Developer's Guide for Oracle Adaptive Access Manager
Release 11g (11.1.1)
E15480-06
August 2011
Oracle Fusion Middleware Developer's Guide for Oracle Adaptive Access Manager, Release 11g (11.1.1)
E15480-06
Copyright © 2010, 2011, Oracle and/or its affiliates. All rights reserved.
Primary Author: Priscilla Lee
Contributors: Niranjan Ananthapadmanabha, Mandar Bhatkhande, Sree Chitturi, Josh Davis, Jordan Douglas, Philomina Dorai, Daniel Joyce, Mark Karlstrand, Wei Jie Lee, Srinivas Nagandla, Paresh Raote, Jatin Rastogi, Jim Redfield, Nandini Subramani, Elangovan Subramanian, Vidhya Subramanian, Dawn Tyler, Sachin Vanungare, Saphia Yunaeva, and Xiaobin Zheng.
This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.
The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.
If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable:
U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software License (December 2007). Oracle America, Inc., 500 Oracle Parkway, Redwood City, CA 94065.
This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.
Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.
Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.
This software or hardware and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.
The Oracle® Fusion Middleware Developer's Guide for Oracle Adaptive Access Manager provides information about Oracle Adaptive Access Manager integrations and custom development.
The Preface covers the following topics:
This guide is intended for administrators and developers who are responsible for integrating Oracle Adaptive Access Manager.
This guide assumes that you are familiar with your Web servers, Oracle Adaptive Access Manager, .NET and Java, and the product that you are integrating.
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
.
Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.
For more information, see the following documents in the Oracle Fusion Middleware 11g Release 1 (11.1.1) documentation set:
The following text conventions are used in this document:
Convention	Meaning
boldface	Boldface type indicates graphical user interface elements associated with an action, or terms defined in text or the glossary.
italic	Italic type indicates book titles, emphasis, or placeholder variables for which you supply particular values.
monospace	Monospace type indicates commands within a paragraph, URLs, code in examples, text that appears on the screen, or text that you enter.
Oracle Adaptive Access Manager provides a variety of mechanisms for integrating with custom applications and custom development.	
The Oracle Fusion Middleware Developer's Guide for Oracle Adaptive Access Manager provides information to help developers integrate and customize Oracle Adaptive Access Manager, migrate 10g native applications, and manage configuration changes in integrated deployments of Oracle Adaptive Access Manager.	
Information in this book is grouped into the following main parts to help developers quickly locate information:	
Detailed information about Oracle Adaptive Access Manager integration with Oracle Identity Manager and Oracle Access Manager is not covered in this guide. Refer to the Oracle Fusion Middleware Integration Guide for Oracle Access Manager for in-depth conceptual and procedural information.	
Applications can integrate natively with Oracle Adaptive Access Manager using APIs. Oracle Adaptive Access Manager provides APIs to fingerprint devices, collect authentication and transaction logs, run security and business rules, challenge the user to provide correct answers to pre-registered questions, and generate authentication pads such as KeyPad, TextPad, or QuestionPad.	
Part 1 contains information about APIs used to integrate Oracle Adaptive Access Manager.	
Native Integration Guidelines	
An introduction to integrating a client application with Oracle Adaptive Access Manager is presented in Chapter 2, "Natively Integrating with Oracle Adaptive Access Manager." In native integration, the application invokes Oracle Adaptive Access Manager directly and the application itself manages the authentication and challenge flows.	
Native and Web Services Integration	
A Web application can communicate with Oracle Adaptive Access Manager using the OAAM Native Client API or through Web Services.	
For information on these integrations, see Chapter 3, "Integrating Native .NET Applications," and Chapter 4, "Integrating Native Java Applications."	
The native integrations include APIs that are wrappers of the SOAP API published by OAAM and written in the client's native application language.	
The static linked integration is an option available for integrations using just the Java language. In this integration, there are no SOAP calls to OAAM, and, instead, the API implementation runs within the client application itself.	
For information on the static linked integration, see Chapter 4, "Integrating Native Java Applications."	
OTP Integration	
Oracle Adaptive Access Manager's Native OTP API offers a way to add another factor to a traditional user name/password authentication scheme.	
For information on OTP integration, see Chapter 5, "Native API for OTP Challenge."	
Oracle Adaptive Access Manager's Universal Installation Option (UIO) reverse proxy deployment option offers login risk-based multifactor authentication to Web applications without requiring any change to the application code.	
Part II contains configuration instructions and guidelines for the reverse proxy deployment option in the following chapter:	
Part III provides instructions and reference material for the following customizing and extending features of Oracle Adaptive Access Manager:	
Customizing Oracle Adaptive Access Manager	
Oracle Adaptive Access Manager can be customized by adding custom jars and files to the Oracle Adaptive Access Manager Extensions Shared Library.	
For information on using the extensions shared library for customization of Oracle Adaptive Access Manager, see Chapter 7, "Customizing Oracle Adaptive Access Manager."	
Customizing the OAAM Server	
The user interface provided by the OAAM Server Web application can be easily customized to achieve the look and feel of the customer applications. You can configure OAAM Server to support one or more Web application authentication and user registration flows.	
For information on the customization of OAAM Server, see Chapter 8, "Customizing the OAAM Server."	
Customizing User Flow	
OAAM supports the customization of user flow. For information, refer to Chapter 9, "Customizing User Flow."	
Virtual Authentication Devices	
Oracle Adaptive Access Manager includes unique functionality to protect end users while interacting with a protected web application. The virtual authentication devices hardens the process of entering and transmitting authentication credentials and provide end users with verification they are authenticating on the valid application.	
Each virtual authentication device (VAD) has its own unique set of security features that make it much more than a mere image on a web page.	
For information on the customization of virtual authentication devices, see Chapter 10, "Using Virtual Authentication Devices."	
One-Time Password	
Oracle Adaptive Access Manager 11g provides the framework to support One Time Password (OTP) authentication with Oracle User Messaging Service (UMS) as a method of delivery out of the box.	
For instructions to configure OTP to leverage UMS as a method of delivery, refer to Chapter 11, "Implementing OTP Anywhere."	
Configurable Actions	
Oracle Adaptive Access Manager provides Configurable Actions, a feature which allows users to create new supplementary actions that are triggered based on the result action and/or based on the risk scoring after a checkpoint execution.	
Chapter 12, "Configurable Actions" describes how to integrate a Configurable Action with the Oracle Adaptive Access Manager software.	
Device Registration	
Device registration is a feature that allows a user to flag the computer he is using as a safe device. Instructions to enable the feature is provided in Chapter 13, "Device Registration."	
Device Identification	
For most typical deployments, the out-of-the-box device identification satisfies client requirements. Out-of-the-box Device Identification uses data from browser and OAAM flash movie. The following are the typical scenarios when you could consider extending device identification:	
For information on how to extend device identification in a typical deployment refer to Chapter 14, "Extending Device Identification."	
Flash Fingerprinting	
Oracle Adaptive Access Manager uses device fingerprinting along with many other types of data to determine the risk associated with a specific access request. Outlines of calls needed to perform the flash fingerprinting are presented in Chapter 15, "Flash Fingerprinting."	
Benefits of the Oracle Access Manager-Oracle Adaptive Access Manager-Oracle Identity Manager integration is presented in Chapter 16, "Access and Password Management Integration."	
Because of integrated deployment of Oracle Adaptive Access Manager with other applications, migration or configuration changes in those applications might be required in Oracle Adaptive Access Manager.	
For the steps involved in migrating an existing natively integrated 10.1.4.5 application that is currently using SOAP authentication to 11g, refer to Chapter 17, "Migrating Native Applications to OAAM 11g.".	
For examples for handling lifecycle configuration changes, refer to Chapter 18, "Handling Lifecycle Management Changes."	
Chapter 23, "FAQ/Troubleshooting" provides troubleshooting tips and answers to frequently asked questions.	
Part 1 contains information about APIs used to integrate Oracle Adaptive Access Manager in the following chapters:	
Oracle Adaptive Access Manager provides APIs to fingerprint devices, collect authentication and transaction logs, run security rules, challenge the user to answer pre-registered questions correctly, and generate virtual authentication devices such as KeyPad, TextPad, or QuestionPad.	
Native Oracle Adaptive Access Manager integration involves customizing your application to include OAAM API calls at various stages of the login process. The application invokes Oracle Adaptive Access Manager directly and the application itself manages the authentication and challenge flows.	
Using the Oracle Adaptive Access Manager APIs, you can:	
This chapter contains guidelines to integrate a client application with Oracle Adaptive Access Manager using the APIs the server exposes.	
The typical process flows for the authentication and challenge scenarios are presented in this chapter. Within these flow sections, there are details about which API should be called at each stage.	
The integration options are presented in the following sections:	
Example Application	
The example application is available as a form of documentation to illustrate how to call the product APIs. It is not intended as production code. For example, the sample application does not have proper error handling; it only provides basic elements of API usage. Customers implementing a native integration should develop their own application using the sample application as a reference only.	
Note: Custom applications developed for these deployments are not supported directly. However, Oracle Support Services can assist customers with product issues, such as if customers encounter problems when using the provided APIs.	
To integrate with Oracle Adaptive Access Manager, the application can use the native API. Choose one of the following native API options:	
Refer to "Using Web Services and SOAP API".	
Refer to "Using Static Linking".	
In this scenario, the application communicates with Oracle Adaptive Access Manager using the Oracle Adaptive Access Manager native client API (SOAP service wrapper API) or via Web services.	
The SOAP service wrapper API enables you to create SOAP objects and invoke SOAP calls and abstracts the SOAP Web Service Definition Language (WSDL) and other Web services details from the application code. Libraries for this API are available for the following languages: Java, .NET, and C++.	
Using this API is recommended over making direct SOAP calls. The reasons are as follows:	
This integration requires adding lightweight client libraries (JARs or DLLs) to the client library. Figure 2-1 illustrates how an application communicates with Oracle Adaptive Access Manager using Web services and the server API.	
Java applications can be static-linked. This scenario only involves local API calls and therefore no remote server risk engine calls (SOAP calls). The integration imbeds the processing engine for Oracle Adaptive Access Manager with the application and enables it to leverage the underlying database directly for processing. In this scenario, the application must include the server JARs and configured properties, as appropriate.	
Even though static linking may provide slightly better performance, it is not suitable for all Java clients. Static linking is recommended for clients developing their own applications with Oracle Adaptive Access Manager built in their J2EE or application.	
Static-linking an application has several advantages:	
This section describes the following integration options:	
This integration consolidates virtual authentication devices and knowledge-based authentication. Globalized virtual authentication device image files including registration flows must be developed by the deployment team.	
Figure 2-2 illustrates an authentication flow example that uses these three solutions (virtual authentication devices, knowledge-based authentication, One-Time Password). Note that the flow illustrated is an example and that other authentication flows are possible.	
The details of the stages in the Figure 2-2 are explained in the following sections:	
When the application uses a custom login page, the login page must be split into two pages. The user inputs the login ID (user name) in the first page, and this data is stored in the HTTP session. The second login page is a transient page to capture the flash and secure cookies and for fingerprinting the user device. Figure 2-3 shows a sample of the first page.	
The device fingerprint stage involves fingerprinting the user device. The APIs used for this purpose are detailed in Table 2-1.	
Table 2-1 Device Fingerprinting APIs	
Module	APIs
---	---
Server	APIs that construct the fingerprint are:
For method details on updateLog(), see Section 4.5.6, "updateLog."	
Oracle Adaptive Access Manager Sample	Sets the client's time zone Sets a secure cookie Sets the browser fingerprint Sets the status to pending Calls the pre-authentication rules; expects "allow" to allow the user to proceed or "block" or "error" to stop the user from continuing Stores bharosaSession Forwards the user to the password.jps page
Oracle Adaptive Access Manager Sample	Sets the flashCookie if the browser is flash-enabled
Cookies in Device Identification	
Oracle Adaptive Access Manager uses two types of cookies to perform device identification.	
One is the browser cookie (also known as secure cookie) and the other is the flash cookie (also known as digital cookie).	
The browser cookie value is constructed using the browser user agent string. The flash cookie value is constructed using data from the OAAM flash movie.	
The following is sample code to fingerprint the device using browser and flash cookies. Refer to code in handleFlash.jsp	
for details:	
Pre-authentication rules are run before the user is authenticated. Common values returned by the pre-authentication checkpoint include:	
The APIs used for pre-authentication are listed in Table 2-2.	
Table 2-2 Pre-Authentication Rules Reference APIs	
Module	APIs
---	---
Server	For method details, see Section 4.6.1, "processRules."
Oracle Adaptive Access Manager Sample	Invokes the pre-authentication rules; returns "allow" to proceed forward to password.jsp or "block" or "error" to signal an error Stores bharosaSession
BharosaHelper	
This stage determines the virtual authentication device to use. If the user has not registered an image and a phrase, the rule returns the Generic TextPad; otherwise, if the user has registered, the rule returns either the personalized TextPad or KeyPad. Common values returned by virtual authentication devices include:	
The APIs used to run virtual authentication device rules are listed inTable 2-3.	
Table 2-3 Virtual Authentication Device Rules APIs	
Module	APIs
---	---
Server	For method details, see Section 4.6.1, "processRules."
Oracle Adaptive Access Manager Sample	Invokes rules to identify the user's virtual authentication device type Creates the virtual authentication device, names it, and sets all initial background frames Invokes kbimage.jsp as configured Forwards to page handlePassword.jsp
BharosaHelper	
A generic, non-personalized TextPad is used for users who have not yet registered with Oracle Adaptive Access Manager. Figure 2-4 illustrates a generic TextPad.	
Table 2-4 lists the APIs used to generate a generic TextPad.	
Table 2-4 Generation of a Generic TextPad APIs	
Module	APIs
---	---
Server	VCryptAuth::getUserByLoginId() You can obtain an instance of VCryptAuth by calling VCryptAuthUtil.getVCryptAuthInstance().
Oracle Adaptive Access Manager Sample	Password.jsp
BharosaHelper	
Client	
A personalized TextPad is used for users who have registered with Oracle Adaptive Access Manager. Figure 2-5 andFigure 2-6 illustrate personalized text and key virtual authentication devices.	
Table 2-5 lists the APIs used to generate a personalized TextPad or KeyPad.	
Table 2-5 Generating a Personalized TextPad or KeyPad APIs	
Module	APIs
---	---
Server	For method details, see Section 4.5.7, "getUserByLoginId."
Oracle Adaptive Access Manager Sample	Invokes rules to identify the virtual authentication device type to use; the default is KeyPad Creates the virtual authentication device, names it, and sets all initial background frames Forwards to page handlePassword.jsp Invokes kbimage.jsp as configured
BharosaHelper	
Client	
The HTML code example to display TextPad and KeyPad should be embedded in the password page. This HTML renders the TextPad or KeyPad using JavaScript, and it includes an 	
tag, which makes a HTTP request to the server to get the TextPad or KeyPad image.	
Table 2-6 lists the APIs used to display TextPad and KeyPad.	
Table 2-6 Displaying TextPad and KeyPad APIs	
In this stage, the chosen virtual authentication device decodes the data the user supplies to it; the decoded value is in raw text format, and it is recommended that it be saved in the HTTP Session. The virtual authentication device object is serialized and stored in the database or the file system.	
The virtual authentication device is stored in session because it is used to decode the input. This is needed for virtual authentication devices like PinPad and KeyPad where the user input is not clear text. For consistency it is performed for all virtual authentication devices since they are designed to be able to be used interchangeably.	
Table 2-7 lists the APIs used to decode user input.	
This stage represents the client's existing process in which the client invokes the local API to authenticate the user and the authentication result is passed on to OAAM Server. The API used is detailed in Table 2-8.	
Table 2-8 Validating User and Password API	
Module	API
---	---
Oracle Adaptive Access Manager Sample	Retrieves the password Decodes the password Updates the status to "success" (if user is valid), or to "invalid," "error," or "bad password" (if the user is invalid) Runs post-authentication rules and returns one of the following values: REGISTER_USER_OPTIONAL REGISTER_QUESTIONS REGISTER_USER CHALLENGE
After validating the user password, the status is updated with the APIs detailed in Table 2-9.	
Table 2-9 Updating Authentication Status APIs	
Module	APIs
---	---
Server	For method details, see Section 4.5.9, "updateAuthStatus."
Oracle Adaptive Access Manager Sample	Retrieves the password Decodes the password Validates the user Forwards to registerImageandPhrase, or challenges a registered user
BharosaHelper	
These rules are run after the user password has been authenticated. Common actions returned by post-authentication include:	
The APIs used for post-authentication are listed in Table 2-10.	
Table 2-10 Post-Authentication Rules Reference APIs	
Module	APIs
---	---
Server	For method details, see Section 4.6.1, "processRules."
Oracle Adaptive Access Manager Sample	Calls BharosaHelper::runPostAuthRules which returns: ALLOW BLOCK CHALLENGE If ALLOW: BharosaHelper::runRegistrationRules returns ALLOW REGISTER_QUESTIONS REGISTER_USER_INFO REGISTER_USER SYSTEM_ERROR If CHALLENGE: forward_challengePage
BharosaHelper	
Rules are run to check registration; if the user is not registered, he is directed to do so.	
The registration is required depending on business and security requirements, which specify whether the registration is mandatory or optional. Values returned by registration rules include the following:	
Table 2-11 lists the APIs used to run registration rules.	
Table 2-11 Registration Required Rules Reference APIs	
Module	APIs
---	---
Server	For method details, see Section 4.6.1, "processRules."
Oracle Adaptive Access Manager Sample	Invokes rules to identify the virtual authentication device type to use; the default is KeyPad Creates the virtual authentication device, names it, and sets all initial background frames Invokes kbimage.jsp as configured Forwards to page handlePassword.jsp
BharosaHelper	
The Registration Flow allows you to register a new image and caption, questions, and so on as described in the table below:	
Table 2-12 Registration Flow	
Module	APIs
---	---
Server	For method details, see Section 4.6.1, "processRules."
Oracle Adaptive Access Manager Sample	registerImagePhrase.jsp
registerQuestions.jsp	Gets question pick set for the user Displays question selection user interface and inputs for answers Forwards to page handleRegisterQuestions.jsp
registerContactInfo.jsp	Presents user with inputs for OTP registration information Forwards to page handleRegisterContactInfo.jsp
BharosaHelper	BharosaHelper::getAuthentiPad() BharosaHelper::createSampleAuthentiPad BharosaHelper::assignRandomImageAndCaption BharosaHelper::saveNewImageAndOrCaption BharosaHelper::getQuestions BharosaHelper::isDeviceRegistered BharosaHelper::setContactInfo
The challenge rules are invoked to determine which type of challenge to display to the user. Values returned by the challenge rules include the following:	
Table 2-13 lists the APIs used to run the challenge rules.	
Table 2-13 Run Challenge Rules APIs	
Module	APIs
---	---
Server	For method details, see Section 4.6.1, "processRules."
Oracle Adaptive Access Manager Sample	handleChallenge.jsp calls BharosaHelper::validateAnswer If that method returns BharosaEnumChallengeResult.SUCCESS, status is updated to "success" and the user is allowed to move forward; otherwise if BharosaEnumChallengeResult.WRONG_ANSWER is returned then challenge rules are run again to determine the next step.
BharosaHelper	
BharosaHelper::getAuthentiPad	
is used to create an authentication device. That method in turn calls the Authentication Device Rules to determine the device to use.	
If the user is to be challenged with a question, the rule returns the QuestionPad. If the user is to be challenge with an OTP, the rule returns the TextPad.	
If appropriate, the user is challenged with either Knowledge Based Authentication (KBA) or OTP (One Time Password).	
KBA is an extension to existing User ID/password authentication and secures an application using a challenge/response process where users are challenged with questions. The user must answer the question correctly to proceed with his requested sign-on, transaction, service, and so on.	
OTP is an extension to existing User ID/password authentication as well and adds an extra security layer to protect applications. OTP is generated after verifying the user ID and password and then delivered to users via e-mail or mobile phone if the application deems it to be necessary. Users then use the OTP to sign-in to the application.	
Table 2-14 lists the APIs to challenge the user with registered questions.	
Table 2-14 Challenge User APIs	
Module	APIs
---	---
Server	VCryptAuth::getSecretQuestion() VCryptTracker::generateOTP()
Oracle Adaptive Access Manager Sample	Determine type of challenge to use. BharosaHelper::runChallengeRules If challenge type returned is KBA (ChallengeQuestion) then get user question with VCryptAuth:getUserQuestion If challenge type is OTP (ChallengeSMS, ChallengeEmail, ...) then generate, store, and send OTP code.
Use authentication pad rules to determine authentipad to display to the user. See Section 2.2.1.4, "Run Virtual Authentication Device Rules (R2).". Submits the answer to handleChallenge.jps handleChallenge.jsp collects user input and calls BharosaHelper::validateAnswer - used to validate user answer for challenge (same as question challenge)	
BharosaHelper	BharosaHelper:: createPersonalizedAuthentiPad () BharosaHelper::createAuthentiPad() BharosaHelper::generateOTP BharosaHelper::sendCode BharosaHelper::getUserQuestion
Client	
This stage involves validating the user's input to the challenge:	
Table 2-15 lists the APIs used to validate a challenge.	
Table 2-15 Validate Answer to a Challenge	
Module	APIs
---	---
Server	VCryptAuth::authenticateQuestion()
Oracle Adaptive Access Manager Sample	Calls BharosaHelper::validateAnswer If that method returns BharosaEnumChallengeResult.SUCCESS, status is updated to "success" and the user is allowed to move forward; otherwise if BharosaEnumChallengeResult.WRONG_ANSWER is returned then challenge rules are run again to determine the next step.
BharosaHelper	If the type of challenge being validated is KBA (ChallengeQuestion), then VCryptAuth::authenticateQuestion is called to validate the users input against the registered answer for the question presented. If the type of challenge being validated is OTP (ChallengeSMS, ChallengeEmail, and so on), then the users input is compared to the value stored when OTP code was generated. If the answer is correct, the OTP challenge counter is reset by calling BharosaHelper::resetOTPCounter. Otherwise if the answer is incorrect, the OTP challenge counter is incremented (BharosaHelper::incrementOTPCounter). Method returns a BharosaEnumAuthStatus of either BharosaEnumAuthStatus.SUCCESS or BharosaEnumAuthStatus.WRONG_ANSWER
The Lock Out page is the page to which the user is redirected when the post-authorization rules return Block.	
This scenario is a subset of the scenario described in Section 2.2.1, "Integrating with Virtual Authentication Devices and Knowledge-Based Authentication." This scenario does not have a split login flow and does not include personalizations or virtual authentication devices.	
Figure 2-7 illustrates a flow of authentication that uses this solution. For details about the stages of this flow, see the following sections:	
The User/Password Page is the existing page currently used by the client. It contains the text box for both the username and password. There are no changes required for this page; however, the post from this page should display a transient (intermediate) refresh page.	
For information on the other stages, see the following sections:	
This chapter provides details how ASP.NET applications can integrate with Oracle Adaptive Access Manager using the .NET API provided by Oracle Adaptive Access Manager. Descriptions are also provided on the sample applications used to illustrate the integration of different OAAM features with a basic Web application.	
This chapter contains the following sections:	
ASP.NET is a web application framework that allows programmers to build dynamic Web sites, web applications and web services. ASP.NET applications, written in any ASP.NET language, can use the OAAM .NET API to call Oracle Adaptive Access Manager. This API communicates with the OAAM server using Simple Object Access Protocol (SOAP), as illustrated in Figure 3-1.	
The Oracle Adaptive Access Manager .NET development kit (SDK) is packaged in the ZIP file, oaam_native_dot_net.zip	
in $ORACLE_HOME/oaam/oaam_libs/dotNet/	
.	
Sample .NET applications that enable OAAM features require the integration of the OAAM .NET APIs found in the SDK package oaam_native_dot_net.zip	
. The content of the archive needs to be extracted to the root directory of the web application:	
oaam_native_dot_net.zip could be obtained from ${ORACLE_HOME}/oaam/dist/oaam_dist_final/oracle.oaam.libs/dotNet	
.	
The Oracle Adaptive Access Manager .NET SDK includes property files that specify values for configuration used by the Oracle Adaptive Access Manager API. A developer can modify these properties to specify application-specific values or add new ones.	
The Oracle Adaptive Access Manager .NET API uses these properties to read configurable values at runtime, such as the location of images for virtual authentication devices. Virtual authentication devices are controls for user input and provide virtual keyboard and personalization. Properties are read and cached from a list of files at startup and updated whenever one of the properties files is updated.	
The sequence in which the properties files are loaded by Oracle Adaptive Access Manager .NET API is as follows:	
lookup.properties	
file, if present, is loaded first. properties.filelist	
property is defined in lookup.properties	
, then all the files listed in that property are added to the queue (in the listed order). bharosa_lookup.properties	
file, if present, is loaded. properties.filelist	
property is defined in bharosa_lookup.properties	
, then all the files listed in that property are added to the queue (in the listed order) The properties files, including lookup.properties	
, are searched in the following directories in the order stated in Table 3-1; the search for a given file stops when the file is first found or when no file is found.	
Table 3-1 .NET Property Files	
Directory	Example
---	---
<ApplicationDirectory>/	c:/Inetpub/wwwroot/MyApp/
<CallingAssemblyDirectory>/	c:/Windows/System32/
<CurrentAssemblyDirectory>/	c:/Inetpub/wwwroot/MyApp/bin/
<CurrentAssemblyDirectory>/../	c:/Inetpub/wwwroot/MyApp/
<CurrentDirectory>/	c:/Windows/System32/
<ApplicationDirectory>/bharosa_properties/	c:/Inetpub/wwwroot/MyApp/bharosa_properties/
<CallingAssemblyDirectory>/bharosa_properties/	c:/Windows/System32/bharosa_properties/
<CurrentAssemblyDirectory>/bharosa_properties/	c:/Inetpub/wwwroot/MyApp/bin/bharosa_properties/
<CurrentAssemblyDirectory>/../bharosa_properties/	c:/Inetpub/wwwroot/MyApp/bharosa_properties/
<CurrentDirectory>/bharosa_properties/	c:/Windows/System32/bharosa_properties/
A property value specified in a properties file can be encrypted using the command-line utility BharosaUtils.exe	
included in the Oracle Adaptive Access Manager .NET SDK.	
An encryption key (arbitrarily selected by the user) is required to encrypt and decrypt values. This key is available to Oracle Adaptive Access Manager .NET API through the property bharosa.cipher.client.key	
, which must be set in one of the application properties files.	
BharosaUtil.exe	
prompts the user to enter the encryption key and a value, and the encrypted value is output to the console. The following run of the utility illustrates how to encrypt a string:	
Visual Studio 2005 allows you to use enumerations defined in the .NET Framework. A user-defined enumerations are a collection of items; each item is assigned an integer and may contain several attributes. A user-defined enumeration is specified in a properties file, and its name, the names of its items, and the name of the item attributes must conform to the following rules:	
.enum	
Here is an example of a user-defined enumeration:	
Here is an example of the use of the previous user-defined enumeration in application code:	
This section contains details on how OAAM APIs are used to support common OAAM scenarios. You can also refer to the sample applications for details.	
Oracle Adaptive Access Manager stores user details in its database and uses this information to perform the following tasks:	
The client application is responsible for populating the Oracle Adaptive Access Manager database with user details at runtime.	
For example, when a user logs in, the client application should first determine whether the user record exists. If the record is not found, then the application should call the appropriate APIs to create a user record and set the user status.	
The following sample illustrates the calls to create a user record:	
For further details, see the sample applications in Section 3.5.1, "ASP.NET Applications."	
Oracle Adaptive Access Manager provides APIs to capture user login information, user login status, and other user session attributes to determine device and location information. Oracle Adaptive Access Manager also provides APIs to collect transaction details.	
The following code sample illustrates the use of this API:	
The Rules Engine is the component of Oracle Adaptive Access Manager used to enforce policies. Based on a calling context, the Rules Engine evaluates policies and provides the results of those evaluations. Policies are configured by the administrator; for details on policy configuration, see the Oracle Fusion Middleware Administrator's Guide for Oracle Adaptive Access Manager.	
The following code sample illustrates the use of APIs to invoke the Rules Engine after a user has been authorized and to process the rule evaluation result:	
In addition to delivering the rules result, the Rules Engine can return a device ID, an internal Oracle Adaptive Access Manager identifier for the device used for this login session.	
The following sample code illustrates how to get the device ID:	
Important: The code shown assumes that:	
The IBharosaProxy.createTransactions()
method can be used to create bulk transactions, as illustrated in the following call:
The IBharosaProxy.updateTransactions()
method can be used to update bulk transactions, as illustrated in the following call:
Oracle Adaptive Access Manager can challenge a user with pre-registered questions and match user answers with pre-registered answers during high-risk or suspicious scenarios.
Typically, a user is asked to choose questions from a given set and provide answers for them, all of which are then registered. When the user is challenged with one of these questions, he must supply the correct answer, that is, one that matches the answer he registered.
The following sample code illustrates the calls to register questions and answers and challenge the user:
For further details, see the sample applications in Section 3.5.1, "ASP.NET Applications."
Oracle Adaptive Access Manager records the number of wrong answers to the questions posed to the user in the failure counters. Failure counters are used to enforce a lock. The API includes a method, resetChallengeFailureCounters()
, to reset the failure counters for a given user or user and question combination.
If a Question ID is specified (i.e. questionId != BharosaGlobals.LongNull
), in the call, only the failure counters associated with that question are reset; if no Question ID is specified, the failure counters for all registered questions of the user are reset.
The following sample code illustrates a call to reset failure counters:
This section describes the creation and use of virtual authentication devices in ASP.NET applications in the following subsections:
To create a virtual authentication device, use the method, BharosaClient.getAuthentiPad()
, as illustrated in the following sample code:
To display a virtual authentication device properly, such as the one created in the previous section, both the .ASPX
file and the code-behind file need to be updated.
To update these files, proceed as follows:
bharosa_web/js/bharosa_pad.js
in the ASPX file. code-behind
file from the virtual authentication device object and assign it to the label: The input that a user supplies to a virtual authentication device is posted to the application in the HTTP parameter named padName
+ "DataField". This input should be decoded using the virtual authentication device as illustrated in the following sample code:
The credentials to access the Oracle Adaptive Access Manager SOAP Server can be specified in one of the following ways:
web.config
file: The Oracle Adaptive Access Manager .NET API allows to print trace messages of various levels using diagnostics switches in web.config
. The trace messages can be saved to a file by configuring the appropriate listeners.
The following web.config
file sample shows the configuration of switches and a listener that writes trace messages to a file:
This section shows you how to integrate an application through using one of the sample applications provided in the SDK.
The following four ASP.NET applications are included in this sample package to demonstrate integration of various OAAM 11g features in ASP.NET based applications.
Table 3-2 ASP.NET Applications
Application Name | Description |
---|---|
SampleWebApp | This is a basic ASP.NET application without OAAM integration. This application is provided so that the reader can easily see incremental changes required to integrate various OAAM feature, such as, tracker, authenticator, and KBA. |
SampleWebAppTracker | This application demonstrates integration of OAAM tracker functionality to SampleWebApp listed above. |
SampleWebAppAuthTracker | This application demonstrates integration of OAAM tracker and authenticator functionalities to SampleWebApp listed above. |
SampleKBATracker | This application demonstrates integration of OAAM tracker and KBA functionalities to SampleWebApp listed above. |
Details about the four applications are provided in this section.
This application contains the following pages that demonstrate a web application before OAAM integration.
This application contains the following pages that demonstrate integration of OAAM tracker functionality to the sample application listed above.
This application requires the integration of the OAAM .NET APIs found in the SDK package oaam_native_dot_net.zip. The content of the archive needs to be extracted to the root directory of the web application.
This application contains the following pages that demonstrate integration of OAAM authenticator and tracker functionalities to the sample application listed above. This application collects the password using authenticators offered by OAAM.
This application requires the integration of the OAAM .NET APIs found in the SDK package oaam_native_dot_net.zip. The content of the archive needs to be extracted to the root directory of the web application.
