This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS. Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.

This software and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.
Preface

Oracle Solaris Cluster Data Service for Oracle External Proxy Guide explains how to install and configure Oracle Solaris Cluster data services.

Note – This Oracle Solaris Cluster release supports systems that use the SPARC and x86 families of processor architectures. In this document, “x86” refers to the larger family of x86 compatible products. Information in this document pertains to all platforms unless otherwise specified.

This document is intended for system administrators with extensive knowledge of Oracle software and hardware. Do not use this document as a planning or presales guide. Before reading this document, you should have already determined your system requirements and purchased the appropriate equipment and software.

The instructions in this book assume knowledge of the Oracle Solaris Operating System and expertise with the volume-manager software that is used with Oracle Solaris Cluster software.

Bash is the default shell for Oracle Solaris 11. Machine names shown with the Bash shell prompt are displayed for clarity.

Using UNIX Commands

This document contains information about commands that are specific to installing and configuring Oracle Solaris Cluster data services. The document does not contain comprehensive information about basic UNIX commands and procedures, such as shutting down the system, booting the system, and configuring devices. Information about basic UNIX commands and procedures is available from the following sources:

- Online documentation for the Oracle Solaris Operating System
- Oracle Solaris Operating System man pages
- Other software documentation that you received with your system
Typographic Conventions

The following table describes the typographic conventions that are used in this book.

<table>
<thead>
<tr>
<th>Typeface</th>
<th>Description</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>AaBbCc123</td>
<td>The names of commands, files, and directories, and onscreen computer output</td>
<td>Edit your .login file. Use ls -a to list all files. machine_name% you have mail.</td>
</tr>
<tr>
<td>AaBbCc123</td>
<td>What you type, contrasted with onscreen computer output</td>
<td>machine_name% su Password:</td>
</tr>
<tr>
<td>aabbcc123</td>
<td>Placeholder: replace with a real name or value</td>
<td>The command to remove a file is rm filename.</td>
</tr>
<tr>
<td>AaBbCc123</td>
<td>Book titles, new terms, and terms to be emphasized</td>
<td>Read Chapter 6 in the User's Guide. A cache is a copy that is stored locally. Do not save the file. Note: Some emphasized items appear bold online.</td>
</tr>
</tbody>
</table>

Shell Prompts in Command Examples

The following table shows UNIX system prompts and superuser prompts for shells that are included in the Oracle Solaris OS. In command examples, the shell prompt indicates whether the command should be executed by a regular user or a user with privileges.

<table>
<thead>
<tr>
<th>Shell</th>
<th>Prompt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bash shell, Korn shell, and Bourne shell</td>
<td>$</td>
</tr>
<tr>
<td>Bash shell, Korn shell, and Bourne shell for superuser</td>
<td>#</td>
</tr>
<tr>
<td>C shell</td>
<td>machine_name%</td>
</tr>
<tr>
<td>C shell for superuser</td>
<td>machine_name#</td>
</tr>
</tbody>
</table>
Related Documentation

Information about related Oracle Solaris Cluster topics is available in the documentation that is listed in the following table. All Oracle Solaris Cluster documentation is available at http://www.oracle.com/technetwork/indexes/documentation/index.html.

<table>
<thead>
<tr>
<th>Topic</th>
<th>Documentation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hardware installation and administration</td>
<td>Oracle Solaris Cluster 4.1 Hardware Administration Manual</td>
</tr>
<tr>
<td>Concepts</td>
<td>Oracle Solaris Cluster Concepts Guide</td>
</tr>
<tr>
<td>Software installation</td>
<td>Oracle Solaris Cluster Software Installation Guide</td>
</tr>
<tr>
<td>Data service installation and administration</td>
<td>Oracle Solaris Cluster Data Services Planning and Administration Guide</td>
</tr>
<tr>
<td>Data service development</td>
<td>Oracle Solaris Cluster Data Services Developer’s Guide</td>
</tr>
<tr>
<td>System administration</td>
<td>Oracle Solaris Cluster System Administration Guide</td>
</tr>
<tr>
<td>Software upgrade</td>
<td>Oracle Solaris Cluster Upgrade Guide</td>
</tr>
<tr>
<td>Error messages</td>
<td>Oracle Solaris Cluster Error Messages Guide</td>
</tr>
<tr>
<td>Compatible software</td>
<td>Oracle Solaris Cluster Compatibility Guide available at the Oracle Solaris Cluster Technical Resources page</td>
</tr>
</tbody>
</table>

