
Ce logiciel et la documentation qui l’accompagne sont protégés par les lois sur la propriété intellectuelle. Ils sont concédés sous licence et soumis à des restrictions d’utilisation et de divulgation. Sauf disposition de votre contrat de licence ou de la loi, vous ne pouvez pas copier, reproduire, traduire, diffuser, modifier, breveter, transmettre, distribuer, exposer, exécuter, publier ou afficher le logiciel, même partiellement, sous quelque forme et par quelque procédé que ce soit. Par ailleurs, il est interdit de procéder à toute ingénierie inverse du logiciel, de le désassembler ou de le décompiler, excepté à des fins d’interopérabilité avec des logiciels tiers ou tel que prescrit par la loi.

Les informations fournies dans ce document sont susceptibles de modification sans préavis. Par ailleurs, Oracle Corporation ne garantit pas qu’elles soient exemptes d’erreurs et vous invite, le cas échéant, à lui en faire part par écrit.

Si ce logiciel, ou la documentation qui l’accompagne, est concédé sous licence au Gouvernement des Etats-Unis, ou à toute entité qui délivre la licence de ce logiciel ou l’utilise pour le compte du Gouvernement des Etats-Unis, la notice suivante s’applique :

U.S. GOVERNMENT RIGHTS. Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software License (December 2007). Oracle America, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

Ce logiciel ou matériel a été développé pour un usage général dans le cadre d’applications de gestion des informations. Ce logiciel ou matériel n’est pas conçu ni n’est destiné à être utilisé dans des applications à risque, notamment dans des applications pouvant causer des dommages corporels. Si vous utilisez ce logiciel ou matériel dans le cadre d’applications dangereuses, il est de votre responsabilité de prendre toutes les mesures de secours, de sauvegarde, de redondance et autres mesures nécessaires à son utilisation dans des conditions optimales de sécurité. Oracle Corporation et ses affiliés déclinent toute responsabilité quant aux dommages causés par l’utilisation de ce logiciel ou matériel pour ce type d’applications.

Oracle et Java sont des marques déposées d’Oracle Corporation et/ou de ses affiliés. Tout autre nom mentionné peut correspondre à des marques appartenant à d’autres propriétaires qu’Oracle.

Ce logiciel ou matériel et la documentation qui l’accompagne peuvent fournir des informations ou des liens donnant accès à des contenus, des produits et des services émanant de tiers. Oracle Corporation et ses affiliés déclinent toute responsabilité ou garantie expresse quant aux contenus, produits ou services émanant de tiers. En aucun cas, Oracle Corporation et ses affiliés ne sauraient être tenus pour responsables des pertes subies, des coûts occasionnés ou des dommages causés par l’accès à des contenus, produits ou services tiers, ou à leur utilisation.
Table of Contents

Preface

Chapter 1 Introduction to the Pillar Axiom CLI
 About the Pillar Axiom CLI... 11
 Supported Platforms.. 12
 Install the Pillar Axiom CLI... 13
 About the Pillar Axiom CLI Environment Variables......................... 14
 Pillar Axiom CLI Home Folder Location.................................... 15
 Change the Pillar Axiom CLI Logging Location............................... 16
 Log In to the Pillar Axiom System.. 17
 Log Out of the Pillar Axiom System....................................... 18
 Access the Pillar Axiom CLI Help.. 19
 About the Pillar Axiom CLI Command Output Options......................... 21
 Text Output.. 21
 XML Output... 21
 Return Codes.. 23
 Error Handling.. 24
 Upgrade the Pillar Axiom CLI... 26
 Uninstall the Pillar Axiom CLI... 27

Chapter 2 Administrator Accounts
 About Administrator Account Management................................. 28
 Administrator Roles and Privileges....................................... 30

Chapter 3 Pillar Axiom CLI Command Examples
 View LUN Details.. 32
 View System Configuration... 34
 Create a Clone LUN.. 36
 Delete a Clone LUN.. 37
 Modify a LUN... 38
 Copy a LUN.. 40
View System Events. .. 41
View System Performance Statistics. 42

Chapter 4 Pillar Axiom CLI Scripts
 About Pillar Axiom CLI Scripts. ... 50
 Manage Pillar Axiom CLI Session Keys. 51
 Create SAN LUNs. .. 53

Appendix A Pillar Axiom System Limits
 Pillar Axiom System Limits. .. 56

Appendix B Pillar Axiom CLI Commands
 About Pillar Axiom CLI Commands. 61
 account. ... 62
 brick. ... 69
 call_home. ... 80
 clone_lun. ... 89
 errors. ... 110
 event_log. .. 112
 event_notification. .. 117
 haltpoint. ... 123
 help. ... 128
 host_group. ... 133
 hostmap. ... 136
 iscsi. ... 145
 job. .. 156
 login. .. 170
 logout. ... 173
 lun. ... 174
 pilot. ... 200
 profile. ... 203
 report. ... 212
 san. ... 216
 san_host. .. 218
 slammer. .. 228
 smprovider. .. 235
 snmp_host. ... 237
 software_update. ... 242
 statistics. .. 252
 storage_allocation. ... 256
<table>
<thead>
<tr>
<th>Term</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>storage_domain</td>
<td>261</td>
</tr>
<tr>
<td>system</td>
<td>265</td>
</tr>
<tr>
<td>system_alert</td>
<td>282</td>
</tr>
<tr>
<td>system_log</td>
<td>287</td>
</tr>
<tr>
<td>task</td>
<td>294</td>
</tr>
<tr>
<td>time</td>
<td>296</td>
</tr>
<tr>
<td>ups</td>
<td>300</td>
</tr>
<tr>
<td>version</td>
<td>304</td>
</tr>
<tr>
<td>volume_group</td>
<td>306</td>
</tr>
</tbody>
</table>

Index. 311
List of Tables

Table 1 Typography to mark certain content. .. 8
Table 2 Typography to mark command syntax. 9
Table 3 Oracle resources. ... 9
Table 4 Return codes. ... 23
Table 5 Administrator privileges by role. .. 30
Table 6 System operating limits. .. 56
Table 7 Field input limits. ... 58
Preface

Related Documentation

- Pillar Axiom Customer Release Notes
- Pillar Axiom Glossary
- Pillar Axiom Administrator’s Guide
- Pillar Axiom System Architecture Overview
- Pillar Axiom iSCSI Integration Guide for Windows Platforms
- Pillar Axiom Windows Integration Guide

Typographical Conventions

Table 1 Typography to mark certain content

<table>
<thead>
<tr>
<th>Convention</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>italics</td>
<td>Within normal text, words in italics indicate:</td>
</tr>
<tr>
<td></td>
<td>• A reference to a book title.</td>
</tr>
<tr>
<td></td>
<td>• New terms and emphasized words.</td>
</tr>
<tr>
<td></td>
<td>• Command variables.</td>
</tr>
<tr>
<td>monospace</td>
<td>Indicates one of the following, depending on the context:</td>
</tr>
<tr>
<td></td>
<td>• The name of a file or the path to the file.</td>
</tr>
<tr>
<td></td>
<td>• Output displayed by the system on the command line.</td>
</tr>
<tr>
<td>monospace (bold)</td>
<td>Input provided by an administrator on the command line.</td>
</tr>
<tr>
<td>camelCase</td>
<td>Used in Pillar Axiom CLI commands for ease of reading. When issuing a command, you can use either camel case or lowercase.</td>
</tr>
</tbody>
</table>
Command Syntax Conventions

Table 2 Typography to mark command syntax

<table>
<thead>
<tr>
<th>Typographic Symbol</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>[]</td>
<td>Square brackets. Delimits an optional command parameter or a set of optional command parameters.</td>
</tr>
<tr>
<td>{ }</td>
<td>Curly braces. Delimits a set of command parameters, one of which must be selected.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td>Ellipsis. Indicates that the immediately preceding parameter or group of parameters can be repeated.</td>
</tr>
<tr>
<td>monospace</td>
<td>Indicates the name of a command or the name of a command option (sometimes called a flag or switch).</td>
</tr>
<tr>
<td>italic</td>
<td>Indicates a variable for which you need to supply a value.</td>
</tr>
</tbody>
</table>

Command parameters that are *not* enclosed within square brackets ([]) are required.

Important! The above symbols (and font styling) are based on the IEEE Std 1003.1-2004 standard. These symbols are used in the command syntax only to clarify how to use the command parameters. Do not enter these symbols on the command line.

Oracle Contacts

Table 3 Oracle resources

<table>
<thead>
<tr>
<th>For help with...</th>
<th>Contact...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Support</td>
<td>https://support.oracle.com</td>
</tr>
<tr>
<td>Training</td>
<td>https://education.oracle.com</td>
</tr>
<tr>
<td>For help with...</td>
<td>Contact...</td>
</tr>
<tr>
<td>-----------------------</td>
<td>--</td>
</tr>
</tbody>
</table>
| Documentation | • **Oracle Technical Network:** http://www.oracle.com/technetwork/indexes/documentation/index.html#storage
 | • From the Pillar Axiom Storage Services Manager (GUI):
 | **Support > Documentation**
 | • From Pillar Axiom HTTP access:
 | http://system-name-ip/documentation.php where system-name-ip is the name or the public IP address of your system. |
| Documentation feedback| http://www.oracle.com/goto/docfeedback |
| Contact Oracle | http://www.oracle.com/us/corporate/contact/index.html |
CHAPTER 1

Introduction to the Pillar Axiom CLI

About the Pillar Axiom CLI

The Pillar Axiom CLI is the command-line interface for configuring and monitoring a Pillar Axiom system. The Pillar Axiom CLI provides the same capabilities as the Pillar Axiom GUI, allowing configuration and management of the Pillar Axiom system performed from command line or through custom scripts.

The Pillar Axiom CLI

- Runs as a command-line interface
- Communicates from the host system to the Pillar Axiom Pilot
- Uses familiar conventions for parameters and options, and provides reasonable default values where possible
- Checks for required sets of parameters and displays error messages if the required values are missing
- Supports automation through custom scripts that use Perl, Python, and standard shell commands
- Provides help for each of its commands
Supported Platforms

The Pillar Axiom CLI supported platforms are:

- Citrix 5.6 XenServer x86_64
- HP-UX 11i on ia64
- Mac OS X 10.6 x86_64
- Open SuSE 11.3
- Red Hat/CentOS/Oracle Linux, versions 4 and 5
- SLES 11
- Solaris 9 on Sparc
- Solaris 10 on Sparc
- Solaris 10 on x86
- Windows 2003
- Windows 2008
- Windows 7
- Windows Vista
- Windows XP
Install the Pillar Axiom CLI

Before using the Pillar Axiom CLI, you need to install it on your local workstation.

If the client host on which the Pillar Axiom CLI application will be installed is outside a firewall that surrounds the Pillar Axiom system, be sure that the TCP port 26008 in the firewall is open to allow TCP/IP traffic between the client host and the Pilot.

The installation of the Pillar Axiom CLI client application involves downloading and extracting the platform-specific Pillar Axiom CLI archive file (tar or ZIP).

Important! Install Pillar Axiom CLI only on a local disk. Installing Pillar Axiom CLI on a remote network-mounted filesystem can cause significant performance issues and is not recommended.

1. On your client workstation, browse to the location where you want to install the Pillar Axiom CLI (for example, `C:\` or `C:\Program Files`).

2. Create the subfolder for the Pillar Axiom CLI.

 Example:

 In **Windows**, to create the `AxiomCLI` subfolder, you can run the following command:

   ```
   C:\ mkdir AxiomCLI
   ```

3. Download the Pillar Axiom CLI archive file (tar or ZIP) from **Utilities** on your Pillar Axiom website (for example, `http://pillar-axiom`, where `pillar-axiom` is the name of your Pillar Axiom system).

4. Using a platform-specific extraction tool, extract the downloaded Pillar Axiom CLI archive file into the created `AxiomCLI` folder.

5. Optionally, add the Pillar Axiom CLI installation folder to the **Path** system environment variable.
About the Pillar Axiom CLI Environment Variables

Before running the Pillar Axiom CLI, you can optionally define environment variables. The Pillar Axiom CLI looks for environment variables and applies them as credentials during login. Alternatively, these credentials can be supplied using command line arguments.

If you set the environment variables to run the `axiomcli login` command without any options, you **must** set the following environment variables together:

- **PDS_USER** - The user account ID.
- **PDS_PASSWORD** - The user account password.
- **PDS_HOST** - The name of the Pillar Axiom system.

The optional environment variables are:

- **PDS_TMPDIR** - The temporary directory that contains files downloaded by commands that retrieve files from the Pillar Axiom system.
- **PDS_TIMEOUT** - The maximum time that each command can run. If the time is exceeded, the command fails.
- **PDS_SESSIONKEY** - The Pillar Axiom CLI session key value. This value is returned when you log in to the Pillar Axiom system using the `returnKey` command option. For details, see Manage Pillar Axiom CLI Session Keys.

You can set the **PDS_SESSIONKEY** environment variable alone or in combination with the environment variables mentioned above.

When you log in to the Pillar Axiom system, the Pillar Axiom CLI creates a temporary file in the home directory to store the session key and the environment variables. This temporary file is used by the Pillar Axiom CLI to retrieve the session information needed to interact with the Pillar Axiom system. When you log out from the Pillar Axiom system, the Pillar Axiom CLI deletes this temporary file.

If the Pillar Axiom CLI does not find usable credentials in the environment or the temporary file, Pillar Axiom CLI commands return an error instructing you to run the `login` command.
Pillar Axiom CLI Home Folder Location

The Pillar Axiom CLI home folder location is specified in the HOME environment variable.

When you log in to the Pillar Axiom system, the Pillar Axiom CLI uses the folder specified in the HOME environment variable to store the login session file.

On the Windows operating system, you do not need to specify the HOME environment variable (if you do not have the HOME environment variable defined, the Pillar Axiom CLI queries the operating system for the home folder).

However, on a UNIX or Linux platform, you must set the HOME variable. Otherwise, the Pillar Axiom CLI will not work properly.
Change the Pillar Axiom CLI Logging Location

By default, the Pillar Axiom CLI saves the logging information in the axiomcli.log file that resides in the Pillar Axiom CLI home directory (C:\Users\username\AppData\Local\Temp\par-username on Windows and /tmp/par-username on Linux and UNIX). If you want, you can change the location of the axiomcli.log file.

Note: To change the location of the axiomcli.log file, you must have the write permission for the axiomcli.log file and the directory where it resides. If the axiomcli.log file does not exist at the specified location, the system creates the axiomcli.log file at runtime.

1. Browse to the Pillar Axiom CLI installation directory.
2. Open the axiomCliLogger.conf file.
3. Locate the log4perl.appender.AXCLIAppender.filename line.
4. Modify the /axiomcli.log path, specifying the new location of the axiomcli.log file.

Example:
To save the axiomcli.log file in the

- **UNIX temp directory**: Change the path to log4perl.appender.AXCLIAppender.filename=/tmp/axiomcli.log.
- **Windows temp directory**: Change the path to log4perl.appender.AXCLIAppender.filename=C:\temp\axiomcli.log.
- **Linux logging directory**: Change the path to log4perl.appender.AXCLIAppender.filename=/var/log/axiomcli.log.

5. To verify that the Pillar Axiom CLI sends the logging information to the axiomcli.log file at the modified location, run several Pillar Axiom CLI commands.
Log In to the Pillar Axiom System

Before using the Pillar Axiom CLI, you need to log in to the Pillar Axiom system. If the Pillar Axiom CLI client is outside a firewall that surrounds the Pillar Axiom system, be sure that the TCP port 26008 in the firewall is open so that the Pillar Axiom CLI client and the Pillar Axiom CLI server that resides on the Pilot can communicate with each other.

To log in to the Pillar Axiom system, the Pillar Axiom CLI uses an SSL session. For continuity from one command to the next, the Pillar Axiom CLI maintains the session information in a temporary file. Alternatively, you can set the user name, the password, and the host Pillar Axiom environment variables manually (see About the Pillar Axiom CLI Environment Variables).

Important! Do not run the Pillar Axiom CLI on a remote network-mounted filesystem because it can cause significant performance issues.

1. Open the command-line interface.
2. Change to the Pillar Axiom CLI installation directory.
3. If you have not set the Pillar Axiom CLI environment variables, to log in to the Pillar Axiom system, issue the following command, replacing admin-user with the user ID, admin-password with the administrator password, and axiom-system with the name of your Pillar Axiom system:

 C:\AxiomCLI>axiomcli login -u admin-user -p admin-password axiom-system

 If you have specified your log-in credentials in the environment variables, you can issue the following command instead:

 axiomcli login

Result:
The Login Successful message displays. After successfully logging in to the Pillar Axiom system, the Pillar Axiom CLI creates a session file in the user home directory. This session file contains the credentials and session information needed by all subsequent Pillar Axiom CLI commands. You can start issuing Pillar Axiom CLI commands.
Log Out of the Pillar Axiom System

When you log out of the Pillar Axiom system, the Pillar Axiom CLI ends the Pillar Axiom CLI session and deletes the session file.

If you do not log out of the Pillar Axiom system

- An unauthorized user may gain access to the Pillar Axiom system from your workstation.
- One log-in session is tied up unnecessarily until your session is automatically logged out when the inactivity time limit is reached.

To log out of the Pillar Axiom system, issue the following command:

C:\AxiomCLI>axiomcli logout

The *Logout Successful* message displays.
Access the Pillar Axiom CLI Help

When you are unsure what a certain Pillar Axiom CLI command does or how to run a Pillar Axiom CLI command, you can use the Pillar Axiom CLI help.

The Pillar Axiom CLI provides help for each of its commands.

The Pillar Axiom CLI offers two levels of help:

General Displays the description of the help command-line syntax and the list of all of the Pillar Axiom CLI commands for which help is available.

To view general help, run the following command:

```
C:\AxiomCLI>axiomcli help
```

To view the command-line syntax for all of the Pillar Axiom CLI commands, run the following command:

```
C:\AxiomCLI>axiomcli help -list -details
```

Specific Displays the following information for a specific Pillar Axiom CLI command:

- A description of how to use the command.
- The syntax of the command.
- A description of any parameters that can be used with the command.
- Examples of how to use the command.

To view detailed help for a specific Pillar Axiom CLI command, run the following command, replacing `command-name` with the name of the Pillar Axiom CLI command:

```
C:\AxiomCLI>axiomcli command-name -help
```

For example, if you run the `axiomcli version -help` command, the Pillar Axiom CLI returns the following detailed help information for the `version` command:

```
version
```
DESCRIPTION
Displays the current version number for the Pillar Axiom CLI executable.

Use the version command to display version information about the Pillar Axiom CLI.

You can use the -verify command option to verify the command-line argument and its options prior to running it. If there are no errors, the command returns without executing. For example, the -verify command is helpful when writing scripts in which a particular command usage can be verified prior to adding it to a script.

You can use the -help command option to display detailed help information for the command.

SYNOPSIS
axiomcli version -list [-details] [-verify]
axiomcli version -help

PARAMETERS
Note: All roles can issue the -list command option

-list
Displays version information for the Pillar Axiom CLI.
Valid options:
-details
The -details option does not return any additional information and is there for consistency.

EXAMPLE
Run the axiomcli version -list display the version information.

axiomcli version -list

Results:
Pillar Axiom CLI version : 050000-031700
About the Pillar Axiom CLI Command Output Options

Pillar Axiom CLI supports two output modes: text and XML. The text output mode displays output as formatted text, while the XML output mode displays XML.

The default output mode for all of the Pillar Axiom CLI commands is the text mode.

The text and the XML output modes for the same Pillar Axiom CLI command differ slightly. In particular, the XML mode displays the task and object information, while the text output contains only the object information.

Text Output

When you run any Pillar Axiom CLI command, the Pillar Axiom CLI by default displays the output in the plain-text mode.

For example, if you run the `axiomcli task -list` command, the text output may look similar to the following:

```
/GetOperation/159678/administrator
    Status  : IN_PROCESS
```

You may find the text output easier to use when writing Bash scripts.

XML Output

You can use the XML command output option for the ease of scripting and parsing.

Using the XML output option displays the Pillar Axiom CLI command output in the tagged XML format. To view the XML output, you need to add the `-o xml` or the `-outputFormat xml` option to a Pillar Axiom CLI command. For example, if you run the `axiomcli task -list -o xml` command, the XML output looks similar to the following snippet:

```xml
<?xml version="1.0"?>
<CLIResponse>
    <ResponseHeader>
        <ClientData>PillarAxiomCli</ClientData>
    </ResponseHeader>
    <TaskInformation>
        <TaskGuid>4130303132373542A13F728A1D60E6C7</TaskGuid>
```

Because the XML output is easier to parse than the text output, administrators who write programs to process the Pillar Axiom CLI output can use the XML output.
Return Codes

When you run any of the Pillar Axiom CLI commands, the Pillar Axiom CLI sets a return code that determines the success of the command.

The Pillar Axiom CLI has four return codes described in the table below.

Table 4 Return codes

<table>
<thead>
<tr>
<th>Return code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>A command executed successfully.</td>
</tr>
<tr>
<td>1</td>
<td>An unexpected error has occurred. For example, a Pillar Axiom CLI session file has been corrupted, or the Pillar Axiom CLI installation has been modified or corrupted and the Pillar Axiom CLI needs to be reinstalled.</td>
</tr>
<tr>
<td>2</td>
<td>A general error has occurred. For example, an unrecognized Pillar Axiom CLI command has been issued, a wrong Pillar Axiom CLI command syntax has been specified, or an unrecognized Pillar Axiom CLI command option has been used.</td>
</tr>
<tr>
<td>3</td>
<td>An error has occurred in the Pillar Axiom system. For example, an invalid FQN or ID has been specified, the Pillar Axiom system is not in a state that allows the execution of a request, or the communication with the Pillar Axiom system has been lost.</td>
</tr>
</tbody>
</table>
Error Handling

When you run a Pillar Axiom CLI command using the XML output format (the -o xml or the -outputFormat xml option), and the command fails, the Pillar Axiom CLI displays the error in the XML format.

For example, if you run the `axiomcli version -list -o xml` command and misspell the `-list` option (for instance, you type `-listt` instead of `-list`), the Pillar Axiom CLI returns the following XML output:

```xml
<?xml version="1.0"?>
<CLIResponse>
  <ResponseHeader>
    <ClientData>PillarAxiomCli</ClientData>
  </ResponseHeader>
  <ErrorList>
    <ErrorInformation>
      <ErrorCode>AXIOMCLI_ERROR</ErrorCode>
      <ErrorMessage>Invalid options were specified.</ErrorMessage>
    </ErrorInformation>
  </ErrorList>
  <Status>failed/Status>
</CLIResponse>
```

If there are multiple errors in the command syntax, the XML error output contains multiple `<ErrorList>` sections.

If you misspell the actual Pillar Axiom CLI command, the system does not generate the XML error output. Instead, the Pillar Axiom CLI returns the following plain-text message, where `misspelled-command-name` is the name of the misspelled Pillar Axiom CLI command:

```
Error: Unrecognizable Command: "misspelled-command-name"!
Issue "axiomcli help" for command list.
Command Failed
```

For example, if you run the `axiomcli lun -list -lun /badlunFQN -o xml` command, specifying a wrong FQN, the Pillar Axiom CLI returns the message similar to the following snippet:

```xml
<?xml version="1.0"?>
<CLIResponse>
  <ResponseHeader>
    <ClientData>PillarAxiomCli</ClientData>
  </ResponseHeader>
  <ErrorList>
    <ErrorInformation>
      <ErrorCode>IDENTIFIER_NOT_FOUND</ErrorCode>
      <ErrorMessage>Original error message</ErrorMessage>
    </ErrorInformation>
  </ErrorList>
  <Status>failed/Status>
</CLIResponse>
```
<ErrorMessage>Error in parameter -lun. The object does not exist. Make sure that you specify an object that is configured on the Pillar Axiom system.</ErrorMessage>
</ErrorInformation>
</ErrorList>
<Status>failed</Status>
</CLIResponse>
Upgrade the Pillar Axiom CLI

The version of the Pillar Axiom CLI you use must be compatible with the Pillar Axiom system. If you are managing multiple versions of the Pillar Axiom system, you can use different versions of the Pillar Axiom CLI on the same host. In that case, you must keep the older version of the Pillar Axiom CLI to communicate with the older Pillar Axiom system and upgrade the Pillar Axiom CLI to the latest version to communicate with the newer version of the Pillar Axiom system.

To maintain and use different versions of Pillar Axiom CLI on the same host, install each version of the Pillar Axiom CLI in a separate directory and update the HOME environment variable.

If you do not want to keep the previous version of the Pillar Axiom CLI, delete all of the existing Pillar Axiom CLI files from the Pillar Axiom CLI installation folder. Otherwise, keep the previous version of the Pillar Axiom CLI.

1. Install the Pillar Axiom CLI.

2. Optionally, after completing the upgrade, manually delete the temporary Pillar Axiom CLI installation files from the following directory:

 - Windows

     ```
     C:\Documents and Settings\user_name\Local Settings\Temp\par-user_name
     ```

 - Linux

     ```
     /tmp/par-user_name
     ```
Uninstall the Pillar Axiom CLI

If you want to remove the Pillar Axiom CLI from your client workstation, you need to uninstall the Pillar Axiom CLI.

The Pillar Axiom CLI does not have an uninstaller. To uninstall the Pillar Axiom CLI, delete the Pillar Axiom CLI installation folder, including all of the Pillar Axiom CLI files, as well as the par-<user_name> folder and the ~/.AXCLI_Session file.
Chapter 2

Administrator Accounts

About Administrator Account Management

Administrators have specific privileges on the Pillar Axiom system based on their account type or assigned role.

You can create multiple administrator accounts in a Pillar Axiom system. Additional accounts are not necessary, but they are useful if you want to delegate administrator responsibilities. For example, you might choose to create:

- One administrator account. In this way, a designated person can assume responsibility while the Primary system administrator is on vacation. Assign this account to the Administrator 1 role.

 Tip: Pillar strongly recommends that you set up a Type 1 Administrator account when you install the system. Besides the Primary system administrator, only a Type 1 Administrator can modify an account password (including that of the Primary system administrator) without knowing the previous password.

- One or more administrator accounts with read-only privileges. In this way, managers can monitor the system but they cannot change configuration details. Assign these accounts to the Monitor role.

You can create any number of administrator accounts. However, only 25 account sessions can be active at any given time.

If you delegate administrative tasks to other administrators, you might need to:

- Modify account attributes (for example, change an administrator's password or disable an account other than the Primary system administrator account).

- Change administrator account security settings.

- Delete obsolete accounts.

At times, you might need to modify the attributes of an administrator account. A Primary system administrator and people who are assigned to the Administrator 1 role can modify their own or another administrator's account.

Some changes take effect immediately. For example, an administrator's session is terminated when you disable or delete the administrator account.
Other changes affect the administrators the next time that they log in, for example, when you modify their password or modify the session time-out value.

You can change the security settings for system administrator accounts, including:

- Set the number of consecutive failed login attempts that the Pillar Axiom system allows. When the threshold is exceeded, the system disables the account and writes an entry in the event log. Only a Primary Administrator or Administrator 1 account can re-enable the account, and the system resets the counter upon a successful login. If you do not set this value, there is no limit to the number of consecutive, unsuccessful login attempts.

- Set the session time-out so that the Pillar Axiom system terminates an administrator's session after a given period of inactivity. If you do not set this value, inactive sessions are terminated after 20 minutes.
Administrator Roles and Privileges

An administrator can use Pillar Axiom CLI commands to review and modify accounts that are configured on the Pillar Axiom system.

To administer a Pillar Axiom storage system, you must log in from an administrator account. Every account performs a specific role that defines system privileges.

Table 5 Administrator privileges by role

<table>
<thead>
<tr>
<th>Administrator role</th>
<th>Privileges</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary Administrator</td>
<td>Performs all configuration, management, and monitoring tasks. This account cannot be deleted or disabled.</td>
</tr>
<tr>
<td>Administrator 1</td>
<td>Performs all configuration, management, and monitoring tasks.</td>
</tr>
<tr>
<td>Administrator 2</td>
<td>Performs all tasks except:</td>
</tr>
<tr>
<td></td>
<td>• Create and manage File Servers and administrator accounts.</td>
</tr>
<tr>
<td></td>
<td>• Modify global and Small Network Management (SNMP) settings.</td>
</tr>
<tr>
<td></td>
<td>• Modify software or hardware configurations.</td>
</tr>
<tr>
<td></td>
<td>• Shut down the system.</td>
</tr>
<tr>
<td>Monitor</td>
<td>Displays system information only; cannot modify the configuration. Can modify own account attributes.</td>
</tr>
<tr>
<td>Pillar Support</td>
<td>Performs limited customer service-only functions; cannot modify the configuration.</td>
</tr>
<tr>
<td></td>
<td>Note: Only the Oracle Pillar Customer Support customer service personnel can use this account.</td>
</tr>
<tr>
<td></td>
<td>For the complete list of command options that this role is authorized to perform, see the PARAMETERS section in a specific Pillar Axiom CLI command.</td>
</tr>
<tr>
<td>Support</td>
<td>Performs limited customer service-only functions; cannot modify the configuration.</td>
</tr>
<tr>
<td></td>
<td>Note: Only the Oracle Pillar Customer Support customer service personnel can use this account.</td>
</tr>
</tbody>
</table>
Table 5 Administrator privileges by role (continued)

<table>
<thead>
<tr>
<th>Administrator role</th>
<th>Privileges</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>For the complete list of command options that this role is authorized to perform, see the PARAMETERS section in a specific Pillar Axiom CLI command.</td>
</tr>
</tbody>
</table>
View LUN Details

You can use the Pillar Axiom CLI to view information about all of the available LUNs configured on the Pillar Axiom system.

A LUN is a logical volume within a storage area network (SAN). Administrators assign storage resources and Quality of Service (QoS) attributes to each logical unit (LUN). To view information about LUNs configured on the Pillar Axiom system, use the `lun` command with the `-list -details` command option.

1. Log in to the Pillar Axiom system.
2. Issue the following command:

   ```
   C:\AxiomCLI> axiomcli lun -list -details
   ```

Result:
The list of available LUNs and their details display, similar to the following example:

```plaintext
/SLUN33
    Name              : SLUN33
    Id                 :
    4130303132373542A104064C540FAB3A
    SerialNumber       :
    000B080003001275
    VolumeGroup        :
    VolumeGroupId      :
    4130303132373542A20A000000000000
    StorageClass       : satahd
    MaximumCapacity    : 200
    AllocatedCapacity  : 200
    UsedCapacity       : 200
    PhysicalAllocatedCapacity : 241
    PhysicalUsedCapacity : 241
    PhysicalMaximumCapacity : 241
    LogicalMaximumCloneCapacity : 0
    PhysicalMaximumCloneCapacity : 0
    PhysicalAllocatedCloneCapacity : 0
    UsedCloneCapacity : 0
    AllocatedCloneCapacity : 0
    PhysicalUsedCloneCapacity : 0
```
<table>
<thead>
<tr>
<th>ManagementState</th>
<th>AVAILABLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>AssignedSlammer</td>
<td></td>
</tr>
<tr>
<td>SlammerId</td>
<td>2009000B0803052A</td>
</tr>
<tr>
<td>SlammerFqn</td>
<td>/SLAMMER‑01/1</td>
</tr>
<tr>
<td>CurrentSlammer</td>
<td></td>
</tr>
<tr>
<td>SlammerId</td>
<td>2009000B0803052A</td>
</tr>
<tr>
<td>SlammerFqn</td>
<td>/SLAMMER‑01/1</td>
</tr>
<tr>
<td>TouchedBrickNode</td>
<td></td>
</tr>
<tr>
<td>BrickNodeId</td>
<td>200C000B083A5371</td>
</tr>
<tr>
<td>BrickNodeFqn</td>
<td>/BRICK‑002/0</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>BRICK-002/0</td>
<td></td>
</tr>
<tr>
<td>TouchedBrickNode</td>
<td></td>
</tr>
<tr>
<td>BrickNodeId</td>
<td>200C000B08001D03</td>
</tr>
<tr>
<td>BrickNodeFqn</td>
<td>/BRICK‑001/0</td>
</tr>
<tr>
<td>StorageDomainIdentityId</td>
<td>4130303132373542A214000000000000</td>
</tr>
<tr>
<td>StorageDomainIdentityFqn</td>
<td>/default</td>
</tr>
<tr>
<td>Mapped</td>
<td>false</td>
</tr>
<tr>
<td>GlobalLunNumber</td>
<td>33</td>
</tr>
<tr>
<td>Redundancy</td>
<td>STANDARD</td>
</tr>
<tr>
<td>Priority</td>
<td>HIGH</td>
</tr>
<tr>
<td>MigrateData</td>
<td>false</td>
</tr>
<tr>
<td>AccessBias</td>
<td>sequential</td>
</tr>
<tr>
<td>IoBias</td>
<td>mixed</td>
</tr>
<tr>
<td>FibreChannelAccess</td>
<td>true</td>
</tr>
<tr>
<td>IScsiAccess</td>
<td>true</td>
</tr>
<tr>
<td>Status</td>
<td>ONLINE</td>
</tr>
<tr>
<td>Active</td>
<td>true</td>
</tr>
<tr>
<td>Clone</td>
<td>false</td>
</tr>
<tr>
<td>CopyPriority</td>
<td>auto</td>
</tr>
<tr>
<td>ConservativeMode</td>
<td>allowed</td>
</tr>
</tbody>
</table>
View System Configuration

You can use the system configuration information for a variety of purposes, including working on the Pillar Axiom system, deciding when to allow such work, doing performance tuning, and managing storage.

To view the configuration information for the Pillar Axiom system, you can use the `storage_allocation` Pillar Axiom CLI command. The `storage_allocation` command scans the Pillar Axiom system for the storage allocations for LUNs, Storage Domains, and Bricks, and creates report files.

For example, to generate the XML configuration file for all of the Bricks available on a Pillar Axiom system, run the following command, replacing `xml_configuration_file` with the location and the name of the XML configuration file that you want to generate:

```
C:\AxiomCLI>axiomcli storage_allocation -list -brick -xml xml_configuration_file
```

The output XML configuration file looks similar to the following example:

```xml
<?xml version="1.0" encoding="ISO-8859-1"?>
<viewCod>
  <Brick>
    <FriendlyName>BRICK-001</FriendlyName>
    <WWN>0x200c000b08001d03</WWN>
    <BrickLUN>
      <MetadataIndex>0</MetadataIndex>
      <Number>2</Number>
      <RUI>2000000b-08001d03-00202020-30303030-30303032</RUI>
      <Status>Online</Status>
      <StorageClass>SATA 7k HDD</StorageClass>
      <StorageDomain>default</StorageDomain>
      <Volume>
        <Name>PERSISTENCE</Name>
        <SUID>0x0</SUID>
        <VlunHandle>0x0</VlunHandle>
        <VlunGUID>00dccfb0-d21d-b211-b318-220503080b00</VlunGUID>
      </Volume>
    </BrickLUN>
    <BrickLUN>
      <MetadataIndex>1</MetadataIndex>
      <Number>3</Number>
      <RUI>2000000b-08001d03-00202020-30303030-30303033</RUI>
      <Status>Online</Status>
      <StorageClass>SATA 7k HDD</StorageClass>
      <StorageDomain>default</StorageDomain>
      <Volume>
        <Name>PERSISTENCE</Name>
        <SUID>0x0</SUID>
      </Volume>
    </BrickLUN>
  </Brick>
</viewCod>
```
<Brick>
 <MetadataIndex>2</MetadataIndex>
 <Number>2</Number>
 <RUI>2000000b-083a5371-00202020-30303030-30303036</RUI>
 <Status>Online</Status>
 <StorageClass>SATA 7k HDD</StorageClass>
 <StorageDomain>default</StorageDomain>
 <Volume>
 <Name>PERSISTENCE</Name>
 <SUID>0x0</SUID>
 <VlunHandle>0x0</VlunHandle>
 <VlunGUID>00dccfb0-d21d-b211-b318-220503080b00</VlunGUID>
 </Volume>
</BrickLUN>
</Brick>
</viewCod>

Chapter 3 Pillar Axiom CLI Command Examples

View System Configuration 35
Create a Clone LUN

You can use the Pillar Axiom CLI to create a Clone LUN, which is a partial copy block-level snapshot of a SAN LUN.

To create the Clone LUN, run the following command, replacing `clone-lun-name` with the name you want to assign to Clone LUN and `source-lun-id-or-fqn` with the name of the LUN:

```
C:\AxiomCLI>axiomcli clone_lun -add -name clone-lun-name -source source-lun-id-or-fqn
```

The system displays the message similar to the following:

```
NewObject
  Id                      : 4130303132373542A104D3392B7866A2
  Fqn                     : /clonelun
Command Succeeded
```
Delete a Clone LUN

You can use the Pillar Axiom CLI to delete a Clone LUN.

To delete the Clone LUN, run the following command, replacing `clone-lun-id-or-fqn` with the name of the Clone LUN:

```
C:\AxiomCLI>axiomcli clone_lun -delete -cloneLun clone-lun-id-or-fqn
```

The system displays the following message:

```
Command Succeeded
```
Modify a LUN

You can use the Pillar Axiom CLI to modify a LUN to new priority settings. To modify the LUN, use the `lun -modify` command option.

When you run the `axiomcli lun -modify` command, Pillar Axiom CLI modifies the properties of an existing SAN LUN.

To modify a LUN, issue the following command, replacing `lun-id-or-fqn` with the name of an existing LUN and `new-lun-name` with the name of the new LUN:

```
C:\AxiomCLI>axiomcli lun -modify -lun lun-id-or-fqn -newName new-lun-name -priority high -migrateData
```

The Pillar Axiom CLI modifies the specified LUN and displays the message similar to the following:

```
NewObject
  Id: 4130303132373542A104064C540FAB3A
  Fqn: /SLUN34
Command Succeeded
```

The data migration can take several minutes, during which the performance of the system might drop. The system displays the message as soon as the task starts, but the task itself continues to run in the background. Active data migration tasks may temporarily degrade system performance.

If you want to monitor the progress of the task, run the `axiomcli lun -modify` command with the `-o xml` output option:

```
C:\AxiomCLI>axiomcli lun -modify -lun lun-id-or-fqn -newName new-lun-name -priority high -migrateData -o xml
```

If you use the `-o xml` output option, the final output looks similar to the following XML snippet:

```xml
<?xml version="1.0"?>
<CLIResponse>
  <ResponseHeader>
    <ClientData>PillarAxiomCli</ClientData>
  </ResponseHeader>
  <TaskInformation>
    <TaskGuid>4130303132373542A13FCCE41018E940</TaskGuid>
    <TaskFqn>/CreateLun/174071/administrator</TaskFqn>
  </TaskInformation>
  <NewObject>
    <Id>4130303132373542A104064C540FAB3A</Id>
    <Fqn>/SLUN34</Fqn>
  </NewObject>
</CLIResponse>
```
Chapter 3 Pillar Axiom CLI Command Examples

<Status>succeeded</Status>
</CLIResponse>
Copy a LUN

You can use the Pillar Axiom CLI to make a copy of an existing LUN.

To copy a LUN, issue the following command, replacing `source-lun-id-or-fqn` with the name of the existing LUN and `lun-name` with the name you want to assign to the copied LUN:

```
C:\AxiomCLI>axiomcli lun -copy -source source-lun-id-or-fqn -name lun-name
```

The system displays a message similar to the following:

```
NewObject
  Id             : 4130303132373542A104D8BA5E6642C8
  Fqn            : /lun_copy
Command Succeeded
```
View System Events

The Pillar Axiom CLI allows you to view events in the Pillar Axiom system event log. You can use the events to troubleshoot the system.

To view the detailed list of items contained in the Pillar Axiom system event log, issue the following command:

```
C:\AxiomCLI>axiomcli event_log -list -details
```

The Pillar Axiom CLI retrieves the event log that looks similar to the following example:

```
LOGIN_SUCCEEDED
Name                             : Login Succeeded
Description                      : Login succeeded.
Severity                         : INFORMATIONAL
Category                         : AUDIT
Timestamp                        :
2011-03-15T20:38:14.306+00:00
ComponentGuid                    :
4130303132373542A1400000000000000
ComponentName                    : administrator
AuthenticatedAccountId           :
4130303132373542A1400000000000000
AuthenticatedAccountFqn          : /administrator
AuthenticatedAccountName         :
EventParameters.IpAddress        : /10.32.5.73

PSG_PITMAN_EVENT_STATE_CHANGE
Name                             : Private Interconnect
Topology Manager State Change    : Private Interconnect
Topology Manager state machine has changed state
PmiType                          :
PSG_PITMAN_EVENT_STATE_CHANGE    :
Severity                         : INFORMATIONAL
Category                         : SYSTEM
Timestamp                        :
2011-03-15T20:38:00.215+00:00
ComponentWwn                     : 2008000B08030522
ComponentName                    : SLAMMER-01
SourceNodeId                     : 2008000B08030522
SourceNodeFqn                     : /SLAMMER-01/0
SourceNodeName                   : SLAMMER-01
PsgPitmStateChgEvent.state       :
```
View System Performance Statistics

You can use the Pillar Axiom CLI to view the statistics of the Pillar Axiom system, including the performance of networking, all filesystems, all Slammer Control Units, and all protocols.

To view the performance statistics of the Pillar Axiom system, issue the following command:

C:\AxiomCLI> axiomcli statistics -list

The Pillar Axiom CLI retrieves the performance statistics that look similar to the following example:

<table>
<thead>
<tr>
<th>FCPort</th>
<th>/SLAMMER-01</th>
</tr>
</thead>
<tbody>
<tr>
<td>Id</td>
<td>2008000B08042312</td>
</tr>
<tr>
<td>ControlUnitNumber</td>
<td>0</td>
</tr>
<tr>
<td>NodePortName</td>
<td>PORT0</td>
</tr>
</tbody>
</table>

CollectionTime

| StartTime | 2011-05-17T20:29:57.884+00:00 |
| EndTime | 2011-05-17T20:31:57.455+00:00 |

PerformanceMetrics

TotalBytesPerSecond	74496017.659
ReadBytesPerSecond	37910032.746
WriteBytesPerSecond	36585984.913
ReadThroughputInIOPerSecond	0.000
WriteThroughputInIOPerSecond	253.504
TotalThroughputInIOPerSecond	253.504
ReadBandwidthInBytesPerSecond	0.000
WriteBandwidthInBytesPerSecond	32825633.950
TotalBandwidthInBytesPerSecond	66839228.524
AverageReadOperationSizeInBytes	0.000
AverageWriteOperationSizeInBytes	129487.609
AverageReadResponseTimeInMilliseconds	0.000
AverageWriteResponseTimeInMilliseconds	0.000
AverageCombinedResponseTimeInMilliseconds	0.000

SanControllerInformation

ReadMBPerSecond	0.000
WriteMBPerSecond	0.000
TotalMBPerSecond	0.000
CommandsPerSecond	0.000
TotalChannelErrors	0

ScsiTaskManagementOperations

AbortTask	0
AbortTaskSet	0
ClearAca	0
ClearTaskSet	0
LogicalUnitReset	0
TargetReset	0

LoopActivity

| Lips | 1 |
LoopUps : 2
LoopDowns : 0

ChannelErrors
LoopInitErrors : 0
RndErrors : 0
XferErrors : 0
UnderRunErrors : 0
OverRunErrors : 0
DmaErrors : 0
SystemErrors : 0
PciErrors : 0
ReselectionTimeoutErrors : 0
InvalidRxIdErrors : 0
PortUnavailableErrors : 0
CommandTimeoutErrors : 0
UnacknowledgedHostEventErrors : 0

FCPort : /SLAMMER-01
Id : 2008000B08042312
ControlUnitNumber : 0
NodePortName : PORT1

CollectionTime
StartTime : 2011-05-17T20:29:57.884+00:00
EndTime : 2011-05-17T20:31:57.455+00:00

SanControllerInformation
ReadMBPerSecond : 0.000
WriteMBPerSecond : 0.000
TotalMBPerSecond : 0.000
CommandsPerSecond : 0.000
TotalChannelErrors : 0

ScsiTaskManagementOperations
AbortTask : 0
AbortTaskSet : 0
ClearAca : 0
ClearTaskSet : 0
LogicalUnitReset : 0
TargetReset : 0

LoopActivity
Lips : 0
LoopUps : 1
LoopDowns : 0

ChannelErrors
LoopInitErrors : 0
RndErrors : 0
XferErrors : 0
UnderRunErrors : 0
OverRunErrors : 0
DmaErrors : 0
SystemErrors : 0
PciErrors : 0
ReselectionTimeoutErrors : 0
InvalidRxIdErrors : 0
PortUnavailableErrors : 0
CommandTimeoutErrors : 0

View System Performance Statistics
UnacknowledgedHostEventErrors : 0
FCPort : /SLAMMER-01
Id : 2008000B08042312
ControlUnitNumber : 1
NodePortName : PORT0
CollectionTime
StartTime : 2011-05-17T20:30:06.474+00:00
EndTime : 2011-05-17T20:32:06.008+00:00
SanControllerInformation
ReadMBPerSecond : 0.000
WriteMBPerSecond : 0.000
TotalMBPerSecond : 0.000
CommandsPerSecond : 6.927
TotalChannelErrors : 0
ScsiTaskManagementOperations
AbortTask : 0
AbortTaskSet : 0
ClearAca : 0
ClearTaskSet : 0
LogicalUnitReset : 0
TargetReset : 0
LoopActivity
Lips : 1
LoopUps : 2
LoopDowns : 0
ChannelErrors
LoopInitErrors : 0
RndErrors : 0
XferErrors : 0
UnderRunErrors : 0
OverRunErrors : 0
DmaErrors : 0
SystemErrors : 0
PciErrors : 0
ReselectionTimeoutErrors : 0
InvalidRxIdErrors : 0
PortUnavailableErrors : 0
CommandTimeoutErrors : 0
UnacknowledgedHostEventErrors : 0
FCPort : /SLAMMER-01
Id : 2008000B08042312
ControlUnitNumber : 1
NodePortName : PORT1
CollectionTime
StartTime : 2011-05-17T20:30:06.474+00:00
EndTime : 2011-05-17T20:32:06.008+00:00
SanControllerInformation
ReadMBPerSecond : 0.000
WriteMBPerSecond : 0.000
TotalMBPerSecond : 0.000
CommandsPerSecond : 6.927
TotalChannelErrors : 0
ScsiTaskManagementOperations
<table>
<thead>
<tr>
<th>Metric</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>AbortTask</td>
<td>0</td>
</tr>
<tr>
<td>AbortTaskSet</td>
<td>0</td>
</tr>
<tr>
<td>ClearAca</td>
<td>0</td>
</tr>
<tr>
<td>ClearTaskSet</td>
<td>0</td>
</tr>
<tr>
<td>LogicalUnitReset</td>
<td>0</td>
</tr>
<tr>
<td>TargetReset</td>
<td>0</td>
</tr>
</tbody>
</table>

LoopActivity

- Lips : 1
- LoopUps : 1
- LoopDowns: 0

ChannelErrors

- LoopInitErrors : 0
- RndErrors : 0
- XferErrors : 0
- UnderRunErrors : 0
- OverRunErrors : 0
-_dmaErrors : 0
- SystemErrors : 0
- PciErrors : 0
- ReselectionTimeoutErrors : 0
- InvalidRxIdErrors : 0
- PortUnavailableErrors : 0
- CommandTimeoutErrors : 0
- UnacknowledgedHostEventErrors : 0

iSCSiPort

- /SLAMMER-01
- Id : 2008000B08042312
- ControlUnitNumber : 0
- NodePortName : PORT0

CollectionTime

- StartTime : 2011-05-17T20:29:57.884+00:00
- EndTime : 2011-05-17T20:31:57.455+00:00

SanControllerInformation

- ReadMBPerSecond : 0.000
- WriteMBPerSecond : 0.000
- TotalMBPerSecond : NaN
- CommandsPerSecond : NaN
- TotalChannelErrors : 0

SscsiTaskManagementOperations

- AbortTask : 0
- AbortTaskSet : 0
- ClearAca : 0
- ClearTaskSet : 0
- LogicalUnitReset : 0
- TargetReset : 0

iSCSiPortRequests

- ReinitializeRequests : 0
- TargetColdResetRequests : 0
- TaskReassignRequests : 0
- ISnsMessages : 0

iSCSiPortErrors

- UnderRunErrors : 0
- OverRunErrors : 0
- CommandTimeoutErrors : 0
DmaErrors : 0
TransportErrors : 0
DeviceUnavailableErrors : 0
DataDigestErrors : 0
HeaderDigestErrors : 0
InvalidSnackErrors : 0
UnsolicitedDataErrors : 0
UnexpectedDataSnErrors : 0
InitiatorTaskTagErrors : 0
SystemErrors : 0
MacCrcErrors : 0
MacEncodingErrors : 0
ISnsErrors : 0
CommandPdusRejected : 0
ConnectionFailures : 0
SessionLoginFailures : 0
FwDumpErrors : 0
IscsiPortEvents
 LinkUpEvents : 1
 LinkDownEvents : 0
 IpAddressChangeEvents : 0
 DuplicateIpAddressEvents : 0
IscsiPort
 :/SLAMMER-01
 Id : 2008000B08042312
 ControlUnitNumber : 0
 NodePortName : PORT1
CollectionTime
 StartTime : 2011-05-17T20:29:57.884+00:00
 EndTime : 2011-05-17T20:31:57.455+00:00
SanControllerInformation
 ReadMBPerSecond : 0.000
 WriteMBPerSecond : 0.000
 TotalMBPerSecond : NaN
 CommandsPerSecond : NaN
 TotalChannelErrors :
ScsiTaskManagementOperations
 AbortTask : 0
 AbortTaskSet : 0
 ClearAca : 0
 ClearTaskSet : 0
 LogicalUnitReset : 0
 TargetReset : 0
IscsiPortRequests
 ReinitializeRequests : 0
 TargetColdResetRequests : 0
 TaskReassignRequests : 0
 ISnsMessages : 0
IscsiPortErrors
 UnderRunErrors : 0
 OverRunErrors : 0
 CommandTimeoutErrors : 0
 DmaErrors : 0
 TransportErrors : 0
DeviceUnavailableErrors : 0
DataDigestErrors : 0
HeaderDigestErrors : 0
InvalidSnackErrors : 0
UnsolicitedDataErrors : 0
UnexpectedDataSnErrors : 0
InitiatorTaskTagErrors : 0
SystemErrors : 0
MacCrcErrors : 0
MacEncodingErrors : 0
ISnsErrors : 0
CommandPdusRejected : 0
ConnectionFailures : 0
SessionLoginFailures : 0
FwDumpErrors : 0
IscsiPortEvents
 LinkUpEvents : 1
 LinkDownEvents : 0
 IpAddressChangeEvents : 0
 DuplicateIpAddressEvents : 0
IScsiPort : /SLAMMER-01
 Id : 2008000B08042312
 ControlUnitNumber : 1
 NodePortName : PORT0
CollectionTime
 StartTime : 2011-05-17T20:30:06.474+00:00
 EndTime : 2011-05-17T20:32:06.008+00:00
SanControllerInformation
 ReadMBPerSecond : 0.000
 WriteMBPerSecond : 0.000
 TotalMBPerSecond : NaN
 CommandsPerSecond : NaN
 TotalChannelErrors :
ScsiTaskManagementOperations
 AbortTask : 0
 AbortTaskSet : 0
 ClearAca : 0
 ClearTaskSet : 0
 LogicalUnitReset : 0
 TargetReset : 0
IscsiPortRequests
 ReinitializeRequests : 0
 TargetColdResetRequests : 0
 TaskReassignRequests : 0
 ISnsMessages : 0
IscsiPortErrors
 UnderRunErrors : 0
 OverRunErrors : 0
 CommandTimeoutErrors : 0
 DmaErrors : 0
 TransportErrors : 0
 DeviceUnavailableErrors : 0
 DataDigestErrors : 0
HeaderDigestErrors : 0
InvalidSnackErrors : 0
UnsolicitedDataErrors : 0
UnexpectedDataSnErrors : 0
InitiatorTaskTagErrors : 0
SystemErrors : 0
MacCrcErrors : 0
MacEncodingErrors : 0
ISnsErrors : 0
CommandPdusRejected : 0
ConnectionFailures : 0
SessionLoginFailures : 0
FwDumpErrors : 0

IscsiPortEvents
 LinkUpEvents : 1
 LinkDownEvents : 0
 IpAddressChangeEvents : 0
 DuplicateIpAddressEvents : 0

IScsiPort : /SLAMMER-01
 Id : 2008000B08042312
 ControlUnitNumber : 1
 NodePortName : PORT1

CollectionTime
 StartTime : 2011-05-17T20:30:06.474+00:00
 EndTime : 2011-05-17T20:32:06.008+00:00

SanControllerInformation
 ReadMBPerSecond : 0.000
 WriteMBPerSecond : 0.000
 TotalMBPerSecond : NaN
 CommandsPerSecond : NaN
 TotalChannelErrors :

ScsiTaskManagementOperations
 AbortTask : 0
 AbortTaskSet : 0
 ClearAca : 0
 ClearTaskSet : 0
 LogicalUnitReset : 0
 TargetReset : 0

IscsiPortRequests
 ReinitializeRequests : 0
 TargetColdResetRequests : 0
 TaskReassignRequests : 0
 ISnsMessages : 0

IscsiPortErrors
 UnderRunErrors : 0
 OverRunErrors : 0
 CommandTimeoutErrors : 0
 DmaErrors : 0
 TransportErrors : 0
 DeviceUnavailableErrors : 0
 DataDigestErrors : 0
 HeaderDigestErrors : 0
 InvalidSnackErrors : 0

View System Performance Statistics
<table>
<thead>
<tr>
<th>Event</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>UnsolicitedDataErrors</td>
<td>0</td>
</tr>
<tr>
<td>UnexpectedDataSnErrors</td>
<td>0</td>
</tr>
<tr>
<td>InitiatorTaskTagErrors</td>
<td>0</td>
</tr>
<tr>
<td>SystemErrors</td>
<td>0</td>
</tr>
<tr>
<td>MacCrcErrors</td>
<td>0</td>
</tr>
<tr>
<td>MacEncodingErrors</td>
<td>0</td>
</tr>
<tr>
<td>ISnsErrors</td>
<td>0</td>
</tr>
<tr>
<td>CommandPdusRejected</td>
<td>0</td>
</tr>
<tr>
<td>ConnectionFailures</td>
<td>0</td>
</tr>
<tr>
<td>SessionLoginFailures</td>
<td>0</td>
</tr>
<tr>
<td>FwDumpErrors</td>
<td>0</td>
</tr>
<tr>
<td>IscsiPortEvents</td>
<td></td>
</tr>
<tr>
<td>LinkUpEvents</td>
<td>1</td>
</tr>
<tr>
<td>LinkDownEvents</td>
<td>0</td>
</tr>
<tr>
<td>IpAddressChangeEvents</td>
<td>0</td>
</tr>
<tr>
<td>DuplicateIpAddressEvents</td>
<td>0</td>
</tr>
</tbody>
</table>
About Pillar Axiom CLI Scripts

You can use scripts in the Pillar Axiom CLI to simplify and speed up everyday tasks, improve efficiency, and increase productivity.
Manage Pillar Axiom CLI Session Keys

Managing Pillar Axiom CLI session keys can be very useful when you write custom scripts.

