Endeca Content Assembler

Experience Manager Developer's Guide
Version 2.1.x « March 2012

ORACLE
ENDECA

Contents

[(=] = To TP PP TTRTRPPPO 7
ADOUL ThiS QUILE....ceiiiieiee ittt ettt et e e e oo e o e oo b h bbb et e et e e e e e e e saaaannbbbbeaeeeeaaaeeeeaaannn 7
WHhO ShOUId USE thiS QUIAE.uueeiieiiie et e e e e e e s e s s r e e e e aee e e s e s s sberaeaeeeeaaeeeeesannnnns 7
Conventions USEd N thiS QUIE.........oi it e st e e st e e s aanneees 8
Contacting Oracle Endeca CUSIOMEr SUPPOIT......ciuuiueiiiiieeteaaeeee ettt et e e e e e e e s e s saibbbeeeeeeaaaaeeesasaaannsreeseees 8
Chapter 1: Developing Applications with Template-Based Pages......... 9
OVEIVIEW OF TOIES. ... ittt ettt s n e e sk e e e st e e as e e ek re e e aa b et e e ne e e aann e e snneeennreeennne s
F Y o Jo 0L o= T o [0 =T PP SPP R PTPPRP
About templates and EXPEriENCE MaANAGETuuii ittt e et e e e e e e e e e e e ab bbb reeeeaaaaaeaeaaannnnes
About content items and the Content Assembler APL..........cccveiiveini e
A typical workflow for creating a template-based application.............ccccoocveereiiiiieeenne
Experience Manager and Content Assembler API architecture
Chapter 2: Working with Templates for Dynamic Pages....................... 15
T] 0] L EC I o] £ (=T [0 (T U PPUEERRRRR 15
About dynamic pages and FUIE GrOUPS.uueiiiiiiiiiee it ettt e sttt e ettt e e et e e e s sbbeeeeessnbaeeeeeane 15
About using zones With dyNamiC PAgES........cooueiiiiiiiiii e e e e e e 16
Creating a zone for dYNAMIC PAGES........cccuiiiiiiiiii e e s e s e e e e e e e e e e s e e e e e e e e e e s s s sstatbrreereaaaeaes 16
Creating a Style for dYNAMIC PAGES.ccoiiuriiiieiiiiiee ettt e e e e s ebees 17
About maintaining consistent dimension Value IDS...........ooi i 17
ADOUL Creating tEMIPIALES.uiiiiiiiiieiee e e e e e e e e e e e s s et e e e e e eaaaeeesssssnsrnernereeeaeeeaesannnnes 18
ADOUL teMPIAtE VAlIAALION. eeeiei it e et e e e s st e e e e s sabaeeeeeane 18
About the type and ID for @ teMPIALe........ooi i a e 19
Specifying the zone and style for @ teMPlate..........ccooiiiiiiiiiie e 20
Specifying custom rule properties for a template............ooooiiiiii i 20
About using thumbnail images in Experience Manager..........c...uuueeiiiiiaaaaieiiiiieieeeee e e 21
Specifying the description and thumbnail image for a template............ccccciiiiii e, 21
ADOUL SAVING TEIMPIALES.coiiiiiiiii ittt e e et e e e s sbb e e e e e s sabaeeeeeane 22
About definiNng CONTENT PrOPEITIES.ccei ittt e e e e e e e ettt et e e e e e e e e s s aannsbabeeeeeaaaaaeaeaaaannnes 22
Specifying the default name for @ CONtENTIEM...........ooiiiiiiec e a e 23
ADOUL CONTENT PrOPEITIES. ..ceiiiiieiie ettt e e e bt e e e s st b e e e e e s st bb e e e e s sbbeeeeesanbbeeeeeaaes 23
Types Of ProPerty EIEMENTS. ittt e e e e e e et e e e e e e e e e e e e e e nenereeeeeas 25
PN (o [1aTo I= WY] o oL (o] =] o oY/ USRS 26
AddiNg & BOOIEAN PrOPEITY.......veieeeiiiiiiie ettt e ettt ettt e e et e e e s st b et e e e e sabe e e e e s abbeeeeesanbaeeeeeanes 27
Adding a navigation reflnEMENtS PrOPEITY..........uuiieiiiiiiee e e e e e e e e e s e eeeee s 27
YN oTo 10 a =ToTo] (o I o] (o] o L=1 g 1TC TSSO 29
Adding a NAVIgation rECOIAS PrOPEITY....ccciituiiiie ittt et e et e e e s bb e e e s abbeeeeessnbbeeeeeane 29
PaXo (o 1ol I W (=Tolo T o I 1S A o (o] 1] o oYU R 31
YaXe (o 1ol I Weto a1 (=T o 1A (=T g1 0] (0] o =T 2SSO 32
Adding a content iteM liSt PrOPEITY.......eii ittt e e st e e e s sbaeeeeeane 33
About defining the editing interface for Properties.. ... 34
X (o [1aTe = W= i 11T =T L1 (o) oSS 35
Adding & COMDO DOX EAION.........eiiiiiiiiiii et e e st e e e s sbaeeeeeaae 37
P aNe (o [l aTo I= Ta I T 4 F= Lo = o] £ 1 AR 40
Adding a checkbox EaItOr.........ccc.uviiiiiiiicc e .42
Adding a navigation refinements selector .43
Adding a Navigation reCOrAS EAION.ooii ittt e e e e e e e e e e e e e e e e eneneeeeeeeas 44
FaXo (o 100 = W g=ToTo] (o IET=1[=Tox (o] USSR 47
ADOUL CANtrdgE SEIBCTONS. ..cii ittt e ettt e e ettt e e e s rab bt e e e s sbbe e e e e s anbbeeeeeaaes 49
Yo (o 1 aTo =W | (o1 U] o N F= 1 o= PRSP 49
About using XML pass-through PrOPEITIES.uuiiiie et e e e e e s e eeeaeeeeeesaannnnes 50
About using pass-through CONtENt PrOPEITIES.eeiiiiiiiiiie i 51
About passing arbitrary XML to the front-end application...............ccoviiiiiiiiiiii e 52
Chapter 3: Supporting Experience Manager...........cccccceeeeeeeviiiiineeeeeennns 53

Making templates available in EXPErienCe MaNAQET...........oiiecuriiriieireeeeeeeesesietteaeeeeee e e e e e s s ssnnsnrnnrereeeeeeees 53

Uploading templates to EXPErieNCe MaNAGETc.uueiiiiiiiiiieeiiiiiee ettt e e 53
About modifying templates that are used by eXiSting PAgES.........uueeiiiiiiiiiiiiiiiiieee e 54
P oTo 18 a0 oo F= 14T g o TR (= 0] o] F= 1 =TSSP 55
Updating templates in EXPerienCce MaNAGET..........ocuuuiiieiiiiiiiee ittt 56
Retrieving the current templates from Experience Manager..............uuueeeiiiiiiiiiniiiiiiiiieceee e 57
YN oTo 10 =] 0 (017 o T (= a] o] o = SO 57
Removing templates from EXPerienCe MaNAQET.........ccouiuuiiiiiiiiiiiiee ittt et e e 58
Troubleshooting problems with uploading teMPIALES.ueeiiiiiii e 59
Troubleshooting INvalid tEMPIALES............uuuiiiiiiri e e e e e e e s e s s rrrrreeeeeesesannnnnns 61
TroublesShooting INVALIA PAGES.eiiiiiiiiiie ettt e et e e et et e e e s bbb e e e e e abb e e e e e aneees 61
File hosting and Security CONSIAEIALIONS.uuuriiiiiiiee ettt e e e e e e e e e e e e e eaeaeaeas 62

Chapter 4: Extending Experience Manager with Community Editors..65

About EXperienCce Manager EUItOIS........oicuviiiiiie e e e e e et r e e e e e e e s s e e e raaaeeesas s rnrraerreaaaeeeesaannnn 65
Scenarios for extending Experience Manager and the Content Assembler...........cccccvvvvieieeeiiniicciiiieeeen, 66
What is the Experience Manager EAitOr SDK?.......ooo it e e e e e e 67
About the Experience Manager EQItOr APL.........ooori oo e e e s e e e eee e e e e s ennnnnes 68
About Experience Manager editor representation in the APL...........cccciiiiii e 68
The Experience Manager Editor APl content model...........oooouiiiiiiiiiiiiiii e 69
About eventing in EXPerieNCe MaNAQgET.........ccc.uuuuiiiiiiiieeee e e i eeciiittte e e e ee e e e s e s st aeeeraaaaeessessnnnnsrnneeees 71
Compile-time and runtime dePENUENCIES.oiiuuiiii i e 71
About setting Up the SAMPIE EAITOT.........ceeeeee et e e e e e e e e e e e e aananes 72
F oo U1 B = PP PPRRPTPPPPNS 73
Setting up your development environment using the sample project..........ccccovceeeeiiiiiiee e, 73
Hosting the sample editor MOAUIE.oii e e e e e e anees 74
Modifying the sample editor configuration file..............uuueiiiiiii i 75
Modifying webstudio.properties to enable the sample editor............c.vvviiiiiiiie e 75
Incorporating the SAMPIE CAIrIdQE.u et e e e e e e e e e e e e e e e e aaannes 76
P Y oTo 101 gl [=1Y/=1 (] o 11T =T L] (o = SEERRR 76
The editor Creation WOIKFIOW.u e e e e e e e s e aereeee e 76
About the Experience Manager editor [ife CYClIe..........oooiiiiiiii e 78
PN oo 101 =T [(o] gl 0 K= e=T g1 (=1 i o] o O PPPRPPPPPPPNS 80
ADOUL CONFIGUING EOITOIS. ...eiiiiitieee ettt e ettt e e s sttt e e s sa b e e e e e e abbe e e e e s anbneeeeeane 81
About binding an editor to MUItIPle PrOPEItIES.eeiiiiii i 83
Working with the CONtENt MOAEL.........ceiiiiie e e e e e e e e s e s e eeeees 83
About handling changes to the content MOdel............oooiiiiiiiiii e 85
Working with CUSTOM XML PrOPEITIES.coiiiiiieeiiiiee ettt ettt e e e e e e e e e e e e e e s e e sebabbeeeeeas 86
Y2 o To 10 A =T To o 1 Y2 4T Yo 1= TSSO 88
About handling €rror CONTITIONS.uiiii it e e s st e e e sbneeeeeaae 88
About handling conflicts between content and editor definitionsS.............coooiiii e, 88
About writing editor components oUtSIAe Of FIEX........cuiviiiiiiiiiec e 89
About client-server communiCation iN @AItOrS.uuiiiiieeeiiiiiiie e e e e e 91
PXoJo]u oo <1010 o o [aTo Ir=TaJN=To 1 (o] U U ET TR RPPP 91
TSy = 1T = T T =T 11 o PSRRI 92
Specifying editors for EXPerieNCe MaNAGETuvie ittt ettt sbbe e e 92
Enabling the editor configuration file......... ... 94
O g To I=To 110 R T (=10 0] o] F= L (= TP EEEPRR 95
ADOUL USING SSL AN EUIIOIS.eiiiiiiiiiiii ettt e et e e st e e e s sbb e e e e e s sabneeeeeaaes 96
REgel0 o] (=3 gloTo) il o TR= T T =To L1 e] SR PP PPPPPRPTPR 97
About using the Experience Manager XML VIBW.........ccccuiiiiiiiiiiiiiiiieee e s e ettt eee e e e e e e s s snnsnnaneeeees 97
Ensuring Experience Manager loads the current editor MOdUIES...........eeevviiieiiiiiiiiiiiieeee e 98
Changes to the appearance of Experience Manager when using community editors.............cccc.e...... 98

iv Endeca Content Assembler

Copyright and disclaimer

Copyright © 2003, 2012, Oracle and/or its affiliates. All rights reserved.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners. UNIX is a registered trademark of The Open Group.

This software and related documentation are provided under a license agreement containing restrictions
on use and disclosure and are protected by intellectual property laws. Except as expressly permitted
in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast,
modify, license, transmit, distribute, exhibit, perform, publish or display any part, in any form, or by
any means. Reverse engineering, disassembly, or decompilation of this software, unless required by
law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be
error-free. If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing
it on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated
software, any programs installed on the hardware, and/or documentation, delivered to U.S. Government
end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation
and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the programs, including any operating system, integrated software, any programs installed
on the hardware, and/or documentation, shall be subject to license terms and license restrictions
applicable to the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and
other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for
any damages caused by use of this software or hardware in dangerous applications.

This software or hardware and documentation may provide access to or information on content,
products and services from third parties. Oracle Corporation and its affiliates are not responsible for
and expressly disclaim all warranties of any kind with respect to third-party content, products, and
services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages
incurred due to your access to or use of third-party content, products, or services.

Rosette® Linguistics Platform Copyright © 2000-2011 Basis Technology Corp. All rights reserved.

Teragram Language Identification Software Copyright © 1997-2005 Teragram Corporation. All rights
reserved.

Preface

Oracle Endeca's Web commerce solution enables your company to deliver a personalized, consistent
customer buying experience across all channels — online, in-store, mobile, or social. Whenever and
wherever customers engage with your business, the Oracle Endeca Web commerce solution delivers,
analyzes, and targets just the right content to just the right customer to encourage clicks and drive
business results.

Oracle Endeca Guided Search is the most effective way for your customers to dynamically explore
your storefront and find relevant and desired items quickly. An industry-leading faceted search and
Guided Navigation solution, Oracle Endeca Guided Search enables businesses to help guide and
influence customers in each step of their search experience. At the core of Oracle Endeca Guided
Search is the MDEX Engine,™ a hybrid search-analytical database specifically designed for
high-performance exploration and discovery. The Endeca Content Acquisition System provides a set
of extensible mechanisms to bring both structured data and unstructured content into the MDEX Engine
from a variety of source systems. Endeca Assembler dynamically assembles content from any resource
and seamlessly combines it with results from the MDEX Engine.

Oracle Endeca Experience Manager is a single, flexible solution that enables you to create, deliver,
and manage content-rich, cross-channel customer experiences. It also enables non-technical business
users to deliver targeted, user-centric online experiences in a scalable way — creating always-relevant
customer interactions that increase conversion rates and accelerate cross-channel sales. Non-technical
users can control how, where, when, and what type of content is presented in response to any search,
category selection, or facet refinement.

These components — along with additional modules for SEO, Social, and Mobile channel support —
make up the core of Oracle Endeca Experience Manager, a customer experience management platform
focused on delivering the most relevant, targeted, and optimized experience for every customer, at
every step, across all customer touch points.

About this guide

This guide describes the major tasks involved in supporting content administrators using Endeca
Experience Manager and creating templates to drive dynamic pages. It also covers extending
Experience Manager functionality using the Experience Manager Editor SDK.

This guide assumes that you have read the Oracle Endeca Experience Manager Getting Started Guide
and that you are familiar with Endeca’s terminology and basic concepts.

This guide covers only the features of the Content Assembler API, and is not a replacement for the
available material documenting other Endeca products and features. For a list of recommended reading,
please refer to the section "Who should use this guide.”

Who should use this guide

This guide is intended for developers who are building Endeca applications using the Endeca Workbench
and the Content Assembler API.

8 | Preface

If you are a new user of Oracle Endeca Experience Manager and are are not familiar with developing
Endeca applications, Oracle recommends reading the following guides prior to this one:

1. Oracle Endeca Experience Manager Getting Started Guide
2. Endeca Basic Development Guide
3. Endeca Advanced Development Guide

Once you have familiarized yourself with the concepts in this Oracle Endeca Experience Manager
Developer's Guide, Oracle recommends reading one of the following:

< Endeca Content Assembler API and Reference Application Guide for Java (Content Assembler
API for Java users)

« Endeca Content Assembler APl and Reference Application Guide for the RAD Toolkit for ASP.NET
(Content Assembler API for the RAD Toolkit for ASP.NET users)

If you are an existing user of Oracle Endeca Guided Search or Oracle Endeca Experience Manager
and you are familiar with developing Endeca applications, Oracle recommends reading the Oracle
Endeca Experience Manager Getting Started Guide before this guide.

@J Remember: All documentation is available on the Oracle Technology Network.

Conventions used in this guide

This guide uses the following typographical conventions:

Code examples, inline references to code elements, file names, and user input are set in monospace
font. In the case of long lines of code, or when inline monospace text occurs at the end of a line, the
following symbol is used to show that the content continues on to the next line: =

When copying and pasting such examples, ensure that any occurrences of the symbol and the
corresponding line break are deleted and any remaining space is closed up.

Contacting Oracle Endeca Customer Support

Oracle Endeca Customer Support provides registered users with important information regarding
Oracle Endeca software, implementation questions, product and solution help, as well as overall news
and updates.

You can contact Oracle Endeca Customer Support through Oracle's Support portal, My Oracle Support
at https://support.oracle.com.

Endeca Content Assembler Experience Manager Developer's Guide Endeca Confidential

https://support.oracle.com

Chapter 1

Developing Applications with
Template-Based Pages

This section provides an overview of working with Experience Manager and the Content Assembler
API to create an Endeca application with template-driven dynamic pages.

Overview of roles

This introduction discusses several roles involved in creating a Web application with template-based
pages.

 Application developers, who create a set of custom templates as well as a front-end application
that can render template-based content.

« Content administrators, who are typically site editors responsible for managing the information
presented in the Web application. In the case of an eCommerce site, this role may be filled by
merchandisers.

» Managers who are responsible for approving pages for publication. These managers may have
tittes such as Editorial Director or Director of Merchandising.

« A creative team, which may consist of an art director, Web designer, and graphic artist, or any
combination of those roles.

About cartridges

A cartridge is a functional component that a content administrator can place on a dynamic page using
Experience Manager. Examples of cartridges may include a Guided Navigation cartridge, results list
cartridge, or rotating banner cartridge.

A cartridge is comprised of several parts:

« A configuration file (XML template) that defines the content structure and the editing interface in
Experience Manager. Experience Manager ships with a collection of reference templates, but
application developers should customize these for their specific needs.

 Zero or more Experience Manager editors that allow the content administrator to configure cartridge
content. Experience Manager ships with several standard editors, but application developers can
develop editors that are tailored to particular business needs if so desired.

* One or more Content Assembler tag handlers to do additional query processing before returning
results to the application. The Content Assembler ships with several standard tag handlers.

10 Developing Applications with Template-Based Pages | About templates and Experience Manager

Developing tag handlers is usually not necessary, but can be useful for interfacing with third-party
systems.

* Rendering code to display the content in the Web application. Each template is associated with
a particular piece of rendering code, enabling developers to build applications (and content
administrators to configure their content) in a modular fashion.

Templates serve as a basis for the dynamic pages that content administrators create in Experience
Manager. The templates are XML documents that define the content structure of a dynamic page, or
part of a page. A template can be thought of as a content object definition that declares what properties
the content contains, and how those properties can be configured in Experience Manager.

Because a template defines the properties in the content objects, you can write code that is tailored
to render the content driven by a specific template. For example, one cartridge template may contain
properties for a banner image and a link, while another template may be designed to contain several
records. The corresponding cartridge code for each of these templates then uses the configured values
of these properties to create a banner promotion or a Content Spotlighting section of a page.

By building cartridges and associating specific rendering logic with every template in the application,
developers ensure that the application can render any page configuration created in Experience
Manager. This enables content administrators to flexibly combine content in a modular manner while
maintaining a consistent look-and-feel throughout an entire site.

For more information about writing editors for Experience Manager, see "Extending Experience Manager
with Community Editors" in this guide. For more information about writing tag handlers for the Content
Assembler, see the Content Assembler API Developer's Guide.

About templates and Experience Manager

Templates can either define the content structure of an entire page or a section of a page.
Page templates drive the content of an entire Web page. They define parts of the page called sections.

Sections can be thought of as slots that can be filled with content such as a banner image, Content
Spotlighting, or search results). Typically, they represent a physical area on the page, but can also
represent content that is not visible (for example, meta keywords used for search engine optimization).
They can also represent content that may be rendered in a number of ways (for example, a page
element that may display in the left or right column of a page depending on context).

The content in sections is also driven by templates known as cartridge templates. The following diagram
shows a page template that includes two sections, and the cartridge templates that can be applied to
each section.

Endeca Content Assembler Experience Manager Developer's Guide Endeca Confidential

Developing Applications with Template-Based Pages | About content items and the Content Assembler 11
API

SimplelmageBanner

HorizontalBanner
* FlashBanner * ol Section Tall
Image
Banner

RotationalBaner

Page Template
Right-

Sidebar

Section \ | Box

\ Sidebar
with Hl Box

boxes

==l Box

A template defines what kinds of content can be placed in each of its sections. In this example, the
SimplelmageBanner, FlashBanner, and RotationalBanner cartridges can be inserted in any section
of type HorizontalBanner. A page template may include multiple sections of the same type. The same
type of section can also be used in multiple templates. Cartridge templates can in turn define sections
within them.

Content administrators configure dynamic pages in Experience Manager by selecting cartridges to
insert into sections and then populating the cartridges with content. The interface for populating
cartridges in Experience Manager is driven by the template definition. Some cartridges may be
prepopulated by the application developer with information that the application can use to render
predefined content, without the need for additional configuration by the content administrator. Such

prepopulated cartridges can still present contextually relevant content through the use of Endeca query
refinements.

About content items and the Content Assembler API

When a content administrator creates pages in Experience Manager, the resulting configurations are
saved as XML documents in the MDEX Engine.

If a template is seen as a content object definition, then these page configurations represent instances
of the content objects that have specific values for the properties defined in the template.

The Content Assembler retrieves these page configurations, evaluates the XML and returns content
item objects based on the configuration and any additional queries that need to be made. For example,
if the template defines a record list property and a content administrator specifies a navigation query

Endeca Confidential Endeca Content Assembler Experience Manager Developer's Guide

12 Developing Applications with Template-Based Pages | A typical workflow for creating a template-based
application

to populate that property, the assembler executes that query to return specific records in the content
item object.

Each template corresponds to a single content item object, which may contain other content items
within it. In other words, the entire page is returned by the Content Assembler API as a single root
content item, and each cartridge within the page is returned as a nested content item property within
the parent content item.

A typical workflow for creating a template-based application

Applications built with template-based pages present dynamic content with a consistent look and feel,
while Experience Manager enables updates to that content with relatively little maintenance.

The process of developing the application generally begins with the creative team. This team develops
mockups of the page layouts that are used throughout the application, as well as any custom images
or rich media that the design requires. Although there may be several variations, the set of layouts for
a site typically follow a common high-level structure that results in a unified appearance across an
entire site. For example, certain elements (such as a logo or banner) may always be present in the
same location, or the proportions or relative position of various areas of the page may remain constant
even if the content within those areas changes.

The application developer then creates cartridges based on the layouts from the creative team. This
involves writing templates that describe the overall content structure of a page, including page sections
that can be filled by certain cartridges. Typically, an application has only a few top-level page templates
that define the overall page layouts that are used in the site, and many cartridge templates that drive
the behavior of specific parts of a page. For each template, the developer writes code for the front-end
application that can render the content items based on that template. Because templates define the
kinds of content that are allowed in a page, an application that is aware of the templates being used
within the site can include very specific rendering logic for pages based on those templates.

The developer uploads the templates to Experience Manager, and specifies an application that uses
the cartridge code as the preview application in Endeca Workbench.

A content administrator can then use Experience Manager to create and configure dynamic pages.
The content administrator can control the conditions under which a page should display by applying
triggers based on navigation state, search terms, date ranges, or user profiles. Configuring a page in
Experience Manager consists of associating it with a particular trigger or set of triggers, and designating
the content to display by inserting and configuring cartridges in each section. Cartridges can contain
content that is either static or dynamically populated based on queries to the MDEX Engine.

Experience Manager allows the content administrator to save progress incrementally and also to
preview dynamic pages to make sure that the application renders the content as desired.

Once a page configuration is complete, the content administrator can request that a manager activate
the page. Once the manager activates the page in Experience Manager, it is published and accessible
to the end users of the Web site. The workflow model within Experience Manager also allows content
administrators to make dramatic changes to pages in the tool and request re-activation from their
manager without the need for any changes in the application code.

Endeca Content Assembler Experience Manager Developer's Guide Endeca Confidential

Developing Applications with Template-Based Pages | Experience Manager and Content Assembler 13
API architecture

Experience Manager and Content Assembler API
architecture

Experience Manager and the Content Assembler API combine to enable the creation and display of
dynamic pages.

This diagram shows the life cycle of a dynamic page that is created using Experience Manager and
rendered by an application built with the Content Assembler API:

C;e.‘aieé i:rage layout mockups
ﬂ ﬂ ‘l\‘
Art director Graphic artist creates 6;.@ _-'creales

Web designer

Creaative Team

-,

. application developer
¥ PR P X

Templates Customn Web Application

' content ™ Landing Page

{administrator 5 P R L I !
config';ures p ’ : — : Icamldge Cartridges |
CGmenE using “Pl‘:'a:ded to templates : templates »| Ul code I
\ { L= _ | _______] o= I .
\ uses
gueries— »
& Content Assembler API
— —
p— P
returns
generates page__v —content results
—— configurations
Experience Manager stored in MDEX Engine

The application developer creates cartridges based on designs from the creative team and incorporates
the cartridge code into a Web application.

