

9 Integrating UIM through Web Services

This chapter provides information on integrating Oracle Communications Unified Inventory Management (UIM) with external systems through Web services. UIM provides the following Web services:

	
The UIM Service Fulfillment Web service defines operations that enable you to create and modify business interactions, through which you can create and modify services, service configurations, and service configuration items. Information on this Web service is provided in this chapter.

	
The UIM Reference Web service defines operations that enable you to create and modify services, service configurations, and service configuration items, but does not involve the use of business interactions. This Web service is deprecated: Oracle recommends that you use the UIM Service Fulfillment Web service. If you have used the UIM Reference Web service in a previous release, see Appendix D, "Reference Web Service". This Web service also serves an example to follow when developing custom Web services.

	
The UIM Cartridge Management Web service defines various operations that support deploying and undeploying cartridges. The Cartridge Deployer Tool and Oracle Communications Design Studio use this Web service to manage cartridges. While this Web service is published, its target users are internal developers. As a result, information on this Web service is not provided in this document. It is mentioned here only because the UIM Cartridge Management Web service is deployed as an installation step and displays on the Oracle WebLogic Server Administration Console.

	
UIM also provides a way for you to develop, build, and deploy custom Web services. See Chapter 10, "Developing Custom Web Services" for more information.

This chapter contains the following sections:

	
Web Services Overview

	
UIM Web Service Module Overview

	
UIM Web Service Standards and Specifications

	
About the UIM Service Fulfillment Web Service

	
Understanding the UIM Service Fulfillment Web Service

	
Using the UIM Service Fulfillment Web Service

Web Services Overview

Web services support interoperable machine-to-machine interaction over a network. Web services are APIs that can be accessed over a network, and run on a remote system hosting the requested services. Web service operations are described by the Web Service Definition Language (WSDL).

Figure 9-1 shows the different paths traveled by a call originating from the UIM UI client, and a call originating from outside UIM that is then processed by the UIM Web service client.

Figure 9-1 Web Services

[image: Surrounding text describes Figure 9-1 .]

The path of the Web service includes:

	
Web service client

This represents the Web service user (client, Web service client, or customer). Web service operations are called by sending SOAP messages over http or https, or by posting SOAP messages on a UIM-defined JMS message queue. See "About Message Queues" for more information.

	
Web service module

This represents all the sub-modules required for implementing a Web service, including the Web service, the Web service framework, WSDL interfaces, and WSDL implementations. The Web service module is deployed as a WAR file.

Details of this module are shown in Figure 9-2, "Web Service Module".

	
UIM business logic

This represents all the sub-modules required for attaining business functionality. This includes the Java API, the Java API framework, business logic, and persistence framework.

Details of the UIM business logic are not within the scope of this document.

UIM Web Service Module Overview

Figure 9-2 shows the Web service module in more detail.

Figure 9-2 Web Service Module

[image: Surrounding text describes Figure 9-2 .]

The Web service module includes:

	
Platform-provided Web Services Framework

This represents the Web service framework provided by Java EE platforms, such as Oracle WebLogic Server.

	
Web service operations

This represents the Java Web service implementation class. This is the entry point to a UIM Web service. The Web service operations are Java representations of the WSDL.

	
Adapters

The Web service operations layer calls the adapters, which direct the calls and collect data from the appropriate UIM API managers. Transaction handling is performed in the adapters.

	
Mappers

Mapper classes convert data representations by providing operations that convert data from Entity representation to ValueType representation, and from ValueType representation to Entity representation. Mapper classes are typically called by the adapter code.

	
Helpers

Helper classes assist the working of the adapters.

The Web service operations, adapter, mapper, and helper classes are further explored in Chapter 10, "Developing Custom Web Services".

About Message Queues

The UIM installation provides the following message queues to use when calling Web services:

	
inventoryWSQueue

	
inventoryWSQueueAlternate

Two message queues are provided for efficient processing of Web service calls. For example, you may have all Web service operation calls except ProcessInteraction use inventoryWSQueue, and have ProcessInteraction use inventoryWSQueueAlternate because the ProcessInteraction operation takes longer to run than the other operations.

About Transaction Handling

The adapter layer performs transaction handling. Transactions are started only if the thread is not already within a transaction.

About Exception Stacktraces

Exception stacktraces are available in the WebLogic server logs. Exception stacktraces are not available in the UIM Web service responses.

UIM Web Service Standards and Specifications

Table 9-1 lists the UIM Web service standards and specifications.

Table 9-1 UIM Web Service Standards and Specifications

	Standard and Specification	Version Release	Description	Compliance
	
JAX-RPC

	
1.1

	
XML <--> Java binding specification

	
Compliant.

	
JSR-181

	
	
Java Web service annotations

	
Deprecated.

Uses basic annotations for inter operability.

	
SOAP

	
1.1

	
Simple Object Access Protocol

(Also referred to as Service Orientated Architecture Protocol.)

	
Compliant.

Uses XML/SOAP/HTTP and XML/SOAP/JMS.

	
Transport Protocols

	
HTTP 1.0, HTTPS 1.0 (HTTP 1.1), JMS 1.1

	
	

	
WSDL

	
1.1

	
Web Service Definition Language

	
Compliant.

	
XML

	
1.1

	
	
Compliant.

Uses XML/SOAP/HTTP and XML/SOAP/JMS.

About the UIM Service Fulfillment Web Service

	
Note:

You should have an understanding of the following subjects described in UIM Concepts:
	
Planning (business interactions and business interaction items)

	
Services (services, service configurations, and service configuration items)

	
Connectivity (pipes, pipe configurations, and pipe configuration items)

	
Life cycle management

	
Service fulfillment

The UIM Service Fulfillment Web service is packaged in the inventory.ear file, within the UIMServiceFulfillment.war file. When the installer deploys the inventory.ear file, the UIM Service Fulfillment Web service automatically deploys and is ready to use.

At a high level, the UIM Service Fulfillment Web service enables an external system to create new business interactions and change existing business interactions in UIM. Through business interactions, an external system can manage services and connectivity, including the relationships between services and the relationships between pipes, as well as the resources associated with them.

At a more granular level, the UIM Web Service Fulfillment Web service supports operations that enable you to:

	
Create business interactions and change existing business interactions

	
Process business interactions to create or change services or connectivity in current inventory, and, using a custom ruleset that calls custom code, create or change configuration items and allocate resources for services or connectivity in current inventory

	
Transition business interactions and associated business entities through their respective life cycles

	
Retrieve business interactions

	
Retrieve configurations

	
Update configurations

Only business interactions that support services and connectivity can be added through the Web service. Specifically, these include services, service configurations, pipes, and pipe configurations. However, after the business interaction is created in UIM, you can use the UI to add business interaction items of any type.

	
Note:

The remainder of this chapter references only services, service configurations, and service configuration items (and not pipes, pipes configurations, and pipe configuration items). Any information regarding services, service configurations, and service configuration items applies to pipes, pipe configurations, and pipe configuration items.

The UIM Service Fulfillment Web service defines the following operations:

	
CaptureInteraction

	
ProcessInteraction

	
GetInteraction

	
UpdateInteraction

	
GetConfiguration

	
UpdateConfiguration

Information on the WSDL file and schema files that support these operations is presented in "Using the UIM Service Fulfillment Web Service". The information includes the location of the files, and what the files define. If you are not already familiar with WSDL and schema files, it may be beneficial to read this section first, and to look at the files before reading about the details of each operation. The following sections on each operation assumes that you are already familiar with WSDL and schema file content.

CaptureInteraction

The CaptureInteraction operation enables external systems to send an order request to UIM to add, change, or disconnect a service. The CaptureInteraction request defines one order per request. The order can define multiple line items, and multiple child orders. Each child order is defined by the same structure as the order on the request. That is, each child order can define multiple line items and multiple child orders, and so forth.

The order information from the request is stored in UIM as a business interaction. Business interactions are used for planning inventory resources, prior to making the inventory resources available in current inventory.

The CaptureInteraction request must specify a business interaction action of CREATE or CHANGE. The business interaction action is defined as an enumeration in the BusinessInteraction.xsd schema file. The enumeration defines several actions, but CREATE and CHANGE are the only valid actions for CaptureInteraction.

When the CaptureInteraction request specifies the CREATE action, it creates a business interaction to contain the order information sent in the request, and creates an attachment that contains the entire <interaction> element of the XML from the CaptureInteraction request. CaptureInteraction also associates the attachment to the business interaction.

When the CaptureInteraction request specifies the CREATE action, you can specify an external ID for the business interaction. The external ID should be unique within UIM, but UIM does not enforce uniqueness; it is up to the calling system to enforce uniqueness. When an external ID is specified, UIM captures it and stores it with all of the other request data. A subsequent request can then specify a CHANGE action and supply the external ID to identify the business interaction to be changed.

When the CaptureInteraction request specifies the CHANGE action, the request must provide either the external ID or the business interaction ID to indicate the business interaction to change. If the request provides an external ID, CaptureInteraction assumes the external ID was supplied when the business interaction was created. CaptureInteraction then retrieves the business interaction and updates it with the order information sent in the request. CaptureInteraction also retrieves the business interaction attachment and updates the XML.

You can view the XML that is contained in the attachment from within the UIM UI. Also, the ProcessInteraction operation retrieves the business interaction attachment and uses the XML to process the business interaction into current inventory. This is further explained in "ProcessInteraction".

Validating Input Data

You can validate the request input data using a custom ruleset. Data validations specific to your implementation can reside in the ruleset, or reside in custom code that the ruleset calls. Either way, you can configure the ruleset to run using the provided BusinessInteractionManager_createBusinessInteractionAttachment extension point, located in the ora_uim_baseextpts cartridge. The extension point defines the createBIAttachment() method, so configure your ruleset to run before the method. By using this extension point, your custom validations run before the attachment is created. If the validation fails, the session rolls back and the business interaction that was created is not committed. See Chapter 8, "Extending UIM through Rulesets" for more information.

Associating Business Interactions

In UIM, business interactions can be associated with one another. The CaptureInteraction request defines an element that enables you to associate one or more child business interactions to the business interaction you are creating or changing. Furthermore, you can associate one or more child business interactions to each child business interaction, which would be the grandchild business interactions to the business interaction you are creating or changing, and so forth.

About the CaptureInteraction Flow

Figure 9-3 shows what occurs when the CaptureInteraction operation is called. A business interaction is represented as BI in the figure.

Figure 9-3 CaptureInteraction

[image: Description of Figure 9-3 follows]

Description of "Figure 9-3 CaptureInteraction"

In Figure 9-3, the Validate XML Input box represents the custom ruleset that you can configure to run before the creation of the attachment.

The CaptureInteraction operation also wraps the BusinessInteraction.captureInteraction() API method. The API method defines two arguments: the parent business interaction, and the XML. When the CaptureInteraction operation calls the API method, the parent business interaction argument is always null. Depending on the XML business interaction action of CREATE or CHANGE, the API method creates or changes the business interaction, and creates or changes the attachment. When the XML business interaction action is CREATE, the attachment is associated to the business interaction; when the XML business interaction action is CHANGE, the association already exists.

If the business interaction defines a child business interaction, the API method is called from within itself. In this scenario, the parent business interaction argument is no longer null. As a result, after the business interaction is created, and the attachment created and associated, the business interaction is associated to the parent business interaction that was specified by the argument. For example, a request defines one new business interaction that has one child business interaction. The CaptureInteraction operation calls the API method with a parent business interaction argument of null. Business interaction A is created. The attachment is created and associated to business interaction A. Because the parent business interaction argument is null, the Associate BI to Parent BI box does nothing. Next, the first (in this example, the only) child business interaction is processed and calls the API method with a parent business interaction argument (business interaction A). Business interaction B is created. The attachment is created and associated to business interaction B. Because the parent business interaction argument is not null, business interaction B is associated to the parent business interaction argument that was supplied (business interaction A).

Understanding the Request Content

Figure 9-4 shows the high-level content of the CaptureInteractionRequest. Each request defines a single interaction, which specifies the data used to create the business interaction. The interaction defines a header and a body. The body defines a sequence of items: each item defines a service, and each service defines a service configuration. (The service and service configuration can also be a pipe and pipe configuration. This is further explored in "About the Service or Connectivity".) The body also defines a sequence of interactions, which specifies the data used to create any child business interactions.

Figure 9-4 Request Content

[image: Surrounding text describes Figure 9-4 .]

Example 9-1 is a condensed version of the CaptureInteraction request that highlights the main content to better understand the CaptureInteraction operation. The example is numbered so that information describing the example can be referenced.

Example 9-1 omits the following:

	
Namespaces, and assumes that they are properly defined

	
Elements such as notes, start and end dates, effective dates, and descriptions

	
Structures that detail an external ID, specification, configuration, and configurationItem

	
Structures and elements within party and place, which are designated with ". . ."

	
Note:

CaptureInteraction, ProcessInteraction, GetInteraction, and UpdateInteraction all use the same structure for the request and for the response. The only difference is the actual request/response name (line 01 and line 71). When reading about the remaining operations in the following sections, refer back to this example for a better understanding.

Example 9-1 Condensed CaptureInteraction Request

01 <captureInteractionRequest>
02 <invbi:interaction>
03 <invbi:header>
04 <invbi:specification/>
05 <invbi:action/>
06 <invbi:id/>
07 <invbi:name/>
08 <invbi:externalIdentity/>
09 <invbi:state/>
10 </invbi:header>
11 <invbi:body>
12 <invbi:item>
13 <invbi:externalIdentity>
14 <invbi:action/>
15 <invbi:service>
16 <invsvc:specification/>
17 <invsvc:id/>
18 <invsvc:action/>
19 <invsvc:name/>
20 <invsvc:externalIdentity/>
21 <invsvc:state/>
22 <invsvc:place>
23 . . .
24 <invplace:service>
25 . . .
26 <invsvc:party>
27 . . .
28 <invparty:service>
29 . . .
30 <invsvc:configuration/>
31 </invparty:service>
32 </invsvc:party>
33 <invsvc:configuration/>
34 </invplace:service>
35 </invsvc:place>
36 <invsvc:party>
37 . . .
38 <invparty:service>
39 . . .
40 <invsvc:place>
41 . . .
42 <invplace:service>
43 . . .
44 <invsvc:configuration/>
45 </invplace:service>
46 </invsvc:place>
47 <invsvc:configuration/>
48 </invparty:service>
49 </invsvc:party>
50 <invsvc:configuration/>
51 </invbi:service>
52 <invbi:parameter>
53 <invbi:name/>
54 <invbi:value/>
55 </invbi:parameter>
56 </invbi:item>
57 <invbi:interaction>
58 </invbi:header>
59 <invbi:specification/>
60 <invbi:action/>
61 <invbi:id/>
62 <invbi:name/>
63 <invbi:externalIdentity/>
64 <invbi:state/>
65 </invbi:header>
66 </invbi:interaction>
67 </invbi:body>
68 </interaction>
69 <executeProcess/>
70 <responseLevel/>
71 </captureInteractionRequest>

Throughout Example 9-1, the <specification> element that is shown is actually a structure that defines the following elements:

Example 9-2 Specification Structure

<invbi:specification>
 <invent:entityNote/>
 <invspec:name/>
 <invspec:entityClass/>
 <invspec:description/>
 <invspec:startDate/>
 <invspec:endDate/>
</invbi:specification>

Within the specification structure, the <name> element is the name of a specification. This <name> element is not be confused with the <name> element that is specified for the business interaction (line 07) or for the service (line 19). For example, a request that specifies the CREATE interaction action must supply the Business Interaction specification name (within the specification structure on line 04), and the name of the business interaction being created by the request (line 07). Similarly, a request that specifies the ADD service action must supply the Service specification name (within the specification structure on line 16), and the name of the service being created by the request (line 19).

Within the specification structure, the <entityClass> element is defined as an enumeration in the Specification.xsd schema file. The enumeration values reflect UIM entity specification types, such as BusinessInteraction, Service, Equipment, and so forth. The Service Fulfillment Web service does not use the <entityClass> element, so the request does not need to specify it.

About the Business Interaction

The CaptureInteraction request captures one interaction per request (lines 02 through 68). For each interaction, the request captures one or more items (lines 12 through 56), and one or more child interactions (lines 57 through 66).

When calling CaptureInteraction, the request must specify an action (line 05) of CREATE or CHANGE. The interaction <action> element is defined as an enumeration in the BusinessInteraction.xsd schema file.

If the action is CREATE, the request must provide an arbitrary name for the business interaction (line 07) being created, as well as the Business Interaction specification name (within line 04) upon which the business interaction is being based. (The specification name will typically be Service Order, which is the Business Interaction specification provided in the ora_uim_basespecifications cartridge.) The request can optionally provide an external ID for the business interaction. You do not need to provide the specification entityClass enumeration value of BusinessInteraction; this is assumed based on the placement of the specification structure within the <interaction> element.

If the action is CHANGE, the request must provide the external ID (within line 08) or the business interaction ID (line 06) to indicate the business interaction to change, as well as the actual changes.

About the Business Interaction Item

The CaptureInteraction request captures one or more items per interaction. Example 9-1 shows just one item (lines 12 through 56). To include multiple items, replicate the item and place it between lines 56 and 57.

Each item defines an action (line 14), which must be ADD regardless of the request.

	
Note:

The action must be ADD. It cannot be another action, and it cannot be left blank. If the action is not ADD, the operation errors.

About the Service or Connectivity

Each item defines a service or connectivity. Example 9-1 shows a service (lines 15 through 51). However, the <service> element (line 15) is actually defined as a choice in the BusinessInteraction.xsd schema file, with the choices being service, connectivity, and entity. When the choice is service, a service and service configuration are captured; when the choice is connectivity, a pipe and pipe configuration are captured. The choice of entity is not used for the request; it is used only for the response. (The request and response use the same structure.) When the request choice is either service or connectivity, you must supply a valid specification name (within line 16) from which to create an instance of the specification in UIM. For example, if the choice is service, supply a valid Service specification; if the choice is connectivity, supply a valid Pipe specification.

	
Note:

The preceding paragraph required the mention of pipes and pipe configurations due to the element that defines a choice. The following paragraphs return to citing only services and service configurations, but pipes and pipe configurations continue to apply.

Each service also defines an action (line 18). The service action is not an enumeration, as are the interaction action and item action. Rather, the service action is a custom action that is recognized by, and acted upon by, custom code. The service action is further explored in "ProcessInteraction".

The service may also specify a place (lines 22 through 35) or a party (lines 36 through 49) to associate to the service. The details of the service or connection are captured within the <parameter> element (lines 52 through 55). These parameters are used to drive custom code and are further explored in "ProcessInteraction". Party and place information for the service can also be defined within parameters, instead of within the place and party structures (lines 22 through 35 and lines 36 through 49). The end result is the same: a party or a place is associated to the service. The difference is in the processing: If the party or place is defined for the service within the party and place structures, the Web service processes them. If the party and place are defined for the service within the <parameter> element, custom code is responsible for processing them.

The request and response use the same structure. Most of the elements are used only by the response, so there are numerous elements that are not used by the request. For example, a service and configuration for the place (lines 24 through 34), a service and configuration for the party (lines 38 through 48), and the configuration for the service itself (line 50).

About the Associated Business Interaction

The CaptureInteraction request captures one or more child interactions per interaction. Example 9-1 shows just one child interaction (lines 57 through 66). To include multiple interactions, replicate the child interaction (lines 57 through 66) and place it between lines 66 through 67.

About the ExecuteProcess Element

The <executeProcess> element (line 69) is defined after the interaction and applies to the interaction. This element is defined as a boolean and is used only by the CaptureInteraction operation. When the value of <executeProcess> is true, CaptureInteraction executes and, upon completion, ProcessInteraction executes. This eliminates the need to place two separate Web service calls; one for CaptureInteraction and one for ProcessInteraction. When the value of <executeProcess> is false, just CaptureInteraction executes. The default value is false.

About the ResponseLevel Element

For the CaptureInteraction, ProcessInteraction, UpdateInteraction, and GetInteraction requests, the <responseLevel> element (line 70) is defined as an enumeration in the InteractionMessages.xsd schema file. Depending on the enumeration value specified in the request, the level of information returned by the response can vary:

	
INTERACTION

Returns just the interaction information.

	
INTERACTION_ITEM

Returns the interaction and item information.

	
INTERACTION_ITEM_ENTITY

Returns the interaction, item, and entity information.

	
INTERACTION_ITEM_ENTITY_CONFIGURATION (default option)

Returns the interaction, item, entity, and configuration information.

	
INTERACTION_ITEM_ENTITY_CONFIGURATION_EXPANDED

Returns the interaction, item, entity, configuration, and any child configurations.

For the GetConfiguration and UpdateConfiguration requests, the <responseLevel> element is defined as an enumeration in the ConfigurationMessages.xsd schema file, which defines a different set of enumeration values for the <responseLevel> element (because the <interaction> and <item> elements are not applicable to the GetConfiguration and UpdateConfiguration request structures). Depending on the enumeration value specified in the request, the level of information returned by the response can vary:

	
ENTITY_CONFIGURATION (default option)

Returns the entity and configuration information.

	
ENTITY_CONFIGURATION_EXPANDED

Returns the entity, configuration, and any child configurations.

About the CaptureInteraction Response and Faults

The CaptureInteraction response returns a varying level of information based on the <responseLevel> value the request specifies. See "About the ResponseLevel Element" for more information.

The CaptureInteraction response always includes the business interaction ID and the current business interaction state. If a new business interaction is created, the business interaction ID generated by UIM is returned. If an existing business interaction is changed, the business interaction ID sent with the request is returned. The valid business interaction states are CREATED, IN_PROGRESS, COMPLETED, or CANCELLED, as defined by an enumeration in the BusinessInteraction.xsd schema file.

The CaptureInteraction response returns an error message for the following scenarios:

	
The request specifies a business interaction action of CREATE with a business interaction ID that already exists.

	
The request specifies a business interaction action of CHANGE with a business interaction ID that does not exist. (The specified business interaction can be specified directly, or specified indirectly through the external ID.)

	
An optional extension point is used to validate the input, and the associated ruleset logs an error. For example, the XML input payload does not validate.

	
The purpose of the request is to add a child business interaction to an existing business interaction, and the request specifies the CREATE business interaction action for both the parent and child business interactions. In this scenario, the child action needs to be CREATE and the parent action needs to be CHANGE because you are creating the child, but modifying the existing business interaction to associate the child. (A request can specify the CREATE business interaction action for both the parent and child business interactions, as long as neither specified business interaction ID exists.)

ProcessInteraction

The ProcessInteraction operation performs the work that is necessary to move a planned service into current inventory. The planned service is represented by the interaction in the XML, which is stored in UIM as a business interaction attachment, having been placed there by CaptureInteraction.

ProcessInteraction retrieves the business interaction and attachment and, based on the items defined for the interaction in the XML, processes each item. Each item creates or updates a service, including any default service configuration items defined by the specified Service specification. ProcessInteraction also calls the BaseConfigurationManager.automateConfiguration() method per service configuration. This is the same method that the UIM UI calls to automatically configure a service.

Custom code that creates or updates service configuration items is called through a custom ruleset that you configure to run using a provided extension point that defines the same API method that ProcessInteraction wraps (the automateConfiguration() method). This topic is further explored in "Customizing ProcessInteraction".

When calling ProcessInteraction, the request must specify the external ID or the business interaction ID to indicate the business interaction to process.

The request can specify whether to process the entire business interaction, or just specific business interaction items. If the request specifies the external ID or business interaction ID only, the entire business interaction is processed; if the request specifies the external ID or business interaction ID and specific business interaction items, only the specified business interaction items are processed.

About the ProcessInteraction Flow

Figure 9-5 shows what occurs when the ProcessInteraction operation is called. A business interaction is represented as BI in the figure.

Figure 9-5 ProcessInteraction

[image: Description of Figure 9-5 follows]

Description of "Figure 9-5 ProcessInteraction"

Figure 9-5 shows the ProcessInteraction flow for a request that specifies the CREATE business interaction action. For a request that specifies the CHANGE business interaction action, the Create Service, Create Service Configuration, and Associate Service Configuration to BI boxes would reflect Find or Change Service, Find Service Configuration, and Find Service Configuration Associations. This is because ProcessInteraction handles changes to a service, but not to the service configuration or service configuration items, which is handled by custom code. For a CHANGE action, the change may be applicable to the interaction, or to the items, or both. If the change is applicable to the interaction, the service and service configuration need to change. If the change is applicable to the items, the service and service configuration need to be found to get to the service configuration items that need to change.

In Figure 9-5, the light grey boxes represent the work performed by ProcessInteraction, prior to calling the custom ruleset. ProcessInteraction handles the processing of the business interaction. The dark grey boxes represent the work that is performed by the custom code. The custom code handles the processing of the business interaction items.

The processing of the business interaction items involves customizations that are necessary to meet the business requirements of providing the specific type of service. Customizations may involve custom specifications, characteristics, rulesets, ruleset extension points, and Java code, all of which are written in Design Studio within a Inventory project. The Inventory project is then built, resulting in a cartridge that you can deploy into UIM.

Regarding the Associate Service Configuration to BI box: A service configuration is indirectly associated to a business interaction through the business interaction items. This association is shown by the dotted line in Figure 9-6. To associate the service configuration to the business interaction, ProcessInteraction:

	
Creates business interaction items based on the items for the interaction in the request

	
Associates the business interaction items to the service configuration

Figure 9-6 Association of Service Configuration to BI

[image: Description of Figure 9-6 follows]

Description of "Figure 9-6 Association of Service Configuration to BI"

Customizing ProcessInteraction

You customize the process of business interaction items using a custom ruleset that calls custom code. You can configure the custom ruleset to run using the BaseConfigurationManager_automateConfiguration.rstp extension point, located in the provided ora_uim_baseextpts cartridge. The extension point defines the same API method that ProcessInteraction wraps. Configure your ruleset to run instead of this method. See Chapter 8, "Extending UIM through Rulesets" for more information.

Customizations are based on the request's service action (Example 9-1, line 18) and parameters (Example 9-1, lines 52 through 55). You must establish a finite list of service actions and parameters that can be specified in the request, which can then be recognized by, and processed by, the custom code, which in turn must call API methods to realize the service in UIM. To support the customizations, you also need to create custom specifications, characteristics, rulesets, and ruleset extension points as needed.

Customizations must also include a mapping of any custom service actions to UIM-defined entity actions. The following entity actions are recognized by the Service Fulfillment Web service code, and are case-sensitive:

	
create

	
change

	
delete

	
disconnect

	
suspend

	
suspendWithConfiguration

	
resume

	
resumeWithConfiguration

	
no_action

All of these entity actions, with the exception of suspendWithConfiguration and resumeWithConfiguration, are UIM-defined entity actions. The Web service recognizes these two additional entity actions so that it can perform additional functionality. For example, the suspend action suspends a service but does not touch the service configuration. The suspendWithConfiguration action suspends a service and creates a new service configuration version. Similarly, the resume action resumes a suspended service but does not touch the service configuration. The resumeWithConfiguration action resumes a suspended a service and creates a new service configuration version. (For either action, if an existing service configuration version does not exist, an error is thrown because the service configuration must already exist if you are suspending or resuming it.)

To run your custom code that maps your custom service actions to UIM-defined entity actions, use the BusinessInteractionManager_getEntityAction.rstp extension point, located in the ora_uim_baseextpts cartridge. To do this, create a ruleset that calls your custom code, and create a ruleset extension point that uses this extension point to call your custom ruleset instead of ProcessInteraction calling the BusinessInteractionManager.getEntityAction() method.

After you have completed your customizations, build the project and deploy the resultant cartridge into UIM.

To customize ProcessInteraction:

	
Determine finite list of service actions and parameters to process.

	
In Design Studio, create an Inventory project.

	
Within the project, create a custom ruleset that is the entry point to your custom code.

	
Within the project, create a custom ruleset extension point that associates your custom ruleset with the provided extension point and configure it to run instead of BaseConfigurationManager.automateConfiguration.

	
Within the project, create a custom ruleset that maps your finite list of service actions to the entity actions that are defined in the Service Fulfillment Web service code.

	
Within the project, create a custom ruleset extension point that associates your custom ruleset with the provided extension point and configure it to run instead of BusinessInteractionManager.getEntityAction.

	
Within the project, write custom code that evaluates the mapped entity actions and custom parameters from the request that are specific to the service action mapped to the entity action, and that calls the required API methods to create the service in UIM.

	
Within the project, create any custom specifications or characteristics that are needed to support the custom code that calls the API methods.

	
Within the project, create any custom rulesets and ruleset extension points that are needed to extend any of the API methods that your custom code calls.

	
Build the project, which creates the custom cartridge.

	
Deploy the custom cartridge into UIM.

	
Ensure that the UIM Service Fulfillment Web service is deployed.

	
Send Web service operation requests, such as CaptureInteraction, ProcessInteraction, and UpdateInteraction.

Developing the Custom Code

ProcessInteraction triggers events that result in a call to custom code that automates service configurations. ProcessInteraction makes the following assumptions regarding your custom code:

	
The custom code must know what to do with the XML payload based on the domain-specific business rules and models.

	
The custom code needs to handle the creation or deletion of any dependent resources.

	
The custom code needs to handle auto-design for new orders and auto-redesign for change orders.

	
The custom code should assume that the service and service configuration are already created, and that the purpose of the custom logic is to manage the resources and characteristics.

	
When modifying a subservice with parent input only:

The business interaction attachment typically may not contain specific change request information for a subservice that was created when fulfilling the requested service. For example, a voice mail service created by UIM to fulfill the request for a Mobile GSM service with a voice mail feature. In this scenario, the voice mail service is a subservice assigned to the Mobile GSM service. When the subservice requires a change, the change request and service action are often submitted for the parent service, and not for the subservice. In such scenarios, the Web service operation has to identify that the change action is for the subservice, and process the change for the subservice. As a result, if the custom code needs to act on a subservice, it must build a request based on the subservice, call CaptureInteraction, and recursively call ProcessInteraction until it returns the no action action.

Understanding ProcessInteraction Through an Example

The following list describes some of the project content you may need to run ProcessInteraction.

	
AUTOMATE_MY_CONFIGURATION.ruleset

This is a custom ruleset that is the entry point into the custom code. The ruleset calls the AutomateMyConfiguration() method, which is defined in a custom Java class. In this example, the custom Java class is named MyConfigurationManagerImpl.java, which is also described in this list.

	
AUTOMATE_MY_CONFIGURATION_EXT.rst

This is a custom ruleset extension point that associates the AUTOMATE_MY_CONFIGURATION custom ruleset to the UIM-provided BaseConfigurationManager_automateConfiguration extension point and configures the custom ruleset to run instead of the method that the extension point defines (the BaseConfigurationManager.automateConfiguration() method).

	
MAP_MY_SERVICE_ACTION.ruleset

This is a custom ruleset that evaluates the custom service action specified in the request and maps it to an entity action that is recognizable to UIM. In this example, there are five custom service actions, so this ruleset evaluates the five custom service actions and maps each one to the appropriate entity action. The entity actions are defined in the Service Fulfillment Web service code, as described in "Customizing ProcessInteraction".

Table 9-2 provides an example of mapping custom service actions to UIM entity actions.

Table 9-2 Example Mapping of Custom Service Actions

	Custom Service Action	UIM Entity Action
	
createMyService

	
create

	
updateMyService

	
change

	
changeAddToMyService

	
change

	
disconnectMyService

	
disconnect

	
suspendMyService

	
suspend

	
MAP_MY_SERVICE_ACTION_EXT.rst

This is a custom ruleset extension point that associates the MAP_MY_SERVICE_ACTION custom ruleset to the UIM-provided BusinessInteractionManager_getEntityAction extension point and configures the custom ruleset to run instead of the method that the extension point defines (BusinessInteractionManager.getEntityAction).

