The Oracle Enterprise Manager Log Messages page is displayed.
To modify the information logged in log files to diagnose issues, see Section 7.18.1, "Specifying Logging Information".
To configure Log Levels in Oracle Enterprise Manager:
The Log Configuration page is displayed.
To edit the log files in Oracle Enterprise Manager:
The Log Configuration page is displayed
The Edit Log File pop-up window is displayed
Note: If you change the Log File Format in the Edit Log File window, you must change the file extension in the *Log Path field, or manually delete the existing content from the log file. Therefore, the same diagnostic log file does not contain messages of different formats. |
To modify Reports Server Audit Configuration in Oracle Enterprise Manager:
To register a pluggable destination with Reports Server:
The Reports Server Advanced Configuration page displays.
For example, to register the SecurePDF
pluggable destination:
Name: SecurePDF
Class: oracle.reports.plugin.destination.securepdf.SecurePdfDestination
This adds the new destination element to the Reports Server configuration file (rwserver.conf
), which adds the specified destination to the Report Server's list of valid destinations for report output.
Note: The jars where pluggable destination classes are available must be available in theREPORTS_CLASSPATH environment variable, or in the WebLogic Server classpath (in case of in-process servers) |
Some features of Oracle Reports Services support retrieving or sending information through a firewall. For example, the URL engine, the XML data source, the Text data source, and the mail destination features all retrieve or send information through the firewall. For these features to function properly, Reports Server requires certain proxy information.
To specify proxy information:
The Advanced Configuration page displays.
http
, https
, ftp
, or file
. You can also specify the addresses for which proxies can be bypassed. Oracle Fusion Middleware consists of many components that can be deployed in distributed topologies. The underlying paradigm used to enable high availability for Oracle Fusion Middleware is clustering, which unites various Oracle Fusion Middleware components in certain permutations to offer scalable and unified functionality, and redundancy should any of the individual components fail. For more information, see Section 2.5, "Setting Up a High Availability Environment".
Refer to Section 2.5.3, "Configuring Reports Server for High Availability".
Refer to Section 7.7.2, "Displaying a Consolidated Job Queue".
To specify a shared cache directory for high availability (HA):
The Reports Application Advanced Configuration page displays.
To see the changes, reload the WLS node.
The Oracle Fusion Middleware System MBean Browser is a part of Oracle Fusion Middleware Control, and it is used to update configuration settings for middle tier components.
This section contains the following topics:
You use the System MBean Browser to enter or modify Oracle Reports configuration settings that are not available in Fusion Middleware Control Oracle Reports pages.
Note: You should not use the System MBean Browser unless you are an advanced middle tier administrator. |
Configuration MBeans are defined for each of the Oracle Reports configuration files. Table 7-3 lists the configuration MBeans for Oracle Reports.
Table 7-3 Reports Configuration MBeans
Configuration MBeans | Associated Configuration File |
---|---|
ServerConfigMXBean | rwserver.conf/rwbuilder.conf |
JDBCPDSConfigMXBean | jdbcpds.conf |
DiscoveryServiceConfigMXBean | rwnetwork.conf |
TextPDSConfigMXBean | textpds.conf |
XMLPDSConfigMXBean | xmlpds.conf |
CgicmdConfigMXBean | cgicmd.dat |
RWServletConfigMXBean | rwservlet.properties |
BridgeConfigMXBean | rwbridge.conf |
ScreenprinterConfigMXBean | screenprinter.ppd |
Note: All Reports environment variables that are set in the registry are not exposed using MBeans. However, if they are specified in the server configuration file ENVID, the environment variables are exposed byReportsServerConfigMXBean . Similarly, all environment variables used in server start/stop shell scripts are not exposed using MBeans. |
To modify Oracle Reports configuration settings using the System MBean Browser:
Note: Only attribute values with write or read-write permissions can be modified. |
To help diagnose issues, you can use the Oracle Enterprise Manager logging functionality:
To specify information to be saved in log files for Reports Server or Reports Application (in-process Reports Server):
Alternatively, from the Reports Menu, click Administration > Advanced Configuration.
From the Reports Application Diagnostics window, click the link to Advanced Log Configuration.
The Log Configuration page is displayed.
In Oracle Enterprise Manager, the rotation policy for log files can be set by specifying the Max Log size and Max number of files properties. For example, if Max Log size is set to 10MB
and Max number of files is set to 10
, log file rotation automatically takes place when the first log file (diagnostics.log
) reaches 1 MB (Max Log size / Max number of files = 10MB/10). ODL then renames this file to diagnostic1.log
and starts logging to a new diagnostics.log
. When it reaches a size of 1 MB, it is renamed to diagnostics2.log
and logging continues in diagnostics.log
. When the number of files reaches 10, the earliest log file is purged (diagnostics1.log
) and a new diagnostics11.log
is created. In this example, the maximum size of all log files is limited to 10 MB and the maximum number of files to 10, removing the risk of creating huge log files of arbitrary size and the machine running out of space, bringing the production system down.
To observe the effects of these changes in the Oracle Enterprise Manager log viewer, see Section 7.11.1, "Viewing and Searching Log Files".
When you install Oracle Fusion Middleware, Oracle Reports is configured automatically for you. There will likely be adjustments you wish to make to customize your environment, but you will not be required to set up the entire environment, or even most of it.
This chapter is included largely for reference, should you wish to have a better understanding of the default configuration. It lists services-related configuration files and describes in detail the content of most of them. It includes the following main sections:
Another aspect of configuration is the setting of environment variables. These are set for you automatically during installation. For reference, environment variables are described in Appendix B, "Environment Variables".
This section identifies the configuration files associated with Oracle Reports Services. In most cases, you can leave these files untouched. Because they control many aspects of your server environment, you could put that environment at risk if you change a file in some unsupported way. Always keep a back-up of the current version of any configuration file you plan to change.
Note: Reports application is deployed in no-stage mode in following location:DOMAIN_HOME/servers/WLS_REPORTS/tmp/_WL_user/reports_version/random_string You might see Reports application configuration files in the The correct location of Reports application configuration file is: DOMAIN_HOME/config/fmwconfig/servers/WLS_REPORTS/applications/reports_version/configuration |
The configuration files associated with Oracle Reports Services are listed and described in Table 8-1.
Note: The paths specified in Table 8-1 are the same for both Windows and UNIX environments, though they are expressed here using the Windows backslash convention (\). |
Table 8-1 Oracle Reports Services Configuration Files
Component | Configuration File |
---|---|
For Standalone servers:
For In-process servers:
The The For more information, see Section 8.2, "Reports Server Configuration File". Reports Server network configuration file: ORACLE_HOME\reports\dtd\rwnetworkconf.xsd The For more information, see Section 8.5, "Network Configuration File". | |
ORACLE_HOME\reports\dtd\rwserverconf.xsd ORACLE_INSTANCE\config\ReportsToolsComponent\ReportsTools\rwbuilder.conf The The Reports Builder network configuration file: ORACLE_HOME\reports\dtd\rwnetworkconf.xsd The For more information, see Section 8.5, "Network Configuration File". | |
ORACLE_HOME\reports\dtd\rwservlet.xsd $DOMAIN_HOME\config\fmwconfig\servers\<WLS_SERVER_NAME>\applications\reports_<version>\configuration\rwservlet.properties The For more information, see Section 8.3, "Oracle Reports Servlet Configuration File". Reports Servlet network configuration file: ORACLE_HOME\reports\dtd\rwnetworkconf.xsd The For more information, see Section 8.5, "Network Configuration File". | |
ORACLE_HOME\reports\dtd\bridgeconfig.xsd ORACLE_INSTANCE\config\ReportsBridgeComponent\bridge_name\rwbridge.conf The For more information, see Section 8.4, "Oracle Reports Bridge Configuration File". Reports Bridge network configuration file: Note: The directory, ORACLE_INSTANCE\config\ReportsBridgeComponent is not created by default. Instead, it is created when a user creates a Reports Bridge through ORACLE_HOME\reports\dtd\rwnetworkconf.xsd The For more information, see Section 8.5, "Network Configuration File". |
The configuration settings for the Reports Server component of Oracle Reports Services are stored in the XML file rwserver.conf
and rwbuilder.conf
, located in the directories specified in Table 8-1.
Both files are supported by the rwserver.template
file in ORACLE_HOME\reports\conf
, which contains default server configuration values on both Windows and UNIX.
The rwserver
.conf
file is the default server configuration file. The rwbuilder.conf
file configures the server instance used in-process by Oracle Reports Builder.
The rwserver
.conf
and rwbuilder.conf
files are nearly identical. The only difference between them is that rwbuilder.conf
does not use the persistFile or security configuration elements, described later in this section.
Both of these files are created automatically, under the following circumstances:
rwserver
.conf
file is created when a new Reports Server component is created. rwbuilder.conf
file is pre-configured out-of-the-box. This section describes:
The rwserverconf.xsd
file provides the following data type definitions for configuring rwserver.conf
and rwbuilder.conf
elements and attributes:
These elements along with their related attributes and sub-elements are discussed in the following subsections.
Note that these are XML elements, and XML is case-sensitive. Additionally, when you add any of these elements to the rwserver
.conf
or rwbuilder.conf
configuration file, you must follow the order of elements as described in rwserverconf.xsd
.
The ORBPorts
element is defined in rwserverconf.xsd
as follows:
Example
In rwserver.conf
, the ORBPorts
element may be specified as shown in this example:
To specify a port range:
To specify specific ports:
Required/Optional
Optional. By default, CORBA objects use any available port for communication. Since Reports Server uses CORBA for communication, it will use any available free port for communication. If you want Reports Server to use predefined ports instead of random ports, you must include the ORBPorts
element in the server configuration file.
Description
The ORBPorts
element specifies either a range of ports or specific ports for CORBA communication. When ORBPorts
is specified, Reports Server will choose one of the ports from the list specified for ORB internal communication. One port is needed for Reports Server and one for each engine.
Note: TheORBPorts element is used to assign specific ports to Reports Server and engines for running report and other requests. Do not confuse these ports with those you see in Oracle Enterprise Manager through the Ports link, which are ports reserved for Reports Server discovery mechanism and the Oracle Reports Bridge component. |
You cannot specify port numbers for individual engines. Each engine picks up the next port number in the list. Suppose you have the maxengine
attribute of the engine
element set to 5
for rwEng
, and URLEng
is also enabled, then you must specify a minimum of 7 ports in the ORBPorts
element (1 for Reports Server + 5 for rwEng
+ 1 for rwURLEng
).
The ORBPorts
element attribute is described in Table 8-2.
Table 8-2 Attribute of the ORBPorts
Element
Attribute | Valid Values | Description |
---|---|---|
| Range of values or Numbers separated by commas | The port range that can be used for Reports Server and engine communication through CORBA. |
Note: TheORBPorts element should be defined only if you have enabled TCP port filtering on your server where Reports Server is running. If port filtering is enabled, you can open few ports for Reports Server, then use ORBPorts to specify them in the server configuration file for Reports Server/engine communication. If any of the ports are not available, Reports Server or engines may fail to start and an error displays. |
The pluginParam
element is defined in rwserverconf.xsd
as follows:
Example
In rwserver.conf
, the pluginParam
element may be specified as shown in this example:
Required/Optional
Optional. You can have as many pluginParam
elements as you require.
Description
The pluginParam
element provides a means of specifying plug-ins that can be used by several built-in destinations such as e-mail, JDBC pluggable data source (PDS), Text PDS, and so on. It is not used by the FTP and WebDAV built-in destinations, and is not available to custom pluggable destinations, such as fax. Now every server has its own textpds.conf, jdbcpds.conf and xmlpds.conf files.
You can specify any plug-in parameter and name it in any way as long as it is supported or required by the built-in destination.
The pluginParam
element attributes are described in Table 8-3.
Table 8-3 Attributes of the pluginParam
Element
Attribute | Valid Values | Description |
---|---|---|
Set for an e-mail destination in Oracle Enterprise Manager on the Reports Server Basic Configuration page: Mail Server. | string | The name of the plug-in parameter. See Properties below for information about specifying the |
string | The value of the specified plug-in parameter. | |
| Default: Describes the type of plug-in being specified. For For For Note that when you have a default type (|
Properties
You can also optionally enter multiple property
sub-elements for the pluginParam
element. The only requirement is that they be name/value pairs recognized by the specified plug-in parameter. For example:
In this example, the property
sub-element specifies the enableSSL
property, which is only applicable to mailServer
. If the specified mailServer
is SSL-enabled, it rejects plain connection requests, so it is necessary to use SSL Sockets to establish a connection with the specified mailServer
and send emails, by default, the value of enableSSL
is no
for compatibility with prior releases.
The cache
element is defined in rwserverconf.xsd
as follows:
Example
In rwserver.conf
, the cache
element may be specified as shown in this example:
Required/Optional
Optional. You can have a maximum of one cache
element in your server configuration file. If no cache element is specified, the default is used (oracle.reports.cache.RWCache
).
Description
The cache
element specifies the Java class that defines the server's cache implementation. You can use the default cache Java class or develop your own implementation through the Oracle Reports Services Cache API.
Note: For more information on thecache API, refer to the Reports Software Development Kit (RSDK) on the Oracle Technology Network (OTN): on the Oracle Reports page (http://www.oracle.com/technology/products/reports/index.html), click SDK. |
The cache
element attribute is described in Table 8-4.
Table 8-4 Attribute of the cache
Element
Attribute | Valid Values | Description |
---|---|---|
See the Description column | Default: A fully qualified Java class that implements the |
Properties
You can also optionally enter multiple property
sub-elements for the cache
element. The only requirement is that they be name/value pairs recognized by the implementation class you register under cache
. For example, if you use the default cache Java class that is provided with Oracle Reports Services, your configuration entry might look like this:
In the preceding example, cacheSize
is measured in megabytes, and cacheDir
, which points to the location of the cache, is specified for a Windows platform. On UNIX, use UNIX standards, for example:
The default cache Java class also provides the following properties:
JOCCacheDir
uses the Java object cache. For example: maxCacheFileNumber
is the maximum number of files allowed in the cache. For example: Specify this property value in Oracle Enterprise Manager on the Reports Server Advanced Configuration page: Maximum Cached Files.
ignoreParameters
lists any report parameters you want to be ignored when Reports Server constructs the cache key. (The cache key is used by Reports Server to determine if an incoming job request matches existing output in the cache.) Where host
is the machine where the shared folder is available, and shared
is the folder name.
Note: In Oracle Reports 10g Release 2 (10.1.2), Reports Server clustering was deprecated (see A Guide to Functional Changes Between Oracle Reports 6i and 11g for more details), and thecluster element is not valid. For information about Oracle Fusion Middleware techniques for high availability, refer to Section 2.5, "Setting Up a High Availability Environment". |
The connection
element is defined in rwserverconf.xsd
as follows:
Example
In rwserver.conf
, the connection
element may be specified as shown in this example:
Required/Optional
Optional. If you do not specify a connection
element in your server configuration file, default values will be used (see Table 8-5). You can have a maximum of one connection
element in your server configuration file.
Description
The connection
element defines the rules of engagement between the server and the clients connected to it.
The connection
element attributes are described in Table 8-5.
Table 8-5 Attributes of the connection
Element
Attribute | Valid Values | Description |
---|---|---|
Set in Oracle Enterprise Manager on the Reports Server Advanced Configuration page: Connection Idle Timeout (min). | Number | Default: Allowable amount of time in minutes the connection can be idle. |
Set in Oracle Enterprise Manager on the Reports Server Advanced Configuration page: Maximum Connections. | Number | Default: The maximum number of requests that Reports Server can service simultaneously. Requests in excess of the |
The connection
element also includes the orbClient
sub-element, described in Section 8.2.1.17, "orbClient".
The destination
element is defined in rwserverconf.xsd
as follows:
Example
In rwserver.conf
, the destination
element may be specified as shown in this example:
Required/Optional
Optional. If you do not enter a destination
element in the server configuration file, the provided destination classes will be used (printer, e-mail, file, cache, and Oracle Portal—which is an exception in that it requires an entry in the server configuration file so that you may specify the userid and password the server will use to log in to the portal). You can have from zero to multiple destination
elements in your server configuration file.
Description
Use the destination
element to register destination types with the server.
You need not register the following default destinations:
You may want to register the following default destination:
destination
entry, and also provide appropriate property values (for example, the value for the portalUserid
property). You must register any new destination types you create through the Oracle Reports Services Destinations API.
Note: For more information on thedestination API, refer to the Reports Software Development Kit (RSDK) on the Oracle Technology Network (OTN): on the Oracle Reports page (http://www.oracle.com/technology/products/reports/index.html), click SDK. Configuring destinations is discussed in detail in Chapter 13, "Configuring Destinations for Oracle Reports Services". |
The destination
element attributes are described in Table 8-6.
Table 8-6 Attributes of the destination
Element
Attribute | Valid Values | Description |
---|---|---|
string | A fully qualified Java class that is a subclass of Reports Server Destination Java class (
| |
string | Identifies the destination type; for example:
|
Properties
You can also optionally enter multiple property
sub-elements for the destination
element. The only requirement is that they be name/value pairs recognized by the Java class that is a subclass of the Reports Server Destination Java class. For example:
In this example, the property
sub-element provides connect information to enable Reports Server to access Oracle Portal. The encrypted
attribute is included to automatically invoke encryption on the portalUserid
value the next time Reports Server is started.
Note: ForportalUserid database connection strings, both the thin (scott/tiger@testhost.mydomain.com:1521:iasdb) and Oracle Call Interface (scott/tiger@ordb) JDBC formats are supported. |
Should your destination implementation require additional information, specify the information in the pluginParam element.
The environment
element is defined in rwserverconf.xsd
as follows:
Example
In rwserver.conf
, the environment
element may be specified as shown in this example:
Required/Optional
Optional. You can have as many environment
elements as you require.
Description
The environment
element defines the characteristics (that is, environment variables) that you want to use to establish a particular runtime environment. You may include as many environment elements as you need (for example, one for each language/territory you must support). Inside an environment
element, you can add as many envVariable
elements as required.
By referencing the environment
element's id, you invoke its settings. You can reference an environment element id from:
defaultEnvId
attribute of the engine
element in the Reports Server configuration file, to apply the corresponding environment settings to that engine when it starts up. For more information, refer to Section 8.2.1.9, "engine". ENVID
, of your report's job request, which makes the environment settings only effective for that particular report job request. The environment
element attribute is described in Table 8-7.
Table 8-7 Attribute of the environment
Element
Attribute | Valid Values | Description |
---|---|---|
Set in Oracle Enterprise Manager on the Reports Server Basic Configuration page: Default Env ID. | string | The name of the environment. |
The environment
element includes one or more envVariable
sub-elements, described in Section 8.2.1.8, "envVariable".
The envVariable
element is defined in rwserverconf.xsd
as follows:
Example
In rwserver.conf
, the envVariable
element may be specified as shown in this example:
Required/Optional
Optional.
Description
Each envVariable
is specified as a name–value pair. They can be either standard environment variables or user-defined environment variables.
envVariable
is a sub-element of the environment element.
The envVariable
element attributes are described in Table 8-8.
Table 8-8 Attributes of the envVariable
Element
Attribute | Valid Values | Description |
---|---|---|
Set in Oracle Enterprise Manager on the Reports Server Basic Configuration page: Add. | string | The name of the environment you wish to use (for example, |
Set in Oracle Enterprise Manager on the Reports Server Basic Configuration page: Add. | string | The value you want to assign to the environment variable identified with the name attribute (for example, Japanese_Japan.JA16SJIS). |
The engine
element is defined in rwserverconf.xsd
as follows:
Example
In rwserver.conf
, the engine
element may be specified as shown in this example:
Required/Optional
Required. You must have at least one engine
element in your configuration file.
Description
The engine
element identifies the fully qualified Java class that starts an engine and provides a number of attributes that set operational controls on the engine. You can use the default engines provided with Oracle Reports Services or develop your own implementation through the Oracle Reports Services Engine API. As an example of a custom engine, you may have developed an engine to execute an operating system command should an event occur in your database.
Note: For more information on theengine API, refer to the Reports Software Development Kit (RSDK) on the Oracle Technology Network (OTN): on the Oracle Reports page (http://www.oracle.com/technology/products/reports/index.html), click SDK. |
The engine
element attributes are described in Table 8-9.
Table 8-9 Attributes of the engine
Element
Attribute | Valid Values | Description |
---|---|---|
string | A keyword, unique within a given configuration XML file that identifies a particular
| |
string | Default: A fully qualified Java class that implements two interfaces: | |
Set in Oracle Enterprise Manager on the Reports Server Basic Configuration page: Maximum Engines. | number | Default: The maximum number of this type of engine that can run on the server. |
Set in Oracle Enterprise Manager on the Reports Server Basic Configuration page: Minimum Engines. | number | Default: The minimum number of this type of engine that is maintained by the server. |
Set in Oracle Enterprise Manager on the Reports Server Basic Configuration page: Maximum Job Before Restart. | number | Default: The number of jobs the engine can run before the engine is terminated, and, if necessary, a new engine is started. This feature is available to thwart memory leaks. |
Set in Oracle Enterprise Manager on the Reports Server Basic Configuration page: Maximum Idle Before Shutdown (min). | number | Default: The number of minutes of allowable idle time before the engine is shut down However, the current number of engines should be higher than For example, if |
number | Default: The number of milliseconds of allowable waiting time between when the server launches an engine and the engine calls the server back. If the machine that hosts the server is very fast, you can reduce this number for faster performance. | |
Set in Oracle Enterprise Manager on the Reports Server Advanced Configuration page: Engine Response Timeout (min). | number | Default: The maximum amount of time (in minutes) for an engine to update the status of the job while running a report in your environment. If it takes longer than this amount of time to update the job status for some reason (for example, due to the engine hanging or a long blocking SQL query), Reports Server terminates the job. |
number | Default: The number of engines you want Reports Server to start at initialization. When running a report using | |
Set in Oracle Enterprise Manager on the Reports Server Basic Configuration page: JVM Options. | string | The Java Virtual Machine (JVM) options to be used by Reports Server when it starts an engine in the JVM. For example, you can use this attribute to specify the starting heap size and maximum heap size for the JVM, additional classpath entries, and so on. If this attribute is not specified, the engine running in the server environment uses the JVM options specified by the value of the |
string | The directory path to the Java class specified in the Windows:
UNIX:
| |
Set in Oracle Enterprise Manager on the Reports Server Basic Configuration page: Default Env ID. | string | (Optional attribute) The default environment within which Reports Server starts an engine. The attribute takes an ID associated with an When If For more information, refer to Section 8.2.2, "Dynamic Environment Switching". |
Properties
You can also optionally enter multiple property
sub-elements for the engine
element. The only requirement is that they be name/value pairs recognized by the Java class that implements the Oracle Reports engine.
Table 8-10 Properties of the engine
Element
Property | Valid Values | Description |
---|---|---|
Set in Oracle Enterprise Manager on the Reports Server Advanced Configuration page: Reports Source Directory. | directory path | The default directory you will use for report definition files. It overrides path information specified in the The directory specified by See the example that follows this table. |
Set in Oracle Enterprise Manager on the Reports Server Advanced Configuration page: Reports Temp Directory. | directory path | The name and location of the temporary directory Oracle Reports Services will use for its temporary files. If this value is unspecified for a default engine, Oracle Reports Services uses the temporary directory specified in the See the example that follows this table. |
Set in Oracle Enterprise Manager on the Reports Server Advanced Configuration page: Keep Database Connection. |
| Default: Used by the default runtime engine implementation (that is,
The This property will be migrated if a |
Set in Oracle Enterprise Manager on the Reports Server Advanced Configuration page: Enable Engine Diagnostics. |
| Introduced in Oracle Reports 10g Release 2 (10.1.2) for engine logging. Diagnoses whether or not a specific function in a report run completed successfully. The diagnostic log provides information on important checkpoints or tasks in the engine during a report run. This information is useful in cases where the engine stops responding, resulting in "hanging" jobs.
The engine diagnosis option provides more detailed information than report tracing, which is typically used to debug the execution of a report to provide information such as the file currently formatting, or report trigger currently running. See the example that follows this table. |
Example of sourcedir
and tempDir
properties: If you use the default engine
Java class that is provided with Oracle Reports Services, your engine
configuration entry might look like this (in a Windows environment):
The classPath
attribute is not specified because this configuration uses the default engine
class.
Example of diagnosis
property: To enable the engine diagnosis option, your engine
configuration element might look like this:
The job
element is defined in rwserverconf.xsd
as follows:
Example
In rwserver.conf
, the job
element may be specified as shown in this example:
Required/Optional
Required. You must have at least one job
element.
Description
The job
element works in collaboration with the engine and security elements. Use job
to identify a job type and specify which engine and which security implementation should be used with that type of job. For example, you may have developed an engine to execute an operating system command should an event occur in your database. Using Oracle Reports Services's event-driven publishing API, you identify the event as a specific job type. When the event occurs, the job type information is sent to Reports Server, which looks up the job type under the job
element in its configuration file, and follows the direction provided in the element's attributes to the engine (and, if applicable, security implementation) specified for that type of job.
The job
element attributes are described in Table 8-11.
Table 8-11 Attributes of the job
Element
Attribute | Valid Values | Description |
---|---|---|
string | References the ID entered for the engine that will process this job type. Available IDs are specified under the engine element in the server configuration file using the | |
string | Default: Describes the type of job to be processed by the server. You can enter any type of job, as long as Reports Server has an engine to process it. The database authentication functionality provided in Oracle Reports is available only when | |
string | References the ID entered for the security mechanism that will be applied to this job type. Available IDs are specified under the | |
Set in Oracle Enterprise Manager on the Reports Server Advanced Configuration page: Job Retries. | integer | Default: When This attribute is ignored if the job is explicitly cancelled or when If an invalid value is specified, this attribute is ignored and the default value of If JOBRETRY is specified on the command line, it takes precedence, and the |
The jobRecovery
element is defined in rwserverconf.xsd
as follows:
Example
In rwserver.conf
, the jobRecovery
element may be specified as shown in this example:
Required/Optional
Optional. To enable the job recovery mechanism, add the jobRecovery
element to the server configuration file. The job recovery mechanism is disabled by default.
Description
The jobRecovery
element includes the auxDatFiles
attribute. When auxDatFiles=yes
, Oracle Reports enables a more resilient job recovery mechanism for maximal retrieval of jobs in case the original.dat
file is corrupt due to some reason. When auxDatFiles=yes
, Reports Server creates the following two auxiliary files in addition to server_name
.dat
(the main.dat
file):
datfilename
_offset.dat
contains the auxiliary information of jobs in the main.dat
file, which helps in retrieving jobs from the main.dat
file. datfilename
_sc.dat
contains all scheduled jobs information (in addition to the information stored in main.dat
file). If the job recovery mechanism is enabled, Reports Server on startup reads the main.dat
file with the help of the datfilename
_offset.dat
file using the auxiliary information stored in it. If the main.dat
file is corrupt and Reports Server cannot retrieve all the jobs information, it starts reading the datfilename
_sc.dat
file and recovers the scheduled jobs for this file. Thus, datfilename
_sc.dat
serves as a backup file, which results in maximum possibility of recovery of scheduled jobs in case of corruption of the main.dat
file.
If Reports Server fails to find the datfilename
_offset.dat
file (for example, when the jobRecovery
element is enabled for first time) when the job recovery mechanism is enabled, it reads the jobs from the main.dat
file and creates the other two auxiliary files from scratch.
The server_name
.dat
, datfilename
_offset.dat
, and datfilename
_sc.dat
files form a unique triplet, and the auxiliary files are valid only when the job recovery mechanism is enabled. If the auxiliary files are found when the job recovery mechanism is disabled, Reports Server deletes these files from the file system to maintain the integrity between these files. For this reason, you must always handle these three files together (for example, if you are copying a file from one machine to another, you must copy these three files together).
The jobRecovery
element attribute is described in Table 8-12.
The jobStatusRepository
element is defined in rwserverconf.xsd
as follows:
Example
In rwserver.conf
, the jobStatusReposity
element may be specified as shown in this example:
Required/Optional
Optional. You can have a maximum of one jobStatusRepository
element in your server configuration file.
Description
The jobStatusRepository
element specifies the Java class that implements a job status repository. It provides an additional means (over the persistFile element) of storing job status information.
The persistFile
is a binary file and, therefore, cannot be used to publish job status information within your application. The jobStatusRepository
element provides a means of including status information in your application by providing additional ways of storing it.
The default class, oracle.reports.server.JobRepositoryDB
, stores information in a database. Use the Oracle Reports APIs to create your own implementation of the Reports Server Job Repository interface (oracle.reports.server.JobRepository
) that stores information wherever you wish.
The jobStatusRepository
element attribute is described in Table 8-13.
Table 8-13 Attribute of the jobStatusRepository
Element
Attribute | Valid Values | Description |
---|---|---|
Set to the default value in Oracle Enterprise Manager on the Reports Server Advanced Configuration page: Enable Job Repository DB. | string | Default: A fully qualified Java class that implements the Reports Server Job Repository Java class (|
Properties
You can also optionally enter multiple property
sub-elements for the jobStatusRepository
element for passing options into the repository. The only requirement is that they be name/value pairs recognized by the class you specify in the server configuration file.
The jobStatusRepository
element might look like this in your server configuration file:
Note: Oracle Reports uses thedbconn property of the jobstatusrepository element to connect to the database when updating the log information about job queues. |
The log
element is defined in rwserverconf.xsd
as follows:
Example
In rwserver.conf
, the log
element may be specified as shown in this example:
Required/Optional
Optional. You can have a maximum of one log
element in your server configuration file.
Description
The log
element is available for backward compatibility. It invokes the generation and population of a reports log file. The log file is automatically generated and stored in the following path (the path is the same for Windows and UNIX):
The log
element attribute is described in Table 8-14.
Table 8-14 Attribute of the log
Element
Attribute | Valid Values | Description |
---|---|---|
| Default: Describes the type of jobs that are logged. This is in addition to the default server activities that are logged. Choose from the following options:
|
The jobRepository
element is defined in rwserverconf.xsd
as follows:
Example
In rwserver.conf
, the jobRepository
element may be specified as shown in this example:
Required/Optional
Required in a high availability (HA) environment. Optional in a non-HA environment. You can have a maximum of one jobRepository
element in your server configuration file.
Description
The jobRepository
element enables you to store all job information in the database instead of the file system (that is, in DAT files). This element is mandatory if you want to use high availability (HA), because Reports Servers in the group share job information, which is possible only if the job information is stored in the database, and not individual DAT files.
The jobRepository
element has no attributes.
Properties
jobRepository requires only one property sub-element, repositoryconn
. and the jobRepository element enables you to store all job information in the database or the file system (that is, in DAT files).
The notification
element is defined in rwserverconf.xsd
as follows:
Example
In rwserver.conf
, the notification
element may be specified as shown in this example:
Required/Optional
Optional. If you do not enter a notification
element in the configuration file, the notification function is disabled. You can have from zero to multiple notification
elements in your configuration file.
Description
Use the notification
element to specify a Java class that defines the type of notification that should be sent when a job succeeds or fails. You can use the default notification class, which provides for notification through e-mail, or design your own with the Oracle Reports Notification API.
Note: For more information on thenotification API, refer to the Reports Software Development Kit (RSDK) on the Oracle Technology Network (OTN): on the Oracle Reports page (http://www.oracle.com/technology/products/reports/index.html), click SDK. |
The notification
element attributes are described in Table 8-15.
Table 8-15 Attributes of the notification
Element
Attribute | Valid Values | Description |
---|---|---|
string | Default: A keyword, unique within a given configuration XML file, that identifies a particular
| |
See the Description column | Default: A fully qualified Java class that implements the Reports Server Notification Java class |
If you use the default email notification implementation, use the pluginParam element to specify the outgoing SMTP mail server to be used to send the mail. Use the command line keyword notifysuccess
and notifyfailure
to specify the email address where notification should be sent (for more information, see Appendix A, "Command-Line Keywords"). For example, you can include these commands in your runtime URL:
With the default e-mail implementation, you can specify only one address for each type of notification
. You can specify one or both types of notification
. You can send notification
each to the same address or each to a different addresses.
A notification
element in the server configuration file might look like this:
The succNoteFile
and failNoteFile
properties are set in Oracle Enterprise Manager on the Reports Server Advanced Configuration page: Email notification file for success and Email notification file for failure.
Some mail servers may validate the sender's domain name. If the notification fails because of this domain name validation, then you must add the following property as part of the notification
element:
With the default notification implementation, it's not necessary to specify a path to the success or failure text files, provided they're in the default location: ORACLE_HOME
\reports\templates
. Otherwise, enter the directory path along with the filenames according to the requirements of the platform that hosts the server.
The oidconnection
element is defined in rwserverconf.xsd
as follows:
Example
In rwserver.conf
, the oidconnection
element may be specified as shown in this example:
Required/Optional
Optional.
Description
The oidconnection
element specifies Oracle Internet Directory connection pooling parameters for Reports Server. In a production environment, you can use this parameter to provide granular control over Oracle Internet Directory connection pooling of Reports Server, namely:
The oidconnection
element attributes are described in Table 8-16.
Table 8-16 Attributes of the oidconnection
Element
Attribute | Valid Values | Description |
---|---|---|
number | Default: Initial number of Oracle Internet Directory connections to be created when Reports Server is initialized. | |
number | Default: Number of connections to be incremented when all connections are used up. | |
number | Default: Time in seconds for which a connection can be idle before it is closed. |
Note: Setting much lower or higher values than the default values for these attributes can have a performance impact on Oracle Reports Services. In a typical production environment, the default values are recommended. |
For Oracle Reports Servlet (rwservlet
), you can specify Oracle Internet Directory connection pooling parameters using the oidconnection element in the rwservlet.properties
file.
The orbClient
element is defined in rwserverconf.xsd
as follows:
Example
In rwserver.conf
, the orbClient
element may be specified as shown in this example:
Required/Optional
Optional. If you do not specify the orbClient element in your server configuration file, the default values will be used.(see Table 8-17)
Description
The orbClient
element specifies the name of the public key file that the client will use to connect to Reports Server. Reports Server uses the public key to verify the signature sent by the client when it tries to connect to Reports Server. Reports Server only accepts clients whose signature can be verified through this public key. You can have from zero to multiple orbClient
elements in your server configuration file.
orbClient
is a sub-element of the connection element
The orbClient
element attributes are described in Table 8-17.
Table 8-17 Attributes of the orbClient
Element
Attribute | Valid Values | Description |
---|---|---|
string | Default: Identifies the Reports Client to be served by the public and private key. | |
| Default: Identifies the public key file that the client will use to connect to Reports Server. Reports Server uses the public key to verify the signature sent by the client when it tries to connect to Reports Server. Reports Server only accepts clients whose signature can be verified through this public key. The default file is stored in the |
Oracle Reports Services provides default client public and private key files, clientpub.key
and clientpri.key
. These key files are in place for all components of Oracle Reports Services You can regenerate public and private key files to replace the default key pair. To do this, at the command prompt use the following command:
On Windows:
On UNIX:
If you regenerate these keys, you can specify the public key file locations with the publicKeyFile
attribute, and replace the private key file in ORACLE_HOME
\jlib\zrclient.jar
. To do this, you must unjar the file, place the regenerated private key into it, and rejar the file.
The persistFile
element is defined in rwserverconf.xsd
as follows:
Example
In rwserver.conf
, the persistFile
element may be specified as shown in this example:
Required/Optional
Optional. If you do not specify a file, the server will create one of its own with the default name server_name
.dat
. You can have a maximum of one persistFile
element.
Description
The persistFile
element identifies the file that records all job status. It is used by Reports Server to restore the server to the status it held before shutdown.
It is named persistFile
because the file remains intact, or persists, even when the server is brought down and restarted.
The server persistent file is created automatically the first time you start the server or the first time you start the server after the current server persistent file has been deleted or renamed. If you want to rename this file but continue using it, enter the new name in the server configuration file before you actually rename the file, then restart the server.
The persistFile
element attribute is described in Table 8-18.
Table 8-18 Attribute of the persistFile
Element
Attribute | Valid Values | Description |
---|---|---|
string | Default: The name and, optionally, the path of the server persistent file. You can leave the path off if the file is kept in its default directory:
The path is the same for Windows or UNIX. |
The identifier
element is defined in rwserverconf.xsd
as follows:
Example
In rwserver.conf
, the identifier
element may be specified as shown in this example:
Required/Optional
Optional. You can have a maximum of one identifier
element in your server configuration file.
Description
The identifier
element is automatically written to the configuration file by the Reports Configuration Assistant when you first install Oracle Reports. The Reports Configuration Assistant sets the values in the form SERVERACCESSKEY/12312312313
, where SERVERACESSKEY
is the user name and the random generated number (12312312313
) is the password. This user name and password is then encrypted and written to rwserver.template
and targets.xml
during the time of configuring Oracle Reports Services. Any Reports Server started after the installation will have this identifier information stored in its configuration file.
For a non-secured Reports Server, the values of the identifier
element is used when:
In either of these cases, you must provide the authid
in the command line that matches the values specified in the identifier
element. To provide a specific password (as the password is a pseudo random number), you must do the following:
rwserver
.conf
. username/password
values generated with custom values. encrypted=no
. For example:
encrypted=yes
when it restarts. targets.xml
file and specify the same username
and password
values that were included in the rwserver
.conf
file. You should restart Reports Server, immediately, after making this change. Reports Server automatically encrypts the user name and password and resets encrypted
to yes
. The values should now read as follows:
For a secure Reports Server, the authentication is done by the security infrastructure; that is, by using the Oracle Internet Directory repository. Thus, you cannot pass the values in the identifier
element to shut down a Reports Server or launch Reports Queue Manager through the console window.
Note: This user name and password is also used for accessing Web commands, such asgetjobid , getserverinfo , showjobs , and showenv when DIAGNOSTIC=NO in the rwservlet.properties file. When DIAGNOSTIC=NO , Web commands are disabled for everyone except those administrators who have this user name and password. |
For more information on Reports Queue Manager, see the Reports Queue Manager online Help. For more information on rwservlet.properties
, refer to Section 8.3, "Oracle Reports Servlet Configuration File".
The property
element is defined in rwserverconf.xsd
as follows:
See the following element descriptions for information about specifying the property
element in rwserver.conf
:
The queue
element is defined in rwserverconf.xsd
as follows:
Example
In rwserver.conf
, the queue
element may be specified as shown in this example:
Required/Optional
Optional. You can have a maximum of one queue
element in your server configuration file. If you have no queue
element, the default maxQueueSize
, 1000
, will remain in effect.
Description
Use the queue
element to specify the maximum number of jobs that can be held in a completed job queue. Oracle Reports Services has three queue components:
The queue
element provides the allowable value for each of these components.
This element is applicable only to the completed job queue. Thus, if the number of jobs exceeds the specified maximum value, that completed job queue will automatically purge its oldest jobs. The scheduled job queue and the in-progress job queue remain unaffected.By default reports server queue size is 1000 jobs.
If you increase the queue size to more than 3000, and use Reports Queue Manager (rwrqm.exe
) to monitor the queue, Queue Manager may fail. When a queue size of 3000 or greater is required, use Oracle Enterprise Manager or Oracle Reports Servlet (rwservlet
) to manage and monitor the Reports Server jobs queue.
Note: For more information, see the Reports Queue Manager online Help. |
The queue
element attribute is described in Table 8-19.
The folderAccess
element is defined in rwserverconf.xsd
as follows:
Example
In rwserver.conf
, the folderAccess
element may be specified as shown in this example:
Required/Optional
Optional.
Description
The folderAccess
element defines read and write access to file system folders for both secured and non-secured Reports Server, Reports Application (in-process Reports Server), or Oracle Reports Runtime.
The folderAccess
element has no attributes. It includes two sub-elements:
read
: specifies the folder(s) to which the Reports Server, Reports Application (in-process Reports Server), or Oracle Reports Runtime has read access only. The value of this sub-element is set in Oracle Enterprise Manager on the Advanced Configuration page: Enable File System Access Control > Read Directories. write
: specifies the folder(s) to which the Reports Server can write. The value of this sub-element is set in Oracle Enterprise Manager on the Advanced Configuration page: Enable File System Access Control > Write Directories. In the example above, the report definition files located in c:\myreports
and c:\orawin\reports\samples
are allowed to run only. Similarly, when destype=file
, the output file can be created only in c:\myoutputs
(desname=c:\myoutput\test.pdf
).
Note: Blank or * in the read
or write
sub-element specifies global access. Separate directory names with a semicolon (;).
The security
element is defined in rwserverconf.xsd
as follows:
Example
In rwserver.conf
, the security
element may be specified as shown in this example for 11g:
For backward compatibility, the security
element may be specified as:
Required/Optional
Optional. If you do not enter a security
element in the configuration file, Reports Server is not secure. You can have from zero to multiple security
elements in your configuration file.
Description
The security
element identifies the fully qualified Java class that controls server access. You can use the default security class provided with Oracle Reports Services, or develop your own implementation through the Reports Server Security API.
Note: For more information on thesecurity API, refer to the Reports Software Development Kit (RSDK) on the Oracle Technology Network (OTN): on the Oracle Reports page (http://www.oracle.com/technology/products/reports/index.html), click SDK. |
The security
element attributes are described in Table 8-20.
Table 8-20 Attributes of the security
Element
Attribute | Valid Values | Description |
---|---|---|
string | A keyword, unique within a given configuration XML file that identifies a particular
For backward compatibility,
| |
See the Description column | Default for 11g: Default for backward compatibility: A fully qualified Java class that implements Reports Server Security Java interface (|
You can associate multiple properties with the security
element. The only requirement is that they be name/value pairs recognized by the Java class that implements Reports Server security.
The value of all the properties is set by the Installer upon installation. Reports Server uses this entity to connect to Oracle Internet Directory and Portal. Components of the Oracle Fusion Middleware can all connect to Oracle Internet Directory and Oracle Portal, but each component may have different privileges in the directory. Hence, each component needs to identify itself through its own entity name to Oracle Internet Directory when it connects. The Oracle Reports Services entity is of the following format:
For example:
The proxyServer
element is defined in rwserverconf.xsd
as follows:
Example
In rwserver.conf
, the proxyServer
element may be specified as shown in this example:
Required/Optional
Optional.
Description
Element that specifies the name, port and protocol of proxy server to be used in order to connect to external network.
The proxyServer
element attributes are described in Table 8-20.
The domain
element is defined in rwserverconf.xsd
as follows:
Example
In rwserver.conf
, the domain
element may be specified as shown in this example:
Required/Optional
Optional.
Description
Element that specifies the name of the proxy server for which proxy setting should not be used. The domain
element has no attributes.
The bypassProxy
element is defined in rwserverconf.xsd
as follows:
Example
In rwserver.conf
, the bypassProxy
element may be specified as shown in this example:
Required/Optional
Optional.
Description
The element that provides a list of domains which specifies name of the proxy server for which proxy setting should not be used
The bypassProxy
element has no attributes. It includes the domain
sub-element (see Section 8.2.1.25, "domain").
The proxyServers
element is defined in rwserverconf.xsd
as follows:
Example
In rwserver.conf
, the proxyServers
element may be specified as shown in this example:
Required/Optional
Optional.
Description
Element that specifies a list of proxy servers used by reports server.
The proxyServers
element has no attributes. It includes the proxyServer
sub-element (see Section 8.2.1.24, "proxyServer").
The proxyInfo
element is defined in rwserverconf.xsd
as follows:
Example
In rwserver.conf
, the proxyInfo
element may be specified as shown in this example:
Required/Optional
Optional.
Description
Element specifying proxy servers used by reports and the bypass hosts for which proxy should not be used.
The proxyInfo
element has no attributes. It includes two sub-elements:
proxyServers
: see Section 8.2.1.27, "proxyServers" bypassProxy
: see Section 8.2.1.26, "bypassProxy" The webLayout
element is defined in rwserverconf.xsd
as follows:
Example
In rwserver.conf
, the webLayout
element may be specified as shown in this example:
Required/Optional
Optional.
Description
webLayout
element is required to run a report to weblayout using Reports Builder.
The webLayout
element attributes are described in Table 8-22.
The dbProxyKey
element is defined in rwserverconf.xsd
as follows:
Example
In rwserver.conf
, the dbProxyKey
element may be specified as shown in this example:
Required/Optional
Optional.
Description
The dbProxyKey
consists of the name and database parameters. It is obtained from the server configuration file based on the database mentioned in the userid
commandline parameter.
The dbProxyKey
element attributes are described in Table 8-23.
The dbProxyConnKeys
element is defined in rwserverconf.xsd
as follows:
Example
In rwserver.conf
, the dbProxyConnKeys
element may be specified as shown in this example:
Required/Optional
Optional.
Description
The dbProxyConnKeys
element has no attributes. It includes the dbProxyKey
sub-element (see Section 8.2.1.30, "dbProxyKey").
The jobThresholds
element is defined in rwserverconf.xsd
as follows:
Example
In rwserver.conf
, the jobThresholds
element may be specified as shown in this example:
Required/Optional
Optional.
Description
jobThreshold consists of two attributes, longRunning
and PotentialRunAway
. For more information, See Table 8-24.
Table 8-24 Attributes of the jobThresholds
Element
Attribute | Valid Values | Description |
---|---|---|
seconds | the cut-off time for a job after which it is considered a long run job. a job that takes relatively longer time. | |
seconds | the cut-off time for a currently running job after which it is considered as a potential runaway job. a job which has relatively lesser chance of successful completion. |
The server
element is defined in rwserverconf.xsd
as follows:
Example
In rwserver.conf
, the server
element may be specified as shown in this example:
Required/Optional
Required. You can have a maximum of one server
element in a given configuration file.
Description
The server
element opens and closes the content area of the server configuration file. In terms of the file's hierarchy, all the other elements are subordinate to the server
element.
The server
element attribute is described in Table 8-25.
Dynamic environment switching enables you to dynamically change the environment after Reports Server is started, or for a specific job request. This means that one instance of Reports Server can serve reports with any arbitrary environment settings, such as language, currency, and display settings.
To enable dynamic environment switching, you must add an environment element to your Reports Server configuration file to establish a particular runtime environment. Once you have an environment element established, you can switch to its settings in either of the following ways:
defaultEnvId
attribute of the engine
element in the Reports Server configuration file to the id
of the environment
element, to apply the environment settings to that engine when it starts up. For more information, refer to Section 8.2.1.9, "engine". ENVID
command line keyword to the id
of the environment
element, to make the environment settings effective for the current report job request. For more information, refer to Section A.6.5, "ENVID". The following examples illustrate the use of dynamic environment switching.
Example 1
Suppose that you want to run reports in Japanese from your Reports Server. An environment conducive to running reports in Japanese would include:
NLS_LANG = Japanese_Japan.JA16SJIS
NLS_CURRENCY
) would be set to Yen (¥), the currency of Japan. DISPLAY
must be set. To begin, you would have to add an environment
element to your Reports Server configuration file that looks something like the following:
Once the environment element is in place, you could request a report with Japanese output in either of the following ways:
defaultEnvId
attribute of the engine
element in the Reports Server configuration file as follows: The value JP
identifies the environment
element in the Reports Server configuration file. The initial engines will be spawned with the environment settings specified in this environment
element.
ENVID
command line keyword, as follows: When the URL is submitted to Reports Server, it detects the optional ENVID
keyword and matches the specified id
(in this case, JP
) to the corresponding id
of the environment
element in its configuration file. If Reports Server already has an engine running with these characteristics, it will reuse the existing engine to process the job. If not, then it spawns an engine using the current environment plus the three environment variables specified in the JP environment
element. If spawning a new engine would cause Reports Server to exceed its maxEngine
setting, Reports Server shuts down an engine before starting a new one. An engine may be shut down even though it has not exceeded its engLife
setting. Once Reports Server has an engine with the correct environment running, the job is processed by that engine and the output is routed to the specified DESTYPE
.
If you do not pass ENVID
with the job, Reports Server processes the request using an engine started with the defaultEnvId
environment. If defaultEnvId
is not specified for the engine
element in your Reports Server configuration file, then the engine will inherit the settings with which the Reports Server instance was started.
Example 2
The following example illustrates how to use this environment switching feature to run an Arabic report on the same Reports Server that was used to run the Japanese report in Example 1.
Add another environment
element to the Reports Server configuration file as shown below:
The Arabic report has to be submitted to Reports Server with the following command line:
Since the job is submitted with ENVID=AR
, Reports Server finds or starts an engine with the environment specified by element AR
in the Reports Server configuration file. The job is processed by the new engine and the output is distributed to the specified destination.
Example 3
The following example illustrates how the environment switching feature could be used in conjunction with a JSP report; that is, without Oracle Reports Servlet (rwservlet
).
Suppose that you have the following environment
elements in the Reports Server configuration file:
If your JSP report uses a format mask such as the following, it means the currency, grouping, and decimal symbols can change according to the environment:
To run the report using the UK symbols for currency, grouping, and decimal, you would use the following URL:
Note: You could place ENVID=UK
into a key in the cgicmd.dat
key map file (for more information, see Section 18.13, "Using a Key Map File").
maxEngine
specified for that engine type. It is recommended that you set maxEngine
to a value greater or equal to the number of environment elements specified in the Reports Server configuration file. defaultEnvId
can also be applied to pluggable engines other than rwEng
. Reports Server will spawn the pluggable engine with the specified environment id. reports.sh
(UNIX only) Note: If you have modified your currentreports.sh file, you should save it and, after installing Oracle Reports, merge your modifications into the version of reports.sh installed with the latest version. The latest reports.sh contains some required changes. |
environment
element in the Reports Server configuration file oracle.home
and oracle.instance
parameters. reports.sh
(UNIX only) Note: If you have modified your currentreports.sh file, you should save it and, after installing Oracle Reports, merge your modifications into the version of reports.sh installed with the latest version. The latest reports.sh contains some required changes. |
environment
element in the Reports Server configuration file rwserver.sh
ENVID
is also set in reports.sh
(ORACLE_INSTANCE/config/reports/bin/reports.sh
), Reports Server obtains the environment variable value from reports.sh
and not from ENVID
. For example, say you want to set the REPORTS_PATH
environment variable to a different engine by using the environment switching feature. However, the reports.sh
file also has the same REPORTS_PATH
environment variable set. Reports Server will now use only REPORTS_PATH
set by reports.sh
and not the REPORTS_PATH
set in ENVID
when you pass any request.