When you log in to a Pillar Axiom system, Pillar Axiom CLI manages the session key for you. To manage the single session key, Pillar Axiom CLI stores the name of the Pillar Axiom system, your user name, and the session key in the hidden `.AXCLI_Session` file located in the user’s home folder (for example, on Windows 7, the `.AXCLI_Session` file is located in the `C:\Users` folder). However, to use multiple session keys concurrently (for example, if you want to have one Pillar Axiom CLI session with the Administrator privileges and another Pillar Axiom CLI session with the Monitor privileges), you need to manage the session keys manually.

To manage multiple session keys, you can use the Pillar Axiom CLI `login` command with the `-returnKey` command option. When you use this command option, Pillar Axiom CLI returns the session key. The returned session key has the following structure:

```
pillar_axiom_name:user_id:session_key
```

For example, if you log in to the Pillar Axiom system using the `axiomcli login -u administrator -p pwd coaxm037 -returnKey` command, the returned session key might look similar to the following:

```
coaxm037:administrator:BB50C9B9E9C90FEE3502768E3D155B4E
```

When you use the `-returnKey` command option, you can store the returned session key. If you are working with a single Pillar Axiom system using only the Pillar Axiom CLI environment, you can specify the session key when issuing a Pillar Axiom CLI command, or you can store the session key in the `PDS_SESSIONKEY` environment variable. The `PDS_SESSIONKEY` environment variable then may look like this:

```
coaxm037:administrator:BB50C9B9E9C90FEE3502768E3D155B4E
```

If you do not specify the `PDS_SESSIONKEY` environment variable, Pillar Axiom CLI retrieves the session key from the hidden `.AXCLI_Session` file.

If you are working with multiple Pillar Axiom systems, setting the `PDS_SESSIONKEY` environment variable does not work because you cannot store multiple session keys in a single environment variable. In such a case, you can use the `-sessionKey` command option to specify which Pillar Axiom system you want to access. For example, to access two Pillar Axiom systems, run the following two commands:
1 The command to the first Pillar Axiom system:

```
C:\AxiomCLI>axiomcli system -list -sessionKey
coaxm037:administrator:BB50C9B9E9C90FEE3502768E3D155B4E
```

2 The command to the second Pillar Axiom system:

```
C:\AxiomCLI>axiomcli system -list -sessionKey
coaxm039:administrator:B4375CD75821A930E3036A9FADA14E6C
```

If you use the `-sessionKey` command option, Pillar Axiom CLI uses the specified value and skips the value specified in the `PDS_SESSIONKEY` environment variable, if any.

Important! The session key value that you provide on the command line takes precedence over both the value specified in the `PDS_SESSIONKEY` environment variable and the value in the hidden `.AXCLI_Session` session file.
Chapter 4 Pillar Axiom CLI Scripts

Create SAN LUNs
This Windows Perl script creates four SAN LUNs in their own volume group and
shows capacity information.
Important! This script assumes that
● The Pillar Axiom CLI has been added to the Path environment variable
● Perl has been installed on your system, including the Getopt::Long module
use Getopt::Long;
Retrieve the options from the command line.
n ‑ lun name seed
c ‑ addressable capacity
g ‑ volume group name
a ‑ axiom name
u ‑ user id for the axiom
p ‑ password
s ‑ storage class (optional)
my @argMap = ('n:s', 'g:s', 'a:s', 'u:s', 'p:s', 'c:i',
's:s');
my %options = ();
GetOptions(\%options, @argMap);
die "usage: CreateSanLuns ‑n <lun name seed> ‑g <volume group
name> ‑a <Axiom> ‑u <user id> ‑p <password> ‑c <addressable
capacity> [‑s <storage class>]"
unless ($options{u} && $options{p} && $options{a} &&
$options{n} && $options{g} && $options{c});
Login
my $command = "axiomcli.exe login ‑u " . $options{u} . " ‑p
" . $options{p} . " " . $options{a};
my $response = execute_command($command);
List the starting capacity information
$command = "axiomcli.exe san ‑list ‑details";
$response = execute_command($command);
print "\n$response\n";
Create the volume group
$command = "axiomcli.exe volume_group ‑add ‑name " .
$options{g};
$response = execute_command($command);
my $group_fqn = get_fqn($response);
print "Created volume group $group_fqn\n";
Create and display its SAN luns
for (my $i = 1; $i < 5; $i++) {
my $lun_name = $options{n} . $i;
$command
= "axiomcli.exe lun ‑add ‑name $lun_name
‑addressablecapacity " . $options{c} . " ‑clonecapacity " .
Create SAN LUNs

53


$options{c} . " -priority high -volumegroup $group_fqn";
if ($options{c}){
 $command .= " -storageClass " . $options{s};
}
$response = execute_command($command);
my $lun_fqn = get_fqn($response);
print "Created SAN lun $lun_fqn\n";

List the ending capacity information
$command = "axiomcli.exe san -list -details";
$response = execute_command($command);
print "\n$response\n";

#**
get_fqn
extracts and returns the fully qualified name of a newly
created object
from the specified response
#**
sub get_fqn {
 my ($string) = @_;
 my ($fqn) = $string =~ m{
 Fqn\s*:\s*
 (\S*)
 }xms;
 if (!defined $fqn) {
 print "Failed to extract fqn from command output. Output: $string\n";
 exit();
 }
 return $fqn;
}

#**
execute_command
executes the specified command and returns the response
#**
sub execute_command {
 my ($command) = @_;
 print "\nExecuting: ", $command, "\n";
 my $out = `$command`;
 my $sys_exit = $?;
 my $axcli_exit = ($sys_exit >> 8);
 if ($axcli_exit != 0) {
 print "Error: $out\nError code: $axcli_exit\n";
exit($axcli_exit);
}
return $out;
}
Note: A Pillar Axiom system uses binary units to calculate and display the capacity of physical storage and the size of logical volumes:

- $1 \text{ MB} = 1024^2 (1,048,576) \text{ bytes}$
- $1 \text{ GB} = 1024^3 (1,073,741,824) \text{ bytes}$
- $1 \text{ TB} = 1024^4 (1,099,511,627,776) \text{ bytes}$

Table 6 System operating limits

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Limits</th>
</tr>
</thead>
</table>
| Volume groups | Minimum: 1
 Maximum: 5000 |
| | **Note**: A volume group can contain up to 100 nested groups. Nesting is limited to five levels. Also, the root volume (/Volumes) is always available. |
| SAN LUNs | Maximum:
 - 8191 visible for any given SAN Slammer
 - 8191 visible across all SAN Slammers in a given system (2730 if all LUNs have non-zero clone repositories)
 - 255 visible for each host |
| | **Note**: A visible (active) LUN requires one virtual LUN (VLUN). Clones for that LUN require a VLUN for the data repository. Each active clone of the source LUN also requires a separate VLUN. For example, a LUN that has two clones requires four VLUNs. |
| SAN LUN size | Minimum: 1 to 2 GB. The exact value depends on these factors |
Table 6 System operating limits (continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• Brick type (Fibre Channel or SATA)</td>
</tr>
<tr>
<td></td>
<td>• RAID geometry (RAID 5 or Distributed RAID)</td>
</tr>
<tr>
<td></td>
<td>• Strip size (1 MB or normal)</td>
</tr>
<tr>
<td></td>
<td>Maximum: System capacity</td>
</tr>
<tr>
<td>Note: All capacity values must be in increments of 1 GB.</td>
<td></td>
</tr>
<tr>
<td>Pillar Axiom Path Manager (APM)</td>
<td>Maximum Pillar Axiom systems: 8 for each SAN host</td>
</tr>
<tr>
<td>APM data paths</td>
<td>Maximum: 32 to each LUN</td>
</tr>
<tr>
<td>APM FC HBA ports</td>
<td>Maximum: 32 for each SAN host</td>
</tr>
<tr>
<td>Clone LUNs</td>
<td>Maximum:</td>
</tr>
<tr>
<td></td>
<td>• Number of available LUNs</td>
</tr>
<tr>
<td></td>
<td>• 13 active at a time (for a single source)</td>
</tr>
<tr>
<td>iSCSI protocol</td>
<td>Maximums for each iSCSI port:</td>
</tr>
<tr>
<td></td>
<td>• 1 VLAN ID</td>
</tr>
<tr>
<td></td>
<td>• 256 TCP connections</td>
</tr>
<tr>
<td></td>
<td>• 256 iSCSI initiators</td>
</tr>
<tr>
<td></td>
<td>• 512 simultaneous commands</td>
</tr>
<tr>
<td></td>
<td>Maximum for each LUN: 32 persistent reservation registration keys</td>
</tr>
<tr>
<td>Administrator accounts</td>
<td>Minimum: 2</td>
</tr>
<tr>
<td></td>
<td>Maximum: Unlimited</td>
</tr>
<tr>
<td>Note: Minimum provides for the Primary system administrator and Pillar support administrator.</td>
<td></td>
</tr>
<tr>
<td>Administrator sessions</td>
<td>Maximum: 25 simultaneous</td>
</tr>
<tr>
<td>Administrator login attempts</td>
<td>Minimum: 1</td>
</tr>
<tr>
<td></td>
<td>Maximum: Unlimited, unless set by the administrator</td>
</tr>
<tr>
<td>Session time-out period (minutes)</td>
<td>Minimum: 0</td>
</tr>
<tr>
<td></td>
<td>Maximum: 999</td>
</tr>
</tbody>
</table>
Table 6 System operating limits (continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Note: Default time-out period is 20 minutes.</td>
</tr>
<tr>
<td>Storage Domains</td>
<td>Maximum: 64 for each system</td>
</tr>
<tr>
<td>Number of Bricks in a Storage Domain</td>
<td>Minimum:</td>
</tr>
<tr>
<td></td>
<td>• Serial ATA (SATA) or solid state drives (SSD) Bricks: 1</td>
</tr>
<tr>
<td></td>
<td>• Fibre Channel (FC) Bricks: 2</td>
</tr>
<tr>
<td></td>
<td>Maximum:</td>
</tr>
<tr>
<td></td>
<td>• SATA Bricks: 64</td>
</tr>
<tr>
<td></td>
<td>• FC or SSD Bricks: 32</td>
</tr>
</tbody>
</table>

Table 7 Field input limits

<table>
<thead>
<tr>
<th>Field</th>
<th>Length or Type</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Names for:</td>
<td>1 through 16 8-bit Unicode Transformation Format (UTF-8) printable characters.</td>
<td>Embedded spaces are permitted. Invalid characters:</td>
</tr>
<tr>
<td>• Alerts</td>
<td>UTF-8 is described in RFC 2279, which you can find online with any Internet search engine.</td>
<td>• Non-printable characters, including ASCII 0 through 31</td>
</tr>
<tr>
<td>• Brick storage enclosures</td>
<td></td>
<td>• / (slash) and \ (backslash)</td>
</tr>
<tr>
<td>• Pillar Axiom system</td>
<td></td>
<td>• . and .. (dot and dot-dot alone)</td>
</tr>
<tr>
<td>• Schedules</td>
<td></td>
<td>• Embedded tabs</td>
</tr>
<tr>
<td>• Slammer storage controllers</td>
<td></td>
<td>Pillar Axiom processing:</td>
</tr>
<tr>
<td>• Volume groups</td>
<td></td>
<td>• Leading and trailing white space is stripped</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Comparison is case sensitive</td>
</tr>
<tr>
<td>Names for:</td>
<td>1 through 82 UTF-8 printable characters</td>
<td>Invalid characters:</td>
</tr>
<tr>
<td>• LUNs</td>
<td></td>
<td>• Nonprintable characters, including ASCII 0 through 31</td>
</tr>
<tr>
<td>• Storage Domains</td>
<td></td>
<td>• / (slash) and \ (backslash)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• . and .. (dot and dot-dot alone)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Embedded tabs</td>
</tr>
<tr>
<td>Names for SAN hosts</td>
<td>1 through 63 UTF-8 printable characters</td>
<td></td>
</tr>
</tbody>
</table>
Table 7 Field input limits (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Length or Type</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNS domains</td>
<td>0 through 255, in all four parts</td>
<td>IP version 4 (IPv4) dotted-decimal notation (nnn.nnn.nnn.nnn)</td>
</tr>
<tr>
<td>Administrator user name</td>
<td>1 through 16 UTF-8 printable characters</td>
<td>Case-sensitive value</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Invalid characters:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Embedded spaces</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• / (slash)</td>
</tr>
<tr>
<td>Administrator password</td>
<td>6 through 16 UTF-8 printable characters</td>
<td>Case-sensitive value</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Embedded spaces are permitted.</td>
</tr>
<tr>
<td>Optional entries for administrator full names</td>
<td>0 through 40 UTF-8 printable characters</td>
<td>Embedded spaces are permitted.</td>
</tr>
<tr>
<td>Optional entries for telephone numbers</td>
<td>0 through 80 UTF-8 printable characters</td>
<td>Embedded spaces are permitted.</td>
</tr>
<tr>
<td>Alert descriptions</td>
<td>0 through 80 UTF-8 printable characters</td>
<td>Embedded spaces are permitted.</td>
</tr>
<tr>
<td>Email address (emailuser@host)</td>
<td>1 through 64 characters for email user</td>
<td>a-z A-Z 0-9 ! # $ % & ' * + - / = ? ^ _ `{</td>
</tr>
<tr>
<td></td>
<td>1 through 255 characters for host</td>
<td>a-z A-Z 0-9 - . are permitted, except that:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 0-9 - . cannot be the first character.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• . - cannot be the last character.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>An IP address cannot be the host part of the email address.</td>
</tr>
<tr>
<td>IP addresses</td>
<td>0 through 255, in all four parts</td>
<td>IP version 4 (IPv4) dotted-decimal notation (nnn.nnn.nnn.nnn)</td>
</tr>
<tr>
<td>Virtual LAN (VLAN) ID or tag</td>
<td>0 through 4094 (integer)</td>
<td>1 through 4094 denote that VLAN tagging is enabled.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 0 denotes that VLAN tagging is disabled.</td>
</tr>
</tbody>
</table>
Table 7 Field input limits (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Length or Type</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>SNMP community string</td>
<td>6 through 255 ASCII printable characters 33 through 126</td>
<td>Invalid characters:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Embedded spaces</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Control characters</td>
</tr>
<tr>
<td>Chap Secrets</td>
<td>100 UTF-8 characters</td>
<td>Non-character (for example, integer)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CHAP secret values are not supported.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CHAP secrets should be more than 12 bytes if IPsec is not used on insecure network segments.</td>
</tr>
</tbody>
</table>
APPENDIX B

Pillar Axiom CLI Commands

About Pillar Axiom CLI Commands

In addition to the unique properties of a command, most of the Pillar Axiom CLI commands use the following common options:

- `-add`
- `-delete`
- `-modify`
- `-list`
- `-verify`
- `-o`
- `-sessionkey`
- `-timeout`

You can also use the `-help` option to display a short description of the syntax of a specific command.

The Pillar Axiom CLI uses fully qualified names (FQNs) that are exposed in the results when requesting a list of Pillar Axiom system objects.

Note: Use double quotes when entering file names that contain spaces, comments, and descriptions. The double quotes ensure that the spaces are not removed by the Pillar Axiom CLI when processing the command.
account

DESCRIPTION
Manages administrative accounts on a Pillar Axiom system. Administrators have specific privileges on the Pillar Axiom system based on their account type or assigned role.

Use this feature to perform any of the following actions:

- Create administrative accounts
- Delete administrative accounts
- Log an administrator off the system
- List existing administrative accounts
- Change administrative passwords
- Assign roles to specific administrative accounts

You can use the -verify option to test the command-line argument and its options before running it in Pillar Axiom CLI. If no errors exist, the Pillar Axiom CLI command returns without executing. For example, the -verify option is helpful when writing scripts in which a particular Pillar Axiom CLI command usage can be verified prior to adding it to a script.

You can use the -outputformat or the -o command option to specify how to display the results of running a command. If you do not specify either the -outputformat or the -o command option, the results display in the default text format. Valid options:

- text The system displays the results in the plain-text format.
- xml The system displays the results in the tagged XML format.

You can use the -sessionKey option to specify which Pillar Axiom system to access and which session key value to use for validation. The Pillar Axiom CLI displays the session key value when you log in to the Pillar Axiom system using the -returnKey option.

You can use the -timeout option to set a time limit for the execution of a command. If the command takes longer than the number of seconds specified in the -timeout option, the system stops executing the command. If you do not specify the -timeout option, the system does not set any time limit for executing the command.

SYNTAX
axiomcli account -add -name account-name
-role {admin1 | admin2 | monitor | support}
-password password
-retypePassword password [-email email-address] [-phone phone-number] [{-enable | -disable}] [-fullName full-name]
PARAMETERS

Note: Role permissions:

- Only the Primary Administrator and Administrator 1 roles can issue all of the commands.

- The Administrator 2, Pillar Support, and Support roles can issue only the `modify` and `list` commands.

- The Monitor role can issue only the `list` command option.

- **add**

 Creates new administrative accounts on a Pillar Axiom system. You can create multiple administrator accounts in a Pillar Axiom system. Additional accounts are not necessary, but they are useful if you want to delegate administrator responsibilities. For example, you might choose to create:
○ One administrator account so that a designated person assumes responsibility while the Primary System Administrator is on vacation. Assign this account to the Administrator 1 role.

○ One or more administrator accounts with read-only privileges so that managers can monitor the system but they cannot change configuration details. Assign these accounts to the Monitor role.

Valid options:

- **name**

Identifies the login name assigned to the administrator account. This field is limited to 20 characters.

- **role**

Identifies the authorized privileges for an administrator account. Different roles are authorized to perform different functions:

admin1 A login account that has the authority to perform all administration, configuration, and recovery tasks.

admin2 A login account that has the authority to perform all administrative and configuration tasks, except:

- Create, modify, or delete administrator accounts and File Servers.
- Modify system-wide settings such as Simple Network Management Protocol (SNMP).
- Modify software or hardware configurations.
- Shut down the system.

monitor A login account that has the authority to perform read-only management tasks in a Pillar Axiom system and the ability to modify their own account attributes.
support

A unique login account solely for support representatives. This login account is not authorized to modify or delete data resources, system alerts, or administrator accounts.

Important! Use this account only if you are familiar with it or instructed by Oracle Pillar Customer Support.

-password

Identifies the password of the administrator account. Passwords can be between 6 and 20 characters in length. Passwords are case sensitive and embedded spaces are permitted. Blank passwords are not permitted.

-retypePassword

Confirms that the password was entered correctly.

-email

Identifies the email address associated with the administrator account. The email username can have up to 64 characters and the email domain can have up to 255 characters. The email server to which the Pillar Axiom system sends alerts must be able to receive messages at this address. The system does not validate this address.

Note: An IP address cannot be entered as the email domain.

-phone

Identifies the phone number associated with the administrator account. The Pillar Axiom system does not verify the validity of this entry.

Note: Enclose telephone numbers with spaces in quotes.

-enable

Indicates whether the administrative account is enabled. By default, the account being created is enabled.

-disable

Indicates whether the administrative account is disabled. The Pillar Axiom system maintains disabled accounts but does not allow them to log in. A disabled account can be enabled at a later time by modifying it. This setting takes...
effect immediately. If the administrator is logged in when you disable the account, the system logs out the administrator immediately.

Note: You cannot disable the primaryadmin account.

- **-fullName**

Identifies the first and last name associated with the administrator account.

- **-modify**

Modifies an existing administrator account. At times, you may need to modify the attributes of an administrator account. A Primary system administrator and people who are assigned to the Administrator 1 role can modify their own or another administrator's account. Some changes take effect immediately.

For example, a logged-in administrator's session is terminated when you disable or delete the administrator account. Other changes, such as modifying the administrator's password or the session time-out value take affect the next time the administrator logs in.

Note: Only the Administrator 1, Pillar Support, and Support roles can modify an existing administrator account.

Valid options:

- **-account**

Identifies the ID or fully qualified name (FQN) of the account to modify. If you do not specify an account, the system modifies the account currently logged into the Pillar Axiom system. If you modify the account currently logged in, the system will accept values for only the following parameters:

- `-fullName`
- `-password`
- `-retypePassword`
- `-email`
- `-phone`

Important! If other parameters are specified, the system generates an error.

- **-name**
Changes the name of the administrator account.

-delete

Deletes one or more administrative accounts.

Valid options:

-account

Specifies the ID or FQN of the account to delete.

-list

Displays a list of administrator accounts or any active administrator sessions.

Valid options:

-details

For accounts, displays the account name, role, email address, phone number, and whether an account is enabled.

For each logged-in administrator, displays all of the session information, including the user name, login time, and remote IP address. The log-in time displays in the `YYYY-MM-DDTHH:mm:SS.xxx+HH:mm` format.

-account

Displays the information for a specified administrator account. If you specify a user session, and the specified account is logged in, their session is displayed. If the specified account is not logged in, the session information is not displayed.

If you do not provide either the **-account** or the **-userSessions** option, the system displays all of the currently logged-in administrative user sessions, followed by all of the administrative account information.

-userSessions

Displays information for all of the logged-in administrative user sessions. If you provide one or more `session-id-or-fqn` operands, the system displays information for just the specified sessions.

If you do not provide either the **-account** or the **-userSessions** option, the system displays all of the currently logged-in administrative user sessions, followed by all of the administrative account information.

-help
Displays the detailed command help information.

EXAMPLE

Run `axiomcli account -list -details` to display a detailed list of administrative accounts:

```terminal
axiomcli account -list -details
```

Results:

<table>
<thead>
<tr>
<th>Accounts</th>
</tr>
</thead>
<tbody>
<tr>
<td>/administrator</td>
</tr>
<tr>
<td>Id : 4130303132373542A1400000000000000</td>
</tr>
<tr>
<td>Username : administrator</td>
</tr>
<tr>
<td>Fullname :</td>
</tr>
<tr>
<td>EmailAddress :</td>
</tr>
<tr>
<td>PhoneNumber :</td>
</tr>
<tr>
<td>Status : Enabled</td>
</tr>
<tr>
<td>Role : PRIMARY_ADMINISTRATOR</td>
</tr>
<tr>
<td>ManagementState : AVAILABLE</td>
</tr>
</tbody>
</table>

| /pillar |
| Id : 4130303132373542A1400000000000001 |
| Username : pillar |
| Fullname : |
| EmailAddress : |
| PhoneNumber : |
| Status : Enabled |
| Role : PILLAR_SUPPORT |
| ManagementState : AVAILABLE |

| UserSessions |
| /administrator-759 |
| Id : 4130303132373542A143440CE1FB3F40 |
| LoginTime : 2011-04-05T21:45:47.535 |
| RemoteIpAddress : 172.18.24.134 |
| AccountFqn : /administrator |
| AccountId : |

| /administrator |
| Id : 4130303132373542A1400000000000000 |
| Username : administrator |
| Fullname : |
| Role : PRIMARY_ADMINISTRATOR |
brick

DESCRIPTION Manages the Brick storage enclosures on a Pillar Axiom system. Bricks connect to one or more Slammers through the Storage System Fabric (SSF).

Use the `brick` command to verify data consistency, clear the RAID controller history, restart a RAID controller, and add or move Bricks to a Storage Domain, or remove Bricks from a system configuration.

You can use the `-verify` option to test the command-line argument and its options before running it in Pillar Axiom CLI. If no errors exist, the Pillar Axiom CLI command returns without executing. For example, the `-verify` option is helpful when writing scripts in which a particular Pillar Axiom CLI command usage can be verified prior to adding it to a script.

You can use the `-outputformat` or the `-o` command option to specify how to display the results of running a command. If you do not specify either the `-outputformat` or the `-o` command option, the results display in the default text format. Valid options:

- **text** The system displays the results in the plain-text format.
- **xml** The system displays the results in the tagged XML format.

You can use the `-sessionKey` option to specify which Pillar Axiom system to access and which session key value to use for validation. The Pillar Axiom CLI displays the session key value when you log in to the Pillar Axiom system using the `-returnKey` option.

You can use the `-timeout` option to set a time limit for the execution of a command. If the command takes longer than the number of seconds specified in the `-timeout` option, the system stops executing the command. If you do not specify the `-timeout` option, the system does not set any time limit for executing the command.

SYNTAX

```
axiomcli brick -modify
    { -bricks brick-id-or-fqn -name new-brick-name
      | -brickNode bricknode-id-or-fqn
        { -acceptForeignDrive drive-slot-number | -remove |
          -recreateRaidArray}
    } [-verify]
    [{-outputformat | -o} {text | xml}]
    [-sessionKey session-key]
    [-timeout timeout-in-seconds]

axiomcli brick -list
    [ {-bricks brick-id-or-fqn [,brick-id-or-fqn]...}
```

Appendix B Pillar Axiom CLI Commands

brick

Manages the Brick storage enclosures on a Pillar Axiom system. Bricks connect to one or more Slammers through the Storage System Fabric (SSF).

Use the `brick` command to verify data consistency, clear the RAID controller history, restart a RAID controller, and add or move Bricks to a Storage Domain, or remove Bricks from a system configuration.

You can use the `-verify` option to test the command-line argument and its options before running it in Pillar Axiom CLI. If no errors exist, the Pillar Axiom CLI command returns without executing. For example, the `-verify` option is helpful when writing scripts in which a particular Pillar Axiom CLI command usage can be verified prior to adding it to a script.

You can use the `-outputformat` or the `-o` command option to specify how to display the results of running a command. If you do not specify either the `-outputformat` or the `-o` command option, the results display in the default text format. Valid options:

- **text** The system displays the results in the plain-text format.
- **xml** The system displays the results in the tagged XML format.

You can use the `-sessionKey` option to specify which Pillar Axiom system to access and which session key value to use for validation. The Pillar Axiom CLI displays the session key value when you log in to the Pillar Axiom system using the `-returnKey` option.

You can use the `-timeout` option to set a time limit for the execution of a command. If the command takes longer than the number of seconds specified in the `-timeout` option, the system stops executing the command. If you do not specify the `-timeout` option, the system does not set any time limit for executing the command.

```
axiomcli brick -modify
    { -bricks brick-id-or-fqn -name new-brick-name
      | -brickNode bricknode-id-or-fqn
        { -acceptForeignDrive drive-slot-number | -remove |
          -recreateRaidArray}
    } [-verify]
    [{-outputformat | -o} {text | xml}]
    [-sessionKey session-key]
    [-timeout timeout-in-seconds]

axiomcli brick -list
    [ {-bricks brick-id-or-fqn [,brick-id-or-fqn]...}
```
| -brickNode *bricknode-id-or-fqn*
| [,bricknode-id-or-fqn]...
|
| {-driveSmartData -driveSlot *slot-number*}
|]
| [-dataConsistency] [-details]
| [-verify]
| [{--outputformat | -o} {text | xml}]
| [-sessionKey *session-key*]
| [-timeout *timeout-in-seconds*]

```bash
axiomcli brick -verifyDataConsistency [-brickNode *bricknode-id-or-fqn*]
   -priority {high | low}
   [-verify]
   [{--outputformat | -o} {text | xml}]
   [-sessionKey *session-key*]
   [-timeout *timeout-in-seconds*]
```

```bash
axiomcli brick -clearRaidHistory -brick *brick-id-or-fqn*
   -portGroup {group0 | group1}
   [-verify]
   [{--outputformat | -o} {text | xml}]
   [-sessionKey *session-key*]
   [-timeout *timeout-in-seconds*]
```

```bash
axiomcli brick -restartRaidController -brick *brick-id-or-fqn*
   -controller {cu0 | cu1 | both} [-restartCompanion]
   [-verify]
   [{--outputformat | -o} {text | xml}]
   [-sessionKey *session-key*]
   [-timeout *timeout-in-seconds*]
```

```bash
axiomcli brick -acceptNode -brickNode *bricknode-id-or-fqn*
   -storageDomain *storage-domain-id-or-fqn*
   [-verify]
   [{--outputformat | -o} {text | xml}]
   [-sessionKey *session-key*]
   [-timeout *timeout-in-seconds*]
```

```bash
axiomcli brick -move -brickNode *bricknode-id-or-fqn*
   [, *bricknode-id-or-fqn*]...
   -storageDomain *new-storage-domain-id-or-fqn*
   [-verify]
   [{--outputformat | -o} {text | xml}]
   [-sessionKey *session-key*]
   [-timeout *timeout-in-seconds*]
```

```bash
axiomcli brick -help
```
PARAMETERS

Note: The Primary Administrator and Administrator 1 roles can issue all command options except for the following:

```
axiomcli brick -clearRaidHistory
axiomcli brick -restartRaidController
```

The Pillar Support and Support roles can issue all command options except for the following:

```
axiomcli brick -modify
axiomcli brick -acceptNode
axiomcli brick -move
```

All roles can issue the `-list` command option.

`-modify`

Modifies a Brick.

Valid options:

`-brick`

Identifies a specific Pillar Axiom object. Enter the ID or fully qualified name (FQN) of the Brick.

Valid options:

<table>
<thead>
<tr>
<th>ID</th>
<th>A 16-character string with hexadecimal characters (a through f and 0 through 9). Example ID: 200C000B08000006</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fully qualified name (FQN)</td>
<td>Starts with a leading slash (/) with the object’s name. Example FQN: /PillarBrick1</td>
</tr>
</tbody>
</table>

`-name`

Specifies a new name of a Brick.

`-brickNode`

Identifies the Brick to be modified.

`-acceptForeignDrive`

Instructs the Brick to accept a foreign drive (a drive that has not been yet certified to work with the Brick). The operand specifies the drive slot number for the new drive.

`-remove`
Removes the specified Brick from the list of hardware components (hardware manifest). When you remove a Brick, the capacity of the Brick is also removed leaving less space available in the system.

-recreateRaidArray

Recreates the RAID array for the specified Brick.

Caution

The `-recreateRaidArray` option deletes all of the data on the specified array, and this action is *not* reversible.

Before using the `-recreateRaidArray` option, contact Oracle Pillar Customer Support.

-list

Displays the hardware status and data consistency state of a Brick or Brick control unit (CU). The hardware status includes drives, fans, power supplies, enclosure services (ES) modules, RAID controllers, and serial numbers.

Valid options:

-brick

Displays information for the specified Brick. Enter the ID or FQN of the Brick. If you do not specify a Brick, the hardware status and data consistency for all Bricks is displayed.

-brickNode

Displays the hardware status and data consistency of the specified Brick.

-driveSmartData

Displays the S.M.A.R.T. data for the drive in the specified slot of the Brick identified by either the `-brick` or the `-brickNode` option.

-driveSlot

Identifies locations (slot numbers where individual drives reside in the Brick) of the Brick. The values range from 0 to the maximum number of drives minus one.

-dataConsistency
Displays only the data consistency state of the Brick components.

-detailed
Does not display any additional details but is included for symmetry.

-verifyDataConsistency

Verifies the integrity of the parity data, which is maintained by the RAID controller, not to the integrity of user-created data.

Note: Running this command option can take a long time to complete, but its progress can be tracked using the following command-line argument:

```
axiomcli task-list
```

Valid options:

- **brickNode**
 Indicates that the verification will be performed against the specified Brick. If you do not specify a Brick, the system verifies all Bricks.

- **priority**
 Indicates the priority that should be given to the verification process:

 - **high**
 - Permits the verification check to affect I/O performance by up to 30%.

 - **low**
 - Permits the verification check to affect I/O performance by up to 10%.

- **clearRaidHistory**

 Clears the RAID history information for the RAID controller of a Brick, a Brick CU, or a Brick controller unit (through a port group).

 Valid options:

 - **brick**
 - Identifies a specific Pillar Axiom object. Enter the ID or fully qualified name (FQN) of the Brick.

 - **portGroup**

Identifies the port group of the RAID controller that you want to clear the history.

-restartRaidController

Restarts the RAID controller of one or all Bricks.

Valid options:

- **brick**
 Identifies a specific Pillar Axiom object. Enter the ID or fully qualified name (FQN) of the Brick.

- **controller**
 Specifies the RAID controller to be restarted.

- **restartCompanion**
 Restarts the secondary RAID controller as well as the specified RAID controller.

-acceptNode

Adds the specified Brick to a Storage Domain.

Valid options:

- **brickNode**
 Identifies the ID or FQN of the Brick to accept.

- **storageDomain**
 Specifies the Storage Domain with which to associate the Brick.

-move

Moves the specified Brick CUs to the new Storage Domain.

Valid options:

- **brickNode**
 Moves the specified Bricks to a new Storage Domain.

- **storageDomain**
 Identifies the new Storage Domain for the Brick CUs.

-help

Displays the detailed command help information.

EXAMPLE

Run `brick` to display the hardware status and data consistency state of a Brick:

```
axiomcli brick -list -details
```
Results:

<table>
<thead>
<tr>
<th>Brick</th>
<th>/BRICK-002</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>BRICK-002</td>
</tr>
<tr>
<td>Id</td>
<td>200C000B083A5371</td>
</tr>
<tr>
<td>Fqn</td>
<td>/BRICK-002</td>
</tr>
<tr>
<td>BrickWwn</td>
<td>200C000B083A5371</td>
</tr>
<tr>
<td>Type</td>
<td>SATA</td>
</tr>
<tr>
<td>Model</td>
<td>1000-00008-00</td>
</tr>
<tr>
<td>HardwareComponentStatus</td>
<td>NORMAL</td>
</tr>
<tr>
<td>TemperatureStatus</td>
<td>NORMAL</td>
</tr>
<tr>
<td>SerialNumber</td>
<td>SGAMS00038CLN008</td>
</tr>
<tr>
<td>ManagementState</td>
<td>AVAILABLE</td>
</tr>
<tr>
<td>OverallBrickStatus</td>
<td>NORMAL</td>
</tr>
</tbody>
</table>

BrickNode

<table>
<thead>
<tr>
<th>Id</th>
<th>200C000B083A5371</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fqn</td>
<td>/BRICK-002/0</td>
</tr>
<tr>
<td>StorageClass</td>
<td>satahd</td>
</tr>
<tr>
<td>StorageDomain</td>
<td>4130303132373542A21400000000000</td>
</tr>
</tbody>
</table>

DiskDriveNumber: 0

<table>
<thead>
<tr>
<th>Status</th>
<th>NORMAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>1450-00117-00</td>
</tr>
<tr>
<td>ManufacturingModel</td>
<td>3500-00004-00</td>
</tr>
<tr>
<td>SerialNumber</td>
<td>3JS0DMVW</td>
</tr>
<tr>
<td>Spare</td>
<td>false</td>
</tr>
<tr>
<td>Capacity</td>
<td>149</td>
</tr>
<tr>
<td>FirmwareVersion</td>
<td>2052-00003-00</td>
</tr>
</tbody>
</table>

DiskDriveNumber: 1

<table>
<thead>
<tr>
<th>Status</th>
<th>NORMAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>1450-00028-00</td>
</tr>
<tr>
<td>ManufacturingModel</td>
<td>3500-00004-00</td>
</tr>
<tr>
<td>SerialNumber</td>
<td>3JS10MP3</td>
</tr>
<tr>
<td>Spare</td>
<td>false</td>
</tr>
<tr>
<td>Capacity</td>
<td>149</td>
</tr>
<tr>
<td>FirmwareVersion</td>
<td>2052-00003-00</td>
</tr>
</tbody>
</table>

DiskDriveNumber: 2

<table>
<thead>
<tr>
<th>Status</th>
<th>NORMAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>1450-00028-00</td>
</tr>
<tr>
<td>ManufacturingModel</td>
<td>3500-00004-00</td>
</tr>
<tr>
<td>SerialNumber</td>
<td>3JS10J6K</td>
</tr>
<tr>
<td>Spare</td>
<td>false</td>
</tr>
<tr>
<td>Capacity</td>
<td>149</td>
</tr>
<tr>
<td>FirmwareVersion</td>
<td>2052-00003-00</td>
</tr>
</tbody>
</table>

DiskDriveNumber: 3

<table>
<thead>
<tr>
<th>Status</th>
<th>NORMAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>1450-00028-00</td>
</tr>
<tr>
<td>ManufacturingModel</td>
<td>3500-00004-00</td>
</tr>
<tr>
<td>SerialNumber</td>
<td>3JS10VQC</td>
</tr>
<tr>
<td>DiskDriveNumber</td>
<td>Spare</td>
</tr>
<tr>
<td>-----------------</td>
<td>-------</td>
</tr>
<tr>
<td>4</td>
<td>false</td>
</tr>
<tr>
<td>5</td>
<td>false</td>
</tr>
<tr>
<td>6</td>
<td>false</td>
</tr>
<tr>
<td>7</td>
<td>false</td>
</tr>
<tr>
<td>8</td>
<td>false</td>
</tr>
<tr>
<td>9</td>
<td>false</td>
</tr>
<tr>
<td>10</td>
<td>false</td>
</tr>
<tr>
<td>Model</td>
<td>1450-00028-00</td>
</tr>
<tr>
<td>--------------------</td>
<td>---------------</td>
</tr>
<tr>
<td>ManufacturingModel</td>
<td>3500-00004-00</td>
</tr>
<tr>
<td>SerialNumber</td>
<td>3JS10KJA</td>
</tr>
<tr>
<td>Spare</td>
<td>false</td>
</tr>
<tr>
<td>Capacity</td>
<td>149</td>
</tr>
<tr>
<td>FirmwareVersion</td>
<td>2052-00003-00</td>
</tr>
<tr>
<td>DiskDriveNumber: 11</td>
<td></td>
</tr>
<tr>
<td>Status</td>
<td>NORMAL</td>
</tr>
<tr>
<td>Model</td>
<td>1450-00028-00</td>
</tr>
<tr>
<td>ManufacturingModel</td>
<td>3500-00004-00</td>
</tr>
<tr>
<td>SerialNumber</td>
<td>3JS10W59</td>
</tr>
<tr>
<td>Spare</td>
<td>false</td>
</tr>
<tr>
<td>Capacity</td>
<td>149</td>
</tr>
<tr>
<td>FirmwareVersion</td>
<td>2052-00003-00</td>
</tr>
<tr>
<td>DiskDriveNumber: 12</td>
<td></td>
</tr>
<tr>
<td>Status</td>
<td>NORMAL</td>
</tr>
<tr>
<td>Model</td>
<td>1450-00031-00</td>
</tr>
<tr>
<td>ManufacturingModel</td>
<td>3500-00004-00</td>
</tr>
<tr>
<td>SerialNumber</td>
<td>3JS10KDB</td>
</tr>
<tr>
<td>Spare</td>
<td>true</td>
</tr>
<tr>
<td>Capacity</td>
<td>149</td>
</tr>
<tr>
<td>FirmwareVersion</td>
<td>2052-00003-00</td>
</tr>
<tr>
<td>PhysicalTotalCapacity</td>
<td>1780</td>
</tr>
<tr>
<td>PhysicalFreeCapacity</td>
<td>1538</td>
</tr>
<tr>
<td>PhysicalAllocatedCapacity</td>
<td>242</td>
</tr>
<tr>
<td>PhysicalUnavailableCapacity</td>
<td>0</td>
</tr>
<tr>
<td>EsModule</td>
<td></td>
</tr>
<tr>
<td>SerialNumber</td>
<td>SGAMS0003BBLM167</td>
</tr>
<tr>
<td>Status</td>
<td>NORMAL</td>
</tr>
<tr>
<td>Model</td>
<td>PCA-00023-02-D</td>
</tr>
<tr>
<td>Chassis</td>
<td></td>
</tr>
<tr>
<td>SerialNumber</td>
<td>SGAMS00038CLN008</td>
</tr>
<tr>
<td>Status</td>
<td>NORMAL</td>
</tr>
<tr>
<td>Model</td>
<td>1000-00008-00</td>
</tr>
<tr>
<td>FanModuleNumber</td>
<td>0</td>
</tr>
<tr>
<td>Model</td>
<td>PWR-00002-01-A</td>
</tr>
<tr>
<td>SerialNumber</td>
<td>CNART0003A3LA15C</td>
</tr>
<tr>
<td>HardwareComponentStatus</td>
<td>NORMAL</td>
</tr>
<tr>
<td>TemperatureStatus</td>
<td>NORMAL</td>
</tr>
<tr>
<td>NumberOfTemperatureSensors</td>
<td>1</td>
</tr>
<tr>
<td>NumberOfFans</td>
<td>0</td>
</tr>
<tr>
<td>NumberOfFailedFans</td>
<td>0</td>
</tr>
<tr>
<td>FanModuleNumber</td>
<td>1</td>
</tr>
<tr>
<td>Model</td>
<td>PWR-00002-01-A</td>
</tr>
<tr>
<td>SerialNumber</td>
<td>CNART0003A3LA161</td>
</tr>
<tr>
<td>HardwareComponentStatus</td>
<td>NORMAL</td>
</tr>
<tr>
<td>TemperatureStatus</td>
<td>NORMAL</td>
</tr>
<tr>
<td>NumberOfTemperatureSensors</td>
<td>1</td>
</tr>
<tr>
<td>NumberOfFans</td>
<td>0</td>
</tr>
<tr>
<td>NumberOfFailedFans</td>
<td>0</td>
</tr>
<tr>
<td>RaidControllerNumber</td>
<td>0</td>
</tr>
<tr>
<td>HardwareComponentStatus</td>
<td>NORMAL</td>
</tr>
<tr>
<td>TemperatureStatus</td>
<td>NORMAL</td>
</tr>
<tr>
<td>Model</td>
<td>1450-00014-03</td>
</tr>
<tr>
<td>------------------------</td>
<td>---------------</td>
</tr>
<tr>
<td>FirmwareVersion</td>
<td>2050-00036-072006-072006</td>
</tr>
<tr>
<td>SerialNumber</td>
<td>SGAMS000448GE011</td>
</tr>
<tr>
<td>FibreChannelPort</td>
<td></td>
</tr>
<tr>
<td>PortStatus</td>
<td>CONNECTED</td>
</tr>
<tr>
<td>ConnectionType</td>
<td>COPPER</td>
</tr>
<tr>
<td>ConnectorId</td>
<td>FC0</td>
</tr>
<tr>
<td>Speed</td>
<td>20000000000</td>
</tr>
<tr>
<td>Topology</td>
<td>POINT_TO_POINT</td>
</tr>
<tr>
<td>PortSfpStatus</td>
<td>INVALID</td>
</tr>
<tr>
<td>SfpVendorName</td>
<td></td>
</tr>
<tr>
<td>SfpPartNumber</td>
<td></td>
</tr>
<tr>
<td>SfpRevision</td>
<td></td>
</tr>
<tr>
<td>FibreChannelPort</td>
<td></td>
</tr>
<tr>
<td>PortStatus</td>
<td>CONNECTED</td>
</tr>
<tr>
<td>ConnectionType</td>
<td>COPPER</td>
</tr>
<tr>
<td>ConnectorId</td>
<td>FC1</td>
</tr>
<tr>
<td>Speed</td>
<td>20000000000</td>
</tr>
<tr>
<td>Topology</td>
<td>POINT_TO_POINT</td>
</tr>
<tr>
<td>PortSfpStatus</td>
<td>INVALID</td>
</tr>
<tr>
<td>SfpVendorName</td>
<td></td>
</tr>
<tr>
<td>SfpPartNumber</td>
<td></td>
</tr>
<tr>
<td>SfpRevision</td>
<td></td>
</tr>
<tr>
<td>FibreChannelPort</td>
<td></td>
</tr>
<tr>
<td>PortStatus</td>
<td>CONNECTED</td>
</tr>
<tr>
<td>ConnectionType</td>
<td>COPPER</td>
</tr>
<tr>
<td>ConnectorId</td>
<td>FC2</td>
</tr>
<tr>
<td>Speed</td>
<td>20000000000</td>
</tr>
<tr>
<td>Topology</td>
<td>POINT_TO_POINT</td>
</tr>
<tr>
<td>PortSfpStatus</td>
<td>INVALID</td>
</tr>
<tr>
<td>SfpVendorName</td>
<td></td>
</tr>
<tr>
<td>SfpPartNumber</td>
<td></td>
</tr>
<tr>
<td>SfpRevision</td>
<td></td>
</tr>
<tr>
<td>FibreChannelPort</td>
<td></td>
</tr>
<tr>
<td>PortStatus</td>
<td>CONNECTED</td>
</tr>
<tr>
<td>ConnectionType</td>
<td>COPPER</td>
</tr>
<tr>
<td>ConnectorId</td>
<td>FC3</td>
</tr>
<tr>
<td>Speed</td>
<td>20000000000</td>
</tr>
<tr>
<td>Topology</td>
<td>POINT_TO_POINT</td>
</tr>
<tr>
<td>PortSfpStatus</td>
<td>INVALID</td>
</tr>
<tr>
<td>SfpVendorName</td>
<td></td>
</tr>
<tr>
<td>SfpPartNumber</td>
<td></td>
</tr>
<tr>
<td>SfpRevision</td>
<td></td>
</tr>
<tr>
<td>RaidControllerNumber</td>
<td>1</td>
</tr>
<tr>
<td>HardwareComponentStatus</td>
<td>NORMAL</td>
</tr>
<tr>
<td>TemperatureStatus</td>
<td>NORMAL</td>
</tr>
<tr>
<td>Model</td>
<td>1450-00014-21</td>
</tr>
<tr>
<td>FirmwareVersion</td>
<td>2050-00036-072006-072006</td>
</tr>
<tr>
<td>SerialNumber</td>
<td>GE0300211071002091</td>
</tr>
<tr>
<td>FibreChannelPort</td>
<td></td>
</tr>
<tr>
<td>PortStatus</td>
<td>CONNECTED</td>
</tr>
<tr>
<td>ConnectionType</td>
<td>COPPER</td>
</tr>
<tr>
<td>---------------</td>
<td>--------</td>
</tr>
<tr>
<td>ConnectorId</td>
<td>FC0</td>
</tr>
<tr>
<td>Speed</td>
<td>2000000000</td>
</tr>
<tr>
<td>Topology</td>
<td>POINT_TO_POINT</td>
</tr>
<tr>
<td>PortSfpStatus</td>
<td>INVALID</td>
</tr>
<tr>
<td>SfpVendorName</td>
<td></td>
</tr>
<tr>
<td>SfpPartNumber</td>
<td></td>
</tr>
<tr>
<td>SfpRevision</td>
<td></td>
</tr>
</tbody>
</table>

FibreChannelPort

PortStatus	CONNECTED
ConnectionType	COPPER
ConnectorId	FC1
Speed	2000000000
Topology	POINT_TO_POINT
PortSfpStatus	INVALID
SfpVendorName	
SfpPartNumber	
SfpRevision	

FibreChannelPort

PortStatus	CONNECTED
ConnectionType	COPPER
ConnectorId	FC2
Speed	2000000000
Topology	POINT_TO_POINT
PortSfpStatus	INVALID
SfpVendorName	
SfpPartNumber	
SfpRevision	

FibreChannelPort

PortStatus	CONNECTED
ConnectionType	COPPER
ConnectorId	FC3
Speed	2000000000
Topology	POINT_TO_POINT
PortSfpStatus	INVALID
SfpVendorName	
SfpPartNumber	
SfpRevision	
call_home

DESCRIPTION
Manages the Call-Home settings on a Pillar Axiom system and notifies Oracle Pillar Customer Support of status and configuration information or any issues. For example, when a component operates in degraded mode or fails, the system automatically performs failover actions. Although a component failure does not cause downtime, manual intervention is sometimes required to repair or replace the failed component. The Pillar Axiom system will then send a Call-Home message to Oracle Pillar Customer Support to initiate the repair or replacement process.