	
MyConfigurationManagerImpl.java

This is custom Java code that contains a series of if else statements that evaluate the mapped entity action. For each entity action, the code calls another method within the same class. Within each of these methods, the finite set of parameters that are valid for the specific service action that was mapped to the entity action is evaluated.

From there, the custom code calls various API methods to perform the work required to realize any service in UIM.

	
Numerous custom specifications and characteristics

When the custom code calls API methods, the methods may require a specification or characteristic as input to realize a service in UIM. So, your project may also have to define any needed specifications and characteristics. For example, you may define the My Service Service specification and the My Service Configuration Service Configuration specification. You may also define such characteristics as mySpecificServiceData1 and mySpecificServiceData2.

	
Numerous custom rulesets and ruleset extension points

When the custom code calls API methods, the existing API functionality may need to be extended to realize a service in UIM. So, your project may also have to define any needed rulesets that can be configured to run before or after the API methods that the custom code calls.

About the ProcessInteraction Response and Faults

The ProcessInteraction response returns a varying level of information based on the <responseLevel> value the request specifies. See "About the ResponseLevel Element" for more information.

ProcessInteraction returns an error to the calling system when:

	
It cannot find the business interaction specified by the calling system.

	
The calling system specifies an input item entity other than Service.

	
Any errors thrown by the custom code that ProcessInteraction calls.

GetInteraction

The GetInteraction operation enables external systems to retrieve a business interaction based on an external ID or business interaction ID. The data returned in the response depends on when GetInteraction is called and on the <responseLevel> value the GetInteraction request specifies.

When GetInteraction is called before ProcessInteraction, the response returns only the business interaction data. In this scenario, service data is not returned because ProcessInteraction has not yet processed the business interaction into current inventory, so there is no service data in UIM yet.

When GetInteraction is called after ProcessInteraction, the response returns the business interaction data and service data. In this scenario, service data is returned because ProcessInteraction has processed the business interaction into current inventory, so there is service data in UIM to retrieve. The level of detail of service data returned by the response depends on the <responseLevel> value the GetInteraction request specifies. See "About the ResponseLevel Element" for more information.

About the GetInteraction Flow

Figure 9-7 shows what occurs when the GetInteraction operation is called. A business interaction is represented as BI in the figure.

Figure 9-7 GetInteraction

[image: Description of Figure 9-7 follows]

Description of "Figure 9-7 GetInteraction"

About the GetInteraction Response and Faults

The GetInteraction response returns a varying level of information based on when the operation is called and on the <responseLevel> value the request specifies. See "About the ResponseLevel Element" for more information.

GetInteraction returns an error when:

	
The request does not specify an external ID or business interaction ID upon which to base the retrieval

	
It cannot find the business interaction specified in the request

UpdateInteraction

The UpdateInteraction operation enables external systems to transition UIM business entities to specific life-cycle states within the context of a business interaction.

When calling UpdateInteraction, the request must specify an external ID or business interaction ID and a business interaction action of APPROVE, ISSUE, CANCEL, or COMPLETE. Actions are defined by the BusinessInteractionActionEnum enumeration in the BusinessInteraction.xsd schema file. While this enumeration defines several actions, only the APPROVE, ISSUE, CANCEL, or COMPLETE actions are valid for UpdateInteraction.

UpdateInteraction uses the business interaction ID to find the service and service configuration, and performs the specified action for the service and service configuration. For example, if the action is APPROVE, it approves the service and service configuration associated to the business interaction and performs the action recursively to any child business interactions.

UpdateInteraction does not cascade to child services assigned to configuration items. For example, if the business interaction is associated to a service configuration, and the service configuration has a service configuration item with a child service assigned to it, the UpdateInteraction does not apply the action to the service configuration item child service status.

About the UpdateInteraction Flow

Figure 9-8 shows what occurs when the UpdateInteraction operation is called. A business interaction is represented as BI in the figure.

Figure 9-8 UpdateInteraction

[image: Description of Figure 9-8 follows]

Description of "Figure 9-8 UpdateInteraction"

About the UpdateInteraction Response and Faults

The UpdateInteraction response returns a varying level of information based on the <responseLevel> value the request specifies. See "About the ResponseLevel Element" for more information.

UpdateInteraction returns an error when:

	
It cannot find the business interaction specified by the calling system

	
The request specifies a value for <item> other than <service> or <connectivity>

GetConfiguration

The GetConfiguration operation retrieves the service configuration based on the search option specified in the request. The search options, which are defined in the ConfigurationMessages.xsd schema file, are listed and described in Table 9-3.

Table 9-3 GetConfiguration Search Options

	Search Option	Description
	
ServiceConfigurationSearchByConfigId

	
If the request specifies a service configuration ID, GetConfiguration retrieves the service configuration that matches the specified service configuration ID.

	
ServiceConfigurationSearchByEntityId

	
If the request specifies an entity ID (service ID), GetConfiguration retrieves the latest active service configuration (any state other than CANCELLED). If there is only one service configuration, GetConfiguration retrieves it.

	
ServiceConfigurationSearchByVersionNumber

	
If the request specifies an entity ID (service ID) and a version number, GetConfiguration retrieves the service configuration that matches the specified version number.

	
ServiceConfigurationSearchByConfigStatus

	
If the request specifies an entity ID (service ID) and the service configuration state, GetConfiguration retrieves the latest service configuration that matches the service configuration state. States can be IN_PROGRESS, DESIGNED, ISSUED, COMPLETED, PENDING_CANCEL, or CANCELLED.

	
ServiceConfigurationSearchByEffectiveDate

	
If the request specifies an entity ID (service ID) and the service configuration effective date, GetConfiguration retrieves the service configuration that matches the service configuration effective date.

You specify the search option in the GetConfiguration request, as shown in Example 9-3. The bolded line in the example shows the option of ServiceConfigurationSearchByConfigId. The element below the bolded line shows the configurationId to search for.

Example 9-3 GetConfiguration Request

<con:getConfigurationRequest>
 <con:searchOptions xsi:type="con:GetServiceConfigurationType"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <con:responseLevel>ENTITY_CONFIGURATION_EXPANDED</con:responseLevel>
 <con:configSearchOption
 xsi:type="con:ServiceConfigurationSearchByConfigId">
 <con:configurationId>123456</con:configurationId>
 </con:configSearchOption>
 </con:searchOptions>
</con:getConfigurationRequest>

About the GetConfiguration Flow

Figure 9-9 shows what occurs when the GetConfiguration operation is called.

Depending on which search option is specified, the flow may start with the Get Configuration box, or it may start with the Get Service box. For example, when the search option is ServiceConfigurationSearchByConfigId, the entry point to the flow is the Get Configuration box. When the search option is any other option, which are all based on the service ID, the entry point to the flow is the Get Service box.

Figure 9-9 GetConfiguration

[image: Description of Figure 9-9 follows]

Description of "Figure 9-9 GetConfiguration"

About the GetConfiguration Response and Faults

The GetConfiguration response returns a varying level of information based on the <responseLevel> value the request specifies. See "About the ResponseLevel Element" for more information.

GetConfiguration returns an error when:

	
The request specifies a search option other than the valid search options listed in Table 9-3, "GetConfiguration Search Options".

	
The request does not specify the data that the search option needs to perform the search

	
It cannot find the configuration ID or service ID specified in the request

UpdateConfiguration

The UpdateConfiguration operation transitions the state of the service and service configuration.

To transition the service, the request must specify the service action and service ID.

The valid service actions are:

	
COMPLETE

	
CANCEL

	
DISCONNECT

	
SUSPEND

	
RESUME

To transition the service configuration, the request must specify the service configuration action and one of the following:

	
Service ID

	
Service configuration ID

	
Service ID and service configuration version number

If the first option is specified (service ID), the operation transitions the latest active service configuration.

The valid service configuration actions are:

	
APPROVE

	
ISSUE

	
CANCEL

	
COMPLETE

	
Note:

To update the service or service configuration in a manner other than just transitioning the state, use the UIM Reference Web Service updateServiceConfiguration operation. See "UpdateServiceConfiguration" for more information.

About the UpdateConfiguration Response and Faults

The UpdateConfiguration response includes a success or failure message regarding the update to transition the service or service configuration. The response returns a varying level of information based on the <responseLevel> value the request specifies. See "About the ResponseLevel Element" for more information.

UpdateConfiguration returns an error when:

	
The request specifies an invalid service action or service configuration action.

	
The request specifies invalid data for service ID, service configuration ID, or service configuration version number.

Understanding the UIM Service Fulfillment Web Service

This example describes the steps that occur when a CRM sends an order to UIM through an OSS provisioning system for a new prepaid service subscription. The provisioning system sends order information to UIM, such as subscriber name and address, SIM Card, and services. UIM captures the subscriber and service information, and configures the service by assigning resources such as a telephone number (TN), and assigning registrars such as a home location register (HLR) and a voice mail service (VMS). UIM then sends data back to the provisioning system, and the provisioning system uses the data to call an OSS activation system to activate the services.

	
Note:

This example describes using the business interaction ID in the request and the response. However, the Web service also provides the ability to use an external object ID instead of the business interaction ID. When opting to use the external object ID, it is up to the user to ensure uniqueness.

	
Provisioning sends a CaptureInteraction request to UIM.

The request contains a business interaction specification, a business interaction action, and a list of items. Each of the items contains an action and an entity (both necessary to design the service), as well as optional parameters such as name and description.

In this example, the request specifies a business interaction action of CREATE. Based on this action, CaptureInteraction creates an instance of the business interaction specification and populates the instance with the input.

The response returns the business interaction ID for the business interaction instance that was created by the request.

	
Provisioning sends a ProcessInteraction request to UIM to configure the service.

The request contains the business interaction ID, so that ProcessInteraction knows which business interaction to process.

The response returns the same business interaction ID that was contained in the request.

	
Provisioning sends an UpdateInteraction request to UIM to change the status of the service.

The request contains the business interaction ID, and the status to which to update the business interaction. In this example, the request specifies a status of Approve.

UIM updates the business interaction and service configuration to Approve.

The response returns business interaction ID and the action taken in the form of an enumeration.

	
Provisioning sends a GetInteraction request to UIM to get the business interaction data.

The request contains the business interaction ID, which UIM uses to retrieve the business interaction data. The response returns the retrieved business interaction data.

	
Provisioning sends a GetConfiguration request to UIM to get the service and configuration data.

The request contains the service configuration ID, which UIM uses to retrieve the service and service configuration data. The response returns the retrieved service and service configuration data.

	
Provisioning calculates the delivery actions based on the differences between the retrieved business interaction data and the retrieved service and service configuration data.

	
Provisioning sends a request to the activation system to activate the subscriber on the primary and backup HLR and to activate the subscriber on a VMS.

	
Provisioning sends an UpdateInteraction request to UIM to change the status of the service.

The request contains the business interaction ID and the status to which to update the business interaction and service configuration. In this example, the request specifies a status of Issue.

UIM updates the business interaction and service configuration to Issue.

The response returns business interaction ID and the action taken in the form of an enumeration.

	
Provisioning sends a request to the activation system to activate the service registers.

The service is now considered delivered.

	
Provisioning sends an UpdateInteraction request to UIM to update the status of the service.

The request contains the business interaction ID and the status to which to update the business interaction and service configuration. In this example, the request specifies a status of Complete.

UIM updates the business interaction and service configuration to Complete.

The response returns business interaction ID and the action taken in the form of an enumeration.

Using the UIM Service Fulfillment Web Service

When using the UIM Service Fulfillment Web service, see the following sections:

	
Locating the WSDL and Schema Files

	
Deploying the Web Service

	
Testing the Web Service

	
Securing the Web Service

Locating the WSDL and Schema Files

The UIM Service Fulfillment Web service is defined by the UIMServiceFullment.wsdl file and is supported by several schema files. The WSDL file and supporting schema files are located in the UIM_Home/webservices/schema_servicefulfillment_webserivce.zip file.

About the WSDL File

Within ZIP file, the WSDL file is located in the ora_uim_sf_webservice/wsdl directory. The WSDL file defines the CaptureInteraction, ProcessInteraction, UpdateInteraction, GetInteraction, GetConfiguration, and UpdateConfiguration operations. Each Web service operation defines a request, a response, and the possible faults that can be thrown. For example, the WSDL file defines the following for the CaptureInteraction operation:

	
captureInteractionRequest

	
captureInteractionResponse

	
captureInteractionFault

	
inventoryFault

	
validationFault

The request, response, and faults each define an XML structure that is defined in the supporting schema files. The following excerpts show how an XML structure defined in the WSDL correlates to the supporting schema files.

For example, the WSDL file defines and references the biws namespace (bolded):

xmlns:biws="http://xmlns.oracle.com/communications/inventory/webservice/businessinteraction"
. . .
targetNamespace. . .
<xsd:import namespace="http://xmlns.oracle.com/communications/inventory/webservice/businessinteraction" schemaLocation="./schemas/InteractionMessages.xsd"/>
. . .
<wsdl:message name="CaptureInteractionRequest">
 <wsdl:part name=
 captureInteractionRequest" element="biws:captureInteractionRequest"/>
</wsdl:message>

This tells you that the captureInteractionRequest XML structure is defined in the schema file that defines the specified namespace as its target namespace. A search for the specified namespace reveals that InteractionMessages.xsd defines the referenced namespace as its target namespace.

After you determine which schema file defines the XML structure that the WSDL file references, you can navigate through the schema files to determine child XML structures and elements.

About the Schema Files

There are several schema files that support the UIM Service Fulfillment Web service. These schemas are categorized as reference schemas, Web service schemas, and business schemas.

Reference Schemas

Within the ZIP file, the reference schemas are located in the ora_uim_sf_webservice/wsdl/referenceSchemas directory. The reference schemas define common elements used by more than one operation. So, the elements are defined in one place and then referenced.

The reference schemas are:

	
InventoryCommon.xsd

	
InventoryFaults.xsd

	
FaultRoot.xsd

	
Note:

The reference schemas use the Inventory.xsdconfig file for XML namespace to Java package mapping.

Web Service Schemas

Within the ZIP file, the Web service schemas are located in the ora_uim_sf_webservice/wsdl/schemas directory. The Web service schemas define elements specific to the Web service, such as the request structures, the response structures, and any fault structures.

The Web service schemas are:

	
InteractionMessages.xsd

	
ConfigurationMessages.xsd

	
Note:

The Web service schemas use the wsdl-mapping.xsdconfig file for XML namespace to Java package mapping.

Business Schemas

Within the ZIP file, the business schemas are located in the ora_uim_business/schemas directory. Each Web service operation wraps a call (or multiple calls) to the UIM business layer, which is exposed through APIs. The wrapped APIs are the same APIs that the UIM UI calls in response to user input. The business layer APIs are based on functional area, as are the business schemas.

The business schemas are:

	
BusinessInteraction.xsd

	
Characteristic.xsd

	
Configuration.xsd

	
CustomObject.xsd

	
Entity.xsd

	
InventoryGroup.xsd

	
LogicalDevice.xsd

	
MediaStream.xsd

	
Network.xsd

	
NetworkAddress.xsd

	
Number.xsd

	
Party.xsd

	
PhysicalDevice.xsd

	
Pipe.xsd

	
Place.xsd

	
Role.xsd

	
Service.xsd

	
Specification.xsd

	
Note:

The API schemas use the xmlbeans-mapping.xsdconfig file for XML namespace to Java package mapping.

Deploying the Web Service

The UIM Service Fulfillment Web service is packaged in the UIMServiceFulfillment.war file, which is packaged in the inventory.ear file. So, when you deploy the inventory.ear file, you also deploy the UIM Service Fulfillment Web service.

For instructions on how to deploy the inventory.ear file, see UIM System Administrator's Guide.

Verifying the Deployment

You can verify that any UIM Web service is deployed by viewing it in the WebLogic Server Administration Console.

To verify that a UIM Web service is deployed:

	
Log in to the WebLogic Server Administration Console.

	
In the left panel, under Domain Structure, click the Deployments link.

The Summary of Deployments page appears.

	
Expand oracle.communications.inventory.

	
Under oracle.communications.inventory, expand Web Services.

	
Under Web Services, click the link that represents the name of the Web service.

For example, click the oracle.communications.inventory.sfws.UIMServiceFulfillmentPortImpl link.

The Settings page for the selected Web service appears.

	
Click the Testing tab.

	
Expand the name of the Web service.

For example, expand oracle.communications.inventory.sfws.UIMServiceFulfillmentPortImpl.

	
Under the expanded Web service, click the WSDL link.

The WSDL file appears. Here, you can view the Web service operations that are deployed.

Testing the Web Service

Testing the Web service is done after you deploy the inventory.ear file, which automatically deploys the Service Fulfillment Web service.

Web services can be tested by using any software designed to test Web services, such as:

	
LISA for testing SOAP XML through HTTP or JMS

	
SoapUI for testing SOAP XML through HTTP

	
HermesJMS for testing SOAP XML through JMS

Test Input XML

The UIM installation provides the GSM 3GPP Technology Pack and the Cable TV Technology Pack, and both technology packs use the UIM Service Fulfillment Web service. The technology packs provide test input XML that you can use to test the UIM Service Fulfillment Web service operations. For additional information on these technology packs, see UIM GSM 3GPP Technology Pack Implementation Guide and UIM Cable TV Technology Pack Implementation Guide.

You can also generate your own test input XML by using any software that generates XML based on schema, such as XML Spy, LISA, SoapUI, and so forth.

Preconfiguration for Testing

Prior to running the UIM Service Fulfillment Web service operations, you must have the UIM base cartridges deployed into your UIM environment. The base cartridges are located in the UIM_Home/cartridges/base directory. For additional information on the base cartridges, see UIM Cartridge and Technology Pack Guide.

Securing the Web Service

The Service Fulfillment Web service has security enabled upon installation. Specifically, the HTTP and JMS Web service ports are associated to the default WebLogic security policy file, Auth.xml. As a result, a user name and password must be sent in clear text over a secure tunnel (HTTPS/t3s).

	
Note:

The user name and password, and the payload, are not encrypted to avoid significant performance impacts.

About Policy Files

A policy file can be associated to a port, or to a specific operation defined for the port. When a policy file is associated to a port, it automatically secures all operations defined for the Web service. When a policy file is not associated to a port, a policy file can be associated to one or more operations. If necessary, each operation can specify a different policy file. If no policy file is associated to the port, or to any operations, the Web service is unsecured and no security validations are performed.

Upon installation of UIM, the WebLogic default policy file, Auth.xml, is associated to UIMServiceFulfillmentHTTPPort and UIMServiceFulfillmentJMSPort. So, all operations are automatically secured, and all operations under each port require a user name and password in the SOAP message header. Example 9-4 shows a SOAP message header with a user name and password specified.

Example 9-4 SOAP Message Header

<soapenv:Envelope xmlns:com="http://xmlns.oracle.com/communications/inventory/webservice/common" xmlns:ser="http://xmlns.oracle.com/communications/inventory/webservice/service" xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">
 <soapenv:Header>
 <wsse:Security soapenv:mustUnderstand="1"
 xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/oasis-200401-
 wss-wssecurity-secext-1.0.xsd">
 <wsse:UsernameToken wsu:Id="UsernameToken-1"
 xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-
 wss-wssecurity-utility-1.0.xsd">
 <wsse:Username>uimuser1</wsse:Username>
 <wsse:Password
 Type="http://docs.oasis-open.org/wss/2004/01/oasis-200401-
 wss-username-token-profile-1.0#PasswordText">Welcome@123
 </wsse:Password>
 </wsse:UsernameToken>
 </wsse:Security>
 </soapenv:Header>
 <soapenv:Body>
 <ser:captureInteractionRequest>
 . . .
 </ser:captureInteractionRequest>
 </soapenv:Body>
</soapenv:Envelope>

Modifying Web Service Security

You can modify the default security settings through the WebLogic Server Administration Console.

To modify the default Web service security settings, see the following:

	
Accessing Security

	
Associating a Policy File

	
Disassociating a Policy File

	
Modifying the Deployment Plan

Accessing Security

To access security:

	
Log in to the WebLogic Server Administration Console.

	
In the left panel, under Domain Structure, click the Deployments link.

The Summary of Deployments page appears.

	
Expand oracle.communications.inventory.

	
Under oracle.communications.inventory, expand Web Services.

	
Under Web Services, click the link that represents the name of the Web service.

For example, click the oracle.communications.inventory.sfws.UIMServiceFulfillmentPortImpl link.

	
Click the Configuration tab, then click the WS-Policy tab.

The WS-Policy tab lists the policy files associated with the Web service. Upon installation, this page lists:

	
UIMServiceFulfillmentHTTPPort with the Auth.xml policy file associated

	
UIMServiceFulfillmentJMSPort with the Auth.xml policy file associated

	
Expand either port.

All operations are listed under the port.

Associating a Policy File

You can associate a policy file to a port, or to a specific operation defined for the port.

To associate a policy file:

	
Access security for the Web service.

See "Accessing Security" for more information.

	
Click the port or a specific operation.

The available policy files are listed on the left, and the policy files associated with the port or operation are listed on the right.

	
In the left side, select an available policy file to associate to the port or operation.

	
Click the right arrow, which moves the available policy file to the list of associated policy files.

	
Click OK.

Disassociating a Policy File

You can disassociate a policy file from a port or from a specific operation defined for the port.

To disassociate a policy file:

	
Access security for the Web service.

See "Accessing Security" for more information.

	
Click the port or a specific operation.

The available policy files are listed on the left, and the policy files associated with the port or operation are listed on the right.

	
In the right side, select the policy file to disassociate from the port or operation.

	
Click the left arrow, which moves the associated policy file to the list of available policy files.

	
Click OK.

Modifying the Deployment Plan

If you choose to modify the default security settings for the Service Fulfillment Web service, then you also need to modify the deployment plan for the Service Fulfillment Web service.

The deployment plan is located in the UIM_Home/app/plan/Plan.xml file.

When you install UIM, the deployment plan contains the following:

<variable-definition>
 <variable>
 <name>WsPolicy_policy:Auth.xml_Direction_13075993400140</name>
 <value>inbound</value>
 </variable>
</variable-definition>
<module-descriptor external="false">
 <root-element>webservice-policy-ref</root-element>
 <uri>WEB-INF/weblogic-webservices-policy.xml</uri>
 <variable-assignment>
 <name>WsPolicy_policy:Auth.xml_Direction_13075993400140</name>
 <xpath>
 /webservice-policy-ref/port-policy/
 [port-name="UIMServiceFulfillmentHTTPPort"]/
 ws-policy/[uri="policy:Auth.xml"]/direction
 </xpath>
 </variable-assignment>
 <variable-assignment>
 <name>WsPolicy_policy:Auth.xml_Direction_13075993400140</name>
 <xpath>
 /webservice-policy-ref/port-policy/
 [port-name="UIMServiceFulfillmentJMSPort"]/
 ws-policy/[uri="policy:Auth.xml"]/direction
 </xpath>
 </variable-assignment>
</module-descriptor>

If you modify the default security settings through the WebLogic Server Administration Console, the <value> element (bolded in the example) gets set to both, and needs to be reset back to inbound.

5 Extending Life Cycles

This chapter provides information on extending Oracle Communications Unified Inventory Management (UIM) entity life cycles. An entity life cycle refers to an entity having a start to its life, an end to its life, and a defined state at any given point during its life. Life-cycle state transition definitions are part of the UIM metadata, and these definitions can be extended to solve specific business requirements.

An entity can be defined as life-cycle managed in the metadata. Life-cycle managed entities transition through various states throughout the life cycle. The states are determined by the transition definition specified for the entity in the metadata.

The information presented in this chapter describes statically extending UIM, which can result in backwards compatibility issues. See "Backwards Compatibility" for the implications regarding this type of extension.

This chapter contains the following sections:

	
About Business Interactions

	
Understanding Metadata File Content

	
Extending Life Cycles through the Metadata Files

	
About Life Cycle Management Interfaces

	
Note:

Before you begin reading about extending life cycles, you should have an understanding of the following concepts described in UIM Concepts:
	
Business Interactions

	
Life Cycles

About Business Interactions

Business interactions represent business transactions or events that affect products, services, and resources in inventory. They include service requests, sales orders, and network planning projects. Business interactions are modeled in inventory to facilitate change in the inventory, provide traceability, and enable transaction cancellations and changes. They can involve current business transactions, such as service orders, or future planned events, such as grooming projects.

In the UIM user interface (UI), you can switch between business interactions and current inventory by choosing Current on the menu bar. The Current menu has the following options:

	
Current: Switches from a business interaction to current inventory.

	
Recent BIs: Lists the five most recently accessed business interactions.

	
Search: Opens the Business Interaction Search page. Accessing a business interaction from the Search page switches the current business interaction to the selected business interaction, and also adds the selected business interaction as an option on the Current menu.

Business interactions tie in with transition definitions because the business states through which an entity transitions depend on whether the entity is within the context of a business interaction or current inventory. Each transition definition can define different <from> and <to> business states for business interaction versus current inventory. See Example 5-4, "Create Transition".

Understanding Metadata File Content

Extending an entity to be life-cycle managed, and extending life-cycle state transitions, is done through the metadata files and involves the definitions of:

	
Entities

	
Enumerations

	
Transitions

Understanding Entity Definitions

This section builds upon the information presented in "Understanding Entity Definitions" in Chapter 4, Extending the Data Model.

An entity can be defined as life-cycle managed and business-interaction enabled in the metadata. A business-interaction enabled entity is, by inheritance, automatically a life-cycle managed entity. Conversely, an entity can be defined as life-cycle managed in the metadata without being a business-interaction enabled entity. The elements and attributes used to define an entity as life-cycle managed and business-interaction enabled are defined in the uim-plugin.xsd file. For example, the <lifecycle> element is used to define an entity as life-cycle managed, and the <businessInteractionEnabled> element is used to define an entity as business-interaction enabled.

Example 5-1 is an excerpt from the ocim-number-entites.xml file that shows the TelephoneNumber entity definition. The definition includes the declaration of the life-cycle managed and business-interaction enabled capabilities, which are bolded in the example. The <lifecycle> element defines the stateType attribute, which defines a value of InventoryState. InventoryState is an enumeration and is described in "Understanding Enumeration Definitions".

Example 5-1 Entity Definition

<entity type="ocim:TelephoneNumber" interface="oracle.communications.inventory.api.entity.TelephoneNumber" accessControlled="true">
. . .
 <!-- **************** Capabilities ******************-->
 <lifecycle stateType="ocim:InventoryState"/>
 <consumable prefix="TN" attribute="telephoneNumber"
 assignmentStateType="ocim:AssignmentState">
 <consumer name="ocim:Service" ConfigurationItemEnabled="true"/>
 </consumable>
 <referenceEnabled prefix="TelephoneNumber" attribute="telephoneNumber"/>
 <characteristic spec="ocim:CharacteristicSpecification">
 <characteristicName name="ocim:TNCharacteristic"
 interface="oracle.communications.inventory.api.entity.TNCharacteristic"
 table="TN_CHAR"/>
 </characteristic>
 <businessInteractionEnabled history="true" visibilityState="SHOW"/>
 <groupEnabled/>
. . .
</entity>

Understanding Enumeration Definitions

This section builds upon the information presented in "Understanding Enumeration Definitions" in Chapter 4, Extending the Data Model.

About Life-Cycle States

Life-cycle managed entities transition through various states throughout the life cycle. These life-cycle states are defined as enumerations. There are two types of life-cycle states that an entity transitions through: Business states and object states.

	
A business state represents the current state as a result of a business action such as validate, approve, issue, complete, or cancel.

	
An object state represents the current state as a result of an object activity such as create, update, or delete.

Business state enumerations are defined in the *-enum-entities.xml and *-enum-types.xsd metadata files. Numerous business state enumerations are defined in the metadata upon installation of UIM, and you can extend the business state enumerations to solve business requirements.

Object state enumerations are defined in a Java class and cannot be extended. The object state enumerations are:

	
PLANNED

	
QUEUED

	
ACTIVE

	
INACTIVE

	
CANCELLED

	
DELETED

Understanding Business State Enumerations

Example 5-2 is an excerpt from the ocim-enum-entities.xml file, which defines the InventoryState enumeration type.

Example 5-2 Enumeration Type Definition

<enum type="ocim:InventoryState" enumType="oracle.communications.inventory.api.entity.InventoryState" adminState="true"/>

Example 5-1, "Entity Definition" defined the TelephoneNumber entity to be life-cycle managed, and the definition included the stateType attribute value of InventoryState, which is an enumeration.

Example 5-3 is an excerpt from the ocim-enum-types.xsd file, which defines the enumeration values for the InventoryState enumeration type. The enumeration type and enumeration values indicate that the TelephoneNumber entity may transition through up to eight business states during its life cycle.

Example 5-3 Enumeration Values Definition

<xs:simpleType name="InventoryState">
 <xs:annotation>
 <xs:documentation>Inventory Status</xs:documentation>
 </xs:annotation>
 <xs:restriction base="xs:string">
 <xs:enumeration value="PLANNED"/>
 <xs:enumeration value="PENDING_INSTALL"/>
 <xs:enumeration value="INSTALLED"/>
 <xs:enumeration value="PENDING_UNAVAILABLE"/>
 <xs:enumeration value="UNAVAILABLE"/>
 <xs:enumeration value="PENDING_REMOVE"/>
 <xs:enumeration value="END_OF_LIFE"/>
 <xs:enumeration value="PENDING_AVAILABLE"/>
 </xs:restriction>
</xs:simpleType>

Understanding Transition Definitions

	
Note:

Transition definitions for current inventory are defined within the <live> element; <live> displays as current in the UIM UI.

A transition defines the intermediate step from one business state to another business state, or from one object state to another object state. For example, within the context of a business interaction, the create transition moves an entity from inception to the initial PENDING_INSTALL business state, and the createComplete transition moves an entity from the PENDING_INSTALL business state to the INSTALLED business state. Similarly, the create transition moves an entity from inception to the initial QUEUED object state, and the createComplete transition moves an entity from the QUEUED object state to the ACTIVE object state.

Transition definitions are defined in files that start with uim- and end with -transitions.xml. For example, uim-default-transitions.xml. The transition definition files are located in the UIM_Home/cartridges/tools/ora_uim_entity_sdk.zip/src/uim_poms_lib.jar file.

You can extend business state enumerations, but you cannot extend object state enumerations. For transitions, you can extend both business state and object state transitions.

Example 5-4 is an excerpt from the uim-default-transitions.xml file, which defines the Create transition for the business state:

	
From inception to PENDING_INSTALL within the context of a business interaction

	
From inception to INSTALLED within the context of current inventory

The example also defines the Create transition for the object state:

	
From inception to QUEUED within the context of a business interaction

	
From inception to ACTIVE within the context of current inventory

Example 5-4 Create Transition

<transition name="Create" priority="0" default="true">
 <objectActivity value="CREATE"/>
 <businessState type="ocim:InventoryState">
 <attribute name="adminState" isCharacteristic="false"/>
 <businessInteraction>
 <from/>
 <to>PENDING_INSTALL</to>
 </businessInteraction>
 <live>
 <from/>
 <to>INSTALLED</to>
 </live>
 </businessState>
 <objectState>
 <businessInteraction>
 <from/>
 <to>QUEUED</to>
 </businessInteraction>
 <live>
 <from/>
 <to>ACTIVE</to>
 </live>
 </objectState>
</transition>

Understanding How Transitions Are Triggered

Transitions can be triggered automatically from within custom code or manually from within the UIM user interface.

