Developer's Guide for Oracle IRM Server
11g Release 1 (11.1.1)
E12326-03
January 2011
Oracle Fusion Middleware Developer's Guide for Oracle IRM Server, 11g Release 1 (11.1.1)
E12326-03
Copyright © 2007, 2011, Oracle and/or its affiliates. All rights reserved.
Primary Author: Martin Wykes
Contributing Author: James Leask
This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.
The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.
If this software or related documentation is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable:
U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.
This software is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications which may create a risk of personal injury. If you use this software in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure the safe use of this software. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software in dangerous applications.
Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks of their respective owners.
This software and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.
This guide describes how to create code that will perform sealing and related tasks for protecting the content of files under Oracle IRM control.
This guide is for developers who want to create tools for sealing and unsealing protected content, or who want to adapt existing tools to support content protected by Oracle IRM. Users of this guide need basic familiarity with Oracle IRM, should be competent Java developers familiar with a Java IDE, and should know how to call web services from Java.
Our goal is to make Oracle products, services, and supporting documentation accessible to all users, including users that are disabled. To that end, our documentation includes features that make information available to users of assistive technology. This documentation is available in HTML format, and contains markup to facilitate access by the disabled community. Accessibility standards will continue to evolve over time, and Oracle is actively engaged with other market-leading technology vendors to address technical obstacles so that our documentation can be accessible to all of our customers. For more information, visit the Oracle Accessibility Program Web site at http://www.oracle.com/accessibility/
.
Accessibility of Code Examples in Documentation
Screen readers may not always correctly read the code examples in this document. The conventions for writing code require that closing braces should appear on an otherwise empty line; however, some screen readers may not always read a line of text that consists solely of a bracket or brace.
Accessibility of Links to External Web Sites in Documentation
This documentation may contain links to Web sites of other companies or organizations that Oracle does not own or control. Oracle neither evaluates nor makes any representations regarding the accessibility of these Web sites.
Access to Oracle Support for Hearing-Impaired Customers
Oracle customers have access to electronic support through My Oracle Support or by calling Oracle Support at 1.800.223.1711. Hearing-impaired customers in the U.S. who wish to speak to an Oracle Support representative may use a telecommunications relay service (TRS). Information about the TRS is available at http://www.fcc.gov/cgb/consumerfacts/trs.html
, and a list of telephone numbers is available at http://www.fcc.gov/cgb/dro/trsphonebk.html
. International hearing-impaired customers should use the TRS at +1.605.224.1837. An Oracle Support engineer will respond to technical issues according to the standard service request process.
For more information, see the following documentation:
This guide is also available as the online help for the Oracle IRM Server product.
This guide is also available as the online help for the Oracle IRM Desktop product.
The following text conventions are used in this document:
Convention	Meaning
boldface	Boldface type indicates graphical user interface elements associated with an action, or terms defined in text or the glossary.
italic	Italic type indicates book titles, emphasis, or placeholder variables for which you supply particular values.
monospace	Monospace type indicates commands within a paragraph, URLs, code in examples, text that appears on the screen, or text that you enter.
The following conventions are used throughout this guide:	
This guide covers all of the development topics relating to the Oracle IRM J2EE application (Oracle IRM Server).	
The guide describes how to use the following:	
This guide describes the web services that are available for use by external developers. Other web services exist for Oracle IRM that are not authorized for use by external developers.	
Where appropriate, sample code is provided.	
This section contains the following topics:	
Sealing is the process of transforming plaintext content into encrypted and signed content. The sealing process adds metadata, signs this metadata and encrypts the content. The result of this transformation is called sealed content. Sealed content can be opened only with Oracle IRM Desktop, the Oracle IRM client application. Oracle IRM Desktop checks the digital signature, decrypts the content, and maintains the protection of the sealed content while in use. One of the other changes currently made during sealing is to alter the file extension. For example, a sealed HTML document has a stml file extension rather than a html or htm file extension. Oracle IRM Desktop identifies sealed content using these different file extensions.	
The metadata added to sealed content is called the public header. It is a human-readable XML document that appears near the top of the sealed content. The public header is digitally signed so that tampering of sealed content can be detected by Oracle IRM Desktop.	
The public header contains a section called the classification. The classification is used by the Oracle IRM Desktop to determine whether the authenticated user can access the sealed content. Rights are expressed in terms of the classification, for example John can access all Top Secret classified content. The classification also includes information about which server (Oracle IRM Server) to contact for rights, and which cryptography keys were used to seal the content.	
To allow content to be classified in different ways, the classification contains a section of XML data called the classification cookie. The classification cookie contains data that is used by Oracle IRM Desktop and the Oracle IRM J2EE application to associate rights with content. The data contained in the classification cookie is defined by the classification system.	
Sealed content that uses the context classification system has a classification cookie that contains a UUID value (to identify a context) and an item code that identifies the document. This allows rights to be expressed either at the context level or for a particular document (for example, John can access any document sealed to context Top Secret or Mary can access the top secret document named secrets.sdoc).	
Additional data can be tagged to sealed content using custom metadata. Custom metadata can be added by third party systems that perform sealing. This allows tamper proof metadata to be added to sealed content, which in turn can be extracted by these applications. For example, a content management system could add additional properties to the sealed content, such as the original author or document version.	
Oracle IRM Desktop also uses custom metadata when displaying the poster page for sealed movies. When movie content is sealed the poster page can be specified as custom metadata.	
Sealed content contains a version number called the content schema. This version number helps the Oracle IRM Desktop determine what features are supported in the sealed content.	
Sealed content contains a record of when the content was first sealed and when subsequent edits were made.	
The following XML document is an example of a public header one might see in an HTML document sealed against the Top Secret context.	
The following is an example snippet of the encrypted section of a sealed file.	
Unsealing is the process of taking sealed content and extracting the original, plaintext content. Unsealing can be considered the reverse process of sealing. Unsealing is typically used when content no longer requires Oracle IRM protection or when the content needs to be processed by a third party system, for example an application producing a search index for sealed content.	
Peeking is the process of extracting the classification and custom metadata from sealed content. The process is called peeking because the process examines only the public header of the sealed content, not the encrypted data. Peeking is typically used to identify the classification of the sealed content without opening or viewing the content. Peeking can also check the digital signature: this is called validated peek. Peeking of this form requires the cryptography keys to be available to the caller, which typically means the authenticated user must have rights to open the sealed content.	
Resealing is the process of saving a sealed file with some modifications. Oracle IRM Desktop allows certain formats, such as Microsoft Office, to be edited in sealed form: the process of saving edits is called resealing.	
Reclassifying sealed content is the process of altering the classification of the sealed content. Reclassification usually means re-signing and re-encrypting the content as most classifications have their own set of cryptography keys. Reclassifying is typically used when content changes sensitivity (for example, a top secret document becomes a company confidential document).	
The sealing server is a J2EE application that runs on an application server and provides sealing, unsealing, peeking, and reclassification services. Operations such as sealing content can be accomplished by uploading a file to the sealing server: the relevant metadata will be added and digitally signed, and the contents encrypted. The resultant sealed content is then returned to the caller. The sealing operations are exposed as web services. The typical use for the sealing server is for integrations that want to seal, unseal or examine sealed content. Oracle IRM Desktop users typically create sealed content on their local machines and would not use the sealing server.	
The sealing server exposes two web services: the sealing web service and the desktop web service. The sealing web service allows sealed content to be manipulated (for example, sealing and unsealing content). The desktop web service allows licenses checked out to the sealing server to be queried and checked in. The desktop web service also provides classification details.	
The sealing server provides a number of web services operations that allow the following tasks to be performed:	
The sealing services WSDL file can be downloaded from the sealing server using the following URL, replacing irm.example.com	
with the host and port name of the sealing server:	
http://irm.example.com/irm_sealing/sealing_services?wsdl	
The sealing services web service calls require authentication. The current release supports HTTP basic authentication. When rights are requested and operations performed on sealed content, they are performed as the authenticated user.	
There are two main ways to set the username and password with a JAX-WS generated web service proxy. The first approach requires the user name and password to be set using the java.net.Authenticator	
class. This approach provides a user name and password for all HTTP requests for the running JVM instance.	
The other approach is to set the user name and password directly on the web services port object. This is the approach used in the web service sample code.	
The sealing services web service calls are authorized in the same way that Oracle IRM Desktop authorizes sealed content access. The authenticated user must have a valid license that allows an appropriate feature for the specified classification.	
In the context classification system, this means the user has to have a role assigned that allows the seal feature.	
In the context classification system, this means the user has to have a role that has export constraints set as none.	
In the context classification system, this means the user has to have a role that allows the reseal feature.	
In the context classification system, this means the user has to have a role that has export constraints set as trusted with the target context being a trusted context of the source context, or that the role has export constraints set as none.	
In the context classification system, this means that the user does not need a role assigned within a context.	
If the same user account is used to authenticate with the sealing server and the Oracle IRM Desktop, the user may have to perform a check-in when switching between Oracle IRM Desktop and the sealing server. It is advisable to use a different user account when using the sealing server, to avoid having to check in licenses. When requests are made to the sealing server, the sealing server requests the licenses and cryptography keys for the related classification from the Oracle IRM server. These licenses are checked out to the sealing server for the authenticated user. A record of these keys and rights is stored in memory and, if the license specifies, also on the file system. These licenses and keys are then used to process the content for this call and subsequent requests relating to the same classification (for the same user). Licenses that expire are re-requested by the sealing server. License rules, such as time constraints, are fully interpreted by the sealing server. License and key details are stored per authenticated user - there is an isolated store of rights and keys for any user that uses the sealing server. This is identical to the way that Oracle IRM Desktop requests licenses and keys. Oracle IRM Desktop also has an offline database in which keys and licenses are stored.	
The sealing server supports MTOM (SOAP Message Transmission Optimization Mechanism). This web service feature allows content to be transmitted as a raw binary attachment to the SOAP message rather than using in-line base 64 encoded data. This not only reduces the amount of data sent to the server, it also allows larger files to be uploaded and downloaded. It is strongly recommended to enable MTOM support when using the sealing web service operations.	
For example, when using a JAX-WS client the MTOM feature can be enabled when obtaining the port:	
If MTOM support is not enabled, the uploaded file size will be limited to the available memory in the client JVM.	