On Load:
On PostBack:
This application contains the following pages that demonstrate integration of OAAM authenticator, tracker and KBA (Knowledge Based Authentication) functionalities to the sample application listed above. This application shows authentication mechanisms using password and KBA authenticators offered by OAAM.
This application requires the integration of the OAAM .NET APIs found in the SDK package oaam_native_dot_net.zip. The content of the archive needs to be extracted to the root directory of the web application.
On Load:
On PostBack:
Post-Authentication Action | Target URL |
---|---|
Block | LoginPage.aspx |
Allow | Success.aspx |
ChallengeUser | ChallengeUser.aspx |
RegisterQuestions | RegisterQuestionsPage.aspx |
RegisterUser | PersonalizationPage.aspx |
RegisterUserOptional | PersonalizationPage.aspx |
Source code for each application is placed in a directory of its own. Visual Studio Solution files for each of these applications can be found in the root directory. The four applications could either be run using Visual Studio 2005 or be deployed on Microsoft IIS 6.0 on Windows Server 2003. Solutions file 'SampleWebApps' can be used to load and view all applications together using Visual Studio.
Instuctions to set up the environment to successfully run the sample applications are provided in this section. After all the following have been applied, you should be able to run these sample applications and see how they integrates with OAAM 11g in different scenarios.
Ensure that Soap URL to access OAAM server is set correctly in web.config
file of the application, as per your deployment configuration. An example is shown as follows:
For sample applications integrating with OAAM 11g, set bharosa.image.dirlist
in bharosa_app.properties
to the path where "oaam_images
" folder could be found. The "oaam_images
" foloder is located at: ${ORACLE_HOME}/oaam/dist/oaam_dist_final/oracle.oaam.oaam_images
.
The folder name could be changed but then the path should be modified accordingly. For example, if all the files obtained from the path above is stored in a folder named oaam_images
and this folder is put under the root directory of the web application. The path should be: ${Application_HOME}/oaam_images/
Make sure lookup.properties
is contained in /bharosa_properties/
folder, which lists all the properties files that need to be read. It could be obtained from:
${ORACLE_HOME}/oaam/apps/oaam_native/overrides/conf/bharosa_properties
Find and comment out the bharosa.authentipad.image.url
property.
For developers who have access to Microsoft Visual Studio 2005 to test the web applications, simply build the solution after making all the above changes and click "Debug->Start Debugging" in Visual Studio 2005.
For deployment of these applications, here are some tips to follow:
The following pages demonstrate how to enable transaction logging and rule processing in OARM using the ASP.NET sample applications.
Prerequisites:
Transaction Page
This chapter explains how to integrate Java applications with Oracle Adaptive Access Manager Server using the Oracle Adaptive Access Manager Java API. This integration is supported for applications written in Java 1.4 or higher.
This section contains the following sections:
The Oracle Adaptive Access Manager Shared Library is the Java SDK for integrating with Oracle Adaptive Access Manager. This has to be deployed and targeted into the WebLogic Managed Server where the integrated application is deployed. Make sure the WebLogic Managed Server is part of the same WebLogic domain where OAAM is deployed.
Deploy the OAAM Web Applications Shared library <IAM_HOME>/oaam/oaam_libs/war/oaam_native_lib.war
as a library.
To use the Oracle Adaptive Access Manager Shared Library in Web applications, you must refer to the shared library by adding the following entry to your WebLogic deployment descriptor file, weblogic.xml
:
Deploy the OAAM Enterprise Applications Shared library <IAM_HOME>/oaam/oaam_libs/ear/oaam_native_lib.ear
as a library.
To use the Oracle Adaptive Access Manager Shared Library in Enterprise applications, you must refer to the shared library by adding the following entry to your WebLogic deployment descriptor file, weblogic-application.xml
:
To override any Oracle Adaptive Access Manager properties or extend Oracle Adaptive Access Manager enumerations, add those properties and enumerations to bharosa_server.properties and place that file in WEB-INF\classes
folder of the native web application.
For instructions on customizing, extending, or overriding Oracle Adaptive Access Manager properties, refer to Chapter 7, "Customizing Oracle Adaptive Access Manager."
Follow these steps:
oracle.oaam.libs
". bharosa_server.properties
and place that file in the WEB-INF\classes
folder of the native web application. jdbc/OAAM_SERVER_DB_DS
" and point it to the OAAM database. To call the OAAM APIs via SOAP instead of inproc, follow these steps in these sections.
Setup SOAP User on WebLogic Server and OWSM Policy
Out-of-the-box, OAAM publishes Web services at the URL: /oaam_server/services
. This URL is protected with HTTP Basic authentication.
Create a user that will be used for SOAP authentication, and add that user in the proper group. This user can access this URL. The user must be in the OAAMSOAPServicesGroup group.
To set up the OWSM Policy to set HTTP Basic Authentication on /oaam_server/services
follow these steps:
http://weblogic-admin-hostname:port/em
. weblogic_domain
, select the domain and select oaam_server_server1
under that and right click and select the 'Web Services
' option. Attach Policies
" link in top right area. Client Side Keystore to secure the SOAP User password
Web Services/SOAP clients need to send the username and password for successful communication with OAAM web services.
/oaam/cli
directory, create a file, for example, soap_key.file
, and enter the HTTP authentication user password in it. (The password from the user that was added to the OAAMSOAPServicesGroup role/group). sample.soap_3des_input.properties
to soap_3des_input.properties
. soap_3des_input.properties
with the keystore password, the alias password, and password file. If the KeyStore
command was successful, you will see output similar to the following:
bharosa_server.properties
. system_soap.keystore
file in your source code control system. Please take adequate security precaution while handling this file. The file contains critical password information. Make sure that only authorized personnel have read access to this file. If you lose it, Oracle Adaptive Access Manager will not be able to recover data encrypted. system_soap.keystore
to the following directories: <application>/WEB-INF/classes/bharosa_properties
(classpath of the native client deployment) <OAAM application>/bharosa_properties
soap_key.file
and soap_3des_input.properties
files. bharosa_server.properties
. Set the following properties in bharosa_server.properties
of the native application:
VCryptResponse
contains information about the status of the processing. It contains useful information if the status of the processing was "Success" (isSuccess
). If there were an error, it also contains error codes. It can also contain other payload information in the form of extended data maps. You can use these features of VCryptResponse
depending on your requirements for integration.
Oracle Adaptive Access Manager provides APIs to:
For descriptions of all authentication scenarios and typical flows, see Chapter 2, "Natively Integrating with Oracle Adaptive Access Manager."
The following sections provide details of the following important methods:
handleTrackerRequest captures fingerprint details and identifies the device; it may also capture fingerprint details for a given request time, which can be in the past.
The returned object has functions to access its contents. They are:
Table 4-1 handleTrackerRequest Parameters
Parameter | Description |
---|---|
requestId | The login session ID; this is the ID that should be used in all API calls for the login session |
remoteIPAddr | The IP from where the request came; extracted from the HTTP request |
remoteHost | The host name from the machine where the request came; optional |
secureCookie | The secure cookie; passed only if it is received from a browser |
secureClientType | An enumeration value that identifies the type of client used for authentication. The corresponding enum name is |
secureClientVersion | The version of the client; optional |
digitalCookie | The digital signature cookie; it can be the flash cookie; it is passed only if it is sent by a browser |
digitalClientType | The digital client type that specifies the type of flash client used; if not available, use the value 0 |
digitalClientVersion | The version of the digital client; it can be the version of the flash client |
fingerPrintType | Refer to the OAAM enum
It is recommended to use |
fingerPrint | The fingerprint; if it describes browser characteristics, then the header is parsed into this string; it represents the browser header information |
fingerPrintType2 | Used in case the same request has multiple fingerprints; it is defined in the properties file; optional |
fingerPrint2 | The second fingerprint value; optional |
requestTime | The time at which the request was made |
createTransaction creates a new transaction.
Table 4-2 createTransaction Parameter and Returned Value
Parameter | Description |
---|---|
TransactionCreateRequestData | The object to create a new transaction; it throws the exception The structure of this object is as follows:
|
VCryptResponse | The response object; make sure to check |
updateTransaction updates a previously created transaction.
Table 4-3 updateTransaction Parameter and Returned Value
Parameter | Description |
---|---|
TransactionUpdateRequestData | The object to update a transaction; a handle to the transaction to be updated is either the transaction ID returned by the method createTransaction, or the external transaction ID passed to the method createTransaction. it throws the exception BharosaException if it fails validation. The structure of this object is as follows:
|
VCryptResponse | The response object; make sure to check isSuccess() before obtaining the transaction ID with the method getTransactionResponse() |
handleTransactionLog captures transaction details.
Table 4-4 handleTransactionLog Parameters
Parameter | Description |
---|---|
requestId | The login session ID; this is the ID that should be used in all API calls for the login session |
requestTime | The time at which the request was made |
contextMap | An array of contextMaps; multiple transactions can be created with a single call; it expects to find a transactionType key in each context map of the array |
status | The transaction status |
updateTransactionStatus updates a transaction status and, if appropriate, triggers the data pattern processing.
Table 4-5 updateTransactionStatus Parameters
Parameter | Description |
---|---|
requestId | The login session ID; this is the ID that should be used in all API calls for the login session |
requestTime | The time at which the request was made |
contextMap | An array of contextMaps; multiple transactions can be created with a single call; it expects to find a transactionType key in each context map of the array |
Status | The transaction status |
transactionId | The ID of the transaction with status to update; if null, it uses the last transaction in the given session |
analyzePatterns | Boolean to indicate if pattern processing should be performed. When the value is passed in as "true," the pattern processing is performed for the transaction if the "resultStatus" value is "success." |
updateLog updates the user log and, if required, creates a CookieSet.
Table 4-6 updateLog Parameters
Parameter | Description |
---|---|
requestId | The login session ID; this is the ID that should be used in all API calls for the login session |
remoteIPAddr | The IP from where the request came; extracted from the HTTP request |
remoteHost | The host name from where the request came; optional |
secureCookie | The secure cookie; passed only if it is received from a browser |
digitalCookie | The digital signature cookie; can be the flash cookie; passed only if it is sent by a browser |
groupId | The ID of the group this user belongs to |
userId | The user ID; this is the primary ID key for the user; for invalid users, it is null |
loginId | The ID used by the user to login in; required |
isSecure | A Boolean indicating whether this node is secure and can be registered; it also indicates that the login is from a secure or registered device; if there is no concept of device, then set to false |
result | A value of the user-defined enumeration |
clientType | An enumeration value indicating the client type used for authentication. The corresponding enum name is auth.client.type.enum. |
clientVersion | The version of the client; optional |
fingerPrintType | Refer to the OAAM enum
It is recommended to use |
fingerPrint | The fingerprint; if it describes browser characteristics, then the header is parsed into this string; it represents the browser header information |
digFingerPrintType | Refer to the OAAM enum
It is recommended to use |
digFingerPrint | The digital fingerprint |
requestTime | The time at which the request was made |
fingerPrintType2 | Used in case the same request has multiple fingerprints; defined in the properties file; optional |
fingerPrint2 | The second fingerprint value; optional |
getUserByLoginId returns the user details without the password and pin for the given customer and group.
VcryptTrackerImpl::generateOTP returns OTP code based on the following properties (to determine length of code returned and characters to use in creating OTP code)
bharosa.uio.default.otp.generate.code.length
bharosa.uio.default.otp.generate.code.characters
Example code for API use is in the OAAM example application available on Oracle by Example.
Table 4-8 generateOTP
Parameter | Description |
---|---|
requestId | OAAM Request ID |
challengeType | OAAM Challenge Type configured by the user defined enum: bharosa.uio.default.challenge.type.enum. For more information, refer to Section 11.7, "Registering SMS Processor to Perform Work for Challenge Type." |
appId | An application identifier used to look up properties based on application. If no application specific properties are required, an empty string, null, or "default" can be passed. |
updateAuthStatus updates the user authentication status and, if appropriate, it triggers pattern data processing. This method must be called when there is a change in the user authentication status; make sure that, before calling updateAuthStatus
, the application calls updateLog.
The list of authentication status values are specified in the user-defined enumeration auth.status.enum
; you can add or remove items to this enumeration, as appropriate to your application, but only values of this enumeration can be used to identify an authentication status.
The following scenarios describe alternative ways to handle updating a user login (authentication) status:
updateLog
call; this scenario avoids calling updateAuthStatus
altogether. pending
in the updateLog
call, then process the login data, and then pass the appropriate status in the updateAuthStatus
call. pending
, then pose the challenge questions, and then, depending on the answers, reset the status to success
or wrong_answer
. updateAuthStatus
after invoking the rules engine, since this engine includes setting the authentication status as part of running the rules. Table 4-9 updateAuthStatus Parameters
Parameter | Description |
---|---|
requestId | The login session ID; this is the ID that should be used in all API calls for the login session |
requestTime | The time at which the request was made |
resultStatus | A value of the user-defined enumeration |
clientType | An enumeration value indicating the client type used for authentication |
clientVersion | The version of the client; optional |
analyzePatterns | Boolean to indicate if pattern processing should be performed. When the value is passed in as "true," the pattern processing is performed for the transaction if the "resultStatus" value is "success." |
processPatternAnalysis triggers the data pattern processing.
Table 4-10 processPatternAnalysis Parameters
Parameter | Description |
---|---|
requestId | The login session ID; this is the ID that should be used in all API calls for the login session |
transactionId | The identifier of the transaction. For authentication type of data this is ignored. (It can be passed in as "null"). For pattern processing of transaction data this parameter is required. |
status | A value of the user-defined enumeration |
transactionType | Indicates the type of the transaction; must be "auth" for authentication transactions; other transaction type values, such as "bill_payment", can be customized. |
markDeviceSafe marks the user device as safe.
IsDeviceMarkedSafe returns a value indicating whether the user device associated with a request is safe.
The Rules Engine is the part of the OAAM that enforces policies at checkpoint. OAAM includes APIs to evaluate policies that return results depending on the calling context.
The following section provides details of the method processRules
and on how to get the device ID.
processRules processes policy sets for the passed checkpoints.
processRules calls the methods related to the Rules Engine, gets an instance of the Rules Engine by calling the method VCryptTrackerUtil.getVCryptRulesEngineInstance().
Table 4-14 processRules Parameters
Parameter | Description |
---|---|
requestId | The login session ID; this is the ID that should be used in all API calls for the login session |
runtimeTypes | The list of checkpoints to be evaluated; each checkpoint in this list is evaluated. The runtimeTypes is a singleton list of Integer type. Refer to the "Information about execution of multiple checkpoints in the processRules() method" section below. For example, to run a pre-authentication checkpoint, create the following list:
|
requestTime | The time at which the request was made |
contextMap | A list of key-value pairs identifying the context data; rules in policies can make decisions based on this data |
Information about execution of multiple checkpoints in the processRules() method
VCryptRulesResult
as the value. ResultMap
is then set onto VCryptRulesResult
. VCryptRulesResult
is returned as the result of processRules()
method. VCryptRulesResult
in ResultMap
will capture that information, but the execution of other checkpoints is not impacted. However, if there is a system failure, then the result of processRules()
itself will have the details of the error. It is recommended to test the success status of result from processRules()
method before the caller tries to fetch result of each checkpoint execution.
Getting Device ID
In addition to rule results, the Rules Engine can return a device ID, an internal identifier identical to the user session.
The following code sample illustrates how to get a device ID:
When getting a device ID, make sure that:
bharosa.tracker.send.devideId
is set to true, so the device ID can be captured: Valid Checkpoints
For list of valid checkpoints, refer to the OAAM enumeration profile.type.enum
. For example profile.type.enum.preauth=1
indicates that the Pre-Authentication checkpoint is indicated using the numeric value 1
.
Location and Device Data
With property bharosa.tracker.sendLocationData=true
set, location (city, state, country names) and device data is returned when processRules
API is called.
Customer Care provides APIs typically used in customer care portals; these APIs do not use audit or access control.
The following sections provide details of the following important methods of this interface:
getFinalAuthStatus returns the final authentication status of a user. The status can be no more than 30- day old.
setTemporaryAllow sets a temporary allow for a user. A temporary allow can override the final rule action.
Table 4-16 setTemporaryAllow Parameters
Parameter | Description |
---|---|
customerId | The customer ID |
tempAllowType | The type of the temporary allow; the user-defined enumeration for this type is customercare.case.tempallow.level.enum |
expirationDate | The expiration date, if the tempAllowType is "userset"; otherwise null or empty |
cancelAllTemporaryAllows cancels all temporary allows that have been set for a customer ID.
resetUser resets all the profiles that have been set for a customer, including registration, questions, images, and phrases.
getRulesData returns all rules executed for the given session ID and provides information about the rules that were triggered.
getActionCount gets the number of actions for a given actionEnumId
from the configured action enumerations.
Table 4-20 getActionCount Parameters
Parameter | Description |
---|---|
requestId | The request ID (used in logging and tracing client requests in case of error) |
customerId | The customer ID |
actionEnumId | An integer identifying an |
Note: For this API to work, the corresponding actionincrementCacheCounter enum property needs to be set to true . |
Oracle Adaptive Access Manager's Native OTP API offers a way to add another factor to a traditional user name/password authentication scheme.
This chapter contains the following information:
Native OTP Challenge integration enables strong authentication for access to applications.
Note: For information about administrative tasks you can perform for OTP such as resetting OTP profiles, unlocking users, viewing OTP case details, and viewing OTP performance data, see the Oracle Fusion Middleware Administrator's Guide for Oracle Adaptive Access Manager. |
The flow of interaction is as follows: When the User ID and password are successfully verified, if the application deems it to be necessary, a one time password is sent to the user's mailbox or mobile phone. This one time password will be verified and only then will the user be authenticated to the application.
Note: The application authenticates the OTP code given by the user through custom implementation. |
One Time Password (OTP) is a random single use authentication credential. The OTP may be either numeric or alphanumeric and any length and the randomization algorithm is pluggable.
The following are major benefits of using out-of-band OTP:
OAAM OTP challenge functionality allows the end user to register profile information for use as a communication channel subsequently to challenge the user if appropriate. The user is sent an email or SMS with a generated one time use password and presented with a challenge page in which he can enter the generated code.
Oracle Adaptive Access Manager offers an OTP code generation API that can be used by native integration APIs.
A sample application, OAAM Sample, is available as a form of documentation to illustrate a native implementation of an Oracle Adaptive Access Manager integration.
It includes registration and email challenge related flows that provide integrators with an example of how to use the OTP APIs for generating OTP code, incrementing the OTP challenge counter, and clearing the OTP challenge counter.
OAAM Sample implements example flows using JSPs to both display pages generate code, and handle the user input of pages, backed by the BharosaHelper utility class to make calls into the OAAM APIs for tracking user details and challenge statistics.
Note: Oracle Adaptive Access Manager ships with "oaam_native_lib. war" which must be deployed to run OAAM Sample. |
OAAM OTP challenge allows the end user to register profile information such as an email address or a mobile phone number or both for use as communication channel to challenge them.
The user is sent an email or SMS with a generated one time use password and presented with a challenge page in which they can enter the generated code.
The registration and challenge flows are presented in Section 5.3, "New User Registration" and Section 5.4, "User OTP Challenge."
Registration is the enrollment process, the opening of a new account, or other event where information is obtained from the user.
During the Registration process, the user is asked to register for questions, image, phrase and OTP (email, phone, and so on) if the deployment supports OTP. Once successfully registered, OTP can be used as a secondary authentication to challenge the user.
The login process begins with entering standard user name and password credentials. During a session, if the user is OTP-challenged, a single-use password is delivered to the user through the configured delivery channel he selected. The user retrieves the one-time password, then enters it.
In a new registration flow which include OTP:
The user is presented with a page in which he is asked to submit his user name. The user name (login ID) is accepted from the first page and stored in the HTTP session. The user name page is followed by a transient page for capturing the flash and secure cookies and for fingerprinting the device.
For information on the JSPs, BharosaHelper utility class, and OAAM APIs used in this flow, refer to the following sections:
The password page is displayed. The user fills in the password and clicks the Enter button on the device. Oracle Adaptive Access Manager verifies the user's password.
For information on the JSPs, BharosaHelper utility class, and OAAM APIs used in this flow, refer to the following sections:
The user will continue through the registration process.
The user selects an anti-phishing image and phrase.
The user selects challenge questions and enters the answers to those questions.
The user enters his profile information in profile registration page.
The user's contact information, such as mobile phone number and email address, is registered.
The user continues on to the application.
An OTP challenge is when the user is asked to provide the OTP as a form of authentication for risk situations based upon configured policies.
The user must enter the correct OTP in to the Web interface to proceed with the operation.
In the challenge flow which includes OTP:
The user is presented with a page in which he is asked to submit his user name. The user name (login ID) is accepted from the first page and stored in the HTTP session. The user name page is followed by a transient page for capturing the flash and secure cookies and for fingerprinting the device.
For information on the JSPs, BharosaHelper utility class, and OAAM APIs used in this flow, refer to the following sections:
The password page is displayed. The user fills in the password and clicks the Enter button on the device. Oracle Adaptive Access Manager verifies the user's password.
For information on the JSPs, BharosaHelper utility class, and OAAM APIs used in this flow, refer to the following sections:
The custom policies returns "Challenge" as an action, and the Challenge checkpoint determines that OTP is the type of challenge to be used.
For information on the JSPs, BharosaHelper utility class, and OAAM APIs used in this flow, refer to the following sections:
The system generates the OTP code and through custom implementation the code is delivered to the user.
The generateOTP API is used to generate OTP code. For information on this API, refer to Section 4.5.8, "generateOTP."
The user is presented with the challenge page, as shown in the example below.
The OTP Challenge devices are determined by the Authentication Pad checkpoint. The default device is TextPad.
For information on the Authentication Pad checkpoint, refer to Section 2.2.1.12, "Run Authentication Rules (R6)."
The user continues into the application.
Oracle Adaptive Access Manager Universal Installation Option (UIO) reverse proxy deployment option offers login risk-based multifactor authentication to Web applications without requiring any change to the application code.
The proxy's main function is to redirect user traffic from the application login flow to the Oracle Adaptive Access Manager login flow.
The UIO Proxy is available for the Apache Web server and Microsoft Internet Security and Acceleration (ISA) Server. In this chapter the Oracle Adaptive Access Manager Proxy for Apache will be referred to as the UIO Apache Proxy; and the Oracle Adaptive Access Manager Proxy for Microsoft ISA will be referred to as the UIO ISA Proxy.
This chapter:
The intended audience is for integrators who configure the UIO Proxy to add multifactor authentication to Web applications. An understanding of HTTP request/response paradigm is required to understand the material presented in this document.
The chapter contains the following sections:
For information on configuring OAAM Server, the client-facing multifactor authentication Web application specific to the UIO Proxy deployment, refer to Chapter 8, "Customizing the OAAM Server."
The Introduction section of this chapter contains the following topics:
For your reference, important terms are defined in this section.
Microsoft ISA
From the Microsoft Web site: "the Internet Security and Acceleration (ISA) Server is the integrated edge security gateway that helps protect IT environments from Internet-based threats while providing users with fast and secure remote access to applications and data."
Universal Installation Option
The Universal Installation Option is the Oracle Adaptive Access Manager integration strategy that does not require any code modification to the protected Web applications. The Universal Installation Option involves placing the UIO Proxy in front of the protected Web applications
Proxy
A proxy is a server that services the requests of its clients by forwarding requests to other servers. This chapter is concerned with the Web proxy, where the proxy handles Web Protocols, mainly HTTP.
Forward Proxy
A forward proxy is an intermediate server that sits between the client and the origin server. To get content from the origin server, the client sends a request to the proxy naming the origin server as the target, and the proxy then requests the content from the origin server and returns it to the client. The client must be specially configured to use the forward proxy to access other sites.
Reverse Proxy
A reverse proxy appears to the client just like an ordinary Web server. No special configuration on the client is necessary. The client makes ordinary requests for content in the name-space of the reverse proxy. The reverse proxy then decides where to send those requests and returns the content as if it were itself the origin. The UIO Proxy running in the Microsoft Internet Security and Acceleration (ISA) Server is an example of a reverse proxy.
OAAM Server
OAAM Server is the Web application component of Oracle Adaptive Access Manager. The UIO Proxy redirects the client browser to OAAM Server for tracking and authentication purposes as defined by the UIO Proxy XML configuration.
The following diagrams show a typical UIO Proxy deployment.
The first diagram shows a Web application before the UIO Proxy is deployed to provide multifactor authentication.
The second diagram shows various components added after the UIO Proxy deployment.
The UIO Proxy intercepts the HTTP traffic between the client (browser) and the server (Web application) and performs the appropriate actions, such as redirecting the traffic to OAAM Server, to provide multifactor authentication and authorization. OAAM Server, in turn, communicates with OAAM Admin to assess the risk, and then takes the appropriate actions, such as permitting the login, challenging the user, blocking the user, and other actions.
For information on installing and configuring the Microsoft ISA server, refer to the refer to the relevant Microsoft documentation on Microsoft ISA Server setup. Web publishing rule creation and listener creation are explained further in this document.
For more information about the Apache HTTP Server, refer to the Apache HTTP Server 2.2 documentation at:
The UIO ISA Proxy uses the API provided by Microsoft ISA Server to monitor the HTTP traffic and perform various actions. Refer to the Microsoft ISA Server setup documentation for the details on installing and configuring the ISA server. For a successful installation of the UIO Proxy, a .NET
framework 2.0 or better should to be installed. Install all the recommended updates from Microsoft on the machine.
Install Microsoft ISA Server 2006 Standard Edition and create Web publishing rules for the Web applications before installing the UIO Proxy.
This section provides:
The purpose of this section is to explain the creation of Web publishing rules and listeners in Microsoft ISA for Adaptive Access Manager applications. It is intended for integrators who install and configure Microsoft ISA to support multiple Web applications.
For details on creating a Web listener, refer to the relevant Microsoft documentation. This section provides an outline.
In a typical deployment, Web applications and OAAM Server run on machines in an internal network and are not directly accessible from the Internet.
In the case of the UIO ISA Proxy, only the UIO Proxy machine, which runs Microsoft ISA Server, is accessible from the Internet.
Publish the following via Web publishing rules in the Microsoft ISA Server:
You need to set two (at least) rules: one for the main application and another for OAAM Server.
For detailed instructions on publishing rules, refer to the relevant Microsoft documentation. The following tips are provided for your reference.
Web Publishing Rule Creation for OAAM Server
To create a new Web publishing rule for OAAM Server you must access Microsoft ISA Server's Web publishing rule wizard and follow the on-screen instructions.
Bharosa OAAM Server
. Translate the public name into the internal name.
/*
for the name of the file or folder you want to publish. If you need to publish more than one file or folder, enter only the first file/folder instead. The remaining files can be entered later by editing the rule. Later you enter the path you entered here for your public details. Check the properties for your newly created rule by accessing the rule properties.
To create a new Web publishing rule for Web applications, you must access Microsoft ISA Server's Web publishing rule wizard and follow the onscreen instructions.
/*
for the name of the file or folder you want to publish. If you need to publish more than one file or folder, enter only the first file/folder instead. The remaining files can be entered later by editing the rule. Later you enter the path you entered here for your public details. Check the properties for your newly created rule by accessing the rule properties.
The UIO ISA Proxy is installed as a Web filter in Microsoft ISA Server. To install the UIO ISA Proxy, follow these steps:
BharosaProxy.dll
to the Microsoft ISA Server installation directory, which is by default, %ProgramFiles%\Microsoft ISA Server
. BharosaProxy.dll
with the following command: Various aspects of the UIO ISA Proxy can be controlled using the registry values. All UIO ISA Proxy settings are stored under HKLM\SOFTWARE\Bharosa\Proxy
key. Changes to most of the registry values are picked up by the UIO Proxy immediately without requiring a proxy restart.
During startup (and during config reload), the proxy loads the configuration from the files listed under the HKLM\SOFTWARE\Bharosa\Proxy\ConfigFiles
key.
REG_DWORD
. BharosaProxy.dll
. ConfigFiles
key are not effective until either the proxy is restarted or HKLM\SOFTWARE\Bharosa\Proxy\ReloadConfig
is set to 1
. The proxy configuration can dynamically be changed while the proxy is running; new configuration files can be added and currently loaded files can be updated or removed. These changes are not applied until the ReloadConfig
registry value is set to a nonzero value. When setting ReloadConfig
to a nonzero value, the proxy loads configuration files. After loading the files, the proxy resets the ReloadConfig
value to 0
.
Note that the new configuration is used only for new client (browser) connections. Clients already connected continue to use the previous configuration.
The UIO ISA Proxy uses a cookie to associate multiple requests from a client. The name of this cookie can be configured in the registry value, SessionIdCookieName
(of type REG_SZ). If this value is not present or empty, the UIO ISA Proxy uses the cookie name, BharosaProxy_SessionId
.
The attributes of the Session Id Cookie
can be configured using global variables listed in Table 6-1.
Table 6-1 Session Id Cookie Attributes via Global Variables
Cookie Attribute | Global Variable Name | Description |
---|---|---|
expires | SessionCookie_ExpiryInMinutes |
|
HttpOnly | SessionCookie_IsHttpOnly |
|
secure | SessionCookie_IsSecure |
|
domain | SessionCookie_DomainLevelCount |
The value should be greater than 1. If a lower value is specified, the proxy uses 2 as the value. |
Sessions in the UIO ISA Proxy are removed after a certain period of inactivity. This period, in seconds, is specified in the MaxSessionInactiveInterval
registry value. If this value is not specified, the UIO ISA Proxy removes a session after 1200 seconds (30 minutes) of inactivity. This value should be set to at least a few seconds higher than the Web application session timeout
value.
Trace messages from the UIO ISA Proxy can be used for troubleshooting any issues with the proxy configuration and operation. Trace settings, like trace level and destinations, can be controlled using the registry values under HKLM\SOFTWARE\Bharosa\Proxy
. Registry values are shown in Table 6-2.
Table 6-2 Settings for Troubleshooting
Name | Type | Description |
---|---|---|
TraceFilename | REG_SZ | Full path to the file in which the trace messages should be written to |
TraceFileMaxLength | REG_DWORD | Maximum length of the trace file in bytes. Once the trace file reaches this size, the proxy renames the file by adding the timestamp to the filename and create a new trace file to write subsequent trace messages. |
TraceToFile | REG_DWORD | Trace messages are written to file only if this value is nonzero. |
TraceToDebugTerminal | REG_DWORD | Trace messages are written to debug the terminal only if this value is nonzero. Tools like DbgView can be used to view these trace messages in real time. |
TraceLevel | REG_DWORD | Each trace level (debug, info, warning, error) has an integer value associated. The registry value should be set to the sum of desired the trace level values.
|
IgnoreUrlMappings | REG_DWORD | If this value is nonzero, the proxy ignores all the interceptors defined in the UIO Proxy configuration. Essentially this places the UIO ISA Proxy in |
CaptureTraffic | REG_DWORD | The proxy does not handle (save, inspect) the HTTP traffic for URLs that don't have interceptors defined in the configuration. But during application discovery process, it is necessary back up of all the HTTP traffic through the proxy. On such occasion, this registry value should be set to nonzero. |
To install the UIO Apache Proxy, a new Apache Hypertext Transfer Protocol Daemon (httpd) has to be installed into which the UIO Apache Proxy is installed. This Apache httpd uses the mod_proxy, a module that implements the proxy/gateway/cache, to reverse-proxy (proxy on behalf of the backend application that has to be protected).
The Installation section contains information for installing the UIO Apache Proxy for Windows and Linux platforms.
The installation procedure involves:
httpd
requirements are met dlls
and supported dlls
to specific directories in Apache See Section 6.3.3, "Copying the UIO Apache Proxy and Supported Files to Apache."
memcache
(for Linux only) See Section 6.3.5, "Configuring httpd.conf."
As part of this section, information is also provide on optionally installing the mod_proxy_html
, which is needed to rewrite the HTML links in a proxy situation, to ensure that links work for the users outside the proxy
The post-installation procedures involve:
Creating a new user to run the UIO Apache Proxy process (on Linux only)
The UIO Apache Proxy binaries for Windows and Linux are different. Since the UIO Proxy is in C/C++, the same binary do not work on different platforms (unlike Java).