For information on the life cycle management interfaces that are available when writing custom code to automatically transition an entity's life-cycle state, Custom code can be called from:

	
Customized user interface

	
Rulesets

	
Web services

You can manually transition an entity's life-cycle state from the Actions menu on the Summary page of any entity that is defined as life-cycle managed. The Actions menu options reflect the applicable transitions defined for the entity, based on the entity's current state.

	
Note:

Manually transitioning through an entity's life cycle by selecting the options on the Actions menu implies that the correct life-cycle state is dependent on user interaction to initiate the transition.

Example 5-5 is an excerpt from the uim-default-transitions.xml file, which defines the Activate and Deactivate transitions. The Activate and Deactivate transitions are shown in Figure 5-1, "Summary Page Actions Menu".

The example defines the Activate transition for the business state:

	
From UNAVAILABLE to PENDING_AVAILABLE within the context of a business interaction

	
From UNAVAILABLE to INSTALLED within the context of current inventory

The example defines the Activate transition for the object state:

	
Nothing is defined within the context of a business interaction

	
From INACTIVE to ACTIVE within the context of current inventory

The example defines the Deactivate transition for the business state:

	
From INSTALLED to PENDING_UNAVAILABLE within the context of a business interaction

	
From INSTALLED to UNAVAILABLE within the context of current inventory

The example defines the Deactivate transition for the object state:

	
Nothing is defined within the context of a business interaction

	
From ACTIVE TO INACTIVE within the context of current inventory

Example 5-5 Activate and Deactivate Transitions

<transition name="Activate" priority="0" default="true">
 <businessAction type="ocim:ResourceAction" value="ACTIVATE"/>
 <businessState type="ocim:InventoryState">
 <attribute name="adminState" isCharacteristic="false"/>
 <businessInteraction>
 <from>UNAVAILABLE</from>
 <to>PENDING_AVAILABLE</to>
 </businessInteraction>
 <live>
 <from>UNAVAILABLE</from>
 <to>INSTALLED</to>
 </live>
 </businessState>
 <objectState>
 <live>
 <from>INACTIVE</from>
 <to>ACTIVE</to>
 </live>
 </objectState>
 . . .
</transition>
<transition name="Deactivate" priority="0" default="true">
 <businessAction type="ocim:ResourceAction" value="DEACTIVATE"/>
 <businessState type="ocim:InventoryState">
 <attribute name="adminState" isCharacteristic="false"/>
 <businessInteraction>
 <from>INSTALLED</from>
 <to>PENDING_UNAVAILABLE</to>
 </businessInteraction>
 <live>
 <from>INSTALLED</from>
 <to>UNAVAILABLE</to>
 </live>
 </businessState>
 <objectState>
 <live>
 <from>ACTIVE</from>
 <to>INACTIVE</to>
 </live>
 </objectState>
 . . .
</transition>

Figure 5-1 shows the Telephone Number Summary page Actions menu, which reflects the applicable transitions defined for the TelephoneNumber entity based on its current state. The telephone number, shown in the context of current inventory, has an inventory status of Installed, so Deactivate is the only available transition option. If you select Deactivate, the inventory status changes to Unavailable, and Activate becomes the only available transition option. When in the context of a business interaction, the value of the Inventory Status field reflects the states defined for <businessInteraction> based on the entity's current state. When in the context of current inventory, the value of the Inventory Status field reflects the status defined for current (live) based on the entity's current state.

Figure 5-1 Summary Page Actions Menu

[image: Surrounding text describes Figure 5-1 .]

About Transition Groups

A transition group provides the ability to associate a group of transition definitions with a specification. A transition group requires a name, which is used to associate it with a specification. A transition group can be associated with multiple specifications. By default, transition definitions defined within a transition group are templates. Templates are transition definitions that are not active/searchable until the group in which they are defined is associated with a specification. Within a uim-*-transitions.xml file, the <transitionGroup> element can define the templateOnly optional attribute, which defaults to true. If set to true, the transition definitions in the group are active/searchable, even though they are not yet associated with a specification.

Example 5-6, "Transitions Definition" shows an example of a transition group.

Extending Life Cycles through the Metadata Files

You extend life cycles by creating new metadata files.

	
Caution:

Do not make modifications to the existing metadata files. See "Backwards Compatibility" for the issues involved with modifying the existing metadata files.

The metadata files are contained in the UIM_Home/cartridges/tools/ora_uim_entity_sdk.zip/src/uim_poms_lib.jar file.

You can use Oracle Communications Design Studio to create new metadata files. For example, you can import the ora_uim_entity_sdk.zip file and create any new XML or XSD files within the imported project.

This section builds upon information presented in Chapter 4, "Extending the Data Model". Any new metadata files you create must reside in ora_uim_entity_sdk project to be picked up by the generator. See "Applying Metadata Static Extensions" for more information.

Extending Entity Definitions

You can extend an entity definition to be business-interaction enabled, life-cycle managed, or both.

Defining an Entity as Life-Cycle Managed

The presence of the <lifecycle> element in the entity definition defines an entity as life-cycle managed. stateType is a required attribute of the <lifecycle> element. The value of stateType is an enumeration type that is defined in the ocim-enum-entities.xml file. This file defines several enumeration types that can be specified for stateType. Each enumeration type defines a set of enumeration values that represent the states of a specific life cycle. initialState is an optional attribute of the <lifecycle> element. initialState defines an enumeration that represents the default initial life-cycle state.

To define a new entity as life-cycle managed, add the <lifecycle> element to the entity definition in the new *-entities.xml file. See "Defining New Entities" for more information.

To define an existing entity as life-cycle managed, add the <lifecycle> element to the existing entity by extending the entity definition in the new *-entities.xml file. See "Extending Existing Entities" for more information.

Any new entity files you create must end with -entities.xml and reside in the ora_uim_entity_sdk/src/api directory, to be picked up by the entity generator.

Defining an Entity as Business-Interaction Enabled

The presence of the <businessInteractionEnabled> element in the entity definition defines an entity as business-interaction enabled. history is an optional attribute of the <businessInteractionEnabled> element. The history attribute is a boolean: if it is set to true, the version object is kept in the data store; if it is set to false, the version object is deleted. (Versioning is not covered in this guide. For information about versioning, see UIM Concepts.) visibilityState is also an optional attribute of the <businessInteractionEnabled> element. visibilityState defines an enumeration that is the default initial display level for the business-interaction enabled entity.

To define a new entity as business-interaction enabled, add the <businessInteractionEnabled> element to the new entity definition in the new *-entities.xml file. See "Defining New Entities" for more information.

To define an existing entity as business-interaction enabled, add the <businessInteractionEnabled> element to the existing entity by extending the entity definition in the new *-entities.xml file. See "Extending Existing Entities" for more information.

Any new entity files you create must end with -entities.xml and reside in the ora_uim_entity_sdk/src/api directory to be picked up by the entity generator.

	
Note:

If an entity is inherited from a business-interaction enabled entity, the entity can not be defined as business-interaction enabled.

Defining an Entity as Life-Cycle Managed and Business-Interaction Enabled

A business-interaction enabled entity is, by inheritance, automatically a life-cycle managed entity. The presence of the <businessInteractionEnabled> element in the entity definition defines an entity as business-interaction enabled and as life-cycle managed. However, the presence of the <lifecycle> element in the entity definition is still required to specify stateType. Example 5-1, "Entity Definition" showed both the <lifecycle> and <businessInteractionEnabled> elements in the entity definition.

Extending Enumeration Definitions

You can create new enumeration files to address business requirements. New files you create must end with -entities.xml or -types.xsd. New files that follow this naming convention, and that reside the ora_uim_entity_sdk/src/api directory, are picked up by the entity generator.

See "Defining New Enumerations" and "Extending Existing Enumerations" for more information.

Extending Transition Definitions

When extending transitions by either creating new transitions or extending existing transitions, look at the existing uim-*-transitions.xml files for examples. Any new entity files you create that end with -transitionss.xml and that reside in the ora_uim_entity_sdk/src/api directory are picked up by the entity generator

The following transition procedures state how to create a new file, but you do not need to create a new transitions file for each new transition. For example, you can optionally define all new transitions and extending existing transitions in the same file.

Defining New Transitions

To add a new transition to a new *-transitions.xml file:

	
Create a new XML file.

The file name must end with -transitions.xml. For example, myNewFile-transitions.xml.

	
Open an existing uim-*-transitions.xml file.

	
Copy and paste a transition definition from the existing file to your new file.

	
Modify the copied transition definition as needed:

	
Change the name of the transition to reflect the name of your new transition.

	
Remove or update the tags to reflect the definition of your new transition.

Extending Existing Transitions

To extend an existing transition in a new *-transitions.xml file:

	
Create a new XML file.

The file name must end with -transitions.xml. For example, myNewFile-transitions.xml.

	
Open the existing uim*-transitions.xml file that you plan to extend.

	
Copy and paste the transition definition from the existing file to your new file.

	
Modify the copied transition definition as needed:

	
Add additional <businessState> elements as needed.

	
Do not change the transition name.

	
If the copied transition does not define the priority attribute, add it and set the value to 1 (the default is 0). If the copied transition already defines the priority attribute, increase the value. The priority attribute value is used when the transition name is not unique. The higher the value, the higher the priority.

Updating Properties Files

If you extend life cycles, you need to update some properties files that are used to display life-cycle statuses. The following properties files are located in the UIM_Home/config/resources/logging directory:

	
status.properties

This file defines statuses that are referenced by the UI. If life cycles are extended by introducing new statuses through the metadata transition files, and the statuses are referenced by the UI, the status.properties file must be updated to reflect the new statuses.

	
enum.properties

This file defines enumerations that are referenced by the UI. If life cycles are extended by introducing new enumerations through the metadata enumeration files, and the enumerations are referenced by the UI, the enum.properties file must be updated to reflect the new enumerations.

Updating Security

If you extend life cycles, you need to update security for any new actions to display in the UIM UI.

To update security:

	
Log in to the Enterprise Manager Console.

	
In the navigation panel, expand Application Deployments and click the oracle.communications.inventory (AdminServer) link.

The oracle.communications.inventory work area appears.

	
From the Application Deployment list menu, select Security, then select Application Policies.

The Application Policies work area appears.

	
Expand the Search work area.

	
From the Principle Type list, select Application Role and click the search icon.

The search results display.

	
Select the uimuser row and click Edit.

The Edit Application Grant work area appears.

	
Under Permissions, click Add.

The Add Permission dialog box appears.

	
Expand the Search work area, and choose Permissions.

	
From the Permission Class list, select oracle.security.jps.ResourcePermission.

	
From the Resource Name list, select Starts With.

	
In Resource Name, enter the following text where Entity is any entity such as Service, CustomObject, and so forth, and where BusinessAction is your custom business action:

resourceType=PAGE_ACTION,resourceName=Entity.BusinessAction

	
Click the search icon.

The search results display.

	
Select the applicable resource name, and click Continue.

	
In Permission Actions, enter view.

	
Click Select.

The Add Permission dialog box closes.

	
Click OK to grant the permission.

More on Transition Definitions

The following information is provided to help you define *-transitions.xml files. Each transition file can define multiple transition definitions, and each transition definition can define multiple states. Example 5-6, "Transitions Definition" includes all the possible elements and attributes described below.

	
<transition> can be defined multiple times within the same file.

	
name is required and should be unique. If duplicate transition names are found, the one with the higher priority attribute value is used.

	
entityType is optional. If it is not specified, the transition definition is available for all entity types.

	
priority is optional, and has a default value of 0. The higher the value, the higher the priority. The value is used when name is not unique. If the same name and same priority are specified, an error occurs.

	
<specification> is optional. If it is not specified, the transition definition is available for entities with any specification.

	
<businessAction> and <objectActivity> are optional, but one of them must be specified. These values are used by the lookup process to determine the transition definition.

	
<businessState> can be defined multiple times within a transition. This defines the business states that the entity transitions through during its life cycle.

	
<businessState> can be set on an entity's attribute or a custom attribute.

	
type must be a valid enumeration.

	
isCharacteristic indicates whether <businessState> is an attribute or a custom attribute.

	
name is either the attribute name or the custom attribute name.

	
If isCharacteristic is set to true, you can specify the characteristicSpecName attribute. If this attribute is not set, the system uses the name attribute value as the characteristic-specific name.

	
<businessState> can optionally define zero, one, or many <businessInteraction> blocks, or zero or one <live> block, or both.

	
If <businessInteraction> is defined, its <from> state is used to match the entity's current business state if the transition happens within the context of a business interaction. If <from> is not specified, it is considered a wild card and can be matched with any entity's current state.

	
If <live> is defined, its <from> state is used to match the entity's current business state if the transition happens within the context of current inventory.

	
If the transition happens within the context of a business interaction and <businessInteraction> is not defined, the search for a match continues. Similarly, if the transition happens within the context of current inventory and <live> is not defined, the search for a match continues.

	
The <businessInteraction> block and <live> block can define multiple <from> states. This allows matching multiple <from> states without defining them separately in each <businessState> block. If <from> is not specified, it is considered a wild card and can be matched with any entity's current state.

	
There can be only one <to> state defined in the <businessInteraction> and <live> blocks. The value is used to set the entity's business state. If <to> is not specified, the entity's current state is not changed.

	
Only one <objectState> block can be defined for the transition definition.

	
<objectState> can define zero, one, or many <businessInteraction> blocks, and zero or one <live> block, and each can define multiple <from> states.

	
The <dependants> block defines the methods to retrieve the dependent entities and how to transition them. Multiple <dependants> blocks can be defined in a transition definition.

	
attribute is the attribute name of the parent entity and is used to hold the dependent entities by the parent entity.

	
isCollection is a boolean that indicates whether attribute holds a collection (true) or a single dependent entity (false).

	
If the dependent entity is accessed indirectly through the weak reference of the attribute, then weakReference is the name of the access method to resolve the weak reference. For example, the BusinessInteraction entity has an items attribute that holds a collection of BusinessInteractionItem entities, but the BusinessInteractionItem entity has a weak reference that refers to the real dependent entity (TelephoneNumber). The toEntity attribute is specified to resolve the TelephoneNumber entity from the BusinessInteractionItem entity.

	
After the dependent entities have been resolved, the system is ready to transition the dependent entities with the parent's business action and object activity. However, if useDependentObjectActivity is true, the system uses the dependent entity's object activity and parent entity's business action to transition the dependents.

	
If the parent's business action is not valid for transitioning the dependents, you have the option to specify one or more <transitionName> elements in the <dependants> block. TransitionNames retrieves the transitions in sequence, then uses the transition's business action and object activity to look up the matching transition for each dependent. If there is no matching transition by using transitionNames, the action described in the previous bullet is performed.

Example 5-6 Transitions Definition

<transitionGroup name="defaultBusinessInteractionGroup" templateOnly="false">
 <transition name="BusinessInteractionCreate"
 entityType="ocim:BusinessInteraction" assignable="true" priority="0">
 <objectActivity value="CREATE"/>
 <businessState type="ocim:BusinessInteractionState">
 <attribute name="adminState" isCharacteristic="false"/>
 <businessInteraction>
 <from/>
 <to>CREATED</to>
 </businessInteraction>
 <live>
 <from/>
 <to>CREATED</to>
 </live>
 </businessState>
 <objectState>
 <businessInteraction>
 <from/>
 <to>ACTIVE</to>
 </businessInteraction>
 <live>
 <from/>
 <to>ACTIVE</to>
 </live>
 </objectState>
 </transition>
 <transition name="BusinessInteractionComplete"
 entityType="ocim:BusinessInteraction" assignable="true" priority="0">
 <businessAction type="ocim:BusinessInteractionAction" value="COMPLETE"/>
 <businessState type="ocim:BusinessInteractionState">
 <attribute name="adminState" isCharacteristic="false"/>
 <businessInteraction>
 <from>CREATED</from>
 <from>IN_PROGRESS</from>
 <to>COMPLETED</to>
 </businessInteraction>
 <businessState>
 <objectState>
 <businessInteraction>
 <from>ACTIVE</from>
 <to>INACTIVE</to>
 </businessInteraction>
 </objectState>
 <dependants attribute="items" isCollection="true" weakReference="toEntity"
 useDependentObjectActivity="true">
 </dependants>
 </transition>
</transitionGroup>

About Life Cycle Management Interfaces

The following sections describe life cycle management interfaces. For information on the methods defined by any of these interfaces, see the Javadoc. For instructions on how to access the Javadoc, see "Javadoc Documentation".

LifeCycleManaged

An entity that is defined as life-cycle managed in the metadata automatically implements the LifeCycleManaged interface. It is not necessary to include the tag:

<implements interface="oracle.communications.inventory.api.LifeCycleManaged"/>

The LifeCycleManaged interface:

	
Defines a business state for the entity

A business state represents the current state as a result of a business action such as validate, approve, issue, complete, or cancel.

	
Defines an object state for the entity

An object state represents the current state as a result of an object activity such as create, update, or delete.

TransitionManager

An entity that is defined as life-cycle managed in the metadata automatically implements the LifeCycleManaged interface. This enables you to call methods on the oracle.communications.inventory.api.common.TransitionManager interface, which takes in a LifeCycleManaged entity as an input parameter.

The TransitionManager interface:

	
Defines methods that take in a business action and appropriately transition the business and object states

	
Automatically updates the business state and object state of any life-cycle managed dependent entities when the parent life-cycle managed entity business state or object state is updated

	
Provides the ability to associate or disassociate a specification with a transition group

Transition Definition Search

The transition() method provides the ability to transition through the defined business states and object states. To do this, it must first determine the transition definitions for business state and object state that apply to the entity. This is accomplished through a search that takes place within the transition() method.

The transition() method input parameters are the life-cycle managed entity, business action, and object activity. The life-cycle managed entity parameter contains entity type and specification, which are used in the transition definition search. If no match is found, a less relevant search is performed until a transition definition is found. The following lists the search criteria in the most-significant to least-significant order. The least-relevant transition definition returned would be the default transition definition.

	
Business action, object activity, entity type, specification

	
Business action, object activity, entity type

	
Business action, object activity

At this point, the search has returned one or more transition definitions that matched the criteria. This list of transition definitions is now interrogated to find one that defines a <from> business state that matches the entity's current business state. Whether the entity is within the context of a business interaction determines which <from> business state is interrogated: Business interaction or current (live).

[image: Oracle Corporation]

1 Overview

This chapter provides an overview of extending Oracle Communications Unified Inventory Management (UIM) that includes the following information:

	
Extending UIM

	
Tools for Extending UIM

	
Documentation for Extending UIM

	
Guidelines for Extending UIM

	
Note:

Throughout this guide, the UIM_Home placeholder is used to represent the directory where you installed UIM. For a typical UIM installation, UIM_Home is opt/Oracle/Middleware/user_projects/domains/domain_name/UIM, where domain_name is the domain name you supplied when installing UIM.

Extending UIM

UIM extensions can be categorized as static or dynamic:

	
Static extensions are changes made prior to rebuilding the application, which results in the changes becoming a part of the application deployment. For example, extending the data model involves adding content to the existing metadata files, which are contained within the inventory.ear file. So, you must rebuild the inventory.ear file to include the changed metadata files, and then redeploy the application for the changes to affect.

	
Dynamic extensions are made anytime, applied at runtime, and do not require rebuilding the application for the changes to take effect. For example, a cartridge containing specifications can be deployed into UIM, making the specifications available within the application without rebuilding the application.

Creating Cartridges

Cartridges can contain specifications, characteristics, rulesets, and extended code. You can create cartridges to meet specific business needs in Oracle Communications Design Studio. For example, if your equipment requires specific logic not provided by the EquipmentManager class, you can create your own class, inherited from the EquipmentManager class, and write a new method to address the specific equipment logic. The new method can then be called from within a ruleset.

The extensions defined within a cartridge may be static or dynamic. Cartridges are further explored in Chapter 2, "Using Design Studio to Extend UIM".

Extending the Data Model

You can statically extend the data model by adding new columns to existing tables, or by adding new tables. For example, your business requirements may dictate that you save particular information regarding a telephone number that the existing UIM data model does not save. You can extend the UIM data model to include this piece of information. Your business requirements may dictate that you save information unrelated to any data that the existing UIM data model saves. You can extend the UIM data model to include a new table to retain this information.

This is done through additions to the metadata. The UIM installation provides tools that enable you to automatically regenerate the data model based on the metadata, and to update the application (inventory.ear) to reflect the additions. This topic is further explored in Chapter 4, "Extending the Data Model".

You can dynamically extend the data model through characteristics. For example, you can define a specification for a telephone number and add characteristics that further describe the telephone number. When you create entities in UIM based on a specification that includes characteristics, the characteristics are automatically included in the entities. This topic is further explored in UIM Concepts. For instructions on how to define characteristics in Design Studio, see the Design Studio Help.

Extending Life Cycles, Topology, and Security

An entity is a Java representation of UIM data, and an entity can be defined as life-cycle-managed in the metadata. Life cycle refers to an entity having a start to its life, an end to its life, and a defined state at any given point during its life. Life-cycle transition definitions are part of the UIM metadata, and you can extend these definitions to solve specific business requirements.

An entity can also be defined as topology-managed in the metadata. Topology is a graphical representation of the spatial relationships and connectivity among your inventory entities. Topology-managed entities map to topology entities, which are used in the graphical representation. UIM defines several entities as topology-managed, and you can extend topology by defining additional entities to be topology-managed.

Information on security is provided in UIM System Administrator's Guide. However, this guide (UIM Developer's Guide) provides additional security information specific to securing UIM APIs and UIM entities.

These topics are further explored in:

	
Chapter 5, "Extending Life Cycles"

	
Chapter 6, "Extending the Topology"

	
Chapter 7, "Extending Security"

Additional security information specific to securing Web services is in:

	
Chapter 9, "Integrating UIM through Web Services"

	
Chapter 10, "Developing Custom Web Services"

	
Appendix D, "Reference Web Service"

Creating Rulesets

A ruleset is custom code that extends existing logic at a specified point. You can dynamically extend UIM by creating rulesets to meet specific business needs. For example, if the default telephone number format does not match the telephone number format used by the country in which you are implementing UIM, you can use a ruleset to reformat the telephone number.

This topic is further explored in Chapter 8, "Extending UIM through Rulesets".

Creating Web Services

Web services are APIs that can be accessed over a network, such as the Internet, and run on a remote system hosting the requested services. UIM provides Web services that are used for service fulfillment and for cartridge management. You can statically extend UIM by creating custom Web services. For example, you can write a Web service that performs a search for a specified entity, such as a pipe, a party, or a telephone number.

This topic is further explored in:

	
Chapter 9, "Integrating UIM through Web Services"

	
Chapter 10, "Developing Custom Web Services"

	
Appendix D, "Reference Web Service"

Customizing the User Interface

You can customize the user interface by adding fields or functionality to existing pages, or by adding new pages. For example, you may want to add a field named Type to the Equipment Maintenance page and populate it with your equipment type. Customizing the user interface statically extends UIM.

This topic is further explored in Chapter 11, "Customizing the User Interface".

Localizing UIM

Localizing UIM is the process of changing the user interface and the online Help from the language in which it was written to another language. This process involves modifying files that contain text that displays in the user interface and the online Help.

This topic is further explored in Chapter 12, "Localizing UIM".

Optimizing Concurrent Resource Allocation in UIM

You can optimize UIM performance by extending entity types that are heavily used in your UIM environment to implement the rowLock pattern.

This topic is further explored in Chapter 13, "Optimizing Concurrent Resource Allocation".

Cooperating with UIM

You can extend UIM to cooperate with other systems through data federation, leasing in data, leasing out data, or sharing data. UIM provides reference cooperation cartridges that you can configure and use, or extend and use as a starting point in creating a custom cooperation.

This topic is further explored in Chapter 14, "Understanding the Cooperation Framework" and Appendix B, "Reference Cooperation Cartridges".

Requirements for Extending UIM

Extending UIM requires the installation of Design Studio, Oracle WebLogic Server, and UIM. Extensions are developed in Design Studio, but you also need access to a UIM development environment into which you can deploy cartridges and run unit tests.

Tools for Extending UIM

Several tools are available for extending UIM and are described in Chapter 2, "Using Design Studio to Extend UIM".

Design Studio

Design Studio is an Eclipse-based integrated development environment. Design Studio is not part of UIM, but it does come with features specific to UIM that enable you to extend UIM. Information on using Design Studio to extend UIM is in Chapter 2, "Using Design Studio to Extend UIM".

Additional Tools

Additional tools such as Ant and a JBoss plug-in are available to you when extending UIM. The UIM installation includes a collection of Apache Ant executable targets that are used to extend the data model. These targets automate entity regeneration, entity recompilation, and repackaging the application EAR file to include the recompiled entities. The JBoss plug-in can be used to edit ruleset syntax within Design Studio. Information on these tools, how to install them, and how to use them is in Chapter 2, "Using Design Studio to Extend UIM".

Documentation for Extending UIM

Additional information needed to extend UIM is described in the following sections. The resources described here are intended to be used together. For example, the Javadoc provides specific information on methods that are available per entity, and method signatures may define specific entity attributes. However, the Javadoc does not get into details regarding the entity itself or any of the attributes it defines; this type of information is covered elsewhere. See "Information Model Documentation" for more information.

Information Model Documentation

Entities are Java representations of UIM data. The entities that comprise UIM are detailed in Oracle Communications Information Model Reference and UIM Information Model Reference. The documents describe each entity, lists the entity attributes, provides examples, and includes information on patterns that are common across all entities.

Oracle Communications Information Model Reference and UIM Information Model Reference are located in the UIM Developer Documentation Media Pack on the Oracle Software Delivery Cloud.

API Documentation

Information on UIM APIs is detailed in UIM API Overview. The document provides detailed information and code examples of numerous APIs presented within the context of a generic service fulfillment scenario, and within the context of a channelized connectivity enablement scenario. The document also provides information about transactions, exceptions, and logging when working the APIs, as well as a complete listing of the UIM entity manager classes and common utility code examples.

Javadoc Documentation

The classes that comprise UIM, and the Platform classes upon which UIM is built, contain Javadoc. The Javadoc that comes with the UIM installation includes both UIM and Platform Javadoc.

To access the Javadoc:

	
Start the application server.

For instructions on how to start the application server, see UIM System Administrator's Guide.

	
From the application server console, deploy the UIM_Home/app/inventory.ear file, which automatically deploys the UIM_Home/doc/ora_uim_javadoc.war file.

For instructions on how to deploy a file from the application server console, see UIM System Administrator's Guide.

	
In your Web browser, do one of the following:

	
If UIM was installed with SSL, enter:

https://server:port/ora_uim_javadoc

	
If UIM was installed without SSL, enter:

http://server:port/ora_uim_javadoc

where server is the specific server on which the application is deployed and port is the port on which the application listens.

Guidelines for Extending UIM

You should be aware of backwards compatibility guidelines when extending UIM.

Backwards Compatibility

Before you extend UIM, understand the implications of backwards compatibility and the effects on future upgrades.

UIM maintains backwards compatibility for one release for all published external interfaces:

	
Manager interfaces and method signatures

	
Published extension points

	
Web service interfaces

UIM does not maintain backwards compatibility for:

	
Metadata and physical data model

	
User interface

	
Localization

Detecting Code Changes Between Releases

The UIM_Home/doc/ora_uim_delta.war file contains information regarding changes between releases. Oracle recommends that you review the WAR file content when upgrading UIM to determine if any of the upgrades affect your current extensions.

To read about code changes between releases:

	
Start the application server.

For instructions on how to start the application server, see UIM System Administrator's Guide.

	
From the application server console, deploy the UIM_Home/doc/ora_uim_delta.war file.

For instructions on how to deploy a file from the application server console, see UIM System Administrator's Guide.

	
In your Web browser, do one of the following:

	
If UIM was installed with SSL, enter:

https://server:port/ora_uim_delta

	
If UIM was installed without SSL, enter:

http://server:port/ora_uim_delta

where server is the specific server on which the application is deployed and port is the port on which the application listens.

7 Extending Security

This chapter provides information on extending Oracle Communications Unified Inventory Management (UIM) security to include APIs and entity data.

Security for other parts of UIM is handled by external systems, such as the Oracle WebLogic Server Administration Console and Oracle Enterprise Manager. See UIM System Administrator's Guide for more information.

This chapter contains the following sections:

	
Securing APIs

	
Securing Entity Data

	
Note:

For information on securing Web services, see:
	
Chapter 9, "Integrating UIM through Web Services"

	
Chapter 10, "Developing Custom Web Services"

	
Appendix D, "Reference Web Service"

Securing APIs

By default, UIM APIs are not secured. To secure an API, you must extend UIM security to include the APIs. This can be done by:

	
Securing APIs through the SecurityValidation Aspect

	
Securing APIs through Rulesets and Extension Points

Securing APIs through the SecurityValidation Aspect

You can secure access to an API by adding the API method to the UIM-provided security extension point (securityExtensionPoint) definition, which is defined within the SecurityValidation aspect in the aop.xml file. See Chapter 8, "Extending UIM through Rulesets" for more information about aspects and the aop.xml file.

At the framework level, security is automatically enforced at the security extension point for any methods that the extension point defines. For example, if no API methods are defined for the security extension point within the SecurityValidation aspect, then no APIs are secured. If 20 API methods are defined for the security extension point within the SecurityValidation aspect, then those 20 API methods are validated/secured.

Example 7-1 shows API security definitions that are provided as a comment in the aop.xml file. If uncommented, these definitions would secure the createConditions, updateConditions, and deleteConditions APIs using the SecurityValidation aspect through the specified extension point (securityExtensionPoint). The result of this entry in the aop.xml file is that security validations are run prior to every call to the createConditions, updateConditions, and deleteConditions APIs.

You can use this example as a starting point by modifying it and uncommenting it in the aop.xml file to secure any API.

Example 7-1 SecurityValidation Aspect

<concrete-aspect
 name="oracle.communications.extensibility.extension.SecurityValidation"
 extends=
 "oracle.communications.extensibility.extension.SecurityValidationExtension" >
 <pointcut name="securityExtensionPoint" expression="
 call(public *
 oracle.communications.inventory.api.consumer.ConditionManager.
 createConditions(java.util.Collection))
 call(public *
 oracle.communications.inventory.api.consumer.ConditionManager.
 updateConditions(java.util.Collection))
 call(public *
 oracle.communications.inventory.api.consumer.ConditionManager.
 deleteConditions(java.util.Collection))"/>
</concrete-aspect>

Creating the Global Extension Point

Global extension points are created in Oracle Communications Design Studio. For information on global extension points, see Chapter 8, "Extending UIM through Rulesets". For instructions on how to create a global extension point, see the Design Studio Help.

When using this approach to secure APIs, you must also create one global extension point that defines the handleSecurityViolation API, which enables the rulesets to generate errors. The handleSecurityViolation API is located in the oracle.communications.inventory.api.admin.SecurityManager package. Example 7-2 shows the API method signature to use when defining the global extension point for the handleSecurityViolation API.

Example 7-2 Custom Global Extension Point Signature

public void oracle.communications.inventory.api.admin.SecurityManager.
handleSecurityViolation([])

Creating the Global Ruleset Extension Point

Global ruleset extension points are created in Design Studio. For information on global ruleset extension points, see Chapter 8, "Extending UIM through Rulesets". For instructions on how to create a global ruleset extension point, see the Design Studio Help.

After you have created the ruleset and global extension point in Design Studio, you must also create the corresponding global ruleset extension point in Design Studio. A global ruleset extension point associates a ruleset with a global extension point, so the global extension point knows which ruleset to run.

Securing APIs through Rulesets and Extension Points

You can also secure access to an API by creating custom rulesets that run at specified extension points. The custom rulesets set permissions for an API, enforces any permissions that are set for an API, and logs error messages whenever a security violation is detected.