The sealing server also exposes a number of operations for managing licenses checked out to the sealing server and listing classification details. These operations are similar to the operations a user can perform using Oracle IRM Desktop. When licenses are checked out to the sealing server, the licences cannot be used by Oracle IRM Desktop unless the device count configuration setting has been configured to allow licenses to be used on multiple devices. The desktop services web service allows licenses to be checked in from the sealing server. In the same way that Oracle IRM Desktop can list classification details (contexts) when the user wants to seal content, the sealing server also provides an operation that lists classification details.	
A couple of simple diagnostic pages are also made available on the sealing server so you can find out what licenses are checked out to the sealing server, and what classifications are currently available:	
http://irm.example.com/irm_sealing/licenses	
http://irm.example.com/irm_sealing/classifications	
The desktop services WSDL file can be downloaded from the sealing server using the following URL, replacing irm.example.com	
with the host and port name of the sealing server.	
http://irm.example.com/irm_sealing/desktop_services?wsdl	
Applications that want to process sealed content locally rather than sending the content to a server can use the IRM Java API. When using this API the sealed content cryptography is performed in the same process as the calling application. Cryptography keys are shipped from the IRM J2EE application and used in the process using the API.	
Cryptography Keys: An application using the IRM Java API has the ability to obtain the sealed content cryptography keys. The IRM Java API stores these keys in the memory of the calling process whilst they are being used. Debugging the IRM Java API, or doing a memory dump could compromise the key material. Do not use the IRM Java API if the environment in which the application is running is insecure or untrusted (for example, a laptop).	
The typical use for the IRM Java API is for trusted integrations that want to seal, unseal or examine sealed content where network latency or performance may be an issue.	
The API implementation makes use of Java Cryptography Extension (JCE) to perform cryptography operations. If use of AES 256 cryptography is required, the unlimited strength policy JAR files must also be installed. For the latest information about supported JDK/JREs, see the System Requirements and Supported Platforms for Oracle Fusion Middleware page on Oracle Technology Network at http://www.oracle.com/technology/software/products/ias/files/fusion_certification.html	
.	
When using the IRM Java API, the following jar file should be added to the compile time or runtime classpath:	
irm-api.jar	
This irm-api.jar	
has a manifest entry that adds the following jars files to the classpath. These jar files need to be distributed with the irm-api.jar	
and placed in the same folder as the irm-api.jar	
file.	
irm-common.jar	
irm-engine.jar	
irm-client.jar	
irm-ws.jar	
These jar files can be obtained from the IRM server installation, under the folder ECM_ORACLE_HOME/irm/api/lib	
. These libraries are thread safe.	
Configuration settings for the IRM Java API are read from an XML configuration file. The configuration settings tell the IRM Java API where to store the offline cache of licenses, classification and cryptography key information, and the device identity, as well as where to find the key store containing the cryptography key used to protect sealed content cryptography key material.	
This XML configuration file can be stored in any location accessible to the process running the IRM Java API. The location is specified by setting the oracle.irm.client.configuration	
system property. If this property is not set, the IRM Java API will throw an exception, informing the caller than the configuration settings have not been specified. Here is an example of a Java program running with the system property set to /home/irm/irm-configuration.xml	
:	
When the IRM Java API is used to seal, unseal, reseal and reclassify content, license and cryptography key details are requested from the IRM J2EE application for the authenticated user. Depending on the license rules these details may be stored in memory or on the file system and used for future requests to seal, unseal, reseal, or reclassify content. The storage folder is where this data is stored. This data is stored in encrypted form and is locked to the machine that requested the information.	
Authentication: Once license and key material has been obtained from the IRM J2EE application, the process using the IRM Java API will be able to process sealed content, regardless of the user used to authenticate the original request. Unlike the sealing server, these details are shared per process rather than per user.	
The following two files will be created the first time an operation is performed that needs to store license related details:	
irm-store/irm-desktop-store.xml	
irm-key-sets/irm-key-set-48ff59ab-be7a-4a2a-a093-65286f949909.xml	
The UUID value 48ff59ab-be7a-4a2a-a093-65286f949909	
will vary from installation to installation.	
Backups: If the contents of the storage folder are deleted, the next time the IRM Java API saves information to the file system these files will be recreated. There is no need to back up the files generated by the IRM Java API.	
Applications that perform sealing operations, such as Oracle IRM Desktop, sealing server and the IRM Java API, provide details about the where the operation is being performed. This information is provided in the form of a device. Each device has a unique value that is used to identify the location of an Oracle IRM client to the IRM J2EE application. This value is in the form of a UUID and is called the device UUID. When using the IRM Java API, a new UUID value should be generated and specified in the configuration file. It is valid to allow logically identical devices to share the same device UUID value. For example, a cluster of sealing services shares the same device UUID, so every member of the cluster can obtain the same licenses and the cluster is seen as one logical location.	
The device UUID is used internally by IRM to track the location of licenses. When a license is used, it is typically checked out to a device (depending on the license criteria). This prevents the license being used on multiple devices at the same time. Sharing the same device UUID is however a simple way to relax this restriction when scaling or clustering an application that uses the IRM Java API.	
The application name is a human-readable label for the application that is processing sealed content. The application name is part of the information provided to the IRM J2EE application in a content-related audit record.	
When the IRM Java API obtains key material from the IRM J2EE application, the key material is encrypted using a key dedicated to the device. To be able to use the key material, the IRM Java API must have access to the appropriate cryptography key so that the key material can be decrypted and used to process sealed content. The key store type and location are specified in the configuration file. Passwords for the key store and key are not stored in the configuration file. Passwords will be prompted for on the command line when the IRM Java API first accesses the key store.	
By default, the Oracle IRM J2EE application will only respond to requests from the Oracle IRM Desktop and the sealing server. To use the IRM Java API, additional configuration steps are required to add the application using the IRM Java API as a trusted application. Processing sealed content locally using the IRM Java API requires local access to the content cryptography keys. These keys are requested from the Oracle IRM J2EE application, which will respond with key material together with licenses. These licenses control what operations the IRM Java API is allowed to perform.	
Without enabling the IRM Java API, requests to process seal content will result in the following error:	
Peeking: If an application is only using the peek operation to extract sealed content metadata, there is no need to set up a trust relationship between the application using the IRM Java API and the IRM J2EE application. Peeking does not use sealed content cryptography keys while peeking content.	
The first step in enabling the IRM Java API to use an IRM J2EE application is to generate a new AES symmetric key or RSA asymmetric key pair. This can be done with the Java keytool	
command line tool. This AES symmetric key or RSA asymmetric key pair are used as a trust mechanism. The IRM J2EE application will encrypt data using a key, and the IRM Java API will decrypt data using the corresponding key.	
Key Algorithm Choice: On AIX platforms using the IBMJCE cryptography provider, the AES key wrap algorithm is not supported, so a RSA 2048 bit trust key must be used. If the IRM J2EE application is using a JKS key store type, the IRM Java API is also limited to using a RSA key. In all other cases, generate an AES key which is at least the same size as the sealed content key sizes. For example, when using the AES128 cryptography schema, generate a 128 or 256 bit AES key for the IRM Java API.	
The following is an example of generating a 128 bit AES key and storing it in a JCEKS file based key store. The key alias should be the device UUID specified in the IRM Java API configuration. In the examples shown, the device UUID is b2e1ea48-cc3e-44bc-ad9b-a214c62fd410	
and the key store is called irm_api.jks/irm_api.jceks	
:	
The following is an example of generating a 2048 bit RSA key and storing it in a JKS file based key store:	
These commands all create the key store, generate a key, and prompt the user for a key store and key password. This key store is the one that should be used in the IRM Java API configuration.	
Certificate: When generating the RSA key,keytool will prompt for certificate details. The certificate details are not used by the IRM Java API or IRM J2EE application, so enter blank values for the certificate questions.	
The symmetric key or asymmetric public key generated with keytool	
must be added to the IRM J2EE application key store, using the device UUID value as the key alias. The IRM J2EE application then uses this key to encrypt key material before sending it to the IRM Java API. Without the key being added to the IRM J2EE application key store, the IRM Java API will not be able to process sealed content.	
Location: The IRM J2EE application key store is typically located under the folderDOMAIN_HOME/config/fwmconfig .	
If the IRM Java API key is an AES key then the keytool -importkeystore	
feature can be used to import the key into the server key store. In this example, the IRM Java API key store is called irm_api.jceks	
and the IRM J2EE application key store is called irm.jceks	
:	
When specifying the key store file name, the key store path may also be required, depending on whether the keytool	
command is run in the same folder as the key store file.	
The first step is to export the public key part of the asymmetric key pair from the IRM Java API key store. In this example, the IRM Java API key store is called irm_api.jks	
and the IRM J2EE application key store is called irm.jks	
.	
The next step is to import this public key into the IRM J2EE application key store.	
When specifying the key store file name, the key store path may also be required, depending on whether the keytool	
command is run in the same folder as the key store file.	
The IRM J2EE application will need to read the imported key and so will need to know the key password for symmetric keys. For asymmetric there is no password associated with the public key, so this step can be skipped. The key password for the IRM J2EE application is stored in the Fusion Middleware Credential Store Framework (CSF). The WLST tool is used to add new passwords. A WLST shell should be launched from ECM_ORACLE_HOME/common/bin	
. The credential is added using the createCred	
command. The example below shows connecting to an admin server and setting the password for a key store called irm.jceks	
to the value password for the key with alias b2e1ea48-cc3e-44bc-ad9b-a214c62fd410	
.	
In this example, the key alias is b2e1ea48-cc3e-44bc-ad9b-a214c62fd410	
and the key store file name is irm.jceks	
. Both these values should be altered to reflect the device UUID used and the actual IRM J2EE application key store file name. As keys do not require a user name, the value dummy	
is used in place of a user name.	
A sealed content operation that ends up requesting licenses and keys may involve a request to the IRM J2EE application, which in turn will require authentication. A remote call is made from the IRM Java API if the local memory and file cache of licenses and keys cannot satisfy the request. The peek operation does not require access to licenses and keys, and will never cause a request to the IRM J2EE application.	
java.net.Authenticator	
A java.net.Authenticator	
can be used to specify the username and password. Any HTTP connection that requires authentication will call back to the authenticator to request credentials.	
This code sample uses hard-coded passwords and user names. In a production system, these details should be retrieved from a secure location or a user prompt.	
The IRM Java API provides a plug-in mechanism that allows code to be augmented into internal processes. Two such processes are the code that provides the key store and key password for the wrapping keys, and the code that reads configuration settings. Both processes can be changed to use programmer-provided logic instead of using the default IRM Java API logic.	