Based on the templates that have been uploaded to Experience Manager, the content administrator
configures specific pages and sets them to display based on a set of criteria such as navigation state,
user profile, and date range. Experience Manager outputs these page configurations as XML documents
that are stored in the MDEX Engine.

As users search or navigate within the site, the application queries the MDEX Engine using the Content
Assembler API, retrieves the dynamic page content that applies at the appropriate navigation state,
and renders the content.

Endeca Confidential Endeca Content Assembler Experience Manager Developer's Guide

Chapter 2
Working with Templates for Dynamic Pages

This section describes the process of creating templates that are used to drive dynamic pages.

Template prerequisites

Experience Manager leverages functionality from dynamic business rules such as triggers, priority,
and workflow to manage dynamic pages. Because dynamic pages are stored as dynamic business
rules in the MDEX Engine, some of the same supporting configuration is required for pages as for

rules.

Before you create templates for use in Experience Manager, you must have the following in place for
the dynamic pages in your application:

< One or more rule groups (the "default" rule group is automatically created)
* One or more rule zones
* Arule style

You specify the zone and style for a page in the top-level page templates that you create.

About dynamic pages and rule groups
Dynamic pages use the same group mechanism as dynamic business rules.

You can use one rule group for all your dynamic pages, or you can use multiple groups to organize
the pages in your application, for example, into an Electronics group and a Jewelry group. Multiple
groups also allow you to manage permissions independently for each rule group.

If you are using both traditional dynamic business rules and dynamic pages in your application, create
rule groups for use with dynamic pages that are distinct from those used for dynamic business rules.
For example, if you group your rules and pages by category, you can have separate rule groups for
"Sports rules" and "Sports pages." For details about creating rule groups, see the Oracle Endeca
Developer Studio Help.

The Group List pages of both the Rule Manager and Experience Manager display all groups that a
user has permission to view, regardless of whether they are used for dynamic business rules or dynamic
pages. Within a rule group, only rules that represent dynamic pages display in Experience Manager.
Both dynamic business rules and dynamic pages display in the Rule Manager, but dynamic pages are
read-only in the Rule Manager for all users regardless of rule group permissions. Users who have the
pages role should have permissions to access groups that you have set up for use with dynamic pages,

16

Working with Templates for Dynamic Pages | Template prerequisites

and users with the rules role should have permissions for groups that are used only for dynamic
business rules.

Workflow, resource locks, and priority for groups with dynamic pages function exactly as they do for
dynamic business rules. For more information about rule groups, see the Endeca Advanced
Development Guide.

About using zones with dynamic pages

Zones enable the display of dynamic pages in the application. While a single zone is usually sufficient,
multiple zones can enable finer-grained control over the display of dynamic pages.

Unlike dynamic business rules, which generally control only one aspect of a page that is divided up
into zones, dynamic pages drive the presentation of the page as a whole. In the context of dynamic
pages, sections represent the parts of a page and zones enable you to provide different perspectives
on the same page.

For example, if you want to present a tabbed pane that displays either product details or user reviews
of the same product (or summaries of different information for products based on the same navigation
state), you can use separate zones for each view. In this example, you would create a ProductDetails
zone and a UserReviews zone, with associated templates for each zone.

Related Links

Creating a zone for dynamic pages on page 16
Dynamic pages must be assigned a rule zone in order to display. You should create at least
one zone in your application for use exclusively with dynamic pages.

Creating a zone for dynamic pages

Dynamic pages must be assigned a rule zone in order to display. You should create at least one zone
in your application for use exclusively with dynamic pages.

Although the procedure to create a zone for dynamic pages is the same as for dynamic business rules,
there are certain properties you should set for dynamic page zones.

To create a zone for use with dynamic pages:

In the Project Explorer of Developer Studio, expand Dynamic Business Rules.
Double-click Zones to open the Zones view.

Click New to open the New Zone editor.

In the Name field, provide a unique name for the zone.

In the Rule Limit field, enter 1.

Select Valid for search.

Leave Shuffle rules and Unique by this dimension/property unselected.

R

4 Note: If you have both dynamic pages and business rules in your application, be aware that
conflicts may occur if a zone being used for dynamic pages is assigned to a business rule. If a
rule and a page within the same zone have overlapping triggers and the rule has higher priority,
the page may never display. In order to avoid this situation, assign names to the zones being
used for pages that clearly indicate that such zones are to be used for dynamic pages only so
that users do not assign them to dynamic business rules in the Rule Manager.

Endeca Content Assembler Experience Manager Developer's Guide Endeca Confidential

Working with Templates for Dynamic Pages | Template prerequisites 17

Creating a style for dynamic pages
Before you create dynamic pages, you must have at least one style defined in your application.

Oracle recommends that you create one style exclusively for use with dynamic pages. The style that
you assign to a dynamic page does not affect how it displays; it is only required to make the rule that
contains the page configuration valid.

Although the procedure to create a style for dynamic pages is the same as for dynamic business rules,
there are certain properties you should set for dynamic page styles.

To create a style for use with dynamic pages:

In the Project Explorer of Developer Studio, expand Dynamic Business Rules.
Double-click Styles to open the Styles view.

Click New to open the New Style editor.

In the Name field, provide a unique name for the style.

The style Title is optional, and does not display in Experience Manager.

M ownbdpR

5. In the Records area:

a) For the Minimum value, enter O.
b) For the Maximum value, enter 1.

About maintaining consistent dimension value IDs

Because the trigger locations for landing pages and the dynamic queries for record list cartridges are
both stored based on the ID of the selected dimension value, it is important that these IDs remain
stable.

If dimension value IDs change after landing pages have already been created based on the old IDs,
then the following may occur:

« IDs referenced in triggers and dynamic record lists for existing pages may be reassigned to a
different dimension value. In this case, the affected pages behave as if they were configured to
trigger or return results based on the new dimension value rather than the one designated by the
content administrator.

« If a landing page has a trigger with an invalid dimension value ID (that is, one that no longer
corresponds to a dimension value), then content administrators cannot save any changes that
they make to the landing page by clicking OK in the Edit View. This situation may occur if the
selected dimension value is deleted or the original dimension value is assigned a new ID and no
other dimension value is assigned the old ID.

« If any landing page in a landing page group has a trigger with an invalid dimension value ID, content
administrators cannot save changes they make to any page in that group by clicking Save All
Changes in the List View.

» A page with an invalid ID in the trigger never fires because the trigger criteria cannot be satisfied.
A page with an invalid ID specified for a dynamic record list cartridge returns zero records for that
cartridge.

The Endeca ITL process generally ensures that dimension value IDs remain consistent across updates.
However, if your application uses externally managed taxonomies, dimension value IDs may change
if you make changes to the dimension hierarchy. In order to avoid the problems caused by invalid and
inconsistent dimension value IDs, follow the recommendations in "Node ID requirements and identifier
management in Forge" in the Endeca Platform Services Forge Guide.

Endeca Confidential Endeca Content Assembler Experience Manager Developer's Guide

18 Working with Templates for Dynamic Pages | About creating templates

About creating templates

Templates are XML documents that define the content structure of a dynamic page or part of a page
and enable content administrators to specify page content in Experience Manager.

Top-level templates, which define an entire page, and cartridge templates, which drive the content of
sections, share the same structure and are defined by the same schema.

Templates can be broken down into three parts:

« General information such as the template type, ID, description, and thumbnail image. This
information is used in Experience Manager to help the content administrator select the appropriate
template for a page or section. For top-level page templates, this part of the template also allows
you to specify a zone and style, which the tool assigns to any pages that are created from that
template.

» Property definitions. In this part of the template, you explicitly declare all the properties of the
Contentltem object that a template represents. Some properties also allow you to specify default
values.

» Property editors. These allow you to specify whether a property can be configured and some
attributes of the editing interface in Experience Manager.

Properties may include simple string properties, record lists, or template sections. Most properties are
configurable and enable content administrators to define the behavior of pages that they build within
the tool. However, properties can also be used to pass information directly to the front-end application,
for example details about how to render the content within a template. By defining the properties in
the template along with how they can be configured in the tool, you ensure that the content items
returned by the Content Assembler API can be properly handled by the presentation logic in your
application.

In general, when creating page templates, you have a page layout provided by your creative team.
Working from a sample design or mockup, identify the high-level structure of the page -- this structure
informs the sections you define in your page template. Recall that the structure of each section is in
turn driven by a cartridge template, so if one portion of your page can contain either a large banner
image or a three-column content area, you can implement this as one page template with a section
that allows two different cartridge templates, rather than two different top-level templates.

Then, for each section, identify the information that your front-end application uses to render the content
in that section. This information is then modeled in the cartridge template as properties that the content
administrator can configure.

While most template properties and sections affect the visual appearance of the page, keep in mind
that they can also represent page elements that are not visible in the application. For example, a
property could contain meta keywords used for search engine optimization, or include embedded code
that does not render in the page but enables functionality such as Web analytics reporting. Sections
can also represent content that may be rendered in a number of ways (for example, a page element
that may display in the left or right column of a page depending on context).

About template validation

Templates are validated against the Experience Manager template schemas when you upload them
to Experience Manager.

Before you upload your templates to Experience Manager, ensure that the templates validate against
the template schema. All templates must include the following schema declaration:

<ContentTemplate xmlns="http://endeca.com/schema/content-template/2008"
type="PageTemplate' id="ThreeColumnNavigationPage'>

Endeca Content Assembler Experience Manager Developer's Guide Endeca Confidential

Working with Templates for Dynamic Pages | About creating templates 19

Although the <Rule Info> element is not required by the schema, it is required by Experience Manager
for all top-level page templates. If the <Rule Info> element is missing in a page template, or if a zone
or style specified in the element attributes does not exist in the application's instance configuration,
the template is not available in Experience Manager and an error is written to webstudio. log.

A copy of the template schema (content-template .xsd) and associated content schemas
(content.xsd and content-tags.xsd) is located for your reference in \doc\schemas (on
Windows) or /doc/schemas (on UNIX) in your Content Assembler API installation. In general, the
template schema describes the format of page and cartridge templates, while the content schemas
describe the format of the page configurations created in Experience Manager, although the content-tags
schema is also used for some types of template configuration.

Related Links
Troubleshooting problems with uploading templates on page 59
Template errors are returned to the emgr_update command line call and detailed in the
webstudio. log file.

About the type and ID for a template
Each template is required to have a type and a unique id.

The template type determines where a template can be applied. There are two general categories of
templates. Top-level, or page templates, describe the structure of an entire Web page. These templates
can include sections, which are placeholders for content driven by templates known as cartridge
templates. Cartridge templates can in turn include sections within them to allow for further nested
content.

Page templates are identified by a special type string. Any template designed to be a top-level template
must be of type PageTemplate.

Cartridge templates can be of any type you specify. This allows you to constrain the cartridges that
can be inserted in a particular section. For example, if you have a page or cartridge template that
includes a "HorizontalBanner" section, only cartridges of type "HorizontalBanner" are available to insert
into that section in Experience Manager.

The template id is a string that is used to identify the template. It must be unique within your application;
templates with non-unique IDs do not display in Experience Manager. The value should be as descriptive
as possible to help the user select the appropriate template, for instance,
"ThreeColumnWithLargeBanner" or "HolidaySalePromotion."”

Type and i1d are specified as required attributes on the <ContentTemp late> element. For example:

<ContentTemplate xmlns="http://endeca.com/schema/content-template/2008"
type="PageTemplate" id="ThreeColumnNavigationPage'>

%
Note: The type and id attributes are defined as type xs:Name in the template schema. This
means that valid values for these attributes must:

* be a single string token (no spaces or commas)
« begin with a letter, a colon (:), or a hyphen (-)

Numbers are allowed as long as they do not appear at the beginning of the string.

Endeca Confidential Endeca Content Assembler Experience Manager Developer's Guide

20 Working with Templates for Dynamic Pages | About creating templates

Specifying the zone and style for a template

Page templates are required to specify a rule zone and a style. When a page is created in Experience
Manager, the zone and style are applied to any pages based on that template.

Zones and styles are only used for page templates, not cartridge templates.

To specify the zone and style for a page template:

Insert a <Rulelnfo> element immediately after the opening <ContentTemplate> tag as in the
following example:
<ContentTemplate xmlns="http://endeca.com/schema/content-template/2008"
type="PageTemplate"™ id="ThreeColumnNavigationPage'>
<Rulelnfo zone="NavigationPageZone" style="PageStyle"/>
<I-- additional elenments deleted fromthis exanple -->
</ContentTemplate>

The value of the zone attribute must be the exact name of the zone that is defined in your
application's instance configuration and that you want to apply to all pages created with this template.

The value of the sty l e attribute is the exact name of any style that is defined in your application's
instance configuration. Oracle recommends that you create one style exclusively for use with all
dynamic pages. Styles are required to make pages valid, but do not affect their display.

Specifying custom rule properties for a template

You can optionally specify custom rule properties in any page template. When a page is created in
Experience Manager, the rule properties are applied to any pages based on that template.

Before specifying custom properties, you must already have inserted a <Rule I nfo> element in your
template.

Rule properties are key-value pairs that are passed back to the application along with query results.
They allow you to associate supplementary information with a landing page or to exclude certain
landing pages from consideration by the MDEX Engine.

Custom rule properties are only used for page templates, not cartridge templates.

To specify custom rule properties for a page template:

1. Insert a <Property> element within <RuleInfo> as in the following example:

<ContentTemplate xmlns="http://endeca.com/schema/content-template/2008"
type=""PageTemplate" id="ThreeColumnNavigationPage'>
<Rulelnfo zone="NavigationPageZone'" style="PageStyle'">
<Property name="my.property.name" value="My property value'/>
</Rulelnfo>
<I-- additional elenments deleted fromthis exanple -->
</ContentTemplate>

The value of the name attribute can be any string you choose to use for a property key. The name
cannot begin with the string endeca. internal . (this prefix is reserved for use by Endeca
components only).

The value of the value attribute can be any string.

2. Insert additional <Property> elements to specify additional rule properties for pages based on
this template.

Endeca Content Assembler Experience Manager Developer's Guide Endeca Confidential

Working with Templates for Dynamic Pages | About creating templates 21

For more information about using rule properties with landing pages, see the Content Assembler API
and Reference Application Guide.

About using thumbnail images in Experience Manager

You can specify thumbnail images for page templates and section templates that display along with
the template description in the template selector and cartridge selector dialog boxes in Experience
Manager. These images can help the content administrator identify the appropriate template to use
for the pages they create.

The Content Assembler sample application includes a Web application for hosting the thumbnail
images for the sample templates in the Endeca Tools Service. You can add your own thumbnail images
to this application, or the images may be hosted on a separate Web server from your Experience
Manager instance. If the thumbnail image for a template is either not specified or not accessible, a
default image displays in the dialog box.

The suggested size for thumbnail images is 81 x 81 pixels; smaller images are stretched to fill this
size and larger images are cropped to show only the top left corner.

Related Links

File hosting and security considerations on page 62
Experience Manager occasionally needs to access files hosted on a different server. Certain
security issues may apply.

Specifying the description and thumbnail image for a template

The description and thumbnail image for a template display in the template selector and cartridge
selector dialog boxes in Experience Manager. Adding a description and thumbnail image to a template
is optional.

To specify the description and thumbnail image for a template:

Insert the following elements within <ContentTemplate>:
Element Description

<Description> One or two sentences to help the content administrator identify the template
in Experience Manager. This can include information about the visual layout
of the template ("Three-column layout with large top banner") or its intended
purpose ("Back to school promotion™).

<Thumbnai lUrl> The absolute URL to a thumbnail image that shows a sample page or section
that is based on the template. The images are hosted on a Web server
accessible from the Experience Manager server.

&)
27 Note: If your thumbnails are hosted on the same server as Endeca
Workbench, you can omit http://<host >:<port > from the URL.

Example

<ContentTemplate xmlns="http://endeca.com/schema/content-template/2008"
type=""PageTemplate'" id="ThreeColumnNavigationPage'>
<Rulelnfo zone="NavigationPageZone'" style=""PageStyle"/>
<Description>A page layout with left and right sidebars intended for

Endeca Confidential Endeca Content Assembler Experience Manager Developer's Guide

22 Working with Templates for Dynamic Pages | About defining content properties

general category pages.</Description>

<Thumbnai lUrI>http://images.mycompany.com/thumbnails/PageTemplate/Three—-
ColumnNavigationPage.png</ThumbnailUri>

<l-- additional elenents deleted fromthis exanple -->
</ContentTemplate>

About saving templates

Templates are saved as XML files that are then uploaded to the Experience Manager.

It is possible to have multiple templates in a single file, however, for ease of maintenance Oracle
recommends the following practices:

< Each template, whether it is a page template or a cartridge template, should be in a separate file.

« Name each template file using the following format: Tenpl at eType-Tenpl at el D.xml. For
example, PageTemplate-ThreeColumnNavigationPage.xml or
HorizontalBanner-ImageMap.xml

s
Note: Template file names cannot have spaces in them.

Endeca also recommends that you treat page and cartridge templates as part of your application's
configuration and store them in a version control system. It can also be useful to include a template
version number in a property for debugging purposes.

About defining content properties

When you create a template, you specify all the properties that are necessary to render a page or
section. These properties are returned as part of the content item object in the Content Assembler
API.

You define properties within the <Contentltem> element in the template. Each <Contentltem>
must have a <Name> property. In addition, you can define any number of properties for use by your
front-end application. For each property, you specify a name and a property type. In some cases, you
can optionally specify a default value for the property.

Properties can be associated with editing interfaces that enable configuration within Experience
Manager. Content properties may include text, image URLS, or records that the content administrator
can specify. One type of property is a section, which allows content administrators to insert a cartridge
to drive the content of a specific part of a page.

You can choose not to expose a particular property in Experience Manager and simply pass its value
to your front-end application. Examples of this usage can include a reference to the cartridge code
that should be used to render the template content, or queries to the MDEX Engine that are hidden
from the content administrator in the tool.

Related Links

About defining the editing interface for properties on page 34
After you have defined the content properties in your template, you can define how those
properties can be configured by the content administrator in Experience Manager.

Endeca Content Assembler Experience Manager Developer's Guide Endeca Confidential

Working with Templates for Dynamic Pages | About defining content properties 23

Specifying the default name for a Contentltem

Name is a required property on a Contentltem. Generally the content administrator provides a value
for it in Experience Manager, but you can specify a default name as a placeholder.

To specify a default name for a Contentltem:

Insert the <Name> element inside <Contentltem> as in the following example:

<ContentTemplate xmlns="http://endeca.com/schema/content-template/2008"
type=""PageTemplate" id="ThreeColumnNavigationPage'>
<Rulelnfo zone="NavigationPageZone" style="PageStyle"/>
<Description>A page layout with left and right sidebars intended for
general category pages.</Description>
<Thumbnai lUrI>http://images.mycompany.com/thumbnails/PageTemplate/Three-
ColumnNavigationPage.png</Thumbnai lUrl>

<Contentltem>
<Name>New three-column page</Name>
<l-- additional elenents deleted fromthis exanple -->
</Contentltem>
<I-- additional elenments deleted fromthis exanple -->
</ContentTemplate>

<Name> is a required element, but you do not need to specify a value for the name. If you insert
an empty <Name/> element, an empty text field displays in Experience Manager and the content
administrator supplies a value.

About content properties

You can define the properties of a page or section by nesting any number of <Property> elements
within the <Contentltem> element.

Each property must have a name that is unique within the template. This is the key by which your
application can access that property through the Content Assembler API. The name is specified in the
name attribute of the <Property> element.

Note: The name attribute is defined as type xs:Name in the template schema. This means that
valid values for these attributes must:

* be a single string token (no spaces or commas)
« begin with a letter, a colon (:), or a hyphen (-)

Numbers are allowed as long as they do not appear at the beginning of the string.

The child elements of <Property> allow you to specify the type of property. The template schema
provides several basic property types, such as <String>, <Boolean>, and <RecordList>. Additional
property types including <NavigationRefinements> and <NavigationRecords> are defined in
the content-tags schema.

The <Contentltem> element within <Property> allows you to define a section property. As the
template structure suggests, a section is in essence a placeholder for a nested content item defined
by a separate cartridge template. (Recall that each template, whether it is a page template or cartridge
template, defines a corresponding content item.)

In addition, the <Property> element can also contain content pass-through elements that cannot be
configured in Experience Manager or arbitrary XML that is passed directly to your front-end application.

Endeca Confidential Endeca Content Assembler Experience Manager Developer's Guide

24

Working with Templates for Dynamic Pages | About defining content properties

The following example shows the properties of a page template that defines several cartridge sections.

<ContentTemplate xmlns="http://endeca.com/schema/content-template/2008"
type=""PageTemplate' id="ThreeColumnNavigationPage'>
<!-- additional elenents deleted fromthis exanple -->
<Contentl tem>
<Name>New Three-Column Navigation Page</Name>
<Property name="autogen_meta''>
<Boolean>true</Boolean>
</Property>
<Property name="title">
<String>Endeca Content Assembler Reference Application</String>
</Property>
<Property name=""meta_keywords'>
<String>content assembler reference application</String>
</Property>
<Property name="meta_description'>
<String>Endeca Content Assembler reference application.</String>
</Property>
<Property name="'Header''>
<ContentltemList type="FullWidthContent"/>
</Property>
<Property name="LeftColumn'>
<ContentltemList type="Sidebarltem" />
</Property>
<Property name="'CenterColumn'>
<ContentltemList type="MainColumnContent" />
</Property>
<Property name="RightColumn'>
<ContentltemList type="Sidebarltem" />
</Property>
<Property name="Footer'>
<ContentltemList type="FullWidthContent"/>
</Property>
</Contentltem>
<!-- additional elenents deleted fromthis exanple -->
</ContentTemplate>

Each of the <ContentltemList> sections accept cartridges. For example, the properties of the left
column section may look similar to the following:

<ContentTemplate xmlns="http://endeca.com/schema/content-template/2008"
type="'Sidebarltem" id="ThreeRecordBox''>
<!-- additional elenents deleted fromthis exanple -->
<Contentltem>
<Name>New Three Record Spotlight Box</Name>
<Property name="title">
<String>Featured Iltems</String>
</Property>
<Property name="'record_ list''>
<RecordList/>
</Property>
<Property name="link_text'>
<String/>
</Property>
</Contentltem>
<!-- additional elenents deleted fromthis exanple -->
</ContentTemplate>

Endeca Content Assembler Experience Manager Developer's Guide Endeca Confidential

Working with Templates for Dynamic Pages | About defining content properties 25

Types of property elements

Each property type corresponds with a particular object type that is returned by the Content Assembler
API.

Configurable content properties

These property types can be associated with property editors to enable configuration by the content
administrator in Experience Manager.

Template element Object type returned by API | Object type returned by API (RAD

(Java) Toolkit for ASP.NET)

<Boolean> jJava.lang.Boolean bool

com.endeca.content.Con- Endeca.Data.Content. ICon-
tentltem tentltem

<Contentltem>

com.endeca.content.Con- | Endeca.Data.Content. 1Con-
tentltenList tentltenmList

<ContentltemList>

<NavigationRecords> com.endeca.con- Endeca.Data.Content.Naviga—
tent.ene.Navigation- |tion.INavigationRecords
Records

<NavigationRefine- |com.endeca.naviga- Endeca.Data.DimensionStatesRe-

ments> tion.DimensionList sult

<RecordList> com.endeca.naviga—- System.Collections.ObjectMod-
tion._ERecList el _ReadOnlyCol lection<Record>

<String> jJava.lang.String string

Pass-through content properties

These properties cannot be exposed for configuration in the Experience Manager tool. They allow you
to embed MDEX Engine query results in the content item object that your application accesses through
the Content Assembler API.

Template element

Object type returned by API | Object type returned by API (RAD

(Java) Toolkit for ASP.NET)
<NavigationResult> com.endeca.naviga- Endeca.Data.NavigationResult
tion._ENEQueryResults
<NavQuery> com.endeca.naviga- System.Collections.ObjectMod-
tion.ERecList el _.ReadOnlyCol lection<Record>
<RecordQuery> com.endeca.naviga- System.Collections.ObjectMod—-
tion._ERecList el _ReadOnlyCol lection<Record>
<Supplement> com.endeca.naviga- Endeca.Data.BusinessRule
tion.Supplement
<UrlEneQuery> com.endeca.naviga- System.Collections.ObjectMod-

Endeca Confidential

tion.ERecList

Endeca Content Assembler

el _ReadOnlyCol lection<Record>

Experience Manager Developer's Guide

26 Working with Templates for Dynamic Pages | About defining content properties

Custom property elements

You can insert your own arbitrary XML within a <Property> element. In this case, the API returns
the contained element directly as an org.w3c.dom.Element (in Java) or a string (for the RAD
Toolkit for ASP.NET).

Related Links

About passing arbitrary XML to the front-end application on page 52
You can nest arbitrary XML in templates within a <Property> element.

Adding a string property

String properties are very flexible and can be used to specify information such as text to display on a
page, URLs for banner images, or meta keywords for search engine optimization.