Setting and enforcing API permissions through rulesets is done in the same manner as setting and enforcing entity data permissions. See "Securing Entity Data through Rulesets and Extension Points" for more information.

Securing Entity Data

By default, UIM entity data is not secured. To secure entity data, you must extend UIM security to control data access to individual entities. This is done by creating custom rulesets that run at specified extension points. The custom rulesets set permissions or partitions for an entity, enforces any permissions or partitions that are set for an entity, and logs error messages whenever a security violation is detected.

About Entity Access Control

To configure access control for an entity, the entity must be declared as access-controlled in the metadata. For example, the following is an excerpt from the metadata that shows the Equipment entity definition, which is declared as access-controlled:

<entity type="ocim:Equipment"
interface="oracle.communications.inventory.api.entity.Equipment"
accessControlled="true">

Most, but not all, entities are declared as access-controlled. If you want to configure access control for an entity that is not declared as access-controlled in the metadata, you must first extend the data model to declare the entity as access-controlled. See Chapter 4, "Extending the Data Model" for more information.

Access-controlled entities define additional attributes that contain security-specific data. For example, access-controlled entities define the owner, permissions, and partition attributes. Access-controlled entities also extend the AccessControlled class, so each entity class has access to the setOwner(), setPermissions(), and setPartition() methods defined in the AccessControlled parent class. The value of these attributes can be set by custom rulesets that call these methods.

	
Note:

When controlling access to a range of entities, the ruleset custom code must iterate through the range and call the method for each entity in the range. See "Securing Entity Data for a Range of Entities Example" for more information.

Securing Entity Data through Rulesets and Extension Points

You can secure entity data through rulesets and extension points by:

	
Setting Permissions in a Custom Ruleset

	
Setting Partitions in a Custom Ruleset

	
Enforcing Security in a Custom Ruleset

Setting Permissions in a Custom Ruleset

	
Note:

This section also applies to securing APIs through permissions.

To control data access to an entity through permissions, set the permissions attribute for the entity through custom code that calls the setPermissions() method, which is defined as:

public void setPermissions(String acl);

This method is defined in the oracle.communications.inventory.api.AccessControlled class, which is the parent class of all entities that are declared as access-controlled in the metadata. In the custom ruleset, you can call this method on the parent class (AccessControlled) or on the child class (EntityName, such as TelephoneNumber, Equipment, and so forth).

See "Creating Custom Rulesets and Extension Points" for examples of setPermissions() method calls.

Understanding ACL

The permissions are defined as an access control list (ACL). The ACL is a Java string that specifies who is allowed to access an object and what operations they can perform on an object.

An ACL consists of one or more entry statements separated by semicolons. Each statement includes the type of permission (allow or deny), the permission (r for read or w for write), and a principal or role to whom the permission is granted. (A principal is a user or group. It is easier to manage permissions at the level of roles, however.)

The syntax is as follows:

allow|deny r|w = principal|roles[role1,role2,role3...];

where principal is the name of any user or group and role is the name of any role.

Example 7-3 shows the ACL syntax in Extended Backus-Naur Format (EBNF).

Example 7-3 ACL Syntax

acl:= acl_entry (';'acl_entry)*
acl_entry:=('allow'|'deny')permission? target_list
permission:= ('r'|'w')'='
target_list:= target (','target)*
target:= principal|'roles' '['role_list']'
role_list:= role(','role)*

Note the following about the ACL:

	
The ACL is evaluated left to right until a security decision of allow or deny is enforced.

	
If no permission is stated, allow is implied.

Allowing write access implies allowing read access.

	
Denying read access also implies denying write access.

	
Any user having the uimuser role is permitted full access to an entity, regardless of the permissions set for the entity. This role exists by default and is defined as a superuser.

Table 7-1 lists examples of permissions and how they work together.

Table 7-1 Examples of Permissions

	Permissions	Explanation
	
Allow roles[billing_admin]; deny all

	
Anyone assigned to the billing_admin role can read or write the entity, but no one else.

	
Allow all

	
Everyone can read or write the entity. The same can be achieved by simply not defining permissions for the entity.

	
Allow r=all,w=roles[location_admin]

	
Everyone can read the entity; anyone having the location_admin role can write the entity.

	
Deny all

	
No one may can the entity except superusers.

	
Deny w=all

	
No one can write the entity except superusers, but everyone may read the entity.

	
Deny roles[OrderEntryUser,GeoMapAdmin User]

	
Anyone having either the OrderEntryUser or the GeoMapAdminUser role is denied access. Everyone else has full access.

Setting Partitions in a Custom Ruleset

To control data access to an entity through partitions, set the partition attribute for the entity through custom code that calls the setPartition() method, which is defined as:

public void setPartition(String partition);

This method is defined in the oracle.communications.inventory.api.AccessControlled class, which is the parent class of all entities that are declared as access-controlled in the metadata. In the custom ruleset, you can call this method on the parent class (AccessControlled) or on the child class (EntityName, such as TelephoneNumber, Equipment, and so forth).

See "Creating Custom Rulesets and Extension Points" for examples of setPartition() method calls.

Configuring Partitions

To control data access to an entity through partitions, some additional configuration is required:

	
In the WebLogic Server Administration Console, you must define a user group within a security realm. The group you define represents a data partition in UIM. For instructions on how to do this, see UIM System Administrator's Guide.

	
Caution:

The group name must begin with ora_uim_partition# to be recognized by UIM. For example, if you define a group name of ora_uim_partition#myPartition, then the custom ruleset would set the partition to /myPartition.

	
In the UIM_Home/config/system-config.properties file, set the uim.security.filter.enabled property to true, as shown here:

uim.security.filter.enabled=true

Enforcing Security in a Custom Ruleset

	
Note:

This section also applies to enforcing security permissions set for APIs.

API access that is controlled through set permissions, and entity data access that is controlled through set permissions and partitions is enforced through custom code that calls the checkPermissions() method, which is defined as:

public void checkPermissions(String perm, AccessControlled instance);

This method is defined in the oracle.communications.inventory.api.framework.security.UserEnvironment class. The checkPermissions() method calls the hasAccessToPartition() method, so the checkPermissions verifies access for both permissions and partitions.

If a security violation is detected, the application throws a java.security.AccessControlException. The custom code catches and logs the AccessControlException by calling the error() method, which is defined as:

public void error(String s, Throwable t);

This method is defined in the oracle.communications.inventory.api.framework.logging.Log class.

See "Creating Custom Rulesets and Extension Points" for examples of error() method calls.

Creating Custom Rulesets and Extension Points

When using custom rulesets to secure an API or entity data, you must also create an extension point or global extension point to run the ruleset. The following sections provide additional information and examples for creating the ruleset and extension point. If creating a global extension point, see "Creating the Global Extension Point" for more information.

Creating Custom Rulesets

Rulesets are created in Oracle Communications Design Studio. For information on rulesets, see Chapter 8, "Extending UIM through Rulesets". For instructions on how to create a ruleset, see the Design Studio Help.

	
Note:

In the following custom ruleset examples, all import statements are omitted.

Securing APIs Example

Example 7-4 shows a custom ruleset that secures access to the createConditions, updateConditions, and deleteConditions APIs by setting permissions. The ruleset defines four rules:

	
Default Condition Validation Rule

This rule always runs and calls the validate() method, which simply logs the method name and logs the user that is calling the method.

	
Create Condition Validation Rule

This rule runs only when the ruleset is called from an extension point that defines the createConditions API. This rule calls the setConditionsOwner() method, which sets permissions.

	
Update Condition Validation Rule

This rule runs only when the ruleset is called from an extension point that defines the updateConditions API. This rule calls the validateConditionsOwner() method, which enforces security and logs an error if a security violation is detected.

	
Delete Condition Validation Rule

This rule runs only when the ruleset is called from an extension point that defines the deleteConditions API. This rule also calls the validateConditionsOwner() method, which enforces security and logs an error if a security violation is detected.

Example 7-4 Custom Ruleset

package oracle.communications.rules;
package oracle.communications.inventory.api.framework.security.UserEnvironmentFactory;
 .
 .
 .
global Log log;

function void validate(ExtensionPointRuleContext context, Log logger, UserEnvironment env) {
 logger.info("", new String[]{"********"});
 logger.info("", new String[]{"method: ", context.getMethodName()});
 logger.info("", new String[]{"user: ", env.getUserName()});
 logger.info("", new String[]{"********"});
}

function void setConditionsOwner(ExtensionPointRuleContext context, Log logger, UserEnvironment env) {
 logger.info("", new String[]{"********"});
 logger.info("", new String[]{"setConditionsOwner"});
 Collection conditions = (Collection) context.getArguments()[0];
 if (conditions != null && !conditions.isEmpty())
 {
 String owner = env.getUserName();
 for (Iterator itr = conditions.iterator(); itr.hasNext();) {
 Condition cond = (Condition) itr.next();
 if (cond instanceof AccessControlled) {
 ((AccessControlled)cond).setOwner(owner);
 ((AccessControlled)cond).setPermissions("deny contractEmployees");
 }
 }
 }
 logger.info("", new String[]{"********"});
}

function void validateConditionsOwner(ExtensionPointRuleContext context, Log logger, UserEnvironment env) {
 logger.info("", new String[]{"********"});
 logger.info("", new String[]{"validateConditionsOwner"});
 Collection conditions = (Collection) context.getArguments()[0];

 String methodName = context.getMethodName();
 String targetName = context.getDeclaringTargetType().getSimpleName();
 String policyName = targetName + "." + methodName;
 logger.info("", new String[]{"policyName: ", policyName});

 if (conditions != null && !conditions.isEmpty()) {
 for (Iterator itr = conditions.iterator(); itr.hasNext();) {
 Condition cond = (Condition) itr.next();
 if (cond instanceof AccessControlled) {
 try {
 env.checkPermissions(policyName, (AccessControlled) cond);
 }
 catch (java.security.AccessControlException ace) {
 logger.error("", new String[] {ace.getMessage()});
 logger.error("", new String[] {"My error message for: " + cond.toString()});
 }
 }
 }
 }
 logger.info("", new String[]{"********"});
}

rule "Default Condition Validation Rule"
 salience 10
 when
 context: ExtensionPointRuleContext()
 then
 UserEnvironment env = UserEnvironmentFactory.getUserEnvironment();
 RuleDebug.breakPoint(context);
 RuleDebug.breakPoint(env);
 validate(context, log, env);
end

rule "Create Condition Validation Rule"
 salience 1
 when
 context: ExtensionPointRuleContext(methodName == "createConditions")
 then
 UserEnvironment env = UserEnvironmentFactory.getUserEnvironment();
 setConditionsOwner(context, log, env);
end

rule "Update Condition Validation Rule"
 salience 1
 when
 context: ExtensionPointRuleContext(methodName == "updateConditions")
 then
 UserEnvironment env = UserEnvironmentFactory.getUserEnvironment();
 validateConditionsOwner(context, log, env);
end

rule "Delete Condition Validation Rule"
 salience 1
 when
 context: ExtensionPointRuleContext(methodName == "deleteConditions")
 then
 UserEnvironment env = UserEnvironmentFactory.getUserEnvironment();
 validateConditionsOwner(context, log, env);
end

Securing Entity Data through Permissions Example

Example 7-5 shows a custom ruleset that secures access to party entities by setting permissions. The ruleset name implies that it is intended to run when a party is created.

Example 7-5 Custom Ruleset

package oracle.communications.inventory.rules;
package oracle.communications.inventory.api.framework.security.UserEnvironmentFactory;
 .
 .
 .
global Log log;

rule "Create Party with Permissions"
salience 2
when
 partyList : Collection()
then
 UserEnvironment environment = UserEnvironmentFactory.getUserEnvironment();
 if ((partyList != null) && !(partyList.isEmpty())) {
 for (Object partyO : partyList) {
 Party party = (Party)partyO;
 party.setOwner("inv");
 party.setPermissions("allow inv; deny all");
 }
 }
end

Retrieving Permissions Information Example

Example 7-6 shows a custom ruleset that retrieves user and role information so you can view the permissions that are set for a user through roles.

Example 7-6 Custom Ruleset

package oracle.communications.inventory.rules;
package oracle.communications.inventory.api.framework.security.UserEnvironmentFactory;
 .
 .
 .

rule "Get Permissions Info"
salience 2
when
 true
then
 UserEnvironment environment = UserEnvironmentFactory.getUserEnvironment();
 String user = env.getUser();
 String userName = env.getUserName();
 Collection roles = env.getRoles();
end

Securing Entity Data through Partitions Example

Example 7-7 shows a custom ruleset that secures access to logical device entities by setting a partition. The ruleset name implies that it is intended to run when a logical device is created.

Example 7-7 Custom Ruleset

package oracle.communications.inventory.rules;
package oracle.communications.inventory.api.framework.security.UserEnvironmentFactory;
 .
 .
 .
global Log log;

rule "Create LogicalDevice with Partitions"
salience 2
when
 ldList : Collection()
then
 UserEnvironment environment = UserEnvironmentFactory.getUserEnvironment();
 if ((ldList != null) && !(ldList.isEmpty())) {
 for (Object ld : ldList) {
 ((LogicalDevice)ld).setPartition("/US_PARTITION/NY_PARTITION");
 }
 }
end

Securing Entity Data for a Range of Entities Example

When securing entity data for a range of entities, the ruleset custom code must iterate through the range and call the access control method for each entity in the range. To do this, you must configure your custom ruleset to run After the API call.

Example 7-8 shows a custom ruleset that secures access to a range of logical devices by iterating through the range of logical devices, and setting a partition for each logical device in the range. The ruleset name implies that it is intended to run when a range of logical devices are created.

	
Note:

Example 7-8 shows the use of the setPartition() method to secure entity data for a range, but the same concept applies when using the setOwner() or setPermissions() methods to secure entity data for a range.

Example 7-8 Custom Ruleset

package oracle.communications.inventory.rules;
package oracle.communications.inventory.api.framework.security.UserEnvironmentFactory;
 .
 .
 .
global Log log;

rule "Create Range of LogicalDevices with Partitions"
salience 2
when
 ldList : Collection()
then
 UserEnvironment environment = UserEnvironmentFactory.getUserEnvironment();
 if ((ldList != null) && !(ldList.isEmpty())) {
 for (Object obj : ldList) {
 LogicalDevice ld = (LogicalDevice)obj;
 ld.setPartition("/US_PARTITION/NY_PARTITION");
 }
 }
end

Enforcing Security Example

Example 7-9 shows a custom ruleset that enforces security access to a party. The ruleset name implies that it is intended to run when a party is updated.

Example 7-9 Custom Ruleset

package oracle.communications.inventory.rules;
package oracle.communications.inventory.api.framework.security.UserEnvironmentFactory;
 .
 .
 .
global Log log;

rule "Secure Update Party"
salience 2
when
 partyList : Collection()
then
 UserEnvironment environment = UserEnvironmentFactory.getUserEnvironment();
 if ((partyList != null) && !(partyList.isEmpty()))
 {
 for (Object partyO : partyList) {
 Party party = (Party)partyO;
 try {
 environment.checkPermissions
 (WritePermission.getInstance().toString(), party);
 }
 catch(Throwable t){
 log.error("", t);
 }
 }
 }
end

Creating Extension Points

	
Note:

Check the ora_uim_baseextpts cartridge to determine if any extension points you may need are already defined. Depending on what you are securing, you may or may not need to create new extension points.

Extension points are created in Design Studio. For information on extension points, see Chapter 8, "Extending UIM through Rulesets". For instructions on how to create an extension point, see the Design Studio Help.

When securing APIs, you must create one extension point per API to secure, where each extension point defines the specific API method to secure. In the same vein, when securing entity data, you must create one extension point per entity to secure, where each extension point defines the specific entity method to secure.The same ruleset can be called from multiple extension points. Example 7-10 shows the API method signatures to use when defining the extension point for each API secured by the custom ruleset shown in Example 7-4.

Example 7-10 Custom Extension Point Signatures

public void oracle.communications.inventory.api.consumer.ConditionManager.createConditions
(java.util.Collection)

public void oracle.communications.inventory.api.consumer.ConditionManager.updateConditons
(java.util.Collection)

public void oracle.communications.inventory.api.consumer.ConditionManager.deleteConditions
(java.util.Collection)

Creating the Ruleset Extension Point

Ruleset extension points are created in Design Studio. For information on ruleset extension points, see Chapter 8, "Extending UIM through Rulesets". For instructions on how to create a ruleset extension point, see the Design Studio Help.

After you have created the ruleset and extension point in Design Studio, you must also create the corresponding ruleset extension point in Design Studio. A ruleset extension point associates a ruleset with an extension point, so the extension point knows which ruleset to run.

Oracle® Communications Unified Inventory Management

Developer's Guide

Release 7.2.3

E40885-01

November 2013

Oracle Communications Unified Inventory Management Developer's Guide, Release 7.2.3

E40885-01

Copyright © 2010, 2013, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.

11 Customizing the User Interface

This chapter provides information on customizing the Oracle Communications Unified Inventory Management (UIM) user interface (UI), which is written using Oracle Application Development Framework (ADF) and Platform Common User Interface (CUI). The information in this chapter describes statically customizing the UI, which can result in backwards compatibility issues. See "Backwards Compatibility" for the implications regarding this type of extension.

UIM UI customizations are made in JDeveloper. After installing JDeveloper, you customize the UIM UI by importing the UIM_Home/build/dist/inventory.ear file into JDeveloper and making the desired customizations. You then update the inventory.ear file with the customizations and redeploy it for testing.

This chapter contains the following sections:

	
Installing JDeveloper

	
Extracting the inventory.ear File into JDeveloper

	
Customizing the User Interface

	
Deploying User Interface Customizations

	
Testing User Interface Customizations

Installing JDeveloper

	
Note:

Before installing JDeveloper, you must install the Sun Java Development Kit (JDK). For information on installing JDK, see UIM Installation Guide.

To install JDeveloper:

	
Go to the Oracle Software Delivery Cloud.

	
From the Select a Product Pack list, select Oracle Fusion Middleware.

	
From the Platform list, select Microsoft Windows (32-bit).

	
Click Go.

	
From the Results list, select Oracle Fusion Middleware 11g Media Pack for Microsoft Windows (32-bit) for release 11.1.1.5.0, as shown in Figure 11-1.

Figure 11-1 Media Pack Option

[image: Surrounding text describes Figure 11-1 .]

	
Click Continue.

The download options for the selected media pack appears.

	
Click Download for Oracle JDeveloper Part1 and for Oracle JDeveloper Part 2, as shown in Figure 11-2:

Figure 11-2 Oracle JDeveloper Downloads

[image: Surrounding text describes Figure 11-2 .]

	
Save the downloaded ZIP files to a local directory, such as JDev_Home.

	
Navigate to JDev_Home, open the downloaded ZIP files, and extract the contents into JDev_Home.

After the extraction, JDev_Home contains the jdevstudio11115install.jar file.

	
From a command line, navigate to JDev_Home and run the following command:

java -jar jdevstudio11115install.jar

This initiates the JDeveloper installer.

	
On the Welcome window, click Next.

The Choose Middleware Home Directory window appears.

	
Select Create a new Middleware Home, enter a middleware home directory name, and click Next.

	
Note:

The remainder of this chapter refers to the middleware home directory you entered as JDev_Home.

The Choose Install Type window appears.

	
Select Complete and click Next.

The JDK Selection window appears.

	
Click Browse and navigate to your local installation of the JDK, and click Next.

The Confirm Product Installation Directories appears.

	
Take the defaults and click Next.

The Choose Shortcut Location window appears.

	
Take the defaults and click Next.

The Installation Summary window appears.

	
Take the defaults and click Next.

The installation begins.

	
When the installation completes, click Done.

Extracting the inventory.ear File into JDeveloper

To extract the inventory.ear file into JDeveloper:

	
Create a local directory, such as tempEar_Home.

	
Copy the UIM_Home/build/dist/inventory.ear file to tempEar_Home.

	
Double-click the JDev_Home/jdeveloper/jdeveloper.exe file.

The Select Role window appears.

	
Select Default Role and click OK.

The Configure File Type Associations window appears.

	
Click Cancel.

	
From the JDeveloper menu, select File, then select New.

The New Gallery window appears.

	
On the Available Items tab, under Categories, expand General, and select Applications.

	
Under Items, select Application from EAR File, and click OK.

The Create Application from EAR File window appears. This window has three parts: Location, Ear Modules, and Finish. Location appears first.

	
Next to the EAR File field, click Browse and navigate to the tempEar_Home/inventory.ear file.

Selecting the inventory.ear file automatically populates the fields on this window as follows:

	
EAR File defaults to tempEar_Home/inventory.ear, based on the selected EAR file.

	
Application File defaults to inventory, based on the name of the selected EAR file.

	
Directory defaults to C:/JDeveloper/mywork/inventory. You can change the defaulted directory to any directory you prefer. The directory specified gets created by the process you are about to initiate.

	
Source Roots defaults to tempEar_Home.

	
Leave the Copy Files to Application check box deselected, and click Next.

Ear Modules appears.

	
Accept the default module names and project names, and click Next.

Finish appears, showing the inventory.ear file location, and the location of the projects that JDeveloper is about to build based on the modules in the inventory.ear file.

	
Click Finish.

JDeveloper does the following:

	
Creates a workspace. The workspace directory name and location are based on the directory name and location specified in the Directory field on the Location window.

	
Creates an application in the workspace. The application name (inventory) is based on the imported EAR file name.

	
Creates several projects within the inventory application, as shown in Figure 11-3. Each project name is based on a module name from the selected inventory.ear file.

Figure 11-3 Inventory Application Projects

[image: Surrounding text describes Figure 11-3 .]

	
Delete all of the projects except the inv project by doing the following:

	
Select all of the projects except the inv project.

	
Right-click on the group of selected projects and select Delete Project.

The Confirm Delete Project window appears.

	
Select Remove projects from application, and click Yes.

Customizing the User Interface

Customizations can be in the form of new files or additions to existing files. If you are deleting files or modifying existing files with changes or deletions, be aware of the errors this may cause. These types of errors are logged by Oracle WebLogic Server when you deploy the updated inventory.ear file.

	
Note:

You cannot customize the UIM home page.

About the UI Files

UIM UI customizations involve several types of files, such as JSFF, XML, Java, and XLF files, as described in the following sections.

JSFF and XML Files

Each page in the UIM UI is defined by a JSFF and XML file. For example, the UIM Party Summary page is defined by the PartySummary.jsff and PartySummaryPageDef.xml, and the UIM Party Maintenance page is defined by the PartyEdit.jsff and PartyEditPageDef.xml files.

These files are located within the inventory application inv project, in the Web Content/oracle/communications/inventory/ui/functionalArea/page directory, where functionalArea is a UIM functional area such as equipment, number, service, and so forth.

Within each functionalArea/page directory, the JSFF and XML file names follow the naming convention shown in Figure 11-4. For example, each file name contains the entity name (Place, Party, and so forth), and the Web page (Search, List, Summary, Edit, and so forth). The XML page file names end with PageDef.

Figure 11-4 Page File Naming Conventions

[image: Surrounding text describes Figure 11-4 .]

XML Files

Each page in the UIM UI has a specific task flow defined by a an XML file. For example, the UIM Party Summary page task flow is defined by the PartySummaryFlow.xml file, and the UIM Party Maintenance page task flow is defined by the PartyEditFlow.xml file.

These files are located within the inventory application inv project, in the Web Content/WEB-INF/oracle/communications/inventory/ui/functionalArea/flow directory, where functionalArea is a UIM functional area such as equipment, number, service, and so forth.

Within each functionalArea/flow directory, the XML file names follow the naming convention shown in Figure 11-5. For example, each file name contains the entity name (Place, Party, and so forth), and the Web page (Search, List, Summary, Edit, and so forth). The XML task flow file names end with Flow.

Figure 11-5 Task Flow File Naming Conventions

[image: Surrounding text describes Figure 11-5 .]

Java Files

The functionality of each page in the UIM UI is driven by logic in a Java source file that is compiled into a Java class file. For example, the UIM Equipment Summary page is driven by the EquipmentSummaryBean.class file, and the Equipment Maintenance page is driven by the EquipmentEditBean.class file.

These files are located within the inventory application inv project, in the Web Content/WEB-INF/classes/oracle/communications/inventory/ui/functionalArea /bean/page directory, where functionalArea is a UIM functional area such as equipment, number, service, and so forth.

Within each functionalArea/bean/page directory, the Java file names follow the naming convention shown in Figure 11-6. For example, each file name contains the entity name (Place, Party, and so forth), and the Web page (Search, List, Summary, Edit, and so forth). The Java file names end with Bean.

Figure 11-6 Java File Naming Conventions

[image: Surrounding text describes Figure 11-6 .]

XLF Files

XLF files define text values that display throughout the UIM UI. XLF files also define formats that are used to display the text values in a specific way.

The InventoryUIBundle.xlf file, which defines text values, is located within the inventory application inv project, in the Web Content/WEB-INF/classes/oracle/ communications/inventory/ui/common/bundle directory.

The Preferences.xlf file, which defines the DATE_FORMAT, is located within the inventory application inv project, in the Web Content/WEB-INF/classes/oracle/communications/platform/ui directory.

	
Note:

If you customize the DATE_FORMAT in the Preferences.xlf file, you must also change the system.dateFormat specified in the UIM_Home/config/resources/logging/system.properties file.
When entity managers throw informational, warning, or error messages that contain a date, the message date is not formatted using the DATE_FORMAT specified in the XLF file. Rather, the message date is formatted using the system.dateFormat specified in the system.properties file. So, if you customize the date format, you must change it in both files.

DCX File

The DataControls.dcx file defines the registry for all the delegates, which are defined as data controls. If your customizations require a new delegate, this file needs to be updated to include the new delegate.

This file is located within the inventory application inv project, in the Web Content/oracle/communications/inventory/ui directory.

The following Web sites are useful when working with DCX files to customize the UIM UI:

	
The ADF Tasks virtual book provides ADF information and is available at:

http://www.oracle.com/pls/as111130/vbook_subject?subject=adf

	
The Oracle Fusion Middleware Web User Interface Developer's Guide for Oracle Application Development Framework online documentation is available at:

http://download.oracle.com/docs/cd/E14571_01/web.1111/b31973/toc.htm

	
Additional information can be found at:

http://download.oracle.com/docs/cd/E14571_01/index.htm

Displaying Custom Attributes on a Web Page

Custom attributes are any attributes that you have added to an existing entity. You can display custom attributes by editing the JSFF files for the entity's functional area. For example, if you add the subscriberId attribute to the Service entity, you can display subscriberId on the UIM Service Summary page by editing the inv/oracle/ communications/inventory/ui/service/page/ServiceSummary.jsff file.

To display the value of the subscriberId attribute, add the following component to the JSFF file:

<af:outputText value="#{pageFlowScope.ServiceSummaryBean.entityObject.subscriberId}"/>

Adding Custom Input Fields to a Web Page

You can edit the value of custom attributes in the UIM UI by adding an input field to the JSFF file for the entity's maintenance page.

By convention, maintenance page file names end with Edit. For example, EquipmentEdit.jsff maintains an equipment entity, and ServiceEdit.jsff maintains a service entity. Maintenance pages operate in two modes:

	
New: For creating a new instance of the entity

	
Edit: For modifying an existing instance of the entity

A managed bean exists for every entity, and the bean contains all of the attributes defined for the entity. For example, for an equipment entity, the page is EquipmentEdit.jsff and the Java class is EquipmentEditBean.class. Similarly, for a service entity, the page is ServiceEdit.jsff and the Java class is ServiceEditBean.class.

If the type attribute is added to the Equipment entity, type can be displayed on the UIM Equipment Summary page and edited on the UIM Equipment Maintenance page.

To do this, edit the following files:

	
In the InventoryUIBundle.xlf file, add the following to define the text for the type attribute as it displays in the UI:

<trans-unit id="TYPE">
 <source>Type</source>
 <target/>
</trans-unit>

	
In the EquipmentSummary.jsff file, add the following ADF component:

<af:panelLabelAndMessage label="#{inventoryUIBundle.Type}" id="plam2">
 <af:outputText
 value="#{pageFlowScope.EquipmentSummaryBean.entityObject.type}" id="ot3"/>
</af:panellabelAndMessage>

	
In the EquipmentEdit.jsff file, add the following ADF component to edit the field:

<af:inputText value="#{pageFlowScope.EquipmentEditBean.entityObject.type}" label="#{inventoryUIBundle.Type}" id="it1"></af:inputText>

Adding Conditional Components to a Web Page

Components are Web page building blocks. For example, the OutputText component is used for displaying entity attribute values on a Web page, and the InputText component is used for editing entity attribute values on a Web page. Conditional components are components that may or may not be rendered on a Web page, depending upon the outcome of an expression that can be evaluated. You can make a component a conditional component with custom logic.

To make a component a conditional component, edit the JSFF page file and map the component to a Java method, which evaluates an expression. The expression can be implemented with a custom logic class that extends the original bean class. For example, to make the Activate/Deactivate check box attribute on the UIM Equipment Maintenance page conditional upon an active condition being true, make the following changes:

	
In the EquipmentEdit.jsff file:

<af:selectBooleanCheckbox value="#{pageFlowScope.EquipmentEditBean.active}" text="#{inventoryUIBundle.Active}" disabled="#{!(pageFlowScope.EquipmentEditBean.active)}" id="it7">

	
Create a new Java class that extends EquipmentEditBean.java, and have the class define the following method:

public boolean getActive()
{
 if(this.getEquipment() != null && this.getEquipment() instanceof Equipment)
 {
 Equipment equipment = (Equipment)this.getEquipment();
 InventoryState inventoryState = equipment.getAdminState;
 return(inventoryState != null
 !InventoryState.equals(InventoryState.END_OF_LIFE):true);
 }
 return false;
}

Disabling an Input Field on a Web Page

You can disable InputText components based on a condition. For example, to make the type attribute on the UIM Equipment Maintenance page conditional upon an active condition being true, make the following changes to the EquipmentEdit.jsff page file:

<af:inputText value="#{pageFlowScope.EquipmentEditBean.entityObject.type}" label="#{inventoryUIBundle.Type}" id="it1" disabled="#{!(pageFlowScope.EquipmentEditBean.active)}">
</af:inputText>

Adding a Custom Action to a Web Page

You can add a custom action to a Web page by editing the JSFF page file to include a link or a button to call a custom listener method on the page. For example, to add a button to the UIM Service Summary page, which calls the generateReport() method, make the following changes to the ServiceSummary.jsff file:

<af:commandButton actionListener=#{pageFlowScope.ServiceSummary.generateReport}">
 <af:outputTextvalue="Text value of the link"/>
</af:commandButton>

A custom class needs to implement this method, and the custom class needs to run in place of the original. This is done using rulesets and extension points. For information on rulesets and extension points, see Chapter 8, "Extending UIM through Rulesets".

If the custom class is com.foo.ServiceSummary.class, the ServiceSummary.java source file would reside in the inv/Web Content/WEB-INF/src/com/foo directory and would contain the following:

package com.foo;
public abstract class ServiceSummary
extends oracle.communications.inventory.ui.service.bean.page.ServiceSummaryBean
{
 public void generatReport(ActionEvent event)
 {
 // perfrom the custom logic here
 System.out.println(getService().toString());
 }
}

Next, the inv/Web Content/WEB-INF/oracle/communications/inventory/ui/ service/flow/ServiceSummaryFlow.xml task flow must be edited to add the new com.foo.ServiceSummary.class to the pageFlowScope.

Adding a Custom Search Field

You can add a custom search field to existing search criteria. For example, you can add the Grade field to the Telephone Number Search criteria. To do this, you must extend the API that the UI calls, as well as the UI.