The configuration settings can be provided using code rather than using an XML configuration file. If code is used, there is no need to specify a location for the XML configuration file as a system property. The sample code below shows how configuration settings can be provided using code. The settings are hard-coded and are identical to the XML sample configuration file. In a production system this code could read the settings from an alternative location rather than relying on an externally created XML file.	
The following code sample shows how to specify key and key store passwords. In a production integration, these passwords should be obtained using an appropriate mechanism and passed into the construct method rather than using hard-coded values. The key parameter provides details of the key store and key being requested. This key parameter can be used if the key store path or key alias name are needed to choose an appropriate set of passwords.	
To activate code plug-ins, the XML file META-INF/oracle_irm_deployment.xml	
needs to be added to the classpath. The easiest way to do this is to package this file in the same jar file as the plug-in code and add the jar file to the end of the classpath. This sample file oracle_irm_deployment.xml	
tells the API to add in the WrappingKeyDemo	
and DesktopConfigurationDemo	
classes into the internal logic processes.	
When adding your own classes, change the contents of the implementationClass	
element to provide the package and class name of the class created. The name element can be used to give the plug-in a unique name: this could be the name of the company or application providing the plug-in logic. Also ensure the classes that are created are added to the classpath.	
When sealing content, it is useful to be able to look up the file extension that Oracle IRM Desktop uses. The content operations described later in this section provide useful operations for obtaining file extension information, such as looking up sealed file extensions.	
Sealed content uses file extensions that differ from the ones used for unsealed files. For example, a PDF file has the file extension .pdf, whereas a sealed PDF file has the file extension .spdf. The sealed file extension allows Oracle IRM Desktop to identify what file format the sealed content is, and display appropriate sealed file icons. The table below shows some example file extensions and the corresponding sealed file extension.	
Table 3-1 Example file formats and extensions	
File format	File extension
---	---
DOC	doc
PPT	ppt
HTML	html, htm
	spdf
GIF	gif
Sealed content includes a MIME type in the sealed content metadata. This MIME type is used by Oracle IRM Desktop to identify the format of the unsealed content. The MIME type is an alternative way of detecting the file format when the content is not stored in a file (for example, a stream of data downloaded from a HTTP server). Unsealed MIME types vary and there are many examples where a single file format has more than one MIME type. For this reason the sealed content contains a sealed MIME type rather than the unsealed content MIME type. For example, a PDF file has the MIME type application/pdf	
, whereas a sealed PDF file will have a MIME type of application/vnd.sealedmedia.softseal.pdf	
added to the metadata.	
Opening up sealed content in an editor will show that a sealed MIME type is added to the metadata. For example, the public header of a sealed PDF file:	
The sealing server provides a web service that can be used to query file and MIME type information. Sealed content file format information is immutable, so consider retrieving this information once and using a local copy when processing sealed files. This will avoid potentially expensive remote calls to a sealing server.	
When sealing a file a common scenario is to create the corresponding sealed file next to the original. The getSealedFileName	
operation takes a path and file name or just a file name and provides the equivalent sealed file name.	
In the example above the results of calling the method would be "/usr/home/john/sample.stml"	
.	
A content type object contains all the file type information for content that can be sealed. The content type specifies the file extension(s), its sealed file extension, and the associated MIME types. Content type objects can be obtained using the file extension or the MIME type of the sealed or unsealed content.	
The IRM Java API supplies a set of methods that can be used to query MIME type and file extension details when working with sealed content.	
Given an unsealed file name, the corresponding sealed file name can be found using the getSealedFileName	
operation. This method is useful when sealing content and deciding what the output file name should be.	
Given an unsealed or sealed file name, the MIME type and sealed file extension details can be found using the getContentTypeFromExtension	
method.	
This section contains the following topics:	
The sealing server supports sealing. Content is uploaded to the sealing server, encrypted and signed, and the sealed content returned to the caller.	
For JAX-WS generated web service proxies the content is provided as a javax.activation.DataHandler	
parameter. Using a data handler allows the web service stack to stream the binary content to the server without having to load the complete file into memory.	
The data source does not have to be a file.	
seal	
A call to the seal	
method requires the unsealed data (in the form of a DataHandler	
), the MIME type of the unsealed or sealed content (either is fine) and the sealing options. The sealing options contain the classification details, custom metadata, and a few other attributes, such as the time the sealed file was created.	
It is important to enable the MTOM web service feature. This ensures the sealed content is uploaded to the server in the most optimal form. It also avoids java.lang.OutOfMemoryException	
exceptions if the uploaded file is large.	
To call the seal operation, the authenticated user needs rights that allow the seal feature for the specified classification.	
The seal method requires the MIME type of the unsealed or sealed content to be specified, for example:	
txt/html	
or application/vnd.sealed.txt	
MIME types can be used. txt/plain	
or application/vnd.sealedmedia.softseal.html	
MIME types can be used. For more information about how to obtain sealed content MIME types and what MIME types are supported, see "File Extensions".	
The sealing options contain the classification, custom metadata and settings that affect how the content is encrypted. The classification is the most important part of the sealed content metadata. The classification contains the opaque XML document called the classification cookie. The classification cookie is the data used by Oracle IRM Desktop and the Oracle IRM J2EE application when associating rights with content. The classification cookie XML structure is defined by the classification system of the sealed content. The context classification system, for example, has an XML structure that includes a UUID to identify the context and a value called the item code which can be used to identify an individual document. The following is an example context cookie that might appear in sealed content:	
Rights for the context classification system are expressed using this information, for example:	
John can access all documents with a context UUID of f3cd57c1-f495-48aa-b008-f23afa4d6b07	
or:	
Mary can access documents with a context UUID of f3cd57c1-f495-48aa-b008-f23afa4d6b07	
and an item code value of plan001.sdoc	
or plan002.sdoc	
The classification is mandatory and must be specified in the sealing options. The other sealing option properties are optional.	
The classification ID is a simple string value that is used to uniquely identify the classification. The contents and format of the classification ID differ depending on what classification system is used. The classification ID is used to match classification details with master classification details stored on the server. During the seal operation, if the classification labels and key set are not specified the sealing server looks up the master classification definition by classification ID and uses the labels and key set defined on the master classification.	
The classification ID value for the context classification system should be set as the context UUID value. If this value is not set correctly, labels and key set details cannot be automatically set.	
A classification must specify what classification system is being used to seal the content. A classification system is identified with a UUID value.	
The classification system defines what value should be used as the classification ID, as well as what XML data should be set in the classification cookie. When sealed content is opened in Oracle IRM Desktop this information is sent to the Oracle IRM J2EE application. The Oracle IRM J2EE application then uses the classification system and classification cookie data to determine how rights are obtained for the authenticated user.	
The UUID value for the context classification system is 37c8da32-5420-4146-816c-27f63de27250	
. This value is immutable and will never change.	
When content is sealed, the cryptography keys used to encrypt and sign the content are specified using a key set. This value should be set to null	
, and is provided for future feature enhancements.	
When sealed content is opened or created, the rights to open or seal the content must be obtained from an IRM server. A classification has a URI property which must be set to the URI of an IRM server that will provide the licenses and cryptography keys needed to open or seal content for the classification.	
It is important that this value is the same as the the "Server URL" property configured on the General Settings page of the Oracle IRM Server Control Console (the Oracle IRM pages of the Oracle Enterprise Manager Fusion Middleware Control Console).	
Rights to access sealed content can include time constraints. One such constraint can be based on the classification time, for example:	
allow John to access any sealed content up to one month after the classification time	
or:	
allow Mary to access any content classified in 2008	
The classification time can be set during the sealing process:	
If the classification time is not specified, it defaults to the current time by the sealing server.	
In the 10g Oracle IRM release the classification time was called the publication time.	
A classification can contain a set of human-readable strings called labels. The classification labels are used by Oracle IRM Desktop to show the user classification details, for example informing the user that a document is sealed to the Top Secret classification. If no labels are specified for the classification provided to the seal operation, the sealing server will attempt to fill in the labels from the master classification definition. To allow for multi-language support, labels have a locale property. If the classification can be translated into multiple languages, multiple labels can be provided, each one specifying the appropriate locale (for example, en	
for English or zh-CN	
for traditional Chinese - see Locale Codes). Oracle IRM Desktop picks the most appropriate label based on the installed Oracle IRM Desktop language.	
For the context classification system, the context labels defined on the Oracle IRM Server Management Console are the ones that are sealed into content.	
Empty labels are specified by setting an empty set of labels using null	
.	
Labels can also be provided during the sealing process: these override any master classification definition.	
The classification cookie is defined by the classification XML schema as an <any>	
element, that is, an XML element of any form. The structure of this XML document is defined by the classification system being used. Depending on the web service proxy generator used, the cookie XML is typically provided as a org.w3c.dom.Element	
or Object	
. The following code snippet shows a classification cookie for the context classification system. The cookie XML document is created using standard Java document object model (DOM) APIs. It does not matter how the XML document object is created: loaded from a file, created from a string, loaded in from a stream, etc. This example shows the cookie XML being created from a string.	
Custom metadata can be specified during the sealing process. Custom metadata is an optional property on the SealingOptions	
. Custom metadata is added as an XML element together with a UUID value that can be used to identify the custom data when peeking the sealed content.	
A poster page is the image shown before a sealed movie is started. Oracle IRM Desktop loads the optional poster page from the custom metadata section of the public header. A poster page must be a JPEG or GIF image. The image is provided in the custom data as base 64 encoded data together with the file type.	
Sealing is the process of encrypting plaintext content and adding signed metadata to that content. This metadata includes the classification details and any custom metadata supplied during the sealing process. Sealing can also be performed by using Oracle IRM Desktop. A call to the seal requires the unsealed data in the form of a source, the MIME type of the unsealed or sealed content (either is acceptable), and the sealing options. The sealing options contain the classification details, custom metadata, and a few other attributes, such as the time the sealed file was created.	
To call the seal operation, the authenticated user needs rights that allow the seal feature for the specified classification.	
The source parameter provides the sealing operation with a stream to the unsealed data, the MIME type of the content, and the size of the unsealed content (if available). The MIME type is important because Oracle IRM Desktop uses the MIME type to determine how to render the content. The IRM Java API provides a number of sources: the main ones are listed here.	
FileSource	
The file source provides can be used to seal a file. Internally, the file source provides a FileInputStream	
stream to the sealing code. The MIME type is inferred from the file extension.	