To work around this issue, you must:
reports.sh
and comment the environment variable value. For example, comment the REPORTS_PATH
value set in the reports.sh
file. rwserver
.conf
file. reports.sh
file to the rwserver
.conf
file. For example: defaultEnvId
value to the appropriate tag in the rwserver
.conf
file.For example, add the defaultEnvId
attribute to the engine
element so that the engine starts with the default REPORTS_PATH
. The configuration settings for the Oracle Reports Servlet (rwservlet
) component of Oracle Reports Services are stored in the XML file rwservlet.properties
, located in the directory specified in Table 8-1.
For Windows, note that rwservlet.properties
uses double backslashes (\\) instead of single backslashes to specify a directory path. The first slash "escapes" the second, which would otherwise have another meaning in this file. For example, in a Windows-based rwservlet.properties
file, the path:
becomes:
For UNIX, use that platform's standard for specifying directory paths, for example:
The rwservlet.xsd
file provides the following data type definitions for configuring rwservlet.properties
elements:
These elements along with their related attributes and sub-elements are discussed in the following subsections.
Note that these are XML elements, and XML is case-sensitive. Additionally, when you add any of these elements to the rwservlet
.properties
configuration file, you must follow the order of elements as described in rwservlet.xsd
.
The rwservlet
element is defined in rwservlet.xsd
as follows:
Example
In rwservlet.properties
, the rwservlet
element may be specified as shown in this example:
Required/Optional
Required. You can have a maximum of one rwservlet
element in a given configuration file.
Description
The rwservlet
element opens and closes the content area of the Oracle Reports Servlet (rwservlet
) configuration file. In terms of the file's hierarchy, all the other elements are subordinate to the rwservlet
element.
The rwservlet
element includes the following sub-elements in its definition:
The server
sub-element of rwservlet
is defined in rwservlet.xsd
as follows:
Example
In rwservlet.properties
, the server
element may be specified as shown in this example:
Description
The server
element specifies the name of the in-process server. If a Reports Server name is not specified, for example, in the runtime URL, rwservlet
starts the in-process server (if not started already) with the name specified by the server
element, and submits the job to it.
If the server
element is not specified, the default in-process server name is: rep_hostname.
When the inprocess element specifies no
, rwservlet
tries to bind to an external server with the name specified by the server
element.
The singlesignon
sub-element of rwservlet
is defined in rwservlet.xsd
as follows:
Example
In rwservlet.properties
, the singlesignon
element may be specified as shown in this example:
Description
The singlesignon
element specifies whether or not OracleAS Single Sign-On is enabled:
yes
(default): OracleAS Single Sign-On is enabled. no
: OracleAS Single Sign-On is not enabled. For more information about OracleAS Single Sign-On, refer to Chapter 17, "Configuring and Administering OracleAS Single Sign-On".
The inprocess
sub-element of rwservlet
is defined in rwservlet.xsd
as follows:
Example
In rwservlet.properties
, the inprocess
element may be specified as shown in this example:
Description
The inprocess
element specifies whether or not to run Reports Server within the same process as Oracle Reports Servlet (rwservlet
):
yes
(default): Reports Server run within the same process as Oracle Reports Servlet (rwservlet
). no
: Reports Server does not within the same process as Oracle Reports Servlet (rwservlet
). Note: The pros and cons of running an in-process server are explored in Chapter 2, "Understanding the Oracle Reports Services Architecture". |
For troubleshooting printing and font issues when using the in-process server, see Section D.1.10, "Printing and Font Errors When Using In-process Reports Server".
The reports_servermap
sub-element of rwservlet
is defined in rwservlet.xsd
as follows:
Example
In rwservlet.properties
, the reports_servermap
element may be specified as shown in this example:
Description
In Oracle Reports 10g Release 2 (10.1.2), Reports Server clustering was deprecated. An Oracle Forms Services application from prior releases that includes a Reports Server cluster name will fail to bind to the Reports Server cluster it references.
To resolve this issue, the reports_servermap
element maps a cluster name to a Reports Server name. This avoids the necessity to change the cluster name in all Oracle Forms Services applications.
An Oracle Forms Services application can call Oracle Reports in the following ways:
RUN_REPORT_OBJECT
. If the call specifies a Reports Server cluster name instead of a Reports Server name, the REPORTS_SERVERMAP
environment variable must be set in the Oracle Forms Services default.env
file. If your Oracle Forms Services application uses multiple Reports Server cluster names, you can map each of those cluster names to a different Reports Server using REPORTS_SERVERMAP, as follows:
For example, if your Oracle Forms Services application includes 3 clusters with names dev_cluster
, prd_cluster
, and qa_cluster
in 10g Release 1 (9.0.4), you can map these cluster names to respective server names in later releases, as follows:
For more information, see the Oracle Fusion Middleware Forms Services Deployment Guide.
WEB.SHOW_DOCUMENT
. In this case, the request is submitted to rwservlet
. If the call specifies a Reports Server cluster name instead of a Reports Server name, the reports_servermap
element must be set in the rwservlet.properties
file. For example: where
cluster
is the Reports Server cluster name that was present in prior releases (Oracle Reports 9i and 10g Release 1 (9.0.4)).
repserver
is the Reports Server name in later releases.
When reports_servermap
is set in rwservlet.properties
, any request to cluster
in the Oracle Forms Services application is redirected to repserver
.
The cookie
element is defined in rwservlet.xsd
as follows:
Example
In rwservlet.properties
, the cookie
element may be specified as shown in this example:
Required/Optional
Optional.
Description
The cookie
element specifies an expiration time and encryption key for cookies, which save encrypted user names and passwords on the client-side when users first authenticate themselves. When the server receives a cookie from the client, the server compares the time saved in the cookie with the current system time. If the time difference is longer than the number of minutes defined in cookieexpire
, the server rejects the cookie and returns to the client the authentication form along with an error message. Users must re-authenticate to run the report.
The cookie
element attributes are described in Table 8-26.
Table 8-26 Attributes of the cookie
Element
Attribute | Valid Values | Description |
---|---|---|
Integer | Default: The lifetime (in minutes) of the database and system authentication cookie. | |
any character string | The encryption key to be used to encrypt the user name and password of the database and system authentication cookies. |
The defaultcharset
sub-element of rwservlet
is defined in rwservlet.xsd
as follows:
Example
In rwservlet.properties
, the defaultcharset
property may be specified as shown in this example:
Description
The defaultcharset
element specifies the character encoding for decoding non-ASCII escaped characters in the request URL or non-ASCII characters in the Parameter Form input. This ensures that rwservlet
uses the required encoding when decoding the parameter name and value.
You can set the defaultcharset
element to either:
NLS_CHARACTERSET
(for example, JA16EUC
). EUC-JP
). Note: To use non-ASCII characters in user parameter names and values when using the Event-Driven Publishing API, you must ensure that thedefaultcharset element in the rwservlet.properties file matches the value of the DEFAULTCHARSET parameter in your parameter list. For more information, see Section 21.1.3, "Including non-ASCII Characters in Parameter Names and Values". |
The webcommandaccess
element is defined in rwservlet.xsd
as follows:
Example
In rwservlet.properties
, the webcommandaccess
property may be specified as shown in this example:
Description
The webcommandaccess
element specifies access permission for rwservlet
keywords (Web commands) for a non-secure server.
Note: For secure Reports Server, Reports Server verifies the user's privileges based on the entries in Oracle Internet Directory. |
Valid settings are:
L0
: no Web commands allowed. L1
: only end user Web commands allowed (GETJOBID, KILLJOBID, SHOWAUTH, SHOWJOBID). L2
: administrator Web commands (DELAUTH, GETSERVERINFO, KILLENGINE, PARSEQUERY, SHOWENV, SHOWJOBS, SHOWMAP, SHOWMYJOBS) are also allowed. AUTHID is required to run administrator commands. NO
: for backward compatibility with DIAGNOSTIC=NO
in 10g (rwservlet.properties
). YES
: for backward compatibility with DIAGNOSTIC=YES
in 10g (rwservlet.properties
). For L2 Web command access, you do not need to pass the authid
. The authid parameter is required only for the STOPSERVER command irrespective of the webcommandaccess value.
The allowhtmltags
sub-element of rwservlet
is defined in rwservlet.xsd
as follows:
Example
In rwservlet.properties
, the allowhtmltags
element may be specified as shown in this example:
Description
The allowhtmltags
element specifies whether or not to allow HTML code to be entered in the URL when running a report:
no
(default): HTML code in the URL is disallowed. yes
: HTML code in the URL is allowed. Note: Any HTML code included as part of a report request URL might lead to a security compromise as it causes certain browsers to execute any script or code in the URL. |
The helpurl
sub-element of rwservlet
is defined in rwservlet.xsd
as follows:
Example
In rwservlet.properties
, the helpurl
element may be specified as shown in this example:
Description
The helpurl
element specifies the name of a help file to be used instead of the default (ORACLE_HOME
\reports\templates\help.htm
).
The rwservlet
HELP
keyword (Web command) displays either the default help file, or the help file specified by the helpurl
element.
The imageurl
sub-element of rwservlet
is defined in rwservlet.xsd
as follows:
Example
In rwservlet.properties
, the imageurl
property may be specified as shown in this example:
Description
The imageurl
element specifies the location of reports' dynamically generated images.
This element applies to JSPs that do not run through Oracle Reports Servlet (rwservlet
). It ensures that dynamically generated images, such as charts, will be viewable only by the person who runs the report. JSPs, and other report types, that run through rwservlet
automatically have this protection.
The reloadkeymap
sub-element of rwservlet
is defined in rwservlet.xsd
as follows:
Example
In rwservlet.properties
, the reloadkeymap
element may be specified as shown in this example:
Description
The reloadkeymap
element specifies whether the key map file (cgicmd.dat
) should be reloaded each time rwservlet
receives a request:
no
(default): Key map file is not reloaded when rwservlet
receives a request. yes
: Key map file is reloaded when rwservlet
receives a request. This is useful if you frequently make changes to the map file and want the process of loading your changes to be automatic. Runtime performance will be affected according to how long it takes to reload the file.
Typically, this element specifies no
in a production environment and yes
in a testing environment.
dbauth is the html template used to enter the database information. If the user does not enter the database information while giving reports request, the reports servlet challenges the user to enter the db info in the HTML template.
The dbauth
sub-element of rwservlet
is defined in rwservlet.xsd
as follows:
Example
In rwservlet.properties
, the dbauth
element may be specified as shown in this example:
It is not necessary to enter the path to a template when it is stored in the default template directory:
Description
The dbauth
element specifies the location and filename of the HTML templates, if you wish to customize the login dialog boxes with your company logo, linked buttons, or any other HTML you care to use. By default, the file name is rwdbauth.htm
.
sysauth is the HTML template used to enter the authentication information.
The sysauth
sub-element of rwservlet
is defined in rwservlet.xsd
as follows:
Example
In rwservlet.properties
, the sysauth
element may be specified as shown in this example:
It is not necessary to enter the path to a template when it is stored in the default template directory:
Description
The sysauth
element specifies the location and filename of the HTML templates, if you wish to customize login dialog boxes for a secure report with your company logo, linked buttons, or any other HTML you care to use. By default, the file name is rwsysauth.htm
.
The errortemplate
sub-element of rwservlet
is defined in rwservlet.xsd
as follows:
Example
In rwservlet.properties
, the errortemplate
element may be specified as shown in this example:
It is not necessary to enter the path to the error message template when it is stored in the default template directory:
Description
The errortemplate
element specifies the name and location of your error message template. By default, the file name is rwerror.htm.
The error message template provides the visual setting within which the error message is displayed. You may wish to customize the appearance of error messages, for example with your company logo, or with an icon you plan to associate with errors. You may wish to add buttons that link your users to a help system, your company home page, or back to the last browser window. You can do this by using the errortemplate
element to specify your own HTML framework for automatically generated error messages.
The character set of the default error message template (rwerror.htm
) is iso-8859-1
to ensure consistency across all platforms.
The diagtags
element is defined in rwservlet.xsd
as follows:
Required/Optional
Optional.
Description
The diagtags
element specifies additional HTML encoding in the <body>
and <head>
tags in the output files associated with diagnostic and debugging output. You can use these to include formatting options to make diagnostic and debugging output easier to read.
The diagtags
element attributes are described in Table 8-27.
Note: For information about Oracle Fusion Middleware-level techniques for high availability, refer to Section 2.5, "Setting Up a High Availability Environment". |
The oidconnection
element is defined in rwservlet.xsd
as follows:
Example
In rwservlet.properties
, the oidconnection
element may be specified as shown in this example:
Description
The oidconnection
element specifies Oracle Internet Directory for rwservlet
.
For Reports Server, you can specify Oracle Internet Directory connection pooling parameters using the oidconnection
element in the server configuration file, as described in Section 8.2.1.16, "oidconnection".
The oidconnection
element attributes are described in Table 8-28.
Table 8-28 Attributes of the oidconnection
Element
Attribute | Valid Values | Description |
---|---|---|
| N/A | Default: Set at install time Oracle Internet Directory App entity created at install time for internal use of Reports. |
| N/A | Default: Set at install time Random password key created to connect to Oracle Internet Directory for internal use of Reports. |
| N/A | Default: Set at install time Oracle Internet Directory Url to connect to oid |
number | Default: Initial number of Oracle Internet Directory connections to be created when | |
number | Default: Number of connections to be incremented when all connections are used up. | |
number | Default: Time in seconds for which a connection can be idle. |
The allowauthid
sub-element of rwservlet is defined in rwservlet.xsd as follows:
Description
allowauthid
is the element to be added in rwservlet.properties either to enable or disable passing of the authid through an URL.
Example
In rwservlet.properties
, the allowauthid
element may be specified as shown in this example:
Required/Optional
Optional.
Default
By default the allowauthid
is set to Yes
. If the authid is set to No
, authorization through an URL is disabled and Single Sign-On should be used to enter the username and password.
The enabledbproxy
sub-element of rwservlet is defined in rwservlet.xsd as follows:
Description
enabledbproxy
is the element to be added in the rwservlet.properties
file to make the dbproxy feature work through the rwservlet.
Example
In rwservlet.properties
, the enabledbproxy
element may be specified as shown in this example:
Required/Optional
Optional.
Default
By default, the enabledbproxy
is set to Yes
.
Perform the following steps to specify an alternate Oracle Reports Servlet Configuration File:
By default, Oracle Reports Servlet (rwservlet
) uses the rwservlet.properties
file as the configuration file. If you are running multiple Oracle WebLogic Server instances with reports installed on the same Oracle Fusion Middleware and wish to use different configuration files, you can do so by adding the following parameter in the WLS_REPORTS startup parameter section in the WebLogic Server Administration Console:
The Oracle Reports Bridge configuration settings for the Reports Server component of Oracle Reports Services are stored in the XML file rwbridge.conf
.
The bridgeconfig.xsd
file contains data type definitions for rwbridge.conf
elements and attributes. See Section 8.4.1, "Oracle Reports Bridge Configuration Elements".
These files are located in the directories specified in Table 8-1.
The bridgeconfig.xsd
contains the data type definitions for the various Oracle Reports Bridge configuration file (rwbridge.conf) elements and attributes.
The Oracle Reports Bridge acts as a gateway for packets that are broadcast by Reports Server and Reports Client across Farms. For example, in a sample setup, Oracle Reports components are installed on different Farms: Oracle Reports Servlet is in Farm A and Reports Server is in Farm B. To achieve this configuration, the Oracle Reports Bridge has to be started on each Farm. Bridge configuration will include the host and port settings. The Oracle Reports Bridge in Farm A will contact the Oracle Reports Bridge in Farm B through reliable TCP to retrieve the server information on Farm B, and vice versa. For more information, see Section 2.3.4.1.2, "Server Discovery Across Subnets".
To start and stop the Oracle Reports Bridge, refer to Chapter 6, "Starting and Stopping Oracle Reports Services".
Oracle Reports creates the configuration file rwbridge.conf when the Oracle Reports Bridge is started for the first time. This file is generated based on the settings in the rwbridge.template
file.
In the configuration file, rwbridge.conf, modify the identifier
element to specify the username/password
and set the encrypted
attribute to no
. This indicates that the password is not encrypted. This password will be encrypted once the Oracle Reports Bridge is started.
For example:
Usage Notes
identifier
element is commented, then it is possible to stop the Oracle Reports Bridge without specifying authid
. The bridgeconf.xsd
file provides the following data type definitions for configuring rwbridge.conf
elements and attributes:
Note: The configuration elements described in this section can be configured in Oracle Enterprise Manager:
|
The bridge
element is defined in bridgeconfig.xsd
as follows:
Example
Required/Optional
Required. You can have a maximum of one open tag and one close tag in the bridge
element in a given configuration file.
Description
The bridge
element opens and closes the content area of the bridge configuration file. In terms of the file's hierarchy, all the other elements are subordinate to the bridge
element.
The bridge
element attributes are described in Table 8-29.
Table 8-29 Attributes of the bridge
Element
Attributes | Valid Values | Description |
---|---|---|
| The bridge version. | |
The allotted range for Oracle Reports Bridge component; that is, | The port on which the bridge will listen. | |
| Value in milliseconds (ms). The bridge will wait for this period for a response from a remote bridge. |
Note: The default port value for the bridge configuration file is assigned when you install Oracle Fusion Middleware. Therwbridge.template file contains this default port, which is used to generate the configuration file for the bridge. The configuration file name for a bridge is ORACLE_INSTANCE/config/ReportsBridgeComponent/<bridge name>/rwbridge.conf. If you want to customize the port number for the bridge, you must specify a valid port range reserved for the Oracle Reports Bridge bridge (|
The identifier
element is defined in bridgeconfig.xsd
as follows:
Example
Required / Optional
Optional. If this element is commented, then the Oracle Reports Bridge will not perform a security check when the bridge shutdown command is issued.
Description
The identifier
element ensures that the Oracle Reports Bridge performs a security check before shutting down.
To set the value of the identifier
element:
identifier
element in the bridge configuration file. encrypted=no
, so that the username/password will be encrypted when the Oracle Reports Bridge is restarted. For example:
Once this element is set, only the administrator will be able to shut down the bridge by specifying the username/password
in the command line.
The remoteBridge
element is defined in bridgeconfig.xsd
as follows:
Example
Required/Optional
Optional. You can have one or more remoteBridge
elements in your bridge configuration file.
Description
The remoteBridge
element specifies the host and port on which remote bridges are running.
If you specify the optional remoteBridge
element(s) in the repbrg_
bridgename
.conf
, then the bridge will act as a two-way bridge. That is, the bridge can get server references from remote bridges.
If you do not specify the optional remoteBridge
element(s) in the repbrg_
bridgename
.conf
, then the bridge will act as a one-way bridge. That is, the bridge can only serve remote bridges. It cannot connect to remote bridges to get the server reference.
The remoteBridge
element attributes are described in Table 8-30.
The remoteBridges
element is defined in bridgeconfig.xsd
as follows:
Example
Required/Optional
Optional. If this entry is not specified, then this bridge will not contact any remote bridge to get a Reports Server reference. However, remote bridges can contact this bridge to get the references of Reports Servers running in this farm.
Description
The remoteBridges
element can contain zero or more remoteBridge elements.
The network configuration settings for the Oracle Reports Bridge component of Oracle Reports Services are stored in the XML file rwnetwork.conf
.
The rwnetworkconf.xsd
contains data type definitions for rwnetwork.con
f elements and attributes. See Section 8.5.1, "Network Configuration Elements".
These files are located in the directories specified in Table 8-1.
The rwnetworkconf.xsd
file provides the following data type definitions for configuring rwnetwork.conf
elements and attributes:
The discoveryService
element is defined in rwnetwork.xsd
as follows:
Required/Optional
Required. You can have a maximum of one open tag and one close tag in the discoveryService
element in a given configuration file.
Description
The discoveryService
element opens and closes the content area of the network configuration file. In terms of the file's hierarchy, all the other elements are subordinate to the discoveryService
element.
The discoveryService
element has no attributes. It includes two sub-elements:
multicast
: see Section 8.5.1.2, "multicast" namingService
: see Section 8.5.1.3, "namingService" The multicast
element is defined in rwnetwork.xsd
as follows:
Example
Required/Optional
Conditional. The namingService
and multicast
elements are mutually exclusive; that is, only one of these elements can be configured at a time.
Description
The multicast
element contains the necessary information to identify where Reports Server is running the built-in broadcast mechanism. By default, multicast
is specified in rwnetwork.conf
.
The multicast
element attributes are described in Table 8-31.
Table 8-31 Attributes of the multicast
Element
Attributes | Valid Values | Description |
---|---|---|
Broadcast channel | The broadcast channel used by the Reports Server. | |
Broadcast port | The broadcast port used by the Reports Server. | |
Time (in milliseconds) it should wait for response. The optimum value for this setting is | The Reports Client will wait for the specified timeout period for a response from the Reports Server. | |
Retry count | The Reports Client will retry for the specified number of times, if there is no response from the Reports Server after the timeout period. |
Note: It is strongly recommended that you do not change the default channel and port unless it is absolutely necessary. The default port value forrwnetwork.conf is assigned when you install Oracle Fusion Middleware. If you want to customize |
The namingService
element is defined in rwnetwork.xsd
as follows:
Example
Required/Optional
Conditional. The namingService
and multicast
elements are mutually exclusive; that is, only one of these elements can be configured at a time.
Description
The namingService
element contains the necessary information required to be able to identify the host name and the port where the COS naming service is running. Specify this element only when the built-in broadcast mechanism is not suitable for your environment, as in the following scenarios:
For more information, see Section 2.3.4.2, "Server Discovery Using the COS Naming Service".
The namingService
element attributes are described in Table 8-32.
Reports Server includes a URL engine that can take the contents of any URL and distribute them. The URL engine enables you to leverage the powerful scheduling and distribution capabilities of Reports Server to distribute content from any publicly available URL to various destinations such as e-mail, Oracle Portal, and WebDAV. Since Reports Server's destinations are pluggable, you can also add your own custom destinations for the URL content.
Furthermore, if you use the URL engine in conjunction with Reports Server's event-based APIs, database events can trigger the content distribution. For example, suppose you have created a JSP report for high fidelity Web publishing of data stored in a table containing employee expense data. You could then use the URL engine and the event-based API to e-mail that JSP whenever the expense application stores new or updated employee expense data in the table.
If the URL engine is not activated, you can activate it by doing the following:
job
element might be as follows: Note: When you restart your Reports Server with these new elements, you should see the number of engines increase accordingly in the Reports Server status message box. In the preceding example, the number of engines would increase by one (the value ofinitEngine) when you restart Reports Server. |
To learn about sending requests to the URL engine, refer to Chapter 18, "Running Report Requests".
Some features of Oracle Reports Services support retrieving or sending information through a firewall. For example, the URL engine, the XML data source, the Text data source, and the mail destination features all retrieve or send information through the firewall. For these features to function properly, Reports Server requires certain proxy information.
In Oracle Reports 11g Release 1 (11.1.1), proxy information is stored in the Reports Server configuration file (rwserver.conf
). You can specify proxy information in either of the following ways:
To specify proxy information using Oracle Enterprise Manager, refer to Section 7.14, "Configuring Proxy Information".
To specify proxy information by editing the server configuration file (rwserver.conf
) directly, add the proxyServer
element, as described in Section 8.2.1.24, "proxyServer".
The best way to start, shut down, monitor, and manage Reports Server is through the Oracle Process Manager and Notification Server (OPMN) and Oracle Enterprise Manager.
OPMN provides a centralized mechanism for initializing, maintaining, and shutting down your Oracle Fusion Middleware components, including Reports Server. Out-of-the-box, Oracle Reports components are managed with OPMN for death detection and recovery, providing an enhanced health check mechanism in Oracle Reports 11g Release 1 (11.1.1).
You can conveniently monitor your Reports Servers through Oracle Enterprise Manager and, if the process fails for any reason, OPMN restarts Reports Server for you automatically.
During installation of Oracle Fusion Middleware, Reports Servers are automatically configured in OPMN and registered with Oracle Enterprise Manager.
Components are configured with OPMN in the opmn.xml file located in INSTANCE_HOME/config/OPMN/opmn/opmn.xml
This section describes how to configure the following components through OPMN:
See Also: For a detailed description of OPMNconfiguration and the contents ofopmn.xml : |
The module tag is included by default in opmn.xml and tells OPMN to load a particular module. In the case of Reports Server, the OracleAS Reports Services module must be loaded. This module is loaded with the following information, by default, in opmn.xml
:
In the case of the standalone Reports Server, the Reports Server is running in its own component. Therefore, you must specify a separate component for Reports Server to control the server through OPMN. For example:
Note: The timeout values in the preceding example are all in number of seconds. |
The key segments of this specification for Oracle Reports are described below.
This tag specifies the name of Reports Server. It must match the Reports Server internal name from targets.xml
See Also: Chapter 19, "Managing and Monitoring OracleAS Reports Services" for more information ontargets.xml . |
This tag defines the process for the named Reports Server and associates it with the OracleAS Reports Services process module.
This tag defines the process characteristics for the named Reports Server. It indicates whether Reports Server should be restarted when it fails. It also specifies the number of Reports Servers started for this process set, which has to be 1 because the process-set id identifies a single Reports Server name.
The first tag specifies the value for the PATH
environment variable for the process. This variable must be set for the start script to find uname
. This environment
element is not needed on the Microsoft Windows platform.
This group of tags gathers together all of the data (parameters) common to the process. In this particular example, it provides a way to specify that the BATCH
parameter be sent to Reports Server. batch=yes|no
is an option to the start and stop commands of Reports Server. If it is not configured, this option is not passed in to Reports Server.
This group of tags indicates the restart parameters category, which defines parameters to be used in detecting whether the process has failed and needs to be restarted. If a notification is not received within the specified reverseping-timeout
period, then the process is considered failed and will be restarted.
See Also: For more information onopmn.xml and its contents:
|
The Oracle Reports bridge runs within its own component. Therefore, you must specify a separate ias-component tag
for the Oracle Reports bridge to control the bridge through OPMN.For troubleshooting scenarios and diagnosis, see Section D.8, "Diagnosing Oracle Reports Bridge Problems"
The following are examples for a minimum bridge configuration as well as a full bridge configuration.
Example 8-1 Minimum Configuration for Oracle Reports Bridge
Example 8-2 Full Configuration for Oracle Reports Bridge
By default, Oracle Reports uses the built-in broadcast mechanism for Reports Server discovery. Alternatively, Oracle Reports clients can use the Common Object Service (COS) naming service for Reports Server discovery to submit report requests when the built-in broadcast mechanism is not suitable for your environment, as in the following scenarios:
For more information, see Section 2.3.4.2, "Server Discovery Using the COS Naming Service".To control the COS naming service through OPMN, the opmn.xml file must include a custom ias-component
tag, as follows:
Where,
ORACLE_HOME
is your Oracle Home directory.
port
is the port on which you want to start the COS naming service. This port must be specified in your rwnetwork.conf
file as specified in Section 8.5.1.3, "namingService".
Additionally, to make sure that OPMN starts the COS naming service before it attempts to start Reports Server, opmn.xml
must include the following dependency:
To use OPMN to control the COS naming service, perform the following steps:
opmn.xml
file and add an ias-component tag. For example: Note: In Reports 11g Release 1 (11.1.1), you cannot add a dependency on WLS_REPORTS because the in-process server and WLS_REPORTS are not managed by OPMN. |
ORACLE_INSTANCE/opmn/bin
directory. opmnctl reload
opmnctl start
opmnctl startproc ias-component=namingservice
or
opmnctl startproc process-type=namingservice
rwnetwork.conf
file to use the COS naming service instead of the default broadcast mechanism, as described in Section 8.5.1.3, "namingService". To stop the COS naming service, use the following command:
opmnctl stopproc ias-component=namingservice
To restart the COS naming service, use the following command:
opmnctl restartproc ias-component=namingservice
Troubleshooting: If a COMM_FAILURE
error displays when Reports Server is started, either the naming service is not started properly or the port is not specified properly. To resolve this error, check whether the naming service process orbd is running. If not, start it. If the orbd
process is running, check the port specified for namingService
in the rwnetwork.conf file. It should be same as the port on which orbd
is started.
When you execute the command opmnctl stopall
, Reports Server may not stop gracefully, and may be killed by OPMN. This is because OPMN does not check the dependency while stopping the process. If OPMN stops the COS naming service before stopping Reports Server, Reports Server will not shut down gracefully. This is harmless, and can be ignored.
You can use the following OPMN commands to create new Reports Server.
For example, to create a new Server named test_server
, run the following commands on the commandline:
After creating the Reports Server, restart the WLS_REPORTS managed server by stopping it and and start it again. This is necessary for completing registration of the new Reports Server configuration MBeans.
You can use the following OPMN commands to create new Bridge Component Type.
For example, to create a new Bridge Component Type named test_bridge
, run the following commands on the commandline:
Note: After running the command the new server / bridge will be automatically registered with OPMN. |
With 11g Release 1 (11.1.1), Oracle Reports is integrated with the Oracle Service-Oriented Architecture (SOA) suite, which includes Oracle BPEL Process Manager to automate and monitor reporting requirements.
Business Process Execution Language (BPEL) is the emerging standard for assembling a set of discrete services into an end-to-end process flow, radically reducing the cost and complexity of process integration initiatives. Oracle BPEL Process Manager, a key component of Oracle Fusion Middleware, enables enterprises to orchestrate disparate applications and web services into business processes. The ability to quickly build and deploy these processes in a standards-based manner delivers critical functionality for developing a Service-Oriented Architecture (SOA).
For more information about Oracle BPEL Process Manager, see Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite.
Users can submit Oracle Reports jobs from the Oracle BPEL Process Manager business process, get the status of report execution, and also invoke an Oracle BPEL Process Manager business process from reports. For example, submit a report request when an order gets approved.
Using Oracle Reports with Oracle BPEL Process Manager involves the following steps:
Oracle Reports exposes web service named RWWebService
. For more information about this web service, see Chapter 19, "Using the Oracle Reports Web Service". Oracle Reports web services, which are synchronous in nature, can be used in a BPEL process as a Partner link.
To invoke an Oracle Reports web service asynchronously in a BPEL process, do the following:
You can access the WSDL of the Oracle Reports web service at the following location:
http://yourwebserver:port/reports/rwwebservice?
WSDL contains information about the different ways of invoking RWWebservice
. You can access the XSD file at the following location:
http://yourwebserver:port/reports/rwwebservice?xsd=1
You can save the XSD file on your local machine and use it when creating a BPEL process.
To submit jobs to the Oracle Reports server using RWWebService, perform the following steps:
RWWebservice.xsd
file to define the input and output parameters of the BPEL process. RWWebService
WSDL: RWWebService
Partner link. runJob
operation of RWWebService, and the output parameter contains the output of the runJob operation. RWWebService
requires. true
(boolean, specifying that the job submission must be synchronous). You can use this BPEL process in another BPEL process and submit jobs to the reports server asynchronously from a BPEL process.
Important: For completing steps from 2 to 11 mentioned in Section 8.10.1, see the following documents: |
To submit jobs to the Oracle Reports server from a BPEL process asynchronously, do the following:
RWWebservice.xsd
file to define the input and output parameters of the BPEL process. Yes
to create Partner link types. true
(boolean, specifying that the job submission must be synchronous). Before you deploy a report on a machine that is either slow or is running on a load, you may want to configure the following:
The default timeout period is 150
. This period is calculated from: ping timeout
, ping interval
, and number of retries
. The default values for these are:
Note: Thenumber of retries is applicable only when OPMN successfully connects to Standalone Reports Serverand receives regular ONS notifications from the process. |
Based on these values, there will be three ping attempts with a timeout of 30 seconds each at 20 second intervals. The first ping is done after the specified ping interval
. Thus, from the time the Standalone Reports Server is started by OPMN, approximately 150 (20 + 3*30 + 2*20) seconds will elapse before the process is considered unresponsive and restarted. However, if after OPMN connects to Standalone Reports Server but server is too slow in sending regular ONS notifications, then the 30 second timeout applies.
You can configure the ping timeout by adding a ping entry with sufficient timeout configured to the machine's load in following element in opmn.xml
:
Note: In 11g, Oracle WebLogic Server is not managed by OPMN, hence there will be no ping or death detection for In-Process Server running inside WLS_REPORTS. |
OPMN.xml
): Start or restart timeout is the measure that OPMN uses to determine the time that it must wait for Reports Server process type to start or restart (process-type id="ReportsServer"
in opmn.xml
) before considering it as a timeout. The default timeout period is 600
. The default values for these are:
When running on a loaded machine, an attempt to start all Reports Servers by OPMN may result in a start timeout for some Reports Servers as some of them were not able to finish the start up activities completely. Note that Reports Server also starts the number of engines specified in the initengine
property of the engine
element in the rwserver.
conf
file. Starting up these engine processes might take some time in loaded machines. In parallel to finetuning the Reports Server process start or restart property, you must also finetune the callbackTimeout
property in rwserver.
conf
, as explained in the next bullet item.
rwserver.
conf
file. This time out period is in milliseconds. For example:
Note: Increase thecallbackTimeOut value when the machine is very slow. |
The system-jazn-data.xml
is an XML file which is configured by the user to use as an ID store and/or policy store. The file is located in $DOMAIN_HOME/config/fmwconfig
.
Sample system-jazn-data.xml
file:
By default, the Oracle Reports application is deployed on a Managed Server.
You can modify the start-up properties of a Reports Managed Server through the SetDomainEnv.sh
file or the WebLogic Server Administration Console. However, some properties like -Xmx and -Xms
, which are already defined in the setDomainEnv.sh
file would take precedence and the changes made through the WebLogic Server Administration Console do not take effect. Also, the start-up properties of WLS_REPORTS that are modified using the WebLogic Server Administration Console do not take effect when WLS_REPORTS is started using startManagedServer.sh
. Hence it is recommended that you use SetDomainEnv.sh
(for UNIX) or SetDomainEnv.bat
(for Windows) to modify the start-up properties for Managed Servers.
You can modify the system or runtime properties for a Managed Server using the SetDomainEnv.sh
(for UNIX) or SetDomainEnv.bat
(for Windows) which is located in $DOMAIN_HOME/bin
.
You can modify the runtime properties using the EXTRA_JAVA_PROPERTIES
variable inside the ["${SERVER_NAME}" = "WLS_REPORTS"]
block.
You must add any new environment variable for WLS_REPORTS
Managed Server inside the if["${SERVER_NAME}" = "WLS_REPORTS"]
block in the SetDomainEnv.sh
script.
As the default setting is done for all components that use setDomainEnv.sh
, the -Xmx and -Xms
settings are added multiple times to the command line of a Managed Server. Hence you must add the -Xmx and -Xms
settings at the end of EXTRA_JAVA_PROPERTIES
variable in the ["${SERVER_NAME}" = "WLS_REPORTS"]
block.
For example, consider the following snippet:
If you want to add the -Djobid=random
property and change the -Xmx and -Xms
settings for WLS_REPORTS to 512m
and 1024m
, you must modify the snippet as follows:
Note: WLS_REPORTS is the name of the Managed Server where the Reports application is deployed during installation. For expand cluster cases, Managed Servers can be named as WLS_REPORTS1, WLS_REPORTS2, and so on. |
For enabling HTTPS for Oracle Reports, the WebLogic Plug-In Enabled option in the WebLogic Administration Console should be selected for the WLS_REPORTS server by performing the following steps:
A list of servers configured in the domain is displayed.
Part III contains information that will help you to manage the runtime behavior of Oracle Reports:
In Oracle Reports, fonts come into play in several areas:
Oracle Reports Builder provides a list of fonts that are available on the system in the font picker box.
On Windows, the font list is derived from the fonts that are installed on the system along with the fonts available on the current default printer. A small printer icon before the font name identifies printer fonts. True Type fonts are associated with a TTF icon.
On UNIX, the font list is derived by querying the X-server display on which the application is running for the available fonts. The command is similar to the UNIX xlsfonts
command, which lists all of the available fonts for the X-server display. From this font list, Oracle Reports Builder generates a list of usable fonts with the valid style, weight, width, size, and encoding characteristics to match the character set. The character set is driven by the NLS_LANG
environment variable. Oracle Reports Builder includes only those fonts with an encoding of iso8859-1
, unless specified differently in the toolkit resource file, Tk2Motif*fontMapCs
. For more information on Tk2Motif*fontMapCs
, refer to Section 9.3, "Font Configuration Files".
During report formatting, fonts associated with the layout objects are first checked against the font alias file, uifont.ali
, (refer to Section 9.3, "Font Configuration Files"). If an entry in the font alias file is found, the mapped font is used instead of the original one. The mapped font is then searched for in the list of fonts available on the system or printer. If a particular font is not found, Oracle Reports will look for the nearest matching font under the same character set which can be used instead.
With the new font model supported on UNIX in 11g Release 1 (11.1.1), report output is in most cases the same on UNIX as on Windows, allowing for simplified cross-platform deployment. Oracle Reports reads the font metrics from the appropriate TTF files from the font directory to correctly format the report output. This eliminates the issue of text misalignment due to font metrics mismatches. Fonts for which TTF files are available are found automatically. Note that if a TTF font file is not found, then the font lookup mechanism reverts to the pre-11g
implementation. With the new font model, there is no change in the builder. The Font Model does a role only during the runtime and not at the design time.
On Windows, the font lookup mechanism is simple due to the availability of printer drivers, which have the capability of uploading fonts from the system as needed. Any output from Oracle Reports running on Windows will contain fonts from either one of the following:
For this reason, Oracle Reports considers both the printer and the system fonts when looking for the available fonts.
On UNIX, the fonts available for generating output are either one of the following:
screenprinter.ppd
. Text in the user interface of Oracle Reports Builder, like the window title, menu items, message boxes, and data model object names, use fonts taken from the system resource files for the current language. These system resource files are supplied with Oracle Reports installation. In Oracle Reports, you can map these fonts in the [rwbuilder
] section of uifont.ali
. If found, the mapped font is used instead of the original font. Otherwise, Oracle Reports uses the original font.
On UNIX, these fonts are defined in Tk2Motif.rgb
under Tk2Motif*fontList
. If the font is not defined, then the default font (fixed for default character set) is used instead. The default system font need not be the one defined in Tk2Motif.rgb
. If the defined font does not match the character set on which the application is running, some other available font will be used following the font lookup algorithm discussed in the previous section.
In order to maintain the look and feel of the Windows, Oracle Reports makes extensive use of the system font, which is obtained from the Windows system parameters. For non-Unicode environments, the font is obtained from the icon objects. You can change it by modifying the fonts through Display Property > Appearance. Select Icon from the drop down box and select the desired font name and size. For Japanese Unicode systems, the font is MS Gothic. For Korean, it's MS Sans Serif. For simplified, traditional, and Hong Kong it's Arial. For other languages, it's Lucida Sans Unicode.
You can also change the Windows tool tip font by changing the icon font as described above. This change is not completely reflected across Oracle Reports Builder because some tool tip fonts are taken from the resource file.
In Oracle Reports, fonts for the Web Source view are selected by making an entry in the alias file under the [rwbuilder
] section. The entry required for this change should only be aliased to the character set and not to any specific font. For example, if you want to use Arial Unicode MS when NLS_LANG
is set to UTF8, then you should create an entry like this one:
Refer to Section 9.4, "Font Aliasing" for more information.
The supported styles are: Plain, Italic, Oblique, Underline, Outline, Shadow, Inverted, Overstrike, and Blink.
The supported weights are: Ultralight, Extralight, Light, Demilight, Medium, Demibold, Bold, Extrabold, and Ultrabold.
You should not use fonts with a weight of Regular because this weight is not supported and may cause Oracle Reports Builder to display undesirable results.
In Oracle Reports, fonts can be added for use:
Note: You must restart the Reports Server after adding fonts to the Reports font directory. |
To build a report in a certain font, the font must be available in Oracle Reports Builder from the font picker when you are designing the report. In order for the fonts to appear in the font picker, the fonts should be added to the system or the display on which Oracle Reports Builder is running. Please review your operating system documentation for adding fonts before attempting this procedure.
To add Type1 fonts on UNIX:
t1ascii
. xlsfonts -u
command. This command lists all the fonts that are available for that system. If you are using a UNIX emulator like reflection X, the fonts installed on the system may not appear in the xlsfonts
command. The reason for this behavior is that it is taking fonts from the font path or the font server, which is configured for this emulator. If using a font server, ensure that, after installing the font, you add the font directory to the font server configuration file and restart the font server. In the emulator, specify the font path to this font server wherever the fonts are installed. If you are still not able to see the fonts in xlsfonts
, ensure that the new font directory is the first element of the catalogue in the configuration file.
For generating output in Oracle Reports, only the fonts that are specified in the printer definition file are used. To use a newly added font in your output, you should first add it to Oracle Reports Builder so that you can assign the font to layout objects when designing the report. Refer to Section 9.2.1, "Adding Fonts to Oracle Reports Builder" for further information.
Note: If you use fonts in Oracle Reports Builder that are not available on your runtime platform, you should alias those fonts on the runtime platform. Refer to Section 9.4, "Font Aliasing" for more information. |
The process for adding fonts is different on Windows and UNIX:
To add TTF fonts:
EPORTS_FONT_DIRECTORY
. The default font directory is $ORACLE_INSTANCE/reports/fonts
. uifont.ali
file. ORACLE_HOME
/guicommon/tk/admin/AFM
. *Font
information section in the printer definition (PPD) file: Ensure that the new_font_name
given in the PPD file is the same as the AFM file, because Oracle Reports searches for this file based on the font name in the PPD file. Also make sure that the AFM file name does not include the.afm
extension.
For example, if the AFM file name is CodedreineunBold
, then the PPD file should contain:
If the layout objects are associated with the same font name as the new font, then mapping is not required. If the fonts for the layout objects are different and the new fonts are desired in the output file instead of the original ones, then you must map the original fonts to the new ones.
For example, if the layout objects' font is Helvetica and you want newly installed fonts in the output, then you could add the following to the [Printer:PostScript1]
section:
Please note the section will be different if you are using a different PostScript level in your uiprint.txt
. Refer to Section 9.4, "Font Aliasing".
In order to use a new font in Oracle Reports, you must have the HPD (printer definition) and TFM files for your printer. The HPD file can be copied from an existing one. You must be sure that the file is suitable for your printer; fonts referenced in this file should be available on your printer. If the TFM files (fonts) are not available on Oracle Reports installation, you must contact your font/printer supplier. The new TFM files must be added to the HPD file under a unique font name.
Codedreineun
then include a new line such as: [PCL]
. For adding a new font on Windows, refer to your operating system documentation on adding a new font. If the new font has a character set that is compatible with Oracle Reports Builder, the new font will appear in the font picker.
This section describes all of the files associated with font configuration for Oracle Reports:
Note: Beginning in Oracle Reports 11g Release 1 (11.1.1), configuration of fonts should be done only through Oracle Enterprise Manager. Refer to Chapter 7, "Administering Oracle Reports Services Using Oracle Enterprise Manager", Section 7.9.1, "Configuring Fonts" for information about updating configuration settings through Oracle Enterprise Manager. |
The printer configuration file contains a list of printers installed for the application along with the type of the printer, its version, and the printer definition file. The list of available fonts for runtime is taken from the printer definition file. If no printer is present, Oracle Reports chooses a PostScript printer as the default and default.ppd
file as the printer definition file.
Example:
Each line contains five fields separated by colons.
If you are using PCL printing, then this entry should contain the name of an HPD file.
screenprinter.ppd
is used when a printer is not available on UNIX. For more information, see Section 10.8.1, "ScreenPrinter".
The uifont.ali
file is found in the following location on Windows and UNIX:
On Windows: ORACLE_INSTANCE\config\FRComponent\frcommon\tools\common
On UNIX: ORACLE_INSTANCE/config/FRComponent/frcommon/guicommon/tk/admin
This file contains mapping information for fonts that can be substituted for other fonts at runtime.
Caution: Do not alter the sections as Oracle Reports parses theuifont.ali file looking for keywords. The sections can be in any order. Any font configuration should be done only through Oracle Enterprise Manager. Refer to Chapter 7, "Administering Oracle Reports Services Using Oracle Enterprise Manager", Section 7.9.1, "Configuring Fonts"for information about updating configuration settings through Oracle Enterprise Manager. |
Some general rules for the uifont.ali
file are:
.afm
or.pfm
file extension and the binary containing the.pfb
file extension. Font embedding uses the font name and embeds using the Type 1 font file names (both the AFM and PFB files are required in this order).
The general format for aliasing in uifont.ali
is:
where original_font
is the font name or its other attributes that will be mapped to the font name or attributes of font_to_be_aliased
.
The fonts along with their attributes can be described as:
The Face
must be the name (string/identifier) of a font face, such as Courier
. The Style
, Weight
, Width
, and CharSet
may either be a numeric value or a predefined identifier or string. For example, both Plain
and 0
are valid Style
values and refer to the same style. The Size
dimension must be an explicit size, in points.
These attributes take effect for font aliasing, font subsetting, and font embedding.
For example, in the case of font subsetting it is:
The following is a list of recognized names and their numeric equivalents:
Table 9-1 Style Names and Their Numeric Equivalents
Style Name | Numeric Equivalent |
---|---|
Plain | 0 |
Italic | 1 |
Oblique | 2 |
Underline | 4 |
Outline | 8 |
Shadow | 16 |
Inverted | 32 |
Blink | 64 |
Table 9-2 Weights and Their Numeric Equivalents
Weight Name | Numeric Equivalent |
---|---|
Ultralight | 1 |
Extralight | 2 |
Light | 3 |
Demilight | 4 |
Medium | 5 |
Demibold | 6 |
Table 9-3 Widths and Their Numeric Equivalents
Width Name | Numeric Equivalent |
---|---|
Ultradense | 1 |
Extradense | 2 |
Dense | 3 |
Semidense | 4 |
Normal | 5 |
Expand | 7 |
Extraexpand | 8 |
Ultraexpand | 9 |
Styles may be combined; you can use the plus sign (+) to delimit parts of a style. For example:
This mapping indicates that any Arial that has both Italic and Overstrike styles will be mapped to a 12-point, bold, italic Helvetica font.
For multibyte language support, you must alias a character set with a CID font (Section 9.5.7, "CID Fonts") from the Asian font pack from Adobe. For example, in your Japanese report you have aliased a multibyte Shift-JIS
characterset be aliased to HeiseiKakuGo-W5-Acro
CID font with the following entry:
All strings are case-insensitive in mapping. Font faces are likely to be case-sensitive on lookup, depending on the platform and surface. As a result, take care with the names used. For example, if the font name arial
is used on the left-hand side (the original font), all layout objects with fonts such as arial
or Arial
are mapped to the aliased font.
Refer to Section 9.4, "Font Aliasing" for more information.
PPD and AFM files (UNIX only)
PostScript Printer Definition (PPD) files and Adobe Font Metrics (AFM) files are supplied by Adobe and by printer vendors. The PPD files contain information about the printer, and the AFM files contain metrics information of the fonts. Along with other parameters, these files are read for the information about the available fonts for the printer, which Oracle Reports will use. For all the fonts listed in the PPD file, Oracle Reports searches for the corresponding AFM file according to the font name and loads all of the fonts for which there is an available AFM.
From the fonts perspective, you should modify these files when you add new fonts for the printer and want these changes reflected in Oracle Reports.
Example:
The AFM files contain information such as the font attributes (style, weight, width, encoding scheme), whether the font is fixed pitch or proportional, and how large each character is.
After looking for the font names from the PPD files, Oracle Reports searches for the AFM files with the same name as the font according to the search criteria described in Section 9.3.1, "File Searching". For example, if Oracle Reports finds AvantGarde-Demi: Standard
in the PPD file, it will search for an AFM file named AvantGarde-Demi
in the AFM directory.
Please note that the AFM files are not font files; they are metrics files that provide Oracle Reports with information on how to properly format the character for the printer. If you have an AFM file, but the font is not available on the printer, then Oracle Reports cannot generate the font.
Since the AFM files are NOT fonts themselves, if you wish to have more PostScript printer fonts available, you must do the following:
HPD and TFM files (UNIX only)
PCL (Hewlett-Packard Printer Control Language) uses HPD (Hewlett-Packard Document) and TFM (TEX Font Metrics) files. The HPD files contain a list of fonts available for the printer and each font refers to a TFM file. The HPD file is an ASCII file, which can be edited, but the TFM file is a binary file, which cannot be edited. Even though TFM files are binary and uneditable, you can perform string operations to read some specific keywords from these files. Oracle Reports recognizes the font name that is in the TFM files and not the one specified in the HPD file. The font vendor should provide TFM files and new fonts should be added to the HPD file for your printer when installed.
This file contains resource settings for all Oracle Motif tools based on Oracle Toolkit. For font specific resource settings, Tk2Motif*fontMapCs
and Tk2Motif*fontList
are used.