Access to Oracle Support

Oracle customers have access to electronic support through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.
Getting Help

If you have problems installing or using Oracle Solaris Cluster, contact your service provider and provide the following information.

- Your name and email address (if available)
- Your company name, address, and phone number
- The model number and serial number of your systems
- The release number of the operating environment (for example, Oracle Solaris 11)
- The release number of Oracle Solaris Cluster (for example, Oracle Solaris Cluster 4.1)

Use the following commands to gather information about your system for your service provider.

<table>
<thead>
<tr>
<th>Command</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>prtconf -v</code></td>
<td>Displays the size of the system memory and reports information about peripheral devices</td>
</tr>
<tr>
<td><code>psrinfo -v</code></td>
<td>Displays information about processors</td>
</tr>
<tr>
<td><code>pkg list</code></td>
<td>Reports which packages are installed</td>
</tr>
<tr>
<td><code>prtdiag -v</code></td>
<td>Displays system diagnostic information</td>
</tr>
<tr>
<td><code>/usr/cluster/bin/clnode show-rev -v</code></td>
<td>Displays Oracle Solaris Cluster release and package version information for each node</td>
</tr>
</tbody>
</table>

Also have available the contents of the `/var/adm/messages` file.
Installing and Configuring HA for Oracle External Proxy

This chapter describes the steps to install and configure HA for Oracle External Proxy on your Oracle Solaris Cluster servers.

This chapter contains the following sections:

- “Overview” on page 9
- “Planning the Installation and Configuration” on page 10
- “Overview of the Installation and Configuration Process for HA for Oracle External Proxy” on page 14
- “Installing the HA for Oracle External Proxy Package” on page 14
- “Registering and Configuring HA for Oracle External Proxy” on page 15
- “Operations By HA for Oracle External Proxy” on page 19
- “Upgrading the ORCL.oracle_external_proxy Resource Type” on page 20

You can configure HA for Oracle External Proxy as a failover or a scalable data service. See Chapter 1, “Planning for Oracle Solaris Cluster Data Services,” in Oracle Solaris Cluster Data Services Planning and Administration Guide and the Oracle Solaris Cluster Concepts Guide document for an overview of failover and scalable data services.

Overview

The ORCL.oracle_external_proxy resource type interrogates the Oracle Database or the Oracle Real Application Clusters (Oracle RAC) services and interprets the availability of those services as an Oracle Solaris Cluster resource state or status in an Oracle Solaris Cluster configuration.

If the Oracle Database or the Oracle RAC services are unavailable, the Oracle Solaris Cluster resource state will be offline. Similarly, if the Oracle Database or the Oracle RAC services are available, the Oracle Solaris Cluster resource state will be online. Additionally, appropriate Oracle Solaris Cluster status messages will also be displayed.

For example:
Planning the Installation and Configuration

clrs status oep-rs
=== Cluster Resources ===

<table>
<thead>
<tr>
<th>Resource Name</th>
<th>Node Name</th>
<th>State</th>
<th>Status Message</th>
</tr>
</thead>
<tbody>
<tr>
<td>oep-rs</td>
<td>oephost1</td>
<td>Online</td>
<td>Online - Service orcl is UP</td>
</tr>
<tr>
<td></td>
<td>oephost2</td>
<td>Online</td>
<td>Online - Service orcl is UP</td>
</tr>
</tbody>
</table>

Furthermore, if the Oracle Database and the Oracle RAC services are unavailable, the Oracle Solaris Cluster resource status message will also display the ORA error number and some part of the error message, if known.