URLSource	
The URL source provides content downloaded from a HTTP or FTP server. Internally, the URL source opens a connection using a java.net.URLConnection	
and provides a stream to downloaded content. The MIME type is inferred from the content-type header, or if that header is not present, a file extension on the URL path.	
StreamSource	
The stream source allows the programmer to supply both the input stream and MIME type. This option gives the programmer control over the type of input stream and MIME type used during sealing.	
The MIME type can be either the unsealed or sealed content MIME type. For example:	
txt/html	
or application/vnd.sealed.txt	
MIME types can be used. txt/plain	
or application/vnd.sealedmedia.softseal.html	
MIME types can be used. The sealing options contain the classification, custom metadata, and settings that affect how the content is encrypted. The classification is the most important part of the sealed content metadata. The classification contains the opaque XML document called the classification cookie. The classification cookie is the data used by Oracle IRM Desktop and the Oracle IRM J2EE application when associating rights with content. The classification cookie XML structure is defined by the classification system of the sealed content. The context classification system, for example, has an XML structure that includes a UUID to identify the context and a value called the item code which can be used to identify an individual document. An example context cookie that might appear in sealed content:	
Rights for the context classification system are expressed using this information, for example:	
John can access all documents with a context UUID of f3cd57c1-f495-48aa-b008-f23afa4d6b07	
or:	
Mary can access documents with a context UUID of f3cd57c1-f495-48aa-b008-f23afa4d6b07	
and an item code value of plan001.sdoc	
or plan002.sdoc	
The classification is mandatory and must be specified in the sealing options. The other sealing option properties are optional.	
The classification ID is a simple string value that is used to uniquely identify the classification. The contents and format of the classification ID differ depending on what classification system is used. The classification ID is used to match classification details with master classification details stored on the server. During the seal operation, if the classification labels and key set are not specified the IRM Java API looks up the master classification definition by classification ID and uses the labels and key set defined on the master classification.	
Note: The classification ID value for the context classification system should be set as the context UUID value. If this value is not set correctly, labels and key set details cannot be automatically set.	
Classification System	
A classification must specify what classification system is being used to seal the content. The classification system defines what value should be used as the classification ID, as well as what XML data should be set in the classification cookie.	
A classification system is identified with a UUID value.	
When sealed content is opened in Oracle IRM Desktop this information is sent to the Oracle IRM J2EE application. The Oracle IRM J2EE application then uses the classification system and classification cookie data to determine how rights are obtained for the authenticated user.	
Note: The IRM Java API provides the constantoracle.irm.engine.classifications.context.ContextConstants.CONTEXT_CLASSIFICATION_SYSTEM which can be used as the system parameter when creating a context}.	
Key Set	
When content is sealed, the cryptography keys used to encrypt and sign the content are specified using a key set. If there is a selection of key sets available to a classification, a key set can be explicitly set in the classification. This would, for example, allow the caller of the seal method to select a stronger encryption algorithm based on the type of content being sealed. The key set specified must be one the classification allows.	
However, the most common way to specify which key set to use during the seal process is to let the system automatically select a key set. This is done by using a null key set value. The IRM Java API will then select the most recently generated key set that this classification allows.	
Note: When sealing content to the context classification system, the most common approach is to specify null in the key set property and let the IRM Java API select the most up to date key set available for the context.	
Server	
When sealed content is opened or created, the rights to open or seal the content must be obtained from an IRM server. A classification has a URI property which must be set to the URI of an IRM server that will provide the licenses and cryptography keys needed to open or seal content for the classification.	
Value: It is important that this value be the same as the URI value configured on the IRM server as the value sealed into content. The IRM Java API and IRM server use the server URI value as an internal way of indexing and referencing information. If this value is incorrect (for example, because it is using an IP address) the IRM Java API will not authorize the operation.	
Classification Time	
Rights to access sealed content can include time constraints. One such constraint can be based on the classification time, for example Allow John to access any sealed content up to one month after the classification time or Allow Mary to access any content classified in 2008. The classification time can be set during the sealing process.	
If the classification time is not specified, it defaults to the current time by the IRM Java API.	
Note: In the 10g Oracle IRM release, the classification time was called the publication time.	
Labels	
A classification can contain a set of human readable strings called labels. The classification labels are used by Oracle IRM Desktop to show the user classification details, for example informing the user that a document is sealed to the Top Secret classification. If no labels are provided on the classification provided to the seal operation, the IRM Java API will attempt to fill in the labels from the master classification definition. To allow for multi-language support, labels have a locale property. If the classification can be translated into multiple languages, multiple labels can be provided, each one specifying the appropriate locale, for example en	
for English or zh-CN	
for traditional Chinese. Oracle IRM Desktop picks the most appropriate label based on the installed Oracle IRM Desktop language.	
Context Classification System: For the context classification system, the context labels defined on the Oracle IRM Server Management Console are the ones that are sealed into content.	
Empty labels are specified by setting an empty set of labels using null.	
Labels can also be provided during the sealing process: these override any master classification definition.	
Classification Cookie	
The classification cookie is defined by the classification XML schema as an any	
element; a XML element of any type. The structure of this XML document is defined by the classification system being used. When sealing to the context classification system the IRM Java API provides a set of objects that can be used instead of providing raw XML documents.	
When using other classification systems, the cookie XML is typically provided as a org.w3c.dom.Element	
. The following code snippet shows the same context details as the sample above, but using a raw XML. The cookie is created using the DOM to create the required XML document. It does not matter how the XML document is created; loaded from a file, created from a string, loaded in from a stream, etc. This example shows the cookie XML being created from a string.	
Custom metadata can be specified during the sealing process. Custom metadata can be provided when creating the SealingOptions	
. Custom metadata is added as an XML element together with a UUID value that can be used to identify the custom data when peeking the sealed content.	
Sealed Movie Poster Page	
A poster page is the image shown before a sealed movie is started. Oracle IRM Desktop loads the optional poster page from the custom metadata section of the public header. A poster page must be a JPEG or GIF image. The image is provided in the custom data as base 64 encoded data together with the file type.	
This section contains the following topics:	
Peeking is the process of extracting metadata from sealed content. This metadata includes the classification details and any custom metadata supplied during the sealing process. Peeking is typically used to extract information from the sealed content without decrypting the file. Peeking is used by Oracle IRM Desktop when sealed file properties are displayed.	
The sealing server supports both peeking and validated peek (where the digital signature of the sealed content is validated). In both cases the sealed content is uploaded to the sealing server, the content is examined, and the sealed content metadata is returned to the caller.	
For JAX-WS generated web service proxies, the sealed content is provided as a DataHandler	
parameter. Using a data handler allows the web service stack to stream the binary content to the server without having to load the complete file into memory.	
The data source does not have to be a file.	
peek	
A call to the peek method results in the metadata being returned as a ContentDescription	
object. This object contains the classification details, custom metadata and a few other attributes, such as the time the sealed file was created.	
It is important to enable the MTOM web service feature. This ensures the sealed content is uploaded to the server in the most optimal form. It also avoids java.lang.OutOfMemoryException	
exceptions if the uploaded file is large.	
To call the peek operation the authenticated user does not need any rights to access the sealed content.	
validatedPeek	
A call to the validatedPeek	
method results in the metadata being returned as a ContentDescription	
object in the same way as peek. If the digital signature has been tampered with, or the file is corrupt, a ContentParseFault	
exception is thrown. This exception will detail the reason for the sealed content parsing failure. A successful invocation of this operation signifies that the metadata signature has been verified.	
To call the validated peek operation, the authenticated user must have the rights to open the sealed content.	
The classification is the most important part of the sealed content metadata. The classification contains the opaque XML document called the classification cookie. The classification cookie is the data used by Oracle IRM Desktop and the Oracle IRM J2EE application when associating rights with content. The classification cookie XML structure is defined by the classification system of the sealed content. The context classification system has an XML structure that includes a UUID to identify the context and a value called the item code which can be used to identify an individual document. The following is a sample context cookie that might appear in sealed content:	
Rights for the context classification system are expressed using this information, for example:	
John can access all documents with a context UUID of f3cd57c1-f495-48aa-b008-f23afa4d6b07	
or:	
Mary can access documents with a context UUID of f3cd57c1-f495-48aa-b008-f23afa4d6b07	
and an item code value of plan001.sdoc	
or plan002.sdoc	
The classification metadata also contains the human-readable labels for the classification. There may be multiple labels if the labels have been translated into multiple languages. These labels are used to display a friendly name and description to a user, rather than showing raw computer oriented data from the classification cookie.	
The classification contains a set of human-readable strings called labels. The classification labels can be used to inform the user which classification the sealed content was sealed against.	
The classification cookie is defined in the classification XML schema as an <any>	
element. The cookie XML can be accessed from the classification object and is typically returned as a org.w3c.dom.Element	
. The following code snippet shows a context UUID being extracted from a context classification cookie using the DOM.	
If the file is large there is no need to send the complete file to the sealing server. Peeking only requires the portion of the file that contains the metadata. This portion of the file is dynamic in size, but limited to 1MB in size. A pessimistic view would be to send the first 1MB of the file contents (or the complete contents if this is less than 1MB). In reality the sealed content preamble and metadata are usually a lot smaller, so 16K to 32K is usually sufficient. If the metadata section of the sealed content sent to the sealing server is truncated, the peek	
or validatedPeek	
call will throw a ContentParseFault	
.	
Peeking is the process of extracting metadata from sealed content. This metadata includes the classification details and any custom metadata supplied during the sealing process. Peeking is typically used to extract information from the sealed content without decrypting the file. Peeking is used by Oracle IRM Desktop when sealed file properties are displayed.	
The IRM Java libraries allow peeking to be performed locally. This can be used where performance is an issue and the overhead of sending content to the sealing server is undesirable. The functionality is identical to that provided by remote peeking.	
peek	
Local peeking is performed using the SealingOperations	
interface rather than the sealing services web service. Sealed content is provided as an InputStream	
rather than a DataHandler	
.	
The result can be examined in the same manner as for remote peeking.	
This section contains the following topics:	
Resealing is the process of altering the custom metadata or editing the encrypted content. Oracle IRM Desktop allows certain formats, such as Microsoft Office, to be edited in sealed form. The process of saving edits is called resealing.	
The sealing server supports resealing to update the custom metadata but does not support updating the encrypted content of the sealed file. Content is uploaded to the sealing server, the custom metadata is updated, and the sealed content is returned to the caller.	