Tk2Motif*fontMapCs
governs the base character set of fonts that the application will use, which are on the X-window display.
If Tk2Motif*fontMapCs: iso8859-2=EE8ISO8859P2
, then NLS_LANG
should be set to EE8ISO8859P2
and only fonts with encoding as iso8859-2
will be used for the application. If the system does not find any fonts with the above encoding, it will fail with a REP-3000
error.
Tk2Motif*fontList
specifies the default system font that will be used by the application. The following means that the Helvetica font with medium weight and normal width of size 12 will be used:
The syntax for the above entries can be found in Tk2Motif.rgb (ORACLE_INSTANCE/config/FRComponent/frcommon/guicommon/tk/admin)
file as comments.
The criteria for searching files is dependent upon the type of file and the various environment variables defined.
Table 9-4 File Information
File Name | Type | Description |
---|---|---|
| UNKNOWN | Printer configuration file |
| FONTALIAS | Font aliasing file |
PPD | PPD | PostScript printer definition file |
AFM | AFM | Adobe font metrics file |
HPD | HPD | HP glue file |
TFM | TFM | HP glue file |
Oracle Reports will first look for the variable in TK_
type
, then in the ORACLE_
type
, and then in the global directory. For instance, the PPD files are searched for in the directory specified by TK_PPD
, then in ORACLE_PPD
, and then in ORACLE_HOME/guicommon/tk/admin/PPD,
and then in $ORACLE_INSTANCE/config/FRComponent/frcommon/guicommon/tk/admin/PPD.
For example, looking for uiprint.txt
, Oracle Reports will first look at the environment variable TK_UNKNOWN
, then look at ORACLE_UNKNOWN
, and then in the default directory.
Font aliasing is a mechanism in Oracle Reports that allows a font or its associated attributes like style, weight, width, size and character set to be mapped to another desired font or its associated attributes. Its primary use is when applications are ported from one platform to another and the font associated with some or all of the objects in the layout on the source platform do not exist on the target platform. In such cases font aliasing will be helpful as the nonexistent fonts can be mapped to another available one producing the required results. For example, when moving from Windows to Motif one would use font aliasing to map the Windows Arial to a font available on Motif, such as Helvetica.
The font enhancements introduced in Oracle Reports 11g Release 1 (11.1.1) make font aliasing unnecessary in almost all cases. In prior releases, a report may have been created with fonts that are readily available on Windows, but not on UNIX (for example, Arial font). In such cases, it was necessary to alias the Windows fonts to other fonts with a similar style available on UNIX (for example, Helvetica). Now, with support for TTF and TTC files on UNIX, a font such as Arial is supported on both Windows and UNIX, eliminating the need for aliasing.
This section includes the following topics:
If font aliasing is necessary, use Oracle Enterprise Manager to define the aliasing, instead of directly editing the uifont.ali
file as in prior releases. For information about using Oracle Enterprise Manager for font configuration, see Section 7.9.1, "Configuring Fonts".
For font aliasing, Oracle Reports searches for entries under the related section in the alias file that matches the original font attributes given in the report. Refer to Section 9.4.3, "Font Alias File Sections" for more information about the sections of the font alias file. If an exact match is found, Oracle Reports maps the original font on the left to the target font on the right.
For example:
If an Arial font with all of the attributes listed on the left is found, it will be mapped to a Helvetica font with all of the attributes listed on the right.
Any field can have a blank entry, which means it will be matched regardless. For instance:
In this case, all of the Arial fonts, irrespective of size and other attributes, are mapped to Helvetica with size 12, style Plain, weight Light, having Normal width under character set WE8ISO8859P1
.
Another way to specify an aliasing rule is:
This method will preserve the other attributes of the present font but will change the font name to OCR B
. You must be certain in such cases about the availability of mapped fonts with the attributes of other fonts. For example, in this rule the Arial font with style Italic might be mapped to the OCR B
font with Plain style because the OCR B
font does not have the Italic style present.
After a mapped font is read from the uifont.ali file, Oracle Reports looks for the font following the font lookup procedure, which is described in Section 9.1.2.1, "Font lookup". If the mapped font is found on the system, then Oracle Reports uses this font. Otherwise, it looks for the original font in the system.
Font attributes are searched for with the font face, size, style, weight, and width under the specified character set.
In Oracle Reports, fonts for the Web Source view and PL/SQL editor can be mapped by providing a mapping specification in the [rwbuilder]
section. This feature is mainly intended for supporting Unicode fonts in these editors.
The uifont.ali file consists of various sections which contains font mapping instructions for a particular area, as shown in Table 9-5. Since Oracle Reports looks in specific sections for specific purposes, it is crucial that you place your mapping entries in the appropriate section for what you are trying to accomplish.
Table 9-5 Font Mapping File Sections
Section Name | Description |
---|---|
| Applies everywhere. |
| Only applies to printer output. |
| Applies to PostScript Level 1 printers. |
| Applies to PostScript Level 2 printers. |
| Applies to PCL 5 printers. |
| Only applies to the display (the screen). |
| Applies only to the Motif display. |
| Applies only to character-mode display. |
| Used for font aliasing (from Oracle Reports 6i) and multibyte language support (from Oracle Reports). |
| (Oracle Reports only) Used for Type 1 font embedding. |
| (Oracle Reports only) Used for True Type font subsetting. |
| (Oracle Reports only) Fonts for the Web source and PL/SQL editor can be mapped in this section. |
| A section for a specific printer, such as:
|
If you want to look at the uifont.ali
file, it is located in the following directory on Windows and UNIX:
On Windows: ORACLE_INSTANCE\config\FRComponent\frcommon\tools\common
On UNIX: ORACLE_INSTANCE/config/FRComponent/frcommon/guicommon/tk/admin
The section for font aliasing in the uifont.ali
file is [PDF]
, which defines font mappings using the following formats:
or
Here is an example of a font aliasing entry in the uifont.ali
file:
where:
"Kino MT" = UtopiaBold
substitutes every Kino MT
character found with the UtopiaBold
equivalent.SJIS = "HeiseiKakuGo-W5-Acro"
substitutes every multibyte character set found with the HeiseiKakuGo-W5-Acro
(CID) equivalent. Order of precedence
When aliasing a particular font, only one section is read based upon the context in which the font is used. Hence, if three sections apply, only one is read. For example, suppose you have three sections: [Printer]
, [Printer:PostScript]
, and [Printer:PostScript:2op813a]
. When generating output, if the printer is 2op813a
, only the mapping rules in section [Printer:PostScript:2op813a]
are read. For printers other than 2op813a
, Oracle Reports would use the [Printer:PostScript]
section.
The more specific sections of the alias file take precedence over the more general sections. For example, a specific printer section, such as [Printer:PostScript1:2op813a]
would take precedence over the [Printer:PostScript1]
section, which would take precedence over the [Printer]
section, which would take precedence over the [Global]
section.
The uifont.ali
file is the configuration file controlling all of the Oracle Reports PDF font enhancements. The uifont.ali
file is text readable; that is, you can edit it with a standard text editor. Exercise caution when editing the file. The uifont.ali
file should be saved as a text file with no formatting or special characters that may corrupt the file.
Note: Although you can manually edit the uifont.ali file, it is recommended that you use Oracle Enterprise Manager for all font-related configuration tasks. |
To verify whether the uifont.ali
file is correct, you can run the font check utility, which can be found in the ORACLE_HOME
/bin
directory. It is always advisable to run this utility on the modified uifont.ali
file to catch any errors:
On Windows:
On UNIX:
where filename
is the name of the modified uifont.ali
file. If you don't specify any file name, it will check the default file based on the environment variables.
If the alias file has errors, the utility returns an error message along with the file on which the error was found. For example:
The above error indicates that there is a syntax error in uifont.ali
in the mapping rule for MS San Serif font on line 85.
This section discusses the fonts and character sets relevant to Oracle Reports:
The character set component of the NLS environment variables specifies the character set in which data is represented in your environment. When data is transferred from a system using one character set to a system using another character set, it is processed and displayed correctly on the second system, even though some characters might be represented by different binary values in the character sets.
If you are designing a multilingual application, or even a single-language application that runs with multiple character sets, you must determine the character set most widely used at runtime and then generate with the NLS environment variable (NLS_LANG) set to that particular character set.
If you design and generate an application in one character set and run it in another character set, performance can suffer. Furthermore, if the runtime character set does not contain all the characters in the generate character set, then question marks appear in place of the unrecognized characters. Portable Document Format (PDF) supports multibyte character sets. There might be situations where you create an application with a specific font but find that a different font is being used when you run that application. You would most likely encounter this when using an English font (such as MS Sans Serif or Arial) in environments other than Western European. This occurs because Oracle Reports checks to see if the character set associated with the font matches the character set specified by the language environment variable (NLS_LANG). If the two do not match, Oracle Reports automatically substitutes the font with another font whose associated character set matches the character set specified by the language environment variable. This automatic substitution assures that the data being returned from the database gets displayed correctly in the application. Note: If you enter local characters using an English font, then Windows does an implicit association with another font. There might be cases, however, where you do not want this substitution to take place. You can avoid this substitution by mapping all desired fonts to the WE8ISO8859P1
character set in the font alias file (uifont.ali
).
Unicode is a global character set that allows multilingual text to be displayed in a single application. This enables multinational corporations to develop a single multilingual application and deploy it worldwide. For information about using Unicode in your multilingual applications, refer to Section 23.5, "Unicode".
PostScript font formats Adobe Type 1 fonts are stored in two common formats:.pfa
(PostScript Font ASCII) and.pfb
(PostScript Font Binary). These contain descriptions of the character shapes, with each character being generated by a small program that calls on other small programs to compute common parts of the characters in the font. In both cases, the character descriptions are encrypted. Before such a font can be used, it must be rendered into dots in a bitmap, either by the PostScript interpreter, or by a specialized rendering engine, such as Adobe Type Manager, which is used to generate low-resolution screen fonts on Apple Macintosh and on Microsoft Windows systems.
The Type 1 binary files (.pfa
and.pfb
) contain character information, while the metric files (.afm
(Adobe Font Metric) and.pfm
(Printer Font Metric)) contain the metric information to form the character. These metrics files are ASCII files with a well-defined easy-to-parse structure.
The personal computer brought about a need for scalable font technology, thought to be an important part of any future operating system. TrueType is this scalable font technology that enables you to view the same output without the jagged aliasing caused by scaling that is apparent when bitmapped fonts are used.
This technology involves two parts:
The Rasterizer is an application that is included in both Windows and Macintosh operating systems. It acts as an interpreter and translates the font information into a form that the video display can render.
The TrueType fonts themselves contain information that describes the outline of each character in the typeface. Higher quality fonts also contain hinting codes. Hinting is a process that makes a font that has been scaled down to a small size look its best. Instead of simply relying on the vector outline, the hinting codes ensure that the characters line up well with the pixels so that the font looks as smooth and legible as possible.
Adobe wanted both Apple and Microsoft to license its PostScript code, which was capable of handling this role, but both companies were concerned about having a third party control key parts of their operating systems. Apple and Microsoft agreed to a cross-licensing and product development deal, with Microsoft creating a PostScript-style graphics engine and Apple creating a font system. Apple developed what was to become TrueType, which proved superior to other competing technologies on performance and rendering quality. Apple and Microsoft announced their strategic alliance against Adobe, where Apple would do the font system, Microsoft the printing engine. Apple released TrueType in March 1991 and the first TrueType fonts:
Microsoft introduced TrueType into Windows with version 3.1 in early 1992. They created a core set of fonts:
Both Apple's and Microsoft's TrueType fonts showed that scalable fonts could generate bitmaps virtually as though each size had been designed by hand.
A TrueType Collection (TTC) is an efficient way of sharing common font data, such as character information and glyphs. This data sharing results in an optimized file size as the common glyphs are stored in a single file structure, instead of within each font. The end result is a single file that is a combination of two or more fonts. For example, certain Japanese fonts in a font family may share a common set of kanji characters. They can be included in a TTC file.
For example, the TTC file, msgothic.ttc
, is a collection file consisting of three fonts. They are MS Gothic, MS PGothic, and MS UI Gothic.
Barcode fonts can be quite confusing. Some industries have chosen a specific barcode type. If this is what you need, then using the appropriate barcode font should work. For example, if you are interested in putting barcode on retail packages or books, the choice of a barcode is simple. Retail packages in North America use the UPC-A bar code. European retail articles use the EAN barcode .
All book ISBN numbers use the Bookland barcode (an EAN 13 bar code with a 5 digit supplement). Fonts are one way to obtain barcode, but not the only way. Oracle Reports offers another solution for producing barcodes using a Java barcode bean. The Java barcode bean is capable of creating barcodes based on the most popular barcode types.
Character IDentifier (CID) fonts are a format of composite (multibyte) Type1 fonts used to better address the requirements of Far East markets. Adobe developed the CID-keyed font file format to support large character set fonts for use with PostScript. It is the ideal format for Chinese, Japanese, or Korean fonts and can also be used for roman fonts with very large character sets. CID-keyed refers to the character identifier (CID) numbers used to index and access the characters in the font. A CID (character identifier) font consists of a large font file containing all the character outlines and a small CMap file that contains a list of characters, encodings, and character identifiers. The combination of the font file and the CMap file yields a font that is a specific character set and encoding information. Each CID font can support many character set and encoding combinations.
Oracle Reports 11g Release 1 (11.1.1) uses the widely available font formats like TTF and TTC on both Windows and UNIX to generate report output that in most cases looks identical on both platforms, with no configuration necessary.
Oracle Reports reads the font metrics from the appropriate TTF files to correctly format the report output. This eliminates the issue of text misalignment due to font metrics mismatches. Fonts for which TTF files are available are found automatically. Note that if a TTF font file is not found, then the font lookup mechanism reverts to the pre-11g implementation.
Run a sample TTC font type report on Windows:
Run the same TTC font type report on UNIX:
$ORACLE_INSTANCE/reports/fonts
(for example, MSGOTHIC.TTC
). If it is not available, copy it from the Windows machine (C:\WINDOWS\Fonts).
Compare the output on UNIX with that on Windows to confirm that they are almost identical.
Tip: On UNIX, set the DPI as in Windows. For example, if you change the UNIX DPI from 96 to 600, which is the Windows DPI value, the PDF and RTF outputs on UNIX will be identical to that of Windows. |
However, the HTML ouput file is large because the DPI value of the screen printer is changed. This problem occurs only if a valid printer is not set and the screen resolution (screenprinter.ppd) is used for both PDF and HTML drivers. For example, if the valid/dummy printer is set to TK_PRINTER with the DPI resolution 600, the same value as that of Windows, the HTML and PDF outputs on UNIX will be identical to that of Windows.
Example
Here is an example of how to produce report HTML output that looks the same on Windows and UNIX if the DPI of Windows is 600:
Font:ASCII: DPI changed PPD file:default.ppd:
*DefaultResolution: 600dpi
Note: Do not change the resolution of screenprinter.ppd. |
Oracle Reports 11g Release 1 (11.1.1) uses the new font mechanism to run a Unicode report on UNIX using the TTF / TTC fonts, generating report output that in most cases looks identical on both platforms.
Run a sample Unicode report on Windows:
ARIALUNI.TTF
to REPORTS_PATH
. NLS_LANG
in the Windows registry to AMERICAN_AMERICA.UTF8
. Run the same Unicode report on UNIX:
$ORACLE_INSTANCE/reports/fonts
and in the REPORTS_PATH
(for example, ARIALUNI.TTF
). If it is not available, copy it from the Windows machine to $ORACLE_INSTANCE/reports/fonts
. NLS_LANG
in reports.sh
to AMERICAN_AMERICA.UTF8
. For example:
Compare the output on UNIX with that on Windows to confirm that they are identical.
To diagnose font usage and issues, you can view the log files in either of the following ways:
To view the log files using the command line:
Refer to Section 7.11.1, "Viewing and Searching Log Files" in Chapter 7, "Administering Oracle Reports Services Using Oracle Enterprise Manager"
To help resolve font issues that may occur in your applications, this section provides the following troubleshooting information:
Checking Whether the Desired Font Is Used in a PostScript File
PostScript files have a list of fonts, which is created after reading the PPD file. If you examine the PostScript file, you can check the fonts by looking for the following tags:
DocumentNeededResource
has the list of fonts referenced in the PPD file. DocumentSuppliedResource
has the list of fonts for which the PostScript driver was able to find the AFM file. %%Page
paragraph before the field's %IncludeResource:font
has the font name which will be used for the field. For PCL output files, you can check whether a particular font was used or not. Depending on this information the font settings in Oracle Reports or the printer can be modified.
Example:
The test results below are based on a Lexmark Optra printer. The fonts and their numbers as well as the control commands are examples and may vary with other printers.
Font information The Lexmark has a small menu with the option of printing all available fonts (PCL Emulation Fonts). This includes both resident fonts (defaults) and Flash fonts (installed on the printer separately)
Table 9-6 Sample Font Information
Font Name | Style | Weight | Example Output |
---|---|---|---|
R0 Courier | 0 | 0 | ... <ESC>(<symset><ESC>(s0p<pitch>h0s0b4099T... |
R39 Courier Bold | 0 | 3 | ... <ESC>(<symset><ESC>(s0p<pitch>h0s3b4099T... |
R40 Courier Italic | 1 | 0 | ... <ESC>(<symset><ESC>(s0p<pitch>h1s0b4099T... |
R55 Century Schoolbook Roman | 0 | 0 | ... <ESC>(<symset><ESC>(s1p<point>v0s0b24703T ... |
Table 9-7 Sample Flash Font Information
Font Name | Symbol Set | Style | Weight | Example Output |
---|---|---|---|---|
F2 OCR-A | 0O | 0 | 0 | ... <ESC>(0O<ESC>(s0p<pitch>h0s0b4200T ... |
F3 OCR-B | 1O | 0 | 3 | ... <ESC>(1O<ESC>(s0p<pitch>h0s0b4206T ... |
In these examples, there are many more fonts and each font has its own code. OCRB for example has code 4206. This number is important later on.
Creating Output
When having problems getting the correct font, simplify the report and thereby the output. This can be done by creating a straightforward report using select sysdate from dual
as the query and limiting the number of fonts. This will avoid long runs and create much smaller output files.
Reading the Output File
The resulting PCL-file is a binary file but is reasonably readable in the VI editor. The first small part and the end part is binary, but the middle part is readable and contains data that can be interpreted.
Verifying the Output File
The only interesting information is in the readable, middle part of the file. Find the text (this is the text displayed in the reports output) and check out the part preceding the text.
It looks like this:
In the preceding example, the font is selected with code 4099. For the Lexmark printer, this is selecting Courier.
In one example, the font OCR-B (code 4206) was needed. The font did not come out until that specific code was generated just before the selected text. It looks like this:
Correcting Printed Font
If the output file contains the correct code, but the font does not appear on the printer, the printer probably does not have the font available. This will also occur if the code in the output file (deduced from TFM file) is not the same as the one the printer is expecting. On the Lexmark printer, the font was replaced by the default font on the printer.
If the output file does not contain the code for the font, Oracle Reports did not generate the code to the output file. Check for the HPD and TFM files.
Checking Environment Variables
DEBUG_SLFIND
can help you ascertain which of these files was used. With reference to the fonts, you can find the list of AFM/TFM files the application looked at after reading the printer definition file and which font files it read after the aliasing. In this manner, you can also determine whether a font is mapped or not. Usually the order of file reading will be as follows.
TK_DEBUG_POSTSCRIPT
will affect PostScript output. It can be set to any combination of these strings:
Any of the options can appear in the environment variable, abbreviated down to one letter. You can set it to any combination of these, separated by "/". This variable is case insensitive. For example, Func/L/Mem
would give you all three options.
Note that the output that results from using this variable will not be supported by Oracle for customer use. It exists for diagnostics purposes only.
Note: Set the environment variableDEBUG_SLFIND to any file name and run the report. The debug information is written in that particular file. Usage: For more information, see Appendix B, "Environment Variables". |
Repairing Fonts Not Appearing Correctly in Web Source View
Text in the user interface of Oracle Reports Builder, such as the window title, uses fonts taken from the system resource files for the current language. These system resource files are supplied with the Oracle Reports installation. In Oracle Reports, you can map these fonts in the [rwbuilder]
section of uifont.ali
. If found, the mapped font is used instead of the original font; if not, Oracle Reports uses the original font.
Note: The mapped font needs to be a fixed-width font. |
In the Web Source view of the Report Editor, the following languages may appear garbled: Arabic, Central European languages, Cyrillic, Greek, Hebrew, Japanese, Thai, and Turkish. To work around this issue, you can set the font names for Oracle Reports Builder in uifont.ali
as follows:
You can download a copy of the Andale Duospace WT (fixed width) font from Oracle Metalink (http://metalink.oracle.com
). The ARU number is 2766564.
Understanding Limitations
On Windows:
http://www.microsoft.com/typography/fonts/default.aspx
. NLS_LANG
is set to UTF8
. The only Wingdings fonts available when using UTF8 are the characters between ASC 32 and 127. ASC 252 would display a blank because it is not supported by UTF8.
Any of the following font sets would provide a reasonable work around.
Webdings - chr(97)
Wingdings2 - chr(80)
Wingdings2 - chr(87)
On UNIX:
AdobeStandardEncoding
, ExtJIS12-88-CFEncoding
, FontSpecific
, HRoman
, ISOLatinHebrew
, JIS12-88-CFEncoding
, and JIS12e-88-CFEncoding
. AFM version that is supported is 2.0.
Display and printer fonts are somewhat similar but have more differences than similarities.
X fonts (display fonts) are bitmap display glyphs, which are displayed on an X terminal by an X Server.
Printer fonts are PostScript fonts (mathematical descriptions of fonts, not bitmaps) that are present in a PostScript printer and are generated by a PostScript Interpreter on that printer.
Creating a template with font set to Times New Roman size 10 (for all fields) and making the report use this template, makes the Paper Design view of the Report Editor display a different font size.
The reason for this behavior is that defaulting couldn't fit the layout into the desired area.
First it reduced the size of text fields and then reduced the size of the fonts. This is much better than wrapping the fields and keeping the template font size.
Also, for templates, the font chosen may be different to that in the template since it matches first on the character set. So if the template font doesn't support the current character set, the font will change to one that does. This is mostly visible if you have an English template, which you use in a Hebrew/Arabic environment.
Resolving Common Problems
Problem: Letters are truncated from the right margin on printed label reports.
You have printed a mailing label report on a Windows machine and notice that the last letter, or last few letters, on each line are being truncated. The letters are not missing when you preview the report. You have tried changing the page formatting and font settings, but this has failed to resolve the problem.
Solution: If the report displays correctly using a DESTYPE
of Preview, this is not a problem with the printer driver. The problem may be occurring due to the frame properties.
If a frame around the layout objects has a Horizontal Elasticity setting of Fixed and the data exceeds the frame size, it can cause this truncation of data.
Try testing the results after setting the Horizontal Elasticity property to Expand or Variable.
Problem: When generating to file as HTMLCSS, a column is dropped off in the output.
You are generating a report to an HTMLCSS file format and it appears to be fine in the Paper Design view of the Report Editor. When you click the newly created file it comes up in your browser, but the last column is missing from the report output.
If you re-run the report again, it still looks fine in the Paper Design view and the column is there as it should be. Clicking on the file again appears to have the column dropped off and missing from the report output. PDF appears fine in Paper Design view and the Adobe Acrobat reader.
Solution:
When you click the HTMLCSS file, your browser shows the report correctly with all of the columns intact.
When viewing HTMLCSS files with your browser, it is recommended to have Small Fonts as the default setting for your Windows system.
If you have Large Fonts as your default, your HTMLCSS file may not display correctly.
Problem: How to choose bitmap fonts sizes of less than 8 point in Oracle Reports Builder.
Solution: There are times when a font size of 6 or less is required for reporting purposes. Keeping in mind that font mapping and sizing is actually a product of operating system font files and driver/printer specifications, it is possible to change many fonts to minimal sizes such as 6 or less.
Oracle Reports typically allows fonts to be downsized to a size of 8. This is accomplished by opening a report in Oracle Reports Builder, going to the Layout Model view, and selecting the report objects that you wish to change. Once the object is selected, go to the font size list next to the font picker and select your font size.
Typically, your size will be limited to a range from 8 to 72 for True Type fonts, less for other fonts.
You can enter a size smaller or larger than the sizes in the list. To do this, again select the object, place your cursor in the font size field, press Delete to remove the current size number, enter the font size you desire, and then press the TAB key. The change takes effect immediately.
Once again, keep in mind that not all font sizes are possible. Also, some combinations of fonts and attributes are not practical. Simply having the ability to choose a font size does not mean that the font will be legible when printed. Fonts that involve small sizes, combined with bold, italic, or other attributes, may also present legibility problems when printed or displayed due to the limitations of the printer driver, printer, font metrics, language, code sets, NLS_LANG
, and, of course, human eyesight.
Problem: The report output font size is different in Windows and UNIX.
A simple report designed on Windows uses the Arial and a font size of 8. This report was ported to Sun Solaris and was found to have a different font size in the output on Solaris. In the UNIX environment, the report is uses the Helvetica font and a font size of 9. The Arial font has been mapped to the equivalent font, Helvetica, on UNIX using uifont.ali
.
Solution:
xlsfont
command or any other UNIX font utility. Arial.8 = Helvetica.8
(assuming that size 8 is available for Helvetica on the UNIX system) and ensure that uifont.ali
is in the correct directory. It's probable that the Helvetica font installed on your machine is bit mapped (rasterized) and so it doesn't automatically scale to any arbitrary size. If so, you must install a scalable Type 1 font, which should allow you to choose any point size.
There may always be differences between fonts on different systems even if the fonts installed are the same because the font configuration files may be different on these systems.
Problem: When printing, fonts are replaced by non True Type fonts. In the Paper Design view, the fonts are fine.
Solution: Check the printer settings (advanced) and ensure that it doesn't say:
UNIX
Problem: While running Oracle Reports on X-windows emulators, fonts installed on UNIX do not appear in the font lookup box.
Solution: On X-windows emulators, where the font path is usually a font directory on the local machine, the fonts that were installed on will not be available and only the fonts in the local font directory will be used by the Oracle Reports font lookup box. In such cases, you should start a font server on a remote machine where the fonts were installed and point the font path entry to this font server. For starting the font server and setting the font path entry, consult the system manual and X-windows emulator help.
For finding the font path or font server that is currently being used, use the UNIX command xset -
.
Oracle Reports provides a rich set of features out-of-the-box for printing on various platforms. Printing on UNIX requires some setup and configuration to create the proper printing environment. This chapter provides information about printing on UNIX with Oracle Reports. In particular, it covers:
This section explains how to print from Oracle Reports on UNIX and highlights the key differences between the UNIX and Windows platforms. It also explains the operating system requirements for any application to print successfully.
To understand how printing works for Oracle Reports on UNIX, it is useful to have the Microsoft Windows printing mechanism as a reference point. Microsoft Windows provides an application level API that supports different types of printers based on the installed printer drivers. Applications can interact with various printer drivers through these standard APIs. For example, to change the paper margin, an application needs to call the appropriate Microsoft Windows API method, which conveys the desired changes to the printer driver. On Microsoft Windows, printer drivers are printer specific; that is, you must install a specific printer driver for a printer. These printer drivers know how to communicate to the printer and provide services to applications that send output to the printer. Applications can access the printer properties, change their properties, and perform printing through these standard APIs.
Motif and character-based UNIX operating systems do not have their own standard interface to printers like Microsoft Windows. Individual applications are responsible for sending their output in a streamed file to the printer and adhering to the specifications of the printer. On UNIX platforms, Oracle Reports output must be formatted properly (for example, PostScript or PCL) before sending it as a stream to the printers. To print on UNIX, Oracle Reports mimics the behavior of the Microsoft Windows printer drivers internally. The next section describes more precisely how this mechanism works on UNIX.
Figure 10-1 and Figure 10-2 depict the differences between Oracle Reports printing on UNIX and on Microsoft Windows.
To support printing on UNIX, Oracle Reports internally creates logical printer drivers. A logical printer driver simulates the behavior of Microsoft Windows printer drivers and provides a printing service interface for Oracle Reports on UNIX. Through the logical printer driver, Oracle Reports can access the printer properties and perform printer-related operations. These logical drivers:
lpr
), the printer interprets the commands in the file and processes them accordingly. To function correctly, the logical printer drivers require the following input:
You provide this information in a file called uiprint.txt
. Oracle Reports uses this file to get a list of the printer queue names available for printing. In uiprint.txt
, you must specify the printer queue name, the type of driver needed for the queue, the version of the driver, and any special printer description file that the print driver needs for that specific printer (for example, a PPD file for the PostScript driver). Once this information is available, the internal logical printer drivers are constructed and they use the definition files provided to access the printer properties.
Oracle Reports supports the following printing standards on UNIX:
The printers you use with Oracle Reports should be compatible with these versions.
This section describes:
The installation of a printer queue is slightly different depending upon your flavor of UNIX. Some platforms may have user interface tools to help in the installation. Please refer to your UNIX platform documentation for the steps on adding a printer queue.
The following sample script adds a printer queue on the Solaris 2.6 platform. The domain information expldomain
and printer names printer1
and printer2
are hard coded in this example. The printer is a Xerox DCS model.
To verify that your printer queue installed correctly:
This section explains the various configuration steps to be performed on UNIX after printer installation.
As discussed in Section 10.1, "UNIX Printing Overview", Oracle Reports creates logical printer drivers. To create these internal printer drivers, it needs information from you like the available printer queue, the type of driver to be used with the queue, the version of the driver, and the printer description file. uiprint.txt
is the main file for providing this information. It is located in:
uiprint.txt
is the printer configuration file and Oracle Reports reads it when it creates the internal printer drivers. You should modify this file for each instance of Oracle Reports.
The format of entries in uiprint.txt
is:
This one line entry, in prescribed format, in uiprint.txt
defines a printer to be used by Oracle Reports. Each line contains five fields separated by colons. Table 10-1 describes each element of the uiprint.txt
entry.
Table 10-1 uiprint.txt
Entry Elements
Element | Description |
---|---|
Printer | Specifies the name of the printer (or printer queue), as used with the To get a list of all available printers, use the following command: lpstat -a To check the status of the printer, use the Solaris lpstat -p printername Linux lpstat -p printername HP-UX lpstat -d printername HP Tru64 lpstat -p printername IBM AIX lpstat -pprintername No space is allowed after |
DriverType | Specifies the type of printer driver used for the printer. The driver can be PostScript, PCL, or ASCII. |
DriverVersion | Specifies the version of the driver type that should be used. This can be 1 or 2 for PostScript printers, and PCL Version 5 for PCL. |
PrinterDescription | Specifies the description of the printer, for example, the speed and the location of the printer. This information is used for display in the printer-related dialog box. |
PrinterDescriptionFile | Specifies the printer description file to be used with the printer. It can be one of the following types:
|
Usage Note:
uiprint.txt
entry must be filled and every line must end with a colon. uiprint.txt
. Alternatively, you can set the related printer variables (TK_PRINTER
and PRINTER
). Without these, Oracle Reports is unable to perform any printer-related task. See Also: Section 10.3.2, "Environment Variables" for more information on printer-related environment variables. |
The internal printer drivers provide a drawing surface for Oracle Reports. In addition to using this surface for printing, Oracle Reports uses it internally whenever output is generated to a file. Hence, you must have a valid entry in uiprint.txt
or to set one of the printer-related environment variables. To simplify the selection of printers for your users, we recommended that you list all printers accessible to users in uiprint.txt
.
Example:
Following are two example entries for uiprint.txt
:
This section lists the environment variables related to printing:
See Also: Appendix B, "Environment Variables" for more information on the environment variables that can be set in Oracle Reports. |
On UNIX, Oracle Reports Builder provides several dialog boxes for printer-related operations.
The Page Setup dialog box enables you to specify how the printed page appears. The available options depend on the type of printer driver being used. The internal printer drivers use this dialog box to get all the information necessary, (for example, scale, rotation, width, and height) for formatting a page on a printer.
This section explains the different printing related files. It gives an overview of these files and also provides information for editing these files for common printing needs.
PostScript is Adobe's page description programming language. PPD files define what capabilities a printer has for applications like Oracle Reports. For example, a PPD file might define which paper tray to use, what paper sizes are available, what is the physical dimension of the paper, and what font is available. Currently, Oracle Reports reads the paper sizes and fonts available on the printer as well as its default resolution from this file. In the future, more information may be used, such as memory for proper image partitioning.
The only reason to modify the PPD file is to allow Oracle Reports to recognize newly added fonts or memory. You can also change the DefaultPageSize
to your preferred page size.
Note: Page sizes, like all PPD entries, are case sensitive. Other entries in the PPD file should generally be left undisturbed. |
When you select a printer that is not listed in uiprint.txt
or change the type of printer to a PostScript type in the Choose Printer dialog box, you are prompted for the PPD file for the printer. You must choose the PPD file for a printer that most closely resembles the printer being used. PPD file names typically bear some resemblance to the printer model name.
In uiprint.txt
, a PPD file must be specified for each printer. If an invalid PPD file is specified for the current printer (for example, no PPD file is found or the PPD file format is wrong), Oracle Reports will use default.ppd
for that printer. You should make default.ppd
a copy of another PPD file that better reflects the most likely default, local printer.
Oracle Reports includes a common set of PPD files, but sometimes you may need to get specific PPD files for your printers from the vendor. Table 10-3 shows some examples of PPD files that are shipped with Oracle Reports:
Table 10-3 Common PPD Files Shipped with Oracle Reports
PPD File Name | Corresponding Printer |
---|---|
| Apple LaserWriter v23.0 |
| Dataproducts LZR-2665 |
| Digital PrintServer 40 |
| Default Level 1 PostScript Printer |
| HP LaserJet 4/4M PostScript 600DPI |
| Apple LaserWriter II NTX |
| NEC Colormate PS/80 |
| Tektronix Phaser III PXi v2011.108 |
| Linotronic 530 |
| Default PPD file to be used when a printer is not available on UNIX. |
If you need a PPD file that is not among those shipped with Oracle Reports, you must do one of the following (in order of preference):
The PostScript file only has the font information not the font metrics. Oracle Reports refers to the AFM file installed for the font metrics information. The font vendors provide these AFM files. Oracle Reports ships AFM files for some of the most commonly used fonts. The printer must have the required font installed in order to correctly print the PostScript file generated by Oracle Reports.
A PPD file is a static representation of the features of a printer. It contains default factory settings. Once a printer is installed, features such as additional memory, paper trays, and fonts may be added to the device. The task of managing a device is a dynamic issue that requires keeping track of fonts downloaded to disk, error handlers, RAM-based fonts and procedure sets, default device setup, and so forth. This kind of device management is beyond the scope of PPD files. However, there are some provisions for customizing the information contained in PPD files to adapt them to local instances of printers or to specific applications when necessary.
Instead of modifying the original PPD file, another approach would be having a new file having the local customization of certain parameters and refer to the primary file for the remaining information. The local customization file must contain a reference to the primary PPD file in this format:
where filename
is the name of the primary PPD file. This referencing allows a system administrator to later replace the primary PPD file without forcing users to edit their local customization files. A file referenced by the *Include
keyword is treated as though it were in the including (local customization) file.
For example, suppose that the default.ppd
file is defined as:
The primary PPD file is datap462.ppd
.
Administrators should change the name of the included file to conform to their site's default printer type.
When a local customization file includes a primary PPD file, there might be several instances of the same keyword in the composite file. Hence, the location of the primary file in the customization file (beginning or end) is important and effects the changes made by the customization file.
HPD files provide functionality for PCL printers that is similar to what PPD files provide for PostScript printers. HPD or HP glue files provide information on what fonts are available for a PCL printer. The HPD file format can be found in the HP PCL5 Developer's Guide.
Just as PostScript has AFM files, every HP font must have an associated TFM file. The font vendor should provide TFM files and new fonts should be added to the HPD file for your printer when installed. For a new font, you should specify the following fields in the HPD file:
where
fontname
is a descriptive name for the font.
tfm-filename
is the base file name for the TFM file.
If the TFM file isn't specific enough, you can also specify the following after the FONT
field:
If the specified font is a bit mapped font but is listed in the TFM file as a scalable font, you can limit the point sizes used by listing the acceptable sizes as follows:
This field limits the supported symbol sets to those listed. See the HP PCL documentation for a list of recognized symbol sets.
Oracle Reports also supports the defaultpaper
field for printing to PCL format. This field can be used to set the defaultpaper
to be used by the Toolkit. The format of this field is:
For example, the following sets the paper name to A4:
The paper name is case insensitive. If you specify defaultpaper
in more than one place, then the last instance of defaultpaper
is used. If you specify a paper name that is not supported by the printer, defaultpaper
is ignored and LETTER
is used as the paper name instead. Similarly, if the paper name is incorrect, then LETTER
is used.
Oracle Reports supports two kinds of font metrics files:
Each AFM files contains the font-related metrics for a single font. The metrics include various font attributes such as style, weight, width, and character set. AFM files and a description of the AFM file format are typically available from the font or printer vendors.
To install the AFM file, just copy it to the AFM file location, which is listed in Section 10.2.2, "Verifying the Printer Setup for Oracle Reports". The name of the file must match name of the font without the.afm
extension. For example, if the font name is CodedreineunBold
, the file name must be CodedreineunBold
.
To verify the font name, you can look for the fontname string in the AFM file. Please note that the AFM files are not font files, they are metrics files, which give information on how to properly format the characters for the printer. If you have an AFM file for a font, but the font is not present on the printer, Oracle Reports cannot generate the correct output on the printer because of the font metrics mismatch. You must ensure that the font used to design the report is also available on the printer.
PCL uses HPD and TFM files. The HPD file contains the list of available fonts for the printer and each font refers to a TFM file. TFM files serve the same purpose as Adobe's AFM files, with each file listing information about a single font. The HPD file is an ASCII file, which can be edited, but the TFM file is a binary file, which cannot be edited.
To use a new font in Oracle Reports and have it appear correctly in PCL output, you need the HPD and TFM files for the printer. You can copy an HPD file from an existing one, after you ensure it is suitable for your printer. The fonts specified in the HPD file must be available on the printer.
Oracle Reports includes a common set of TFM files. If you need other font metrics files for your printer, you should obtain them from your font or printer vendor. To install the TFM file, just copy it to the TFM file location, which is listed in Section 10.2.2, "Verifying the Printer Setup for Oracle Reports".
The uifont.ali
file defines the font aliases used by Oracle Reports. It is an extremely useful tool for cross-platform development because it enables you to define which fonts to substitute when a particular font is unavailable. uifont.ali
is located in:
On Windows: ORACLE_INSTANCE\config\FRComponent\frcommon\tools\common
On UNIX: ORACLE_INSTANCE/config/FRComponent/frcommon/guicommon/tk/admin
To alias a font, use the following syntax:
For each font, you may also specify the following attributes:
Styles may also be combined using a plus sign + to delimit the styles. For example:
This entry maps any Arial font that has both Italic and Overstrike styles to a 12-point, bold, and italic Helvetica font. Font faces can be case sensitive depending on the platform and the surface; that is, printer or system.
uiprint.txt
provides a convenient way for you to provide details about the printer queue, such as the type of printer driver and the printer description. You should edit uiprint.txt
for each instance of Oracle Reports.
This section describes how to edit the various print-related files:
In some cases, you may need to change certain attributes in your PPD file. The sections that follow describe some of the attributes that you would commonly want to change:
Suppose that you need the page size to be A4 for some of your reports. On UNIX platforms, the printer driver is specified in uiprint.txt
and the default page size is not necessarily set to A4. For example, hpljet41.ppd
has LETTER as the default page size. Note that the default page size setting for each printer queue is taken from the corresponding PPD file.
To set A4 as the default page size, you would do the following:
uiprint.txt
to include a PostScript Printer Description file (extension is .ppd) that supports the A4 page size. For example, you might include hpljet41.ppd
. hpljet41.ppd
. uiprint.txt
: hpljet41.ppd
and change these settings as follows: To change the margins, you must modify the ImageableArea section in the PPD file. ImageableArea provides the bounding box of the area in which the printer may print for the page size named mediaOption. There will be one statement for each named page size supported by the device. *DefaultImageableArea provides the mediaOption name of the default imageable area. Since there can be only one default page size, this value should be the same as the value of *DefaultPageSize, *DefaultPageRegion, and *DefaultPaperDimension.
The syntax for defining imageable area is as follows:
ll
stands for lower left corner and ur
for upper right corner. The bounding box value of *ImageableArea is given as four real numbers, representing the x and y coordinates of the lower left and upper right corners of the region, respectively, in the PostScript language default user space coordinate system. The x and y axes of a given page size correspond to the x and y axes of that page size in the *PaperDimension entry.
The imageable area is defined as the part of the page where the printer may actually make marks. On some printers, the imageable area of a given page size varies as a result of the current resolution, amount of memory, the direction of paper feed, and other factors. In PPD files where the imageable area of a given page size can vary, the imageable area recorded for that page size will be the intersection of all possible imageable areas for that page size. This formula ensures that the available imageable area is never smaller than that shown in the PPD file and all marks made within the imageable area will be visible. It does, however, also mean that the imageable area in the current configuration might actually be larger than the imageable area shown in the PPD file.
The following table contains the option keywords currently registered for mediaOption
, which designates a given page size on a device:
Table 10-4 mediaOption
Keywords
mediaOption (Paper Size) | Size (pts) | Size (mm) | Size (inches) |
---|---|---|---|
Letter | 612 * 792 | 215.9 * 279.4 | 8.5 * 11 |
Legal | 612 * 1008 | 215.9 * 355.6 | 8.5 * 14 |
Ledger | 1224 * 792 | 431.8 * 279.4 | 17 * 11 |
Tabloid | 792 * 1224 | 279.4 * 431.8 | 11 * 17 |
A3 | 842 * 1191 | 297 * 420 | 11.69 * 16.54 |
A4 | 595 * 842 | 210 * 297 | 8.27 * 11.69 |
A5 | 420 * 595 | 148 * 210 | 5.83 * 8.27 |
B4 | 729 * 1032 | 257 * 364 | 10.12 * 14.33 |
B5 | 516 * 729 | 182 * 257 | 7.17 * 10.12 |
Example
To change the margins of an A4 page in the default.ppd
, you would perform the following steps:
Letter
to A4
in the following sections: Note: All PPD entries are case sensitive. |
On PostScript printers, Oracle Reports only enables you to use fonts known to be available on the printer. Since printers are rarely available for personal requests on multiprocess operating systems, Oracle Reports gets a complete list of fonts from the PPD file.
When a new font is installed on the printer, a corresponding font entry needs to be added to the printer's PPD file. The format for a font entry is:
where
{fontname}
is the Adobe font face name as specified in PostScript.
{encoding}
is the PostScript encoding name.
{version}
is the FontInfo version number.
{charset}
is the Adobe character set.
The encoding
value has slightly different meanings depending on the font type. If the encoding cannot be determined, the value of encoding may be set to unknown. Fonts are usually re-encoded by applications to provide other encodings; the charset
value for each font indicates which encodings are possible for that font. For more information, please refer to the PPD specification from Adobe.
When new fonts are added to the printer, the matching AFM files must also be added to the font metrics directory. Oracle Reports requires the AFM files to get the actual font attributes and properly place text on the printed page.
Example
Suppose you add a new font, CodedreineunBold, and want to edit the PPD file to include the new font.
The PostScript output generated by Oracle Reports has the tray information embedded into it. The PPD file defines the default tray to be used and is followed by the definitions of valid trays for the printer. To print to a different tray, the DefaultInputSlot
entry in the PPD file must be updated.
In the PPD file, you should find a section that lists the default tray and the valid input slots. The section typically starts with a line like this one:
The default tray entry looks like the following:
The defined slots typically follow the default entry and look like the following:
The section ends with a line like the following:
You can set DefaultInputSlot
to be any of the values in the list of defined slots.
In some cases, you may need to change certain attributes in you HPD file. The sections that follow describe some of the attributes that you would commonly want to change:
For example, to change the papersize to A4, add the following to the HPD file used:
As with PostScript's AFM files, every HP font must have a TFM file in order for Oracle Reports to use it. The font vendor should provide TFM files. You should add new fonts to the HPD file when you install them.
You must specify the following settings in the HPD file for any new font:
Note: The font name entries in HPD files must be unique. |
Common UNIX Printing System (CUPS) is the default printing system on most Linux distributions. This section describes how to set up CUPS for printing from Reports Server.
CUPS printing is disabled by default. To enable CUPS printing, set the environment variable REPORTS_CUPS_PRINTING
to YES
. For more information, see Appendix B, "REPORTS_CUPS_PRINTING".
The primary advantage of CUPS is that it is a standard and modularized printing system that can process numerous data formats on the print server and also supports Internet Printing Protocol (IPP). With this feature, it is possible to directly print PDF files from Reports Server and it also simplifies network printing.
Figure 10-3 shows how Oracle Reports interacts with CUPS.
With this configuration, printers must be configured on all the CUPS running on all the machines where Reports Server is running.
Several text files are used to configure CUPS. For more configuration-related information, see the CUPS Software Administrators Manual at http://www.cups.org/doc-1.1/sam.html#CONTENTS
.
By default, CUPS does not allow access from other network machines. To configure CUPS to allow access from remote machines, perform the following steps:
Listen
instruction, as follows: Listen
instructions are declared. Listen 127.0.0.1:631
and paste it above or below the original. 127.0.0.1
with the Linux server's IP address. Deny From All
. Allow from 127.0.0.1
to Allow from All
. The Red Hat Advanced Server provides a configuration wizard to help you set up your printers. To use the configuration wizard for this task, perform the following steps:
to display the Printer configuration window.
http://localhost:631
. Note: lpadmin can also be used to add a printer from the command line. Refer to the Linux man page for this command for more details. |
The default CUPS configuration is to use localhost
as the print server. To make the CUPS use a remote server, you must change the server name in the /etc/cups/client.conf
file.
Figure 10-4 illustrates adding printers to a single CUPS server, and configuring all other machines running Reports Server to route their print requests to the remote CUPS server.
For information about the various other printing models, refer to the CUPS Software Administrators Manual at http://www.cups.org/doc-1.1/sam.html#CONTENTS
Note: When Oracle Reports adds a printer to the CUPS server, it assigns a printer name, which is the name that must be used when referring that printer. Internally, the name is translated to the proper call depending on the device URI used in the configuration. |
This section explains multibyte character set printing support in Oracle Reports. It also explains the IX and PASTA utilities, which are supported only for Oracle Reports when installed and used in conjunction with Oracle Applications.
Oracle Reports does not currently support Unicode character sets in PostScript output. As an alternative, you can use Oracle Reports PDF output (desformat=pdf
), which supports multibyte character sets, and print it.
Oracle Reports supports a set of encoding schemes for the AFM files for the multibyte character sets.
See Also: Chapter 9, "Managing Fonts in Oracle Reports" and Chapter 11, "Using PDF in Oracle Reports" for more font-related information. |
The fonts must be installed on the printer that prints the PostScript report output.
Example
Suppose you build a report and its generated PostScript output contains a Chinese character set. First, you need AFM and PPD files that adhere to the encoding scheme for multibyte character sets. The destination printer must also have the required Chinese fonts installed because the PostScript file generated by Oracle Reports on UNIX does not have fonts embedded in it. The PostScript file contains only the font name and the font metrics taken from the AFM files. If you try to send the report to a printer that does not have the Chinese fonts installed, it will not print the Chinese characters properly.
When installed and used with Oracle Applications, Oracle Reports includes utilities for font embedding in PostScript output.
For character-mode reports, the utility is called PASTA. For bit-mapped reports, the utility IX enables you to embed the fonts in the PostScript output, thereby allowing you to print even if the font is not installed on the printer. Both PASTA and IX are supported only for Oracle Reports used with Oracle Applications.
When used for character-mode reports, PASTA takes tagged character mode output (generated through an appropriate prt
file) and generates a PostScript rendition of it. IX enables Oracle Reports to print PostScript bit-mapped reports for all character sets, including UTF8
, on a PostScript printer. With this functionality, PostScript printing in Unicode as well as all native languages on UNIX is supported. The IX library is turned off by default with the Oracle Reports patch.
Please refer to your Oracle Applications System Administrator's Guide for the setup and usage information for IX and PASTA with Oracle Reports. If you are a member of Oracle Metalink (http://metalink.oracle.com
), you can also get this information from MetaLink notes 189708.1 and 159225.
If you have problems with PASTA, you can use the following technique to isolate the problem:
PASTA
environment variable. If the problem reproduces only with the PASTA
environment variable set, then follow the diagnostic process given in the Oracle Applications documentation.
This section explains the different environment variables and techniques available in Oracle Reports for the debugging of UNIX printing problems.
If this environment variable is set, the file-finding routine lists what was searched for and where Oracle Reports searched for it. This information is a tremendous help if your current configuration does not work. You can send the output to a file, stdout
(for standard output), or to stderr
(for output to standard error). If you try to send the output to a file and it cannot be written to, Oracle Reports uses stderr
instead.
We recommend sending the output to a file because it is faster and the output can be quite large. Sample output from DEBUG_SLFIND
is shown below. Notice how the debug information generated helps you identify the various setup issues, such as which PPD and AFM files are being referred to and their location.
You can see all of the following in this output:
TK_PPD
and TK_AFM
, and their values. ORACLE_HOME
. This variable effects the PostScript output generated by Oracle Reports. Table 10-5 shows the settings for this variable.