For example:

clrs status oep-rs
=== Cluster Resources ===

<table>
<thead>
<tr>
<th>Resource Name</th>
<th>Node Name</th>
<th>State</th>
<th>Status Message</th>
</tr>
</thead>
<tbody>
<tr>
<td>oep-rs</td>
<td>oephost1</td>
<td>Offline</td>
<td>Offline - Service orcl is DOWN / [ORA-12514, TNS:listener does not currently ...]</td>
</tr>
<tr>
<td></td>
<td>oephost2</td>
<td>Offline</td>
<td>Offline - Service orcl is DOWN / [ORA-12514, TNS:listener does not currently ?]</td>
</tr>
</tbody>
</table>

Note – The HA for Oracle External Proxy software can be configured to run in a zone cluster.

To register and configure HA for Oracle External Proxy, you must consider or provide information on the following points.

- Decide whether to run HA for Oracle External Proxy as a failover or scalable data service.
- Decide which extension properties to set. See the Oracle Solaris Cluster Data Services Planning and Administration Guide for information about the standard properties and Appendix A, “HA for Oracle External Proxy Extension Properties,” for information about the extension properties.
- Provide the name of the resource type for HA for Oracle External Proxy. This name is ORCL.oracle_external_proxy.
- Provide the names of the cluster nodes that will master the data service.

Configuration Requirements

The following sections describe the configuration requirements for Oracle External Proxy.

- “Remote Database User” on page 11
- “Secure Remote Database Password” on page 11
Remote Database User

On the Oracle Database or the Oracle RAC database, create a user that will be used by the Oracle External Proxy resource.

The following example shows that a user hauser with a password hauser has been created by using the SQL commands. You can choose a different username and password. The username and password that you chose will be used later by the Oracle Solaris Cluster resource.

```
bash-3.00$ sqlplus /as sysdba
SQL*Plus: Release 11.2.0.2.0 Production on Fri Nov 4 05:23:31 2011
Copyright (c) 1982, 2010, Oracle. All rights reserved.
Connected to: Oracle Database 11g Enterprise Edition Release 11.2.0.2.0 - 64bit Production With the Partitioning, Real Application Clusters, Automatic Storage Management, OLAP, Data Mining and Real Application Testing options
SQL> create user hauser identified by hauser;
User created.
SQL> grant create session to hauser;
Grant succeeded.
SQL> grant execute on dbms_lock to hauser;
Grant succeeded.
SQL> grant select on v$instance to hauser;
Grant succeeded.
SQL> create profile hauser limit PASSWORD_LIFE_TIME UNLIMITED;
Profile created.
SQL> alter user hauser identified by hauser profile hauser;
User altered.
SQL>
```

Secure Remote Database Password

The ORCL.oracle_external_proxy resource type verifies a connection to the remote Oracle database. There is no requirement for any Oracle Client software on the nodes where the ORCL.oracle_external_proxy resource type will execute. You will need to create a secure
password to connect to a remote database. **Example 1–1** shows how to encrypt the database user password. The example uses hauser as the password. However, this password must correspond to the password you used when creating the database user in “Remote Database User” on page 11.

Note – Create `/var/cluster/scoep_key` only once on each node. If you intend to create multiple resources of the `ORCL.oracle_external_proxy` type, use the same key for encryption and decryption. If `/var/cluster/scoep_key` is recreated after an encrypted password has been created, it will not be possible to decrypt the encrypted password using the newly created `/var/cluster/scoep_key`. Consequently, the `ORCL.oracle_external_proxy` resource type will fail to connect to the remote database. Also, the resource will go OFFLINE and you will get the `ORA-01017: invalid username/password; logon denied` message.