For JAX-WS generated web service proxies, the content is provided as a DataHandler	
parameter. Using a data handler allows the web service stack to stream the binary content to the server without having to load the complete file into memory.	
The data source does not have to be a file.	
reseal	
A call to reseal requires the sealed data (in the form of a DataHandler	
) and the custom data for the update. The following demonstrates how to reseal a sealed file using the reseal	
method adding XML-based custom data to the sealed file.	
The XML based custom data is provided as an XML element.	
Then the reseal	
operation is called to reseal the content and re-sign the metadata.	
To call the reseal	
operation, the authenticated user needs rights that allow the reseal feature to be performed for the classification of the sealed content.	
The DataHandler	
class can be used to write out the resealed content to an output stream of the programmer's choice. This example shows the resealed content being written out to a file.	
Resealing is the process of altering the custom metadata or editing the encrypted content. Oracle IRM Desktop allows certain formats, such as Microsoft Office, to be edited in sealed form. The IRM Java API allows the custom metadata to be altered. Custom data is provided as an XML element, this code does not show how the XML element is created, just how to use a XML element with custom data. The Java API for XML Code Samples show how to create and manipulate XML documents.	
Custom data entries are identified with a UUID value.	
As sealed content can contain multiple custom data entries, each one must have a unique UUID value. This value can be used when peeking the content to identify the custom data. This example uses just one custom data entry.	
Once the custom data has been created, the reseal operation can then be called to reseal the content and re-sign the metadata.	
To call the reseal operation, the authenticated user needs rights that allow the reseal feature to be performed for the classification of the sealed content.	
This section contains the following topics:	
Reclassifying sealed content is the process of altering the classification of the sealed content. Reclassification usually means re-signing and re-encrypting the content, because most classifications have a dedicated set of cryptography keys. Reclassifying is typically used when content changes sensitivity, for example when a Top Secret document becomes a Company Confidential document.	
The sealing server supports reclassifying. Content is uploaded to the sealing server, the classification is updated, and the updated sealed content is returned to the caller.	
For JAX-WS generated web service proxies, the content is provided as a DataHandler	
parameter. Using a data handler allows the web service stack to stream the binary content to the server without having to load the complete file into memory.	
The data source does not have to be a file.	
reclassify	
A call to reclassify requires the sealed data (in the form of a DataHandler	
) and the new classification details. Refer to the sealing example for details about how to specify a classification in code.	
It is important to enable the MTOM web service feature. This ensures the sealed content is uploaded to the server in the most optimal form. It also avoids java.lang.OutOfMemoryException	
exceptions if the uploaded file is large.	
To call the reclassify operation, the authenticated user needs either:	
In the context classification system, this means the user has to have a role that has export constraints set as trusted with the target context being a trusted context of the source context, or that the role has export constraints set as none.	
In the context classification system, this means the user has to have a role that has export constraints set as none.	
When using the Oracle IRM Server Management Console, the copy to and unseal features are enabled and controlled using the export constraints defined on a role.	
The DataHandler	
class can be used to write out the resealed content to an output stream of the programmer's choice. This example shows the resealed content being written out to a file.	
Reclassifying sealed content is the process of altering the classification of the sealed content. Reclassification usually means re-signing and re-encrypting the content, because most classifications have a dedicated set of cryptography keys. Reclassifying is typically used when content changes sensitivity, for example when a Top Secret document becomes a Company Cconfidential document. A call to reclassify requires the sealed data in the form of a InputStream	
, and the new classification details. The resultant reclassified sealed content is written to the provided OutputStream	
.	
Refer to the sealing example for details about how to create a classification in code.	
To call the reclassify operation, the authenticated user needs either:	
Unseal and Copy To Features: When using the Oracle IRM Server Management Console, the Copy To and Unseal features are enabled and controlled using the export constraints defined on a role.	
This section contains the following topics:	
Unsealing is the process of converting sealed content back into the original, plaintext content. Unsealing is typically used to convert sealed content that is no longer sensitive back into normal content. Unsealing is an operation that is supported by both Oracle IRM Desktop and the sealing server.	
The sealing server supports unsealing. The sealed content is uploaded to the sealing server, the content is decrypted, and the unsealed content is returned to the caller.	
For JAX-WS generated web service proxies, the sealed content is provided as a DataHandler	
parameter. Using a data handler allows the web service stack to stream the binary content to the server without having to load the complete file into memory.	
The data source does not have to be a file.	
unseal	
A call to the unseal method results in the unsealed data being returned as a javax.activation.DataHandler	
. This object can be used to stream the unsealed data into a file or buffer.	
It is important to enable the MTOM web service feature. This ensures the sealed content is uploaded to the server in the most optimal form. It also avoids java.lang.OutOfMemoryException	
exceptions if the uploaded file is large.	
To call the unseal operation, the authenticated user needs rights that allow the unseal feature to be performed for the classification of the sealed content.	
When using the Oracle IRM Server Management Console, the unseal feature is enabled when a role has export constraints of none.	
The DataHandler	
class can be used to write out the unsealed content to an output stream of the programmer's choice. This example shows the unsealed content being written out to a file.	
Unsealing is the process of converting sealed content back into the original, plaintext content. Unsealing is typically used to convert sealed content that is no longer sensitive back into normal content. Unsealing is an operation that is supported by both Oracle IRM Desktop and the sealing server. The IRM Java API unseal operation takes an input stream to the sealed data and writes the plain text results to an output stream. The sealed content metadata is also returned from this operation. In the following example, a FileInputStream	
and FileOutputStream	
are used to read and write the sealed and unsealed data.	
The results of the unseal operation can be used to determine the classification of the sealed content.	
Or to examine the custom data embedded in the sealed content. .	
To call the unseal operation, the authenticated user needs rights that allow the unseal feature to be performed for the classification of the sealed content.	
Unseal Feature: When using the Oracle IRM Server Management Console, the unseal feature is enabled when a role has export constraints ofnone .	
This section contains the following topics:	
Access to context-classified documents is governed by rights, such as the right to open a document, the right to print it, and the right to copy information from it and paste it into another document. The rights are defined and assigned centrally by administrators, who group combinations of rights and end user identities into one or more "contexts".	
A domain is the top level entity that contains document roles and context templates.	
DomainRef	
Domains are identified by a UUID value. Web services operations that need to identify a domain use the DomainRef	
type. A DomainRef	
contains only the information required to uniquely identify a domain; the UUID. The other properties of a domain, such as its labels, are not part of a DomainRef	
type.	
An example method that uses a DomainRef	
type is the delete domain	
method:	
Domain	
A Domain	
contains all the information about a domain, including the UUID. For operations that require or return all the domain properties, a Domain	
is used.	
An example that uses the Domain	
type is the list domains	
method:	
Context templates are identified by a UUID value within the owning domain. Web services operations that need to identify a template use the ContextTemplateRef	
type. A ContextTemplateRef	
contains the information required to uniquely identify a template: the UUID and the owning domain. The other properties of a template, such as its labels and roles, are not part of a ContextTemplateRef	
type.	
ContextTemplateRef	
It is valid for two templates in different domains to have the same UUID value. The templates that are automatically installed when the first domain is created all have fixed UUID values. For example, the standard template has the UUID value 474dbb07-718b-4c4e-8f43-d2b723469573	
. Using these predefined UUID values means there is no need to look up a context template UUID before creating a ContextTemplateRef type.	
Contexts are identified by a UUID value. Web services operations that need to identify a context use the ContextInstanceRef	
type. A ContextInstanceRef	
contains the information required to uniquely identify a context, the UUID. The other properties of a context, such as labels and item exclusions, are not part of a ContextInstanceRef	
type.	
A document role defines a set of criteria that specify how sealed content can be used. A document role is assigned to a user or group, allowing the user to use sealed content in the way the role defines.	
DocumentRoleRef	
Document roles are identified by a UUID value within the owning domain. Web services operations that need to identify a role use the DocumentRoleRef	
type. A DocumentRoleRef	
contains the information required to uniquely identify a role; the UUID and the owning domain. The other properties of a role, such as its labels and features, are not part of a DocumentRoleRef	
type.	
It is valid for two roles in different domains to have the same UUID value. The roles that are automatically installed when the first domain is created all have fixed UUID values. For example, the contributor role has the UUID value a456140d-24dc-4cc2-8f23-1a72fb6c2d81	
. Using these predefined UUID values means there is no need to look up a context template UUID before creating a ContextTemplateRef type.	
Rights are identified by a UUID value. Web services operations that need to identify a right use the DocumentRightRef	
type. A DocumentRightRef	
contains the information required to uniquely identify a right, the UUID. The other properties of a right, such as assigned account and role, are not part of a DocumentRightRef	
type.	
This section contains the following topics:	
The context operations web service provides operations that a domain manager, inspector or context manager would typically perform. This includes creating contexts, altering context labels, and adding or removing context managers.	
The document right operations web service provides operations that allow a context manager to manage the rights users have within a context. Document right operations include assigning rights, checking in rights, and listing rights.	
A document role can be assigned, within a context, to one or more accounts. This can be performed by users that have the Context Manager role within the context. An account can only have one role assigned within a context.	
A context is created from a context template. The template defines the structure of the context and what roles are available to assign to users and groups. Only active templates can be used when creating contexts. Changes to the template after the context is created are dynamically picked up in the context. For example, adding a role to the template makes the role available to the context.	
createContextFromTemplate	
When creating a context, the relevant context template must be identified using a ContextTemplateRef type. This type includes the template UUID and owning domain. The domain created on installation has a fixed UUID value of dcfef562-971d-401b-81f9-86700573bf8b	
. If other domains are used, the domain UUID can be found by using operations such as listDomains	
.	
The standard templates installed in the installation domain also have fixed UUID values.	
474dbb07-718b-4c4e-8f43-d2b723469573	
for the standard context template. 1a05b98d-b415-4c38-9b7a-9d0ad19ee0e9	
for the export context template. If other templates are used, the template UUID can be obtained using the listActiveTemplates	
operations.	
Once the template has been identified, a context can be created. The authenticated user will automatically be made the context manager.	
The context journal contains records of actions performed on sealed content of the context classification system. This information is available to administrators in the Reports tab of the Oracle IRM Server Management Console. The context journal can be searched for activity on content for the specified accounts and/or document items. This search is restricted to the contexts available to the caller. That is, the caller must be a context manager or inspector.	
searchJournal	
Searching for journal entries may produce a large result set. For this reason a page range (starting from 1) must be provided.	