Table 10-5 Settings for TK_DEBUG_POSTSCRIPT
Setting | Description |
---|---|
Functions (Func) | Function lists each toolkit function called in comments in the PostScript output. |
Long (L) | Long produces more intelligible PostScript output but runs much more slowly than normal PostScript generation. |
Memory (Mem) | Memory displays memory usage at the bottom of each page. |
Any of the options can appear in the environment variable, abbreviated down to one letter. You can set it to any combination of these, separated by "/". This variable is case insensitive. For example, Func/L/Mem
would give you all three options.
Note: The PostScript output from this variable is for your own debugging purposes. You need not provide this output to Oracle Support for investigation. |
Prior to Oracle Reports 10g Release 1 (9.0.4) on UNIX, you had to set the DISPLAY
environment variable in order for Reports Server to use the windowing system display surface for creating images and getting pixel resolution. This dependency is removed with Oracle Reports 10g.
Additionally, earlier releases required a valid printer on UNIX for fonts. When no valid printer was available, Oracle Reports Services used the screen fonts, which again required setting the DISPLAY
environment variable. Now, Oracle Reports Services includes a default screen printer surface, ScreenPrinter, that emulates a screen or printer for fonts in the absence of an available printer. As a result, Oracle Reports Services no longer requires a printer on UNIX.
By default, the environment variable REPORTS_DEFAULT_DISPLAY
is set to YES
, which specifies that Oracle Reports Services should:
DISPLAY
environment variable (UNIX only) If you wish to revert to the dependency on the DISPLAY
environment variable as in releases prior to 10g Release 1 (9.0.4), you can set REPORTS_DEFAULT_DISPLAY=NO
.
The PostScript printer driver screenprinter.ppd
provides surface resolution for images and specifies font information. This driver is the first entry in uiscreenprint.txt
. The file locations (UNIX only) are:
Note: Beginning in Oracle Reports 11g Release 1 (11.1.1), configuration ofscreenprinter.ppd should be done only through Oracle Enterprise Manager. Refer to Chapter 7, "Administering Oracle Reports Services Using Oracle Enterprise Manager", Section 7.9.1, "Configuring Fonts"for information about updating configuration settings through Oracle Enterprise Manager. |
ScreenPrinter is used for:
REPORTS_DEFAULT_DISPLAY=YES.
If, when generating report output, there is no valid printer queue available (not found from TK_PRINTER,ORACLE_PRINTER,PRINTER
, or uiprint.txt
), the surface based on screenprinter.ppd
will be created and used to get font information. You can modify the Fonts
section of screenprinter.ppd
to include new fonts, and modify the DefaultResolution
field to change the resolution (DefaultResolution
is 96).
Note: If you do add new fonts, ensure that the new AFM metrics files are placed in the AFM directory. |
The font look up algorithm on UNIX is:
Note: In certain multibyte languages like Chinese, you may want to use screen fonts. However, this would necessitate setting theDISPLAY variable for running the report. To revert to
|
The quality of images contributes considerably to the overall appearance of a report, particularly for a Web report. You may prefer different image formats in your report output depending on the needs of your project. For example, an aeronautical firm might prefer the higher quality of JPEG or PNG images in their Web reports instead of GIF images. On the other hand, if you are building a Web portal, you might prefer GIF images because of their smaller size and faster download. Similarly, you may wish to import images of these various formats into your report.
Depending on the format of your output, you may choose from a variety of formats for your images.
Table 10-6 Image Format Options by Output Type
Report Output | Available Image Format Choices |
---|---|
HTML, HTMLCSS | PNG, JPEG, JPG, GIF |
| PNG, JPEG, JPG, GIF |
RTF | PNG, JPEG, JPG, BMP |
Note: As you choose your image format, you should take into account the quality and size considerations. Typically, the higher the quality of the image format, the greater the size. For example, PNG and JPEG are higher quality than GIF, but they may also require more storage space. |
To enable advanced imaging, you must set the REPORTS_DEFAULT_DISPLAY
environment variable to YES
. The REPORTS_OUTPUTIMAGEFORMAT
environment variable lets you choose the default image type. Users can override the default choice for images with the OUTPUTIMAGEFORMAT
command line keyword. For example:
Enabling advanced imaging also enables you to import images of these same formats into your report.
Usage Notes
REPORTS_DEFAULT_DISPLAY
=NO
. This limitation does not apply on the Windows platform. REPORTS_OUTPUTIMAGEFORMAT=JPEG
) to RTF output causes an increase in the RTF file size that is not directly proportionate to the image size. This occurs because the binary image stream is first converted to HEX characters and then written to RTF. This conversion increases the file size. This is consistent with the RTF specification and is expected behavior. However, an RTF file with JPEG images is of a smaller size when compared to an RTF file with BMP images. This section addresses some commonly encountered problems with UNIX printing.
Note: Reports Server usesrwlpr for submitting a print job. For rwlpr logging for Windows, when you enable tracing for Reports Server using either traceModule=all or traceModule=server , a printing diagnostic log (server_name -rwlpr- jobid .log) is created in the log directory ($ORACLE_INSTANCE/diagnostics/logs/ReportsServerComponent/<reports server name>) for destype=printer . This log file will contain information regarding the messages that can be used to diagnose any printing issues, such as spooler problem. |
REP-00177 - Error while running in remote server
REP-1800 - Formatter error
REP-3300 - Fatal error in component name
UI-9 - This function call is out of context.
REP-3002: Internal error initializing printer information
Cause:
These errors generally indicate a printer configuration issue.
Action:
Check the printer queues that have been defined at the operating system level in your setup. You can use:
lpc status
lpstat -a
If a valid printer queue is installed, check for the following:
uiprint.txt
must have a valid entry for the printer. uiprint.txt
file: The person running the report must have operating system level read permissions on uiprint.txt
. Oracle Reports must be able to open the uiprint.txt
. UNIX operating systems do have an open file limit. If you are over that limit, Oracle Reports might not be able to open uiprint.txt
.
uiprint.txt
must exist in your installation in: uiprint.txt
must be enabled at the operating system level. A quick test is to try printing any file from the command line using lp
or lpr
. If you can print using one of these commands and get the output on the printer, then the printer is enabled. uiprint.txt
entry syntax must be valid. If the printer validation fails, refer to the environment variables TK_PRINT_STATUS and REPORTS_NO_DUMMY_PRINTER in Appendix B, "Environment Variables".
REP-00826 - Invalid printer driver xxx specified by parameter desformat.
REP-00177 - Error while running in remote server (When run through CGI)
Cause:
An invalid value was specified for DESFORMAT
for the specified report execution mode.
Action:
The DESFORMAT
parameter specifies which output format is needed. Valid formats are:
DESFORMAT
. You should not give the PRT file names here. While running to a file, the DESFORMAT
parameter needs to be set to a valid printer queue. Oracle Reports uses the printer definition file associated with the printer to format the output. DESFORMAT
sets up the output for ASCII printers and passes escape characters. For running character mode reports, ensure that you change the MODE
parameter to Character and use any valid .PRT file. Table 10-7 maps the command line options (DESTYPE
, DESNAME
, and DESFORMAT
) to the printer by what you are trying to achieve.
Table 10-7 DESTYPE
, DESNAME
, and DESFORMAT
Settings By Case
Case | DESTYPE | DESNAME | DESFORMAT |
---|---|---|---|
Generating to a file |
|
|
|
Printing |
|
| |
|
| ||
|
|
REP-01800 - Formatter error.
REP-00177 - Error while running in remote server
(When run through CGI)
Cause:
The error indicates that a printer configuration issue has occurred on a UNIX server. Even if there is not a physical printer available on the system, you have to set it up as if there was one.
Action:
uiprint.txt
. uiprint.txt
and you want to set the default printer, verify that the environment variable is set to a printer that is listed in uiprint.txt
. If the related environment variable is not set, then the first entry in uiprint.txt
is used. For more information on printer-related environment variables, refer to Appendix B, "Environment Variables". If there is no printer available for your system, refer to Section 10.3, "Configuring the Printing Environment" for alternatives.
Error while printing to a printer with spaces in its name
Cause:
If you are on Solaris 2.8 and have printers that have spaces in the names, you may encounter a bug that causes an error resulting from the lpr
/lp
command including quotes around the printer name.
Action:
To resolve this issue, you must do either one of the following:
lpr
/lp
command so that quotes can be used in printers names. and
rwlpr.sh
that provides the workaround for including quotes, in order to make accessible any printer that has a space in the name. The rwlpr.sh
file is located in the $ORACLE_INSTANCE/config/reports/bin
directory. Specifically, make the following changes:
Printing on Solaris 2.9
If you print a report using the DESTYPE=PRINTER
and the DESNAME
=
printer_name
command line options on Solaris 2.9, you will encounter the following errors:
To resolve this issue, you must do the following:
Note: Create a backup of therwlpr.sh file before proceeding. On Solaris, rwlpr.sh is the printing script file located in the $ORACLE_INSTANCE/config/reports/bin directory. This script file supports lp and lpr commands by default. |
OR
operator to the existing if...else
condition. if...else if
condition checks for the Solaris Release version. Based on the version number, it strips the quotes from the printer name and passes it to the print
command. Why do fields that appear as gray on my PC print as white on a UNIX PCL printer?
PCL color printing is not supported. When the pattern is set to transparent, PCL printing uses the white pen (in PCL language) to draw. When the pattern is set to a solid pattern, it uses the black pen. This behavior occurs irrespective of what color is set for the foreground or background. PostScript printing logic is different. It uses the foreground color set when the pattern is solid and the background color set when the pattern is transparent.
What PCL level is supported in Oracle Reports?
The Oracle Reports PCL driver currently supports the features of PCL Level 3. It does support HPD files for later PCL versions, but it will not honor the additional features introduced since PCL Level 3.
What is the work around for duplex printing on PostScript printers?
You should have a printer with a duplex option and an appropriate PPD file. The example that follows was tested with a PPD file for the Kyocera FS-9000 printer. You also need the UNIX sed
tool named to filter the output file.
The problem with duplexing is that it is enabled at the job level, but it gets reset in the page setup because the paper size and printer tray information are generated for every page. To work around this problem, you need a script that removes the page level setup information to avoid resetting the duplex setting. A side effect of this work around is that you cannot switch the printer tray between pages.
sed
script with the following three lines: duplexsed
. duplexsed
to an appropriate directory, such as ORACLE_HOME
/bin
. TK_PRINT
as follows: Note: Print commands differ for various kinds of UNIX. Check your installation guide and man pages for your platform. Refer to Appendix B, "Environment Variables" for a description ofTK_PRINT . The command stored in |
What PostScript level is supported in Oracle Reports?
Oracle Reports supports PostScript Level 1 and 2.
How do you dynamically change the printer tray setting in the midst of a print job?
In some cases, you may want to switch printer trays in the middle of a report. For example, you might want the first page of a report printed on letterhead stationary and subsequent pages printed on plain white paper. For character mode reports, you can achieve this result through a combination of editing the .prt file and changing the report's properties. For bit-mapped reports, you use the SRW.SET_PRINTER_TRAY
built-in procedure. On UNIX, this functionality is supported for PostScript output but not PCL output. For PCL, Oracle Reports ignores the commands for changing orientation and paper tray. Although dynamically changing the orientation and printer tray for PCL is not supported on UNIX, you can change them at runtime through the print dialog box for PCL.
By using the Before Report, Between Pages, or format triggers you can switch to different printer trays as your report formats. This enables you to easily print pages of the same report on different sheets of paper.
Note: For a description of theSRW built-in package, including the SRW.SET_PRINTER_TRAY built-in procedure, see the Oracle Reports online Help. |
Example
From the BEFORE REPORT
trigger, you can set the printer tray for the very first page:
To set the printer tray dynamically for subsequent pages, add a format Trigger to an item that prints on each page of the report. The following code checks for even pages and sets the page number accordingly:
Why does the external print command ignore the tray select option while trying to print the PostScript output generated by Oracle Reports?
Suppose that you enter the following print command:
In this case, the -oupper
option in the lp
command is ignored. The reason for this behavior is that Oracle Reports generates tray information in its PostScript output. The tray selection in the PostScript overrides the specification on the command line. If you want the tray information on the command line to be respected, you must remove the tray information from the PostScript file. You can do this by searching for and removing the following from your PostScript file:
For more information on switching printer trays, refer to How do you dynamically change the printer tray setting in the midst of a print job?
See Also:
|
How do you check whether a font is used in Oracle Reports printing?
PostScript files have a list of fonts, which is created after reading the PPD file. If you examine the PostScript file, you can check the fonts by looking for the following tags:
DocumentNeededResource
has the list of fonts referenced in the PPD file. DocumentSuppliedResource
has the list of fonts for which the PostScript driver was able to find corresponding AFM files. %%Page
before the field's %IncludeResource:font
has the font name that will be used for the field. For PCL output files, you can check whether a particular font was used. Depending on this information, the font settings in Oracle Reports or the printer can be modified.
What is the real difference between running reports to Screen and Preview?
Formatting a report to Screen, for screen fonts, guarantees that the report will look good in the Paper Design view of the Report Editor. If an attempt is made to print a report formatted with screen fonts, though, it is likely to come out with some differences because screen fonts typically map very poorly to printer fonts. If Preview is selected instead of Screen, the report is formatted with printer fonts and the output on the screen is almost certain to match the printed output.
Will there be any font issues if I do not have a valid printer installed?
Prior to Oracle Reports 10g on UNIX, you had to set the DISPLAY
environment variable in order for Reports Server to use the windowing system display surface for creating images and getting pixel resolution. This dependency is removed with Oracle Reports 10g.
Additionally, earlier releases required a valid printer on UNIX for fonts. When no valid printer was available, Oracle Reports Services used the screen fonts, which again required setting the DISPLAY
environment variable. Now, Oracle Reports Services includes a default screen printer surface, ScreenPrinter, that emulates a screen or printer for fonts in the absence of an available printer. As a result, Oracle Reports Services no longer requires a printer on UNIX.
Why does my report look okay on the screen but have truncated data when printed?
Any one of a number of possible causes may account for the truncation of fields.
Note: Default layouts are built against a generic printer. Each printer has its own printable area. As a result, you may have to reset the report to fit the printer. Ideally, if you know the various printers you will be using, you can design the report from the start to fit the printer with the smallest printable area. |
Adobe Portable Document Format (PDF) is a universal file format that preserves all the fonts, formatting, graphics, and color, of any source document regardless of the application and platform used to create it. Oracle Reports was one of the first report generation tools to embrace this technology and generate quality PDF documents.
This chapter contains the following main sections:
Oracle Reports 11g Release 1 (11.1.1) provides significant font handling enhancements, as outlined in Table 11-1 (a subset of Table 1-1, "11g Functionality vs. 10g Functionality"):
Table 11-1 11g Font Features vs. 10g Functionality
11g New Features | Equivalent 10g Functionality |
---|---|
Cross-platform support for TrueType Fonts (TTF) and TrueType Collections (TTC). Report output is in most cases identical on UNIX as on Windows, allowing for simplified cross-platform deployment. Oracle Reports reads the font metrics from the appropriate TTF files to correctly format the report output. This eliminates the issue of text misalignment due to font metrics mismatches. Fonts for which TTF files are available are found automatically. Note that if a TTF font file is not found, then the font lookup mechanism reverts to the pre-11g implementation. New environment variables REPORTS_ENHANCED_FONTHANDLING and REPORTS_FONT_DIRECTORY. | Possible mismatches between fonts in report output on UNIX and Windows due to different font mechanisms on Windows and UNIX. Font aliasing was required, along with PDF font subsetting. Support for older font file types (for example, AFM) supported. Difficult to get these font types for all fonts. Conversion of TTF to AFM required in many cases, but even these files did not provide the exact output as on Windows. |
Support for all character sets in PDF. With the new font model, no misalignment will be seen in the PDF subsetted report output. Support for Unicode font subsetting in PDF on UNIX. | Only multibyte reports supported. PFM and PFA files must be created to resolve text misalignments in UNIX output. Dependence on AFM files. Variable width font output was especially problematic, because Reports was unable to get width of characters beyond the first 256 characters in the file, and assumed fixed width for all these characters, resulting in misalignment. |
Simplified font management and configuration through Oracle Enterprise Manager. Use Oracle Enterprise Manager to modify aliasing and subsetting entries in | Configure fonts in |
PDF, password protection, and security. Specify new command line arguments to password-protect PDF reports generated from Oracle Reports. You can also suppress certain permissions to provide security for the generated PDF reports. | No capability to encrypt PDF reports or specify security permissions. |
Font diagnostics. Easy to understand tracing for diagnosis of font issues. Reporting of fonts used, and other debugging tools. | Difficult to diagnose issues. |
Oracle Reports supports PDF 1.4 and is capable of generating high fidelity PDF reports on all platforms. The PDF features supported by Oracle Reports include:
PDF compression decreases the PDF file size, thereby reducing the time spent in downloading the PDF file.
The amount of space saved using compression varies based on the contents of the report, for example, the number of images versus the size of the content.
Compressed files are about one fifth the size of the original file. Testing has shown that the best case compression ratio of one-eighth to the worst case compression ratio of one-half was achieved based on the contents in the original file.
By default, PDF output generated by Oracle Reports is compressed. To specify the level of compression, use PDFCOMP
on the command line. For more information, see Section A.7.24, "PDFCOMP".
Although compressed files download quickly, the time taken to generate a compressed file is much more when compared to a non-compressed file.
Note: Compression rate depends on the report's content; thus, the time taken to generate the PDF file as well as the PDF file size will vary from report to report. |
This section outlines the PDF font-related features supported by Oracle Reports:
Font aliasing enables you to substitute one font for another; that is, font-to-font substitution. This font-to-font substitution is usually used when porting applications (in this case, your PDF file) across platforms. You can alias multibyte fonts as well as character sets. For font aliasing considerations when designing multilingual applications, see Section 23.2.1.3.2, "Font Aliasing Considerations".
The font enhancements introduced in Oracle Reports 11g Release 1 (11.1.1) make font aliasing unnecessary in almost all cases. In prior releases, a report may have been created with fonts that are readily available on Windows, but not on UNIX (for example, Arial font). In such cases, it was necessary to alias the Windows fonts to other fonts with a similar style available on UNIX (for example, Helvetica). Now, with support for TTF and TTC files on UNIX, a font such as Arial is supported on both Windows and UNIX, eliminating the need for aliasing.
Font aliasing occurs at the time of generating the PDF file. The PDF file will contain only the necessary font information required to display the output. The fonts used will not be embedded in the PDF file.
Note: The fonts must be available on the machine displaying the PDF output. The fonts need not be available on the machine generating the PDF file. |
At the time of viewing the report, Adobe Acrobat replaces the aliased fonts based on the following:
Adobe
Sans
MM
font. Adobe
Sans
MM
font does not match, the output may display dots for the data. Font aliasing will work with any or all of the following:
Table 11-2 outlines the mapping between Oracle NLS_CHARACTERSET
, CMap name, and CID font name used in PDF font aliasing for multibyte fonts.
Table 11-2 CID Font Mapping for PDF Font Aliasing
Language | Oracle NLS_CHARACTERSET Name | CMap Name | CID Font Name |
---|---|---|---|
Japanese |
|
|
|
Korean |
|
|
|
Traditional Chinese |
|
|
|
Simplified Chinese |
|
|
|
(*) These fonts are available in Adobe Acrobat Reader 5.0 and later.
(**) These fonts are available in Adobe Acrobat Reader 4.0 and later.
It is recommended that you use Version 5.0 CID fonts (*) in order to avoid unexpected font mapping, which results in multibyte characters overlapping. Version 5.0 fonts are compatible with Adobe Acrobat Reader 5.0 and later.
If font aliasing is necessary, use Oracle Enterprise Manager to define the aliasing, instead of directly editing the uifont.ali
file as in prior releases. For information about using Oracle Enterprise Manager for font configuration, see Section 7.9.1, "Configuring Fonts".
For more information about the uifont.ali
file, refer to uifont.ali in Section 9.3, "Font Configuration Files":
If font aliasing does not work, verify that:
uifont.ali
file is incorrect. [PDF]
section name in the uifont.ali
file has not been modified as Oracle Reports parses the file for the section name. With font subsetting, the PDF file includes the font information needed to render the PDF, regardless of the availability of that font on the machine used to view the report. PDF font subsetting works for single byte, multibyte, and Unicode fonts and is the preferred method of creating multibyte reports.
When you subset a font in a PDF file, the font information is embedded into the PDF output for only those characters that are needed for the report output.
Note: You can modify the PDF file if you have:
|
Before using font subsetting, you must:
REPORTS_PATH
environment variable. Oracle Reports looks for fonts in the path specified in the REPORTS_PATH
environment variable when generating a PDF file. uifont.ali
file. Oracle Reports subsets the fonts only when the font entries listed in the uifont.ali
file exist in the PDF file being generated. Note: Theuifont.ali file is located in the following directory:
|
The section for font subset in the uifont.ali
file is [PDF:Subset]
and the entry is:
where
font_name
is the font name, which must be enclosed in quotes if it contains more than one word.
font_file_name
is the font file name, which must always be enclosed in quotes, and is case-sensitive. If it does not exactly match the existing font file name, Oracle Reports generates a REP-1924
error.
The font files can be saved in any folder; for example, ORACLE_INSTANCE
/reports/
font_folder
. The font file's path is added by default to the $REPORTS_PATH
environment variable.
Note: Thefont_file_name is not the font name displayed in Oracle Reports Builder. |
Example 1
To use TrueType fonts in a TrueType Collection (.ttc
) file, the syntax for the entry in the [PDF:Subset]
section in uifont.ali
is:
where
font_name
is the font name, which must be enclosed in quotes if it contains more than one word.
ttc_file_name
is a TrueType Collection file name.
table_directory_number
is the Table Directory number for the TrueType font in a TrueType Collection file, using a zero-based index (for example, "MS PGothic" = "msgothic.ttc,1
" indicates that Oracle Reports should use the second font in the TrueType Collection file). If the table_directory_number
is omitted or if you supply an invalid value, Oracle Reports will always subset the first font program in the TrueType Collection file.
Example 2
Table 11-3 shows the font name and Table Directory number values for common East Asian TrueType Collection files on the Windows platform.
Table 11-3 Common East Asian TrueType Collection Files on the Windows Platform
TTC File Name | Font Name | Table Directory Number |
---|---|---|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
You can view the fonts used in your reports as follows:
Note: In the case of font subsetting:
|
Two environment variables allow for backward compatibility with the font mechanisms of prior releases:
REPORTS_ENHANCED_FONTHANDLING
=YES
. REPORTS_ENHANCED_SUBSET
=YES
to ensure that the PDF file generated is accessible and searchable. You can set environment variable REPORTS_ENHANCED_SUBSET
=NO
to revert to the implementation of font subsetting used in releases prior to Oracle Reports 10g Release 2 (10.1.2); that is, Type3 fonts.
If you set REPORTS_ENHANCED_SUBSET
=NO
, use Adobe Acrobat Reader and perform the following steps to ensure optimum viewing:
Note: These steps are valid for Adobe Acrobat Reader 7.0. |
If font subsetting does not work, verify the following:
arialbd.ttf
(Arial bold), ariali.ttf
(Arial italic), and arialbi.ttf
(Arial bold italic), while some other fonts, such as Arial Unicode MS (arialuni.ttf
), do not have any bold or italic versions. For fonts that do not have bold or italic versions, Windows synthesizes bold or italic styles from the main font file while displaying, as does Oracle Reports on Windows. These styles are preserved in HTML/HTMLCSS, RTF, and PDF (without PDF subsetting or embedding) outputs. However, while doing the PDF subsetting or embedding, since actual font glyphs are included in the report, Oracle Reports needs the TTF files that contain styles; that is, to include the bold style for Arial in the report, it would need arialbd.ttf
. But for fonts such as Arial Unicode MS that do not have such TTF files, PDF subsetted output will not have bold or italic styles. uifont.ali
file is incorrect. filename
.ttf
or filename
.ttc
. REPORTS_PATH
environment variable. When generating a PDF file, Oracle Reports looks for fonts in the path specified in the REPORTS_PATH
environment variable. [PDF:Subset]
section name in the uifont.ali
file has not been modified. Oracle Reports parses the file looking for the section name. REPORTS_ENHANCED_SUBSET
environment variable is set to YES
. If REPORTS_ENHANCED_SUBSET
=NO
, Oracle Reports reverts to the earlier implementation of font subsetting, using Type3 fonts to create a PDF document. Type3 fonts are imaged characters that look slightly bolder than they would if expressed as a Type1 font. See Section 11.2.2.2.2, "Backward Compatibility" for more information on improving the viewing quality. PDF font embedding is the process of including the entire font set along with the data in the PDF file. PDF font subsetting and font embedding are mutually exclusive.
Note: Font embedding will work only if the fonts are included in the PDF file. Font embedding increases your PDF file size. |
PDF font embedding in Oracle Reports is for Type1 fonts only (single byte fonts) and not for TrueType fonts. Convert TrueType fonts to Type1 fonts using available 3rd party tools in order to include specific Type1 fonts in your report.
PDF font embedding with Oracle Reports occurs between a font and a set of font file names.
Note: You must ensure that you have the necessary font licenses before embedding any fonts in your output. |
The setup for PDF embedding includes:
PDFEMBED
[PDF:Embed]
PDFEMBED
The command line keyword PDFEMBED
is used to specify whether Oracle Reports will embed the Type1 PostScript fonts specified in the uifont.ali
file into the PDF output. For more information, see Section A.7.25, "PDFEMBED".
uifont.ali File Entry
The section for font aliasing in the uifont.ali
file is [PDF:Embed]
.
(Windows only) The entry in the uifont.ali
file should be:
pfm
font_name.pfb"
(UNIX only) The entry in the uifont.ali
file should be:
afm
font_name.pfa"
Example 11-1 Font Embedding
In Example 11-1, the Symbol font is embedded into the PDF file. This ensures portability by:
If PDF font embedding does not work, verify the following:
uifont.ali
file is incorrect. REPORTS_PATH
environment variable is correct. When generating the PDF file, Oracle Reports looks for fonts in the paths specified in the REPORTS_PATH
environment variable. [PDF:Embed]
section name in the uifont.ali
file has not been modified. Oracle Reports parses the file looking for the section name. For example (Windows):
Table 11-4 summarizes the advantages and disadvantages of font aliasing, font embedding, and font subsetting.
Table 11-4 Comparison of PDF Font Features
PDF Type | Advantages | Disadvantages | PDF Type |
---|---|---|---|
Font Aliasing | Multibyte support. Good display. Small file size (Japanese example; 23KB for font aliasing when compared to 130KB for font subsetting). | Unicode character set not supported. Asian Font Packs are required on the client machine, if the client's operating system and Acrobat Reader are not the native version. Limited fonts support. For example, there is no support for font emphasis. | Font Aliasing |
Font Embedding | Guaranteed display. | Only single byte support provided. Large file size. | Font Embedding |
Font Subsetting | Unicode support. Guaranteed display. Generated file is searchable and editable using Adobe Acrobat. | No styles (Italic and Bold) support. | Font Subsetting |
The precedence order for the same font in multiple places within the uifont.ali
file is as follows:
For example, if you have included the same font entries for both font embedding and font subsetting, then font subsetting will override font embedding. This is assuming you have not set the command line option PDFEMBED=NO
.
For all font features —font aliasing, font subsetting, and font embedding—include the specific entries first followed by the generic entries. For example, if you want to subset Arial Plain, Arial Bold, Arial Italic, and Arial Bold-Italic fonts, your entries should be in the following order:
If the plain Arial..... = "Arial.ttf"
entry appears first, then all the styles of the Arial font in the layout will be subset as Arial Plain font. Here is a sample of a portion of the uifont.ali
file for all the PDF entries containing all three PDF sections:
Sample 1
Sample 2
Beginning with Oracle Reports 11g Release 1 (11.1.1), you can encrypt and password-protect PDF reports generated by Oracle Reports.
This optional functionality avoids unauthorized reading and changing of PDF reports. The encrypted PDF reports are readable by Acrobat Reader 5.0 and later, and other readers supporting PDF 1.4. This functionality is also compatible with reports developed with prior releases of Oracle Reports.
Oracle Reports uses the Adobe Standard Security Handler to encrypt PDF reports. This standard security handler allows up to two passwords (owner and user) and 8 types of access permissions to be specified for a document.
To provide encryption, password protection, and permissions security in PDF reports, Oracle Reports 11g Release 1 (11.1.1) introduces the following command line keywords:
Note: To generate PDF encrypted report output using Oracle Reports Builder (rwbuilder), you must pass at least one of these command line keywords in the command while starting the rwbuilder . In Oracle Reports Builder, select Generate to File>PDF to generate the PDF encrypted output. |
Table 11-5 describes the effect of the possible combinations of the PDFOWNER
and PDFUSER
command line keywords.
Table 11-5 Effect of PDFUSER and PDFOWNER Keyword Combinations
PDFUSER specified? | PDFOWNER specified? | Effect |
---|---|---|
Yes | Yes | When an end user attempts to open PDF report output in Acrobat Reader (5.0 or later), a password prompt displays to request the password specified by |
Yes | No | When an end user attempts to open PDF report output in Acrobat Reader (5.0 or later), a password prompt displays to request the password specified by |
No | Yes | When an end user attempts to open PDF report output in Acrobat Reader (5.0 or later), Oracle Reports opens the document, decrypts it, and displays it on the screen. If the end user attempts to change permissions on the PDF report output in Acrobat Writer (6.0 or later), a password prompt displays to request the password specified by |
No | No | Any end user can open PDF report output in Acrobat Reader (5.0 or later), and also change the document's passwords and permissions in Acrobat Writer (6.0 or later). No password prompts display. |
For information about suppressing specific permissions for encrypted PDF report using the PDFSECURITY
command line keyword, see Section A.7.27, "PDFSECURITY".
The encrypted PDF document's passwords and permissions, as specified by PDFUSER
, PDFOWNER
, and PDFSECURITY
, are stored with the PDF document. An end user with authorization to change these values can do so as follows:
Support for PDF Security in Distribution
Oracle Reports 11g Release 1 (11.1.1) supports PDF encryption in distribution and bursting of reports. With this feature, you can set individual passwords and security permissions for each PDF that you generate.
To use this feature, you must add atleast one property (pdfuser
, pdfowner
, and pdfsecurity
) in the distribution xml file.
For more information about the distribution xml file, see Section 20.3, "Introduction to Distribution XML Files" and Section 20.5, "Distribution XML File Examples".
Oracle Reports provides several ways for you to include accessibility features in your PDF file. The PDF format file follows the tagged-PDF standard defined in PDF 1.4. This standard along with Acrobat Reader 5 (or higher) provides you with features for inclusion in the paper layout.
For information on enabling accessibility-related features offered through Oracle Reports from the command line, see Section A.5.1, "ACCESSIBLE". For information about using the Oracle Reports accessibility properties designed to make PDF report output accessible to the disabled community (Alternative Text, Headers, ID, Report Language, and Table Caption properties), see the Oracle Reports online Help.
Additionally, refer to Chapter 43, "Building an Accessible JSP-based Web Report" in the Oracle Reports Building Reports manual, and to the Oracle accessibility site on OTN (http://www.oracle.com/accessibility/index.html
), where you can learn more about accessibility and find the Creating Accessible Enterprise Reports Using Oracle Reports white paper.
A PDF document can include global information about itself such as the document's title, author, creation and modification dates. This global information proves useful at the time of cataloging or searching for documents in external databases.
Oracle Reports provides report-level properties to enable such a classification, known as taxonomy. They are:
Table 11-6 Taxonomy Properties
Property Name | Type | Description | Default Value |
---|---|---|---|
Title | String | Document title. | PDF document name |
Author | String | Document's author. | Oracle Reports |
Subject | String | Document's subject. | None |
Keywords | String | Specifies keywords that can be used to categorize the document. | None |
Refer to the Oracle Reports online Help for more information on the taxonomy properties.
Oracle Reports provides the capability to specify the dots per inch (DPI) value for the image resolution of the graph in PDF output. This enables you to scale the graph without compromising on the image quality.
For more information, see Section B.1.50, "REPORTS_GRAPH_IMAGE_DPI" and Section B.1.52, "REPORTS_JPEG_QUALITY_FACTOR".
This section outlines the steps involved in generating a PDF file with a Unicode character set. Before using the font features covered in this section, refer to Table 11-4 to determine which feature best suits your application needs.
The steps involved in generating a Unicode PDF file using the font subsetting feature are as follows:
NLS_LANG=AMERICAN_AMERICA.UTF8
. REPORTS_PATH
to the font directory in which the TrueType font exists. For example, C:\WINNT\fonts
. uifont.ali
file and edit the [PDF:Subset]
section to specify the TrueType font name. Note: Theuifont.ali file is located in the following directory on Windows and UNIX:
|
Example
The specified font should cover the Unicode range that your report uses.
MLS
data with DESTYPE=FILE DESFORMAT=PDF
. This section outlines the steps involved in generating a PDF file for bidirectional (BiDi) languages. Before using the font features covered in this section, refer to Table 11-4 to determine which feature best suits your application needs.
Oracle Reports provides two environment variables that resolve font re-shaping and numeric options with bidirectional (BiDi) languages, such as Hebrew and Arabic. They are:
REPORTS_BIDI_ALGORITHM
This environment variable switches the layout algorithm for bidirectional (BiDi) languages (for example, Arabic or Hebrew). The valid values for this environment variable are ORACLE, ENHANCED
or UNICODE
.
REPORTS_ARABIC_NUMERAL
This environment variable specifies the numeric format for Arabic PDF output.
The following example assumes you are using Arabic environment. The steps involved in generating a PDF file for bidirectional (BiDi) languages using the font subsetting feature are as follows:
NLS_LANG=ARABIC_EGYPT.AR8MSWIN1256
(or AR8ISO8859P6
on UNIX). REPORTS_PATH
to the font directory in which the TrueType font exists. For example, C:\WINNT\fonts
. uifont.ali
file and edit the [PDF:Subset]
section to specify the TrueType font name. Note: Theuifont.ali file is located in the following directory on Windows and UNIX:
|
Example
DESTYPE=FILE DESFORMAT=PDF
. This section outlines the steps involved in generating a PDF file with multibyte fonts. Before using the font features covered in this section, refer to Table 11-4 to determine which feature best suits your application needs.
In PDF font subsetting output, you may see a Wave Dash (U+301C
) instead of a Fullwidth Tilde (U+FF5E
). This is due to incompatibility in character mapping between Microsoft and other vendors. To avoid this issue, you can use either JA16SJISTILDE
or JA16EUCTILDE
character set for PDF font subsetting. This issue, however, is not observed with the PDF font aliasing feature.
Refer to Table 11-2 for a summary of mapping between Oracle NLS_CHARACTERSET
, CMap name, and its CID font name used in PDF font aliasing for multibyte fonts.
The steps involved in generating a PDF file for multibyte fonts using font aliasing are as follows:
NLS_LANG=JAPANESE_JAPAN.JA16SJIS
(or JA16EUC
on UNIX). uifont.ali
file located and set the font alias under the [PDF]
section. Note: Theuifont.ali file is located in the following directory on Windows and UNIX:
|
Example
MS UI Gothic
). DESTYPE=FILE DESFORMAT=PDF
. If you view the PDF file with the Japanese version of Acrobat Reader 4.0/5.0 on the Japanese version of Windows, you need not install the Japanese font pack.
The steps involved in generating a PDF file for multibyte fonts using the font subsetting feature are as follows:
NLS_LANG=JAPANESE_JAPAN.JA16SJIS
(or JA16EUC
on UNIX) REPORTS_PATH
environment to the font directory in which the TrueType font exists. For example, C:\WINNT\Fonts
. uifont.ali
file and edit the [PDF:Subset]
section to specify the TrueType font name. Note: Theuifont.ali file is located in the following directory on Windows and UNIX:
|
Example
DESTYPE=FILE DESFORMAT=PDF
. This section outlines the steps involved in generating a PDF file with barcode information. Before using the font features covered in this section, refer to Table 11-4 to determine which feature best suits your application needs.
The steps involved in generating a barcode PDF file using the font embedding feature are as follows:
REPORTS_PATH
environment variable to the font directory containing the Type1 font. uifont.ali
file and include the following under the font embed [PDF:Embed]
section. Note: Theuifont.ali file is located in the following directory on Windows and UNIX:
|
Example
DESTYPE=FILE DESFORMAT=PDF
. The steps involved in generating a barcode PDF file using the font subsetting feature are as follows:
REPORTS_PATH
environment variable to the directory containing the TrueType font. For example, C:\WINNT\Fonts
. uifont.ali
file and edit the [PDF:Subset]
section to specify the TrueType font name. Note: Theuifont.ali file is located in the following directory on Windows and UNIX:
|
Example
DESTYPE=FILE DESFORMAT=PDF
. Modern business needs warrant a seamless integration and interaction across any platform and infrastructure. Oracle Reports enables businesses to develop and deploy information to all levels within and outside of the organization. However, since any enterprise reporting tool is bound to use some platform-specific functionality like the system fonts or printer fonts, there exists a possibility that the look-and-feel of the report changes when the report is ported from one platform to another; for example, from the development platform (commonly Windows) to the deployment platform (commonly a UNIX-based platform).
This chapter introduces the new font model and its features. The new font model offers many new features and benefits. For more information, see Section 12.1, "What's New In This Release?". a
If the new font model is not used, the user needs to manually configure the font settings as present in pre-11g and apply a few fixes manually when deploying your reports on UNIX platforms.
This chapter also covers those scenarios where the choice of platform may affect the look-and-feel of the report output. Each report output format (for example, PDF, HTMLCSS, and RTF) that is open to cross-platform issues is covered in a separate section. These sections provide step-by-step instructions that will ensure that your report output looks the same on all platforms. These guidelines are followed by troubleshooting information and FAQs. Since multibyte and Unicode reports involve some additional steps, separate sections are devoted to those topics. This chapter is applicable to Oracle9i Reports, Oracle Reports 10g Release 1 (9.0.4), 10g Release 2 (10.1.2), and 11g Release 1 (11.1.1), except as specifically noted.
Before you proceed, it is strongly recommended that you are familiar with the concepts and terminology outlined in the following chapters:
This chapter includes the following sections:
Note: This chapter lists only those scenarios and guidelines that need additional work to ensure similar outputs across platforms. |
Oracle Reports 11g Release 1 (11.1.1) provides significant font handling enhancements, as outlined in Table 12-1 (a subset of Table 1-1, "11g Functionality vs. 10g Functionality") :
Table 12-1 11g Font Features vs. 10g Functionality
11g New Features | Equivalent 10g Functionality |
---|---|
Cross-platform support for TrueType Fonts (TTF) and TrueType Collections (TTC). Report output is in most cases identical on UNIX as on Windows, allowing for simplified cross-platform deployment. Oracle Reports reads the font metrics from the appropriate TTF files to correctly format the report output. This eliminates the issue of text misalignment due to font metrics mismatches. Fonts for which TTF files are available are found automatically. Note that if a TTF font file is not found, then the font lookup mechanism reverts to the pre-11g implementation. New environment variables REPORTS_ENHANCED_FONTHANDLING and REPORTS_FONT_DIRECTORY. | Possible mismatches between fonts in report output on UNIX and Windows due to different font mechanisms on Windows and UNIX. Font aliasing was required, along with PDF font subsetting. Support for older font file types (for example, AFM) supported. Difficult to get these font types for all fonts. Conversion of TTF to AFM required in many cases, but even these files did not provide the exact output as on Windows. |
Support for all character sets in PDF. With the new font model, no misalignment will be seen in the PDF subsetted report output. Support for Unicode font subsetting in PDF on UNIX. | Only multibyte reports supported. PFM and PFA files must be created to resolve text misalignments in UNIX output. Dependence on AFM files. Variable width font output was especially problematic, because Reports was unable to get width of characters beyond the first 256 characters in the file, and assumed fixed width for all these characters, resulting in misalignment. |
Simplified font management and configuration through Oracle Enterprise Manager. Use Oracle Enterprise Manager to modify aliasing and subsetting entries in | Configure fonts in |
PDF, password protection, and security. Specify new command line arguments to password-protect PDF reports generated from Oracle Reports. You can also suppress certain permissions to provide security for the generated PDF reports. | No capability to encrypt PDF reports or specify security permissions. |
Font diagnostics. Easy to understand tracing for diagnosis of font issues. Reporting of fonts used, and other debugging tools. | Difficult to diagnose issues. |
Oracle Reports 11g Release 1 (11.1.1) uses a new font model that supports the TTF and TTC font types on UNIX platforms. Oracle Reports uses the new font model during runtime, and it uses the old Motif toolkit during design time. The font model applies to all destination formats and supports font aliasing and font subsetting. If the REPORTS_ENHANCED_FONTHANDLING environment variable is set to NO, the old toolkit mechanism is used.
The new font model offers the following features and benefits:
Note: It is recommended that you use the Windows version of Oracle Reports Builder to design reports. |
On Windows, the font lookup mechanism is simple due to the availability of printer drivers, which have the capability of uploading fonts from the system as needed. Any output from Oracle Reports running on Windows will contain fonts from either one of the following:
For this reason, Oracle Reports considers both the printer and the system fonts when looking for the available fonts.
On UNIX, the fonts available for generating output are either one of the following:
screenprinter.ppd
. llustrates the process of determining the available fonts for generating report output on UNIX.
The following steps describe how Oracle Reports generates a list of the available fonts for generating output (for example, for the screen, printer, or file):
REPORTS_ENHANCED_FONTHANDLING
environment variable is set. REPORTS_FONT_DIRECTORY
, Oracle Reports uses the TTF font in calculating metrics, which prevents misalignment in the multibyte language report output. REPORTS_FONT_DIRECTORY
, Oracle Reports reverts to the old toolkit mechanism, which finds the nearest matching Type 1 font on the machine. Note: If theREPORTS_ENHANCED_FONTHANDLING variable is not set, the old motif toolkit mechanism is used. |
To configure the new font model, complete the following steps:
REPORTS_ENHANCED_FONTHANDLING
environment variable is set to yes. The default value is yes. REPORTS_FONT_DIRECTORY
. The default font directory is $ORACLE_INSTANCE/reports/fonts
. uifont.ali
file. For example, Arial is aliased to Helvetica, by default. If your report uses the Arial font, you must remove the aliasing from the uifont.ali
file. Note: If you choose to use the old motif toolkit, you must consider cross-platform issues and apply workaround solutions. It is recommended that you use the new font model for developing and deploying reports on UNIX. |
The new font model in Oracle Reports 11g Release 1 (11.1.1) provides improved font diagnosability and tracing.
You can configure log levels for persistent loggers and active runtime loggers. Log levels allow you to limit the amount of tracing information included in your tracing output.
For example, if you set Oracle Diagnostic Logging Level (Java Level) = Trace:1 (FINE), the following font-related information is included in your log files and tracing output:
For more information about diagnosing font issues, see Section 9.8, "Diagnosing Font Issues".
Oracle Reports is available on many platforms, including Windows, Linux, Sun Solaris, HP-UX, and IBM AIX. You can use Oracle Reports to develop and deploy reports on any of these platforms interchangeably. The most common scenario is that the report is developed on Windows, and is deployed on a UNIX-based environment, such as Linux (see Figure 12-2). This may result in a slight change in the look-and-feel of the deployed report. For example, when you are developing the report on Windows, you allocate enough space to each text object or field in your report. However, when you deploy and run the report on Linux, you may see that the text does not fit within the allocated space in the output. Such issues that are the direct result of change in platform are referred to as cross-platform issues. A possible cause of such issues is that the fonts available on the development platform are not available on the deployment platform. As a result, when the report is executed on the deployment platform, a substitute font needs to be used for formatting the report output. Since any two fonts are likely to have certain differences, the report output on the development and deployment platforms looks different.
Another likely scenario in which you may encounter cross-platform issues is when the platform on which the report is finally viewed (see Figure 12-2) does not have the proper fonts installed. Thus, even if the development and deployment platforms display the report output correctly, the platform on which the end-user views the report will not display the proper look-and-feel of the report.
A font is a set of printable or displayable text characters in a specific style and size. Fonts are needed for displaying the report on the screen as well as for printing it. The metrics for these fonts are picked up by Oracle Reports while formatting the report; that is, while executing the report command. Based on the font metrics, the report is formatted and the output is produced.
The font metrics are provided by specific files that must be available on the system where you are running Oracle Reports Services. On Windows, these font metrics are provided by True Type Font (TTF) files or True Type Collection (TTC) files. On UNIX platforms, the font metrics are taken from Adobe Font Metrics (AFM) files or TeX Font Metrics (TFM) files. The font availability and the metrics can vary based on the operating system used. This difference in fonts used and the rendering can affect the visual appearance of the generated output.
Example 1: Tahoma, a commonly used font in single-byte regions, is available on Windows but not on UNIX. For example, a reports developer has used Tahoma font while designing the report. The output of the report looks good on the development platform; that is, Windows. The report is then ported to the deployment platform (say Linux). When you submit a request to the Reports Server to execute this report, the Reports Server looks for Tahoma font metrics. It will be unable to find the metric file, since Tahoma is a Windows-specific font. Another font that closely resembles Tahoma will be used instead. This will affect the report output since a different font has been used.
Example 2: The development as well as deployment platform is Windows. So Reports Servers on both the development and deployment platforms are able to access Tahoma font since both run on Windows. However, suppose an end-user views the output on Linux. All reports output formats (HTML, HTMLCSS, RTF, and PDF) merely refer to the fonts and do not embed the fonts in the output unless you specifically use the font embedding feature in PDF. As a result, the client system will look for the Tahoma font to display the report output on client machine. Since Tahoma is not available on Linux, the user will encounter cross-platform issues while viewing the output.
As we have seen, many cross-platform issues are caused by the non-availability of fonts either on the production environment (where the Reports Server is running) or on the client system. These font availability issues must be resolved by a 3-step approach:
ttf2pt1
. Do not attempt to convert to a TFM file, as this may not produce reliable results. Table 12-2 shows the cross platform deployment scenario where the destination format is HTMLCSS, RTF, or the Web.
Table 12-2 Cross Platform Deployment - Scenario 1
Development Platform | Deployment Platform | Destination Format |
---|---|---|
Windows | UNIX | HTMLCSS, RTF, or Web |
This section discusses designing and deploying a report for HTMLCSS, RTF, or Web output in the following subsections:
To prepare your report before you deploy it on a UNIX platform:
Note: AFM support is extended only to single-byte PostScript file generation, with the exception of Japanese encoding.The encoding schemes supported for the AFM files are:
|
Deploying a Report in 11g that uses the New Font Model
REPORTS_ENHANCED_FONTHANDLING
environment variable is set to yes. The default value is yes. REPORTS_FONT_DIRECTORY
. The default font directory is $ORACLE_INSTANCE/reports/fonts
. uifont.ali
file. For example, Arial is aliased to Helvetica, by default. If your report uses the Arial font, you must remove the aliasing from the uifont.ali file. Deploying Reports in Pre-11g Version that uses Motif Tool Kit Mechanism
For fonts with AFM files not readily available on UNIX, or if you encounter any font issues in the report output such as text misalignment, you can convert and generate an AFM file from the Windows TTF file using freely available third party utilities, such as ttf2pt1
. Do not attempt to convert to a TFM file, as this may not produce reliable results.
To deploy your report on a UNIX platform when AFM font files are not available:
Use a True Type to Type 1 font converter utility to convert the TTF files to AFM files. For example, ttf2pt1
.
.afm
extension in the AFM file name. For example: $ORACLE_HOME/guicommon/tk/admin/AFM
directory. screenprinter.ppd
file with any text editor. Note: If you have defined a default printer by including an entry inORACLE_HOME /guicommon/tk/admin/uiprint.txt , you must add the appropriate entries in the printer's PPD file for a PostScript printer or in the HPD file for a PCL printer. Beginning with Oracle Reports 10g Release 1 (9.0.4), if you have not set up a default printer:
The PPD and HPD files are located at:
Oracle Reports searches for HPD or PPD files initially in the Oracle Instance location and then in the Oracle Home location. Refer to Section 10.8.1, "ScreenPrinter" for more information on the |
Ensure that the PPD/HPD file used contains an entry for each AFM or TFM file that you use in your report. PPD/HPD files are configuration files containing printer driver settings and the list of all the fonts supported by the printer.
Navigate to the to the Font Information
section in the PPD file and add the necessary entries for the font files in the following format:
For example:
Ensure that the AFM file name exactly matches the font name specified in the PPD file as Oracle Reports searches for this file based on the font name in the PPD file.
For example, edit the uifont.ali
file and comment the entries in the [Global]
section, where Arial and Courier New are aliased to Helvetica and Courier, respectively.
This ensures that Arial and Courier New are not aliased to any other font.
Note: Theuifont.ali file is located in the following directory on Windows and UNIX:
Use font aliasing only if you are unable to generate the AFM file for a particular font. You can then alias the missing font to the closest match. The fonts must be made available on the machine displaying the report output and not necessarily on the machine generating the report output. |
The HTMLCSS output of your report will look exactly the same as the one generated on Windows.
If you encounter deployment issues, review the following troubleshooting information:
DEBUG_SLFIND
to a log file name, for example, debug.txt
, and run the report. The font files that are looked up while parsing the PPD file as well as the fonts used will be written to the log file debug.txt
. Specifically, check for the following: See Chapter 10, "Printing on UNIX with Oracle Reports" for more information on DEBUG_SLFIND
.
This section covers frequently asked questions (FAQs) pertaining to deploying a report to HTMLCSS, RTF or the Web.
Question
When I design a report on Windows with font styles such as italic and bold, then run the report on UNIX, I do not see the output as it appeared on Windows. Why?