Use the `call_home` command to enable and configure the Call-Home settings for the types of Call-Home bundles such as a large file, as well as primary and secondary periodic log collections.

You can use the `-verify` option to test the command-line argument and its options before running it in Pillar Axiom CLI. If no errors exist, the Pillar Axiom CLI command returns without executing. For example, the `-verify` option is helpful when writing scripts in which a particular Pillar Axiom CLI command usage can be verified prior to adding it to a script.

You can use the `-outputformat` or the `-o` command option to specify how to display the results of running a command. If you do not specify either the `-outputformat` or the `-o` command option, the results display in the default text format. Valid options:

- **text** The system displays the results in the plain-text format.
- **xml** The system displays the results in the tagged XML format.

You can use the `-sessionKey` option to specify which Pillar Axiom system to access and which session key value to use for validation. The Pillar Axiom CLI displays the session key value when you log in to the Pillar Axiom system using the `-returnKey` option.

You can use the `-timeout` option to set a time limit for the execution of a command. If the command takes longer than the number of seconds specified in the `-timeout` option, the system stops executing the command. If you do not specify the `-timeout` option, the system does not set any time limit for executing the command.

SYNTAX
```
axiomcli call_home -modify

[{-enableEventTrigger | -disableEventTrigger}]
[{-enableLargeFile | -disableLargeFile}]
[{-enableStandardPeriodic | -disableStandardPeriodic}]
[{-enableLargerPeriodic | -disableLargerPeriodic}]
```
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>[-numberOfEvents number-of-events-to-include]</td>
<td>Specify the number of events to include.</td>
</tr>
<tr>
<td>[-pillarDestination [-server server-ip-or-dns] {scp</td>
<td>https [{enableProxy</td>
</tr>
<tr>
<td></td>
<td>[-localDestination local-server-ip-or-dns -directory local-directory [-userName user-name -password password] [-certificate]</td>
</tr>
<tr>
<td></td>
<td>[-schedulePeriodic {standard</td>
</tr>
<tr>
<td></td>
<td>[-verify]</td>
</tr>
<tr>
<td></td>
<td>[-outputformat</td>
</tr>
<tr>
<td></td>
<td>[-sessionKey session-key]</td>
</tr>
<tr>
<td></td>
<td>[-timeout timeout-in-seconds]</td>
</tr>
</tbody>
</table>

axiomcli call_home -list [-settings] [-matrix] [-details] [-verify]

axiomcli call_home -test [-verify]

axiomcli call_home -reset [-verify]

axiomcli call_home -uploadMatrix -file **matrix-file-name [-verify]**

axiomcli call_home -help

PARAMETERS

Note: Only the Primary Administrator and Administrator 1 roles can issue all command options.

-modify
Modifies the Call-Home settings for the Pillar Axiom system.

Valid options:
- **enableEventTrigger**
 Enables triggering Call-Home actions based on system events. The Call-Home matrix resident on the Pillar Axiom system contains the list of system events that trigger a Call-Home action.
- **disableEventTrigger**
 Disables triggering Call-Home actions.
- **enableLargeFile**
 Enables large files to be sent to the Call-Home server so that trace logs and performance statistics are automatically included in the Call-Home logs.
- **disableLargerPeriodic**
 Excludes trace logs and performance statistics from the Call-Home status messages that are sent to Pillar Data Systems.
- **enableStandardPeriodic**
 Enables the periodic sending of Call-Home header data to the Call-Home destination server.
- **disableStandardPeriodic**
 Disables the periodic sending of Call-Home header data to the Call-Home destination server.
- **enableLargerPeriodic**
 Enables the periodic sending of larger Call-Home data to the Call-Home destination server. If you do not enable large Call-Home file transfers using the **disableLargeFile** option, enabling larger periodic transfers has the same effect as enabling standard periodic transfers using the **enableStandardPeriodic** option.
- **disableLargerPeriodic**
 Disables the periodic sending of larger Call-Home data to the Call-Home destination server.
- **numberOfEvents**
 Specifies the maximum number of system events to be included in the Call-Home status messages. The number of system events should be greater than or equal to zero.
-pillarDestination
Specifies that Call-Home logs and messages should be sent to Pillar Data Systems.

-server
Identifies the IP address or the domain name of the Call-Home server, callhome.support.pillardata.com. Valid options:
- IP: The IP address for the SNMP server
- DNS: The Domain Name Service (DNS) for the SNMP server

-scp
Specifies the use of secure copy (SCP) with 1024-bit encryption and secure keys to transfer files directly over the Internet to the Oracle Pillar Customer Support.

-https
Sends files either directly to the Pillar server through a secure Internet connection or to a proxy server.

-enableProxy
Sends Call-Home logs through a proxy server for security purposes or when the Pillar Axiom system does not have direct access to the Internet.

-disableProxy
Sends Call-Home logs without using a proxy server.

-proxyIp
Identifies the DNS server name or IP address of the proxy server.

-proxyPort
Identifies the port that is used by the proxy server to send the Call-Home log files.

-proxyConnection
Identifies the type of protocol that is used to access the proxy server. Valid options:
If you specify the `-server` option, the Domain Name Server (DNS) is used to resolve IP addresses. This includes an email server that sends Call-Home log collection bundles from the system to Pillar Data Systems.

The Call-Home status messages can be sent either with the `-scp` or `-https` protocol options, but not both. The `-scp` option enables the secure copy (SCP) protocol with 1024-bit encryption and secure keys. The `-https` option enables the Hypertext Transfer Protocol Secure (HTTPS) to send files either directly to Pillar Data Systems or through a proxy server for security purposes.

If you specify the `-https` option, the proxy settings must be specified with the following options:

- **-enableProxy**: The proxy setting. If you use the `-enableProxy` option, you must specify the `-proxyIp`, `-proxyPort`, and `-proxyConnection` options.
- **-disableProxy**: No proxy used.
- **-proxyIp**: The IP address of the proxy server.
- **-proxyPort**: The port that is used by the proxy server to send the Call-Home log files.
- **-proxyConnection**: The type of protocol (HTTP, SOCKS4, or SOCKS5) that is used to access the proxy server.

Note: The `-pillarDestination` and `-localDestination` options are mutually exclusive.

-localDestination

Specifies that Call-Home status messages should be sent to a local server by providing the IP address or domain name of the local server.

The `-directory` option identifies the full directory path on the target server in which to store the Call-Home log files.

If you specify the `-certificate` option, the customer certificate is used for authentication. If you do not specify the `-certificate` option, you must specify the...
-userName and -password options to provide the proper credentials for authentication.

Note: The -pillarDestination and -localDestination options are mutually exclusive.

-schedulePeriodic

Specifies the schedule for sending the Call-Home status messages to the destination server. Valid options:

- **standard**: Standard status message
- **large**: Large status message

You can set the Call-Home data transfers in -intervals and -frequency.

Valid options:
- **monthly**
 1 through 3
- **weekly**
 1 through 14
- **daily**
 1 through 100

For example, to transfer data every other week, enter **-interval weekly frequency 2**. You can also provide the -startTime to indicate the time and date when to begin the periodic transfers.

The format of date-time is

```
YYYY-MM-DD[THH[:mm[:SS[.xxx]]]][±HH:mm]
```

where:

- **YYYY-MM-DD** designates a four-digit year, two-digit month, and two-digit day for the date.
- **T** is a separator that designates the start of the time portion of the string.
- **HH:mm:ss.xxx** designates hours, minutes, and seconds (to three decimals places) in values for a 24-hour clock.
- **± HH:mm** designates the time zone as an offset from Coordinated Universal Time (UTC) in hours and minutes. The plus (+) or minus (-) prefix must be provided.
Note: Only one periodic schedule can be modified at a time. To modify both the standard and large schedules, a separate `axiomcli call_home -modify` command must be issued for each periodic schedule.

`-list`

Displays the Call-Home settings, matrix information, or both. The matrix information stores the format and version of the Call-Home matrix.

Valid options:

`-settings`

Displays the user-defined values such as number of recent events, Call-Home destination server, and if event trigger has been enabled. The user credentials are not displayed.

If you specify the `-matrix` option, both the Call-Home matrix information and user defined values are displayed. To display the matrix settings, you have to specify the `-settings` option.

Note: Only the Primary Administrator, Administrator 1, Administrator 2, and Monitor roles can issue the `axiomcli call_home -list -settings` command option.

`-matrix`

Displays the version and format of the Call-Home matrix.

If you specify the `-settings` option, both the Call-Home matrix information and user defined values are displayed.

Note: All authorized roles can issue the `axiomcli call_home -list -matrix` command option.

`-details`

Does not display any additional information and is present only for consistency.

`-test`

Tests the Call-Home feature to verify that it is correctly configured. The Call-Home information is collected and stored on the Pillar Axiom system and can be downloaded using the `system_log -download` command. You can also send the Call-Home information to a server using the `call_home -send` command.
Note: Only the Primary Administrator, Administrator 1, Administrator 2, and Monitor roles can issue the -test command option.

-reset

Restores the Call-Home feature functionality to the default settings.

Note: Only the Primary Administrator, Administrator 1, Pillar Support, and Support roles can issue the -reset command option.

-uploadMatrix

Uploads the Call-Home matrix file, replacing the existing matrix file in the Pillar Axiom system.

Note: Only the Pillar Support and Support roles can issue this command option.

Valid options:
- file
 Specifies the matrix file name.

-help

Displays the detailed command help information.

EXAMPLE

Run axiomcli call_home to display the Call-Home settings:

axiomcli call_home -list -matrix -settings

Results:

MatrixInformation
 Version : 1
 Format : 3.0
 UploadTime :
 2011-04-01T18:41:23.000
CallHomeSettings
 EventTriggerEnabled : true
 StandardPeriodicTriggerEnabled : true
 LargerPeriodicTriggerEnabled : true
 LargeFileTransferEnabled : true
 NumberOfRecentEvents : 100
CallHomeDestination
 PillarDestination
 Server : callhome.support.pillardata.com
 TransportOptions
 Https
 ProxyEnabled : false
<table>
<thead>
<tr>
<th>ProxyServer</th>
<th>192.168.1.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>ProxyPort</td>
<td>8080</td>
</tr>
<tr>
<td>ProxyConnection</td>
<td>SOCKS5</td>
</tr>
<tr>
<td>StandardPeriodicCallHomeSchedule</td>
<td></td>
</tr>
<tr>
<td>Interval</td>
<td>WEEKLY</td>
</tr>
<tr>
<td>UnitsBetween</td>
<td>1</td>
</tr>
<tr>
<td>InitialExecution</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2011-04-02T14:29:33.978</td>
</tr>
<tr>
<td>LargerPeriodicCallHomeSchedule</td>
<td></td>
</tr>
<tr>
<td>Interval</td>
<td>MONTHLY</td>
</tr>
<tr>
<td>UnitsBetween</td>
<td>3</td>
</tr>
<tr>
<td>InitialExecution</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2011-04-02T14:29:33.978</td>
</tr>
</tbody>
</table>
clone_lun

DESCRIPTION
Manages snapshots of a LUN on a Pillar Axiom system. A Clone LUN is a point-in-time, read-write copy of a LUN that you can immediately use. A Clone LUN retains the same Quality of Service (QoS) parameters as the source LUN and consumes storage capacity from the Clone LUN storage space created for the source LUN. A Clone LUN is available immediately after creation. Clone LUNs provide a convenient method to branch from the source data without the need to do a full block-level copy.

Use the `clone_lun` command to manage Clone LUNs.

You can use the `-verify` option to test the command-line argument and its options before running it in Pillar Axiom CLI. If no errors exist, the Pillar Axiom CLI command returns without executing. For example, the `-verify` option is helpful when writing scripts in which a particular Pillar Axiom CLI command usage can be verified prior to adding it to a script.

You can use the `-outputformat` or the `-o` command option to specify how to display the results of running a command. If you do not specify either the `-outputformat` or the `-o` command option, the results display in the default text format. Valid options:

- **text** The system displays the results in the plain-text format.
- **xml** The system displays the results in the tagged XML format.

You can use the `-sessionKey` option to specify which Pillar Axiom system to access and which session key value to use for validation. The Pillar Axiom CLI displays the session key value when you log in to the Pillar Axiom system using the `-returnKey` option.

You can use the `-timeout` option to set a time limit for the execution of a command. If the command takes longer than the number of seconds specified in the `-timeout` option, the system stops executing the command. If you do not specify the `-timeout` option, the system does not set any time limit for executing the command.

SYNTAX
```
axiomcli clone_lun -add -name clone-lun-name
  -source source-lun-id-or-fqn
  [-addressableCapacity addressable-logical-capacity]
  [-priority {premium | high | medium | low | archive}]
  [-volumeGroup volume-group-id-or-fqn]
  [{-unmapped | -globalMapping lun-number}]
  [{-fibreChannelAccess | -noFibreChannelAccess}]
  [{-iscsiAccess | -noIscsiAccess}]
```
clone_lun

appendix B pillar axiom CLI commands

clone_lun -modify -cloneLun clone-lun-id-or-fqn
 [-newName new-name]
 [-addressableCapacity addressable-logical-capacity]
 [-priority {premium | high | medium | low | archive}]
 [-volumeGroup volume-group-id-or-fqn]
 [{-unmapped | -globalMapping lun-number}]
 [{-fibreChannelAccess | -noFibreChannelAccess}]
 [{-iscsiAccess | -noIscsiAccess}]
 [-maskedSlammerPorts port-name [, port-name]...]
 [{-active | -inactive}]
 [-clearLossOfSync]
 [-clearLostData]
 [-clearPinnedData]
 [-verify]
 [{-outputformat | -o} {text | xml}]
 [-sessionKey session-key]
 [-timeout timeout-in-seconds]

clone_lun -copy -source source-clonelun-id-or-fqn
 -name clone-lun-name
 [-addressableCapacity addressable-logical-capacity]
 [{-profile performance-profile-id-or-fqn}
 [-priority {premium | high | medium | low | archive}]
 [{-redundancy {1 | 2}}]
 [-accessBias {sequential | random | mixed}]
 [-ioBias {read | write | mixed}]}
 [-allocatedCapacity allocated-logical-capacity]
 [-cloneCapacity clone-capacity]
 [-volumeGroup volume-group-id-or-fqn]
 [{-unmapped | -globalMapping lun-number}]
 [{-fibreChannelAccess | -noFibreChannelAccess}]
 [{-iscsiAccess | -noIscsiAccess}]
 [-maskedSlammerPorts port-name [, port-name]...]
 [-storageDomain storage-domain-id-or-fqn]
 [-storageClass {sataHd | fcHd | slcSsd | mlcSsd}]
 [{-active | -inactive}]
 [-copyPriority {auto | low | high}]
 [-suppressConservativeMode]
 [-verify]
 [{-outputformat | -o} {text | xml}]

appendix B pillar axiom CLI commands

clone_lun

appendix A pillar axiom CLI commands

appendix A pillar axiom CLI commands

appendix B pillar axiom CLI commands
clone_lun

Add

Creates a partial copy block-level snapshot of a LUN.

PARAMETERS

Note: Only the Primary Administrator, Administrator 1, and Administrator 2 roles can issue all command options.

All roles can issue the `-list` command option.

-`-add`

Creates a partial copy block-level snapshot of a LUN.
Valid options:

-name

Identifies the name that is assigned to a LUN for administrative purposes. LUN names must be unique across the Pillar Axiom system and must be 82 or fewer UTF characters, or 255 or fewer ASCII characters.

You cannot use invalid characters such as ASCII 0 through 31 control codes or embedded tabs. You also cannot use special characters such as the slash (/) or backslash (\), and dot (.) and dot-dot (..) by themselves.

-source

Specifies the ID or FQN of a LUN to clone.

-addressableCapacity

Identifies the addressable logical capacity of the Clone LUN. This value cannot be smaller than the current addressable capacity of the source LUN.

-priority

Specifies the QoS priority of the LUN. This option is mutually exclusive with the **-profile** option.

Valid options:

<table>
<thead>
<tr>
<th>profile</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>premium</td>
<td>Highest processing queue priority. Striping occurs across eight serial ATA (SATA) RAID groups or four Fibre Channel (FC) RAID groups on the outermost 20% of the drive platters.</td>
</tr>
<tr>
<td>high</td>
<td>Next highest processing queue priority. Striping occurs across eight SATA RAID groups or four FC RAID groups on the outermost 20-40% of the drive platters.</td>
</tr>
<tr>
<td>medium</td>
<td>Intermediate processing queue priority. Striping occurs across six SATA RAID groups or three FC RAID groups on the outermost 40-60% of the drive platters.</td>
</tr>
</tbody>
</table>
low

Next to lowest processing queue priority. Striping occurs across four SATA RAID groups or two FC RAID groups on the outermost 60-80% of the drive platters.

archive

Lowest processing queue priority. Striping occurs across four SATA RAID groups or two FC RAID groups on the outermost 80-100% of the drive platters.

-volumeGroup

Identifies the volume group, in which the Clone LUN should be added.

Valid options:

ID

A 38-character string that starts with ID and ends with 36 lower-case hex characters (a through f and 0 through 9) and hyphens. Example ID:

ID12345678-9abc-def0-1234-56789abcdef0

Fully qualified name (FQN)

Starts with a leading slash (/), contains a parent object’s name if needed to establish uniqueness of the object, and ends with the object’s name. Example FQN:

/Fully/Qualified/ObjectName

If you do not specify the volume group, the system by default puts the new Clone LUN into the volume group at the top level.

-unmapped

Causes the LUN to become unmapped at the global level.

-globalMapping

Maps the LUN globally to all hosts using the specified *lun-number*.
-fibreChannelAccess
Allows access to the new LUN through the FC ports. The
-noFibreChannelAccess option disables FC access to
the LUN. If neither option is specified, then the system
uses the -fibreChannelAccess option by default.

-iscsiAccess
Allows access to the new Clone LUN through the iSCSI
ports.

If you do not specify this option, -noIscsiAccess
disables the iSCSI access to the Clone LUN.

-maskedSlammerPorts
Masks access to the LUN through the Slammer ports
specified in the list of port-name arguments. You can
specify this option if the -slammerNode option is also
specified. If you do not specify this option, the LUN is
accessible on all of the Slammer ports.

The format for the port-path argument is:
/slammer name/CU{n}/Port{n}/(fc | iscsi)

For example, /Slammer1/CU0/Port1/fc specifies
control unit 0 and fibre channel port 1. The CU and Port
values are case insensitive and may be omitted entirely
(for example /0/0/iscsi specifies control unit 0 and
iSCSI port 0). You may specify up to 16 ports.

-active
Makes the newly created Clone LUN accessible to all
hosts.

-inactive
Makes the newly created Clone LUN inaccessible to all
hosts.

If you do not specify this option, the Clone LUN will be
accessible to all hosts.

-modify
Modifies the name, the addressable logical capacity, and
other parameters of a Clone LUN.

Valid options:
-cloneLun
Identifies the ID or FQN of the Clone LUN you want to
modify.

-newName
Identifies the new name for the Clone LUN.

-addressableCapacity

Identifies the addressable logical capacity of the Clone LUN. This value cannot be smaller than the current addressable capacity of the source LUN.

-priority

Specifies the QoS priority of the LUN. This option is mutually exclusive with the `-profile` option.

Valid options:

- **premium**
 Highest processing queue priority. Striping occurs across eight serial ATA (SATA) RAID groups or four Fibre Channel (FC) RAID groups on the outermost 20% of the drive platters.

- **high**
 Next highest processing queue priority. Striping occurs across eight SATA RAID groups or four FC RAID groups on the outermost 20-40% of the drive platters.

- **medium**
 Intermediate processing queue priority. Striping occurs across six SATA RAID groups or three FC RAID groups on the outermost 40-60% of the drive platters.

- **low**
 Next to lowest processing queue priority. Striping occurs across four SATA RAID groups or two FC RAID groups on the outermost 60-80% of the drive platters.

- **archive**
 Lowest processing queue priority. Striping occurs across four SATA RAID groups or two FC RAID groups on the outermost 80-100% of the drive platters.
-volumeGroup
Identifies the volume group, in which the Clone LUN should be added.
Valid options:

ID A 38-character string that starts with ID and ends with 36 lower-case hex characters (a through f and 0 through 9) and hyphens. Example ID:

ID12345678-9abc-def0-1 234-56789abcdef0

Fully qualified name (FQN) Starts with a leading slash (/), contains a parent object’s name if needed to establish uniqueness of the object, and ends with the object’s name. Example FQN:

/Fully/Qualified/ObjectName

If you do not specify the volume group, the system by default puts the new Clone LUN into the volume group at the top level.

-unmapped
Causes the LUN to become unmapped at the global level.

-globalMapping
Maps the LUN globally to all hosts using the specified lun-number.

-fibreChannelAccess
Allows access to the new LUN through the FC ports. The -noFibreChannelAccess option disables FC access to the LUN. If neither option is specified, then the system uses the -fibreChannelAccess option by default.

-iscsiAccess
Allows access to the new Clone LUN through the iSCSI ports.

If you do not specify this option, -noIscsiAccess disables the iSCSI access to the Clone LUN.

-maskedSlammerPorts
Masks access to the LUN through the Slammer ports specified in the list of `port-name` arguments. You can specify this option if the `-slammerNode` option is also specified. If you do not specify this option, the LUN is accessible on all of the Slammer ports.

The format of `port-path` argument is:

```
/slammer name/CUx/Porty/(fc | iscsi)
```

For example, `/Slammer1/CU0/Port1/fc` specifies control unit 0 and fibre channel port 1. The CU and Port values are case insensitive and may be omitted entirely (for example `/0/0/iscsi` specifies control unit 0 and iSCSI port 0). You may specify up to 16 ports.

-active

Activates the Clone LUN to be visible to the host so that data can be accessed.

If an active Clone LUN is globally mapped or mapped to a host it is visible on the data path. The mapping configuration of the Clone LUN determines what hosts are visible to it. If a Clone LUN is mapped to one or more hosts, but is not active, the Clone LUN cannot be seen by any of the hosts that should have access to it. You can activate and deactivate Clone LUNs as many times as needed.

-inactive

Disables the Clone LUN from being accessible by all hosts.

-clearLossOfSync

Clears the loss of synchronization of the specified LUN.

-clearLostData

Clears any lost data from the specified LUN.

-clearPinnedData

Clears any pinned data on the specified LUN.

-copy

Creates a full copy of an existing Clone LUN. The parameters have the same meanings as `axiomcli lun -add` command. If you do not specify any of the options, the system uses the value of the source Clone LUN options.
Note: The Administrator 2 role can also issue this command option.

Valid options:
-\texttt{source}

Identifies the source Clone LUN.

-\texttt{name}

Identifies the name for the Clone LUN copy.

-\texttt{addressableCapacity}

Identifies the addressable logical capacity of the Clone LUN. This value cannot be smaller than the current addressable capacity of the source LUN.

-\texttt{profile}

Identifies the ID or FQN of the Quality of Service (QoS) performance profile that should be applied when creating the Clone LUN. When creating a new LUN, either the \texttt{profile} option or the \texttt{priority} option, but not both, must be provided.

\textbf{Note:} The \texttt{profile} option is mutually exclusive with \texttt{priority}.

-\texttt{priority}

Identifies the QoS priority of the Clone LUN. For a full copy, priority does affect striping of the new LUN.

Valid options:

\begin{itemize}
\item \texttt{premium}\hspace{1cm} Highest processing queue priority. Striping occurs across eight serial ATA (SATA) RAID groups or four Fibre Channel (FC) RAID groups on the outermost 20% of the drive platters.
\item \texttt{high}\hspace{1cm} Next highest processing queue priority. Striping occurs across eight SATA RAID groups or four FC RAID groups on the outermost 20-40% of the drive platters.
\item \texttt{medium}\hspace{1cm} Intermediate processing queue priority. Striping occurs across six SATA RAID groups
\end{itemize}
or three FC RAID groups on the outermost 40-60% of the drive platters.

low

Next to lowest processing queue priority. Striping occurs across four SATA RAID groups or two FC RAID groups on the outermost 60-80% of the drive platters.

archive

Lowest processing queue priority. Striping occurs across four SATA RAID groups or two FC RAID groups on the outermost 80-100% of the drive platters.

Note: The `-priority` option is mutually exclusive with `-profile`.

-redundancy

Identifies how many mirror copies (1 or 2) of the original data are maintained. The default is 1.

Valid options:

1. **The standard option.**
 Stores original data only. Data striping over multiple RAID groups maintains full redundancy, even without mirror copies.
 Note: Standard does not maintain redundancy at the LUN level; however, it does provide sufficient data protection for most purposes.

2. **The double option.**
 Stores original data and one mirror copy, with data striping over multiple RAID groups.
 Note: Double Redundancy can only provide true redundancy if your system has enough Bricks to allocate for the LUN such that no two mirror copies share a RAID group.

-accessBias

Identifies the expected access pattern to the LUN.
Valid options:

sequential
Read and write requests from client applications tend to request operations on the data one record after the other.

random
Read and write requests from client applications tend to request operations on the data records in an arbitrary order.

mixed
Read and write requests from client applications tend to mix the request operations on the data sometimes in sequential and sometimes in random order.

-ioBias
Identifies the expected read/write bias on the LUN.

read
Most requests from client applications are for read operations.

write
Most requests from client applications are for write operations.

mixed
Requests from client applications are likely equal for read and write operations.

-allocatedCapacity
Defines the actual amount of storage that is assigned to a logical volume. An allocated capacity can grow to and possibly exceed by a small amount the addressable logical capacity.

-cloneCapacity
Specifies the size of an extra space (in gigabytes) to set aside for the creation of filesystem clones using the `clone_filesystem` command.
-storageDomain
Specifies the Storage Domain in which to create the filesystem. If you do not provide this option, the system determines which Bricks contain the data.

-storageClass
Specifies the Storage Class to use for the default tier of the newly created filesystem. You can skip this option if the Pillar Axiom system supports only one type of the Storage Class. If this option is omitted and the Pillar Axiom system supports two or more storage classes, the command fails, and the system prompts to provide the -storageClass option.

Valid options:
- sataHd (Serial ATA hard drives)
- fcHd (Fibre Channel hard drives)
- slcSsd (single-layer cell, solid state drives)
- mlcssd (SATA multi-layer cell solid state disk drives)

-volumeGroup
Identifies the volume group, in which the Clone LUN should be copied.

Valid options:

ID
A 38-character string that starts with ID and ends with 36 lower-case hex characters (a through f and 0 through 9) and hyphens. Example ID:

ID12345678-9abc-def0-1234-56789abcdef0

Fully qualified name (FQN)
Starts with a leading slash (/), contains a parent object’s name if needed to establish uniqueness of the object, and ends with the object’s name. Example FQN:

/Fully/Qualified/ObjectName

If you do not specify the volume group, the system by default puts the Clone LUN into the volume group at the top level.
-unmapped
Causes the LUN to become unmapped at the global level.

-globaMapping
Maps the LUN globally to all hosts using the specified lun-number.

-fibreChannelAccess
Allows access to the new LUN through the FC ports. The -noFibreChannelAccess option disables FC access to the LUN. If neither option is specified, then the system uses the fibreChannelAccess option by default.

-iscsiAccess
Allows access to the Clone LUN through the iSCSI ports.
If you do not specify this option, -noIscsiAccess disables the iSCSI access to the Clone LUN.

-maskedSlammerPorts
Masks access to the LUN through the Slammer ports specified in the list of port-name arguments. You can specify this option if the -slammerNode option is also specified. If you do not specify this option, the LUN is accessible on all of the Slammer ports.

The format for the port-path argument is:
/slammer name/CUx/Porty/(fc | iscsi)

For example, /Slammer1/CU0/Port1/fc specifies control unit 0 and fibre channel port 1. The CU and Port values are case insensitive and may be omitted entirely (for example /0/0/iscsi specifies control unit 0 and iSCSI port 0). You may specify up to 16 ports.

-active
Enables the LUN to be accessible and available for use.

-inactive
Disables the LUN from being accessible and available for use.

-copyPriority
Identifies the setting to use that controls the impact on performance when you need to copy or migrate data from one location to another.

Valid options:
The system finds a compromise between completion rate and system performance.

low
The system takes its time to complete the copy and data migration without degrading overall system performance.

high
The system completes the copy or data migration as quickly as possible even if there is degradation of system performance.

If you do not specify any option, auto is the default value.

-s suppressConservativeMode
Prevents the Pillar Axiom system from entering conservative mode for the specified LUN.

Caution
If a CU fails, the system does not enable write through. If the remaining CU fails, any data that has not been written to the Bricks is lost.

-list
Displays information for Clone LUNs that exist on the Pillar Axiom system.

Note: The system will not display the following capacity values because they are not applicable to Clone LUNs:
- AllocatedCapacity
- UsedCapacity
- PhysicalAllocatedCapacity
- PhysicalUsedCapacity
- PhysicalMaximumCapacity

Valid options:
etails
Displays additional information for each Clone LUN, such as the name of the source LUN or Clone LUN.

-bs
Displays information about the underlying VLUNs associated with the SAN LUNs.

-cloneLun
Displays the specified Clone LUN. If you do not specify this option, the system displays all Clone LUNs.

-source
Displays Clone LUNs of a specified source LUN.

-hierarchy
Displays a hierarchal view of all of the Clone LUNs associated with each source LUN.

-volumeGroup
Limits the list of Clone LUNs to those in the specified volume groups.

-delete
Deletes one or more Clone LUNs. If any host or hostGroup mappings exist for this Clone LUN, you are prompted to confirm that you want to delete the Clone LUN. Specify `-suppressWarnings` if you do not want to be prompted to confirm deletion.

Valid options:

-cloneLun
Specifies the ID or FQN of a Clone LUN to delete.

-suppressWarnings
Suppresses the warning that all LUN host and host group mappings will be deleted. If you do not specify the `-suppressWarnings` option, the system displays a message to confirm the deletion of the mappings.

-restore
Restores the source of a Clone LUN to its state as captured by the specified Clone LUN.

Valid options:

-cloneLun
Specifies the ID or FQN of a Clone LUN from which to restore the source.

-prepare
Prepares the creation of a Clone LUN. Performs the steps for setting up the clone, but the clone will not become a point-in-time copy of the source until it is committed with the `-commit` option.

Valid options:

-name
Identifies the name that is assigned to a LUN for administrative purposes. LUN names must be unique across the Pillar Axiom system and must be 82 or fewer UTF characters, or 255 or fewer ASCII characters.

You cannot use invalid characters such as ASCII 0 through 31 control codes or embedded tabs. You also cannot use special characters such as the slash (/) or backslash (\), and dot (.) and dot-dot (..) by themselves.

-source
Specifies the ID or FQN of a LUN to clone.

-addressableCapacity
Identifies the addressable logical capacity of the Clone LUN. This value cannot be smaller than the current addressable capacity of the source LUN.

-priority
Specifies the QoS priority of the LUN. This option is mutually exclusive with the -profile option.

Valid options:

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>premium</td>
<td>Highest processing queue priority. Striping occurs across eight serial ATA (SATA) RAID groups or four Fibre Channel (FC) RAID groups on the outermost 20% of the drive platters.</td>
</tr>
<tr>
<td>high</td>
<td>Next highest processing queue priority. Striping occurs across eight SATA RAID groups or four FC RAID groups on the outermost 20-40% of the drive platters.</td>
</tr>
<tr>
<td>medium</td>
<td>Intermediate processing queue priority. Striping occurs across six SATA RAID groups or three FC RAID groups on the outermost 40-60% of the drive platters.</td>
</tr>
<tr>
<td>low</td>
<td>Next to lowest processing queue priority. Striping occurs</td>
</tr>
</tbody>
</table>
across four SATA RAID groups or two FC RAID groups on the outermost 60-80% of the drive platters.

archive

Lowest processing queue priority. Striping occurs across four SATA RAID groups or two FC RAID groups on the outermost 80-100% of the drive platters.

-volumeGroup

Identifies the volume group, in which the Clone LUN should be added.

Valid options:

ID

A 38-character string that starts with ID and ends with 36 lower-case hex characters (a through f and 0 through 9) and hyphens. Example ID:

ID12345678-9abc-def0-1234-56789abcdef0

Fully qualified name (FQN)

Starts with a leading slash (/), contains a parent object’s name if needed to establish uniqueness of the object, and ends with the object’s name. Example FQN:

/Fully/Qualified/ObjectName

If you do not specify the volume group, the system by default puts the new Clone LUN into the volume group at the top level.

-unmapped

Causes the LUN to become unmapped at the global level.

--globalMapping

Maps the LUN globally to all hosts using the specified lun-number.

-fibreChannelAccess
Allows access to the new LUN through the FC ports. The
-noFibreChannelAccess option disables FC access to
the LUN. If neither option is specified, then the system
uses the -fibreChannelAccess option by default.

-iscsiAccess
Allows access to the new Clone LUN through the iSCSI
ports.

If you do not specify this option, -noIscsiAccess
disables the iSCSI access to the Clone LUN.

-maskedSlammerPorts
Masks access to the LUN through the Slammer ports
specified in the list of port-name arguments. You can
specify this option if the -slammerNode option is also
specified. If you do not specify this option, the LUN is
accessible on all of the Slammer ports.

The format for the port-path argument is:
/slammer name/CUn/Portn/(fc | iscsi)

For example, /Slammer1/CU0/Port1/fc specifies
control unit 0 and fibre channel port 1. The CU and Port
values are case insensitive and may be omitted entirely
(for example /0/0/iscsi specifies control unit 0 and
iSCSI port 0). You may specify up to 16 ports.

-active
Makes the newly created Clone LUN accessible to all
hosts.

-inactive
Makes the newly created Clone LUN inaccessible to all
hosts.

If you do not specify this option, the Clone LUN will be
accessible to all hosts.

-commit
Finishes the creation of one or more Clone LUNs prepared
using the clone_lun -prepare option.

Up to 64 clones can be committed with this option, and it
should take no more than ten seconds to complete.

Valid options:
-cloneLun
Specify the ID or FQN of up to 64 Clone LUNs prepared
using the clone_lun-prepare option.
-help

Displays the detailed command help information.

EXAMPLE

Run the `clone_lun -list -details` command to view information for Clone LUNs that exist on the Pillar Axiom system:

```bash
axiomcli clone_lun -list -details
```

Results:

<table>
<thead>
<tr>
<th>/Clone1</th>
<th>Name</th>
<th>: Clone1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Id</td>
<td>:</td>
<td></td>
</tr>
<tr>
<td>4130303030303142A1040505B29AAB87</td>
<td>SerialNumber</td>
<td>: 000B080006000001</td>
</tr>
<tr>
<td></td>
<td>VolumeGroup</td>
<td>: /</td>
</tr>
<tr>
<td></td>
<td>VolumeGroupId</td>
<td>:</td>
</tr>
<tr>
<td>4130303030303142A10A000000000000</td>
<td>SourceLunId</td>
<td>:</td>
</tr>
<tr>
<td>4130303030303142A10404FBD4A7A540</td>
<td>SourceLunFqn</td>
<td>: /Lun1</td>
</tr>
<tr>
<td></td>
<td>StorageClass</td>
<td>: satahd</td>
</tr>
<tr>
<td></td>
<td>AddressableCapacity</td>
<td>: 100</td>
</tr>
<tr>
<td></td>
<td>ManagementState</td>
<td>: AVAILABLE</td>
</tr>
<tr>
<td></td>
<td>AssignedSlammer</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SlammerId</td>
<td>: 2008000B08000052</td>
</tr>
<tr>
<td></td>
<td>SlammerFqn</td>
<td>: /PillarSlammer1/0</td>
</tr>
<tr>
<td></td>
<td>CurrentSlammer</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SlammerId</td>
<td>: 2008000B08000052</td>
</tr>
<tr>
<td></td>
<td>SlammerFqn</td>
<td>: /PillarBrick2/0</td>
</tr>
<tr>
<td></td>
<td>TouchedBrickNode</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BrickNodeId</td>
<td>: 200C000B08000007</td>
</tr>
<tr>
<td></td>
<td>BrickNodeFqn</td>
<td>: /PillarBrick1/0</td>
</tr>
<tr>
<td></td>
<td>StorageDomainIdentityId</td>
<td>: 4130303030303142A114000000001FFA</td>
</tr>
<tr>
<td></td>
<td>StorageDomainIdentityFqn</td>
<td>: /default</td>
</tr>
<tr>
<td></td>
<td>Mapped</td>
<td>: true</td>
</tr>
<tr>
<td></td>
<td>Redundancy</td>
<td>: STANDARD</td>
</tr>
<tr>
<td></td>
<td>Priority</td>
<td>: LOW</td>
</tr>
<tr>
<td></td>
<td>AccessBias</td>
<td>: mixed</td>
</tr>
<tr>
<td>Property</td>
<td>Value</td>
<td></td>
</tr>
<tr>
<td>---------------------------</td>
<td>----------------</td>
<td></td>
</tr>
<tr>
<td>IoBias</td>
<td>mixed</td>
<td></td>
</tr>
<tr>
<td>FibreChannelAccess</td>
<td>true</td>
<td></td>
</tr>
<tr>
<td>IScsiAccess</td>
<td>false</td>
<td></td>
</tr>
<tr>
<td>Status</td>
<td>ONLINE</td>
<td></td>
</tr>
<tr>
<td>Active</td>
<td>true</td>
<td></td>
</tr>
<tr>
<td>Clone</td>
<td>true</td>
<td></td>
</tr>
<tr>
<td>CreationTime</td>
<td>2011-09-01T23:28:51.000</td>
<td></td>
</tr>
<tr>
<td>CopyPriority</td>
<td>auto</td>
<td></td>
</tr>
<tr>
<td>ConservativeMode</td>
<td>allowed</td>
<td></td>
</tr>
</tbody>
</table>

Appendix B Pillar Axiom CLI Commands

clone_lun
DESCRIPTION

Use `errors` to view the list of all of the possible errors that the Pillar Axiom system may generate.

You can use the `-verify` option to test the command-line argument and its options before running it in Pillar Axiom CLI. If no errors exist, the Pillar Axiom CLI command returns without executing. For example, the `-verify` option is helpful when writing scripts in which a particular Pillar Axiom CLI command usage can be verified prior to adding it to a script.

You can use the `-outputformat` or the `-o` command option to specify how to display the results of running a command. If you do not specify either the `-outputformat` or the `-o` command option, the results display in the default text format. Valid options:

- **text** The system displays the results in the plain-text format.
- **xml** The system displays the results in the tagged XML format.

You can use the `-sessionKey` option to specify which Pillar Axiom system to access and which session key value to use for validation. The Pillar Axiom CLI displays the session key value when you log in to the Pillar Axiom system using the `-returnKey` option.

You can use the `-timeout` option to set a time limit for the execution of a command. If the command takes longer than the number of seconds specified in the `-timeout` option, the system stops executing the command. If you do not specify the `-timeout` option, the system does not set any time limit for executing the command.

SYNTAX

```
axiomcli errors -list [-details]
   [-verify]
   [{-outputformat | -o} {text | xml}]
   [-sessionKey session-key]
   [-timeout timeout-in-seconds]
```

```
axiomcli errors -help
```

PARAMETERS

Note: All roles can issue the `-list` command option.

- **-list**

 Lists all of the errors that the Pillar Axiom system may generate.

 Valid options:

 - **-details**
Displays complete information for each error, including the error name, the short description of the error, the long description of the error, and the comment. If the `-details` option is omitted, then the system displays only the name of the error.

`-help`

Displays the detailed command help information.

EXAMPLE

Run the `errors -list` command to view the list Pillar Axiom system errors:

```bash
axiomcli errors -list
```

Results:

<table>
<thead>
<tr>
<th>Error Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>INVALID_VLAN_TAG</td>
</tr>
<tr>
<td>INVALID_VOLUME_GROUP_SUID</td>
</tr>
<tr>
<td>INVALID_VOLUME_PUID</td>
</tr>
<tr>
<td>INVALID_VOLUME_SUID</td>
</tr>
<tr>
<td>INVALID_VOLUME_TYPE</td>
</tr>
<tr>
<td>INVALID_WRITE_CACHE_MODE</td>
</tr>
<tr>
<td>IO_EXCEPTION WHILE READING MESSAGE</td>
</tr>
<tr>
<td>IP_ADDRESS_INVALID_FORMAT</td>
</tr>
<tr>
<td>IP_ADDRESS_NOT_PINGABLE</td>
</tr>
<tr>
<td>ISNS_SERVER_REGISTRATION_MUST_BE_ENABLED_FOR_ISNS_ACCESS_CONTROL</td>
</tr>
<tr>
<td>JOB_CHOICE_NOT_SUPPORTED</td>
</tr>
<tr>
<td>LOCALE_COUNTRYQUIRES_LOCALE_LANGUAGE</td>
</tr>
<tr>
<td>LOCALE_VARIANTQUIRES_LOCALE_COUNTRY</td>
</tr>
<tr>
<td>LOCALE_VARIANTQUIRES_LOCALE_LANGUAGE</td>
</tr>
<tr>
<td>LOCK_INVALID</td>
</tr>
<tr>
<td>LOG_BUNDLE_TOO_LARGE_FOR_HTTPS_CALLHOME</td>
</tr>
<tr>
<td>LUN_DOES_NOT_EXIST</td>
</tr>
<tr>
<td>LUN_NOT_MAPPED</td>
</tr>
<tr>
<td>LUN_NUMBER_NOT_APPLICABLE_TO_MAPPED_LUN</td>
</tr>
<tr>
<td>LUN_NUMBER_NOT_AVAILABLE</td>
</tr>
<tr>
<td>LUN_NUMBER_NOT_SPECIFIED</td>
</tr>
<tr>
<td>LUN_NUMBER_REQUIRED_FOR_UNMAPPED_LUN</td>
</tr>
<tr>
<td>LUN_OFFLINE</td>
</tr>
<tr>
<td>LUN_PROTOCOL_REQUIRED</td>
</tr>
<tr>
<td>LUN_SLAMMER_NODE_PROTOCOL_MISMATCH</td>
</tr>
<tr>
<td>LUN_MAPPING DOES NOT_EXIST</td>
</tr>
<tr>
<td>MASKED_PORTS_MUST_BE_CONSISTENT_WITH_FAILOVER_SEQUENCE</td>
</tr>
<tr>
<td>...</td>
</tr>
</tbody>
</table>
event_log

DESCRIPTION Event logs display the system events of a Pillar Axiom system. Events include management actions such as the creation or deletion of LUNs and any problems encountered by the Pillar Axiom system, such as hardware issues or other problems detected in the Slammer or the Pillar Axiom management software. You can set filters for severity and category types.

Use the `event_log -list` command to display events from the Pillar Axiom event log.

You can use the `-verify` option to test the command-line argument and its options before running it in Pillar Axiom CLI. If no errors exist, the Pillar Axiom CLI command returns without executing. For example, the `-verify` option is helpful when writing scripts in which a particular Pillar Axiom CLI command usage can be verified prior to adding it to a script.

You can use the `-outputformat` or the `-o` command option to specify how to display the results of running a command. If you do not specify either the `-outputformat` or the `-o` command option, the results display in the default text format. Valid options:

- **text** The system displays the results in the plain-text format.
- **xml** The system displays the results in the tagged XML format.

You can use the `-sessionKey` option to specify which Pillar Axiom system to access and which session key value to use for validation. The Pillar Axiom CLI displays the session key value when you log in to the Pillar Axiom system using the `-returnKey` option.

You can use the `-timeout` option to set a time limit for the execution of a command. If the command takes longer than the number of seconds specified in the `-timeout` option, the system stops executing the command. If you do not specify the `-timeout` option, the system does not set any time limit for executing the command.

SYNTAX

```
axiomcli event_log -list [-details]
    [-severity severity-value [, severity-value]...]
    [-before date-time] [-after date-time]
    [-eventType event-type]
    [-category category-value [, category-value]...]
    [-eventCount number-of-events] [-startingIndex starting-event-index]
    [-internal]
    [-verify]
    [{-outputformat | -o} {text | xml}]
```
[-sessionKey session-key]
[-timeout timeout-in-seconds]

axiomcli event_log -reset
[-verify]
[{-outputformat | -o} {text | xml}]
[{-sessionKey session-key}]
[{-timeout timeout-in-seconds}]

axiomcli event_log -help

PARAMETERS Note: Only the Support role can issue the -internal option.

All roles can issue the -list command option.

- list

Displays event types from the Pillar Axiom system event log.

Valid options:
- -details

Displays details for each event in the Pillar Axiom event log.

- -severity

Requests events with the specified severity level. If you do not provide this option, the system displays events for all of the severity levels.

Valid options:
- informational
- warning
- pass
- fail
- critical

- -before

Specifies the date so that events that occurred on or before this date, and that match the selected filters, are displayed.

The format of date-time is
YYYY-MM-DD[THH[:mm][:SS[.xxx]]][±HH:mm]
where:
- YYYY-MM-DD designates a four-digit year, two-digit month, and two-digit day for the date.
- **T** is a separator that designates the start of the time portion of the string.
- **HH:mm:ss.xxx** designates hours, minutes, and seconds (to three decimals places) in values for a 24-hour clock.
- **+ -HH:mm** designates the time zone as an offset from Coordinated Universal Time (UTC) in hours and minutes. The plus (+) or minus (-) prefix must be provided.

For example, `axiomcli event_log -list -before 2006-07-25T14:30:00 -08:00` would retrieve events of all severities that have occurred before 2:30 PM, July 25th, 2006 Pacific Time.

- **-after**

Specifies the date so that events that occurred on or after this date, and that match the selected filters, are displayed.

The format of date-time is

`YYYY-MM-DD[THH[:mm[:SS[:.xxx]]]][±HH:mm]`

where:
- **YYYY-MM-DD** designates a four-digit year, two-digit month, and two-digit day for the date.
- **T** is a separator that designates the start of the time portion of the string.
- **HH:mm:ss.xxx** designates hours, minutes, and seconds (to three decimals places) in values for a 24-hour clock.
- **+ -HH:mm** designates the time zone as an offset from Coordinated Universal Time (UTC) in hours and minutes. The plus (+) or minus (-) prefix must be provided.

For example, `axiomcli event_log -list -after 2006-08-25T16:30:00 -08:00` would retrieve events of all severities that have occurred after 4:30 PM, August 25th, 2006 Pacific Time.

- **-eventType**

Displays events filtered by the specified event type.

- **-category**

Displays events filtered by the specified set of categories. If you do not specify this option, the system displays events for all of the categories.
Valid options:

- **security**
- **audit**
- **system**

- **-eventCount**
 Specifies the number of the most recent events to display.

- **-startingIndex**
 Requests events from a specified index position.

- **-internal**
 Displays internal support-specific events.

Note: Only the Pillar Support and Support roles can use this feature.

- **-reset**
 Clears the Pillar Axiom system event logs.

Note: Only the Pillar Support and Support roles can issue this command option.

- **-help**
 Displays the detailed command help information.

EXAMPLE

Run `event_log -list` to display the details of the event log:

```
axiomcli event_log -list
```

Results:

<table>
<thead>
<tr>
<th>Type</th>
<th>Time</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>INFORMATIONAL</td>
<td>2011-04-01T18:30:39.655+00:00</td>
<td>Login Succeeded</td>
</tr>
<tr>
<td>INFORMTIONAL</td>
<td>2011-04-01T18:30:23.396+00:00</td>
<td>Private Interconnect Topology</td>
</tr>
<tr>
<td>INFORMTIONAL</td>
<td>2011-04-01T18:30:20.256+00:00</td>
<td>Private Interconnect Topology</td>
</tr>
<tr>
<td>WARNING</td>
<td>2011-04-01T18:10.934+00:00</td>
<td>Slammer Control Unit Boot Data</td>
</tr>
<tr>
<td>WARNING</td>
<td>2011-04-01T18:10.849+00:00</td>
<td>Slammer Control Unit Bezel Not Detected</td>
</tr>
<tr>
<td>INFORMATIONAL</td>
<td>2011-04-01T18:27:12.196+00:00</td>
<td>One</td>
</tr>
</tbody>
</table>
or both pilots restarted.

PCP_EVT_RESTARTED

INFORMATIONAL 2011-04-01T18:27:12.052+00:00 One
or both pilots restarted.

PCP_EVT_RESTARTED
event_notification

DESCRIPTION Creates and manages event notifications on a Pillar Axiom system. For example, using this command, you can define which types of events generate notifications, whom should be notified, and test the delivery of those notifications.

Use the `event_notification` command to manage all event notifications and the list of recipients who receive the event notifications.

You can use the `-verify` option to test the command-line argument and its options before running it in Pillar Axiom CLI. If no errors exist, the Pillar Axiom CLI command returns without executing. For example, the `-verify` option is helpful when writing scripts in which a particular Pillar Axiom CLI command usage can be verified prior to adding it to a script.

You can use the `-outputformat` or the `-o` command option to specify how to display the results of running a command. If you do not specify either the `-outputformat` or the `-o` command option, the results display in the default `text` format. Valid options:

- **text** The system displays the results in the plain-text format.
- **xml** The system displays the results in the tagged XML format.