The files are located under $ORACLE_HOME/oaam/oaam_proxy
platform_specific_file.
For Windows, the binary files are listed in Table 6-3.
Table 6-3 Windows Binary Files
Name | Description |
---|---|
mod_uio.so | UIO Apache Proxy module |
log4cxx.dll | Apache Log4cxx library |
libxml2.dll | XML/HTML Parser |
apr_memcache.dll | APR Memcache client library. |
The data files are listed in Table 6-4.
Table 6-4 Windows Data files
Name | Description |
---|---|
UIO_Settings.xml | UIO Apache Proxy Settings XML file |
UIO_log4j.xml | UIO Apache Proxy Log4j (log4cxx) configuration XML file |
TestConfig.xml | UIO Apache Proxy Sample application configuration file |
UIO_Settings.rng | Relax NG grammar for UIO_Settings.xml |
UIO_Config.rng | Relax NG grammar for application configuration XML files |
For Linux, the binary files are listed in Table 6-5.
Table 6-5 Linux Binary Files
Name | Description |
---|---|
mod_uio.so | UIO Apache Proxy module |
liblog4cxx.so.0.10.0.0 | Apache Log4cxx library |
libxml2.so.2.6.32 | XML/HTML parser |
libapr_memcache.so.0.0.1 | APR Memcache client library. |
The data files are listed in Table 6-6.
Table 6-6 Linux Data Files
Name | Description |
---|---|
UIO_Settings.xml | UIO Apache Proxy Settings XML file |
UIO_log4j.xml | UIO Apache Proxy Sample Log4j (log4cxx) configuration XML file |
TestConfig.xml | UIO Apache Proxy Sample application configuration files |
UIO_Settings.rng | Relax NG grammar for UIO_Settings.xml |
UIO_Config.rng | Relax NG grammar for application configuration XML files |
The pre-installation steps involved for downloading or building the Apache httpd
, depend on the platform, Windows or Linux, and on whether certain requirements are met.
Instructions are provided in this section for copying the UIO Apache Proxy and support files to specific directories in Apache for both Windows and Linux platforms.
Table 6-7 summarizes:
C:\Apache2.2
Table 6-7 Directories for Windows UIO Proxy Binary Files
Directories | File Descriptions |
---|---|
C:\Apache2.2\modules\mod_uio.so | UIO Apache Proxy module |
C:\Apache2.2\bin\log4cxx.dll | Apache Log4cxx library |
C:\Apache2.2\bin\libxml2.dll | XML/HTML Parser |
C:\Apache2.2\bin\apr_memcache.dll | APR Memcache library. |
The data files are put in the directories summarized in Table 6-8.
Table 6-8 Directories for Windows UIO Proxy Data Files
Directories | File Descriptions |
---|---|
C:\OAAMUIO\UIO_Settings.xml | UIO Apache Proxy settings XML file |
C:\OAAMUIO\UIO_log4j.xml | UIO Apache Proxy Log4j (log4cxx) configuration XML file |
C:\OAAMUIO\TestConfig.xml | UIO Apache Proxy application configuration files (any number) |
C:\OAAMUIO\UIO_Settings.rng | Relax NG grammar for UIO_Settings.xml |
C:\OAAMUIO\UIO_Config.rng | Relax NG grammar for application configuration XML files |
C:\OAAMUIO\logs\uio.log | UIO Apache Proxy log |
If you want to change the location of the various configuration files, refer to the "Configuring httpd.conf" section.
After the installation of the Apache httpd
, you must copy the UIO Apache Proxy binary files into (assuming Apache httpd
is installed in /usr/local/apache2
) the directories shown in Table 6-9.
Table 6-9 Directories for Linux UIO Proxy Binary Files
Directories | Description |
---|---|
/usr/local/apache2/modules/mod_uio.so | UIO Apache Proxy Module |
/usr/local/apache2/lib/liblog4cxx.so.0.10.0.0 | Apache Log4cxx Library |
/usr/local/apache2/lib/libxml2.so.2.6.32 | XML/HTML Parser |
/usr/local/apache2/lib/libapr_memcache.so.0.0.1 | APR Memcache client library. |
Then, create soft links to the libraries as follows:
Also, ensure that the binary files have executable permission.
Apache httpd
is typically run as root
so that it creates a parent process that listens on port 80, and it spawns handler processes that run as the user given in the User directive in httpd.conf
.
For this reason, create a user called oaamuio
that is the checkpoint user for the UIO Apache Proxy. The proxy configuration and log files are accessible by this user. Ensure that only this user can access the log files. Assuming /home/oaamuio
is the home directory for this user, the directory structure looks like the one presented in Table 6-10.
The UIO Apache Proxy data files should follow the directory structure shown in Table 6-10.
Table 6-10 Directories for Linux UIO Proxy Data Files
Directories | Description |
---|---|
/home/oaamuio/uio/UIO_Settings.xml | UIO Apache Proxy settings XML file |
/home/oaamuio/uio/UIO_log4j.xml | UIO Apache Proxy Log4j (log4cxx) configuration XML file |
/home/oaamuio/uio/TestConfig.xml | UIO Apache Proxy application configuration files (any number) |
/home/oaamuio/uio/UIO_Settings.rng | Relax NG grammar for UIO_Settings.xml |
/home/oaamuio/uio/UIO_Config.rng | Relax NG grammar for application configuration XML files |
/home/oaamuio/uio/logs/uio.log | UIO Apache Proxy log |
If you want to change the location of the various configuration files, refer to the "Configuring httpd.conf" section.
The run-time user of httpd
should have the appropriate permissions to access all these files.
This is an optional configuration that may be needed for Linux deployment of UIO Apache Proxy. The UIO Apache Proxy maintains a session for the user where it keeps local state such as session level variables for the user. On Windows, there is always a single process for Apache httpd server running and so this session information is local to the process. On Linux, you could have multiple Apache httpd server processes running which means the session information cannot be kept local to the process but needs to be centralized. In this case, memcached is used to hold the session information. The following description is to identify when you must use memcached to hold the UIO Apache Proxy session information.
Apache httpd
ships with a selection of Multi-Processing Modules (MPMs) which are responsible for binding to network ports on the machine, accepting requests, and dispatching children to handle the requests. On Linux: httpd
can run with two different MPMs: httpd
with prefork MPM (single-threaded) or with worker MPM (multi-threaded). The MPM is built into the httpd
and is not a run-time option.
With prefork MPM, httpd
maintains a pool of single-threaded processes, where each request is handled by a single process. In this case, you must configure UIO Apache Proxy to use memcached.
With worker MPM, httpd
maintains a pool of multithreaded processes, where every process could be handling multiple requests at a time. In this case, you can configure Apache httpd to launch a single process and avoid using memcached. However, the default configuration launches multiple processes and if you want to keep that unchanged, then you must configure UIO Apache Proxy to use memcached. Here is an example of httpd.conf example that can be used to configure a worker MPM to launch a single process.
On Windows, httpd MPM is always in multi-threading mode with a single process.
On Linux, in the case where the httpd
runs multiple process (irrespective of single or multithreaded), the UIO Apache Proxy session data must be maintained in a common store (database or cache) so that multiple processes can access the session data. The UIO Proxy uses memcache
(a memory based very fast cache) to store the session data.
At startup, the UIO Proxy autodetects whether httpd
is running with a single process or multiple processes. If httpd
is running with multiple processes (which is the case with prefork or worker mpm on Linux), it tries to connect to the memcache
daemon using default connection parameters (that are defined in Section 6.3.6.1, "UIO_Settings.xml"). On Windows, by default, the UIO Proxy uses local sessions. It does not connect to the memcache
daemon; however it can also be configured to maintain session data in the memcache
daemon (explained in Section 6.3.6.1, "UIO_Settings.xml").
For the scenarios where the UIO Apache Proxy is connecting to memcache
daemon, you must install memcache
on your system using the instructions from the memcache
Web site and run the memcache
daemon(s) before running the Apache httpd
.
Install memcache
using instructions at:
http://www.danga.com/memcached
You may already have a binary installation available from your Linux distribution. The UIO Apache Proxy has been tested with version 1.2.5 of memcache
.
This section provides information on how to edit the httpd.conf
file to activate the UIO Apache Proxy. The httpd.conf
file is the main configuration file used by the Apache HTTP Server.
In the sample installation, the Apache httpd
has been installed in c:\ProgramFiles\Apache2.2
or /usr/local/apache2
.
To ensure that http.conf
is correctly set up in your environment, follow these steps:
mod_proxy
. LoadModule
group of lines to activate the UIO Apache Proxy. UIO_Settings.xml
file that has the settings for the UIO Apache Proxy. Note: This should be an absolute path to theUIO_Settings.xml file. |
On Windows (all paths should be with forward slashes),
On Linux,
mod_proxy
's forward-proxying capability since it is not needed. mod_proxy
configuration to reverse-proxy to oaam_server
and the target application is being protected by OAAM. httpd
using User and Group directives to oaamuio
. The actual settings for #4 and #5 are installation-specific. They are only examples of the settings you must set. For information on setting details, refer to the Apache Web site.
With the changes described and by properly setting up UIO_Settings.xml
, you should be able to access OAAM Server (oaam_server
) and target application and run Phase One scenarios. The URL for the target application is:
So far in this chapter, the configuration to the proxy has been performed without using SSL.
To enable SSL, refer to the Apache Web site for Tomcat and for Apache procedures.
Note that the UIO Apache Proxy requires mod_ssl
to be part of httpd
. This ensures that the OpenSSL library is linked in and is properly configured for the UIO Apache Proxy to generate session ids. You need to ensure that mod_ssl
is loaded and you do not need to perform any configuration if you are not using SSL.
mod_proxy_html module (optional)
Optionally, you may need to install the mod_proxy_html
(http://apache.webthing.com/mod_proxy_html
/) Apache module. This module is needed only if the protected application has Web pages that have hard-coded URL links to itself. If the application has relative URLs, you do not need this module.
From their Web site, the executive summary of this module is as follows:
mod_proxy_html
is an output filter to rewrite HTML links in a proxy situation, to ensure that links work for users outside the proxy. It serves the same purpose as Apache's ProxyPassReverse
directive does for HTTP headers, and is an essential component of a reverse proxy.
For example, if a company has an application server at appserver.example.com
that is only visible from within the company's internal network, and a public Web server www.example.com
, they may wish to provide a gateway to the application server at http://www.example.com/appserver/
. When the application server links to itself, those links need to be rewritten to work through the gateway. mod_proxy_html
serves to rewrite foobar
to foobar
making it accessible from outside."
Log4jProperties
Set the location of log4j.xml
file that defines the logging configuration for the UIO Apache Proxy. The location should be an absolute path; it cannot be ServerRoot
relative. On Linux, you have to ensure that the httpd
process can access the directory.
When using httpd
in a multiprocessing mode, do not use FileAppender
; use SocketAppender
instead to log the logs from the different processes. Refer to the log4j documentation on the Internet for more information.
GlobalVariable
GlobalVariable
is a global variable that is used in the application configuration. You can have any number of such name-value pairs.
ConfigFile
ConfigFile
is the absolute path to an application configuration. You can have any number of such configurations. Again, you need to make sure, on Linux, that the httpd
process has the permissions to access these files. Refer to "Configuring the UIO Proxy" to understand how to perform a configuration for an application.
Memcache
Memcache
has the IP address and port of a memcache
server. You can have multiple Memcache
elements in the settings file if you have multiple memcache
servers running. If you have a single local memcache
running, you do not need to have this element at all. By default, the UIO Apache Proxy tries to connect to memcache
on IP address 127.0.0.1
and port 11211
.
Settings
These are flags to control the behavior of the UIO Apache Proxy. Various settings are listed in Table 6-11.
Table 6-11 OAAM UIO Proxy Settings.
Flags | Description |
---|---|
MaxSessionInactiveInterval_sec | UIO Apache Proxy maintains a session for every user passes through the proxy. This setting sets the expiry time of this session after the user becomes inactive. It is in seconds (default is 30 minutes) For example, |
GarbageCollectorInterval_ms | Interval for running session expiry thread (default = 5 minutes) For example, |
FileWatcherInterval_ms | Interval for checking if the settings or any config file has changed (default = 1minute) For example, (After modifying the configuration XML file, even though the proxy updates the configuration on the fly, it is advisable to restart the httpd server.) |
SessionIdCookieName_str | Name of the cookie used by UIO Apache Proxy to maintain its session (default = OAAM_UIOProxy_SessionId For example, |
SessionCookie_DomainLevelCount | Domain level for the UIO Apache Proxy session cookie. Does not affect any other cookie. For example, |
SessionCookie_ExpiryInMinutes | The value of this setting is used to compute the expiry time that is put in the expires attribute of the |
SessionCookie_IsHttpOnly | If set to 1, the UIO Apache Proxy session cookie is marked as HTTP only in the On a supported browser, a |
SessionCookie_IsSecure | If set to 1, UIO Apache Proxy session cookie is marked as secure in the Set-Cookie header. It does not affect any other cookie. The default is not to mark the cookie as secure. A secure cookie is only used when a browser is visiting a server via HTTPS, that will make sure that cookie is always encrypted when transmitting from client to server, and therefore less likely to be exposed to cookie theft via eavesdropping. |
IgnoreUrlMappings | Ignore the application configuration XML files; the proxy behaves as a flow-through proxy For example, The value of 1 will make the proxy act as flow-through and the value of 0 will enable the configuration XML interceptors. |
CaptureTraffic | Capture the HTTP traffic - headers and content in the log files. This mode is for debugging purpose. Note that it captures the headers and contents as is and could contain customer's personal data. Use this mode with caution and only for debugging/test. For example, |
MaxReqBodyBytes | Maximum request body that can be processed by the proxy and request body bigger than this value will be truncated. This is necessary when the application has POSTs with big files getting uploaded. For example, |
UseMemcache | Force the use of memcache even when httpd is running in single process mode. Has no effect when running in multiple process mode. Applies at startup and requires restarting httpd for change to apply. For example, |
CachedConfigExpiry_sec | Expiry time for unused config XML data in memory, if multiple config XML configurations have been loaded into memory. This happens when config XML files are automatically loaded when they are modified. (Default = 60 minutes). For example, |
AutoLoadConfig | Set to 1 to enable auto-loading of config XML files when they are modified by user. Set to 0 to turn this feature off. You can enable this feature when using single-process mode of httpd. Do not enable this feature for multiple process mode of httpd for production use, since individual processes could have different versions of the config XML files. For example, |
Setting name | Enables internal profiling for various operations such as per interception phase and prints that out in the logs in microseconds. It should be used only for debugging and profiling in non-production environments as this may impact performance. The logs appear at |
For actual log4j format details, refer to log4j manual available on the Internet. Apache::log4cxx
is a C++ implementation of the log4j framework and the XML file format is common to log4cxx
and log4j
.
Available UIO Apache Proxy Log4j loggers are listed below.
Table 6-12 UIO Apache Proxy Log4j Loggers
Loggers | Description |
---|---|
config.reader | The UIO_Config XML file loading related classes use this logger. |
settings.reader | The UIO_Settings XML file loading classes use this logger. |
config.datastore | The UIO_Config XML file loading related classes use this logger. |
config | The UIO_Config XML file loading related classes use this logger. |
config.reader.populator | The UIO_Config XML file loading related classes use this logger. |
condition | All conditions defined in UIO_Config.xml use this logger. |
filter | All filters defined in UIO_Config.xml use this logger. |
action | All actions defined in UIO_Config.xml use this logger. |
interceptor | All actions defined in UIO_Config.xml use this logger. |
requestcontext | HTTP request processing is performed by classes that use this logger. |
proxy | HTTP request processing is performed by classes that use this logger. |
htmlpage | HTML page related processing is performed by classes that use this logger. |
httpreqimpl | HTTP request processing is performed by classes that use this logger. |
container | HTTP request processing is performed by classes that use this logger. |
sessions | UIO Proxy session management related classes use this logger. |
http | Logger that is used to log all HTTP traffic when CaptureTraffic setting is turned on. |
distsessions | UIO Proxy session management related classes use this logger. |
Note: The logger documentation is provided for completeness and to enable the deployment engineer to make better sense of the logs. Typically for a debugging scenario turn on the log level toDEBUG and do not try to filter by any loggers. |
For information on setting up rules and user groups, refer to the Oracle Fusion Middleware Installation Guide for Oracle Identity Management.
To set up policies for the UIO Proxy, import the out-of-the-box policies. Information about importing policies is available in the Oracle Fusion Middleware Administrator's Guide for Oracle Adaptive Access Manager.
The proxy intercepts all HTTP traffic between the client browser and the Web application and performs actions specified in the configuration files. The UIO ISA Proxy uses the XML Schema Definition which is described in the BharosaProxy.xsd
and the UIO Apache Proxy uses the XML Relax NG definition which is in the UIO_Config.rng
file in the proxy distribution.
The following sections describe various elements of the proxy configuration file.
Interceptors are the most important elements in the proxy configuration. Authoring the proxy configuration file deals mostly with defining interceptors.
There are two types of interceptors: request interceptors and response interceptors. As the names suggest, request interceptors are used when the proxy receives HTTP requests from the client browser and response interceptors are used when the proxy receives HTTP response from the server, for example, Web application or OAAM Server.
There are four components to an interceptor and all of them are optional.
Table 6-13 Components of Interceptors
Interceptor | Attributes | Description |
---|---|---|
RequestInterceptor | id, desc, post-exec-action, isGlobal, enabled |
|
ResponseInterceptor | id, desc, post-exec-action, isGlobal, enabled |
|
Conditions are used in the proxy to inspect HTTP request/response or the state information saved in the proxy (variables). Each condition evaluates to either true
or false
. Conditions are evaluated in the order they are listed in the configuration file until a condition evaluates to false
or all conditions are evaluated. Table 6-14 lists conditions that can be defined in an interceptor.
Table 6-14 Conditions Defined in an Interceptor
Condition name | Attributes | Description |
---|---|---|
HeaderPresent | enabled, name | Checks the presence of the specified header in request/response. The header name should be terminated by a colon (" Example:
|
ParamPresent | enabled, name | Checks the presence of the specified parameter in the request. Example:
|
QueryParamPresent | enabled, name | Checks the presence of the specified query parameter in the URL. Example:
|
VariablePresent | enabled, name | Checks whether the specified proxy variable has been set. Example:
|
RequestCookiePresent | enabled, name | Checks the presence of the specified cookie in the request Example:
|
ResponseCookiePresent | enabled, name | Checks the presence of the specified cookie in the response Example:
|
HeaderValue | enabled, name, value, mode, ignore-case | Checks whether the specified request/response header value matches the given value. The header name should be terminated by a colon (" Example:
|
ParamValue | enabled, name, value, mode, ignore-case | Checks whether the specified request parameter value matches the given value. Example:
|
QueryParamValue | enabled, name, value, mode, ignore-case | Checks whether the specified URL query parameter value matches the given value. Example:
|
VariableValue | enabled, name, value, mode, ignore-case | Checks whether the specified proxy variable value matches the given value. Example:
|
RequestCookieValue | enabled, name, value, mode, ignore-case | Checks whether the specified request cookie value matches the given value. Example:
|
ResponseCookieValue | enabled, name, value, mode, ignore-case | Checks whether the specified response cookie value matches the given value. Example:
|
HttpStatus | enabled, status | Checks whether the status code of the response matches the given value. Example:
|
HtmlElementPresent | enabled, name, attrib-name1, attrib-value1, attrib-name2, attrib-value2, … attrib-name9, attrib-value9, | Checks presence of a html element to match the specified conditions:
Example:
|
PageContainsText | enabled, text | Checks whether the response contains the given text. Example:
|
NotVariableValue | enabled, name, value, mode, ignore-case | Checks whether the specified proxy variable value does not match the given value. Example:
|
And | enabled | Evaluates to Example:
|
Or | enabled | Evaluates to Example:
|
Not | enabled | Reverses the result of the child condition(s). Example:
|
Attribute id
is optional and is used only in trace messages. If no value is specified, the condition name (like HeaderPresent
) will be used.
Attribute enabled
is optional and the default value is true
. This attribute can be used to enable/disable
a condition. The value of this attribute can be set to the name of a global variable; in such case, the condition will be enabled or disabled according to the value of the global variable.
Attribute value
can be set to the name of a proxy variable. In such a case, the proxy will evaluate the variable at checkpoint and use that value in the condition.
Attribute mode
can be set to one of the following: begins-with
, ends-with
, contains
.
Attribute ignore-case
can be set to one of the following: true
, false
.
Filters are used in the proxy to modify HTTP request/response contents or modify the state information saved in the proxy (variables). Filters are executed in the order they are listed in the configuration file. Table 6-15 lists filters that can be defined in an interceptor.
Table 6-15 Filters Defined in an Interceptor
Filter name | Attributes | Description |
---|---|---|
AddHeader | enabled, name, value | Adds the specified header with a given value to request/response. The header name should be terminated by a colon (" Example:
|
SaveHeader | enabled, name, variable | Saves the specified request/response header value in the given proxy variable. The header name should be terminated by a colon (" Example:
|
RemoveHeader | enabled, name | Removes the specified header from request/response. The header name should be terminated by a colon (" Example:
|
AddParam | enabled, name, value | Adds a request parameter with a specified name and value. Example:
|
SaveParam | enabled, name, variable | Saves the specified request parameter value in to the given proxy variable. Example:
|
AddRequestCookie | enabled, name, value | Adds the specified cookie with a given value to request Example:
|
SaveRequestCookie | enabled, name | Saves the specified request cookie value in the given proxy variable |
AddResponseCookie | enabled, name | Adds the specified cookie with a given value to response Example:
|
SaveResponseCookie | enabled, name | Saves the specified response cookie value in the given proxy variable. Example:
|
SaveHiddenFields | enabled, form, variable, save-submit-fields | Saves all the hidden, submit fields value, in the given form if the form name is specified to the given proxy variable. To not save submit fields, set save-submit-fields attribute to false. Example:
|
AddHiddenFieldsParams | enabled, variable | Adds request parameters for each hidden field saved in the variable. Example:
|
SetVariable | enabled, name, value | Sets the proxy variable with the given name to the specified value. Example:
|
UnsetVariable | enabled, name | Removes the proxy variable with the given name. Example:
|
ClearSession | enabled, name | Removes all session variables in the current session. Example:
|
SaveQueryParam | enabled, name, variable | Saves the specified query parameter in the given proxy variable. Example:
|
SaveRequest | enabled, variable | Saves the entire request content in the given proxy variable. This includes all headers and the body, if present. Example:
|
SaveResponse | enabled, variable | Saves the entire response content in the given proxy variable. This includes all headers and body, if present. Example:
|
ReplaceText | enabled, find, replace | Updates the response by replacing the text specified in Example:
|
ProcessString | enabled, source, find, action, count, search-str, start-tag, end-tag, ignore-case, replace, encoding | This filter can be used to extract a sub-string from a string (such as request, response contents) and save it to a proxy variable. This filter can also be used to dynamically format strings. The |
FormatString | enabled, variable, format-str, encoder, param-0, param-1, …, param-n | This filter provides functionality similar to the FormatString is not supported in the UIO Apache Proxy. As it ProcessString provides all the required functionality. |
Find the sub-string between the given start-tag
and end-tag
in the source string, extract the sub-string
found and save extracted sub-string
in the given variable. The action of 'extract
' will extract the first matching start-tag
and end-tag
pair.
Find the given search-string
in the source string, replace it with the replace string and save the updated string in the given variable. You can also use the count attribute to specify behavior in case there are multiple matches. The attribute 'count
' can take values all
, once
or a number
.
Find the sub-string
between the given start-tag
and end-tag
in the source string, replace it (including the start and end tags) with the evaluated value of the sub strin
g found and save the updated string in the given variable. You can use the attribute count to specify the behavior in case of multiple matches. This attribute can take the value of 'all
', 'once
' or a number
.
You can specify the attribute ignore-case
as true
or false
and it can be applied to any of the above examples and accordingly the search operation will be case sensitive or not. You can specify encoding attribute optionally and it will encode the resulting string before storing in to the variable. This attribute can take only base64 value. If you do not specify this attribute then the resulting string is stored as is.
The encoding attribute is supported only on UIO Apache Proxy. On UIO ISA Proxy you will have to use FormatString if you want to encode the result in base 64.
Here is an example to create a HTTP Basic Authentication response header in variable $AuthHeader
Value, using the user name/password in variables %userid
and %password
:
An interceptor can optionally perform one of the following actions after executing all the filters. No further interceptors will be attempted after executing an action.
redirect-client
Often the proxy would need to redirect the client to load another URL; redirect-client
is the action to use in such cases. The proxy will send a 302 HTTP
response to request the client to load the specified URL. It takes has 2 attributes: url
which contains the URL to which the proxy should re-direct the user and display-url
which is optional.
If the display-url
attribute is specified in the interceptor, the proxy will send a HTTP 302
response to the browser to load the URL specified in display-url
attribute. When the proxy receives this request, it will perform a HTTP-GET
on the server to get the URL specified in the url
attribute.
send-to-client
Often a response from the server would have to be saved in the proxy and sent to the client later after performing a few other HTTP requests; send-to-client
is the action to use in such cases. The proxy will send the client the contents of specified variable. It has two attributes: html
which contains the variable that has the saved content that you want send back to the user and optional attribute display-url
.
If the display-url
attribute is specified in the interceptor, the proxy will send a HTTP 302
response to the browser to load the URL specified in display-url
attribute. When the proxy receives this request, it will send the response specified in the interceptor.
get-server
Sometimes the proxy would need to get a URL from the server; get-server
is the action to use in such cases. The proxy will send a HTTP-GET
request for the specified URL to the server. It has two attributes: url
which is the URL to perform the get on and the display-url
which is optional.
If the display-url
attribute is specified in the interceptor or if this action is specified in a response interceptor, the proxy will send a HTTP 302
response to the browser. When the proxy receives this request it will perform a HTTP-GET
on the server to get the URL specified in the url
attribute.
post-server
Sometimes the proxy would need to post
to a URL in the server; post-serve
r
is the action to use in such cases. The proxy will send a HTTP-POST
request for the specified URL to the server. It has two attributes: url
that has the URL to which the post needs to be sent and optional display-ur
l
.
If display-url
attribute is specified in the interceptor or if this action is specified in a response interceptor, the proxy will send a HTTP 302
response to the browser. When the proxy receives this request it will perform a HTTP-POST
to the server to the URL specified in the url
attribute.
send-to-server
In certain situations the request from the client needs to be saved in the proxy and sent to the server later after performing a few other HTTP requests; send-to-server
is the action to use in such cases. The proxy will send the contents of the specified variable to the server. It has two attributes: html
which contains the variable that has the saved content and the optional display-url
attribute.
If the display-url
attribute is specified in the interceptor, then the proxy will send out a HTTP 302
redirect response to the browser. This will cause the browser to request for the display-url
and then the proxy will send out the saved request to the server. If you use this action in a response interceptor, then display-url
is mandatory; without this, the action will fail.
The proxy variables can store string data in the proxy memory. Variables can be used in conditions, filters and actions. For example, SaveHeader
filter can be used to save the value a specific header in the given proxy variable. This variable value could later be used, for example, to add a parameter to the request. Variables can also be used in conditions to determine whether to execute an interceptor or not.
The proxy variables are of 3 types, depending upon the life span of the variable. The type of variable is determined by the first letter of the variable name, which can be one of: %
, $
, @
.
All types of variables can be set using filters like SetVariable
, SaveHeader
, SaveParam
, SaveResponse
, and other filters.
All types of variables can be unset/deleted by the UnsetVariable
filter. The ClearSession
filter can be used to remove all session variables.
Request variables
Request variables: these variable names start with %
. These variables are associated with the current request and are deleted at the completion of the current request. Request variables are used where the value is not needed across requests.
Session variables
Session variables: these variable names start with $
. These variables are associated with the current proxy session and are deleted when the proxy session is cleaned up. Session variables are used where the value should be preserved across requests from a client.
Global variables
Global variables: these variable names start with @. These variables are associated with the current proxy configuration and are deleted when the proxy configuration is unloaded. Global variables are used where the value needs to be preserved across requests and across clients.
Global variables can be set at the proxy configuration load time using SetGlobal
in the configuration file. In the UIO ISA Proxy, global variables can also be set by adding registry values under key HKLM\Software\Bharosa\Proxy\Globals. The name of each entry under this key should be the variable name
, starting with @
. And the data of the entry should be the value of the variable. The registry-type of the value can be REG_DWORD, REG_SZ or REG_EXPAND_SZ.
Pre-defined variables
The UIO Proxy supports the following pre-defined request variables:
Table 6-16 Pre-defined Variables Supported by the UIO Proxy
Variable name | Description |
---|---|
%RESPONSE_CONTENT | This variable contains the contents of the entire response from the Web server for the current request. Forthe UIO Apache Proxy, |
%REQUEST_CONTENT | This variable contains the contents of the entire request from the client. For the UIO Apache Proxy, |
%QUERY_STRING | This variable contains the query string, starting with |
%REQUEST_METHOD | HTTP method verb for the request: |
%REMOTE_HOST | Hostname of the client or agent of the client. (For the UIO Apache Proxy, you need to enable the hostname lookup by using the Apache directive ' |
%REMOTE_ADDR | IP address of the client or agent of the client. |
%HTTP_HOST | The content of HTTP Host header |
%URL | URL for the current request |
A single proxy installation can be used to provide multifactor authentication for multiple Web application that run in one or more Web servers. In the UIO Proxy configuration, an application is a grouping of interceptors defined for a single Web application.
Request and response interceptors can be defined outside of an application in the proxy configuration file. These interceptors are called "global" interceptors and will be evaluated and executed prior to the interceptors defined in the applications.
An HTTP messages consist of requests from the client to server and responses from the server to client. HTTP is transaction oriented. A request from client to server will have a single response from the server to client. The request has a set of headers followed by, optionally, a request body. Similarly the response has headers and, optionally, a body. Since the proxy is sitting in between the client and the target application, it can modify the request headers, body and response headers and body of any HTTP request, using the configuration XML. Note that a response could be a normal 200 OK response or it could be a redirect response 302 or any other HTTP status response. In all these cases, the response is for that request and will trigger the response interceptors for the same request. An example, if the request is for the URL /doLogin.do
, and the response is a redirect (302)
with the location of /loginPage.jsp
then all the request and response interceptors will be triggered for the URL /doLogin.do
. The next HTTP request is a HTTP GET
on /loginPage.jsp
and this will cause all the request and response interceptors for /loginPage.jsp
to be triggered.
When a request arrives, the proxy evaluates request interceptors defined for the URL in the order they are defined in the configuration file. Similarly when on receiving response from the Web server, the proxy evaluates response interceptors defined for the URL of the HTTP request in the order defined in the configuration file.
If the conditions in an interceptor evaluate to true
, the proxy will execute that interceptor i.e. execute the filters and action. After executing an interceptor, the proxy will continue with the next interceptor only if the following conditions are met:
post-exec-action
attribute for the current interceptor is continue
It is highly recommended that the post-exec-action
attribute be specified for interceptors that do not define an action. For global interceptors (for example, the interceptors defined outside of any application), the default value of post-exec-action
attribute is continue
. The stop-phase-intercep
t
value of post-exec-action
on a request interceptor stops the request interception but continues with response interception while stop-intercept
stops the interception completely for that request. For non-global interceptors, the default value is continue
if no action is specified and stop-phase-intercept
if an action is specified.
As mentioned earlier the proxy configuration can contain multiple applications. While finding the list of interceptors to evaluate for a URL, only the following interceptors are considered:
Each session will be associated with at most one application. If no application is associated with the current session (yet) when the proxy finds an interceptor in an application for the URL, it will associate the application with the current session.
If the current session already has an application associated, and if no interceptor is found in that application for the URL, the proxy will then look for intercepts in other applications. If an interceptor is found in another application for the URL, a new session will be created and the request will be associated with the new session.