If you have recreated `/var/cluster/scoep_key`, you will need to recreate the encrypted password again, and then disable and enable the `ORCL.oracle_external_proxy` resource type for the change to be effective.

EXAMPLE 1–1 Encrypting the Database User Password

Assuming a root role on all Oracle Solaris Cluster nodes, do the following:

```bash
bash-3.00# dd if=/dev/urandom of=/var/cluster/scoep_key bs=8 count=1
1+0 records in
1+0 records out
bash-3.00#

bash-3.00# echo hauser | /usr/sfw/bin/openssl enc -aes128 -e -pass file:/var/cluster/scoep_key -out /opt/ORCLscoep/.oep-rs_passwd
bash-3.00#

```

`oep-rs` in `oep-rs_passwd` represents the resource name that you will create later. However, you can choose a different resource name. Now verify that the password can be decrypted.

```bash
bash-3.00# /usr/sfw/bin/openssl enc -aes128 -d -pass file:/var/cluster/scoep_key -in /opt/ORCLscoep/.oep-rs_passwd
bash-3.00# chmod 400 /var/cluster/scoep_key
bash-3.00# chmod 400 /opt/ORCLscoep/.oep-rs_passwd
```

tnsnames.ora File

A valid `tnsnames` entry for the Oracle Database or Oracle RAC service is required. If an existing Oracle installation exists, for example if an Oracle Application Tier is installed on the Oracle Solaris Cluster nodes, then it is acceptable to use the `tnsnames.ora` file in that installation:

```
$ORACLE_HOME)/network/admin/tnsnames.ora
```

When registering an Oracle External Proxy resource, you need to specify a `tns_admin` extension property, unless the default value `/var/opt/oracle` is acceptable. If so, you can provide either of the following entries:
-p TNS_ADMIN=${ORACLE_HOME}/network/admin
-p TNS_ADMIN=your path to tnsnames.ora

If the tns_admin extension property is omitted, the Oracle External Proxy resource defaults to the /var/opt/oracle file. If you are interrogating an Oracle Database, the HOST entry in tnsnames.ora must refer to the SCAN name.

bash-3.00# mkdir /var/opt/oracle
bash-3.00# cat /var/opt/oracle/tnsnames.ora
ORCL =
 (DESCRIPTION =
 (ADDRESS = (PROTOCOL = TCP)(HOST = dbhost-scan-lh)(PORT = 1521))
 (CONNECT_DATA =
 (SERVER = DEDICATED)
 (SERVICE_NAME = ORCL)
)
)

bash-3.00#

The hostname dbhost-scan-lh must be resolvable and within the /etc/inet/hosts file on each node.

bash-3.00# grep dbhost-scan-lh /etc/inet/hosts
10.134.84.58 dbhost-scan-lh.us.oracle.com dbhost-scan-lh
bash-3.00#

Remote Oracle Notification Service

Running Oracle Notification Service on every database node reduces the time it takes for the ORCL.oracle_external_proxy resource type to connect to the database and to determine the state of the database. To verify that Oracle Notification Service is running on the database nodes, run the following command.

bash-3.00# su - oragrid
Oracle Corporation SunOS 5.11 11.0 November 2011
-bash-3.00$ crsctl stat res ora.ons -t
--
NAME TARGET STATE SERVER STATE_DETAILS Local Resources
--
ora.ons ONLINE ONLINE dbhost1 ONLINE ONLINE dbhost2
bash-3.00$

If Oracle Notification Service fails or stops running on a database node, the ORCL.oracle_external_proxy resource will still continue to monitor the remote database. However, it will take longer to connect to the database and determine the state of the database.
Overview of the Installation and Configuration Process for HA for Oracle External Proxy

The following table lists the sections that describe the installation and configuration tasks.