Answer
On UNIX, report formatting is done using fonts' corresponding AFM files. By default, these AFM files are picked from the $ORACLE_HOME/guicommon/tk/admin/AFM
directory, provided as part of the installation. If the font style used in report does not have a corresponding AFM file on UNIX, the closest matching AFM file is used. For example, if you design a report on Windows with Courier Italic font, then run the report on UNIX, you may see only plain Courier font in the output. This happens because there is no AFM file available for Courier Italic font in the $ORACLE_HOME/guicommon/tk/admin/AFM
directory, so instead Courier is picked. To work around this issue, you can alias your font's style to the same style for some other font that has AFM available. For example, you could alias Courier Italic to Times Italic in the global
section of uifont.ali
. Moreover, on Windows, there are some fonts that have bold, italic, and bold italic versions; for example, Arial has arialbd.ttf
(Arial bold), ariali.ttf
(Arial italic), and arialbi.ttf
(Arial bold italic). Therefore, if you are using any font that has bold, italic, and bold italic TTF files available, you can generate AFM files from these files using ttf2pt1
and use these AFM files on UNIX.
Question
My report was created in Windows and is deployed on HP-UX 11. Although the font style on HP-UX 11 is correct, the spacing between the lines is inconsistent and some text is unable to fit in the allocated space. How can I fix the spacing so that my text fits correctly?
Answer
Ensure that you have set up the corresponding AFM files for all the fonts used in your document. Refer to Section 12.4.1, "Designing Your Report" for more information.
Question
My report is designed on Windows. When it is deployed on a different platform, it displays garbled output. For example, some fields display, *****
instead of the actual content. Is this a spacing issue?
Answer
Oracle Reports cannot find the AFM files of the font that you have used in your report. You can verify this by opening the report's HTML source and searching for the font that you have used.
Oracle Reports then uses the closest matching font whose metrics are bigger than the original font. Therefore, when the characters cannot fit in the box, a ****
is displayed in the field, instead of the actual output.
Ensure that:
Question
When my report is run on UNIX, the HTML or the HTMLCSS output looks shrunk. However, the same report run on Windows looks fine. What can I do to ensure that my report looks the same on UNIX as it did on Windows?
Answer
If you see shrinkage or expansion in your HTMLCSS output and you are on Oracle9i Reports, then set the environment variable REPORTS_DEFAULT_PIXEL_SIZE
to any value ranging from 72 through 200 in reports.sh
and restart the Reports Server.
For example:
There will not be any HTMLCSS
output shrinkage/expansion in Oracle Reports 10g as a fixed resolution is picked up from screenprinter.ppd
. This resolution is editable.
Question
Can I use the overstrike
property when I deploy a report in Solaris?
Answer
A limitation of AFM files is that it does not support the overstrike
property.
Question
My report contains right-aligned fields that displays both positive and negative numbers. For example, 12345.67
, -12345.67
. However, when the report is generated to HTMLCSS output, the alignment is not correct. How can I fix the alignment? Is this a platform-specific issue?
Answer
This is not exactly a platform-specific issue. When the spaces in the HTMLCSS output are replaced by
this problem will be resolved. To ensure that you do not face this issue, you must upgrade to the Oracle Reports 11g Release 1 (11.1.1).
Table 12-4 shows the cross-platform deployment scenario where the destination format is single-byte PDF created using PDF font subsetting. For more information on PDF font features, refer to Chapter 11, "Using PDF in Oracle Reports".
Table 12-4 Cross Platform Deployment - Scenario 2
Development Platform | Deployment Platform | Destination Format |
---|---|---|
Windows | UNIX | PDF (single byte) |
This section discusses designing and deploying a report for single-byte PDF output in the following subsections:
To prepare your report before you deploy it on a UNIX platform:
Note: AFM support is extended only to single-byte PostScript file generation, with the exception of Japanese encoding.The encoding schemes supported for the AFM files are:
|
For fonts with AFM files not readily available on UNIX, or if you encounter any font issues in the report output such as text misalignment, you can convert and generate an AFM file from the Windows TTF file using freely available third party utilities, such as ttf2pt1
. Do not attempt to convert to a TFM file, as this may not produce reliable results.
To deploy your report on a UNIX platform using PDF font subsetting:
Use a True Type to Type 1 font converter utility to convert the TTF files to AFM files. For example, ttf2pt1
.
.afm
extension in the AFM file name. For example: $ORACLE_HOME/reports/fonts
. REPORTS_PATH
environment variable. This ensures that the font files can be referenced by Reports Runtime. screenprinter.ppd
file with any text editor. Note: If you have defined a default printer by including an entry inORACLE_HOME /guicommon/tk/admin/uiprint.txt , you must add the appropriate entries in the printer's PPD file for a PostScript printer or in the HPD file for a PCL printer. Beginning with Oracle Reports 10g Release 1 (9.0.4), if you have not set up a default printer:
The PPD and HPD files are located at:
Oracle Reports searches for HPD or PPD files initially in the Oracle Instance location and then in the Oracle Home location. Refer to Section 10.8.1, "ScreenPrinter" for more information on the |
Ensure that the PPD/HPD file used contains an entry for each AFM or TFM file that you use in your report. PPD/HPD files are configuration files containing printer driver settings and the list of all the fonts supported by the printer.
Navigate to the to the Font Information
section in the PPD file and add the necessary entries for the font files in the following format:
For example:
Ensure that the AFM file name exactly matches the font name specified in the PPD file as Oracle Reports searches for this file based on the font name in the PPD file.
$ORACLE_HOME/guicommon/tk/admin/AFM
directory. uiprint.txt
has the entry for the appropriate PPD file: For example:
hpljet42.ppd
file with any text editor. Note: Copy the PPD file fromORALCE_HOME/guicommon/tk/admin /PPD to the following location:
|
Navigate to the Font Information
section and add the necessary entries for the new AFM files in the following format:
For example:
Ensure that the AFM file name is the same as the font name given in the PPD file. Oracle Reports searches for this file based on the font name in the PPD file.
For example, edit the uifont.ali
and comment the entries in the [Global]
section where Arial and Courier New are aliased, by default, to Helvetica and Courier respectively.
Note: Theuifont.ali file is located in the following directory on Windows and UNIX:
Use font aliasing only if you are unable to generate the AFM file for a particular font. You can then alias the missing font to the closest match. The fonts must be made available on the machine displaying the report output and not necessarily on the machine generating the report output. |
[PDF:Subset]
section to subset the fonts used in your report. For example:
For PDF file portability, you can use either font subsetting or font embedding. File portability ensures that the PDF report does not depend on the machine where it is viewed to have the fonts installed.
To verify the fonts used, do the following:
The Original Font column displays the Arial and Tahoma fonts. The PDF document should not contain any font alignment issues.
If you encounter deployment issues, review the following troubleshooting information:
DEBUG_SLFIND
to a log file name (for example, debug.txt
) and run the report. The font files that are looked up while parsing the PPD file as well as the fonts used will be written to the specified file. Specifically, check for the following: See Chapter 10, "Printing on UNIX with Oracle Reports" for more information on DEBUG_SLFIND
.
This section contains frequently asked questions (FAQs) pertaining to deploying a report to single-byte PDF output.
Question
My PDF report page count varies when it is deployed in Windows and UNIX platforms. What must I do to fix it?
Answer
Your report uses the default printer for formatting. Ensure that the same resolution and the same fonts used are made available to both the printers. One way of achieving this would be to generate AFM files from Windows TTF font files and then copy the Windows TTF files and AFM files to UNIX in the appropriate folders. Also set the same resolution as Windows in PPD/HPD files. Follow the process specified in the prior steps.
Question
The page count of my report varies when run on different installations of UNIX. How can I ensure that the page count of my report is the same regardless of the installation?
Answer
In UNIX, Oracle Reports uses the PPD/HPD file of the default printer in the installation for formatting. The resolution and list of fonts will be picked up from this PPD/HPD files. Beginning with Oracle Reports 10g Release 1 (9.0.4), if there is no default printer setup in the installation, then screenprinter.ppd
will be used. This PPD file emulates the screen. Earlier versions of Oracle Reports used the DISPLAY
environment variable instead. Ensure that the two installations use the same AFM/TFM files and font files, so that the number of pages of PDF output will be the same.
Table 12-6 shows the cross platform deployment scenario where the destination format is multibyte PDF created using PDF font subsetting. For more information on PDF font features, refer to Chapter 11, "Using PDF in Oracle Reports".
Table 12-6 Cross Platform Deployment - Scenario 4
Development Platform | Deployment Platform | Destination Format |
---|---|---|
Windows | UNIX | PDF (multibyte) |
This section discusses designing and deploying a report for multibyte PDF output in the following subsections:
To prepare your report before you deploy it on a UNIX platform:
AR8ISO8859P6
character set. Note: AFM support is extended only to single-byte PostScript file generation, with the exception of Japanese encoding.The encoding schemes supported for the AFM files are:
|
For fonts with AFM files not readily available on UNIX, or if you encounter any font issues in the report output such as text misalignment, you can convert and generate an AFM file from the Windows TTF file using freely available third party utilities, such as ttf2pt1
. Do not attempt to convert to a TFM file, as this may not produce reliable results.
To deploy your report on a UNIX platform:
Use a True Type to Type 1 font converter utility to convert the TTF files to AFM files. For example, ttf2pt1
.
.afm
extension in the AFM file name. For example: $ORACLE_HOME/fonts
. REPORTS_PATH
environment variable. $ORACLE_HOME/guicommon/tk/admin/AFM
directory. screenprinter.ppd
file with any text editor. Note: If you have defined a default printer by including an entry inORACLE_HOME /guicommon/tk/admin/uiprint.txt , you must add the appropriate entries in the printer's PPD file for a PostScript printer or in the HPD file for a PCL printer. Beginning with Oracle Reports 10g Release 1 (9.0.4), if you have not set up a default printer:
The PPD and HPD files are located at:
Oracle Reports searches for HPD or PPD files initially in the Oracle Instance location and then in the Oracle Home location. Refer to Section 10.8.1, "ScreenPrinter" for more information on the |
Ensure that the PPD/HPD file used contains an entry for each AFM or TFM file that you use in your report. PPD/HPD files are configuration files containing printer driver settings and the list of all the fonts supported by the printer.
Navigate to the to the Font Information
section in the PPD file and add the necessary entries for the font files in the following format:
For example:
Ensure that the AFM file name exactly matches the font name specified in the PPD file as Oracle Reports searches for this file based on the font name in the PPD file.
uiprint.txt
has the entry for the appropriate PPD file: printername: PostScript:2:test:ppd_file
. For example:
hpljet42.ppd
file with any text editor. Note: Copy the PPD file fromORACLE_HOME/guicommon/tk/admin/PPD to the following location:
|
Navigate to the Font Information
section and add the necessary entries for the new AFM files in the following order:
For example:
Edit uifont.ali
and comment the entries, if any, where Simplified Arabic font is aliased to some other font. For example: "SimplifiedArabic"="Arial"
.
Note: Theuifont.ali file is located in the following directory on Windows and UNIX:
Use font aliasing only if you are unable to generate the AFM file for a particular font. You can then alias the missing font to the closest match. The fonts must be made available on the machine displaying the report output and not necessarily on the machine generating the report output. |
[PDF:Subset]
section, add the appropriate entries to subset the fonts. For example:
For PDF file portability, you can use either font subsetting or font embedding. File portability ensures that the PDF report does not depend on the machine where it is viewed to have the fonts installed.
The PDF should contain the font that you have used in your report. For example, the David font.
To verify the fonts used, do the following:
The Original Font column should display the David font.
If you encounter deployment issues, review the following troubleshooting information:
DEBUG_SLFIND
to a log file name, for example, debug.txt
, and run the report. The font files that are looked up while parsing the PPD file as well as the fonts used will be written to the log file debug.txt
. Specifically, check for the following: See Chapter 11, "Using PDF in Oracle Reports" for more information on DEBUG_SLFIND
.
This section contains frequently asked questions (FAQs) pertaining to deploying a report to multibyte PDF output.
Question
What are the cross-platform issues for the PDF output when using CID multibyte fonts?
Answer
To enable multibyte language support in PDF reports with CID multibyte fonts, you must make sure that the Asian font package is installed for your Acrobat Reader on the machine where you are going to view these PDF files. The Asian font package is available at the Adobe Web site.
Question
Why is the formatting of my report not correct when using multibyte fonts on UNIX, or why do I see misaligned text in the report?
Answer
If you have used ttf2pt1
to create the AFM file, ttf2pt1
has a limitation in that it creates AFM files with metrics information for only the first 256 characters of the font. The first 256 characters are for Latin-1 characters. So, if your font contains more than 256 characters, metrics information will not be available for the additional characters. Oracle Reports uses default metrics information contained in the AFM file when it encounters characters in the report that are not in the AFM file. These default metrics may not match the exact metrics of the characters used in the report. For this reason, formatting will not be correct. To avoid this situation when you are using characters beyond the first 256 characters of the font, you can use fixed width fonts where all the characters have the same width. For example, Miriam Fixed is a fixed width font for Hebrew and can be used to avoid formatting issues.
Table 12-8 shows the cross-platform deployment scenario where the destination format is Unicode PDF created using PDF font subsetting. For more information on PDF font features, refer to Chapter 11, "Using PDF in Oracle Reports".
Table 12-8 Cross Platform Deployment - Scenario 5
Development Platform | Deployment Platform | Destination Format |
---|---|---|
Windows | UNIX | PDF (Unicode) |
This section discusses designing and deploying a report for Unicode PDF output in the following subsections:
To prepare your report before you deploy it on a UNIX platform:
Note: AFM support is extended only to single-byte PostScript file generation, with the exception of Japanese encoding.The encoding schemes supported for the AFM files are:
|
For fonts with AFM files not readily available on UNIX, or if you encounter any font issues in the report output such as text misalignment, you can convert and generate an AFM file from the Windows TTF file using freely available third party utilities, such as ttf2pt1
. Do not attempt to convert to a TFM file, as this may not produce reliable results.
To deploy your report on a UNIX platform:
Use a True Type to Type 1 font converter utility to convert the TTF files to AFM files. For example, ttf2pt1
.
.afm
extension in the AFM file name. For example: $ORACLE_HOME/fonts
. REPORTS_PATH
environment variable. For example, arialuni.ttf
. $ORACLE_HOME/guicommon/tk/admin/AFM
directory. For example, ArialUnicodeMS. screenprinter.ppd
file with any text editor. Note: If you have defined a default printer by including an entry inORACLE_INSTANCE/config/FRComponent/frcommon/guicommon/tk/admin/uiprint.txt , then you will have to make the appropriate entries in the printer's PPD file for a PostScript printer or in the HPD file for a PCL printer. Beginning with Oracle Reports 10g Release 1 (9.0.4), a default printer surface that mimics the screen (The PPD and HPD files are located at:
Oracle Reports searches for HPD or PPD files initially in the Oracle Instance location and then in the Oracle Home location. Refer to Section 10.8.1, "ScreenPrinter" for more information on the |
Ensure that the PPD/HPD file used contains an entry for each AFM or TFM file that you use in your report. PPD/HPD files are configuration files containing printer driver settings and the list of all the fonts supported by the printer.
Navigate to the to the Font Information
section in the PPD file and add the necessary entries for the font files in the following format:
For example:
Ensure that the AFM file name exactly matches the font name specified in the PPD file as Oracle Reports searches for this file based on the font name in the PPD file.
uiprint.txt
has the entry for the appropriate PPD file. In this example:
hpljet42.ppd
file with any text editor. Note: Copy the PPD file fromORACLE_HOME/guicommon/tk/admin/PPD to the following location:
|
Navigate to the Font Information
section and add the necessary entries for the new AFM files in the following order:
For example:
[PDF:Subset]
section, add the following entries to subset the fonts used in your report. For example:
Use the PDF subsetting feature to generate multibyte PDF output from your reports and to ensure your PDF report is portable. Thus, there is not dependency on the machine deploying the report to have the fonts installed.
The PDF should contain the unicode font used in your report. For example, Arial Unicode MS.
If you encounter deployment issues, review the following troubleshooting information:
DEBUG_SLFIND
to a log file name (for example, debug.txt
) and run the report. The font files that are looked up while parsing the PPD file as well as the fonts used will be written to the log file debug.txt
. Specifically, check for the following: See Chapter 11, "Using PDF in Oracle Reports" for more information on DEBUG_SLFIND
.
This section contains frequently asked questions (FAQs) pertaining to deploying a report to Unicode PDF output.
Question
Why is the formatting of my report not correct when using Unicode on UNIX, or why do I see misaligned text in the report?
Answer
If you have used ttf2pt1
to create the AFM file, ttf2pt1
has a limitation in that it creates AFM files with metrics information for only the first 256 characters of the font. So, if you are using multiple languages in the report with a Unicode font like Arial Unicode MS, when you create the AFM file for UNIX, there will not be metrics information for the characters beyond the first 256 characters. Oracle Reports uses default metrics information contained in the AFM file when it encounters characters in the report that are not in the AFM file. These default metrics may not match the exact metrics of the characters used in the report. For this reason, formatting will not be correct. To avoid formatting issues when you are using characters beyond the first 256 characters of the font, you can use fixed width fonts where all the characters have the same width.
Table 12-10 shows the cross-platform deployment scenario where the destination format is PostScript.
Table 12-10 Cross Platform Deployment - Scenario 3
Development Platform | Deployment Platform | Destination Format |
---|---|---|
Windows | UNIX | PostScript |
This section discusses designing and deploying a report for PostScript output in the following subsections:
To prepare your report before you deploy it on a UNIX platform:
Note: AFM support is extended only to single-byte PostScript file generation, with the exception of Japanese encoding.The encoding schemes supported for the AFM files are:
|
desformat=pdf
), which supports multibyte character sets, as discussed in Section 10.6.1, "Multibyte Character Set Printing". For fonts with AFM files not readily available on UNIX, or if you encounter any font issues in the report output such as text misalignment, you can convert and generate an AFM file from the Windows TTF file using freely available third party utilities, such as ttf2pt1
. Do not attempt to convert to a TFM file, as this may not produce reliable results.
To deploy your report on a UNIX platform:
Use a True Type to Type 1 font converter utility to convert the TTF files to AFM files. For example, ttf2pt1
.
.afm
extension in the AFM file name. For example: $ORACLE_HOME/guicommon/tk/admin/AFM
directory. TK_PRINTER
environment variable or the PRINTER
environment variable is set to the default printer name. For example, printer1
. uiprint.txt
has the entry for the appropriate PPD file in the format, printer name: PostScript:2:test:ppd file
. In this example: hpljet42.ppd
using any text editor. Specifically, edit the DefaultPageSize
, DefaultPageRegion
, and DefaultPaperDimension
to change the default paper from Letter to A4, in the following way: Note: Copy the PPD file fromORACLE_HOME/guicommon/tk/admin /PPD to the following location:
|
Navigate to the Font Information
section and add the necessary entries for the new AFM files in the following order:
For example:
This section contains frequently asked questions (FAQs) pertaining to deploying a report to PostScript output.
Question
Does Oracle Reports support Unicode PostScript file generation?
Answer
Currently, Oracle Reports supports Unicode character sets in PostScript output only on the Windows platform. On UNIX platforms, you can use either of the following:
desformat=pdf
), which supports multibyte character sets, as discussed in Section 10.6.1, "Multibyte Character Set Printing". Question
Does Oracle Reports embed the font in the PostScript output file?
Answer
Oracle Reports does not embed the font in the PostScript output file. It writes the font name and the metrics that were calculated using AFM files. Therefore, for the report to appear without any font alignment issues, ensure that the necessary fonts are installed on the printer.
Question
The page count of my report varies when run on different installations of UNIX. How can I ensure that the page count of my report is the same regardless of the installation?
Answer
In UNIX, Oracle Reports uses the PPD/HPD file of the default printer in the installation for formatting. The resolution and list of fonts will be picked up from this PPD/HPD files. Beginning with Oracle Reports 10g Release 1 (9.0.4), if there is no default printer setup in the installation, then screenprinter.ppd
will be used. This PPD file emulates the screen. Earlier versions of Oracle Reports used the DISPLAY
environment variable instead. Ensure that the two installations use the same AFM/TFM files and font files, so that the number of pages of PDF output will be the same.
Two things to consider when you run a report are how the report should be output (destination) and who should receive it (distribution). Distribution is discussed in Chapter 20, "Creating Advanced Distributions". This chapter explores how Oracle Reports Services handles output processing to default and custom destinations. It provides an overview of output processing and information on registering destination types with the Oracle Reports Services.
It includes the following sections:
11g Release 1 (11.1.1) provides the Pluggable Destinations from Oracle Forms Services enhancement.
In prior releases, a pluggable destination defined for Reports Server cannot be used when running a report from Oracle Forms Services (specifically from RUN_REPORT_OBJECT
) because the REPORT_DESTYPE
property in Oracle Forms Services allows for only a pre-specified set of values.
In Oracle Reports 11g Release 1 (11.1.1), this limitation is removed: report requests can be submitted to all destinations, including any Oracle Reports-registered pluggable destinations from Oracle Forms Services. This enhancement introduces a new Oracle Forms Services command line parameter: PLUGDESTYPE
. Oracle Forms Services passes the pluggable destination DESTYPE
in the PLUGDESTYPE
parameter as part of the REPORT_OTHER
property. When this parameter is present, it overrides whatever is specified in DESTYPE
command line argument (or REPORT_DESTYPE
for Oracle Forms Services).
For more information, see Section 13.4, "Submitting Reports to Pluggable Destinations from Oracle Forms Services"
Report output is controlled by the DESTYPE
value that you specify at runtime, which, in turn, is determined by the destination output types you have registered in your server configuration file (rwserver
.conf
) using the destination
element. For more information, see Section A.5.31, "DESTYPE" and Section 8.2.1.6, "destination".
You need not register the following default destinations:
You may need to register the following default destination:
destination
entry, and also provide appropriate property values (for example, the value for the portalUserid
property). You must register any new destination types you create through the Oracle Reports Services Destinations API.
Note: For more information on thedestination API, refer to the Reports Software Development Kit (RSDK) on the Oracle Technology Network (OTN): on the Oracle Reports page (http://www.oracle.com/technology/products/reports/index.html), click SDK. Configuring destinations is discussed in detail in Chapter 13, "Configuring Destinations for Oracle Reports Services". |
You can also define custom output types, such as fax, Oracle's Internet File System (iFS), or any new destination type you define using the Oracle Reports Services Destinations API. This API enables you to define new destination types and build handlers to usher your reports to custom destinations.
Note: For more information on the available APIs for Oracle Reports, refer to the Reports Software Development Kit (RSDK) on the Oracle Technology Network (OTN): on the Oracle Reports page (http://www.oracle.com/technology/products/reports/index.html), click SDK. |
The Oracle Reports Services architecture standardizes the way output is generated and delivered. It takes responsibility for delivering report output to the appropriate destination (through the Reports Server), yet generates output independent of its destination (through the Oracle Reports engine). This provides a significant improvement in efficiency by allowing one run of a report to be used in a number of different ways. It also opens up the output processing architecture to allow for any number of destination types.
In the past, the Reports Runtime engine was totally responsible for delivering the output. Consequently, it had to know how to communicate with output destinations. This resulted in a tight coupling between the engine and the supported destinations.
Oracle Reports Services eliminates this tight coupling and its attendant restrictions. The runtime engine now treats all destinations alike. It doesn't know the destination type for which the output is being produced. The server hands output off to destination handlers that prepare the material for delivery to their associated destination types. You can use predefined destination types (with predefined handlers) or create a handler for a custom destination type you intend to support. Almost any type of destination can be plugged into Oracle Reports.
Figure 13-1 illustrates the main components of the Oracle Reports Services output processing architecture.
Requests flow through the output processing architecture in the following sequence:
Before Oracle Reports Services can send a report to a particular destination type, the type must be a default type (printer, e-mail, cache, or file) or a type registered in the server configuration file, rwserver
.conf
. The configuration file contains a destination
element for registering destination types that are valid for your reports. You can register anywhere from zero to any number of destination types.
Registering a destination type with the server involves:
These tasks are described in the following sections.
To set up a destination section in the rwserver
.conf
file:
You'll find the server configuration file in the following directory (Windows and UNIX use the same path):
destination
section, create one underneath the element that precedes it in the configuration file's data type definition file (rwserverconf.dtd
) section. Note: The server configuration file follows the order of elements defined in the file's related document type definition file (ORACLE_HOME \reports\dtd\rwserverconf.dtd). Place destination after the elements that precede it, whichever are present in your server configuration file. |
The valid values for these tags are discussed in the following sections.
This section outlines the destinations supported by Oracle Reports.
The destype
and class
attributes are required for valid registration of a nondefault output type. They specify the destination types and their associated Java classes. The predefined (default) destination types and classes that come with Oracle Reports Services are listed in Table 13-1:
Table 13-1 Standard Destination Types and Classes
Destination | destype | Class |
---|---|---|
Oracle Portal content area |
| |
SMTP-compliant e-mail |
| |
file |
| |
cache |
| |
printer |
| |
FTP |
|
|
WebDAV |
|
|
See Also: Section A.5.31, "DESTYPE" for examples of pushing a report using theoraclePortal destype. |
You are not limited to the predefined destypes and classes provided with the server. You can register custom destination types, such as a fax, once you have defined a custom handler (through the Destinations API).
Note: For more information on the available APIs for Oracle Reports, refer to the Reports Software Development Kit (RSDK) on the Oracle Technology Network (OTN): on the Oracle Reports page (http://www.oracle.com/technology/products/reports/index.html), click SDK. |
The server configuration file allows the association of an unlimited number of properties with a registered destination. Destination properties consist of name/value pairs that define some aspect of an output type's configuration. They are expressed in terminology recognized by the destination type. For example, a destination with a destype of oraclePortal
would recognize the name/value pair:
This example defines the values to be associated with a portal user ID. It includes the encrypted
attribute, which indicate that the values within this element should be encrypted; encrypted="no"
, which indicates that the values are not yet encrypted. The next time the Reports Server starts, it will automatically encrypt the values and reset encrypted
to yes
.
Note: Elements and attributes allowable in server configuration file are determined by the syntax defined in therwserverconf.xsd file (ORACLE_HOME \reports\dtd\rwserverconf.xsd). This is discussed in detail in Chapter 8, "Configuring Oracle Reports Services". |
What is valid for a destination type's properties depends entirely on the destination type. These values do not come from Oracle Reports and are not put to use by the Reports Server. They come from the destination type itself and use terms the destination recognizes. It is up to the developer to understand the requirements of a custom destination and to know what properties to associate with a given custom output type.
When we begin to discuss distribution, you may note that within the distribution XML file, the destype
element also allows for the use of property name/value pairs. It is important to make a distinction between properties entered for a destination
element in the server configuration file and those entered for a destype
element in the distribution XML file:
destination
element in the server configuration file should deal only with configuring an output type, for example setting an allowable number of retries for a destination fax. destype
element in the distribution XML file should deal only with specifying a runtime parameter, for example the identity of the fax's intended recipient. To submit requests to any Oracle Reports-registered pluggable destinations from Oracle Forms Services:
http://www.oracle.com/technology/products/reports/pluginxchange/index.html
). http://www.oracle.com/technology/products/forms/pdf/10g/frm10gsrw10g.pdf
). The parameters to submit the request should be set as follows:
When the PLUGDESTYPE
parameter is specified, DESTYPE
(in Oracle Reports) and REPORT_DESTYPE
(in Oracle Forms) will be ignored and the value of PLUGDESTYPE
will be used.
This chapter describes configuring and using several types of pluggable datasources:
Configuring and Using the JDBC PDS
The JDBC pluggable data source (PDS) enables you to access any JDBC data sources, such as:
The JDBC PDS is installed by default with Oracle Reports to allow access to all of the JDBC supported data sources.
This chapter contains the following sections:
The jdbcpds.conf
file is the Oracle Reports JDBC PDS configuration file. It is located in the following directories:
ORACLE_INSTANCE
\config\ReportsServerComponent\
server_name
ORACLE_INSTANCE
\config\ReportsToolsComponent\ReportsTools
DOMAIN_HOME
/config/fmwconfig/servers/WLS_REPORTS/applications/reports_
version
/configuration
This file is preconfigured for the:
http://www.oracle.com/technology/index.html
). You must add or modify relevant entries in the jdbcpds.conf
file to include any other JDBC drivers that you want to use.
Oracle Reports Builder displays a list of drivers in the JDBC Query Connection dialog box based on the entries in the jdbcpds.conf
file. Use this list to select specific drivers for your report's JDBC query.
Oracle Reports Builder reads and caches the entries in the jdbcpds.conf
when it is invoked. Restart Oracle Reports Builder to view the result of any changes made to the jdbcpds.conf
file, for example, adding a new JDBC driver entry.
The jdbcpds.conf
file has two sections:
Caution: This section should not be modified. |
Note: You can modify or add your driver information in this section. |
Example
The following sample illustrates the contents of the jdbcpds.conf
file:
Table 14-1 outlines the various attributes that can be associated with a driver.
Table 14-1 Driver Attributes
Attribute Name | Description | Sample |
---|---|---|
| A unique user-defined value used to refer to a specific JDBC driver in Oracle Reports. |
|
Database referenced by the driver. The valid entries are:
|
| |
Driver sub protocol added with the database URL before creating a database connection. This is driver-specific information and can be found in the driver documentation. Example: The sub protocol used for connecting to the Merant driver: Sybase is SQL Server is |
| |
Format of the driver's connect string format is |
| |
Driver class name used to register to |
| |
Driver's connection handling class. The JDBC PDS can have different connection handling classes for each driver. Oracle Reports' default connection handling class, which is sufficient for most drivers, is Refer to the Oracle Reports Java API Reference for more information on how to extend your JDBC Connection class |
| |
Driver-specific parameter. Specify the value in seconds. Please refer to the driver documentation for more information. |
| |
Specify any additional properties of your driver as Attribute Name and Value. |
|
When you submit your report's connection details, the connection information is combined with the driver's configuration information specified in the jdbcpds.conf
file. The resulting connection information is submitted to the database as a complete connection URL. Refer to Table 14-3, Table 14-4, Table 14-5, Table 14-6, and Table 14-7 for more information on sample connection information.
Figure 14-0 shows a list of all drivers configured in the jdbcpds.conf
file.
Drivers like SQL Server and Excel with JDBC-ODBC, Oracle JDBC Thin, and Oracle JDBC OCI (thick) are installed and configured with Oracle Reports. These drivers do not require any additional JAR files to be installed.
You can use SQL Server / Excel with the JDBC-ODBC driver. This entry is preconfigured in the jdbcpds.conf
file. Before you can use SQL Server or Excel with JDBC-ODBC, you must create an ODBC data source. Refer to Windows help, for more information on how to create an ODBC data source.
Note: Oracle Fusion Middleware provides Merant DataDirect drivers which can also be used to access SQL Server. |
Oracle provides a set of Merant DataDirect drivers (Version 3.2) that can be downloaded from OTN (http://www.oracle.com/technology/index.html
). The driver configuration file; that is, jdbcpds.conf
contains relevant entries for the Merant DataDirect drivers. Additionally, the JDBC Connect dialog (Table 14-1) lists the entries for the set of Merant DataDirect drivers provided by Oracle.
However, you must install the appropriate JAR files and specify them in Oracle Reports specific classpath entries, in order to make them available to Oracle Reports Builder and Oracle Reports Services
The drivers provided by Oracle for use with Oracle Fusion Middleware / Oracle Developer Suite are:
You can also install and configure a Custom Driver for use with Oracle Fusion Middleware and Oracle Developer Suite.
The following procedure outlines the generic steps involved in configuring the Merant DataDirect drivers. To configure specific Merant DataDirect drivers refer to the appropriate sections.
To configure the Merant DataDirect drivers:
REPORTS_CLASSPATH
to make the files available to Oracle Reports Builder and Oracle Reports Services. Note: TheREPORTS_CLASSPATH variable is located in the reports.sh file for all UNIX platforms. |
Refer to the relevant driver in this section for information on the required JAR files.
REPORTS_CLASSPATH.
This variable is located in the registry for Windows users and in the reports.sh
file for UNIX users. Refer to the relevant driver in this section for an example. classPath
attribute in the rwbuilder.conf
configuration file. Refer to the relevant driver in this section for an example. classPath
attribute of the engine, in the Reports Server configuration file. Refer to the relevant driver in this section for an example jdbcpds.conf
: Located in the ORACLE_INSTANCE\config\ReportsServerComponent\server_name
directory. Refer to Table 14-1 for more information on the parameters. Refer to the relevant driver in this section for an example. Jar files required: YMutil.jar
, YMsybase.jar
, and YMbase.jar
.
REPORTS_CLASSPATH
to make the files available to Oracle Reports Builder and Oracle Reports Services. Note: TheREPORTS_CLASSPATH variable is located in the reports.sh file for all UNIX platforms. |
REPORTS_CLASSPATH.
This variable is located in the registry for Windows users and in the reports.sh
file for UNIX users. rwbuilder.conf
: Append the driver location to the engine classPath
attribute in the rwbuilder.conf
configuration file. classPath
attribute of the engine in the Reports Server configuration file. jdbcpds.conf
: Located in the ORACLE_INSTANCE\config\ReportsServerComponent\server_name
directory. Refer to Table 14-1 for more information on the required parameters. JAR files required: YMutil.jar
, YMdb2.jar
, and YMbase.jar
REPORTS_CLASSPATH
to make the files available to Oracle Reports Builder and Oracle Reports Services. Note: TheREPORTS_CLASSPATH variable is located in the reports.sh file for all UNIX platforms. |
REPORTS_CLASSPATH
. This variable is located in the registry for Windows users and in the reports.sh
file for UNIX users. classPath
attribute in the rwbuilder.conf
configuration file. classPath
attribute of the engine in the Reports Server configuration file. jdbcpds.conf
: Located in the ORACLE_INSTANCE\config\ReportsServerComponent\server_name
directory. Refer to Table 14-1 for more information on the parameters. .jar
files in your Oracle Fusion Middleware and Oracle Developer Suite directory. Jar files required: YMutil.jar
, YMsqlserver.jar
, and YMbase.jar
REPORTS_CLASSPATH
to make the files available to Oracle Reports Builder and Oracle Reports Services. Note: TheREPORTS_CLASSPATH variable is located in the reports.sh file for all UNIX platforms. |
REPORTS_CLASSPATH.
This variable is located in the registry for Windows users and in the reports.sh
file for UNIX users. classPath
attribute in the rwbuilder.conf
configuration file. classPath
attribute of the engine in the Reports Server configuration file. jdbcpds.conf
: Located in the ORACLE_INSTANCE\config\ReportsServerComponent\server_name
directory. Refer to Table 14-1 for more information on the parameters. JAR files required: YMutil.jar
, YMinformix.jar
, and YMbase.jar
REPORTS_CLASSPATH
to make the files available to Oracle Reports Builder and Oracle Reports Services. Note: TheREPORTS_CLASSPATH variable is located in the reports.sh file for all UNIX platforms. |
REPORTS_CLASSPATH.
This variable is located in the registry for Windows users and in the reports.sh
file for UNIX users. classPath
attribute in the rwbuilder.conf
configuration file. classPath
attribute of the engine in the Reports Server configuration file. jdbcpds.conf
: Located in the ORACLE_INSTANCE\config\ReportsServerComponent\server_name
directory. Refer to Table 14-1 for more information on the parameters. Any driver that is not provided by Oracle must be installed and configured. For example, you can use BEA JDBC drivers if you have license. To install and configure a custom driver, complete the following steps:
REPORTS_CLASSPATH
to make the files available to Oracle Reports Builder and Oracle Reports Services. Note: TheREPORTS_CLASSPATH variable is located in the reports.sh file for all UNIX platforms. |
Jar files required: Refer to the relevant driver documentation.
REPORTS_CLASSPATH
. This variable is located in the registry for Windows users and in the reports.sh
file for UNIX users. rwbuilder.conf
: Append the driver location to the engine classPath
attribute in the rwbuilder.conf
configuration file. classPath
attribute of the engine in the Reports Server configuration file. jdbcpds.conf
: Located in the ORACLE_INSTANCE\config\ReportsServerComponent\server_name
directory. Add relevant driver configuration information to the jdbcpds.conf
file. Refer to Table 14-1 for more information on the required parameters. Note: This value can still beconnection = "oracle.reports.plugin.datasource.jdbcpds.JDBCConnectionHandling" for your custom drivers, if you do not want to implement a custom connection dialog |
After configuring the relevant JDBC drivers, you can define and run a JDBC query using either SQL or a stored procedure.
To define a JDBC query:
Enter the complete call syntax of your database's stored procedure. For example:
TestProc(40)
For more information on the call syntax, refer to your database documentation.
JDBC PDS submits the calling statement to the driver as specified, to invoke the stored procedure.
Table 14-2 Specifying an Excel Data Source
Query (Single Worksheet) | Query (Muitiple Worksheets) |
---|---|
SELECT * FROM [SHEET1$] or SELECT COL1, COL2, ...COLn FROM [SHEET1$] Where Where the first worksheet row value is taken as a column name for the query Note: If a value is not mentioned in any of the columns in the first row, then the default name is FcolumnNumber. For example, the 8th column will be F8, the ninth column will be F9, and so on. |
Where Where the first worksheet row is taken as a column name for the query Note: If a value is not mentioned in any of the columns in the first row, then the default name is FcolumnNumber. For example, the 8th column will be F8, the ninth column will be F9, and so on. |
P_JDBCPDS
(see Section A.7.10, "P_JDBCPDS"): jdbcpds.conf
file. connectString
driver attribute (Table 14-1) defined in the jdbcpds.conf
file connect string
. Table 14-3, Table 14-4, Table 14-5, Table 14-6, Table 14-7,Table 14-8, and Table 14-9 lists sample connection information for use with:
http://www.oracle.com/technology/index.html
). Table 14-3 Oracle Thin Driver
Property | Value |
---|---|
Username |
|
Password |
|
Database |
Example: |
Table 14-4 Oracle Thick Driver
Property | Value |
---|---|
Username |
|
Password |
|
Database |
where |
Table 14-5 JDBC-ODBC Driver
Property | Value |
---|---|
Username | N/A |
Password | This password is set at the time of establishing an ODBC connection. |
Database |
where |
Table 14-6 Sybase
Property | Value |
---|---|
Username |
|
Password |
|
Database |
Example: |
Table 14-7 DB2
Property | Value |
---|---|
Username |
|
Password |
|
Database |
Example1: Example2: |
Table 14-8 SQL Server
Property | Value |
---|---|
Username |
|
Password |
|
Database |
Example1: |
Table 14-9 Informix
Property | Value |
---|---|
Username |
|
Password |
|
Database |
Example2: |
When you run a report containing a JDBC query (Reports Server or rwrun
engine), use the sign-on parameter to submit the connection information for the JDBC data source. This sign-on parameter is defined for your JDBC query in Reports Builder during design time.
For example, if your report has a JDBC query to a Sybase data source, a JDBC query to a DB2 data source, and a SQL query to an Oracle data source, then the request could be defined as:
where:
userid
is the value for connecting the SQL query to the Oracle database. You need not specify the userid
if your report does not have a SQL query or a REF CURSOR
query. p_sybasepds
is the sign-on parameter associated with the Sybase JDBC query. p_db2pds
is the sign-on parameter associated with the DB2 JDBC query defined in the report at design time. The default sign-on parameter name P_JDBCPDS will be used if you have not specified a name in the JDBC Query dialog box while designing the report in Reports Builder.
This section lists:
Table 14-10, Table 14-11, and Table 14-12 lists troubleshooting information related to the JDBC PDS.
Table 14-10 Error Messages Related to the Database Connection
Error Message | Cause | Action |
---|---|---|
| Invalid connection class specified in the | Ensure that the driver connection class specified in the |
| Invalid connection information. | Ensure the validity of the username, password, database, and driver type. |
| Invalid sign-on parameter for the specified query or procedure. | Ensure the sign-on parameter is available and valid for the report's JDBC query type. |
| Invalid connect string for the specified sign-on parameter. | Ensure that the specified connect string for this sign-on parameter is valid for the selected driver. |
Table 14-11 Error messages Related to Executing the Data Source
Error Message | Cause | Action |
---|---|---|
| The driver used to connect to database does not support the Date data type as a reference parameter. | Use either: The String data type as the reference parameter. A different JDBC driver that supports the Date data type as a reference parameter. |
| Invalid lexical parameter used in the query or procedure. | Ensure that the query or procedure uses valid lexical parameters. Create a new parameter if it is not available. |
| SQL syntax error in the specified query or procedure. | Ensure that the syntax of the query or procedure is valid. Refer to the relevant data source's documentation. |
| Invalid query or procedure syntax. | Ensure that the syntax of the query or procedure is valid. Refer to the relevant data source's documentation. |
| Invalid reference parameter value. | Verify that the reference column types and values are correct. |
| The query or procedure text field is empty. | Enter a valid query or procedure in the text field. |
| Invalid database URL. | Verify the validity of the specified database name and the selected driver type. |
| The data fetched does not match the number of columns or column types specified in the query definition. | Ensure that the number of columns and the column types match the query definition. |
| This column type is not supported by the Oracle Reports JDBC query interface. | Ensure that only column types supported by the Oracle Reports JDBC query interface are used. Refer to the JDBC specification and Oracle Reports documentation for a list of all supported types. |
Table 14-12 Isolating Driver / PDS Issues
Error Message | Cause | Action |
---|---|---|
| The format of the inline DTD section in the | If the DTD format is modified, ensure the validity of configuration file against the JDBC PDS requirement. |
| An error was found on the specified line of the | Correct the error on the specified line. |
| The | Ensure that the |
| The XML section in the | Ensure that the XML section in the |
| The driver used in the query is not specified in the | Ensure that the entry for the required driver along with the related driver information is in the |
Use the detailed trace information generated by Oracle Reports to debug your JDBC query.
The trace information generated is helpful to find out the following:
See Example 14-1 for sample design-time trace output.
See Example 14-2 for sample run-time trace output.
For more information on the location of the logging.xml
file, see Section 24.3.7, "Tracing Report Execution"
Sample trace output
Example 14-1 Building a JDBC Query from JDBC Query Dialog
Example 14-2 Running a JDBC Query
Note: Oracle Reports exposes the PDS API and also contains a tutorial that describes in detail how to implement or customize your own PDS. For more information, refer to the Reports Software Development Kit (RSDK), available on the Oracle Technology Network (OTN): on the Oracle Reports page (http://www.oracle.com/technology/products/reports/index.html), click SDK. Using this API, you can implement an unlimited number of PDSs to access any kind of data sources that you have. |
The main tasks you must perform to add your JDBC PDS are:
For information on how to configure the jdbcpds.conf
file, refer to Section 14.1.1, "JDBC Configuration File".
For information on how to install the driver's JAR files, refer to Section 14.1.1.2.5, "Custom Driver" .
Text PDS is configured and available out-of-the-box for Oracle Reports.
The textpds.conf
file is the Oracle Reports Text PDS configuration file which can be changed, added, or deleted. The file is located at the following directories:
ORACLE_INSTANCE
\config\ReportsServerComponent\
server_name\textpdf.conf
ORACLE_INSTANCE
\config\ReportsToolsComponent\ReportsTools\textpdf.conf
DOMAIN_HOME
/config/fmwconfig/servers/WLS_REPORTS/applications/reports_
version
/configuration
Example
The following example illustrates the contents of textpds.conf
file:
Table 14-13 outlines the various values that can be associated with a File Formats.
Table 14-13 File Format Attributes
Attribute Name | Description |
---|---|
| A File Format name, this name appears in the Data Definition drop down list |
| A Comment character, this will be used in the DataSource. |
| A Column Delimiter. The Data Source file contains data in rows. Each row has fields or tokens corresponding to the Columns specified in the configuration file. Each field or token will be separated by a Column delimiter (See cellWrapper) |
| A File Format Type which can be either a fixed or variable. In case of |
| This is a null value character. |
Table 14-14 outlines the various values that can be associated with a Column.
Table 14-14 Column Attributes
Attribute Name | Description |
---|---|
| This is the name of the Column Heading |
| This is the Column Data type. There are three data types that are supported:
|
| This is an optional attribute. If specified, this character will override the File Format delimiter for the column for which it is specified. |
| This is an optional attribute. Currently it is used only for date fields. It specifies the pattern in which date field is to be expected. |
XML PDS is configured and available out-of-the-box.
The xmlpds.conf
file is the Oracle Reports XML PDS configuration file. It is located at the following directories:
ORACLE_INSTANCE
\config\ReportsServerComponent\
server_name
ORACLE_INSTANCE\config\ReportsToolsComponent\ReportsTools
DOMAIN_HOME
/config/fmwconfig/servers/WLS_REPORTS/applications/reports_
version
/configuration
Note: The only parameter that can be changes is thecolumnLength . The default size of the column is 4000 bytes |
Example
The following example illustrates the contents of xmlpds.conf
file:
When you create a report against an XML data source, you must ensure that the encoding of the data source and its DTD matches the encoding of Reports Builder.
For example, when you create an XML report against a table encoded in a Japanese character set, the group element name is encoded in Japanese. To match the data source, you should encode the group's element name in the DTD in Japanese. The XML and DTD files can be in any encoding that supports Japanese, such as Shift_JIS, EUC-JP, or UTF-8.
If you do not match the XML data source and DTD encoding to the Reports Builder encoding, you will see the following error:
ERR-063001 xxx.dtd null
Note: You will not see this error if you use a XML schema instead of a DTD. |
To avoid this problem, ensure that both the XML data source and DTD for your XML report use the same encoding that you have in the character encoding part of the NLS_LANG
environment variable in effect for your Reports Runtime.
For example, if NLS_LANG=JAPANESE_JAPAN.JA16SJIS
for your Reports Runtime, then both your XML data source and DTD should use Shift_JIS.
The celebrated openness of the Internet brings with it concerns about controlling who has access to what confidential company information. Oracle Reports provides a number of security options that enable you to ensure that the appropriate users are getting important data in a secure fashion. This chapter contains the following sections:
This section introduces security features and concepts in Oracle Reports. It also describes the new security features introduced in Oracle Reports 11g Release 1 (11.1.1).
This section discusses the following topics:
Oracle Reports 11g Release 1 (11.1.1) uses a standards-based Java EE security model through Oracle Platform Security Services. This provides a flexible, simple to administer security mechanism. It can be used with standalone Oracle Reports install or any Forms-Reports combination. The policy store and the identity store used for authentication and authorization can be standard JAZN-XML based or any LDAP server, including Oracle Internet Directory through JAZN-LDAP, providing flexibility.
Note: JAZN-XML is an XML file which is configured by the user to use as an id store and/or policy store. |
Oracle Reports 11g Release 1 (11.1.1) accomplishes authentication through Single Sign-On, Oracle Internet Directory, Embedded ID Store, and JAZN-XML File-based ID Store. For authorization, Oracle Reports 11g Release 1 (11.1.1) supports Oracle Internet Directory, File-based, and Portal-based methods. In prior releases, Reports Server authentication was restricted to use only Oracle Internet Directory. If you want to revert to the security mechanism of prior releases, you can do so in Oracle Enterprise Manager, as described in Section 7.8.1.1, "Switching to Oracle Portal Security". If you want to use OracleAS Single Sign-On without implementing data source security or Oracle Portal, refer to Chapter 17, "Configuring and Administering OracleAS Single Sign-On".
Alternatively, you might have your own application for launching reports with its own login mechanism and user/group repository, or have your own mechanism for protecting data sources (for example, you might choose to use a different LDAP server to store user and group information). In this case, Oracle Reports Services provides interfaces that allow you to integrate it with these non-Oracle components, as described in Section 15.14, "Security Interfaces".
Oracle Reports 11g Release 1 (11.1.1) uses Oracle Platform Security Services, enabling a new security mechanism that provides the features and functionality described in Table 15-1 (a subset of Table 1-1, "11g Functionality vs. 10g Functionality"):
Table 15-1 11g Security Features vs. 10g Functionality
11g New Features | Equivalent 10g Functionality |
---|---|
A standards-based Java EE security model through Oracle Platform Security Services. This provides a flexible, simple to administer security mechanism. For more information, see Section 15.1, "Introduction to Oracle Reports Security" | Reports Server authentication restricted to use only Oracle Internet Directory. Authorization of Reports Server required Oracle Portal-based security model (using Portal metadata repository for checking authorization). |
Oracle Enterprise Manager advanced user interface. Administrators can use Oracle Enterprise Manager to more easily define and manage granular security policies for reports, directories, Web commands, and read/write access to directories. For more information, see Section 7.8, "Securing Oracle Reports Services" in Chapter 7, "Administering Oracle Reports Services Using Oracle Enterprise Manager" | Basic UI in Oracle Portal for defining the policies. Hard-coded Web command access to the Oracle Reports seeded roles. Access policies at file (report) level only, not folder level. |
Read/write access to directories at Reports Server level. Administrators can control the input folders from which reports can be served and output folders to which the output of reports servers can be pushed. This ensures there is no security vulnerability. For more information, see Section 15.4.6, "Defining Read/Write Access to Directories" |
|
Database proxy authentication. Support for database authentication using proxy users:
| Not Applicable |
Security check for distribution destinations. Ability to define security policies for distribution jobs. For example, you can define a security policy that specifies report output may not be burst to | No security check performed for destinations specified in the distribution XML file. |
Security check for system parameters. A security check is performed for all system parameters, including those specified in the report definition as well as on the command line. | No security check performed for system parameters. |
Security auditing. Audit authentication and authorization on the Reports Server. | |
Security for report output from Oracle Forms Services. With no configuration required, support for intermediate-level security even when Oracle Forms Services and Oracle Reports Services are not secured. For more information, see Section 15.11, "Intermediate-level Security for Forms and Reports", Section 17.6, "Oracle Forms Services Security Considerations" and Section 18.8.2, "Generating Random and Non-Sequential Job IDs". | Anyone is able to see anyone else's report output by "guessing" the job ID based on sequential job ID assignment. |
Oracle Reports Services encompasses functionality for three main areas of security:
Generally, users must log on to an application or site (for example, your own corporate Web site, Oracle WebCenter Portal) from which they can access and run their reports. This launcher application is typically protected by some sort of login facility, such as OracleAS Single Sign-On. Once they successfully gain entry into the launcher application, resource security takes over and determines which reports and destinations a given user or group may request.