Extending the API

To add a custom search field to existing search criteria and extend the API to take this new field into account:

	
Create a class named CustomTNSearchCriteriaImpl that extends TelephoneNumebrSearchCritieriaImpl. Add the CriteriaItem for Grade to this class.

	
Write a ruleset to override the PersistenceHelper.makeTelephoneNumberSearchCriteria() method to create and return an instance of CustomTNSearchCriteriaImpl instead of the TelpehoneNumberSearchCriteriaImpl.

See Chapter 8, "Extending UIM through Rulesets" for information on how to write a ruleset.

	
Write a ruleset to extend the TelehoneNumberManager.findTelephoneNumber() method. In the extension code, add your business-specific code to use this new search criteria to restrict the result set.

See Chapter 8, "Extending UIM through Rulesets" for information on how to write a ruleset.

Extending the UI

TelephoneNumberSearch.jsff renders InventoryQuery.jsff to build the query criteria on the page. To add the Grade field:

	
Create a new custom class, such as TNQueryBean.java, that extends the oracle.communications.inventory.ui.number.bean.query.TelephoneNumberQueryBean class. To add a new field, the getAttributeDescriptors() method needs to be overridden.

	
Your custom class, TNQueryBean.java, needs to have something as shown in the following example. (In the getAttributeDescriptors() method, the fields in the queryAttributes String Array are rendered on the UI as search fields.)

package oracle.communications.inventory.ui.number.bean.query;

import java.util.List;
import oracle.adf.view.rich.model.AttributeDescriptor;
import oracle.communications.platform.ui.bean.query.AttributeDescriptorImpl;
import oracle.communications.inventory.ui.common.utils.Constants;
import oracle.adf.view.rich.model.AttributeDescriptor.ComponentType;

public class TNQueryBean extends TelephoneNumberQueryBean
{
 public static final String GRADE = "GRADE";

 public TNQueryBean() { super(); }

 protected List<AttributeDescriptor> getAttributeDescriptors()
 {
 List<AttributeDescriptor> attributeDescriptors =
 super.getAttributeDescriptors();

 AttributeDescriptorImpl attributeDescriptor = null;
 attributeDescriptor =
 this.createAttributeDescriptorImpl
 ("GRADE", "GRADE", Constants.STRING_TYPE,null,
 ComponentType.inputText);
 attributeDescriptors.add(attributeDescriptor);

 String[] queryAttributes =
 {TELEPHONE_NUMBER, RANGE_FROM, Constants.SPECIFICATION, RANGE_TO,
 SERVICE_SPECIFICATION, INVENTORY_GROUP, Constants.INVENTORY_STATUS,
 CONDITION_TYPE, Constants.RESOURCE_ASSIGNMENT_STATUS, GRADE};
 this.setQueryAttributes(queryAttributes);

 return attributeDescriptors;
 }
}

	
Change the TelephoneNumberSearchResultsFlow.xml file to add your custom class (TNQueryBean) in pageFlowScope, as shown below:

<managed-bean>
 <managed-bean-name>InventoryQueryBean</managed-bean-name>
 <managed-bean-class>
 oracle.communications.inventory.ui.number.bean.query.TNQueryBean
 </managed-bean-class>
 <managed-bean-scope>pageFlow</managed-bean-scope>
 <managed-property>
 <property-name>beanClass</property-name>
 <property-class>java.lang.String</property-class>
 <value>
 oracle.communications.inventory.api.entity.TelephoneNumber
 </value>
 </managed-property>
 <managed-property>
 <property-name>searchName</property-name>
 <property-class>java.lang.String</property-class>
 <value>Telephone Number Search</value>
 </managed-property>
</managed-bean>

	
Create a new custom class, such as TNDelegate.java, that extends the TelephoneNumberDelegate class. In the custom class, override the getSearchCriteria() method to pass the Grade field to API. On the API side, extend oracle.communications.inventory.api.number.TelephoneNumberSearchCriteria, and define the Grade field as a member. This is shown in the following example:

import oracle.communications.inventory.ui.common.utils.CriteriaContainer;
import oracle.communications.inventory.api.number.TelephoneNumberSearchCriteria;

public class TNDelegate extends TelephoneNumberDelegate
{
 public TNDelegate() { super(); }

 protected CriteriaContainer getSearchCriteria()
 {
 CriteriaContainer container = super.getSearchCriteria();
 TelephoneNumberSearchCriteria criteriaTNObj =
 (TelephoneNumberSearchCriteria)container.getCriteria();
 // Set the GRADE field in CriteriaTNObj and pass it to the container.
 return container;
 }
}

	
Update the DataControls.dcx file to include the new TNDelegate, as shown below:

<AdapterDataControl id="TelephoneNumberDelegate"
FactoryClass="oracle.communications.inventory.ui.framework.datacontrol.InventoryDataControlFactoryImpl"
ImplDef="oracle.adf.model.adapter.beanBeanDefinition"
SupportTransactions="false"
SupportsSortCollection="true"
SupportsResetState="false"
SupportsRangesize="false"
SupportsFindMode="false
SupportsUpdates="true"
Definition="oracle.communications.inventory.ui.number.delegate.TNDelegate"
BeanClass="oracle.communications.inventory.ui.number.delegate.TNDelegate"
xmlns="http://xmlns.oracle.com/adfm/datacontrol">

	
Copy TelephoneNumberDelegate.xml, paste it in the same directory, and rename it TNDelegate.xml. Afterward, open TNDelegate.xml and change all occurrences of TelephoneNumberDelegate to TNDelegate.

Deploying User Interface Customizations

To deploy your UIM UI customizations:

	
In JDeveloper, create the inv.war file:

	
In the Application Navigator, right-click on the inv project, select Deploy, then select inv.

The Deploy inv window appears. This window has two parts: Deployment Action, and Summary. Deployment Action appears first.

	
Select Deploy to WAR and click Next.

Summary appears, showing the location of inv.war file after JDeveloper builds it.

	
Click Finish.

	
Note:

Neither the created inv.war file nor the created deploy directory in which inv.war resides displays in JDeveloper, even after a refresh. To see the inv.war file, navigate to your JDeveloper workspace outside of the JDeveloper application.

	
Update the inventory.ear file to include the updated version of the inv.war file you just created:

	
Outside of JDeveloper, navigate to tempEar_Home.

	
Open the inventory.ear file.

	
Add the inv.war file to the inventory.ear file, replacing the existing inv.war file with the inv.war file that contains your UI customizations.

	
Save and close the inventory.ear file.

	
Copy the updated inventory.ear file from tempEar_Home to the UIM_Home/build/dist directory.

	
Deploy the updated inventory.ear file.

For instructions on how to deploy the inventory.ear file, see UIM System Administrator's Guide.

Customizing Logos

When customizing the UI, you can also customize logos. Customizing logos involves a different set of files, so there is a separate procedure for customizing them.

To customize logos:

	
Open the UIM_Home/lib/comms-platform-webapp.war file and extract the WEB-INF/lib/comms-platform-ui.jar file to a local directory, such as tempDir.

	
Open the tempDir/comms-platform-ui.jar/images directory and add your custom logo file.

	
Note:

Custom logo files are images, which are typically GIF, JPG, or PNG file types.

	
Open the tempDir/comms-platform-ui.jar/oracle/communications/ platform/templates/CommsUIShell.jspx file, and modify the file as follows:

	
Locate the text:

<af:image id="oracleImage"
 source="/afr/logo-oracle-red.png"
 clientComponent="true" shortDesc="Oracle"/>

	
Change the text that defines the source to:

<af:image id="oracleImage"
 source="/images/customLogoFileName"
 clientComponent="true" shortDesc="Oracle"/>

where customLogoFileName is the name of your custom logo file that you previously added to the tempDir/comms-platform-ui.jar/images directory. The customLogoFileName includes the file type extension, such as .gif, .jpg, or .png.

	
Save and close the tempDir/comms-platform-ui.jar file.

	
Repackage the WAR file by doing the following:

	
Open the UIM_Home/lib/comms-platform-webapp.war/WEB-INF/lib directory.

	
Replace the comms-platform-ui.jar file with the tempDir/comms-platform-ui.jar file that contains your customizations.

	
Save and close the UIM_Home/lib/comms-platform-webapp.war file.

	
Log in to the WebLogic Server Administration Console.

	
Stop the UIM application:

	
In the left panel, under Domain Structure, click the Deployments link.

The Summary of Deployments page appears.

	
Select the check box for oracle.communications.inventory, and click Stop.

	
Choose Force Stop Now, and click Yes.

The UIM application stops.

	
Delete the UI library:

	
On the Summary of Deployments page, select the check box for oracle.communications.platform.cui.webapp, and click Delete.

The library is deleted.

	
Open a command line.

	
Navigate to the UIM_Home/servers/serverName/tmp/_WL_user directory:

cd UIM_Home/servers/serverName/tmp/_WL_user

	
Delete the oracle.communications.inventory directory.

rm -rf oracle.communications.inventory

	
Note:

If working in a clustered environment, delete the oracle.communications.inventory directory from the tmp/_WL_user directory for each of the servers.

	
Close the command line and return to the WebLogic Server Administration Console, Summary of Deployments page.

	
Install the UI library:

	
Click Install, and select comms-platform-ui.jar located in UIM_Home/lib.

The library is installed.

	
Select the check box for oracle.communications.inventory, and click Update.

This redeploys the inventory.ear file and starts the UIM application.

Testing User Interface Customizations

You can test your UIM UI customizations by running UIM and navigating to the customized pages or new pages to validate that the customizations are working correctly. If customizations included changes or deletions to existing files, regression testing is required to ensure the customizations did not break existing UIM UI functionality.

3 Using the Persistence Framework

This chapter provides information on using the persistence framework, which moves program data (in memory objects) to and from a permanent data store (the database). The persistence framework also manages the database and manages the mapping between the database and the objects.

You use the persistence framework when extending Oracle Communications Unified Inventory Management (UIM). For example, custom rulesets or custom Web services typically have code that reads or updates the database, which is done using the persistence framework. So, UIIM custom code developers need to be familiar with the contents of this chapter.

This chapter contains the following sections:

	
About the Persistence Framework Foundation

	
Understanding Persistence Framework Concepts

	
Persistence Framework Classes and API Methods

	
JPQL Query Examples

About the Persistence Framework Foundation

The persistence framework is built on top of EclipseLink, which implements Java Persistence API (JPA) technology. Functional extensions employ standard Java practices.

This chapter does not replace the EclipseLink or JPA development guides. Both technologies are covered in greater detail at the following Web sites:

JPA Specifications

http://wiki.eclipse.org/EclipseLink/Specs

EclipseLink

http://wiki.eclipse.org/EclipseLink

JPA

http://www.eclipse.org/eclipselink/jpa.php

	
Note:

Documentation on third-party software products is limited to the information needed to use the UIM persistence framework. If you need additional information on a third-party software application, consult the documentation provided by the product's manufacturer.

Understanding Persistence Framework Concepts

The persistence framework employs the concepts of eager and lazy fetching and of managed and non-managed entities, as described in the following sections.

Eager and Lazy Fetching

	
Note:

Information on eager and lazy fetching can be found on the Oracle Technology Network Web site at:
http://www.oracle.com/technetwork/articles/javase/index-138213.html

A fetchType of eager means that a persistence provider loads the attribute of an entity along with the entity, while a fetchType of lazy is a hint to the provider that the attribute need not be fetched along with the entity. This means that even though you may specify the fetchType as lazy, the persistence provider may choose to load the attribute eagerly.

By default, all relationships are configured as lazy loading in the metadata, and all basic attributes are configured as eager fetched in the metadata. To configure an attribute as lazy loading in the metadata, set the <lazy> attribute to true. For example:

<entity type="cim:DataTypes"
 interface="oracle.communications.platform.entity.DataTypes">
 <attribute name="clobString" lazy="true"/>
</entity>

The result is a generated annotation within the DataTypesDAO.java class. For example:

@Basic(fetch=FetchType.LAZY) private java.lang.String clobString;

If a field is configured as lazy loading, and you want to eager fetch it when the entity is retrieved from the database, use the Finder.addEagerFetchField() method. For example:

finder = PersistenceHelper.makeFinder();
 finder.setResultClass(TelephoneNumber.class);
finder.setJPQLFilter("o.id = :tnId");
finder.addParameter("tnId","88888888");
finder.addEagerFetchField(EagerFetch.LEFT_FETCH,"o.specification");
Collection<TelephoneNumber> tns = finder.findMatches();
finder.close();

The previous example shows a fetch mode of LEFT_FETCH. The persistence framework supports the following fetch modes for an eager fetch:

	
BATCH: Batch reading may require more than one trip to the database but is usually more efficient than a join fetch, especially join fetches that involve collection relationships. Batch reading configures the query to optimize the retrieval of the related objects, and the related objects for all the resulting objects are read in a single query (instead of multiple queries).

	
FETCH: This fetch mode uses an inner join.

	
LEFT_FETCH: This fetch mode uses an outer join.

Managed and Non-Managed Entities

A persistence context is a set of entities such that for any persistent identity there is a unique entity instance. Within a persistence context, entities are managed. An entity manager controls life cycles and accesses data store resources.

When a persistence context ends, previously managed entities become non-managed. A non-managed entity is no longer under the control of the entity manager and no longer has access to data store resources. The major difference between an entity that is managed and an entity that is non-managed is:

	
When an entity is managed, the object is connected to the database and changes made to the object are reflected in the database when committed, or flushed in a transaction.

	
When an entity is non-managed, the object is not connected to the database, so changes are never applied to the database.

The non-managed object can be stale, which can cause you to receive the OptimisticLockingException when calling the EclipseLink attach() method. In this case, discard the stale non-managed object, retrieve the new object from the data store, and perform any update operation against the new version.

When a transaction already exists and an entity is explicitly retrieved from the database, the entity is managed. There is no need to eager fetch the entity attributes because the attributes and relationships can be lazy-loaded while the transaction is still active.

When no transaction exists, the entity becomes non-managed. EclipseLink supports the lazy loading of relationships of a non-managed entity. EclipseLink also supports the lazy loading of primitive attributes such as String.

	
Note:

If an entity is serialized and then deserialized, such as sent through a remote EJB interface or Web service, the relationships can not be lazy loaded, and an eager fetch must be used to access the relationships. Alternatively, the application can start a transaction to make the entity managed. When the entity is managed, the attributes and relationships can be accessed directly, and the eager fetch is not required.

When an entity is created, it is neither managed nor non-managed. The entity status is Transient because there is no representation of the entity in the database yet. All relational and collection attributes on a transient entity are available (that is, if it is null, then it is really null). When the transient entity is passed to a ManagerX.createX(..) method, the entity is persisted into the database. The entity is persisted by reference. The entity life-cycle status is changed from Transient to Persistent-New. There is a copy of the entity created. When the transaction is committed, the entity becomes non-managed.

Usually, the UI code keeps the non-managed entity in the session so that it can be updated. Sometimes, the UI code does an explicit Find to retrieve and store a non-managed entity in a session. You can store the non-managed entity in a session to avoid table locks on the database. The client code performs a set on the detached entity. When the updated entity is passed into the ManagerX.updateX(..) method, the manager persists the changes by using the EclipseLink attach() method. The current implementation of EclipseLink attach makes a copy of the entity and persists the changes. The new copy represents the managed entity, making the non-managed entity obsolete. For example, the createEntity() and updateEntity() methods each return a new copy of the entity. The returned copies are managed entities, making the original non-managed entity obsolete.

A = createEntity(A)
A = updateEntity(A)

Persistence Framework Classes and API Methods

All of the persistence framework classes covered in this section expose API methods that you can use when extending UIM. For example, you may want to add additional validations to existing UIM functionality, or add additional processing.

	
Note:

For information on the classes described in this section, including a listing of method names, arguments, and returns, see the Javadoc. For instructions on how to access the Javadoc, see "Javadoc Documentation".

PersistenceManager

Package: oracle.communications.platform.persistence

PersistenceManager generically manages entities defined in the *-entities.xml files. This manager provides methods to:

	
Create, update, and delete an entity or entities

	
Check whether an EntityManager is invoked from a Java Transaction API (JTA) context

(JTA specifies standard Java interfaces between a transaction manager and the parties involved in a distributed transaction system: The resource manager, the application server, and the transactional applications. A JEE application may use JTA, but a standalone JSE application does not.)

	
Set and get the logging level

This class is a wrapper for the methods defined in the standard javax.persistence.EntityManager class.

TypeRegistry

Package: oracle.communications.platform.persistence

TypeRegistry is a generated class that extends TypeRegistryBase. As part of the entity code generation process, each entity is added to a class list managed by TypeRegistry. TypeRegistry provides convenient methods to get a data access object (DAO) implementation class for each entity. Table 3-1 contains a list of the methods defined in the TypeRegistryBase class.

Table 3-1 TypeRegistryBase APIs

	API	Description
	
classFor(Class)

	
Gets the concrete class, which implements the given inventory entity class.

	
interfaceFor(Class)

	
Gets the inventory entity interface, based on the concrete class.

	
classForDiscriminator(String discriminator)

	
Gets the entity implementation class, based on the discriminator.

	
discriminatorForClass(Class)

	
Gets the discriminator, based on the implementation class.

Finder

Package: oracle.communications.platform.persistence

Finder provides methods for querying entities based on simple or complex search criteria. It has convenience methods that set up query parameters and fetch properties. Convenient find methods are provided; however, a complex Java persistence query language (JPQL) query can also be built iteratively.

Finder provides the most frequently used query mechanism. Additional query complexity that can be reused should be incorporated into the entity managers instead. The entity managers should then use Finder for building the queries, or use JPA directly. See "Entity Managers" for more information.

Finder defines methods that enable you to:

	
Get an entity based on the entity key

	
Refresh an entity or a collection of entities

	
Find an entity or entities based on various options, such as name, entity, or ID

	
Define a JPQL statement

	
Run the defined JPQL statement

	
Reset the Finder, which resets all query parameters to null

These methods are further explored in the following sections.

Defining JPQL Statement Methods

The Finder class provides numerous methods that you can use to define a JPQL statement. By using these methods you can:

	
Set the result class to query

	
Add a join expression

	
Set filters, such as a where clause or min/max

	
Add an attribute to specify the result set be returned in ascending or descending order

	
Set a range to filter the result set

	
Add and set parameters

	
Declare variables

	
Add and set variables

	
Add hints, which are JPA-specific

	
Add eager fetch fields

	
Clear eager fetch fields

Finder.find() and Finder.findMatches() Methods

The Finder.find(Class<E> candidateType, String filter) method is a convenient method to use because it does not take into consideration any parameters you set on Finder before you call that method. To include parameters, use the Finder.find(Class< E > candidateType, String filter, String [] paramNames, Object [] params) method.

Alternatively, you can build the parameters list using Finder beforehand, then use the findMatches() method. The findMatches() method uses the parameters you set.

Table 3-2 lists some of the commonly used methods defined in the Finder class.

Table 3-2 Finder APIs

	API	Description
	
find

	
Overloaded method that finds an entity or entities based on various arguments, such as entity type, the current filter setting on Finder, a list of the current parameters set on Finder, etc.

	
findByName, findById, findByEntity

	
Various methods that find an entity or entities based on name, ID, or entity type.

	
findMin and findMax

	
Finds the minimum or maximum value based on entity type and the value of min or max, which is used by the method to call Finder.setJPQLFilter().

	
findMatches

	
Overloaded methods that finds an entity or entities based on various arguments, such as an Oracle Text search String, and other arguments that you set.

	
findByJPQL

	
Finds a result set based on a String argument representing a JPQL statement that you define.

	
executeUpdateJPQL

	
Executes an update based on a String argument representing a JPQL statement that you define. This method returns the number of updated entities.

	
findByNativeSQL

	
Finds a result set based on a String argument representing a native SQL statement that you define.

	
executeUpdateNativeSQL

	
Executes an update based on a String argument representing a native SQL statement that you define. This method returns the number of updated entities.

	
get

	
Overloaded method that gets an entity based on entity type and entity key, or based on entity type, entity key, and whether or not the entity is a valid entity.

	
refresh

	
Overloaded method that refreshes the given entity, or the given collection of entities.

PersistenceManager.refresh(), PersistenceManager.attach(), and PersistenceManager.connect() Methods

The basic differences between Finder.refresh(), PersistenceManager.attach(), and PersistenceManager.connect() are:

	
Refresh() refreshes the entity content back to the state of the database, and discards any changes made to the entity. If the entity is managed, the refresh API retrieves a copy from the database to refresh the managed entity. If the entity is non-managed, the refresh API makes the entity managed. Any changes previously made to the managed or non-managed entity are discarded. The refresh API returns the reference to the managed entity.

	
Attach() makes the non-managed entity managed, and retains any changes made to the entity. If the entity is already managed, the attach API does nothing in terms of attaching the entity to the database. If the entity is non-managed, the attach API makes the entity managed. Any changes previously made to the managed or non-managed entity are sent to the database by EclipseLink when the transaction is committed or flushed. The attach API returns the reference to the managed entity.

	
Connect() makes the non-managed entity managed, and discards any changes made to the entity. If the entity is already managed, the connect API does nothing in terms of connecting the entity to the database. If the entity is non-managed, the connect API makes the entity managed. Any changes previously made to the managed or non-managed entity are discarded. The connect API returns the reference to the managed entity.

Refresh() does a get from the database. refresh() takes a detached entity, connects it to the database, but does not merge the entity attribute into the database. Refresh() re-retrieves the entity even when it is already attached.

Attach() takes a detached entity and merges its data into the database. The operation fails if the detached entity is stale. When attach attaches the detached entity to the database, it also merges the entity attribute values into the database. Attach() ignores the entity if it is already attached.

If you do not intend to merge the entity attributes of an entity in the database, do not use attach(). If you do, you may be updating an attribute in the database. Also, the last modified fields for the entity are updated, and the entity version is updated.

	
Note:

Using attach() may cause an OptimisticLockVerificationException because it tries to merge values in the database. If the detached entity is a stale entity (some other code thread has modified the same entity and has incremented the entity version), using attach again causes this exception.

InventoryFinder

Package: oracle.communications.inventory.api.framework.persistence

InventoryFinder extends Finder and provides a few additional methods, as described in Table 3-3.

Table 3-3 InventoryFinder APIs

	API	Description
	
find(String queryExpression, Object... parms);

	
This method finds and returns the result of executing a JPQL search using the passed expression.

	
findTotalCounts();

	
This method returns the total number of records found for a given JPQL.

PersistenceHelper

Package: oracle.communications.platform.persistence

PersistenceHelper is a generated class that provides factory methods to get an instance of an entity manager, the TypeRegistry, a Finder, an InventoryFinder, or the PersistenceManager.

Persistent

Package: oracle.communications.platform.persistence

All persistent entities implement the Persistent API. It provides convenience methods for determining the state of an entity. These methods are all read-only; so, the methods can run whether or not there is an active transaction. The following methods are defined in the Persistent API and are available on all entities.

public Class getEntityType();
public String getOid();
public long getEntityId();
public String getEntityClass();
public int getEntityVersion();
public boolean isEntityIdValid();
public Identifier makeIdentitifer();
public void makeTransient();
public boolean isPopulated(String fieldName);
public void unpopulate(String fieldName);
public boolean isTransient();
public boolean isPersistent();
public boolean isTransactional();
public boolean isNew();
public boolean isDirty();
public boolean isDeleted();
public boolean isDetached();
public <E extends Persistent> E connect();
public <E extends Persistent> E refresh();
public <E extends Persistent> E attach();
public String getEntityDescription();

Entity Managers

Entity managers are not part of the persistence framework: they are additional managers that use the persistence framework to support the overall application logic. An entity manager manages the database tables for a specific functional area. For example, EquipmentManager manages the Equipment table, but it also manages EquipmentHolder, PhysicalPort, PhysicalConnector, PhysicalDevice, and so forth.

Defining Entity Managers

Entity managers are defined in the metadata by the <manager> element and <interface> attribute. Example 3-1 is an excerpt from the uim-equipment-entities.xml file:

Example 3-1 uim-equipment-entities.xml

<manager interface="oracle.communications.inventory.api.equipment.EquipmentManager" class="oracle.communications.inventory.api.equipment.impl.EquipmentManagerImpl"/>

Every entity manager defined in the metadata has a corresponding entity manager and implementation of the manager. So, based on Example 3-1, the following classes exist:

	
EquipmentManager

	
EquipmentManagerImpl

Entity managers are not generated classes; however, the factory methods in PersistenceHelper that allow for the instantiation of the managers are generated. These factory methods are generated based on the metadata definition.

	
Note:

Entity managers are provided for all entities defined in the metadata. If the database is extended to define new entities, the entity manager and implementation of the manager must be written.

The relationship of entity to entity manager is not one-to-one. For example, in ocim-equipment-entities.xml file, there are a number of entities defined, and each entity defines its own entity interface (which differs from a manager interface). An entity interface defines the getter and setter methods for data defined for the entity. Example 3-2 is an excerpt from the ocim-equipment-entities.xml file that shows two entity definitions. The definitions include the interface that is defined for an entity (not for a manager).

Example 3-2 ocim-equipment-entities.xml

<entity type="ocim:Equipment" interface="oracle.communications.inventory.api.entity.Equipment" accessControlled="true">
. . .
<entity type="ocim:EquipmentHolder" interface="oracle.communications.inventory.api.entity.EquipmentHolder" accessControlled="true">

Entity Manager Implementation Inheritance Structure

The PersistenceManagerBean class is the common base class for all entity manager implementations, and all entity manager implementations extend BaseInvManager. TransitionManagerBean is another layer of inheritance. The inheritance structure of all entity manager implementations is shown below. The following sections discuss each of these classes.

PersistenceManagerBean
|
TransitionManagerImpl
|
BaseInvManager
|
EntityNameManagerImpl

	
Note:

In some cases, there are additional layers between BaseInvManager and EntityNameManagerImpl, but these four layers of inheritance are always present. An example that has additional layers is LogicalDeviceManagerImpl.

Specifying the <managedBy> attribute for an entity in the metadata allows the entity manager to override the default behavior of the following methods:

	
TransitionManager.transition(LifeCycleManaged, Object)

	
PersistenceManagerBean.completeCreate(Persistent)

	
PersistenceManagerBean.completeUpdate(Persistent)

	
PersistenceManagerBean.completeDelete(Persistent)

PersistenceManagerBean

Package: oracle.communications.platform.persistence.impl

PersistenceManagerBean is the common base class for all entity managers. It provides convenient create, read, update, and delete (CRUD) methods for managing entity persistence. It also provides methods to attach an object to the persistence engine, and methods to test for object equality. Developing entity managers requires the use of the PersistenceManagerBean class. It defines all the persistence-related methods used by entity managers, it hides the JPA standard PersistenceManager, and it wraps the persistence logic required.

TransitionManagerImpl

Package: oracle.communications.inventory.api.common.impl

TransitionManagerImpl transitions an entity's business and object states, which is only applicable for entities defined as life-cycle managed in the metadata. This layer of inheritance is always in place, but it is used only by life-cycle managed entities. See Chapter 5, "Extending Life Cycles" for more information.

BaseInvManager

Package: oracle.communications.inventory.api.common

BaseInvManager extends PersistenceManagerBean and provides application-specific logic to the PersistenceManagerBean methods. All entity manager classes must extend this class.

JPQL Query Examples

This section provides some JPQL query examples that show common UIM search scenarios.

Example 3-3 Custom Object Search

// This example shows a search for a custom object based on the name of the custom // object.

SELECT COUNT(DISTINCT o) FROM CustomObject o
WHERE UPPER(o.name) LIKE UPPER(:nameParam) escape '\'
AND o.specification = :specParam
AND (o.objectState = oracle.communications.inventory.api.ObjectState.ACTIVE
OR o.objectState = oracle.communications.inventory.api.ObjectState.INACTIVE)

Example 3-4 Physical Port Search

// This example shows a search for a physical port based on physical device name // and physical port specification name.

SELECT COUNT(DISTINCT o) FROM PhysicalPort o
WHERE o.id is not null
AND o.specification = :specParam
AND UPPER(o.physicalDevice.name) LIKE UPPER(:pdNameParam) escape '\'
AND (o.objectState = oracle.communications.inventory.api.ObjectState.ACTIVE
OR o.objectState = oracle.communications.inventory.api.ObjectState.INACTIVE)

Example 3-5 Physical Device Search

// This example shows a search for a physical device based on a characteristic.

SELECT COUNT(DISTINCT o) FROM PhysicalDevice o
JOIN o.characteristics chars0var
WHERE o.id is not null
AND (chars0var.name = :pCharName0Param
AND UPPER(chars0var.value) LIKE :pCharValue0Param escape '\')
AND o.specification = :specParam
AND (o.objectState = oracle.communications.inventory.api.ObjectState.ACTIVE OR o.objectState = oracle.communications.inventory.api.ObjectState.INACTIVE)

6 Extending the Topology

This chapter provides information on extending the topology in Oracle Communications Unified Inventory Management (UIM). The topology is a graphical representation of the spatial relationships and connectivity among your inventory entities.

The topology uses a specific set of entities and a specific algorithm to determine the path between any two entities. This algorithm is called the path analysis. You can extend the topology to include additional entities in the topology, and you can modify the path analysis to suit your business needs.

The information presented in this chapter describes statically extending UIM, which can result in backwards compatibility issues. See "Backwards Compatibility" for the implications regarding this type of extension.

This chapter contains the following sections:

	
About Topology Entities and Topology-Managed Entities

	
About Topology Mapping

	
Extending the Topology

	
About Path Analysis

	
Configuring and Customizing Path Analysis

	
About Topology Interfaces

	
About the topologyProcess.properties File

	
Note:

Before you begin reading about extending topology, it is important that you have an understanding of the following subjects described in UIM Concepts:
	
Connectivity

	
Topology

About Topology Entities and Topology-Managed Entities

Topology entities are defined in the metadata and are used to display the topology. Topology-managed entities are also defined in the metadata and are indirectly used to display the topology. UIM maps topology-managed entities to one of two topology entities, and, as a result of the mapping, topology-managed entities indirectly display in the topology.

Topology Entities

The metadata defines the following topology entities:

	
TopologyEdge

	
TopologyNode

TopologyNode entities represent locations, network nodes, or devices, and TopologyEdge entities represent pipes or network edges.

The metadata defines the topology entities in the topology-entities.xml file. Example 6-1 is an excerpt from this file that shows the definition of the TopologyNode entity.

Example 6-1 topology-entities.xml

<entity type="ocim:TopologyNode" interface="oracle.communications.inventory.api.entity.TopologyNode" accessControlled="true" entityIdSequenceGenerator="TopologySeqGen">
 <implements interface="java.lang.Cloneable"/>
 <implements interface=
 "oracle.communications.inventory.api.entity.common.TopologyObject"/>
 <attribute name="isTopLevelNode" index="true"/>
 <attribute name="geometry" spatial="true"/>
 <relationship name="businessObject">
 <thisSide inverse="true"/>
 <otherSide dependent="true" type="ocim:TopNodeAssociation"
 attribute="topologyNode"/>
 </relationship>
</entity>

The TopologyEdge entity is also defined in the topology-entities.xml file in the same manner.

	
Note:

There are actually several topology entities defined in the topology-entities.xml file that support topology. However, within the context of extending topology, this chapter focuses solely on the TopologyEdge and TopologyNode entities.

Topology-Managed Entities

The metadata defines the following entities as topology-managed:

	
Equipment

	
GeographicPlace

	
LogicalDevice

	
Network

	
NetworkEdge

	
NetworkNode

	
PhysicalDevice

	
Pipe

The metadata defines these entities as topology-managed throughout the various *-entities.xml files. Example 6-2 is an excerpt from the equipment-entities.xml file. The example shows the entity definition for PhysicalDevice, which includes the implementation of the TopologyObject interface. Implementing the TopologyObject interface in the entity definition is what defines an entity as topology-managed.