<table>
<thead>
<tr>
<th>Table 1–1</th>
<th>Task Map: Installing and Configuring HA for Oracle External Proxy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Task</td>
<td>Instructions</td>
</tr>
<tr>
<td>Install the HA for Oracle External Proxy package</td>
<td>“How to Install the HA for Oracle External Proxy Package” on page 14</td>
</tr>
<tr>
<td>Configure and start HA for Oracle External Proxy</td>
<td>“How to Register and Configure HA for Oracle External Proxy” on page 16</td>
</tr>
</tbody>
</table>

Installing the HA for Oracle External Proxy Package

If you did not install the HA for Oracle External Proxy package during your initial Oracle Solaris Cluster installation, perform this procedure to install the package.

▼ How to Install the HA for Oracle External Proxy Package

Perform this procedure on each cluster node where you want the HA for Oracle External Proxy software to run.

1 On the cluster node where you are installing the data service package, assume the root role.

2 Ensure that the solaris and ha-cluster publishers are valid.

 # pkg publisher
 PUBLISHER TYPE STATUS URI
 solaris origin online solaris-repository
 ha-cluster origin online ha-cluster-repository

 For information about setting the solaris publisher, see “Set the Publisher Origin to the File Repository URI” in Copying and Creating Oracle Solaris 11.1 Package Repositories.

3 Install the HA for Oracle External Proxy software package.

 # pkg install ha-cluster/data-service/oracle-external-proxy

4 Verify that the package installed successfully.

 $ pkg info ha-cluster/data-service/oracle-external-proxy

 Installation is successful if output shows that State is Installed.
5 Perform any necessary updates to the Oracle Solaris Cluster software.
For instructions on updating single or multiple packages, see Chapter 11, "Updating Your Software," in Oracle Solaris Cluster System Administration Guide.

Registering and Configuring HA for Oracle External Proxy

The following sections describe how to register and configure HA for Oracle External Proxy.

- "Setting HA for Oracle External Proxy Extension Properties" on page 15
- "Tools for Registering and Configuring HA for Oracle External Proxy" on page 16
- "How to Register and Configure HA for Oracle External Proxy" on page 16
- "Setting up Dependencies on Oracle External Proxy Resources" on page 18
- "How to Verify Data Service Installation and Configuration" on page 19

You can configure HA for Oracle External Proxy as a failover service or as a scalable service.

Setting HA for Oracle External Proxy Extension Properties

The sections that follow contain instructions for registering and configuring HA for Oracle External Proxy resources. For information about the extension properties, see Appendix A, "HA for Oracle External Proxy Extension Properties." The Tunable entry indicates when you can update a property.

See the rt_properties(5), r_properties(5), and rg_properties(5) man pages for details on all of the Oracle Solaris Cluster extension properties.

To set an extension property of a resource, include the following option in the cl_resource command that creates or modifies the resource:

```
-p property=value
-p property
```

- `property` identifies the extension property that you are setting.
- `value` specifies the value to which you are setting the extension property.

You can also use the procedures in Chapter 2, “Administering Data Service Resources,” in Oracle Solaris Cluster Data Services Planning and Administration Guide to configure resources after the resources are created.
Tools for Registering and Configuring HA for Oracle External Proxy

Oracle Solaris Cluster provides the following tool for registering and configuring HA for Oracle External Proxy:

- **Oracle Solaris Cluster maintenance commands.** For more information, see "How to Register and Configure HA for Oracle External Proxy" on page 16.

▼ How to Register and Configure HA for Oracle External Proxy

Complete the registration and configuration on any cluster member.

Before You Begin

Ensure that you have completed the requirements as described in “Configuration Requirements” on page 10.