To add a string property to a template:

1. Insert a <String> element inside a <Property> element.

2. Optionally, you can specify the default value for the property as the content of the <String>
element.

The following example shows a variety of string properties:

<ContentTemplate xmlns="http://endeca.com/schema/content-template/2008"
type=""PageTemplate'" id="ThreeColumnNavigationPage'>
<l-- additional elenents deleted fromthis exanple -->
<Contentltem>
<Name>New Three-Column Navigation Page</Name>
<Property name="title">
<String>Endeca Content Assembler Reference Application</String>
</Property>
<Property name="meta_keywords >
</String>
</Property>
<Property name="meta_description'>
</String>
</Property>
</Property>
</Contentltem>
<I-- additional elements deleted fromthis exanple -->
</ContentTemplate>

Related Links

Adding a string editor on page 35
You add a string editor to enable configuration of string properties. The string editor displays
in the Experience Manager interface as a text field or text area depending on the configuration.

Adding an image preview on page 40

An image preview displays an image in the Experience Manager interface based on a URL.
Adding a combo box editor on page 37

Predefining values through a combo box editor allows you more control over page content

and provides a more efficient mechanism for populating templates and cartridges in the editing
interface.

Endeca Content Assembler Experience Manager Developer's Guide Endeca Confidential

Working with Templates for Dynamic Pages | About defining content properties 27

Adding a Boolean property

Boolean properties represent a true or false value and can be used to enable or disable features in
your application

To add a Boolean property to a template:
1. Insert a <Boolean> element inside a <Property> element.

2. Optionally, you can specify the default value for the property.

<Property name="eligibleFreeShipping">
<Boolean>true</Boolean>
</Property>

Any value other than the string "true” (case insensitive) defaults to a value of false.

The following examples show different uses of Boolean properties:

<ContentTemplate xmlns="http://endeca.com/schema/content-template/2008"
type=""PageTemplate'" id="ThreeColumnNavigationPage'>
<l-- additional elenents deleted fromthis exanple -->
<Name>New Three-Column Navigation Page</Name>
<Property name="‘autogen_meta''>
<Boolean>true</Boolean>
</Property>
</Contentltem>
<l-- additional elenents deleted fromthis exanple -->
</ContentTemplate>

<ContentTemplate xmlns="http://endeca.com/schema/content-template/2008"
type="MainColumnContent" id="DimensionSearchResults">
<l-- additional elenents deleted fromthis exanple -->
<Contentltem>
<Name>New Dimension Search Results</Name>
<Property name="display_compound_dimensions'>
<Boolean>true</Boolean>
</Property>
</Contentltem>
<l-- additional elenents deleted fromthis exanple -->
</ContentTemplate>

Related Links

Adding a checkbox editor on page 42
Checkbox editors provide Experience Manager users with a quick and efficient way to specify
the value of a Boolean property.

Adding a navigation refinements property

When you add a navigation refinements property, the content administrator can use the default
dimension order returned by the Endeca MDEX Engine or specify a custom default dimension order.

To add a navigation refinements property to a template:

1. Insert a <NavigationRefinements> element inside a <Property> element.

2. Specify the content-tags schema xmlns attribute for <NavigationRefinements>.
For example: <NavigationReFfinements xmlns="http://endeca.com/schema/content-
tags/2008" />

Endeca Confidential Endeca Content Assembler Experience Manager Developer's Guide

28 Working with Templates for Dynamic Pages | About defining content properties

3. Specify a default ordering:

» To accept the default dimension order returned by the Endeca MDEX Engine, leave the <Nav-
igationRefinements> element empty.

+ To create a custom dimension list, insert a <DimensionList> element.

4. Optionally, insert zero or more <Dimension> elements inside the <DimensionList> element
with the dimension ID set as the id attribute.
For example: <Dimension id=""123"/>

Note: You can leave the <DimensionList> element empty to create an empty dimension
list.

The following example shows the definition of a havigation refinement property using the MDEX
Engine default dimension order:

<?xml version="1.0" encoding="UTF-8"?>
<ContentTemplate xmlns="http://endeca.com/schema/content-template/2008"
type=""Cartridge25PercentWidth”™ id="GuidedNavigation'>
<I-- additional elenents deleted fromthis exanple -->
<Contentltem>
<Name>New Guided Navigation</Name>
<Property name="'refinements''>
<NavigationRefinements xmlns="http://endeca.com/schema/content-
tags/2008" />
</Property>
</Contentltem>
<I-- additional elements deleted fromthis exanple -->
</ContentTemplate>

The following example shows the definition of a navigation refinement property with an empty dimension
list. In this case, the Dimension Selector dialog box in Experience Manager displays with an
unpopulated Selected Dimensions list.

<?xml version="1.0" encoding="UTF-8"?>
<ContentTemplate xmlns="http://endeca.com/schema/content-template/2008"
type=""Cartridge25PercentWidth”™ id="GuidedNavigation'>
<l-- additional elenents deleted fromthis exanple -->
<Contentltem>
<Name>New Guided Navigation</Name>
<Property name="'refinements''>
<NavigationRefinements xmlns="http://endeca.com/schema/content-
tags/2008™ >
<DimensionList/>
</NavigationRefinements>
</Property>
</Contentltem>
<l-- additional elenents deleted fromthis exanple -->
</ContentTemplate>

The following example shows the definition of a navigation refinement property with a custom default
dimension order:

<?xml version="1.0" encoding="UTF-8"?>
<ContentTemplate xmlns="http://endeca.com/schema/content-template/2008"
type=""Cartridge25PercentWidth" id="GuidedNavigation'>
<l-- additional elenents deleted fromthis exanple -->
<Contentltem>
<Name>New Guided Navigation</Name>

Endeca Content Assembler Experience Manager Developer's Guide Endeca Confidential

Working with Templates for Dynamic Pages | About defining content properties 29

<Property name="'refinements''>
<NavigationRefinements xmlns="http://endeca.com/schema/content-
tags/2008" >
<DimensionList>
<Dimension id="146"/>
<Dimension id="212"/>
<Dimension id="123"/>
</DimensionList>
</NavigationRefinements>
</Property>
</Contentltem>
<I-- additional elements deleted fromthis exanple -->
</ContentTemplate>

Related Links

Adding a navigation refinements selector on page 43
You add a navigation refinements selector to enable an interface in Experience Manager for
content administrators to choose and order specific dimensions to display for a landing page.

About record properties

There are two types of content properties that enable a content administrator to customize the display
of records on a page: navigation records and record lists.

Navigation records represent the main results of a search or navigation query based on an end user's
navigation state. Content administrators can specify configuration options for navigation records such
as sort, relevance ranking, and number of records to display per page.

Record lists represent supplemental queries, for example, to populate promotions or Content Spotlighting
cartridges. Content administrators can designate either specific records or a navigation query that
returns records for spotlighting.

Adding a navigation records property

When you add a navigation records property, a content administrator can configure the display of the
main results of an end user's query.

To add a navigation records property to a template:

1. Insert a <NavigationRecords> element inside a <Property> element.

2. Specify the content-tags schema xmlns attribute for <NavigationRecords>.
For example: <NavigationRecords xmlns="http://endeca.com/schema/content-
tags/2008"™ />

3. Optionally, you can specify default sort, relevance ranking, and records-per-page behavior.
4. To specify a default sort, insert a <Sort> element inside <NavigationRecords>. For example:
<Sort>P_Price</Sort>

The content of the element is the name of the property by which to sort. The <Sort> element takes
the following optional attributes:

Attribute Description

ascending A Boolean value specifying whether the records should be sorted in
ascending order. Default is true.

Endeca Confidential Endeca Content Assembler Experience Manager Developer's Guide

30 Working with Templates for Dynamic Pages | About defining content properties

Attribute Description
latitude The latitude value of a geocode sort key for geospatial sorting.
longitude The longitude value of a geocode sort key for geospatial sorting.

If you specify more than one default <Sort>, the sorts are applied in order. If no sort order is
explicitly specified for this property, the default sorting behavior from the MDEX Engine is used.

5. To specify a default relevance ranking strategy, insert a <RelevanceRanking> element inside
<NavigationRecords>. For example:

<RelevanceRanking>freq</RelevanceRanking>

The content of the element is an MDEX Engine URL relevance ranking strategy string. For details
about the format of these strings, see "Controlling relevance ranking at the query level" in the

Endeca MDEX Engine Advanced Development Guide. If no relevance ranking strategy is explicitly
specified for this property, the default relevance ranking behavior from the MDEX Engine is used.

6. To specify a default number of records to return per page, specify a value for the optional
recordsPerPage attribute. For example:

<NavigationRecords recordsPerPage="12"/>

The value of recordsPerPage should be an integer greater than or equal to 1. If the value is less
than 1 or if it is outside the valid range specified by the navigation records editor, the value is
discarded and the field is left empty in Experience Manager by default. If no value for records per
page is explicitly specified for this property, the default is 10.

The following example shows the definition of a navigation records property with no defaults defined:

<?xml version="1.0" encoding="UTF-8"?>
<ContentTemplate xmlns="http://endeca.com/schema/content-template/2008"
type="MainColumnContent"™ id=""ResultsList">
<I-- additional elements deleted fromthis exanple -->
<Contentltem>
<Name>New Results List</Name>
<Property name="'navigation_records'>
<NavigationRecords xmIns="http://endeca.com/schema/content-tags/2008"
/>
</Property>
</Contentltem>
<I-- additional elements deleted fromthis exanple -->
</ContentTemplate>

The following example shows the definition of a navigation records property with defaults for sort,
relevance ranking, and records per page:

<?xml version="1.0" encoding=""UTF-8"?>
<ContentTemplate xmlns="http://endeca.com/schema/content-template/2008"
type="MainColumnContent" id="ResultsGrid">
<I-- additional elements deleted fromthis exanple -->
<Contentl tem>
<Name>New Results Grid</Name>
<Property name="‘navigation_records_with_defaults'>
<NavigationRecords recordsPerPage="12"
xmIns=""http://endeca.com/schema/content-tags/2008">
<Sort ascending="false'">P_Score</Sort>
<RelevanceRanking>static(P_SalesRank,descend),exact</RelevanceRank-
ing>

<NavigationRecords>

Endeca Content Assembler Experience Manager Developer's Guide Endeca Confidential

Working with Templates for Dynamic Pages | About defining content properties 31

</Property>
</Contentltem>
<l-- additional elenents deleted fromthis exanple -->
</ContentTemplate>

4 Note: If you specify a default sort or relevance ranking strategy, ensure that the option is also
available in the associated navigation records editor. If the sort or relevance ranking strategy
is not specified in the editor, Experience Manager discards the default property value and
defaults to an empty <Sort> or <Re levanceRanking> element, representing the default
MDEX Engine behavior.

Related Links

About record properties on page 29
There are two types of content properties that enable a content administrator to customize
the display of records on a page: navigation records and record lists.

Adding a navigation records editor on page 44
You add a navigation records editor to enable an interface in Experience Manager to configure
the display of record results on a landing page.

Adding a record list property

A record list property can contain one or more Endeca records for merchandising or Content
Spotlighting.

To add a record list property to a template:

Insert a <RecordList> element inside a <Property> element.

S . .
7~ Note: Although you cannot specify a default value for the <RecordList> element, you can
specify default records or queries using pass-through content elements.

The following example shows the definition of a record list property:

<ContentTemplate xmlns="http://endeca.com/schema/content-template/2008"
type="'Sidebarltem" id="ThreeRecordBox''>
<l-- additional elenents deleted fromthis exanple -->
<Contentltem>
<Name>New Three Record Spotlight Box</Name>
<l-- additional properties deleted fromthis exanple -->
<Property name="'record_list'>
<RecordList/>
</Property>
</Contentltem>
<I-- additional elenents deleted fromthis exanple -->
</ContentTemplate>

You can configure behavior such as the maximum number of records that can be returned or whether
record filters are applied to this property when you add the record selector to the template.

Related Links
About record properties on page 29

Endeca Confidential Endeca Content Assembler Experience Manager Developer's Guide

32

Working with Templates for Dynamic Pages | About defining content properties

There are two types of content properties that enable a content administrator to customize
the display of records on a page: navigation records and record lists.

Adding a record selector on page 47
You add a record selector to enable an interface in Experience Manager to specify featured
records or queries for a record list property.

Adding a content item property

A content item property defines a template section by creating a placeholder for a nested content item.

Recall that each template corresponds to a content item object, so a cartridge template is returned by
the Content Assembler API as a nested content item. Content administrators can configure a section
in Experience Manager by choosing a cartridge to insert in the section then configuring the properties
of the cartridge.

To add a content item property to a template:

1. Insert a <Contentltem> element inside a <Property> element.
2. Specify the section type.

Only cartridge templates with a type that matches the section type are presented as options for the
content administrator to choose from in Experience Manager. For example, when a content
administrator goes to choose the cartridge to insert in a RecommendedContent section, only
templates of type RecommendedContent display in the Select Cartridge dialog box . (Recall that
the cartridge template is the part of a cartridge that is exposed in Experience Manager). Because
the type of the section property and cartridge templates must match exactly, the type attribute is
also defined as type xs:Name in the schema and all restrictions to template types apply to section

types.

The following example defines two sections within a template. Note that more than one section in a
template can have the same type, as long as your front-end application expects this kind of content.

<ContentTemplate xmlns="http://endeca.com/schema/content-template/2008"
type=""PageTemplate'" id="ThreeColumnNavigationPage'>

<l-- additional elenents deleted fromthis exanple -->
<Contentltem>

<Name>New Three-Column Navigation Page</Name>

<l-- additional properties deleted fromthis exanple -->

<Property name="LeftColumn'>
<Contentltem type="'Sidebarltem" />
</Property>
<Property name="RightColumn®>
<Contentltem type="'Sidebarltem" />
</Property>
</Contentltem>
<l-- additional elenents deleted fromthis exanple -->
</ContentTemplate>

Related Links

About cartridge selectors on page 49
Unlike other types of content properties, section properties are always editable; you do not
need to explicitly specify an editor in the template.

Adding a content item list property on page 33

Endeca Content Assembler Experience Manager Developer's Guide Endeca Confidential

Working with Templates for Dynamic Pages | About defining content properties 33

A content item list allows Experience Manager users to add an arbitrary number of items to
a section and to reorder those items within the list using the Content Tree in Experience
Manager.

Adding a content item list property

A content item list allows Experience Manager users to add an arbitrary number of items to a section
and to reorder those items within the list using the Content Tree in Experience Manager.

Using content item properties to define the subsections of a cartridge restricts the number of subsections
available to the content administrator in Experience Manager. For example, the right column of this
page template must contain four sections:

<ContentTemplate xmlns="http://endeca.com/schema/content-template/2008"
type="PageTemplate'" id="ThreeColumnNavigationPage'>
<I-- additional elenments deleted fromthis exanple -->
<Contentltem>
<Name>New Three-Column Navigation Page</Name>
<l-- additional elenents deleted fromthis exanple -->
<Property name="RightColumnl'>
<Contentltem type="Sidebarltem"™ />
</Property>
<Property name="RightColumn2'>
<Contentltem type="Sidebarltem"™ />
</Property>
<Property name="RightColumn3'>
<Contentltem type="Sidebarltem"™ />
</Property>
<Property name="RightColumn4'>
<Contentltem type="Sidebarltem"™ />
</Property>
</Contentltem>
<l-- additional elenents deleted fromthis exanple -->
</ContentTemplate>

Using a content item list removes the restriction and allows the content administrator to add an arbitrary
number of content items to the right column of the page:

<ContentTemplate xmlns="http://endeca.com/schema/content-template/2008"
type="PageTemplate'" id="ThreeColumnNavigationPage'>
<l-- additional elenents deleted fromthis exanple -->
<Contentltem>
<Name>New Three-Column Navigation Page</Name>
<l-- additional elenments deleted fromthis exanple -->
<Property name="RightColumn'>
<ContentltemList type="Sidebarltem"” />
</Property>
</Contentltem>
<l-- additional elenents deleted fromthis exanple -->
</ContentTemplate>

To add a content item list to a template:

1. Insert a <ContentltemList> element inside a <Property> element.
2. Specify the template type.

Only cartridge templates with a type that matches the content item list type are presented as options
for the content administrator to choose from in Experience Manager. In the above example, when
a content administrator goes to choose a cartridge to insert in a banners section, only templates
of type BuyingGuideSection display in the Select Cartridge dialog box.

Endeca Confidential Endeca Content Assembler Experience Manager Developer's Guide

34 Working with Templates for Dynamic Pages | About defining the editing interface for properties

3. Optionally, specify a maximum number of content items using the attribute maxContentltems.
For example:

<Property name="RightColumn'>
<ContentltemList type="Sidebarltem"” maxContentltems="4"/>
</Property>

By default maxContentltems=""0", which means that there is no limit to the number of content
items in a content item list.

Related Links

Adding a content item property on page 32
A content item property defines a template section by creating a placeholder for a nested
content item.

About defining the editing interface for properties

After you have defined the content properties in your template, you can define how those properties
can be configured by the content administrator in Experience Manager.

You add content editors inside the <EditorPanel> element in the template. The <BasicCon-
tentltemEditor> element enables you to specify individual property editors that display in Experience
Manager and associate them with a particular property.

The template schema provides elements that define editors for string and record list properties. For
example, this excerpt from a sample template defines a configurable string property named title:

<ContentTemplate xmlns="http://endeca.com/schema/content-template/2008"
type="PageTemplate'" id="ThreeColumnNavigationPage'>
<l-- additional elenents deleted fromthis exanple -->
<Contentltem>
<Name>New Three-Column Navigation Page</Name>
<Property name="title'">
<String/>
</Property>
<l-- additional properties deleted fromthis exanple -->
</Contentltem>
<EditorPanel>
<BasicContentltemEditor>
<StringEditor propertyName="title" label="Title"/>
</BasicContentltemEditor>
<l-- additional editors deleted fromthis exanple -->
</EditorPanel>
</ContentTemplate>

The propertyName is a required attribute and specifies the property that this editor is associated
with. The property must be defined in the <Contentltem> part of the template, and must be of the
appropriate type for that editor. For example, a <StringEditor> cannot be associated with a
<RecordList> property. If you define a content editor for a property that does not exist, or that is of
the wrong type, an warning displays in Experience Manager when a content administrator attempts
to configure the content.

Property editors do not have to be defined in the same order as the properties in the template. The
<BasicContentltemEditor>renders the editors in a vertical layout in Experience Manager, in the
order in which you define them in the template. If you do not want a property to be exposed in
Experience Manager interface, do not define an editor associated with it.

Endeca Content Assembler Experience Manager Developer's Guide Endeca Confidential

Working with Templates for Dynamic Pages | About defining the editing interface for properties 35

It is possible to create more than one editor associated with the same property for primitive property
types (such as String and Boolean). However, be aware that all editors that you define in the template
are displayed in Experience Manager, which may be confusing to the content administrator. When the
value of a property is changed, any other editors associated with that property are instantly updated
with the new value. For complex Endeca property types such as navigation refinements, navigation

records, and record list, you can associate only one editor with each complex property in the template.

Related Links

About defining content properties on page 22
When you create a template, you specify all the properties that are necessary to render a
page or section. These properties are returned as part of the content item object in the Content
Assembler API.

Adding a group label on page 49
In the Experience Manager interface, group labels can serve as a visual cue that several
properties are related.

Adding a string editor

You add a string editor to enable configuration of string properties. The string editor displays in the
Experience Manager interface as a text field or text area depending on the configuration.

String editors enable content administrators to supply arbitrary values for a string property. If you want
to constrain the input to a specific enumeration of values, use a combo box.

To add a string editor to a template:
1. Insert a <StringEditor> element within <BasicContentltemEditor>.

2. Specify additional attributes for the string editor:
Attribute Description

propertyName Required. The name of the string property that this editor is associated with.
This property must be declared in the same template as the string editor.

label This attribute allows you to specify a more descriptive label for this field in
Experience Manager. If no label is specified, the property name is used by
default.

enabled If set to False, this attribute makes the property read-only so that the value

of the property displays in the Content Details Panel in Experience Manager,
but cannot be edited. Use this option only if you specify a default value in the
definition of the string property. Properties are enabled by default.

wordWrap If this attribute is set to true, word wrap is enabled for long strings in the
Experience Manager text field. Word wrap is enabled by default.

width The width in pixels of the text field presented in the Experience Manager
interface. The default width is 300 pixels.

height The height in pixels of the text field presented in the the Experience Manager
interface. The default height is 24 pixels. Set this higher to enable a multiline
text area.

& i o : .
77" Note: If the expected value of a string editor is an image URL, you may want to add an image
preview to display that image within Experience Manager.

Endeca Confidential Endeca Content Assembler Experience Manager Developer's Guide

36 Working with Templates for Dynamic Pages | About defining the editing interface for properties

The following example shows a variety of editing options for string properties:

<ContentTemplate xmlns="http://endeca.com/schema/content-template/2008"
type="Ful IWidthContent™ id="ImageSiteBanner'>
<!-- additional elenents deleted fromthis exanple -->
<!-- First define all the content properties -->
<Contentltem>
<Name>New Site Banner</Name>
<Property name="image_src''>
<String>/images/WineDemolmages/site-banner-barrels. jpg</String>
</Property>
<Property name="image href'>
<String/>
</Property>
<Property name="image_alt">
<String/>
</Property>
</Contentltem>
<!-- Define editors for properties that should be configurable -->
<EditorPanel>
<BasicContentltemEditor>
<I--
This example allows the content administrator to
specify an image URL.
A default value was provided above as a placeholder,
and it is editable in Experience Manager.
-—>
<StringEditor propertyName="image_src'" label="Image name' en-
abled=""true"/>

<l--

The image_href property allows a content administrator

to specify an image link URL.

This property is editable, but there is no default

value.

===

<StringEditor propertyName="image href" label="Image link URL" en-
abled=""true"/>

<l--

This example allows the content administrator to

specify an alternative image text.

==

<StringEditor propertyName="image alt" label="Image alt text" en-
abled=""true"/>

</BasicContentltemEditor>
</EditorPanel>
</ContentTemplate>

Note: Neither Experience Manager nor the Content Assembler API applies HTML escaping to
strings. This enables content administrators to specify HTML formatted text in Experience
Manager and have it rendered appropriately. If you intend to treat a string property as plain text,
be sure to add HTML escaping to your application logic in order to avoid invalid characters and
non-standards-compliant HTML.

Related Links
Adding a string property on page 26

Endeca Content Assembler Experience Manager Developer's Guide Endeca Confidential

Working with Templates for Dynamic Pages | About defining the editing interface for properties 37

String properties are very flexible and can be used to specify information such as text to
display on a page, URLSs for banner images, or meta keywords for search engine optimization.

Adding an image preview on page 40
An image preview displays an image in the Experience Manager interface based on a URL.

Adding a combo box editor on page 37
Predefining values through a combo box editor allows you more control over page content
and provides a more efficient mechanism for populating templates and cartridges in the editing
interface.

Adding a combo box editor

Predefining values through a combo box editor allows you more control over page content and provides
a more efficient mechanism for populating templates and cartridges in the editing interface.

Combo box editors affect the value of a string property. For example, you might use a combo box to
provide image options:

<ComboBox propertyName=""image_src'" label=""Image name'" usePrompt=""false"
editable="true" >
<ComboBoxItem data="/images/WineDemolmages/one-record-banner-empty-
glass.jpg"” label="Empty glass with strawberries'/>
<ComboBoxItem data="/images/WineDemolmages/one-record-banner-green-
grapes.jpg" label="Green grapes'/>
<ComboBoxltem data=""/images/WineDemolmages/one-record-banner-wine-
being-poured. jpg" label="Rose wine being poured"/>
</ComboBox>

To add a combo box editor:

1. Insert a <ComboBox> element within <BasicContentltemEditor>.
2. Specify additional attributes for the combo box editor:
Attribute Description

propertyName Required. The name of the string property that this editor is associated with.

This property must be declared in the same template as the combo box editor.

editable If set to true, this attribute allows Experience Manager users to specify
custom string values. By default, combo boxes are not editable.

enabled If set to False, the combo box displays in Experience Manager but the value
cannot be changed by the user. By default, combo boxes are enabled.

label . : . o e
This attribute allows you to specify a more descriptive label for this field in
Experience Manager. If no label is specified, the property name is used by
default.

usePrompt

If usePrompt is set to false, the first ComboBox1tem in the list is used as
the displayed value. If the first ComboBox I tem is not set as the default
property value, it is not saved if the content administrator exits the Edit View
without selecting a value.

Endeca Confidential Endeca Content Assembler Experience Manager Developer's Guide

38 Working with Templates for Dynamic Pages | About defining the editing interface for properties

Attribute Description

By default, this attribute is set to true, and a prompt displays at the top of
the combo box editor.

prompt Specifies a custom prompt. The default prompt is "Select one..."

rows . . I)
Specifies the maximum number of rows appearing in a drop down list before
a scroll bar displays. The default value is 5.

maxWidth

Controls with width in pixels of the editor. The default value is 300.

3. Specify one or more menu options for the combo box by adding <ComboBox1tem> elements.
<ComboBox I tem> takes the following attributes:

Attribute Description
data : . . . o
Required. The string value to assign to the associated property if this <ComboBox-
I tem> is selected.

1abel This attribute allows you to specify a more descriptive label for this option in the

drop down list. If no label is specified, the value for data is used by default. You
must either specify a label for all of the combo box items or none of them. You
cannot have labels for some items and not others.

4 Note: If you choose to make a combo box editable, you should not use the
label attribute for combo box items. Instead, the combo box should display
the raw value of the string so that users entering custom values can see the
expected format of the string property.