You can use the `-sessionKey` option to specify which Pillar Axiom system to access and which session key value to use for validation. The Pillar Axiom CLI displays the session key value when you log in to the Pillar Axiom system using the `-returnKey` option.

You can use the `-timeout` option to set a time limit for the execution of a command. If the command takes longer than the number of seconds specified in the `-timeout` option, the system stops executing the command. If you do not specify the `-timeout` option, the system does not set any time limit for executing the command.

SYNTAX

```
axiomcli event_notification -add -name notification-name
    [-description descriptive-string]
    [-recipients email-address [,...]...
    [-severity severity:category [,...]...
    [-eventType type [,...]...
    [{-enable | -disable}]
    [-verify]
    [{-outputformat | -o} {text | xml}]
```

event_notification

DESCRIPTION Creates and manages event notifications on a Pillar Axiom system. For example, using this command, you can define which types of events generate notifications, whom should be notified, and test the delivery of those notifications.

Use the `event_notification` command to manage all event notifications and the list of recipients who receive the event notifications.

You can use the `-verify` option to test the command-line argument and its options before running it in Pillar Axiom CLI. If no errors exist, the Pillar Axiom CLI command returns without executing. For example, the `-verify` option is helpful when writing scripts in which a particular Pillar Axiom CLI command usage can be verified prior to adding it to a script.

You can use the `-outputformat` or the `-o` command option to specify how to display the results of running a command. If you do not specify either the `-outputformat` or the `-o` command option, the results display in the default `text` format. Valid options:

- **text** The system displays the results in the plain-text format.
- **xml** The system displays the results in the tagged XML format.

You can use the `-sessionKey` option to specify which Pillar Axiom system to access and which session key value to use for validation. The Pillar Axiom CLI displays the session key value when you log in to the Pillar Axiom system using the `-returnKey` option.

You can use the `-timeout` option to set a time limit for the execution of a command. If the command takes longer than the number of seconds specified in the `-timeout` option, the system stops executing the command. If you do not specify the `-timeout` option, the system does not set any time limit for executing the command.
axiomcli event_notification -modify -eventNotification event-notification-id-or-fqn
 [-description descriptive-string]
 [-recipients email-address [, email-address]...]
 [-severity severity:category [, severity:category]...]
 [-name notification-name]
 [{-enable | -disable}]
 [-eventType type [, type]...]
 [-verify]
 [{-outputformat | -o} {text | xml}]
 [-sessionKey session-key]
 [-timeout timeout-in-seconds]

axiomcli event_notification -delete
 -eventNotification event-notification-id-or-fqn
 [, event-notification-id-or-fqn]...
 [-verify]
 [{-outputformat | -o} {text | xml}]
 [-sessionKey session-key]
 [-timeout timeout-in-seconds]

axiomcli event_notification -list [-details]
 [-eventNotification event-notification-id-or-fqn
 [, event-notification-id-or-fqn]...]
 [-verify]
 [{-outputformat | -o} {text | xml}]
 [-sessionKey session-key]
 [-timeout timeout-in-seconds]

axiomcli event_notification -test -recipients email-address [, email-address]...
 [-verify]
 [{-outputformat | -o} {text | xml}]
 [-sessionKey session-key]
 [-timeout timeout-in-seconds]

axiomcli event_notification -help

PARAMETERS

- **add**

 Creates notifications for email recipients when specific Pillar Axiom system events occur.

 Valid options:

 - **name**

 Specifies the name for the created event notification.

 Note: Only the Primary Administrator and Administrator 1 roles can issue all command options; all roles can issue the **-list** command option.
-description
Specifies a description for the event notification. The description cannot exceed 80 characters. If you do not specify a description, the value identified by the notification name is provided as the default description.

-recipients
Specifies a comma delimited list of up to four email addresses of the recipients who are to receive event notifications. The email server to which the Pillar Axiom system sends event notifications must be able to send messages to these email addresses.

-severity
Specifies a comma-delimited list of event severity/category pairs identified by severity: category. When an event occurs with a severity: category value that matches any of the specified severities, an email notification will be sent to the recipient list.

If you do not specify this option, an email will be sent when an event of any severity occurs.

Each severity: category consists of a severity and a category separated by a colon. Any combination of severity: category is allowed.

The severity values are:
- informational
- warning
- critical

Valid category values are:
- security
- audit
- system

-enable
Indicates whether the event notification is enabled.

-disable
Indicates whether the event notification is disabled.

-eventType
Specifies one or more event types for a notification. Only events of the specified type generate event notifications to the list of recipients. If you do not provide this option, the
 occurrence of any event type generates an event notification.

modify

Modifies existing event notifications and the way an administrator is notified.

Valid options:
-eventNotification
 Specifies the ID or FQN of an event notification.

description
 Specifies a description for the event notification. The description cannot exceed 80 characters. If you do not specify a description, the value identified by the notification name is provided as the default description.

recipients
 Specifies a comma delimited list of up to four email addresses of the recipients who are to receive event notifications. The email server to which the Pillar Axiom system sends event notifications must be able to send messages to these email addresses.

severity
 Specifies a comma-delimited list of event severity/category pairs identified by severity: category. When an event occurs with a severity: category value that matches any of the specified severities, an email notification will be sent to the recipient list.

If you do not specify this option, an email will be sent when an event of any severity occurs.

Each severity: category consists of a severity and a category separated by a colon. Any combination of severity:category is allowed.

The severity values are:
 - informational
 - warning
 - critical

Valid category values are:
 - security
 - audit
 - system
-name
Specifies a new name for the event notification.

-enable
Indicates whether the event notification is enabled.

-disable
Indicates whether the event notification is disabled.

-eventType
Replaces the current set of event types associated with the specified event notification.

-delete
Deletes one or more event notifications defined on a Pillar Axiom system.

Valid options:
-eventNotification
Specifies the ID or FQN of an event notification.

-list
Displays a list of event notifications defined on a Pillar Axiom system.

Valid options:
-details
Displays the fully qualified name (FQN), ID, description, list of email recipients, and severity levels for each event notification. If you do not specify the -details option, running the event_notification -list command option displays only the event notification names.

-eventNotification
Specifies the ID or FQN of an event notification.

-test
Sends a test message to a list of email addresses. Recipients should look for a message that is titled “Axiom Event Alert: Test Email Notification” in their email in-boxes.

Valid options:
-recipients
Specifies up to four email addresses to which the system sends the test email.

-help
Displays the detailed command help information.

EXAMPLE

Run `event_notification` to display a list of details of warning events:

```
axiomcli event_notification -list -details
```

Results:

<table>
<thead>
<tr>
<th>Name</th>
<th>Warning_Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID</td>
<td>4130303133343942A1330000000009B2</td>
</tr>
<tr>
<td>Description</td>
<td>All_Events_of_Type_Warning</td>
</tr>
<tr>
<td>IsEnabled</td>
<td>true</td>
</tr>
<tr>
<td>LastSent</td>
<td>never</td>
</tr>
<tr>
<td>Severity</td>
<td>WARNING</td>
</tr>
<tr>
<td>Category</td>
<td>AUDIT</td>
</tr>
<tr>
<td>Severity</td>
<td>WARNING</td>
</tr>
<tr>
<td>Category</td>
<td>SECURITY</td>
</tr>
<tr>
<td>Severity</td>
<td>WARNING</td>
</tr>
<tr>
<td>Category</td>
<td>SYSTEM</td>
</tr>
<tr>
<td>Severity</td>
<td>WARNING</td>
</tr>
<tr>
<td>Category</td>
<td>OPERATIONS</td>
</tr>
<tr>
<td>Recipients</td>
<td>email-address</td>
</tr>
<tr>
<td>Recipients</td>
<td>tech1@pillardata.com</td>
</tr>
<tr>
<td></td>
<td>tech2@pillardata.com</td>
</tr>
</tbody>
</table>
haltpoint

DESCRIPTION
Manages the system halt points that are available on the Pillar Axiom system. A halt point on a particular software component causes the system to pause the startup sequence at some step associated with that component so that troubleshooting and diagnostic actions can be performed.

Caution
System halt points are to be used for recovery purposes only. They are used to gather information or to clear conditions that cannot otherwise be accomplished. Halt points should never be set or cleared without assistance from the Oracle Pillar Customer Support. Management of system halt points can only be performed by the Primary administrator and the Support administrator.

Use the `haltpoint` command to set up one or more active haltpoints for the specified components, remove haltpoints, display active or all of the haltpoints, and resume the system startup from the current haltpoint.

You can use the `-verify` option to test the command-line argument and its options before running it in Pillar Axiom CLI. If no errors exist, the Pillar Axiom CLI command returns without executing. For example, the `-verify` option is helpful when writing scripts in which a particular Pillar Axiom CLI command usage can be verified prior to adding it to a script.

You can use the `-outputformat` or the `-o` command option to specify how to display the results of running a command. If you do not specify either the `-outputformat` or the `-o` command option, the results display in the default text format. Valid options:

- **text** The system displays the results in the plain-text format.
- **xml** The system displays the results in the tagged XML format.

You can use the `-sessionKey` option to specify which Pillar Axiom system to access and which session key value to use for validation. The Pillar Axiom CLI displays the session key value when you log in to the Pillar Axiom system using the `-returnKey` option.

You can use the `-timeout` option to set a time limit for the execution of a command. If the command takes longer than the number of seconds specified in the `-timeout` option, the system stops executing the command. If you do not specify the `-timeout` option, the system does not set any time limit for executing the command.
Administrator 1 and Administrator 2 roles can only list the halt points.

SYNTAX

```
axiomcli haltpoint -add -haltpoint
 componentName:haltPointStep [, componentName:haltPointStep]...
 [-suppressWarnings]
 [-verify]
 [{-outputformat | -o} {text | xml}]
 [-sessionKey session-key]
 [-timeout timeout-in-seconds]
```

```
axiomcli haltpoint -delete
 {-all
  | -haltpoint componentName:haltPointStep [, componentName:haltPointStep]...
  }
 [-verify]
 [{-outputformat | -o} {text | xml}]
 [-sessionKey session-key]
 [-timeout timeout-in-seconds]
```

```
axiomcli haltpoint -list {-active | -all} [-details]
 [-verify]
 [{-outputformat | -o} {text | xml}]
 [-sessionKey session-key]
 [-timeout timeout-in-seconds]
```

```
axiomcli haltpoint -resume
 [-verify]
 [{-outputformat | -o} {text | xml}]
 [-sessionKey session-key]
 [-timeout timeout-in-seconds]
```

```
axiomcli haltpoint -help
```

PARAMETERS

- **-add**
 Sets up one or more active halt points for the specified components. Existing active halt points remain active.

 Valid options:

 - **-suppressWarnings**
 Suppresses the warning message and adds new haltpoints even if the haltpoints already exist. If the haltpoints already exist, they may be lost.

- **-haltpoint**
 Establishes a system halt point. A halt point on a particular software component causes the system to pause the startup sequence at some step associated with that component so that troubleshooting and diagnostic actions can be performed.
The component name and its start-up phase (the halt point step) must be separated by a colon. Multiple halt point entries must be separated by commas.

`componentName` Identifies the name of the software component that is associated with the system halt point.

`haltPointStep` Identifies the name of the software component step where the halt point is to occur.

Note: For information on setting halt points, contact the Oracle Pillar Customer Support. Management of system halt points can only be performed by the Primary administrator and the Support administrator.

–delete

Removes halt points.

Valid options:

`–all`

All of the halt points are disabled.

`–haltpoint`

 Specifies specific halt points to disable.

–list

Displays the active halt points or all of them.

Valid options:

`–active`

Displays only the active halt points.

`–all`

Displays all of the halt points.

`–details`

Currently displays no additional information.

–resume

Resumes the system startup from the current halt point.

–help

Displays the detailed command help information.

Contact the Oracle Pillar Customer Support for details.
Run the `axiomcli haltpoint -list -all` command to display the list of all of the halt points:

```
axiomcli haltpoint -list -all
```

Results:

```
PDS_COMP_SIM
    HaltpointStep            : STOP_BEFORE_COMMON_NODE_LIST
    BootSequenceNumber       : 96

PDS_COMP_SIM
    HaltpointStep            : STOP_BEFORE_CONFIGURE_STARTED
    BootSequenceNumber       : 97

PDS_COMP_SIM
    HaltpointStep            : STOP_BEFORE_COMMON_CONFIGURED
    BootSequenceNumber       : 98

PDS_COMP_SIM
    HaltpointStep            : CM_STOP_BEFORE_COMMON_RECOVER
    BootSequenceNumber       : 99

PDS_COMP_SIM
    HaltpointStep            : CM_STOP_BEFORE_COMMON_RUN
    BootSequenceNumber       : 100

PDS_COMP_SIM
    HaltpointStep            : CM_STOP_BEFORE_CONFIGURE_RUNNING
    BootSequenceNumber       : 101

PDS_COMP_FPI
    HaltpointStep            : STOP_BEFORE_COMMON_NODE_LIST
    BootSequenceNumber       : 102

PDS_COMP_FPI
    HaltpointStep            : STOP_BEFORE_CONFIGURE_STARTED
    BootSequenceNumber       : 103

PDS_COMP_FPI
    HaltpointStep            : STOP_BEFORE_COMMON_CONFIGURED
    BootSequenceNumber       : 104

PDS_COMP_FPI
    HaltpointStep            : CM_STOP_BEFORE_COMMON_RECOVER
    BootSequenceNumber       : 105

PDS_COMP_FPI
    HaltpointStep            : CM_STOP_BEFORE_COMMON_RUN
    BootSequenceNumber       : 106
```

haltpoint
| CM_STOP_BEFORE_CONFIGURE_RUNNING | BootSequenceNumber | : 107 |
help

DESCRIPTION Displays a list of all supported commands as well as help for a specific command.

Use the `axiomcli help` command to display a list of all available supported commands.

The syntax conventions used for `axiomcli` command arguments are:

- **Curly brackets ({}**) Indicate a set of command parameters, one of which must be selected.
- **Square brackets ([])** Indicate an optional command parameter or a set of optional command parameters. Command parameters that are not enclosed in square brackets are required.
- **Vertical bar (|)** Indicates a set of mutually exclusive parameters.
- **Ellipsis (...)** Indicate that the immediately preceding parameters or group of parameters can be repeated.
- **Camel case** Used in Pillar Axiom CLI commands for ease of reading. When issuing a command, you can use either camel case or lowercase.

When you execute a Pillar Axiom CLI command, the command sets a return code that you can query to determine the success of the command. The Pillar Axiom CLI has four return codes:

- **0** A command executed successfully.
- **1** An unexpected error has occurred. For example, a Pillar Axiom CLI session file has been corrupted, or the Pillar Axiom CLI installation has
been modified or corrupted and the Pillar Axiom CLI needs to be reinstalled.

2 A general error has occurred. For example, an unrecognized Pillar Axiom CLI command has been issued, a wrong Pillar Axiom CLI command syntax has been specified, or an unrecognized Pillar Axiom CLI command option has been used.

3 An error has occurred in the Pillar Axiom system. For example, an invalid FQN or ID has been specified, the Pillar Axiom system is not in a state that allows the execution of a request, or the communication with the Pillar Axiom system has been lost.

You can use the `‑outputformat` or the `‑o` command option to specify how to display the results of running a command. If you do not specify either the `‑outputformat` or the `‑o` command option, the results display in the default text format. Valid options:

- **text** The system displays the results in the plain-text format.
- **xml** The system displays the results in the tagged XML format.

You can use the `‑verify` option to test the command-line argument and its options before running it in Pillar Axiom CLI. If no errors exist, the Pillar Axiom CLI command returns without executing. For example, the `‑verify` option is helpful when writing scripts in which a particular Pillar Axiom CLI command usage can be verified prior to adding it to a script.

You can use the `‑sessionKey` option to specify which Pillar Axiom system to access and which session key value to use for validation. The Pillar Axiom CLI displays the session key value when you log in to the Pillar Axiom system using the `‑returnKey` option.

You can use the `‑timeout` option to set a time limit for the execution of a command. If the command takes longer than the number of seconds specified in the `‑timeout` option, the system stops executing the command. If you do not specify the `‑timeout` option, the system does not set any time limit for executing the command.

You can use the `‑help` subcommand to display the detailed help information for a specific Pillar Axiom CLI command.

SYNTAX

```
axiomcli command-name -help
```

PARAMETERS

Help is available for the following commands:
EXAMPLE Run `axiomcli version -help` to display detailed help for the `version` command:

```
axiomcli version -help
```
Results:

version

DESCRIPTION
Displays the current version number for the Pillar Axiom CLI executable.

Use the version command to display version information about the Pillar Axiom CLI.

You can use the -verify option to test the command-line argument and its options before running it in Pillar Axiom CLI. If there are no errors, the Pillar Axiom CLI command returns without executing.

For example, the -verify option is helpful when writing scripts in which a particular Pillar Axiom CLI command usage can be verified prior to adding it to a script.

You can use the -outputformat or the -o command option to specify how to display the results of running a command. If you do not specify either the -outputformat or the -o command option, the results display in the default text format. Valid options:

* text: The system displays the results in the plain-text format.

* xml: The system displays the results in the tagged XML format.

You can use the -sessionKey option to specify which Pillar Axiom system to access and which session key value to use for validation. The Pillar Axiom CLI displays the session key value when you log in to the Pillar Axiom system using the -returnKey option.
SYNOPSIS
axiomcli version -list [-details]
 [-verify]
 [{-outputformat | -o} {text | xml}]
 [-sessionKey session-key]

axiomcli version -help

PARAMETERS
Note: All roles can issue the -list command option

-list Displays the Pillar Axiom CLI software version.

Valid options:
-detailed The -details option does not return any additional information and is there for consistency.

-help Displays the detailed command help information.

EXAMPLE
Run the axiomcli version -list display the software version information:

axiomcli version -list

Results:

Pillar Axiom CLI version : 050000-031700
host_group

DESCRIPTION

A host group is a named collection of SAN hosts that the system manages as a group, which simplifies the task of associating hosts to LUNs.

Use the host_group command to add, modify, list, or delete SAN host groups. You can use the -verify option to test the command-line argument and its options before running it in Pillar Axiom CLI. If no errors exist, the Pillar Axiom CLI command returns without executing. For example, the -verify option is helpful when writing scripts in which a particular Pillar Axiom CLI command usage can be verified prior to adding it to a script.

You can use the -outputformat or the -o command option to specify how to display the results of running a command. If you do not specify either the -outputformat or the -o command option, the results display in the default text format. Valid options:

- text The system displays the results in the plain-text format.
- xml The system displays the results in the tagged XML format.

You can use the -sessionKey option to specify which Pillar Axiom system to access and which session key value to use for validation. The Pillar Axiom CLI displays the session key value when you log in to the Pillar Axiom system using the -returnKey option.

You can use the -timeout option to set a time limit for the execution of a command. If the command takes longer than the number of seconds specified in the -timeout option, the system stops executing the command. If you do not specify the -timeout option, the system does not set any time limit for executing the command.

SYNTAX

axiomcli host_group –add –name host-group-name
[-verify]
[{-outputformat | -o} {text | xml}]
[-sessionKey session-key]
[-timeout timeout-in-seconds]

axiomcli host_group –modify –hostGroup host-group-id-or-fqn
 –name host-group-name
[-verify]
[{-outputformat | -o} {text | xml}]

Appendix B Pillar Axiom CLI Commands

host_group
PARAMETERS

Note: Only the Primary Administrator, Administrator 1, and Administrator 2 roles can issue all of the command options.

The Monitor, Pillar Support, and Support roles can issue only the `list` command option.

- **add**

 Creates a host group. The `–name` option specifies the name of the new host group.

 Valid options:
 - `–name`
 Specifies the name on the new host group.

- **modify**

 Modifies the name of an existing host group.

 Valid options:
 - `–hostGroup`
 Specifies the ID or FQN of the host group that has its name changed.
 - `–name`
 Specifies the new name for the host group.

- **delete**

 Deletes a host group.

 Valid options:
 - `–hostGroup`
Specifies the ID or FQN of the host group to be deleted.

-list

Lists host groups, displaying the name and SAN hosts that are included in a given host group.

Valid options:

-hostGroup

Specifies the ID or FQN of a host group to display.

-details

Displays the SAN hosts that are included in each displayed host group. If the -details option is omitted, the system displays only the host groups.

-help

Displays the detailed command help information.

EXAMPLE

Run the `host_group -add` command to create a host group:

```bash
axiomcli host_group -add -name HostGroupName
```

Results:

```
NewObject
  Id : 4130303132373542A14B46372C9C4C3
  Fqn : /HostGroupName
Command Succeeded
```
hostmap

DESCRIPTION Creates and manages host mappings between Pillar Axiom LUNs and storage area network (SAN) hosts. You can also display the configuration information for LUNs and SAN hosts.

Use the `hostmap` command to manage host mappings between Pillar Axiom LUNs and SAN hosts.

You can use the `–verify` option to test the command-line argument and its options before running it in Pillar Axiom CLI. If no errors exist, the Pillar Axiom CLI command returns without executing. For example, the `–verify` option is helpful when writing scripts in which a particular Pillar Axiom CLI command usage can be verified prior to adding it to a script.

You can use the `–outputformat` or the `–o` command option to specify how to display the results of running a command. If you do not specify either the `–outputformat` or the `–o` command option, the results display in the default text format. Valid options:

- **text** The system displays the results in the plain-text format.
- **xml** The system displays the results in the tagged XML format.

You can use the `–sessionKey` option to specify which Pillar Axiom system to access and which session key value to use for validation. The Pillar Axiom CLI displays the session key value when you log in to the Pillar Axiom system using the `–returnKey` option.

You can use the `–timeout` option to set a time limit for the execution of a command. If the command takes longer than the number of seconds specified in the `–timeout` option, the system stops executing the command. If you do not specify the `–timeout` option, the system does not set any time limit for executing the command.

SYNTAX

```
axiomcli hostmap -add -lun lun-or-clone-id-or-fqn -lunNumber logical-unit-number
    {–host host-id-or-fqn
     | –hostGroup host-group-id-or-fqn
    }
    [–verify]
    [{–outputformat | –o} {text | xml}]
    [–sessionKey session-key]
    [–timeout timeout-in-seconds]
```

```
axiomcli hostmap -modify -lun lun-or-clone-id-or-fqn
    -lunNumber logical-unit-number
    {–host host-id-or-fqn
```

Appendix B Pillar Axiom CLI Commands

hostmap 136
PARAMETERS

Note: Only the Primary Administrator, Administrator, and Administrator 2 roles can issue all command options.

All roles can issue the -list command option.

-add

Enables the Pillar Axiom system to recognize Fibre Channel (FC) or iSCSI SAN hosts that do not have Pillar Axiom Path Manager (APM) installed.

Valid options:

-lun

Identifies the name of the LUN or Clone LUN on the Pillar Axiom system.
Note: The World Wide Name (WWN) cannot be used. For hosts that are not running APM, enter the following command-line argument:

```
axiomcli san_host -add
```

This will create named SAN hosts using the host's WWN. After creating the new SAN host, use the new SAN host name in the `-hostmap` option.

- `-lunNumber`

You can map a LUN or Clone LUN to either a single host or a host group. The `-host` option specifies the ID or FQN of the customer host machine to be mapped to the LUN or Clone LUN. The `-hostGroup` option specifies the ID or FQN of the host group to be mapped to the LUN or Clone LUN.

- `-host`

Identifies the SAN host that accesses LUNs or Clone LUNs configured on the Pillar Axiom system.

- `-hostGroup`

 Specifies the ID or FQN of the host group to be mapped to the LUN or the Clone LUN.

- `-modify`

Modifies the LUN or Clone LUN number assigned to a specific LUN or Clone LUN for a host.

Valid options:

- `-lun`

Identifies the name of the LUN or Clone LUN on the Pillar Axiom system.

- `-lunNumber`

Specifies the new logical unit number for the LUN or Clone LUN.

- `-host`

Identifies the SAN host that accesses LUNs or Clone LUNs configured on the Pillar Axiom system.

- `-hostmap`

Identifies the instance of the host LUN map.

- `-hostGroup`

Identifies the host group.
-hostGroupMap
Identifies the host group of the LUN map instance.

-delete

Deletes host LUN mappings.

Valid options:
- host
Identifies the SAN host that accesses LUNs or Clone LUNs configured on the Pillar Axiom system.

You must specify either the -host, the -hostmap, the -hostGroup, or the -hostGroupMap option.

-lun

Identifies the LUN or Clone LUN of the specified hostmap.

You must specify either the -host, the -hostmap, the -hostGroup, or the -hostGroupMap option.

-hostmap

Identifies one or more hostmaps to be deleted.

You must specify either the -host, the -hostmap, the -hostGroup, or the -hostGroupMap option.

-hostGroup

Identifies one or more host groups from which to delete all of the LUN mappings.

You must specify either the -host, the -hostmap, the -hostGroup, or the -hostGroupMap option.

-hostGroupMap

Identifies one or more host group LUN map instances from which to delete all of the LUN mappings.

You must specify either the -host, the -hostmap, the -hostGroup, or the -hostGroupMap option.

-list

Lists host mappings. The Pillar Axiom system detects HBA ports and assigns hosts to those that you do not assign. You can specify any combination of LUNs or Clone LUNs.

Valid options:
- details
Displays the following for each host mapping:
SAN LUN or Clone LUN name
Host name or WWN
Logical unit number
Set of masked ports

-lun
Identifies the details for the specified LUN or Clone LUN.

-availableLunNumbers
Identifies the available LUNs either system wide or for a given host.

-host
Identifies the SAN hosts. If you do not specify the -details option, either the LUNs and SAN hosts with host mappings or the available LUN numbers are displayed.

If you do not specify either option, the system-wide numbers are displayed.

-hostmap
Identifies the LUN map instances. If you do not specify the -details option, either the LUNs and SAN hosts with host mappings or the available LUN numbers are displayed.

If you do not specify either option, the system-wide numbers are displayed.

-hostGroup
Identifies the LUN host groups. If you do not specify the -details option, either the LUNs and SAN hosts with host mappings or the available LUN numbers are displayed.

If you do not specify either option, the system-wide numbers are displayed.

-hostGroupMap
Identifies the LUN host group instances. If you do not specify the -details option, either the LUNs and SAN hosts with host mappings or the available LUN numbers are displayed.

If you do not specify either option, the system-wide numbers are displayed.

-help
EXAMPLE

Run the `hostmap -list -details` command to list the details of host mappings:

```
axiomcli hostmap -list -details
```

Results:

```
HostMap
SanHostFqn : /21:01:00:E0:8B:29:60:D3
SanHostId  : 4130303132373542A12D00DFA646187E
LunFqn     : /SLUN33
LunId      : 4130303132373542A10401F81E4BBCEE
    InitiatorLunPair
        MapFqn        : /SLUN33/210100E08B2960D3
        MapId         :
4130303132373542A12F01F97D074A94
    InitiatorFqn  : /210100E08B2960D3
    InitiatorId   :
4130303132373542A2320BD6B7A64E1A
    LunNumber     : 33
    MappingType   : GLOBAL

HostMap
SanHostFqn : /iqn.2002-03.com.sanland:host.linux.co-sanbs4
SanHostId  : 4130303132373542A12D026184CF9271
LunFqn     : /SLUN33
LunId      : 4130303132373542A10401F81E4BBCEE
    InitiatorLunPair
        MapFqn        : /SLUN33/iqn.2002-03.com.sanland:host.linux.co-sanbs4
        MapId         :
4130303132373542A12F0261B2DAF76A
    InitiatorFqn  : /iqn.2002-03.com.sanland:host.linux.co-
    InitiatorId   :
4130303132373542A2320BD6B978498F
    LunNumber     : 33
    MappingType   : GLOBAL

HostMap
SanHostFqn : /21:01:00:E0:8B:29:60:D3
SanHostId  : 4130303132373542A12D00DFA646187E
LunFqn     : /SLUN1
LunId      : 4130303132373542A10401F4C3140230
    InitiatorLunPair
        MapFqn        : /SLUN1/210100E08B2960D3
        MapId         :
4130303132373542A12F01F680C7840A
    InitiatorFqn  : /210100E08B2960D3
    InitiatorId   :
4130303132373542A2320BD6B7A64E1A
```

Appendix B Pillar Axiom CLI Commands
LunNumber : 1
MappingType : GLOBAL

HostMap
SanHostFqn : /21:01:00:E0:8B:29:60:D3
SanHostId : 4130303132373542A12D00DFA646187E
LunFqn : /SLUN0
LunId : 4130303132373542A10401F2A56F884D
InitiatorLunPair
 MapFqn : /SLUN0/210100E08B2960D3
 MapId :
 4130303132373542A12F01F4A29DA0A6
 InitiatorFqn : /210100E08B2960D3
 InitiatorId :
 4130303132373542A2320BD6B7A64E1A
LunNumber : 0
MappingType : GLOBAL

HostMap
SanHostFqn : /21:00:00:E0:8B:09:60:D3
SanHostId : 4130303132373542A12D00DFA6DC91A8
LunFqn : /SLUN0
LunId : 4130303132373542A10401F2A56F884D
InitiatorLunPair
 MapFqn : /SLUN0/210000E08B0960D3
 MapId :
 4130303132373542A12F01F4A52724E8
 InitiatorFqn : /210000E08B0960D3
 InitiatorId :
 4130303132373542A2320BD6B7A64E18
LunNumber : 0
MappingType : GLOBAL

HostMap
SanHostFqn : /iqn.2002-03.com.sanland:host.linux.co-sansbs4
SanHostId : 4130303132373542A12D026184CF9271
LunFqn : /SLUN1
LunId : 4130303132373542A10401F4C3140230
InitiatorLunPair
 MapFqn : /SLUN1/iqn.2002-03.com.sanland:host.linux.co-sansbs4
 MapId :
 4130303132373542A12F0261B2FF5410
 InitiatorFqn : /iqn.2002-03.com.sanland:host.linux.co-sansbs4
 InitiatorId :
 4130303132373542A2320BD6B78498F
LunNumber : 1
MappingType : GLOBAL

HostMap
SanHostFqn : /21:00:00:E0:8B:09:60:D3
SanHostId : 4130303132373542A12D00DFA6DC91A8
LunFqn : /SLUN33
LunId : 4130303132373542A10401F81E4BBCEE
InitiatorLunPair
Appendix B Pillar Axiom CLI Commands

<table>
<thead>
<tr>
<th>Field</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>MapFqn</td>
<td>/SLUN33/210000E08B0960D3</td>
</tr>
<tr>
<td>MapId :</td>
<td></td>
</tr>
<tr>
<td>4130303132373542A12F01F97D9F6719</td>
<td></td>
</tr>
<tr>
<td>InitiatorFqn : /210000E08B0960D3</td>
<td></td>
</tr>
<tr>
<td>InitiatorId : 4130303132373542A2320BD6B7A64E18</td>
<td></td>
</tr>
<tr>
<td>LunNumber : 33</td>
<td></td>
</tr>
<tr>
<td>MappingType : GLOBAL</td>
<td></td>
</tr>
</tbody>
</table>

HostMap

<table>
<thead>
<tr>
<th>Field</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>SanHostFqn : /21:00:00:E0:8B:09:60:D3</td>
<td></td>
</tr>
<tr>
<td>SanHostId : 4130303132373542A12D00DFA6DC91A8</td>
<td></td>
</tr>
<tr>
<td>LunFqn : /SLUN1</td>
<td></td>
</tr>
<tr>
<td>LunId : 4130303132373542A10401F4C3140230</td>
<td></td>
</tr>
<tr>
<td>InitiatorLunPair</td>
<td>MapFqn : /SLUN1/210000E08B0960D3</td>
</tr>
<tr>
<td>MapId : 4130303132373542A12F01F68186993A</td>
<td></td>
</tr>
<tr>
<td>InitiatorFqn : /210000E08B0960D3</td>
<td></td>
</tr>
<tr>
<td>InitiatorId : 4130303132373542A2320BD6B7A64E18</td>
<td></td>
</tr>
<tr>
<td>LunNumber : 1</td>
<td></td>
</tr>
<tr>
<td>MappingType : GLOBAL</td>
<td></td>
</tr>
</tbody>
</table>

HostMap

<table>
<thead>
<tr>
<th>Field</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>SanHostFqn : /iqn.2002-03.com.sanland:host.linux.co-sanbs4</td>
<td></td>
</tr>
<tr>
<td>SanHostId : 4130303132373542A12D026184CF9271</td>
<td></td>
</tr>
<tr>
<td>LunFqn : /SLUN0</td>
<td></td>
</tr>
<tr>
<td>LunId : 4130303132373542A10401F2A56F884D</td>
<td></td>
</tr>
<tr>
<td>InitiatorLunPair</td>
<td>MapFqn : /SLUN0/iqn.2002-03.com.sanland:host.linux.co-sanbs4</td>
</tr>
<tr>
<td>MapId : 4130303132373542A12F0261B3486970</td>
<td></td>
</tr>
<tr>
<td>InitiatorFqn : /iqn.2002-03.com.sanland:host.linux.co-sanbs4</td>
<td></td>
</tr>
<tr>
<td>InitiatorId : 4130303132373542A2320BD6B978498F</td>
<td></td>
</tr>
<tr>
<td>LunNumber : 0</td>
<td></td>
</tr>
<tr>
<td>MappingType : GLOBAL</td>
<td></td>
</tr>
</tbody>
</table>

HostMap

<table>
<thead>
<tr>
<th>Field</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>SanHostFqn : /21:01:00:E0:8B:29:60:D3</td>
<td></td>
</tr>
<tr>
<td>SanHostId : 4130303132373542A12D00DFA646187E</td>
<td></td>
</tr>
<tr>
<td>LunFqn : /SLUN32</td>
<td></td>
</tr>
<tr>
<td>LunId : 4130303132373542A10401F68D685677</td>
<td></td>
</tr>
<tr>
<td>InitiatorLunPair</td>
<td>MapFqn : /SLUN32/210100E08B2960D3</td>
</tr>
<tr>
<td>MapId : 4130303132373542A12F01F8130F1DA6</td>
<td></td>
</tr>
<tr>
<td>InitiatorFqn : /210100E08B2960D3</td>
<td></td>
</tr>
<tr>
<td>InitiatorId : 4130303132373542A2320BD6B7A64E1A</td>
<td></td>
</tr>
<tr>
<td>LunNumber : 32</td>
<td></td>
</tr>
<tr>
<td>MappingType : GLOBAL</td>
<td></td>
</tr>
</tbody>
</table>
Appendix B Pillar Axiom CLI Commands

HostMap
SanHostFqn : /iqn.2002-03.com.sanland:host.linux.co-sans4
SanHostId : 4130303132373542A12D026184CF9271
LunFqn : /SLUN32
LunId : 4130303132373542A10401F68D685677
InitiatorLunPair
 MapFqn : /SLUN32/iqn.2002-03.com.sanland:host.linux.co-sans4
 MapId : 4130303132373542A12F0261B323DA83
 InitiatorFqn : /iqn.2002-03.com.sanland:host.linux.co-sans4
 InitiatorId : 4130303132373542A2320BD6B978498F
 LunNumber : 32
 MappingType : GLOBAL

HostMap
SanHostFqn : /21:00:00:E0:8B:09:60:D3
SanHostId : 4130303132373542A12D00DFA6DC91A8
LunFqn : /SLUN32
LunId : 4130303132373542A10401F68D685677
InitiatorLunPair
 MapFqn : /SLUN32/210000E08B0960D3
 MapId : 4130303132373542A12F01F813AE9AFA
 InitiatorFqn : /210000E08B0960D3
 InitiatorId : 4130303132373542A2320BD6B7A64E18
 LunNumber : 32
 MappingType : GLOBAL
iscsi

DESCRIPTION Manages the iSCSI configuration settings on a Pillar Axiom system. If you have iSCSI hosts configured to use Challenge-Handshake Authentication Protocol (CHAP), Access Control, or Internet Storage Name Service (iSNS), you must also set up system-wide iSCSI settings. Doing so configures the authentication and access controls on the Pillar Axiom system in which the host must match to gain access. If you have CHAP and Access Control configured for each initiator, you do not need to configure iSCSI globally.

Use the iscsi command to ping, modify, or list iSCSI settings.

You can use the -verify option to test the command-line argument and its options before running it in Pillar Axiom CLI. If no errors exist, the Pillar Axiom CLI command returns without executing. For example, the -verify option is helpful when writing scripts in which a particular Pillar Axiom CLI command usage can be verified prior to adding it to a script.

You can use the -outputformat or the -o command option to specify how to display the results of running a command. If you do not specify either the -outputformat or the -o command option, the results display in the default text format. Valid options:

- **text** The system displays the results in the plain-text format.
- **xml** The system displays the results in the tagged XML format.

You can use the -sessionKey option to specify which Pillar Axiom system to access and which session key value to use for validation. The Pillar Axiom CLI displays the session key value when you log in to the Pillar Axiom system using the -returnKey option.

You can use the -timeout option to set a time limit for the execution of a command. If the command takes longer than the number of seconds specified in the -timeout option, the system stops executing the command. If you do not specify the -timeout option, the system does not set any time limit for executing the command.

SYNTAX axiomcli iscsi
- **ping** -slammerNode
 -slammer-node-id-or-fqn
 -port {port0 | port1 | port2 | port3 | port4 | port5 | port6 | port7}
 -ip [ip-address]
 [-verify]
 [{-outputformat | -o} {text | xml}]

axiomcli iscsi -modify
 {-slammerNode slammer-node-id-or-fqn
 -port {port0 | port1 | port2 | port3 | port4 | port5 | port6 | port7}
 [-tcpPort port-number] [-mtu mtu]
 [{-dhcp | -noDhcp}] [-ip ip-address]
 [-netmask netmask] [-gateway gateway-ip]
 [{-enableVlan | -disableVlan}] [-vlanId vlan-id-number]
 [-accessControl {isns | axiom | none}]
 [-alias alias-name]
 [-authentication {allInitiators | perInitiator}]
 [-authenticationServer {axiom | radius}]
 [{-headerDigest | -noHeaderDigest}]
 [{-dataDigest | -noDataDigest}]
 [{-biDirectionalChap | -noBiDirectionalChap}]
 [-chapSecret chap-secret] [-retypeChapSecret chap-secret]
 [{-isnsRegistration | -noIsnsRegistration}]
 [-isnsDiscovery {dhcp | static}]
 [-isnsServerIp ip-address]
 [-isnsTcpPort port-number]
 [-radiusIp ip-address]
 [-radiusUdpPort udp-port]
 [-radiusSecret radius-secret] [-retypeRadiusSecret radius-secret]
 }
 [-verify]
 [{-outputformat | -o} {text | xml}]
 [-sessionKey session-key]
 [-timeout timeout-in-seconds]

axiomcli iscsi -list [-details]
 {-slammerNode slammer-node-id-or-fqn
 [-port {port0 | port1 | port2 | port3 | port4 | port5 | port6 | port7}]
 [-global]
 }[-verify]
 [{-outputformat | -o} {text | xml}]

Appendix B Pillar Axiom CLI Commands
axiomcli iscsi -help

PARAMETERS

Note: Only the Primary Administrator, Administrator 1, Pillar Support, and Support roles can issue the -ping command.

Only the Primary Administrator and Administrator 1 can issue the -modify command.

All roles can issue the -list command option.

-ping

Sends an echo request to iSCSI data storage devices through the TCP/IP network. This includes iSCSI initiators such as Pillar Axiom File Servers, and iSCSI targets such as disk arrays and tape subsystems.

Valid options:

-slammerNode

Identifies the Slammer control unit (CU). Enter the ID or fully qualified name (FQN) hosting the iSCSI port.

-port

Identifies the iSCSI port on the Slammer CU.

Valid options:

port0
port1
port2
port3
port4
port5
port6
port7

-ip

Identifies the permanent (static) IP addresses assigned to the iSCSI port. If the ports have been configured using Dynamic Host Configuration Protocol (DHCP), an error message displays.

-modify

Modifies the specified iSCSI port settings or global iSCSI settings.
Valid options:

- **slammerNode**

 Identifies the Slammer CU. Enter the ID or fully qualified name (FQN) hosting the iSCSI port.

 If you do not specify this option, the system will modify the global iSCSI port settings.

- **port**

 Identifies the iSCSI port on the Slammer CU.

 Valid options:

  ```
  port0
  port1
  port2
  port3
  port4
  port5
  port6
  port7
  ```

- **tcpPort**

 Identifies the iSCSI TCP port number that is configured on the iSCSI port.

- **mtu**

 Identifies the number of bytes of the maximum transmission unit (MTU). The MTU is the largest physical packet size that a network can transmit. Any messages larger than the MTU (default is 1500) are divided into smaller packets before being sent. Specifies the number of bytes of the maximum transmission unit.

 The frame size (MTU) does not include the Ethernet header portion of the packet. If your network switch has trouble with this, you can set the switch to a larger value or lower the MTU size to correct the problem. If your network supports extended Ethernet (jumbo) frames, enter an integer greater than 1500 and less than 9001.

 Note: Make sure that this Pillar Axiom MTU size matches the network MTU size. If the MTU sizes are mismatched, performance may be severely degraded.

- **dhcp**
Identifies that dynamic IP addresses are assigned to the iSCSI port using Dynamic Host Configuration Protocol (DHCP).

Note: This requires a DHCP server that automatically assigns IP addresses to network clients. This setting makes the Pillar Axiom system known to the DHCP software.

If you do not specify this option, `-noDhcp` is assumed.

-ip

Identifies that static IP addresses are assigned to the iSCSI port. If the ports have been configured using DHCP, an error message displays.

-netmask

Identifies the subnet mask for the range of IP addresses at the destination of the iSCSI port. If the ports have been configured using DHCP, an error message displays.

-gateway

Identifies the IP address assigned to the gateway host. The gateway IP address is used to route messages from this network to other networks. If the ports have been configured using DHCP, an error message displays.

-enableVlan

Indicates whether the virtual LAN (VLAN) tagging on the iSCSI port is enabled.

If you do not specify this option, `-disableVlan` is assumed.

-vlanId

Sets the VLAN ID for the iSCSI port.

-accessControl

Identifies the access control method for iSCSI initiators.

Valid options:

- **isns** The system rejects any iSCSI login attempts from initiators that have not been granted access by the iSNS server

- **axiom** The system rejects any iSCSI login attempts from the
initiators that have not been given the appropriate CHAP credentials.

none The system allows all iSCSI initiators to login.

If you specify iSNS, the system will reject any iSCSI login attempts from initiators that have not been granted access by the iSNS server. If you specify axiom, the system will reject any iSCSI login attempts from the initiators that have not been given the appropriate CHAP credentials. If you specify none, the system allows all iSCSI initiators to login.

-alias
Identifies the global iSCSI alias, which is a user-defined name or description for the iSCSI device that is an alias for the iSCSI target name.

-authentication
Identifies how iSCSI authentication should be performed.

Valid options:
- `perIntiator`
- `allInitiator`

If you specify the `perIntiator` option, the system does not always negotiate for CHAP authentication during login, but the initiator may require authentication. If you specify the `allInitiator` option, the system requires CHAP authentication of initiators for all logins.

-authenticationServer
Identifies the server to perform authentication.

Valid options:
- `axiom`
- `radius`

-headerDigest / -noHeaderDigest
Directs the system to negotiate for iSCSI header digests during session login for all initiators.

If you specify the `-noHeaderDigest` option, the system will not negotiate for iSCSI header digests.

-dataDigest / -noDataDigest
Directs the system to negotiate for iSCSI data digests during session login for all initiators.

If you specify the `-noDataDigest` option, the system will not negotiate for iSCSI data digests.

`-biDirectionalChap`

Directs the Pillar Axiom system to require the iSCSI initiator to provide the CHAP secret when performing an iSCSI login. The `-noBiDirectionalChap` option directs the Pillar Axiom system not to require the CHAP secret. The iSCSI initiator will still be required to provide its CHAP secret.

`-chapSecret`

Identifies the encrypted CHAP authentication password (secret) to be used in the exchange of user names and secrets between two devices. Both devices must support Point-to-Point (PPP) authentication.

Note: The Pillar Axiom system supports up to 100 UTF-8 non-integer characters. However, when connecting to Windows servers, you must limit the secret to a value between 12 and 16 characters in length.

`-isnsRegistration`

Directs the system to register with the iSNS server. The system will query the iSNS server for the list of iSCSI initiators that are permitted to log into the Pillar Axiom system.

`-isnsDiscovery`

Directs the system to discover the iSNS server.

Valid options:

- `dhcp`
- `static`

If you specify `dhcp`, DHCP will be used for iSNS discovery. If you specify `static`, the previously set iSNS server IP address will be used.

`-isnsServerIp`

Identifies the IP address of the iSNS server that the system will use for authenticating iSCSI logins.

`-isnsTcpPort`
Identifies the TCP port number that the system will use when accessing the iSNS server.

- **radiusIP**

Identifies the IP address of the primary Remote Authentication Dial In User Service (RADIUS) server that the system will use for making authentication requests when validating iSCSI logins. RADIUS is a network protocol that authenticates users or devices before granting access to a network, authorizes users or devices to use network services, and accounts for the usage of those services. You must set -authenticationServer to radius.

- **radiusUdpPort**

Identifies the UDP port number that the system will use when sending authentication requests to the primary RADIUS server. You must set -authenticationServer to radius.

- **radiusSecret**

Identifies the encrypted authentication password (secret) to use when accessing the primary RADIUS server.

- **secondaryRadiusIP**

Identifies the IP address of the secondary RADIUS server that the system will use for making authentication requests when validating iSCSI logins. You must set -authenticationServer to radius.

- **secondaryRadiusUdpPort**

Identifies the UDP port number that the system will use when the system sends authentication requests to the secondary RADIUS server. You must set -authenticationServer to radius.

- **secondaryRadiusSecret**

Identifies the encrypted authentication password (secret) to use when accessing the secondary RADIUS server.

- **list**

Displays the settings for iSCSI ports and global iSCSI settings.

Valid options:

- **slammerNode**
Displays the specified Slammer CU. Enter the ID or FQN hosting the iSCSI port.

If you do not specify this option, the system will display iSCSI port information for all Slammers.

If you do not specify either -slammerNode or -global, the system will display global iSCSI settings first followed by the iSCSI settings for each SAN Slammer that provides an iSCSI port.

-port

Displays the iSCSI port on the Slammer CU.

If you do not specify this option, the system displays settings for all of the iSCSI ports on the Slammer CU.

-global

Displays the global iSCSI settings.

If you do not specify either -slammerNode or -global, the system will display global iSCSI settings first followed by the iSCSI settings for each SAN Slammer that provides an iSCSI port.

-help

Displays the detailed command help information.

EXAMPLE

Run `axiomcli iscsi -list` to display the settings for iSCSI ports and global iSCSI settings:

```
axiomcli iscsi -list
```

Results:

<table>
<thead>
<tr>
<th>Global IScsi Settings</th>
</tr>
</thead>
<tbody>
<tr>
<td>IScsiSettings</td>
</tr>
<tr>
<td>AccessControl : NONE</td>
</tr>
<tr>
<td>DeviceName : iqn.</td>
</tr>
<tr>
<td>2002-03.com.pillardata.axiom.ssn.a001275bcx</td>
</tr>
<tr>
<td>Alias : Pillar Axiom 500</td>
</tr>
<tr>
<td>SSN:A001275BCX</td>
</tr>
<tr>
<td>Authentication : PER_INITIATOR</td>
</tr>
<tr>
<td>AuthenticationServer : AXIOM</td>
</tr>
<tr>
<td>HeaderDigest : false</td>
</tr>
<tr>
<td>DataDigest : false</td>
</tr>
<tr>
<td>BiDirectionalChap : false</td>
</tr>
<tr>
<td>ISnsSettings</td>
</tr>
<tr>
<td>EnableISnsServerRegistration : false</td>
</tr>
<tr>
<td>ISnsServerDiscovery : STATIC</td>
</tr>
<tr>
<td>IpAddress : 0.0.0.0</td>
</tr>
<tr>
<td>TcpPort : 3260</td>
</tr>
</tbody>
</table>
RadiusSettings
 PrimaryServerIpAddress : 0.0.0.0
 PrimaryUdpPort : 1812
 SecondaryServerIpAddress : 0.0.0.0
 SecondaryUdpPort : 1812

/SLAMMER-01
 SlammerId : 2008000B08030522
 ControlUnitFqn : /SLAMMER-01/0
 ControlUnitId : 2008000B08030522
 ControlUnitNumber : 0
 IScsiPort : port0
 MacAddress : 00:C0:DD:07:65:D2
 PortalGroupTag : 20
 MaximumSpeed : 1000000000
 Speed : 1000000000
 Status : CONNECTED
 ConnectionType : COPPER
 TcpPort : 3260
 MaximumMtuBytes : 9000
 MinimumMtuBytes : 582
 MtuBytes : 1500
 IpAssignment : STATIC
 IpAddress : 192.168.100.208
 Netmask : 255.255.255.0
 Gateway : 192.168.100.1
 ISnsClientStatus : NOT_CONNECTED
 VlanEnabled : false
 VlanId : 0

 IScsiPort : port1
 MacAddress : 00:C0:DD:07:66:3A
 PortalGroupTag : 21
 MaximumSpeed : 1000000000
 Speed : 1000000000
 Status : CONNECTED
 ConnectionType : COPPER
 TcpPort : 3260
 MaximumMtuBytes : 9000
 MinimumMtuBytes : 582
 MtuBytes : 1500
 IpAssignment : STATIC
 IpAddress : 192.168.100.209
 Netmask : 255.255.255.0
 Gateway : 192.168.100.1
 ISnsClientStatus : NOT_CONNECTED
 VlanEnabled : false
 VlanId : 0

 ControlUnitFqn : /SLAMMER-01/1
 ControlUnitId : 2009000B0803052A
 ControlUnitNumber : 1
 IScsiPort : port0
 MacAddress : 00:C0:DD:07:66:3A
PortalGroupTag : 36
MaximumSpeed : 1000000000
Speed : 1000000000
Status : CONNECTED
ConnectionType : COPPER
TcpPort : 3260
MaximumMtuBytes: 9000
MinimumMtuBytes: 582
MtuBytes : 1500
IpAssignment : STATIC
IpAddress : 192.168.100.210
Netmask : 255.255.255.0
Gateway : 192.168.100.1
ISnsClientStatus: NOT_CONNECTED
VlanEnabled : false
VlanId : 0

IScsiPort : port1
MacAddress : 00:C0:DD:07:66:3C
PortalGroupTag : 37
MaximumSpeed : 1000000000
Speed : 1000000000
Status : CONNECTED
ConnectionType : COPPER
TcpPort : 3260
MaximumMtuBytes: 9000
MinimumMtuBytes: 582
MtuBytes : 1500
IpAssignment : STATIC
IpAddress : 192.168.100.211
Netmask : 255.255.255.0
Gateway : 192.168.100.1
ISnsClientStatus: NOT_CONNECTED
VlanEnabled : false
VlanId : 0
job

DESCRIPTION
Manages jobs on a Pillar Axiom system to be performed in the future once or repeatedly. A job is a management task, such as generating reports, updating software, or creating Clone LUNs, that can be scheduled on a Pillar Axiom system. Not all management tasks can be scheduled; jobs are a subset of all possible management tasks.