The UIO Proxy redirects the user to OAAM Server pages at appropriate times, for example to collect the password using OAAM Server, to run risk rules. HTTP headers are used to exchange data between the UIO Proxy and OAAM Server. The following table lists OAAM Server pages referenced in the proxy configuration along with the details of HTTP headers used to pass data. It also lists the expected action to be taken by the proxy on the given conditions.
Table 6-17 OAAM Server Interface
URL | Condition | Action |
---|---|---|
Any request to OAAM Server page | On receiving request | Set header " |
loginPage.jsp or login.do | On receiving request to application login page | Redirect to this URL to use the Oracle Adaptive Access Manager login page instead of the application's login page. |
password.do | Response contains headers userid, password (could be more depending upon the application) | Save the credentials from the response headers and post to the application To put an URL with an " |
login.do | Phase-1 only: After validating the credentials entered by the user. | Redirect to this URL to update the status in Oracle Adaptive Access Manager and run appropriate risk rules. |
login.do | Phase-1 only: On receiving the request. | Set " Set " Set the " A " Setting "
|
updateLoginStatus.do | Phase-2 only: After validating the credentials entered by the user. | Redirect to this URL to update the status in Oracle Adaptive Access Manager and run appropriate risk rules |
updateLoginStatus.do | Phase-2 only: On receiving request | Set " Setting "
|
updateLoginStatus.do challengeUser.do registerQuestions.do userPreferencesDone.do | Response header "Rules-Result" has value "allow" | The Oracle Adaptive Access Manager rules evaluated to permit the login. The proxy can permit access to the protected application URLs after this point. |
registerQuestions.do | Response header "Rules-Result" has value "block" | Either the application did not accept the login credentials or the Oracle Adaptive Access Manager rules evaluated to block the login. The proxy should log off the session in the application, if login was successful. Then a Login Blocked message should be sent to the browser. |
changePassword.do | Response contains headers "password", "newpassword" and "confirmpassword" | Save the passwords from the response headers and post to the application |
loginFail.do | To display error message in OAAM Server page, like to display login blocked message | Redirect to this URL with appropriate " In most cases control is not given to the proxy via a response header in a block situation. Instead, the user is taken to the following URL with a query parameter "
Alternatively it is possible to get the same result with the following URLs.
|
logout.do | On completion of application session logout | Redirect to this URL to log out the OAAM Server session |
logout.do | On receiving response | Redirect to application logout URL to log off the application session, if it is not already off |
resetPassword.do | Response contains headers "newpassword" and "confirmpassword" | Save the passwords from the response headers and post to the application |
getUserInput.do | Response contains headers "BH_UserInput" | Save the user input and take appropriate action (like post to application, etc.) |
changeUserId.do | On receiving request | Add " |
changeUserId.do | On receiving response | Redirect to the appropriate application page or send back the saved application response |
updateForgotPasswordStatus.do | Phase-2 only: After validating the forgot- password-credentials entered by the user. | Redirect to this URL to update the status in Oracle Adaptive Access Manager and run appropriate risk rules. |
updateForgotPasswordStatus.do | Phase-2 only: On receiving request | Set " |
updateForgotPasswordStatus.do challengeForgotPasswordUser.do | Response header "BH_FP-Rules-Result" has value "allow" | The Oracle Adaptive Access Manager rules evaluated to permit the forgot-password flow. The proxy can permit continuation to the forgot-password flow to reset the password or allow the user login, depending on the application. |
updateForgotPasswordStatus.do challengeForgotPasswordUser.do | Response header "BH_FP-Rules-Result" has value "block" | Either the application did not accept the forgot-password credentials or the Oracle Adaptive Access Manager rules evaluated to block the forgot-password flow. A login blocked message should be sent to the browser. |
Any request to OAAM Server page | If the proxy needs to get a property value from OAAM Server. On receiving request | " OAAM Server will return the values in multiple response headers, one for each property. The return response header names will be of format: " |
Two flags in the settings are used for application discovery. One flag instructs the proxy to ignore its configuration XML and act as a reverse-proxy only. The other flag instructs the proxy to capture all the HTTP traffic and print it to the logs. The first flag is used for application discovery to capture the HTTP traffic and analyze it. The second flag would be kept on during the configuration XML development phase to debug the configuration XML itself.
Application discovery is the process of studying an existing Web application to author the proxy configuration to add multifactor authentication using the UIO Proxy. A few logins attempts to the application would be made via the proxy to capture the HTTP traffic in each attempt. The captured HTTP traffic would then be analyzed to author the proxy configuration. The UIO Proxy should be set up to dump all the HTTP traffic to a file. Then a few logins/login attempts to the application should be made via the proxy. The captured HTTP traffic should then be analyzed to author the proxy configuration.
For the application discovery process it is preferable to work with the Web application in the customer's test environment, rather than the production application being used by users. If the test environment is not available, the live application can be used.
The following information is needed from the client for the application discovery process:
The Microsoft ISA server should be set up to publish the Web application under discovery, for example, creating a Web site publishing rule with appropriate parameters. During the application discovery process, the application will be accessed via Microsoft ISA, which hosts the UIO ISA Proxy. Refer to the Microsoft ISA configuration document for details of setting up Microsoft ISA.
The UIO ISA Proxy settings (registry values under HKLM\SOFTWARE\Bharosa\Proxy
key) should be set as given in Table 6-18 for the proxy to capture the HTTP traffic to the specified file. This HTTP traffic captured will later be used for analysis to author the proxy configuration.
Table 6-18 Setting up the proxy
Setting | Value |
---|---|
IgnoreUrlMappings | 1 |
CaptureTraffic | 1 |
TraceFilename | <filename> |
TraceLevel | 0x87 |
TraceToFile | 1 |
It might be useful to capture the HTTP traffic for each scenario (for example, successful login attempt, wrong password, wrong user name, disabled user, and other scenarios) in separate files. TraceFilename
setting should be updated to the desired filename before the start of the scenario.
After application discovery is performed, the proxy settings should be set as given in Table 6-19 to restore the default UIO ISA Proxy behavior.
For application discovery, the HTTP traffic needs to be captured through the proxy.
Table 6-20 shows the settings (in UIO_Settings.xml
) to enable this mode of operation.
The IgnoreUrlMappings
setting is used to disable URL interception of the HTTP traffic through the proxy.
The CaptureTraffic
setting captures the HTTP traffic through the logger name HTTP
set to log level of info.
It might be useful to capture the HTTP traffic for each scenario (like successful login attempt, wrong password, wrong user name, disabled user, and so on) in separate files. The log file name setting should be updated to the desired filename before the start of the scenario.
After application discovery is performed, the proxy settings should be set, as shown in Table 6-21, to restore the default UIO Apache Proxy behavior.
Collect information for the following scenarios during the discovery process.
You must create interceptors in the TestConfig.xml
file that look for certain URLs and conditions in the HTTP traffic. The proxy listens to the HTTP traffic and when it sees a URL that matches a URL in its TestConfig.xml
file, it evaluates the interceptors that have a URL match and it evaluates the conditions block in the interceptor. If they match, the UIO Proxy executes the filter block and condition block.
Login
Logout
Change password
Reset password
Follows the same process as Change password.
Change LoginId
login-id
change is posted to the application new-login
used to submit the change password request. success
/failure
) of the change login-id
request. On successful change login-id
request, the changeUserId.do
page in OAAM Server should be called to update the login-id
in the Oracle Adaptive Access Manager database. Forgot password
Forgot-password options provided by the application must be reviewed for understanding. Most applications ask for alternate ways to identity the user (account number/PIN, SSN/PIN, question/answer, and other ways); some applications provide more than one option. Some applications let the user reset the password after successfully entering alternate credentials; others send a new password to the user by mail/email; and some other applications would require the user to call customer care. For each of the supported scenarios, the following data should be captured:
The proxy configuration to add multifactor authentication to the BigBank Web application is shown below. The BigBank web application is a sample application which shows a login flow. The example will demonstrate the integration of the UIO Proxy into the login flow of an application.
For ISA proxy use:
For Apache proxy use:
Descriptions of the various interceptors that are defined in the sample configuration are summarized in Table 6-22.
Table 6-22 Sample Configuration Interceptors
Interceptor ID | Type | Explanation |
---|---|---|
AddAppIdTobharosauioRequests-BigBank | Request | Set headers for all requests for OAAM Server. Invoked by any request to OAAM Server. |
Phase1BigBankLoginPostRequest | Request | Get login ID from post parameters, set Phase One, save user ID. Invoked by request for |
Phase2RedirectBigBankLoginPageRequest | Request | Redirect login page from application to OAAM Server. Invoked when Phase Two is enabled and application login page is requested |
Phase2BharosaLoginPageRequest | Request | Set Phase Two and save variables. Invoked by request for OAAM Server |
Phase2PasswordPageResponse | Response | Save ID/Password in header, redirect client to BigBank loginpage. Invoked by response from OAAM Server's |
GetBigBankLoginPageResponse | Response | Save all hidden fields values, then post login credential to BigBank. Invoked by response from |
InvalidLoginResponse | Response | Actions to take when getting invalid login response from BigBank. |
WrongPasswordResponse | Response | Actions to take when getting wrong password response from BigBank. |
LoginSuccessResponse | Response | Actions to take when getting login success response from BigBank. |
Phase1UpdateLoginStatusPageRequest | Request | Set Phase One and add headers. Invoked by request for OAAM Server to update status after getting login response from BigBank. |
Phase2UpdateLoginStatusPageRequest | Request | Add header and update OAAM Server with login status. Invoked by request for |
AllowLoginResponse | Response | Set variables and direct client to the next page to continue with the login. Invoked when receiving login success response from OAAM Server. |
Phase1FailLoginResponse | Response | Set login status and direct client to next page. Invoked in Phase One when BigBank failed the login and the response sent back from OAAM Server. |
FailLoginResponse | Response | Set login status and redirect client to theOAAM login block page. Invoked when BigBank failed the login and Phase One is not enabled. |
BlockLoginResponse | Response | Set |
LoginBlockedPageRequest | Request | Redirect client to BigBank logout page. Invoked by request for BigBank Login Blocked page. |
Phase1LoginBlockedPageResponse | Response | Clear session and redirect client to the OAAM Login Blocked page, then stop intercept. Used in Phase One, invoked by response from BigBank Login Blocked page. |
Phase2LoginBlockedPageResponse | Response | Clear session and redirect client to OAAM Login Blocked page. Used when Phase One is not enabled, invoked by response from BigBank Login Blocked page. |
LogoutPageResponse | Response | Redirect client to BigBank logout page. Invoked by response from OAAM logout page. |
Phase1LogoffPageResponse | Response | Clear session when getting response from BigBank logout page. Used when Phase One enabled. |
Phase2LogoffPageResponse | Response | Clear session when getting response from BigBank logout page. Used when Phase Two enabled. |
The following is the flow of the BigBank application without the UIO Proxy for login and logout.
This section provides details for the flows for first time users who log in to the BigBank application through the UIO Proxy. The regular flow, including the login phase, registration phase/skip registration phase, and logout phase, and the deviation flow (block login) are covered. Interceptors defined in Configure xml that are used in each step in the flow will be listed.
Note: For the proxy, the only messages shown are ones whenthe interceptors match request/response. Normal messages that the proxy passes betweenthe client and Oracle Adaptive Access Manager/application are skipped to simplify the scenario.
The regular flow (four phases) consists of the login, registration, skip registration, and logout phases.
Login phase:
http://proxyhost:port/bigbank
). oaam_server/login.do
. The request is intercepted by two interceptors: AddAppIdTobharosauioRequests-BigBank
and Phase2RedirectBigBankLoginPageRequest
.
Note: AddAppIdTobharosauioRequests-BigBank
sets the HTTP headers and variables. It will intercept any request for the OAAM Server and the proxy will try other interceptors to see if there are more matches after this interceptor.
Phase2RedirectBigBankLoginPageRequest
redirects the client from the BigBank Login page to oaam_server/login.do
.
login.do
at the OAAM Server (http://proxyhost:port/oaam_server/login.do
). http://proxyhost:port/oaam_server/login.do
). Other than the AddAppIdTobharosauioRequests-BigBank
interceptor, the request is intercepted at the proxy by the Phase2BharosaLoginPageRequest
interceptor. The proxy sets WebUIOPhase
to two.
http://proxyhost:port/oaam_server/password.do
) The response is intercepted by Phase2PasswordPageResponse
. The proxy saves the headers which contain the Login ID and the password that have been collected by the OAAM Server so far and redirects the client to /bigbank/GetLoginPage
.
GetLoginPage
. GetLoginPage
(http://proxyhost:port/bigbank/GetLoginPage
). The response is intercepted at the proxy by GetBigBankLoginPageResponse
. The proxy saves the parameters and performs a Post-server
action for /bigbank/login.do
. This is the normal authentication flow for the BigBank application.
bigbank/login.do
. login.do
(http://proxyhost:port/bigbank/login.do
). GetBigBankLoginPageResponse
) and changes the request method from GET
to POST
. activity.do
. This is the normal authentication flow for the BigBank application. activity.do
(http://proxyhost:port/bigbank/activity.do
). The response is intercepted at the proxy by LoginSuccessResponse
. The proxy sets the login status to success
and performs a get server
action for /oaam_server/updateLoginStatus.do
updateLoginStatus.do
. http://proxyhost:port/oaam_server/updateLoginStatus.do
).
The response is intercepted at the proxy by AllowLoginResponse
.
send-to-client
action. It sets the display-url
variable so that the client will request this URL after receiving the response. http://proxyhost:port/oaam_server/registerQuestions.do
). Registration Flow (client chooses to register):
Post
to http://proxyhost:port/oaam_server/registerQuestions.do
). http://proxyhost:port/oaam_server/registerQuestions.do
). http://proxyhost:port/oaam_server/registerQuestions.do
). send-to-client
to the Next page. The response is intercepted at the proxy by the AllowLoginResponse
interceptor. The proxy takes the sends to Client
action by specifying the Next page after successful authentication. The client will then be redirected to the application page on the next step.
http://proxyhost:port/bigbank/activity.do
). activity.do
) is sent back to the client through the proxy. This is where the login process ends. Logout Phase:
http://proxyhost:port/bigbank/logout.do
). bigbank/loginPage.jsp
. The response is intercepted by Phase2LogoffPageResponse
, which clears the session variables.
http://proxyhost:port/bigbank/loginPage.jsp
). login.do
(http://proxyhost:port/oaam_server/login.do
). Skip Registration phase: Client chooses to skip registration of questions. This phase happens after Login phase in regular flow.
http://proxyhost:port/oaam_server/registerQuestions.do
). The response is intercepted by AllowLoginResponse
. The proxy uses send-to-client
to specify the next step for the client.
http://proxyhost:port/bigbank/activity.do
). Deviation flow - Block login: happens when OAAM Server decides to block client after post authentication check. This flow replaces step 15-19 in login phase of regular flow.
The response is an interceptor by the BlockLoginResponse
interceptor. This interceptor redirects the client to the application Block page: /bigbank/BlockLoginPage
loginBlockPage
of BigBank. BlockLoginPage
(http://proxyhost:port/bigbank/loginPage.jsp?action=block
). LoginBlockedPageRequest
by the proxy. The proxy accepts the get-server
action for the Logout page: /bigbank/logout.do
. This action ends the session at BigBank. The response is intercepted by Phase2LoginBlockedPageResponse
. The proxy clears the session and redirects the client to the OAAM Login Block page.
http://proxyhost:port/oaam_server/loginPage.jsp?action=block
). Oracle Adaptive Access Manager patches may contain updates for the UIO Apache Proxy for Microsoft Windows and Linux (rhel4). Follow the instructions in this chapter to replace the mod_uio.so
and related .dlls
(on MS Windows) and .so
(on Linux) libraries with those released as part of this patch release.
Installation of a patch is similar to installing the UIO Proxy package. A patch will contain only the modified files. It is good practice to back up all your existing files since the patch will overwrite some or all of the files.
General instructions are given below. A patch contains only the modified files; so if a file is not available in the patch, skip that step. The steps are to be performed manually by the patch installer.
For both MS Windows and Linux:
Note: Ensure that you are usingApache httpd , version 2.2.8 with mod_ssl . |
binary
, .rng
and .xml
files patch_oaam_win_apache_uio.zip
(for Windows) or patch_oaam_rhel4_apache_uio.zip
(for Linux), which are located in the oaam_uio
directory. .so
files appropriately). UIO_Settings.rng
and UIO_Config.rng
files from the patch. UIO_Settings.xml
and UIO_log4j.xml
files with those given in the patch and verify that you have the correct settings. Refer to the sections that apply to this patch and ensure that you have the correct settings. The same also applies to your configuration XML
files. mod_uio.so
, log4cxx.dll
, libxml2.dll
, apr_memcache.dll
(apr_memcache.dll
was introduced in 10.1.4.5.bp1) UIO_Settings.rng
, UIO_Config.rng
, UIO_Settings.xml
, UIO_log4j.xml
and application configuration XML
files mod_uio.so
, liblog4cxx.so.0.10.0.0
, libxml2.so.2.6.32
, libapr_memcache.so.0.0.1
UIO_Settings.rng
, UIO_Config.rng
, UIO_Settings.xml
, UIO_log4j.xml
and application configuration XML
files To upgrade the UIO ISA Proxy Server:
%ProgramFiles%\Microsoft ISA Server\BharosaProxy.dll
. Part III contains the following chapters:
The chapter provides information on how to customize Oracle Adaptive Access Manager by using the OAAM Extensions Shared Library.
It contains the following sections:
Shared libraries are collections of programming and data that can be used by multiple applications. They can permit applications to use memory efficiently by sharing common programming and resources. You can customize Oracle Adaptive Access Manager by adding custom jars and files to the OAAM Extensions Shared Library.
This shared library, oracle.oaam.extensions.war
, is located in <IAM_Home>/oaam/oaam_extensions/generic
. It is deployed in both the OAAM Server and OAAM Admin Server. By default oracle.oaam.extensions.war
contains the MANIFEST.MF
, which has the definition of the shared library.
Follow these steps to add customizations to Oracle Adaptive Access Manager:
oaam_extensions
. The folder can be created anywhere as long as it is outside the installation folder.
oaam_extensions
folder, create the following subfolders: META-INF
WEB-INF
WEB-INF\lib
WEB-INF\classes
META-INF
folder, create a file named MANIFEST.MF
and ensure it contains the following lines: The specification version and implementation version must be more than the versions in the file currently. For example, if the implementation version in the file is 11.1.1.3.0, you could change it to 99.9.9.9.9.
$ORACLE_IDM_HOME\oaam\cli\lib
folder to the build class path. <IAM_Home>\oaam\oaam_extensions\generic\WEB-INF\lib
folder. bharosa_server.properties
and save it in the <IAM_Home>\oaam\oaam_extensions\generic\WEB-INF\classes
folder. Information about enums are provided in Section 7.3, "User-Defined Enumerations."
oaam_extensions
folder. Rejar oracle.oaam.extensions.war
from the parent folder of oaam_extensions
using the command:
oracle.oaam.extensions.war
file created in Step 6 as a Shared Library with oaam_server
and oaam_admin
as target applications. oracle.oaam.extensions.war
are used by Oracle Adaptive Access Manager applications. To override any Oracle Adaptive Access Manager properties or extend Oracle Adaptive Access Manager enumerations, add those properties and enumerations to bharosa_server.properties and place that file in WEB-INF\classes
or WEB-INF\classes\bharosa_properties
directory.
User-defined enums are a collection of properties that represent a list of items. Each element in the list may contain several different attributes. The definition of a user-defined enum begins with a property ending in the keyword ".enum" and has a value describing the use of the user-defined enum. Each element definition then starts with the same property name as the enum, and adds on an element name and has a value of a unique integer as an ID. The attributes of the element follow the same pattern, beginning with the property name of the element, followed by the attribute name, with the appropriate value for that attribute.
The following is an example of an enum defining credentials displayed on the login screen of an OAAM Server implementation:
This chapter provides information on customizing the client-facing OAAM Server Web application. The OAAM UIO Proxy offers multifactor authentication to Web applications without requiring any change to the application code. The OAAM Server configuration is specific to the UIO Proxy deployment. Refer to the architectural diagram (Figure 8-1) for the components involved.
The user interface provided by the OAAM Server Web application can be easily customized to achieve the look and feel of the customer applications. This chapter is intended for integrators who install and configure OAAM Server to support one or more Web application authentication and user registration flows.
This chapter contains the following sections:
Figure 8-1 shows the UIO Proxy deployment.
The OAAM Server proxy intercepts the HTTP traffic between the client (browser) and the server (Web application) and performs appropriate actions, such as redirecting to OAAM Server, to provide multifactor authentication and authorization. OAAM Server in turn communicates with OAAM Admin to assess the risk and takes the appropriate actions, such as permitting the login, challenging the user, blocking the user, and other actions.
OAAM Server configuration is controlled through property files.
Configuration Files
Use the following property files to configure OAAM Server:
bharosa_server.properties
client_resource_<locale>.properties
where <locale> is the locale string for which you wish to use the custom values (en
, es
, and others) en
, es
, and others). In the deployed application, the bharosa_server.properties
file is located in the web-inf/classes
directory.
The client_resource_<locale>.properties
is created by the administrator customizing the application to contain locale-specific properties.
For instructions on customizing, extending, or overriding Oracle Adaptive Access Manager properties, refer to Chapter 7, "Customizing Oracle Adaptive Access Manager."
The initial steps to configure and customize OAAM Server are:
The UIO Proxy can be placed in front of multiple applications, and customized to work with each one as required. Determine how many applications are to be configured, assign each application an Application ID. This Application ID is the same one used to configure the Proxy (see Chapter 6, "Oracle Adaptive Access Manager Proxy"). In many cases applications are referred to internally by some name or abbreviation, so an integrator configuring OAAM Server might want to use that name. For an example, if the client has two applications, one wholesale banking application and one retail banking application, the integrator might choose to use wholesale
and retail
as the Application IDs for the two applications.
The Proxy will send the AppId
to OAAM Server as needed via an HTTP header. This AppId
is then used to determine which configuration is used when displaying pages to the client. OAAM Server is configured by a set of properties which will be discussed in more detail later. An example of how AppId
is used in a property definition is shown as follows:
The bold "appId1" is the location in the property where the AppId
is used to configure application specific values.
Each application can be configured to have a unique default user group. This is the group that a user of that application will be associated with as their Organization ID when first created in the Oracle Adaptive Access Manager database. Similarly, it will be the Organization ID used to attempt to load user information from the database when a user attempts to log in to the application.
As used in the previous example the property for Organization ID appears as follows:
In the example, two Organization IDs are defined to two different applications. The application with an AppId
of "appId 1" has been assigned the Organization ID of "app1Group" and the application with an AppId
of "appId2" has been assigned the Organization ID of "app2Group".
The OAAM Server user interface branding is customized in several ways.
OAAM Server provides the ability to create custom header and footer files for applications being secured. The header and footer files are JSP and can contain any HTML or JSP code required to replicate the look of the application being secured. All the customer resources (JSP files, image files, HTML, and others) should be copied into the deployed application directories along with the OAAM Server Web application.
The header (header.jsp) and footer (footer.jsp) files should contain only content html, all page related tags (<html>
, <head>
, <body>
, and so on) are already provided by OAAM Server. As a simple example, a header and footer are created that contain a single image each, to be used as the header and footer of an application called "appId1".
Copy the following code into a file called header.jsp
for the header.
Copy the following code into a file called footer.jsp for the footer.
These files will be housed in the "/client/app1/" directory within the Web application.
To associate these files with the application you would add the following properties to client_resource_<locale>.properties
:
OAAM Server styles are controlled through a single CSS file, bharosa_uio.css
, located in the css
directory. These styles can be overridden by including a custom CSS file. Much like the header and footer example show previously, you can create your own file and include that file on an application or global level through properties. Refer to Section 8.5, "Configuring Application Properties."
In this example you will override the font-family of the default body style definition.
The body style in bharosa_uio.css
is defined as follows:
Now to use your newly created file, you will add the following property to bharosa_server.properties:
In this case, all you did was change Helvetica to the primary font-family in your "appId1" application. Any style defined in bharosa_uio.css
can be overridden in this manner if required.
OAAM Server pages have a variety of content and messaging sections. These sections can be customized by properties in client_resource_<locale>.properties
. Some customizable items, like page title and message, are applicable for each page. While other items, like login blocked message, are specific to a particular page.
To change the page title on the login page in the example "appId1" application, you would add the following line to client_resource_<locale>.properties
.
To change the page title on the login page in the example "appId1" application, you would add the following line to client_resource_<locale>.properties
.
bharosa.uio.appId1.signon.page.title=Welcome to App1, please sign in
.
The contents of error messages are also controlled in the same way. In the following example you will customize the error message displayed when a user has been blocked by security rules.
An application in OAAM Server is made up of a grouping or set of properties. You can configure OAAM Server properties on a global or application specific level.
OAAM Server property names are prefixed with bharosa.uio. They are followed by the Application ID or "default" if the setting is global.
An "application-level" property is one that only effects a single application when there are more than one application defined in the properties.
For example,
In this example, app1 uses an "application-level" defined header and footer file, but app2 uses an "application-level" defined footer but a "global" or "default" defined header file.
The bharosa.uio.default.header property, shown as follows, defines the location of the header file.
The property is used across all applications of the OAAM Server installation unless the specific application has another location specified.
In the case shown, "default" is used instead of the Application ID to designate the property as a global default. If the same property is not defined for an application; then, this value will be used.
In addition to configuring properties for each application, you can configure a set of properties that several applications have in common. You can then extend that set to customize the parameters that differ between the set of applications.
If you were to configure three applications that all use a single footer, but each has a unique header, you can include the following properties:
The following is an example of an enum defining credentials displayed on the login screen of an OAAM Server implementation:
This set of properties defines one user-defined enum that contains two elements, each of which with five attributes. The "name" and "description" attributes are required to define any user-defined enum, other attributes are defined and used as needed by each individual use of a user-defined enum.
Overriding existing user-defined enums has some special cases. You may override any existing enum element's attribute value of the default application ID just as you would any other property, but to change the value of an element's attribute in a single application using an appId
, you must create the entire enum in that application using the appropriate appId
.
For example, using the User Defined Enum defined in Section 8.5.2, "User-Defined Enums," if you wanted to change "Company ID" to "Profile ID" for only one application (appId1), you would need to modify the enum:
For instructions on customizing, extending, or overriding Oracle Adaptive Access Manager properties or enums, refer to Chapter 7, "Customizing Oracle Adaptive Access Manager."
To disable any already defined element in a user-defined enum, simply add an "enabled" attribute with a value of "false". Using the appId1 credentials enum from Section 8.5.3, "Overriding Existing User-Defined Enums," you would add the following line to remove "Profile ID" from the elements used by the application:
OAAM supports the customization of user flow. The Struts/Tiles framework is used by OAAM to create a common look and feel for an application.
OAAM uses the Struts framework to define the user interface flow. The Struts configuration file (/WEB-INF/struts-config.xml
) defines all the navigation rules in the form of Struts action definitions. Action definitions typically contain path, type, and parameter attributes. Many definitions also contain one or more forward elements that indicate which page should be displayed next. Refer to Section 9.6, "Struts Configuration File" for an example of the struts-config.xml
file.
Interface pages are constructed using the Tiles component of the Struts Framework. The layout file (/WEB-INF/tiles-def.xml
) contains "definitions" for the various pages. Refer to Section 9.5, "Interface Page Configuration File" for an example of the tiles.def.xml
file. In order to deploy Java Server Pages (JSP) files, you must add them to the OAAM shared library. See Chapter 7, "Customizing Oracle Adaptive Access Manager" for more information about the Oracle Adaptive Access Manager Extensions Shared Library.
To customize the OAAM user interface flow and the layout of the Java Server Pages (JSPs), you must override the OAAM Server JSP and struts action targets using the OAAM Extensions Shared library. The Extensions Shared Library contains the following two files to be used for the customizations:
WEB-INF/struts-config-extension.xml
WEB-INF/tiles-def-extension.xml
Note: Customizations should only be done in the OAAM Extensions Shared Library. Do not modify thestruts-config.xml and tiles-def.xml files. |
To customize the look and feel presented in the graphical user interface (GUI), add the custom JSP files to the OAAM Extensions shared library and then add the definitions to the tiles-def-extension.xml
file.
The following example shows the definition for the password page, as defined in tiles-defs.xml
:
At run time the password page dynamically displays all necessary GUI elements for the user to enter the required credential.
The following example shows the definition of a custom password page that can be added to tiles-def-extension.xml
:
If the definition is added to the tiles-def-extension
file, the new customPassword.jsp
is used when the OAAM Server attempts to display the "password" page.
Similar to overriding JSP content files, the struts action classes and their mappings could be overridden.
The following example shows the definition for the login action, as defined in struts-config.xml
:
The following example shows the possible values you could override for the login action by using struts-config.xml
:
The user interface pages are constructed using the Tiles component of the Struts Framework.
The following example extends the baseLayout definition and uses a JSP named registerQuestionsHTML.jsp
to render the content tile. It renders content appropriate for the JSP named registerQuestionsHTML.jsp
:
The rendered page consists of content from the body tile. The body tile contains the output from registerQuestionsHTML.jsp
.
This section shows a tiles-def.xml file
.
The Struts framework drives the navigation between the user interface pages.
The action definition includes the path, which defines what the URL will be. The login page example is shown.
In login page example, the URL is http://<server name>/oaam_server/login.do
. The login.do
comes from the path definition of "/login
."The type parameter defines the class that performs the action.The following classes are provided with the sample user pages.
Table 9-1 Action Type Classes
Class Name | Description |
---|---|
com.bharosa.uio.actions.LoginAction | |
com.bharosa.uio.actions.LoginFailAction | Displays error message in OAAM Server page. For example, the page could display a login blocked message. |
com.bharosa.uio.actions.ActivityAction | |
com.bharosa.uio.actions.PasswordAction | |
com.bharosa.uio.actions.UpdateAuthStatusAction | Updates the user authentication status and, if appropriate, it triggers pattern data processing. |
com.bharosa.uio.actions.ValidateTrxAction | |
com.bharosa.uio.actions.FlashFingerprintAction | |
com.bharosa.uio.actions.LogoutAction | Logs out the user session and redirects to login page |
com.bharosa.uio.actions.SignOnAction | |
com.bharosa.uio.actions.RegisterQuestionsAction | Displays sets of questions which the user can choose and register the correct answer for each. |
com.bharosa.uio.actions.ChangePasswordAction | |
com.bharosa.uio.actions.ForgotPasswordAction | |
com.bharosa.uio.actions.UserInputAction | |
com.bharosa.uio.actions.UserPreferencesDoneAction | |
com.bharosa.uio.actions.ChallengeUserAction | Challenges the user by displaying a question-pad with one of the questions already registered by the user |
com.bharosa.uio.actions.ChangeUserNameAction | |
com.bharosa.uio.actions.MessageAction | |
com.bharosa.uio.actions.ExitAction | |
com.bharosa.uio.actions.ErrorAction |
This section shows a struts-config.xml
file.
Oracle Adaptive Access Manager includes unique functionality to protect end users while interacting with a protected web application. The virtual authentication devices are used to protect users during the process of entering and transmitting authentication credentials and provide them with verification they are authenticating on the valid application. Each virtual authentication device (VAD) has its own unique set of security features that make it much more than a mere image on a web page.
This chapter contains the following sections:
This section defines terms used in this chapter.
Table 10-1 VAD Terminology
Virtual authentication devices are provided with Oracle Adaptive Access Manager as samples to use if you choose to. These samples are provided in English only. Source art and information in this chapter are provided to allow you to develop your own custom virtual authentication device frames, keys, personalization images and phrases. Alteration of these samples is considered custom development.
The following authentication devices are described in this section:
TextPad is a personalized device for entering a password or PIN using a regular keyboard. This method of data entry helps to defend against phishing primarily. TextPad is often deployed as the default for all users in a large deployment. Then, each user individually can upgrade to another device if he wishes. The personal image and phrase a user registers and sees every time he logs in to the valid site serves as a shared secret between the user and server. If this shared secret is not presented or presented incorrectly, the users will notice. An example TextPad is shown in Figure 10-1.