4. Optionally, set a default value in the corresponding <Contentltem> property.
For example, to specify the image of wine being poured
(/images/WineDemolmages/one-record-banner-wine-being-poured. jpg) as the default
choice for a combo box with propertyName="image_src"":
<Property name="'image_ src">

<String>/images/WineDemolmages/one-record-banner-wine-being-

poured. jpg</String>
</Property>

Note: Ensure that the default value for the property is one of the options defined for the
combo box in a <ComboBox Item> element.

The following example illustrates a combo box with a custom prompt ("Please select an image"):

<EditorPanel>
<BasicContentltemEditor>
<I-- additional elements deleted fromthis exanple -->

<ComboBox propertyName="image_src' label="Image name'" prompt="Please
select an image'>
<ComboBoxItem data="/images/WineDemolmages/one-record-banner-empty-

Endeca Content Assembler Experience Manager Developer's Guide Endeca Confidential

Working with Templates for Dynamic Pages | About defining the editing interface for properties 39

glass.jpg" label="Empty glass with strawberries'/>
<ComboBoxItem data=""/images/WineDemolmages/one-record-banner-green-
grapes.jpg" label="Green grapes'/>
<ComboBoxltem data=""/images/WineDemolmages/one-record-banner-wine-
being-poured.jpg” label="Rose wine being poured"/>
</ComboBox>
</BasicContentltemEditor>
</EditorPanel>

The following example depicts a combo box configured as "editable.”" The combo box displays the
image options specified in the <ComboBox Item> elements, but also allows a Experience Manager
user to enter an image URL.

<EditorPanel>
<BasicContentltemEditor>
<!-- additional elenents deleted fromthis exanple -->

<ComboBox propertyName=""image_src" label="Image name' use-
Prompt="false" editable=""true">
<ComboBoxltem data="/images/WineDemolmages/one-record-banner-empty-
glass.jpg" label="Empty glass with strawberries'/>
<ComboBoxItem data="/images/WineDemolmages/one-record-banner-green-
grapes. jpg"” label="Green grapes'/>
<ComboBoxItem data=""/images/WineDemolmages/one-record-banner-wine-
being-poured. jpg'"™ label=""Rose wine being poured"/>
</ComboBox>
</BasicContentltemEditor>
</EditorPanel>

The following example shows a combo box configured with a default value. The selected value when
the editor is first instantiated is Zimages/WineDemolmages/one-record-banner-green-
grapes. jpg, which displays with the label "Green grapes" in the drop-down menu. Experience
Manager users can choose to select a different image.

<ContentTemplate xmlns="http://endeca.com/schema/content-template/2008"
type="MainColumnContent" id="0OneRecordBanner">
<!-- additional elenents deleted fromthis exanple -->
<Contentltem>
<Name>New One Record Banner</Name>
<!-- additional properties deleted fromthis exanple -->
<Property name="image_src''>
<String>/images/WineDemolmages/one-record-banner-green-
grapes. jpg<sString/>

</Property>
</Contentltem>
<!-- additional elenents deleted fromthis exanple -->
<EditorPanel>
<BasicContentltemEditor>
<!-- additional elenents deleted fromthis exanple -->

<ComboBox propertyName=""image_src" label="Image name"™ >

<ComboBoxltem data="/images/WineDemolmages/one-record-banner-empty-
glass.jpg" label="Empty glass with strawberries'/>

<ComboBoxItem data="/images/WineDemolmages/one-record-banner-green-
grapes.jpg" label="Green grapes'/>

<ComboBoxItem data=""/images/WineDemolmages/one-record-banner-wine-
being-poured.jpg” label="Rose wine being poured"/>

</ComboBox>

</BasicContentltemEditor>
</EditorPanel>

</ContentTemplate>

Endeca Confidential Endeca Content Assembler Experience Manager Developer's Guide

40 Working with Templates for Dynamic Pages | About defining the editing interface for properties

Related Links
Adding a string property on page 26
String properties are very flexible and can be used to specify information such as text to
display on a page, URLSs for banner images, or meta keywords for search engine optimization.

Adding a string editor on page 35
You add a string editor to enable configuration of string properties. The string editor displays
in the Experience Manager interface as a text field or text area depending on the configuration.

Adding an image preview on page 40
An image preview displays an image in the Experience Manager interface based on a URL.

Adding an image preview
An image preview displays an image in the Experience Manager interface based on a URL.

You can construct an image preview URL from a hard-coded value, or from any number of string
properties.

Image preview supports JPEG, GIF, and PNG image formats. Note that if the images are hosted on
a different server from Workbench, you may have to enable the Flash player to access those resources.

To add an image preview to a template;

1. Insert an <ImagePreview> element within <BasicContentltemEditor>.
2. Specify additional attributes for the image preview:

Attribute Description

urlExpression Required. The source of the image URL. You can construct ur IExpres-
sion from any number of string properties, or you can enter a static
value.

label A description for the image preview. There is no default value.

maxHeight The height in pixels of the image preview presented in the Experience

Manager interface. The default value is 100.

maxWidth The width in pixels of the image preview presented in the Experience
Manager interface. The default value is 300.

displayurl A boolean indicating whether to display the processed URL. The default
value is true.

If you are using more than one string property to compose the URL, you may want to use a group
label to indicate to Experience Manager users that these properties are related.

The following examples show options for constructing an image preview.

In the first example, an image_src property is created:

<Property name="image_src''>
<String/>
</Property>

Then, inthe <EditorPanel>, ur lExpression takes the value of the image_src property, specified
in a <StringEditor> above the <ImagePreview> element:

<StringEditor propertyName="image_src'" label="Image name"™ en-
abled=""true"/>

Endeca Content Assembler Experience Manager Developer's Guide Endeca Confidential

Working with Templates for Dynamic Pages | About defining the editing interface for properties 41

<ImagePreview
urlExpression="http://localhost:8006/ContentAssemblerRefApp/{im-
age_src}"
label="Site banner image"
maxWidth="200"
maxHeight="100" />

In the second example, ur IExpression parses some of the image URL from string properties
determined by values selected in combo boxes above the <ImagePreview> element:

<ContentTemplate xmlns="http://endeca.com/schema/content-template/2008"
type=""ContentCartridge" i1d=""ThreeRecordBanner-Advanced">
<l-- additional elenents deleted fromthis exanple -->
<I-- First define all the content properties -->
<Contentltem>
<Name>Three Record Banner</Name>
<Property name="title">
<String>Recommended</String>
</Property>
<Property name="image_collection">
<String/>
</Property>
<Property name="image_src''>
<String/>
</Property>
<Property name="‘record_list'>
<RecordList/>
</Property>
</Contentltem>
<EditorPanel>
<BasicContentltemEditor>
<GroupLabel label="Image configuration'/>
<StringEditor propertyName="title" label="Banner Title"/>
<ComboBox propertyName=""image collection' label="Image Collection">
<ComboBoxltem data="images/stock'" label="Stock Photos'/>
<ComboBoxltem data="images/promo" label="Promotional Images"/>
<ComboBoxItem data=""images/promo/product”™ label="Product Images'/>

<ComboBoxItem data="web/images’" label="Web Graphics"/>
<ComboBoxIltem data="web/logos" label="Logos"/>
</ComboBox>
<StringEditor propertyName="image_src'" label="Image Name'/>
<ImagePreview urlExpression="http://www.example.com/{image collec-
tion}/{image_src}" label="Image Preview" />
<RecordSelector propertyName="record_list" label="Featured Records"
maxRecords="3"/>
</BasicContentltemEditor>
</EditorPanel>
</ContentTemplate>

Related Links

File hosting and security considerations on page 62
Experience Manager occasionally needs to access files hosted on a different server. Certain
security issues may apply.

Adding a string property on page 26
String properties are very flexible and can be used to specify information such as text to
display on a page, URLSs for banner images, or meta keywords for search engine optimization.

Endeca Confidential Endeca Content Assembler Experience Manager Developer's Guide

42 Working with Templates for Dynamic Pages | About defining the editing interface for properties

Adding a string editor on page 35
You add a string editor to enable configuration of string properties. The string editor displays
in the Experience Manager interface as a text field or text area depending on the configuration.
Adding a combo box editor on page 37
Predefining values through a combo box editor allows you more control over page content

and provides a more efficient mechanism for populating templates and cartridges in the editing
interface.

About the urlExpression for image preview
This section contains guidelines for constructing the ur lIExpression for an image preview.

« Any string within {braces} is treated as the name of a string property defined in the same template.

« All string properties that the ur IExpression depends on must be specified in Experience Manager
before the preview renders. There is no way to specify an "optional" property.

« If the URL that you specify is a relative rather than absolute path, this is interpreted for preview
purposes as relative to Experience Manager (and not, for example, relative to the front-end
application server).

Adding a checkbox editor

Checkbox editors provide Experience Manager users with a quick and efficient way to specify the
value of a Boolean property.

For example, you might use a checkbox editor to give the content administrator the choice to

auto-generate metadata information.

<CheckBox propertyName=""autogen_meta" label="Auto-generate meta information"
/>

To add a checkbox editor:

1. Insert a <CheckBox> element within <BasicContentltemEditor>.
2. Specify additional attributes for the combo box editor:
Attribute Description
propertyName Required. The name of the Boolean property that this editor is associated

with. This property must be declared in the same template as the checkbox
editor.

enabled If set to False, the checkbox displays in Experience Manager but the value
cannot be changed by the user. By default, checkboxes are enabled.

label This attribute allows you to specify a more descriptive label for this field in
Experience Manager. If no label is specified, the property name is used by
default.

The following example illustrates an "autogen_meta" checkbox with a default value of "true":

<ContentTemplate xmlns="http://endeca.com/schema/content-template/2008"
type="PageTemplate”™ id="ThreeColumnNavigationPage'>

<l-- additional elenents deleted fromthis exanple -->
<Contentl tem>

<Name>New Three-Column Navigation Page</Name>

<l-- additional properties deleted fromthis exanple -->

Endeca Content Assembler Experience Manager Developer's Guide Endeca Confidential

Working with Templates for Dynamic Pages | About defining the editing interface for properties 43

<Property name="‘autogen_meta''>
<Boolean>true</Boolean>

</Property>
</Contentltem>
<l-- additional elenents deleted fromthis exanple -->
<EditorPanel>
<BasicContentltemEditor>
<I-- additional elements deleted fromthis exanple -->

<CheckBox propertyName=""autogen_meta' label="Auto-generate meta In-
formation" />

</BasicContentltemEditor>
</EditorPanel>
</ContentTemplate>

Related Links

Adding a Boolean property on page 27

Boolean properties represent a true or false value and can be used to enable or disable
features in your application.

Adding a navigation refinements selector

You add a navigation refinements selector to enable an interface in Experience Manager for content
administrators to choose and order specific dimensions to display for a landing page.

To add a navigation refinements selector to a template

1. Inserta<NavigationRefinementsSelector> elementwithin <BasicContentltemEditor>
2. Specify additional attributes for the dimension selector:
Attribute Description

propertyName Required. The name of the navigation refinements property that this editor

is associated with. This property must be declared in the same template as
the navigation refinements selector.

label This attribute allows you to specify a more descriptive label for this editor

in Experience Manager. If no label is specified, the property name is used
by default.

The following example shows a navigation refinements selector associated with a "refinements”
property.

<?xml version="1.0" encoding="UTF-8"?>
<ContentTemplate xmlns="http://endeca.com/schema/content-template/2008"
type=""Cartridge25PercentWidth" id="GuidedNavigation'>
<l-- additional elenents deleted fromthis exanple -->
<Contentltem>
<Name>New Guided Navigation</Name>
<Property name="refinements">
<NavigationRefinements xmlns="http://endeca.com/schema/content-
tags/2008"™ />
<DimensionList>
<Dimension id="146"/>
<Dimension id="212"/>
<Dimension id="123"/>
<DimensionList/>

Endeca Confidential Endeca Content Assembler Experience Manager Developer's Guide

44 Working with Templates for Dynamic Pages | About defining the editing interface for properties

<NavigationRefinements/>
</Property>
</Contentltem>
<EditorPanel>
<BasicContentltemEditor>
<NavigationRefinementsSelector propertyName="refinements"” label="Re-
finements" />
</BasicContentltemEditor>
</EditorPanel>
</ContentTemplate>

Related Links

Adding a navigation refinements property on page 27
When you add a navigation refinements property, the content administrator can use the
default dimension order returned by the Endeca MDEX Engine or specify a custom default
dimension order.

Adding a navigation records editor

You add a navigation records editor to enable an interface in Experience Manager to configure the
display of record results on a landing page.

The navigation records editor is a collection of controls that enable a content administrator to specify
sort order, relevance ranking, and the number of records to display per page.

To add a navigation records editor to a template:

1. Insert a <NavigationRecordsEditor> element within <BasicContentltemEditor>.
2. Specify additional attributes for the navigation records editor:
Attribute Description
propertyName Required. The name of the navigation records property that this editor is

associated with. This property must be declared in the same template as
the navigation records editor.

label This attribute enables you to specify a more descriptive label for this editor
in Experience Manager. If no label is specified, the property name is used
by default.

3. Specify sort options by inserting a <SortChoices> element within <NavigationRecordsEdi-
tor>.

<SortChoices> takes the following optional attributes:
Attribute Description

enabled If set to False, the default sort order displays in the Content Details Panel in
Experience Manager, but the content administrator cannot configure the sort
order for this cartridge. Sort order configuration is enabled by default.

label This attribute enables you to specify a more descriptive label for this drop down
menu in Experience Manager. If no label is specified, the default is Sort by.

If you omit the <SortChoices> element, the drop down menu to specify sort order does not display
in Experience Manager.

Endeca Content Assembler Experience Manager Developer's Guide Endeca Confidential

Working with Templates for Dynamic Pages | About defining the editing interface for properties 45

4. Specify the available sort options by inserting one or more <SortChoice> elements within
<SortChoices>.

<SortChoice> takes arequired label attribute to specify a more descriptive label, such as Name
(A-2), for this option in the drop down list.

<SortChoice> can contain one or more <Sort> elements. The content of the element is the
name of the property by which to sort. The <Sort> element takes the following optional attributes:

Attribute Description

ascending A Boolean value specifying whether the records should be sorted in
ascending order. Default is true.

latitude The latitude value of a geocode sort key for geospatial sorting.

longitude The longitude value of a geocode sort key for geospatial sorting.

If you specify more than one <Sort> within a <SortChoice>, selecting that option applies the
sorts in order. For example, the following sort choice applies a record sort in descending order of
price followed by sales rank:
<SortChoice label="Price (Descending) then Sales Rank (Descending)'>
<Sort ascending="false">P_Price</Sort>
<Sort ascending="false">P_SalesRank</Sort>
</SortChoice>

5. Specify relevance ranking options by inserting a <Re levanceRankingChoices> element within
<NavigationRecordsEditor>.

<RelevanceRankingChoices> takes the following optional attributes:
Attribute Description

enabled If set to False, the default relevance ranking strategy displays in the Content
Details Panel in Experience Manager, but the content administrator cannot
configure relevance ranking for this cartridge. Relevance ranking configuration
is enabled by default.

label This attribute enables you to specify a more descriptive label for this drop down
list in Experience Manager. If no label is specified, the default is Relevance
ranking.

If you omit the <RelevanceRankingChoices> element, the drop down menu to specify relevance
ranking strategy does not display in Experience Manager.

6. Specify the available relevance ranking options by inserting one or more <RelevanceRanking-
Choice> elements within <RelevanceRankingChoices>.

<RelevanceRankingChoice> takes the following attributes:
Attribute Description

label Required. This attribute enables you to specify a more descriptive label
for this option in the drop down list.

relevanceRanking Required. The value of this attribute is an MDEX Engine URL relevance
ranking strategy string. For details about the format of these strings, see
"Controlling relevance ranking at the query level" in the Endeca Advanced
Development Guide.

Endeca Confidential Endeca Content Assembler Experience Manager Developer's Guide

46 Working with Templates for Dynamic Pages | About defining the editing interface for properties

) . : .

7~ Note: If you use certain relevance ranking strategies across several templates, you can
create a search interface in Developer Studio to define commonly used combinations of
relevance ranking modules. For details, see the Oracle Endeca Developer Studio Help.

7. Enable a field for specifying the number of records to return per page by inserting a
<RecordsPerPage> element within <NavigationRecordsEditor>

<RecordsPerPage> takes the following optional attributes:
Attribute Description

enabled If set to False, the default records per page value (if you specified one for
the property in the template) displays in the Content Details Panel in
Experience Manager. However, the content administrator cannot configure
records per page for this cartridge. Configuration of records per page is
enabled by default.

label This attribute enables you to specify a more descriptive label for this field in
Experience Manager. If no label is specified, the default is Records per
page.

minimumRecords The minimum value for records per page that can be specified in Experience
Manager. Must be an integer greater than or equal to 1.

maximumRecords The maximum value for records per page that can be specified in Experience
Manager. Must be an integer greater than the value of minimumRecords.

If you omit the <RecordsPerPage> element, the field to specify the number of records per page
does not display in Experience Manager.

The following example shows a navigation results editor that enables configuration of sort, relevance
ranking, and records per page:

<?xml version="1.0" encoding="UTF-8"?>
<ContentTemplate xmlns="http://endeca.com/schema/content-template/2008"
type="MainColumnContent"”™ id=""ResultsList">
<I-- additional elements deleted fromthis exanple -->
<Contentltem>
<Name>New Results List</Name>
<Property name="'navigation_records'>
<NavigationRecords xmIns="http://endeca.com/schema/content-tags/2008"
/>
</Property>
</Contentltem>
<EditorPanel>
<BasicContentltemEditor>
<NavigationRecordsEditor propertyName=""navigation_records™
label="Record List'">
<SortChoices label="Sorts">
<SortChoice label="Score (Ascending)'>
<Sort ascending=""true'>P_Score</Sort>
</SortChoice>
<SortChoice label="Score (Descending)'>
<Sort ascending="false">P_Score</Sort>
</SortChoice>
<SortChoice label="Price (Ascending)'>
<Sort ascending=""true'>P_Price</Sort>
</SortChoice>
<SortChoice label="Price (Descending)'>

Endeca Content Assembler Experience Manager Developer's Guide Endeca Confidential

Working with Templates for Dynamic Pages | About defining the editing interface for properties a7

<Sort ascending="false'">P_Price</Sort>
</SortChoice>
<SortChoice label="Sales Rank (Ascending)'>
<Sort ascending=""true'>P_SalesRank</Sort>
</SortChoice>
<SortChoice label="Sales Rank (Descending)'>
<Sort ascending="false">P_SalesRank</Sort>
</SortChoice>
</SortChoices>
<RelevanceRankingChoices label="Relevance ranking'>
<RelevanceRankingChoice label="First"
relevanceRanking="first" />
<RelevanceRankingChoice label="By Sales Rank (Static)"
relevanceRanking="'static(P_SalesRank)" />
<RelevanceRankingChoice label="By Price (Static)"
relevanceRanking="'static(P_Price)" />
<RelevanceRankingChoice label="Frequency"
relevanceRanking="freq" />
</RelevanceRankingChoices>
<RecordsPerPage label="Records per page' minimumRecords="1"
maximumRecords="'100" />
</NavigationRecordsEditor>
</BasicContentltemEditor>
</EditorPanel>
</ContentTemplate>

Related Links

About record properties on page 29
There are two types of content properties that enable a content administrator to customize
the display of records on a page: navigation records and record lists.

Adding a navigation records property on page 29
When you add a navigation records property, a content administrator can configure the display
of the main results of an end user's query.

Adding a record selector

You add a record selector to enable an interface in Experience Manager to specify featured records
or queries for a record list property.

The record selector dialog box allows a content administrator to designate specific records to spotlight
in a section, or to specify a query to return a dynamic list of records. If the content administrator
designates a record ID that does not exist, an error message displays.

To add a record selector to a template:

1. Insert a <RecordSelector> element within <BasicContentltemEditor>
2. Specify additional attributes for the record selector:
Attribute Description
propertyName Required. The name of the record list property that this editor is associated

with. This property must be declared in the same template as the record
selector.

label This attribute allows you to specify a more descriptive label for this editor in
Experience Manager. If no label is specified, the property name is used by
default.

Endeca Confidential Endeca Content Assembler Experience Manager Developer's Guide

48 Working with Templates for Dynamic Pages | About defining the editing interface for properties

Attribute Description

maxRecords Sets the maximum number of records that this property can contain. If the
content administrator designates specific records in Experience Manager,
the number of records cannot exceed the value of maxRecords. If the content
administrator specifies a query, Experience Manager returns no more than
this number of records. When configuring this property, the content
administrator may choose to designate fewer static records or to further limit
the number of records returned by a query. The default value for maxRecords
is 10.

augmentRecord- If setto true, record filters are applied to the query that is used to evaluate
Filter the associated record list property. The default value is true.

previewRecordld—- This attribute allows you to specify a more descriptive label for the record 1D

Label field in the Record Selector dialog box. For example, previewRecordldLa—-
bel=""SKU" prompts a content administrator to enter a SKU number. The
default label is Record ID.

3. Optionally, specify one or more PreviewProperty elements.

If a preview property is specified, an additional column appears in the Record Selector dialog box
to showcase the preview properties. Preview properties display relevant information about records,
allowing content administrators to confirm that they are entering the correct record IDs. Preview-
Property takes the following attributes:

Attribute Description
name Required. Specify the property to display with record IDs in the Record Selector
dialog box.

%
Note: You must specify a property; dimensions cannot be used.

label This attribute allows you to specify a more descriptive label for this property in
the Record Selector dialog box. If no label is specified, the value for name is
used by default.

The following example shows a Record Selector associated with a "record_list" property. This allows
a content administrator to specify up to three specific records (SKU numbers) or a query that returns
up to three records. If a content administrator chooses to enter SKU numbers, the name and year of
each chosen record displays in the Record Selector dialog box.

<ContentTemplate xmlns="http://endeca.com/schema/content-template/2008"
type="Sidebarltem”™ id="ThreeRecordBox'>
<I-- additional elements deleted fromthis exanple -->
<Contentl tem>
<Name>New Three Record Spotlight Box</Name>
<l-- additional properties deleted fromthis exanple -->
<Property name="‘record_list">
<RecordList/>
</Property>
</Contentltem>
<EditorPanel>
<BasicContentltemEditor>
<l-- additional editors deleted fromthis exanple -->
<RecordSelector propertyName="record_list" label="Featured records"

Endeca Content Assembler Experience Manager Developer's Guide Endeca Confidential

Working with Templates for Dynamic Pages | About defining the editing interface for properties 49

maxRecords="'3"">
<PreviewProperty name="P_Name'" label="Name"/>
</RecordSelector>
</BasicContentltemEditor>
</EditorPanel>
</ContentTemplate>

Related Links
About record properties on page 29
There are two types of content properties that enable a content administrator to customize
the display of records on a page: navigation records and record lists.

Adding a record list property on page 31
A record list property can contain one or more Endeca records for merchandising or Content
Spotlighting.

About sort options for the record selector

The record selector enables the content administrator to designate either specific featured records or
a query that returns a dynamic list of records for spotlighting. When selecting dynamic records, the
content administrator can specify a sort order for the records.

Unlike the navigation records editor, the sort options for the record selector are not specified in the
template. The sort keys that are available in the record selector are all the properties or dimensions
that are configured for precomputed sort (that is, those that have the Prepare Sort Offline option
selected in Developer Studio). For more information about configuring properties and dimensions for
precomputed sort, see the Oracle Endeca Developer Studio Help.

Only one sort key can be applied to the query for each dynamic spotlighting cartridge. It is not possible
to specify a default sort order for the record list property.

About cartridge selectors

Unlike other types of content properties, section properties are always editable; you do not need to
explicitly specify an editor in the template.

In Experience Manager, content administrators can select cartridges to insert in sections either by
clicking the cartridge Add button in the content detail panel or by right-clicking the section in the content
tree. Both options bring up the cartridge selector dialog box and are enabled automatically when you
define a section in the template.

Related Links

Adding a content item property on page 32
A content item property defines a template section by creating a placeholder for a nested
content item.

Adding a group label

In the Experience Manager interface, group labels can serve as a visual cue that several properties
are related.

Group labels are only used to provide additional context in the editing interface of Experience Manager
and do not affect rendering in the front-end application. Group labels are optional.

Endeca Confidential Endeca Content Assembler Experience Manager Developer's Guide

50

Working with Templates for Dynamic Pages | About using XML pass-through properties

One use of group labels is to give the content administrator information about properties that they
need to configure the cartridge. For example, if a template defines properties that are required in order
to render the content properly, you can indicate these with a descriptive group label so that the content
administrator can easily identify the required fields in Experience Manager.

The editor panel in Experience Manager includes a default heading of "Section settings." This heading
includes the required Name field and the read-only type of a template, as well as any properties that
are defined before the first group label.