1. On a cluster member, assume a root role or assume a role that provides `solaris.cluster.admin` RBAC authorization.

2. Register the `ORCL.oracle_external_proxy` resource type for the data service.

   ```
   # clresource create -g resource-group  
   -t ORCL.oracle_external_proxy
   -p service_name=service-name  
   -p ons_nodes=ons-nodes  
   -p dbuser=dbuser  
   [-p plugin_name=plugin-name]  
   [-p tns_admin=tns-admin]  
   -d  
   resource
   ```

3. Create either a scalable or a failover resource group for the Oracle External Proxy resource.

 For example, to create a scalable resource group, do the following:

   ```
   # clresource create -S [-n node-zone-list] resource-group
   resource-group  
   ```

 Specifies the name of the scalable service resource group to add.

   ```
   -n node-zone-list  
   ```

 Specifies a comma-separated, ordered list of nodes that can master this resource group. This list is optional. If you omit this list, then all the nodes of the global cluster or zone cluster are used to master the resource group.

4. Create an Oracle External Proxy resource in the resource group that you created.

   ```
   # clresource create -g resource-group  
   -t ORCL.oracle_external_proxy
   -p service_name=service-name  
   -p ons_nodes=ons-nodes  
   -p dbuser=dbuser  
   [-p plugin_name=plugin-name]  
   [-p tns_admin=tns-admin]  
   -d  
   resource
   ```
-g resource-group
 Specifies the name of the resource group.

-t resource-type
 Specifies the resource type to add.

-p service_name=service-name
 Specifies the Oracle Database or Real Application Clusters (RAC) service name that the
 Oracle External Proxy uses to connect to the database.

-p ons_nodes=ons-nodes
 Specifies the Remote Oracle Notification Service (ONS) nodes that the Oracle External Proxy
 uses to connect to the database, for example node:port[node:port].

-p dbuser=dbuser
 Specifies the server side Oracle database user that the Oracle External Proxy uses to connect
 to the database.

-p plugin_name=plugin-name
 Specifies the plugin module that the Oracle External Proxy uses to connect to the database.
 You can omit this entry as it will default to OracleExternalProxy.

-p tns_admin=tns-admin
 Specifies the client-side location for the Oracle tns_admin path that the Oracle External
 Proxy uses to connect to the database. Omit this entry so that it defaults to the
 /var/opt/oracle directory.

-d
 Creates the resource in the disabled state.

resource
 Specifies your choice for the name of the resource to add.

Note – Optionally, you can set additional extension properties that belong to the Oracle External
Proxy data service to override their default values. See Appendix A, "HA for Oracle External
Proxy Extension Properties," for a list of extension properties.

5 Bring the resource group online.

clresourcegroup online -emM resource-group

resource-group
 Specifies the name of the resource group.

The Oracle Solaris Cluster resource is now configured and online, thereby interrogating the
state of the remote database.
Creating an ORCL.oracle_external_proxy Resource

This example shows the commands for performing the following operations which create a scalable multi-master ORCL.oracle_external_proxy resource on a two-node cluster.

- Creating the oep-rs resource group
- Registering the ORCL.oracle_external_proxy resource type
- Adding the oep-rs resource to the oep-rs resource group

This example assumes that default values are being used for the dbuser, tns_admin, and plugin_name extension properties. It also assumes that the dbuser password has been encrypted on each cluster node.

Example 1–2

```
phys-schost-1# clresourcetype register ORCL.oracle_external_proxy
phys-schost-1# clresourcegroup create -S oep-rg
phys-schost-1# clresource create -g oep-rg -t ORCL.oracle_external_proxy -p service_name=orcl -p ons_nodes=binks-scan-lh:6200 -d oep-rs
phys-schost-1# clresourcegroup online -M oep-rg
phys-schost-1# clresource enable oep-rs
```

Registering Failover HA for Oracle External Proxy

The following example shows how to register a failover Oracle External Proxy service.

Example 1–3

```
phys-schost-1# clresourcetype register ORCL.oracle_external_proxy
phys-schost-1# clresourcegroup create oep-rg
phys-schost-1# clresource create -g oep-rg -t ORCL.oracle_external_proxy -p service_name=orcl -p ons_nodes=binks-scan-lh:6200 -d oep-rs
phys-schost-1# clresourcegroup online -M oep-rg
phys-schost-1# clresource enable oep-rs
```

Setting up Dependencies on Oracle External Proxy Resources

To use the Oracle Solaris Cluster resource as a dependency for an application resource, set up appropriate dependencies as shown in the following example.