For application security, OracleAS Single Sign-On provides a single point of user log in and, optionally, data source security. In a typical configuration, the user logs on through OracleAS Single Sign-On to gain access to a report application, where they access and run their reports.
Resource security ensures that only authorized users or groups execute a specific report. It also keeps users or groups from accessing particular Reports Servers for the execution of the report. Certain servers might be reserved for a particular group of users, or may simply be inaccessible during certain times for maintenance activities.
Once it is determined that a user has the necessary privileges to execute a given report through the specified Reports Server to the specified destination, then the user's privileges to the data source accessed by the report must be ascertained.
Optionally, or for backward compatibility, you can configure Oracle Portal to provide resource security for reports and Reports Servers out of the box. In a typical configuration, the administrator or developer specifies which users and groups could access which reports and Reports Servers from Oracle Portal.
Data source security defines the users or roles that can access the data within the given data source. A report might access multiple data sources and the current user must have privileges on all of the data sources accessed by the report in order to run it and view the output. The data source administrator (typically a DBA) grants access to data sources. Data source security must be established and in place prior to configuring your reports environment.
You can provide for data source security in two different ways with Oracle Reports Services:
AUTHID
and the necessary connection parameters (for example, USERID,SSOCONN
) for your report. This functionality is much the same as it was in previous releases of Oracle Reports Services. For a complete discussion of URL syntax, refer to Section 18.1, "The Reports URL Syntax". For a complete discussion of key mapping, refer to Section 18.13, "Using a Key Map File". A Credential Store is the repository of security data that certify the authority of entities used by Java 2, JavaEE and ADF applications. Applications can use the credential store, a single, consolidated service provider to store and manage the credentials securely.
A domain includes one credential store. Application-specific credentials are supported and migrated to credentials in the domain credential store when the application is deployed. Thus, all servers and all applications deployed in a domain use a common credential store, the domain credential store.
Oracle Reports 11g Release 1 (11.1.1) uses credential store to store a password as a key. You can also use the credential store to configure database connection information for jobStatusRepository
and jobRepository
elements.
For example:
Portal password is stored in the reports credential map with key in the following syntax:
"portalpasswd_DomainName_InstanceName"
Note: You must create credentials under the Reports folder as the server accesses credentials from this folder in CSF. |
Oracle Platform Security supports the following types of credentials according to the data they contain:
In Credential Store Framework (CSF), a credential is uniquely identified by a map name and a key name. Typically, the map name corresponds with the name of an application and all credentials with the same map name define a logical group of credentials, such as the credentials used by the application. All map names in a credential store must be distinct. If the credential store is intended to be the repository of X.509 certificates, it is recommended the use of an Oracle Wallet or a Java keystore. The credential store does not allow the storage of end-user digital certificates.
Note: CSF keys are stored inrwserver.conf and rwservlet.properties file. |
For more information on how to manage credentials in a domain credential store through Oracle Enterprise Manager, see Section 7.8.8, "Managing Credentials".
For more information about Wallet-Based and LDAP-Based Credential Stores and Configuring the Credential Store, see Oracle Fusion Middleware Security Guide.
It is recommended that you specify information about Oracle Internet Directory while installing Oracle Reports 11g Release 1 (11.1.1). For more information, see Oracle Fusion Middleware Quick Installation Guide for Oracle Portal, Forms, Reports, and Discoverer.
If you specified Oracle Internet Directory information during the installation of Oracle Reports 11g Release 1 (11.1.1), authentication based on Single Sign-On is enabled for both in-process servers and standalone servers. In addition, Portal-based security is enabled, so you can use Portal-based authorization if Portal is configured.
Note: If you did not specify Oracle Internet Directory information during the installation of Oracle Reports 11g Release 1 (11.1.1), no authentication is enabled. Therefore, both in-process servers and standalone servers are not secure. |
This section describes authentication features, tasks, and concepts that are specific to Oracle Reports.
It discusses the following topics:
Authentication Methods
Oracle Reports 11g Release 1 (11.1.1) supports the following authentication methods:
rwsec
, or JPS-OID configured) The following table summarizes the authentication methods for JPS-based security that Oracle Reports supports.
Table 15-2 Authentication Methods for JPS-Based Security
Type of Reports Server | Oracle Internet Directory | WebLogic ID Store | Single Sign-On | File-Based |
---|---|---|---|---|
In-process servers | Yes | Yes | Yes | No |
Standalone servers | Yes | No | Yes | Yes |
The following table summarizes the authentication methods for Portal-based security that Oracle Reports supports.
Table 15-3 Authentication Methods for Portal-Based Security
Type of Reports Server | Authentication Based on Oracle Internet Directory | Single Sign-On |
---|---|---|
In-process servers | Yes | Yes |
Standalone servers | Yes | Yes |
OracleAS Single Sign-On makes use of an encrypted cookie to track authenticated application users. When rwservlet
receives a request to execute a report on a secured Reports Server, it queries the Oracle HTTP Server (through the getRemoteUser
call) to determine whether the user has already logged on through OracleAS Single Sign-On (that is, a Single Sign-On cookie exists for the user):
rwservlet
gets the user's identity from the Oracle HTTP Server. rwservlet
, which then proceeds as described in the previous bullet item. In this scenario, a report request is sent to a secured Reports Server with Single Sign-On enabled.
The following numbered steps map to the numbers in Figure 15-2:
The report request is made through one of the following methods:
Note: The URL may optionally contain or reference (that is, through the key map file) a Single Sign-On parameter (SSOCONN) with a value of the form:
In the case of an Oracle database, the Single Sign-On value would look something like the following:
If you do not specify a data source type and parameter name, an Oracle database is assumed. |
rwservlet
deployed on Oracle WebLogic Server. The URL redirects the user to either rwservlet
or the JSP depending upon whether this report has been set to execute through rwservlet
or a JSP.
rwservlet
asks OracleAS Single Sign-On to authenticate the user. rwservlet
. If you used SSOCONN
in your URL, rwservlet
checks the Single Sign-On key against Oracle Internet Directory to see if it already has been mapped to a data source connection string (for example, scott/tiger@my_or_db
).
If you used SSOCONN
and Oracle Internet Directory already has a connection string associated with the key, then rwservlet
uses that connection string for the data source connection of the report.
Note: Because of this feature, many users can use the same report URL even if they all use different data source connection strings. |
If you used SSOCONN
but Oracle Internet Directory does not already contain a connection string for the key, the Oracle Delegated Administration Services Create Resource page displays for the user to enter their data source connection string. See Figure 15-3.
Oracle Delegated Administration Services stores the string in Oracle Internet Directory for future use and rwservlet
uses the newly entered connection string for the data source connection string of the report.
If any of the non-SSO authentication methods is used (based on Oracle Internet Directory, File-based in case of JPS-based security, and Embedded ID store), then any user accessing a secured instance of the Reports Server is challenged to identify themselves by rwservlet
or Reports clients through their own authentication mechanism.
Table 15-4 Non-SSO Authentication Methods
ID Store | Authentication |
---|---|
Oracle Internet Directory (| Authentication against Oracle Internet Directory |
Embedded ID store (in-process servers) | Authentication against embedded ID store of WebLogic Server |
JAZN-XML File-based ID store (standalone servers) | Authentication against file-based ID store |
Because the HTTP 1.0 protocol is stateless (that is, each call to the server is effectively independent of all others), users may want to authenticate themselves for each report request unless a cookie is maintained. To allow users to authenticate themselves only once per session, rwservlet
has its own client-side cookie, the AUTHID
cookie, in which it stores the required authentication information for the current session. Once the user is authenticated, an encrypted cookie is created in the browser to enable the user to submit multiple report jobs without re-authenticating for each request.
Note: If you want to force users to authenticate themselves for a specific report, you can use theSHOWAUTH command line keyword. Alternatively, you can include a %S in the corresponding report entry in the key map file. This file is usually called cgicmd.dat and is located in $DOMAIN_HOME/config/fmwconfig/servers/<WLS_SERVER_NAME>/applications/reports_<version>/configuration/cgicmd.dat. %S forces users to enter their username and password each time the report is called. For more information, see Section 18.13, "Using a Key Map File". |
The AUTHID
cookies are terminated when the user closes their browser session, but you should not rely strictly on this method of terminating the cookie. You should limit the lifetime of the cookie within a given session. For example, a user might log on and then go to lunch, leaving the browser session open. To minimize the potential for a security breach in this situation, the administrator may specify the COOKIEEXPIRE
parameter as an attribute of the element cookie in the rwservlet.properties
file.
For example, you can specify the cookie element in the rwservlet.properties
file as follows:
<cookie cookieexpire="30" encryptionkey="reports"/>
When rwservlet
receives a job request, it compares the time saved in the cookie with the current system time. If the time is longer than the number of minutes defined in the environment variable (for example, 30 minutes), the cookie is rejected and the user is challenged to provide authentication information.
See Also: Section 8.3, "Oracle Reports Servlet Configuration File" for more information about theCOOKIEEXPIRE parameter and the rwservlet.properties file. |
In this scenario, the report request is sent to a secured Reports Server with Single Sign-On disabled. Non-SSO authentication methods include Oracle Internet Directory-based, File-based, and Embedded ID store. In this case, rwservlet
or a JSP report might be called through the use of a bookmark or from an Oracle Portal component.
The following numbered steps map to the numbers in Figure 15-4:
The user must somehow gain access to the URL that launches the report request (for example, through a link on a Web page or a bookmark), and choose the URL.
rwservlet
deployed on Oracle WebLogic Server. rwservlet
asks for user credentials (that is, user name and password). rwservlet
checks for the AUTHID
parameter in the URL or an existing Oracle Reports AUTHID
cookie. If it finds the AUTHID
parameter, it uses that to authenticate the user. If it does not find the AUTHID
parameter, it looks for an existing Oracle Reports AUTHID
cookie. (If the report is launched from Oracle Portal, AUTHID
is added to the URL automatically.) If neither the AUTHID
parameter nor an Oracle Reports AUTHID
cookie is found, rwservlet
sends the System Authentication page to the Oracle HTTP Server, to display to the user.
On the login page, the user must supply a user name and password. This information is stored in an Oracle Reports AUTHID
cookie for future reference.
rwservlet
. If only partial data source credentials are provided in the URL (for example, USERID
=scott@orqa
), the Database Authentication page displays with the partial credentials shown. The user must supply the remainder of the data source credentials before proceeding further. Note that you can control which Database Authentication page is used through the DBAUTH
parameter in the rwservlet.properties
file. If no data source credentials are provided, the Database Authentication page does not display and it is assumed the report does not require a data source.
See Also: Section 8.3, "Oracle Reports Servlet Configuration File" for more information about theDBAUTH parameter and the rwservlet.properties file. |
The data source credentials are stored in an Oracle Reports USERID
cookie for future reference. Note that pluggable data source (PDS) credentials are not stored in Oracle Reports USERID
cookies.
rwservlet
forwards user name and password to Reports Server. rwservlet
constructs a command line with the necessary information from the previous steps and passes it to Reports Server.
Reports Server validates the user credentials against the ID store (Oracle Internet Directory, embedded ID store or file-based Oracle Internet Directory). If the validation check fails for any reason, then an error condition is returned to the user and the process terminates.
This section discusses the following authentication scenarios:
Note: By default, an in-process server uses the embedded ID store of Oracle WebLogic Server as the ID store and thesystem-jazn-data.xml file as the policy store. Standalone servers use the system-jazn-data.xml file as both ID store and policy store. |
It is recommended that you move users in your current ID store, such as embedded ID store, to Oracle Internet Directory, which is an LDAP-based ID store. Subsequently, you can map users to application roles. For information about moving users to Oracle Internet Directory, see the section "Migrating Identities Manually" in the Oracle Fusion Middleware Security Guide. For information about mapping users to application roles, see Mapping Users to Application Roles.
You must map users in Oracle Internet Directory to the default application roles. For information about mapping users to application roles, see Mapping Users to Application Roles.
Note: In the above authentication scenarios, if Single Sign-On is enabled, the Single Sign-On screen is displayed. If Single Sign-On is disabled, the Reports sysauth screen is displayed. In either case, users are authenticated against Oracle Internet Directory. If you have not moved your users to Oracle Internet Directory, then users are authenticated against the embedded ID store for in-process servers. For standalone servers, such users are authenticated against the file-based ID store. |
If you are using Portal-based security, Oracle Internet Directory-based authentication is used.
You can map users to application roles. For information about mapping users to application roles, see Mapping Users to Application Roles.
Note: In the above authentication scenarios, if Single Sign-On is enabled, the Single Sign-On screen is displayed. If Single Sign-On is disabled, the Reports sysauth screen is displayed. In either case, users are authenticated against Oracle Internet Directory. |
If you are using JPS-based security, you can use either Oracle Internet Directory or JAZN-XML method for authorization. If you are using Portal-based security, the Portal-based authorization is used.
In the case of JPS-based security, an in-process server uses system-jazn-data.xml
as the policy store, by default. Hence, Reports policies are stored in system-jazn-data.xml
under the reports application entry. Users are authorized based on this policy store. For standalone servers, all the policies are stored in the system-jazn-data.xml file and authorization is done against these policies.
Note: The authorization process involves checking whether a particular user is in the ID store used by JPS. If Single Sign-On is used for authentication, Ensure that the same users are configured in the ID store used by JPS. Alternatively, ensure that JPS points to the ID store used by Single Sign-On. Otherwise, authorization does not work. |
The following table summarizes the supported authorization methods if Oracle Reports uses JPS-based security.
Table 15-5 Authorization Methods for JPS-Based Security
Types of Report Server | Oracle Internet Directory | File Based |
---|---|---|
In-process | Yes | Yes |
Standalone | Yes | Yes |
If Portal-based security is configured, the following authorization methods are used.
Table 15-6 Authorization Method for Portal-Based Security
Types of Report Server | Authorization |
---|---|
In-process | Portal-based |
Standalone | Portal-based |
Note: If Oracle Portal is configured to perform authorization, and the report request is launched from within Oracle Portal rather thanrwservlet , Oracle Reports will similarly validate the user's privileges on the report before running it. Even for unauthenticated (PUBLIC) users viewing public pages, Oracle Reports Services verifies that the PUBLIC user account has appropriate privileges on the report. |
Authorization occurs after a user is authenticated using Single Sign-On or Non-SSO (Oracle Internet Directory-based, File-based in case of JPS-based security, and Embedded ID store) methods. Once the user is authenticated, the report request must go through the authorization process, as shown in Figure 15-4.
The following numbered steps map to the numbers in Figure 15-5:
Reports Server validates the user privileges against the policies defined in Policy Store (JAZN-XML, LDAP, or Portal repository) by the user.
Reports Server checks whether the user has the necessary privileges to run the report on the parameters specified in the Policy Store. If the validation check fails for any reason, then an error condition is returned to the user and the process terminates.
Note: If the user is executingrwservlet Web commands such as showjobs and getserverinfo , instead of executing a report, Reports Server verifies and authorizes the user based on Policy Store settings. |
rwservlet
. Reports Server delegates the job to an engine that accesses the data source, retrieves the data, and formats the report.
The completed output is sent to the specified destination. Depending upon the destination, the output may be served back to the browser (as shown in Figure 15-5), sent to a printer, stored in a file for future reference, sent to an FTP server, and so on.
Reports policies are granted to application roles. You must associate all users in your ID store (embedded ID store of Oracle WebLogic Server or an external Oracle Internet Directory) with one of the Reports application roles.
You must add the oracle.security.jps.enterprise.user.class
property in the jps-config-jse.xml
file.
In Enterprise Manager, you can complete this task as follows:
The Application Roles page is displayed. In this page, you can map users to application roles.
Alternatively, you can complete this task by manually editing the $DOMAIN_HOME/config/fmwconfig/system-jazn-data.xml
file. This step is required if you want to use JPS to authorize your users in Oracle Internet Directory.
Search for the "reports" application in the XML file and add a user in the members section. For example, to add a user called orcladmin
, add:
Out-of-the-box, default users, roles, and permissions are already created. As administrator, you can specify the reports to which a particular user has access by defining a security policy for each report. In the security policy, you can also specify the server, destination name (desname
), destination type (destype
), and other parameters. The security policy is checked when the user provides the user name and password.
Refer to Section 7.8.2, "Defining Security Policies for Reports" to use Oracle Enterprise Manager to update the report security policies.
For Portal-based security, you can create a security policy in Oracle Portal. For more information, see the "Securing Oracle Portal" in the Oracle Fusion Middleware Administrator's Guide for Oracle Portal.
In certain cases, you will want to give a particular user access to multiple related reports. Rather than specify a security policy for each report, you can collect all the reports in a single directory, then specify a security policy for the directory. Again, the security policy is checked when the user provides the user name and password.
Refer to Section 7.8.3, "Defining Security Policies for Directories" to use Oracle Enterprise Manager to update the directory security policies.
You can also specify the Oracle Reports Servlet (rwservlet
) Web commands to which a particular user/role has access by creating security policies for each Web command. The security policy is checked when the user provides the user name and password.
Refer to Section 7.8.4, "Defining Security Policies for Web Commands" to use Oracle Enterprise Manager to update the Web command security policies.
As administrator, you can specify read/write access for Reports Server, Reports Application (in-process Reports Server), or Oracle Reports Runtime to directories. This feature only checks whether the Reports Server, Reports Application (in-process Reports Server), or Oracle Reports Runtime is authorized to read from or write to a specified directory, and is unrelated to the security policies for users/roles, which check the user name and password.
Refer to Section 7.8.5, "Defining Read/Write Access to Directories" to use Oracle Enterprise Manager to specify the read/write permissions defined in the server configuration file (rwserver.conf
) under the new optional element folderAccess.
Application policies are the authorization policies that an application uses for controlling access to its resources. You can enter search keyword for principals or permissions to query application security grants. You can use an application stripe to search if the application uses a stripe that is differerent from the name of the application.
To search for application policies in Enterprise Manager, complete the following steps:
The Application Policies page is displayed.
reports
. Application roles are the roles used by security-aware applications that are specific to the application. These roles are seeded by applications in WebLogic Domain policy store when the applications are registered.
To search for application roles in Enterprise Manager, complete the following steps:
The Application Roles page is displayed.
reports
. This section describes end-to-end security scenarios that involve both authentication and authorization.
The following table describes JPS-based security scenarios.
Table 15-7 JPS-Based Security Scenarios
Security Scenario | Description |
---|---|
JPS-OID Authorization with Single-Sign-On Authentication for Reports Servlet | |
This scenario involves the following:
| To use this combination of authentication and authorization, complete the following steps:
|
JPS-OID Authorization with JPS-OID as ID Store for Other Reports Clients | |
This scenario involves the following:
| To use this combination of authentication and authorization, complete the following steps:
|
JAZN-XML Authorization with Single Sign-On Authentication for Reports Servlet | |
This scenario involves the following:
| To use this combination of authentication and authorization, complete the following steps:
|
JAZN-XML Authorization with JPS-OID Authentication for Other Reports Clients | |
This scenario involves the following:
| To use this combination of authentication and authorization, complete the following steps:
|
The following table describes Portal-based security scenarios.
Table 15-8 Portal-Based Security Scenarios
Security Scenario | Description |
---|---|
Portal-Based Authorization with Single-Sign-On Authentication for Reports Servlet | |
This scenario involves the following:
| To use this combination of authentication and authorization, complete the following steps:
|
Portal-Based Authorization with Oracle Internet Directory as ID Store for Other Reports Clients | |
This scenario involves the following:
| To use this combination of authentication and authorization, complete the following steps:
|
For JPS-based security, the following production scenario is recommended:
If you are not using Single Sign-On, use Oracle Internet Directory for authentication.
For Portal-based security, the following production scenario is recommended:
If you are not using Single Sign-On, use Oracle Internet Directory for authentication.
This section describes how to manage users and security policies for in-process servers and standalone servers.
It discusses the following topics:
To add users to the ID store for an in-process server, complete the following steps:
The Settings for myrealm page is displayed.
The User Properties page is displayed.
To add policies to the policy store for an in-process server, complete the following steps:
The Security Policy Configuration page is displayed.
The Security Configuration for Reports page is displayed.
For more information about security policies, see Section 7.8.2, "Defining Security Policies for Reports".
After configuring the users, you must map users present in the ID store to one or more application roles. You can configure an application role for an in-process server either through Oracle Enterprise Manager or manually.
In Enterprise Manager, you can complete this task as follows:
The Application Roles page is displayed. In this page, you can map users to application roles.
If the system-jazn-data.xml
file is used as the policy store, you can add the following under the reports entry in the system-jazn-data.xml
file to configure users to application roles manually:
For a sample system-jazn-data.xml
file, see Sample system-jazn-data.xml File
If the system-jazn-data.xml
file is used as the ID store, you can users to ID store for a standalone server by completing the following steps:
system-jazn-data.xml
file by replacing <jazn-realm/>
with the following: For a sample system-jazn-data.xml
file, see Sample system-jazn-data.xml File
You can add policies to a policy store for a standalone server through Oracle Enterprise Manager.
For more information about security policies, see Section 7.8.2, "Defining Security Policies for Reports".
This section describes how to configure external Oracle Internet Directory for in-process servers and standalone servers and to reassociate Reports with Oracle Internet Directory and another Portal.
It discusses the following topics:
You can migrate from the default embedded ID store of WebLogic Server to an external Oracle Internet Directory to configure the ID store and Policy store settings. Note that configuration of an external Oracle Internet Directory is a post-installation procedure.
If you are using JPS-based security, you can configure an external Oracle Internet Directory as ID store through the Oracle WebLogic Server Administration Console.
To configure an external Oracle Internet Directory as an ID store through Oracle WebLogic Server, complete the following steps:
The Summary of Security Realms page is displayed.
Now, users trying to access the in-process servers are authenticated based on the users specified in the external Oracle Internet Directory.
If you are using JPS-based security, you can configure an external Oracle Internet Directory as policy store though Oracle Enterprise Manager.
To configure the policy store in Oracle Enterprise Manager, complete the following steps:
Note: If the JPS root node does not exist on Oracle Internet Directory, you must create it. For more information, see the Oracle Fusion Middleware Administrator's Guide for Oracle Internet Directory. |
The policies configured in the system-jazn-data.xm
l file are migrated to the external Oracle Internet Directory.
If you have configured an external Oracle Internet Directory, you must reassociate Reports to map to the new Oracle Internet Directory.
To map Reports to associate with the new Oracle Internet Directory using Oracle Enterprise Manager, complete the following steps:
The Reports OID Association Details Page is displayed.
Note: Associating or deassociating Oracle Internet Directory affects all the Reports components associated with that particular Oracle Instance home. If Reports components are associated with different Oracle Instance homes, you must associate or deassociate Oracle Internet Directory individually for each Oracle Instance home. |
Ensure that you have associated Reports with the Oracle Internet Directory. To reassociate Oracle Reports to new Oracle Portal, complete the following steps:
Add a new key value pair in the reports
map. For example, add a key as hrportalPasswdKey
and key value as the portal schema password.
For more information, see Section 7.8.8, "Managing Credentials".
The Reports Server Advanced Configuration page is displayed.
Note: Reassociating Oracle Reports to Oracle Portal affects only the particular server on which the changes are made. You must repeat the procedure to reassociate each Reports server in the Oracle Instance home to an Oracle Portal. |
You can migrate from the default ID store (JAZN-XML) to an external Oracle Internet Directory to configure the ID store and Policy store settings. Note that the configuration of an external Oracle Internet Directory is a post-installation step.
To configure an external Oracle Internet Directory as an ID store or policy store, you must modify the $DOMAIN_HOME/config/fmwconfig/jps-config-jse.xml
file manually.
To configure an external Oracle Internet Directory as an ID store, modify the $DOMAIN_HOME/config/fmwconfig/jps-config-jse.xml
file as described in the following procedure.
Note: This is just an example. You must replace the example values provided in the entries with your install-specific values. |
<jpsContext name="default">
, add the following: Comment out the following:
<serviceInstances>
, add the following entries: < serviceProviders>,
add the following: To configure an external Oracle Internet Directory as a policy store, modify the $DOMAIN_HOME/config/fmwconfig/jps-config-jse.xml
file as described in the following procedure.
Note: This is just an example. You must replace the example values provided in the entries with your install-specific values. |
<jpsContext name="default">
add the following: Comment out the following:
<serviceInstances>,
add the following: <serviceProviders>,
add the following: The following security model is recommended for applications using Reports and Forms.
If Reports is Using Portal-Based Security
For more information see, Configuring External Oracle Internet Directory for In-Process Servers, and Configuring External Oracle Internet Directory for Standalone Servers
Perform the following steps to enable Single Sign-On:
The Reports Application Advanced Configuration page is displayed.
If Reports is using JAZN security
If Reports is using JPS-based security, by default, an in-process server uses the embedded ID store of WebLogic Server as the ID store and an XML-based Policy store. A standalone server uses JAZN-XML. Forms uses Oracle Internet Directory based authentication for security. In this scenario:
For more information about configuring external Oracle Internet Directory, see, Configuring External Oracle Internet Directory for In-Process Servers, and Configuring External Oracle Internet Directory for Standalone Servers
Perform the following steps to enable Single Sign-On:
The Reports Application Advanced Configuration page is displayed.
Oracle Reports 11g Release 1 (11.1.1) provides new security measures for reports run from Oracle Forms Services in non-secure mode:
Prior to 11g Release 1 (11.1.1), Oracle Reports generated sequential job IDs, making it easy to predict the job ID. This meant that unauthorized or malicious users could potentially view the job output using GETJOBID through rwservlet
to obtain job output that belongs to another user.
rwservlet
keywords) are now categorized for added security: L0
: no Web commands allowed. L1
: only end user Web commands allowed (GETJOBID, KILLJOBID, SHOWAUTH, SHOWJOBID). L2
: administrator Web commands (DELAUTH, GETSERVERINFO, KILLENGINE, PARSEQUERY, SHOWENV, SHOWJOBS, SHOWMAP, SHOWMYJOBS) are also allowed. AUTHID is required to run administrator commands. NO
(for backward compatibility with DIAGNOSTIC=NO
in 10g rwservlet.properties
). No Web commands allowed. YES
(for backward compatibility with DIAGNOSTIC=YES
in 10g rwservlet.properties
). Administrator Web commands (DELAUTH, GETSERVERINFO, KILLENGINE, PARSEQUERY, SHOWENV, SHOWJOBS, SHOWMAP, SHOWMYJOBS) are also allowed. AUTHID is required to run administrator commands. Note: For L2 Web command access, you do not need to pass the authid. The authid parameter is required only for the STOPSERVER command irrespective of the webcommandaccess value. |
Administrators are allowed to run both end user and administrator Web commands. For a non-secure Reports Server, the user ID and password for administrators can be set in the identifier element of the Reports Server configuration file.
The new webcommandaccess parameter in the Oracle Reports Servlet (rwservlet
) configuration file (rwservlet.properties
) defines access levels for executing rwservlet
keywords (Web commands). These values can be set using Oracle Enterprise Manager, as described in Section 7.8.4, "Defining Security Policies for Web Commands".
Oracle Reports11g Release 1 (11.1.1) provides support for database authentication using proxy users:
You can use the pre-11g security mechanism of Oracle Internet Directory integration for authentication without using Oracle Platform Security Services in either of the following ways:
In Oracle Enterprise Manager, select Reports > Administration > Manage Reports Security Policies to display the Reports Security Policies page.
Step 1. Using Delegated Administration Service (DAS)
To define a user in Oracle Internet Directory:
Step 2. Configure the standalone Report Server to use the RWSecurity to enable the non-Oracle Platform Security Services way of using Oracle Internet Directory (as in 10g Release 2 (10.1.2)).
rwserver.conf
. RWSecurity
element. job
element reflects the security id of the RWSecurity
element. rwserver.conf
. rwservlet.properties
: You can configure proxy user authentication in the database as follows:
CREATE USER proxy_user1 IDENTIFIED BY welcome1;
GRANT CONNECT, RESOURCE, CREATE ANY DIRECTORY, DROP ANY DIRECTORY TO proxy_user1
The actual user already exists in the database.
ALTER USER scott GRANT CONNECT THROUGH proxy_user1;
ALTER USER scott GRANT CONNECT THROUGH proxy_user WITH ROLE admin;
The proxy user with minimum privileges is created. However, this proxy user can connect as the actual user with the assigned role. The middle tier can connect to the database as the proxy user first, and then connect as an actual user through the proxy user account.
You can configure a new resource in Oracle Internet Directory in the user RAD or default RAD. You can use this key to obtain proxy access information, including user name, password , and database information from Oracle Internet Directory. This information allows you to connect to the database.To create a key in the default RAD, complete the following steps:
http://oidhost:port/oiddas
). Configuration
tab. Preferences
. Preferences
page, create a new Resource of type OracleDB
under Default Resource Access Information
, as shown in the Figure 15-5. Resource Access Information
section, enter the database proxy user name, database proxy password, and the database value in the respective fields. A new key is created, and you can pass this key as a value for the dbproxyConn
parameter. The number of proxy user connections and their access levels are set by the database administrator.
To use the database proxy feature, you must add and modify configuration settings in the Reports configuration files.
In the rwserver.conf
file, the dbproxy
key is set as follows:
This configuration is optional. The dbproxy
key is taken from the rwserver.conf file if the dbproxyConn
parameter is not passed on the command line. The dbproxykey
is obtained from this configuration, based on the database that you specified in the userid
command-line parameter.
To use the database proxy feature through rwservlet
, edit the enabledbproxy
setting in the rwservlet.properties
file as follows:
<enabledbproxy>yes</enabledbproxy>
By default, enabledbproxy
is set to no
. For rwclient
, this configuration setting is not required.
Prior to 11g Release 1 (11.1.1), Oracle Internet Directory was used for authentication and Oracle Portal for authorization. Oracle Reports 11g Release 1 (11.1.1) accomplishes both authentication and authorization through Oracle Platform Security Services.
For backward compatibility, 11g Release 1 (11.1.1) supports:
Oracle Portal provides a number of security features available to Oracle Reports Services that enable you to ensure that the appropriate users are getting important data in a secure fashion. With Oracle Portal security features in place, your users see only the data they're supposed to see.
Use Oracle Portal to control:
Oracle Portal is a browser-based, data publishing and developing solution that offers Web-based tools for publishing information on the Web and building Web-based, data-driven applications.
Oracle Portal is tightly integrated with Oracle Reports Services to create a robust and secure data publishing environment. Oracle Portal provides easy-to-use wizards for setting up Oracle Reports Services security. These include wizards for defining user access to reports, Reports Servers, printers, output formats, and report parameters.
Once you define access control information, it's stored in the Oracle Portal repository. As an Oracle Portal user, you can then, optionally, publish registered RDFs and JSPs to an Oracle Portal page. As with all Oracle Portal functionality, using Portal to deliver your reports is not required. You can deliver reports through command lines, as you may always have, and still benefit from the access control features available to you through Oracle Portal.
Access to Oracle Reports Services' security features is not dependent on whether you also use Portal to publish report links or report content. Even if you don't publish through Portal, you can still take advantage of the Oracle Reports Services' security features available in Oracle Portal to control user access to all of your reports.
When you expose a report as a portlet through Oracle Portal, Oracle Reports leverages OracleAS Single Sign-On, which eliminates the need for users to enter multiple log ins, first to the portal then to each of the reports exposed through portlets within the portal. With OracleAS Single Sign-On, when you log in, Oracle Portal automatically logs you into all registered portlet providers and subsystems.
For more information, refer to Chapter 16, "Deploying Reports in Oracle Portal".
The Security API of the Reports Software Development Kit (RSDK) enables you to integrate your own security model with the Reports Server. Oracle Reports Services enables you to plug in any security you wish, using the provided API.
The Security API can control:
The RSDK includes a tutorial that shows you how to integrate your own security using an XML file to store the authorization information. At the end of this tutorial, you will be able to:
For the tutorial and more information, refer to the Reports Software Development Kit (RSDK) on the Oracle Technology Network (OTN): on the Oracle Reports page (http://www.oracle.com/technology/products/reports/index.html
), click SDK.
The steps for deploying reports in Oracle Portal is the same in 11g Release 1 (11.1.1) as in prior releases. However, the security mechanism underlying the deployment has changed. You can continue to use the security features in Oracle Portal from prior releases for backward compatibility, but you can now also choose to use the new Oracle Platform Security Services security mechanism. For more information, see Chapter 15, "Securing Oracle Reports Services".
This chapter describes how to use Oracle Portal to deploy your Oracle Reports Services reports. It includes the following sections:
Before you deploy reports, both Oracle Portal and Oracle Reports Services must be installed and configured.
See also: The following resources for further information:
|
If you use the security features in Oracle Portal to control access to your reports, you must register all of your Reports users in Oracle Internet Directory and assign security privileges to all of them through Oracle Portal.
Note: If you have a large user population already entered into an LDAP-compatible directory, you can use Oracle Internet Directory features to synchronize the directories and save yourself the effort of entering your users individually. You'll find information about Oracle Internet Directory's Directory Integration Server in the Oracle Fusion Middleware Administrator's Guide for Oracle Internet Directory. |
In Oracle Portal, security privileges can be granted to individual users and to named groups of users. Named groups are useful for streamlining the process of granting access privileges. You can assign a set of access privileges to a named group, and grant the entire set of privileges to an individual simply by adding that person to the group.
Note: When you use features like Oracle Portal Security, Portal Destination, and Job Status Repository, the JDBC database connections made by Oracle Reports Services may override the initialNLS_LANG setting. This change may in turn affect the behavior of the running report, such as bidirectional output in PDF. On UNIX platforms, you can work around this issue by using the environment switching functionality to dynamically set the environment for reports. Refer to Section 8.2.2, "Dynamic Environment Switching" for more information. |
The next sections provide overview information on how to create users and groups in Oracle Portal. They include:
When you install Oracle Portal, Reports-related groups are created for you automatically. These include the following groups:
You must assign appropriate privileges to these groups to enable group members to perform specific functions on reports through Oracle Portal. For example, for each report object that you want members of a group (for example, RW_BASIC_USER
) to be able to run, you have to grant the Execute privilege to that group from the Access tab of the report object. Similarly, if you want members of a group (for example, RW_ADMINISTRATOR
) to be able manage Reports Servers, printers, and reports, you have to grant the Manage privilege to that group from the Access tab of those objects.
While you can assign object privileges to individual users, we recommend that every person who will access your reports belong to one of these groups or a group that you create yourself. If users try to run reports without being a member of one of these groups, by default, they are assigned the privileges of a basic user.
Note: TheRW_ groups are created automatically by configuring Oracle Portal, or you can create them manually. You can also run Web commands if they are in the IASADMINS group. |
The following commands can be run by members of any group:
getfile
showmyjobs
killmyjobs
getjobid
showjobid
help
Only members of the RW_DEVELOPER
group can run the following commands:
showmap
showenv
showjobs
parsequery
Members of the RW_ADMINISTRATOR
group can run any command.
Should the security check fail, members of the RW_BASIC_USER
group see less detailed error messages than the users in other Oracle Reports groups, such as:
Typically, you will want to assign this group minimal privileges. For example, you probably will want to give RW_BASIC_USER
the privilege to execute reports and no more.
In addition to the privileges of the RW_BASIC_USER
group, the RW_POWER_USER
group sees error messages that are more detailed than those displayed to basic users. For example, if members of this group are not permitted to run to HTML, but they try anyway, they might get the message:
This is more detailed than the message an RW_BASIC_USER
would receive for the same error.
In addition to the privileges of the RW_POWER_USER
group, the RW_DEVELOPER
group can run the following Web commands that show the system environment:
showmap
showenv
showjobs
parsequery
Typically, you would assign privileges to this group needed by a developer who is testing reports. Depending upon your installation, you might even assign them limited administrative privileges.
In addition to the privileges of the RW_DEVELOPER
group, the RW_ADMINISTRATOR
group has access to the administrator's functionality in the Oracle Reports Queue Manager, which means members of this group can manage the server queue, including rescheduling, deleting, reordering jobs in the server, and shutting down a server. Members of the RW_ADMINISTRATOR
group can run any command. The RW_ADMINISTRATOR
group also has the privilege to run Web commands through rwservlet
.
Typically, you will want to assign to this group some (but probably not all) of the same privileges assigned to the PORTAL_ADMINISTRATORS
group.
Note: Initially, only members of thePORTAL_ADMINISTRATORS group have MANAGE privileges for Oracle Reports objects. They can CREATE , UPDATE , and DELETE the registered report definition files, servers, and printer objects in Oracle Portal. In addition to all the links activated for the developer user, administrators can navigate to the Access tab on the Component Management Page, accessible in Oracle Portal. This is where the administrator can specify who will have access to this report. People with administrator privileges can assign security privileges for other people and receive full error messages from Oracle Reports Services. |
Oracle Portal uses the Delegated Administration Service (DAS) interface to Oracle Internet Directory to register users for access to Portal. You can enter the DAS interface through Portal to create new users. The creation of new users and groups is discussed in the Oracle Portal Administrator's Guide available on the Oracle Fusion Middleware documentation CD.
When you create groups, you must assign appropriate privileges to them to enable group members to perform any desired functions on reports through Oracle Portal. For example, for each report object that you want members of a group (for example, RW_BASIC_USER
) to be able to run, you have to grant the Execute privilege to that group from the Access tab of the report object. Similarly, if you want members of a group (for example, RW_ADMINISTRATOR
) to be able manage Reports Servers, printers, calendars, and reports, you have to grant the Manage privilege to that group from the Access tab of those objects.
Ideally, you should provide a user with the necessary privileges on objects by assigning them to a group that has appropriate privileges for their role. For example, if you are creating a user who needs to be able to run but not manage reports, you could assign her to RW_BASIC_USER
. If need be, you may assign object privileges to individual users (for example, JSMITH
) rather than groups, but this approach is more difficult and time consuming to manage.
Oracle Reports 11g Release 1 (11.1.1) uses credential store to store Portal password as a key. You can also use the credential store to configure database connection information for jobstatusrepository
and jobRepository
elements.
Portal password is stored in the reports credential map with key in the following syntax:
"portalpasswd_DomainName_InstanceName"
Note: If you modify the Portal password, you must update the value of the key in the Reports credential store. |
Before you begin, you must have a sufficient level of privileges in Oracle Portal to access the portlets and complete the tasks required for setting access controls. In order to manage reports in Oracle Portal, you must belong to both the PORTAL_ADMINISTRATORS
and RW_ADMINISTRATOR
groups. If you only belong to RW_ADMINISTRATOR
, you will encounter errors when you attempt to create report objects.
For more information on joining privilege groups in Oracle Portal, refer to the Oracle Portal Administrator's Guide.
This section outlines the necessary steps to go about:
To perform actions on existing Oracle Portal portlets, refer to:
Before you can define access controls for a Reports Server, you must register your server within Oracle Portal. Registration provides Oracle Portal with the information it needs to identify and locate all available Reports Servers. This becomes particularly important when you register individual reports; during this process you are required to choose from a list of Reports Servers, and servers must be registered to appear on this list.
Table 16-1 Sample Values
Property | Sample Value |
---|---|
Name (internal name) |
|
Display Name |
|
Portal DB Provider |
|
Reports Server Name |
|
Oracle Reports Web Gateway URL for JSP reports |
|
Oracle Reports Web Gateway URL for RDF reports |
|
Availability Calendar |
|
To register a Reports Server:
MY_REPORTS_SERVER
. This name must follow the Oracle Portal rules for a valid component name; that is: Note: The Display Name, unlike the internal Name, can have spaces in it. |
Note: All the components you add to or create in Oracle Portal must belong to a Portal DB Provider. Refer to the Oracle Portal online Help, for more information on how to create a Portal DB Provider. |
.
For example:
rwservlet
) in the Oracle Reports Web Gateway URL for RDF reports field. The URL should be in the following format: See Also: Chapter 8, "Configuring Oracle Reports Services" for more information on specifying the virtual path. |
For example:
Leave this box unchecked if you want this Reports Server to accept any report definition file, including those not registered in Oracle Portal, as long as the user who submits the report request has access privileges to this Reports Server.
See Also: Chapter 13, "Configuring Destinations for Oracle Reports Services" for more information on custom destination types. |
The resulting page summarizes your settings for this Reports Server. On this page, you can edit your settings, get detailed registration information about the Reports Server, or delete it altogether.
See Also: Section 16.2.5, "The Manage Portlet" for more information on the fields and descriptions listed in the Manage portlet (that is, Develop, Manage, and Access tabs). |
You have registered a Reports Server. Now you can register a report.
Registering a report is a required step that enables you to define who can run a report, when a report is available to run, which server(s) can be used to process report requests, how a report is delivered, and the printer(s) to which a report can be sent.
In addition to using registration to designate which users have access to a report, you can also specify, through a Oracle Portal parameter form, how users are to interact with the report.
User parameters are created in Oracle Reports Builder at the time of designing the report. You can assign values to these parameters when you run the report in Oracle Portal.
Note: You can use the parameter settings available through Oracle Portal to duplicate or create a subset of the parameters defined in Oracle Reports Builder at design time. At runtime, the Reports Server disregards any parameters that you set in Oracle Portal not defined in Oracle Reports Builder at design time. |
Registering a report within Oracle Portal creates an Oracle Portal component that can be deployed as a portlet through Portal. We recommend that you register only one instance of a report file in Oracle Portal. If you define multiple Oracle Portal report objects for one report, all are given security checks at runtime. If any of them fail the security check, then all fail, and the job will not run.
Table 16-2 Sample Values
Property | Sample Values |
---|---|
Name (internal name) |
|
Display Name |
|
Portal DB Provider |
|
Oracle Reports File Name |
|
Execute |
|
Name (Optional Parameters) |
|
Display Name (Optional Parameters) |
|
To register a report:
Note: The Display Name, unlike the internal Name, can have spaces in it. |
Note: All the components you add to or create in Oracle Portal must belong to a Portal DB Provider. Refer to the Oracle Portal online Help, for more information on how to create a Portal DB Provider. |
The report definition file can be an .rdf
, .jsp
, or .xml
file. If the path to this file is included in your REPORTS_PATH
environment variable, do not enter it here. If the path is not included in REPORTS_PATH
, include it here along with the filename. Do this for all report definition files except those you will run as standalone JSPs. For JSPs, you must define the name as virtual_path/reportname
.jsp
.
See Also:
|
rwservlet
). rwservlet
). At runtime, anywhere you have indicated multiple selections using control-click, a list of values will be offered to your users from which they can set their own runtime information: Note: For information about adding your own templates to this list, see the Oracle Portal online Help. |
Use the availability calendar to limit the days and times this report can be run.
Use validation triggers to create conditional restrictions that cannot be defined on either the Required Parameters page or the Optional Parameters page. Validation triggers are PL/SQL functions.
The function that you specify as a validation trigger must return a boolean value (TRUE or FALSE). If the function returns TRUE, the job is run. If the function returns FALSE, an error message is displayed and the job is not run.
The resulting page summarizes your registration information and provides the opportunity to perform additional actions on your report.
See Also: Section 16.3, "Publishing Your Report as a Portlet" for more information on how to run your report from Oracle Portal. |
Table 16-3 summarizes the options available on this page.
Table 16-3 Options on the Runtime Parameter Form
Option | Description |
---|---|
Run Report | Click to run this report with the specified parameter values. |
Save Parameters | Click to save the parameter value selections. |
Server | Select the Oracle Reports Server that you want to receive this report request. Only the servers that you chose at the time of registering the Report are displayed in this list box. |
Printer | Select the printer that you want to print your report output. Only the printers that you chose at the time of registering the report are displayed in this list box. |
Destype | Select the destination type. Only the destination types that you chose at the time of registering the report are displayed in this list box. |
Desformat | Select the destination format. Only the destination format that you chose at the time of registering the report are displayed in this list box. |
Desname | Enter the name of the output file when |
SSOCONN | Enter one or more Single Sign-On connection strings. Separate multiple strings with a comma (but no spaces). For more information on |
Visible to user | Check each parameter that you want to make available in the runtime parameter form when users run this report request. If the box in not checked, then the parameter is not displayed to users. |
Servlet Command Key | Optionally, enter the key from the |
Portlet Width | Use this field to control the width of the portlet. You can enter the value as a percentage of the page (for example, 90%) or in pixels (e.g, 700). If no value is specified, Oracle Reports Services uses its default value (640 pixels wide). |
Portlet Height | Use this field to control the height of the portlet. You can enter the value as a percentage of the page (for example, 50%) or in pixels (e.g, 400). If no value is specified, Oracle Reports Services uses its default value (320 pixels high). |
Additional User Parameters | Use this field to enter additional user parameters. For example, you can use this field to enter the path and name of the distribution XML file that defines how this report should be distributed. Use the same syntax you would use to specify these values in a command line request or within the For more information on the distribution XML file, see Chapter 20, "Creating Advanced Distributions". |
It is not required that you register a printer within the security framework of Oracle Portal. You can run a report on any printer as long as it is available to the Reports Server. However, you might want to confine Oracle Portal users to a subset of those printers, constrain the use of a printer for certain periods of time, or identify a particular printer to be used for printing output of certain reports.
Printer registration with Oracle Portal is meaningful for reports that you run through Oracle Portal as well as those you run through a standalone URL.
Once printers are registered within Oracle Portal, you can associate them with a Reports Server. Many printers can be registered. However, only printers associated with particular Reports Servers are available to print when you register a report with Oracle Portal and choose those Reports Servers.
You can choose to restrict even further the registered subset of printers that a registered report can be sent to. For example, an Reports Server might be connected to the printer in the office of the CEO, but its selection should not be available to employees running the general ledger report, unless it is the CEO who is running the report. A subset of printers can be listed to the Oracle Portal user running a report request to select where output should be sent.
Table 16-4 Sample Values
Property | Sample Value |
---|---|
Name (internal name) |
|
Display Name |
|
Portal DB Provider |
|
OS Printer Name |
|
Availability Calendar |
|
To register a printer:
Note: The Display Name, unlike the internal Name, can have spaces in it. |
Note: All components you add to or create in Oracle Portal must belong to a Portal DB Provider. Refer to the Oracle Portal online Help, for more information on how to create a Portal DB Provider. |
This printer must be available to the Reports Server.
Note: Printer availability is set through the operating system on the Report Server's host machine. |
The resulting page summarizes your settings for this printer. On this page, you can edit your settings, get detailed registration information about the printer, or delete it altogether.
See Also: Section 16.2.5, "The Manage Portlet" for more information on the fields and descriptions listed in the Manage portlet (that is, Develop, Manage, and Access tabs). |
You have completed registering a printer with Oracle Portal. This registration is meaningful for reports that are run through Oracle Portal as well as those run outside of Oracle Portal.
Defining availability calendars is an optional step that enables you to further restrict access to reports, servers, and printers by specifying when they can and cannot be accessed. Availability calendars are not necessary if the reports, the Reports Servers, and printers are always available for processing.
This section provides information on:
You can associate only one availability calendar with a report, a Reports Server, or a printer. If your production environment requires more than one availability rule, then you can combine availability calendars.
A simple availability calendar defines a single availability rule (for example, Sunday through Saturday from 12:00 a.m. to 10:00 p.m.).
To create a simple availability calendar:
Note: For information on creating a Portal DB Provider, see the Oracle Portal online Help. |
Under Duration, specify the length of time that comprises a unit of duration (or duration period). For example, if you plan to set this calendar up to allow report access from 9:00 AM to 5:00 PM on a given day, then both Start and End would be the same month, day, and year, but the hour and minute setting for Start would be 9:00 AM and for End would be 5:00 PM. In this example, the duration of availability of a report on a given day is from 9:00 AM to 5:00 PM.
Under Repeat, specify how frequently the duration period is repeated:
Note: No validation is run on your calendar. If the duration period exceeds the repetition setting, no error message will be generated. For example, if you set the duration period for 10 days and the repetition for weekly, the periods will overlap, but you will not be notified of the overlap. |
The resulting page summarizes your settings for this calendar. On this page, you can edit your settings, get detailed information about the calendar, or delete it.
You can combine this calendar with other calendars or apply it "as is" to registered Oracle Reports Services components.
A combined availability calendar combines two or more availability calendars into a single availability calendar. This is useful when you want to set up an availability period, then exclude specific days, such as holidays, from that period.
When you combine calendars, you can indicate that all the days on one of them be excluded from all the days on the other. For example, one calendar could describe availability Monday through Friday; another could describe availability only on Wednesday. You could combine these, excluding the Wednesday calendar, so that the combined calendar describes availability Monday, Tuesday, Thursday, Friday.
Conceivably, you could create a simple calendar that covers the weekdays of an entire year, then multiple additional simple calendars, where one excludes New Years, another excludes a second holiday, another excludes a third, and so on. You could combine all these calendars, excluding all the holiday calendars, so that components were available only on the days your company is open for business, between certain times of day, throughout the year.