To add a group label to the editor panel:

Insert the <GroupLabel> element inside <BasicContentltemEditor> as in the following
example:

<ContentTemplate xmlns="http://endeca.com/schema/content-template/2008"
type="BuyingGuideSection" i1d="BuyingGuideSection">
<I-- additional elenments deleted fromthis exanple -->
<EditorPanel>
<BasicContentltemEditor>
<GroupLabel label="Page metadata'/>
<CheckBox propertyName="autogen_meta" label="Auto-generate meta
information" />
<StringEditor propertyName="title" label="Title" enabled="true"/>
<StringEditor propertyName="meta_keywords' label="Meta keywords"
enabled=""true" height="72"/>
<StringEditor propertyName="meta description' label="Meta descrip-
tion" enabled="true" height="72"/>
<GroupLabel label="Configuration'/>
<StringEditor propertyName="title" label="Banner title" en-
abled=""true"/>
<RecordSelector propertyName="record_list" label="Featured records"
maxRecords="3">
<PreviewProperty name="P_Name'" label="Name'/>
</RecordSelector>
<StringEditor propertyName="link_text" label="See-all link text"
enabled=""true'"/>
</BasicContentltemEditor>
</EditorPanel>
</ContentTemplate>

<GroupLabel> is an empty tag that allows you to specify the label text with the Iabel attribute.

About using XML pass-through properties

In addition to configurable content properties, the template schema also allows you to define
non-configurable properties that are passed directly to the front-end application.

While you can use hidden string properties to pass simple pieces of information to the application,
pass-through properties can be useful if the following conditions apply:

« The property never needs to be configured or exposed in Experience Manager.
« The property contains structured data that can be represented in XML.

Pass-through properties may take the form of pass-through content properties or any arbitrary XML
that does not conform to the template schema, as long as you specify a different namespace from the
Endeca template and content schemas.

Endeca Content Assembler Experience Manager Developer's Guide Endeca Confidential

Working with Templates for Dynamic Pages | About using XML pass-through properties 51

About using pass-through content properties

Pass-through content properties allow you to embed MDEX Engine query results in the content item
object that you can access through the Content Assembler API.

Pass-through content properties follow the same schema as the page configurations generated by
Experience Manager. When the Content Assembler processes these properties with the values you
specified in the template, it evaluates them and executes any necessary queries exactly as if the
property had been configured with specific values by a content administrator in Experience Manager.

The schema to use for pass-through content properties is located in
doc\schemas\content-tags.xsd (on Windows) or doc/schemas/content-tags.xsd (on
UNIX) in your Content Assembler API installation. You must specify the namespace for the content-tags
schema in order for the Content Assembler to evaluate the properties as if they were content properties.
4 Note: The <NavigationRefinements> and <NavigationRecords> properties in the

content-tags schema are configurable in Experience Manager (via the <NavigationRefine-
mentsSelector>and <NavigationRecordsEditor>, respectively). Other properties defined
in the content-tags schema do not have editors available in Experience Manager. <Navigation-
Refinements> and <NavigationRecords> can be used as pass-through properties by
specifying defaults in the property definition without defining an associated editor in the template.

The following example shows several types of pass-through content properties:

<Property name="sample_navigation_query"'>
<NavQuery xmlIns="http://endeca.com/schema/content-tags/2008"
augment=""true' maxRecords="7"">
<DimensionValue id="60" dimensionld="2"/>
<DimensionValue id="40" dimensionld="1"/>
</NavQuery>
</Property>

<Property name="'sample_urlenequery'>
<UrlEneQuery xmlns="http://endeca.com/schema/content-tags/2008"
maxRecords="3">N=8021&Ns=P_Price</Ur 1EneQuery>
</Property>

<Property name="'sample_supplement_property'>
<Supplement xmlns="http://endeca.com/schema/content-tags/2008">
<Supplementld>547</Supplementld>
</Supplement>
</Property>

<Property name="another_sample_supplement_property'>
<Supplement xmlns="http://endeca.com/schema/content-tags/2008">
<Zone>ZoneOne</Zone>
<Style>StyleOne</Style>
</Supplement>
</Property>

<I-- In the unusual case that you need specific records
hard-coded into the template -->

<Property name="'sample_record_query'>

<RecordQuery xmlns="http://endeca.com/schema/content-tags/2008">

<Recordld>123</Recordld>
<Recordld>456</Recordld>
<Recordld>789</Recordld>
<Recordld>abc</Recordld>

Endeca Confidential Endeca Content Assembler Experience Manager Developer's Guide

52

Working with Templates for Dynamic Pages | About using XML pass-through properties

</RecordQuery>
</Property>

<I-- <NavigationResult> is an empty tag that enables access to
query results from nested content items -->
<Property name="navigation_results'>
<NavigationResult xmIns="http://endeca.com/schema/content-tags/2008"/>

</Property>

About passing arbitrary XML to the front-end application

You can nest arbitrary XML in templates within a <Property> element.

Embedding arbitrary XML in template properties allows you to pass structured data to your application
such as configuration for third-party packages used by your front-end application. If the Content
Assembler does not recognize a tag, it returns the XML as an org.w3c.dom.Element (in Java) or
a string (for the RAD Toolkit for ASP.NET).

The only requirement is that the namespace must be different from any of the Endeca template or
content schemas located in doc\schemas\ (on Windows) or doc/schemas/ (on UNIX) in your
Content Assembler API installation. Additionally, the Content Assembler APl must be able to access
the namespace that you specify.

%
Note: Experience Manager does not perform any validation on XML within a different namespace
from the content-template or content-tags schemas. If you are using custom XML pass-through
properties, be sure to validate your templates before uploading them.

The following example shows XML inserted within a property:

<Property name="sample_ XML_pass-through'>
<widget xmlns="http://mycompany.com/schema/widgets'>
<name>Example widget</name>
<description>Sample for embedded XML in a template</description>
<icon src="icons/example.png" />
<content src="index.html"/>
<access network=""true"/>
</widget>
</Property>

Endeca Content Assembler Experience Manager Developer's Guide Endeca Confidential

Chapter 3
Supporting Experience Manager

This section describes the tasks needed to enable content administrators to create pages in Experience
Manager.

Making templates available in Experience Manager

This section describes how to manage Experience Manager templates using the emgr_update utility.

The emgr_update utility assists you in updating the instance configuration of a production system
based on the changes made with the Endeca tools in a staging environment. You can also use
emgr_update to add, retrieve, and remove templates from Experience Manager.

For a complete list of accepted emgr_update syntax, refer to the Oracle Endeca Guided Search
Administrator's Guide.

Uploading templates to Experience Manager

Before Experience Manager users can access new templates, you must upload them using the
emgr_update utility.

Note: Template file names cannot have spaces in them.

To upload a new template:

1. Open a command prompt or UNIX shell.

2. Run emgr_update with the -—action of set_templates and the following parameters:
Parameter Value

--host The machine name and port for the staging Endeca Workbench
environment, in the format host:port.

—-—app_name The name of the application to which you want the templates to apply.

--dir The path to the local directory where your templates are stored.

54 Supporting Experience Manager | Making templates available in Experience Manager

The following is a Windows example:

emgr_update.bat --action set_templates --host localhost:8006
-—app_name My application --dir c:\endeca-app\templates\

The following is a UNIX example:

emgr_update --action set_templates --host localhost:8006
-—app_name My application --dir /apps/endeca/templates/

If templates do not display in Experience Manager after uploading them using emgr_update, check
the log in YENDECA_TOOLS_CONF%\logs\webstudio. log (on Windows) or
$ENDECA_TOOLS_CONF/logs/webstudio. log (on UNIX) for possible causes.

Related Links

Updating templates in Experience Manager on page 56
Updating templates using emgr_update is a multi-step process.

About updating templates on page 55
When updating templates in Experience Manager, you should be aware of how conflicts are
handled.

Troubleshooting invalid templates on page 61
Some templates may be successfully uploaded to Workbench, but still contain errors that
lead to unexpected behavior in Experience Manager.

About modifying templates that are used by existing pages

During the development and testing phase of your application deployment, you may need to make
adjustments to your page or cartridge templates and update them in Experience Manager.

When Experience Manager populates the Content Detail Panel for a landing page or cartridge, it
checks the content XML of the loaded page against the template XML. If the template has been
changed such that it is no longer compatible with the content, Experience Manager displays a warning
and upgrades existing content to fit the new editor definition.

For example, a record list editor can be altered in a landing page template to have its maxRecords
value lowered from five to two. In this case, if the content administrator has previously selected more
than two static records, Experience Manager removes the excess record selections the next time it
loads the record list editor. Any such changes are saved when the content administrator manually
saves the page.

%
Note: Existing page configurations are not upgraded to the new template until a content
administrator edits and saves the affected page or cartridge in Experience Manager.

Experience Manager does the following to ensure that the content and template are in sync:

« If a property has not changed its name or type, the existing values are migrated to the new template.

« If new properties are added to a template, any corresponding property editors become available
in Experience Manager when a content administrator edits a page or cartridge based on the updated
template. If you specify default values for the new properties, they are applied when a content
administrator edits and saves the page or cartridge using the updated template.

« If properties are removed from a template, the corresponding property editors no longer display
in Experience Manager when a content administrator edits a page or cartridge based on the updated
template. The properties and their values are deleted from the page configuration.

Endeca Content Assembler Experience Manager Developer's Guide Endeca Confidential

Supporting Experience Manager | Making templates available in Experience Manager 55

« If the type of a property has changed (for example from string to record list) within a template, the
corresponding property editor (if one is specified) becomes available in Experience Manager when
a content administrator edits a page or cartridge based on the updated template. The existing
value for the property does not display in Experience Manager and is replaced when the content
administrator saves the content.

« If a content item property has changed to specify a different cartridge type, then any existing
cartridge in that section is ejected and its configured properties deleted.

« If the default value of an existing property has changed, whether it is one of the built-in content
properties or a custom XML property, it is only applied to new pages or cartridges based on the
updated template. In existing pages, the previously saved value of the property (even if it is an
empty string) is preserved regardless of whether it was originally a default or user-specified value.
4 Note: Changing the name of a property is equivalent to removing the property with the old name

and adding a property with the new name. Avoid changing the names of properties that are being

used by existing pages. To change the display nhame of a property on Experience Manager, use
the label attribute instead.

Editor-specific behavior
Some editors impose constraints on the content that can be allowed for a particular page or cardtridge:

« If the maxRecords value for a record selector is lower than the previous value and the content
administrator had specified static records to display, any records beyond the new maximum value
are deleted.

Managing template changes

Because existing content is not automatically updated to the new templates, and both XML pass-through
and default values are never updated in existing pages, any changes that you make to your rendering
code to reflect changes to a template should be backward-compatible. You can trigger the content

upgrade process manually by accessing all relevant content, but this approach is not recommended.

For this reason, you should avoid making changes to existing templates that are being used in
production. You should limit updates to templates to the early stages of application development when
you have little or no legacy content to support.

Related Links

About updating templates on page 55
When updating templates in Experience Manager, you should be aware of how conflicts are
handled.

Updating templates in Experience Manager on page 56
Updating templates using emgr_update is a multi-step process.

About updating templates
When updating templates in Experience Manager, you should be aware of how conflicts are handled.

Experience Manager uses the most recently uploaded template. If you have an existing template in
Experience Manager and upload a template with the same file name, the new template replaces the
previously uploaded template.

However, if you upload two template files with the same ID but different file names, then two separate
templates are stored in Experience Manager but neither one displays to content administrators. For
this reason, you should avoid renaming template files after they have been uploaded to Experience

Endeca Confidential Endeca Content Assembler Experience Manager Developer's Guide

56 Supporting Experience Manager | Making templates available in Experience Manager

Manager unless you make sure to remove the old template first. In general, it is a best practice to
remove templates from Experience Manager and upload a complete set of templates whenever you
need to update templates.

Related Links

About modifying templates that are used by existing pages on page 54
During the development and testing phase of your application deployment, you may need to
make adjustments to your page or cartridge templates and update them in Experience
Manager.

Updating templates in Experience Manager on page 56
Updating templates using emgr_update is a multi-step process.

Updating templates in Experience Manager

Updating templates using emgr_update is a multi-step process.

> . . .
" Note: Before updating templates in Experience Manager, be sure you have a backup of the
current set of templates. Oracle recommends that you store page and cartridge templates in a

version control system.

When removing or updating templates, make sure that all users are logged out of Experience
Manager.

To update existing templates in Experience Manager:

Retrieve the current set of templates from Experience Manager.

Make any necessary edits to the templates on your local machine.

Remove all templates from Experience Manager.

Upload the revised templates from your local directory to the Experience Manager.

M owbdpR

Related Links

About modifying templates that are used by existing pages on page 54
During the development and testing phase of your application deployment, you may need to
make adjustments to your page or cartridge templates and update them in Experience
Manager.

About updating templates on page 55
When updating templates in Experience Manager, you should be aware of how conflicts are
handled.

Uploading templates to Experience Manager on page 53
Before Experience Manager users can access new templates, you must upload them using
the emgr_update utility.

Retrieving the current templates from Experience Manager on page 57
If you need to view or edit an existing template on a local machine, use emgr_update to copy
the templates from Experience Manager into a local directory.

Removing templates from Experience Manager on page 58
You can remove all the templates from Experience Manager using the emgr_update utility.

Endeca Content Assembler Experience Manager Developer's Guide Endeca Confidential

Supporting Experience Manager | Making templates available in Experience Manager 57

Retrieving the current templates from Experience Manager

If you need to view or edit an existing template on a local machine, use emgr_update to copy the
templates from Experience Manager into a local directory.

If you need to retrieve the current set of templates:

1. Open a command prompt or UNIX shell.
2. Run emgr_update with the ——action of get_templates and the following parameters:

Parameter Value

--host The machine name and port for the staging Endeca Workbench
environment, in the format host:port.

—-—app_name The name of the application from which you want to retrieve the
templates.

--dir The path to the local directory to which you want the templates copied.

The following is a Windows example:

emgr_update.bat --action get_templates --host localhost:8006
—-—app_name My application --dir c:\endeca-app\templates\

The following is a UNIX example:

emgr_update --action get templates --host localhost:8006
-—app_name My application --dir /apps/endeca/templates/

About removing templates

If you remove a page or cartridge template that is being used for an existing page, the properties of
the page or section are no longer editable in Experience Manager.

When a content administrator attempts to edit an existing page that uses a missing template, one of
the following occurs:

« If the missing template is the page template, then the top-level page properties cannot be edited
in the content details panel, but the content tree is still active. The content administrator can still
change or edit the cartridges in that page as long as their corresponding templates are available.

« If the missing template is a cartridge template, the properties of that cartridge cannot be edited in
the content details panel. All other cartridges, including cartridges that are nested within the missing
cartridge, can still be edited via the content tree.

In both cases, all the configured values of the missing template's properties are preserved unless the
content administrator removes or changes the template.

The content administrator has the following options:

» Leave the existing content as is. The Content Assembler continues to evaluate and process page
configurations regardless of whether the template exists in Experience Manager, and existing
pages continue to display in the front-end application as long as the appropriate rendering code
is still in place.

* Replace the missing template or cartridge with another template. This action deletes all configured
properties of the template as well as any nested cartridges.

« The existing content can be re-enabled for editing by uploading the missing template.

Endeca Confidential Endeca Content Assembler Experience Manager Developer's Guide

58 Supporting Experience Manager | Making templates available in Experience Manager

b
Note: Changing the ID of a template is equivalent to removing the template with the old ID and

creating a new template with the new ID. Avoid changing the ID of templates that are being used
for existing pages.

Related Links
Removing templates from Experience Manager on page 58

You can remove all the templates from Experience Manager using the emgr_update utility.

Removing templates from Experience Manager

You can remove all the templates from Experience Manager using the emgr_update utility.

»

Note: Before removing templates from Experience Manager, be sure you have a backup of the
current set of templates. Oracle recommends that you store page and cartridge templates in a
version control system.

When removing or updating templates, make sure that all users are logged out of Experience
Manager.

The emgr_update --action remove_templates command removes all templates from an
application, not specific templates. Removing specific templates from Experience Manager consists
of the following steps:

1. Retrieving the current set of templates from Experience Manager.

2. Deleting the templates that are no longer needed from your local copy.

3. Removing all templates from Experience Manager using the procedure below.
4. Uploading the remaining templates to Experience Manager.

To remove templates from Experience Manager:

1. Open a command prompt or UNIX shell.
2. Run emgr_update with the ——action of remove_templates and the following parameters:

Parameters Value

--host The machine name and port for the staging Endeca Workbench
environment, in the format host:port.

—-—app_name The name of the application from which you want to remove the
templates.

The following is a Windows example:

emgr_update.bat --action remove_templates --host localhost:8006
—-—app_name My application

The following is a UNIX example:

emgr_update --action remove_templates --host localhost:8006
—--app_name My application

Related Links
About removing templates on page 57

If you remove a page or cartridge template that is being used for an existing page, the
properties of the page or section are no longer editable in Experience Manager.

Endeca Content Assembler Experience Manager Developer's Guide Endeca Confidential

Supporting Experience Manager | Troubleshooting problems with uploading templates 59

Troubleshooting problems with uploading templates

Template errors are returned to the emgr_update command line call and detailed in the
webstudio. log file.

The webstudio. log file is located in:

* %ENDECA_TOOLS_CONF%\logs on Windows platforms
« $ENDECA_TOOLS_CONF/logs on UNIX platforms

Uploading templates can fail for the following reasons:

Schema validation

Schema validation failure issues an error returned to the emgr_update command line call similar to
the following:

C:\Endeca\apps\ContentAssemblerRefApp\config\page builder_templates

ERROR: The template "NavigationPage.xml" is invalid (org.xml.sax.SAXParse-
Exception: cvc-complex-type.4: Attribute "id" must appear on element "Con-
tentTemplate®.)

ERROR: Failed to set app config. Make sure you can connect to http://local-
host:8006.

Each template that fails validation appears as a separate component. The error is also written to the
webstudio. log file at the WARN level.

In the case of malformed XML, a similar error is output to both the command line and the
webstudio. log file. For a file with multiple validation errors, only the first failure is logged.

Missing <Rulelnfo> element

A template of type PageTemplate that does not have a <Rulelnfo> element passes schema
validation but is still an invalid template. When such a template is uploaded to Experience Manager,
it is unavailable to content administrators and an error message is returned to the emgr_update
command line call similar to the following:

The template "ThreeColumnNavigationPage' is missing a required <Rulelnfo>
element.

The error is also written to the webstudio. log file at the SEVERE level.

Invalid zone or style

If a template is uploaded and refers to an invalid zone or style, the template is unavailable in Experience
Manager and an error message is returned to the emgr_update command line call similar to the
following:

[ERROR 1] The template "NavigationPage'" has an invalid style (‘'PageStyle3™).

[ERROR 2] The template "NavigationPage' has an invalid zone (“Navigation-
PageZone3'™).

The error is also written to the webstudio. log file at the SEVERE level.

The zone and style attributes of the <Rule Info> element must correspond to one of the zones
and styles defined in the instance configuration of the application that you specified in the emgr_update
call. Note that you may also see this message when the name of application you specified does not
exist in the EAC.

Endeca Confidential Endeca Content Assembler Experience Manager Developer's Guide

60

Supporting Experience Manager | Troubleshooting problems with uploading templates

Duplicate template 1D

If you upload two template files with the same ID but different file names, then two separate templates
are stored in Experience Manager but neither one displays to content administrators. An error message
is returned to the emgr_update command line call similar to the following:

ERROR: 2 errors follow:

[ERROR 1] The template ""HorizontalBanner-ImageMap.xml'™ has a non-unique ID
("ImageMap™) -

[ERROR 2] The template "VerticalBanner-ImageMap.xml' has a non-unique ID
('ImageMap™™) .

ERROR: Failed to set app config. Make sure you can connect to http://local-

host:8006.

The error is also written to the webstudio. log file at the SEVERE level.

To re-enable the templates, edit the id attribute of the <ContentTemplate> element so that each
template ID is unique, remove the templates from Experience Manager, and re-upload the templates.
In general, it is a best practice to remove templates from the Experience Manager and upload a
complete set of templates whenever you need to update templates.

Invalid filename or directory path

If the template file or containing directories include a space, the emgr_update command line call issues
an error similar to the following (in this case, for a file named Copy of TestA.xml):

ERROR: 09/22/09 15:54:36.795 UTC (1253634876795) EMGR_MKPKG
{emgr_mkpkg}: Unknown file type "of" specified for filename "'C:\Ende-
ca\apps\ContentAssemblerRefApp\config\page builder_templates\Copy'". Valid
file types are: AENE_OP_CONFIG ANALYTICS_CONFIG CONTENT CRAWLER_DEFAULTS
CRAWLER_GLOBAL_CONFIG CRAWL_PROFILE CRAWL_PROFILES CRAWL_PROFILE_CON-
FIGCRAWL_PROFILE_URL_LIST DERIVED_PROPS DIMENSIONS DIMENSION_GROUPS DIMEN-
SION_REFS DIMSEARCH_CONFIG DIMSEARCH INDEX DVAL_RANKS DVAL_REFS ENEIDX_OP_CON-
FIG ENE_OP_CONFIG FORGEOUTDIMS FORGE_OP_CONFIG KEYWORD REDIRECT GROUP
KEY_PROPS LANGUAGES MERCHSTYLES MERCHZONES MERCH_RULES MERCH_RULE_GROUP
PHRASES PIPELINE PIPELINE_PARTIAL PRECEDENCE_RULES PRECOMPUTE PROFILES
PROP_REFS RECORD_FILTER RECORD_ID_PROP RECORD_SORT_CONFIG RECORD_SPEC REC-
SEARCH_CONFIG RECSEARCH_INDEXES REFINEMENT_CONFIG RELRANK_STRATEGIES REN-
DER_CONFIG ROLLUPS SEARCH_CHARS STEMMING STOP_WORDS THESAURUS VIEWS RESOURCE

To avoid this error, make sure that your file and directory names do not include spaces.

Empty directory

When uploading templates, if the specified directory does not contain any XML files, the emgr_update
command line call displays the following message:

There are no templates in the specified directory.

If you receive this message, check to make sure that you specified the correct directory.

Related Links

About template validation on page 18
Templates are validated against the Experience Manager template schemas when you upload
them to Experience Manager.

Endeca Content Assembler Experience Manager Developer's Guide Endeca Confidential

Supporting Experience Manager | Troubleshooting invalid templates 61

Troubleshooting invalid templates

Some templates may be successfully uploaded to Workbench, but still contain errors that lead to
unexpected behavior in Experience Manager.

The main scenario is when a property is associated with an editor with constraints, such as a combo
box or a navigation records editor, and the default value of the property does not meet the editor's
constraints. For example:

« Adefault value for a string property that is not specified as one of the options in a combo box editor
(unless the combo box is editable)

» Adefault sort order for navigation records that is not specified as one of the options in the navigation
records editor

A default relevance ranking strategy that is not specified as one of the options in the navigation
records editor

< A default number of records per page that is outside the specified range for the navigation records
editor

In the case of the navigation records editor, Experience Manager discards the default value and the
following messsage displays in the content details panel when a user adds the cartridge to a page:
Some fields or cartridges within this cartridge may have been

updated or removed. Your content has been converted to the new cartridge.
To accept these changes click OK and Save All Changes from the List View.
To reject these changes, click Cancel. For more information, see
"Troubleshooting pages'" in the Merchandising Workbench Help.

To avoid this message, ensure that all property defaults are also available as options in the associated
property editor.

Related Links

Adding a combo box editor on page 37
Predefining values through a combo box editor allows you more control over page content
and provides a more efficient mechanism for populating templates and cartridges in the editing
interface.

Adding a navigation records property on page 29
When you add a navigation records property, a content administrator can configure the display
of the main results of an end user's query.

Adding a navigation records editor on page 44
You add a navigation records editor to enable an interface in Experience Manager to configure
the display of record results on a landing page.

Troubleshooting invalid pages
If a page is displaying in Experience Manager as invalid, it is using a template with invalid zones or
styles.
To determine whether the template is referring an invalid style or an invalid zone:
1. Retrieve the currently loaded instance configuration using one of the following methods:

« Using the "Get Instance Configuration" feature of Developer Studio, copy the configuration files
into the project folder.
» Using the emgr_update utility, specify a destination directory.

Endeca Confidential Endeca Content Assembler Experience Manager Developer's Guide

62

Supporting Experience Manager | File hosting and security considerations

2. Inthe destination directory, locate and openthe appnane.merch_rule_group_gr oupnane.xml
file that corresponds to the invalid template's rule group.
For example, if the application name is "wineapp" and the rule group is "dynamicpages", the file
would be wineapp.-merch_rule_group_dynamicpages.xml.

3. Look for the invalid.zone or invalid.style properties:

//Invalid zone property:
<PROP NAME ="endeca.internal.landingpage.invalid.zone">
<PVAL>true</PVAL>
</PROP>

//1Invalid style property:
<PROP NAME ="endeca.internal.landingpage.invalid.style">
<PVAL>true</PVAL>
</PROP>

These properties are for debugging purposes only, and can be safely removed.

4. Locate the zone and style configuration for the rule:
For example:
<MERCH_RULE 1D="17" TITLE="Champagne Landing Page"

ZONE_NAME=""NavigationPageZone" STYLE NAME="PageStylee"
SHUFFLE_RECS="FALSE" SELF_PIVOT="TRUE">

Once you have identified the invalid zone or style, you can either restore the zone or style or edit the
rule to use a valid zone or style. You must run a baseline update for your changes to appear in the
preview application.