Example 6-2 Topology-Managed Entity Definition

<entity type="ocim:PhysicalDevice" interface="oracle.communications.inventory.api.entity.PhysicalDevice" accessControlled="true" entityIdSequenceGenerator="PhyDeviceSeqGen">
 <implements interface="oracle.communications.inventory.api.entity.common.PhysicalResource"/>
 <implements interface="java.lang.Cloneable"/>
 <implements interface="oracle.communications.inventory.api.entity.common.TopologyObject"/>
 <implements interface=
 "oracle.communications.inventory.api.entity.common.PhysicalMappingObject"/>
 <implements interface="oracle.communications.inventory.api.entity.common.NetworkNodeEnabled"/>
 . . .
</entity>

About Topology Mapping

Entities defined as topology-managed in the metadata are mapped to either TopologyEdge or TopologyNode by the UIM-provided TopologyMapperImpl class.

TopologyEdge

The following topology-managed entities are mapped to TopologyEdge:

	
NetworkEdge

	
Pipe

TopologyNode

The following topology-managed entities are mapped to TopologyNode:

	
Equipment

	
GeographicPlace

	
LogicalDevice

	
Network

	
NetworkNode

	
PhysicalDevice

	
Note:

The GeographicPlace entity is defined as topology-managed in the UIM metadata, and the UIM mapping logic indirectly maps this entity to TopologyNode. The mapping logic actually checks for GeographicLocation and GeographicSite, not GeographicPlace. GeographicPlace is a parent to GeographicLocation and GeographicSite. A place becomes a topology object when it is associated to a resource such as Logical Device or Physical Device.

Extending the Topology

To extend the topology:

	
Determine entities that you plan to define as topology-managed. (This step is performed by the business analyst, who relays the information to the developer.)

	
Determine the mapping of each topology-managed entity to TopologyEdge or TopologyNode. (This step is performed by the business analyst, who relays the information to the developer.)

	
Define identified entities as topology-managed in the metadata by creating new ext-*-entities.xml files. See "Defining an Entity as Topology-Managed" for more information.

	
Regenerate the entities to pick up the new ext-*-entities.xml files. See "Applying Metadata Static Extensions" for more information.

	
Extend the mapping logic to include the mapping of any additional entities defined as topology-managed in the metadata. See "Extending the Mapping" for more information.

Defining an Entity as Topology-Managed

An entity can be defined as topology-managed through a new file in the metadata.

	
Caution:

Do not modify existing metadata files. See "Backwards Compatibility" for the issues involved with making additions to the existing metadata files.

To define a new entity as topology-managed, add the <implements> element to the entity definition in the new *-entities.xml file to implement the TopologyObject interface. See "Defining New Entities" for more information.

To define an existing entity as topology-managed, add the <implements> element to the entity by extending the entity definition in the new *-entities.xml file to implement the TopologyObject interface. See "Extending Existing Entities".

Extending the BusinessObjectType.java File

If you define an entity as topology-managed in the metadata, you must also extend the BusinessObjectType class by modifying it to include an enumerated value for that entity. This provides the ability to keep a weak reference between the topology entity and the business object.

For example, the BusinessObjectType class defines the BusinessObjectType enumeration, and you must assign an enumerated value to any entities you define as topology-managed:

/**
 * This class defines the business IDs for mapping Business objects to
 * TopologyEdges and TopologyNodes in the topology model.
 * Every different business entity must have a unique ID.
 * Once a value has been set it cannot be changed.
 */
public enum BusinessObjectType {
 LogicalDeviceDao(1), GeographicPlaceDao(2), PipeDao(3),
 PhysicalDeviceDao(4), NetworkDao(5), NetworkNodeDao(6),
 NetworkEdgeDao(7), EquipmentDao(8), PhysicalConnectorDao(9),
 PhysicalPortDao(10), EquipmentHolderDao(11), CustomObjectDao(12),
 ServiceDao(13), GeographicSiteDao(14), ServiceConfigurationVersionDao(15),
 TopologyOnly(9999);

Extending the Mapping

Entities defined as topology-managed in the metadata must be mapped to TopologyEdge or TopologyNode by extending the TopologyMapperImpl class.

This class is located in the oracle.communications.inventory.api.topology package.

Configuring the topologyProcess.properties file

If you extend the mapping, you must also configure the topologyProcess.properties file to point to your new mapper class.

For example, the file includes the following upon installation, and you must configure it to point to your new mapper class instead:

mapperClass - The Class Object that maps the business model to Topology
mapperClass=oracle.communications.api.topology.mapper.impl.TopologyMapperImpl

About Path Analysis

Path analysis is an automated process in UIM that helps you locate and assign pipes for enablement. You specify a starting point (the source), an ending point (the target), and a variety of optional criteria. Path analysis evaluates possible paths based on the criteria you provide and returns paths from which you can select. See UIM Concepts for more information.

Path analysis uses the topology to find paths.

Configuring and Customizing Path Analysis

Path analysis evaluates connections based on topology-managed entity data. Only entities in the topology are included in path analysis. You can configure and customize path analysis, as described in the following sections.

Configuring the Path Analysis Mode

Path analysis can use two different algorithms to determine paths:

	
The Complex algorithm (the default) considers all possible paths between end points, which means evaluating a large number of permutations. You can use filtering to limit the amount of data to be processed. This mode of path analysis is suitable for complex networks with many possible connections.

	
The Simple Linear algorithm works by iteratively analyzing paths working from the end points toward a common node. This mode of analysis is suited to relatively simple scenarios where paths are inherently linear and include 10 or fewer hops, such as POTS. The Simple Linear algorithm has less impact on system performance than the Complex algorithm.

You can use the topologyProcess.properties file to configure path analysis. For example, the properties file includes the following upon installation:

Path Analysis Properties
simpleLinearMode=false
simpleLinearModeMaxCycles=5
continueProcessingIndicator=true

	
The simpleLinearMode parameter is used to denote the path analysis mode. The default value is false, indicating that Complex mode is the default path analysis mode.

	
Note:

Before changing the value of this parameter, you need to be certain that the Simple Linear mode is appropriate for your needs. Path analysis will not find some kinds of paths in this mode.

You can extend path analysis so that Simple Linear mode is used when analyzing paths for particular pipe specifications, even when Complex mode is used for the application in general. See "Customizing Path Analysis" for more information.

	
The simpleLinearModeMaxCycles parameter denotes the number of connected neighbors that a Simple Linear path analysis finds before determining that a path cannot be found. The default value is 5. You can increase the value if path analysis fails to find paths.

	
The continueProcessingIndicator parameter denotes whether UIM will try to find a path with the Complex mode if no path can be found by using Simple Linear mode. The default value is true, indicating that if no path is found using Simple Linear mode, path analysis continues by attempting to find a path using Complex mode. Setting the value to false indicates that if no path is found using Simple Linear mode, path analysis stops.

Customizing Path Analysis

You can use rulesets to customize path analysis. By associating rulesets to individual Pipe specifications, you can tailor path analysis to meet various business scenarios.

A sample ruleset is provided with UIM to serve as a starting place for three types of customization:

	
Adding additional filter criteria to the analysis. See "Adding Filtering Criteria" for more information.

	
Setting Simple Linear mode for path analysis involving a particular Pipe specification. See "Setting the Analysis Mode" for more information.

	
Specifying that only pipes based on particular specifications be included in a path analysis. See "Limiting the Analysis by Pipe Specification" for more information.

The PATHANALYSIS_FINDPATHS_SETCUSTOMCRITERIA sample ruleset is included in the UIM_Home/cartridges/sample/ora_uim_pathanalysis_sample cartridge.

You can customize path analysis by appending code to the body of the rule. The sample rule includes examples of each of the three types of customizations mentioned in this section.

The ruleset is applicable to Pipe specifications and must be associated with the PathAnalysisManager_findPaths base extension point and the oracle.communications.inventory.api.entity.PipeSpecification enabled extension point. The placement of the ruleset extension point must be BEFORE.

Adding Filtering Criteria

You can add filtering criteria to a path analysis. Filtering criteria restrict the amount of data that UIM considers when locating paths, reducing the amount of processing required.

	
Note:

Because the additional criteria are defined using standard JPAQL syntax, knowledge of JPAQL is required to implement this feature.

For example, you can limit the analysis to consider only nodes or edges that include particular characters in their names or only pipes in a particular status. Including the following code in the PATHANALYSIS_FINDPATHS_SETCUSTOMCRITERIA ruleset limits the path analysis to pipes in the Installed state.

filterStr.append("businessObject.referenceId == vPipe.ext:getColumn('ENTITYID') ");
filterStr.append(" && vPipe.adminState == pStatus ");
params.add("pStatus");
values.add(InventoryState.INSTALLED);
criteria.setAppendQuery (params, values, filterStr.toString());

Setting the Analysis Mode

You can configure path analysis to use Simple Linear mode when enabling pipes based on a particular specification. Including the following code in the PATHANALYSIS_FINDPATHS_SETCUSTOMCRITERIA ruleset sets the mode to Simple Linear when the rule runs. It also sets values for the SimpleLinearModeMaxCycles and ContinueProcessingIndicator parameters.

criteria.setSimpleLinearMode(true);
criteria.setSimpleLinearModeMaxCycles(10);
criteria.setContinueProcessingIndicator(true);

Limiting the Analysis by Pipe Specification

You can limit the pipe analysis so that it considers only transport pipes based on a particular specification. For example, you can filter out trunk and ISDN lines that are not valid connections for POTS. Similarly, if there are cables between a switch and an MDF that are not used for POTS, you can exclude them from the pipe analysis.

	
Note:

You can also limit path analysis to particular Pipe specifications by including a specification in the Transport configuration item of a Pipe configuration.

For example, including the follow code in the PATHANALYSIS_FINDPATHS_SETCUSTOMCRITERIA ruleset limits the path analysis to pipes based on the Sample Terminated Pipe specification:

SpecManager sm = InventoryHelper.makeSpecManager();
SpecSearchCriteria specCriteria = sm.makeSpecSearchCriteria();
CriteriaItem critSpecName = specCriteria.makeCriteriaItem();
critSpecName.setValue("SampleTerminatedPipe");
critSpecName.setOperator(CriteriaOperator.EQUALS_IGNORE_CASE);

specCriteria.setName(critSpecName);
List<Specification> specs = sm.findSpecifications(specCriteria);
ArrayList includeSpecs = new ArrayList();
for (Specification pipespec : specs){
 includeSpecs.add(new Long(pipespec.getEntityId()));
}
criteria.setIncludeSpecifications(includeSpecs);

About Topology Interfaces

You can use the topology interfaces when writing rulesets or Web services to meet business requirements that involve extending the topology or customizing path analysis.

The following sections describe the available topology interfaces. For information on the methods defined by any of these interfaces, see the Javadoc. For instructions on how to access the Javadoc, see "Javadoc Documentation".

TopologyObject is the only topology interface described in this section that is available to all entities. Defining an entity to implement this interface makes the entity topology-managed. Topology-managed entities must be mapped to TopologyEdge or TopologyNode.

The remaining interfaces described in this section are available to TopologyEdge and TopologyNode entities. Example 6-3 is an excerpt from the uim-common-entities.xml file showing the common manager interfaces defined for the entities, including TopologyEdge and TopologyNode.

Example 6-3 uim-common-entities.xml Manager Interfaces

<manager interface="oracle.communications.inventory.api.framework.policy.SearchPolicy"
 class="oracle.communications.inventory.api.framework.policy.impl.SearchPolicyImpl"/>
<manager interface="oracle.communications.inventory.api.common.TransitionManager"
 class="oracle.communications.inventory.api.common.impl.TransitionManagerImpl"/>
<manager interface="oracle.communications.inventory.api.common.AttachmentManager"
 class="oracle.communications.inventory.api.common.impl.AttachmentManagerImpl"/>
<manager interface="oracle.communications.inventory.api.common.SequenceGenerator"
 class="oracle.communications.inventory.api.common.impl.SequenceGeneratorImpl"/>
<manager interface="oracle.communications.inventory.api.consumer.ConsumerManager"
 class="oracle.communications.inventory.api.consumer.impl.ConsumerManagerImpl"/>
<manager interface="oracle.communications.inventory.api.consumer.AssignmentManager"
 class="oracle.communications.inventory.api.consumer.impl.AssignmentManagerImpl"/>
<manager interface="oracle.communications.inventory.api.common.ConfigurationInputManager"
 class="oracle.communications.inventory.api.common.impl.ConfigurationInputManagerImpl"/>
<manager interface="oracle.communications.inventory.api.consumer.ConditionManager"
 class="oracle.communications.inventory.api.consumer.impl.ConditionManagerImpl"/>
<manager interface="oracle.communications.inventory.api.consumer.ReservationManager"
 class="oracle.communications.inventory.api.consumer.impl.ReservationManagerImpl"/>
<manager interface="oracle.communications.inventory.api.common.FederationManager"
 class="oracle.communications.inventory.api.common.impl.FederationManagerImpl"/>
<manager interface="oracle.communications.inventory.api.common.EntityIdGenerator"
 class="oracle.communications.inventory.api.common.impl.EntityIdGeneratorImpl"/>
<manager interface="oracle.communications.inventory.api.admin.SecurityManager"
 class="oracle.communications.inventory.api.admin.impl.SecurityManagerImpl"/>
<manager interface="oracle.communications.inventory.api.topology.TopologyManager"
 class="oracle.communications.inventory.api.topology.impl.TopologyManagerImpl"/>
<manager interface="oracle.communications.inventory.api.topology.mapper.TopologyMapper"
 class="oracle.communications.inventory.api.topology.mapper.impl.TopologyMapperImpl"/>
<manager interface="oracle.communications.inventory.api.topology.PathAnalysisManager"
 class="oracle.communications.inventory.api.topology.impl.PathAnalysisManagerImpl"/>
<manager interface="oracle.communications.inventory.api.topology.mapper.PathAnalysisMapper"
 class="oracle.communications.inventory.api.topology.mapper.impl.PathAnalysisMapperImpl"/>
<manager interface="oracle.communications.inventory.api.topology.mapper.TopologyProfileMapper"
 class="oracle.communications.inventory.api.topology.mapper.impl.TopologyProfileMapperImpl"/>
<manager interface="oracle.communications.inventory.api.capacity.CapacityManager"
 class="oracle.communications.inventory.api.capacity.impl.CapacityManagerImpl"/>
<manager interface="oracle.communications.inventory.api.characteristic.CharacteristicManager"
 class="oracle.communications.inventory.api.characteristic.impl.CharacteristicManagerImpl"/>
<manager interface="oracle.communications.inventory.api.role.RoleManager"
 class="oracle.communications.inventory.api.role.impl.RoleManagerImpl"/>
<manager interface="oracle.communications.inventory.api.common.RowLockManager"
 class="oracle.communications.inventory.api.common.impl.RowLockManagerImpl"/>
<manager interface="oracle.communications.inventory.api.framework.policy.LockPolicy"
 class="oracle.communications.inventory.api.framework.policy.impl.LockPolicyImpl"/>

TopologyObject

Package: oracle.communications.api.inventory.entity.common

This interface defines getter methods for the object's IDs: ID, ENTITYID, and OID. There are no setter methods because these IDs are generated for the object, not set for the object.

TopologyManager

Package: oracle.communications.inventory.api.topology

This interface defines methods for finding and maintaining TopologyEdge and ToplogyNode entity objects.

TopologyMapper

Package: oracle.communications.inventory.api.topology.mapper

This interface defines the business rules for mapping topology-managed entity objects to a TopologyEdge entity object or a TopologyNode entity object.

PathAnalysisManager

Package: oracle.communications.inventory.api.topology

This interface defines methods for finding paths (edges and nodes) through the topology network based on specified criteria.

PathAnalysisMapper

Package: oracle.communications.inventory.api.topology.mapper

This interface defines the business rules for mapping business object path analysis criteria to values used in the topology model. This object provides a mapping layer between the business model and the topology model for cases where the data in the topology model must be converted from a value in the business model.

TopologyProfileMapper

Package: oracle.communications.inventory.api.topology.mapper

This interface defines mapping for service topology. While topology is extended through the metadata, service topology is extended through characteristics, specifications, extension points, and rulesets, all of which can be defined in Oracle Communications Design Studio. UIM provides a service topology sample cartridge that is a working example of how you could extend service topology. See Appendix A, "UIM Sample Cartridges" for more information on the service topology sample cartridge.

TopologyEdgeSearchCriteria

Package: oracle.communications.inventory.api.topology

This interface defines the available search criteria for the TopologyEdge entity object and is an input parameter to topology manager and topology mapper interface methods.

TopologyNodeSearchCriteria

Package: oracle.communications.inventory.api.topology

This interface defines the available search criteria for the TopologyNode entity object and is an input parameter to topology manager and topology mapper interface methods.

About the topologyProcess.properties File

Topology logic references the UIM_Home/config/resources/event/ topologyProcess.properties file for specifying the mapper class and for configuring path analysis. You can also use this file to:

	
Turn off topology updates. If you turn off topology updates, you can rebuild the topology if you need to use a topology-related feature. See UIM System Administrator's Guide for more information.

For example, the file includes the following upon installation:

disableTopology - turns Topology Refresh On or Off
disableTopology=false

	
Opt whether to update the topology synchronously or asynchronously with business model updates. See UIM System Administrator's Guide for more information.

For example, the file includes the following upon installation:

processSynchronous - Topology is refreshed as part of the transaction (true)
or asynchronoulsy in a seperate transaction (false)
processSynchronous=true

12 Localizing UIM

This chapter provides information on localizing the Oracle Communications Unified Inventory Management (UIM) user interface (UI), and on localizing the UIM Help. Localization is the process of translating a UI or Help system from the original language in which it was written into a different language for use in a specific country or region. For example, the UIM UI and UIM Help are written in English. If your company is based in France and you purchase UIM, you may want to localize UIM to display the UI and Help in French.

Localizing UIM involves modifying a specific set of files that UIM uses to display text in the UI and in the Help.

This chapter contains the following sections:

	
Setting the Language Preference in Internet Explorer

	
Determining the Locale ID

	
Localizing UIM

	
Localizing UIM Help

	
Note:

Before localizing your UIM environment, you must identify a strategy for maintaining future localizations. Oracle does not provide a file that lists the details of what changed between releases.

Setting the Language Preference in Internet Explorer

For a localized version of UIM to display correctly in Internet Explorer, users need to configure language preferences.

To configure language preferences in Internet Explorer:

	
From the Tools menu, select Internet Options.

The Internet Options window appears.

	
Click Languages.

The Language Preference window appears.

	
The language you plan to use must display at the top of the list to have priority.

If the language you plan to use is listed:

	
Select the language.

	
Click Move Up to move the language you plan to use to the top of the list.

If the language you plan to use is not listed:

	
Click Add.

The Add Language window appears.

	
Select a language.

	
Click OK.

The Language Preference window returns.

	
Select the language you have added, and click Move Up to move it to the top of the list.

	
Click OK.

Determining the Locale ID

A locale ID is a standardized ID that represents a language and region in which the language is spoken. For example, fr-CA is the locale ID for French spoken in Canada, and es-MX is the locale ID for Spanish spoken in Mexico.

Localizing UIM involves copying and renaming existing files to include a locale ID. The renamed files that include a locale ID become the translated version of the original files.

To determine the locale ID in Internet Explorer:

	
From Tools menu, then select Internet Options.

The Internet Options window appears.

	
Click Languages.

The Language Preference window appears.

	
Click Add.

The Add Language window appears.

Languages are listed alphabetically. Several languages are spoken in more than one country, so the locale ID reflects the language and the country in which the language is spoken.

	
Locate the language to which you are localizing and note the locale ID.

	
Close the Add Language, Language Preference, and Internet Option windows.

Localizing UIM

Localizing the UIM UI involves working with a UIM-provided cartridge that you import into Oracle Communications Design Studio, modify, and deploy. Design Studio also provides various editors, such as an XML editor and an HTML editor, that you can use to translate files for localization.

The following sections describe localizing UIM:

	
About the UI-Specific Files

	
Localizing the UI-Specific Files

	
Deploying the Cartridge Containing the Localized Files

	
Testing the UIM UI Localization

About the UI-Specific Files

The UI-specific files are a set of .xlf and .properties files that contain localizable text strings that define labels and messages. You modify the text string within these files to localize UIM.

	
.xlf files

The UIM UI was written using Application Development Framework (ADF). ADF-specific files use the .xlf file extension. XLF files contain localizable text strings for labels that display in the UI.

	
.properties files

The UIM UI calls UIM API methods, which may result in an information, warning, or error message displaying in the UI. Properties files contain localizable text strings for API messages that display in the UI.

Localizing the UI-Specific Files

Localizing the UI is accomplished by modifying the text strings in XLF and properties files that display in the UI.

To localize the UI-specific files, perform the work described in the following sections:

	
Importing the Localization Archive File into Design Studio

	
Locating the UI-Specific Files within the Project

	
Copying and Renaming the UI-Specific Files

	
Editing the UI-Specific Files

Importing the Localization Archive File into Design Studio

	
Note:

Within Design Studio, you must be in the Studio Design perspective Cartridge view.

The UIM_Home/cartridges/sample/ora_uim_localization_reference_cartproj.zip file contains an Inventory project with all of the UI-specific files that you can import into Design Studio to localize.

For instructions on how to import projects using archive files, see the Design Studio Help.

Locating the UI-Specific Files within the Project

	
Note:

Within Design Studio, you must be in the Java perspective Package Explorer view.

The localization archive file that you imported into Design Studio contains the ora_uim_localization_reference project. The UI-specific files are contained within the project.

XLF Files

The UI-specific XLF files are located in the ora_uim_localization_reference project, within the model/content/inventory.ear/inv.war/WEB-INF/classes/oracle/communications directory. The communications directory contains the following subdirectories, which contain the UI-specific XLF files:

	
inventory/ui/common/bundle/InventoryUIBundle.xlf

	
inventory/ui/framework/bundle/InventoryOHWBundle.xlf

	
platform/ui/CommsUIShell.xlf

	
platform/ui/Preferences.xlf

Properties Files

The UI-specific properties files are located in the ora_uim_localization_reference project, within the model/content/product_home/config/resources/logging directory.

Copying and Renaming the UI-Specific Files

Copying and renaming the UI-specific files ensures that the default file is always in place to use for display if needed. Adding the locale to the file name differentiates your localized files from the default files, which simplifies upgrades. If files are edited for localization without being renamed to reflect the locale, all localization efforts are lost when you upgrade because the files are overwritten.

To copy and rename the files within the Design Studio Java perspective Package Explorer view:

	
Right-click on the file and select Copy.

	
Right-click on the parent directory of the copied file and select Paste.

The Name Conflict dialog box appears.

	
Modify the file name to include the appropriate locale ID.

For example, rename InventoryUIBundle.xlf to InventoryUIBundle_fr_ca.xlf and rename equipment.properties to equipment_fr_ca.properties for French spoken in Canada.

See "Determining the Locale ID" for more information.

	
Note:

On the Add Language window shown in "Determining the Locale ID", the locale ID is separated by a dash. When renaming the XLF and properties files, use an underscore in place of the dash.

	
Click OK.

	
Note:

If you copy and paste the file, and then try to rename it, the Rename menu option is not available when right-clicking on the file in the Java perspective. You can, however, copy and paste the file and rename by selecting File from the menu, and then selecting Rename.

Editing the UI-Specific Files

To edit the UI-specific files, perform the work described in the following sections:

	
Editing the XLF Files

	
Editing the Properties Files

Editing the XLF Files

To edit the XLF files within Design Studio:

	
Open the Java perspective.

	
Open the Package Explorer view.

	
Within the imported project, locate the XLF files.

See "Locating the UI-Specific Files within the Project" for more information.

	
Right-click on the file and select Open With, then select Text Editor.

	
Caution:

If you double-click on the file, Design Studio may open the file for editing outside of Design Studio.

	
Edit the value of the <source> elements, which define text that displays in the UI.

Example 12-1 is an excerpt from the InventoryUIBundle.xlf file that shows numerous <source> elements. Edit only the value of the <source> elements: for example UIM Home Page, Inventory, Home, and Products.

Example 12-1 InventoryUIBundle.xlf

<trans-unit id="LANDING_PAGE_TITLE">
 <source>UIM Home Page</source>
 <target/>
</trans-unit>
<trans-unit id="MENU_INVENTORY">
 <source>Inventory</source>
 <target/>
</trans-unit>
<trans-unit id="MENU_HOME">
 <source>Home</source>
 <target/>
</trans-unit>
<trans-unit id="MENU_PRODUCT">
 <source>Products</source>
 <target/>
</trans-unit>

	
Note:

The Preferences.xlf file defines a date format. If you want to localize the date format, see "XLF Files" for more information.

Editing the Properties Files

To edit the properties files within Design Studio:

	
Open the Java perspective.

	
Open the Package Explorer view.

	
Within the imported project, locate the properties files.

See "Locating the UI-Specific Files within the Project" for more information.

	
Right-click on the file and select Open With, then select Text Editor.

	
Caution:

If you double-click on the file, Design Studio may open the file for editing outside of Design Studio.

	
Edit the text strings that define API messages that display in the UI.

Example 12-2 is an excerpt from the party.properties file that shows two messages. Each message is defined by two lines: the first line defines the message ID, and the second line defines the message text that displays in the UI. Edit only the message text: for example, Party Id {0} already exists and The party with Id {0} was successfully deleted.

Example 12-2 also shows that messages are not necessarily error messages; the partyDeleted message in is an informational message.

Example 12-2 party.properties

party.alreadyExists.id=230002
party.alreadyExists=Party Id {0} already exists.
party.partyDeleted.id=230009
party.partyDeleted=The party with Id {0} was successfully deleted.

Deploying the Cartridge Containing the Localized Files

Localized files are modified as part of a project. After the modifications are complete, build the project to create the cartridge that can be deployed into UIM. Every cartridge should be cleaned and rebuilt prior to deploying.

For instructions on how to deploy a cartridge into UIM from Design Studio, see the Design Studio Help. For instructions on how to deploy a cartridge into UIM using the Cartridge Deployer Tool, see UIM System Administrator's Guide.

	
Note:

When a cartridge containing localizable XLF files is deployed into UIM, the inventory.ear file automatically redeploys, resulting in the localization changes being applied to the UI.

Testing the UIM UI Localization

You can test your UIM UI localization by running UIM and navigating from page to page to validate that the pages are displaying the localized text.

Localizing UIM Help

The following sections describe localizing UIM Help:

	
About UIM Help

	
Localizing the UIM Help Files

	
Deploying the Localized Help System

	
Testing the UIM Help Localization

About UIM Help

The UIM Help uses Oracle Help for the Web. Oracle Help is a browser-based Help system that runs as a Web application based on a Java servlet. You do not need specialized knowledge of Oracle Help to localize UIM Help; you can use the information in this chapter, supplemented by the Oracle Help documentation. See Oracle Fusion Middleware Developer's Guide for Oracle Help for more information:

http://docs.oracle.com/cd/E16162_01/doc.1112/e16280/toc.htm

About the Oracle Help Configuration File

The Oracle Help configuration file, ohwconfig.xml, is located in the UIM_Home/app/inventory.ear/inv.war/WEB-INF/help directory. The ohwconfig.xml file contains references to each Help system deployed into an application. Upon installation, ohwconfig.xml references the default UIM Help system (English) deployed into UIM. This file requires configuration for localization.

About the UIM Help Files

The UIM Help files are located in the UIM_Home/app/inventory.ear/inv.war/WEB-INF/help/helpsets/uimoh_help.jar file, which contains the following Help files:

	
.htm files: Each HTML file is a separate Help topic. The text in all of the HTML files requires translation.

	
uimoh.hs: This file describes the Help system. When UIM Help is initiated through the UIM user interface, uimoh.hs is the starting point. This file does not require translation.

	
toc.xml: This file defines the Table of Contents that appears in the left pane of the Oracle Help window. The text in this file requires translation.

	
map.xml: This file associates Help IDs with the HTML file names. The toc.xml file uses the IDs to link entries to Help topics. This file does not require translation.

	
search.idx: This file is used when you perform a text search of the Help content. The file defines a search index that searches the Help content in the HTML files. After the HTML files are translated, the search index must be regenerated using the Java-based Help Indexer. For more information, see "Regenerating the Search Index File".

	
target.db: This file contains cross-reference information used for navigating between Help topic headings. This file does not require translation.

	
dcommon/html/cpyr.htm: This file defines the Help copyright page and requires translation. (The dcommon directory contains standard Oracle support files, including a CSS file, several graphics files, and the Help copyright page, but only the Help copyright page requires translation.)

Localizing the UIM Help Files

To localize UIM Help, perform the work described in the following sections:

	
Extracting the Help Files

	
Translating the Help Files

	
Regenerating the Search Index File

	
Creating the Localized Help JAR File

	
Configuring the Oracle Help File

Extracting the Help Files

Use the default Help files installed with UIM as the starting point for your localization.

To extract the Help files:

	
Copy the UIM_Home/app/inventory.ear/inv.war/WEB-INF/help/helpsets/uimoh_help.jar file to tempDir, where tempDir is a local directory.

	
Open the tempDir/uimoh_help.jar file.

	
Extract all the objects in the uimoh_help.jar file into tempDir.

	
Click the File column heading in tempDir, which sorts the objects by file type.

You should see the following directories and files in tempDir:

	
dcommmon directory

	
img directory

	
META-INF directory

	
target.db

	
uimoh_help.jar

	
uimoh.hs

	
numerous .htm files

	
search.idx

	
map.xml

	
toc.xml

Translating the Help Files

To translate the Help files, perform the work described in the following sections:

	
Translating the Copyright Page

	
Translating the Help Topics

	
Translating the Table of Contents

Translating the Copyright Page

To translate the copyright page:

	
Navigate to the tempDir/dcommon/html directory.

	
Open the cpyr.htm file.

	
Translate the content of the <title>, <h1> through <h6>, and <p> elements to the local language.

For example, translate the bolded content in Example 12-3:

Example 12-3 Excerpt from cpyr.htm

<title>Oracle Legal Notices</title>
<link rel="stylesheet" href="../css/blafdoc.css" type="text/css" />
</head>
<body>
<h1>Oracle Legal Notices</h1>

<h2>Copyright Notice</h2>
<p>Copyright © 1994-2012, Oracle and/or its affiliates. All rights reserved.</p>

Translating the Help Topics

To translate the Help topics:

	
Navigate to the tempDir directory.

The Help topics text is defined in the numerous .htm files within this directory. Each .htm file must be translated.

	
Open an .htm file.

	
Translate the content of the <title>, <h1> through <h6>, <p>, and <td> elements to the local language.

For example, translate the bolded content in Example 12-4. Elements that are not text, such as the HTML tags themselves, should not be changed.