To combine availability calendars:
Note: The Display Name, unlike the internal Name, can have spaces in it. |
Note: For information on creating a Portal DB Provider, see the Oracle Portal online Help. |
This page lists the availability calendars that have been defined for the same Portal DB Provider under which you are creating this combined availability calendar.
These are the calendars with dates on which you wish to withdraw availability.
If your exclusion isn't showing up, select a different view. For example, instead of the monthly view, select the weekly.
If you want to change the combination, close the calendar and click the Previous button one or more times to return to the desired page.
The resulting page summarizes your settings for this calendar. On this page, you can edit your settings, get detailed information about the calendar, or delete it.
See Also: Section 16.2.5, "The Manage Portlet" for more information on the fields and descriptions listed in the Manage portlet (that is, Develop, Manage, and Access tabs). |
You can combine this calendar with other calendars or apply it "as is" to registered Oracle Reports Services components.
Use the Manage portlet page to perform actions on existing Oracle Portal portlets; for example, executing, editing, copying, dropping, or viewing information about the portlet.
The actions you can perform on the portlet depend on your privileges. Also, not all actions listed here are available for all portlets. The name of the portlet on which you can perform these actions appears in the upper left corner of the page.
Table 16-5 details the fields and descriptions listed in the Develop tab.
Table 16-5 The Develop Tab
Field | Description |
---|---|
(portlet Type and Name) | Displays the portlet's type and name; for example: Form (table) my_formfor a form based on a table called my_form. |
Provider | Displays the name of the provider in which the portlet was created. |
Version(s) Status (Not applicable to all portlets) | Displays all the versions of the portlet and the current status of each version. Click a status to edit the portlet version. Note: If there are no hyperlinks, you do not have privileges to edit the portlet. |
Last Changed | Displays the name of the user who created or last edited the portlet, and the date and time when the portlet was created or last edited. |
Run Link (Not applicable to all portlets) | Displays the URL for the procedure or procedures that, when executed, display the portlet. You can copy and paste this URL into another Web page to create a link to the portlet. Note: A procedure that executes the portlet without parameters has the suffix .show. A procedure that executes the portlet with parameters has the suffix .show_parms. |
PL/SQL source (Not applicable to all portlets) | The portlet builder wizards create a PL/SQL package to represent each portlet: Package Spec: Displays the portlet's PL/SQL specification. Package Body: Displays the portlet's PL/SQL body. |
Call Interface (Not applicable to all portlets) | Click Show to display the arguments that a portlet can accept that the end user can change at runtime. Also shown are examples of calling the portlet from a PL/SQL Stored Procedure and through a URL. When you run the package containing the portlet in PL/SQL or by calling it from a URL, you can edit the call interface to accept different arguments. Note: To view portlet source code, you must have Customize or Execute privileges on the portlet or the provider that owns it. |
Edit Data Link (Not applicable to all portlets) | Click to connect to the URL containing the data, and to see and edit that data. |
Edit | Click to edit the most recent version of the portlet. For example, you can reselect any table columns on which the portlet is based, change any fields or text that appear in the portlet, or choose a new look and feel. |
Edit as New | Click to create and then edit a new version of this portlet. The existing portlet version does not change. |
Edit Data (Not applicable to all portlets) | Click to see the spreadsheet and be able to edit the data within it. |
Run | Click to run the current PRODUCTION version of the portlet. Note: If a valid package for the portlet doesn't exist, the portlet will not run. |
Run As Portlet | Displays how the portlet will look as a portlet in a portal window (may look different than a full page display). |
Customize | Click to display the customization form for the portlet. The customization form enables you to specify values that will be used to display the portlet. Note: If the current portlet is a form, Browse appears instead of Customize on this page. |
Add to Favorites | Click to add the portlet to the Favorites list on your Oracle Portal Home page. |
About | Displays stored attributes for the portlet. |
Delete | Click to drop the portlet from the database. |
Table 16-6 details the fields and descriptions listed in the Manage tab.
Table 16-6 The Manage Tab
Field | Description |
---|---|
Show/Hide SQL Query Info (Not applicable to all portlets) | Select to display or hide the SQL Query when running the portlet, for debugging purposes. |
Show Locks on this portlet (Not applicable to all portlets) | Displays any locks currently active on the portlet (for example, if somebody else is editing it). |
Export | Click to export the portlet from the database. |
Copy | Click to copy the portlet from the database. |
Rename | Click to rename the portlet (within the same provider). |
Generate | Click to compile the PL/SQL package. |
Monitor | Click to view a chart of all requests for the portlet and the users who made the request. |
Table 16-7, Table 16-8, Table 16-9, Table 16-10, Table 16-11, Table 16-12, and Table 16-13 details the fields and descriptions listed in the Access tab.
Table 16-7 Portal Access
Field | Description |
---|---|
Publish as Portlet (Not applicable to all portlets) | Click to make the portlet available as a portlet. Note: To publish the portlet as a portlet, you must have the Publish Portlet privilege and you must make the provider that owns the portlet available through Expose as Provider on the Access provider page (Manage tab). |
Table 16-8 Privilege Mode
Field | Description |
---|---|
Inherit Privileges from Provider | Select to allow the provider access privileges to override the portlet access privileges. Clear the check box and click Apply to allow the portlet access privileges to override the provider access privileges. In the Grant Access section, you can selectively grant or remove portlet access privileges for different users or groups (for example, Manage, Edit, View, Customize, or Execute). Note: To grant portlet access privileges to a user or group, you must have Manage access privileges on the portlet or provider that owns the portlet. |
Table 16-9 Grant Access
Field | Description |
---|---|
Grantee | Enter the user or group to whom you want to grant the provider access privilege. |
Execute | Choose the privilege you want to grant. |
Add | Click to grant the provider access privilege. |
Table 16-10 Change Access
Field | Description |
---|---|
Grantee | Displays the Oracle Portal user or group to whom the privilege is assigned. Click Error! Unknown switch argument.next to a grantee to delete all privileges.If you want to grant privileges to all Oracle Portal users, choose Public as the Grantee. |
Type | Displays whether the grantee is an Oracle Portal user or group. |
Privilege | Displays the privilege currently granted. To change a privilege, choose a new one and click Apply. |
Table 16-11 Cell Privilege Mode
Field | Description |
---|---|
Inherit Privileges from portlet (Not applicable to all portlets) | Select to allow the portlet access privileges to override cell access privileges. Clear the checkbox and click Apply to allow cell access privileges to override the portlet access privileges. In the Alter Access section, you can selectively change cell access privileges for different users or groups (for example, Manage, Edit, View, Customize, or Execute). Note: To alter cell access privileges for a grantee, you must have Manage access privileges on the portlet or provider that owns the portlet. |
The script content on this page is for navigation purposes only and does not alter the content in any way.
After you have registered your Oracle Reports, you can expose your report in a portal by performing the following steps:
Refer to Section 16.3.1, "Creating a Provider for Your Reports".
Refer to:
If you do not already have a provider defined to contain your reports, you must create one. For more information on creating a provider, see the Oracle Portal online Help.
Note: The provider that contains your reports must be a database provider and must have the Expose as Provider setting selected on its Access page. |
After you have registered your report with Oracle Portal, you can publish it as a portlet on your portal page.
Note: You must have enabled the Publish as Portlet box to ensure that you can publish your report as a portlet. |
To publish a report as a portlet:
See Also: Section 16.3.3, "Adding the Report as an Item Link to a Page" for information on how to add the Oracle Reports item to a page. |
If you are editing an existing page, skip to the next step.
Tip: Hints for each tool will display when you roll your mouse over them. |
For example, you can enter:
Portlet Width: 90%
Portlet Height: 480
If no value is specified, Oracle Reports Services uses its default value (640 pixels wide and 320 pixels high).
If the Portlet Width and Portlet Height fields are visible to users, then they can also adjust each portlet's width and height through Customize. The user's value will override the value set in the Customize page of the Reports Definition File Object component.
To make a report's parameters visible to users:
Note: You can also set the default value of the parameter from this page. |
If the parameter you are exposing has a corresponding Oracle Portal page parameter, and you leave the parameter value empty in the Customize page, the portlet inherits the page parameter's value. If the user enters a value for the report portlet's parameter, that value will override the page parameter value.
You can add an Oracle Reports component to a page as an item link using the Oracle Reports item type. If you have installed Oracle Portal with the nondefault language setting, refer to Section 16.3.4, "Running Reports on Oracle Portal as an Item Link on a Nondefault Installation".
Note: This item type must be included from the hidden list of item types and can be configured only if you are the page group administrator. |
If you are editing an existing page, skip to the next step.
When you install Oracle Portal with a nondefault language setting, some entries required to publish a report as an item link on a portal page are not installed automatically. You must install the language of your choice by using the rwlang.sql script.
Thus, you must run the script rwlang.sql
(ORACLE_HOME/portal/admin/plsql/wwd/
) if both of the following are true:
US
") at the time of installing Oracle Portal. Note: This is a one time post-installation task and will ensure that you can publish a report as an item link on Oracle Portal. |
To run the script:
ORACLE_HOME/portal/admin/plsql/wwd/
. sqlplus
. where
language_list
is the list of languages separated by commas.
For example, to install French and Japanese:
Usage Note
To distribute to the ORACLEPORTAL
destination from Reports Server:
distribution.xml
) to distribute report output to Oracle Portal. For example: Note: In this example, you must ensure that pagegrouptest_reports exists in Oracle Portal or specify an existing pagegroup name. |
Footnote Legend
Footnote 1: An individual piece of content (text, hyperlink, image, and so on) that resides on a page in an item region.By default, Reports Server can only use Oracle Portal users to connect to Oracle Portal. It cannot use an ordinary userid, such as scott/tiger
, unless you first assign appropriate privileges to its schema.
To assign the appropriate privileges to a schema other than the Oracle Portal schema, you must run the following script from SQL*Plus as an Oracle Portal user:
Once the script is loaded, it prompts you to enter the connection string for the new schema (for example, repapp/repapp@orcl
). The script then assigns the appropriate privileges to this new schema. You can then specify this connection string in the destination element in the Reports Server configuration file to connect to Oracle Portal.
This section contains information on the various steps that you can take to rectify issues that occur.
In Oracle Portal, when configuring Oracle Reports Security settings for Reports Definition File Access, you may encounter an error when editing a report definition file, when you click Run or Run as Portlet.
This error occurs when all of the following conditions are true:
To implement the workaround, perform the following steps:
ORACLE_HOME
, open the following file in a text editor: For example:
Oracle Application Server Single Sign-On (OracleAS Single Sign-On) enables you to establish a unique identity for each user, and tie that identity to the resources and data sources unique to that user. For example, a user might log in to an environment such as Oracle Portal, which enables them to access certain reports and printers for which they have the necessary privileges. When they choose to run a report from this environment, they can access the necessary data sources for the report because their data source credentials are stored with the single user identity used to login to Oracle Portal. Thus, logging in once provides them access to all of the resources and data sources they require to run their reports.
Because Oracle Reports Services provides a flexible approach to security, you can implement many variations of this configuration. For example, you might choose not to store data source credentials with the single user identity. Or you might prefer to use direct URLs for launching reports rather than a platform like Oracle Portal. If your reports are public and do not require any security, then you might choose to turn off report security altogether.
This chapter describes how you can implement and administer various configurations of OracleAS Single Sign-On with Oracle Reports Services.
OracleAS Single Sign-On can be implemented only in a secure server environment. This means that you must have a security policy in place in your Reports Server configuration file before you can consider implementing OracleAS Single Sign-On with Oracle Reports Services. For more information, refer to Chapter 15, "Securing Oracle Reports Services".
With OracleAS Single Sign-On, your administrator establishes a user identity for each user. The administrator does this in Oracle Internet Directory, through its user interface, the Oracle Delegated Administration Services. You can access Oracle Delegated Administration Services standalone or through Oracle Portal. In either case, the information is saved to Oracle Internet Directory.
The user identity is comprised of the user name and password. Once users are established, data source connection strings may be associated with them. At login, users must enter their user names and passwords (their user identities), which will in turn give them access to all of the data sources associated with those identities. OracleAS Single Sign-On issues a session cookie that effectively acts as a key that opens all authorized doorways for that session.
Note: For detailed information about the requirements and procedures required for setting up SSO-related components, such as Oracle Internet Directory, see Oracle Fusion Middleware Administrator's Guide for Oracle Internet Directory and the Oracle Fusion Middleware Administrator's Guide for Oracle HTTP Server. |
To run a report, you must login with a valid OracleAS Single Sign-On userid and password. The Reports Server is configured by default with the OracleAS Single Sign-On instance installed as part of Oracle Fusion Middleware. The Oracle Internet Directory instance installed with Oracle Fusion Middleware is used as the default repository for user and group information. If you want to configure the Reports Server to use a different Oracle Internet Directory instance or disable security, refer to Section 17.3, "Administering OracleAS Single Sign-On". For information on how to add users to Oracle Internet Directory, refer to Oracle Fusion Middleware Administrator's Guide for Oracle Internet Directory. In addition, for each Oracle Fusion Middleware installation, the Reports Server instances connect to Oracle Internet Directory as an application entity that is unique to the Oracle Fusion Middleware installation. For more information on this behavior, refer to Section 17.3.4, "Connecting to Oracle Internet Directory".
If a user is not already logged in to OracleAS Single Sign-On, they are prompted to log in when they attempt to run a report to the Reports Server through rwservlet
. If the user parameters for a report include SSOCONN
, OracleAS Single Sign-On will search for the user's data source credentials in Oracle Internet Directory. If none are found, then OracleAS Single Sign-On prompts the user to create a new resource. For more information on rwservlet
, refer to Section A.2.5, "rwservlet". For more information on SSOCONN
, refer to Section 17.3.3.1, "SSOCONN".
The Reports Server is also configured to operate with Oracle Portal by default. You can optionally add reports to the portal and enable users to launch them from the portal. Since users must login to the portal in this case, they are not prompted to login again when they launch their reports because they have already been identified to OracleAS Single Sign-On by logging in to the portal.
You can also optionally define access controls for resources associated with the Reports Server (for example, reports, printers, Reports Servers, and calendars) in Oracle Portal. To control access to resources, you must add them to the portal and specify their access options. The resource access controls you specify in Oracle Portal apply to reports that you run outside of the portal as well. For example, if a user tries to run a report through rwservlet, it will be subject to any access controls you have put in place through Oracle Portal.
See Also: Chapter 16, "Deploying Reports in Oracle Portal" for more information about the integration between Oracle Portal and Oracle Reports Services. |
Oracle Reports Services can take advantage of the capabilities in OracleAS Single Sign-On, which is part of the Oracle Identity Management infrastructure.
With the increasing number of Web-based, e-business applications that companies deploy for use by their employees, customers, and partners, many businesses must now consider Single Sign-On functionality. Single Sign-On refers to the ability to log on to a single security system once, rather than logging on separately to multiple security systems. With Single Sign-On, each user maintains a single identity and password for all data and associated resources to which they need access.
Within a given Web application, Oracle Reports Services eases the user's experience with OracleAS Single Sign-On. OracleAS Single Sign-On ensures that each user authenticates only once.
Note: It is recommended that you use Single Sign-on to hide authid in URLs. For more information see, Section 8.3.1.1.18, "allowauthid". |
Figure 17-1 provides an overview of the Single Sign-On component architecture.
The components of the Single Sign-On environment include:
The Oracle HTTP Server processes requests from the client browser.
Note: At the highest level, all communication to and from Oracle HTTP Server may be configured to use SSL. The Oracle HTTP Server incorporates an OpenSSL module to provide support for Secure Sockets Layer (SSL) and HTTP Secure Sockets Layer (HTTPS). Once this is set up in the Oracle HTTP Server (see Oracle Fusion Middleware Administrator's Guide for Oracle HTTP Server),rwservlet automatically detects the SSL port number. |
Oracle Reports Servlet (rwservlet
) is a component of Oracle Reports Services that runs inside Oracle WebLogic Server. When a report request comes to the Oracle HTTP Server, Oracle Reports Servlet (rwservlet
) passes the job request to Reports Server.
Reports Server (rwserver
) processes client requests, which includes ushering them through authentication and authorization checking, scheduling, caching, and distribution.
OracleAS Single Sign-On is responsible for managing users' Single Sign-On sessions. It verifies login credentials by looking them up in Oracle Internet Directory.
Oracle Internet Directory is Oracle's highly scalable, native LDAP version 3 service and hosts the Oracle common user identity. OracleAS Single Sign-On authenticates users against the information stored in Oracle Internet Directory. As noted in earlier sections, when Single Sign-On is enabled for Oracle Reports Services, it checks Oracle Internet Directory for user and group privilege information. It also retrieves data source connection information from Oracle Internet Directory.
The Delegated Administration Service provides a comprehensive interface for making updates to Oracle Internet Directory. Oracle Reports Services displays Oracle Delegated Administration Services when it encounters a Single Sign-On key that does not already have a data source connection string associated with it in Oracle Internet Directory.
For more information, refer to Chapter 17, "Configuring and Administering OracleAS Single Sign-On".
The script content on this page is for navigation purposes only and does not alter the content in any way.
This section describes some of the administrative tasks you may need to perform as you maintain security for Oracle Reports Services.
To take advantage of OracleAS Single Sign-On out-of-the-box, the SINGLESIGNON
parameter in the Oracle Reports Servlet (rwservlet
) configuration file (rwservlet.properties
) is set to YES
, which specifies that you will use OracleAS Single Sign-On to authenticate users. Oracle considers this to be the normal security deployment model and you should set <singlesignon>no</singlesignon>
only if you plan to run in a completely custom security configuration.
Use Oracle Enterprise Manager to change configuration settings, rather than directly editing configuration files. To enable or disable OracleAS Single Sign-On, see Section 7.8.6, "Enabling and Disabling Single Sign-On".
In 11g Release 1 (11.1.1), Reports Server is secured out-of-the-box using the Portal-based security, by default. However, you can enable JPS-based security, including JAZN-XML authorization. For more information, see Chapter 15, "Securing Oracle Reports Services".
Use Oracle Enterprise Manager to change configuration settings, rather than directly editing configuration files. To enable or disable security, see Section 7.8.1, "Enabling and Disabling Security".
During Oracle Fusion Middleware installation, you are asked to select an identity store, a policy store, and a credential store. By default, these are file-based stores. After installation, you can change either of these to LDAP-based stores, such as Oracle Internet Directory. For more information, see "Understanding Identities, Policies, and Credentials" in Oracle Fusion Middleware Security Guide.
To enable data source security through OracleAS Single Sign-On, you must do the following:
SSOCONN
in the URL that launches the report. If you wish to implement data source security through OracleAS Single Sign-On for your own pluggable data sources, you must perform the following additional task:
The sections that follow explain how to perform these operations.
To enable data source security through OracleAS Single Sign-On, the URL must contain or reference (that is, through the key map file) an OracleAS Single Sign-On parameter (SSOCONN
) with a value of the form:
key_name
maps to a string stored in Oracle Internet Directory that provides the necessary information to connect to the database. When Oracle Reports encounters a key_name
, it checks to see if the current user has a corresponding key stored in Oracle Internet Directory. If so, Oracle Reports uses the string stored in that key to connect to the data source. If not, Oracle Reports checks to see if the key_name
maps to a publicly available key. If so, Oracle Reports uses that key. If not, Oracle Delegated Administration Services prompts the user to create a new resource.
See Also: Section 17.3.3.2, "Populating Oracle Internet Directory" for more information about populating Oracle Internet Directory with resources. |
data_source_type
is the kind of data source to which you are connecting, to identify the format in the string associated with key_name
. The data_source_type
value must be a valid resource type stored in Oracle Internet Directory. Oracle Reports provides default resource types for the following:
OracleDB
) JDBCPDS
) You can also create additional resource types in Oracle Internet Directory for your own pluggable data sources.
See Also: Section 17.3.3.3, "Adding a New Resource Type" for more information about adding resource types. |
conn_string_parameter
specifies the Oracle Reports system or user parameter to be used to pass the connection string to Oracle Reports. For example, in the case of the OracleDB
data source, Oracle Reports receives the connection string through the USERID
parameter and uses it to connect to the specified Oracle database. Similarly, for JDBCPDS
, P_JDBCPDS
is used. If you have your own custom pluggable data sources, you must define your own user parameter for passing the connection string to Oracle Reports and specify it as conn_string_parameter
for SSOCONN
.
In the case of an Oracle database, the URL to call a report with SSOCONN
would look something like the following:
In the case of a JDBC data source, the Single Sign-On value would look something like the following:
In this case, jd1
is an Oracle Internet Directory resource name.
See Also: Section 14.1, "Configuring and Using the JDBC PDS" for more information on how to configure a JDBC data source. |
Usage Notes
SSOCONN
in a command line, you cannot: AUTHID
in the same command line. SINGLESIGNON
set to NO
in rwservlet.properties
. Performing any of these actions with SSOCONN
in the command line results in an error.
For data source security to function with OracleAS Single Sign-On, you must store the data connection information for each user in Oracle Internet Directory or make the resource a default one available to every user. You can populate Oracle Internet Directory with this information in any one of the following ways:
If you want to enter only the credentials for a small number of users (for example, for a development environment), you can use Oracle Delegated Administration Services (DAS) to directly enter connection string information into Oracle Internet Directory for each user.
Note: Before a user can access Oracle Delegated Administration Services, an administrator must have already entered a user identity in Oracle Internet Directory for the user. This step can be done by batch loading information that is already entered into an LDAP directory in some other source.See Oracle Fusion Middleware Administrator's Guide for Oracle Internet Directory for information on batch loading. |
During Oracle Fusion Middleware installation, you specify the location of Oracle Delegated Administration Services. You use this URL to access Oracle Delegated Administration Services for administrative purposes. Once in Oracle Delegated Administration Services, you enter the information through the Resource Access Information section of the Preferences tab for the user. See Figure 17-2. Note that, for the Preferences tab to appear, there must already be a resource in place.
If you want to enter data source information for a large number of users, you should use either the user prompt or batch methods of populating Oracle Internet Directory.
If you prefer to have users enter their own connection string information, you do not have to prepopulate Oracle Internet Directory with data source connection information at all. If you use SSOCONN
when launching the report but Oracle Internet Directory does not already contain a connection string for the key and the key is not publicly available to all users, the Oracle Delegated Administration Services Create Resource page is displayed to the user, who must enter their data source connection string. See Figure 17-3. Oracle Delegated Administration Services stores the string entered by the user in Oracle Internet Directory for future use and rwservlet uses the newly entered connection string for the data source connection string of the report.
Note: Because of this feature, many users can use the same report URL even if they all use different data source connection strings. |
Note: In the Create Resource dialog, if you want to enter a JDBC connection string, you can do so by enteringhostname:port:sid in the Database field. |
Resources for Oracle Reports Services are created in Oracle Internet Directory under the following entry:
Before You Begin You must create orclownerguid=
guid
in the Oracle Internet Directory entry before you can proceed with the batch loading of resources. If you used Oracle Delegated Administration Services to create your users, orclownerguid=
guid
was created automatically and you can proceed to Batch Loading Resources.
If you seeded users into Oracle Internet Directory with an LDIF file, then, before following the steps in Batch Loading Resources, you must complete the following steps:
Depending on how your users are created in Oracle Internet Directory, you can use any number of methods to get their GUIDs. You can get user GUIDs using the Oracle Internet Directory LDAP API. You can also get it using the ldapsearch
command:
orclownerguid=
guid
under cn=Extended Properties, cn=OracleContext, dc=us, dc=oracle, dc=com
. ORACLE_HOME
\reports\samples\scripts\createuser.ldif
by replacing the place holder with real values. createuser.ldif
using ldapadd
. For example: orclownerguid=
guid
, proceed to Batch Loading Resources. Batch Loading Resources Follow the steps below to batch load data source resources for your users:
orclresourcename=
resource_name
, cn=Resource Access Descriptor
under orclownerguid=
guid
, cn=Extended Properties, cn=OracleContext, dc=us, dc=oracle, dc=com
, where orclownerguid=
guid
is the GUID created in Before You Begin. ORACLE_HOME
\reports\samples\scripts\createresource.ldif
by replacing the place holder with real values. createresource.ldif
using ldapadd
. For example: If you want to make a resource publicly available to all of your users, you can do so by following these steps:
scott/tiger@mydb
. That resource should now appear under Default Resource Access Information and be available to all users.
If you want to add a new resource type to support your own pluggable data source, you must perform the following procedure:
orcladmin
). Table 17-1 Create Resource Type Properties
Property | Description |
---|---|
Resource Type Name | Is the name of the new resource type. This name is used when you want to reference the resource type, for example, in the |
Display Name | Is the name to be used when the resource type appears in the user interface. |
Description | Is a textual description that explains the purpose of the resource type and any other documentary information you want to enter for it. |
Authentication Class | Mandatory field, not used by Oracle Reports Services. Enter dummy text as a value for this field. |
Connection String Format | Defines how Oracle Reports Services should construct the connection string using the values stored in Oracle Internet Directory for the resource. For example: for the Oracle database or a JDBC data source your connection string format might be:
This string indicates that the user name is followed by a slash, the password, an at sign (
|
User Name/ID Field Name | Is the display name of the user name field that contains the value for |
Password Field Name | Is the display name of the password field that contains the value for |
Additional Field 1-3 | Is the display name of the additional fields, which contain the values of |
data_source_type
portion of the SSOCONN
value. As described in Chapter 15, "Securing Oracle Reports Services", Oracle Reports Services must connect to Oracle Internet Directory to verify user privileges and obtain existing data source connection information. In connecting to Oracle Internet Directory, you must consider:
When Oracle Reports Services connects to Oracle Internet Directory, it does so as an application entity. By default, each Oracle Reports Services application entity is unique to its Oracle Fusion Middleware installation. Every Reports Server started from the same Oracle Fusion Middleware installation (that is, ORACLE_HOME
) uses the same application entity to connect to Oracle Internet Directory. This setup ensures that each Reports Server can only access information in Oracle Internet Directory that is relevant to its instance of Oracle Fusion Middleware.
For example, suppose you have two instances of Oracle Fusion Middleware, one for your Finance group and one for your Human Resources group. A Reports Server from the Finance group's Oracle Fusion Middleware instance would be prevented from accessing information relevant only to the Human Resources group, and vice versa. Thus, information stored in Oracle Internet Directory is more secure by default.
In previous releases of Oracle Reports Services, all Reports Servers connected to Oracle Internet Directory as the same application entity. As a result, it was not possible to restrict a Reports Server's access to information in Oracle Internet Directory.
To revert to the less restrictive security mode, refer to the Oracle Reports Services chapter of the Oracle Fusion Middleware Release Notes.
By default, the Reports Server is configured to use the Oracle Internet Directory instance installed with Oracle Fusion Middleware. If you are building your system anew, this arrangement is fine. However, if you have an existing Oracle Internet Directory instance that you want to use for the Reports Server, you have to make some adjustments to your configuration.
Changing Oracle Internet Directory instances must be done as part of a complete change of your Oracle Fusion Middleware middle tier. For more information about this process, refer to the chapter on reconfiguring Application Server instances in the Oracle Fusion Middleware Administrator's Guide.
Footnote Legend
Footnote 1: dc=us,dc=oracle,dc=com is merely an example in this instance. You would normally enter your own values for these items.You can merge several application entities so that the Reports Servers installed in separate ORACLE_HOME
s can share available SSOCONN
resources. To achieve this merge, you must execute an LDIF file with the ldapmodify
command. The LDIF file should contain the following:
where:
Example
Entry in the LDIF file:
Corresponding ldapmodify
command on the command line:
After you install Oracle Reports 11g Release 1 (11.1.1), the following ports are registered, by default:
To change the Reports Servlet port that must be protected by Single Sign-On:
http://oidhost:oidport/pls/orasso
Note: If you are using an SSL port, specify HTTPS instead of HTTP. For more information, see Section 8.14, "Enabling HTTPS for Oracle Reports". |
The default configuration for Oracle Fusion Middleware Forms Services does not run in OracleAS Single Sign-On (SSO) mode. The default configuration for Oracle Reports Services does run in SSO mode.
Oracle Forms Services applications calling integrated Oracle Reports Services using the RUN_REPORT_OBJECT
built-in procedure will not experience any problems when Oracle Forms Services is running in non-SSO mode and Oracle Reports Services is running in Single Sign-On mode as long as the Reports Server and the requested report are not registered in Oracle Portal.
Other Requirements:
REPORTS_PATH
must be modified in the file ORACLE_INSTANCE/config/reports/bin/reports.sh
to reference the path of the reports to be run. rwserver
.conf
located in the ORACLE_INSTANCE\config\ReportsServerComponent\server_name
directory. ORACLE_INSTANCE\config\ReportsServerComponent\server_name\rwserver.conf
by commenting out the <security>
tag and removing securityId
from the <job>
tags. authid
provided, based on the Single Sign-On user login. Table 17-2 lists the possible Forms/Reports combinations and expected results:
Table 17-2 Outcome of Forms/ Reports Integration when Forms is running in SSO Mode or Non-SSO Mode
Report Type | Registered, Secure Reports Server (runs only registered reports) | Registered, Secure Reports Server (runs any reports) | Non-Secure Reports Server |
---|---|---|---|
Reports with public access | report generated | report generated | report generated |
Reports with specific user access | report generated | report generated | report generated |
Reports with no specific user access | report not generated | report not generated | report generated |
Non-registered reports | report not generated | report not generated | report generated |
As discussed above, a large number of applications use Oracle Reports in a non-secure mode with Oracle Forms Services. In this mode, the end user need not provide an AUTHID
to run a report from Oracle Forms Services; the URL command needs to include only JOBID
and the Reports Server name. If unauthorized or malicious users discover the job ID, they can view the job output using GETJOBID
through rwservlet
to obtain job output that belongs to another user. Prior to 11g Release 1 (11.1.1), Oracle Reports generated sequential job IDs, making it easy to predict the job ID. With 11g Release 1 (11.1.1), Oracle Reports allows the users to generate random and non-sequential job IDs to make it impossible to predict the job ID for a particular job. For more information, see Section 18.8.2, "Generating Random and Non-Sequential Job IDs".
Additionally, 11g Release 1 (11.1.1) provides support for database authentication using proxy users:
Part IV provides detailed, practical information about publishing reports, including how to run requests; how to set up sophisticated, automatic report distributions; how to customize reports at runtime through XML customization files, and how to use database triggers to automatically invoke reports:
This chapter discusses various ways to send report requests to the Reports Server. It includes the following sections:
This section provides quick reference information on formulating a URL for publishing a report. It covers two deployment types:
The information is largely the same for both Windows and UNIX environments. Differences are noted.
The syntax for the URL to run a report through Oracle Reports Servlet (rwservlet
) is:
Table 18-1 lists and describes the components of the URL.
Table 18-1 Components of a URL That Calls Oracle Reports Servlet
Component | Description |
---|---|
| The name you gave the Oracle HTTP Server when you installed it. |
| Your organization's domain name. |
| The port number on which the Oracle HTTP Server listens for requests. When no port is specified, the default is used (80). |
| The virtual path that stands in for the absolute path to the files a URL will access. |
| Invokes Oracle Reports Servlet. |
| Identifies the beginning of the command line options. |
| All the command line options, or the key to the key map file where command line options are specified. |
The URL that calls Oracle Reports Servlet (rwservlet
) could look like this:
where keyname
refers to a command listed under a unique header (the key name) in the cgicmd.dat
key map file (for more information, see Section 18.13, "Using a Key Map File"). Note that this works differently for JSP files, which use the keyword/value pair cmdkey=
value
to specify key names for command lines that are stored in the cgicmd.dat
file.
When you use Oracle Reports Servlet (rwservlet
), you can also execute JSP report files if the JSP files contain paper layouts. When you run the report, specify Oracle Reports Servlet (rwservlet
) in the URL and call the JSP with the command line option: report=
myreport
.jsp
.
For example:
You'll find more information about command line keywords and values in Appendix A, "Command-Line Keywords".
The syntax for a JSP-based report URL is:
Table 18-2 lists and describes the components of the JSP-based report URL.
Table 18-2 Components of a JSP-based Report URL
Component | Description |
---|---|
| The name you gave the Oracle HTTP Server when you installed it. |
| Your organization's domain name. |
| The port number on which the Oracle HTTP Server listens for requests. When no port is specified, the default is used (80). |
| The virtual path that stands in for the absolute path to the files a URL will access. |
| The report |
| Identifies the beginning of the command line options. |
| All the command line options, or the key to the key map file where command line options are specified. |
The URL used to invoke a JSP-based report could look like this:
You can specify a key in the URL that refers to a command in the cgicmd.dat
file that contains additional command line parameters. In this case, you must use the name value pair: cmdkey=
keyname
. This can appear anywhere in your URL after the start of the query string (marked by a question mark). For example:
In your URL, use an ampersand (&
) with no spaces to string parameters together.
When you use a JSP, you can also use Oracle Reports Servlet (rwservlet
). When you run the report, specify Oracle Reports Servlet (rwservlet
) in the URL and call the JSP with the command line option: report=
myreport
.jsp
.
For example:
For more information about command line keywords, see Appendix A, "Command-Line Keywords".
There are a number of request methods available to you for running your report requests. These include:
rwclient
command line The rwclient
command line (rwclient.sh
on UNIX) is available for running report requests from a command line in a non-Web architecture. It references an executable file that parses and transfers the command line to the specified Reports Server. It can use command line options similar to those used with the Reports Runtime component file, rwrun
(rwrun.sh
on UNIX).
On Windows, a typical rwclient
command line request looks like this:
On UNIX, the same command would look like this:
See Appendix A, "Command-Line Keywords" for more information about command line options.
To run a report from a browser, use the URL syntax. Oracle Reports Servlet (rwservlet
) converts the URL syntax into an rwclient
command line request that is processed by Oracle Reports Services. You can give your users the URL syntax needed to make the report request from their browser, or you can add the URL syntax to a Web site as a hyperlink. The remainder of this chapter discusses this method in more detail.
The Oracle Portal component enables you to add a link to a report in an Oracle Portal page or portlet, or to output report results directly into a portlet. Each report link points to a packaged procedure that contains information about the report request. Oracle Reports Services system administrators use Oracle Portal wizards to create the packaged procedure making it more convenient and secure to publish the report through the Web. Authorized users accessing the Oracle Portal page group simply click the link to run the report. System administrators can run the report directly from the wizard. See the Oracle Portal online Help for more information.
Refer to Section 18.4, "Publishing a Report in Oracle Portal" for more information about how to publish your report as a portlet.
SRW.RUN_REPORT
is a built-in procedure that runs a Reports Runtime command. When you specify SRW.RUN_REPORT
, set the SERVER
option to the Reports Server name to cause the SRW.RUN_REPORT
command to behave as though you executed a rwclient
command.
For more information, see Chapter 21, "Using Event-Driven Publishing". For a description of SRW.RUN_REPORT
, refer to the Oracle Reports online Help.
You can expose Oracle Reports Services as a Web service and then call it from any Web service aware environment (for example, a Java application).
For more information, see Chapter 19, "Using the Oracle Reports Web Service".
Once you have created your report, you can deploy it so that end users can view it. This section describes how to deploy a report with a paper layout (that is, REP, RDF, XML, or JSP report) and how to deploy a report with a Web layout (that is, a JSP report).
Note: For an example on building and testing a JSP-based Web report, refer to the Oracle Reports Tutorial and the "Building a simple Parameter Form for a JSP-based Web report" in the Oracle Reports Building Reports manual. |
The following table describes which method you can use to deploy your report, depending on the type of report.
Table 18-3 Methods for Deploying a Report
Type of Report | Method | Reason for Using |
---|---|---|
Report with paper layout (REP, RDF, XML) | Deploying a Report with a Paper Layout | Method for deploying a report with only a paper layout. |
JSP report with a paper layout | Deploying a Report with a Paper Layout | Simplest method for deploying a paper report of any type. However, if the JSP report has both a paper and Web layout, we recommend you refer to Section 18.3.3, "Deploying a JSP Report to the Web and to Paper". |
JSP report with a paper and Web layout | Deploying a JSP Report to the Web and to Paper | Strongly recommended for those who want to publish a report to both the Web and to paper. |
Note: rwrun and rwclient execute the paper layout of your report. The report is processed and executed even though your JSP has only a paper layout. If your JSP has only a web layout but not a paper layout, running the JSP report using rwrun or rwclient obtains a blank output. If you have a JSP with paper layout, it is recommended that you save the JSP as RDF and then run the RDF using rwrun or rwclient . |
Once you've created your paper report, you can deploy it to the Reports Server so that users can run the report. The steps in this section show you how to deploy a report of type RDF, REP, XML or JSP.
Note: JSP reports can be deployed either to the Web or to paper, depending on the layout the report designer used for the JSP report. This section discusses how to deploy a JSP report with a paper layout. If you want to deploy a JSP report with a paper and Web layout, follow the steps in Section 18.3.3, "Deploying a JSP Report to the Web and to Paper". |
If your report depends on Java classes (for example, Barcode classes, a Web Service stub, and so on), you must configure the process to access these classes. That is, if your JSP report with a paper layout contains a Java class, you must set the classPath
property of the engine element in the server configuration file ($ORACLE_INSTANCE/config/ReportsServerComponent/server_name/rwserver.conf
for Standalone servers and $DOMAIN_HOME/config/fmwconfig/servers/<WLS_SERVER_NAME>/applications/reports_<version>/configuration/rwserver.conf
for In-process servers).
To deploy your paper report:
Note: To transfer the file, you can use any method available, such as FTP or WebDAV. |
sourceDir
property of the Reports engine element in the server configuration file. Now that you have deployed your paper report, you can run it from a Web browser.
In a browser, for example, you can type the following URL in the Location
field:
In this example, your report displays in PDF format (desformat=PDF
) in the browser.
For more information on running a report from the browser, refer to Section 18.5, "Specifying a Report Request from a Web Browser".
There are two ways you can deploy your JSP reports: through the existing Oracle Reports application, or through a Java EE application you create yourself. Using an existing application is useful when you are developing and testing your JSP-based Web reports. When you are ready to deploy your reports, however, we recommend you use an application you've created yourself.
Note: The easiest way to deploy JSP reports is to copy them to the following directory:$DOMAIN_HOME\servers\WLS_REPORTS\tmp_WL_user\reports_release\dir_name\war The procedure described in this section for building your own EAR file and deploying it is only indicative; it is not comprehensive. For the detailed procedure, see Oracle Fusion Middleware Deploying Applications to Oracle WebLogic Server. |
About JSP reports with both paper and Web layouts
With Oracle Reports Builder, you can create a JSP report with a paper layout, a Web layout, or both. You execute these reports using different processes:
If your report depends on Java classes (for example, Barcode classes, a Web Service stub, and so on), you must configure the process to access these classes. That is, if your JSP report with a paper layout contains a Java class, you must set the classPath
property of the engine element in the server configuration file ($ORACLE_INSTANCE/config/ReportsServerComponent/server_name/rwserver.conf
for Standalone servers and $DOMAIN_HOME/config/fmwconfig/servers/<WLS_SERVER_NAME>/applications/reports_<version>/configuration/rwserver.conf
for In-process servers.)
If your JSP report with a Web layout contains a Java class, you can either add the classes or JAR to the WAR file, or change the Java EE container classpath
. For more information, refer to the Oracle Containers for Java EE documentation.
Note: For an example on building a report with a paper and Web layout, see "Building a Report with a Barcode" in the Oracle Reports Building Reports manual. For a simple JSP-based Web report example, refer to the Oracle Reports Tutorial. |
The steps in this section show you how to deploy a JSP report with a paper and Web layout using a Java EE application. To deploy your JSP report with a paper and Web layout, you can create a new Oracle Reports Java EE application. You can create this application in an existing instance or a new instance of Oracle WebLogic Server.
In this section, you will create a new Java EE application for Oracle Reports. You will create a Web application archive (WAR file) that will contain the application information, then deploy it as an Enterprise archive (EAR file). To create a new Java EE application, you can use Oracle JDeveloper, another Java development tool, or you can create it manually. If you do not use Oracle JDeveloper to create the application, you must make a few modifications to the application, as well as to your JSP report.
To create a Java EE application:
Note: If you are not familiar with creating a Java EE application, refer to Sun Microsystem's Web site (http://java.sun.com/javaee). For more information on using Oracle JDeveloper, refer to the Oracle JDeveloper online Help. |
WEB-INF
and the web.xml
file. Note: TheWEB-INF directory must contain the JSP tag library for Oracle Reports, called reports_tld.jar . In Oracle Fusion Middleware, you can find the tag library here: DOMAIN_HOME/servers/WLS_REPORTS/tmp/_WL_user/reports_version/random_string/war/WEB-INF/lib/reports_tld.jar |
To point to the location of the JSP tag library, include the taglib
directive in the JSP file:
web.xml
file. Note: On Oracle Fusion Middleware, theweb.xml file is located here: DOMAIN_HOME/servers/WLS_REPORTS/tmp/_WL_user/reports_version/random_string/war/WEB-INF/lib/reports_tld.jar |
If you are deploying a JSP report that only contains a Web layout, continue to Step 7.
web.xml
file. This new definition will redirect all URLs starting with /rwservlet
to the Oracle Reports Servlet you've defined.
Note: You can change the Oracle Reports Servlet name and URL. |
web.xml
file. After you have created the WAR and EAR files, you can deploy them to the Oracle Fusion Middleware, which will serve the application to the Web. You can deploy these files using Oracle Enterprise Manager using either an existing WebLogic Server instance or a new WebLogic Server instance. For more information about deploying Java EE application in Oracle WebLogic Server, see Oracle Fusion Middleware Deploying Applications to Oracle WebLogic Server.
If your JSP report is a Web report, you can run your JSP-based Web report from a Web browser. In a browser, type the following URL in the Location field:
Note: In the above URL,MyReportApp is the name of the application you created. |
If you wish you modify your JSP-based Web report at this point, you can either:
For more information on running a report from a browser, refer to Section 18.5, "Specifying a Report Request from a Web Browser".
If your JSP report has a paper layout, you can run your JSP report from a browser using the following URL:
In this example, your report displays as a PDF (desformat=PDF
) in the browser.
For more information on running a report from a browser, refer to Section 18.5, "Specifying a Report Request from a Web Browser".
There are no UNIX fonts built into the WE8MSWIN1252
character set. This may cause Oracle Reports to fail when NLS_LANG=AMERICAN_AMERICA.WE8MSWIN1252
. Therefore, you must map the code page of the installed fonts (defined in the Tk2Motif.rgb
file) to the WE8MSWIN1252
character set. TK2Motif.rgb
is located in the ORACLE_INSTANCE/config/FRComponent/frcommon/guicommon/tk/admin
directory.
Note: This mapping is required for Oracle Reports Builder, Reports Converter in non-batch mode (BATCH=NO), Reports Server and Reports Runtime with REPORTS_DEFAULT_DISPLAY=NO . Reports Server and Reports Runtime uses REPORTS_DEFAULT_DISPLAY to determine the fonts needed. |
Example1
Tk2Motif*fontMapCs: ISO8859-1=WE8MSWIN1252
(if there are ISO8859-1
fonts installed).
One of the best ways to publish your report is through the declarative, secure interface of Oracle Portal. To publish a report in Oracle Portal, refer to Chapter 16, "Deploying Reports in Oracle Portal". Specifically, you must first register your Oracle Reports components in Oracle Portal (see Section 16.2, "Registering Oracle Reports Components"), then expose your report in a portal (see Section 16.3, "Publishing Your Report as a Portlet").
Note: When you use features like Oracle Portal Security, Portal Destination, and Job Status Repository, the JDBC database connections made by Oracle Reports Services may override the initialNLS_LANG setting. This change may in turn affect the behavior of the running report, such as bidirectional output in PDF. On UNIX platforms, you can work around this issue using the environment switching functionality to dynamically set the environment for reports. Refer to Section 8.2.2, "Dynamic Environment Switching" for more information. |
You can provide the user with the URL syntax needed to make a report request, or you can add the URL syntax to a Web page as a hyperlink.
URL syntax can be presented in the following forms:
If you require additional command line keywords, then refer to Appendix A, "Command-Line Keywords" for a list of valid rwservlet
command line keywords.
If you have activated the Reports Server's URL engine, you can send job requests to the URL engine by using the following command line options:
urlParameter
identifies the URL to be placed in the cache. For example, http://www.oracle.com
or a JSP report. jobType
is the name of a job type (for example, rwurl
) in the server configuration file that is associated with a URL engine. Note: For information on activating the URL engine, refer to Section 8.6, "Configuring the URL Engine". |
For example, a request that specifies an external URL for urlParameter
might look like the following:
Alternatively, a request that specifies a JSP report for urlParameter
would look like the following:
Note: If the URL has special characters, they must be encoded as per thex-www-form-urlencoded format. |
In many cases, reports are integrated components of some larger application rather than a standalone application themselves. Hence, it can be useful to generate report requests from within an application. We accomplish this goal by exposing Oracle Reports Services as a Web service. This Web service may then be called from within any Web service-aware environment (for example, a Java application). For example, suppose that you have a Java-based expense reporting form and you want to allow users to generate a PDF version of their expense reports from it each time that they complete an expense form in your system. By creating a Java proxy Oracle Reports Web Service, you could then easily reference it from your Java development environment (for example, Oracle JDeveloper) and add a button that invokes Oracle Reports Services to generate the PDF file.
See Also: Chapter 19, "Using the Oracle Reports Web Service" for more information on the Oracle Reports Web service and installing and using the sample proxy and Java client. |
The tight product integration between Oracle Reports and Oracle Forms Services enables you to pass blocks of data between the two products and removes the need for subsequent queries. This technique, referred to as query partitioning, ensures that Oracle Reports is responsible for formatting data and ignores dynamic alteration of queries through triggers and lexical parameters.
Oracle Forms Services uses the shared Java Virtual Machine (JVM) controller for all report requests, reducing memory consumption.
Note: Unless data parameters are unreasonably large or the queries particularly complicated, the perceived performance improvements should be negligible. Additionally, only top level groups in a report can accept data parameters passed from forms. |
A typical integration between Oracle Forms Services and Oracle Reports is an application that provides a form to fill in data, which is used to generate a report. The steps that occur during this process are similar to the following example:
RUN_REPORT_OBJECT
built-in to send a request to Oracle Reports. FINISHED
, Oracle Forms Services calls the WEB.SHOW_DOCUMENT
built-in to submit a request to open the report output. WEB.SHOW_DOCUMENT
built-in opens the following URL in the browser: Note: For secure mode, the URL will also includeauthid= authid |
For additional information on calling a report from an Oracle Forms Services application, refer to the Integrating Oracle Reports Services 11g in Oracle Forms Services 11g white paper on OTN (http://www.oracle.com/technology/products/forms/techlisting10g.html
).
Oracle Reports 11g Release 1 (11.1.1) communicates with Forms. If Forms and Reports are configured on different Oracle Instances, you must complete the following steps in Forms to facilitate communication with Reports Servers. FORMS_ORACLE_INSTANCE
refers to the Oracle Instance where Forms is configured.
cd $FORMS_ORACLE_INSTANCE/config
ReportsTools
directory as follows: mkdir -p ReportsToolsComponent/ReportsTools
tools-logging.xml
file as follows: cp $ORACLE_HOME/reports/conf/ReportsTools/tools-logging.xml $FORMS_ORACLE_INSTANCE/config/ReportsToolsComponent/ReportsTools/logging.xml
tools-log-template.xml
file as follows: cp $ORACLE_HOME/reports/conf/ReportsTools/tools-log-template.xml $FORMS_ORACLE_INSTANCE/config/ReportsToolsComponent/ReportsTools/component-logs.xml
rwnetwork.conf
file as follows: cp $ORACLE_HOME/reports/conf/rwnetwork.conf $FORMS_ORACLE_INSTANCE/config/ReportsToolsComponent/ReportsTools/rwnetwork.conf
$$Instance.directory$$
with $FORMS_ORACLE_INSTANCE
$$Self.component_type$$
with ReportsToolsComponent
$$Self.name$$
with ReportsTools
$$Instance.oracle_home$$
with the path to the ORACLE_HOME directory If Forms and Reports are configured on different OHS Servers, you must route the web requests from OHS instance where Forms is configured to the Reports Servlet as follows:
cp $ORACLE_HOME/reports/conf/reports_ohs.conf $FORMS_ORACLE_INSTANCE/config/OHS/ohs1/moduleconf/.
$$managedserverhost$$
and $$managaerserverport$$
with host and port of the WLS_REPORTS
managed server. FORMS_ORACLE_INSTANCE
. With 11g Release 1 (11.1.1), Oracle Reports allows you to generate random and non-sequential job IDs to make it impossible to predict the job ID for a particular job. To generate random and non-sequential job IDs for in-process servers, you must pass "-Djobid=random"
via JVM options to Oracle WebLogic Server.
For standalone servers, you can generate random and non-sequential job IDs by passing the "-Djobid=random"
via JVM options in the command line or by setting the REPORTS_JVM_OPTIONS
variable. For more information, see Section B.1.53, "REPORTS_JVM_OPTIONS".
This prevents malicious users from viewing non-secure report output by typing the job id in a URL.
With 11g Release 1 (11.1.1), Oracle Reports is integrated with the Oracle Service-Oriented Architecture (SOA) suite, which includes Oracle BPEL Process Manager to automate and monitor reporting requirements.
You can submit Oracle Reports jobs from the Oracle BPEL Process Manager business process, get the status of report execution, and also invoke an Oracle BPEL Process Manager business process from your reports. This makes it easy to include reporting requirements in the business process; for example, submit a report request when an order gets approved.