A time range to filter the search is also required. The following example is a time range for the last twenty-four hours.	
If no sort order is specified, the results are sorted by time.	
A document role can be assigned to a user or group. Document roles are identified with a UUID and a domain. The domain created on installation has a fixed UUID value of dcfef562-971d-401b-81f9-86700573bf8b	
. If other domains are used, the domain UUID can be found by using operations such as listDomains	
.	
The standard roles installed in the installation domain also have fixed UUID values.	
a456140d-24dc-4cc2-8f23-1a72fb6c2d81	
for the contributor role. 6dbed6c1-6a45-4da1-9aff-c8f1b4d856c4	
for the contributor with export role. b68278a1-70d1-4f24-aae2-2803729a6674	
for the item reader role. 48c2e03c-9cd3-4bb1-91db-3eaa4564adc2	
for the reader role. 37646b77-aee3-418c-8664-4101fa7b44df	
for the reader with export role. e70daaa1-0c27-4f8e-aa8b-d8dfc34c4579	
for the reader no print role. 7d25eda0-2641-445f-9c94-45798165b262	
for the reviewer role. If other roles are used, the role UUID can be obtained using the listDocumentRoles	
operations.	
The context is also identified with a UUID. If the context was created using the web services, the UUID value may already be known. If not, use the listContexts	
operations to identity the context required.	
The user or group can be identified by GUID or name. See "Working with Users and Groups" for more details.	
Once the context, role, and accounts have been identified, the role can be assigned.	
If the role is item locked, items can also be specified. The item code values may be well known or can be obtained by peeking sealed content. See "Peeking".	
A context manager or inspector can list the rights for the contexts that they are allowed to see. Rights listed for a user or group include rights obtained indirectly through group membership.	
Or for a group:	
A context manager can remove roles that have already been assigned within the context to an account. This is performed using the unassignRights	
method. The assignment of a document role to an account is stored as a document right identified by a UUID.	
The UUID for the relevant right can be obtained by using methods such as listRightsByAccount	
or listRightsByContext	
.	
AccountRef	
TypeThis section contains the following topics:	
AccountRef	
Type AccountRef	
Using a GUID AccountRef	
Using a User Name AccountRef	
Using a Group Name AccountRef	
TypeThe AccountRef	
type contains all the information needed to identify a user or group. Typically this type contains a GUID value, but also allows the user or group name to be used. The following code snippets show how to create an AccountRef	
using a GUID or a user name or a group name.	
AccountRef	
Using a GUIDThe GUID format may differ depending on the identity store used.	
AccountRef	
Using a User NameThe user name must be URL encoded. For example, 'John Smith' could be encoded as 'John+Smith'.	
AccountRef	
Using a Group NameThe group name must be URL encoded.	
The IRM web services typically returns user and group GUID values rather than user and group names. Rather than having to perform direct lookups of user and group names against the identity store, the Oracle IRM web services includes a user and group lookup mechanism. The web service method takes a list of GUID values (in the form of AccountRef	
types) and returns the user or group name. The following code example shows the domain administrator user names being looked up with the listAccountDetails	
web service operation.	
To call this method the authenticated user must have the domain administrator, domain manager, inspector, or context manager roles in any domain.	
The following table lists all the web services available from a deployed Oracle IRM J2EE application.	
Name	Description
---	---
Sealing Services	Provides sealed content processing operations such as sealing, unsealing and reclassification.
Desktop Services	Provides license management operations for the sealing server.
Context Operations	Provides operations for creating, editing and deleting contexts, context managers and inspectors.
Context Template Operations	Provides operations for creating, editing and deleting context templates.
Document Right Operations	Provides operations for assigning roles, unassigning rights and altering item restrictions.
Document Role Operations	Provides operations for creating, editing and deleting document roles.
Domain Operatons	Operations for creating, altering and deleting domains.
This section contains the following topics:	
The following section provides sample code that can be used with JAX-WS web service proxies generated using JDeveloper 11g.	
The JDeveloper 11g sample code comes packaged with a pre-generated set of web service proxy code so there is no need to generate the web service proxy code. The code samples in this document do not show this generated code, but assume this code is present in a package called generated	
. The easiest way to use the samples is to import them directly into a new or existing JDeveloper 11g project using the File > Import > Java Source menu.	
Note: Before running each sample, check the code to see what command line arguments the sample requires.	
If the web service proxy code needs to be generated by hand, these are the steps to follow within JDeveloper 11g:	
For example, http://irm.example.com/irm_sealing/sealing_services?wsdl	
There is no need to copy the WSDL into the project.	
The following code demonstrates how to create a domain. The sample code uses a fixed domain UUID so that all sample code can work against a known domain. A new domain would typically be given a new random UUID value. The authenticated user becomes the domain administrator. When a domain is created, a set of human-readable labels can be given to the domain for the target language audience.	
Example 6-1	
The following code demonstrates how to create a role. The sample code uses a fixed role UUID so that all sample code can work with a known role. A new role would typically be given a new random UUID value. The sample role is set up to allow all the content operations required by the sample code. When assigned to a user, this role allows sealing, unsealing, resealing and (validated) peeking. This is done by a providing an appropriate set of features and export constraints.	
Example 6-2	
The following code demonstrates how to create a context template. The sample code uses a fixed template UUID so that all sample code can work with a known template. A new template would typically be given a new random UUID value. The sample template has one role and is active. This template is used to create contexts in the create context code sample.	
Example 6-3	
The following code demonstrates how to create a context from a context template. The sample code uses a fixed context template reference (information that identifies the template) and provides a fixed UUID value for the new context. The authenticated user becomes the context manager. The context is created with two labels, English and German. This context is used in the sample code that assigns a role, as well as the sealing, unsealing, resealing, reclassification and peeking code samples.	
Example 6-4	
The following code demonstrates how to assign a role to a user. To assign a role, the role, context and user or group must be specified. If the role is restricted to individual items then items can also be specified as in the assign role method.	
Example 6-5	
The following code demonstrates how to list the rights that have been assigned to a user or group. The code displays the role label and the context UUID from each right.	
Example 6-6	
The following code demonstrates how to alter a role assignment using the reassignRole method over web services. The sample code adds an item code exclusion to a role assignment. Typically this method is used to alter the role, but as the sample code only has one demonstration role it shows how to alter the item restrictions.	
Example 6-7	
The following code demonstrates how to seal a file. The content to seal can be provided as any type of InputStream	
; this example uses a file input stream. The sample writes the resulting stream out as a file with a sealed file name inferred from the unsealed file name. The file is sealed using the context classification system, specifying a context with a known UUID value and an item code.	
Example 6-8	
The following code demonstrates how to extract the metadata from sealed content using the peek method. This method sends the sealed content to the sealing server, the server extracts the metadata and returns this information to the caller. The sealed content can be provided as any type of InputStream	
; this example uses a file input stream. Once peeked the file metadata, which includes the Classification details, can be examined. The sample code prints out the human readable classification details (the labels) that were sealed into the content.	
Example 6-9	
The following code demonstrates how to extract the metadata from sealed content using the validatedPeek method. This method sends the sealed content to the sealing server, the server extracts the metadata and returns this information to the caller. The sealed content can be provided as any type of InputStream	
; this example uses a file input stream. Once peeked the file metadata, which includes the Classification details, can be examined. The sample code prints out the human readable classification details (the labels) that were sealed into the content.	
Example 6-10	
The following code demonstrates how to alter the item locks or exclusions associated with a right. The sample code replaces one item code with two item codes.	
Example 6-11	
The following code demonstrates how to unassign rights that have been assigned to a user. The sample first lists all the rights directly assigned to the user and unassigns them. To unassign the right the authenticated user must be a context manager for the related context.	
Example 6-12	
The following code demonstrates how to reclassify a sealed file using the reclassify method. The content to reclassify can be provided as any type of InputStream	
; this example uses a file input stream. The sample changes the labels of the classification and then writes the resulting stream out as a file.	
Example 6-13	
The following code demonstrates how to reseal a sealed file using the reseal method. The content to reseal can be provided as any type of InputStream	
; this example uses a file input stream. The sample adds XML-based custom data to the sealed file.	
Example 6-14	
The following code demonstrates how to unseal a sealed file using the unseal method. The content to unseal can be provided as any type of InputStream	
; this example uses a file input stream. The sample writes the resulting unsealed stream out to a file.	
Example 6-15	
The following code demonstrates how to list classification details from a sealing server using the listClassifications method. The sample code displays the list of Classifications details available to the authenticated user.	
Example 6-16	
The following code demonstrates how to search the content usage for context classified content. The sample code searches for all entries for the last twenty-four hours and displays a short summary for the first one hundred entries.	
Example 6-17	
The following code demonstrates how to check in licenses currently checked out to a sealing server. When the sealing server processes content it will usually check out licenses for the authenticated user. These licenses can no longer be used from other locations (for example, the Oracle IRM Desktop) until they expire or are manually checked in.	
Example 6-18	
The following code demonstrates how to delete a domain. The sample code uses a fixed domain UUID for the new domain so that all sample code can work with a known domain. A new domain would typically be given a new random UUID value. The authenticated user must be a domain administrator. When a domain is deleted all the associated roles, templates and contexts are also deleted.	
Example 6-19	
This section contains the following topics:	
The following section provides example code that can be used with IRM provided JAX-WS web service proxies.	
The code samples in this section require the following jar files to be added to the class path. These jar files contain the web service proxy code and objects equivalent to those that would be generated with a web service proxy generated.	
irm-common.jar	
irm-engine.jar	
irm-ws.jar	
These jar files also provide the WSDL and XSD files required to use the web service proxies.	
Note: These jar files are not required if other WSDL web service proxy code generators are used (such as the JDeveloper web service proxy generator).	
The Oracle IRM provided web service proxies are functionality identical to the ones generated by JDeveloper (or any other web service proxy generator). However there are a few code differences:	
java.util.UUID	
rather than java.lang.String	
. java.util.Date	
rather than javax.xml.datatype.XMLGregorianCalendar	
. ContextCookie	
object rather than an XML document. setCookie	
rather than setAny	
. The following code demonstrates how to create a domain. The sample code uses a fixed domain UUID so that all sample code can work against a known domain. A new domain would typically be given a new random UUID value. The authenticated user becomes the domain administrator. When a domain is created, a set of human-readable labels can be given to the domain for the target language audience.	