Related Links

Creating a zone for dynamic pages on page 16
Dynamic pages must be assigned a rule zone in order to display. You should create at least
one zone in your application for use exclusively with dynamic pages.

About using zones with dynamic pages on page 16
Zones enable the display of dynamic pages in the application. While a single zone is usually
sufficient, multiple zones can enable finer-grained control over the display of dynamic pages.

File hosting and security considerations

Experience Manager occasionally needs to access files hosted on a different server. Certain security
issues may apply.

Experience Manager makes an anonymous request to the file server to fetch resources. That is, even
though content administrators are authenticated when they log in to Experience Manager, the tool
does not use their credentials when requesting images, editors, or other files.

Experience Manager also respects the cross-domain policy file of the server hosting the external files.
To ensure that Experience Manager can load these files, place a crossdomain.xml file on the file
server. This file allows you to enable access to media on this server from a specific IP address, a
specific domain, or any domain. If this policy file does not allow access from the Experience Manager

Endeca Content Assembler Experience Manager Developer's Guide Endeca Confidential

Supporting Experience Manager | File hosting and security considerations 63

server, a security error similar to the following displays when Experience Manager attempts to load
the resource:

Error #2044: Unhandled securityError:. text=Error #2048: Security sandbox
violation: http://pagebuilder.mycompany.com/tmgr/tmgr.swf cannot load data
from http://www.example.com/images/3column.gif.

The following example of a crossdomain.xml file enables access from any domain to files hosted
on www.example.com:

<?xml version="1.0"7?>
<I-- http://www.example.com/crossdomain.xml -->
<cross-domain-policy>

<allow-access-from domain="*" />
</cross-domain-policy>

You can also restrict access to specific domains or IP addresses, for instance, for the server on which
Experience Manager is running. Wildcards are allowed in domain names but not IP addresses. The
following example shows a policy file for www.example.com that allows access from anywhere in the
example.com domain, www.customer.com, and 105.216.0.40. It includes a by-content-type
meta-policy that allows policy files with a Content-Type of exactly text/x-cross-domain-policy:

<?xml version="1.0"?>
<I-- http://www.example.com/crossdomain.xml -->
<cross-domain-policy>
<site-control permitted-cross-domain-policies="by-content-type"/>
<allow-access-from domain="*_example.com™ />
<allow-access-from domain="‘www.customer.com" />
<allow-access-from domain="105.216.0.40" />
</cross-domain-policy>
A
< _7 Important: In addition to cross-domain policy files, you must set up a meta-policy for each
server. These are configuration settings that manage what cross-domain policies are allowed
on a server. Using the default configuration without an explicit policy file is allowed by Flash
version 9, but a meta-policy is required with the use of version 10.

For more information about meta-policies and cross-domain policy files, see the Adobe Flash
documentation.

Endeca Confidential Endeca Content Assembler Experience Manager Developer's Guide

Chapter 4

Extending Experience Manager with
Community Editors

The Experience Manager Editor SDK enables application developers to introduce new functionality
into Experience Manager via community editors. This enables merchandisers to manage content in a
way that makes sense to them, and takes into account their existing business processes.

About Experience Manager editors

Experience Manager ships with a set of standard editors that address most common use cases. You
can extend the functionality of the Experience Manager interface by writing editors to support a specific
use case or business process.

Experience Manager editors are Flex components that provide a graphical interface for the content
administrator to configure properties in Experience Manager.

Editors are registered with Experience Manager through a configuration file that describes available
editor modules. These modules exist as compiled SWFs. A single module may be able to instantiate
several kinds of editors.

The editors themselves consist of Flex MXML and ActionScript that together specify editor behavior,
and drive the user interface for creating and editing content. Editors can use the Flex External In-
terface class to invoke JavaScript, which can in turn call methods implemented in other languages.

Editors use the content model provided by the API to manipulate content. When a landing page is
loaded in Experience Manager, its content is deserialized into ActionScript objects that can be
programmatically manipulated using the interfaces provided by the Experience Manager Editor API.

Standard editors are included as part of the Experience Manager product, and cannot be removed
or modified. Additional editors developed by the Endeca community (including Endeca Professional
Services, partners, or customers) using the Experience Manager Editor API are called community
editors.

%
Note: For the purposes of this section, all references to Experience Manager editors refer to
community editors, unless specifically stated otherwise.

What can editors do?

The Experience Manager Editor API enables editors to perform the following actions:

66

Extending Experience Manager with Community Editors | Scenarios for extending Experience Manager

and the Content Assembler

« They can edit one or more properties on a content item, including both standard and custom XML

property types.

* They can locate templates based on a template type and instantiate content items.
« They can access children of a content item, or anything lower in the content tree.

Editors have the following limitations:

» They cannot access trigger or other rule information, and therefore cannot modify rule properties.
« They cannot access the parent of the content item, or anything higher in the content tree.
< They cannot add or remove <Property> elements from a template.

Scenarios for extending Experience Manager and the
Content Assembler

Endeca Content Assembler

You can use either community editors on their own, community tag handlers on their own, or both of
them in combination to extend the functionality of Experience Manager.

A tag handler enables you to extend the processing logic in the Content Assembler for custom XML

property types.

Following are some common scenarios and their implications for community editors or tag handlers:

Scenario

Include application-specific
information in the template as a
pass-through XML property.

Example: Information that the
application uses to render the
cartridge, but is of no interest to
the content administrator.

Include external configuration in
the template as a pass-through
XML property.

Example: Hard-coded
configuration for a third-party
system that applies to any page
that uses this template.

Provide a new interface for
content administrators to
configure existing Experience
Manager properties.

Example: A variation of the

record selector dialog box that
enables content administrators
to browse for featured records,
instead of entering a record ID.

Use community editor?

No

If content administrators do not
need to modify the configuration
of a property on a per-page
basis, you do not need to write a
specialized editor.

No

If content administrators do not
need to modify the content of a
property on a per-page basis, you
do not need to write a specialized
editor.

Yes

This editor is bound to a standard
property. (In the example, the
editor modifies a <RecordL ist>

property.)

Experience Manager Developer's Guide

Use community tag handler?

No

The Content Assembler returns
the XML to the rendering code
for your application.

Yes

The Content Assembler uses the
information contained in the XML
to query a third-party system, and
returns the results to the
rendering code.

No

The community editor outputs
standard Endeca content XML,
which is processed by the
standard tag handler for record
lists. No additional work is
necessary.

Endeca Confidential

Extending Experience Manager with Community Editors | What is the Experience Manager Editor SDK? 67

Scenario Use community editor? Use community tag handler?

Provide an interface to configure | Yes There are two options:
functionality that is not supported
by Experience Manager
out-of-the-box.

The editor provides a specialized | No
interface for selecting data to
populate a cartridge. The
Example: An editor that enables | configuration is saved as a
content administrators to specify | custom XML property.
reviews to display for a particular

navigation state, including

number of reviews, sort order, Yes (preferred)
and additional filtering options.

The Content Assembler returns
the XML to the application's
rendering code, which can then
fetch the reviews from the CMS
where they are stored.

The Content Assembler fetches
the reviews from the CMS before
returning the content results to
the rendering code for your
application.

Similarly, you can use a tag
handler and community editor to
send customized queries to an
MDEX Engine and return results
to the rendering code.

Related Links

Working with custom XML properties on page 86
You can use the I XMLProperty interface to retrieve and manipulate custom XML properties.

What is the Experience Manager Editor SDK?

The Experience Manager Editor SDK consists of the following components:

» Experience Manager Editor APl — A programmatic interface for managing and instantiating
Experience Manager editors and accessing and manipulating the underlying content model.

« Sample Editor — A Flex Builder project and source code for a sample rich text editor module.

* Experience Manager Editor APl Reference — The generated ActionScript documentation for
the Experience Manager Editor API.

The pagebui lderEditorSDK. zip archive is included in the reference directory of the Workbench
installation. When extracted, it contains the following:

Directory Contents
asdoc This directory contains the Experience Manager Editor API Reference
documentation.

sample-editor-config | The sample_editors.xml editor configuration file is included here for
reference.

Endeca Confidential Endeca Content Assembler Experience Manager Developer's Guide

68 Extending Experience Manager with Community Editors | About the Experience Manager Editor API

Directory Contents

sample—editor-project | This directory includes a sample Flex Builder project that you can import into
your workspace in order to view, modify, and build the sample rich text editor
module.

sample-page-templates | The Sidebar ltem-RichText.xml file is provided as an example of a
cartridge that uses the rich text editor.

schema The included editor-config.xsd file defines the schema for editor
configuration files. You can use this file to validate your own editor
configuration files.

About the Experience Manager Editor API

There are three main parts to the Experience Manager Editor API: the first includes interfaces for
editors and modules, and allows you to manage and instantiate editors. The second is a set of interfaces
to the content model. The third is the Experience Manager eventing model, which allows you to dispatch
different types of events on the content model.

About Experience Manager editor representation in the API
The images below show the Experience Manager editor interface and its basic implementation.

The following image shows how the Experience Manager Editor API represents editors. The interface
is shown in the top box, with the basic implementation provided in Experience
ManagerEditorAPI . swc shown below:

Endeca Content Assembler Experience Manager Developer's Guide Endeca Confidential

Extending Experience Manager with Community Editors | About the Experience Manager Editor API 69

ainterfaces

|Editor

winterfacer +giat factoryy,

. creates ge i)

|IEditorFactory +get factoryy)
+canCroateEditor) +gat infoyf)
+oreateEditor) +set infof)

+gal cortantlitem|)

+sel conterntliamy)
VAN
Editor
- factory
EditorFactory - inifo
<I A +ragisteradEditors -_contentltem isA
+eanCreateEditon) H+aat facton) —D
+ereateEditor() +aet factor‘_\.f[)
HmatchesMame() :g:: ::Ig-[[:
| +qet contentiiem)
+zet contentltenn{)

o cregles
EditorEntry

Ui has#

tlocalName Ko————————————

Heditor | |

This basic implementation is included with Experience Manager, and is designed to support most
COMmMmon uses cases.

If you write your own implementation of these interfaces, note that Edi torModule must be a Module
or a subclass of Module. If you encounter a runtime error where an editor in the Content Details
Panel is stuck in the "loading" state, check that the Edi torModule has been implemented as a
Modul e rather than an Application.

Related Links

About developing editors on page 76
This section includes information on writing editors in Flex and MXML, as well as editors that
use Flex to communicate with JavaScript.

The Experience Manager Editor APl content model
The diagram below shows the Experience Manager Editor APl content model.

Experience Manager reads and outputs XML representing a landing page. This XML content document
gets deserialized into ActionScript objects, which you can access via a set of interfaces that are
provided by the Experience Manager Editor API. These interfaces provide structured programmatic
access to an object-based representation of the content document that is the landing page. The
IContentModelFactory interface allows editors to create any required objects, such as properties
and content items. The individual object interfaces provide methods for manipulating them.

Endeca Confidential Endeca Content Assembler Experience Manager Developer's Guide

70 Extending Experience Manager with Community Editors | About the Experience Manager Editor API

«interfaces
IProperty
+get nama)
ainierfacan 0.* AN
IStringProperty

+get ating()
+ast strigy)

cinterfaces
|IBooleanProperty
+gat boolean()
+saf boolean()

ainterfaces
IXMLProperty

+ged xmif)

1 +sel xmif)

einterfaces

IContentModelFactory
+getAppiicable Templates() - "
+createContantifemy) creates | winterfaces
+ereateContentiiemList) IContentitem
+eraateMavigationRecords()
+ereateavigationRafinemeants))
+oraateNavOuery] o+
+oreateRecord Query()

1 1 sinterfaces
IContentitemProperty
+gat contenti Tamy)
+set contentltem|)

winterfaces 1 1 sinterfaces
IContentitemList ContentltemListProperty
+get contantitemList()
+set contentitemList()

credles

ainterfaces
INavigationRefinementsProperty
+gat navigationRafinemants()
+sel navigationRefinements()

winterfaces 1 1
INavigationRefinements

winterfaces
INavigationRecordsProperty
+get navigationRecords()
+set navigationRecords{)

winterfacen 1 1
INavigationRecords

ainterfaces
IRecordQuary

- 1 9 «interfaces
{> MII-IIE.'T::rT” IRecordListProperty
cinterfaces +gat quary)
INavQuery +gaf guery()

The above image is meant to illustrate the structure and relationships of objects in the content model;
it is not a comprehensive reference for the Experience Manager Editor API. Note the recursive nature
of the content document, as defined by the relationship between content items and properties.

The content model includes interfaces for manipulating all standard Experience Manager property
types. In addition, the 1XMLProperty enables editors to output custom XML properties.

For complete information regarding the Experience Manager Editor API, please refer to the Experience
Manager Editor API Reference.

Related Links

Working with the content model on page 83
To modify any content model object, you must retrieve it from the content item after your
editor has been instantiated.

Working with custom XML properties on page 86

Endeca Content Assembler Experience Manager Developer's Guide Endeca Confidential

Extending Experience Manager with Community Editors | About the Experience Manager Editor API 71

You can use the IXMLProperty interface to retrieve and manipulate custom XML properties.

About eventing in Experience Manager

Experience Manager uses a standard Flex eventing model that includes the events below:

const String Usage

ContentModelEvent.CHANGE | contentModelChange |Experience Manager dispatches con-
tentModelChange events in
response to changes to the content
model.

You can use event listeners or bind
your editor properties to content model
objects if you want them to update
automatically in response to changes
to the content model.

ContentModelEvent.UPGRADE | contentUpgrade If a template has been changed such
that it is no longer compatible with the
content that uses that template, an
editor can dispatch this event to display
a warning that the content may have
changed.

EditorEvent.READY editorReady Experience Manager dispatches this
event after it has instantiated an editor
and set the info, factory, and
contentltem properties on it.

Editors should be set to listen for this
event in order to retrieve and validate
whatever properties they manipulate
on the content item.

EditorEvent.ERROR editorError An editor can dispatch a Edi—
torEvent.ERROR event to display an
error message in place of the editor
interface.

Compile-time and runtime dependencies

The main Experience Manager SWF and Experience Manager editor modules rely on the same Editor
API, but have different compile time and runtime dependencies.

Endeca Confidential Endeca Content Assembler Experience Manager Developer's Guide

72 Extending Experience Manager with Community Editors | About setting up the sample editor

1

asubsystem:s
Page Builder Editor API

Page Builder Community Editor Module

The following dependencies exist among the Experience Manager components that are used to
implement editors:

« Experience Manager relies on the Experience Manager Editor API library, Experience
ManagerEditorAPIl .swc, as a compile-time resource. It is compiled into the Experience Manager
SWEF in its entirety.

» During development, Experience Manager editor modules require Experience
ManagerEditorAPI _swc as a compile-time resource.

« When you build editor modules for use in Experience Manager, you should configure Experience
ManagerEditorAPI .swc as a dynamically linked library, rather than compiling it into the SWF.
You can do this by setting the link type to External in Flex Builder. Your editors will use the SWC
compiled into Experience Manager at runtime.

About setting up the sample editor

The Workbench installation includes a sample editor project and associated template and configuration
files. This section assumes that you have one or more applications deployed in Workbench that you
can use to test the sample editor.

The sample rich text editor is a simple, all-Flex editor that should be bound to a property that contains
a string. Before setting up the sample editor, you must set up your development environment so that
you can generate the sample editor module from the provided source code.

4 Note: The rich text editor uses the Flex RichTextEditor control and outputs a string property
that contains escaped Flex HTML text. This is a subset of HTML that is supported by Flash
player and AIR, with the addition of a <textformat> tag, which is not standard HTML. The
Content Assembler reference application does not include rendering code that is intended to
handle strings in Flex HTML text format. To see the markup generated by the rich text editor,
click the XML View tab and scroll to the rich_text property within the content tree. For more
information about Flex HTML text, refer to the Adobe documentation.

After you have written and compiled your editor module, making the sample editor available to

Experience Manager requires the following steps:

» Make the editor available via a URL.
< Add an entry for the editor to the editor configuration file.
» Configure Workbench to specify the location of the editor configuration file.

Using the editor requires the following steps:

Endeca Content Assembler Experience Manager Developer's Guide Endeca Confidential

Extending Experience Manager with Community Editors | About setting up the sample editor 73

 Create or modify a template to use the editor.
» Upload the template to Experience Manager using the emgr_update utility.
 In Experience Manager, create a cartridge using the above-mentioned template.

About Flex

Experience Manager editor modules should be written and compiled in Adobe Flex 3.2. Other versions
are unsupported and may cause editors to fail at runtime.

Flex is an open source development framework created and maintained by Adobe. It supports common
design patterns and is based on MXML and ActionScript 3.

This section assumes that you are comfortable working with Flex. If not, you may find the following
resources helpful:

* http://www.adobe.com/products/flex/overview — The Adobe Flex website provides an overview
of the Flex development framework and includes download links to the Flex SDK.

* http://www.adobe.com/support/documentation/en/flex — The Adobe Flex resources page contains
links to Flex documentation, including the Adobe Flex Language Reference and Flex 3 Developer
Guide.

« http://opensource.adobe.com/wiki/display/flexsdk/Coding+Conventions — The Adobe Open Source
wiki page on Flex SDK best practices and coding conventions provides a set of standards for
coding in Flex.

Setting up your development environment using the sample project

The Workbench installation includes a sample Flex project that you can use as a starting point for
development. Once you have installed Adobe Flex Builder 3, you can import the project from the
reference directory of your Workbench installation.

The sample project demonstrates the use of the EditorModule class, and is configured to use the
Experience ManagerEditorAPIl _swc as an external library.

Before starting development on your external editors, you should have an application provisioned in
Workbench that you can use to test the sample editor. You can use the Content Assembler reference
application for this purpose; see "Working with the Sample Application" in the Oracle Endeca Experience
Manager Getting Started Guide for details.

To set up your development environment using the sample project:

1. Install Adobe Flex Builder 3 either as a standalone IDE or an Eclipse Plug-in.

Ensure that you are developing against the latest stable build of Adobe Flex SDK 3.2. As of this
writing, the recommended build is available from the following link:
http://opensource.adobe.com/wiki/display/flexsdk/download?build=3.2.0.3794&pkgtype=1

2. Navigate to the reference subfolder of your Workbench installation and select the
pagebui lderEditorSDK.zip archive.
If you installed Workbench to the default location, this will be under
%ENDECA_TOOLS_ROOT%\reference on Windows, or $ENDECA_TOOLS_ROOT\reference on
UNIX.

3. Extract the archive to a location of your choice.

4. Open Flex Builder and select File > Import > Flex Project....

5. Make sure the Project folder radio button is selected, and click Browse.

Endeca Confidential Endeca Content Assembler Experience Manager Developer's Guide

http://www.adobe.com/products/flex/overview/
http://www.adobe.com/support/documentation/en/flex/
http://opensource.adobe.com/wiki/display/flexsdk/Coding+Conventions
http://opensource.adobe.com/wiki/display/flexsdk/download?build=3.2.0.3794&pkgtype=1

74 Extending Experience Manager with Community Editors | About setting up the sample editor

6.

7.
8.

Navigate to the location where you extracted the archive in Step 3 and select the
sample-editor-project directory.

Click Finish.

Confirm that the Experience ManagerEditorAPI .swc is configured as a dynamically linked

library.

a) In Flex Builder, right-click the sample-editors project and select Properties from the drop-down
menu.

b) Select Flex Build Path from the tree control in the left panel.

¢) Select the Library path tab from the Flex Build Path panel on the right.

d) Expand the libs folder in the Build path libraries view.

e) Ensure that the Link Type is set to External.

Click Finish.
Flex Builder creates the new project.

Hosting the sample editor module

After you have built the editor module, you must host the module on a server that can be accessed
by Experience Manager.

For simplicity, this procedure describes hosting the sample editor module in the Endeca Tools Service,
which allows you to bypass some security configuration. This is sufficient for working with the sample
project in a development environment.

b
Note: In a production environment, hosting editors in the Workbench container is unsupported,
and causes them to compete with Workbench for resources.

To add your sample editor application to the Endeca Tools Service:

1.

Navigate to %YENDECA_TOOLS_ ROOT%\server\webapps on Windows, or
$ENDECA TOOLS_ROOT/server/webapps on UNIX.

Create a new directory, sample_editor_app.
Open the sample project in Flex Builder 3.

a) Select the sample_editor_app directory you created in Step 2 as the output location.
b) Build the sample editor SWF.

. Navigate to %ENDECA TOOLS_CONF%\conf\Standalone\localhost on Windows, or

$ENDECA TOOLS_CONF/conf/Standalone/localhost on UNIX.

Create a new context file inside the directory, sample_editor_app.xml, and include the following
(Note that the docBase path given is for a default Windows installation):

<I-- Context file for the sample editor application -->
<Context
path=""/sample_editor_app"
docBase=""C:\Endeca\Workbench\2.1.0\server/webapps/sample_editor_app"
debug=""0"
privileged="false">
</Context>

6. Save and close the file.

After you create the context configuration file and add the editor module to your sample_editor_app
directory, you need to modify the sample editor configuration file.

Endeca Content Assembler Experience Manager Developer's Guide Endeca Confidential

Extending Experience Manager with Community Editors | About setting up the sample editor 75

Modifying the sample editor configuration file

You must update the editor configuration file to specify the location of the sample editor module.

To specify the current location of the editor module:

1.

Navigate to %YENDECA_TOOLS_ROOT%\reference on Windows, or
$ENDECA_TOOLS_ROOT/reference on UNIX.

Extract the sample editor configuration file, sample_editors.xml, from the
pagebui lderEditorSDK.zip archive.

The sample editor configuration file is located in the

pagebui lder-editor-sdk\sample-editor-config directory.

Open the file.

Locate the line that specifies the url of the editor module, as in the example below:

<EditorModule url="http://example.com:8080/test-editors.swf"
crossDomainUri="http://example.com:8080/crossdomain.xml">

Modify the url attribute to point to the new location of the editor module, for example:

<EditorModule url="http://localhost:8006/sample_editor_app/sample_edi-
tors.swf'>

Save the modified editor configuration file inside the
%ENDECA_TOOLS_ROOT%\server\webapps\sample_editor_app directory on Windows, or
$ENDECA_TOOLS_ROOT/server/webapps/sample_editor_app directory on UNIX.

After updating the editor configuration file, you must specify its location in webstudio.properties.

Modifying webstudio.properties to enable the sample editor

In order for Experience Manager to use the sample editor configuration file, you must specify the
location of the file in webstudio.properties.

To specify the location of the editor configuration file:

1.

Stop the Endeca Tools Service.

2. Navigate to %¥ENDECA_TOOLS_CONF%\conf (on Windows) or $ENDECA_TOOLS_CONF/conf/

(on UNIX).
Open the webstudio.properties file.
Find the line that specifies the location of the editor configuration file, for example:

The URL from which to load editor configuration for Experience Manager
#com.endeca.webstudio.pagebuilder.editors.config=http://my.compa-
ny .com/2009/myeditors.xml

Uncomment and change it to point to the absolute URL of your editor configuration file,
sample_editors.xml:

The URL from which to load editor configuration for Experience Manager
com.endeca.webstudio.pagebuilder.editors.config=http://localhost:8006/sam—
ple_editor_app/sample_editors.xml

Save and close the file.

. Start the Endeca Tools Service.

Endeca Confidential Endeca Content Assembler Experience Manager Developer's Guide

76 Extending Experience Manager with Community Editors | About developing editors

Incorporating the sample cartridge

The Workbench installation includes a sample cartridge that uses the sample editor. You can add it
to your application's template directory and use the emgr_update utility to upload it to Experience
Manager.

To add the sample cartridge to your Web application:

1.

Navigate to %YENDECA_TOOLS_ROOT%\reference on Windows, or
$ENDECA_TOOLS_ROOT/reference on UNIX.

Navigate to the location where you extracted the pagebui lderEditorSDK.zip archive.

Copy the sample cartridge, Sidebarltem-RichText.xml, from the
pagebui lder-editor-sdk\sample-page-templates directory to the template directory of
your application.

Run the emgr_update utility to upload the templates to Experience Manager.

The example below is for the Content Assembler Reference Application installed with defaults in
Windows:

emgr_update.bat --action set_templates --host localhost:8006
-—app_name ContentAssemblerRefApp --dir C:\Endeca\apps\ContentAssembler-
RefApp\config\page builder_templates

Log in to Workbench.
Create or modify a landing page to use the RichTextEditor Sidebar Item.

> . C . .
77 Note: If you encounter a security sandbox violation error when Experience Manager tries to

load your editor, confirm that your security certificates are set up correctly and that your browser
accepts the validity of your certificates.

About developing editors

This section includes information on writing editors in Flex and MXML, as well as editors that use Flex
to communicate with JavaScript.

The editor creation workflow

This section provides an overview of the steps required to create and use an editor.

The steps involved in creating and installing an editor are as follows:

1.

Create or open a Flex Builder project.

The Workbench installation includes a sample project that you can use for editor development
against the Experience Manager SDK.

. Create a new Flex component or modify an existing editor.

This component should implement the 1Edi tor interface.
In the MXML that represents your EditorModule, add an entry for your editor similar to the
following:

<editor:EditorEntry
uri="http://endeca.com/sample/2010"

Endeca Content Assembler Experience Manager Developer's Guide Endeca Confidential

Extending Experience Manager with Community Editors | About developing editors 77

localName=""MyEditor"
editor=""com.endeca.tools.pagebuilder._.samples.editors_MyEditor"™ />

4. Configure Experience ManagerEditorAPI .swc as a dynamically linked library by setting the
link type to External in Flex Builder.