Use the `job` command to schedule and manage jobs configured on a Pillar Axiom system.

You can use the `-verify` option to test the command-line argument and its options before running it in Pillar Axiom CLI. If no errors exist, the Pillar Axiom CLI command returns without executing. For example, the `-verify` option is helpful when writing scripts in which a particular Pillar Axiom CLI command usage can be verified prior to adding it to a script.

You can use the `-outputformat` or the `-o` command option to specify how to display the results of running a command. If you do not specify either the `-outputformat` or the `-o` command option, the results display in the default text format. Valid options:

- **text**: The system displays the results in the plain-text format.
- **xml**: The system displays the results in the tagged XML format.

You can use the `-sessionKey` option to specify which Pillar Axiom system to access and which session key value to use for validation. The Pillar Axiom CLI displays the session key value when you log in to the Pillar Axiom system using the `-returnKey` option.

You can use the `-timeout` option to set a time limit for the execution of a command. If the command takes longer than the number of seconds specified in the `-timeout` option, the system stops executing the command. If you do not specify the `-timeout` option, the system does not set any time limit for executing the command.

SYNTAX

```bash
axiomcli job -add -name job-name
    [{-enable | -disable}]
    [-oneTime date-time]
    |  -recurring
    |      -interval {hourly | daily | weekly | monthly}
    |      -frequency interval-frequency
    |      -startTime date-time
    }
    {-softwareUpdate {-component component-version: instruction
        [, component-version: instruction] ...}}
```

Appendix B Pillar Axiom CLI Commands
axiomcli job -modify -job job-id-or-fqn
 [-name job-name]
 [{-enable | -disable}]
 [{-oneTime date-time
 | -recurring
 -interval {hourly | daily | weekly | monthly}
 -frequency interval-frequency
 -startTime date-time}
]
 [{-softwareUpdate {-component component-version:instruction
 [, component-version:instruction]...
 | -all {newerversiononly | alwaysinstall} }
 }{-disruptive | -noDisruptive}
 -addCloneLun -cloneName clone-lun-name
 -source source-lun-id-or-fqn
 [-addressableCapacity addressable-logical-capacity]
 [-priority {premium | high | medium | low | archive}]
 [-volumeGroup volume-group-id-or-fqn]
 [{-fibreChannelAccess | -noFibreChannelAccess}]
 [{-iscsiAccess | -noIscsiAccess}]
 [-maskedSlammerPorts port-name [, port-name]...]
 [{-active | -inActive}]
 | -generateReport
 -type {system | storageUse | VolumeUse | performance | sanHosts | systemSummary}
PARAMETERS

Note: Only the Primary Administrator, Administrator 1, and Administrator 2 roles can issue all command options.

All roles can issue the -list command option.

-add

Creates a Pillar Axiom job. A job is a request that you schedule to run at a later time. Based on the type of scheduled operation that the job is associated with, you must complete different sets of name and value pairs.

Valid options:

-name

Identifies the unique name of a scheduled operation, which is an action to be performed at the specified time or at regular intervals.

-enable

Indicates whether the job is enabled.

-disable

Indicates whether the job is disabled, allowing you, for example, to define a schedule before the source volume (LUN) has been made available to users.
- **oneTime**
 Identifies the date and time at which the Pillar Axiom system starts a job to be performed once.

- **recurring**
 Identifies the date and time at which the Pillar Axiom system starts a scheduled operation.

Valid options for job schedule recurrence intervals are:

- **hourly**
 1 through 24

- **daily**
 1 through 7

- **weekly**
 1 through 4

You can schedule jobs in **-intervals** and **-frequency**. For example, to schedule a job to run every other week, enter **-intervals weekly -frequency 2**. You can also provide the **-startTime** to indicate the time and date when to begin the periodic transfers.

The format of date-time is

```
YYYY-MM-DD[THH[:mm[:SS[.xxx]]]][+-HH:mm]
```

where:

- **YYYY-MM-DD** designates a four-digit year, two-digit month, and two-digit day for the date.
- **T** is a separator that designates the start of the time portion of the string.
- **HH:mm:ss.xxx** designates hours, minutes, and seconds (to three decimals places) in values for a 24-hour clock.
- **+-HH:mm** designates the time zone as an offset from Coordinated Universal Time (UTC) in hours and minutes. The plus (+) or minus (-) prefix must be provided.

At a minimum, just the date is required, in which case the time defaults to **12:00:00.000+00:00**. You can specify the hours with the rest of the values defaulting to 0. You can also specify the minutes, seconds, fractional seconds, and the UTC offset. The UTC offset is independent of the time values, so it can be specified with just the date or any combination of date and time. For example:

- **2006-08-25T16:30:00-08:00** specifies a time of 4:30 PM on August 25, 2006, Pacific Time
- 2006-8-25 specifies a time of 12:00 AM on August 25, 2006, UTC
- 2010-10-10T04:50-07:00 specifies a time of 4:50 AM on October 10, 2010, Mountain Standard Time
- 2010-10-10T12:15:01.123-08:00 specifies a time of 12:15:01.123 PM on October 10, 2010, Pacific Time

Valid options:
- **-interval**
 Specifies the time unit to use for the interval between job executions.
- **-frequency**
 Specifies the positive number of time units between job executions. For example, to create a Clone LUN every other week, specify “weekly” for the -interval and “2” for -frequency.
- **-startTime**
 Specifies the time and date when to begin the job execution.

-softwareUpdate
Schedules a package of software or firmware updates from the Pillar support portal on the Pillar Axiom system.

Valid options:
- **-component**
 Specifies a comma delimited list of the component-version to install and its installation instruction. The component-version is a string that conforms to the following expression:

 \[0-9]{4}-[0-9]{5}-[0-9]{6}-[0-9]{6}\]

 The instruction variable can be one of the following:

 - exclude
 - newerversiononly
 - alwaysinstall

 For a list of component versions available for installation, enter the following command-line argument:

 `axiomcli software_update list -staged`
Stages a package of software updates to Pillar Axiom system.

Valid options:

```newerVersionOnly```
Installs only those components that are newer than the components that are already installed on the Pillar Axiom system.

```alwaysInstall```
Installs all of the components, even if they are older than the versions of the components installed on the Pillar Axiom system.

```-disruptive```
Allows for a disruptive update. Updates are typically performed non-disruptively.

**Note:** Select this option only when advised by Oracle Pillar Customer Support, unless it is necessary to set it for an update that defines itself as disruptive.

If you do not specify the `-disruptive` option, then `-noDisruptive` is the default value.

```-addCloneLun```
Schedules a partial copy block-level snapshot of a LUN.

```-cloneName```
Identifies the name of the Clone LUN.

```-source```
Identifies the ID or fully qualified name (FQN) of the source LUN to be cloned.

```-addressableCapacity```
Identifies the addressable logical capacity of the LUN. This value cannot be smaller than the current addressable capacity of the LUN.

```-priority```
Identifies the Quality of Service (QoS) performance of the LUN.

Valid options:

```premium```
Highest processing queue priority. Striping occurs across eight serial ATA (SATA) RAID
groups or four Fibre Channel (FC) RAID groups on the outermost 20% of the drive platters.

**high**

Next highest processing queue priority. Striping occurs across eight SATA RAID groups or four FC RAID groups on the outermost 20-40% of the drive platters.

**medium**

Intermediate processing queue priority. Striping occurs across six SATA RAID groups or three FC RAID groups on the outermost 40-60% of the drive platters.

**low**

Next to lowest processing queue priority. Striping occurs across four SATA RAID groups or two FC RAID groups on the outermost 60-80% of the drive platters.

**archive**

Lowest processing queue priority. Striping occurs across four SATA RAID groups or two FC RAID groups on the outermost 80-100% of the drive platters.

**-volumeGroup**

Identifies the volume group, in which the Clone LUN should be added.

**-fibreChannelAccess**

Allows access to the new Clone LUN through the Fibre Channel (FC) ports.

**-noFibreChannelAccess**

Disables access to the Clone LUN.

**-iscsiAccess**

Allows access to the new Clone LUN through the iSCSI ports.
**-noIscsiAccess**
Disables the iSCSI access to the Clone LUN.

**-maskedSlammerPorts**
Restricts access to the Clone LUN through the Slammer ports identified by port name.
If you do not specify this option, the Clone LUN becomes accessible on all Slammer ports by default.

**-active**
Makes the newly created Clone LUN accessible to all hosts.

**-inActive**
Makes the newly created Clone LUN inaccessible to all hosts.
If you do not specify this option, the Clone LUN will be accessible to all hosts.

**-generateReport**
Indicates whether a report stored on the Pillar Axiom system is to be generated.
Valid options:

**-type**
Identifies the type of report to generate.
Valid options:

<table>
<thead>
<tr>
<th><code>system</code></th>
<th>Provides detailed information on the configuration and status of the current Pillar Axiom system and all of its components, such as serial numbers, firmware versions, ports, and status, for the Pilot, Slammers, and Bricks.</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>storageUse</code></td>
<td>Provides storage capacity information on the storage currently available on the Pillar Axiom system.</td>
</tr>
</tbody>
</table>
Includes total capacity, allocated, free, and unavailable capacity, and storage use by Storage Class.

`volumeUse` Provides capacity information for each logical volume on the Pillar Axiom system.

`performance` Provides performance information about the LUNs on the Pillar Axiom system. Includes operations/second, read MB/s, and write MB/s.

`sanHosts` Provides statistical information on the host servers and configured components currently included in your storage area network (SAN).

`systemSummary` Provides a summary of the Pilot, Slammer, and Brick information included in the detailed System Configuration report.

- **language**


- **country**


- **variant**
Specifies the locale variant, if any, to use for generating the report.

**-modify**

Modifies the specified Pillar Axiom job. You can also enable or disable the job.

Valid options:

**-name**

Identifies the new name of the job.

**-enable**

Indicates whether the job is enabled.

**-disable**

Indicates whether the job is disabled, allowing you, for example, to define a schedule before the source volume (LUN) has been made available to users.

**-oneTime**

Identifies the date and time at which the Pillar Axiom system starts a job to be performed once.

**-recurring**

Identifies how often the system should perform the scheduled operation. Valid values vary based on the schedule's recurrence interval and frequency.

Valid options for job schedule recurrence intervals are:

- **hourly** 1 through 24, inclusive
- **daily** 1 through 7, inclusive
- **weekly** 1 through 52, inclusive

**-softwareUpdate**

Schedules a package of software or firmware updates from the Pillar support portal on the Pillar Axiom system.

Valid options:

**-component**

Specifies a comma delimited list of the *component-version* to install and its installation *instruction*. The *component-version* is a string that conforms to the following expression:

\[ [0-9]\{4\}-[0-9]\{5\}-[0-9]\{6\}-[0-9]\{6\} ] \]
The *instruction* variable can be one of the following:

- exclude
- newerversiononly
- alwaysinstall

For a list of component versions available for installation, enter the following command-line argument:

```axiomcli software_update -list -staged -all```

all

Stages a package of software updates to Pillar Axiom system.

Valid options:

- **newerversiononly**
 Installs only those components that are newer than the components that are already installed on the Pillar Axiom system.

- **alwaysinstall**
 Installs all of the components, even if they are older than the versions of the components installed on the Pillar Axiom system.

- **disruptive**
 Allows for a disruptive update. Updates are typically performed non-disruptively.

Note: Select this option only when advised by Oracle Pillar Customer Support, unless it is necessary to set it for an update that defines itself as disruptive.

If you do not specify the `-disruptive` option, then `-noDisruptive` is the default value.

- **addCloneLun**
 Identifies a partial copy block-level snapshot of a LUN.

Valid options:

- **cloneName**
 Identifies the name of the Clone LUN.

- **source**
 Identifies the ID or fully qualified name (FQN) of the source LUN to be cloned.

- **addressableCapacity**
Identifies the addressable logical capacity of the LUN. This value cannot be smaller than the current addressable capacity of the LUN.

-priority
Identifies the Quality of Service (QoS) priority of the LUN.

-volumeGroup
Identifies the volume group, in which the Clone LUN should be added.

-fibreChannelAccess
Allows access to the new Clone LUN through the Fibre Channel (FC) ports.

-noFibreChannelAccess
Disables access to the Clone LUN.

-iscsiAccess
Allows access to the new Clone LUN through the iSCSI ports.

-noIscsiAccess
Disables the iSCSI access to the Clone LUN.

-maskedSlammerPorts
Restricts access to the Clone LUN through the Slammer ports identified by port name.

If you do not specify this option, the Clone LUN becomes accessible on all Slammer ports by default.

-active
Activates the Clone LUN so that it can be discovered and accessed by a host.

-active
Makes the newly created Clone LUN accessible to all hosts.

-inActive
Makes the newly created Clone LUN inaccessible to all hosts.

If you do not specify this option, the Clone LUN will be accessible to all hosts.

-generateReport
Generates a specific type of report to be stored on the Pillar Axiom system for download to your client in the format of your choice.

Valid options:

- **-type**
 Specifies the type of report to generate.

 Valid options:
 - sanHosts
 - performance
 - storageUse
 - volumeUse
 - system
 - systemSummary

- **-language**

- **-country**
 Specifies the country locale (two uppercase letters that conform to ISO-3166) to use for generating the report. You can find a copy of ISO-3166 at http://www.chemie.fu-berlin.de/diverse/doc/ISO_3166.html.

- **-variant**
 Specifies the locale variant, if any, to use for generating the report.

- **-delete**
 Deletes one or more scheduled jobs on a Pillar Axiom system.

 Valid options:
 - **-job**
 Specifies the IDs or FQNs of one or more jobs to be deleted.

- **-list**
 Displays a list of jobs that are associated with the specified schedule that will be performed in the future.

 Valid options:
-details
Displays the job name, job to perform, and its schedule information.

-job
Displays the ID or FQN of one or more jobs.

-help
 Displays the detailed command help information.

EXAMPLE
Run job -add to create a Pillar Axiom job:

```
axiomcli job -add -name report -oneTime 2011-04-15T17:05:03.913+00:00 -generateReport -type system
```

Results:

```
NewObject
   Id                      : 4130303132373542A13B46D2B28CDA37
   Fqn                     : /report
Command Succeeded
```
login

DESCRIPTION

Creates a secure connection and logs the user in to the Pillar Axiom system. If the system does not find valid login credentials with the `login` command, in the environment variables, or in the temporary file, all other Pillar Axiom CLI commands return a message instructing that the `login` command must be provided first.

You can use the `-verify` option to test the command-line argument and its options before running it in Pillar Axiom CLI. If no errors exist, the Pillar Axiom CLI command returns without executing. For example, the `-verify` option is helpful when writing scripts in which a particular Pillar Axiom CLI command usage can be verified prior to adding it to a script.

You can use the `-outputformat` or the `-o` command option to specify how to display the results of running a command. If you do not specify either the `-outputformat` or the `-o` command option, the results display in the default text format. Valid options:

- **text** The system displays the results in the plain-text format.
- **xml** The system displays the results in the tagged XML format.

SYNTAX

```
axiomcli login [-returnKey] [-force]
[-u admin-user -p admin-password -axiom axiom-system]
[-verify]
[{–outputformat | -o} {text | xml}]
```

PARAMETERS

- **-returnKey** Requests that the command return the session key for use in subsequent commands.

 After the key is returned, it can be used in one of the following ways:
 - Provides the `-sessionKey` option for all subsequent commands. Any command that uses the session key will have the command directed to the Pillar Axiom system associated with that session key.
 - Stores the session key in the environment variable `PDS_SESSIONKEY`. Subsequent commands that don't include the `-sessionkey` option will use the value stored in `PDS_SESSIONKEY`.

- **-force**
Disconnects all current user sessions prior to performing the login.

If there are five simultaneous sessions in use for any given account that are preventing normal login from succeeding, the `force` command disconnects all current user sessions of the given account to allow the login to succeed.

Because the session key can be accessed from different sources, Pillar Axiom CLI uses the following rules to determine where to get the session key for a given command:

- If you specify the `sessionKey` option with the command, that value will be used, and the values of PDS_SESSIONKEY environment variable will be ignored.
- If you do not specify the `sessionKey` option, the value from the PDS_SESSIONKEY environment variable will be used.
- If the PDS_SESSIONKEY environment variable is undefined, the session key from the temporary hidden `.AXCLI_Session` file is used.

If a session key is not found, then a message displays instructing that the `login` command, along with valid login credentials, be specified.

-u

Specifies the administrative user account used to log into the system. If the credentials for an administrator account are not specified, a message displays instructing that a valid administrator account be specified.

-P

Specifies the password and host machine for the administrative account. If a password is not specified, then a message displays instructing that a password and host machine be specified.

Valid parameters:

admin-password

Identifies the password of the administrator account. Passwords can be between 6 and 20 characters in length. Passwords are case sensitive and embedded spaces are permitted. Blank passwords are not permitted.
Note: If -u, -p, and axiom-system are not provided, then the PDS_USER, PDS_PASSWORD, and PDS_HOST environment variables will be used. If -u, -p, and -axiom are not specified, and one or more of the environment variables are not initiated, the command will fail.

-axiom

Specifies the Pillar Axiom system to log into.

Valid options:

axiom-system

Specifies the Pillar Axiom system to log into. Provide the DNS host name or IP address of the Pilot.

-verify

Verifies that the login credentials entered are valid. If you specify this option, you will not be logged in to the Pillar Axiom system.

-help

Displays the detailed command help information.

EXAMPLE

Run axiomcli login to connect to a Pillar Axiom system.

axiomcli login -u admin001 -p password axiomhost.domain

Results:

Login Successful

**
**
** This is a company computer system with access restricted to those with proper authorization. **
** Authorized parties are restricted to those functions which have been assigned to perform work related duties. Any unauthorized access will be investigated and prosecuted to the full extent of the law. If you are not an authorized user, disconnect now. **
**
**
logout

DESCRIPTION
Logs off an active Pillar Axiom CLI session.

Use the `logout` command to log off an active Pillar Axiom CLI session on a Pillar Axiom system.

You can use the `-verify` option to test the command-line argument and its options before running it in Pillar Axiom CLI. If no errors exist, the Pillar Axiom CLI command returns without executing. For example, the `-verify` option is helpful when writing scripts in which a particular Pillar Axiom CLI command usage can be verified prior to adding it to a script.

You can use the `-outputformat` or the `-o` command option to specify how to display the results of running a command. If you do not specify either the `-outputformat` or the `-o` command option, the results display in the default text format. Valid options:

- **text** The system displays the results in the plain-text format.
- **xml** The system displays the results in the tagged XML format.

You can use the `-timeout` option to set a time limit for the execution of a command. If the command takes longer than the number of seconds specified in the `-timeout` option, the system stops executing the command. If you do not specify the `-timeout` option, the system does not set any time limit for executing the command.

SYNTAX

```
axiomcli logout
```

```
axiomcli logout -help
```

PARAMETERS

Note: All roles can issue this command.

- **-help**

 Displays the detailed command help information.

EXAMPLE

Run `axiomcli logout` to log out from the Pillar Axiom CLI session:

```
axiomcli logout
```

Results:

```
Logout Successful
```
DESCRIPTION

Creates and manages the LUNs on a Pillar Axiom system. You can modify the parameters, mappings, and Quality of Service (QoS) settings of an existing LUN. You can also copy existing LUNs and give the new LUNs different QoS attributes, which allows system resources to be maximized.

A LUN is defined as:

A logical volume within a storage area network (SAN). Administrators assign storage resources and Quality of Service (QoS) attributes to each logical unit (LUN).

Use the `lun` command to manage the LUNs on a Pillar Axiom system.

You can use the `-verify` option to test the command-line argument and its options before running it in Pillar Axiom CLI. If no errors exist, the Pillar Axiom CLI command returns without executing. For example, the `-verify` option is helpful when writing scripts in which a particular Pillar Axiom CLI command usage can be verified prior to adding it to a script.

You can use the `-outputformat` or the `-o` command option to specify how to display the results of running a command. If you do not specify either the `-outputformat` or the `-o` command option, the results display in the default text format. Valid options:

- **text** The system displays the results in the plain-text format.
- **xml** The system displays the results in the tagged XML format.

You can use the `-sessionKey` option to specify which Pillar Axiom system to access and which session key value to use for validation. The Pillar Axiom CLI displays the session key value when you log in to the Pillar Axiom system using the `-returnKey` option.

You can use the `-timeout` option to set a time limit for the execution of a command. If the command takes longer than the number of seconds specified in the `-timeout` option, the system stops executing the command. If you do not specify the `-timeout` option, the system does not set any time limit for executing the command.

SYNTAX

```
axiomcli lun -add -name lun-name
    -addressableCapacity addressable-logical-capacity
    [-allocatedCapacity allocated-logical-capacity]
    [-profile performance-profile-id-or-fqn]
    [-priority {premium | high | medium | low | archive}]
    [-redundancy {1 | 2}]
```
[-accessBias {sequential | random | mixed}]
[-ioBias {read | write | mixed}]

[-cloneCapacity clone-capacity]
[-volumeGroup volume-group-id-or-fqn]
[-slammerNode slammer-node-id-or-fqn]
[-maskedSlammerPorts port-name [, port-name]...]
[-unmapped | -globalMapping lun-number]
[-fibreChannelAccess | -noFibreChannelAccess]
[-iscsiAccess | -noIscsiAccess]
[-storageDomain storage-domain-id-or-fqn]
[-storageClass {sataHd | fcHd | slcSsd | mlcSsd}]
[-active | -inactive]
[-copyPriority {auto | low | high}]
[-allowConservativeMode | -suppressConservativeMode]
[-verify]
[-outputformat | -o] {text | xml}
[-sessionKey session-key]
[-timeout timeout-in-seconds]

axiomcli lun modify -lun lun-id-or-fqn
[-newName new-lun-name]
[-addressableCapacity addressable-logical-capacity]
[-allocatedCapacity allocated-logical-capacity]
[-profile performance-profile-id-or-fqn]
[-priority {premium | high | medium | low | archive} [-migrateData]]
[-redundancy {1 | 2}]
[-accessBias {sequential | random | mixed}]
[-ioBias {read | write | mixed}]

[-cloneCapacity clone-capacity]
[-volumeGroup volume-group-id-or-fqn]
[-slammerNode slammer-node-id-or-fqn]
[-unmapped | -globalMapping lun-number]
[-fibreChannelAccess | -noFibreChannelAccess]
[-iscsiAccess | -noIscsiAccess]
[-maskedSlammerPorts port-name [, port-name]...]
[-storageDomain storage-domain-id-or-fqn]
[-storageClass {sataHd | fcHd | slcSsd | mlcSsd}]
[-active | -inactive]
[-copyPriority {auto | low | high}]
[-allowConservativeMode | -suppressConservativeMode]
[-clearLossOfSync]
[-clearLostData]
[-clearPinnedData]
[-rebuildRedundancy]
[-verify]
[-outputformat | -o] {text | xml}
Appendix B Pillar Axiom CLI Commands

[-sessionKey session-key]
[-timeout timeout-in-seconds]

axiomcli lun -copy -source source-lun-id-or-fqn
 -name lun-name
 [-addressableCapacity addressable-logical-capacity]
 [{-profile performance-profile-id-or-fqn
 | -priority {premium | high | medium | low | archive}
 | -redundancy {1 | 2}]
 [-accessBias {sequential | random | mixed}]
 [-ioBias {read | write | mixed}]
]
 [-allocatedCapacity allocated-logical-capacity]
 [-cloneCapacity clone-capacity]
 [-volumeGroup volume-group-id-or-fqn]
 [{-unmapped | -globalMapping lun-number}]
 [{-fibreChannelAccess | -noFibreChannelAccess}]
 [{-iscsiAccess | -noIscsiAccess}]
 [-maskedSlammerPorts port-name [, port-name]...]
 [-storageDomain storage-domain-id-or-fqn]
 [-storageClass {sataHd | fcHd | slcSsd | mlcSsd}]
 [{-active | -inactive}]
 [-copyPriority {auto | low | high}]
 [{-allowConservativeMode | -suppressConservativeMode}]
 [-verify]
 [{-outputformat | -o} {text | xml}]
 [-sessionKey session-key]
 [-timeout timeout-in-seconds]

axiomcli lun -delete -lun lun-id-or-fqn [, lun-id-or-fqn]...
 [-suppressWarnings]
 [-verify]
 [{-outputformat | -o} {text | xml}]
 [-sessionKey session-key]
 [-timeout timeout-in-seconds]

axiomcli lun -cloneDelete -lun lun-id-or-fqn
 [-suppressWarnings]
 [-verify]
 [{-outputformat | -o} {text | xml}]
 [-sessionKey session-key]
 [-timeout timeout-in-seconds]

axiomcli lun -maximumCapacity
 -storageDomain storage-domain-id-or-fqn
 [-priority {premium | high | medium | low | archive}]
 [-redundancy {1 | 2}]
 [-raidLevel {raid5 | raid10 | default}]
 [-stripSize {default | oneMeg | normal}]
 [-stripeWidth stripe-width]
<table>
<thead>
<tr>
<th>Parameters</th>
<th>Notes: Only the Primary Administrator and Administrator 1 roles can issue all command options and all roles can issue the (-list) option.</th>
</tr>
</thead>
<tbody>
<tr>
<td>-add</td>
<td>Creates a LUN in a Pillar Axiom system to efficiently partition (stripe) storage across multiple Bricks based on storage or performance priorities.</td>
</tr>
<tr>
<td>Valid options:</td>
<td></td>
</tr>
<tr>
<td>-name</td>
<td>Identifies the name that is assigned to a LUN for administrative purposes. LUN names must be unique across the Pillar Axiom system and must be 82 or fewer UTF characters, or 255 or fewer ASCII characters. You cannot use invalid characters such as ASCII 0 through 31 control codes or embedded tabs. You also cannot use special characters such as the slash (/) or backslash (), and dot (.) and dot-dot (..) by themselves.</td>
</tr>
<tr>
<td>-addressableCapacity</td>
<td>Identifies the addressable logical capacity of the LUN.</td>
</tr>
<tr>
<td>-allocatedCapacity</td>
<td>Defines the actual amount of storage that is assigned to a logical volume. An allocated capacity can grow to and possibly exceed by a small amount the addressable logical capacity.</td>
</tr>
<tr>
<td>-profile</td>
<td>Identifies the ID or fully qualified name (FQN) of the QoS performance profile that should be applied when creating</td>
</tr>
</tbody>
</table>
the LUN. When creating a new LUN, either the `-profile` option or the `-priority` option (not both), must be provided.

-priority
Identifies the QoS performance of the LUN.

Valid options:

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>premium</td>
<td>Highest processing queue priority. Striping occurs across eight serial ATA (SATA) RAID groups or four Fibre Channel (FC) RAID groups on the outermost 20% of the drive platters.</td>
</tr>
<tr>
<td>high</td>
<td>Next highest processing queue priority. Striping occurs across eight SATA RAID groups or four FC RAID groups on the outermost 20-40% of the drive platters.</td>
</tr>
<tr>
<td>medium</td>
<td>Intermediate processing queue priority. Striping occurs across six SATA RAID groups or three FC RAID groups on the outermost 40-60% of the drive platters.</td>
</tr>
<tr>
<td>low</td>
<td>Next to lowest processing queue priority. Striping occurs across four SATA RAID groups or two FC RAID groups on the outermost 60-80% of the drive platters.</td>
</tr>
<tr>
<td>archive</td>
<td>Lowest processing queue priority. Striping occurs across four SATA RAID groups or two FC RAID groups on the outermost 80-100% of the drive platters.</td>
</tr>
</tbody>
</table>

Note: The `-priority` option is mutually exclusive with `-profile`.

-redundancy
Identifies how many mirror copies of the original data are stored online. The default is 1 (standard).

Valid options:

1. Stores original data only. Data striping over multiple RAID groups maintains full redundancy, even without mirror copies.

 Note: Standard does not maintain redundancy at the LUN level; however, it does provide sufficient data protection for most purposes.

2. Stores original data and one mirror copy, with data striping over multiple RAID groups.

 Note: Double Redundancy can only provide true redundancy if your system has enough Bricks to allocate the LUN such that no two mirror copies share a RAID group.

-accessBias

Identifies the expected access pattern to the LUN.

Valid options:

- **sequential**

 Read and write requests from client applications tend to request operations on the data one record after the other.

- **random**

 Read and write requests from client applications tend to request operations on the data records in an arbitrary order.

- **mixed**

 Read and write requests from client applications tend to mix the request operations on the data sometimes in sequential and sometimes in random order.
-ioBias
Identifies the typical read-write ratio.

Valid options:

read
Most requests from client applications are for read operations.

write
Most requests from client applications are for write operations.

mixed
Requests from client applications are likely equal for read and write operations.

-cloneCapacity
Identifies the capacity that is allocated for Clone LUNs.

-volumeGroup
Identifies the volume group, where the LUN will reside. If you do not specify a volume group, the LUN is located in the root volume group.

-slammerNode
Identifies the Slammer CU to which the LUN is assigned. By default, the Pillar Axiom system selects the Slammer automatically.

If you do not specify this option, the Slammer name and control unit (CU) values are entered as . For example, /Slammer1/CU0 specifies Slammer1 and control unit 0. The CU value is not case sensitive and may be omitted entirely (for example, /Slammer1/0).

Note: If you specify the -slammerNode option, you can also specify the -slammerPorts option.

-maskedSlammerPorts
Restricts access to the LUN through the Slammer ports identified by port-name. If you do not specify this option, the LUN becomes accessible on all Slammer ports on the assigned CU by default.

The -maskedSlammerPorts option can only be specified along with the -slammerNode option.
If you do not specify this option, the Slammer name, CU, port number, and protocol values are entered as follows:

```
/slammer name/control unit/port number/(fc | iscsi)
```

For example, `/Slammer1/CU0/Port1/fc` specifies Slammer 1, CU 0, and Fibre Channel (FC) port 1.

The CU and port values are not case sensitive and can be omitted. For example, `/0/0/iscsi` specifies CU 0 and iSCSI port 0. You can specify up to 16 ports.

- **-unmapped**
 Causes the LUN to become unmapped at the global level.

- **-globalMapping**
 Maps the LUN globally to all hosts using the specified `lun-number`.

- **-fibreChannelAccess**
 Allows access to the new LUN through the FC ports. The `-noFibreChannelAccess` option disables FC access to the LUN. If neither option is specified, then the system uses the `-fibreChannelAccess` option by default.

- **-noFibreChannelAccess**
 Disables the FC access to the LUN.

- **-iscsiAccess**
 Allows access to the new LUN through the iSCSI ports. If you do not specify this option, the iSCSI access to the LUN is disabled.

- **-noIscsiAccess**
 Disables the iSCSI access to the LUN.

- **-storageDomain**
 Identifies the Storage Domain in which the LUN should be created. If this option is not provided, the system determines which Bricks contains the data.

- **-storageClass**
 Identifies the type of physical storage in which to assign to the LUN. If the Pillar Axiom system has two or more different Storage Classes, you must specify the Storage Class for the Pillar Axiom system to use.

Valid options:

- sataHd (Serial ATA hard drives)

- **fcHd** (Fibre Channel hard drives)
- **slcSsd** (single-layer cell, solid state drives)
- **mlcSsd** (multi-layer cell, solid state drives)

-active

Enables the LUN to be accessible and available for use.

-inactive

Disables the LUN from being accessible and available for use.

-copyPriority

Identifies the setting to use that controls the impact on performance when you need to copy or migrate data from one location to another.

Valid options:

- **auto**
 The system finds a compromise between completion rate and system performance.

- **low**
 The system takes its time to complete the copy and data migration without degrading overall system performance.

- **high**
 The system completes the copy or data migration as quickly as possible even if there is degradation of system performance.

If you do not specify any option, **auto** is the default value.

-allowConservativeMode

Allows the Pillar Axiom system to enter conservative mode for the specified LUN if a CU fails.

Caution

In conservative mode, data is written to disk before the write option completes (write through).

-suppressConservativeMode

Prevents the Pillar Axiom system from entering conservative mode for the specified LUN.
Caution

If a CU fails, the system does not enable write through. If the remaining CU fails, any data that has not been written to the Bricks is lost.

-modify

Modifies the addressable capacity, volume group, priority, or redundancy of an existing LUN. The parameters have the same meanings as `axiomcli lun -add` with the exception of the following options:

- **-lun**
 Identifies the name of the LUN to be modified.

- **-newName**
 Identifies the new name of the LUN.

- **-addressableCapacity**
 Identifies the addressable logical capacity of the LUN. This value cannot be smaller than the current addressable capacity of the LUN.

- **-allocatedCapacity**
 Defines the actual amount of storage that is assigned to a logical volume. An allocated capacity can grow to and possibly exceed by a small amount the addressable logical capacity.

- **-profile**
 Identifies the ID or fully qualified name (FQN) of the QoS performance profile that should be applied when creating the LUN. When creating a new LUN, either the `-profile` option or the `-priority` option (not both), must be provided.

- **-priority**
 Identifies the QoS priority of the LUN.

Valid options:

- **premium**
 Highest processing queue priority. Striping occurs across eight serial ATA (SATA) RAID groups or four Fibre Channel (FC) RAID groups on the
outermost 20% of the drive platters.

high

Next highest processing queue priority. Striping occurs across eight SATA RAID groups or four FC RAID groups on the outermost 20-40% of the drive platters.

medium

Intermediate processing queue priority. Striping occurs across six SATA RAID groups or three FC RAID groups on the outermost 40-60% of the drive platters.

low

Next to lowest processing queue priority. Striping occurs across four SATA RAID groups or two FC RAID groups on the outermost 60-80% of the drive platters.

archive

Lowest processing queue priority. Striping occurs across four SATA RAID groups or two FC RAID groups on the outermost 80-100% of the drive platters.

-migrateData

Migrates the LUN data to the new priority setting.

If you do not specify the **-migrateData** option, the data
migration will not occur.

The -priority setting will be considered as a temporary change until such a time it is reverted back to the original value, or a modify command is issued specifying -migrateData.

-redundancy
Identifies how many mirror copies of the original data are stored online. The default is 1 (standard).

Valid options:

1 Stores original data only. Data striping over multiple RAID groups maintains full redundancy, even without mirror copies.

 Note: Standard does not maintain redundancy at the LUN level; however, it does provide sufficient data protection for most purposes.

2 Stores original data and one mirror copy, with data striping over multiple RAID groups.

 Note: Double Redundancy can only provide true redundancy if your system has enough Bricks to allocate the LUN such that no two mirror copies share a RAID group.

-accessBias
Identifies the expected access pattern to the LUN.

Valid options:

sequential Read and write requests from client applications tend to request operations on the data one record after the other.
Read and write requests from client applications tend to request operations on the data records in an arbitrary order.

Read and write requests from client applications tend to mix the request operations on the data sometimes in sequential and sometimes in random order.

-ioBias
Identifies the typical read-write ratio.

Valid options:

- **read**
 Most requests from client applications are for read operations.

- **write**
 Most requests from client applications are for write operations.

- **mixed**
 Requests from client applications are likely equal for read and write operations.

-cloneCapacity
Identifies the capacity that is allocated for Clone LUNs.

-volumeGroup
Identifies the volume group, where the LUN will reside. If you do not specify a volume group, the LUN is located in the root volume group.

-slammerNode
Identifies the Slammer CU to which the LUN is assigned. By default, the Pillar Axiom system selects the Slammer automatically.

If you do not specify this option, the Slammer name and control unit (CU) values are entered as follows:

/slammer-name/control-unit
For example, /Slammer1/CU0 specifies Slammer1 and control unit 0. The CU value is not case sensitive and may be omitted entirely (for example, /Slammer1/0).

Note: If you specify the `-slammerNode` option, you must also specify the `-slammerPorts` option.

- **-unmapped**
 Causes the LUN to become unmapped at the global level.

- **-globalMapping**
 Maps the LUN globally to all hosts using the specified lun-number.

- **-fibreChannelAccess**
 Allows access to the new LUN through the FC ports. The `-noFibreChannelAccess` option disables FC access to the LUN. If neither option is specified, then the system uses the `-fibreChannelAccess` option by default.

- **-noFibreChannelAccess**
 Disables the FC access to the LUN.

- **-iscsiAccess**
 Allows access to the new LUN through the iSCSI ports. If you do not specify this option, the system by default disables the iSCSI access to the LUN.

- **-noIscsiAccess**
 Disables the iSCSI access to the LUN.

- **-maskedSlammerPorts**
 Restricts access to the LUN through the Slammer ports identified by port-name. If you do not specify this option, the LUN becomes accessible on all Slammer ports on the assigned CU by default.

 The `-maskedSlammerPorts` option can only be specified along with the `-slammerNode` option.

 If you do not specify this option, the Slammer name, CU, port number, and protocol values are entered as follows:

 ./slammer name/control unit/port number/

 For example, /Slammer1/CU0/Port1/fc specifies Slammer1, CU 0, and Fibre Channel (FC) Port 1.

 The CU and port values are not case sensitive and can be omitted. For example, /0/0/iscsi specifies CU 0 and iSCSI port 0. You can specify up to 16 ports.
- **storageDomain**
 Identifies the Storage Domain in which the LUN should be created. If this option is not provided, the system determines which Bricks will contain the data.

- **storageClass**
 Identifies the type of physical storage in which to assign to the LUN. If the Pillar Axiom system has two or more different Storage Classes, you must specify the Storage Class for the Pillar Axiom system to use.
 Valid options:
 - sataHd (Serial ATA hard drives)
 - fcHd (Fibre Channel hard drives)
 - slcSsd (single-layer cell, solid state drives)
 - mlcSsd (multi-layer cell, solid state drives)

- **active**
 Enables the LUN to be accessible and available for use.

- **inactive**
 Disables the LUN from being accessible and available for use.

- **copyPriority**
 Identifies the setting to use that controls the impact on performance when you need to copy or migrate data from one location to another.
 Valid options:
 - auto
 The system finds a compromise between completion rate and system performance.
 - low
 The system takes its time to complete the copy and data migration without degrading overall system performance.
 - high
 The system completes the copy or data migration as quickly as possible even if there is degradation of system performance.

If you do not specify any option, **auto** is the default value.
-allowConservativeMode
Allows the Pillar Axiom system to enter conservative mode for the specified LUN if a CU fails.

⚠️ Caution
In conservative mode, data is written to disk before the write option completes (write through).

-suppressConservativeMode
Prevents the Pillar Axiom system from entering conservative mode for the specified LUN.

⚠️ Caution
If a CU fails, the system does not enable write through. If the remaining CU fails, any data that has not been written to the Bricks is lost.

-clearLossOfSync
Clears the loss of synchronization on the specified LUN.

-clearLostData
Clears any lost data from the specified LUN.

-clearPinnedData
Clears any pinned data on the specified LUN.

-rebuildRedundancy
Rebuilds redundancy on the specified LUN.

-copy
Creates a copy of a LUN. The parameters have the same meanings as `axiomcli lun -add`. If you do not specify any of the valid options, the value of the source LUN's option will be used.

Note: The Administrator 2 role can also issue this command option.

Valid options:
- **-source**
 Identifies the source LUN.

- **-name**
 Identifies the name for the LUN copy.

- **-addressableCapacity**
Identifies the addressable logical capacity of the LUN. This value cannot be smaller than the current addressable capacity of the LUN.

-profile

Identifies the ID or fully qualified name (FQN) of the QoS performance profile that should be applied when creating the LUN. When creating a new LUN, either the `-profile` option or the `-priority` option (not both), must be provided.

-priority

Identifies the QoS priority of the LUN.

Valid options:

- **premium**: Highest processing queue priority. Striping occurs across eight serial ATA (SATA) RAID groups or four Fibre Channel (FC) RAID groups on the outermost 20% of the drive platters.

- **high**: Next highest processing queue priority. Striping occurs across eight SATA RAID groups or four FC RAID groups on the outermost 20-40% of the drive platters.

- **medium**: Intermediate processing queue priority. Striping occurs across six SATA RAID groups or three FC RAID groups on the outermost 40-60% of the drive platters.

- **low**: Next to lowest processing queue priority. Striping occurs across four SATA RAID groups or two FC RAID groups on the outermost 60-80% of the drive platters.

- **archive**: Lowest processing queue priority. Striping occurs across four SATA RAID groups or...
two FC RAID groups on the outermost 80-100% of the drive platters.

The -priority setting will be considered as a temporary change until such a time it is reverted back to the original value, or a modify command is issued specifying -migrateData.

-redundancy
Identifies how many mirror copies of the original data are stored online. The default is 1 (standard).

Valid options:

1
Stores original data only. Data striping over multiple RAID groups maintains full redundancy, even without mirror copies.

Note: Standard does not maintain redundancy at the LUN level; however, it does provide sufficient data protection for most purposes.

2
Stores original data and one mirror copy, with data striping over multiple RAID groups.

Note: Double Redundancy can only provide true redundancy if your system has enough Bricks to allocate the LUN such that no two mirror copies share a RAID group.

-accessBias
Identifies the expected access pattern to the LUN.

Valid options:

sequential
Read and write requests from client applications tend to request operations on the data one record after the other.
random
Read and write requests from client applications tend to request operations on the data records in an arbitrary order.

mixed
Read and write requests from client applications tend to mix the request operations on the data sometimes in sequential and sometimes in random order.

-ioBias
Identifies the typical read-write ratio.
Valid options:
read
Most requests from client applications are for read operations.
write
Most requests from client applications are for write operations.
mixed
Requests from client applications are likely equal for read and write operations.

-allocatedCapacity
Defines the actual amount of storage that is assigned to a logical volume. An allocated capacity can grow to and possibly exceed by a small amount the addressable logical capacity.

-cloneCapacity
Identifies the capacity that is allocated for Clone LUNs.

-volumeGroup
Identifies the volume group, where the LUN will reside. If you do not specify a volume group, the LUN is located in the root volume group.

-unmapped
Causes the LUN to become unmapped at the global level.

-globalMapping
Maps the LUN globally to all hosts using the specified lun-number.

-fibreChannelAccess
Allows access to the new LUN through the FC ports. The -noFibreChannelAccess option disables FC access to the LUN. If neither option is specified, then the system uses the -fibreChannelAccess option by default.

-noFibreChannelAccess
Disables the FC access to the LUN.

-iscsiAccess
Allows access to the new LUN through the iSCSI ports. If you do not specify this option, the system by default disables the iSCSI access to the LUN.

-noIscsiAccess
Disables the iSCSI access to the LUN.

-maskedSlammerPorts
Restricts access to the LUN through the Slammer ports identified by port-name. If you do not specify this option, the LUN becomes accessible on all Slammer ports on the assigned CU by default.

The -maskedSlammerPorts option can only be specified along with the -slammerNode option.

If you do not specify this option, the Slammer name, CU, port number, and protocol values are entered as (fc | iscsi).

For example, /Slammer1/CU0/Port1/fc specifies Slammer1, CU 0, and Fibre Channel (FC) Port 1.

The CU and port values are not case sensitive and can be omitted. For example, /0/0/iscsi specifies CU 0 and iSCSI port 0. You can specify up to 16 ports.

-storageDomain
Identifies the Storage Domain in which the LUN should be created. If this option is not provided, then the Pillar Axiom system determines which Bricks will contain the data.

-storageClass
Identifies the type of physical storage in which to assign to the LUN. If the Pillar Axiom system has two or more different Storage Classes, you must specify the Storage Class for the Pillar Axiom system to use.

Valid options:
■ sataHd (Serial ATA hard drives)
■ fcHd (Fibre Channel hard drives)
■ slcSsd (single-layer cell, solid state drives)
■ mlcSsd (multi-layer cell, solid state drives)

-**active**
Enables the LUN to be accessible and available for use.

-**inactive**
Disables the LUN from being accessible and available for use.

-**copyPriority**
Identifies the setting to use that controls the impact on performance when you need to copy or migrate data from one location to another.

Valid options:

- **auto**
The system finds a compromise between completion rate and system performance.

- **low**
The system takes its time to complete the copy and data migration without degrading overall system performance.

- **high**
The system completes the copy or data migration as quickly as possible even if there is degradation of system performance.

If you do not specify any option, **auto** is the default value.

- **allowConservativeMode**
Allows the Pillar Axiom system to enter conservative mode for the specified LUN if a CU fails.

 Caution
 In conservative mode, data is written to disk before the write option completes (write through).

- **suppressConservativeMode**
Prevents the Pillar Axiom system from entering conservative mode for the specified LUN.
Caution

If a CU fails, the system does not enable write through. If the remaining CU fails, any data that has not been written to the Bricks is lost.

-delete

Deletes one or more SAN LUNs. If the LUN has clones or is mapped to a host or hostGroup, the system displays a warning that deleting the LUN also deletes any associated clones and host or group mappings of the LUN.

If you specify the `-suppressWarnings` option, the warning message does not display. If you do not specify the `-suppressWarnings` option, the warning message displays, and you are prompted to confirm the deletion of the LUN and all of its clones and mappings.

Valid options:

- `-lun`
 Identifies the source LUN of the clones to be deleted.

- `-suppressWarnings`
 Suppresses the warning that all LUN clones and host or hostGroup mappings will be deleted. If you do not specify the `-suppressWarnings` option, the system displays a message to confirm the deletion of the clones and mappings.

-cloneDelete

Deletes all of the Clone LUNs of the specified LUN. Only the complete Clone LUN hierarchy of the LUN will be deleted; the specified source LUN will not be deleted.

Valid options:

- `-lun`
 Identifies the source LUN of the clones to be deleted.

- `-suppressWarnings`
 Suppresses the warning that all clones of the LUN will be deleted. If you do not specify the `-suppressWarnings` option, the system displays a message displaying to confirm the deletion of the LUN and all of its clones.

-maximumCapacity

Identifies the maximum capacity allocated to a logical volume. The parameters for this option use the same definitions as the `-add` option. The options that are not
required will be set to default settings, where the
-stripeWidth option will have a default value of 999.

Valid options:

-storagedomain
Identifies the Storage Domain in which the LUN should be
created. If this option is not provided, then the Pillar Axiom
system determines which Bricks will contain the data.

-priority
Identifies the QoS performance of the LUN.

Valid options:

premium

Highest processing queue priority. Striping occurs across
eight serial ATA (SATA) RAID
groups or four Fibre Channel
(FC) RAID groups on the
outermost 20% of the drive
platters.

high

Next highest processing
queue priority. Striping occurs
across eight SATA RAID
groups or four FC RAID
groups on the outermost
20-40% of the drive
platters.

medium

Intermediate processing
queue priority. Striping occurs
across six SATA RAID
groups or three FC RAID
groups on the outermost
40-60% of the drive
platters.

low

Next to lowest processing
queue priority. Striping occurs
across four SATA RAID
groups or two FC RAID
groups on the outermost
60-80% of the drive
platters.

archive

Lowest processing queue
priority. Striping occurs across
four SATA RAID groups or
two FC RAID groups on the
outermost 80-100% of the drive platters.

-redundancy
Identifies how many mirror copies of the original data are stored online. The default is 1 (standard).

Valid options:

1
Stores original data only. Data striping over multiple RAID groups maintains full redundancy, even without mirror copies.

Note: Standard does not maintain redundancy at the LUN level; however, it does provide sufficient data protection for most purposes.

2
Stores original data and one mirror copy, with data striping over multiple RAID groups.

Note: Double Redundancy can only provide true redundancy if your system has enough Bricks to allocate the LUN such that no two mirror copies share a RAID group.

-raidLevel
Specifies the RAID level to use for the profile. If unspecified, then the default option is assumed.

-stripSize
Specifies the strip size. OneMeg specifies 1024 KB for Oracle Automatic Storage Management (ASM) applications. Normal corresponds to 64 KB for FC Bricks, or 128 KB for SATA or SSD Bricks.

-stripeWidth
Specifies the RAID stripe width size. Valid values are 1 through 64. A value of 999 is a default value. If you do not specify the -stripeWidth option, the system uses the default value.
-enableBrickWideStriping
Enables data striping across a Brick LUNs. If not provided, the system uses the -disableBrickWideStriping option.

-storageClass
Identifies the type of physical storage in which to assign to the LUN. If the Pillar Axiom system has two or more different Storage Classes, you must specify the Storage Class for the Pillar Axiom system to use.

Valid options:
- sataHd (Serial ATA hard drives)
- fcHd (Fibre Channel hard drives)
- slcSsd (single-layer cell, solid state drives)
- mlcSsd (multi-layer cell, solid state drives)

-list
Displays the information of all LUNs configured on a Pillar Axiom system.

Valid options:
- details
Displays the configuration details of each LUN. If you do not specify this option, the system displays the FQN of each LUN.

-bs
Displays information about the underlying VLUNs associated with the SAN LUNs.

If you specify the -bs option, you must also specify the -details option.

Note: Only the Primary Administrator, Administrator 1, Pillar Support, and Support roles can issue the -bs command option.

-lun
Displays information for the specified SAN LUN.

If you do not specify -lun or -volumeGroup options, the system displays information for all LUNs configured on the system.

-volumeGroup
Displays all the LUNs associated with the specified volume group.
If you do not specify -lun or -volumeGroup options, the system displays information for all LUNs configured on the system.

-help

Displays the detailed command help information.

EXAMPLE

Run `lun` to add a LUN:

```
axiomcli lun -add -name newLun -addressableCapacity 100
-priority medium -storageClass fcHd
```

Results:

```
NewObject
    Id : 4130303132343042A10498594DBDDF3B
    Fqn : /demLUN
```
pilot

DESCRIPTION Displays information about the Pilots on a Pillar Axiom system.

Use the `pilot` command either to display information about the Pilot hardware or force a failover of the Pilot.

If the standby Pilot CU is available, then this command causes a Pilot CU failover to the standby Pilot CU, whether or not the customer external network connected to the standby Pilot CU is available.

Before running this command, ping the passive Pilot CU IP address to verify that the Pilot CU is available. If the standby Pilot CU is not available, the active Pilot CU reboots rather than force a failure. In either case, whether the standby Pilot CU is available or not, the system displays a status of booting but data access is not affected. The system restarts the Pilot CU and returns the normal status without affecting the operational state of the Slammers. Before running this command, check for running tasks. Do not use this command to terminate running tasks unless advised to do so by the Oracle Pillar Customer Support.