Example 6-20	
The following code demonstrates how to create a role. The sample code uses a fixed role UUID so that all sample code can work with a known role. A new role would typically be given a new random UUID value. The sample role is set up to allow all the content operations required by the sample code. When assigned to a user, this role allows sealing, unsealing, resealing and (validated) peeking. This is done by a providing an appropriate set of features and export constraints.	
Example 6-21	
The following code demonstrates how to create a context template. The sample code uses a fixed template UUID so that all sample code can work with a known template. A new template would typically be given a new random UUID value. The sample template has one role and is active. This template is used to create contexts in the create context code sample.	
Example 6-22	
The following code demonstrates how to create a context from a context template. The sample code uses a fixed context template reference (information that identifies the template) and provides a fixed UUID value for the new context. The authenticated user becomes the context manager. The context is created with two labels, English and German. This context is used in the sample code that assigns a role, as well as the sealing, unsealing, resealing, reclassification and peeking code samples.	
Example 6-23	
The following code demonstrates how to assign a role to a user. To assign a role, the role, context and user or group must be specified. If the role is restricted to individual items then items can also be specified as in the assign role method.	
Example 6-24	
The following code demonstrates how to list the rights that have been assigned to a user or group. The code displays the role label and the context UUID from each right.	
Example 6-25	
The following code demonstrates how to alter a role assignment using the reassignRole method over web services. The sample code adds an item code exclusion to a role assignment. Typically this method is used to alter the role, but as the sample code only has one demonstration role it shows how to alter the item restrictions.	
Example 6-26	
The following code demonstrates how to seal a file. The content to seal can be provided as any type of InputStream	
; this example uses a file input stream. The sample writes the resulting stream out as a file with a sealed file name inferred from the unsealed file name. The file is sealed using the context classification system, specifying a context with a known UUID value and an item code.	
Example 6-27	
The following code demonstrates how to extract the metadata from sealed content using the peek method. This method sends the sealed content to the sealing server, the server extracts the metadata and returns this information to the caller. The sealed content can be provided as any type of InputStream	
; this example uses a file input stream. Once peeked the file metadata, which includes the Classification details, can be examined. The sample code prints out the human readable classification details (the labels) that were sealed into the content.	
Example 6-28	
The following code demonstrates how to extract the metadata from sealed content using the validatedPeek method. This method sends the sealed content to the sealing server, the server extracts the metadata and returns this information to the caller. The sealed content can be provided as any type of InputStream	
; this example uses a file input stream. Once peeked the file metadata, which includes the Classification details, can be examined. The sample code prints out the human readable classification details (the labels) that were sealed into the content.	
Example 6-29	
The following code demonstrates how to alter the item locks or exclusions associated with a right. The sample code replaces one item code with two item codes.	
Example 6-30	
The following code demonstrates how to unassign rights that have been assigned to a user. The sample first lists all the rights directly assigned to the user and unassigns them. To unassign the right the authenticated user must be a context manager for the related context.	
Example 6-31	
The following code demonstrates how to reclassify a sealed file using the reclassify method. The content to reclassify can be provided as any type of InputStream	
; this example uses a file input stream. The sample changes the labels of the classification and then writes the resulting stream out as a file.	
Example 6-32	
The following code demonstrates how to reseal a sealed file using the reseal method. The content to reseal can be provided as any type of InputStream	
; this example uses a file input stream. The sample adds XML-based custom data to the sealed file.	
Example 6-33	
The following code demonstrates how to unseal a sealed file using the unseal method. The content to unseal can be provided as any type of InputStream	
; this example uses a file input stream. The sample writes the resulting unsealed stream out to a file.	
Example 6-34	
The following code demonstrates how to list classification details from a sealing server using the listClassifications method. The sample code displays the list of Classifications details available to the authenticated user.	
Example 6-35	
The following code demonstrates how to search the content usage for context classified content. The sample code searches for all entries for the last twenty-four hours and displays a short summary for the first one hundred entries.	
Example 6-36	
The following code demonstrates how to check in licenses currently checked out to a sealing server. When the sealing server processes content it will usually check out licenses for the authenticated user. These licenses can no longer be used from other locations (for example, the Oracle IRM Desktop) until they expire or are manually checked in.	
Example 6-37	
The following code demonstrates how to delete a domain. The sample code uses a fixed domain UUID for the new domain so that all sample code can work with a known domain. A new domain would typically be given a new random UUID value. The authenticated user must be a domain administrator. When a domain is deleted all the associated roles, templates and contexts are also deleted.	
Example 6-38	
These code samples require the following jar file to be added to the class path:	
Static Imports	
The examples in this chapter use static imports. Static methods in classes have been made to appear as global methods by using import static	
. For example:	
Local Sealing Operations	
Certain operations on sealed content can be performed locally within a J2SE or J2EE application. These local versions are provided as an alternative to sending the content to a server to be processed.	
Currently the following operations are supported:	
The following code demonstrates how to seal a file using the seal	
method. The content to seal can be provided as any type of java.io.InputStream	
; this example uses a file input stream. Similarly, the sealed content can be written out to any output stream; this example writes the sealed content as a file whose file name is derived from the unsealed file name. When a file is sealed, a Classification	
must be specified. In this sample the file is sealed using the context classification system, specifying a context with a known UUID value and a fixed item code value.	
Example 7-1	
The following code demonstrates how to extract the metadata from sealed content using the peek	
method. The sealed content can be provided as any type of java.io.InputStream	
; this example uses a file input stream. Once peeked, the file metadata, which includes the Classification	
details, can be examined. The sample code prints out the human-readable classification details (the labels) that were sealed into the content.	
Th peek	
method does not attempt to check the public header against its declared signature. If the metadata has been altered post-sealing, this method will not throw an exception.	
Example 7-2	
The following code demonstrates how to extract the metadata from sealed content using the validatedPeek	
method. Once peeked, the file metadata, which includes the Classification	
details, can be examined. The sample code prints out the human readable classification details (the labels) that were sealed into the content.	
The validatedPeek	
method attempts to check the public header against its declared signature. If the public header metadata has been altered post-sealing, this method will throw an exception.	
Example 7-3	
The following code demonstrates how to reclassify a sealed file using the reclassify	
method. The content to reclassify can be provided as any type of java.io.InputStream	
; this example uses a file input stream. The sample code changes the labels of the classification and then writes the resulting reclassified stream out as a file.	
Example 7-4	
The following code demonstrates how to reseal a sealed file using the reseal	
method. This sample adds XML-based custom data to the sealed file.	
Example 7-5	
The following code demonstrates how to unseal a sealed file using the unseal	
method. The content to unseal can be provided as any type of java.io.InputStream; this example uses a file input stream. The sample code writes the resulting stream out to a file.	
Example 7-6	
This section describes how to use Oracle IRM with your own system for generating online status pages. It does not describe how to write (code, program) such a system, only how to integrate your system with Oracle IRM.	
Important: It is not possible to customize any of the status pages supplied with or generated by Oracle IRM. If you want to use status pages that differ from the Oracle IRM status pages, you must generate your own.	
This section contains the following topics:	
Oracle IRM displays status pages to users whenever they are denied access to sealed content. This may be because they do not have the correct rights to view the content, or because their rights have expired and could not be refreshed.	
Status pages are HTML pages displayed by Oracle IRM Desktop (the Oracle IRM client application) in a dialog containing an embedded instance of Microsoft Internet Explorer. There are online and offline status pages:	
Note: Only the online status pages can be replaced with a custom system (that is, a system that generates your own status pages).	
If a client computer is not connected to the network, then Oracle IRM Desktop will display an offline page. If the computer is connected to the network, then Oracle IRM Desktop will try to display an online page, but if that fails to load it will fall back to displaying an offline page.	
When Oracle IRM Desktop wants to show an online status page, it sends an XML document to a status page hosted on the web server where Oracle IRM Server resides.	
Note: Oracle IRM Desktop sends the XML document using the HTTP POST method, but this guide additionally describes how to use the HTTP GET method.	
The standard response of the server is to render an appropriate status page using the XML data. For example, if the user has no licenses, the status page will show a message such as "No licenses available for Top Secret context", using the XML to determine what content was being opened.	
If you generate custom online status pages, Oracle IRM Server must be made to redirect requests to those pages. A configuration setting is provided for this.	
The following is a high-level overview of the process for setting up your own online status pages with Oracle IRM:	
Your system can acquire Oracle IRM status information (that is, the status information known to Oracle IRM Desktop) using either of two HTTP methods: HTTP POST or HTTP GET. Notes to help developers using these methods are included under "Acquiring Oracle IRM Status Information".	
This section describes how your system can acquire Oracle IRM status information using either of two HTTP methods: HTTP POST or HTTP GET.	
The developer will receive a form with an input field called desktop.state	
. This input will be the XML document that Oracle IRM Desktop posted to the web server where Oracle IRM Server resides. The XML document can be parsed by the custom online status page and appropriate page content built.	
Note: The content of the XML document is described in the JavaDoc for DesktopState, in the Oracle IRM Server Java API Reference.	
The HTTP POST method sends all of the available Oracle IRM state information as a form to the configured URL. The advantage is that all of the Oracle IRM state information is available without having to consider the size of the URL. JavaScript must be available on the client computer.	
The page parameter is passed as part of the URL. So:	
http://some.example.com/status	
will result in a post to:	
http://some.example.com/status?page=LICENSE_EXPIRED	
The Oracle IRM state information is provided as XML, with the relevant information picked out by the developer of the custom online status page. The page	
parameter is still sent as part of the URL query string, because this is how it is received from Oracle IRM Desktop.	
The developer will need to choose which parameters are needed to build an appropriate status page for the user. The page will then need to be developed and a URI with the required parameters configured on the web server where Oracle IRM Server resides.	
Note: The parameters that are available are all content attributes and the built-in parameters are listed in the JavaDoc forStatusPageOperations , in the Oracle IRM Server Java API Reference. The JavaDoc entry for the populateRedirectionURI method of StatusPageOperations contains details of how the URI is populated.	
When using the HTTP GET method, all of the state information from Oracle IRM Desktop must be encoded in the query string of the URL that is to serve the custom page. To avoid overly long query strings containing information that is not required by the custom page, only the configured URL acts as a template for the URL that is used.	