PinPad is a lightweight authentication device for entering a numeric PIN. An example PinPad is shown in Figure 10-2.
QuestionPad is a personalized device for entering answers to challenge questions using a regular keyboard. The QuestionPad is capable of incorporating the challenge question into the Question image. Like other Adaptive Strong Authentication devices, QuestionPad also helps in solving the phishing problem. An example QuestionPad is shown in Figure 10-3.
KeyPad is a personalized graphics keyboard, which can be used to enter alphanumeric and special character that can be enter using a traditional keyboard. KeyPad is ideal for entering passwords and other sensitive data. For example, credit card numbers can be entered. An example KeyPad is shown in Figure 10-4.
An authenticator is comprised of a number of elements. These elements are combined at runtime to produce the Authenticator for display on the client side.
Table 10-2 Elements of an authenticator
Details on the virtual authentication device properties are provided in this chapter for your reference.
Virtual authentication devices uses the following files:
client_resource_en_US.properties
. Note: Many of the properties related to the virtual authentication devices are in resource bundles so that they are capable of being localized. If the default value is in a "resource" file, then the override value should be placed in the client override file for resource bundle values (client_resource.properties). |
Table 10-3 lists the TextPad Authenticator Properties
Table 10-3 TextPad Authenticator Properties
Feature | Property |
---|---|
Default BG (Can be application specific) | bharosa.uio.<appId>.DeviceTextPad.default.image = textpad_bg/UIO_BG.jpg |
Password Frame File (Can be application specific) | bharosa.uio.<appId>.password.DeviceTextPad.frame = |
Challenge Frame File (Can be application specific) | bharosa.uio.<appId>.<challengeType>.DeviceTextPad.frame = Note: Challenge type can be any configured challenge type (ChallengeQuestion, ChallengeEmail, and others) |
Registration Frame File (Can be application specific) | bharosa.uio.<appId>.register.DeviceTextPad.frame = textpad_bg/TP_O_preview.png |
User Preferences Frame File (Can be application specific) | bharosa.uio.<appId>.userpreferences.DeviceTextPad.frame = textpad_bg/TP_O_preview.png |
Table 10-4 lists the PinPad Authenticator Properties
Table 10-4 PinPad Authenticator Properties
Feature | Property |
---|---|
Default BG (Can be application specific) | bharosa.uio.default.DevicePinPad.default.image = pinpad_bg/UIO_BG.jpg |
Password Frame File (Can be application specific) | bharosa.uio.<appId>.password.DevicePinPad.frame = |
Challenge Frame File (Can be application specific) | bharosa.uio.<appId>.<challengeType>.DevicePinPad.frame = Note: Challenge type can be any configured challenge type (ChallengeQuestion, ChallengeEmail, and others) |
Registration Frame File ((Can be application specific) | bharosa.uio.<appId>.register.DevicePinPad.frame = pinpad_bg/PP_v02_frame_preview.png |
User Preferences Frame File (Can be application specific) | bharosa.uio.<appId>.userpreferences.DevicePinPad.frame = pinpad_bg/PP_v02_frame_preview.png |
Table 10-5 lists the QuestionPad Authenticator Properties
Table 10-5 QuestionPad Authenticator Properties
Feature | Property |
---|---|
Default BG (Can be application specific) | bharosa.uio.<appId>.DeviceQuestionPad.default.image = textpad_bg/UIO_BG.jpg |
Challenge Frame File (Can be application specific) | bharosa.uio.<appId>.<challengeType>.DeviceQuestionPad.frame = Note: Challenge type can be any configured challenge type (ChallengeQuestion, ChallengeEmail, and others) |
Table 10-6 lists the KeyPad Authenticator Properties
Table 10-6 KeyPad Authenticator Properties
Feature | Property |
---|---|
Default BG (Can be application specific) | bharosa.uio.<appId>.DeviceKeyPadFull.default.image = keypad_bg/UIO_BG.jpg |
Password Frame File (Can be application specific) | bharosa.uio.<appId>.password.DeviceKeyPadFull.frame = |
Challenge Frame File (Can be application specific) | bharosa.uio.<appId>.<challengeType>.DeviceKeyPadFull.frame = Note: Challenge type can be any configured challenge type (ChallengeQuestion, ChallengeEmail, and others) |
Registration Frame File ((Can be application specific) | bharosa.uio.<appId>.register.DeviceKeyPadFull.frame = alphapad_bg/kp_O_preview.png |
User Preferences Frame File (Can be application specific) | bharosa.uio.<appId>.userpreferences.DeviceKeyPadFull.frame = alphapad_bg/kp_O_preview.png |
The following sections outline the visual elements that are within the virtual authentication device visual display for each device and the unique security features of each authentication device.
Each virtual authentication device has its own unique security features. Some of these features can be enabled and disabled by editing the configuration properties in the bharosa_server.properties
.
For visual display, important terms are:
For the background images to be displayed in the virtual authentication device, set the following property:
If any of the images are to be edited, make sure not to increase the physical dimensions or change the aspect ratio of the sample images because distortions will occur.
A KeySet is the configuration that defines what character keys are present on the virtual authentication device. KeySets are used by the KeyPad and PinPad virtual authentication devices.
KeySets are defined by a series user defined enums.
The first enum defines the rows of the KeySet and points to another enum describing the keys present in that row.
For example, the following enum defines the rows of keys in a PinPad:
Each row is made of the following properties:
Table 10-7 Properties of Rows
Property | Description |
---|---|
name | Name of the row. |
description | Description of the row. |
keys | Enum identifier of the enum that defines the keys in the row. |
order | The order the key resides in the row of keys. |
In this case, the row1 enum is defined as follows:
Each key is made of the following properties:
Table 10-8 Properties of Each Key
Property | Description |
---|---|
name | Name of the key. |
description | Description of the key. |
value | The character value the key represents when clicked. |
shiftvalue | The character value the key represents when in caps mode. |
image | The image file name that will be used to display the visual representation of the key. |
order | The order the key resides in the row of keys. |
This section provides information on the visual elements of TextPad.
Phrase (Caption)
Timestamp
Enter Key Hotspot
This section provides information on the visual elements of PinPad.
Phrase (Caption)
Timestamp
Enter Key Hotspot
Backspace Key Hotspot
This section provides information on the visual elements of QuestionPad.
Note: In 10.1.4.5 and above, the QuestionPad is a single line field. |
Phrase (Caption)
Timestamp
Question Text
Enter Key Hotspot
Visible Text Input or Password (Non-Visible) Input Setting
The following property in client_resource_<locale>.properties
determines whether the QuestionPad is set for visible text input or password (non-visible) input.
Valid values are text and password.
This section provides information on the visual elements of KeyPad.
Timestamp
Enter Key Hotspot
Backspace Key Hotspot
Caps States
The process is as follows:
bharosa_server.properties
and save it in the <temp-folder>/WEB-INF/classes
folder. Refer to the rest of the chapter for more information on defining keysets and other virtual authentication device properties. <temp-folder>/WEB-INF/classes/bharosa_properties/<pad>_skins
. <temp-folder>//WEB-INF/classes/bharosa_properties/<pad>_bg
. bharosa_server.properties
. Note: Make sure original MANIFEST.MF remains same as that contains shared library information. |
oracle.oaam.extensions.war
as a shared library with targets as oaam_server and oaam_admin. This section describes the flow to render virtual authentication devices. It contains the following topics:
In order to get the bgFile
, you need to obtain it from the user by performing:
String bgFile = (String) authUser.getSecurityPreferences().get("imagePath");
The main API that handles authentipad generation is BharosaClientImpl.getInstance().get<pad type>
.
The following methods can be used to get commonly used AuthentiPads:
BharosaClientImpl.getInstance().getFullKeyPad(...)
BharosaClientImpl.getInstance().getAlphaNumericKeyPad(...)
BharosaClientImpl.getInstance().getTextPad(...)
BharosaClientImpl.getInstance().getQuestionPad(...)
BharosaClientImpl.getInstance().getPinPad(...)
Each method takes the same set of parameters:
Table 10-9 Authentipad: Method Parameters
Parameter | Description |
---|---|
String padName | Identifier of the AuthentiPad, used in the HTML as the base name of input fields and JavaScript variables. |
String frameFile | Image path to use for the frame. |
String backgroundFile | Image path to use for the background image. If using OAAM assignment APIs, OAAM stores the users assigned image in the VCryptAuthUser object: |
VCryptLocalizedString captionText | A localized string to display as the caption on the AuthentiPad
|
boolean isADACompliant | Flag to designate if the AuthentiPad should be rendered with extra text and links for screen readers. |
boolean hasJS | Flag to designate if the user has JavaScript enabled. |
boolean hasImages | Flag to designate if the user has images enabled. |
You need to set timestamp, timezone and display only property to the authentipad object that was obtained.
The following table shows fields that may need to be set on the AuthentiPad once it is created:
Table 10-10 Authentipad: Setting Additional Fields
Parameter | Description |
---|---|
authentiPad.setTimeStamp(Date timeStamp) | Sets the timestamp to display on the pad. |
authentiPad.setTimeZone(TimeZone timeZone) | Sets the timezone to display on the pad. |
authentiPad.setDisplayOnly(boolean displayOnly) | Flag to designate if the pad should be rendered without interactive fields and links. Commonly used to during image registration. |
authentiPad.setQuestionText(VCryptLocalizedString questionText) | Used to display question on a QuestionPad. |
VADs are rendered in an HTML page. Any page that is to render a VAD must include the bharosa_pad.js
JavaScript file. The bharosa_pad.js
file is a JavaScript library for rendering VADs and handling user interaction.
To get the HTML / JavaScript render string to be placed into an HTML page, call authentiPad.getHTML()
.
The output of this method, will be an HTML string containing required image maps and JavaScript constructors required to display the VAD.
Once rendered, the VAD will make a request for the image to be displayed. The URL used to render the image is configured by the property: bharosa.authentipad.image.url
.
Users who access using assistive techniques will need to use the accessible versions of the virtual authentication devices. Accessible versions of the TextPad, QuestionPad, KeyPad and PinPad are not enabled by default. If accessible versions are needed in a deployment, they can be enabled via properties.
The accessible versions of the pads contain tabbing, directions and ALT text necessary for navigation via screen reader and other assistive technologies.
To enable these versions, set the is ADA compliant
flag to true.
For native integration the property to control the pads is
For UIO, the property to control the pads is
This section contains the following topics:
The process is as follows:
client_resource_<locale>.properties
file with virtual authentication device related properties and save it in the <temp-folder>/WEB-INF/classes
folder. bharosa_server.properties
and save it in the <temp-folder>/WEB-INF/classes
folder. Refer to the rest of the chapter for more information on defining keysets and other virtual authentication device properties. <temp-folder>/WEB-INF/classes/bharosa_properties/alphapad_skins_<locale>
. <temp-folder>//WEB-INF/classes/bharosa_properties/alphapad_bg
. client_resource_<locale>.properties
and bharosa_server.properties
. An example of localizing the pads in German is shown below:
<temp-folder>
. client_resource_de.properties
in <temp-folder>/WEB-INF/classes
/ if not already present client_resource_de.properties
<temp-folder>/WEB-INF/classes/bharosa_properties/alphapad_skins_de
. <temp-folder>//WEB-INF/classes/bharosa_properties/alphapad_bg
. Note: Make sure original MANIFEST.MF remains same as that contains shared library information. |
oracle.oaam.extensions.war
as a shared library with targets as oaam_server and oaam_admin This chapter explains how to implement OTP Anywhere. OTP Anywhere allows end users to authenticate themselves by entering a server generated one-time-password (OTP). When the OTP is sent via SMS, the user's cell phone serves as a physical second factor that the user has in their possession. As well, the authentication is being sent out-of-band to increase the level of assurance that only the valid user has access to the one-time password.
Benefits of OTP Anywhere are:
This chapter contains these sections:
One-Time Password (OTP) is a form of secondary authentication, which is used in addition to standard user name and password credentials to strengthen the existing authentication and authorization process, thereby providing additional security for users. The application sends a one-time password that is only valid for the current session to the user. This password is used to challenge the user to verify the user's identity.
Oracle Adaptive Access Manager 11g provides the framework to support One Time Password (OTP) authentication using Oracle User Messaging Service (UMS).
This implementation enables an application to use OTP to challenge users with Oracle User Messaging Service (UMS) used as the method to deliver the password.
The high-level integration tasks consist of:
This section provides the terms that are helpful to know as you implement OTP Anywhere.
One Time Password (OTP) is used to authenticate an individual based on a single-use alphanumeric credential. The OTP is delivered to the user's configured delivery method. The user then provides the OTP credential as the response to proceed with the operation. The following are major benefits of using out-of-band OTP:
The UMS Server orchestrates message flows between applications and users. OAAM uses UMS to send email, SMS, IM, or voice message to the user.
A challenge processor is java code that implements the ChallengeProcessorIntf
interface or extends the AbstractChallengeProcessor
class. Custom challenge processors can be created to generate a challenge, validate the challenge answer from the user, and check service delivery and availability statuses. By default OAAM has support (or challenge processor implementations) for KBA question challenges and OTP challenges via SMS and email through UMS delivery.
"Channel" refers to the delivery channel used to send an OTP to the user (Email, SMS, or IM). The challenge type is the channel that OTP is using to challenge the user. A challenge type can be configured for any differences in handling for a challenge that is required. Handling of challenge types could be any specifics for that challenge type, from generating the "secret" used for the challenge to delivering the "secret" to the user and finally validating the users input. For each type of challenge these primary processes (Generation, Sending, and Validating) could require slightly different code.
Ensure that the following prerequisites are met before configuring OTP for your application.
Note: Ensure you are familiar with deploying custom OAAM extensions.Oracle Adaptive Access Manager is customized through adding customized jars and files to an extensions shared library. For information, refer to Chapter 7, "Customizing Oracle Adaptive Access Manager.". |
Oracle SOA Suite must be installed outside of the OAAM domains. UMS is a part of SOA.
For information, refer to the Oracle Fusion Middleware Installation Guide for Oracle SOA Suite and Oracle Business Process Management Suite.
UMS must be configured for appropriate delivery gateways on the SOA that the OAAM Server is configured to send messages through.
UMS Drivers connect UMS to the messaging gateways, adapting content to the various protocols supported by UMS. Drivers can be deployed or undeployed independently of one another depending on what messaging channels are available in a given installation.
Configure the Email driver to a SMTP server. See the "Configuring the Email Driver" section of Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle Business Process Management Suite for how to configure the Email driver.
Short Message Peer-to-Peer (SMPP) is one of the most popular GSM SMS protocols. User Messaging Service includes a prebuilt implementation of the SMPP protocol as a driver that is capable of both sending and receiving short messages.
Note: For SMS, unlike the Email driver that is deployed out-of-the-box, you need to deploy the SMPP driver first before modifying the configurations. |
Configure the SMPP driver as described in the "Configuring the SMPP Driver" section of the Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle Business Process Management Suite. You will need to provide parameter values for connecting to the driver gateway vendor.
Table 11-1 Connecting to the Vendor
Parameter | Description |
---|---|
SmsAccountId | The Account Identifier on the SMS-C. This is your vendor account ID which you need to get from the vendor. |
SmsServerHost | The name (or IP address) of the SMS-C server. TransmitterSystemId |
TransmitterSystemPassword | The password of the transmitter system. This includes Type of Password (choose from Indirect Password/Create New User, Indirect Password/Use Existing User, and Use Cleartext Password) and Password. This is the password corresponding to your vendor account ID |
TransmitterSystemType | The type of transmitter system. The default is Logica. |
ReceiverSystemId | The account ID that is used to receive messages. ReceiverSystemPassword |
ReceiverSystemType | The type of receiver system. The default is Logica. |
ServerTransmitterPort | The TCP port number of the transmitter server. |
ServerReceiverPort | The TCP port number of the receiver server. |
DefaultEncoding | The default encoding of the SMPP driver. The default is IA5. Choose from the drop-down list: IA5, UCS2, and GSM_DEFAULT. |
DefaultSenderAddress | Default sender address |
OTP using UMS as a delivery method is a standard feature of the OAAM Server. This section contains an overview of the steps required to implement the feature.
Follow the instructions for customizing the OAAM server interface through adding customized jars and files to an extensions shared library. For information, refer to Chapter 7, "Customizing Oracle Adaptive Access Manager.".
Table 11-2 Tasks in the OTP Setup
Task | Description |
---|---|
Configure | Configuration involves Tasks 1 through 3. OTP Challenge is not enabled by default. It has to be enabled by setting these properties. |
Task 1- Integrate UMS. | Set up UMS URLs and credentials so that OAAM can communicate with the UMS server. |
Task 2 - Make Challenge Types available. | Make it possible for the policies to challenge using OTP via the challenge type. |
Task 3 - Enable Registration and User Preferences. | Enable registration and user preferences. The user will use the pages for profile registration and resetting OTP profile. |
Customize | Customizations involves Tasks 4 through 7. |
Task 4 - Set up the user registration fields and validations. | Set up the registration and preferences page input fields for the user. Input properties includes maximum length for the email address the user can enter, validation for the email address field (expression), and so on. Note: Any user facing strings will need to be duplicated into resource bundle. |
Task 5 - Set up Terms and Condition fields. | Additional fields to set up are Terms of Service, Privacy Policy, and so on. |
Task 6 - Set up registration and challenge page messaging | Customize the messaging that appear on the registration and challenge pages. |
Task 7 - Customize OTP message text. | Customize the message containing the One Time Password |
Task 8 - Register Processors | The challenge type enum is used to associate a Challenge Type with the java code needed to perform any work related to that challenge type. |
Task 9 - Configure challenge pads for challenge types. | Specify the type of device to use based on the purpose of the device. |
The UMS OTP implementation is integrated into the OAAM Server login, challenge, and registration flows using the OAAM Server challenge processor framework. For information on the login, challenge, and registration flows, refer to Chapter 2, "Natively Integrating with Oracle Adaptive Access Manager."
This section contains the following topics:
The properties to set for the UMS server URLs and credentials are listed below. They can be edited using the Property Editor in OAAM Admin. Note: End point is the Web Services URL that OAAM uses to send calls into UMS.
Table 11-3 UMS Server URLs and Credentials
Property | Default Value | Description |
---|---|---|
bharosa.uio.default.ums.integration.webservice | UMS Server Webservice URL http://<UMS Server URL>:<UMS Port>/ucs/messaging/webservice | |
bharosa.uio.default.ums.integration.parlayx.endpoint | UMS Server ParlayX Endpoint URL http://<UMS Server URL>:<UMS Port>/sdpmessaging/parlayx/SendMessageService | |
bharosa.uio.default.ums.integration.useParlayX | false | Configures the use of webservice or parlayx API. The value is false by default (Webservices recommended) |
bharosa.uio.default.ums.integration.userName | Username for UMS server | |
bharosa.uio.default.ums.integration.password | Password for UMS server | |
bharosa.uio.default.ums.integtaion.policies | UMS authentication policies | |
bharosa.uio.default.ums.integration.fromAddress | demo@oracle.com | OAAM from address for OTP messages |
bharosa.uio.default.ums.integration.message.status.poll.attempts | 3 | Number of times to attempt status poll each time the wait page is displayed |
bharosa.uio.default.ums.integration.message.status.poll.delay | 1000 | Delay between status polls while the wait page is being displayed |
bharosa.uio.default.ums.integration.sleepInterval | 10000 | |
bharosa.uio.default.ums.integration.deliveryPage.delay | 3000 |
After you set up the UMS server properties, restart the application.
Enable challenge types by setting the appropriate property to true. By setting the property to true, policies will be able to challenge using OTP via the challenge type (email, SMS, IM, or Voice). The user will see the email, SMS, IM, or Voice page in registration flow.
The challenge type enum is used to associate a Challenge Type with the java code needed to perform any work related to that challenge type. The Challenge Type ID (ChallengeEmail) should match a rule action returned by the rules when that challenge type is going to be used.
Table 11-4 UMS OTP challenge types
Property | Default Value | Description |
---|---|---|
bharosa.uio.default.challenge.type.enum.ChallengeEmail.available | false | Availability flag for email challenge type |
bharosa.uio.default.challenge.type.enum.ChallengeSMS.available | false | Availability flag for SMS challenge type |
bharosa.uio.default.challenge.type.enum.ChallengeIM.available | false | Availability flag for instant message challenge type |
bharosa.uio.default.challenge.type.enum.ChallengeVoice.available | false | Availability flag for voice challenge type |
Enable the registration flow and user preferences by setting these properties to true:
Table 11-5 Enable OTP Profile Registration and Preference Setting
Property | Description |
---|---|
bharosa.uio.default.register.userinfo.enabled | Setting the property to true enables the profile registration pages if the OTP channel is enabled and requires registration. |
bharosa.uio.default.userpreferences.userinfo.enabled | Setting the property to true enables the user to set preferences if the OTP channel is enabled and allows preference setting. User Preferences is a page that allows the user to change their image/phrase, challenge questions, un-register devices, and update their OTP profile. |
This section contains the following topics:
Mobile registration field definitions and validations for the OTP registration page are shown below.
Add Mobile Input Registration Field Properties to bharosa_server.properties
These properties should be added to bharosa_server.properties.
Table 11-6 Mobile Input - Properties File
Property | Default Value | Description |
---|---|---|
bharosa.uio.default.userinfo.inputs.enum.mobile | 0 | Mobile phone enum value |
bharosa.uio.default.userinfo.inputs.enum.mobile.name | Mobile Phone | Name for mobile phone field |
bharosa.uio.default.userinfo.inputs.enum.mobile.description | Mobile Phone | Description for mobile phone field |
bharosa.uio.default.userinfo.inputs.enum.mobile.inputname | cell number | HTML input name for mobile phone field |
bharosa.uio.default.userinfo.inputs.enum.mobile.inputtype | text | HTML input type for mobile phone field |
bharosa.uio.default.userinfo.inputs.enum.mobile.maxlength | 15 | HTML input max length for mobile phone field |
bharosa.uio.default.userinfo.inputs.enum.mobile.required | true | Required flag for mobile phone field during registration and user preferences |
bharosa.uio.default.userinfo.inputs.enum.mobile.order | 1 | Order on the page for mobile phone field |
bharosa.uio.default.userinfo.inputs.enum.mobile.enabled | true | Enabled flag for mobile phone enum item |
bharosa.uio.default.userinfo.inputs.enum.mobile.regex | \\D?(\\d{3})\\D?\\D?(\\d{3})\\D?(\\d{4}) | Regular expression for validation of mobile phone field |
bharosa.uio.default.userinfo.inputs.enum.mobile.errorCode | otp.invalid.mobile | Error code to get error message from if validation of mobile phone entry fails |
bharosa.uio.default.userinfo.inputs.enum.mobile.managerClass | com.bharosa.uio.manager.user.DefaultContactInfoManager | Java class to use to save / retrieve mobile phone from data storage |
Add Mobile Input Registration Field Properties to client_resource.properties
These properties should be added to the resource bundle.
The following examples show term and conditions definitions for the OTP registration page.
Add Terms and Conditions Definitions to bharosa_server.properties
These properties should be added to bharosa_server.properties.
Table 11-8 Terms and Conditions Checkbox
Property | Default Value | Description |
---|---|---|
bharosa.uio.default.userinfo.inputs.enum.terms | 4 | Terms and Conditions enum value |
bharosa.uio.default.userinfo.inputs.enum.terms.name | Terms and Conditions | Name for Terms and Conditions checkbox |
bharosa.uio.default.userinfo.inputs.enum.terms.description | Terms and Conditions | Description for Terms and Conditions checkbox |
bharosa.uio.default.userinfo.inputs.enum.terms.inputname | terms | HTML input name for Terms and Conditions checkbox |
bharosa.uio.default.userinfo.inputs.enum.terms.inputtype | checkbox | HTML input type for Terms and Conditions checkbox |
bharosa.uio.default.userinfo.inputs.enum.terms.values | true | Required values for Term and Conditions checkbox during registration and user preferences |
bharosa.uio.default.userinfo.inputs.enum.terms.maxlength | 40 | HTML input max length for Terms and Conditions checkbox |
bharosa.uio.default.userinfo.inputs.enum.terms.required | true | Required flag for Term and Conditions checkbox during registration and user preferences |
bharosa.uio.default.userinfo.inputs.enum.terms.order | 5 | Order on the page for Terms and Conditions checkbox |
bharosa.uio.default.userinfo.inputs.enum.terms.enabled | true | Enabled flag for Terms and Conditions enum item |
bharosa.uio.default.userinfo.inputs.enum.terms.regex | .+ | Regular expression for validation of Terms and Conditions checkbox |
bharosa.uio.default.userinfo.inputs.enum.terms.errorCode | otp.invalid.terms | Error code to get error message from if validation of Terms and Conditions fails |
bharosa.uio.default.userinfo.inputs.enum.terms.managerClass | com.bharosa.uio.manager.user.DefaultContactInfoManager | Java class to use to save / retrieve Terms and Conditions from data storage |
Add Terms and Conditions Definitions to client_resource.properties
Default messaging for Terms and Conditions is defined by these resource bundle values:
Table 11-9 Messaging of Terms and Conditions
Property | Descriptions |
---|---|
bharosa.uio.default.userinfo.inputs.enum.terms.name | I agree to the [ENTER COMPANY OR SERVICE NAME HERE] terms & conditions. Click to view full Terms & Conditions and Privacy Policy. |
bharosa.uio.default.userinfo.inputs.enum.terms.description | Message and Data Rates May Apply.
For help or information on this program send "HELP" to [ENTER SHORT/LONG CODE HERE].
To cancel your plan, send "STOP" to [ENTER SHORT/LONG CODE HERE] at anytime.

For additional information on this service please go to [ENTER INFORMATIONAL URL HERE].

Supported Carriers:
AT&T, Sprint, Nextel, Boost, Verizon Wireless, U.S. Cellular®, T-Mobile®, Cellular One Dobson, Cincinnati Bell, Alltel, Virgin Mobile USA, Cellular South, Unicel, Centennial and Ntelos |
The value for bharosa.uio.default.userinfo.inputs.enum.terms.name
includes placeholder links that use OAAM Server popup messaging for "Terms & Conditions" and "Privacy Policy". The property and resource keys for the contents of the pop-ups are listed as follows.
Table 11-10 Terms & Conditions and Privacy Policy Popup Messaging
Property | Descriptions |
---|---|
bharosa.uio.default.messages.enum.terms.name | Terms and Conditions |
bharosa.uio.default.messages.enum.terms.description | PLACEHOLDER TEXT FOR TERMS AND CONDITIONS |
bharosa.uio.default.messages.enum.privacy.name | Privacy Policy |
bharosa.uio.default.messages.enum.privacy.description | PLACEHOLDER TEXT FOR PRIVACY POLICY |
Add registration properties to client_resource.properties.
Table 11-11 Registration Resource Bundle
Property | Default Value |
---|---|
bharosa.uio.default.register.userinfo.title | OTP Anywhere Registration |
bharosa.uio.default.register.userinfo.message | For your protection please enter your mobile telephone number so we may use it to verify your identity in the future. Please ensure that you have text messaging enabled on your phone. |
bharosa.uio.default.register.userinfo.registerdevice.message | Check to register the device that you are currently using as a safe device: |
bharosa.uio.default.register.userinfo.continue.button | Continue |
bharosa.uio.default.register.userinfo.decline.message | If you decline you will not be asked to register again. |
bharosa.uio.default.register.userinfo.decline.button | Decline |
Decline Button
To control the presence of the Decline button on the profile registration pages, set the following properties:
bharosa.uio.default.register.userinfo.decline.enabled = true
bharosa.uio.default.userpreferences.userinfo.decline.enabled = true
Note: Even if these are true, the button will not show if the Opt Out property is false. |
When the Decline button is enabled, the user will have another option on the OTP registration page that will allow him to Opt out of OTP challenges. He will not be asked to register OTP again, and will not receive OTP challenges. However, if a Customer Care OTP Profile reset is performed (or reset all) the user will have the opportunity to register OTP again.
Also, even if the user has opted out of OTP, he can access the OTP page in User Preferences and add information and click Continue. This will remove the OTP out flag and the user will now be registered for OTP.
Add challenge type fields to client_resource.properties.
Table 11-12 Challenge Type Resource Bundle Items
Property | Default Value |
---|---|
bharosa.uio.default.ChallengeSMS.message | For your protection please enter the code we just sent to your mobile telephone. If you did not receive a code please ensure that text messaging is enabled on your phone and click the resend link below. |
bharosa.uio.default.ChallengeSMS.registerdevice.message | Check to register the device that you are currently using as a safe device: |
bharosa.uio.default.ChallengeSMS.continue.button | Continue |
Add OTP message fields to client_resource.properties.
The challenge type enum is used to associate a Challenge Type with the java code needed to perform any work related to that challenge type. The Challenge Type ID (ChallengeEmail) should match a rule action returned by the rules when that challenge type is going to be used. "Channel" normally refers to the delivery channel used to send an OTP to the user (Email, SMS, or IM).
Table 11-15 Challenge type enums
Property | Description |
---|---|
available | if the challenge type is available for use (service ready and configured). To enable/disable an OTP challenge type, the available flag should be set. |
processor | java class for handling challenges of this type. |
requiredInfo | comma separated list of inputs from the registration input enum |
The properties to register the SMS challenge processor and mark service as available (or unavailable) are listed below.
Table 11-16 Properties to register the SMS challenge processor
Property | Default Value | Description |
---|---|---|
bharosa.uio.default.challenge.type.enum.ChallengeSMS | 2 | SMS Challenge enum value |
bharosa.uio.default.challenge.type.enum.ChallengeSMS.name | SMS Challenge | Name of SMS challenge type |
bharosa.uio.default.challenge.type.enum.ChallengeSMS.description | SMS Challenge | Description of SMS challenge type |
bharosa.uio.default.challenge.type.enum.ChallengeSMS.processor | com.bharosa.uio.processor.challenge.ChallengeSMSProcessor | Processor class for SMS challenge type |
bharosa.uio.default.challenge.type.enum.ChallengeSMS.requiredInfo | mobile | Required fields to challenge user with SMS challenge type |
bharosa.uio.default.challenge.type.enum.ChallengeSMS.available | false | Availability flag for SMS challenge type |
bharosa.uio.default.challenge.type.enum.ChallengeSMS.otp | true | OTP flag for SMS challenge type |
By default, challenge devices that will be used are configured through rules. The rules are under the AuthentiPad checkpoint where you can specify the type of device to use based on the purpose of the device.
To create/update policies to use the challenge type:
Alternatively, if you want to configure challenge devices using properties, you can bypass the AuthentiPad checkpoint by setting bharosa.uio.default.use.authentipad.checkpoint
to false
.
Devices to use for the challenge type can be added.
The examples shown use the challenge type key, ChallengeEmail and ChallengeSMS to construct the property name.
Available challenge device values are DeviceKeyPadFull, DeviceKeyPadAlpha, DeviceTextPad, DeviceQuestionPad, DevicePinPad, and DeviceHTMLControl.
Table 11-17 Authentication Device Type
Property | Description |
---|---|
None | No HTML page or authentication pad |
DeviceKeyPadFull | Challenge user using KeyPad. |
DeviceKeyPadAlpha | Challenge user with the alphanumeric KeyPad (numbers and letters only, no special characters) |
DeviceTextPad | Challenge user using TextPad. |
DeviceQuestionPad | Challenge user using QuestionPad. |
DevicePinPad | Challenge user using PinPad. |
DeviceHTMLControl | Challenge user using HTML page instead of an authentication pad. |
This section describes how to customize data storage for OTP Anywhere. You can customize OTP Anywhere by implementing the com.bharosa.uio.manager.user.UserDataManagerIntf interface.