The Support role can trigger a failover of the active Pilot.

You can use the `-verify` option to test the command-line argument and its options before running it in Pillar Axiom CLI. If no errors exist, the Pillar Axiom CLI command returns without executing. For example, the `-verify` option is helpful when writing scripts in which a particular Pillar Axiom CLI command usage can be verified prior to adding it to a script.

You can use the `-outputformat` or the `-o` command option to specify how to display the results of running a command. If you do not specify either the `-outputformat` or the `-o` command option, the results display in the default text format. Valid options:

- **text** The system displays the results in the plain-text format.
- **xml** The system displays the results in the tagged XML format.

You can use the `-sessionKey` option to specify which Pillar Axiom system to access and which session key value to use for validation. The Pillar Axiom CLI displays the session key value when you log in to the Pillar Axiom system using the `-returnKey` option.

You can use the `-timeout` option to set a time limit for the execution of a command. If the command takes longer than the number of seconds specified in the `-timeout` option, the system stops executing the command. If you do...
not specify the `-timeout` option, the system does not set any time limit for executing the command.

SYNTAX

```bash
axiomcli pilot -list [-details]
    [-verify]
    [{-outputformat | -o} {text | xml}]
    [-sessionKey session-key]
    [-timeout timeout-in-seconds]

axiomcli pilot -forceFailover
    [-verify]
    [{-outputformat | -o} {text | xml}]
    [-sessionKey session-key]
    [-timeout timeout-in-seconds]

axiomcli pilot -serverHealthCheck
    [-verify]
    [{-outputformat | -o} {text | xml}]
    [-sessionKey session-key]
    [-timeout timeout-in-seconds]

axiomcli pilot -sendInfoToSan
    [-verify]
    [{-outputformat | -o} {text | xml}]
    [-sessionKey session-key]
    [-timeout timeout-in-seconds]

axiomcli pilot -help
```

PARAMETERS

Note: All roles can issue the `-list` command option.

- `-list`

 Displays information about the Pillar Axiom Pilot.

- `-forceFailover`

 Forces the currently active Pilot control unit (CU) to fail over to the passive CU. The passive CU then becomes the active CU.

 Note: Only the Pillar Support and Support roles can issue this command option.

- `-serverHealthCheck`

 Checks the health of the Pilot configuration server.

 Note: Only the Pillar Support and Support roles can issue this command option.

- `-sendInfoToSan`

 Sends Pilot information to the SAN system. The IP address is included in the information sent.
Note: Only the Primary Administrator and Administrator 1 roles can issue this command option.

-help

Displays the detailed command help information.

EXAMPLE

Run the `axiomcli pilot -list` command to display information about the Pilot hardware component in your system:

```
axiomcli pilot -list
```

Results:

```
Pilot

HardwareComponentStatus : NORMAL
PilotControlUnitName : PILOT_1
OperationMode : STANDBY
HardwareComponentStatus : NORMAL
EnclosureAssemblyNumber : 1030-00002-20
EnclosureDescription : Axiom 1U-Pilot
EnclosureSerialNumber : No Enclosure
FruAssemblyNumber : 1450-00164-20
FruDescription : Pilot
SerialNumber : NC016461060078
PilotOs :
2070-00001-050000-031500
PilotSoftware :
2073-00001-050000-031800

Pilot

HardwareComponentStatus : NORMAL
PilotControlUnitName : PILOT_2
OperationMode : ACTIVE
HardwareComponentStatus : NORMAL
EnclosureAssemblyNumber : 1030-00002-20
EnclosureDescription : Axiom 1U-Pilot
EnclosureSerialNumber : No Enclosure
FruAssemblyNumber : 1450-00164-20
FruDescription : Pilot
SerialNumber : NC016461060079
PilotOs :
2070-00001-050000-031500
PilotSoftware :
2073-00001-050000-031800
```
profile

DESCRIPTION

Creates and manages new storage profiles that determine the Quality of Service (QoS) for logical volumes.

A storage profile can be utilized to adjust any of the available settings in the system. An application profile is a set of storage profiles utilized to create multiple logical volumes to support a given application. Each logical volume to be created for the application has an associated storage profile.

Use the `profile` command to manage storage profiles on a Pillar Axiom system.

You can use the `-verify` option to test the command-line argument and its options before running it in Pillar Axiom CLI. If no errors exist, the Pillar Axiom CLI command returns without executing. For example, the `-verify` option is helpful when writing scripts in which a particular Pillar Axiom CLI command usage can be verified prior to adding it to a script.

You can use the `-outputformat` or the `-o` command option to specify how to display the results of running a command. If you do not specify either the `-outputformat` or the `-o` command option, the results display in the default text format. Valid options:

- **text** The system displays the results in the plain-text format.
- **xml** The system displays the results in the tagged XML format.

You can use the `-sessionKey` option to specify which Pillar Axiom system to access and which session key value to use for validation. The Pillar Axiom CLI displays the session key value when you log in to the Pillar Axiom system using the `-returnKey` option.

You can use the `-timeout` option to set a time limit for the execution of a command. If the command takes longer than the number of seconds specified in the `-timeout` option, the system stops executing the command. If you do not specify the `-timeout` option, the system does not set any time limit for executing the command.

SYNTAX

```
axiomcli profile -add -name profile-name
  -priority {premium | high | medium | low | archive}
  [-redundancy {1 | 2}]
  [-accessBias {sequential | random | mixed}]
  [-ioBias {read | write | mixed}]
  [-raidLevel {raid5 | raid10 | default}]
  [-stripSize {oneMeg | normal}]
  [-stripeWidth stripe-width]
[{-enableBrickWideStriping |}
```
axiomcli profile -delete -profile profile-id-or-fqn
 [, profile-id-or-fqn]...
 [-verify]
 [{–outputformat | -o} {text | xml}]
 [-sessionKey session-key]
 [-timeout timeout-in-seconds]

axiomcli profile -list [-profile profile-id-or-fqn]
 [, profile-id-or-fqn]... [-details]
 [-verify]
 [{–outputformat | -o} {text | xml}]
 [-sessionKey session-key]
 [-timeout timeout-in-seconds]

axiomcli profile -help

PARAMETERS

Note: Only the Primary Administrator, Administrator 1, Pillar Support, and Support roles can issue all command options.

All roles can issue the -list command option.

-add

Creates a new performance profile, which can be used later when creating logical volumes.

Valid options:

-name

Identifies the name for the performance profile.

-priority

Determines how much of the system resources are devoted to the volume. Valid options:

Premium

Highest processing queue priority. Striping occurs across eight serial ATA (SATA) RAID groups or four Fibre Channel (FC) RAID groups on the outermost 20% of the drive platters.

High

Next highest processing queue priority. Striping occurs across eight SATA
RAID groups or four FC RAID groups on the outermost 20-40% of the drive platters.

Medium
Intermediate processing queue priority. Striping occurs across six SATA RAID groups or three FC RAID groups on the outermost 40-60% of the drive platters.

Low
Next to lowest processing queue priority. Striping occurs across four SATA RAID groups or two FC RAID groups on the outermost 60-80% of the drive platters.

Archive
Lowest processing queue priority. Striping occurs across four SATA RAID groups or two FC RAID groups on the outermost 80-100% of the drive platters.

-redundancy
Identifies how many mirror copies (1 or 2) of the original data are stored online. The default is 1.

Valid options:

Standard
Stores original data only. Data striping over multiple RAID groups maintains full redundancy, even without mirror copies.

Note: Standard does not maintain redundancy at the LUN level; however, it does provide sufficient data protection for most purposes.

Double
Stores original data and one mirror copy, with data striping over multiple RAID groups.
Note: Double Redundancy can only provide true redundancy if your system has enough Bricks to allocate the filesystem or LUN such that no two mirror copies share a RAID group.

- **accessBias**
 Identifies the expected access pattern for the profile.
 Valid options:
 - **sequential**
 Read and write requests from client applications tend to request operations on the data one record after the other.
 - **random**
 Read and write requests from client applications tend to request operations on the data records in an arbitrary order.
 - **mixed**
 Read and write requests from client applications tend to mix the request operations on the data sometimes in sequential and sometimes in random order.

- **ioBias**
 Identifies the typical read-write ratio.
 Valid options:
 - **read**
 Most requests from client applications are for read operations.
 - **write**
 Most requests from client applications are for write operations.
 - **mixed**
 Requests from client applications are likely equal
-raidLevel
Identifies the RAID levels to use for the profile.
Valid options:

raid5 Uses standard redundancy allocation.
raid10 Uses standard redundancy allocation for random write bias QoS.
default Uses RAID 5 or RAID 10 depending on the QoS settings.
If you do not specify this option, the system assigns the default value.

-stripSize
Identifies the number of contiguous bytes in each block of data written to the drives. Valid options:

oneMeg Used for the Oracle Automatic Storage Management (ASM) Storage Profile. These strips are 1024 KB (1 MB) in size.

normal The number of bytes in the strip depends on the type of media contained within a Brick:
- 64 KB for Fibre Channel (FC) media
- 128 KB for serial ATA (SATA) media
- 128 KB for solid-state drive (SSD) media

-stripeWidth
Identifies the number of drives over which the data will be written. Valid values are 1 through 64. A value of 999 is
the default value. If you do not specify any value, the system uses the default value (999).

-enableBrickWideStriping
Indicates whether data striping across Brick LUNs is enabled. By default, striping is disabled.

-disableBrickWideStriping
Indicates whether data striping across Brick LUNs is disabled.

-readAhead
Indicates the read-ahead settings to use for the profile. The settings adjust the amount of additional data that is read into cache. Valid options:

Valid options:

- **default**
 Reads beyond the requested data and puts the additional data into cache.

- **normal**
 Reads only the requested data. No additional data is put into cache.

- **aggressive**
 Reads large extents of the cached data.

- **conservative**
 Writes data to physical storage in full stripe extents. Data is retained in cache for a shorter period of time.

If you do not specify this option, the system assigns the default value, which is based on the **-accessBias** and **-ioBias** options.

-writeCache
Identifies the write caching rules to use for the profile. Valid options:

- **writeThrough**
 Writes data to the Slammer cache and on the Bricks before the
writeBack

Writes data to the Slammer cache, and the write request returns immediately. During idle cycles, the system writes the data from the cache to the Bricks. Write-back caching performs faster because the data only needs to be written to the cache prior to returning from the write call.

Important! If the system crashes, the data in the cache that has not been written to the Bricks might be lost.

If you do not specify this option, the system assigns a default value.

-storageClass
Identifies an ordered list of one or more Storage Class values for the profile.

Valid options:
- sataHd (Serial ATA hard drives)
- fcHd (Fibre Channel hard drives)
- **slcSsd** (single-layer cell, solid state drives)

-delete

Deletes an existing performance profile. The `-profile` option specifies the ID or fully qualified name (FQN) of the profile to be deleted.

-list

Displays one or all performance profiles.

Valid options:

- **-profile**
 Identifies the ID or FQN of one or more profiles to display. If option is not provided, then all profiles will be displayed.

- **-details**
 Displays all of the settings for a given profile. If option is not provided, then just the profile name is displayed.

-help

Displays the detailed command help information.

EXAMPLE

Run `profile -list` to display a list of performance profiles:

```
axiomcli profile -list
```

Results:

```
/Web Files
/OracleDB: DB Tables
/MSSQL: TPCC Data
/Xen: Application
/Xen: Swap Space
/OracleDB: DB Temp Files
/Xen: Operating System
/OracleDB: Online Redo Logs
/Backup: VTL Data
/MSSQL: Temp DB
/MSSQL: System DB
/OracleUCM: Backup and Recovery
/OracleDB: Archive Logs
/Backup: Disk to Disk
/Oracle ASM
/OracleUCM: Redo Log Group
/Backup: SIR Data
/OracleUCM: Web Viewable Repository
/OracleUCM: Search Index Table Space
/Backup: SIR Scratch
/MSSQL: Backup Files
/OracleUCM: Native File Repository
/MSXchg: Database
/OracleDB: Control Files
```

/Performance Benchmark
/General Purpose
/MSSQL: TPCC Logs
/MSXchg: Transaction Logs
/OracleDB: DB Index
/Generic Logs
/MSSQL: Quorum Disk
/Streaming Media
/MSXchg: SMTP-MTA Queue
DESCRIPTION
Generated reports provide listings of configuration details and statistical information about your system that you can download to your client from the Pillar Axiom system in various formats.

Use the `report` command to generate predefined statistical reports, download reports to your client, delete reports, or provide a listing of generated reports.

You can use the `-verify` option to test the command-line argument and its options before running it in Pillar Axiom CLI. If no errors exist, the Pillar Axiom CLI command returns without executing. For example, the `-verify` option is helpful when writing scripts in which a particular Pillar Axiom CLI command usage can be verified prior to adding it to a script.

You can use the `-outputformat` or the `-o` command option to specify how to display the results of running a command. If you do not specify either the `-outputformat` or the `-o` command option, the results display in the default text format. Valid options:

- **text** The system displays the results in the plain-text format.
- **xml** The system displays the results in the tagged XML format.

You can use the `-sessionKey` option to specify which Pillar Axiom system to access and which session key value to use for validation. The Pillar Axiom CLI displays the session key value when you log in to the Pillar Axiom system using the `-returnKey` option.

You can use the `-timeout` option to set a time limit for the execution of a command. If the command takes longer than the number of seconds specified in the `-timeout` option, the system stops executing the command. If you do not specify the `-timeout` option, the system does not set any time limit for executing the command.

SYNTAX

```
axiomcli report -generate
    -type {system | storageUse | volumeUse |
    performance
        | sanHosts | systemSummary
    ]
    [-verify]
    [{-outputformat | -o} {text | xml}]
    [-sessionKey session-key]
    [-timeout timeout-in-seconds]

axiomcli report -delete
    [-report report-id-or-fqn
    [, report-id-or-fqn]...]
```
[-verify]
[/-outputformat | -o] {text | xml}]
[-sessionKey session-key]
[-timeout timeout-in-seconds]

axiomcli report -list [-report report-id-or-fqn
[,
report-id-or-fqn]...][-details]
[-verify]
[/-outputformat | -o] {text | xml}]
[-sessionKey session-key]
[-timeout timeout-in-seconds]

axiomcli report -download [-report report-id-or-fqn]
[/-file download-file]
[-format {pdf | xml | csv | excel | html}]
[-verify]
[/-outputformat | -o] {text | xml}]
[-sessionKey session-key]
[-timeout timeout-in-seconds]

axiomcli report -help

PARAMETERS

Note: Only the Primary Administrator and Administrator 1 roles can issue all command options.

All roles can issue the -list command option.

-generate

Generates a specific type of report to be stored on the Pillar Axiom system for download to your client in the format of your choice.

Valid options:

type

Specifies the type of report to generate.

Valid options:

- sanHosts
- performance
- storageUse
- volumeUse
- system
- systemSummary

-delete

Deletes the specified report.

Valid options:

-report
Specifies the ID or FQN of the report to delete. If you do not provide this option, the system deletes the most recently created report.

-list

Displays a listing of reports that have been generated and are available for download.

Valid options:
- **-report**
 Specifies the ID or FQN of the report to display. If you do not provide this option, the system displays all of the generated reports.

-download

Downloads a report from the Pillar Axiom system to your client in the format of your choice.

Note: The Pillar Support and Support roles can also issue this command option.

Valid options:
- **-report**
 Specifies the ID or FQN of the report to download. If you do not provide this option, the system downloads the most recently generated report.
- **-file**
 Identifies the path and filename for the downloaded report. If no filename is provided, the report is stored as `axiomreport.<extension>`, where `.` is the default extension for the format of the file specified in the **-format** option (pdf, xml, csv, xls, or html).
- **-format**
 Identifies the format for the downloaded report.

Valid options:
- csv
- excel
- html
- pdf
- xml

If you do not specify the **-format** option, the default report format is pdf.
Appendix B Pillar Axiom CLI Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-help</td>
<td>Displays the detailed command help information.</td>
</tr>
</tbody>
</table>

EXAMPLE

Run the `axiomcli report -generate` command option to generate a system report:

```
axiomcli report -generate -type system
```

Results:

<table>
<thead>
<tr>
<th>NewObject</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Id</td>
<td>4130303132363742A13D012B1B55226A</td>
</tr>
<tr>
<td>Fqn</td>
<td>/</td>
</tr>
<tr>
<td>System</td>
<td>SystemConfiguration_1284653778934</td>
</tr>
<tr>
<td>Command Succeeded</td>
<td></td>
</tr>
</tbody>
</table>

Appendices

- **Appendix B**
- **Appendix C**

Report 215
san

DESCRIPTION
Displays SAN protocol statistics for both iSCSI and Fibre Channel protocols.

Use the `san` command to display information about the SAN objects that are configured on your system.

You can use the -verify option to test the command-line argument and its options before running it in Pillar Axiom CLI. If no errors exist, the Pillar Axiom CLI command returns without executing. For example, the -verify option is helpful when writing scripts in which a particular Pillar Axiom CLI command usage can be verified prior to adding it to a script.

You can use the -outputformat or the -o command option to specify how to display the results of running a command. If you do not specify either the -outputformat or the -o command option, the results display in the default text format. Valid options:

- **text** The system displays the results in the plain-text format.
- **xml** The system displays the results in the tagged XML format.

You can use the -sessionKey option to specify which Pillar Axiom system to access and which session key value to use for validation. The Pillar Axiom CLI displays the session key value when you log in to the Pillar Axiom system using the -returnKey option.

You can use the -timeout option to set a time limit for the execution of a command. If the command takes longer than the number of seconds specified in the -timeout option, the system stops executing the command. If you do not specify the -timeout option, the system does not set any time limit for executing the command.

SYNTAX

```
axiomcli san -list [-details]
    [-verify]
    [{-outputformat | -o} {text | xml}]
    [-sessionKey session-key]
    [-timeout timeout-in-seconds]

axiomcli san -panic {-enable | -disable}
    [-verify]
    [{-outputformat | -o} {text | xml}]
    [-sessionKey session-key]
    [-timeout timeout-in-seconds]

axiomcli san -help
```
PARAMETERS

Note: All roles can issue the `-list` command option.

Only the Pillar Support role can issue the `-panic` command option.

- **-list**

 Displays the SAN storage configuration of the Pillar Axiom system.

- **-panic**

 Enables or disables the SAN Panic feature. Enabling the panic feature allows SAN to panic when a vendor-unique SCSI command (Panic CDB) is received. The vendor-unique SCSI command is sent when data do not compare or when other errors are detected. If the panic feature is disabled, SAN ignores the vendor-unique SCSI command and returns good status or rejects the vendor-unique SCSI command as an illegal code.

 Note: Only the Pillar Support and Support roles can issue the `-panic` command option.

- **-help**

 Displays the detailed command help information.

EXAMPLE

Run the `axiomcli san -list` command to display information about the SAN objects that are configured on your system:

```
axiomcli san -list
```

Results:

<table>
<thead>
<tr>
<th>TotalSanStorageUsage</th>
<th>PhysicalUsedCapacity : 484</th>
</tr>
</thead>
<tbody>
<tr>
<td>PhysicalAllocatedCapacity</td>
<td>484</td>
</tr>
<tr>
<td>PhysicalMaximumCapacity</td>
<td>484</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LunUsage</th>
<th>NumberOfLuns : 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>UsedCapacity</td>
<td>402</td>
</tr>
<tr>
<td>AllocatedCapacity</td>
<td>402</td>
</tr>
<tr>
<td>AddressableCapacity</td>
<td>402</td>
</tr>
<tr>
<td>MaximumCapacity</td>
<td>402</td>
</tr>
<tr>
<td>PhysicalUsedCapacity</td>
<td>484</td>
</tr>
<tr>
<td>PhysicalAllocatedCapacity</td>
<td>484</td>
</tr>
<tr>
<td>PhysicalMaximumCapacity</td>
<td>484</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CloneLunUsage</th>
<th>NumberOfCloneLuns : 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>PhysicalUsedCloneCapacity</td>
<td>0</td>
</tr>
<tr>
<td>PhysicalAllocatedCloneCapacity</td>
<td>0</td>
</tr>
<tr>
<td>PhysicalMaximumCloneCapacity</td>
<td>0</td>
</tr>
</tbody>
</table>
san_host

DESCRIPTION
Manages the storage area network (SAN) hosts defined on a Pillar Axiom system. You can modify and view host settings, and delete host names. If you have SAN hosts that access the LUNs using HP-UX initiator ports and HP Host Bus Adapters (HBAs), you can enable the HP-UX option.

You can use the -verify option to test the command-line argument and its options before running it in Pillar Axiom CLI. If no errors exist, the Pillar Axiom CLI command returns without executing. For example, the -verify option is helpful when writing scripts in which a particular Pillar Axiom CLI command usage can be verified prior to adding it to a script.

You can use the -outputformat or the -o command option to specify how to display the results of running a command. If you do not specify either the -outputformat or the -o command option, the results display in the default text format. Valid options:

- **text**: The system displays the results in the plain-text format.
- **xml**: The system displays the results in the tagged XML format.

You can use the -sessionKey option to specify which Pillar Axiom system to access and which session key value to use for validation. The Pillar Axiom CLI displays the session key value when you log in to the Pillar Axiom system using the -returnKey option.

You can use the -timeout option to set a time limit for the execution of a command. If the command takes longer than the number of seconds specified in the -timeout option, the system stops executing the command. If you do not specify the -timeout option, the system does not set any time limit for executing the command.

SYNTAX
```
axiomcli san_host -add -name sanhost-name
[{-hpuxCompatibility | -noHpuxCompatibility}]
[{-iscsiAccessControl | -noIscsiAccessControl}]
{-iscsiAuthentication
  -chapName chap-name
  -chapPassword chap-password
  -retypeChapPassword chap-password
  | -noIscsiAuthentication
}
]
{ -fcInitiatorPort fcinitiatorport-wwn[/fcinitiatorport-alias]
  [, fcinitiatorport-wwn[/fcinitiatorport-alias] ]...
  [-iscsiInitiatorPort iscsi-initiator-name[/iscsi-initiatorport-alias]
  | -noIscsiInitiatorPort]
```
axiomcli san_host -modify -sanhost sanhost-id-or-fqn

[-name new-sanhost-name]

[{-hpuxCompatibility | -noHpuxCompatibility}]

[{-iscsiAccessControl | -noIscsiAccessControl}]

{-iscsiAuthentication
 -chapName chap-name
 -chapPassword chap-password | -retypeChapPassword chap-password
 | -noIscsiAuthentication }

[-fcInitiatorPort [fcinitiator-wwn/[fcinitiatorport-alias] ...]]

[-iscsiInitiatorPort [iscsi-initiator-name/[iscsi-initiatorport-alias] ...]]

[-lunSettings lun-id-or-fqn: load-balance-type
 [, lun-id-or-fqn: load-balance-type] ...]

[{-reconcileMappings | -noReconcileMappings]}

[-associateGroup host-group-id-or-fqn]

[-verify]

[{-outputformat | -o} {text | xml}]

[-sessionKey session-key]

[-timeout timeout-in-seconds]

axiomcli san_host -delete -sanhost sanhost-id-or-fqn

[, sanhost-id-or-fqn] ...

[-lunSettings lun-id-or-fqn [, lun-id-or-fqn] ...]

[-removeInitiatorsAndMappings]

[-verify]

[{-outputformat | -o} {text | xml}]

san_host
PARAMETERS

Note: Only the Primary Administrator, Administrator 1, and Administrator 2 roles can issue all command options.

All roles can issue the -list command option.

-add

Creates a SAN host entry on a Pillar Axiom system. This command is used for SAN hosts that are not running Pillar Axiom Path Manager (APM) and are just known to the Pillar Axiom system through the World Wide Names (WWNs) of the HBA ports.

Valid options:

-name

Identifies the name assigned to a specific SAN host.

-hpuxCompatibility

Indicates whether HP-UX compatibility is enabled. When this option is enabled, the system determines LUN numbers using the HP-UX addressing scheme, allowing up to 255 LUNs. Also when enabled, the host cannot have a visible LUN using ID 0.

If you do not specify this option, the -noHpuxCompatibility is the default value.

-iscsiAccessControl

Indicates whether access control for an iSCSI session is enabled.

If you do not specify this option, the -noIscsiAccessControl is the default value.
The `-noIscsiAccessControl` and `-iscsiAuthentication` are mutually exclusive.

-iscsiAuthentication

Indicates whether Challenge Handshake Authentication Protocol (CHAP) for iSCSI sessions between the SAN host and the Pillar Axiom system is enabled.

Note: Depending on the global settings, CHAP name and CHAP secret may not be required. Those parameters are not required, for example, if authentication is performed through a RADIUS server.

Valid options:

-chapName

Specifies the CHAP name that the Pillar Axiom system will use for authentication to the SAN host iSCSI initiator during login.

Note: This must be the same CHAP name with which the initiator was configured on the SAN host.

-chapPassword / -retypeChapPassword

Specifies the CHAP password to use for authentication of iSCSI sessions between the SAN host and the Pillar Axiom system.

-noIscsiAuthentication

Indicates whether CHAP for iSCSI sessions between the SAN host and the Pillar Axiom system are disabled.

-fcInitiatorPort

Identifies one or more SAN host FC initiator ports. The value is the WWN of the port, optionally followed by a slash (/) and the alias name of the port.

Note: You are required to include all of the port settings on the SAN host.

You must provide one or both of `-fcInitiatorPort` or `-iscsiInitiatorPort`

-iscsiInitiatorPort

Identifies one or more iSCSI initiator ports that are on the SAN host, optionally followed by a slash (/) and an alias name.

Note: You are required to include all of the port settings on the SAN host.
You must provide one or both the `fcInitiatorPort` and `iscsiInitiatorPort` options.

-lunSettings
Identifies the type of load balancing that the SAN hosts should perform to access LUNs that are configured on the Pillar Axiom system.

Valid options:

- **static**
 Distributes load balancing across multiple paths equally from the host to the Pillar Axiom system.

- **roundrobin**
 Distributes load balancing across multiple paths sequentially in a series from the host to the Pillar Axiom system.

-reconcileMappings
Specifies that any subsequent conflicting host LUN mappings will be automatically fixed. If not present, mappings will not be automatically fixed. Note that automatically fixing the LUN mappings might interrupt data to the host.

-noReconcileMappings
Disables the automatic fixing of any host LUN mappings that cause mapping conflicts.

-associateGroup
Specifies the ID or FQN of the host group with which to associate the new SAN host.

-modify
Modifies the attributes of a SAN host.

Valid options:

- **-sanhost**
 Identifies the SAN hosts to be modified by entering the ID or FQN of the LUN.

- **-name**
 Identifies the new name of the SAN host.

- **-fcInitiatorPort**
Identifies one or more SAN host FC initiator ports. The value is the WWN of the port, optionally followed by a slash (/) and the alias name of the port.

Note: You are required to include all of the port settings on the SAN host.

iscsiInitiatorPort

Identifies one or more iSCSI initiator ports that are on the SAN host, optionally followed by a slash (/) and an alias name.

Note: You are required to include all of the port settings on the SAN host.

lunSettings

Identifies a set of LUN settings to add to the SAN host or modify the value of the load balance type for the LUNs. If you specify LUNs that have a LUN setting on the SAN host, you must update its load balance type with the value provided. Otherwise, you must add the LUN setting to the SAN host's collection of LUN settings.

Enter the ID or fully qualified name (FQN) of the LUN to modify it.

ID

A 32-character string that contains hex characters (a through f and 0 through 9).

Example ID:

4130303132363742A12D012AD8B86A8A

Fully Qualified Name (FQN)

An object name starting with a leading slash (/), contains a parent object's name if needed to establish uniqueness of the object, and ends with the object's name.

Example FQN:

/cofunintel02

-noReconcileMappings

Disables the automatic fixing of any host LUN mappings that cause mapping conflicts.

-associateGroup
Specifies the ID or FQN of the host group with which to associate the new SAN host. All of the SAN host LUN mappings will be associated with the specified group.

-unAssociateGroup
Removes a SAN host from a host group.
You can associate a SAN host only with a single host group. You must either remove or preserve LUN mappings that the SAN host had as part of the host group.

Valid options:
- **-removeMappings**
 Removes all of the host group LUN mappings from a SAN host
- **-preserveMappings**
 Preserves host group LUN mappings after a SAN host is removed from a host group.

-delete
Removes the configuration of specific SAN hosts from the Pillar Axiom system. It also deletes a set of LUN settings associated with a SAN host. If you need to delete a SAN host, you can do so only if that host is not connected to the network. The HBA port reappears after the Pillar Axiom system rediscovers it.

Valid options:
- **-sanhost**
 Identifies the SAN hosts to be modified by entering the ID or FQN of the LUN.
- **-lunSettings**
 Deletes only the LUN settings from the SAN hosts, not the SAN hosts.
 If you do not specify the **-lunSettings** option, the SAN hosts specified by the **-sanhost** option will be deleted.
- **-removeInitiatorsAndMappings**
 Deletes the initiators and mappings associated with the SAN host being deleted.

-list
Displays all SAN hosts. The Pillar Axiom system detects HBA ports and assigns hosts to ports that you do not
assign. Use this request to identify all SAN hosts, both user and system defined.

Valid options:
- **details**

 Provides additional information for each SAN host. The details displayed depends on if the host is an HBA port host or a Pillar Axiom host. For both hosts, the number of LUNs and HBA port details are provided. For Pillar Axiom hosts, the details include the operating system, operating system version, IP address, LUN settings, and additional HBA port details. If you do not specify this option, the system only displays the SAN host names.

- **sanhost**

 Identifies the SAN hosts to be displayed by entering the ID or FQN of the LUN.

 Note: The **-sanhost** and **-slammerNode** options are mutually exclusive.

- **slammerNode**

 Displays the SAN hosts that have visibility to the specified list of Slammer CUs. Enter the ID or FQN of the Slammer CUs for which you want to identify all SAN hosts.

 Note: The **-sanhost** and **-slammerNode** options are mutually exclusive.

- **forceDiscovery**

 Forces the Pillar Axiom system to discover all of the SAN host initiators that communicate with it.

- **help**

 Displays the detailed command help information.

EXAMPLE

Run `san_host -list -details` to list details of all SAN hosts on a Pillar Axiom system:

```
axiomcli san_host -list -details
```

Results:

```
/ign.2002-03.com.sanland:host.linux.co-sanbs4
  Id : 4130303132373542A12D026184CF9271
  Name : iqn.2002-03.com.sanland:host.linux.co-sanbs4
  Creator : AXIOM
```
ManagementState : AVAILABLE

IScsiInitiatorPort

 IScsiInitiatorPortFqn : /iqn.2002-03.com.sanland:host.linux.co-sanbs4

 IScsiInitiatorPortId : 4130303132373542A2320BD6B978498F

 Name : iqn.2002-03.com.sanland:host.linux.co-sanbs4

 Alias :
 HpxxCompatibility : false
 RemoteReplicationAppliance : false

 IScsiSetting

 EnableAccessControl : false
 EnableAuthentication : false
 ChapName :

 PortConnection

 SlammerNodeFqn : /SLAMMER-01/0
 SlammerNodeId :

 2008000B08030522
 PortName : PORT1
 IpAddress :

 192.168.100.24

 PortConnection

 SlammerNodeFqn : /SLAMMER-01/0
 SlammerNodeId :

 2008000B08030522
 PortName : PORT0
 IpAddress :

 192.168.100.24

 PortConnection

 SlammerNodeFqn : /SLAMMER-01/1
 SlammerNodeId :

 2009000B0803052A
 PortName : PORT0
 IpAddress :

 192.168.100.24

 PortConnection

 SlammerNodeFqn : /SLAMMER-01/1
 SlammerNodeId :

 2009000B0803052A
 PortName : PORT1
 IpAddress :

 192.168.100.24

 /21:01:00:E0:8B:29:60:D3

 Id :

 4130303132373542A12D00DFA646187E

 Name : 21:01:00:E0:8B:29:60:D3

Creator : AXIOM

ManagementState : AVAILABLE

FcInitiatorPort
FC Initiator Port Information

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>FcInitiatorPortFqn</td>
<td>/210100E08B2960D3</td>
</tr>
<tr>
<td>FcInitiatorPortId</td>
<td></td>
</tr>
<tr>
<td>Wwn</td>
<td>210100E08B2960D3</td>
</tr>
<tr>
<td>Alias</td>
<td></td>
</tr>
<tr>
<td>HpuxCompatibility</td>
<td>false</td>
</tr>
<tr>
<td>PortSpeed</td>
<td>UNKNOWN</td>
</tr>
<tr>
<td>RemoteReplicationAppliance</td>
<td>false</td>
</tr>
<tr>
<td>PortConnection</td>
<td></td>
</tr>
<tr>
<td>SlammerNodeFqn</td>
<td>/SLAMMER-01/0</td>
</tr>
<tr>
<td>SlammerNodeId</td>
<td></td>
</tr>
<tr>
<td>PortName</td>
<td>PORT1</td>
</tr>
<tr>
<td>Id</td>
<td>2008000B08030522</td>
</tr>
<tr>
<td>Name</td>
<td>21:00:00:E0:8B:09:60:D3</td>
</tr>
<tr>
<td>Creator</td>
<td>AXIOM</td>
</tr>
<tr>
<td>ManagementState</td>
<td>AVAILABLE</td>
</tr>
<tr>
<td>FcInitiatorPort</td>
<td></td>
</tr>
<tr>
<td>FcInitiatorPortFqn</td>
<td>/210000E08B0960D3</td>
</tr>
<tr>
<td>FcInitiatorPortId</td>
<td></td>
</tr>
<tr>
<td>Wwn</td>
<td>210000E08B0960D3</td>
</tr>
<tr>
<td>Alias</td>
<td></td>
</tr>
<tr>
<td>HpuxCompatibility</td>
<td>false</td>
</tr>
<tr>
<td>PortSpeed</td>
<td>UNKNOWN</td>
</tr>
<tr>
<td>RemoteReplicationAppliance</td>
<td>false</td>
</tr>
<tr>
<td>PortConnection</td>
<td></td>
</tr>
<tr>
<td>SlammerNodeFqn</td>
<td>/SLAMMER-01/1</td>
</tr>
<tr>
<td>SlammerNodeId</td>
<td></td>
</tr>
<tr>
<td>PortName</td>
<td>PORT0</td>
</tr>
<tr>
<td>Id</td>
<td>2008000B08030522</td>
</tr>
<tr>
<td>Name</td>
<td>21:00:00:E0:8B:09:60:D3</td>
</tr>
<tr>
<td>Creator</td>
<td>AXIOM</td>
</tr>
<tr>
<td>ManagementState</td>
<td>AVAILABLE</td>
</tr>
<tr>
<td>FcInitiatorPort</td>
<td></td>
</tr>
<tr>
<td>FcInitiatorPortFqn</td>
<td>/210000E08B0960D3</td>
</tr>
<tr>
<td>FcInitiatorPortId</td>
<td></td>
</tr>
<tr>
<td>Wwn</td>
<td>210000E08B0960D3</td>
</tr>
<tr>
<td>Alias</td>
<td></td>
</tr>
<tr>
<td>HpuxCompatibility</td>
<td>false</td>
</tr>
<tr>
<td>PortSpeed</td>
<td>UNKNOWN</td>
</tr>
<tr>
<td>RemoteReplicationAppliance</td>
<td>false</td>
</tr>
<tr>
<td>PortConnection</td>
<td></td>
</tr>
<tr>
<td>SlammerNodeFqn</td>
<td>/SLAMMER-01/1</td>
</tr>
<tr>
<td>SlammerNodeId</td>
<td></td>
</tr>
<tr>
<td>PortName</td>
<td>PORT0</td>
</tr>
<tr>
<td>Id</td>
<td>2009000B0803052A</td>
</tr>
<tr>
<td>Name</td>
<td>21:00:00:E0:8B:09:60:D3</td>
</tr>
<tr>
<td>Creator</td>
<td>AXIOM</td>
</tr>
<tr>
<td>ManagementState</td>
<td>AVAILABLE</td>
</tr>
<tr>
<td>FcInitiatorPort</td>
<td></td>
</tr>
</tbody>
</table>

Additional Port Information

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>SlammerNodeFqn</td>
<td>/SLAMMER-01/0</td>
</tr>
<tr>
<td>SlammerNodeId</td>
<td></td>
</tr>
<tr>
<td>PortName</td>
<td>PORT1</td>
</tr>
<tr>
<td>Id</td>
<td>2008000B08030522</td>
</tr>
<tr>
<td>Name</td>
<td>21:00:00:E0:8B:09:60:D3</td>
</tr>
<tr>
<td>Creator</td>
<td>AXIOM</td>
</tr>
<tr>
<td>ManagementState</td>
<td>AVAILABLE</td>
</tr>
<tr>
<td>SlammerNodeFqn</td>
<td>/SLAMMER-01/1</td>
</tr>
<tr>
<td>SlammerNodeId</td>
<td></td>
</tr>
<tr>
<td>PortName</td>
<td>PORT0</td>
</tr>
<tr>
<td>Id</td>
<td>2009000B0803052A</td>
</tr>
<tr>
<td>Name</td>
<td>21:00:00:E0:8B:09:60:D3</td>
</tr>
<tr>
<td>Creator</td>
<td>AXIOM</td>
</tr>
<tr>
<td>ManagementState</td>
<td>AVAILABLE</td>
</tr>
</tbody>
</table>
slammer

DESCRIPTION
Manages the Slammer settings on a Pillar Axiom system such as renaming Slammers, running diagnostics, locating Slammers, and viewing Slammer details.

Use the `slammer` command to manage the Slammer settings on a Pillar Axiom system.

You can use the `-verify` option to test the command-line argument and its options before running it in Pillar Axiom CLI. If no errors exist, the Pillar Axiom CLI command returns without executing. For example, the `-verify` option is helpful when writing scripts in which a particular Pillar Axiom CLI command usage can be verified prior to adding it to a script.

You can use the `-outputformat` or the `-o` command option to specify how to display the results of running a command. If you do not specify either the `-outputformat` or the `-o` command option, the results display in the default text format. Valid options:

- **text** The system displays the results in the plain-text format.
- **xml** The system displays the results in the tagged XML format.

You can use the `-sessionKey` option to specify which Pillar Axiom system to access and which session key value to use for validation. The Pillar Axiom CLI displays the session key value when you log in to the Pillar Axiom system using the `-returnKey` option.

You can use the `-timeout` option to set a time limit for the execution of a command. If the command takes longer than the number of seconds specified in the `-timeout` option, the system stops executing the command. If you do not specify the `-timeout` option, the system does not set any time limit for executing the command.

SYNTAX

```
axiomcli slammer -modify -slammer slammer-id-or-fqn 
  [-newname new-slammer-name] 
  [-verify] 
  [{-outputformat | -o} {text | xml}] 
  [-sessionKey session-key] 
  [-timeout timeout-in-seconds]
```

```
axiomcli slammer -list [-details] 
  [-slammer slammer-id-or-fqn [ , slammer-id-or-fqn]...] 
  [-port [port-name [ , port-name]...] ] 
  [-diagnostics] 
  [-masterNode] 
  [-linkAggregation]
```
[<-verify]
[{-outputformat | -o} {text | xml}]
[{-sessionKey session-key}]
[{-timeout timeout-in-seconds}]

axiomcli slammer -command -slammerNode
slammer-node-id-or-fqn
-commandString command-string
[{-parameters name1: value1 [, name2: value2]...}]
[{-environment envname1: value1 [, envname2: value2]...}]
[{-timeout timeout-in-seconds}]
[{-verify}]
[{-outputformat | -o} {text | xml}]
[{-sessionKey session-key}]

axiomcli slammer -runDiagnostics
-slammerNode slammer-node-id-or-fqn
[{-verify}]
[{-outputformat | -o} {text | xml}]
[{-sessionKey session-key}]
[{-timeout timeout-in-seconds}]

axiomcli slammer -rejoin -slammerNode
slammer-node-id-or-fqn [, slammer-node-id-or-fqn]...
[{-verify}]
[{-outputformat | -o} {text | xml}]
[{-sessionKey session-key}]
[{-timeout timeout-in-seconds}]

axiomcli slammer -failback -slammerNode
slammer-node-id-or-fqn [, slammer-node-id-or-fqn]...
[{-verify}]
[{-outputformat | -o} {text | xml}]
[{-sessionKey session-key}]
[{-timeout timeout-in-seconds}]

axiomcli slammer -modifyAgentHaFlags [-slammerNode
slammer-node-id-or-fqn]
{[{-noWarmstart]
[-noFailover]
[-clearWsCounter]
[-debugMode]
| [-clearFlags]
}
[{-verify}]
[{-outputformat | -o} {text | xml}]
[{-sessionKey session-key}]
[{-timeout timeout-in-seconds}]

axiomcli slammer -forceCuFailure -slammerNode slammer-
node-id-or-fqn
[{-verify}]

Appendix B Pillar Axiom CLI Commands

slammer 229
Parameters

Note:
- The Primary Administrator and Administrator 1 roles can issue the following commands:
 - `-modify`
 - `-list`
 - `-command`
 - `-failback`
- The Administrator 2 and Monitor roles can issue only the `-list` command.
- The Pillar Support and Support roles can issue all of the commands, except the `-modify` command.

-modify

Modifies the settings for a specified Slammer.

Valid options:
- `slammer`
 Specifies the ID or FQN of the Slammer to be modified.
- `newname`
 Specifies the new name for the Slammer.

-list
Displays detailed information that describes the Slammers and all of its hardware components.

Valid options:
- **details**
 Displays the Slammer type, control units, fans, power supplies, network interface module, and private interface module, temperature, serial number, and revision number.
- **slammer**
 Displays one or more Slammers configured on the Pillar Axiom system. Enter the ID or fully qualified name (FQN) of all Slammers for which you want to display information.
- **port**
 Displays detailed information about the Slammer port.

The **port** option is specified as follows:

`/slammer-name/control-unit/port-number[/port-type]`

The values specify the Slammer, control unit (CU) 0 or 1, and ports 0 through 7. The values for port type can be `fc`, `iscsi`, or `eth` (Ethernet). For example, `/Slammer1/CU1/Port0/fc` specifies Slammer 1, control unit 1, port 0, and Fibre Channel (FC).

- **diagnostics**
 Displays the last set of diagnostics results for the specified Slammers.
- **masternode**
 Displays the identity of the master Slammer CU.
- **linkAggregation**
 Includes link aggregation settings.

-command

Sends a Slammer specific command to a Slammer.

Valid options:
- **slammerNode**
 Identifies the Slammer CU to which to send the command.
- **commandString**
 Identifies the command to send to the Slammer.
-parameters
Identifies one or more parameters for the Slammer command.

-environment
Specifies one or more environment variable name/value pairs to use when executing the \texttt{slammer} command.

-timeout
Identifies the timeout value in seconds. If the Slammer command does not complete within the timeout value specified, the command aborts.

If you do not specify the \texttt{-timeout} option, the system does not apply a timeout value to the command execution.

-runDiagnostics
Runs diagnostics on a Slammer CU. During the diagnostics, the CU is taken off line for several minutes. Enter the ID or FQN of the Slammer CU on which you want to run diagnostics.

If you run diagnostics on a SAN Slammer, you need to disconnect the CU from the public network and attach a loop back connector between the ports on the Slammer CU. (A loop-back connector takes whatever is transmitted, turns it around, and sends it back into the receive input on the same port or another port.)

Valid options:
- \texttt{-slammerNode}
 Specifies the ID or FQN of the Slammer CU on which you want to run diagnostics.

-rejoin
Enables one or more Slammer CUs to rejoin the Pillar Axiom system.

Valid options:
- \texttt{-slammerNode}
 Specifies the ID or FQN of the Slammer CU to rejoin the Pillar Axiom system.

-failback
Specifies one or more Slammer CUs that are in a failover state.

Valid options:
-**slammerNode**
 Specifies the ID or FQN of a Slammer CU to fail back.

-**modifyAgentHaFlags**
 Modifies the agent high availability (HA) flag settings for a Slammer CU.
 Valid options:
 - **slammerNode**
 Identifies the Slammer CU for which you want to modify the agent HA flag.
 If you do not specify this option, all Slammer CUs will have their flags modified.
 Valid options:
 - `noWarmstart`
 - `noFailover`
 - `clearWsCounter`
 - `debugMode`
 - `clearFlags`

 Note: The `clearFlags` option is mutually exclusive with the other options. If you do not specify the `clearFlags` option, at least one of the other options must be specified.

-**forceCuFailure**
 Forces a Slammer CU to the failed state.
 Valid options:
 - **slammerNode**
 Specifies the ID or FQN of a Slammer CU to force to a failed state.

-**resetControlUnit**
 Resets a Slammer CU.
 Valid options:
 - **slammerNode**
 Specifies the ID or FQN of a Slammer CU to reset.

-**reenable**
 Re-enables a specified Slammer CU or all of the Slammer CUs that have been excluded due to failures. If you do not specify the `slammerNode` option, the system re-enables all of the Slammer CUs.
 Valid options:
-slammerNode
Identifies the Slammer CU to re-enable. If you do not specify the -slammerNode option, the system re-enables all of the Slammer nodes.

-remove
Removes a specified Slammer from the system configuration.

-help
Displays the detailed command help information.

EXAMPLE
Run axiomcli slammer -list -details to display a list of Slammers that are configured on the Pillar Axiom system:

axiomcli slammer -list -details

Results:

<table>
<thead>
<tr>
<th>Slammer</th>
<th>/SLAMMER-01</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>SLAMMER-01</td>
</tr>
<tr>
<td>ID</td>
<td>2008000B08041CE2</td>
</tr>
<tr>
<td>HardwareComponentStatus</td>
<td>NORMAL</td>
</tr>
<tr>
<td>ServiceType</td>
<td>SAN</td>
</tr>
<tr>
<td>SerialNumber</td>
<td>A001267BHN</td>
</tr>
<tr>
<td>Model</td>
<td>AX300</td>
</tr>
<tr>
<td>ManagementState</td>
<td>AVAILABLE</td>
</tr>
<tr>
<td>Chassis</td>
<td>A001267BHN</td>
</tr>
<tr>
<td>Status</td>
<td>NORMAL</td>
</tr>
<tr>
<td>PartNumber</td>
<td>2062-00001-030000-015001</td>
</tr>
<tr>
<td>ControlUnit</td>
<td>0</td>
</tr>
<tr>
<td>ControlUnitWWN</td>
<td>2008000B08041CE2</td>
</tr>
<tr>
<td>ControlUnitFQN</td>
<td>/SLAMMER-01/0</td>
</tr>
<tr>
<td>ControlUnitStatus</td>
<td>NORMAL</td>
</tr>
<tr>
<td>TemperatureStatus</td>
<td>NORMAL</td>
</tr>
<tr>
<td>Memory</td>
<td>3</td>
</tr>
<tr>
<td>Motherboard</td>
<td>FC000260120024</td>
</tr>
<tr>
<td>HardwareComponentStatus</td>
<td>NORMAL</td>
</tr>
</tbody>
</table>
smprovider

DESCRIPTION
Manages devices of a storage area network (SAN). SMProvider is a Storage Management Initiative (SMI) compliant, messaging-based interface designed to support the specific requirements of managing devices of a SAN. The SMProvider interface is also used by Volume Shadow Copy Service (VSS) and Virtual Disk Service (VDS) clients.

Use the `smprovider` command to enable or disable the SMProvider interface and to display the status of the SMProvider interface.

You can use the `-verify` option to test the command-line argument and its options before running it in Pillar Axiom CLI. If no errors exist, the Pillar Axiom CLI command returns without executing. For example, the `-verify` option is helpful when writing scripts in which a particular Pillar Axiom CLI command usage can be verified prior to adding it to a script.

You can use the `-outputformat` or the `-o` command option to specify how to display the results of running a command. If you do not specify either the `-outputformat` or the `-o` command option, the results display in the default text format. Valid options:

- **text** The system displays the results in the plain-text format.
- **xml** The system displays the results in the tagged XML format.

You can use the `-sessionKey` option to specify which Pillar Axiom system to access and which session key value to use for validation. The Pillar Axiom CLI displays the session key value when you log in to the Pillar Axiom system using the `-returnKey` option.

You can use the `-timeout` option to set a time limit for the execution of a command. If the command takes longer than the number of seconds specified in the `-timeout` option, the system stops executing the command. If you do not specify the `-timeout` option, the system does not set any time limit for executing the command.

SYNTAX

```
axiomcli smprovider -enable
   [-verify]
   [{-outputformat | -o} {text | xml}]
   [-sessionKey session-key]
   [-timeout timeout-in-seconds]

axiomcli smprovider -disable
   [-verify]
   [{-outputformat | -o} {text | xml}]
```

axiomcli smprovider -list [-details] [-verify]

[-outputformat | -o] {text | xml}

[-sessionKey session-key]

[-timeout timeout-in-seconds]

axiomcli smprovider -help

PARAMETERS

Note: Only the Primary Administrator, Administrator 1, Pillar Support, and Support roles can issue all command options.

All roles can issue the -list command option.

-enable

Indicates whether the SMProvider interface on the Pilot is enabled.

If you specify this option, support for SMI, VSS, and VDS, is also enabled.

-disable

Indicates whether the SMProvider interface on the Pilot is disabled.

If you specify this option, support for SMI, VSS, and VDS, is also disabled.

-list

Displays the status of the SMProvider interface on the Pilot.

-help

Displays the detailed command help information.

EXAMPLE

Run the smprovider -list command to display the status of the SMProvider interface on the Pilot:

axiomcli smprovider -list

Results:

SmProvider

Enabled : true
snmp_host

DESCRIPTION Creates and manages Simple Network Management Protocol (SNMP) hosts to receive event traps on a Pillar Axiom system. If you use an SNMP management application to monitor network devices, you can define SNMP trap hosts to receive Pillar Axiom traps. Any workstation that has an SNMP-based management application installed on it can be a trap host.

Pillar Axiom systems support SNMP version 2c. SET operations from SNMP management applications are not supported.

Use the `snmp_host` command to manage SNMP hosts that will have specified event traps sent to it.

You can use the `-verify` option to test the command-line argument and its options before running it in Pillar Axiom CLI. If no errors exist, the Pillar Axiom CLI command returns without executing. For example, the `-verify` option is helpful when writing scripts in which a particular Pillar Axiom CLI command usage can be verified prior to adding it to a script.

You can use the `-outputformat` or the `-o` command option to specify how to display the results of running a command. If you do not specify either the `-outputformat` or the `-o` command option, the results display in the default text format. Valid options:

- **text** The system displays the results in the plain-text format.
- **xml** The system displays the results in the tagged XML format.