Example 12-4 Excerpt from tel_nbr_info_work_area.htm

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>
<meta name="OAC_IGNORE_SKIP_NAV" content="true" />
<meta http-equiv="Content-Type" content="text/html; charset=us-ascii" />
<meta http-equiv="Content-Style-Type" content="text/css" />
<meta http-equiv="Content-Script-Type" content="text/javascript" />
<title>Telephone Number - Information Work Area</title>
<meta name="generator" content="Oracle DARB XHTML Converter (Mode = ohj/ohw) - Version 5.1.2 Build 073" />
<meta name="date" content="2012-09-17T22:25:55Z" />
<meta name="robots" content="noarchive" />
<meta name="doctitle" content="Telephone Number - Information Work Area" />
<meta name="relnum" content="Release 7.2.2" />
<meta name="partnum" content="E36042-0" />
<meta name="topic-id" content="telephoneInfo" />
<link rel="copyright" href="./dcommon/html/cpyr.htm" title="Copyright" type="text/html" />
<link rel="stylesheet" href="./dcommon/css/blafdoc.css" title="Oracle BLAFDoc" type="text/css" />
<link rel="contents" href="toc.htm" title="Contents" type="text/html" />
</head>
<body>
<p></p>
<div class="sect1"><!-- infolevel="all" infotype="General" -->
<h1>Telephone Number - Information Work Area</h1>
<p>You use the Telephone Number - Information work area to edit the information that appears in the Summary work area Information panel. Some data elements, such as the ID, cannot be changed after the entity is created.</p>
<div align="center">
<div class="inftblnote">

<table class="Note oac_no_warn" summary="" cellpadding="3" cellspacing="0">
<tbody>
<tr>
<td align="left">
<p class="notep1">Note:</p>
The fields that appear in this work area are determined by the entity specification definition used to create the entity. The specification is created in Design Studio. The fields defined below for this entity are common among most specifications.</td>
</tr>

	
Repeat steps 2 and 3 for each .htm file in the tempDir directory.

Translating the Table of Contents

To translate the Table of Contents:

	
Navigate to the tempDir directory.

	
Open the toc.xml file.

Each item in the Table of Contents is defined by a <tocItem> element.

	
Translate the content of each <tocItem> to the local language.

For example, translate the bolded content of the text attribute in Example 12-5. Do not change the content of the target attribute.

Example 12-5 Excerpt from toc.xml

<tocitem target="uim_help_interface.htm" text="Getting Started with Unified Inventory Management">

	
Note:

Oracle Help automatically translates the Help window menu options; field names; and informational, warning, and error messages. The translation is based on the locale defined in the ohwconfig.xml file.
For example, if the only language preference specified is English, and the ohwconfig.xml file defines a single locale of French, Oracle Help translates the Help window menu options, field names, and messages to French.

Oracle recommends that the language preference with the highest priority be the same language defined as the locale in the ohwconfig.xml file.

Regenerating the Search Index File

After translating the Help files, regenerate the search index file to reflect the content of the translated files. This is accomplished using Oracle Help Indexer.

	
Note:

Using Oracle Help Indexer requires that you have Java installed.

To install Oracle Help Indexer:

	
Go to the Oracle Technology Network Web site:

http://www.oracle.com/technetwork/topics/utilsoft-085729.html

	
Download the help-indexer.jar file to tempDir, where tempDir is a local directory.

To regenerate the search index file using Oracle Help Indexer:

	
Open a Windows command prompt.

	
Change the directory to tempDir by entering the following command:

cd tempDir

	
Enter the following command, which creates a new search.idx file, and overwrites the existing search.idx file:

java -mx64m -classpath pathToJarFile/help-indexer.jar oracle.help.tools.index.Indexer -l=locale -e=charSet pathToHelpFiles search.idx

where:

	
pathToJarFile is the directory path to the help-indexer.jar file.

	
locale is the standardized locale ID that represents the localized language. See "Determining the Locale ID" for more information.

If you do not specify a locale, the system's default locale is used.

	
charSet is the Java-supported character set encoding.

	
pathToHelpFiles is the directory path to the Help files.

For example:

java -mx64m -classpath C:\tempDir\help-indexer.jar oracle.help.tools.index.Indexer -l=fr_CA -e=8859_1 C:\tempDir search.idx

See "Using the Text Search Indexer" in Oracle Fusion Middleware Developer's Guide for Oracle Help for more information:

http://docs.oracle.com/cd/E15523_01/doc.1111/e14149/oha_gen_fts.htm

Creating the Localized Help JAR File

After translating the Help files and regenerating the search index, create a new JAR file containing the localized Help files.

To create the new JAR file:

	
Navigate to the tempDir directory.

The tempDir directory contains the uimoh_help.jar file, the translated Help files, and the regenerated search index file.

	
Copy the uimoh_help.jar file to tempDir to create a second copy of the uimoh_help.jar file in tempDir.

	
Select the copied version of the uimoh_help.jar file and rename it uimoh_help.jar_locale.jar, where locale is the standardized ID that represents a language and region in which the language is spoken. For example, fr-CA is the locale for French spoken in Canada, and es-MX is the locale for Spanish spoken in Mexico.

For more information, see "Determining the Locale ID".

	
Note:

On the Add Language window shown in "Determining the Locale ID", the locale ID is separated by a dash. When renaming the JAR file, use an underscore in place of the dash.

	
Open the uimoh_help_locale.jar file.

	
Delete all of the objects in the JAR file.

	
Add the localized Help files to the uimoh_help_locale.jar file. (This includes all of the directories and all of the files in tempDir, with the exception of uimoh_help.jar and uimoh_help_locale.jar.

	
Save and close the uimoh_help_locale.jar file.

You can verify that you included all of the directories and files by checking the number of objects in the uimoh_help.jar file and in the uimoh_help_locale.jar file; the two JAR files should contain the same number of objects. To determine the number of objects in each JAR file, select all of the objects in each JAR file; this provides a count of all objects selected.

Configuring the Oracle Help File

After translating the Help files, regenerating the search index, and creating a localized Help JAR file, configure the ohwconfig.xml file to reflect the localized Help JAR file.

To configure the ohwconfig.xml file:

	
Open the UIM_Home/app/inventory.ear/inventory.war/WEB-INF/help/ohwconfig.xml file.

The file defines the default Help system (English):

<locales>
 <!-- English: -->
 <locale language="en">
 <books>
 <helpSet id="uimoh_help"
 jar="/helpsets/uimoh_help.jar"
 location="uimoh.hs"/>
 </books>
 </locale>
</locales>

	
Update the <locale> element to reflect the localized Help system:

<locales>
 <!-- French Canadian: -->
 <locale language="fr">
 <books>
 <helpSet id="uimoh_help_fr_ca"
 jar="/helpsets/uimoh_help_fr_ca.jar"
 location="uimoh.hs"/>
 </books>
 </locale>
</locales>

You do not need to change the location attribute value, which is the name of the file that resides in the specified JAR file.

About Multiple Locales

Oracle Help can support multiple locales. For multiple locales, each localized Help system is configured with a <locale> element in the ohwconfig.xml file. For example, the following results in both French and Spanish Help systems being available in UIM upon redeployment:

<locales>
 <!-- French: -->
 <locale language="fr">
 <books>
 <helpSet id="uimoh_help_fr_ca"
 jar="/helpsets/uim_oh_help_fr_ca.jar"
 location="uimoh.hs"/>
 </books>
 </locale>
</locales>
<locales>
 <!-- Spanish: -->
 <locale language="es">
 <books>
 <helpSet id="uimoh_help_es_mx"
 jar="/helpsets/uimoh_help_es_mx.jar"
 location="uimoh.hs"/>
 </books>
 </locale>
</locales>
<parameters>
 <combineBooks>false</combineBooks>
 <useLabelInfo>true</useLabelInfo>
 <cacheSize>3</cacheSize>
</parameters>

When multiple locales are defined, the language preference for all locales must be set. If not set, only the first locale defined in the ohwconfig.xml file displays in UIM Help. See "Setting the Language Preference in Internet Explorer" for more information.

When multiple locales are defined, the <parameters> element configuration values are applied:

	
<combineBooks>

To merge Help systems, set the value of <combineBooks> to true. The Help navigational views behave as a single, integrated Help system.

To use separate Help systems, set the value of <combineBooks> to false. The separate Help navigational views are accessed based on the language preference with the higher priority.

Regardless of the <combineBooks> value, each locale that is defined in the ohwconfig.xml file must be specified as a language preference. See "Setting the Language Preference in Internet Explorer" for more information.

	
Note:

Oracle Help automatically translates the Help window menu options; field names; and informational, warning, and error messages. The translation is based on the first locale defined in the ohwconfig.xml file.
For example, if the only language preference specified is English, and the ohwconfig.xml file defines the locales of French and Spanish, Oracle Help translates the Help window menu options, field names, and messages to French.

However, when multiple locales are defined, the language preference for all locales must be specified. Otherwise, only the first locale defined in the ohwconfig.xml file displays in UIM Help. So, when the language preferences are set, Oracle Help translates the Help window menu options, field names, and messages to the language preference with the highest priority.

	
<useLabelInfo>

If <useLabelInfo> is set to true, author-defined labels are used for the navigators of merged Help systems.

If <useLabelInfo> is set to false, default labels such as Contents, Index, and Search are used for the navigators of merged Help systems.

	
<cacheSize>

<cacheSize> indicates the number Help systems kept in memory at one time. The default value is 3.

For more information, see "Oracle Help for the Web Configuration File" in Oracle Fusion Middleware Developer's Guide for Oracle Help, which you can find here:

http://docs.oracle.com/cd/E16162_01/doc.1112/e16280/ohff_ohwconfig.htm

Deploying the Localized Help System

The default Help system is deployed when you deploy the inventory.ear file.

To deploy the localized Help system:

	
Repackage the UIM_Home/app/inventory.ear file to include the localized Help files by doing the following:

	
Delete the UIM_Home/app/inventory.ear/inv.war/WEB-INF/help/helpsets/uimoh_help.jar file.

	
Copy the tempDir/uimoh_help_locale.jar file to the UIM_Home/app/inventory.ear/inv.war/WEB-INF/help/helpsets directory.

	
Note:

If your UIM Help is supporting multiple locales, each JAR file defined by each <locale> element in the ohwconfig.xml file must be present in the UIM_Home/app/inventory.ear/inv.war/WEB-INF/help/helpsets directory.

	
Deploy the repackaged inventory.ear file.

For instructions on how to deploy the inventory.ear file, see UIM System Administrator's Guide.

Testing the UIM Help Localization

After you deploy the localized Help system, test your UIM environment to verify that the localized Help system is working correctly.

In UIM, open the Help and do the following:

	
Navigate to several topics from links in the Table of Contents to ensure that the correct topics appear and display correctly.

	
Test several links within Help topics to ensure they are working.

	
Search for several terms and verify that you get the expected results.

	
If testing multiple locales that function as a single Help system, verify translations for all locales.

	
If testing multiple locales that function as separate Help systems, change the language preference priority to verify translations for each locale.

10 Developing Custom Web Services

This chapter provides information on extending Oracle Communications Unified Inventory Management (UIM) by developing custom Web services using the UIM Reference Web service.

Before you begin writing custom Web services, you should understand the approach to developing Web services. When writing custom Web services, you should follow the specified guidelines and patterns. This chapter provides information on both of these topics.

This chapter contains the following sections:

	
About the Reference Web Service

	
About the WSDL-First Approach to Developing Custom Web Services

	
Guidelines and Patterns for Developing Custom Web Services

	
Developing and Running Custom Web Services

	
Testing Custom Web Services

	
Securing Custom Web Services

About the Reference Web Service

The Reference Web service is located in the UIM_Home/webservices/reference_webservice.zip file.

The reference_webservice.zip file contains several files, as described in the following sections. These files can be viewed in Oracle Communications Design Studio by importing the archive ZIP file into Design Studio.

	
Note:

This chapter assumes you are using Design Studio to develop custom Web services; however, you can use the reference_webservice.zip file to develop custom Web services in any integrated development environment (IDE). This ZIP file contains two Eclipse-specific files, .classpath and .project, which you can ignore if you are using a different IDE.

ReferenceUim.wsdl

The ReferenceUim.wsdl file defines the Web service operations described in Appendix D, "Reference Web Service". Each operation defines an input, an output, and the possible faults that can be thrown.

For information on this file, see "Locating the WSDL and Schema Files".

Schema Files

The schema files that support the Reference Web service define XML structures that are the inputs, outputs, and faults of the Web service operations.

For information on these files, see "Locating the WSDL and Schema Files".

Java Source Files

The Java source files contain additional information in the form of comments (not Javadoc). These files are listed and described in "Developing the Web Service". The information on the Java source files is presented in "Developing the Web Service", which also provides information on which files need to be modified or created.

build.xml File

The build.xml file defines several Ant targets that you can run to build a custom Web service. An Ant target is a set of executable tasks that can be run using Ant. For information on running Ant targets within Design Studio, see "Running Ant Targets".

build.xml File Ant Targets

Table 10-1 describes the Ant targets defined in the build.xml file. "Developing and Running Custom Web Services" contains instructions that tell you when to run these Ant targets.

Table 10-1 build.xml Ant Targets

	Ant Target	Description
	
clean

	
Cleans the generated, temporary, and deliverable files and directories.

	
all

	
Performs the complete build process. Calls the build.full Ant target.

	
copyResources

	
Copies the properties files that store localized error messages to the appropriate UIM deployment directory. These properties files are located within the ZIP file, within the config/resources/logging directory, and are copied to the UIM_Home/config/resources/logging directory.

	
wspolicy

	
Updates the WAR file with the WS Policy files, which describe the Authentication and Encryption mechanism for Web service calls.

	
build.full

	
Performs the complete build process. Calls the following Ant targets in the specified order: clean, generate-from-wsdl, build-service.

	
build.full.http

	
Similar to the build.full Ant target, except it calls the build-service-http Ant target instead of the build-service Ant target. This generates the HTTP Web service WAR file.

	
build.full.jms

	
Similar to the build.full Ant target, except it calls the build-service-jms Ant target instead of the build-service Ant target. This generates the JMS Web service WAR file.

	
build-service

	
Builds the Web service WAR file for HTTP and JM, and stores it in the webarchive directory. The name of the WAR file is wsdl_name.war, where wsdl_name is the name specified by the WSDL_NAME parameter in the COMPUTERNAME.properties file.

	
build-service-http

	
Builds the Web service WAR file for HTTP and stores it in the webarchive directory. The name of the WAR file is wsdl_nameHTTP.war, where wsdl_name is the name specified by the WSDL_NAME parameter in the COMPUTERNAME.properties file.

	
build-service-jms

	
Builds the Web service WAR file for JMS and stores it in the webarchive directory. The name of the WAR file is wsdl_nameJMS.war, where wsdl_name is the name specified by the WSDL_NAME parameter in the COMPUTERNAME.properties file.

	
build.deliverable

	
Builds the Web service cartridge JAR file and stores it in the deliverables directory. Calls the build.full Ant target first to get a complete build for the WAR file.

	
generate-from-wsdl

	
Performs WSDL-to-Java conversions and generates object representations of the schemas. Calls the get-framework-files Ant target.

	
get-framework-files

	
Extracts the framework schema files InventoryCommon.xsd and InventoryFaults.xsd from the uim-webservices-framework.jar file stored in the directory specified by APP_LIB parameter defined in the COMPUTERNAME.properties file.

	
extract.ear

	
Extracts the application.xml file from the EAR file specified by the EAR_PATH parameter defined in the COMPUTERNAME.properties file into the reference_webservice_home/META-INF directory, where reference_webservice_home is the location of the extracted reference_webservice.zip file. The application.xml file needs to be edited manually so that the EAR file can be updated for proper deployment of the Web services.

	
update.ear

	
Updates the EAR file specified by the EAR_PATH parameter in the COMPUTERNAME.properties file by adding the generated Web service WAR file and the edited application.xml file in the webarchive directory into the EAR file. The updated EAR file can be deployed to test the Web services.

About the WSDL-First Approach to Developing Custom Web Services

The WSDL-first approach (also known as the top-down approach), is the recommended way to achieve interoperability, platform independence, and WSDL consistency across Web services. Figure 10-1 shows the design and development sequence of the WSDL-first approach.

Figure 10-1 WSDL-First Design and Development Sequence

[image: Surrounding text describes Figure 10-1 .]

	
Define WSDL and schemas

Write the WSDL and the corresponding schemas (XSD files) to define the operations and data.

	
WSDL-to-Java generation

Use the build.xml Ant targets provided by the Reference Web service to generate Java source files based on the WSDL and schema definitions.

	
Develop Java Web service interface

Use the Web service development environment and tools provided by the Reference Web service to implement the Web service interface through the creation of Java files.

For example, the UIM Web service module was designed using the WSDL-first approach. This means that:

	
The PortImpl Java source file was generated based on the WSDL, resulting in all operations defined in the WSDL being defined in the PortImpl Java source, but with no coding details.

	
Within the PortImpl Java source, each operation was modified to call its respective operation in the AdapterRouter class.

	
The AdapterRouter class calls the respective operation in each individual Adapter class.

	
The build generates the PortImpl interface based on the WSDL.

Guidelines and Patterns for Developing Custom Web Services

This section describes class diagrams that represent the UIM Web service development classes.

Class Diagrams

In the following diagrams, Action represents a UIM business action such as delete or update, and Entity represents a UIM entity such as Party or ServiceConfiguration. For example, ActionEntity may represent deleteParty or getServiceConfiguration.

The Reference Web service provides example classes of the class diagrams which includes request types, response types, fault types, adapters, and implementations.

Figure 10-2 shows the class diagram for request types. ReferenceUim.wsdl defines deletePartyRequest as type DeletePartyRequestType (defined in Party.xsd), and getServiceConfigurationRequest as type GetServiceConfigurationRequestType (defined in Service.xsd). DeletePartyRequestType and GetServiceConfigurationRequestType both extend InventoryRequestType (defined in InventoryCommon.xsd).

Figure 10-2 Request Types

[image: Surrounding text describes Figure 10-2 .]

Figure 10-3 shows the class diagram for response types. ReferenceUim.wsdl defines deletePartyResponse as type DeletePartyResponseType (defined in Party.xsd), and getServiceConfigurationResponse as type GetServiceConfigurationResponseType (defined in Service.xsd). DeletePartyResponseType and GetServiceConfigurationResponseType both extend InventoryResponseType (defined in InventoryCommon.xsd)

Figure 10-3 Response Types

[image: Surrounding text describes Figure 10-3 .]

Figure 10-4 shows the class diagram for fault types. ReferenceUim.wsdl defines getServiceConfigurationFault as type GetServiceConfigurationFaultType (defined in Service.xsd), and updateServiceConfigurationFault as type UpdateServiceConfigurationFaultType (defined in Service.xsd). GetServiceConfigurationFaultType and UpdateServiceConfigurationFaultType both extend InventoryFaultType (defined in InventoryFault.xsd). InventoryFaultType defines a sequence of faults, which are defined by ApplicationFaultType in FaultRoot.xsd.

Figure 10-4 Fault Types

[image: Surrounding text describes Figure 10-4 .]

Figure 10-5 shows the class diagram for adapters. The example adapter files are PartyAdapter.java and ServiceAdapter.java, both of which extend InventoryAdapterRoot.java. The UIM-owned InventoryAdapterRoot.java class extends the Platform-owned AdaptorRoot.java class.

Figure 10-5 Adapters

[image: Surrounding text describes Figure 10-5 .]

Figure 10-6 shows the class diagram for a Web service implementation. The ReferenceUim.wsdl file is used to generate the ReferenceUimPort.java source file. The ReferenceUimPortImpl.java example file provides a skeleton class that implements the interface generated in the ReferenceUimPort.java source file.

	
Note:

The order and method signature using the fully qualified class name of the operations defined in the ReferenceUimPort interface and the ReferenceUimPortImpl implementation class are important and must match the generated source, which is based on the definitions in the WSDL file.

Figure 10-6 Web Service Implementation

[image: Surrounding text describes Figure 10-6 .]

WSDL Interface Pattern

ReferenceUim.wsdl defines a single port type (a Web service interface) that defines all of the exposed operations. When developing new Web service operations, create them within this single port.

The current practice in UIM WS is to only use a single port. Multiple ports are not defined. The only time multiple ports are used is when you need to have a port for HTTP and another for JMS. Multiple ports should not be used for categorically grouping operations.

Operation Name Pattern

A single Web service operation defines:

	
Request type

The pattern for defining a request type is operationNameRequestType, where operationName represents an action (such as create, update, delete) and the name of the entity acted upon (such as Equipment, Pipe, TelephoneNumber). A single request type is defined per operation. For example:

	
CreateEquipmentRequestType

	
UpdatePipeRequestType

	
DeleteTelephoneNumberRequestType

	
Response type

The pattern for defining a response type is operationNameResponseType, where operationName represents an action (such as create, update, delete) and the name of the entity acted upon (such as Equipment, Pipe, TelephoneNumber). A single response type is defined per operation. For example:

	
CreateEquipmentResponseType

	
UpdatePipeResponseType

	
DeleteTelephoneNumberResponseType

	
Fault types

The pattern for defining a fault type is businessFaultFaultType, where businessFault represents a specific business fault that may be thrown. Multiple fault types may be defined per operation. For example:

	
EquipmentNotUniqueFaultType

	
EquipmentNotFoundFaultType

	
NotAuthorizedFaultType

Operation Signature Pattern

The signature of a single Web service operation is defined as follows:

OperationNameResponseType operationName(OperationNameRequestType) throws businessFault1FaultType, businessFault2FaultType, businessFaultNFaultType

For example, the deleteParty operation is defined in the PartyAdapter.java file:

public DeletePartyResponseType deleteParty(DeletePartyRequestType deletePartyRequest) throws InventoryFaultType, ValidationFaultType

In another example, the captureServiceConfigurationInputs operation is defined in the ServiceAdapter.java file:

public CaptureServiceConfigurationInputsResponseType captureServiceConfigurationInputs(CaptureServiceConfigurationInputsRequestType captureServiceConfigurationInputsRequestType) throws InventoryFaultType, ValidationFaultType

Table 10-2 shows the operation signature pattern on various commonly used actions. In the table, Entity represents the name of the entity (such as Equipment, Pipe, TelephoneNumber) acted upon by the operation.

Table 10-2 Operation Signature Pattern

	Action	Operation Signature Pattern
	
Create

	
CreateEntityResponseType createEntity(CreateEntityRequestType)

throws businessFault1FaultType, businessFault2FaultType

	
Find

	
FindEntityResponseType findEntity(FindEntityRequestType)

throws businessFault1FaultType, businessFault2FaultType

	
Update

	
UpdateEntityResponseType updateEntity(UpdateEntityRequestType)

throws businessFault1FaultType, businessFault2FaultType

	
Delete

	
DeleteEntityResponseType deleteEntity(DeleteEntityRequestType)

throws businessFault1FaultType, businessFault2FaultType

	
Calculate

	
CalculateEntityResponseType calculateEntity(CalculateEntityRequestType)

throws businessFault1FaultType, businessFault2FaultType

	
Capture

	
CaptureEntityResponseType captureEntity(CaptureEntityRequestType)

throws businessFault1FaultType, businessFault2FaultType

Input Parameter

	
Each operation defines only one input parameter: operationNameRequestType.

Output Parameter

	
Each operation defines only one output parameter: operationNameResponseType.

Fault Types

	
Fault types are the SoapFaultType or Exception thrown back to the user.

	
Each operation may define multiple fault types.

	
Other fault types may be based on the business exceptions thrown. One-to-one mapping between thrown business logic exceptions and the defined fault types is required to capture the different exceptions.

	
Fault types contain the error codes and stack trace set by the business logic.

Schemas Pattern

The UIM Web services schema is represented by multiple XSD files. These files are based on the modularization principles followed by the UIM APIs. The UIM API level entity definitions closely follow the TMF SID standard. Modeling the XSDs per the UIM APIs gives the advantage of SID standards compliance.

For example, the XSD files are built parallel to business modules such as Service, Party, Logical Device, and so forth. Along with being modular, the advantage in keeping the XSD files separate from the WSDL makes the WSDL independent of Web Services and reusable across other software technologies.

Schema Definition Versus WSDL Definition

Data definitions are defined in the XSD files, not in the WSDL; the WSDL just references the schema definitions. Also, naming standards for the WSDL do not include Type in the name; naming standards for the schema do include Type in the name.

For example, the ReferenceUim.wsdl file defines deletePartyRequest as type DeletePartyRequestType, which is defined in the Party.xsd file. Similarly, the ReferenceUim.wsdl file defines deletePartyResponse as type DeletePartyResponseType, which is defined in the Party.xsd file.

In another example, the ReferenceUim.wsdl file defines captureServiceConfigurationInputsRequest as type CaptureServiceConfigurationInputsRequestType, which is defined in the Service.xsd file. Similarly, the ReferenceUim.wsdl file defines captureServiceConfigurationInputsResponse as type CaptureServiceConfigurationInputsResponseType, which is defined in the Service.xsd file.

Developing and Running Custom Web Services

	
Note:

Design Studio is certified to run on a Windows client, and UIM is certified to run on UNIX. Developers often install UIM on Windows because development work in often done in Design Studio. You can install UIM on Windows for development work, but be aware that it is not certified, and therefore, not supported.
Alternatively, scripted builds are certified on Linux, and building a custom Web service is done through provided scripted builds. So, it is not required that you develop custom Web services on Windows; but, for writing purposes, it is assumed that you are developing custom Web services in Design Studio.

Custom Web services are developed in Design Studio, with the end result being the creation of a WAR file that is then imported into a deployable EAR file. This is a manual process, and this section provides instructions to guide you through the process.

In describing this process, it is assumed that you are working in Design Studio, and therefore working in a Windows environment. Based on this assumption, the location of all required UIM and Oracle WebLogic Server files are described using Windows paths.

	
Important:

Oracle recommends that you perform the instructions to import, configure, and run the deleteParty Web service operation before introducing any custom code for a new Web service. A successful test of deleteParty ensures that your project is configured properly prior to the start of your custom Web service development.

To create a custom Web service, perform the work described in the following sections. The end result of this work is the deployment of an EAR file that contains a new WAR file that defines the Web service.

Pre-development work:

	
Configuring Your Work Environment

	
Importing the Reference Web Service Project

	
Configuring the Imported Project

Development work:

	
Locating the API Method Signature in the Javadoc

	
Developing the Web Service

Post-development work:

	
Generating Java Source Based on the WSDL

	
Creating the WAR File

	
Extracting and Updating the application.xml File

	
Importing the WAR File into the EAR File

	
Deploying the EAR File

	
Testing Custom Web Services

	
Securing Custom Web Services

Configuring Your Work Environment

Before you begin developing a custom Web service, configure your work environment.

WebLogic Server

You must install Oracle WebLogic Server locally. The installation provides the correct version of the JDK and several WebLogic files, both of which are required to compile the Web services project you are building. Running WebLogic Server locally is optional; the installation is required strictly to have the correct version of the JDK, and to have access to specific files for compilation.

UIM

You must have access to the following UIM files:

	
reference_webservice.zip

	
custom.ear or inventory.ear

	
WebLogic Server patch files, if applicable

You can copy these files from a UIM installation on a UNIX machine to your machine, or you can install UIM locally. The entire UIM installation is not required; you only need access to UIM files listed above.

If you are copying the files from a UIM installation, or if you installed UIM locally, the location of the files is:

	
UIM_Home/webservices/reference_webservices.zip

	
UIM_Home/app/custom.ear or inventory.ear

	
UIM_Home/lib/*.jar

	
Note:

The Reference Web Service schema files are not compatible with the Service Fulfillment Web Service schema files. Due to this, the schema_service_fulfillment_webservice.zip and schema_web_service.zip files cannot reside in your work environment with the reference_webservice.zip. See "Creating Schema Files" for more information.

Design Studio

Install and configure Design Studio to work with the Reference Web service, and to develop new custom Web services. See "Installing Design Studio" and "Configuring Design Studio" for more information.

	
Caution:

Configure Design Studio to use the correct version of JDK as specified by the WebLogic Server installation. See UIM System Administrator's Guide for version information. If not configured to use the correct version of JDK, problems may be encountered that are difficult to trace.

You must also set the ANT_HOME system variable. See "Installing Ant" for more information.

Importing the Reference Web Service Project

Import the reference_webservice.zip file into Design Studio. For instructions on how to import projects into Design Studio using archive files, see the Design Studio Help.

The reference_webservice.zip file contains the directories and XML file listed below. To see these directories and XML file in Design Studio, import the archive ZIP file and open the Java perspective Navigator view.

	
codegen

The codegen directory contains files that are generated from the WSDL and schema files. This directory is empty upon importing the contents of the reference_webservice.zip file.

	
config

The config directory contains a properties file that defines localized error messages used by the Web services module.

	
etc

The etc directory contains the COMPUTERNAME.properties file. See "Configuring the COMPUTERNAME.properties File" for more information.

	
security

The security directory contains security-related files that you can use to define authentication and authorization rules for the Reference Web service.

	
src

The src directory contains the Java source files that define the Reference Web service.

	
test

The test directory contains input test XML files used to test the Reference Web service.

	
webarchive

The webarchive directory contains the generated WAR file.

	
WEB-INF

The WEB-INF directory contains the web.xml file, which is a web application deployment descriptor for the Web service.

	
wsdl

The wsdl directory contains the ReferenceUim.wsdl file, which defines all of Reference Web service operations. This directory also contains schema files that support the WSDL definition inputs, outputs, and faults.

	
.classpath

The .classpath file is an Eclipse-specific file that is provided with the imported project.

	
.project

The .project file is an Eclipse-specific file that is provided with the imported project. This file defines the project library list, which lists JAR files that are required to successfully build the project.

	
build.xml

The build.xml file defines several Ant targets that you can run to build a custom Web service, as described previously in Table 10-1, "build.xml Ant Targets".

	
Note:

After importing the archive ZIP file into your workspace, unresolved errors appear in Design Studio until you configure the project. See "Configuring the Imported Project" for more information.

	
Note:

Reference schemas InventoryCommon.xsd, InventoryFault.xsd, and InventoryFaultRoot.xsd reside in the uim_webservices_framework.jar file and are automatically copied to the wsdl/referenceSchemas directory when you run the provided get-framework-files Ant target later in the process.

Configuring the Imported Project

Configuring the imported project involves the following actions:

	
Configuring the COMPUTERNAME.properties File

	
Configuring the web.xml File

	
Configuring the Project Library List

Configuring the COMPUTERNAME.properties File

To configure the reference_webservice/etc/COMPUTERNAME.properties file:

	
Copy and rename the COMPUTERNAME.properties file to reflect the name of the computer on which you have Design Studio installed. You can determine your computer name by running the following DOS command:

echo %COMPUTERNAME%

	
Update the parameter values defined within the file to reflect the information appropriate to the computer on which you are developing any custom Web services.

The file defines the following parameters:

	
WSDL_NAME=ReferenceUim

This is the name of the WSDL file without the file extension. It is also used for deriving the context path and service URI for the generated Web services WAR file. For example, in this case the Web service context path and URI for the HTTP protocol is

/ReferenceUim/ReferenceUimHTTP and for JMS protocol is /ReferenceUim/ReferenceUimJMS.

	
QUEUE_NAME=inventoryWSQueue

This is the name of the JMS Web Service Queue. It matches the name of the queue used in the WSDL for the SOAP <address> element for the service port.

	
MODULE_NAME=reference_webservice

This is the name of the Web service module. The name is used for creating the distributable Web service cartridge. It is also the name of the directory where the generated Web service WAR file is stored.

	
FMW_HOME=/opt/fmw_11gR1PS4

This is the Fusion Middleware WebLogic Server installation path.

	
WL_HOME=${FMW_HOME}/wlserver_10.3

This is the WebLogic Server installation path that incorporates the FMW_HOME parameter.

	
DOMAIN_HOME=/opt/uim/domains

DOMAIN_NAME=uim720

UIM_HOME=${DOMAIN_HOME}/${DOMAIN_NAME}/UIM

These parameters collectively specify the UIM installation path.

	
APP_LIB=${UIM_HOME}/lib

This is the working directory to which dependent JAR files are extracted from the inventory.ear file. This working directory is automatically created for you based on the name provided here.

	
EAR_PATH=${UIM_HOME}/app/custom.ear

This is the directory where the custom.ear file is located.