Example 1–4

```
Example 1–4 Setting Up Application Resource Group Dependencies
As an example, when the Oracle External Proxy resource is within a scalable resource group and the application resource is within a failover resource group, you can do the following:
```
EXAMPLE 1–4 Setting Up Application Resource Group Dependencies (Continued)

clrg set -p RG_Affinities=++oep-rg app-rg
clrs set -p resource_dependencies_offline_restart=oep-rs{any_node} app-rs

As an example, when the Oracle External Proxy resource and the application resource are within the same failover resource group, you can do the following:

clrs set -p resource_dependencies_offline_restart=oep-rs app-rs

As an example, when the Oracle External Proxy resource and the application resource are in separate failover resource groups, you can do the following:

clrg set -p RG_Affinities=++oep-rg app-rg
clrs set -p resource_dependencies_offline_restart=oep-rs app-rs

How to Verify Data Service Installation and Configuration

After the Oracle External Proxy resource has been installed, configured, and registered, verify it by enabling the Oracle External Proxy resource. Once the Oracle External Proxy resource has been enabled, the resource status will reflect the state and status of the server-side Oracle database. The presence of a resource status message is verification that the Oracle External Proxy has been installed and configured.

Operations By HA for Oracle External Proxy

The Oracle External Proxy software interrogates an Oracle Database or Oracle RAC service and interprets the availability of that service as an Oracle Solaris Cluster resource state or status. As part of that interrogation, the Oracle External Proxy software uses the Oracle JDBC thin driver to connect to the Oracle Database or Oracle RAC service. The connection is then interpreted by Oracle Solaris Cluster with the Oracle External Proxy resource state and status message.

The Oracle External Proxy writes to a trace file within the /var/opt/ORCLscoep/message_log. resource file on each node where three generations are kept. The Oracle External Proxy resource type is responsible for maintaining the generations and automatically removes old generations.

Actions in Response to Faults

If the Oracle External Proxy cannot connect to the Oracle Database or Oracle RAC service, the Oracle Solaris Cluster resource will go offline. An appropriate resource status message will
Upgrading the ORCL.oracle_external_proxy Resource Type

Upgrading the ORCL.oracle_external_proxy Resource Type

Upgrade the ORCL.oracle_external_proxy resource type if the following conditions apply:

- You are upgrading from an earlier version of the HA for Oracle External Proxy data service.
- You need to use the new features of this data service.

For general instructions that explain how to upgrade a resource type, see “Upgrading a Resource Type” in Oracle Solaris Cluster Data Services Planning and Administration Guide. The information that you require to complete the upgrade of the ORCL.oracle_external_proxy resource type is provided in the following subsections.

- “Information for Registering the New Resource Type Version” on page 20
- “Information for Migrating Existing Instances of the Resource Type” on page 20

Information for Registering the New Resource Type Version

The relationship between a resource type version and the release of Oracle Solaris Cluster data services is shown in the following table. The release of Oracle Solaris Cluster data services indicates the release in which the version of the resource type was introduced.

<table>
<thead>
<tr>
<th>Resource Type Version</th>
<th>Oracle Solaris Cluster Data Services Release</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.0</td>
</tr>
</tbody>
</table>

To determine the version of the resource type that is registered, use the clresourcetype show command.

The resource type registration (RTR) file for this resource type is

/opt/SUNWscoep/etc/ORCL.oracle_external_proxy

Information for Migrating Existing Instances of the Resource Type

The information that you require to edit each instance of the ORCL.oracle_external_proxy resource type is as follows:
You can perform the migration at any time.