You can use the `-sessionKey` option to specify which Pillar Axiom system to access and which session key value to use for validation. The Pillar Axiom CLI displays the session key value when you log in to the Pillar Axiom system using the `-returnKey` option.

You can use the `-timeout` option to set a time limit for the execution of a command. If the command takes longer than the number of seconds specified in the `-timeout` option, the system stops executing the command. If you do not specify the `-timeout` option, the system does not set any time limit for executing the command.

SYNTAX

```
axiomcli snmp_host -add
   -name snmp-host-name
   -ip snmp-host-ip-or-dns
   -community snmp-community
   [-trapPort port-number
   [-trapEvent {informational | warning | critical}]]
```

snmp_host

Appendix B Pillar Axiom CLI Commands

237
axiomcli snmp_host -modify
 -id snmp-host-id-or-fqn
 [-name new-snmp-host-name]
 [-ip snmp-host-ip-or-dns]
 [-community snmp-community]
 [{-newTrap -trapPort port-number
 [-trapEvent {informational | warning | critical}]
 | -removeTrap}
]
 [-verify]
 [{-outputformat | -o} {text | xml}]
 [-sessionKey session-key]
 [-timeout timeout-in-seconds]

axiomcli snmp_host -delete -id snmp-host-id-or-fqn
 [, snmp-host-id-or-fqn]...
 [-verify]
 [{-outputformat | -o} {text | xml}]
 [-sessionKey session-key]
 [-timeout timeout-in-seconds]

axiomcli snmp_host -list [-id snmp-host-id-or-fqn
 [, snmp-host-id-or-fqn]...]
 [-details]
 [-verify]
 [{-outputformat | -o} {text | xml}]
 [-sessionKey session-key]
 [-timeout timeout-in-seconds]

axiomcli snmp_host -help

PARAMETERS

Note: Only the Primary Administrator, Administrator 1, and Administrator 2 roles can issue all of the command options.

All roles can issue the -list command option.

-add

Creates a Simple Network Management Protocol (SNMP) host that specifies event traps that are sent to it.

Valid options:

 -name

Identifies the name for the SNMP host.

 -ip
Identifies the IP address or domain name of a client that receives the Pillar Axiom SNMP information.

-community

Identifies the community string for use when the Pillar Axiom system sends an event trap to the SNMP host.

Note: When an administrator does not specify a community string for read-only access, SNMP servers and clients will typically use public.

-trapPort

Identifies the SNMP host port number to use for sending an event trap. If you do not provide this option, no traps are sent to the SNMP host.

Note: The -trapPort option is mutually exclusive with -trapEvent.

-trapEvent

Identifies the severity threshold for events that are to be sent to the SNMP host by event traps.

Severity levels:
- informational
- warning
- critical

For example, if a trap is specified for warning, any events that occur with severities ranging from warning to critical will have event traps sent to the SNMP host. Specifying critical will only send critical event traps to the SNMP host.

Note: The -trapEvent option is mutually exclusive with -trapPort.

-modify

Modifies existing event trap settings on an SNMP host.

Valid options:

-id

Identifies the ID or fully qualified name (FQN) of an existing SNMP host. The FQN for a SNMP host is a combination of the IP or DNS address, community, port, and event severity beginning with a forward slash (/) character and separated by a colon (:) character:
/172.20.32.75:public
/ca-gp-01:public:162
/172.20.32.75:public:165:WARNING

-name
Specifies the new name of the SNMP host.

-ip
Identifies the IP address or domain name of a client that receives the Pillar Axiom SNMP information.

-community
Identifies the community string for use when the Pillar Axiom system sends an event trap to the SNMP host.

Note: When an administrator does not specify a community string for read-only access, SNMP servers and clients will typically use public.

-newTrap
Identifies a new trap setting for the SNMP host. The newtrap option is followed by the -trapPort and optional -trapEvent options that have the same semantics as defined in the -add command.

Valid options:
-trapPort
Identifies the SNMP host port number to use for sending an event trap. If you do not provide this option, no traps are sent to the SNMP host.

Note: The -trapPort option is mutually exclusive with -trapEvent.

-trapEvent
Identifies the severity threshold for events that are to be sent to the SNMP host by event traps.

Severity levels:
- informational
- warning
- critical

For example, if a trap is specified for warning, any events that occur with severities ranging from warning to critical will have event traps sent to the SNMP host.
Specifying `critical` will only send critical event traps to the SNMP host.

Note: The `-trapEvent` option is mutually exclusive with `-trapPort`.

-removeTrap

Identifies that no traps are to be sent to the SNMP host.

Note: The `-removeTrap` option cannot be provided if `-newTrap` is also provided.

-delete

Deletes one or more SNMP hosts.

-list

Displays all SNMP hosts. If you specify the `-id` option, the ID or FQN of one or more existing SNMP hosts is displayed.

If you specify the `-details` option, all available information about each SNMP host is displayed. If you do not specify the `-details` option, only the FQN of each SNMP host is displayed.

-help

Displays the detailed command help information.

EXAMPLE

Run `snmp_host -add` to create a Simple Network Management Protocol (SNMP) host:

```bash
axiomcli snmp_host -add -name SNMPhost -ip 172.20.32.75
-community Community
```

Results:

<table>
<thead>
<tr>
<th>NewObject</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Id</td>
<td>4130303132373542A148D788AAE0750A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fqn</td>
<td>/SNMPhost</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Command Succeeded
software_update

DESCRIPTION Installs the requested components of the staged software update package on a Pillar Axiom system. An update affects one or more of the following components:

- Brick storage enclosures:
 - Drive firmware
 - Enclosure Services (ES) firmware

 Note: Updating a Brick requires a system restart.

- Pilot management controller:
 - Software
 - Operating system

- Slammer storage controllers:
 - Software for storage area network (SAN) configurations
 - Programmable ROM (PROM)

 Note: Updating the PROM requires a system restart.

Use the `software_update` command to install and update software or firmware onto a Pillar Axiom system.

You can use the `-verify` option to test the command-line argument and its options before running it in Pillar Axiom CLI. If no errors exist, the Pillar Axiom CLI command returns without executing. For example, the `-verify` option is helpful when writing scripts in which a particular Pillar Axiom CLI command usage can be verified prior to adding it to a script.

You can use the `-outputformat` or the `-o` command option to specify how to display the results of running a command. If you do not specify either the `-outputformat` or the `-o` command option, the results display in the default `text` format. Valid options:

- **text** The system displays the results in the plain-text format.
- **xml** The system displays the results in the tagged XML format.

You can use the `-sessionKey` option to specify which Pillar Axiom system to access and which session key value to use for validation. The Pillar Axiom CLI displays the session key value when you log in to the Pillar Axiom system using the `-returnKey` option.

You can use the `-timeout` option to set a time limit for the execution of a command. If the command takes longer than the number of seconds specified in the `-timeout` option, the system stops executing the command. If you do
not specify the -timeout option, the system does not set any time limit for executing the command.

SYNTAX

```plaintext
taxiomcli software_update -add {-package | -hdd} package-file-name
   [-verify]
   [{-outputformat | -o} {text | xml}]
   [-sessionKey session-key]
   [-timeout timeout-in-seconds]

taxiomcli software_update -list [{-staged | -installed}]
   [-upgradePath] [-details]
   [-verify]
   [{-outputformat | -o} {text | xml}]
   [-sessionKey session-key]
   [-timeout timeout-in-seconds]

taxiomcli software_update -install
   {-hdd | { -component component-version:instruction [, component-version:instruction]... | -all {newerversiononly | alwaysinstall} 
   [ { -disruptive | -noDisruptive } ]
   [-ignoreCompatibilityChecking]
   [-forceSlammerShutdown]
   [-ignoreBadSystemState]
   [-ignoreOperationPoolDraining]
   [-overridePreviousFailedUpdate]
   [-ignoreExistingAlerts]
   [-suppressWarnings]
   }]
   [-verify]
   [{-outputformat | -o} {text | xml}]
   [-sessionKey session-key]
   [-timeout timeout-in-seconds]

taxiomcli software_update -validate
   {-component component-version:instruction [, component-version:instruction]... | -all {newerversiononly | alwaysinstall} 
   [ { -disruptive | -noDisruptive}]
   [-ignoreCompatibilityChecking]
   [-forceSlammerShutdown]
   [-ignoreBadSystemState]
   [-ignoreOperationPoolDraining]
   [-overridePreviousFailedUpdate]
   [-ignoreExistingAlerts]
   [-verify]
   [{-outputformat | -o} {text | xml}]
```
Parameters

Note: Only the Primary Administrator, Administrator 1, Pillar Support, and Support roles can issue all command options.

All roles can issue the -list command option.

- **-add**

 Stages a package of software updates to Pillar Axiom system.

 The -package option specifies that the package file contains a new release of non-hard disk drive (HDD) software or firmware to send to the Pillar Axiom system. The package includes specific software versions for the Brick, Slammer, and Pilot. After the package has been uploaded to the system, it becomes available to be installed (staged). See the -install option for more details.

 The -hdd option specifies that the package file contains hard disk drive (HDD) firmware to be staged.

- **-list**

 Displays the version information for the software packages that are staged or installed on a Pillar Axiom system.

 The version information includes:
 - Drive and Enclosure Services (ES) firmware in the Brick storage enclosures.
 - Application software and operating system in the Pilot management controller.
 - Software (SAN) and programmable ROM (PROM) in Slammer storage controllers.

 Valid options:
 - **-staged**

 Displays the package information that has been added but not yet installed. This will also display the upgrade path information.

 If you do not specify the -staged or -installed options, the package information for both are displayed.

 - **-installed**
Displays the package information that is already installed, including the upgrade path information.

If you do not specify the `-staged` or `-installed` options, the package information for both are displayed.

-upgradePath
Displays the upgrade paths for either the staged or installed packages, depending whether the `-staged` or `-installed` options were provided.

If you do not specify the `-staged` or `-installed` options, the upgrade path for both are displayed.

-install
Installs the requested components of the staged software update package on a Pillar Axiom system. After uploading the package, if you do not specify the `-install` option, the uploaded package remains staged until either it is installed or another package is uploaded, overwriting the staged package.

Valid options:

- **-hdd**
 Specifies the installation of staged hard disk drive (HDD) firmware.

 You can specify only one of `-hdd`, `-component`, or `-all`.

- **-component**
 Identifies a list of software or firmware modules that can be installed.

 The `component-version` variable is a string that conforms to the `[0-9]{4}-[0-9]{5}-[0-9]{6}-[0-9]{6}` regular expression or one of the following strings:

 - `pilotSoftware`
 - `pilotOS`
 - `slammerSoftwareAX300`
 - `slammerSoftwareAX500`
 - `slammerSoftwareAX600`
 - `slammerProm` (this string works with both AX300 and AX500 systems)
 - `slammerPromAX600`
 - `brickSataFW`
 - `brickSataNextGenFW`
 - `brickSataThirdGenFW`
The instruction variable can be one of the following:

- exclude
- newerversiononly
- alwaysinstall

For a list of component versions available for installation, enter the following command-line argument:

```
axiomcli software_update -list -staged
```

You can specify only one of `-hdd, -component, or -all`.

-all
Indicates that all staged components are to be installed at one time. The `-all` command option is limited to the following values:

- newerversiononly
- alwaysinstall

The installation instruction will be applied to each staged component as it is installed.

You can specify only one of `-hdd, -component, or -all`.

-disruptive
Allows for a disruptive update. Updates are typically performed non-disruptively. If you do not provide this option, the system uses the default `-noDisruptive` option.

Note: Select the `-disruptive` option only when advised by Oracle Pillar Customer Support.

Any of the five options specified below forces the software update to occur, regardless of the state of the Pillar Axiom system or current software installations. When you use any of the options below, the following message displays:

"Contact the Support Center before proceeding! Proceeding without their assistance could risk data loss. Type "yes" if you wish to proceed with the update."

The update proceeds only if you enter yes.
The message does not display if you include the
-s suppressWarnings option.

Valid options:

-s suppressWarnings
Updates software without showing warning messages.

-overridePreviousFailedUpdate
Updates software, ignoring failures from a previous update attempt.

-validate
Validates the staged software package on the Pillar Axiom system. The validation process confirms that the staged software can be installed successfully. Once the validation is complete, the results of the validation are displayed.

Valid options:

-component
Specifies a comma delimited list of the component-version to install and its installation instruction. The component-version is a string that conforms to the following expression:

[0-9][4]-[0-9][5]-[0-9][6]-[0-9][6]

The instruction variable can be one of the following:

exclude
newerversiononly
alwaysinstall
For a list of component versions available for installation, enter the following command-line argument:

```
axiomcli software_update -list -staged
```

-all
Indicates that all staged components are to be installed at one time. The `-all` command option is limited to the following values:

```
newerversiononly
alwaysinstall
```

The installation *instruction* will be applied to each staged component as it is installed.

You must specify either the `-component` option or `-all` option, not both.

-disruptive
Allows for a disruptive update, when the data path is interrupted. Updates are typically performed non-dis disruptively. If you do not provide this option, the system uses the default `-noDisruptive` option.

Note: Select the `-disruptive` option only when advised by Oracle Pillar Customer Support.

-ignoreCompatibilityChecking
Allows an update to occur while ignoring any conflicts with the compatibility matrix.

-forceSlammerShutdown
Forcibly shuts down the Slammers as part of a disruptive update.

-ignoreBadSystemState
Updates software, even if hardware issues exist.

-ignoreOperationPoolDraining
Updates software, even if the operation pool cannot be drained.

-overridePreviousFailedUpdate
Updates software, ignoring failures from a previous update attempt.

-ignoreExistingAlerts
Updates software, ignoring system alerts.

-remove -hdd
Removes a previously staged hard disk drive (HDD) firmware package.

-help

Displays the detailed command help information.

EXAMPLE

Run `software_update -list` to display a list of software that is staged and installed:

```
axiomcli software_update -list
```

Results:

<table>
<thead>
<tr>
<th>Staged Software: /STAGED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Id</td>
</tr>
<tr>
<td>4130303132373542A13A00000000001</td>
</tr>
<tr>
<td>ManagementState</td>
</tr>
<tr>
<td>AVAILABLE</td>
</tr>
<tr>
<td>ComponentInformation</td>
</tr>
<tr>
<td>SoftwareComponent</td>
</tr>
<tr>
<td>BRICK_SATA_THIRDGEN_FIRMWARE</td>
</tr>
<tr>
<td>Version</td>
</tr>
<tr>
<td>2050-00046-032006-032006</td>
</tr>
<tr>
<td>AppliesToCurrentHardware</td>
</tr>
<tr>
<td>false</td>
</tr>
<tr>
<td>SoftwareComponent</td>
</tr>
<tr>
<td>BRICK_FIBRE_CHANNEL_NEXTGEN_FIRMWARE</td>
</tr>
<tr>
<td>Version</td>
</tr>
<tr>
<td>2050-00045-022006-022006</td>
</tr>
<tr>
<td>AppliesToCurrentHardware</td>
</tr>
<tr>
<td>false</td>
</tr>
<tr>
<td>SoftwareComponent</td>
</tr>
<tr>
<td>BRICK_SATA_FIRMWARE</td>
</tr>
<tr>
<td>Version</td>
</tr>
<tr>
<td>2050-00036-072006-072006</td>
</tr>
<tr>
<td>AppliesToCurrentHardware</td>
</tr>
<tr>
<td>true</td>
</tr>
<tr>
<td>SoftwareComponent</td>
</tr>
<tr>
<td>SLAMMER_SOFTWARE_AX500</td>
</tr>
<tr>
<td>Version</td>
</tr>
<tr>
<td>2060-00001-050100-014400</td>
</tr>
<tr>
<td>AppliesToCurrentHardware</td>
</tr>
<tr>
<td>true</td>
</tr>
<tr>
<td>SoftwareComponent</td>
</tr>
<tr>
<td>BRICK_SATA_NEXTGEN_FIRMWARE</td>
</tr>
<tr>
<td>Version</td>
</tr>
<tr>
<td>2050-00040-002006-002006</td>
</tr>
<tr>
<td>AppliesToCurrentHardware</td>
</tr>
<tr>
<td>false</td>
</tr>
<tr>
<td>SoftwareComponent</td>
</tr>
<tr>
<td>SLAMMER_PROM_AX300_AX500</td>
</tr>
<tr>
<td>Version</td>
</tr>
<tr>
<td>2062-00002-030000-015001</td>
</tr>
<tr>
<td>AppliesToCurrentHardware</td>
</tr>
<tr>
<td>true</td>
</tr>
<tr>
<td>SoftwareComponent</td>
</tr>
<tr>
<td>PILOT_OS</td>
</tr>
<tr>
<td>Version</td>
</tr>
<tr>
<td>2070-00001-050100-014100</td>
</tr>
<tr>
<td>AppliesToCurrentHardware</td>
</tr>
<tr>
<td>true</td>
</tr>
<tr>
<td>SoftwareComponent</td>
</tr>
</tbody>
</table>
BRICK_FC_FIRMWARE
 Version : 2050-00038-012006-012006
 AppliesToCurrentHardware : false
 SoftwareComponent : PILOT_SOFTWARE
 Version :
2073-00001-050100-014400
 AppliesToCurrentHardware : true
 SoftwareComponent :
SLAMMER_PROM_AX600
 Version :
2062-00003-050000-040000
 AppliesToCurrentHardware : false
 SoftwareComponent :
SLAMMER_SOFTWARE_AX600
 Version :
2060-00003-050100-014400
 AppliesToCurrentHardware : false
 UpgradePathInformation
 Installed Software: /INSTALLED
 Id : 4130303132373542A13A000000000000
 ManagementState : AVAILABLE
 ComponentInformation
 SoftwareComponent :
BRICK_SATA_THIRDGEN_FIRMWARE
 Version :
2050-00046-032006-032006
 AppliesToCurrentHardware : false
 SoftwareComponent :
BRICK_FIBRE_CHANNEL_NEXTGEN_FIRMWARE
 Version :
2050-00045-022006-022006
 AppliesToCurrentHardware : false
 SoftwareComponent :
BRICK_SATA_FIRMWARE
 Version :
2050-00036-072006-072006
 AppliesToCurrentHardware : true
 SoftwareComponent :
SLAMMER_SOFTWARE_AX500
 Version :
2060-00001-050100-014400
 AppliesToCurrentHardware : true
 SoftwareComponent :
SLAMMER_SOFTWARE_AX300
 Version :
2060-00301-050100-014400
 AppliesToCurrentHardware : false
 UpgradePathInformation
 Installed Software: /INSTALLED
 Id : 4130303132373542A13A000000000000
 ManagementState : AVAILABLE
 ComponentInformation
 SoftwareComponent :
SLAMMER_SOFTWARE_AX500
 Version :
2060-00001-050100-014400
 AppliesToCurrentHardware : true
 SoftwareComponent :
SLAMMER_SOFTWARE_AX300
 Version :
2060-00301-050100-014400
 AppliesToCurrentHardware : false
 UpgradePathInformation
 Installed Software: /INSTALLED
 Id : 4130303132373542A13A000000000000
 ManagementState : AVAILABLE
 ComponentInformation
 SoftwareComponent :
SLAMMER_SOFTWARE_AX500
 Version :
2060-00001-050100-014400
 AppliesToCurrentHardware : true
 SoftwareComponent :
SLAMMER_SOFTWARE_AX300
 Version :
2060-00301-050100-014400
 AppliesToCurrentHardware : false
 UpgradePathInformation
 Installed Software: /INSTALLED
 Id : 4130303132373542A13A000000000000
 ManagementState : AVAILABLE
 ComponentInformation
 SoftwareComponent :
SLAMMER_SOFTWARE_AX500
 Version :
2060-00001-050100-014400
 AppliesToCurrentHardware : true
 SoftwareComponent :
SLAMMER_SOFTWARE_AX300
 Version :
2060-00301-050100-014400
 AppliesToCurrentHardware : false
 UpgradePathInformation
 Installed Software: /INSTALLED
 Id : 4130303132373542A13A000000000000
 ManagementState : AVAILABLE
 ComponentInformation
 SoftwareComponent :
SLAMMER_SOFTWARE_AX500
 Version :
2060-00001-050100-014400
 AppliesToCurrentHardware : true
 SoftwareComponent :
SLAMMER_SOFTWARE_AX300
 Version :
2060-00301-050100-014400
 AppliesToCurrentHardware : false
 UpgradePathInformation
 Installed Software: /INSTALLED
 Id : 4130303132373542A13A000000000000
 ManagementState : AVAILABLE
 ComponentInformation
 SoftwareComponent :
SLAMMER_SOFTWARE_AX500
 Version :
Appendix B Pillar Axiom CLI Commands

<table>
<thead>
<tr>
<th>SoftwareComponent</th>
<th>AppliesToCurrentHardware</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>SLAMMER_PROM_AX300_AX500</td>
<td>false</td>
<td>2062-00002-030000-015001</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>true</td>
<td>2070-00001-050100-014100</td>
</tr>
<tr>
<td>BRICK_FC_FIRMWARE</td>
<td>false</td>
<td>2050-00038-012006-012006</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>true</td>
<td>2073-00001-050100-014400</td>
</tr>
<tr>
<td>SLAMMER_PROM_AX600</td>
<td>false</td>
<td>2062-00003-050000-040000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>false</td>
<td>2060-00003-050100-014400</td>
</tr>
<tr>
<td>SLAMMER_SOFTWARE_AX600</td>
<td>false</td>
<td>2060-00301-050100-014400</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>false</td>
<td>2090-00001-050100-014400</td>
</tr>
</tbody>
</table>

UpgradePathInformation
statistics

DESCRIPTION
Displays performance statistics for logical volumes and storage area network (SAN) protocols.

Performance statistics are affected by usage patterns and Quality of Service (QoS) settings. For example, if the QoS settings for a LUN are configured for a large number of operations a second and only a few people are accessing the storage device, the performance statistics show fewer operations a second.

You can use the `-verify` option to test the command-line argument and its options before running it in Pillar Axiom CLI. If no errors exist, the Pillar Axiom CLI command returns without executing. For example, the `-verify` option is helpful when writing scripts in which a particular Pillar Axiom CLI command usage can be verified prior to adding it to a script.

You can use the `-outputformat` or the `-o` command option to specify how to display the results of running a command. If you do not specify either the `-outputformat` or the `-o` command option, the results display in the default text format. Valid options:

- **text** The system displays the results in the plain-text format.
- **xml** The system displays the results in the tagged XML format.

You can use the `-sessionKey` option to specify which Pillar Axiom system to access and which session key value to use for validation. The Pillar Axiom CLI displays the session key value when you log in to the Pillar Axiom system using the `-returnKey` option.

You can use the `-timeout` option to set a time limit for the execution of a command. If the command takes longer than the number of seconds specified in the `-timeout` option, the system stops executing the command. If you do not specify the `-timeout` option, the system does not set any time limit for executing the command.

SYNTAX

```
axiomcli statistics -list
 [-lun lun-or-clone-id-or-fqn [, lun-or-clone-id-or-fqn]... ]
 [ { -protocol { san | fc | iscsi } |
   -port port-name [, port-name]... } ]
 [-verify]
 [{ -outputformat | -o } { text | xml }]
 [-sessionKey session-key]
 [-timeout timeout-in-seconds]
```

```
axiomcli statistics -help
```
PARAMETERS

Note: All roles can issue the `-list` command option.

-list

Displays the performance statistics of a Pillar Axiom system.

If you do not specify any other options, the system displays the performance statistics for networking, all Slammer control units, and all protocols.

Valid options:

-lun
Displays performance statistics for the specified LUN or Clone LUN.

-protocol
Displays protocol statistics.

Valid options:

san
Displays performance statistics for both iSCSI and Fibre Channel protocols.

fc
Displays performance statistics for the Fibre Channel protocol.

iscsi
Displays performance statistics for the iSCSI protocol.

-port
Displays statistics for a specified port identified as follows:

```
/slammer name/control unit/port number[/port type]
```

The value for the `slammer name` option must be the name of the Slammer. The value for the `control unit` option can be either `CU0` or `CU1` (you can also simply specify 0 or 1). The value for the `port number` option can be `Port` followed by a number in the range from 0 through 7, or it can be only a number in the 0 through 7 range. The value for the optional `port type` option identifies the port type, which can be either `fc` (for a Fibre Channel port), `iscsi` (for an iSCSI port), or `eth` (for an Ethernet port).

-help
EXAMPLE

Run `axiomcli statistics -list -protocol` to display performance statistics for the SAN protocol:

```
axiomcli statistics -list -protocol san
```

Results:

<table>
<thead>
<tr>
<th>SanProtocol</th>
<th>:/SLAMMER-01</th>
</tr>
</thead>
<tbody>
<tr>
<td>Id</td>
<td>2008000B08041CE2</td>
</tr>
<tr>
<td>ControlUnitNumber</td>
<td>0</td>
</tr>
<tr>
<td>NodePortName</td>
<td>PORT0</td>
</tr>
</tbody>
</table>

CollectionTime:
- StartTime: 2010-10-08T17:05:40.768+00:00
- EndTime: 2010-10-08T17:07:40.055+00:00

PerformanceMetrics:
- TotalBytesPerSecond: 74496017.659
- ReadBytesPerSecond: 37910032.746
- WriteBytesPerSecond: 36585984.913
- ReadThroughputInIOPerSecond: 0.000
- WriteThroughputInIOPerSecond: 253.504
- TotalThroughputInIOPerSecond: 253.504
- ReadBandwidthInBytesPerSecond: 0.000
- WriteBandwidthInBytesPerSecond: 32825633.950
- TotalBandwidthInBytesPerSecond: 66839228.524
- AverageReadOperationSizeInBytes: 0.000
- AverageWriteOperationSizeInBytes: 129487.609
- AverageReadResponseTimeInMilliseconds: 0.000
- AverageWriteResponseTimeInMilliseconds: 0.000
- AverageCombinedResponseTimeInMilliseconds: 0.000

SanControllerInformation:
- ReadMBPerSecond : 0
- WriteMBPerSecond : 0
- TotalMBPerSecond : 0
- CommandsPerSecond : 0
- TotalChannelErrors : 0

ScsiTaskManagementOperations:
- AbortTask : 0
- AbortTaskSet : 0
- ClearACA : 0
- ClearTaskSet : 0
- LogicalUnitReset : 0
- TargetReset : 0

LoopActivity:
- LIPs : 0
- LoopUps : 1
- LoopDowns : 0

ChannelErrors:
- LoopInitErrors : 0
- RNDErrors : 0
- XferErrors : 0
- UnderRunErrors : 0
Appendix B Pillar Axiom CLI Commands

OverRunErrors : 0
DMAErrors : 0
SystemErrors : 0
PCIErrors : 0
ReselectionTimeoutErrors : 0
InvalidRXIDErrors : 0
PortUnavailableErrors : 0
CommandTimeoutErrors : 0
UnacknowledgedHostEventErrors : 0

...
storage_allocation

DESCRIPTION Displays the logical volume information for designated Bricks.

The storage_allocation command scans the Pillar Axiom system and downloads the system configuration information. That information determines the allocations displayed by this command. The system configuration information is downloaded to your home directory, and the report files are created. Once the command completes generating the report files, the system configuration information in your home directory is deleted.

Use storage_allocation to display logical volume information for designated Bricks.

You can use the -verify option to test the command-line argument and its options before running it in Pillar Axiom CLI. If no errors exist, the Pillar Axiom CLI command returns without executing. For example, the -verify option is helpful when writing scripts in which a particular Pillar Axiom CLI command usage can be verified prior to adding it to a script.

You can use the -outputformat or the -o command option to specify how to display the results of running a command. If you do not specify either the -outputformat or the -o command option, the results display in the default text format. Valid options:

text The system displays the results in the plain-text format.
xml The system displays the results in the tagged XML format.

You can use the -sessionKey option to specify which Pillar Axiom system to access and which session key value to use for validation. The Pillar Axiom CLI displays the session key value when you log in to the Pillar Axiom system using the -returnKey option.

SYNTAX

axiomcli storage_allocation -list [-details] [{ -saveConfigFile saved-file-name | -configFile config-file-name}] { -lun [{-name lun-or-clone-name | -id lun-or-clone-id}] | -storageDomain [{-name storage-domain-name | -id storage-domain-id}] | -brick [{-name brick-name | -wwn brick-wwn}] } [{-csv csv-file-name | -html html-directory-name | -xml xml-file-name}] [-verify]
Parameters

`-list` displays the storage allocations of LUNs, Storage Domains, or Bricks.

Note: You must use the `id_type` parameter. For the `-lun` and `-storageDomain` options, the only valid `id_type` values are `name` and `suid`, which correspond to the `-name` and `-id` options.

Valid options:

- `-details`

 Displays no additional detail and is included for symmetry with the `-list` options of other commands.

- `-saveConfigFile`

 Saves the `Axiom_COD.tar` configuration file that was downloaded from the Pillar Axiom system to your client machine at the path and file name specified in the `saved-file-name` variable. You can also use this option to download the `.cod` file for analysis. If you do not provide this option, the system deletes the configuration file from your local workstation when the command completes.

 Note: The `-saveConfigFile` and `-configFile` options are mutually exclusive.

- `-configFile`

 Bypasses the process of collecting and downloading the system configuration information from the Pillar Axiom system.

 Note: The `-configFile` and `-saveConfigFile` options are mutually exclusive.

- `-lun`

 Displays a summary of the Quality of Service (QoS) for all LUNs or Clone LUNs. If this option is provided, the QoS for the specified LUN or Clone LUN is displayed. Valid options:

 - `-name`

 Specifies the name of the LUN or Clone LUN.
-id
Specifies the ID of the LUN or Clone LUN.

-storageDomain
Displays a summary of the specified Storage Domain.
Valid options:
 -name
 Specifies the Storage Domain name.

-id
Specifies the ID of a Storage Domain.

-brick
Displays the volumes that touch the LUNs of all Bricks. If this option is provided, the LUN volumes for the specified Brick are displayed. Valid options:
 -name
 Specifies the name of a Brick.

-wwn
Specifies the World Wide Name (WWN) of a Brick.

-csv
Specifies the comma-separated output format of the configuration file. You can specify the -csv option only if the -lun option is used.

-html
Specifies the name of the directory that contains all of the generated HTML files.

-xml
Specifies the XML output format of the configuration file.

Note: You must specify the -csv, the -html, or the -xml option.

-help
Displays the detailed command help information.

EXAMPLE
Run `storage_allocation -list -brick -xml` to write the Brick configuration file in the XML output format, replacing with the location and the name of the XML configuration file:

```
axiomcli storage_allocation -list -brick -xml
```

The output XML configuration file looks similar to the following example:
Appendix B Pillar Axiom CLI Commands

storage_allocation
<Number>3</Number>
<RUI>2000000b-083a5371-00202020-30303030-30303037</RUI>
>Status>Online</Status>
<StorageClass>SATA 7k HDD</StorageClass>
<StorageDomain>default</StorageDomain>
<Volume>
{Name>PERSISTENCE</Name>
<SUID>0x0</SUID>
<VlunHandle>0x0</VlunHandle>
<VlunGUID>00dccfb0-d21d-b211-b318-220503080b00</VlunGUID>
</Volume>
</BrickLUN>
</Brick>
</viewCod>
storage_domain

DESCRIPTION

Provides functionality that allows you to create, delete, list, or modify Pillar Axiom Storage Domains. A Pillar Axiom Storage Domain is a subset of a virtual storage pool that is comprised of a grouping of physical Bricks.

Use the `storage_domain` command to manage Pillar Axiom Storage Domains on a Pillar Axiom system.

You can use the `-verify` option to test the command-line argument and its options before running it in Pillar Axiom CLI. If no errors exist, the Pillar Axiom CLI command returns without executing. For example, the `-verify` option is helpful when writing scripts in which a particular Pillar Axiom CLI command usage can be verified prior to adding it to a script.

You can use the `-outputformat` or the `-o` command option to specify how to display the results of running a command. If you do not specify either the `-outputformat` or the `-o` command option, the results display in the default text format. Valid options:

- **text** The system displays the results in the plain-text format.
- **xml** The system displays the results in the tagged XML format.

You can use the `-sessionKey` option to specify which Pillar Axiom system to access and which session key value to use for validation. The Pillar Axiom CLI displays the session key value when you log in to the Pillar Axiom system using the `-returnKey` option.

You can use the `-timeout` option to set a time limit for the execution of a command. If the command takes longer than the number of seconds specified in the `-timeout` option, the system stops executing the command. If you do not specify the `-timeout` option, the system does not set any time limit for executing the command.

SYNTAX

```
axiomcli storage_domain -add -name storage-domain-name
   [-verify]
   [{-outputformat | -o} {text | xml}]
   [-sessionKey session-key]
   [-timeout timeout-in-seconds]

axiomcli storage_domain -modify -domain
   storage-domain-id-or-fqn
   [-newName new-storage-domain-name]
   [-isPrimary]
   [-verify]
   [{-outputformat | -o} {text | xml}]
```
axiomcli storage_domain -delete

```
axiomcli storage_domain -delete
-­domain storage-domain-id-or-fqn [, storage-domain-id-or-fqn]...
[-verify]
[{-outputformat | -o} {text | xml}]
[-sessionKey session-key]
[-timeout timeout-in-seconds]
```

axiomcli storage_domain -list [-details]

```
axiomcli storage_domain -list [-details]
-­domain storage-domain-id-or-fqn [, storage-domain-id-or-fqn]...
[-verify]
[{-outputformat | -o} {text | xml}]
[-sessionKey session-key]
[-timeout timeout-in-seconds]
```

axiomcli storage_domain -help

```
axiomcli storage_domain -help
```

PARAMETERS

Note: Only Primary Administrator and Administrator 1 roles can issue all command options.

All roles can issue the `-list` command option.

add

Creates a Storage Domain.

Note: The Pillar Axiom system must contain at least three Bricks before a Storage Domain can be created.

Valid options:

- `name`

Specifies the name of this Storage Domain. This name must be unique within the Pillar Axiom system.

modify

Changes certain properties of a Storage Domain.

Valid options:

- `domain`

Specifies the ID or fully qualified name (FQN) of the Storage Domain to modify.

- `newName`

Specifies the new name of this Storage Domain. This new name must be unique within the Pillar Axiom system.

- `isPrimary`
Specifies that this domain is to be the primary domain. Be sure that this primary domain contains at least two Bricks.

Important! Use of this option causes the system to migrate the system configuration and persistence data from the existing primary domain to this new primary domain. This migration is automatic, cannot be interrupted, and affects system performance until the migration completes.

`delete`

Removes one or more Storage Domains from the Pillar Axiom system.

Note: You cannot delete the primary Storage Domain. Also, you cannot delete a Storage Domain that has any logical volumes or Bricks assigned to it.

Valid options:

- **domain**
 Specifies the ID or FQN of a Storage Domain to delete.

`list`

Displays existing Storage Domain names.

Valid options:
- **details**
 Displays all properties of the specified Storage Domains that are listed. Otherwise, only the names of the domains are shown.

Some Storage Domain properties include the following:

- **Name**
 Specifies the name of the Storage Domain.

- **PhysicalTotalCapacity**
 Displays the total amount of raw capacity (in GB) provided by the Bricks defined within the indicated Storage Domain.

- **PhysicalFreeCapacity**
 Displays the amount of raw capacity (in GB) that is available for allocation in the indicated Storage Domain.

- **PhysicalAllocatedCapacity**
 Displays the amount of raw capacity, in gigabytes (GB), that has been assigned and designated to all logical volumes residing on the indicated Brick.
PhysicalUnavailableCapacity
Displays the amount of raw capacity (in GB) that is currently being initialized. This value typically results from a volume having been deleted. This value decreases over a period of time while the value for free capacity correspondingly increases for the indicated Storage Domain.

-domain
Displays all of the properties of the specified Storage Domain.

-help
Displays the detailed command help information.

EXAMPLE

Run `axiomcli storage_domain -list -details` to display all the properties of each Storage Domain:

```
axiomcli storage_domain -list -details
```

Results:

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Id</td>
<td>4130303132373542A214000000000000</td>
</tr>
<tr>
<td>Name</td>
<td>default</td>
</tr>
<tr>
<td>ManagementState</td>
<td>AVAILABLE</td>
</tr>
<tr>
<td>Primary</td>
<td>true</td>
</tr>
<tr>
<td>BrickNodeFqn</td>
<td>/BRICK-001/0</td>
</tr>
<tr>
<td>BrickNodeId</td>
<td>200C00B08001D03</td>
</tr>
<tr>
<td>BrickNodeFqn</td>
<td>/BRICK-002/0</td>
</tr>
<tr>
<td>BrickNodeId</td>
<td>200C00B083A5371</td>
</tr>
<tr>
<td>PhysicalTotalCapacity</td>
<td>3560</td>
</tr>
<tr>
<td>PhysicalFreeCapacity</td>
<td>3076</td>
</tr>
<tr>
<td>PhysicalAllocatedCapacity</td>
<td>484</td>
</tr>
<tr>
<td>PhysicalUnavailableCapacity</td>
<td>0</td>
</tr>
<tr>
<td>StorageClass</td>
<td>satahd</td>
</tr>
<tr>
<td>TotalCapacity</td>
<td>3560</td>
</tr>
<tr>
<td>AvailableCapacity</td>
<td>3076</td>
</tr>
<tr>
<td>AllocatedCapacity</td>
<td>484</td>
</tr>
<tr>
<td>UnavailableCapacity</td>
<td>0</td>
</tr>
</tbody>
</table>
system

DESCRIPTION
Manages the status and shutdown functions of a Pillar Axiom system.

The components listed by `system` include:

- Slammers: Includes the control units (CUs), fans, power supplies, batteries, network interface modules, private interconnect modules, and temperature.
- Bricks: Includes the drives, power supplies and fans, Enclosure Services (ES) module, and RAID controllers.
- Pilots: Includes just the control units.

Use the `system` command to manage the system-wide settings of a Pillar Axiom system.

You can use the `-verify` option to test the command-line argument and its options before running it in Pillar Axiom CLI. If no errors exist, the Pillar Axiom CLI command returns without executing. For example, the `-verify` option is helpful when writing scripts in which a particular Pillar Axiom CLI command usage can be verified prior to adding it to a script.

You can use the `-outputformat` or the `-o` command option to specify how to display the results of running a command. If you do not specify either the `-outputformat` or the `-o` command option, the results display in the default text format. Valid options:

- `text` The system displays the results in the plain-text format.
- `xml` The system displays the results in the tagged XML format.

You can use the `-sessionKey` option to specify which Pillar Axiom system to access and which session key value to use for validation. The Pillar Axiom CLI displays the session key value when you log in to the Pillar Axiom system using the `-returnKey` option.

You can use the `-timeout` option to set a time limit for the execution of a command. If the command takes longer than the number of seconds specified in the `-timeout` option, the system stops executing the command. If you do not specify the `-timeout` option, the system does not set any time limit for executing the command.

SYNTAX
```
axiomcli system -modify
    [-name system-name]
    [-description axiom-description]
    [-location system-location]
    [-contactName contact-name]
    [-contactPhone contact-phone]
```
[-assetNumber asset-number]
[-sessionTimeout timeout-in-minutes]
[-maximumFailedLogins maximum-failed-login-attempts]
[-messageOfTheDay message-of-the-day]
[{-enableEmail | -disableEmail}]
[-smtpServerIp smtp-server-ip_or_dns]
[-smtpServerPort smtp-server-port-number]
[-emailDomain email-domain]
[-emailFloodInterval flood-prevention-interval-seconds]
[{-enableSsh [-ssh ssh-ticket | -file ssh-ticket-file]}
[{-disableSsh}]
[{-conservativeMode | -performanceMode}]
[-verify]
[{-outputformat | -o} {text | xml}]
[-sessionKey session-key]
[-timeout timeout-in-seconds]

axiomcli system -network
[-ip ip-address]
[-netmask netmask]
[-nameServer dns-ip1 [, dns-ip2] ...]
[{-enableDhcp | -disableDhcp}]
[-duplex {auto | 10h | 10f | 100h | 1000h | 1000f}]
[-pilot1Ip pilot1-ip-address]
[-pilot1Netmask pilot1-netmask]
[-pilot1Gateway pilot1-gateway]
[-pilot2Ip pilot2-ip-address]
[-pilot2Netmask pilot2-netmask]
[-pilot2Gateway pilot2-gateway]
[-verify]
[{-outputformat | -o} {text | xml}]
[-sessionKey session-key]
[-timeout timeout-in-seconds]

axiomcli system -list [-details]
[-storage]
[-productDetails]
[-ssh]
[-storageIoStatistics]
[-status]
[-verify]
[{-outputformat | -o} {text | xml}]
[-sessionKey session-key]
[-timeout timeout-in-seconds]

axiomcli system -shutdown [-overridePinnedData]
[-overrideDisabledCUs]
[-verify]
[{-outputformat | -o} {text | xml}]
axiomcli system -restart
{-overridePinnedData} {-overrideDisabledCUs}
{-emergencyClearBbm}
{-emergencyPreserveBbm}
{-verify}
{-outputformat | -o} {text | xml}
{-sessionKey session-key}
{-timeout timeout-in-seconds}

axiomcli system -restoreSlammer -slammer slammer-name
-unit unit-name
{-verify}
{-outputformat | -o} {text | xml}
{-sessionKey session-key}
{-timeout timeout-in-seconds}

axiomcli system -replace -unit unit-name
{-verify}
{-outputformat | -o} {text | xml}
{-sessionKey session-key}
{-timeout timeout-in-seconds}

axiomcli system -resume {-brickFru brick-fru | -slammerFru slammer-fru}
{-verify}
{-outputformat | -o} {text | xml}
{-sessionKey session-key}
{-timeout timeout-in-seconds}

axiomcli system -beacon -unit unit-name [-stop]
[-reversebeacon]
{-verify}
{-outputformat | -o} {text | xml}
{-sessionKey session-key}
{-timeout timeout-in-seconds}

axiomcli system -reset {-ssn encrypted-ssn | -file encrypted-ssn-file}
{-verify}
{-outputformat | -o} {text | xml}
{-sessionKey session-key}
{-timeout timeout-in-seconds}

axiomcli system -pi -command private-interconnect-command
{-timeout timeout-value}
{-verify}
PARAMETERS

Note: The Primary Administrator and Administrator 1 roles can issue all command options except for the following options:

- `axiomcli system -list -storageIoStatistics`
- `axiomcli system -restart -emergencyClearBbm`
- `axiomcli system -restart -emergencyPreserveBbm`

The Pillar Support and Support roles can issue all commands except for the following options:

- `axiomcli system -modify`
- `axiomcli system -network`

All roles can issue the `-list`, and `-beacon` command options.

-modify

Modifies the system-wide settings of a Pillar Axiom system.

Valid options:

- `-name`
 Identifies the system name of a Pillar Axiom system.

- `-description`
 Identifies the description of the Pillar Axiom system.

- `-location`
 Identifies the physical location of the Pillar Axiom system.

- `-contactName`
 Identifies the administrator's login (user) name who is responsible for the Pillar Axiom system.

- `-contactPhone`
 Identifies the telephone number for the Primary Administrator.

- `-assetNumber`
Identifies a fixed inventory asset number for the Pillar Axiom system.

Note: This asset number is not the serial number for the Pillar Axiom system.

- **sessionTimeout**

Identifies an inactivity time limit, after which an administrator’s session is terminated. In-progress sessions are not affected by changes that you make to the value; current sessions use the old value. Sessions that start after you change the value use the modified session timeout.

The default for the session timeout is 20 minutes. Values for the session timeout parameter must be between 1 and 999 minutes. If you specify a value larger than 999, Pillar Axiom CLI will adjust the value down to 999 before sending it to the Pillar Axiom system.

- **maximumFailedLogins**

Identifies the number of times that an administrator can attempt, but fail, to log in to the Pillar Axiom system.

When this threshold is exceeded, the system disables the account.

The Primary Administrator or Administrator 1 can re-enable an account by entering the following command-line argument:

```
axiomcli account -modify -account account-id-or-fqn -enable
```

- **messageOfTheDay**

Provides the default message to display when a user logs in to the Pillar Axiom CLI.

- **enableEmail**

Indicates whether email notifications to be sent by the Pillar Axiom system are enabled.

- **disableEmail**

Indicates whether email notifications to be sent by the Pillar Axiom system are disabled.

- **smtpServerIp**

Identifies the Simple Mail Transfer Protocol (SMTP) server to use for sending any emails. Valid options:
- IP: The IP address for the SNMP server
- DNS: The Domain Name Service (DNS) for the SNMP server

-emailDomain

Specifies the sending domain identifier other than the Pillar Axiom system.

-emailFloodInterval

Identifies the time in which two subsequent emails are permitted to be sent when some type of event occurs on a Pillar Axiom system. The smaller the number, the more frequent you will receive emails for events being generated by the system. The default time is set to 10 minutes.

-enableSsh

Indicates whether Secure Shell (SSH) access to the Pillar Axiom system is enabled.

If you specify the -ssh command, its returned value is the encrypted SSH ticket. If you specify the -file option, the returned value is the path to the file containing the encrypted SSH ticket.

-disableSsh

Indicates whether SSH access to the Pillar Axiom system is disabled.

-conservativeMode

Puts the Pillar Axiom system into the conservative performance mode. To restore the Pillar Axiom system back to a normal performance mode, use the -performanceMode option. The -conservativeMode and -performanceMode options are support-only commands.

In the conservative mode, if a CU fails, the system does not enable write through. If the remaining CU fails, any data that has not been written to the Bricks is lost.

-network

Modifies the network settings on a Pillar Axiom system.
Valid options:

- **ip**
 Identifies the IP address that is permanently assigned to the Pillar Axiom system if Dynamic Host Configuration Protocol (DHCP) is disabled.

- **netmask**
 Identifies the subnet mask for the Pillar Axiom IP address if DHCP is disabled.

- **nameServer**
 Identifies the primary, secondary, and tertiary Domain Name Server (DNS) that is used by the Pillar Axiom system to resolve IP addresses.

- **enableDhcp**
 Indicates whether DHCP is enabled on your network and makes the Pillar Axiom system known to the DHCP software.

- **disableDhcp**
 Indicates whether DHCP is disabled and is not used on your network.

- **duplex**
 Sets the duplex settings for the Pillar Axiom system.

Valid options:

- **auto** – System determines
- **10h** – Half 10 Mbps
- **10f** – Full 10 Mbps
- **100h** – Half 100 Mbps
- **100f** – Full 100 Mbps
- **1000h** – Half 1000 Mbps
- **1000f** – Full 1000 Mbps

- **pilot1Ip**
 Sets the public IP address for Pilot1.

- **pilot1Nnetmask**
 Sets the netmask to be used by Pilot1.

- **pilot1Gateway**
 Sets the route IP address for Pilot1.
-pilot2Ip
Sets the public IP address for Pilot2.

-pilot2Netmask
Sets the netmask to be used by Pilot2.

-pilot2Gateway
Sets the route IP address for Pilot2.

-list
Displays the status of a Pillar Axiom system.

Valid options:

-detailed
Displays the status of a Pillar Axiom system including the properties set by -modify or -network options.

-storage
Displays a summary of all used and available storage on a Pillar Axiom system.

-productDetails
Displays the product details of a Pillar Axiom system. This includes, but is not limited to, software build number, operating system version, and product name.

If you do not specify this option, but specify other options, product details are not displayed.

-ssh
Displays the SSH status of enabled, start time, or duration of the Pillar Axiom system.

-storageIoStatistics
Displays the storage I/O statistics of the total number of SAN blocks. The rest of the system information is not displayed.

Note: Only the Pillar Support and Support roles can issue this command option.

-status
Displays the system status information only.

Note: If the Pillar Axiom system is powered off or there is a network connectivity problem, this function will fail.

-shutdown
Places the Pillar Axiom system into a shutdown state. This option does not power off the system. Use this option in preparation for a power-off or power cycle, or for maintenance or recovery. Before the system is placed in a shutdown state, an attempt to flush the write-back cache will be made. If successful, the shutdown occurs; otherwise, the shutdown does not occur.

While the system is in a shutdown state, the only actions you can perform are to display system status and to restart the system.

Important! If you need to power off the system for more than 48 hours, remove the Slammer batteries.

Note: If there is data in the battery backup memory (BBM), the data is retained until the system is restarted. If the batteries discharge before the system restarts, the data is lost.

Valid options:

- **overridePinnedData**
 Forces the shutdown to occur even if pinned data exists. The pinned data can occur when issues arise regarding the Brick storage array. In such a case, data to be written to that array remains in the BBM of the Slammer CU. Data is pinned if it cannot be flushed from cache to the storage array.

 An administrator-initiated shutdown request will fail if any user data is still cached and has not yet been written to physical storage. If the Slammers cannot communicate with the Bricks to flush the cached data, the Pillar Axiom system retains, or pins, the data in cache.

- **overrideDisabledCUs**
 Forces the shutdown to occur even if Slammer CUs are disabled.

- **restart**
 Restarts a Pillar Axiom system. Before restarting, the system attempts to flush the buffers. If successful, the restart will proceed as normal; otherwise, the restart will not occur.

 Tip: When restarting a system after an extended period of time, remember to reinstall the batteries before you restart the system.
Valid options:

- **overridePinnedData**
 Forces the system to restart even if pinned data exists. The pinned data can occur when issues arise regarding the Brick storage array. In such a case, data to be written to that array remains in the BBM of the Slammer CU. Data is pinned if it cannot be flushed from cache to permanent storage on disk.

- **overrideDisabledCUs**
 Forces the restart to occur even if there are disabled Slammer CU.

- **emergencyClearBbm**
 Performs an emergency restart and clears the contents of the BBM.
 You cannot use this option with any other system-restart option.

 Note: Only the Pillar Support and Support roles can issue this command option.

- **emergencyPreserveBbm**
 Performs an emergency restart and will preserve the contents of the BBM.
 You cannot use this option with any other system-restart option.

 Note: Only the Pillar Support and Support roles can issue this command option.

- **restoreSlammer**
 Fails back a recovered Slammer CU.

 Valid options:
 - **slammer**
 Specifies the Slammer to fail back.
 - **unit**
 Specifies the control unit to fail back (0 or 1).