The methods used in customization are:
public String getUserData(UIOSessionData sessionData, String key)
; public void setUserData(UIOSessionData sessionData, String key, String value);
The default implementation expands on the interface to break every get and set into two items: UserDataValue and UserDataFlag. The UserDataFlag is used by OAAM to track that a value has been set, or soft reset a value. When rules are used to check if a user is registered for a given item, the UserDataFlag will be checked in the OAAM database. The UserDataValue is the actual data element entered by the user. In the default implementation this is also stored in the OAAM database, but by extending the DefaultContactInfoManager
class and overriding the UserDataValue methods (getUserDataValue and setUserDataValue) the data can be stored in an external location if required.
Methods
Extend the base implementation class DefaultContactInfoManager
, and override the "setUserDataValue" and "getUserDataValue" methods to store the data values where appropriate for you implementation.
Leave the default implementation of "setUserDataFlag" and "getUserDataFlag" in place in order for OAAM to properly track which data has been set for the user.
OTP Anywhere registration fields are defined by the user defined enum: bharosa.uio.default.userinfo.inputs.enum
.
Each element has a "managerClass" property that designates which class will be used to store the registration data.
For example, the default mobile phone element is as follows:
As shown, the default mobile phone definition uses the DefaultContactInfoManager
class to manage the data. If a custom implementation is desired, the value of the managerClass
attribute can be updated in OAAM Admin (or through OAAM Extension shared library) to use a custom class.
This section contains the following topics:
Additional registration field definitions are shown below.
Table 11-18 Contact Information Inputs
Property | Description |
---|---|
inputname | Name used for the input field in the HTML form |
inputtype | Set for text or password input |
maxlength | Maximum length of user input |
required | Set if the field is required on the registration page |
order | The order displayed in the user interface |
regex | Regular expression used to validate user input for this field |
errorCode | Error code used to look up validation error message (bharosa.uio.<application ID>.error.<errorCode>) |
managerClass | java class that implements com.bharosa.uio.manager.user.UserDataManagerIntf (if data is to be stored in Oracle Adaptive Access Manager database this property should be set to com.bharosa.uio.manager.user.DefaultContactInfoManager) |
The following is an example of an enum defining email registration on the OTP registration page of an authenticator:
Table 11-19 Email Input
Property | Default Value | Description |
---|---|---|
bharosa.uio.default.userinfo.inputs.enum.email | 1 | Email address enum value |
bharosa.uio.default.userinfo.inputs.enum.email.name | Email Address | Name for email address field |
bharosa.uio.default.userinfo.inputs.enum.email.description | Email Address | Description for email address field |
bharosa.uio.default.userinfo.inputs.enum.email.inputname | | HTML input name for email address field |
bharosa.uio.default.userinfo.inputs.enum.email.inputtype | text | HTML input type for email address field |
bharosa.uio.default.userinfo.inputs.enum.email.maxlength | 40 | HTML input max length for email address field |
bharosa.uio.default.userinfo.inputs.enum.email.required | true | Required flag for email address field during registration and user preferences |
bharosa.uio.default.userinfo.inputs.enum.email.order | 2 | Order on the page for email address field |
bharosa.uio.default.userinfo.inputs.enum.email.enabled | false | Enabled flag for email address enum item |
bharosa.uio.default.userinfo.inputs.enum.email.regex | .+@[a-zA-Z_]+?\\.[a-zA-Z]{2,3} | Regular expression for validation of email address field |
bharosa.uio.default.userinfo.inputs.enum.email.errorCode | otp.invalid.email | Error code to get error message from if validation of email address entry fails |
bharosa.uio.default.userinfo.inputs.enum.email.managerClass | com.bharosa.uio.manager.user.DefaultContactInfoManager | Java class to use to save / retrieve email address from data storage |
The following is an example of an enum defining phone registration on the OTP registration page of an authenticator:
Table 11-20 Phone Input
Property | Default Value | Description |
---|---|---|
bharosa.uio.default.userinfo.inputs.enum.phone | 2 | Phone number enum value |
bharosa.uio.default.userinfo.inputs.enum.phone.name | Phone Number | Name for phone number field |
bharosa.uio.default.userinfo.inputs.enum.phone.description | Phone Number | Description for phone number field |
bharosa.uio.default.userinfo.inputs.enum.phone.inputname | phone | HTML input name for phone number field |
bharosa.uio.default.userinfo.inputs.enum.phone.inputtype | text | HTML input type for phone number field |
bharosa.uio.default.userinfo.inputs.enum.phone.maxlength | 15 | HTML input max length for phone number field |
bharosa.uio.default.userinfo.inputs.enum.phone.required | true | Required flag for phone number field during registration and user preferences |
bharosa.uio.default.userinfo.inputs.enum.phone.order | 3 | Order on the page for phone number field |
bharosa.uio.default.userinfo.inputs.enum.phone.enabled | false | Enabled flag for phone number enum item |
bharosa.uio.default.userinfo.inputs.enum.phone.regex | \\D?(\\d{3})\\D?\\D?(\\d{3})\\D?(\\d{4}) | Regular expression for validation of phone number field |
bharosa.uio.default.userinfo.inputs.enum.phone.errorCode | otp.invalid.phone | Error code to get error message from if validation of phone number entry fails |
bharosa.uio.default.userinfo.inputs.enum.phone.managerClass | com.bharosa.uio.manager.user.DefaultContactInfoManager | Java class to use to save / retrieve phone number from data storage |
The following is an example of an enum defining IM registration on the OTP registration page of an authenticator:
Table 11-21 IM Input
Property | Default Value | Description |
---|---|---|
bharosa.uio.default.userinfo.inputs.enum.im | 3 | Instant message enum value |
bharosa.uio.default.userinfo.inputs.enum.im.name | Instant Messaging | Name for instant message field |
bharosa.uio.default.userinfo.inputs.enum.im.description | Instant Messaging | Description for instant message field |
bharosa.uio.default.userinfo.inputs.enum.im.inputname | im | HTML input name for instant message field |
bharosa.uio.default.userinfo.inputs.enum.im.inputtype | text | HTML input type for instant message field |
bharosa.uio.default.userinfo.inputs.enum.im.maxlength | 15 | HTML input max length for instant message field |
bharosa.uio.default.userinfo.inputs.enum.im.required | true | Required flag for instant message field during registration and user preferences |
bharosa.uio.default.userinfo.inputs.enum.im.order | 4 | Order on the page for instant message field |
bharosa.uio.default.userinfo.inputs.enum.im.enabled | false | Enabled flag for instant message enum item |
bharosa.uio.default.userinfo.inputs.enum.im.regex | TBD | Regular expression for validation of instant message field |
bharosa.uio.default.userinfo.inputs.enum.im.errorCode | otp.invalid.im | Error code to get error message from if validation of instant message entry fails |
bharosa.uio.default.userinfo.inputs.enum.im.managerClass | com.bharosa.uio.manager.user.DefaultContactInfoManager | Java class to use to save / retrieve instant message from data storage |
Other examples of challenge message resource bundles are shown below.
OTP Email message properties are shown below.
Table 11-22 Customize OTP Email Message
Property | Default Value | Description |
---|---|---|
bharosa.uio.default.ChallengeEmail.message.from.name | Oracle ASA Test | Email message from address |
bharosa.uio.default.ChallengeEmail.message.subject | Oracle OTP Code | Email message subject |
bharosa.uio.default.ChallengeEmail.message.body | Your Oracle Email OTP Code is: {0} | Email message body |
OTP IM message properties are shown below.
Table 11-23 Customize OTP IM Message
Property | Default Value | Description |
---|---|---|
bharosa.uio.default.ChallengeIM.message.from.name | Oracle ASA Test | IM message from name |
bharosa.uio.default.ChallengeIM.message.subject | Oracle OTP Code | IM message subject |
bharosa.uio.default.ChallengeIM.message.body | Your Oracle IM OTP Code is: {0} | IM message body |
Additional processor registration properties are listed below.
Table 11-25 Challenge type enums
Property | Description |
---|---|
available | if the challenge type is available for use (service ready and configured). To enable/disable an OTP challenge type, the available flag should be set. |
processor | java class for handling challenges of this type. |
requiredInfo | comma separated list of inputs from the registration input enum |
The properties to register the email challenge processor and mark service as available (or unavailable) are listed below.
Table 11-26 Properties to register the email challenge processor
Property | Default Value | Description |
---|---|---|
bharosa.uio.default.challenge.type.enum.ChallengeEmail | 1 | Email Challenge enum value |
bharosa.uio.default.challenge.type.enum.ChallengeEmail.name | Email Challenge | Name of email challenge type |
bharosa.uio.default.challenge.type.enum.ChallengeEmail.description | Email Challenge | Description of email challenge type |
bharosa.uio.default.challenge.type.enum.ChallengeEmail.processor | com.bharosa.uio.processor.challenge.ChallengeEmailProcessor | Processor class for email challenge type |
bharosa.uio.default.challenge.type.enum.ChallengeEmail.requiredInfo | | Required fields to challenge user with email challenge type |
bharosa.uio.default.challenge.type.enum.ChallengeEmail.available | false | Availability flag for email challenge type |
bharosa.uio.default.challenge.type.enum.ChallengeEmail.otp | true | OTP flag for email challenge type |
The properties to register the IM challenge processor and mark service as available (or unavailable) are listed below.
Table 11-27 Properties to register the IM challenge processor
Property | Default Value | Description |
---|---|---|
bharosa.uio.default.challenge.type.enum.ChallengeIM | 3 | Instant message Challenge enum value |
bharosa.uio.default.challenge.type.enum.ChallengeIM.name | IM Challenge | Name of instant message challenge type |
bharosa.uio.default.challenge.type.enum.ChallengeIM.description | Instant Message Challenge | Description of instant message challenge type |
bharosa.uio.default.challenge.type.enum.ChallengeIM.processor | com.bharosa.uio.processor.challenge.ChallengeIMProcessor | Processor class for instant message challenge type |
bharosa.uio.default.challenge.type.enum.ChallengeIM.requiredInfo | mobile | Required fields to challenge user with instant message challenge type |
bharosa.uio.default.challenge.type.enum.ChallengeIM.available | false | Availability flag for instant message challenge type |
bharosa.uio.default.challenge.type.enum.ChallengeIM.otp | true | OTP flag for instant message challenge type |
The properties to register the Voice challenge processor and mark service as available (or unavailable) are listed below.
Table 11-28 Properties to register the Voice challenge processor
Property | Default Value | Description |
---|---|---|
bharosa.uio.default.challenge.type.enum.ChallengeVoice | 4 | Voice Challenge enum value |
bharosa.uio.default.challenge.type.enum.ChallengeVoice.name | Voice Challenge | Name of voice challenge type |
bharosa.uio.default.challenge.type.enum.ChallengeVoice.description | Voice Challenge | Description of voice challenge type |
bharosa.uio.default.challenge.type.enum.ChallengeVoice.processor | com.bharosa.uio.processor.challenge.ChallengeVoiceProcessor | Processor class for voice challenge type |
bharosa.uio.default.challenge.type.enum.ChallengeVoice.requiredInfo | phone | Required fields to challenge user with voice challenge type |
bharosa.uio.default.challenge.type.enum.ChallengeVoice.available | false | Availability flag for voice challenge type |
bharosa.uio.default.challenge.type.enum.ChallengeVoice.otp | true | OTP flag for voice challenge type |
An example challenge scenario is presented below.
The OTP generated and sent to the user is only valid for one correct submission within a single HTTP session. If the user's HTTP session expires and a new OTP will be generated and sent if he is challenged again in a later session.
Oracle Adaptive Access Manager provides Configurable Actions, a feature which allows users to create new supplementary actions that are triggered based on the result action and/or based on the risk scoring after a checkpoint execution. This section describes how to integrate a Configurable Action with the Oracle Adaptive Access Manager software.
To add a new Configurable Action, perform the following tasks:
Note: In this step, implementing means writing java code based on the contract specified by the Java interface com.bharosa.vcrypt.tracker.dynamicactions.intf.DynamicAction. |
While implementing the com.bharosa.vcrypt.tracker.dynamicactions.intf.DynamicAction java interface, the following two methods have to be coded:
getParameters()
- In this method, the code has to be written that returns the parameters used by the Configurable Action. Make sure that the size of the parameters array returned is the same as the number of parameters. Look at the sample configurable actions java code in Oracle Adaptive Access Manager Sample application. execute()
- In this method, code has to be written that performs the logic required by the Configurable Action. Configurable Action parameter values are passed in actionParamValueMap
where the parameter name is the key and the RuntimActionParamValue
object is the value. Use the appropriate getXXXValue()
method to get the parameter value. $ORACLE_IDM_HOME\oaam\cli\lib
folder to the build classpath. Since Configurable Actions are standalone java classes, they can be tested with Unit Testing Methodology using JUnit framework.
For sample JUnit code for testing configurable actions, refer to the "Sample JUnit Code" section.
Configurable Actions can be used to implement chaining in such a way that
Note: Sharing data across Configurable Actions involves writing java code and requires more effort than just a configuration task. |
To be able to execute Configurable Actions in a particular order and share data:
Note: A Configurable Action is executed only if the trigger criteria is met; therefore, make sure the trigger criteria is correct. |
actionContextMap
parameter of the Configurable Action's execute()
method. Since the actionContextMap
is a Map
, it requires a key and value pair that represents the data to be shared. Note: it is the implementer's responsibility to ensure that
|
actionContextMap
. This step must be performed to avoid errors or NullPointerException
when the other action do not insert the value into the actionContextMap
. To test if configurable actions triggering:
oracle.oaam
logger in OAAM Server. Enter: executeAction(): Executing Action Instance
. Exit: executeAction(): Action Instance
. Error: executeAction()
. The following is an sample JUnit code for testing dynamic action:
Device registration allows a user to flag the computer, PDA, mobile phone, or other devices he is logging in with as a safe device.
The device is added to the user's profile as a registered device.
Enabling Device Registration in Native Integration
In native integration, to enable device registration:
bharosa.tracker.send.devideId
to true, so the device ID can be captured. Enabling Device Registration Out-of-the-Box
In Oracle Adaptive Access Manager out-of-the-box, to enable device registration for all applications:
bharosa_server.properties
: To enable the features on an application-specific bases, "default" can be replaced with the appropriate appId in each of the prior property names.
Create Policies to Use Device Information
Once the feature is enabled, information about the device is collected for that user. If you want to make use of the information you are collecting, you must create policies and configure them properly. For example, you can create a policy with rules to challenge a user that is not logging in from one of the registered devices.
Resetting Registration
A customer reset action to unregister all devices for a user is available in CSR type cases. The "Unregister Devices" action will delete all registered devices from the user's profile.
This chapter describes how to extend device identification in a typical deployment. It includes the following topics:
For most typical deployments, the out-of-the-box device identification satisfies client requirements. Out-of-the-box device identification uses data from the browser and OAAM flash movie. The following are the typical scenarios when you could consider extending device identification:
The prerequisites for performing tasks to extend device identification in Oracle Adaptive Access Manager are provided in the following list:
The custom device identification plug-in is software that extends the out-of-the-box device identification provided by Oracle Adaptive Access Manager.
Implement the client side plug-in that can run in the client browser. This involves coding the client side plug-in using the appropriate technology.
The client side plug-in should satisfy the following requirements:
Fingerprint.do
URL on OAAM Server using HTTP Post: Table 14-1 Parameters to flashFingerprint.do URL
Name of the parameter | Description |
---|---|
client | Name of the client plug-in. A constant value that indicates the plug-in type. |
fp | Concatenated string that has all the name-value pairs that identify the client side. Name-value pairs is concatenated using "&" and name-value is separated using "=". Example: If os_name and os_version are collected by plug-in then the fp string value looks like "os_name=windows&os_version=7 |
<as determined by the implementation> | Send the cookie equivalent value stored/maintained by the client plug-in. |
Add the following properties as enum element to vcrypt.fingerprint.type.enum to bharosa_server.properties of the OAAM Extensions Shared Library war.
Note: Replace <plug-in-name> with a string that represents your plug-in. Do not use the strings 'flash', 'browser' as they are already used by the OAAM product.
Table 14-2 vcrypt.fingerprint.type.enum elements
Property Name | Value Description |
---|---|
vcrypt.fingerprint.type.enum.<plugin-name> | Integer value above 100 |
vcrypt.fingerprint.type.enum. <plug-in-name>.name | Name that represents the plug-in |
vcrypt.fingerprint.type.enum. <plug-in-name>.description | Description of the plug-in |
vcrypt.fingerprint.type.enum. <plug-in-name>.processor | Fully qualified java class name of the processor class that implements device identification logic on the server side. See next section for details on how to implement this class. |
vcrypt.fingerprint.type.enum. <plug-in-name>.header_list | Comma separated list of data that is collected by the client side plug-in. |
vcrypt.fingerprint.type.enum. <plug-in-name>.header_name_nv | Comma separated list of data and readable name of those data. |
vcrypt.fingerprint.type.enum. <plug-in-name>. header_value_nv | Comma separated list of mappings of value to readable string of those values |
bharosa.uio.default.device.identification.scheme | <plug-in-name> Note: This is very important for OAAM to use the custom device identification |
Extend the DeviceIdentification
plug-in class: com.bharosa.uio.processor.device.DeviceIdentificationProcessorBase
and implement the following methods:
public String getPlugInHTML();
Implementation should return a valid plug-in HTML that can be embedded into login pages. The HTML should take care of handling exceptions like if the supporting technology is not available or disabled on the client.
An example for plug-in HTML is shown below:
Note: This method is called by the oaamLoginPage.jsp when the user navigates to login page.
public String getFingerPrint();
This method should implement logic that creates a unique fingerprint that identifies the client device using the data sent by the plug-in.
This method is called when the client side plug-in submits device identification data to OAAM Server.
This method should call the UIOContext.getCurrentInstance().getRequest
to get handle to HttpServletRequest
object to read the data sent by the client plug-in.
As mentioned in the previous section, client plug-in would send list of data points as single string as the value of "fp" request parameter.
This class should "tokenize" this string to determine the list of datapoints and their values.
public String getDigitalCookie();
Implementation should return the digital cookie sent by the client plug-in. It is the responsibility of the client and server to designate an Http
parameter that indicates the digital cookie.
This method should call the UIOContext.getCurrentInstance().getRequest
to get handle to HttpServletRequest
object to read the data sent by the client plug-in.
Following is the overview of how the device identification plug-in works and interacts with OAAM Server:
Compile the custom device identification plug-in class and assemble the OAAM Extensions Shared library. Refer to Chapter 7, "Customizing Oracle Adaptive Access Manager" for instructions.
When implementing the plug-in, keep the following points in mind:
This chapter focuses on the specifics of Flash Fingerprinting within an Oracle Adaptive Access Manager native integration.
All code examples included in the chapter are outlines of calls needed to perform the tasks. They should not be considered complete implementations.
Note: This chapter assumes that the reader is familiar with Oracle Adaptive Access Manager native integrations and APIs. |
Oracle Adaptive Access Manager captures information about the devices that a user utilizes when accessing protected applications. This information consists of many different datapoints gathered through a variety of means. The data collected is encoded into a unique fingerprint for the device.
When a device is used for an access request, Oracle Adaptive Access Manager interrogates the device for the fingerprint and uses it along with many other types of data to determine the risk associated with the specific access request. Some of the technology used to gather fingerprint data include HTTP header, secure cookie, shared flash object and behavior profiling.
Table 15-1 lists the parameter and response variable in the interaction between the flash movie and the application.
Table 15-1 Flash movie Parameters and Response Variables
Parameter/Response Variable | Usage |
---|---|
v | Used as an HTTP request parameter sent from the flash movie to the application. It contains the generated "cookie" string that is used a single time by the user. This value is also returned in the HTTP response to the flash movie as "&v=<new value>". |
client | Used as an HTTP request parameter sent from the flash movie to the application. This indicates the type of client performing the fingerprinting (in this case, flash). The expected value from the flash movie is "vfc". |
fp | Used as an HTTP request parameter sent from the flash movie to the application. It contains information about the client computer accessible to the flash player. |
Option 1 is the traditional implementation using a "Jump Page" to include the flash movie that is used for fingerprinting. In Option 1, the flash movie sends the user's current flash cookie value to the server and the server responds with a new value in a single transaction.
Figure 15-1 shows the flow of Option 1.
i. The server retrieves the HTTP request parameter "v" and stores it in session
ii. The server retrieves the HTTP request parameter "client"
iii. The server retrieves the HTTP request parameter "fp"
iv. Parse fp with VCryptServletUtil.getFlashFingerprint (client, fp)
v. Calls VCryptTracker.updateLog with the User, HTTP Cookie, and Flash information
vi. The new flash cookie returned in CookieSet from updateLog is returned to the flash movie in the HTTP response ("&v=" + cookieSet.getFlashCookie())
This section provides a code example for Option 1.
Option 2 is a newer, more streamlined user experience that eliminates the "Jump Page" from the user experience. To do this, the flash movie is included in both the user name page and the password page.
Figure 15-2 shows the flow of Option 2.
i. The server retrieves the HTTP request parameter "v" and stores it in session
ii. The server retrieves HTTP request parameter "client"
iii. The server retrieves HTTP request parameter "fp"
iv. Parse fp with VCryptServletUtil.getFlashFingerprint(client, fp) and store result in user session.
v. The value of "v" received is returned to the flash movie in the HTTP response ("&v=" + cookieSet.getFlashCookie())
i. The server already has the value from the previous flash request
ii. The new value generated by UpdateLog call is returned to flash movie
This section provides a code example for Option 2.
Option 3 is an implementation using a single page for user name and password (not using virtual authentication devices), and uses a "Jump Page" to include the flash movie used for fingerprinting. In this case, the flash movie will send the server the user's current flash cookie value and the server will respond with a new value in a single transaction.
Figure 15-3 shows the flow of Option 3.
i. The server retrieves the HTTP request parameter "v" and stores it in session
ii. The server retrieves the HTTP request parameter "client"
iii. The server retrieves HTTP request parameter "fp"
iv. Parse fp with VCryptServletUtil.getFlashFingerprint(client, fp).
v. Calls VCryptTracker.updateLog with User, HTTP Cookie, and Flash information
vi. The new flash cookie returned in CookieSet from updateLog is returned to the flash movie in the HTTP response ("&v=" + cookieSet.getFlashCookie())
This section provides a code example for Option 3.
The implementations would use a method similar to the following for making updateLog calls:
Part IV contains a chapter on Oracle Adaptive Access Manager, Oracle Access Manager, and Oracle Identity Manager integration.
This chapter provides an overview of the benefits and a list of scenarios of Oracle Access Manager with Oracle Identity Manager and Oracle Adaptive Access Manager.
Detailed conceptual and procedural information is provided in the Oracle Fusion Middleware Administrator's Guide for Oracle Access Manager with Oracle Security Token Service.
Integrating Oracle Access Manager, Oracle Adaptive Access Manager, and Oracle Identity Manager provides these features:
Oracle Adaptive Access Manager
Oracle Adaptive Access Manager is responsible for:
Oracle Identity Manager
Oracle Identity Manager is responsible for:
Oracle Access Manager
Oracle Access Manager is responsible for:
In this integration, Oracle Access Manager redirects users to Oracle Adaptive Access Manager when a trigger condition for password management is in effect. The "trigger condition" is the authentication scheme used in Oracle Access Manager.
Oracle Adaptive Access Manager interacts with the user based on lifecycle policies retrieved from Oracle Access Manager, and when the condition is resolved, notifies Oracle Access Manager so that the user is redirected to the protected resource. In this integration, Oracle Identity Manager serves to provide password policy enforcement.
Challenge Registration Flow
The Challenge Registration flow allows the user to register challenge questions and answers.
The user is successfully authenticated but is required to register challenge questions. He cannot skip the registration. The user is not authorized to access protected resources until the challenges questions have been registered.
Note: When adding Oracle Adaptive Access Manager to existing Oracle Identity Manager deployments, you will need to forego all the existing questions and answers that are registered in Oracle Identity Manager. Instead, users are asked to register the challenge questions again in Oracle Adaptive Access Manager on the next login. |
Forgot Password Flow
The Forgot Password flow allows the user to reset the password after successfully answering all challenge questions.
A "Forgot Your Password" link is made available from the Oracle Adaptive Access Manager password page for the user.
Reset Password Flow
The Reset Password flow allows the user to reset the password.
The user is successfully authenticated. The "Change your password" link is available to the user at the Oracle Adaptive Access Manager password page.
Challenge Reset Flow
The Challenge Reset flow allows the user to reset challenge registration.
The user is successfully authenticated. The "Reset your challenge questions" link is available in the Oracle Adaptive Access Manager password page.
This chapter covers the tasks involved in migrating an existing natively integrated 10.1.4.5 application that is currently using SOAP authentication to 11g.
Pre-requisites are as follows for migration of your existing natively integrated application:
bharosa_server.properties
and this file should be in the Java Classpath of the client application This native integration involves only local API calls and therefore no remote server risk engine calls. The integration embeds the processing engine for OAAM with the application and enables it to leverage the underlying database directly for processing.
To migrate the natively integrated inproc application to OAAM 11g, proceed as follows:
To use the Oracle Adaptive Access Manager Shared Library, you must refer to the shared library by adding the following entry to your WebLogic deployment descriptor file, weblogic.xml:
As part of migrating the application, you must perform these steps:
bharosa_server.properties
. The web application communicates with OAAM via Web Services.
Follow the procedures in this section to migrate your native SOAP application to OAAM 11g.
To use the Oracle Adaptive Access Manager Shared Library, you must refer to the shared library by adding the following entry to your WebLogic deployment descriptor file, weblogic.xml:
As part of migrating the application, you must perform these steps:
bharosa_server.properties
. bharosa_server.properties
: vcrypt.tracker.soap.useSOAPServer=true
vcrypt.soap.disable=false
bharosa.config.impl.classname=com.bharosa.common.util.BharosaConfigPropsImpl
bharosa.config.load.impl.classname=com.bharosa.common.util.BharosaConfigLoadPropsImpl
For details on configuring SOAP/WebServices Access, refer to "Configuring SOAP Web Services Access" in the Oracle Fusion Middleware Administrator's Guide for Oracle Adaptive Access Manager.
The process below covers migrating your existing 10.1.4.5 Natively Integrated application that is currently using SOAP authentication to 11g.
After those files are copied, you can copy the oaam_core.jar
file from the $ORACLE_HOME/oaam/cli/lib
folder into your applications library directory. $ORACLE_HOME is usually the ORACLE_IDM1
folder in the Middleware Home.
All updated property files and libraries are located in the $ORACLE_HOME/oaam/cli
folder. The conf/bharosa_properties
folder contains the updated properties, and the lib
folder contains the updated libraries.
To upgrade your existing natively integrated application, you can start by removing the contents of your existing bharosa_properties folder, and replacing them with the contents of the $ORACLE_HOME/oaam/cli/conf/bharosa_properties
directory.
In 10g all client specific configuration overrides were created in the bharosa_client.properties
file, now those overrides need to be created in the bharosa_server.properties
file. This was typically the file modified on the server side for the same purpose. A bharosa_server.properties
file that contains the contents of your old bharosa_client.properties
with the addition of the following new properties needs to be created in your application's bharosa_properties
folder that contains the following information:
New Properties
vcrypt.tracker.soap.useSOAPServer=true
vcrypt.soap.disable=false
bharosa.config.impl.classname=com.bharosa.common.util.BharosaConfigPropsImpl
bharosa.config.load.impl.classname=com.bharosa.common.util.BharosaConfigLoadPropsImpl
These new properties will tell the new libraries to use the Generic SOAP implementation classes for communicating with the OAAM Server component, and instead of looking to the OAAM database to read the properties typically retrieved from the BharosaConfig
class to retrieve them from the local property files.
It is noted above that these properties are to be used in addition to the existing contents of your bharosa_client.properties
file which should include your soap user name, and soap keystore information. Note: If you did not have SOAP authentication setup in 10g, you will need to refer to "Setting Up Encryption" in the 10.1.4.5 Oracle Adaptive Access Manager Installation and Configuration Guide for creating a SOAP keystore for use with the new 11g environment.
Because of integrated deployment of Oracle Adaptive Access Manager with other applications, Oracle Virtual Directory, Oracle Identity Manager, Oracle Access Manager, Oracle Internet Directory, and configuration changes in those applications, various configuration changes might be required in Oracle Adaptive Access Manager. Instructions for handling such types of configuration changes are described in this chapter:
References are also provided for moving Oracle Adaptive Access Manager from a test environment to a production environment:
To change the Oracle Virtual Directory host, port, and SSL enablement:
http://<OAAM Managed Server Host>:<OAAM Admin Managed Server Port>/oaam_admin
. Table 18-1 Configuring Oracle Directory Manager Property Values
Property Name	Property Values
bharosa.uio.default.password.auth.provider.classname	com.bharosa.vcrypt.services.LDAPOAAMAuthProvider
oaam.uio.ldap.host	<OVD host> For example, host.oracle.com
oaam.uio.ldap.port	<OVD port>
oaam.uio.ldap.userdn.template	<User Search DN> For example, uid= {USER_ID}, cn=user,dc=us,dc=oracle,dc=com.
oaam.uio.ldap.isSSL	false
For information on setting properties in Oracle Adaptive Access Manager, see "Using the Property Editor" in Oracle Fusion Middleware Administrator's Guide for Oracle Adaptive Access Manager.	
Follow these steps to rewire an existing deployment of Oracle Adaptive Access Manager with Oracle Identity Manager:	
http://<OAAM Managed Server Host>:<OAAM Admin Managed Server Port>/oaam_admin	
. Table 18-2 Configuring Oracle Identity Manager Property Values	
Property Name	Property Values
---	---
oaam.oim.url	t3://<OIM Managed Server>:<OIM Managed Port> For example, t3://host.oracle.com:14000
bharosa.uio.default.signon.links.enum.selfregistration.url	
where OHS setup was performed during the integration between Oracle Access Manager and Oracle Identity Manager.	
bharosa.uio.default.signon.links.enum.trackregistration.url	
where OHS setup was performed during the integration between Oracle Access Manager and Oracle Identity Manager.	
For information on setting properties in Oracle Adaptive Access Manager, see "Using the Property Editor" in Oracle Fusion Middleware Administrator's Guide for Oracle Adaptive Access Manager.	
For information on rewiring Oracle Access Manager for Oracle Adaptive Access Manager hostname and port changes, refer to the Oracle Fusion Middleware Administrator's Guide for Oracle Access Manager with Oracle Security Token Service.	
Follow these steps to change the Oracle Internet Directory Host, Port and SSL enablement in an existing deployment of Oracle Adaptive Access Manager:	
http://<OAAM Managed Server Host>:<OAAM Admin Managed Server Port>/oaam_admin	
. Table 18-3 Configuring Oracle Directory Manager Property Values	
Property Name	Property Values
---	---
bharosa.uio.default.password.auth.provider.classname	com.bharosa.vcrypt.services.LDAPOAAMAuthProvider
oaam.uio.ldap.host	<OID host> For example, host.oracle.com
oaam.uio.ldap.port	<OID port>
oaam.uio.ldap.userdn.template	<User Search DN> For example, uid= {USER_ID}, cn=user,dc=us,dc=oracle,dc=com.
oaam.uio.ldap.isSSL	false
For information on setting properties in Oracle Adaptive Access Manager, see "Using the Property Editor" in Oracle Fusion Middleware Administrator's Guide for Oracle Adaptive Access Manager.	
After installing Oracle Adaptive Access Manager, if there are any changes in the database host or port number, follow these instructions:	
/network/admin/listener.ora	
. To changes the data source:	
For information on moving Oracle Adaptive Access Manager to a new production environment, see "Moving Identity Management to a New Production Environment" in Oracle Fusion Middleware Administrator's Guide.	
For information on moving Oracle Adaptive Access Manager to an existing production environment, see " Moving Identity Management to an Existing Production Environment" in Oracle Fusion Middleware Administrator's Guide.	
This chapter contains instructions on creating Oracle BI Publisher reports on data in the OAAM schema.	
Refer to the following sections to create OAAM reports from the Oracle Adaptive Access Manager database. In code listings OAAM table and field names are bold and italic.	