5. Build the Flex project to generate the editor module.

6. Upload your editor module to a chosen host.

> :
7 Note: If you are hosting your editor module on a different security domain from the editor
configuration file, you must also create a cross-domain policy file for the editor module.

7. Specify the location of the editor module (and its cross-domain policy file, if you created one) in
your editor configuration file.

8. Editthe webstudio.properties file, located in WENDECA_TOOLS_CONF%\conT (on Windows)
or $ENDECA_TOOLS_CONF/conT (on UNIX) to specify the following:

« The location of the editor configuration file
« The cross-domain policy file for the editor configuration file

Unless you change the location of the editor configuration file or its associated crossdomain.xml
file, this step only needs to be taken once.

9. Add the editor to a Experience Manager template, either by creating a new template, or modifying
an existing one.

Note that the element name and namespace together form the QName that you specified for the
editor in the editor configuration file.

10. Use the emgr_update utility to upload your new or updated templates to Experience Manager.
11 Test the editor by logging into Experience Managetr.

If the editor is valid and configured properly in Experience Manager, it displays in the Content
Detail Panel when the appropriate cartridge is selected.

Note the following:

« If you make changes to webstudio.properties, you must restart the Endeca Tools Service.
« If you update the editor configuration file, you need to reload the main Experience Manager SWF.
« If you update the editor module, you need to reload the main Experience Manager SWF.

» Changes to the editor SWF may not be loaded if your browser is using a cached version of the
SWEF. Check your browser settings for options related to checking for new versions of cached
content, or clear your cache manually to resolve the issue.

Related Links
File hosting and security considerations on page 62
Experience Manager occasionally needs to access files hosted on a different server. Certain
security issues may apply.

Uploading templates to Experience Manager on page 53
Before Experience Manager users can access new templates, you must upload them using
the emgr_update utility.

About modifying templates that are used by existing pages on page 54
During the development and testing phase of your application deployment, you may need to
make adjustments to your page or cartridge templates and update them in Experience
Manager.

Specifying editors for Experience Manager on page 92

Endeca Confidential Endeca Content Assembler Experience Manager Developer's Guide

78 Extending Experience Manager with Community Editors | About developing editors

The editor configuration file lists the editors available to Experience Manager.

Enabling the editor configuration file on page 94
In order for Experience Manager to use the editor configuration file, you must set up a
crossdomain.xml file and specify the locations of both the cross-domain policy file and
the editor configuration file in webstudio.properties.

Using editors in templates on page 95
Adding editors to a template is similar to adding standard editors, except that you must specify
a non-Endeca namespace for your editor name.

About the Experience Manager editor life cycle

This section provides an overview of the processes within Experience Manager that govern the
instantiation and life cycle of editors

1. Atstartup, Experience Manager populates an internal editor registry based on the editor configuration
file specified in webstudio.properties:
The URL from which to load editor configuration for Experience Manager

com.endeca.webstudio.pagebuilder_editors.config=http://my.compa-
ny.com/2009/myeditors.xml

2. When the content administrator navigates to the Edit View and selects a content item in the Content
Tree, Experience Manager loads editors according to the information in the <EditorPanel>
element of the template XML.:
<EditorPanel>

<BasicContentltemEditor>
<GroupLabel label="Page metadata'/>
<CheckBox propertyName="autogen_meta" label="Auto-generate meta in-
formation" />

<MyEditor xmlns="http://my.company.com/2009" propertyName="meta_ de-
scription”™ label="Meta description” enabled="true" height="72"/>
</BasicContentltemEditor>
</EditorPanel>

3. When Experience Manager encounters an editor in the <EditorPanel> element, it concatenates
the namespace and name to form a qualified name:

<MyEditor xmlns="http://my.company.com/2009"... />

4. Experience Manager then refers to the editor registry in memory, and searches for the first match
to the qualified name in order to identify the correct editor module:

<EditorModule url="http://localhost/foo/bar/myeditors.swf">
<editor name="http://my.company.com/2009:MyEditor"/>
</EditorModule>

5. Experience Manager reads the url attribute of the <EditorModule> element to locate the
community editor module:

<EditorModule url="http://localhost/foo/bar/myeditors.swf"">
<editor name="http://my.company.com/2009:MyEditor"/>
</EditorModule>

6. Experience Manager loads the editor module.

Note: Once an editor module has been loaded, Experience Manager does not unload or
reload it unless you reload the Experience Manager SWF. Browser caching settings may

Endeca Content Assembler Experience Manager Developer's Guide Endeca Confidential

Extending Experience Manager with Community Editors | About developing editors 79

interfere with this behavior. For more information, please see the "Troubleshooting an editor”
section.

7. Experience Manager uses the newly created editor module to instantiate the appropriate editor
object.

8. After instantiating the editor, Experience Manager sets the info, factory, and contentltem
properties on it.

%
Note: Experience Manager always passes an editor the entire Contentltem, so that the
editor can modify multiple properties if desired.

9. Once all three properties have been set, Experience Manager dispatches an edi torReady event.
Typically, editors listen for this event to retrieve and validate specific properties from the content
item.

10. Experience Manager adds the rendered editor to the Content Detail Panel on the right side of the
Content Editor Pane.

11. The content administrator uses the editor interface to make any desired changes. Saved changes
are serialized into the content XML that represents the landing page.

12. All editor objects are destroyed when the content administrator selects another content item in the
content tree or navigates away from the Edit View.

Related Links

Ensuring Experience Manager loads the current editor modules on page 98
After you update a hosted editor module, Web browsers may continue to load cached versions
of the old editor module.

Experience Manager editor life cycle diagram

Below is a sequence diagram that depicts the Experience Manager editor life cycle.

Endeca Confidential Endeca Content Assembler Experience Manager Developer's Guide

80 Extending Experience Manager with Community Editors | About developing editors

E
E
E
E

creates

g
o
o
2
g
8
=
L=}

editor instantiations

requests aditor

examines editor config

module load request

e e e Y ——

EditorEvent READY

e e e Bt

>
EditerEvent READY

1 EwventHandler

load complated
L e T -
| requests an Instance |
L »
1 | creatas
] [
| [
| e —————————=
| [
L T -
| [
| [
| [
| [
1 factory= [
L [
| [
e — = A — - -
1 | 1
1 | 1
1 info=... [I
L [o
1 | 1
e — = i =
1 | 1
———————————] []
] contentltern=: [I
L [o
1 | 1
————————————————————————————————— e LT |
[
[
[
[
[
[
[
[
|

|
D adds editor to the view
|

About editor instantiation

Generally, you should set your editor to listen for the EditorEvent.READY event that Experience
Manager dispatches when an editor is instantiated.

The EditorEvent.READY event signals that an editor can access its configuration to retrieve and
validate whatever properties it manipulates on the content item. This event is only dispatched after
Experience Manager has set the following properties on a newly instantiated editor:

factory The factory object of type 1ContentModelFactory, which the editor can use

to create content model objects.

Endeca Content Assembler Experience Manager Developer's Guide Endeca Confidential

Extending Experience Manager with Community Editors | About developing editors 81

info An object of type IEnvironmentlnfo that includes environmental and
configuration information, which Experience Manager uses to determine how to
render the editor.

contentltem

The 1Contentltem object that contains the property or properties that the editor
modifies. The getPropertyByName method on the Contentltem object can
be used to retrieve a property by name.

The sample rich text editor uses the editorReadyHandler () method below, which retrieves the
property name that the editor is linked to, and sets up a listener for ContentMode lEvent . CHANGE
events to monitor the property for changes:

private function editorReadyHandler(event:EditorEvent):void

if (contentltem I= null && info.templateConfig != null)

{
var prop:IProperty = contentltem.getPropertyByName(info.templateCon-
fig.-@propertyName) ;
property.addEventListener(*'contentModelChange™, contentModelChangeHan-

dler(Q));
b
b

About configuring editors

You can specify editor configuration information in one of three places.

When configuring your editors, you should consider the impact of specifying configuration information
in one of the three available locations:

» Hardcoded — specifying configuration in the editor source ensures consistent behavior across
all instances of that editor.

« Editor Configuration File — specifying configuration in the editor configuration file results in
consistent behavior for a given Workbench installation. This is useful for information that may vary
across installations, such as URL and user credentials for a third-party service.

« Landing Page Template — adding configuration information to the template ensures consistency
for that template only.

Experience Manager sets global, editor-specific, and template-specific configuration information as
properties of an IEnvironmentlInfo object when an editor is instantiated.

Related Links

Adding editor configuration information to the editor configuration file on page 93
You can specify arbitrary configuration information in the editor configuration file. This can
be done on a global or per-editor basis.

Using editors in templates on page 95
Adding editors to a template is similar to adding standard editors, except that you must specify
a non-Endeca namespace for your editor name.

About retrieving editor configuration information

The info property provides information regarding the environment in which an editor is created. This
includes global, template-specific, and editor-specific configuration.

Endeca Confidential Endeca Content Assembler Experience Manager Developer's Guide

82 Extending Experience Manager with Community Editors | About developing editors

Each of the three configuration types is returned as an XML object:

Object

globalEditorCon-
fig

editorConfig

templateConfig

For example:
/*

Usage

This includes configuration specified in the editor configuration file on a global
level, either as attributes or nested elements of the <GlobalEditorConfig>
tag:
<EditorConfig xmlns="___">

<GlobalEditorConfig username="u" password="p">

<ExampleCustomGlobalConfigXML />
</GlobalEditorConfig>

<Editor ...>
</Editor>
</EditorConfig>

This includes configuration specified in the editor configuration file on a
per-editor basis:

<Editor name="http://my.company.com/2009/editors:MyEdi-
tor'>
<EditorConfig>
<Arbitrary foo="bar" size="10" resizeable="false"/>
</EditorConfig>
</Editor>

This includes configuration that is specified in a landing page template as
attributes of the editor tag:

<MyEditor xmlns="_.." propertyName="meta description"
label="Meta description™ enabled=""true" height="72"/>

* The property name is stored in the propertyName attribute of the

% % % X ok

*/

templateConfig (in this case, the RichTextEditor element in the
page template).
templateConfig looks like this:

In the sample template the RichTextEditor

<RichTextEditor propertyName="rich_text"
xmlns=""http://endeca.com/sample/2010" />

var prop:lProperty = contentltem.getPropertyByName(info.templateCon-
Fig-@propertyName) ;

For more details about the 1Environmentlnfo interface, refer to the Experience Manager Editor

API Reference.

Related Links

About configuring editors on page 81
You can specify editor configuration information in one of three places.

Endeca Content Assembler Experience Manager Developer's Guide Endeca Confidential

Extending Experience Manager with Community Editors | About developing editors 83

About retrieving the Experience Manager MDEX host name and port

The info property includes the Experience Manager MDEX host name and port as part of the
environment information it provides to an editor.

Experience Manager refers to the MDEX properties specified in the Endeca Application Controller for
MDEX hostname and port information. You can access these properties on the 1Environmentinfo
object, as with the example below:

var hostname:String = info.webstudioMDEXHostnhame;
var port:uint = info.webstudioMDEXPort;

queryMDEX(hostname, port, query);

For more information on specifying which MDEX Engine to use with Workbench, see the Oracle Endeca
Workbench Administrator's Guide.

About binding an editor to multiple properties

You can bind an editor to multiple properties by specifying multiple property attributes in the <editor>
element of a landing page or cartridge template.

For example, a landing page template can include an editor element with multiple properties specified
as attributes, as in the example below:

<MyEditor xmlns="___" propOne="foo" propTwo="bar"/>

After your editor is instantiated, you can retrieve the names of these properties from the template-
ConTig property of the IEnvironmentInfo object. With these names, you can access the property
objects by calling the Contentltem.getpropertyByName() method

var propOne:IProperty = contentltem.getPropertyByName(info.templateCon-
fig-@propOne);

var propTwo:IProperty = contentltem.getPropertyByName(info.templateCon-
fig-@propTwo);

& . . .
77 Note: If you need to be notified of any changes to either property, you can listen for content
model events on the content item that has these two properties.

Working with the content model

To modify any content model object, you must retrieve it from the content item after your editor has
been instantiated.

Experience Manager instantiates an 1Contentltem object based on the <Contentltem> definition
in the template and sets it as the contentl tem property on the editor. Editors cannot add or remove
properties from the content item.

The code below assumes that the name of the property containing the object is specified in the
propertyName attribute of the editor configuration in the template. The value of the propertyName
attribute from the template configuration is retrieved from the info property, assigned to a variable,
and passed into the content item getPropertyByName() method.

// Retrieve the name of the property to be used by this

// editor from the template XML.
var propertyName:String = info.templateConfig.@propertyName;

// Now, retrieve the property itself from our content item.

Endeca Confidential Endeca Content Assembler Experience Manager Developer's Guide

84

Extending Experience Manager with Community Editors | About developing editors

var prop:lProperty = contentltem.getPropertyByName(propertyName);

// 1T the property is null or the wrong type, then the template has
// been misconfigured and there is nothing we can do here except
// dispatch an error event.

it (prop == null || '(prop is INavigationRecordsProperty))

dispatchEvent(EditorEvent.createErrorEvent(*'Invalid property'™));
return;

}

// Otherwise, we can retrieve and use the value of the property.
var property:INavigationRecordsProperty = INavigationRecordsProperty(prop);

displayToUser(property.navigationRecords);

// We can also replace it with a new value which we create using
// the content model factory...
if (property.navigationRecords == null)

property.navigationRecords = factory.createNavigationRecords();

}

// ...and modify it.
property.navigationRecords.recordsPerPage = 15;

For more information, see "About the content model interfaces" in the Experience Manager Editor API
Reference.

Related Links

About retrieving editor configuration information on page 81
The info property provides information regarding the environment in which an editor is
created. This includes global, template-specific, and editor-specific configuration.

About handling error conditions on page 88
An editor dispatches an EditorEvent.ERROR event ito display an error message in place
of the editor.

Working with IRecordListProperties

Unlike other objects in the content model, the IRecordListProperty object does not simply contain
a RecordList property. Instead, it has a query property that can be of type INavQuery or
IRecordQuery.

A community editor can create both record queries and navigation queries for a record list property:

« A navigation query populates the record list property by returning all records that match a selected
navigation state (dynamic records).

< Arecord query populates the record list property by taking a specific list of record IDs (featured
records).

Each query type contains query parameters that the Content Assembler can use to populate the record
list before returning the results to your application.

In order to specify queries, you must first retrieve the IRecordListProperty from the content item
after your editor has been instantiated. The code below assumes that the name of the property is
specified in the propertyName attribute of the editor configuration in the template:

// Get the property associated with this editor in the template XML
var prop:IProperty = contentltem.getPropertyByName(info.templateConfig.@prop—

Endeca Content Assembler Experience Manager Developer's Guide Endeca Confidential

Extending Experience Manager with Community Editors | About developing editors 85

ertyName) ;
var property:IRecordListProperty = IRecordListProperty(prop);

Below is an example of how you can add a navigation query to a record list property:

//Create a new navigation query for this property

var navQuery: INavQuery = factory.createNavQuery();
navQuery.dimensionValues.addltem(factory.createDimensionValue(*'5564',"12'""));
navQuery.maxRecords = 12;

navQuery.sort = factory.createRecordSort("'Price", true);

property.query = navQuery;

The following example shows how you can add a record query to a record list property:

//Create a new record query for this property

var recordQuery: IRecordQuery = factory.createRecordQuery();
recordQuery._recordlds.addltem(*'16342™);
recordQuery.recordlds.addltem(*'28314™);

property2.query = recordQuery;

For additional information about record list properties and the query objects, see the Experience
Manager Editor API Reference.

About handling changes to the content model

Experience Manager dispatches a ContentMode lEvent.CHANGE when an object in the content
model is changed in any way.

Listening for content model change events

Note that a ContentMode lEvent.CHANGE event dispatched within the content model hierarchy
bubbles up, triggering any listeners on objects higher up in the hierarchy.

This event includes the following information:

« The source of the change within the content model
« The property on an object that was changed, including the oldValue and newValue

« The kind of change; possible values are UPDATE, ADD, MOVE, REMOVE, REPLACE, REFRESH,
RESET, and null

For more details about the ContentMode lEvent class, refer to the Experience Manager Editor API
Reference.

You can rely on standard Flex bindings to update property values with any changes. The example
below shows a standard checkbox component whose selected property is bound to the boolean
property of a BooleanProperty object:

<mx:CheckBox id="propertyValueCheckBox"

change=""booleanProperty.boolean = propertyValueCheckBox.selected;"
selected="{booleanProperty._.boolean}" />

The selected property binding ensures that whenever a ContentModelEvent .CHANGE event is
dispatched by mBooleanProperty, the check box selected value is updated to reflect the new
value.

4 Note: All content model objects that represent collections of objects (such as Record-
Query.recordlds) implement the mx.col lections. IList interface. You can bind these
objects in the same fashion as any other built-in Flex construct that implements an IList
interface.

Endeca Confidential Endeca Content Assembler Experience Manager Developer's Guide

86

Extending Experience Manager with Community Editors | About developing editors

If you want to call a method in response to content model changes, you can use an event listener to
monitor a property for changes. For example, if you have an editor that displays an image preview,
you can add a listener on the property or properties that represent the image URL so that you can
update the preview to reflect any changes.

Dispatching content model change events

Experience Manager dispatches events for changes to all objects in the content model. This includes
objects of type 1XMLProperty when the xml property is set directly. However, changes to the
underlying XML object itself do not trigger an event. If you modify the object in this manner, you must
dispatch a ContentMode lEvent . CHANGE event as part of your code:
/*
* Setting the "xml" property of an IXMLProperty object automatically
* dispatches an event with type ContentModelEvent.CHANGE.
*/

xmlProperty.xml = foo;

/*
* Making changes to the object which is referred to by the "xml"™ property
* does not dispatch a ContentModelEvent.CHANGE event. You must dispatch
* the event manually.
*/
xmIProperty.xml_bar[0] = <baz/>;
xmIProperty.dispatchEvent(new ContentModelEvent(
ContentModelEvent_.CHANGE, null, null, null, null, null, xmlProperty.xml));

Working with custom XML properties

You can use the I1XMLProperty interface to retrieve and manipulate custom XML properties.

Adding custom XML to your templates enables you to work outside of the standard content object
model. For example, you can:

 Create properties similar to standard Endeca properties, such as a MyRecordList property with
a roll-up key for aggregate records.

« Pass in any other information your application requires, such as configuration for a third-party
application.

To add custom XML to an editor:

1. Create a <Property> tag inside the <Contentltem> in your template.
2. Add custom XML to the <Property> element as nested attributes:

<Contentltem>
<Property name="custom'>
<Milkshake xmlIns="http://mycompany.com/schema/2010/data"
flavor="vanilla"/>
</Property>
</Contentltem>

Explicitly define a namespace for your custom XML that is not one of the following Endeca
namespaces:

* http://endeca.com/schema/content/2008
* http://fendeca.com/schema/content-template/2008
« http://lendeca.com/schema/content-tags/2008

Endeca Content Assembler Experience Manager Developer's Guide Endeca Confidential

Extending Experience Manager with Community Editors | About developing editors 87

Note: Because Experience Manager does not perform validation on XML that is not in one
of the Endeca namespaces, Oracle recommends validating any templates that contain custom
or pass-through XML properties prior to uploading them.

3. Add your editor to the <EditorPanel> and bind it to your custom XML property:

<EditorPanel>
<BasicContentltemEditor>
<CustomXMLEditor propertyName="custom" xmlns="http://mycompa-
ny.com/schema/2010/editors"/>
</BasicContentltemEditor>
</EditorPanel>

4. After your editor is instantiated and its properties are set, Experience Manager dispatches the ed-
itorReady event. To modify the XML in an I1XMLProperty, use the getPropertyByName
method and specify the propertyName from the <EditorPanel> that ties your editor to the
custom XML property. You can set the XML directly, or modify the underlying object:

var customProperty:1XMLProperty = IXMLProperty(contentltem.getPropertyBy-
Name(info.templateConfig.@propertyName));

/*
* Set the XML directly. Experience Manager automatically dispatches a
* contentModelChange event
*/
customProperty.xml = <Milkshake xmlns="http://mycompany.com/schema/2010/da-
ta" flavor="vanilla'">
A tall, frosty beverage
</Mi lkshake>

/*

* Modify the underlying object and manually dispatch a

* contentModelChange event

*/

customProperty.xml.@flavor = "banana';
customProperty.dispatchEvent(new ContentModelEvent(ContentMod-
elEvent_CHANGE, null, null, null, null, null, customProperty.xml));

4 Note: Keep in mind when modifying the XML property that only the setter method
automatically dispatches a ContentMode lEvent . CHANGE event. The content model cannot
detect internal changes to an XML object. If you modify the XML data by reference, you must
manually dispatch a ContentMode lEvent.CHANGE event.

The custom XML is passed to the Content Assembler as part of the overall page configuration. You
may also consider writing a tag handler for your custom XML. A tag handler enables you to extend
the processing logic in the Content Assembler before it returns the content results to your application.
For more information, see the Content Assembler AP| Developer's Guide.

Related Links

Scenarios for extending Experience Manager and the Content Assembler on page 66
You can use either community editors on their own, community tag handlers on their own,
or both of them in combination to extend the functionality of Experience Manager.

Endeca Confidential Endeca Content Assembler Experience Manager Developer's Guide

88 Extending Experience Manager with Community Editors | About developing editors

About read-only mode

If a user does not have sufficient privileges to make modifications to a landing page, or a selected
landing page group is locked by another Workbench user, Experience Manager enters read-only mode.
Your editor needs to respect read-only mode by placing any Ul controls it contains into a read-only
mode as well.

When a landing page is in read-only mode, all its child content items and properties are also in read-only
mode. Attempting to modify them results in a runtime exception.

You can place your Ul controls in read-only mode by binding any relevant attributes to the readOnly
property of the content item or any of its child objects in the Flex code. Which attributes you bind in
this manner will depend on the Ul control you are using. See the Adobe Flex documentation for details.

The example below shows a TextArea Ul control. The enabled and editable attributes are set
to the negated value of the string property's readOnly property (which is inherited from the content
item):

<mx:TextArea id="propertyValueTextlnput"
text="{stringProperty._string}"
enabled="{IstringProperty.readOnly}"
editable="{!stringProperty.readOnly}"
change="'stringProperty.string = propertyValueTextlnput.text;" />

The TextArea is only editable if the content item associated with the editor is not in read-only mode.

S N . -
~ Note: If your Ul controls allow the modification of read-only objects, and the content administrator
tries to modify those objects, Experience Manager throws an error that is presented to the content
administrator.

About handling error conditions

An editor dispatches an EditorEvent.ERROR event ito display an error message in place of the
editor.

You can do this in the case of an irrecoverable error, for example, when the requisite property on a
content item does not exist, or the property exists, but is of the wrong type.

Below is an example that dispatches an editorError event:
dispatchEvent(EditorEvent.createErrorEvent(errorMessage));

About handling conflicts between content and editor definitions

You can dispatch a ContentModellEvent .UPGRADE event to display a message box that alerts the
content administrator of changes to the content.

When Experience Manager populates the Content Detail Panel for a landing page or cartridge, it
checks the content XML of the loaded page against the template XML. If the template has been
changed such that it is no longer compatible with the content, Experience Manager displays a warning
and updates existing content that is bound to standard editors to fit the current template definition.

You can add similar logic to your editor, and display a warning by using the eventing model.

Note that you should dispatch ContentMode lEvent . UPGRADE events from the 1Property that
has been modified. The events bubble up the hierarchy to the appropriate content model object.

Endeca Content Assembler Experience Manager Developer's Guide Endeca Confidential

Extending Experience Manager with Community Editors | About developing editors 89

Below is an example:

property.dispatchEvent(ContentModelEvent.createContentMode lUpgradeEvent(prop—
erty));

Related Links

About modifying templates that are used by existing pages on page 54
During the development and testing phase of your application deployment, you may need to
make adjustments to your page or cartridge templates and update them in Experience
Manager.

About writing editor components outside of Flex

An editor can use the Flex External Interface API to enable a Web application to interact with
the Experience Manager SWF. This is one method of implementing external editor functionality with
minimal use of ActionScript.

Due to JavaScript domain issues, any Web application that uses JavaScript to interact with the
Experience Manager SWF must be hosted on the same domain as Workbench. These are the same
restrictions that exist for the preview application in Workbench.

Calling JavaScript from ActionScript

External Interface includes a cal 1 () method that allows ActionScript to call a function in the
container application. This method requires at least one parameter:

 The first, required parameter is the name of the function to call.

« Any additional parameters are passed, in order, as arguments to the function being called.
The example below calls the JavaScript window .open() method to open a window that displays a
Web application:
External Interface.call (""window.open', <external application URL>,

<wi ndow title>,<JavaScri pt w ndow. open argunents>);

If you use this approach, you should specify the Flex portion of the editor in the editor configuration
file.