The following example shows the command for modifying an instance of the ORCL.oracle_external_proxy resource type.

```
# clresource set -p Type_version=2 oep-rs
```

EXAMPLE 1–5 Migrating Instances of the ORCL.oracle_external_proxy Resource Type

The following command sets the Type_version property of the ORCL.oracle_external_proxy resource named oep-rs to 2.
This section describes the extension properties for the resource type `ORCL.oracle_external_proxy`. This resource type represents the Oracle External Proxy application in an Oracle Solaris Cluster configuration.

For details about system-defined properties, see the `r_properties(5)` and `rg_properties(5)` man pages.

The extension properties of the `ORCL.oracle_external_proxy` resource type are as follows:

Debug_level

This property indicates the level to which debug messages for the `ORCL.oracle_external_proxy` resources are logged. When the debug level is increased, more debug messages are written to the terminal, the console, and the system log `/var/adm/messages` as follows:

<table>
<thead>
<tr>
<th>Debug Level</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>No debug messages</td>
</tr>
<tr>
<td>1</td>
<td>Function Begin and End messages</td>
</tr>
<tr>
<td>2</td>
<td>All debug messages and function Begin and End messages</td>
</tr>
</tbody>
</table>

For messages to appear in the system log, perform the following:

1. Edit the `/etc/syslog.conf` file and make sure that the debug is set.
   ```
   *.err;kern.debug;daemon.debug;mail.crit /var/adm/messages
   ```
2. Disable the system log.
   ```bash-3.00# svcadm disable system-log```
3. Enable the system log.
   ```bash-3.00# svcadm enable system-log```

Data Type | Integer
Range | 0-2
Dbuser
This property specifies the server-side Oracle Database user that the proxy monitor uses to connect to the database.

Data Type: String

Default: hauser

Tunable: When disabled

Ons_nodes
This property specifies the Remote Oracle Notification Server (ONS) nodes such as node:port[, node:port] that the proxy monitor uses to connect to the database.

Data Type: String

Default: None

Tunable: When disabled

Plugin_name
This property specifies the plugin module name that the proxy monitor uses to connect to the database.

Data Type: String

Default: OracleExternalProxy

Tunable: When disabled

Service_name
This property specifies the Oracle Database or Oracle RAC service name that the proxy monitor uses to connect to the database.

Data Type: String

Default: None

Tunable: When disabled

Tns_admin
This property specifies the client-side location for the Oracle Tns_admin path that the proxy monitor uses to connect to the database.

Data Type: String

Default: /var/opt/oracle

Tunable: When disabled
Index

C
configuring, Oracle Solaris Cluster HA for Oracle External Proxy, 16–18

E
extension properties, ORCL.oracle_external_proxy resource type, 23–24

F
fault monitor, HA for Oracle External Proxy, 19
files, RTR, 20

H
HA for Oracle External Proxy
fault monitor, 19
installing, 14–15
resource type versions, 20
software package, installing, 14–15
help, 8

I
installing, HA for Oracle External Proxy, 14–15

O
Oracle Solaris Cluster HA for Oracle External Proxy
installation
verifying, 19
registering and configuring, 16–18
task map, 14
Oracle Solaris Cluster software, publisher, 14
Oracle Solaris software, publisher, 14
ORCL.oracle_external_proxy resource type, extension properties, 23–24

P
package, 14–15
properties
See also extension properties
Type_version, 20
Proxy Server, installing and configuring, 9
publisher
Oracle Solaris Cluster software, 14
Oracle Solaris software, 14

R
registering, Oracle Solaris Cluster HA for Oracle External Proxy, 16–18
resource type registration (RTR) file, 20
RTR (resource type registration) file, 20
Index

S
software package, 14–15

T
task map, Oracle Solaris Cluster HA for Oracle External Proxy, 14
technical support, 8
Type_version property, 20

V
verifying, Oracle Solaris Cluster HA for Oracle External Proxy installation, 19
versions, resource types, 20