Refer to the instructions in "Creating a New Report" at the following URL:	
http://download.oracle.com/docs/cd/E12844_01/doc/bip.1013/e12187/T518230T518233.htm	
This section is from the Oracle Business Intelligence Publisher Report Designer's Guide at the following URL:	
http://download.oracle.com/docs/cd/E12844_01/doc/bip.1013/e12187/toc.htm	
Several fields in many tables are numeric type codes, which correspond to OAAM User Defined Enums. Refer to Chapter 7, "Customizing Oracle Adaptive Access Manager" for more information about OAAM User Defined Enums. Information on how to map those type codes to readable names is presented in this section.	
There are two methods for resolving these names, and the one to choose depends on whether you need to display English only or you need to display internationalized strings.	
To display a readable string rather than a type code value in the report output, the report writer will need to add a join to the tables that hold the User Defined Enums, and then add the field to the select clause.	
The following SQL code shows how to add the join criteria to the query:	
In this code, table.type_field	
is the field containing a type code value that you want to replace with a string. Alias is the name you are giving the inner select clause. Finally, enum_name	
is the property name of the User Defined Enum.	
To display in the report, you need to add alias.label to the select clause.	
The following SQL code shows how to add the join criteria to the query:	
In this code, table.type_field	
is the field containing a type code value that you want to replace with a string. Alias is the name you want to give the inner select clause. Finally, enum_name	
is the property name of the User Defined Enum.	
To display in the report, you need to add alias.config_value to the select clause.	
Add parameters to your report definition to enable your users to interact with the report and specify the data of interest from the data set.	
To allow a user to select from a list of readable strings representing type codes, the report writer will need to create a List of Values (LOV) from a query on the User Defined Enums tables, filtered by the enum name.	
The following listing shows how to write the query to populate the list of values.	
label	
The following listing shows how to filter the report based on this LOV.	
In these listings, enum_name	
is the property name of the User Defined Enum, table.type_field	
is the field containing a type code value that you want to replace with a string, and parameter is the named parameter. Review the Oracle BI Publisher User's Guide for information about creating and setting up report parameters.	
The following listing shows how to write the query to populate the list of values.	
The filtering is performed in the same manner as the English Only version.	
The OAAM schema includes tables that map IP address ranges to location data including city, state, and country. The relevant tables are VCRYPT_IP_LOCATION_MAP	
, VCRYPT_CITY	
, VCRYPT_STATE	
, and VCRYPT_COUNTRY	
. Many tables contain IP addresses, and VCRYPT_IP_LOCATION_MAP	
contains foreign keys to each of VCRYPT_CITY	
, VCRYPT_STATE	
, and VCRYPT_COUNTRY	
.	
In OAAM, IP addresses are stored as long numerals. The following listing shows how join a table containing an IP address to the VCRYPT_IP_LOCATION_MAP	
.	
For user input and display purposes, you will normally want to use the standard four-part IP address. The following listing shows how to display a numeric IP address as a standard IP, where ipField is the field or parameter containing the numeric IP address you want to display.	
The following listing shows how to convert a standard IP address to the long numeric format.	
Sessions and alerts exist in the VCRYPT_TRACKER_USERNODE_LOGS	
and VCRYPT_ALERT	
tables, respectively. They join to each other via the REQUEST_ID field	
, and they each join to the geolocation data via the VCRYPT_IP_LOCATION_MAP	
table via the BASE_IP_ADDR	
field.	
The session table and the alert table have several type code fields that may be translated into readable text by following the instructions to look up the user defined enums by name. The following tables will list the type code fields and the name of the user defined enum.	
This report will show a list of sessions, with user id, login id, auth status, and location. To start with, you will need to create two date parameters, fromDate	
and toDate	
. The query will look like the following:	
BI Publisher offers several options for designing templates for your reports. Refer to the Oracle Business Intelligence Publisher Report Designer's Guide for instructions at the following URL:	
http://download.oracle.com/docs/cd/E12844_01/doc/bip.1013/e12187/toc.htm	
This section explains how you can build transaction reports. It contains the following topics:	
To get the Transaction Definition key and Entity Definition keys, follow these steps:	
To discover entity data mapping information that you will need to create your report, follow the procedures in this section.	
For your reference, number data types are listed in the following table.	
Table 19-3 Information about Data Types	
Data Type	Description
---	---
1	Represents String data
2	Represents Numeric data. Data stored is equal to (Original value * 1000).
3	Date type data. Store the data in "'YYYY-MM-DD HH24:MI:SS TZH:TZM" format and also retrieve it using same format.
4	Boolean data. Stored as strings. "True" represents TRUE and "False" represents FALSE
To get the entity data details that you will need to construct your report, follow these steps:	
The above SQL query gives a list of data fields of the entity with data type and row, column position. Using that information, build a SQL query based on the following information that represents data of the given entity. It is also recommended to create/build a view based on this SQL query that represents data of the given entity.	
Note: EntityRowN represents an entity data row. If your entity has 3 distinctdata_row values from the above query then you would have 3 EntityRows, name the aliases as EntityRow1 , EntityRow2 , and so on, and similarly take care of the corresponding joins as shown below.	
To discover transaction data mapping information that you will need to create your report, follow the procedures in this section.	
To get entity data details you will need to construct your report, follow these steps:	
Use the information from the previous section and build a SQL query that represents transaction data based on the following:	
Note: It is recommended to build a view based on this Query so that it is easier to build reports	
Follow the instructions in this section to build reports for entities and transactions.	
Use the SQL Queries or Views built using the information mentioned in Section 19.2.2.3, "Build Entity Data SQL Queries and Views."	
Use the SQL Queries or Views built using the information mentioned in Section 19.2.3.2, "Build Transaction Data SQL Queries and Views."	
The OAAM Server provides a challenge processor framework that allows for custom implementations of challenge mechanisms.	
This chapter contains the following sections:	
A challenge processor is java code that implements the ChallengeProcessorIntf	
interface or extends the AbstractChallengeProcessor	
class.	
Challenge processors can be created to perform the following tasks for a challenge:	
For example, to use SMS, you must implement a method for generating the secret PIN and checking the status of the send and the class that is called for by a challenge type.	
This section contains information on the challenge processor class and methods to implement. An implementation example is also provided for your reference.	
To implement a challenge processor, you will need to extend the following class:	
Later, you will compile the code by adding oaam.jar from $ORACLE_IDM_HOME\oaam\cli\lib	
folder to the build classpath.	
For instructions on customizing, extending, or overriding Oracle Adaptive Access Manager properties, refer to Chapter 7, "Customizing Oracle Adaptive Access Manager."	
The methods used in a challenge processor are listed in the sections following.	
Table 20-1 Challenge Processor Methods	
Methods	Description
---	---
protected boolean generateSecret(UIOSessionData sessionData, boolean isRetry)	This method is used to generate code to send to client
protected boolean validateAnswer(UIOSessionData sessionData, String answer)	This method is used to validate the user answer.
public String checkDeliveryStatus(UIOSessionData sessionData, boolean userWaiting, boolean isRetry)	This method is used if you want to provide a wait until message is sent.
public boolean isServiceAvailable(UIOSessionData sessionData)	This method is used to check if external service is available.
An implementation of the email challenge processor is shown as follows:	
This section contains instructions on defining a delivery channel type. Examples are provided for your reference.	
Challenge types are configured by the enum, challenge.type.enum	
. The actual enum value is shown as follows:	
bharosa.uio.<application>. challenge.type.enum.<challenge type>	
For example,	
bharosa.uio.default.challenge.type.enum.ChallengeEmail	
The challenge type enum is used to associate a challenge type with the java code needed to perform any work related to that challenge type. An example of implementing an email challenge processor is shown in Section 20.2.3, "Example: Email Challenge Processor Implementation."	
The Challenge Type ID (for example, ChallengeEmail) should match a rule action returned by the rules when that challenge type is used. The rule action for ChallengeEmail is rule.action.enum.ChallengeEmail. The rule action is to challenge the user using email using the email delivery channel. "Channel" normally refers to the delivery channel used to send to the user.	
To define a challenge type, use the following property:	
In the property, default is the UIO application name, and MyChallenge is the Challenge Type being added. For example, ChallengeEmail is the Challenge Type in the example below.	
The rule action is to challenge the user with email using the email delivery channel.	
To enable/disable a challenge type, the available flag should be set:	
Table 20-2 Challenge type Flags	
Property	Description
---	---
available	if the challenge type is available for use (service ready and configured). To enable/disable an OTP challenge type, the available flag should be set.
processor	java class for handling challenges of this type.
requiredInfo	comma separated list of inputs from the registration input enum
Setting the available flag and setting the enabled flag are different. The enabled flag would remove it from list.	
Example for Defining a Channel Type	
Attributes bharosa.uio.default.challenge.type.enum with example values are shown as follows:	
Email Example	
SMS Example	
Instructions to configure user information properties are in the following sections:	
For instructions on customizing, extending, or overriding Oracle Adaptive Access Manager properties, refer to Chapter 7, "Customizing Oracle Adaptive Access Manager."	
Default configurations for enabling for registration and preference input are listed as follows:	
Contact information registration	
Contact information preferences	
If user information registration and user preferences are true, configure input information.	
Contact information inputs are defined in userinfo.inputs.enum. The enum element is:	
Table 20-3 Properties for Contact Input	
Property	Description
---	---
inputname	Name used for the input field in the HTML form
inputtype	Set for text or password input
maxlength	Maximum length of user input
required	Set if the field is required on the registration page
order	The order displayed in the user interface
regex	Regular expression used to validate user input for this field
errorCode	Error code used to look up validation error message (bharosa.uio.<application ID>.error.<errorCode>)
managerClass	java class that implements com.bharosa.uio.manager.user.UserDataManagerIntf (if data is to be stored in Oracle Adaptive Access Manager database this property should be set to com.bharosa.uio.manager.user.DefaultContactInfoManager)
Email Input Example	
By default, challenge devices that will be used are configured through rules. The rules are under the AuthentiPad checkpoint where you can specify the type of device to use based on the purpose of the device.	
To create/update policies to use the challenge type:	
Alternatively, if you want to configure challenge devices using properties, you can bypass the AuthentiPad checkpoint by setting bharosa.uio.default.use.authentipad.checkpoint	
to false	
.	
Devices to use for the challenge type can be added.	
The examples shown use the challenge type key, ChallengeEmail and ChallengeSMS to construct the property name.	
Available challenge device values are DeviceKeyPadFull, DeviceKeyPadAlpha, DeviceTextPad, DeviceQuestionPad, DevicePinPad, and DeviceHTMLControl.	
Table 20-4 Authentication Device Type	
Property	Description
---	---
None	No HTML page or authentication pad
DeviceKeyPadFull	Challenge user using KeyPad.
DeviceKeyPadAlpha	Challenge user with the alphanumeric KeyPad (numbers and letters only, no special characters)
DeviceTextPad	Challenge user using TextPad.
DeviceQuestionPad	Challenge user using QuestionPad.
DevicePinPad	Challenge user using PinPad.
DeviceHTMLControl	Challenge user using HTML page instead of an authentication pad.
Users who want to load from a non-OAAM database will need to create a view in their remote data source. This document explains how to create this view.	
The Out-of-the-Box Loader for OAAM Offline requires a table or view with a specific name and structure to exist in the load data source. The structure is given in the following table.	
Table 21-1 OAAM_LOAD_DATA_VIEW	
Field Name	Data Type
---	---
LOGIN_TIMESTAMP	Date/Time
SESSION_ID	Character
USER_ID	Character
LOGIN_ID	Character
DEVICE_ID	Character
GROUP_ID	Character
IP_ADDRESS	Integer
AUTH_STATUS	Integer
CLIENT_TYPE	Integer
USER_AGENT	Character
FLASH_FINGERPRINT	Character
DIGITAL_COOKIE	Character
EXP_DIGITAL_COOKIE	Character
SECURE_COOKIE	Character
EXP_SECURE_COOKIE	Character
The OAAM Schema and custom schema are shown below.	
The following example shows the SQL for the OAAM_LOAD_DATA_VIEW	
that ships with OAAM.	
For discussion purposes, consider this statement in two parts.	
The first part starts at the beginning and ends before the Select. This part is required and cannot be modified.	
The second part starts with the Select and continues to the end of the statement. If loading from a non-OAAM schema, this part would be customized to select data from that schema.	
In this example, you would want to load from a table that looks like the following. You would want to have "Banking" as your primary group or Application ID, and you would not want to load test data.	
LOGINS	
Table 21-2 LOGINS	
Field Name	Data Type
---	---
LOGIN_TIME	Date/Time
LOGIN_ID	Integer
USER_NAME	Character
DEVICE_ID	Character
IP_ADDRESS	Character
AUTH_STATUS	Character
USER_AGENT	Character
IS_TEST	Integer
In this case, a decode statement is needed to convert the custom authentication status to an OAAM authentication status, and the IP address needs to be parsed to convert it into a long integer. A view must be created that looks like the following.	
Here, you map your user_name	
to USER_ID	
and LOGIN_ID	
, you map a literal string "Banking" to GROUP_ID	
, you parse your ip_address	
string and convert it to a long integer, you use a decode statement to convert your auth_status	
, you map -1	
to CLIENT_TYPE	
, and you map literal null	
to FLASH_FINGERPRINT	
, DIGITAL_COOKIE	
, EXP_DIGITAL_COOKIE	
, SECURE_COOKIE	
, and EXP_SECURE_COOKIE	
.	
This chapter describes the overall data loader framework for OAAM Offline:	
This document assumes that you are familiar with the concepts of OAAM Offline.	
A custom loader is required only if the data from sources other than a database, data other than login, or complex data is needed for the OAAM Offline task.	
The OAAM Offline custom loader consists of the following key parts:	
The loadable object represents an individual data record. The data source represents the entire store of data records and the loader processes the records. There are two types of run mode: load and playback. The run modes encapsulate the differences between loading a Session Set and running a Session Set.	
Table 22-1 provides a summary of the different data loader classes.	
Table 22-1 Data Loader Classes	
Class	Description
---	---
RunMode	There are two basic types of RunMode: load and playback. Load run modes are responsible for importing session set data into the OAAM Offline system, and the playback run mode is responsible for processing preloaded session set data. Each run mode is responsible for constructing data source and loader. An additional responsibility is determining how to start where a previous job ended, in the cases of recurring schedules of autoincrementing session sets or paused and resumed run sessions.
RiskAnalyzerDataSource	The
AbstractTransactionRecord	The
AbstractRiskAnalyzerLoader	The
The following pseudocode shows the general framework execution.	
The default implementation for the Risk Analyzer data loader framework works as follows:	
Load mode: When in load mode, it uses any database as a data source, it expects login data, and it performs device fingerprinting.	
Playback mode: When in playback mode, it uses the VCRYPT_TRACKER_USERNODE_LOGS	
and V_FPRINTS	
tables as its data source, and it runs each record through all active models.	
The default load implementation is summarized below.	
Table 22-2 Default Implementation	
Components	Description
---	---
LoadRunMode	The default
DatabaseRiskAnalyzerDatasource	The
LoginRecord	The login record contains all of the available fields required to call the methods for device fingerprinting on the TrackerAPIUtil class.
AuthFingerprintLoader	The
The default playback implementation is summarized below.	
Table 22-3 Default Playback Implementation	
Components	Description
---	---
PlaybackRunMode	The default P
UserNodeLogsRiskAnalyzerDatasource	The
LoginRecord	The login record contains all of the fields required to call the methods for rules processing on the
RunRulesLoader	The
There are several cases that would require the default behavior to be overridden. You would need to override the default loading behavior to load data from a source other than a database or to load transactional data into the system. You would need to override the default playback behavior if you needed to perform a procedure other than rules processing.	
If you are loading login data from a data source other than a JDBC database, or if you are loading transactional data, then you will need to create your own subclass of RiskAnalyzerDataSource	
. There are three ways to do this: extending AbstractJDBCRiskAnalyzerDataSource	
, extending AbstractTextFile-RiskAnalyzerDataSource	
, or extending AbstractRiskAnalyzerDataSource	
.	
This is the appropriate choice if you are loading any sort of data through a JDBC connection. It includes default behavior for opening a JCBC connection, issuing a subclass specified SQL query to build a JDBC result set, and querying the database for a count of the total number of records.	
There are three abstract methods that you have to implement.	
getOrderByField()	
to add the order by statement. getOrderByField()	
returns the name of the database field that your query should be sorted on. This is usually the date field. buildNextRecord()	
turns one or more records from the JDBC result set into your loadable data record. There are protected fields in the superclass available for your use, and you will need them when you implement the abstract methods. The most important is resultSet	
, which refers to your JDBC result set. When hasMoreRecords()	
has been called and returns true, you are guaranteed that resultSet	
is in a valid state and pointing at the current record. In addition, when you implement buildNextRecord()	
, you can safely assume that resultSet	
is in a valid state and pointing at the current record.	
Other fields you might need to know about are connection and controller. connection refers to your JDBC to the remote database. controller is an instance of RiskAnalyzer and contains context information about your current OAAM Offline job.	
Other methods that you can override if the default behavior is not what you need are buildConnection()	
, buildSelectCountStatement()	
, getTotalNumberToProcess()	
, and buildSelectStatement()	
.	
You would override buildConnection()	
if you wanted to change how you instantiate the remote JDBC connection.	
You would override buildSelectCountStatement()	
if you wanted to change the SQL used to count the number of records to be read in.	
You would override getTotalNumberToProcess()	
if you wanted to replace the algorithm that returns the number of records to be read in. You would only do this if overriding buildSelectCountStatement()	
was not enough to give you the behavior you need.	
Finally, you would override buildSelectStatement()	
if you wanted to make changes to the SQL used to read the records from the remote databases, such as changing how the order by clause is applied.	
This is the appropriate choice if you are loading data from a text file. It includes default behavior for opening a file, skipping to the first line in the file whose date is at or above the beginning of the session set's range, and stopping when you reach a line whose date is above the end of the session set's range. For this scheme to work, the input file must be sorted by date. There are two abstract methods you will have to implement.	
dateOfCurrentRecord()	
tells us the date of the current record. When this method is called, you are guaranteed that the currentLine	
field is valid and contains the current line of your file.	
buildNextRecord()	
turns one or more lines from the file into your loadable data record.	
If your input file contains lines that you need to ignore, you can override the lineIsBad()	
method to examine the text passed to it, and return true if the line is one that needs to be skipped.	
There are protected fields in the superclass available for your use, and you will need them when you implement the abstract methods. The two most important ones are currentLine	
, which refers the last read in line from your file, and reader, which is a java.io.BufferedReader	
representing a character stream your file and is pointed at the next line after currentLine	
, if any. When hasMoreRecords()	
has been called and returns true, you are guaranteed that currentLine	
is not null and is within your session set's range.	
Another field you might need to know about is controller. controller is an instance of RiskAnalyzer	
and contains context information about your current OAAM Offline job.	
Other methods that you can override if the default behavior is not what you need are getTotalNumberToProcess()	
, isBeforeBeginning()	
, isAfterEnd()	
, and skipToBeginning()	
.	
The default implementation of getTotalNumberToProcess()	
assumes that you will not know how many records you intend to process, so it returns a constant invalid value, signifying N/A. If your implementation has some way to know how many records it will be processing, you can override this method with your algorithm.	
The default implementation of isBeforeBeginning()	
returns true if the date returned by dateOfCurrentRecord()	
is before controller's start date range. You can override this method if you need to do this in a different way. Your file must be sorted by whichever field or fields you are comparing here.	
The default implementation of isAfterEnd()	
returns true if the date returned by dateOfCurrentRecord()	
is after controller's end date range. You can override this method if you need to do this in a different way. Your file must be sorted by whichever field or fields you are comparing here. If you wanted to turn off this behavior, you can override this method to return a constant value of false.	
The default implementation of skipToBeginning()	
iterates through the file until it finds a record for which isBeforeBeginning()	
returns false. If you wanted to turn off this behavior, you could override this method to have an empty body. The default manner in which this method skips to the next record is to go through the motions of constructing the loadable record, only to throw it away. This step is required for the case where it takes multiple lines from the file to make a single loadable record, to ensure that all of those lines are skipped at once. If you are guaranteed that one line is equal to one loadable record, you can replace this method with the following more efficient version. The nextRecordIsReady	
variable is a flag the hasMoreRecords()	
checks to know if it needs to skip to the next line. Any overriding version of skiptoBeginning()	
must set the initialized flag to true before calling hasMoreRecords()	
to avoid an infinite loop.	
If neither AbstractJDBCRiskAnalyzerDataSource	
nor AbstractTextFile-RiskAnalyzerDataSource	
is appropriate, then you will need to extend AbstractRiskAnalyzerDataSource	
instead. You might find yourself in this situation if you are reading from a binary file or if you are implementing a data source for a custom playback mode and using TopLink to read from the OAAM Offline database.	
The constructor should put your class into a state so that you are ready to iterate through the data. There are four abstract methods you will have to implement.	
getTotalNumberToProcess()	
will return the total number of records in the data source that satisfy the conditions that define a given Session Set.	
hasMoreRecords()	
will return true if there are more records to be processed, and will move any sort of record pointer to the next available record if required. There is a flag named nextRecordIsReady	
that should be used for signaling here. The superclass sets this flag to false when it has made use of the next available record. Your implementation of hasMoreRecords()	
should check the value of the nextRecordIsReady	
flag, move the pointer to the next record only if the flag's value is false, and change the flag's value to true when you successfully move the pointer to a new record. If you are following this paradigm, then if your implementation of hasMoreRecords()	
is called while nextRecordIsReady	
is true, then you should return true without changing the state of any record pointers.	
buildNextRecord()	
will return a new instance of the required subclass of AbstractTransactionRecord	
.	
close()	
is called when you have finished processing all of the records. Any required clean-up should be performed here.	
If you have created any customized classes for the load or playback behavior, you are required to create a customized subclass of AbstractLoadLoginsRunMode	
, AbstractLoadTransactionsRunMode	
, or PlaybackRunMode	
, depending on your requirements.	
The most important RunMode	
methods are acquireDataSource	
and buildObjectLoader	
.	
acquireDataSource(RiskAnalyzer)	
returns an instance of the RiskAnalyzerDataSource	
required to run your process. The RiskAnalyzer	
parameter contains context information that the RunMode	
can use to instantiate the data source object.	
buildObjectLoader(RiskAnalyzer)	
returns an instance of the AbstractRiskAnalyzerLoader	
required to run your process. The RiskAnalyzer	
parameter contains context information that the RunMode can use to instantiate the object loader.	
When implementing RunMode	
, it is critical that your object loader and data source are compatible, meaning that the data source you return produces the specific type of loadable object that your object loader expects.	
The method chooseStartDateRange(VCryptDataAccessMgr, RunSession)	
method is used to determine the start date range for your OAAM Offline job. All of your implementors of RunMode	
have a default implementation of this method. The default behavior is as follows. If this is the first time the job has run, you return the start date from the run session's session set if any, or an arbitrary date guaranteed to be earlier than the earliest date in your data source if your session set has no begin date. If this is a resumed job, then you determine, in an implementation specific way, which record you need to start from when the job is resumed.	
This is the appropriate choice if you are loading login data, and you need a custom data source. You must implement the acquireDataSource(RiskAnalyzer)	
method, and return a new instance of your custom data source. If you need a custom implementation of AbstractRiskAnalyzerLoader	
, you can override buildObjectLoader(RiskAnalyzer)	
to return it.	
AbstractLoadLoginsRunMode	
implements the logic to determine the login date at which to resume as follows. The superclass method retrieveLowerBoundDateFromQuery	
calls an abstract method buildQueryToRetrieveLowerBound	
, which returns a BharosaDBQuery. The implementation of buildQueryToRetrieveLowerBound	
in this class selects the most recent VCryptTrackerUserNodeLog.createTime	
.	
Depending on your requirements, you might need to override that behavior. You could override buildQueryToRetrieveLowerBound	
to add additional criteria to the query or replace the entire query. The only requirement is that the query return a single Date type result. You could instead override the retrieveLowerBoundDateFromQuery	
or chooseStartDateRange	
methods, to replace or extend the algorithm.	
This is the appropriate choice if you are loading transactional data, because you will need a custom data source. You must implement the acquireDataSource(RiskAnalyzer)	
method, and return a new instance of your custom data source. If you need a custom implementation of AbstractRiskAnalyzerLoader	
, you can override buildObjectLoader(RiskAnalyzer)	
to return it.	
AbstractLoadTransactionsRunMode	
implements the logic to determine the login date at which to resume as follows. The superclass method retrieveLowerBoundDateFromQuery	
calls an abstract method buildQueryToRetrieveLowerBound	
, which returns a BharosaDBQuery	
. The implementation of buildQueryToRetrieveLowerBound	
in this class selects the most recent VTransactionLog.createTime	
.	
Depending on your requirements, you might need to override that behavior. You could override buildQueryToRetrieveLowerBound	
to add additional criteria to the query or replace the entire query. The only requirement is that the query return a single Date type result. You could instead override the retrieveLowerBoundDateFromQuery	
or chooseStartDateRange	
methods, to replace or extend the algorithm.	
This is the appropriate choice if you have requirements that make it necessary to replace the default playback data source or processing behavior. There are no abstract methods to be implemented, but you can override superclass methods to fulfill your requirements.	
If you need a custom data source, you can override acquireDataSource(RiskAnalyzer)	
to return it. If you need a custom implementation of AbstractRiskAnalyzerLoader	
, you can override buildObjectLoader(RiskAnalyzer)	
to return it.	
PlaybackRunMode	
implements the logic to determine the login date at which to resume as follows. The chooseStartDateRange	
method picks the most recent date out of the following choices, the session set's start date if not null, the run session's last processed date if not null, and arbitrary date guaranteed to be earlier than the earliest date in your data source. The third option will only be chosen if the first two are null.	
This chapter provides troubleshooting tips and answers to frequently asked questions. It contains the following sections:	
This section describe a process to enable you to more easily solve a complex problem. It contains the following topics:	
You can work your way through some simple troubleshooting techniques to try to solve a problem.	
Steps	Description
---	---
Experience	You have seen this problem before or it is simply something you know the answer to.
Post to the Forum	This is not the first step. Only valid once basics have been applied and a second opinion is needed. Appropriate during rigorous analysis, but not before.
Intuitive leap (or guess)	The problem just inspires a guess at a cause. You have a feel for the problem or rather its cause. This can be very effective and result in a quick resolution, but without proper confirmation, it often leads to the symptom being fixed and not the real cause being resolved.
Review basic diagnostics	Check the logs for errors and the flow. Check flow (HTTP headers, network packet trace, SQL trace, strace). Run through and document the flow. Cross check with configuration details to ensure flow is expected.
Read the error message	Reading the error and the flow information will give a big clue. Taken together with some knowledge of the way the component works, this can give a lot of insight. Always check knowledge (Oracle and search engine) for matches. Perform any diagnostics needed to establish if the error is key. With multiple errors, look to see which is likely the cause and which are just consequences.
Compare	Compare the logs and flows with a working system. Perform a test case. If it happens only at a certain site, then compare the differences.
Divide	Break the problem down
Steps to reduce the problem to a manageable issue are listed in this section.	
Process	Description
---	---
Simplify the problem	Make a problem as simple as possible.
Remove components that are not needed	Most problems involve complex components and connections between them. Most involve third party components. So where ever possible, eliminate third party components first and then as many components and custom components as possible (for example, command line not application, SQLPLUS is not an application.)?
Reduce complexity	Test to see if a simpler version of the problem exists with the same symptoms. (for example, remove components of a complex Select, or a search filter, check if a single request or few requests will suffice)?.
Like fixing an underground pipe with a leak	Imagine a complex configuration as being a underground hose pipe with a leak. You know something is wrong, there is a leak someplace, but not where it is.
List the components	Draw a box for each components and a line where it is connected to the next. Note the protocols used to join them.
Check both ends	What goes in should come out the same. If you see data in and out results in a problem then it is one of the ends that is wrong. If the flow is not as expected the problem is in between.
Lazy Y	Test points in the configuration to find where the deviation occurs. Once established (beyond doubt) that a piece of the configuration behaves as expected it can be ignored.
Repeat	Repeat this loop to close in on the problem
Help	When 3rd party components are involved in the issue, get help from the others and work on the issue together.
All or part of the process should be applied if:	
The process flow of analysis is presented below:	
Develop possible causes from:	
Stating the problem is the most important step to solving the issue.	
Step	Description
---	---
Ensure a clear and concise problem statement	Stating the problem is the most important step. It is the most commonly ignored or at least the problem statement is assumed. It is pointless trying to solve a problem until the problem statement is stated. Otherwise what are you actually trying to fix? If you do not know what it is you are fixing how can you fix it?
Consider if the problem stated can be explained	If so, then it is not the problem statement --If the problem statement can be explained then back up and try and get a more correct problem statement. This is a case to start communicating if you are helping someone solve his problem. Either ask some direct questions to narrow down the issue or just pick up the telephone and talk to the person to clarify the real issue. If there are lots of issues then start noting them down as separate issues.
Do not settle for a vague statement	Vague problem statements, like "bad performance", "something crashes" are of no use and commonly are the cause for issues to be long running and out of control.
Never combine problems in a single statement	Ensure there is only one problem being dealt with. Do not accept combined problems. The combined problem is either multiple distinct problems or some of the problems are actually symptoms.
Describe problems in detail and ask focused questions to gather pertinent information.	
Step	Description
---	---
Specify the problem	These are symptoms of the problem.
Start by asking questions	Ask questions such as What, Where, When, and to what Extent?
What?	What tends to be the obvious question and is mostly a list of facts and symptoms; what deviated from the expectation?
Where?	Where may or may not be relevant, but is worth asking as it is often significant and often overlooked.
When	When is very important as time lines helps identify patterns and establish what change triggered the problem.
Extent	Extent or how many is particularly useful in establishing probable causes. If it is all the systems for example then check if it affects all systems or try a testcase. How often is also important. Once a week is quite different from many times every second and tells us much about the type of issue to look for.
List the symptoms and facts	List the symptoms and facts and how they are significant
What changed?	Something changed that is certain unless the problem has always been there. This is a special case.
Assumptions	Verify the data provided and check for conflicts and contradictions. Always check for any assumptions. Be careful to identify any information that is not verified and thus is only assumed. In fact this is particularly a mistake made by analysts that have more technical experience. Though also occurs a lot when inexperienced analysts are given details from people they perceive as having more knowledge. However trivial an assumption seems, always look for proof and confirmation.
If the component did not work before, performing these steps:	
Considerations	Description
---	---
Consider behavior and expectation if performance issue	For cases when the issue is about something that never worked correctly the first issue is to establish what correct behavior really is and if it is reasonable? This also allows us to set proper expectations from the outset. This is especially true for performance issues.
Confirm that there is no misunderstanding	Establish that the requirement is reasonable.
Do not compare Apples with Oranges	Agree on a specific goal. Focus on that issue only.
Consider all components involved	Consider all components involved:
Consider if the solutions is just to change perception	What can you see that causes you to think there's a problem?
Consider what the problem is, what it isn't, and what it could be.	
Step	Description
---	---
IS and IS NOT but COULD BE	For every fact or symptom ask this question: IS and IS NOT but COULD BE
Provide comparison	A test case often is the key to establishing something to compare the problem with. If it reproduces the issue then it does not help the problem analysis as such, but it is extremely useful when passing the problem to the next team to work on the fix. It also allows quicker testing of potential fixes and solutions (workarounds), not to mention you would be gaining experience.
If there is no comparison, create a test case	If it does not reproduce then it provides something to compare the problem system with and perhaps even a possible work around.
Problem solving involves developing possible causes.	
Development	Description
---	---
Knowledge and experience	You can use your knowledge and experience to recognize possible causes
Distinctions and changes	You can make a list of distinctions and changes to narrow down causes:
Examine each of the symptoms and comparisons	Consider each of the facts and ensure that they are relevant and that they are not conflicting
Test each candidate cause against the specification:	
Confirm the cause so that you can devise an action plan.	
You can:	
The main point here is to devise action plans to prove or disprove the theories. It is important to communicate the reason for each action plan. Especially when asking for a negative test, i.e. a test that is to prove something is not true. People might assume all action plans are attempts to solve the problem and resist any thing they think is not directed in the direction.	