Calling ActionScript from JavaScript

The Flex External Interface class provides an addCal Iback() method that registers an
ActionScript function so that it can be called by JavaScript. This method takes two parameters:

A string, which is the function name you call from your JavaScript

< An ActionScript function, which executes when your Web application makes a JavaScript call
matching the specified string

The following example shows how you can combine the use of addCal Iback() and call () to
communicate with your Web application via JavaScript.

The editor includes the ActionScript below:
private function openExternalWindow(event:Event):void

{
// When addRecord() is called on the editor, the

// list of records in Experience Manager editor is
// updated to include the given record if It doesn™t already.

// Calling Externallnterface.addCallback() adds a JavaScript
// callback to the Experience Manager SWF.

Endeca Confidential Endeca Content Assembler Experience Manager Developer's Guide

20 Extending Experience Manager with Community Editors | About developing editors

External Interface.addCal Iback(*'addRecord™,
function(recordSpec:String):void

if('records.contains(recordSpec)) {
records.addltem(recordSpec);

property.dispatchEvent(new Event(‘'featuredRecordsChange'));

E

// Open the window. Calling the JavaScript window.open()

// method opens a window displaying the Web application

// you want to use to call addRecord() on the Experience Manager SWF.

External Interface.call (""'window.open', http://mycompany.com/we-
bapp/record_browser, 'featuredRecordsEditor™,

"menubar=1,resizeable=1,width=1000, height=800, loca-

tion=yes,menubar=yes,scrollbars=1, toolbar=1");

}

In the Web application, the call to addRecord() is treated as though a local function is being called.
The following JavaScript is used to execute this call on the Experience Manager SWF:

function addRecord(recordSpec) {
var movie;
try {
// the Experience Manager movie is called “pagebuilder”. Firefox and
// IE provide different ways to access it — check for both
// Firefox and IE

// Check IE
iT(window.opener.pagebuilder '= undefined)
{

movie = window.opener.pagebuilder;

b
// Check Firefox
else

{

movie = window.opener.document.pagebuilder;
}
// Call the JavaScript method addRecord() on the Experience Manager SWF
movie.addRecord(recordSpec);

}
catch(e) {
alert('error opening window or movie:
}
}

+ e.description);

5]
Note: For additional information about the External Interface class, consult the Adobe
documentation.

Related Links

Adding editor configuration information to the editor configuration file on page 93
You can specify arbitrary configuration information in the editor configuration file. This can
be done on a global or per-editor basis.

Endeca Content Assembler Experience Manager Developer's Guide Endeca Confidential

Extending Experience Manager with Community Editors | About developing editors 91

About JavaScript domain considerations

Web applications that use JavaScript to interact with the Experience Manager SWF rely on the same
mechanism for managing the JavaScript domain as the preview application. You must host any such
applications on the same domain as Workbench.

In order to enable JavaScript communication, you must ensure that the document.domain in both
the Workbench preview application and your editor application are set to the same value. This value
must be the first common domain shared by Workbench, the preview application, and your editor.

For example, if the JSP editor is on foo.company . com, the preview application is on
bar.company.com, and Workbench is on bar . company . com, both the editor domain setting and
the preview application domain setting must be set to company .com :

document.domain = "company.com";

Additionally, if either the Workbench or editor container is running in SSL mode, the other must be set
to SSL mode as well for the two to communicate. Editors written in Flex do not have this limitation.

The Preview App Settings page in Endeca Workbench provides a field where you must enter the
JavaScript domain information for the preview application. This is analogous to declaring the domain
in your Javascript headers. You must enter this information correctly regardless of whether you are
actually using the preview application. This setting also applies to your editor application.

For more information about configuring JavaScript domain settings in the preview application, consult
the Oracle Endeca Workbench Administrator's Guide.

Related Links
About using SSL and editors on page 96
If your Workbench server is running in SSL mode, you must enable communication with any
remote editor modules by configuring the module server's cross-domain policy file.

About client-server communication in editors

After Experience Manager loads editor modules, the Flash player treats module code as if it originates
from the host where Experience Manager is served, regardless of the location where the editor module
is hosted. If your editor includes client-server communication, you need to set up a cross-domain policy
file that allows the instance of the Experience Manager client to talk to your server-side code.

For security purposes, when the modules are first loaded, Experience Manager checks the cross-domain
policy file for the location where the editor module is hosted.

Related Links
File hosting and security considerations on page 62
Experience Manager occasionally needs to access files hosted on a different server. Certain
security issues may apply.

About debugging an editor

Because the Experience Manager SWF is not compiled and shipped in debug mode, compiling your
editor modules in debug mode does not expose any additional information. You can write your own
application SWF for step-through debugging purposes. Additionally, Oracle recommends that you use
a debugging version of Flash Player.

Endeca Confidential Endeca Content Assembler Experience Manager Developer's Guide

92

Extending Experience Manager with Community Editors | Installing an editor

Setting up a debug-mode application SWF

When a module in debug mode is loaded by an application SWF that was not compiled in debug mode,
debugging information for that module is not exposed. You can debug your editors by compiling your
own simple application SWF in debug mode, loading in a debugging version of your editor module,
and supplying the editor with a mock content item.

Using a debugging version of Flash Player

Regardless of whether you are using a debug-mode application SWF, a debugging version of Flash
Player displays a dialog box when it encounters an ActionScript error in your code, giving you some
useful traceback information. A non-debugging Flash player fails silently and can potentially leave
your application in an incomplete state.

You may find the following resources helpful for setting up a debugging version of Flash Player:

« http://lwww.playerversion.com — This site is a good place to look for various versions of Flash
Player.

« http://www.pluginswitcher.de — The Kewbee Plugin Switcher tracks the versions of all your installed
players, and allows you to revert to earlier installed versions. It can differentiate between debugging
and non-debugging players.

Installing an editor

In order to use an editor module in Experience Manager, it must be described in the configuration file
and hosted in a location where Experience Manager can access it.

You can specify your editor modules within the editor configuration file. To enable them, you must
configure the webstudio.properties file to point to the configuration file. In order for content
administrators to use a new editor to configure content in Experience Manager, you must create a
template that uses that editor.

Specifying editors for Experience Manager

The editor configuration file lists the editors available to Experience Manager.

You can specify multiple editor modules in your editor configuration file; each module is associated
with one or more editors and contains the factory methods for instantiating those editors.

To specify editor modules:

1. Insert an <EditorModule> element within <EditorConfig>.

2. Setthe url attribute of the <EditorModule> element to the fully qualified URL of the compiled
editor module you wish to use. For example:

<EditorModule url="http://localhost:8080/foo/bar/myeditors.swf">

</EditorModulle>

3. Insert an <editor> element inside the <EditorModule> element for each editor within the
module that you want to enable.

4. Setthe name attribute of each <editor> element to a qualified name that includes the namespace
and the local name for the editor. For example:

<editor name="http://my.company.com/2009/editors:MyEditor"/>

Endeca Content Assembler Experience Manager Developer's Guide Endeca Confidential

http://www.playerversion.com
http://www.pluginswitcher.de

Extending Experience Manager with Community Editors | Installing an editor 93

The specified local name must exactly match the one to be used in Experience Manager templates.
For the above example, the <EditorPanel> element in a template that used MyEditor would
have to include a line similar to the one below:

<MyEditor xmlns="http://my.company.com/2009/editors" propertyName="foo"/>

) .)) - .

7~ Note: In the case of multiple editors with the same qualified name, Experience Manager
defaults to the first instance of a given editor. Oracle recommends unique qualified names
for each editor.

5. Repeat steps 2-5 for any additional editor modules.

6. If your editor module is hosted on a different security domain from the editor configuration file, you
must specify the location of its cross-domain policy file. Insert a crossDomainUr 1 attribute inside
the <EditorModule> element and specify the absolute URL to the crossdomain.xml file, as
in the example below:

<EditorModule url="http://<host >:<port >/foo/bar/myeditors.swf"
crossDomainUrl="http://<host >:<port >/foo/bar/crossdomain.xml">

</EditorModule>

Note: The cross-domain policy file may be located on the server root, or within another
directory on the server, depending on your server configuration. Consult the Adobe Flash
documentation for additional information.

7. Save and close the file.
8. Upload the editor configuration file to a server where Experience Manager can access it.

The following example shows a sample editor list with a cross-domain policy file specified:

<?xml version="1.0" encoding=""utf-8"?7>
<EditorConfig>
<EditorModule url="http://localhost:8080/foo/bar/myeditors.swf"
crossDomainUri="http://l1ocalhost:8080/foo/bar/crossdomain.xml*'>
<Editor name="http://my.company.com/2009/editors:MyEditor"/>
<Editor name="http://my.company.com/2009/editors:MyOtherEditor"/>
</EditorModule>
</EditorConfig>

You should validate your editor configuration file against the schema file, editor-config.xsd, to
ensure that it conforms to the schema definition. This file is available in the

pagebui lder-editor-sdk\schema directory of the pageBui lderEditorSDK.zip archive,
located in the reference directory of your Workbench installation.

Related Links

File hosting and security considerations on page 62
Experience Manager occasionally needs to access files hosted on a different server. Certain
security issues may apply.

Adding editor configuration information to the editor configuration file

You can specify arbitrary configuration information in the editor configuration file. This can be done
on a global or per-editor basis.

Endeca Confidential Endeca Content Assembler Experience Manager Developer's Guide

94 Extending Experience Manager with Community Editors | Installing an editor

Adding editor configuration information to the editor configuration file results in the same behavior for
all instances of a specific editor in a given Workbench installation. Global configuration applies to all
editors for a given Workbench installation.

To add configuration information to the editor configuration file:

1. Stop the Endeca Tools Service.
2. Navigate to your editor configuration file.
3. To add configuration information to a single editor:
a) Insert an <EditorConfig> element directly inside the <Editor> tag of the editor you wish
to modify.
b) Add your arbitrary configuration information.

The example below includes the configuration inside a nested element, but you can also specify
the information as attributes of the EditorConfig element:

<Editor name="http://my.company.com/2009/editors:MyEditor">
<EditorConfig>
<Arbitrary foo="bar" size="10" resizeable="false"/>
</EditorConfig>
</Editor>

4. To add global configuration information:
a) Insert a <GlobalEditorConfig> tag directly inside the main <EditorEditorConfig>
element.
b) Add your arbitrary configuration information.

The example below includes configuration both as attributes of GlobalEditorConfig, and
as nested elements. You may use either approach, or both:

<EditorConfig xmlns="___">
<GlobalEditorConfig username="u" password="p">
<ExampleCustomGlobalConfigXML />
</GlobalEditorConfig>

<Editor ...>
</Editor>
</EditorConfig>

5. Save and close the file.
6. Start the Endeca Tools Service.

The editor can access this information through the editorConfig and globalEditorConfig
properties of the IEnvironmentlInfo object.

Related Links

About retrieving editor configuration information on page 81
The info property provides information regarding the environment in which an editor is
created. This includes global, template-specific, and editor-specific configuration.

Enabling the editor configuration file

In order for Experience Manager to use the editor configuration file, you must set up a
crossdomain.xml file and specify the locations of both the cross-domain policy file and the editor
configuration file in webstudio.properties.

Endeca Content Assembler Experience Manager Developer's Guide Endeca Confidential

Extending Experience Manager with Community Editors | Installing an editor 95

Before updating webstudio.properties in your server configuration, make sure you have uploaded
both the editor configuration file and its cross-domain policy file to the desired location.

To specify the location of the editor configuration:

1.
2.

8.
9.

Stop the Endeca Tools Service.

Navigate to %ENDECA_TOOLS_CONF%\conf (on Windows) or SENDECA_TOOLS_CONF/con¥ (on
UNIX).

Open the webstudio.properties file.
Find the line that specifies the location of the editor configuration file, for example:

The URL from which to load editor configuration for Experience Manager
#com.endeca.webstudio.pagebuilder._editors.config=http://my.company.com/ed-
itors/myeditors.xml

Uncomment and change it to point to the absolute URL of your editor configuration file, for example:

The URL from which to load editor configuration for Experience Manager
com.endeca.webstudio.pagebuilder.editors.config=http://<host >:<port>/re-
sources/config/myeditors.xml

Find the line that specifies the location of the cross-domain policy file for your editor configuration
file, for example:

The URL from which to load the crossdomain.xml policy file (hecessary
when the above file Is on a server that is distinct from the Experience
Manager server)

#com.endeca.webstudio.pagebuilder.editors.crossdomain=http://my.compa-

ny.com/editors/crossdomain.xml

. Uncomment and change it to point to the absolute URL of your cross-domain policy file, for example:

The URL from which to load the crossdomain.xml policy file (hecessary
when the above file is on a server that is distinct from the Experience
Manager server)

com.endeca.webstudio.pagebui lder_editors.config=http://<host >:<port >/cross-

domain._xml

Save and close the file.
Start the Endeca Tools Service.

Once you have specified the location of the editor configuration file and its crossdomain.xml file,
you can alter the editor configuration file without restarting the Endeca Tools Service, but you must
reload the main Experience Manager SWF for the configuration changes to take effect. If you make
any changes to webstudio.properties, you must restart the Endeca Tools Service for those
changes to take effect.

Related Links

File hosting and security considerations on page 62
Experience Manager occasionally needs to access files hosted on a different server. Certain
security issues may apply.

Using editors in templates

Adding editors to a template is similar to adding standard editors, except that you must specify a
non-Endeca namespace for your editor name.

To add an editor to a landing page template:

Endeca Confidential Endeca Content Assembler Experience Manager Developer's Guide

96 Extending Experience Manager with Community Editors | Installing an editor

1.
2.

Include any necessary property definitions and default values for your template.
Add your editor to the template's <Ed i torPane > element and specify a non-Endeca namespace.
Experience Manager uses the following three Endeca namespaces:

* http://fendeca.com/schema/content/2008
« http://lendeca.com/schema/content-template/2008
« http://fendeca.com/schema/content-tags/2008

Set any additional configuration information for your editor.

You can include this information either as attributes of the editor element, or as nested elements.
When an editor is instantiated, this information is included in the info property.

As part of your configuration information, you can choose to map your editors to properties using
attributes. In the example below, the propertyName attribute maps the editor to the myProperty

property:
<EditorPanel>

<BasicContentltemEditor>

<MyEditor xmIns="http://my.company.com/editors"™ propertyName=""myProp-

erty"” label="editor_label"/>

</BasicContentltemEditor>
</EditorPanel>

4 Note: Oracle recommends the use of a formal schema to define your editor configuration
and validate your templates, but you must perform this validation before uploading your
templates to Experience Manager. Experience Manager does not validate any XML outside
of standard Endeca schemas.

Related Links

About defining the editing interface for properties on page 34
After you have defined the content properties in your template, you can define how those
properties can be configured by the content administrator in Experience Manager.

About using SSL and editors

If your Workbench server is running in SSL mode, you must enable communication with any remote
editor modules by configuring the module server's cross-domain policy file.

The following possible configurations exist when serving editor modules:

Workbench Editor Notes
Modules
SSL no SSL You do not need to make any changes to your cross-domain policy

file with this setup. If you use this configuration, a browser warning
may display informing users that the site contains both secure and
non-secure items.

SSL SSL Oracle recommends this approach if you are using SSL. This

configuration requires the secure attribute of <al low-access-
from domain>tobe "true'.Because "true' is the default value,

Endeca Content Assembler Experience Manager Developer's Guide Endeca Confidential

Extending Experience Manager with Community Editors | Troubleshooting an editor 97

Workbench Editor Notes
Modules

you do not need to make any changes to your cross-domain policy
file unless you have previously modified the secure attribute.

no SSL SSL This configuration requires you to set the secure attribute of <al-
low-access-from domain>to ""false".

%
Note: This configuration can compromise your server's security.
See the Adobe documentation for details.

If your Web application includes non-Flex editors that use JavaScript to communicate with Experience
Manager, then all of the application containers must use the same SSL mode (enabled or disabled)
for the communication to take place.

For more information about configuring Workbench to use SSL, see the Oracle Endeca Workbench
Administrator's Guide.

Related Links

File hosting and security considerations on page 62
Experience Manager occasionally needs to access files hosted on a different server. Certain

security issues may apply.

Troubleshooting an editor

Common problems and their solutions are outlined in this section. For editor-specific issues, editors
must rely on their own error handling code.

Related Links

About handling error conditions on page 88
An editor dispatches an EditorEvent.ERROR event ito display an error message in place

of the editor.

About using the Experience Manager XML View

You can use the Experience Manager XML View to evaluate the XML representation of the landing
page.

You can access the Experience Manager XML View by clicking the XML View tab alongside the
Content Editor Pane in the Edit View.

Content XML and Rule XML
You can select the Content XML view to see only the content XML for the landing page.

The Rule XML view shows the XML representation for the rule that contains this page configuration.
In this representation, the content XML tags are encoded.

Endeca Confidential Endeca Content Assembler Experience Manager Developer's Guide

98

Extending Experience Manager with Community Editors | Troubleshooting an editor

Saved Copy and Working Copy

You can switch between your current page XML and the version that was most recently saved in
Experience Manager by using the Saved Copy and Working Copy toggle buttons. The saved copy
is updated only when you click Save All Changes in Experience Manager List View.

In the case of a landing page that has had its template updated, any automatic changes made to the
content are reflected in the Working Copy.

Ensuring Experience Manager loads the current editor modules

After you update a hosted editor module, Web browsers may continue to load cached versions of the
old editor module.

When you roll out updated versions of community editor modules, you should instruct your users to
clear their browser cache.

In a development environment where you may be iterating rapidly on editor modules, you can avoid
clearing your cache manually by setting Internet Explorer to automatically check for updates to cached
pages.

To set Internet Explorer to check for updates to cached assets:

1. From the menu, select Tools > Internet Options.
The Internet Options window opens to the General tab.

2. Access the caching settings:

Browser Ul Control
IE6 In the Temporary Internet Files section, click the Settings button.
IE7 or IE8 In the Browsing History section, click the Settings button.

3. Set the browser to check for new versions of the page on each visit:
Browser Ul Control

IE6 Under Check for newer versions of stored pages, select the Every visit
to page radio button.

IE7 or IE8 Under Check for newer versions of stored pages, select the Every time
| visit the web page radio button.

Changes to the appearance of Experience Manager when using
community editors

The last styles loaded into Experience Manager take precedence. Because community editor modules
are loaded after the main Experience Manager SWEF, this can lead to styles defined in community
editors overriding Experience Manager styles.

Styling a common component, such as mx.controls.Button, can lead to unexpected behavior in
Experience Manager. In order to avoid conflicting with Experience Manager styles, you should use a
unigue sty leName for any Flex component you wish to apply styles to. Oracle recommends prefixing
styles with a unique identifier, such as your company name.

Endeca Content Assembler Experience Manager Developer's Guide Endeca Confidential

Index

A

application development
roles 9
workflow 12
architecture 13

C

cartridges 10
definition 9
cartridges types 19
checkbox editor 42
combo box editor 37
community editors
about 65
API 69
binding multiple properties 83
configuring 81, 94
creating 76
dependencies 72
developing 73
installing 92
overview 76
prerequisites 73
scenarios 66
specifying 92
SSL 96
tools 73
community tag handlers
scenarios 66
content administrator
introduced 9
Content Assembler API
architecture 13

Content Assembler API and property types defined in

template 25
content item list 33
content items

introduced 11
content XML 11
cross-domain policy file 62

D

dynamic pages, troubleshooting 61

E

editor API
basic implementation 68
interface 68

Editor API 69

editor configuration file 92, 94
enabling 95
updating 92

editors
client-server editors 91

communicating with the MDEX 83

community editors 65

content model 83

custom XML 86

debugging 92

developing 68, 76

development environment 73

eventing 71, 80, 85, 88

in templates 95

JavaScript domain issues 91

life cycle 78, 80

non-Flex editors 89

read-only mode 88

retrieving configuration 82

retrieving MDEX information 83

SDK 67

standard editors 65

troubleshooting 97
emgr_update

get_templates 57

introduced 53

remove_templates 58

set_templates 53

updating templates 56
Experience Manager 10

architecture 13

G
group labels 49

IRecordList 84

N

navigation records
compared to record lists 29
property 29

navigation refinements 27

P
properties
content item 32
defining 22

Index

properties (continued)
overview 23
record list 31
types 25
and configuration in Experience Manager 34
boolean 27
content item list 33
navigation records 29
navigation refinements 27
string 26
template section 32, 33
using arbitrary XML 52
using pass-through content properties 51
XML pass-through 50

property editors
grouping 49
introduced 34
section 49
cartridge selector 49
checkbox 42
combo box 37
default value 35
image preview 40, 42, 62
navigation records editor 44
navigation refinements selector 43
record selector 47
string 35

R

record filters 47
record lists, compared to navigation records 29
remote editors 96
rule groups 15
rule properties for page templates, specifying 20
rule styles 15

and invalid pages 61

and invalid templates 59

creating 17

specifying for page templates 20

S

sample editors
editor configuration file 75
enabling the configuration file 75
hosting 74
in templates 76
setup 72

styles 98
See also rule styles

T

template description, specifying 21

100

template property types returned by API 25
templates 9, 10
modifying 54, 55, 56
Name property 23
page templates 10, 20
prerequisites 15
properties 23
See also properties
property types 25
removing from Experience Manager 57, 58
retrieving from Experience Manager 57
troubleshooting 59
troubleshooting default values 61
updating 54, 55, 56
uploading 53
validation 18, 59
cartridge templates 10
creating 18
defining editors 34
See also property editors
defining properties 22
defining sections 32, 33
id 19
managing in Experience Manager 53
page templates 10, 20
pages based on missing templates 57
removing from Experience Manager 57, 58
saving 22
schema 18
type 19
updating 54, 55, 56
using community editors 95
validation 18, 59
thumbnail images
specifying 21
using 21
troubleshooting
browser cache 98
loading outdated modules 98

X

XML tab 97

Z

zones 15

and invalid pages 61

and invalid templates 59

creating 16

specifying for page templates 20
zones, and dynamic pages overview 16

Endeca Content Assembler

	Contents
	Preface
	About this guide
	Who should use this guide
	Conventions used in this guide
	Contacting Oracle Endeca Customer Support

	Developing Applications with Template-Based Pages
	Overview of roles
	About cartridges
	About templates and Experience Manager
	About content items and the Content Assembler API
	A typical workflow for creating a template-based application
	Experience Manager and Content Assembler API architecture

	Working with Templates for Dynamic Pages
	Template prerequisites
	About dynamic pages and rule groups
	About using zones with dynamic pages
	Creating a zone for dynamic pages
	Creating a style for dynamic pages
	About maintaining consistent dimension value IDs

	About creating templates
	About template validation
	About the type and ID for a template
	Specifying the zone and style for a template
	Specifying custom rule properties for a template
	About using thumbnail images in Experience Manager
	Specifying the description and thumbnail image for a template
	About saving templates

	About defining content properties
	Specifying the default name for a ContentItem
	About content properties
	Types of property elements
	Adding a string property
	Adding a Boolean property
	Adding a navigation refinements property
	About record properties
	Adding a navigation records property
	Adding a record list property
	Adding a content item property
	Adding a content item list property

	About defining the editing interface for properties
	Adding a string editor
	Adding a combo box editor
	Adding an image preview
	About the urlExpression for image preview

	Adding a checkbox editor
	Adding a navigation refinements selector
	Adding a navigation records editor
	Adding a record selector
	About sort options for the record selector

	About cartridge selectors
	Adding a group label

	About using XML pass-through properties
	About using pass-through content properties
	About passing arbitrary XML to the front-end application

	Supporting Experience Manager
	Making templates available in Experience Manager
	Uploading templates to Experience Manager
	About modifying templates that are used by existing pages
	About updating templates
	Updating templates in Experience Manager
	Retrieving the current templates from Experience Manager
	About removing templates
	Removing templates from Experience Manager

	Troubleshooting problems with uploading templates
	Troubleshooting invalid templates
	Troubleshooting invalid pages
	File hosting and security considerations

	Extending Experience Manager with Community Editors
	About Experience Manager editors
	Scenarios for extending Experience Manager and the Content Assembler
	What is the Experience Manager Editor SDK?
	About the Experience Manager Editor API
	About Experience Manager editor representation in the API
	The Experience Manager Editor API content model
	About eventing in Experience Manager
	Compile-time and runtime dependencies

	About setting up the sample editor
	About Flex
	Setting up your development environment using the sample project
	Hosting the sample editor module
	Modifying the sample editor configuration file
	Modifying webstudio.properties to enable the sample editor
	Incorporating the sample cartridge

	About developing editors
	The editor creation workflow
	About the Experience Manager editor life cycle
	Experience Manager editor life cycle diagram

	About editor instantiation
	About configuring editors
	About retrieving editor configuration information
	About retrieving the Experience Manager MDEX host name and port

	About binding an editor to multiple properties
	Working with the content model
	Working with IRecordListProperties

	About handling changes to the content model
	Working with custom XML properties
	About read-only mode
	About handling error conditions
	About handling conflicts between content and editor definitions
	About writing editor components outside of Flex
	About JavaScript domain considerations

	About client-server communication in editors
	About debugging an editor

	Installing an editor
	Specifying editors for Experience Manager
	Adding editor configuration information to the editor configuration file

	Enabling the editor configuration file
	Using editors in templates
	About using SSL and editors

	Troubleshooting an editor
	About using the Experience Manager XML View
	Ensuring Experience Manager loads the current editor modules
	Changes to the appearance of Experience Manager when using community editors

	Index