	
POMS_ROOT=/opt/uim/opt/OracleCommunications/POMSClient/lib

This is the location of the POMS JAR file.

	
PLATFORM=/opt/uim/opt/OracleCommunications/commsplatform/ws

This is the location of the Platform Web service JAR file.

	
PATCH_CLASSPATH=

This is the path to any WebLogic patch files, if applicable. You must replicate this parameter for each WebLogic patch file to specify the path and specific patch file name.

Configuring the web.xml File

To configure the reference_webservice/WEB-INF/web.xml file, add the following:

<listener>
 <listener-class>
 oracle.communications.inventory.api.framework.listener.
 InventoryWebApplicationListener
 </listener-class>
</listener>

Configuring the Project Library List

For instructions on how to configure the project library list, see the Design Studio Help.

Figure 10-7 shows the imported project library list, which includes the JAR files needed to compile the project.

Figure 10-7 Project Library List Before Configuring

[image: Surrounding text describes Figure 10-7 .]

The required JAR files can be categorized into three groups:

	
WebLogic files (FMW_LIB)

	
Platform files (POMS_LIB and POMS_PLIB)

	
UIM files (UIM_LIB)

The project library list of JAR files does not indicate the location of the files, so you must configure the project library list to point to the location of the JAR files. To do this, you need to add new variables named FMW_LIB, POMS_LIB, POMS_PLIB, and UIM_LIB that point the specified directory listed in Table 10-3.

Table 10-3 Location of JAR Files

	Variable Name	Directory Name
	
FMW_LIB

	
FMW_Home

	
POMS_LIB

	
Oracle_Home/commsplatform/ws

	
POMS_PLIB

	
Oracle_Home/POMSClient/lib

	
UIM_LIB

	
UIM_Home/lib

Result of Configuring Project Library List

Figure 10-8 shows the project library list after the variables are added. Notice that the library list now includes the location of the JAR files, not just the JAR file names.

Figure 10-8 Project Library List After Configuring

[image: Surrounding text describes Figure 10-8 .]

	
Note:

Adding the variables is one way to configure the library list; you can also write down the names of the required files, remove them from the library list, click Add External JARS, navigate to their location, and add them directly to the list. Either way, the end result is the same: The library list has the location to the files needed to compile the project.

Locating the API Method Signature in the Javadoc

When creating a new Web service, you need to wrap an existing API method.

To locate a particular API method:

	
Access the Javadoc.

For instructions on how to access the Javadoc, see "Javadoc Documentation".

	
Perform a wild card search for *Manager.class.

All manager class names end in Manager.class, such as TelephoneNumberManager.class, EquipmentManager.class, and so forth.

	
Open the appropriate manager class.

All exposed methods are defined in manager classes; so, look for a manager class with a name similar to the functional area that may contain the method you plan to wrap.

	
Locate the method you plan to wrap.

Information to Capture

The following information is needed to create a new Web service. This information is available in the Javadoc after locating the method you plan to wrap.

	
Class name that defines the method to wrap

	
Package in which the class resides

	
Method signature information:

	
Method name

	
Input parameters

	
Return values

	
Exceptions thrown

For example, the deleteParty Web service operation wraps the deleteParty() API method. The following information was used to define this Web service in the PartyAdapter.java file:

	
PartyManager is the class that defines the deleteParty() method.

	
PartyManager resides in the package oracle.communications.inventory.api.party.

	
The method signature information includes:

	
Method name: deleteParty

	
Input parameters: Collection of Party objects

	
Return values: none (void)

	
Exceptions thrown: ValidationException

Developing the Web Service

Developing a new Web service involves creating a new WSDL file, new schema files, and new Java source files. Creating each of these files is further explored in the following sections.

Creating the WSDL File

	
Note:

The ReferenceUim.wsdl file is written to be independent of the application server. However, the generate-from-wsdl Ant target in the build.xml file is specific to generating the required source files for deployment into a WebLogic Server environment.

The imported project contains the ReferenceUim.wsdl file, which defines all the Web service operations. Model your custom WSDL file after the ReferenceUim.wsdl file. For more information see the W3C Web Services Description Language Web site:

http://www.w3.org/TR/wsdl

and the w3schools.com WSDL Tutorial Web site:

http://www.w3schools.com/wsdl/default.asp

WSDL Naming Conventions

The ReferenceUim.wsdl file uses WSDL_NAME variable in the COMPUTERNAME.properties file for naming its various SOAP elements. This naming convention allows the build.xml Ant targets to parse these elements consistently, and to generate the correct source files for the Web service interfaces and implementation. The following list of naming conventions is assumed in the WSDL file:

	
ReferenceUim

This is the name of the WSDL file without the file extension as set by the WSDL_NAME variable in the COMPUTERNAME.properties file. This name is also used to automatically set other important variables in the build.xml file, such as SERVICE_NAME and PORT_NAME. This name is assumed to be the name of the root definitions element in the WSDL file. This name identifies the name of the following files, which are generated later in the process: ReferenceUimPort.java, ReferenceUimPortImpl.java, ReferenceUim.war, ReferenceUimHTTP.war, and ReferenceUimJMS.war.

	
ReferenceUimPort

This is the name of the PortType that is generated for the implementation later in the process. It is used by the generated source ReferenceUimPort.java and ReferenceUimPortImpl.java.

	
ReferenceUimHTTPSoapBinding

This is the name of the SOAP binding for Web service operations that are exposed through the HTTP transport protocol. The list of operations identified in this binding element can be a subset of the operations identified in the <PortType> element. The list of operations can be the same as or different from the JMS protocol operations.

	
ReferenceUimJMSSoapBinding

This is the name of the SOAP binding for Web service operations that are exposed through the JMS transport protocol. The list of operations identified in this binding element can be a subset of the operations identified in the <PortType> element. The list of operations can be the same as or different from the HTTP protocol operations.

	
ReferenceUimHTTPPort

This is the name of the HTTP transport Port used in the UIMReference service definition. It references the ReferenceUimHTTPSoapBinding identified earlier. Also, the SOAP address location uses the following for the context path:

http://localhost:7001/ReferenceUim/ReferenceUimHttP

	
ReferenceUimJMSPort

This is the name of the JMS transport Port used in the UIMReference service definition.

It references the ReferenceUimJMSSoapBinding identified earlier. Also, the SOAP address location uses the following for the context path:

jms://localhost:7001/ReferenceUim/ReferenceUimJMS?URI=inventoryWSQueue

For example, if you create a new file named InventoryWs.wsdl, the naming conventions result in:

	
InventoryWsPort

	
InventoryWsHTTPSoapBinding

	
InventoryWsJMSSoapBinding

	
InventoryWsHTTPPort

	
InventoryWsJMSPort

Creating Schema Files

	
Note:

The Reference Web service schema files are written to be independent of the application server. However, the generate-from-wsdl Ant target in the build.xml file is specific to generating the required source files for deployment into a WebLogic Server environment.

The imported project provides supporting schemas for the Reference Web service operations. The schemas define the inputs, outputs, and faults of the wrapped methods. The schemas are used to generate the Java representation of the incoming/outgoing XML, which can then be mapped to an internal Java entity class (see "EntityMapper.java"). The Java representation is generated by the generate-from-wsdl Ant target.

For a new Web service, new schemas must be written that reflect the inputs and outputs of the wrapped method.

Avoiding Schema Incompatibilities

The Reference Web Service schema files are not compatible with the Service Fulfillment Web Service schema files because several of the Reference Web Service schema files share the same name of the business schema files that reside in the schema_servicefulfillment_web_service.zip and schema_web_service.zip files. Namely,

	
Party.xsd

	
Place.xsd

	
Role.xsd

	
Service.xsd

	
Specification.xsd

However, the file content is not the same: One set was written for the Reference Web Service, and one set was written for the Service Fulfillment Web Service.

When creating a custom Web service that needs to use, for example, the MediaStream.xsd schema file from the schema_webservice.zip , you need to create your own version of the schema file. You can extract the MediaStream.xsd schema file from the schema_webservice.zip file and use it in your work environment, but you cannot import the entire schema_webservice.zip into your work environment to reference the MediaStream.xsd file due to incompatibility.

Modifying the Mapping File

The imported project provides the type-mapping.xsdconfig mapping file. This file is used for XML namespace-to-Java package mapping. For a new Web service, modify the mapping file to update the namespace-to-Java package mappings.

Creating Java Source Files

The imported project provides the supporting Java code for numerous Reference Web service operations. The Java code contains additional information in the form comments within each class (not Javadoc).

	
ReferenceUimPortImpl.java

The ReferenceUimPortImpl class is the entry point into the Web service logic. This class calls the AdapterRouter class.

ReferenceUimPortImpl.java is a generated source file with the content based on the ReferenceUim.wsdl file. This file is generated by the generate-from-wsdl Ant target and is placed in the codegen/WebServiceImpl/oracle/communications/inventory/ webservice/ws directory. Copy this file to the src/oracle/communications/ inventory/webservice/ws directory as a starting point for the correct implementation of the Web service calling the respective adapter classes. The Reference Web service implementation is already copied into this source directory.

This class must be modified to call the AdapterRouter for each new Web service. Because this is a generated file, the modifications are based on the WSDL file.

	
AdapterRouter.java

The AdapterRouter class routes the call to a specific adapter. If the input from the external source requires mapping, the corresponding mapper class is the input/output for this class.

This class must be modified for each new Web service.

	
EntityAdapter.java

Adapter classes extend the InventoryAdapterRoot class, which extends the Platform-owned AdapterRoot class. Adapters wrap the calls to the UIM API methods. Typically, one adapter class exists per manager class, such as EntityAdapter.java. However, one adapter class can wrap multiple methods from different manager classes.

Oracle recommends that adapters be as thin as possible. They should simply contain a call to the Manager API or to other helper classes.

An adapter calls EntityValidator and, if validations pass, calls the business layer API method.

An existing adapter class must be modified, or a new adapter class written, for each new Web service.

	
EntityValidator.java

Validator classes define an input validation method per Web service. The adapter classes call the corresponding input validation method prior to calling the wrapped API method.

For cases where input data is passed in, a new validator class is needed per entity.

	
EntityUtils.java

Utils classes define common utility methods used by the Reference Web service operations.

The existing EntityUtils class may be extended or a new utils class written, as needed during the development of a new Web service.

	
EntityWorker.java

Worker classes define methods used by the Reference Web service operations.

These existing EntityWorker classes may be extended or a new worker class written, as needed during the development of a new Web service.

	
EntityMapper.java

Mapper classes map the generated object representation of the schemas (external) to the Java entity class (internal) on the way in, and map the Java entity class (internal) to the generated object representation of the schemas (external) on the way out. One mapper class maps a single entity, but a mapper class may be shared across methods in an adapter if the methods use the same entity.

For cases where the source code references the entity data, a new mapper class is needed per entity.

	
EntityException.java

Exception classes define exceptions specific to a Web service.

The existing EntityException classes may be extended or a new exception class written, as needed during the development of a new Web service.

	
FaultFactory.java

The FaultFactory class maps Exception objects thrown by the API method to InventoryFaultType objects returned by the Web service.

You may need to modify this class for a new Web service; it depends on whether the API method introduces any new Exception objects that are not already mapped.

Generating Java Source Based on the WSDL

The imported project contains the build.xml file, which defines the generate-from-wsdl Ant target. The generate-from-wsdl Ant target copies the latest framework schema files into the Web services project and generates the Java source based on the input WSDL file and supporting schemas. You can run the generate-from-wsdl Ant target to automatically copy the framework files and generate the Java source. For instructions on how to run an Ant target such as the generate-from-wsdl Ant target, see "Running Ant Targets".

The generated package structure and generated files include:

	
codegen/src/oracle/communications/inventory/webservice

This package contains the generated Java source files. Figure 10-9 shows the generated Java source files, as based on the provided Reference Web service.

	
codegen/WebServiceImpl/oracle/communications/inventory/webservice/ws

This package contains the generated wsdl_namePortImpl.java source file. Figure 10-10 shows the generated ReferenceUimPortImpl.java source file, as based on the provided Reference Web service.

	
codegen/WebServiceInterface

This package contains the generated wsdlName_wsdl.jar file. Figure 10-10 shows the generated ReferenceUim_wsdl.jar file, as based on the provided Reference Web service.

Figure 10-9 Generated Java Source Files

[image: Surrounding text describes Figure 10-9 .]

Figure 10-10 Generated Files

[image: Surrounding text describes Figure 10-10 .]

After the source is generated, the project workspace has access to all the dependent files needed to compile the project. The compiled classes are stored in the out directory, as shown in the Navigator view in Figure 10-11. The figure shows the compiled classes for the generated source files shown in Figure 10-9. Class files compiled from Java source files that are part of the original imported project are also placed in the out directory, such as the class files within the out/oracle/communications/inventory/webservice/adapter and mapper directories.

Figure 10-11 Project Compiled Files

[image: Surrounding text describes Figure 10-11 .]

Creating the WAR File

The WAR file contains the compiled classes from the developed custom Web service, plus the JAR file containing the UIM API method that the Web service wraps.

The imported project contains the build.xml file, which defines the build-service Ant target. The build-service Ant target builds the WAR file for HTTP and JMS. (The build.xml file also defines the build-service.http Ant target, which builds the WAR file for HTTP, and the build-service.jms Ant target, which builds the WAR file for JMS.) You can run any of these build-service Ant targets to automatically build the WAR file. For instructions on how to run an Ant target such as the build-service Ant target, see "Running Ant Targets".

Figure 10-12 shows the created ReferenceUim.war file, which resides in the webarchive/reference_webservice directory, as based on the provided Reference Web service. The created WAR file name is wsdl_name.war, where wsdl_name is the name specified by the WSDL_NAME parameter in the COMPUTERNAME.properties file. The WAR file resides in the webarchive/module_name directory, where module_name is the name specified by the MODULE_NAME parameter in the COMPUTERNAME.properties file.

The WAR file contains the following:

	
Compiled generated source files (WSDL and XML object representations)

	
Compiled developed source files (contents of the src directory)

	
JAR file that contains the class that defines wrapped method (UIM business services logic)

Figure 10-12 shows the generated directory structure, and the ReferenceUim.war file, as based on the provided Reference Web service.

Figure 10-12 webarchive/WebServiceReference Directory

[image: Surrounding text describes Figure 10-12 .]

Extracting and Updating the application.xml File

Every EAR file contains an application.xml file, which defines the WAR files that comprise the EAR file. When developing custom Web services, you have the option of importing the custom Web service WAR file into:

	
The custom.ear file

You may wish to deploy your custom Web service separately from the UIM application, in which case you would import the custom Web service WAR file into the custom.ear file.

	
Any custom EAR files

You may develop several different custom Web services, and wish to deploy each one separately. In this scenario, you would import each custom Web service WAR file into a separate EAR file.

If using this option, each EAR file must contain the APP-INF/lib/uim-entities.jar file, and a reference to oracle.communications.inventory.corelib within the META-INF/weblogic-application.xml file. For an example to emulate, see the custom.ear file content.

	
The inventory.ear file

You may wish to include the WAR file in the inventory.ear so that your custom Web service automatically deploys when you deploy the UIM application.

Regardless of which option you choose, the custom Web service WAR file needs to be included in the EAR file, so the application.xml file must be updated to include the name of the custom Web service WAR file.

Extracting the File

If you choose the custom.ear or inventory.ear file, use the extract.ear Ant target to automatically extract the application.xml file from the EAR file specified by the EAR_PATH parameter in the COMPUTERNAME.properties file into the reference_webservice_home/META-INF directory, where reference_webservice_home is the location of the extracted reference_webservice.zip file.

If you choose to create your own custom EAR file, extract the application.xml file from the custom.ear file and modify as needed.

The extract.ear Ant target is provided in the build.xml file. For instructions on how to run an Ant target such as the extract.ear Ant target, see "Running Ant Targets".

Updating the File

Example 10-1 shows the application.xml file from the custom.ear file. Whichever application.xml file you are updating, add a <module> element to identify the custom Web service WAR file and the <context-root> element, as shown in Example 10-2. The value of the <context-root> element is the same as the name of the WSDL file as assumed by the generated files.

Example 10-1 application.xml

<?xml version = '1.0' encoding = 'windows-1252'?>
<application xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://java.sun.com/xml/ns/javaee http://java.sun.com/xml/ns/javaee/application_5.xsd" version="5" xmlns="http://java.sun.com/xml/ns/javaee">
 <display-name>oracle.communications.inventory.customear</display-name>
 <module>
 <java></java>
 </module>
</application>

Example 10-2 Updated application.xml

<?xml version = '1.0' encoding = 'windows-1252'?>
<application xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://java.sun.com/xml/ns/javaee http://java.sun.com/xml/ns/javaee/application_5.xsd" version="5" xmlns="http://java.sun.com/xml/ns/javaee">
 <display-name>oracle.communications.inventory.customear</display-name>
 <!-- Custom Web Service WAR -->
 <module>
 <web>
 <web-uri>UIMReference.war</web-uri>
 <context-root>UIMReference</context-root>
 </web>
 </module>
</application>

Importing the WAR File into the EAR File

After you determine which EAR file is to contain the custom Web service WAR file, import the WAR file into the appropriate EAR file.

The imported project contains the build.xml file, which defines the update.ear Ant target. The update.ear Ant target updates the EAR file by adding the custom Web service WAR file and the edited application.xml file. The update.ear Ant target determines the location of the EAR file to be updated by using the path you specified in the COMPUTERNAME.properties EAR_PATH parameter. Run the update.ear Ant target to automatically perform these updates to the EAR file. For instructions on how to run an Ant target such as the update.ear Ant target, see "Running Ant Targets".

Deploying the EAR File

The imported project contains the build.xml file, which defines the copyResources Ant target. The copyResources Ant target copies the referenceWS.properties file from the imported project to the UIM_Home/config/resources/logging directory. Prior to deploying the updated EAR file for the first time, run the copyResources Ant target. Unless you change the referenceWS.properties file, you only need to run this Ant target one time. For instructions on how to run an Ant target such as the copyResources Ant target, see "Running Ant Targets".

If your UIM environment resides on another machine, you must copy the updated EAR file to that machine prior to deploying.

For instructions on how to deploy an EAR file, see UIM System Administrator's Guide.

	
Tip:

After you have gone through all the steps in this chapter once, you only need to run the clean, all, and update.ear Ant targets to rebuild the EAR file prior to deploying it.

Verifying the Deployment

After you have deployed the updated EAR file, verify that the deployment includes the custom service by viewing the Web services in the WebLogic Server Administration Console. See "Verifying the Deployment" in Chapter 9, Integrating UIM through Web Services.

Specifying a Deployment Plan

If you placed your custom Web service in the custom.ear file, or in any custom EAR file, you must specify a deployment plan for the updated EAR file. If you placed your custom Web service in the inventory.ear file, the deployment plan is already specified.

Specifying a deployment plan enables the EAR file to retrieve property values from the UIM_Home/app/AppFileOverrides/platform/runtime-poms.properties file, which defines property values that are used by the persistence framework for cache coordination.

To specify a deployment plan:

	
Log in to the WebLogic Server Administration Console.

	
In the left panel, under Domain Structure, click the Deployments link.

The Summary of Deployments page appears.

	
In the left panel, under Change Center, click Lock & Edit.

	
Select the check box next to the updated EAR file that contains your custom Web service.

	
Click Update.

The Update Application Assistant page appears.

	
Click Change Path.

	
Change the path to UIM_Home/app/plan.

	
Choose Plan.xml, and click Next.

	
Choose Redploy this application using the following deployment files, and click Finish.

Testing Custom Web Services

Test the custom Web service after you deploy the updated EAR file. Custom Web services can be tested by using any software designed to test Web services, such as:

	
LISA for testing through HTTP or JMS

	
SoapUI for testing through HTTP

	
HermesJMS for testing through JMS

Generating Test Input XML

You can generate your own test input XML by using any software that generates XML based on schema, such as XML Spy, SoapUI, and so forth.

Preconfiguration for Testing

Be aware of any preconfigurations that must be in place prior to testing any custom Web services.

Securing Custom Web Services

When you create a new Web service, it is up to you secure the Web service. How you secure the Web service depends upon how you created the Web service. For example, if your custom Web service deploys with the custom.ear file, you need to create your own deployment plan; if your custom Web service deploys with the inventory.ear file, you need to modify the inventory.ear deployment plan that is part of the UIM installation (UIM_Home/app/plan/Plan.xml file).

To secure a custom Web service:

	
Access security for the custom Web service.

See "Accessing Security".

	
Associate a security policy to the custom Web service.

See "Associating a Policy File". You can use the security policy that comes with the UIM installation (Auth.xml), or the security policy that comes in the Reference Web service ZIP file (SampleAuth.xml), or create your own security policy file.

	
Note:

The Auth.xml file is automatically available for selection to associate to your custom Web service. If you are using a security policy other than the Auth.xml file, there is an additional step required to get the security policy file to be available for selection to associate to your custom Web service: The security policy file must be placed in your project's policies directory prior to creating the WAR file. Then, when you deploy the EAR file that contains the custom Web service WAR file, the security policy in the WAR file becomes available for selection to associate to your custom Web service.

When you associate a security policy to the custom Web service, a deployment plan is generated in the form of a Plan.xml file.

	
Associate the generated deployment plan with the custom Web service by redeploying the EAR file that contains the custom Web service; the redeploy prompts you to supply the path to the EAR file, and to supply the name of the deployment plan (Plan.xml).

	
The prompt to supply the name of the deployment plan may also prompt you to select Inbound or Both: Select Inbound.

	
Ensure that the deployment plan reflects Inbound. See "Modifying the Deployment Plan".

See "Securing the Web Service" for more information.

Preface

This guide explains how to extend Oracle Communications Unified Inventory Management (UIM) through standard Java practices using Oracle Communications Design Studio, which is an Eclipse-based integrated development environment. This guide includes references to both applications, and often directs the reader to see the Design Studio Help and the UIM Help for instructions on how to perform specific tasks.

This guide should be read after reading UIM Concepts, because this guide assumes that the reader has a conceptual understanding of UIM. This guide should be read from start to finish because the information presented in a chapter often builds upon information presented in a preceding chapter.

This guide includes examples of typical development code used in given situations. The guidelines and examples may not be applicable in every situation.

Audience

This guide is intended for developers who implement code to extend UIM. The developers should have a good working knowledge of XML and Java development and, in particular, JPA, standard Java practices, and J2EE principles.

You should read UIM Concepts before reading this guide.

Related Documentation

For more information, see the following documents in the Oracle Communications Unified Inventory Management documentation set:

	
UIM Installation Guide: Describes the requirements for installing UIM, installation procedures, and post-installation tasks.

	
UIM System Administrator's Guide: Describes administrative tasks such as working with cartridges and technology packs, maintaining security, managing the database, configuring Oracle Map Viewer, and troubleshooting.

	
UIM Security Guide: Provides guidelines and recommendations for setting up UIM in a secure configuration.

	
UIM Concepts: Provides an overview of important concepts and an introduction to using both UIM and Design Studio.

	
UIM API Overview: Provides detailed information and code examples of numerous APIs presented within the context of a generic service fulfillment scenario, and within the context of a channelized connectivity enablement scenario.

	
UIM Information Model Reference: Describes the UIM information model entities and data attributes, and explains patterns that are common across all entities.

	
Oracle Communications Information Model Reference: Describes the Oracle Communications information model entities and data attributes, and explains patterns that are common across all entities. The information described in this reference is common across all Oracle Communications products.

	
UIM Cartridge and Technology Pack Guide: Provides information about how you use cartridges and technology packs with UIM. Describes the content of the base cartridges.

	
UIM technology pack implementation guides: Describe the content of product technology packs as well as configuration guidelines and implementation considerations.

For step-by-step instructions for performing tasks, log into each application to see the following:

	
Design Studio Help: Provides step-by-step instructions for tasks you perform in Design Studio.

	
UIM Help: Provides step-by-step instructions for tasks you perform in UIM.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers have access to electronic support through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Document Revision History

The following table lists the revision history for this book.

	Version	Date	Description
	E40885-01
	November 2013
	Initial release.

The UpdateInteraction flow is represented by the following boxes: Get BI, Update BI (Approve, Issue, Complete, or Cancel), Update Configuration Status, and Update BI Status (Complete/Cancel). The flow is repeated for each child BI.

[image: Oracle]

Copyright © 2010, 2013, Oracle and/or its affiliates. All rights reserved.

Legal Notices

This graphic represents two classes:

	
On the left side of the graphic is Class A, which defines method x() and method y(). Within method y() is a call to method x().

	
On the right side of the graphic is Class B, which extends class A. Class B defines method z(), which calls method x() on Class A.

[image: Oracle]

Copyright © 2010, 2013, Oracle and/or its affiliates. All rights reserved.

Legal Notices

The GetInteraction flow is represented by the following boxes: Get BI, Get BI Items, Get Resources, and Get Configuration (calls the Reference Web service GetConfiguration operation). The flow is repeated for each child BI.

[image: Oracle]

Copyright © 2010, 2013, Oracle and/or its affiliates. All rights reserved.

Legal Notices

The figure shows the following boxes: BI, BI Items, Service, Service Configuration, and Service Configuration Items. The BI and BI Items boxes are on the left side, and an arrow between them represents the relationship. The Service, Service Configuration, and Service Configuration Items boxes are on the right side, and arrows between them represent the relationships. A broken-line arrow between the Service Configuration box and the BI Items box shows how a service configuration is indirectly related to a business interaction through the business interaction items.

[image: Oracle]

Copyright © 2010, 2013, Oracle and/or its affiliates. All rights reserved.

Legal Notices

The flow of an entity finder API with row locking is represented by the following boxes: UIM user initiates search with LockPolicy set, Finder API, and Locked search results returned to UIM.

[image: Oracle]

Copyright © 2010, 2013, Oracle and/or its affiliates. All rights reserved.

Legal Notices

The flow of an entity finder API without row locking is represented by the following boxes: UIM user initiates search, Finder API, and Search results returned to UIM.

[image: Oracle]

Copyright © 2010, 2013, Oracle and/or its affiliates. All rights reserved.

Legal Notices

This graphic represents the UIM code stream:

	
On the right side of the graphic there is a box containing method a(), and two rows of three dots representing executable code within method a(). The words "extension point", in red, appear within method a(), above the executable code.

	
On the left side of the graphic in the upper corner, there is a call to method a(). An arrow extends from the call to method a() to the box containing method a().

	
On the left side of the graphic in the lower corner, there is another call to method a(). An arrow extends from the call to method a() to the box containing method a().

[image: Oracle]

Copyright © 2010, 2013, Oracle and/or its affiliates. All rights reserved.

Legal Notices

The ProcessInteraction flow is represented by the following boxes: Get BI, Create Service, Create Service Configuration, Associate Service Configuration to BI, Get BI Items, Get BI Item Actions, and Automate Configuration. Automating the configuration is done through a custom ruleset.

[image: Oracle]

Copyright © 2010, 2013, Oracle and/or its affiliates. All rights reserved.

Legal Notices

The flow of an entity finder API using a custom Web service is represented by the following boxes: External system sends request, Custom Web service sets LockPolicy and initiates search, Finder API, Locked search results returned to custom Web service, Custom Web service sends response, and Locked search results returned to external system.

[image: Oracle]

Copyright © 2010, 2013, Oracle and/or its affiliates. All rights reserved.

Legal Notices

The CaptureInteraction flow is represented by the following boxes: Create or Change BI, Validate XML input (optional), Create or Change Attachment, Associate Attachment to BI (for create), and Associate BI to Parent BI (if applicable).

[image: Oracle]

Copyright © 2010, 2013, Oracle and/or its affiliates. All rights reserved.

Legal Notices

This graphic represents the UIM code stream:

	
On the right side of the graphic there is a box containing method a(), and two rows of three dots representing executable code within method a().

	
On the left side of the graphic in the upper corner, there is a call to method a(). The words "extension point", in red, appear below the call to method a(). An arrow extends from the call to method a() to the box containing method a().

	
On the left side of the graphic in the lower corner, there is another call to method a(). The words "extension point", in red, appear below the call to method a(). An arrow extends from the call to method a() to the box containing method a().

[image: Oracle]

Copyright © 2010, 2013, Oracle and/or its affiliates. All rights reserved.

Legal Notices

The flow of an entity finder API using a custom ruleset is represented by the following boxes: UIM user initiates search, Finder API Extension Point Intercept, Custom Ruleset, Custom Code sets LockPolicy and initiates search, Finder API, and Locked search results returned to UIM.

[image: Oracle]

Copyright © 2010, 2013, Oracle and/or its affiliates. All rights reserved.

Legal Notices

This graphic represents the UIM code stream:

	
On the right side of the graphic there is a box containing method a(), and two rows of three dots representing executable code within method a().

	
On the left side of the graphic in the upper corner, there is a call to method a(). The words "extension point", in red, appear below the call to method a(), which is commented out. An arrow extends from the call to method a() to the box containing method a().

	
On the left side of the graphic in the lower corner, there is another call to method a(). The words "extension point", in red, appear below the call to method a(), which is commented out. An arrow extends from the call to method a() to the box containing method a().

[image: Oracle]

Copyright © 2010, 2013, Oracle and/or its affiliates. All rights reserved.

Legal Notices

The GetConfiguration flow is represented by the following boxes: Get Configuration, Get Service, Get Party, Get Place, and Get Configuration Items. For each Configuration Item: Get Characteristics, Get Assignments, and Get References.

[image: Oracle]

Copyright © 2010, 2013, Oracle and/or its affiliates. All rights reserved.

Legal Notices

This graphic represents the UIM code stream:

	
On the right side of the graphic there is a box containing method a(), and two rows of three dots representing executable code within method a().

	
On the left side of the graphic in the upper corner, there is a call to method a(). An arrow extends from the call to method a() to the box containing method a().

	
On the left side of the graphic in the lower corner, there is another call to method a(). An arrow extends from the call to method a() to the box containing method a().

[image: Oracle]

Copyright © 2010, 2013, Oracle and/or its affiliates. All rights reserved.

Legal Notices

This graphic represents the UIM code stream:

	
On the right side of the graphic there is a box containing method a(), and two rows of three dots representing executable code within method a(). The words "extension point", in red, appear within method a(), below the executable code.

	
On the left side of the graphic in the upper corner, there is a call to method a(). An arrow extends from the call to method a() to the box containing method a().

	
On the left side of the graphic in the lower corner, there is another call to method a(). An arrow extends from the call to method a() to the box containing method a().

[image: Oracle]

Copyright © 2010, 2013, Oracle and/or its affiliates. All rights reserved.

Legal Notices

This graphic represents the UIM code stream:

	
On the right side of the graphic there is a box containing method a(), and two rows of three dots representing executable code within method a().

	
On the left side of the graphic in the upper corner, there is a call to method a(). The words "extension point", in red, appear above the call to method a(). An arrow extends from the call to method a() to the box containing method a().

	
On the left side of the graphic in the lower corner, there is another call to method a(). The words "extension point", in red, appear above the call to method a(). An arrow extends from the call to method a() to the box containing method a().

[image: Oracle]

Copyright © 2010, 2013, Oracle and/or its affiliates. All rights reserved.

Legal Notices

This graphic represents the UIM code stream:

	
On the right side of the graphic there is a box containing method a(), and two rows of three dots representing executable code within method a(). The words "extension point", in red, appear within method a(), below the executable code, which is commented out.

	
On the left side of the graphic in the upper corner, there is a call to method a(). An arrow extends from the call to method a() to the box containing method a().

	
On the left side of the graphic in the lower corner, there is another call to method a(). An arrow extends from the call to method a() to the box containing method a().

[image: Oracle]

Copyright © 2010, 2013, Oracle and/or its affiliates. All rights reserved.

Legal Notices