When one solution fails, just start back at the beginning and apply the approach once again, updated with the new results. Really complex problems will often take several iterations.	
The process is not infallible.	
Main causes of failure are:	
This section contains information about tools and processes you can use to investigate and troubleshoot issues with your system.	
Table 23-1 lists the general and OAAM-specific tools you can use for troubleshooting problems.	
Table 23-1 Troubleshooting Tools	
Category	Description
---	---
General Tools	
OAAM Specific Tools	
Table 23-2 provides items to check for when troubleshooting the system.	
Table 23-2 Troubleshooting Tips	
Tips	Reason
---	---
Check the operating system	Some issues may be platform specific. For example, Java keystores created on non-IBM platforms will not work on IBM platforms
Check WebLogic Server version	Make sure OAAM is installed on a WebLogic server certified for 11g
Check the JDK (Sun or JRockit)	Make sure the JDK is certified for the Identity Management 11g Suite
Change logging configuration through Enterprise Manager	Make sure the log level is changed appropriately before tracing and debugging
Search for log messages through Enterprise Manager	Log messages record information you deem useful or important to know about how a script executes.
Use the Execution Context ID to search for log messages	The ECID is a unique identifier that can be used to correlate individual events as being part of the same request execution flow.
Use the WebLogic Console to monitor database connection pool	Check the health of the connection pool through the WebLogic Console.
Table 23-3 summarizes problems and the checks you can perform to troubleshoot and solve the problem.	
Table 23-3 Problems and Tips	
Problem	Checks You Can Perform
---	---
Common Troubleshooting Use Cases	
Most of the Operations are Slow	
Server is Throwing Out of Memory Exceptions	
Connection Pool Errors	
Errors While Starting the Managed Server After Upgrade	
OAAM CLI Script Issues	
SOAP Call Issues	
Native Integration Issues	
UIO ISA Proxy
To troubleshoot the OAAM UIO Proxy Web publishing issues:
To troubleshoot problems experienced while configuring the UIO Proxy, enable tracing to a file and set the trace level to 0x8008f. Doing so wil print detailed interceptor evaluation and execution information to the log file.
UIO Apache Proxy
Tips to troubleshoot problems with the UIO Apache Proxy are listed in this section.
mod_uio.so
occurs. Ensure that mod_uio.so
and all the libraries are placed in the proper directories. On Linux, use the ldd
command to confirm that mod_uio.so
can load all the dynamic libraries that it depends upon. On Windows, use Dependency Walker to find out any missing DLLs and in some cases, you may have to install the Microsoft Visual C++ 2005 Redistributable Package from the Microsoft Web site, if your server does not have these libraries pre-installed. UIO_Settings.xml
or any configuration XML, an error log will be created in httpd's logs directory with the name UIO_Settings.xml.log
. uio.log
. Use log level of error for production use; info for more details; debug for debugging issues and trace for verbose logs. UIO_Settings.rng
and UIO_Config.rng
in any XML editor to edit the UIO_Settings.xml
and application configuration XML files. For Windows, download the latest libxml2-2.x.x.win32.zip
file from
http://www.zlatkovic.com/libxml.en.html
and unzip it.
For Linux, if you have libxml2 installed then xmllint
command should be available, or check with your Linux System Administrator.
Copy the UIO_Config.rng
file from the UIO Apache Proxy distribution and run following command:
And fix any errors that are reported.
Problem: The following error appears:
Possible Solutions:
Oracle Adaptive Access Manager Debug Mode
In debug mode, the value of any variable--user name, password, and any other information--is not displayed. In capture mode, the HTTP traffic is shown. Therefore, capture mode is not recommended in production.
In-Session/Transaction Analysis
The UIO Proxy is a solution for login security only. It does not support in-session capabilities. Options are provided below based on possible requirements:
No Changes in Proxy in 11g
Question/Problem: Are there changes between 10g and 11g for the UIO Proxy?
Answer/Solution: There has been no changes in the proxy between 10g and 11g. There is no dependency on OHS etc. The user has to use Apache 2.2.8 only.
Adding appid to HTTP Headers
Question/Problem: In TestConfig.xml
, should we be adding appid
to HTTP headers for both the PSFT URLs and the /asa/
URLS?
Answer/Solution: No, just to the /asa/
URLs. It should be adding the app-id
to only the /asa/
URLs, not needed for PSFT
urls.
Contains Match
Question/Problem: Should a condition with "contains" match if there is an exact match?
Answer/Solution: Yes.
Request URL
Question/Problem: Can request URL be a partial URL? (Such as just first part of URL?)
Answer/Solution: No, URL must be an exact match and query parameters, such as anything after a "?" are not considered part of the URL, so they would have to be trapped with a condition, and not included as part of the URL.
Prompt a User with Two Challenge Questions
Question/Problem: I would like to prompt a user with two challenge questions when they attempt to logon from a new device. How can this be achieved given that the questions are randomly picked, raising the possibility that the same question may be displayed twice?
Answer/Solution: The OAAM "one question at a time" flow is by design. It is better security practice to present one question and only show the next question once the user has successfully answered the challenge. This protects the questions from being harvested for use in a phishing exercise. As well, OAAM allows users to have multiple attempts at a question which entails keeping track of how many wrong answers they have entered. If there were more than one question displayed at a time it would be difficult to maintain and possibly confusing to end users. If you want to challenge a user with more than one question you should do so by presenting them in separate sequential screens. OAAM does not support authentication of more than one question at a time.
Accessible Versions of the Virtual Authentication Devices
Question/Problem: Users who access using assistive techniques need to use the accessible versions of the virtual authentication devices. How do I enable these versions?
Answer/Solution: Accessible versions of the TextPad, QuestionPad, KeyPad and PinPad are not enabled by default. If accessible versions are needed in a deployment, they can be enabled using the Properties Editor in OAAM Admin or using the Oracle Adaptive Access Manager extensions shared library.
The accessible versions of the virtual authentication devices contain tabbing, directions and ALT text necessary for navigation via the screen reader and other assistive technologies.
You will need to modify bharosa_server.properties
.
To enable these versions, set the "is ADA compliant
" flag to true.
For native integration the property to control the virtual authentication device is
For Oracle Adaptive Access Manager out-of-the-box, the property to control the virtual authentication device is
Visible Text Input or Password (Non-Visible) Input Setting
Question/Problem: How can I configure QuestionPad so that challenge answers can be enter as non-visible text?
Answer/Solution: Add the following property to bharosa_server.properties
. This property determines whether the QuestionPad is set for visible text input or password (non-visible) input.
Valid values are text and password.
Can OAAM Restrict the Number of Devices used by a User
Question/Problem: Is there any way to configure the limit for a user to use fewer number of devices, such as 5 or 6 and block any access from the devices which are not in the configured list for specifc user ?
Answer/Solution: For usability and security reasons OAAM does not support limiting a user to a set number of devices. As well, this behavior is not required for proper security coverage since OAAM profiles the behavior of users including the devices they use. The total number of devices is not a good measure of risk as some end users may utilize many devices as part of their normal behavior. Instead OAAM keeps track of how often a user utilizes a specific device, who else has used that same device in the past and with what frequency. These evaluations can better assess the level of risk associated with an access request.
KeyPad or PinPad for KBA challenges?
Question/Problem: Can I use KeyPad or PinPad for KBA challenges?
Answer/Solution: KBA is designed for use with QuestionPad or plain HTML. Using KeyPad or PinPad is not recommended because KBA questions are not presented in that scenario.
How can the virtual authentication devices protect users from screen capture malware?
Question/Problem: How can virtual authentication devices protect users from screen capture malware?
Answer/Solution: These attacks currently require a manual process. An individual must look at the video or images captured to figure out the PIN or password. The virtual devices are primarily aimed at preventing automated attacks that affect large numbers of customers. If the Trojan did include OCR technology, finding the characters clicked on KeyPad and PinPad would be more difficult to read than other types of onscreen keyboards since Oracle Adaptive Access Manager keys are translucent so that background image can be seen and the font and key shapes can be randomized each session.
Also, the jitter would complicate the task. The virtual authentication devices are a good mix of security and usability for large scale deployments that want to keep the authentication already used and layer more security on top of it. Even if there were malware developed that is capable of deciphering the password, it does not necessarily cause fraud to occur. The virtual authentication devices are only one component of the full solution. Even if a fraudster has the PIN or password, he will have to pass the real-time behavioral/event/transactional analysis and secondary authentication. Oracle Adaptive Access Manager tracks, profiles and evaluates users/devices/locations activity in real-time regardless of authentication. Oracle Adaptive Access Manager takes proactive action to prevent fraud when it detects high risk situations. In this way, fraud could be prevented even if the standard form of authentication (password/PIN or another form.) is removed from the applications
KeyPad Troubleshooting
Question/Problem: I am having trouble with KeyPad. How should I troubleshoot the problem?
Answer/Solution: Refer to the following list:
KeyPad does not display.
bharosa_server.properties
: Buttons stop jittering.
Same image displayed to all users.
No image displayed in pad background.
Moving Configurable Action from testing environment to a production environment
Question/Problem: I defined a custom configurable action in the test environment and now I want to move the custom action template from test and to production.
Answer/Solution: To do this:
oaam-extensions\WEB-INF\lib
" folder. oracle.oaam.extensions.war
. Refer to Chapter 7, "Customizing Oracle Adaptive Access Manager."
Are numeric/alphanumeric and pluggable random algorithms supported?
Question/Problem: Are numeric/alphanumeric and pluggable random algorithms supported in OTP?
Answer/Solution: OTP is configurable with a set of two properties:
The pin generation method is in the base class (AbstractOTPChallengeProcessor), allowing integrators to override the generateCode method.
Customize and localize the virtual devices
Question/Problem: Can I make customizations and localize the virtual authentication devices?
Answer/Solution: The virtual authentication devices are provided as "samples" to use if you choose to. These samples are provided in English only. Source art and documentation are provided to allow you to develop your own custom virtual authentication device frames, keys, personalization images and phrases. Localization is included in these customizations. Custom development is not supported. Localization of the KeyPad may have issues since not all languages have the same number of characters. Portuguese for example has special characters not found in English. The key layout may be a bit different when these character keys are added. When adding keys to the layout it is vital that there is still enough free space around the keys to allow the "jitter" to function. General best practice is a space at least as large as a single key all the way around the bank of keys when they are positioned in the center of the jitter area. The source art contains notes with the pixel sizes for this area.
Alteration of these samples is considered custom development.
The "Pad" frame and key images
The frame and key samples are provided in English only. Master files for the virtual authentication device frames and keys along with descriptions of the parts are provided on request. You may create your own custom frame and key images and deploy them using product documentation. Any and all alterations to these images or the properties that correspond to them are considered custom development. Some issues to be careful of here are text, hot spot, key sizes. It is not recommended that these be made smaller than the provided samples.
Background images and phrase text
A set of sample images are shipped with Oracle Adaptive Access Manager. These images are for use in the virtual authentication devices only. For security reasons they should never be available to end users outside the context of the virtual authentication devices. The content, file sizes, and other attributes were optimized for a broad range of user populations and fast download speed. The sample phrase text for each supported language is provided with the package. Any and all alterations to these images or text is considered custom development. If the images are to be edited, make sure not to increase the physical dimensions or change the aspect ratio of the sample images because distortions will occur. Also, there must be an identically named version of each image for each virtual authentication device used in your deployment.
Images displayed during registration
Question/Problem: The images displayed in the page before user registration appear in English instead of the locale language.
Answer/Solution: Globalized virtual authentication device image files including the authentication registration flows are not provided. The deployment team develop these.
Question/Problem: I use mobile transaction authentication number to sign each transaction using an OTP via SMS. SMS costs are high. How can Oracle Adaptive Access Manager help? In addition, I want a solution that protects against Man-in-the-Middle (MiTM)/Man-in-the-Browser (MiTB) attacks.
Answer/Solution:
Access Authentication
In the context of an HTTP transaction, the basic access authentication is a method designed to allow a web browser, or other client program, to provide credentials – in the form of a user name and password – when making a request.
Action
Rule result which can impact users such forcing them to register a security profile, KBA-challenging them, blocking access, asking them for PIN or password, and so on.
Adaptive Risk Manager
A category of Oracle Adaptive Access Manager features. Business and risk analytics, fraud investigation and customer service tools fall under the Adaptive Risk Manager category.
Adaptive Strong Authenticator
A category of Oracle Adaptive Access Manager features. All the end-user facing interfaces, flows, and authentication methods fall under the Adaptive Strong Authenticator category.
Alert
Rule results containing messages targeted to specific types of Oracle Adaptive Access Manager users.
API
An Application Programming Interface defines how to access a software-based service. Oracle Adaptive Access Manager provides APIs to fingerprint devices, collect authentication and transaction logs, run security rules, challenge the user to answer pre-registered questions correctly, and generate virtual authentication devices such as KeyPad, TextPad, or QuestionPad.
Attribute
Attributes are the particular pieces of information associated with the activity being tracked. An example is the time of day for a login. Patterns collect data about members. If the member type is User, the pattern will collect data about users.
Authentication
The process of verifying a person's, device's, application's identity. Authentication deals with the question "Who is trying to access my services?"
Authentication Status
Authentication Status is the status of the session (each login/transaction attempt creates a new session).
Examples are listed below:
Authorization
Authorization regards the question "Who can access what resources offered by which components?"
Autolearning
Autolearning is a set of features in Oracle Adaptive Access Manager that dynamically profile behavior in real-time. The behavior of users, devices and locations are recorded and used to evaluate the risk of current behavior.
Black List
A given list of users, devices, IP addresses, networks, countries, and so on that are blocked. An attack from a given member can show up on a report and be manually added to a blacklist at the administrator's discretion.
Blocked
If a user is "Blocked," it is because a policy has found certain conditions to be "true" and is set up to respond to these conditions with a "Block Action." If those conditions change, the user may no longer be "Blocked." The "Blocked" status is not necessarily permanent and therefore may or may not require an administrator action to resolve. For example, if the user was blocked because he was logging in from a blocked country, but he is no longer in that country, he may no longer be "Blocked."
Bots
Software applications that run automated or orchestrated tasks on compromised PCs over the internet. An organization of bots is known as a bot net or zombie network.
Browser Fingerprinting
When the user accesses the system, OAAM collects information about the computer. By combining all that data, the site creates a fingerprint of the user's browser. This fingerprint could potentially uniquely identify the user. Information gathered that makes up the browser fingerprint include the browser type used, plug-ins installed, system fonts, and the configuration and version information from the operating system, and whether or not the computer accepts cookies.
The browser and flash fingerprints are tracked separately. The fingerprints are available in the session listing and details pages and you can get further details about the fingerprint by opening the respective details pages. Hence, you can have both fingerprints available, but if the user has not installed flash then the digital fingerprint (flash) is set to null.
Cache Data
Information about historical data during a specified time frame
Case
Cases provide tools to track and solve customer service issues.
A case is a record of all the actions performed by the CSR to assist the customer as well as various account activities of the customer. Each case is allocated a case number, a unique case identification number.
Challenge Questions
Challenge Questions are a finite list of questions used for secondary authentication.
During registration, users are presented with several question menus. For example, he may be presented with three question menus. A user must select one question from each menu and enter answers for them during registration. Only one question from each question menu can be registered. These questions become the user's "registered questions."
When rules in OAAM Admin trigger challenge questions, OAAM Server displays the challenge questions and accepts the answers in a secure way for users. The questions can be presented in the QuestionPad, TextPad, and other pads, where the challenge question is embedded into the image of the authenticator, or simple HTML.
Challenge Type
Configuration of a type of challenge (ChallengeEmail, ChallengeSMS, ChallengeQuestion)
Checkpoint
A checkpoint is a specified point in a session when Oracle Adaptive Access Manager collects and evaluates security data using the rules engine.
Examples of checkpoints are:
Configurable Actions
Configurable Actions allow a user to create new supplementary actions that occur after the running of rules.
Completed Registration
Status of the user that has completed registration. To be registered a user may need to complete all of the following tasks: Personalization (image and phrase), registering challenge questions/answers and email/cell phone.
Condition
Conditions are configurable evaluation statements used in the evaluation of historical and runtime data.
Cookie
A cookie is a small string of text or data stored on a user's computer. Oracle Adaptive Access Manager uses two types of cookies to perform device identification. One is the browser cookie (also known as secure cookie) and the other is the flash cookie (also known as digital cookie). The browser cookie value is constructed using the browser user agent string. The flash cookie value is constructed using data from the OAAM flash movie.
CSR
Customer service representatives resolve low risk customer issues originating from customer calls. CSRs has limited access to OAAM Admin
CSR Manager
A CSR Manager is in charge of overall management of CSR type cases. CSR Managers have all the access and responsibilities of a CSR plus access to more sensitive operations.
Dashboard
Provides a real-time view of activity via aggregates and trending.
Data Mining
Data mining is the practice of automatically searching large stores of data to discover patterns and trends that go beyond simple analysis. Data mining uses sophisticated mathematical algorithms to segment the data and evaluate the probability of future events. Data mining is also known as Knowledge Discovery in Data (KDD). Data mining can answer questions that cannot be addressed through simple query and reporting techniques.
Data Type
An attribute of data that represents the kind and structure of the data. For example, String.
Delivery Channel
Delivery mechanism used to send the OTP to the user. Email, SMS, IM, and so on are delivery channels.
Device
A computer, PDA, cell phone, kiosk, etc used by a user
Device Fingerprinting
Device fingerprinting collects information about the device such as browser type, browser headers, operating system type, locale, and so on. Fingerprint data represents the data collected for a device during the login process that is required to identify the device whenever it is used to log in. The fingerprinting process produces a fingerprint that is unique to the user and designed to protect against the "replay attacks" and the "cookie based registration bypass" process. The fingerprint details help in identifying a device, check whether it is secure, and determine the risk level for the authentication or transaction.
A customer typically uses these devices to log in: desktop computer, laptop computer, PDA, cell phone, kiosk, or other web enabled device.
Device Identification
During the registration process, the user is given an option to register his device to the system. If a user tries to login from a registered device, the application knows that it is a safe and secure device and allows the user to proceed with his transactions. This process is also called device identification.
Device Registration
Device registration is a feature that allows a user to flag the device (computer, mobile, PDA, and others) being used as a safe device. The customer can then configure the rules to challenge a user that is not coming from one of the registered devices.
Once the feature is enabled, information about the device is collected for that user. To make use of the information being collected, policies must be created and configured. For example, a policy could be created with rules to challenge a user who is not logging in from one of the registered devices.
encrypted
Information that is made unreadable to anyone except those possessing special knowledge
Entities Editor
A tool to edit entities, a user-defined structure that can be reused across different transactions. Only appropriate and related fields should be grouped into an Entity.
Entity
An entity is a user-defined data structure that can be re-used across different transactions.
Environment
Tools for the configuration system properties and snapshots
Expiration Date
Date when CSR case expires. By default, the length of time before a case expires is 24 hours. After 24 hours, the status changes from the current status to Expired. The case could be in pending, escalated statuses when it expires. After the case expires, the user will not be able to open the case anymore, but the CSR Manager can. The length of time before a case expires is configurable.
Execution Types
Two execution types for configurable actions are listed:
If the actions are executing in sequential order and one of the actions in the sequence does not trigger, the other actions will still trigger.
Enumerations
User-defined enums are a collection of properties that represent a list of items. Each element in the list may contain several different attributes. The definition of a user-defined enum begins with a property ending in the keyword ".enum" and has a value describing the use of the user-defined enum. Each element definition then starts with the same property name as the enum, and adds on an element name and has a value of a unique integer as an ID. The attributes of the element follow the same pattern, beginning with the property name of the element, followed by the attribute name, with the appropriate value for that attribute.
The following is an example of an enum defining credentials displayed on the login screen of an OAAM Server implementation:
Fat Fingering
This algorithm handles Answers with typos due to the proximity of keys on a standard keyboard.
Flash Fingerprinting
Flash fingerprinting is similar to browser fingerprinting but a flash movie is used by the server to set or retrieve a cookie from the user's machine so a specific set of information is collected from the browser and from flash. The flash fingerprint is only information if flash is installed on the client machine.
The fingerprints are tracked separately. The fingerprints are available in the session listing and details pages and you can get further details about the fingerprint by opening the respective details pages. Hence, you can have both fingerprints available, but if the user has not installed flash then the digital fingerprint (flash) is set to null.
Fraud Investigator
A Fraud Investigator primarily looks into suspicious situations either escalated from customer service or directly from Oracle Adaptive Access Manager alerts. Agents have access to all of the customer care functionality as well as read only rights to security administration and BI Publisher reporting.
Fraud Investigation Manager
A Fraud Investigation Manager has all of the access and duties of an investigator plus the responsibility to manage all cases. An Investigation Manager must routinely search for expired cases to make sure none are pending.
Fraud Scenario
A fraud scenario is a potential or actual deceptive situation involving malicious activity directed at a company's online application.
For example, you have just arrived at the office on Monday and logged into OAAM Admin. You notice that there are a high number of logins with the status "Wrong Password" and "Invalid User" coming in from a few users. Some appear to be coming in from different countries, and some appear to be local. You receive a call from the fraud team notifying you that some accounts have been compromised. You must come up with a set of rules that can identify and block these transactions.
Groups
Collection of like items. Groups are found in the following situations
HTTP
Hypertext Transfer Protocol
IP address
Internet Protocol (IP) address
Job
A job is a collection of tasks that can be run by OAAM. You can perform a variety of jobs such as load data, run risk evaluation, roll up monitor data, and other jobs.
KBA Phone Challenge
Users can be authenticated over the phone using their registered challenge questions. This option is not available for unregistered users or in deployments not using KBA.
KeyPad
Virtual keyboard for entry of passwords, credit card number, and on. The KeyPad protects against Trojan or keylogging.
Keystroke Loggers
Software that captures a user's keystrokes. Keylogging software can be used to gather sensitive data entered on a user's computer.
Knowledge Based Authentication (KBA)
OAAM knowledge based authentication (KBA) is a user challenge infrastructure based on registered challenge questions. It handles Registration Logic, challenge logic, and Answer Logic.
Location
A city, state, country, IP, Network ID, etc from which transaction requests originate.
Locked
"Locked" is the status that Oracle Adaptive Access Manager sets if the user fails a KBA or OTP challenge. The "Locked" status is only used if the KBA or One Time-Password (OTP) facility is in use.
After the lock out, a Customer Service Representative must reset the status to "Unlocked" before the account can be used to enter the system.
Malware
Malware is software designed to infiltrate or damage a computer system without the owner's informed consent. Malware may contain key loggers or other types of malicious code.
Man-In-The-Middle-Attack (Proxy Attacks)
An attack in which a fraudster is able to read, insert and modify at will, messages between two parties without either party knowing that the link between them has been compromised
Multifactor Authentication
Multifactor authentication (MFA) is a security system in which more than one form of authentication is implemented to verify the legitimacy of a transaction. In contrast, single factor authentication (SFA) involves only a User ID and password.
Multiprocessing Modules (MPMs)
Apache httpd ships with a selection of Multi-Processing Modules (MPMs) which are responsible for binding to network ports on the machine, accepting requests, and dispatching children to handle the requests.
Mutual Authentication
Mutual authentication or two-way authentication (sometimes written as 2WAY authentication) refers to two parties authenticating each other suitably. In technology terms, it refers to a client or user authenticating himself to a server and that server authenticating itself to the user in such a way that both parties are assured of the others' identity.
Native Integration
Native integration involves customizing the application to include OAAM API calls at various stages of the login process. The application invokes Oracle Adaptive Access Manager directly and the application itself manages the authentication and challenge flows.
OAAM Admin
Administration Web application for all environment and Adaptive Risk Manager and Adaptive Strong Authenticator features.
OAAM Server
Adaptive Risk Manager and Adaptive Strong Authenticator features, Web services, LDAP integration and user Web application used in all deployment types except native integration
One Time Password (OTP)
One Time Password (OTP) is a form of out of band authentication that is used as a secondary credential and generated at pre-configured checkpoints based on the policies configured.
OTP Anywhere
OTP Anywhere is a risk-based challenge solution consisting of a server generated one time password delivered to an end user via a configured out of band channel. Supported OTP delivery channels include short message service (SMS), eMail, instant messaging and voice. OTP Anywhere can be used to compliment KBA challenge or instead of KBA. As well both OTP Anywhere and KBA can be used alongside practically any other authentication type required in a deployment. Oracle Adaptive Access Manager also provides a challenge processor framework. This framework can be used to implement custom risk-based challenge solutions combining third party authentication products or services with OAAM real-time risk evaluations.
Oracle Adaptive Access Manager
A product to protect the enterprise and its customers online.
Oracle Adaptive Access Manager
Oracle Adaptive Access Manager is composed of two primary components: OAAM Server and OAAM Admin.
Oracle Data Mining (ODM)
Oracle Data Mining is an option to the Oracle Database EE, provides powerful data mining functionality
Organization ID
The unique ID for the organization the user belongs in
Out Of Band Authentication
The use of two separate networks working simultaneously to authenticate a user. For example: email, SMS, phone, and so on.
Pattern
Patterns are configured by an administrator and record the behavior of the users, device and locations accessing the system by creating a digest of the access data. The digest or profile information is then stored in a historical data table. Rules evaluate the patterns to dynamically assess risk levels.
Personalization Active
Status of the user who has an image, a phrase and questions active. Personalization consists of a personal background image and phrase. The timestamp is generated by the server and embedded in the single-use image to prevent reuse. Each Authenticator interface is a single image served up to the user for a single use.
Pharming
Pharming (pronounced farming) is an attack aiming to redirect a Web site's traffic to another, bogus Web site.
Phishing
A criminal activity utilizing social engineering techniques to trick users into visiting their counterfeit Web application. Phishers attempt to fraudulently acquire sensitive information, such as user names, passwords and credit card details, by masquerading as a trustworthy entity. Often a phishing exercise starts with an email aimed to lure in gullible users.
PinPad
Authentication entry device used to enter a numeric PIN.
Plug-in
A plug-in consists of a computer program that interacts with a host application (a web browser or an email client, for example) to provide a certain, usually very specific, function "on demand".
Policy
Policies contain security rules and configurations used to evaluate the level of risk at each checkpoint.
Policy Set
A policy set is the collection of all the currently configured policies used to evaluate traffic to identify possible risks. The policy set contains the scoring engine and action/score overrides.
Policy Status
Policy has three status which defines the state of the object or its availability for business processes.
Deleted is not used.
When a policy is deleted, it is permanently deleted from the database.
By Default every new policy created has status as "Active."
Every copied policy has a default status as "Disabled."
Post-Authentication
Rules are run after the user password has been authenticated. Common actions returned by post-authentication checkpoint include:
Pre-Authentication
Rules are run before the user is authenticated. Common values returned by the pre-authentication checkpoint include:
Predictive Analysis
Predictive analytics encompasses a variety of techniques from statistics, data mining and game theory that analyze current and historical facts to make predictions about future events.
Questions Active
Status of the user who has completed registration and questions exists by which he can be challenged.
Question Set
The total number of questions a customer can choose from when registering challenge questions.
QuestionPad
Device that presents challenge questions for users to answer before they can perform sensitive tasks. This method of data entry helps to defend against session hijacking.
Registration
An enrollment process wherein the customer registers challenge questions, secret images, text phrases, one-time passwords, and so on for another layer of security in addition to the login process.
Registered Questions
A customer's registered questions are the questions that he selected and answered during registration or reset. Only one question from each question menu can be registered.
Registration Logic
The configuration of logic that governs the KBA registration process.
Risk Score
The numeric risk level associated with a checkpoint.
Rule Conditions
Conditions are the basic building blocks for security policies.
Rules
Rules are a collection of conditions used to evaluate user activity.
Scores
Score refers to the numeric scoring used to evaluate the risk level associated with a specific situation. A policy results in a score.
Scoring Engine
Oracle Adaptive Access Manager uses scoring engines to calculate the risk associated with access requests, events, and transaction.
Scoring engines are used at the policy and policy set levels. The Policy Scoring Engine is used to calculate the score produced by the different rules in a policy. The Policy Set Scoring Engine is used to calculate the final score based on the scores of policies.
Where there are numerous inputs, scoring is a able to summarize all these various points into a score that decisions can be based on.
Security Token
Security tokens (or sometimes a hardware token, hard token, authentication token, USB token, cryptographic token) are used to prove one's identity electronically (as in the case of a customer trying to access their bank account). The token is used in addition to or in place of a password to prove that the customer is who they claim to be. The token acts like an electronic key to access something.
Severity Level
A marker to communicate to case personnel how severe this case is. The severity level is set by whomever creates the case. The available severity levels are High, Medium, and Low. If a customer suspects fraud, then the severity level assigned is "High." For example, if the customer wants a different image, then the severity level assigned is "Low." Severity levels of a case can be escalated or deescalated as necessary.
Session Hijacking
The term Session Hijacking refers to the exploitation of a valid computer session - sometimes also called a session key - to gain unauthorized access to information or services in a computer system
Snapshot
A snapshot is a zip file that contains Oracle Adaptive Access policies, dependent components and configurations for backup, disaster recovery and migration. Snapshots can be saved to the database for fast recovery or to a file for migration between environments and backup. Restoring a snapshot is a process that includes visibility into exactly what the delta is and what actions will be taken to resolve conflicts.
SOAP
SOAP, originally defined as Simple Object Access Protocol, is a protocol specification for exchanging structured information in the implementation of Web Services in computer networks. It relies on Extensible Markup Language (XML) as its message format, and usually relies on other Application Layer protocols (most notably Remote Procedure Call (RPC) and HTTP) for message negotiation and transmission. SOAP can form the foundation layer of a web services protocol stack, providing a basic messaging framework upon which web services can be built.
Social Engineering
Social engineering is a collection of techniques used to manipulate people into performing actions or divulging confidential information to a fraudulent entity.
Spoofing Attack
In the context of network security, a spoofing attack is a situation in which one person or program successfully masquerades as another by falsifying data and thereby gaining an illegitimate advantage.
Spyware
Spyware is computer software that is installed surreptitiously on a personal computer to intercept or take partial control over the user's interaction with the computer, without the user's informed consent.
Strong Authentication
An authentication factor is a piece of information and process used to authenticate or verify the identity of a person or other entity requesting access under security constraints. Two-factor authentication (T-FA) is a system wherein two different factors are used in conjunction to authenticate. Using two factors as opposed to one factor generally delivers a higher level of authentication assurance.
Using more than one factor is sometimes called strong authentication.
Temporary Allow
Temporary account access that is granted to a customer who is being blocked from logging in or performing a transaction.
TextPad
Personalized device for entering a password or PIN using a regular keyboard. This method of data entry helps to defend against phishing. TextPad is often deployed as the default for all users in a large deployment then each user individually can upgrade to another device if they wish. The personal image and phrase a user registers and sees every time they login to the valid site serves as a shared secret between user and server.
Transaction
A transaction defines the data structure and mapping to support application event/transaction analytics.
Transaction Data
Data that is an abstract item or that does not have any attributes by itself, does not fit into any entity, which exists or is unique by itself is defined as transaction data.
Items that cannot fall into an entity are classified as standalone data.
A classic example is amount or code.
Transaction Definition
Application data is mapped using the transaction definition before transaction monitoring and profiling can begin. Each type of transaction Oracle Adaptive Access Manager deals with should have a separate transaction definition.
Transaction Key
This key value is used to map the client/external transaction data to transactions in the Oracle Adaptive Access Manager Server.
Trigger
A rule evaluating to true.
Transaction Type
The Transaction Definitions that have been configured in this specific installation such as authentication, bill pay, wire transfer, and others.
Trojan/Trojan Horse
A program that installs malicious software while under the guise of doing something else.
User
A business, person, credit card, etc that is authorized to conduct transactions.
Validations
Answer validation used in the KBA question registration and challenge process
Virtual Authentication Devices
A personalized device for entering a password or PIN or an authentication credential entry device. The virtual authentication devices harden the process of entering and transmitting authentication credentials and provide end users with verification they are authenticating on the valid application.
 Copyright © 2010, 2011, Oracle and/or its affiliates. All rights reserved. |