For more information, see Section 8.10, "Configuring Oracle Reports to Communicate with Oracle BPEL Process Manager", and also Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite.
You can use the server to run reports automatically from Reports Queue Manager (rwrqm
on Windows, or rwrqv.sh
on Solaris), Oracle Portal, or with the SCHEDULE
command line keyword. The scheduling feature enables you to specify a time and frequency for the report to run.
Refer to the Reports Queue Manager online Help for more information about scheduling your reports.
If you publish a report as a portal component on an Oracle Portal page, then you can schedule the report request to run automatically and push the resulting report output to specified pages. Refer to the Oracle Portal online Help for more information.
The SCHEDULE
command line keyword is available for use with the rwclient
and rwservlet
commands. See Section A.8.3, "SCHEDULE" for more information.
When you send a request to the Reports Server through rwcgi
,the following additional parameters, the values of which you cannot change, are implicitly passed along with your request:
Table 18-4 Additional Parameters Passed With a Report Request
Name | Description |
---|---|
| The comma separated list of languages accepted by the browser/user. |
| The remote IP address from which the user is making the request. |
| The remote host name from which the user is making the request. |
| The virtual path of the script being executed. |
| The host name or IP address of the server on which Oracle Reports Servlet (|
| The port number of the server on which Oracle Reports Servlet (|
| The name and revision of the information protocol with which the request was sent. |
| The description of the remote client's browser. |
When you run a report, a copy of the report output is saved in the Oracle Reports Services cache. Subsequently, if an identical report is run (that is, with the same cache key), then the current request is recognized as a duplicate job.
There are several scenarios where reports caching takes effect:
The job cache key excludes the destype
, desname
, server
, and tolerance
parameters, and includes almost all other parameters.
This level of cache happens automatically. You need not specify any other parameters in the command line for it to work.
TOLERANCE=
n
(where n
is a number in units of minutes) in the new job request "A", then Reports Server will try to find a job in the Finished Jobs Queue than was successfully completed within n
minutes. If Reports Server finds such a job, then the new job request "A" will return the output of job "B". Oracle Reports Services cache results are persistent. If the Reports Server is shut down, once it is up again all the previous cache results are recovered and ready to use again.
You can set the cache size through Reports Queue Manager (rwrqm
on Windows, or rwrqv.sh
on Solaris) or through the cache
element in the server configuration file (rwserver
.conf
). Reports Server attempts to keep the total size of cache files below the set limit, deleting the oldest cache files. In addition, you can empty the cache through Reports Queue Manager.
For more information on setting the cache, refer to the Reports Queue Manager online Help, and see Chapter 8, "Configuring Oracle Reports Services".
If you choose to provide users with a URL or add a hyperlink to a Web site, then you can use a key map file to simplify or hide parameters in your URL requests. This section provides the following information:
The key map file contains command strings for running reports, each headed by a unique key identifier. Except when you run a report as a JSP, you reference only this key in the runtime URL. Oracle Reports Servlet (rwservlet
) sends the key value to the key map file (cgicmd.dat
), which in turn returns the command associated with the specified key to rwservlet
for processing. By using key mapping, the command line options are all hidden from the user.
When you specify a key name from the key map file (cgicmd.dat
), it must always be at the beginning of the query string (after the question mark) in a report request URL. An exception to this is if you use the CMDKEY
command line keyword, and express the key name as its value: CMDKEY=
keyname
. In this case, you can place the key name anywhere in the query string within the report request URL. The CMDKEY
keyword can be used with jobs run as JSPs and with the rwservlet
command.
Key mapping is enabled when a valid file with the standard file name, cgicmd.dat
, is present in the default location: $DOMAIN_HOME/config/fmwconfig/servers/<WLS_SERVER_NAME>/applications/reports_<version>/configuration/cgicmd.dat
directory on the Web server machine (on either Windows or UNIX).
To add key mapping entries to a key map file:
cgicmd.dat
file on the machine that hosts your Reports Server, and open it with a text editor. You'll find this file in the following directory on both Windows and UNIX:
In this example, key1
is the name of the key.
Except for the special parameters that are described in the file itself, the command line options follow the syntax rules of rwclient
. See Section A.2.1, "rwclient" for more information.
For more information, see Section 18.5, "Specifying a Report Request from a Web Browser".
When you place a key name in a report request URL, it must always be the first value within the query string (immediately after the question mark). For example:
The key name is case-sensitive; that is, it must exactly match the case specified in the key mapping file (cgicmd.dat
).
The following example shows a key mapping for a restricted run with a parameter form.
The URL might be:
The key mapping file (cgicmd.dat
) might contain:
This generates the equivalent of the following command line request:
When you run a report as a JSP and want to call a command key in the cgicmd.dat
file, you must use the cmdkey
keyword in your URL. The cmdkey
value (keyname
) is case-sensitive; that is, it must exactly match the case specified in the cgicmd.dat
file. For example, your JSP URL might look like this:
Note: You can also usecmdkey with the rwservlet command. |
When you use cmdkey
with a JSP or rwservlet
, you can place it anywhere within the query string. For example:
Usage Note
When using key mapping, the order in which the parameters are substituted from the URL into the key is determined by the placement of cmdkey
in the URL. For example, suppose you have a key such as the following in the cgicmd.dat
file:
Now, you execute a JSP report that references this key as follows:
Because of the placement of cmdkey
in this URL, the 10
corresponds to %1
and test
corresponds to %2
. Even though they are not the first and second parameters in the URL, 10
and test
are the first and second parameters to follow cmdkey
in the URL. In this example, the URL becomes:
A Web service is an application that is built on standard Internet and XML technologies and has the following characteristics :
A Web service accepts a request, performs its function based on the request, and returns a response. The request and the response can be part of the same operation, or they can occur separately, in which case the consumer need not wait for a response. Both the request and the response usually take the form of XML, a portable data-interchange format, and are delivered over a wire protocol, such as HTTP.
Web service transactions are usually conducted between businesses. A business that is a provider of one service can also be a consumer of another service. A Web service consumer can also be a client device, such as a thin client connecting to the Web service provider over a lightweight protocol.
This chapter discusses the Oracle Reports Web service and contains the following sections:
Oracle Reports provides several ways of submitting a job request to the server-infrastructure for processing:
rwservlet
rwservlet
translates and delivers a job request between HTTP and the Reports Server, such as when submitting from a Web browser or through the event-driven publishing API.
rwclient
rwclient
parses and transfers a command line to run a a report on a remote Reports Server.
Oracle Forms is a rapid application development (RAD) tool, used to build highly scalable Internet database applications.
Integrating the Oracle Reports technology into custom applications, especially Java applications, requires the implementation of the mechanisms used by rwservlet
, rwcgi
, rwclient
, and Oracle Forms to submit jobs to the server from within those applications.
The RWWebService
servlet provides the necessary public interfaces and bindings, and is required to be exposed and to function as a Web service. This functionality enables any application developer to include Oracle Reports in their application.
This section outlines the steps necessary for:
To invoke the RWWebService
servlet:
http://
yourwebserver:port
/reports/rwwebservice
This takes you to the RWWebService
endpoint. The RWWebService
endpoint page enables you to do the following:
RWWebService
command using a Web based UI. The Web Service Description Language (WSDL) is an XML format for describing available services as a set of endpoints operating on messages containing either document-oriented or procedure-oriented information. The operations and messages are described abstractly, and then bound to a concrete network protocol and message format to define an endpoint.
Note: Oracle Reports Web service does not support dynamic discovery of the WSDL by publishing to the Universal Description, Discovery, and Integration (UDDI) server. |
RWWebService
Web page to view the Oracle Reports Web service's WSDL document. Note: Use Internet Explorer to view the WSDL XML output. |
Ensure that the URL and port number defined, http://
yourwebserver
:
port
/reports/rwwebservice
, is correct.
Note: The hostname specified should be the hostname where the Oracle WebLogic Server instance is running and not where the Reports Server is running. |
Oracle Reports WSDL
Oracle Reports exposes the RWWebService
servlet as a Web service with its public interfaces and bindings defined and described using XML. These public interfaces and bindings are published across the network through the WSDL.
To test the RWWebservice through Oracle Enterprise Manager, complete the following steps:
The Test Web Service page is displayed.
The Webservice Response is displayed.
The operations supported by the RWWebService
endpoint are:
The getAPIVersion()
operation returns the version details of the Reports Server in XML format. This operation takes no parameters.
Note: getAPIVersion is the only operation that returns the entire SOAP response along with the result (in a string). The other operations, for example, runJob return the response as an XML block embedded within the SOAP response. |
To view the getAPIVersion
response:
The Test page does not display any parameters.
The SOAP response is displayed in the Response tab.
The following is a sample response of a getAPIVersion
operation:
The getServerInfo(String
serverName
, String
authId
)
operation takes two parameters and returns the Reports Server information in an XML format.
The valid parameters are :
serverName
: A valid non-null server name. This operation returns an error if the specified server is not running in the network. authId
: A string in the form of username/password, must be specified for a secured server. This parameter is ignored for a non-secure server. To view the getServerInfo
response:
The Test page displays the relevant parameter fields in the Input Arguments section.
arg0
) and authId
(arg1
). The SOAP response is displayed in the Response tab.
The following is a sample output of the getServerInfo
operation:
The getJobInfo(
Integer
jobId
, String
serverName
, String
authId
)
operation returns the job information in XML format.
The valid parameters are:
jobId:
JobId of the job for which information is required. serverName
: A valid non-null Server name value must be supplied. This operation returns an error if the specified server is not running in the network. authId
: A string in the form of username/password, must be specified for a secured server. For a non-secure server this parameter is ignored. To view the getJobInfo
response:
The Test page displays the relevant parameter fields in the Input Arguments section.
jobId
(arg0
), Reports Server name (argm1
), and authId
(arg2
). The SOAP response is displayed in the Response tab.
The following is a sample output of a getJobInfo
operation for job id=3
:
The killJob(
Integer
jobId
, String
serverName
, String
authId
)
operation kills the job based on the job id specified and returns the status of the operation in XML format.
The valid parameters are:
jobId:
JobId of the job for which information is required. serverName
: A valid non-null Server name value must be supplied. This operation returns an error if the specified server is not running in the network. authId
: A string in the form of username/password, must be specified for a secured server. For a non-secure server this parameter is ignored. To view the killJob
response:
The Test page displays the relevant parameter fields.
jobId
(arg0
), Reports Server name (arg1
), and authId
(arg2
). The SOAP response is displayed in the Response tab.
The following is a sample output of a killJob
operation for Job ID=3:
The runJob(
String
commandLine
, Boolean
synchronous
)
operation runs a job to the Reports Server specified as part of the commandLine
parameter.
Note: Oracle Reports Web service does not return the job output or the actual report. |
The valid parameters are:
commandLine
: The complete command line syntax for submitting a job. For example: Note: The command line parameter cannot includeparamform=yes . You have to pass the actual values for the parameter as part of the commandLine argument. |
synchronous
: A Boolean object to indicate if the job should be run synchronously. To view the runJob
response:
The Test page displays the relevant parameter fields.
arg0
), whether the job should run synchronously (T/F, Y/N) (arg1
). The SOAP response is displayed in the Response tab.
The following is a sample output of a runJob
operation:
Oracle Reports installation provides a sample RWWebServiceUtil
webservice testing utility class. This is available in ORACLE_HOME /reports/jlib/rwrun.jar.
RWWebServiceUtil can be used to test various operations supported by RWWebService.
The following procedure outlines the necessary steps involved in using this utility:
rwrun.jar
in the classpath. RWWebServiceUtil
as a normal java program as following: $ORACLE_HOME\jdk\bin\java oracle.reports.rwclient.RWWebServiceUtil
RWWebService
using the RWWebServiceUtil.
When you wish to define an advanced distribution for your report, you can design the distribution by developing a distribution XML filer. In this file, you can specify the destination and format of output for each section of a report. In one distribution XML file, you can specify many different destinations, including custom (pluggable) destinations that you design (see Section 20.4.9, "destype").
Note: An example distribution XML file (distribution.xml) is shipped with Oracle Reports in the $ORACLE_HOME /reports/samples/demo directory. You can reuse this file for your own purposes so that you do not have to create one from scratch. |
This chapter provides information on creating a distribution XML file and some example use cases. It includes the following main sections:
Although distribution XML files are not required for specifying the distribution of report output, they are useful for complex distributions. For example, there may be times when you want to publish the output of one report in a variety of ways. You might want to send an executive summary of a report to senior management while e-mailing detailed breakdowns to individual managers. In this case, you might produce a single report with two report sections: a portrait-sized summary section and a landscape-sized detail section. You would associate the detail section with a data model group that lists the managers, then alter the destination to burst the report on each instance of the group to send each department's output to its related manager.
The distribution XML file simplifies distribution complexity by enabling you to define multiple outputs for a given report in one XML file, then call that file from a command line or URL.
In order to use the same report definition file to burst and distribute to data-driven formats such as XML
and DELIMITEDDATA
, as well as to layout-driven formats such as PDF
and ENHANCEDSPREADSHEET
, you must ensure the following requirements are met:
include
element. For example: Oracle Reports 11g Release 1 (11.1.1) expands bursting and distribution to all output formats, as well as other new features, as described in Table 20-1 (a subset of Table 1-1, "11g Functionality vs. 10g Functionality"):
Table 20-1 11g Distribution and Bursting Features vs. 10g Functionality
11g New Features | Equivalent 10g Functionality |
---|---|
Full support for bursting and distribution to all destinations and output formats, including:
| Limited destinations and output formats for bursting and distribution. |
System parameters in report definition honored for distribution. Distributed output honors the For example, if you define system parameters in the report:
the report output is generated and distributed using these values without the parameter values needing to be specified in the distribution XML file or on the command line. Additionally, if users change the values of | Values for system parameters |
Security check for distribution destinations. Ability to define security policies for distribution jobs. For example, you can define a security policy that specifies report output may not be burst to | No security check performed for destinations specified in the distribution XML file. |
Other improvements such as tolerance support for burst jobs and improved diagnostics. | N/A |
This section discusses the use of XML files related to distribution:
When you create a distribution XML file, you follow the syntax defined in the distribution.dtd
file located in the following directory on both Windows and UNIX:
As you look through the following sections, it may be useful to you to print the distribution.dtd
file and refer to it as you review the descriptions of the elements and attributes.
Note: Information provided in the distribution XML file is case-sensitive. You must preserve case of various elements and attributes as specified in thedistribution.dtd file. |
The distribution.dtd
file lists all elements that are valid within a distribution XML file. Each of these elements have attributes. Attributes that come with default values need not be specified, unless you wish to override the default.
You can create a dynamic distribution by introducing variable values into many different attributes. Variable values reference columns that are present in the report that is using the distribution XML file.
You can use variables within attributes by entering &column_name
or &<column_name>
in the place of a static value.
Note: The ampersand (&) and less-than symbol (<) have specific meanings in XML, but they are also required symbols for certain Oracle Reports command line options (for example, lexical parameters require the ampersand symbol). To avoid conflict with the XML meanings of these symbols when you set up variables, specify the encoded version of the ampersand (&) and less-than and greater-than symbols (< and >). For example: Here is what the variable looks like improperly coded in an XML file: <mail id="a1" to="&<manager>@mycompany.com" … Here is what the variable looks like properly coded in an XML file: <mail id="a1" to="&<manager>@mycompany.com" …> There is no special requirement for the greater-than symbol (>) used with variables, but for consistency, we recommend that you use the encoded version (|
The variable syntax you use depends on whether the value is expressed by itself or in combination with other values or strings. For example, a value for a to
attribute in a mail element might be expressed as either:
or
In the first example (id="a2"
), the variable's referenced column (email
) contains a full e-mail address and does not require additional information. The second example (id="a3"
) uses a combination of variable values (first_name
and last_name
) and static text to construct an e-mail address (static text is the period after first_name
and @myco.com
). In both cases, you will get dynamic e-mail addressing. The example you use will depend on whether the variable contains all the information you need or requires additional information in order to be complete.
For more complex layouts, you can also reference report columns you created with PL/SQL formulas. For example, in your report you may define the PL/SQL column:
You'd reference this column in the distribution XML file as:
The elements of a distribution XML file include:
Most of these elements have attributes that define the behavior of the element. The following sections describe the distribution XML file elements and their associated attributes. Section 20.5, "Distribution XML File Examples" provides use cases that demonstrate the distribution XML file elements and attributes in typical scenarios.
Example
Required/Optional
Required. You must have no more or less than one destinations
element in your distribution XML file.
Description
The destinations
element opens and closes the content area of the distribution XML file. In terms of the distribution XML file's tagging hierarchy, all the other elements are subordinate to the destinations
element.
Example
or
Required/Optional
Optional. You can have as many foreach
elements as you require.
Description
Use the foreach
element to burst your distribution against a repeating group. You can use foreach
only when the associated report definition file (either RDF, JSP, or XML) has its Repeat On property for the section that will be burst set to an appropriate group. The foreach
element specifies that the distribution defined between its open and close tags should be performed for each repeating group.
The Repeat On property can be set for a report section (Header, Main, and Trailer) to associate a data model break group to a section. By setting the Repeat On property for a section, you can generate multiple instances of a section, or a repeating section.
When you implement bursting and distribution in a report, you can generate section-level distribution by setting the Repeat On property for a section to a data model break group, which generates an instance of the section for each column record of that break group. Then, you can distribute each instance of the section as appropriate (for example, to individual managers in the MANAGER
group).
If you set the Repeat On property for more than one of the Header, Main, and Trailer sections of a report, all Repeat On property values must be set to the same data model break group. If the Repeat On property for any one of the Header, Main, and Trailer sections is set to a different data model break group, Oracle Reports raises the following messages:
You can also use the foreach
element as a sub-element of the mail element, as depicted in the second example provided at the start of this section. (In this example, assuming that mainSection
repeats on G_DEPARTMENT_ID
, the example will produce a single attachment with all the instances of the report's mainSection
in a single file.)
The foreach
element works closely with the instance
attribute of the attach and file elements. While foreach
specifies that the distribution should be performed according to record groups, instance
specifies whether the burst groups should be distributed in one file (instance="all"
) or distributed as separate files: one file for each group instance (instance="this"
).
When used with the mail
element, foreach
can mean different things according to its position relative to the mail
element:
foreach
precedes the mail
element and instance="this"
, each group instance is dispatched as a separate mail. For example: If the report is grouped according to department_id
, and there are four departments, then there are four group instances. This means four e-mails per recipient, each e-mail with its own group instance attached: one e-mail has department 10's report attached; another e-mail has department 20's report attached; and so on. Each recipient receives all four e-mails.
foreach
follows the mail element and instance="this"
, each group instance is attached to one e-mail going to each recipient. For example: Example
or
Required/Optional
Optional. You can have as many mail
elements as you require.
Description
Use the mail
element to specify distributions through an outgoing SMTP-based mail server. Use it to specify the recipients, the subject, and the priority of the e-mail.
Between an open and close tag of the mail
element, there can be only one body
sub-element and anywhere from zero to multiple attach
and foreach
sub-elements.
The mail
element also has a set of related attributes. These are expressed within the mail
tag. For example, the id
, to
, and subject
attributes are expressed:
Table 20-2 lists and describes the attributes of the mail
element.
Table 20-2 Attributes of the mail Element
Attribute | Valid Values | Description |
---|---|---|
string | Required. A keyword, unique within a given distribution XML file, that identifies a particular mail element. This can be a combination of a text string and one or more numbers, for example | |
string | Required. Variable values allowed. The recipient(s) of the e-mail. Contains the full, formal e-mail address, for example:
Multiple recipients must be separated with commas. Can also contain variable values that reference columns used in the associated report. See Section 20.3.2 for more information. | |
string | Optional. Variable values allowed. The recipient(s) to receive a copy of the e-mail. | |
string | Optional. Variable values allowed. The recipient(s) to receive a blind copy of the e-mail. | |
string | Optional. Variable values allowed. The sender of the e-mail. | |
string | Optional. Variable values allowed. The e-mail account where replies should be sent. | |
string | Default: Mail Sent from Optional. Variable values allowed. The subject of the e-mail. In the absence of a specified subject, the subject line will read: Mail Sent from [| |
| Default: The e-mail's delivery priority. | |
| Default: Indication of whether the reply to individual or account should be notified when the e-mail is received. | |
string | Optional. Variable values allowed. The name of the organization distributing the e-mail, for example: organization="Region 10 Sales" Or organization=" |
Note: For the mail element to work properly, the Reports Server must know which outgoing SMTP mail server to send mail to. You specify this information in the Reports Server configuration file (rwserver .conf). This file has a pluginParam element where you can enter the name of a mail server. For example: <pluginParam name="mailServer" value="%MAILSERVER%"> <property name="enableSSL" value="yes"/> </pluginParam> For more information, see Chapter 8, "Configuring Oracle Reports Services". |
Example
On Windows
On UNIX
Required/Optional
Optional. You can have a maximum of one body element associated with a given mail element.
Description
The body
element acts as a sub-element to the mail
element. It specifies the content (or body
) of the e-mail. With body
, you can type a text string between the open and close tags of the body
element or use an include sub-element to specify either an external file, a report, or a section of a report. For example:
or
or
The body
element has three attributes: srcType
, format
, and instance
, described in Table 20-3.
Table 20-3 Attributes of the body Sub-Element of mail
Attribute | Valid Values | Description |
---|---|---|
| Default: The source for content of an e-mail. The content is displayed in the body of the e-mail. In the absence of a specified | |
| Default: Required when | |
| Default: Used when the foreach element is also present. With a grouped report that is burst into separate reports, |
Example
or
Required/Optional
Optional. You can have as many attach
elements as you require with a mail
element. Note that attach
is also a sub-element of foreach, and foreach
requires that at least one of its sub-elements be used (out of mail,file,printer,destype,
and attach
).
Description
The attach
element specifies attachments to the e-mail. Additionally, attach
must have at least one include sub-element, and can have more than one if srcType="report"
.
Table 20-4 lists and describes the attributes of the attach
element.
Table 20-4 Attributes of the attach Sub-Element of mail
Attribute | Valid Values | Description |
---|---|---|
| Default: The format of the attached material, for example | |
| Optional. Variable values allowed. The filename of the attached material. Can also contain variable values that reference columns used in the associated report. See Section 20.3.2 for more information. | |
| Default: The source of the attachment, either a file, a report, or text. | |
| Default: Used when the foreach element is also present. With a grouped report that is burst into separate reports, |
Using these attributes in conjunction with the foreach element, you can design a destination that will repeat on a group instance and generate an e-mail for each group attachment. For example:
By moving the location of the foreach
element, you can generate one e-mail with multiple attachments: a separate one for each group instance.
Example
or
or
Required/Optional
Required when used with body
and attach
when srcType
is report
or file
, but not when srcType
is text
. Also required for file
, printer
, and destype
. In the instances where it is required, you must have one and can have more than one include
.
Description
The include
element is available for use with the body, attach, file, printer, and destype elements. It specifies the file, report, or report section to be included in the body of an e-mail, as an attachment to an e-mail, in the content of a file, in the printer output, or in the content of a custom destination type.
If you want to specify more than one section, but not the entire report, enter an include
for each required section. For example:
If the preceding body
or attach
element has srcType
of file
, the subsequent include
can specify the file either with a directory path and filename or with just the filename, provided the file is located in a directory listed in the REPORTS_PATH
environment variable. For example:
If you do specify a path, use the appropriate standard for your platform. For example:
On Windows:
On UNIX:
No other XML elements are placed between an include
element's open and close tag.
Table 20-5 describes the src
attribute of the include
element.
Table 20-5 Attributes of the include Sub-Element When Used with body or attach
Attribute | Valid Values | Description |
---|---|---|
| Required. The source of material specified in the preceding Because the distribution XML file is called when you run a specific report, you need not specify the report's name or location in the
Other values: When the preceding |
Example
On Windows
or
On UNIX
or
On Windows or UNIX
Required/Optional
Optional. You can have as many file
elements as you require.
Description
Use the file
element to specify distributions to a file. The file
element has one sub-element: include. There must be at least one include
sub-element and there may be more between an open and close tag of the file
element.
When used with the foreach element and the instance="this"
attribute, the file
element can distribute each group instance of a grouped report to separate files. For example, if you group a report on department_id
, and there are four departments, you can use the foreach
/file
/instance="this"
combination to generate four files, each with a separate department's report. In this case, the file
entry in the distribution XML file might look like this:
In this example, all report sections (header, main, and trailer) must repeat on the same group instance (for example, department_id
).
Table 20-6 lists and describes the attributes of the file
element.
Table 20-6 Attributes of the file Element
Attribute | Valid Values | Description |
---|---|---|
string | Required. A keyword, unique within a given distribution XML file, that identifies a particular file element. This can be a combination of a text string and one or more numbers, for example | |
string | Required. Variable values allowed. The location and filename of the destination file. Enter a directory path. Include the filename. For example: Windows: UNIX: Can also contain variable values that reference columns used in the associated report. See Section 20.3.2 for more information. | |
| Default: The destination file format. For example:
| |
| Default: Used when the foreach element is also present. With a grouped report that is burst into separate reports, |
Example
On Windows
On UNIX
Required/Optional
Optional. You can have as many printer
elements as you require.
Description
Use the printer
element to specify distributions to a printer. The printer
element has one sub-element: include. There must be at least one include
sub-element and there may be more between the open and close tags of the printer
element.
When used with the foreach element and the instance="this"
attribute, the printer
element can distribute each group instance of a grouped report to a separate print job. For example, if you group a report on department_id
, and there are four departments, you can use the foreach
/printer
/instance="this"
combination to generate four printed reports, each containing a separate department's report. In this case, the printer
entry in the distribution XML file might look like this:
In this example, all report sections (header, main, and trailer) must repeat on the same group instance (for example, department_id
).
Table 20-7 lists and describes the attributes of the printer
element.
Table 20-7 Attributes of the printer Element
Attribute | Valid Values | Description |
---|---|---|
string | Required. A keyword, unique within a given distribution XML file, that identifies a particular file element. This can be a combination of a text string and one or more numbers, for example | |
string | Required. Variable values allowed. The destination printer. How you enter this information differs between Windows and UNIX. For Windows, specify the printer server name and the printer name. For example: name=" For UNIX, specify the alias assigned to a registered printer. For example: name=" Can also contain variable values that reference columns used in the associated report. See Section 20.3.2 for more information. | |
string | Default: Number of copies of each report or each report group instance to print. | |
| Default: Used when the foreach element is also present. With a grouped report that is burst into separate reports, |
Example
See Section 20.5, "Distribution XML File Examples" for examples of using the destype
element in a distribution XML file to specify distribution to the following destinations: Oracle Portal, FTP, WebDAV, and fax.
Required/Optional
Optional. You can have as many destype
elements as you require.
Description
Use the destype
element to specify distribution to a custom destination, such as a fax machine or an FTP site. You also use destype
to specify distribution to a portal created with Oracle Portal. The destype
element allows for the use of two sub-elements: property and include. At least one include
is required.
Note: The inclusion of a custom destination type requires that you have a defined distribution handler in place to push report content to the custom output destination. Build a custom destination type through the Oracle Reports Services Destinations API.For more information on the available APIs for Oracle Reports, refer to the Reports Software Development Kit (RSDK) on the Oracle Technology Network (OTN): on the Oracle Reports page (|
When used with the foreach element and the instance="this"
attribute, the destype
element can distribute each group instance of a grouped report to a separate destype
instance (for example, a separate fax). For example, if you group a report on department_id
, and there are four departments, you can generate four destype
instances, each containing a separate department's report. In this case, the destype
entry in the distribution XML file might look like this:
In this example, all report sections (header, main, and trailer) must repeat on the same group instance (for example, fax_number
).
Custom destination types also have a set of related attributes. These are expressed within the destype
tag. For example, the id
, name
, and instance
attributes are expressed:
Table 20-8 lists and describes the attributes of the destype
element.
Table 20-8 Attributes of the destype Element
Attribute | Valid Values | Description |
---|---|---|
string | Required. A keyword, unique within a given distribution XML file, that identifies a particular file element. This can be a combination of a text string and one or more numbers, for example | |
string | Required. The name of the custom destination. For example, for a fax, this might be:
For a portal built with Oracle Portal:
| |
| Default: Used when the foreach element is also present. With a grouped report that is burst into separate reports, For example, if you custom destination type is a fax, |
Example
Required/Optional
Optional. You can have as many properties as you require under a destype
element.
Description
The property
element allows for the inclusion of name/value pairs expressed in terms recognized by a custom destination type (destype). Properties are merely passed along to the destination handler. They serve no function within Oracle Reports Services. How you specify properties is entirely dependent on the requirements of your custom destination.
This section provides examples, from simple to complex, of distribution XML elements. They are organized according to the main distribution.dtd
elements:
The examples in this section include:
In this example, each attachment contains the corresponding instance from the header, main, and trailer sections. That is, if the report is grouped on department_id
, and the first department is department 10
, the first attachment will be a report with header, main, and trailer sections all containing department 10 information. This example is valid only if the header, main, and trailer sections repeat on the same group instance, in this case department_id
.
First of all, assume in this example that managers@mycompany.com
goes to a mailing list that distributes to each department manager. If there are four departments: 10, 20, 30, and 40, the first attachment will contain header, main, and trailer sections corresponding to department 10; the second to 20; and so on. This example will yield one e-mail per recipient, each with four attachments.
In this example, each recipient will receive a separate e-mail for each grouped report. For example, if the report is grouped on department_id
, and there are four departments, one recipient will receive four e-mails, each with a separate department's report attached.
In this example, different sections repeat on different groups. The distribution is set up so that each recipient will receive a separate e-mail with attachment for each grouped main section and for each grouped trailer section.
In this example, a separate file is generated for each group instance. Groups repeat on department_id
. Each file is named with the relevant department ID.
Assuming that there are four departments, 10 through 40, this example will result in the creation of four files, named in turn department_10.pdf
, department_20.pdf
, and so on.
The format
attribute is not included in the file
element because it is not required when the srcType
is file
or text
. It is required when the srcType
is report
.
Note: If you do not specify unique filenames through the use of variable values (see Section 20.3.2), in this example, each successively created file will overwrite the previously created file. That is, the department.pdf file for department 20 will overwrite the department.pdf file for department 10, and so on, until there is only one file left, department.pdf, with information from the last department report created (for example, department 40). |
Oracle Reports 11g Release 1 (11.1.1) supports PDF encryption in distribution and bursting of Reports. With this feature, you can secure your Reports output through PDF Security in the following way.
To open the generated PDF output, you must provide the password as departmentid
.
The way you specify a printer name differs between Windows and UNIX. The first example is for Windows. The second is for UNIX.
In this example, assuming that the report is grouped on department_id
, a report will be printed for each department.
In this example, assuming that the report is grouped on department_id
, a report will be printed for each department.
The examples in this section include:
The report will comprise the content of this e-mail. That is, when recipients open this e-mail, they will see the report.
A section of a report will comprise the content of this e-mail. That is, when recipients open this e-mail, they will see a section of the report.
The subject
attribute is not included in this mail
element, so the default subject will be used: Mail Sent From &Report
. At runtime, the variable &Report
will be replaced with the name of the report.
Two sections of a report will comprise the body of this e-mail. That is, when recipients open this e-mail, they'll see two sections, headerSection and mainSection, joined together in one report.
The contents of the body for this email will be an external file, and the report will go along as an attachment. The path to the file is expressed differently for Windows and UNIX.
In this example, recipients receive one e-mail with multiple attachments: one attachment for each group instance and an additional attachment that contains the entire report. If the report is grouped on department_id
and there are four departments, recipients will receive five attachments: one for each department and one whole report.
In this example, the manager for department 10 gets department 10's report; the manager for department 20 gets department 20's report; and so on. For this tag set to be valid, the variable must refer to a column that is included in the "repeat on" group used with the attached section. That is, if the section repeats on G_department_id
, manager
must be a column in that group.
Oracle Reports 11g Release 1 (11.1.1) supports PDF encryption in distribution and bursting of reports. With this feature, you can secure Reports output through PDF Security in the following way:
Whenever you burst and distribute grouped reports to files, be sure to specify filenames with variable values based on the repeating group or some other variable information. Otherwise, you run the risk of having each successive file that is created overwrite the previously created file. For example, if you specify an output filename of department.pdf
, and you output separate instances of each department's report, the second department.pdf
file will overwrite the first department.pdf file; the third will overwrite the second, and so on. You will end up with only one report, that of the final department. Instead, with grouped reports that you want to output separately according to each group instance, use variable values to specify filenames, for example: name="department_&<department_id>.pdf"
.
The examples in this section include:
This example will yield one file named report.pdf
that contains the entire report.
This example will yield one file named sections.pdf
that contains a report consisting of the header section and the main section of the report.
In this example, a separate file will be created for each repeating group. Each file will contain a report that combines the relevant group main and trailer sections. The main and trailer sections must repeat on the same group, and the variable file name must refer to a column contained within the "repeat on" group. That is, if the report repeats on department_id
, and you have four departments, 10 through 40, then one file will contain the main and trailer sections of department 10, the next will contain the main and trailer sections of department 20, and so on. The variable value under name
must refer to a column that is within the G_department_id
group.
In this example, assuming the report is grouped on department_id
and there are four departments, 10 through 40, you will end up with four files respectively named: department_10.pdf
, department_20.pdf
, department_30.pdf
, and department_40.pdf
.
The examples in this section include:
The way printer names are specified, differs between Windows and UNIX. Each example demonstrates both ways.
In this example, the entire report will be sent to the specified printer.
In this example, two sections of a report will be sent to the printer.
In this example, one report will be printed. The report will be grouped by, for example, department_id
. For this to work, all sections of the report must repeat on the same group.
This example will yield a number of print jobs: one for each group instance. The combined sections must repeat on the same group. If the report repeats on department_id
, and you have four departments, 10 through 40, you will end up with four print jobs: one for department 10; one for department 20; and so on. The main and trailer sections must both repeat on department_id
.
For this example to work, the repeat on
group must contain a column of printer names appropriate to the host platform (for example, the printer_name column must contain an appropriate printer alias on UNIX and a printer server/name combination on Windows). For example, if the report is grouped by department_id
, then G_department_id
must also have a printer_name
column. Assuming the printer_name
is tied to a department, then department 10's report would be printed on department 10's printer; department 20's report would be printed on department 20's printer; and so on.
Each group instance equals a separate print job. Each print job goes to the relevant department's printer
You can use destype
to define a custom destination or pluggable destination that can be used by Oracle Reports during distribution. For more information, see Section 20.4.9, "destype". The examples in this section include the following destinations:
This example shows the generic tag structure for sending report output to the Oracle Portal destination. When you push report output to Oracle Portal using DESTYPE=ORACLEPORTAL
, the report output is created in the PAGEGROUP folder.
See Also: Appendix A, "Command-Line Keywords" for more information on the properties shown in the examples. |
This example shows the generic tag structure for sending report output to the FTP destination.
This example shows the generic tag structure for sending report output to the WebDAV destination.
This example shows the generic tag structure for sending report output to the fax destination.
Alternatively, for ease of use, you can specify a custom, more specific tag structure:
Note: All you must do after you modify thedistribution.xsl file is, save it back to the same location under the same file name. Oracle Reports will automatically look for this file when resolving distributions. |
The method for using a distribution XML file at runtime is essentially the same whether you use it in a URL or a command line. Include the options:
where filename
is the name of the distribution XML file. You are required to specify either the relative or absolute path of the XML file. For example, for Windows, you might specify:
For UNIX, you might specify:
For example, the full command in a URL would be similar to:
The paths in these examples are used for illustrative purposes only. There is no requirement for where you store your distribution XML files. You can store them wherever you like.
Note: In some cases, Microsoft Internet Explorer ignores the mimetype of a URL's return stream and instead sets the type by looking at the URL. This can be a problem when you are using the distribution feature of Oracle Reports Services because your URL might end with thedestination parameter; for example:
In this scenario, your URL ends with the extension |
For detailed information on running reports from command lines and URLs and using the cgicmd.dat
file, see Chapter 18, "Running Report Requests".
This section outlines the limitations with using distribution in Oracle Reports:
DELIMITED
as an output format in a distribution XML file or in the Distribution dialog box. Note: You can distribute a report in DelimitedData output format, specified either in a distribution XML file or in the Distribution dialog box in Reports Builder |
XML distribution supports only static values for the format
attribute (as seen in distribution.dtd
). Thus, you cannot specify lexical parameters (to be resolved at runtime) for the format attribute. Hence the format cannot be dynamically determined either for the entire report or for a specific section.
Modern business processes often require the blending of automation into the work environment through behind-the-scenes functions and procedures. Behind-the-scenes tasks can include the automatic production of output such as an invoice that prints automatically when an order is processed, a Web site that is automatically updated with current data, or an automatic e-mail with fresh report output when a transaction is completed.
Automatic output in response to events used to be a fairly complicated effort, particularly if you wished to produce the same results possible through interactive, RAD development tools, such as Oracle Reports Developer.
To address the requirement of automatic output, Oracle Reports Services includes a scheduling mechanism that enables the invocation of reports on a scheduled basis without requiring additional user interaction. But this leaves one requirement unresolved: the ability to automatically run a report in response to an event in the database, such as the insertion of a record or the change of a value.
With the Oracle Reports Services Event-Driven Publishing API, you can automatically run a report in response to an event in the database, such as the insertion of a record or the change of a value. The Event-Driven Publishing API is a PL/SQL API that allows for the automatic submission of jobs to Oracle Reports Services from within the database.
This chapter provides an overview of the Event-Driven Publishing API and includes examples of its use. It includes the following sections:
The Event-Driven Publishing API is a PL/SQL package that provides the basic functions required for the development of procedures that respond to events in the database. Event-driven jobs are submitted using the HTTP protocol. The server assigns a unique job_ident
record to every call, useful for tracking the status of the job.
The API consists of several key elements:
These API elements are discussed in more detail in the following sections.
The API is installed together with Oracle Reports Services Security and Oracle Portal, but neither is required. Installation scripts are also available separately should you want to install the API into a database that does not also hold Oracle Portal:
A parameter list is a PL/SQL variable of type SRW_PARAMLIST
. A variable of this type is an array of 255 elements of type SRW_PARAMETER
, which itself consists of two attributes: NAME
and VALUE
. The API provides procedures for manipulating parameter lists, including:
Whenever you use a parameter list for the first time, it must be initialized before you can add parameters to it. For example:
Both attributes of a parameter (NAME
and VALUE
) are of type VARCHAR2
and may not exceed a length of 80 characters for the NAME
and 255 characters for the value.
The ADD_PARAMETER
function has a fourth—optional—attribute, called MODE
. MODE
determines whether a parameter will be overwritten or an error raised in the event that a parameter with the same name already exists. To specify that an error will be raised in the event of duplicate names, use the constant CHECK_FOR_EXISTANCE
. This is the default value for the MODE
attribute. To specify that a parameter will be overwritten in the event of duplicate names, use the constant OVERWRITE_IF_EXISTS
.
Use REMOVE_PARAMETER
to remove a parameter from a parameter list. Call the procedure, and pass the parameter list from which you want to remove a parameter along with the name of the parameter you want to remove.
For example:
To remove ALL parameters from your list, use CLEAR_PARAMETER_LIST
. For example:
This will remove all parameters from your list.
To use non-ASCII characters in user parameter names and values when using the Event-Driven Publishing API, you must include in your parameter list a parameter called DEFAULTCHARSET
, with its value set to a valid character set name. This character set name can be specified with either the database's NLS_CHARACTERSET
(for example, JA16SJIS
) or IANA-defined character set name (for example, WINDOWS-31J
). You must also ensure that the value of the DEFAULTCHARSET
parameter matches the defaultcharset parameter specified in the rwservlet.properties
file. Oracle Reports Services encodes non-ASCII user parameter names and values using the character set specified by DEFAULTCHARSET
, allowing you to use the Event-Driven Publishing API for reports with non-ASCII characters in parameter names and values.
Note: If you do not add a parameter calledDEFAULTCHARSET to your parameter list, Oracle Reports Services encodes your user parameter names and values using the database's . |
A parameter list contains all vital parameters for submitting a job. The job type determines which parameters are required on the list to enable the Reports Server to process the request.
The listed parameters are the same ones that you must specify when you submit a job from a browser to Oracle Reports Servlet (rwservlet
). In such a case, if the job is a report you will need at least the following parameters but may have more:
GATEWAY
provides the URL to Oracle Reports Servlet (rwservlet
) you will use to process the request. SERVER
identifies the Reports Server to be used in conjunction with Oracle Reports Servlet (rwservlet
). REPORT
identifies the report file to be run. USERID
identifies the name and user ID of the person running the report. AUTHID
provides authorization information in the event you are running against a secured server. Each request returns a job_ident record that holds the information required to identify the job uniquely. This information is stored in variable of type SRW.JOB_IDENT
. Be aware that this is a PACKAGE-TYPE
and must be referenced SRW.JOB_IDENT
; while the parameter list is an OBJECT-TYPE
and must be referenced SRW_PARAMLIST
.
For example:
The API method RUN_REPORT
takes a parameter list that contains all vital information as input (through ADD_PARAMETER
), creates and submits the request, and returns the job_ident record.
The job_ident
record contains the following parameters:
These parameters are needed by the SRW.REPORT_STATUS
function to get status information for a submitted job.
The Event-Driven Publishing API provides a two-way communication with the Reports Server. You submit a job to the server, and you can query the status of this job from the server using the SRW.REPORT_STATUS
function.
This function will return a record of type SRW.STATUS_RECORD
that holds the same information you would see in the job status display if you were using the executing the rwservlet
Web command showjobs
.
For example:
You can use the returned status record for fetching information about the status of your job.
The status record contains processing information about your job. It contains the same information found in the server queue (showjobs
). Additionally, it contains information about the files produced for finished jobs and the lineage for scheduled jobs.
The most important information in the status record is the current job status and the status text, used in turn to check for runtime errors and their causes.
You can use timing information to determine if a job is subject to cancellation because it has exceeded its predicted time for completion.
One way to use the status record is to cancel a job. The Event-Driven Publishing API offers a method for cancelling a job that has been submitted to the server. This might be handy if you want to remove a job that has exceeded its allowed time to run or if you simply have scheduled jobs you want to cancel.
To cancel a job, use the following procedure:
As evident in this example, you cancel a report by calling the CANCEL_REPORT
procedure (SRW.CANCEL_REPORT
) and passing it the job_ident
record of the job you want to cancel. The procedure takes an optional parameter list to enable you to pass any additional parameters you might need.
Because these processes all run behind the scenes, there is no actual place where debugging information is produced during normal execution. Therefore, the API has two procedures that toggle a special debugging mode that produces extensive debugging information through DBMS_OUTPUT
:
To switch on debugging mode simply call SRW.START_DEBUGGING
and to stop it call SRW.STOP_DEBUGGING
. The debugging mode must be started immediately before you run your actual logic. It stays on as long as the current instance of the package is loaded.
One way you can display this information is by setting SERVEROUT
to ON
in SQL*PLUS before you run your script.
In addition to this method of debugging, the API has a set of pre-defined exceptions to be used for error handling. You'll find examples of these exceptions in the srw_test.sql
script provided with your Oracle Reports Services installation.
Database triggers are the primary mechanism for invoking reports using the Event-Driven Publishing API. The Oracle database enables you to define various scopes of triggers that fire in response to various events. To submit a database-driven job, you use the code described in the previous sections within a database trigger.
There are many ways to use event-driven publishing. One way is to create security protocols using a trigger that fires whenever a grant is done or a user logs on or off. Another way is to create automated processes that respond to certain types of changes to data in a table. For example, a database trigger could fire when the status of an expense report changes to DONE
; in turn, a report could automatically be sent to an employee's manager.
For example:
This trigger will fire after each update on the EXP_REP
table. In the event the status changes to DONE
, the report request is run.
If you want your request to run against a key specified in the cgicmd.dat
key map file (for more information, see Section 18.13, "Using a Key Map File"), specify the CMDKEY
parameter in lieu of the REPORT
parameter. If the key contains user ID information, you can omit the USERID
parameter as well. For example:
Additionally, if you have defined an advanced distribution model through a distribution XML file, you can specify that file with the DESTINATION
parameter. For example:
This is one way to move this kind of logic from your application into the database and use the database as a central storage for business processes.
Note: You'll find additional examples of the Event-Driven Publishing API in action in the demo scriptsrw_test.sql , included with your Oracle Reports Services installation. |
Oracle Advanced Queuing is a means for building an asynchronous request/response mechanism around a so-called queue and two processes: ENQUEUE
, which puts MESSAGES
into a queue, and DEQUEUE
, which reads the queue.
Advanced queuing provides sophisticated mechanisms for distributing messages across queues and for queue subscription. These mechanisms are all built on top of these basic elements (ENQUEUE
, DEQUEUE
, and MESSAGES
).
With the Event-Driven Publishing API you can use these queues to store and transmit report jobs. You can even build your own queuing mechanism if the one provided with Oracle Reports Services does not fit your needs.
A queue is a table in the database that holds, along with several administrative columns, an object column that represents a message. In our case the message is the parameter list.
The dbms_AQadm
package, provided with Advanced Queuing, contains all the administrative functions required for setting up an advanced queuing system.
Use dbms_AQadm.Create_Queue_Table
to create the physical table in the database. You must pass it a name for the table and a name for the object type that will define the message for this queue.
For example:
In earlier examples, we created the object type SRW_PARAMLIST_OBJECT
that encapsulates the SRW_PARAMLIST
type in object notation so it can be used as a message.
After creating the queue table, you must create the queue with dbms_AQadm.Create_Queue
and start the queue with dbms_AQadm.Start_Queue
.
For example:
Note: You'll find a complete example for setting up, creating, and starting a simple queue in the demo filesrwAQsetup.sql , included with your Oracle Reports Services installation. |
Having created and started the queue, what you need now is a procedure that creates a message in this queue and a procedure that reads out the queue and submits the job to the server. These are discussed in the following sections.
The enqueuing procedure is responsible for putting a message into the queue. This procedure can be part of your application, called by a database-trigger, or provided through an external mechanism. In this section, we will provide an example of creating a stored procedure that puts a simple message in this queue.
Because our message is the parameter list itself, the procedure is fairly easy. We use the same code we used in earlier sections to create a parameter list. In addition to the variables we used, we define an object
variable to hold the message we will put into the queue.
After creating the parameter list we create the actual message object using the object constructor.
Then we enqueue the message using the enqueue procedure provided by Advanced Queuing.
The message is put into the queue. Because we did not set up any message distribution, the message will stay in the queue until it is fetched by a dequeuing-procedure, which is discussed in the next section.
A dequeuing procedure reads out all available messages in a queue and processes them. In our case, we want to read out the message and submit a job to the server using the parameter list that was attached to the message.
To accomplish this, we follow this example:
This code example will read out the queue until all messages have been processed. Time allowed for processing is determined by the timeout defined in the second line of code. This timeout defines the amount of seconds the dequeue procedure should wait for a message before creating a timeout exception.
The DBMS_AQ.DEQUEUE
built-in is provided by Advanced Queuing for reading out messages. It puts the payload of the message, the object that holds the information, into the object defined by the payload parameter.
Using plist
, we extract the information from the payload object. As mentioned before, our object holds a parameter list. It is stored in the attribute PARAMS
inside the object. The extracted parameter list is then handed over to SRW.RUN_REPORT
for submitting the job.
If you want to avoid the need for invoking this dequeuing procedure by hand, you can run it as a job inside the database.
Extensible Markup Language (XML) is designed to improve the functionality of the Web by providing a method to promote detailed information identification. It is actually a metalanguage (a language used for describing other languages) and can be used to design customized markup languages for different type of documents.
XML documents are composed of both markup and content:
XML customizations enable you to modify reports at runtime without changing the original report. With the addition of the CUSTOMIZE
keyword to your runtime command line, you can call a customization file to add to or change a report's layout or data model. One XML customization file can perform all of these tasks or any combination of them. You can even use XML to build a report data model for inclusion in a custom JSP-based report.
By creating and applying different XML customizations, you can alter the report output on a per user or per user group basis. You can use the same report to generate different output depending upon the audience.
When you apply an XML customization to a report, you have the option of saving the combined definition to a file. As a result, you can use XML customizations to make batch updates to existing reports. You can quickly update a large number of reports without having to open each file in Oracle Reports Builder.
Oracle Reports Services extends the possible types of Oracle Reports XML customizations by enabling you to create an entire reports data model in XML. This includes the creation of multiple data sources, linking between data sources, and group hierarchies within each data source. Data model support through Oracle Reports XML customization means that any data model that can be created with Oracle Reports Builder can now be created by specifying XML. Additionally, all properties that can be set against data model objects can now be set using XML.
This chapter discusses the ways you can use XML to customize reports on the fly and to build data models. It includes the following sections:
This chapter lists and provides examples of the supported elements in the reports.dtd
file. However, only some of the attributes of these elements are listed.
For more information, either on the additional attributes or on the Oracle Reports XML elements, tags, and attributes, refer to the following sources:
reports.dtd
file lists all the Oracle Reports XML elements, tags, and attributes and, where present, the attributes' default values. The reports.dtd
file is located in ORACLE_HOME
\reports\dtd\
on both Windows and UNIX platforms. Many of the sub-elements include symbols that denote usage rules. For example: If multiple sub-elements are enclosed in parentheses and followed by a symbol, the symbol applies to all enclosed sub-elements.
Note: For reports developed in a release prior to Oracle Reports 10g Release 2 (10.1.2) patch 2, you may find the PL/SQL package specification or body is missing when opening the XML reports. In this case, either:
|