For example, consider a status page that is concerned only with the type of status page requested and the classification name. If the page is to be served by a page at http://some.example.com/statusPage	
then the URL could be configured as below:	
When the query is for a classification called 'Top Secret' and where a license has expired, the request would be populated as below:	
The parameters can be chosen from a list of built-in parameters, and from all of the content attributes supported by the server. In the above example, page	
is a built-in parameter and irm-classification-name	
is a content attribute.	
Note: You can design the query string to contain other parameters. Parameters that have already been populated by Oracle IRM and parameters not recognized by Oracle IRM will be left untouched.The maximum size of URL that can be processed by Microsoft Internet Explorer is 2048 characters.	
A server-wide setting affects all status page requests relating to the Context classification system. Custom classification systems (if any), and the built-in Oracle IRM test content page system, are not affected by the setting.	
Configuration consists of choosing between the HTTP GET and HTTP POST methods, and entering the URL of the server hosting the custom online status pages.	
Configuration can be made using either of two tools:	
This section contains the following topics:	
Table 8-1 and Table 8-2 contain the built-in parameters that can be used with the HTTP GET method.	
Table 8-1 Built-in Parameters (A)	
Parameter	Description
---	---
application.container	The container application can be considered the application hosting the desktop logic, such as a browser or word processor.
application.name	The application name can be used to identify the application used to access the sealed content.
desktop.operating.system	This value can be used to determine the operating system that is hosting the desktop logic.
desktop.uuid	The desktop UUID is used to identify a particular desktop independently of the product version number.
desktop.version	The desktop version identifies the product version of the desktop used to access the sealed content.
page	The status page type provided by the desktop web site. See Table 8-3, "Status Page Types".
Table 8-2 Built-in Parameters (B)	
Parameter	Name
---	---
irm-time	Current Time
irm-locale	Desktop Locale
irm-location	Content Location
irm-mime	Sealed MIME Type
irm-extension	Sealed File Extension
irm-account-uuid	Account UUID
irm-account-name	User Name
irm-creation-time	Creation Time
irm-edit-time	Edit Time
irm-schema-version	Schema Version
irm-classification-name	Sealed To
irm-classification-description	Description
irm-classification-keyset	Key Set UUID
irm-classification-system	Classification System
irm-classification-time	Classification Time
irm-classification-url	Server Address
irm-host	Desktop Host Name
irm-context-uuid	Context UUID
irm-context-itemcode-value	Item Code Value
irm-context-itemcode-time	Item Code Time Stamp
Table 8-3 contains the status page types for use with the page	
built-in parameter in Table 8-1.	
When Oracle IRM Desktop requests a status page, it will set the appropriate status using a query parameter. For example, if the user is using content, but the license they are using expired, Oracle IRM Desktop will request a status page with a query parameter set as page=LICENSE_EXPIRED	
. Table 8-3 lists all the status page types that Oracle IRM Desktop can request.	
Table 8-3 Status Page Types	
Status	Description
---	---
DIAGNOSTICS	When the self-test action is performed within the desktop, one of the steps is to contact the desktop web site. In this scenario, the desktop will ask for the diagnostic status page.
INFORMATION	When the user clicks on the 'Information' button or link, the information status page is requested. The information status page should provide details about the content's classification.
GENERAL_ERROR	A general desktop error has occurred.
UNKNOWN	Unknown status page.
PRIVACY	Privacy statement status page.
LICENSE_EXPIRED	When a user is using sealed content, their license-based rights may expired. If the license cannot be refreshed from the server, this status page will be displayed.
LICENSES_CHECKED_IN	A license is applicable, but in use on another device. This status page will display details about the other device or devices.
LICENSE_CHANGED	When a user is using sealed content, their license-based rights may be refreshed from the server. If these rights change, for example allowing printing, this status page will be displayed.
NO_LICENSES	The user has no rights to access the content.
NO_LICENSES_OFFLINE	The user has no rights stored off-line to access the content. The server cannot be contacted to see if there are licenses available.
UPGRADE	The server has prompted the desktop to perform a mandatory upgrade.
REPUDIATED	The server has denied access to the desktop.
SERVER_CONNECTION	The server cannot be contacted.
AUTHENTICATION_ANONYMOUS	The user has accessed content but chosen to cancel the authentication process.
AUTHENTICATION_FAILED	The user has accessed content, attempted authentication, but failed to authenticate (for example, a bad password).
UNKNOWN_CLASSIFICATION	The server does not know about the classification of the content. This would typically occur if the classification has been removed from the server after creating sealed content.
UNSUPPORTED_FORMAT	The desktop cannot render the content format. For example, occurs when the application that normally renders the content has not been installed.
OFFICE_PASSWORD_PROTECTED	The desktop attempts to protect the content with password protection. If this password protection cannot be applied, this status page is displayed.
OFFICE_PLUGIN_NOT_TRUSTED	A third party plug-in is not trusted and is preventing the sealed content from being accessed.
MOVIE_BEFORE_MOVIE	This status page is displayed before a sealed movie has been started.
MOVIE_AFTER_MOVIE	This status page is displayed after a sealed movie has been shown.
The following special sinfo:	
URL elements are available for use in links in custom online status pages. For example, Control Panel	
will open the Oracle IRM Desktop Control Panel dialog.	
Table 8-4 sinfo URL Elements	
URL element	Description
---	---
sinfo:reason	Displays a message box containing further information. Only relevant to a General Error or Rights in Use status page.
sinfo:reload	Causes Oracle IRM Desktop to open the sealed file again.
sinfo:panel	Opens the Oracle IRM Desktop Control Panel dialog.
sinfo:test	Opens the Oracle IRM Server Connection Test dialog.
sinfo:help	Opens the Oracle IRM Desktop help.
sinfo:systeminfo	Opens the Oracle IRM Desktop Support Information dialog.
sinfo:about	Opens the Oracle IRM Desktop About dialog.
The following XML document shows an example Oracle IRM Desktop state in XML form:	
Example 8-1 Desktop State in XML Form	
The following table explains the main terms used in this Developer's Guide.	
Table 9-1 Terminology	
Term	Description
---	---
Classification System	A classification system describes a model for classifiying content. A classification system defines what metadata is sealed into content, how that metadata is used to grant access to that content and how cryptography is used with that content.
Classification	The set of metadata that tells the Oracle IRM Desktop what server to contact for rights, what cryptography keys to use to encrypt/decrypt/sign/verify the content, and the metadata used to associate rights with content (the classification cookie).
Classification Cookie	The set of metadata added to sealed content that is used by the Oracle IRM Desktop and IRM J2EE application to associate rights with content. The cookie is an opaque string of XML whose structure is defined by the classification system.
Public Header	The complete set of metadata added to sealed content, this includes the classification and custom data.
Custom Data	The set of metadata added to sealed content by third parties. This metadata is also signed and tamperproof, but the contents are ignored by the Oracle IRM products.
Sealed Content	Content that has been encrypted using Oracle IRM. Sealed content also contains signed metadata that is used by Oracle IRM.
Peeking	Peeking is the process of extracting the classification and custom data metadata from sealed content.
Sealing	Sealing is the process of taking content, adding metadata, signing this metadata and encrypting the content. The result of this transformation is called sealed content.
Unsealing	Unsealing is the process of taking sealed content and extracting the original, plaintext content. Unsealing can be considered the reverse process of sealing.
Resealing	Resealing is the process of altering the custom metadata or editing the encrypted content.
Reclassification	Reclassifying sealed content is the process of altering the classification of the sealed content. Reclassificating is typically used when content changes sensitivity, for example when a top secret document becomes a company confidential document.
Sealing Server	The sealing server is a J2EE application that allows sealed content to be processed remotely.
Context Journal	The context journal contains records of actions performed on context classified sealed content. The Oracle IRM Desktop maintains an audit of activity and uploads this to the IRM J2EE application. Context related activity is then stored in the context journal.
The following feature codes can be used with the Feature	
type when creating or editing a DocumentRole	
.	
Table 9-2 Feature codes	
Feature	Description
---	---
Open	Open and read a sealed file
Seal	Create a new sealed file or seal an existing file
Reseal	Save changes to a sealed file
Search	Search sealed files
Copy	Copy the contents of a sealed file to the unprotected clipboard
Edit	Edit the contents of the sealed file and control change tracking
Print the contents of a sealed file	oracle.irm.generic.Print
Print To File | Print the contents of a sealed file to a file or virtual print device, such as Acrobat | oracle.irm.generic.PrintToFile |
Screen Capture | Capture the contents of a sealed file with 'Print Screen' | oracle.irm.generic.ScreenCapture |
Set Item | Users are allowed to provide item codes when creating or saving sealed content. Without this option, sealed content is allocated an automatic item code | oracle.irm.generic.SetItem |
Accessibility | Relaxes protection in sealed content to enable accessibility features to function fully | oracle.irm.generic.Accessibility |
Copy To | Copy the contents of a sealed file to the sealed clipboard. The documents to which the content can be copied are configured separately | oracle.irm.generic.CopyTo |
Save Unsealed | Save the contents of a sealed file into an unprotected file | oracle.irm.generic.SaveUnsealed |
Annotate | Add comments to sealed Word and Excel documents | oracle.irm.office.Annotate |
Edit Tracked | Edit the contents of the sealed file with all changes tracked | oracle.irm.office.EditTracked |
Interact | Enter data in form fields (Word) and unprotected cells (Excel) | oracle.irm.office.Interact |
Formulae | View formulae (formulas) | oracle.irm.office.excel.Formulae |
Reply | Edit the contents of sealed email and control change tracking | oracle.irm.office.email.Reply |
Reply Tracked | Edit the contents of the sealed email with all changes tracked | oracle.irm.office.email.ReplyTracked |
Program | Access content programmatically via the document object model | oracle.irm.office.Program |
The following locale codes are used in Oracle IRM.
Table 9-3 Locale Codes
Locale code | Language or language group |
---|---|
ar | Arabic |
cs | Czech |
da | Danish |
de | German |
el | Greek |
en | English |
es | Spanish |
fi | Finnish |
fr | French |
hu | Hungarian |
it | Italian |
iw | Hebrew |
ja | Japanese |
ko | Korean |
nl | Netherlands/Dutch |
no | Norwegian |
pl | Polish |
pt-BR | Brazilian Portuguese |
pt | Portuguese |
ro | Romanian |
ru | Russian |
sk | Slovak |
sv | Swedish |
th | Thai |
tr | Turkish |
zh-CN | Traditional Chinese |
zh-TW | Simplified Chinese |
 Copyright © 2007, 2011, Oracle and/or its affiliates. All rights reserved. |