- **replace**
 Notifies the Pillar Axiom system that a specific hardware component is going to be replaced.
The `unit` option identifies the unit being replaced by using a path name shown in the `axiomcli system -list` output. The supported units are:

Control unit 0 power supply
/Slammer1/CU0/PS0

Control unit 0 FanModule
/Slammer1/CU0/FM0

Control unit 0 Battery
/Slammer1/CU0/BA0

Control unit 0 Memory
/Slammer1/CU0/MEM0

Control unit 0 Motherboard
/Slammer1/CU0/MBO

Control unit 0 SAN Network Interfacemodule
/Slammer1/CU0/SANNIM1

Control unit 0 Private Interconnect Module
/Slammer1/CU0/PIM0

Control unit 0 SCSI Controller
/Slammer1/CU0/SCSI1

Control unit 0 Chassis
/Slammer1/CU0/CH

Brick
/Brick005

Brick Drive
/Brick005/Disk04

Brick PowerSupplyFanModule
/Brick1/PSFM01

Brick ESM Module
/Brick1/ESMO

Brick Spare Drive
/Brick1/Spare01

Brick RAID Controller
/Brick1/CU0

Brick Chassis
/Brick1/CH
-resume

Resumes operations in the Pillar Axiom system after the following actions:

- Removal of a field replaceable unit (FRU) in a Brick or Slammer hardware component.
- Addition of a new FRU to replace the old one.

Valid options:

-brickfru

Identifies a FRU in a Brick.

Valid options:

- **PowerSupplyFanModule**

 Specifies either of the two power supply/fan modules that are installed.

- **ESModule**

 Specifies the ES that is installed.

- **DiskDrive**

 Specifies any of the six drives that are installed on each Brick CU.

- **SpareDiskDrive**

 Specifies the spare drive that is shared by the two Brick CUs.

- **RAIDController**

 Specifies either of the two RAID controllers that are installed.

- **Chassis**

 Specifies an entire Brick.

You can find the FRU by entering the following command-line argument:

 axiomcli system -replace

-slammerfru

Identifies a FRU on a Slammer.

Valid options:

- **PowerSupply**

 Specifies either of the two power supplies that are
installed. Each Slammer contains four power supplies.

FanModule
- Specifies either of the two fan assemblies that are installed on Slammer CU. Each fan assembly contains two fans, which are not individual FRUs.

Battery
- Specifies either of the two batteries that are installed on Slammer CU.

Memory
- Specifies memory modules that reside on the motherboard of each Slammer CU.

Motherboard
- Specifies the motherboard that is installed on each Slammer CU.

SANNetworkInterfaceModule
- Specifies either of the two network interface modules that are installed on a SAN Slammer.

PrivateInterconnectModule
- Specifies either of the two private interconnect modules that are installed on a Slammer.

SCSIController
- Specifies the PCI card that resides in the network interface module.

Chassis
- Specifies the entire Slammer.

You can find the Slammer FRU by entering the following command-line argument:

```
axiomcli system -replace -beacon
```

Identifies the specific Slammers or Bricks in the Pillar Axiom system. The beacon command option blinks the LEDs on the front and back of the target hardware component. You can also perform a reverse beacon,
which blinks the LEDs on all of the Pillar Axiom system hardware components except the target FRU.

Note: A Pillar Axiom system can beacon only one component at a time because blinking disables all other LEDs.

Valid options:
- `-unit`
 Identifies the name of the unit specified by the `-replace` option.
- `-stop`
 Stops the LED blinking and returns all Pillar Axiom system LEDs to their normal function.
- `-reverseBeacon`
 Blinks all LEDs except those associated with the specified unit.
- `-reset`
 Deletes all user data and configuration details on the Pillar Axiom system.

 Caution All user data and configured logical volumes will be lost.

Valid options:
- `-ssn`
 Identifies the encrypted system serial number (SSN) that is assigned to the Pillar Axiom system being reset. You need to reset your system serial number only in extremely rare circumstances.
- `-file`
 Identifies the name and path of the file that contains the encrypted SSN. You must specify the SSN file. If you do not know the name of the SSN file, contact Oracle Pillar Customer Support.
- `-pi`
 Sends a private interconnect command and parameters to the Pillar Axiom system. The command is passed as-is and requires you to know the commands and parameters that can be sent. For the list of available parameters, contact Oracle Pillar Customer Support.
Valid options:
- **command**
 Identifies a free form text string for the private interconnect command.
- **timeout**
 Identifies an optional timeout value for the command.
- **verifyPersistenceRedundancy**
 Checks two copies of the doubly redundant persistence data. If there are any errors, the system returns the number of detected errors.
- **help**
 Displays the detailed command help information.

EXAMPLE

Run `system -list` to display the status of a Pillar Axiom system:

```
axiomcli system -list
```

Results:

<table>
<thead>
<tr>
<th>System</th>
<th>Name</th>
<th>SystemStatus</th>
<th>Slammer</th>
<th>/SLAMMER-01</th>
<th>SLAMMER-01</th>
<th>2008000B08030522</th>
<th>NORMAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>icaxm012</td>
<td></td>
<td>Name</td>
<td>SLAMMER-01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Id</td>
<td></td>
<td></td>
<td>Id</td>
<td>2008000B08030522</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HardwareComponentStatus</td>
<td>NORMAL</td>
<td></td>
<td>HardwareComponentStatus</td>
<td>NORMAL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ServiceType</td>
<td>SAN</td>
<td></td>
<td>ServiceType</td>
<td>SAN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brick</td>
<td>/BRICK-001</td>
<td></td>
<td>Name</td>
<td>BRICK-001</td>
<td>BRICK-001</td>
<td>200C000B08001D03</td>
<td></td>
</tr>
<tr>
<td>Id</td>
<td></td>
<td></td>
<td>Id</td>
<td>200C000B08001D03</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BrickWwn</td>
<td></td>
<td></td>
<td>BrickWwn</td>
<td>200C000B08001D03</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td></td>
<td></td>
<td>Type</td>
<td>SATA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HardwareComponentStatus</td>
<td>NORMAL</td>
<td></td>
<td>HardwareComponentStatus</td>
<td>NORMAL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TemperatureStatus</td>
<td>NORMAL</td>
<td></td>
<td>TemperatureStatus</td>
<td>NORMAL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pilot</td>
<td></td>
<td></td>
<td>Pilot</td>
<td>PILOT_1</td>
<td>PILOT_1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HWSC</td>
<td></td>
<td></td>
<td>HWSC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Id</td>
<td></td>
<td></td>
<td>Id</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td></td>
<td></td>
<td>Type</td>
<td>SATA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HardwareComponentStatus</td>
<td>NORMAL</td>
<td></td>
<td>HardwareComponentStatus</td>
<td>NORMAL</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Annex B Pillar Axiom CLI Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>command</td>
<td>Identifies a free form text string for the private interconnect command.</td>
</tr>
<tr>
<td>timeout</td>
<td>Identifies an optional timeout value for the command.</td>
</tr>
<tr>
<td>verifyPersistenceRedundancy</td>
<td>Checks two copies of the doubly redundant persistence data. If there are any errors, the system returns the number of detected errors.</td>
</tr>
<tr>
<td>help</td>
<td>Displays the detailed command help information.</td>
</tr>
</tbody>
</table>
Appendix B Pillar Axiom CLI Commands

EnclosureAssemblyNumber : 1030-00001-00
EnclosureDescription : Axiom 1U-Pilot
EnclosureSerialNumber : No Enclosure
FruAssemblyNumber : 1450-00106-00
FruDescription : MSI-9249
SerialNumber :

BC0071031142300038
 OsVersion :
2070-00001-050100-014100
 PacmanVersion :
2073-00001-050100-014400
PilotControlUnitName : PILOT_2
OperationMode : STANDBY
HardwareComponentStatus : NORMAL
EnclosureAssemblyNumber : 1030-00001-00
EnclosureDescription : Axiom 1U-Pilot
EnclosureSerialNumber : No Enclosure
FruAssemblyNumber : 1450-00106-00
FruDescription : MSI-9249
SerialNumber :

BC0096001042670011
 OsVersion :
2070-00001-050100-014100
 PacmanVersion :
2073-00001-050100-014400
 Storage
 AvailableCapacity : 3076
 UsedCapacity : 484
ProductDetails
 Model : AX500
 SerialNumber : A001275BCX
PilotControlUnitName : PILOT_1
SerialNumber :

BC0071031142300038
 OsVersion :
2070-00001-050100-014100
 PacmanVersion :
2073-00001-050100-014400
PilotControlUnitName : PILOT_2
SerialNumber :

BC0096001042670011
 OsVersion :
2070-00001-050100-014100
 PacmanVersion :
2073-00001-050100-014400
 BuildInformation
 BuildVersion :
 CsiChecksum :
 ae98d810cc302cf6af6f4234592c9e
SoftwareComponent :
 BRICK_SATA_THIRDGEN_FIRMWARE
 Version : 2050-00046-032006-032006
SoftwareComponent :

system
<table>
<thead>
<tr>
<th>SoftwareComponent</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>BRICK_FIBRE_CHANNEL_NEXTGEN_FIRMWARE</td>
<td>2050-00045-022006-022006</td>
</tr>
<tr>
<td>BRICK_SATA_FIRMWARE</td>
<td>2050-00036-072006-072006</td>
</tr>
<tr>
<td>SLAMMER_SOFTWARE_AX500</td>
<td>2060-00001-050100-014400</td>
</tr>
<tr>
<td>BRICK_SATA_NEXTGEN_FIRMWARE</td>
<td>2050-00040-002006-002006</td>
</tr>
<tr>
<td>SLAMMER_PROM_AX300_AX500</td>
<td>2062-00002-030000-015001</td>
</tr>
<tr>
<td>PILOT_OS</td>
<td>2070-00001-050100-014100</td>
</tr>
<tr>
<td>BRICK_FC_FIRMWARE</td>
<td>2050-00038-012006-012006</td>
</tr>
<tr>
<td>PILOT_SOFTWARE</td>
<td>2073-00001-050100-014400</td>
</tr>
<tr>
<td>SLAMMER_PROM_AX600</td>
<td>2062-00003-050000-040000</td>
</tr>
<tr>
<td>SLAMMER_SOFTWARE_AX600</td>
<td>2060-00003-050100-014400</td>
</tr>
<tr>
<td>SLAMMER_SOFTWARE_AX300</td>
<td>2060-00301-050100-014400</td>
</tr>
</tbody>
</table>

SSH Enabled : false
system_alert

DESCRIPTION Displays and deletes system alerts, which are system events that require administrator intervention. System alerts are recommended system maintenance activities that have not yet been completed.

You can use the -verify option to test the command-line argument and its options before running it in Pillar Axiom CLI. If no errors exist, the Pillar Axiom CLI command returns without executing. For example, the -verify option is helpful when writing scripts in which a particular Pillar Axiom CLI command usage can be verified prior to adding it to a script.

You can use the -outputformat or the -o command option to specify how to display the results of running a command. If you do not specify either the -outputformat or the -o command option, the results display in the default text format. Valid options:

- text The system displays the results in the plain-text format.
- xml The system displays the results in the tagged XML format.

You can use the -sessionKey option to specify which Pillar Axiom system to access and which session key value to use for validation. The Pillar Axiom CLI displays the session key value when you log in to the Pillar Axiom system using the -returnKey option.

You can use the -timeout option to set a time limit for the execution of a command. If the command takes longer than the number of seconds specified in the -timeout option, the system stops executing the command. If you do not specify the -timeout option, the system does not set any time limit for executing the command.

SYNTAX

axiomcli system_alert -delete
{-all | -alert system-alert-id-or-fqn,...}
[-verify]
[{-outputformat | -o} {text | xml}]
[-sessionKey session-key]
[-timeout timeout-in-seconds]

axiomcli system_alert -list [-details]
[{-alert system-alert-id-or-fqn [, system-alert-id-or-fqn]...}
 | -thresholds }
[-verify]
[{-outputformat | -o} {text | xml}]

Appendix B Pillar Axiom CLI Commands
axiomcli system_alert -threshold {-lunRepository | -storagePool}
 -upperBoundUsed upper-bound-used-percentage
 -lowerBoundNearingLimit lower-bound-nearing-limit-percentage
 -reachedLimit reached-limit-percentage
 [-verify]
 [{-outputformat | -o} {text | xml}]
 [-sessionKey session-key]
 [-timeout timeout-in-seconds]

axiomcli system_alert -help

PARAMETERS

Note: Different roles can issue the following commands:

- The Primary Administrator and Administrator 1 roles can issue all of the command options.
- The Administrator 2 role can issue only the -list command option.
- The Pillar Support and Support roles can issue only the -delete and -list command options.
- The Monitor role is not allowed to issue any of the command options.

-delete

Deletes existing system alerts that have not been completed.

Required values must be entered on the command line. If you do not specify a required value, the system returns a syntax error and provides information on correct usage of the command.

Required options are:
- all

Specifies that all system alerts are to be deleted.

-alert

Identifies one or more alerts to be deleted. Enter the ID or FQN of the alert to delete. To display the current set of alerts, run the -list option.

Valid options:

ID

A 32-character string with hexadecimal characters (a through f and 0 through 9).

Example ID:
Fully qualified name (FQN)

An object name starting with a leading slash (/) with the object’s name. Example FQN:

/TopologiesValidationFailed...

-\(\texttt{-list}\)

Displays information about the specified system alert that has not yet been resolved. A list of unresolved system alerts with their ID, FQN, type, and creation date are displayed. The -\(\texttt{-list}\) option also identifies whether you can delete the system alert.

If you do not specify the -\(\texttt{-alert}\) option, the system displays the system_alert-list information only for the specified action, rather than all of the actions. If you do not provide the -\(\texttt{-thresholds}\) option, the system does not display threshold values.

Note: The Primary Administrator, Administrator 1, Administrator 2, Pillar Support, and Support roles can issue the -\(\texttt{-list}\) command options.

Valid options:

-\(\texttt{-details}\)

Displays the set of parameter names and values associated with each system alert, including the date of the alert.

The format of date-time is

\[
YYYY-MM-DD[THH[:mm[:SS[.xxx]]]][+\text{-HH:mm}]
\]

where:

- \(\text{YYYY-MM-DD}\) designates a four-digit year, two-digit month, and two-digit day for the date.
- \(T\) is a separator that designates the start of the time portion of the string.
- \(HH:mm:SS.xxx\) designates hours, minutes, and seconds (to three decimals places) in values for a 24-hour clock.
- \(+\text{-HH:mm}\) designates the time zone as an offset from Coordinated Universal Time (UTC) in hours and
minutes. The plus (+) or minus (-) prefix must be provided.

-alert
Specifies one or more alerts that are to be addressed.

Note: You can specify either the `-alert` or the `-thresholds` option, but not both.

-thresholds
Specifies alert threshold values to be displayed. If you provide the `-details` option, the system does not display any additional information for the alert thresholds.

Note: You can specify either the `-thresholds` or the `-alert` option, but not both.

-threshold
Sets alert threshold values for a LUN repository or a storage pool.

Valid options:
-lunRepository
Specifies a LUN repository alert threshold percentage value to set.

Note: You can specify either the `-lunRepository` or the `-storagePool` option, but not both.

-storagePool
Specifies a storage pool alert threshold percentage value to set.

Note: You can specify either the `-storagePool` or the `-lunRepository` option, but not both.

-upperBoundUsed
Specifies the 0 through 100 percentage value that represents the acceptable usage of the selected storage item. This value clears any nearing or reached system alerts that pertain to the selected storage item when the storage item is at the specified limit or below.

-lowerBoundNearingLimit
Specifies the 0 through 100 percentage value of the lower bound limit to display the alert that the selected storage item is nearing its allocation limit.

-reachedLimit
Specifies the 0 through 100 percentage value that determines if the selected storage item has reached its allocation limit.

-help

Displays the detailed command help information.

EXAMPLE

Run `system_alert -list -details` to display a list of system alerts:

```
axiomcli system_alert -list -details
```

Results:

```
/SlammerBezelNotDetectedSystemAlert/2009000B0803052A
  Id            : 4130303132373542A13E0045B262838C
  CreationDate  : 2011-04-01T18:52:29.784
  Problem: The bezel is not being detected by a Slammer Control Unit.
  SlammerBezelNotDetected
    ControlUnitIdentity
      Id                   : 2009000B0803052A
      Fqn                  : /SLAMMER-01/1
```
system_log

DESCRIPTION
Collects information about the Pillar Axiom system and creates a tar file of trace logs. Oracle Pillar Customer Support may request that you perform this command to diagnose issues in your Pillar Axiom system.

Use the `system_log` command to collect and review system information.

Note: The `system_log` command replaces the deprecated `sysinfo` command.

You can use the `-verify` option to test the command-line argument and its options before running it in Pillar Axiom CLI. If no errors exist, the Pillar Axiom CLI command returns without executing. For example, the `-verify` option is helpful when writing scripts in which a particular Pillar Axiom CLI command usage can be verified prior to adding it to a script.

You can use the `-outputformat` or the `-o` command option to specify how to display the results of running a command. If you do not specify either the `-outputformat` or the `-o` command option, the results display in the default text format. Valid options:

- **text** The system displays the results in the plain-text format.
- **xml** The system displays the results in the tagged XML format.

You can use the `-sessionKey` option to specify which Pillar Axiom system to access and which session key value to use for validation. The Pillar Axiom CLI displays the session key value when you log in to the Pillar Axiom system using the `-returnKey` option.

You can use the `-timeout` option to set a time limit for the execution of a command. If the command takes longer than the number of seconds specified in the `-timeout` option, the system stops executing the command. If you do not specify the `-timeout` option, the system does not set any time limit for executing the command.

SYNTAX

```shell
axiomcli system_log -collect
  [ { -all
      | [-eventLog] [-statistics] [-systemConfig]
      [-pilot] [-sanhostLogs]
      [-slammerBackup] [-slammerInMemory]
      [-slammerLogs] [-brickLogs]
      [-replicationAppliance] [-client]
    } ]
  [-slammerNode slammer-node-id-or-fqn [, slammer-node-id-or-fqn]...]
  [-brick brick-id-or-fqn [, brick-id-or-fqn]...]
```
axiomcli system_log -list [-logBundle log-bundle_id_or_fqn [, log-bundle-id-or-fqn]...]
 [-details]
 [-verify]
 [{-outputformat | -o} {text | xml}]
 [-sessionKey session-key]
 [-timeout timeout-in-seconds]

axiomcli system_log -download [-logBundle log-bundle-id-or-fqn] -file download-file
 [-verify]
 [{-outputformat | -o} {text | xml}]
 [-sessionKey session-key]
 [-timeout timeout-in-seconds]

axiomcli system_log -delete -logBundle log-bundle-id-or-fqn [, log-bundle-id-or-fqn]...
 [-verify]
 [{-outputformat | -o} {text | xml}]
 [-sessionKey session-key]
 [-timeout timeout-in-seconds]

axiomcli system_log -clearLogs {-all | [-slammerLogs] [-brickLogs] [-logBundles]}
 [-verify]
 [{-outputformat | -o} {text | xml}]
 [-sessionKey session-key]
 [-timeout timeout-in-seconds]

axiomcli system_log -send [-logBundle log-bundle-id-or-fqn]
 [-verify]
 [{-outputformat | -o} {text | xml}]
 [-sessionKey session-key]
 [-timeout timeout-in-seconds]

axiomcli system_log -uploadClientLogs
 [-verify]
 [{-outputformat | -o} {text | xml}]

[-sanhost sanhost-id-or-fqn [, sanhost-id-or-fqn]...]
[-sendToCallHome]
[-withinLastHours number-of-hours]
[-collectionReason reason-description]
[-uploadClientLogsFirst]
[-verify]
[{-outputformat | -o} {text | xml}]
[-sessionKey session-key]
[-timeout timeout-in-seconds]
axiomcli system_log -help

PARAMETERS

Note: The Primary Administrator, Administrator 1, Administrator 2, and Monitor roles can issue all command options, except the -clearLogs and -delete command options.

The Pillar Support and Support roles can issue all of the command options.

-collect

Collects system information and downloads a tar file with statistics from the Pillar Axiom system to your administrative workstation.

Valid options:
- all

Requests the collection of all system information.

-eventLog

Requests a record of high-level events that have occurred on the system. By default, this option returns either the last 30,000 events or events from the last two weeks, whichever is greater. If a filter is set on event log entries, we recommend that you collect all logged events from the event log as well as logs for the management interfaces (GUI and CLI). On occasion, the Oracle Pillar Customer Support may request that all event information be collected and sent to Pillar Data Systems for analysis.

-statistics

Requests system statistics. The Pillar Axiom system generates performance statistics for logical volumes and storage area network (SAN) protocols. The statistics also include capacity usage and system health information. The Oracle Pillar Customer Support may request that you collect performance statistics and transmit the data to Pillar Data Systems for analysis.

-systemConfig

Requests the global settings that are defined for the system. Information about the Pillar Axiom system configuration can be collected at any time.

-pilot

Requests Pilot-specific information.
-sanhostLogs
Requests logs from all known SAN hosts.

-slammerBackup
Requests information about the Slammer backups. The Pillar Axiom system periodically creates the backup copy, which may contain useful details to compare to other logs.

-slammerInMemory
Requests in-memory Slammer logs. Identifies whether to write details from the utility’s active memory to another log and include this log with the component-specific logs that you specify.

-slammerLogs
Requests Slammer-related log information.

-brickLogs
Requests Brick-related log information.

-replicationAppliance
Requests logs from all replication appliances.

-client
Requests only client-related log information.

-slammerNode
Identifies one or more Slammer control units (CUs) from which any other specified logs will be retrieved. Enter the ID or fully qualified name (FQN) of the specified Slammer CUs.

-brick
Identifies one or more Bricks from which any other specified logs will be retrieved. Enter the ID or FQN of the specified Bricks.

-sanhost
Identifies one or more SAN hosts from which logs will be collected. You may specify a maximum of 10 SAN hosts.

-sendToCallHome
Directs the system information and logs to be sent to the Call-Home server as soon as the collection operation completes.
Note: You can send a log to the Call-Home server at a later time by issuing the following command-line argument:

```plaintext
axiomcli system_log -send
```

- **withinLastHours**
 Collects logs of activities that have occurred within the last number of hours.

- **collectionReason**
 Specifies the reason for performing the log collection. The entry cannot exceed 256 characters.

- **uploadClientLogsFirst**
 Specifies that the log files on the client system be collected first and sent to the Pillar Axiom system for inclusion in the set of logs being collected.

- **download**

 Downloads a tar file with statistics from the Pillar Axiom system to your administrative workstation. Transmit the file as requested by Oracle Pillar Customer Support.

 Valid options:

 - **logBundle**
 Identifies the log bundle by either the ID or FQN. If you do not specify a log bundle, the most recent log bundle will be downloaded.

 Example of specifying the most recent log bundle:

    ```plaintext
    axiomcli system_log -download -file C:/AxiomCLI/
    ```

 Example of specifying the log bundle by ID:

    ```plaintext
    C:/AxiomCLI> axiomcli system_log -download
    -file C:/AxiomCLI/413939303033365AA1360000000007AE
    ```

 Example of specifying the log bundle by FQN:

    ```plaintext
    C:/AxiomCLI> axiomcli system_log -download
    -file C:/AxiomCLI/A990036ZGN-1272319504-e-02-02.tar
    ```

 - **file**
 Specifies the path used for downloading the log bundle.
-list

Displays the collected system information on a Pillar Axiom system.

Valid options:
- **logBundle**

Identifies the log bundle to display by either the ID or FQN. If you do not specify a log bundle, the most recent log bundle will be displayed.

- **details**

Displays the details for each log bundle stored on the Pillar Axiom system. If you do not specify a log bundle, just the FQN of each bundle (if any) will be displayed.

-delete

Deletes specific bundles by ID or FQN.

-clearLogs

Cleans the current set of logs on the Pillar Axiom system.

Note: Only the Pillar Support and Support roles can issue this command option.

Valid options:
- **all**

Cleans all system log information on the Pillar Axiom system.

Note: If you specify the **all** option, no other option can be specified.

- **slammerLogs**

Cleans all Slammer log information on the Pillar Axiom system.

- **brickLogs**

Cleans all Brick log information on the Pillar Axiom system.

- **logBundles**

Cleans all log bundle information on the Pillar Axiom system.

-send

Sends a specific log bundle to the Call-Home server.
Enter the ID or FQN of a specific Call-Home bundle to send. If you do not specify the \texttt{-bundle} option, the most recent Call-Home bundle is sent.

\textbf{-uploadClientLogs}

Specifies that logs on the client system be collected and sent to the Pillar Axiom system.

\textbf{-help}

Displays the detailed command help information.

\textbf{EXAMPLE}

Run \texttt{system_log} \texttt{-list} to collect information about the system:

\begin{verbatim}
axiomcli system_log -list

Results:

/ A001275BCX-110401204538-110402142910-SECONDARY_PERIODIC_COLLECTION-p-02-02.tar
/ A001275BCX-110402143404-110402143404-PRIMARY_PERIODIC_COLLECTION-p-02-02.tar
/ A001275BCX-110402143611-110406140106-MANUAL_COLLECTION-m-01-01.tar
/ A001275BCX-110401185341-110401204308-MANUAL_COLLECTION-m-01-01.tar
/ A001275BCX-110401183421-110401185325-PCP_EVT_SYSTEM_STATUS_CHANGED-e-02-02.tar
\end{verbatim}
task

DESCRIPTION Displays information about one or more tasks. A task is a fundamental unit of work within a Pillar Axiom system. The system converts every configuration request into one or more tasks, queues the tasks so that dependencies are satisfied, and performs the tasks.

Use the task command to display a list of tasks.

You can use the `-verify` option to test the command-line argument and its options before running it in Pillar Axiom CLI. If no errors exist, the Pillar Axiom CLI command returns without executing. For example, the `-verify` option is helpful when writing scripts in which a particular Pillar Axiom CLI command usage can be verified prior to adding it to a script.

You can use the `-outputformat` or the `-o` command option to specify how to display the results of running a command. If you do not specify either the `-outputformat` or the `-o` command option, the results display in the default text format. Valid options:

- **text**: The system displays the results in the plain-text format.
- **xml**: The system displays the results in the tagged XML format.

You can use the `-sessionKey` option to specify which Pillar Axiom system to access and which session key value to use for validation. The Pillar Axiom CLI displays the session key value when you log in to the Pillar Axiom system using the `-returnKey` option.

You can use the `-timeout` option to set a time limit for the execution of a command. If the command takes longer than the number of seconds specified in the `-timeout` option, the system stops executing the command. If you do not specify the `-timeout` option, the system does not set any time limit for executing the command.

SYNTAX

```
axiomcli task [-list] [-task task-id-or-fqn [task-id-or-fqn]...] 
          [-verify] 
          [{-outputformat | -o} {text | xml}] 
          [-sessionKey session-key] 
          [-timeout timeout-in-seconds]
```

axiomcli task -help

PARAMETERS

Note: All roles can issue the `-list` command option.

- **-list**

 Displays a list of tasks and the status of each task.
Valid options:
- **details**
 Displays the status, operation name, and percent complete for one or more tasks. The administrator who initiated the task is also displayed.
- **task**
 Displays information for all specified tasks.
- **help**
 Displays the detailed command help information.

EXAMPLE

Run `axiomcli task -list` to display a list of tasks:

```
axiomcli task -list
```

Results:

```
/GetOperation/100396/administrator
Status : IN_PROCESS
```
time

DESCRIPTION
Manages the system date and time settings that are configured on the Pillar Axiom system.

Use the `time` command to synchronize the Pillar Axiom clock time with a Network Time Protocol (NTP) server or to set the date and time manually.

You can use the `-verify` option to test the command-line argument and its options before running it in Pillar Axiom CLI. If no errors exist, the Pillar Axiom CLI command returns without executing. For example, the `-verify` option is helpful when writing scripts in which a particular Pillar Axiom CLI command usage can be verified prior to adding it to a script.

You can use the `-outputformat` or the `-o` command option to specify how to display the results of running a command. If you do not specify either the `-outputformat` or the `-o` command option, the results display in the default text format. Valid options:

- **text** The system displays the results in the plain-text format.
- **xml** The system displays the results in the tagged XML format.

You can use the `-sessionKey` option to specify which Pillar Axiom system to access and which session key value to use for validation. The Pillar Axiom CLI displays the session key value when you log in to the Pillar Axiom system using the `-returnKey` option.

You can use the `-timeout` option to set a time limit for the execution of a command. If the command takes longer than the number of seconds specified in the `-timeout` option, the system stops executing the command. If you do not specify the `-timeout` option, the system does not set any time limit for executing the command.

SYNTAX

```
axiomcli time -modify [ -dateTime date-and-time ]
               [{ -ntpService | -noNtpService }]
               [-ntpServiceIp ntp-service-ip [, ntp-service-ip]...]
               [-verify]
               [{ -outputformat | -o } { text | xml }]
               [-sessionKey session-key]
               [-timeout timeout-in-seconds]

axiomcli time -list [-details] [-ntpQuery]
               [-verify]
               [{ -outputformat | -o } { text | xml }]
```
PARAMETERS

Note: Only the Primary Administrator, Administrator, Pillar Support, and Support roles can issue all command options. All roles can issue the -list command option.

- **modify**

 Modifies the date and time settings on a Pillar Axiom system.

 Valid options:

 - **dateTime**

 Modifies the system date and time.

 The format of date-time is

 $\text{YYYY-MM-DD [THH[:mm[:SS[.xxx]]]}[[\pm\text{-HH:mm}]]$

 where:

 - **YYYY-MM-DD** designates a four-digit year, two-digit month, and two-digit day for the date.
 - **T** is a separator that designates the start of the time portion of the string.
 - **HH:mm:ss.xxx** designates hours, minutes, and seconds (to three decimal places) in values for a 24-hour clock.
 - **+/-HH:mm** designates the time zone as an offset from Coordinated Universal Time (UTC) in hours and minutes. The plus (+) or minus (-) prefix must be provided.

 At a minimum, just the date is required, in which case the time defaults to `12:00:00.000+00:00`. You can specify the hours with the rest of the values defaulting to 0. You can also specify the minutes, seconds, fractional seconds, and the UTC offset. The UTC offset is independent of the time values, so it can be specified with just the date or any combination of date and time. For example:

 - `2006-08-25T16:30:00-08:00` specifies a time of 4:30 PM on August 25, 2006, Pacific Time
 - `2006-8-25` specifies a time of 12:00 AM on August 25, 2006, UTC
 - `2010-10-10T04:50:07:00` specifies a time of 4:50 AM on October 10, 2010, Mountain Standard Time
2010-10-10T12:15:01.123-08:00 specifies a time of 12:15:01.123 PM on October 10, 2010, Pacific Time

-ntpService

Specifies that the Pillar Axiom system uses an NTP service to set the date and time. If you use an NTP service, enter the preferred NTP server IP address.

-noNtpService

Specifies that the Pillar Axiom system must have the date and time set manually.

-ntpServiceIp

Specifies one or more NTP server IP addresses. You can specify up to three IP addresses.

-list

Displays the system date, time, and NTP server settings.

If you specify the -ntpQuery option, the system displays NTP Query information only.

Note: The NTP Query information returned is the same information returned by the UNIX ntpq -pn command.

-help

Displays the detailed command help information.

EXAMPLE

Run axiomcli time -list to display the system date, time, and NTP server settings:

```plaintext
axiomcli time -list

Results:

<table>
<thead>
<tr>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>DateTime</td>
</tr>
<tr>
<td>NtpService</td>
</tr>
<tr>
<td>NtpServiceIp</td>
</tr>
<tr>
<td>NtpService1Ip</td>
</tr>
<tr>
<td>NtpService2Ip</td>
</tr>
<tr>
<td>ManagementState</td>
</tr>
<tr>
<td>NtpQuery</td>
</tr>
</tbody>
</table>

remote  refid  st  t  when  poll  reach
delay   offset  jitter

========================================
172.30.80.3  10.63.0.5  4  u  668  1024
377  0.001  0.139  0.125
```
Appendix B Pillar Axiom CLI Commands

<table>
<thead>
<tr>
<th>IP Address</th>
<th>Subnet Mask</th>
<th>Gateway</th>
<th>Uptime</th>
<th>Memory Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>*10.63.0.5</td>
<td>172.20.20.3</td>
<td>3 u 312 1024</td>
<td></td>
<td></td>
</tr>
<tr>
<td>+10.63.0.6</td>
<td>172.18.20.2</td>
<td>3 u 428 1024</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* time 299
ups

DESCRIPTION
Manages the universal power supply (UPS) device on a Pillar Axiom system.

Use the `ups` command to review the current status of the UPS device.

You can use the `-verify` option to test the command-line argument and its options before running it in Pillar Axiom CLI. If no errors exist, the Pillar Axiom CLI command returns without executing. For example, the `-verify` option is helpful when writing scripts in which a particular Pillar Axiom CLI command usage can be verified prior to adding it to a script.

You can use the `-outputformat` or the `-o` command option to specify how to display the results of running a command. If you do not specify either the `-outputformat` or the `-o` command option, the results display in the default text format. Valid options:

```
text    The system displays the results in the plain-text format.
xml     The system displays the results in the tagged XML format.
```

You can use the `-sessionKey` option to specify which Pillar Axiom system to access and which session key value to use for validation. The Pillar Axiom CLI displays the session key value when you log in to the Pillar Axiom system using the `-returnKey` option.

You can use the `-timeout` option to set a time limit for the execution of a command. If the command takes longer than the number of seconds specified in the `-timeout` option, the system stops executing the command. If you do not specify the `-timeout` option, the system does not set any time limit for executing the command.

SYNTAX
```
axiomcli ups -add -name ups-name -ip ip-address -community community
    [-verify]
    [{-outputformat | -o} {text | xml}]
    [-sessionKey session-key]
    [-timeout timeout-in-seconds]

axiomcli ups -modify -ups ups-id-or-fqn
    [-name new-ups-name]
    [-ip ip-address]
    [-community community]
    [-verify]
    [{-outputformat | -o} {text | xml}]
```
Appendix B Pillar Axiom CLI Commands

axiomcli ups -delete -ups ups-id-or-fqn [, ups-id-or-fqn]...
-verify

[-sessionKey *session-key*]
[-timeout *timeout-in-seconds*]

axiomcli ups -list [-details] [-ups ups-id-or-fqn [, ups-id-or-fqn]...]
-verify

[-sessionKey *session-key*]
[-timeout *timeout-in-seconds*]

axiomcli ups -help

PARAMETERS

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-add</td>
<td>Identifies a new UPS device for the system to monitor. You may connect several UPS devices to the system. The Pillar Axiom system retrieves information from each device using Simple Network Management Protocol (SNMP) over the Pilot Ethernet connection to monitor and report status.</td>
</tr>
<tr>
<td>-name</td>
<td>Identifies the name of the UPS device. UPS names must be unique across the Pillar Axiom system and must be 256 or fewer UTF-8 characters.</td>
</tr>
<tr>
<td>-ip</td>
<td>Identifies the IP address that is assigned to the external UPS device.</td>
</tr>
<tr>
<td>-community</td>
<td>Identifies a community for which a specific trap host should receive traps that the Pillar Axiom system generates. You can specify different community strings for each trap host so that multiple administrators can receive specific types of SNMP traps. The default community string is <code>public</code> (lower case).</td>
</tr>
</tbody>
</table>

Note: Only the Primary Administrator and Administrator 1 roles can issue all command options.

All roles can issue the **-list** command option.

-**add**

Identifies a new UPS device for the system to monitor. You may connect several UPS devices to the system. The Pillar Axiom system retrieves information from each device using Simple Network Management Protocol (SNMP) over the Pilot Ethernet connection to monitor and report status.

Valid options:

- **-name**
 Identifies the name of the UPS device. UPS names must be unique across the Pillar Axiom system and must be 256 or fewer UTF-8 characters.

- **-ip**
 Identifies the IP address that is assigned to the external UPS device.

- **-community**
 Identifies a community for which a specific trap host should receive traps that the Pillar Axiom system generates. You can specify different community strings for each trap host so that multiple administrators can receive specific types of SNMP traps. The default community string is `public` (lower case).
Modifies the specified external UPS device.

Valid options:

- **ups**

Identifies the specific UPS device to modify. Enter the globally unique ID (GUID) or fully qualified name (FQN) of the UPS to modify. To display all of the ID and FQN values, run the `-list` option.

Valid options:

<table>
<thead>
<tr>
<th>Globally unique ID (GUID)</th>
<th>A 38-character string that starts with ID and ends with 36 lower-case hexadecimal characters (a through f and 0 through 9) and hyphens. Example GUID:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ID123456789abcdef0123456789abcdef</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fully qualified name (FQN)</th>
<th>Starts with a leading slash (/) with the object’s name. Example FQN:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>/UPSName</td>
</tr>
</tbody>
</table>

- **-name**

Specifies a new name for the UPS device.

- **-ip**

Identifies the IP address that is assigned to the external UPS device.

- **-community**

Identifies a community for which a specific trap host should receive traps that the Pillar Axiom system generates. You can specify different community strings for each trap host so that multiple administrators can receive specific types of SNMP traps. The default community string is `public` (lower case).

- **-delete**

Removes one or more UPS devices from the list of devices on a Pillar Axiom system. Enter the globally unique ID (GUID) or fully qualified name (FQN) of the UPS to delete.
-list
Displays one or more UPS devices being monitored on the Pillar Axiom system.

Valid options:
- details
Displays the IP address, SNMP community string, model, firmware version, serial number, power source, and battery status of the UPS devices.
- ups
Displays one or more UPS devices. Enter the GUID or FQN of the UPS to display.
- help
Displays the detailed command help information.

EXAMPLE
Run the axiomcli ups -list -details command to display UPS devices that are monitored on the Pillar Axiom system:

axiomcli ups -list -details

Results:

/PowerUp
 Id : 4130303030303142A14936C779E37722
 ManagementState : AVAILABLE
 Name : PowerUp
 IpAddress : 10.10.10.1
 Community : public
 Model :
 FirmwareVersion :
 SerialNumber :
 PowerSource : AC
 BatteryStatus : NORMAL
 CommunicationStatus : OK
version

DESCRIPTION
Displays the current version number for the Pillar Axiom CLI executable.

Use the `version` command to display version information about the Pillar Axiom CLI.

You can use the `verify` option to test the command-line argument and its options before running it in Pillar Axiom CLI. If no errors exist, the Pillar Axiom CLI command returns without executing. For example, the `verify` option is helpful when writing scripts in which a particular Pillar Axiom CLI command usage can be verified prior to adding it to a script.

You can use the `outputformat` or the `-o` command option to specify how to display the results of running a command. If you do not specify either the `outputformat` or the `-o` command option, the results display in the default text format. Valid options:

- **text**: The system displays the results in the plain-text format.
- **xml**: The system displays the results in the tagged XML format.

You can use the `sessionKey` option to specify which Pillar Axiom system to access and which session key value to use for validation. The Pillar Axiom CLI displays the session key value when you log in to the Pillar Axiom system using the `returnKey` option.

You can use the `timeout` option to set a time limit for the execution of a command. If the command takes longer than the number of seconds specified in the `timeout` option, the system stops executing the command. If you do not specify the `timeout` option, the system does not set any time limit for executing the command.

SYNTAX
```
axiomcli version -list [-details] [-verify]
       [{-outputformat | -o} {text | xml}]
       [-sessionKey session-key]
       [-timeout timeout-in-seconds]
```

PARAMETERS
Note: All roles can issue the `-list` command option

- **-list**
 Displays the Pillar Axiom CLI software version.
 Valid options:
 - **-details**
The `-details` option does not return any additional information and is there for consistency.

```
-help
```

Displays the detailed command help information.

EXAMPLE

Run the `axiomcli version -list` to display the software version information:

```
axiomcli version -list
```

Results:

```text
Pillar Axiom CLI version : 050000-031700
Pillar Axiom version : 050000-031700
```
volume_group

DESCRIPTION

Creates and manages volume groups on a Pillar Axiom system.

Volume groups provide a means to group filesystems and LUNs. Every system has a default group, which is the root volume group. The default group is represented by a single forward slash (/). Volume groups can be hierarchical in that a given volume group can contain one or more other volume groups.

Volume group names express this hierarchy through fully qualified name (FQN) notations: a leading forward slash representing the root volume group, optionally followed by the name of a volume group contained in the root. Each of these volume groups can have nested volume groups that are identified by following the parent name with a forward slash and the name of the nested group. Examples include the following:

/ Identifies the default root volume group.

/group1 Identifies a group (group1) contained in the default volume group.

/group1/nestedgroup2 Identifies a volume group (nestedgroup2) that is contained within group1.

Use the `volume_group` command to manage volume groups on a Pillar Axiom system.

You can use the `-verify` option to test the command-line argument and its options before running it in Pillar Axiom CLI. If no errors exist, the Pillar Axiom CLI command returns without executing. For example, the `-verify` option is helpful when writing scripts in which a particular Pillar Axiom CLI command usage can be verified prior to adding it to a script.

You can use the `-outputformat` or the `-o` command option to specify how to display the results of running a command. If you do not specify either the `-outputformat` or the `-o` command option, the results display in the default text format. Valid options:

- `text` The system displays the results in the plain-text format.
- `xml` The system displays the results in the tagged XML format.
You can use the `-sessionKey` option to specify which Pillar Axiom system to access and which session key value to use for validation. The Pillar Axiom CLI displays the session key value when you log in to the Pillar Axiom system using the `-returnKey` option.

You can use the `-timeout` option to set a time limit for the execution of a command. If the command takes longer than the number of seconds specified in the `-timeout` option, the system stops executing the command. If you do not specify the `-timeout` option, the system does not set any time limit for executing the command.

SYNTAX

```
axiomcli volume_group -add -name name
    [-in parent-id-or-fqn]
    [{-limit capacity | -nolimit}]
    [-verify]
    [{-outputformat | -o} {text | xml}]
    [-sessionKey session-key]
    [-timeout timeout-in-seconds]
```

```
axiomcli volume_group -modify -volumeGroup
    volume-group-id-or-fqn
        [-newName new-volumeGroup-name]
        [{-limit capacity | -nolimit}]
        [-in parent-id-or-fqn]
        [-verify]
        [{-outputformat | -o} {text | xml}]
        [-sessionKey session-key]
        [-timeout timeout-in-seconds]
```

```
axiomcli volume_group -delete -volumeGroup
    volume-group-id-or-fqn [, volume-group-id-or-fqn]...
        [-verify]
        [{-outputformat | -o} {text | xml}]
        [-sessionKey session-key]
        [-timeout timeout-in-seconds]
```

```
axiomcli volume_group -list [-details]
    [-volumeGroup volume-group-id-or-fqn]
    [, volume-group-id-or-fqn]...
        [-verify]
        [{-outputformat | -o} {text | xml}]
        [-sessionKey session-key]
        [-timeout timeout-in-seconds]
```

```
axiomcli volume_group -help
```

PARAMETERS

Note: Only the Primary Administrator, Administrator 1, and Administrator 2 roles can issue all command options.

All roles can issue the `-list` command option.

-`add`
Creates a new volume group and adds it the Pillar Axiom system.

Valid options:

- **name**
 Identifies the name of the new volume group being added to the system.

- **in**
 Identifies the ID or FQN of the containing parent volume group for the new volume group. If you do not specify this option, the command creates a top-level volume group under the root volume group (/).

- **limit**
 Identifies the total maximum capacity for all of the objects in the volume group.

 A volume group can contain up to 100 nested groups. However, nesting is limited to four levels. Also, the root volume (/Volumes) is always available.

-modify

Modifies the existing volume group on a Pillar Axiom system.

Valid options:

- **volumeGroup**
 Identifies the ID or FQN of the volume group. Valid volume group names consist of letters and digits up to 14 characters long. Each volume group name must be unique within its parent volume group.

 Note: If a volume group already exists on the Pillar Axiom system and contains the same name as the specified ID or FQN, the function will fail.

- **name**
 Identifies the new name of the specified volume group.

- **limit**
 Identifies the total maximum capacity for all of the objects in the volume group.

 A volume group can contain up to 100 nested groups. However, nesting is limited to four levels. Also, the root volume (/Volumes) is always available.
-nolimit
Indicates that no maximum capacity limit exists for the volume group.

-in
Identifies the ID or FQN of the containing parent volume group for the new volume group. If you do not specify this option, the command creates a top-level volume group under the root volume group (/).

-delete
Deletes the specified volume group. This function fails if the volume group contains any logical volumes, or if the specified volume group does not exist.

-list
-details
Displays volume groups. The list can be limited to specific volume groups by specifying the ID or FQN of a specific volume group or an ID or FQN that identifies the containing parent volume group. If you specify the ID or FQN that identifies the containing parent volume group, all volume groups found are displayed. If you do not specify an ID or FQN, the system displays the IDs or FQNs of all volume groups.

Valid options:
-details
Displays the ID or FQN, capacity limit, and parent volume group for each volume group.

-volumeGroup
Identifies the ID or FQN of the volume group. Valid volume group names consist of letters and digits up to 14 characters long. Each volume group name must be unique within its parent volume group.

-help
Displays the detailed command help information.

EXAMPLE
Run `volume_group list -details` to show the volume group, capacity limit, parent volume group for each volume group:

```
axiomcli volume_group -list -details
```

Results:
Appendix B Pillar Axiom CLI Commands

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>root</td>
</tr>
<tr>
<td>Id</td>
<td>4130303132373542A20A000000000000</td>
</tr>
<tr>
<td>ParentVolumeGroupFqn</td>
<td></td>
</tr>
<tr>
<td>ParentVolumeGroupId</td>
<td></td>
</tr>
<tr>
<td>MaximumCapacity</td>
<td>0</td>
</tr>
<tr>
<td>AllocatedCapacity</td>
<td>0</td>
</tr>
<tr>
<td>UsedCapacity</td>
<td>0</td>
</tr>
<tr>
<td>PhysicalAllocatedCapacity</td>
<td>0</td>
</tr>
<tr>
<td>PhysicalUsedCapacity</td>
<td>0</td>
</tr>
</tbody>
</table>
Index

$HOME 15

A
account
 command 62
 description 62
 how to
 add 63
 delete 67
 disable 65
 enable 65
 list 67
 modify 66
 parameters 63
 syntax 62
account management
 security setting 28
additional resources 8
admin_acct
 See account
administrator accounts
 about account creation 28
 how to
 modify 28
limits
 full names 59
 login attempts 57
 number of accounts 57
 number of sessions 57
 passwords 59
 user names 59
multiple 28
privileges 28
security setting 28
AIX
 version 12
alert
 See event_notification
alerts
 limits
 descriptions 59
 name length 58
axiom_status
 See system

B
brick
 command 69
 description 69
 how to
 accept node 74
 clear raid history 73
 list 72
 modify 71
 move 74
 restart raid controller 74
 verify data consistency 73
 parameters 71
 syntax 69
Brick storage enclosures
 limits
 name length 58

C
call_home
 command 80
 description 80
 how to
 list 86
 modify 82
 reset 87
 test 86
 upload matrix 87
 parameters 81
 syntax 80
CHAP secrets
 limits
 data type and length 60
CLI
 axiomcli 11
 commands
 CLI
 help 19
download 13
how to
 install 13
 log in 17
 log out 18
 session keys 51
 uninstall 27
 upgrade 26
install 13
log in 17
log out 18
Pillar Axiom CLI 11
run the utility 17
session keys 51
software 13
uninstall 27
upgrade 26
Clone LUN 89
Clone LUN create, example 36
Clone LUN delete, example 37
Clone LUN replicas
 limits
 number of 57
clone_lun
command 89
description 89
how to
 add 91
 commit 107
 copy 97
 delete 104
 display details 103
 list 103
 modify 94
 prepare 104
 restore 104
parameters 91
syntax 89
clonelun
 See clone_lun
codes, error 23
codes, return 23
command output 21
command output, standard 21
command output, XML 21
commands
 account 62
 brick 69
 call_home 80
 clone_lun 89
 errors 110
 event_log 112
 event_notification 117
 haltpoint 123
 help 128
host_group 133
hostmap 136
iscsi 145
job 156
login 170
logout 173
lun 174
Pillar Axiom CLI
 help 19
pilot 200
profile 203
report 212
san 216
san_host 218
slammer 228
smprovider 235
snmp_host 237
software_update 242
statistics 252
storage_allocation 256
storage_domain 261
system 265
system_alert 282
system_log 287
task 294
time 296
ups 300
version 304
volume_group 306
community strings
 limits
 data type and length 60
configuration files
 quantity range 56
contact information 9
contacts, Oracle 10
conventions
 command syntax 9
 typographical 8
copy a LUN, example 40
create
 administrator accounts 28
 create a Clone LUN, example 36
customer support 9

D
data type and length ranges 58
delete a Clone LUN, example 37
DHCP
 disabling 271
 enabling 271
diskbackup
 See clone_lun
DNS domains
 limits
 name length
documentation 10
 feedback 10
Domain Name Server (DNS)
 limits
 name length 59
download
 Perl 13
 software 13
duplex
 settings 271

E
ec_update
 See software_update
education programs 9
e-mail notifications
 limits
 email address 59
environment variable
 host 14
 how to
 setup 14
 password 14
 PDS_HOST 14
 PDS_PASSWORD 14
 PDS_USER 14
 session information 14
 user ID 14
environment variable, HOME 15
error codes 23
errors 23, 24, 110
 command 110
 description 110
 how to
 list 110
 parameters 110
 syntax 110
errors, XML 24
event_log
 command 112
 description 112
 how to
 display details 113
 list 113
 reset 115
 parameters 113
 syntax 112
event_notification
 command 117
 description 117
 how to
 add 118
 delete 121
 disable 119, 121
 enable 119, 121
 list 121
 modify 120
 parameters 118
 syntax 117
example
copy a LUN 40
create a Clone LUN 37
delete a Clone LUN 37
modify a LUN 38
view LUN details 32
view system configuration 34
view system events 41
view system performance statistics 42

F
feedback, documentation 10
field definitions
 quantity ranges for 56
field limits 58

H
haltpoint
 command 123
 description 123
 parameters 124
 syntax 124
HBA port host 218
help
 CLI
 command 19
 description 19
 parameters 129
 syntax 129
HOME 15
host
 environment variable 14
 SAN 218
host_group
 command 133
 description 133
 how to
 add 134
 delete 134
 list 135
 modify 134
parameters 134
syntax 133
hostmap
command 136
description 136
how to
 add 137
 delete 139
 display details 139
 list 139
 modify 138
parameters 137
syntax 136
hosts, SAN
 limits
 names 58
how to
 accept node
 brick 74
add
 account 63
 clone_lun 91
 event_notification 118
host_group 134
hostmap 137
job 158
lun 177
profile 204
san_host 220
snmp_host 238
software_update 244
storage_domain 262
ups 301
volume_group 308
beacon
 system 277
check server health
 pilot 201
clear logs
 system_log 292
clear raid history
 brick 73
collect information
 system_log 289
command
 slammer 231
commit
 clone_lun 107
copy
 clone_lun 97
 lun 189
delete
 account 67
 clone_lun 104
 event_notification 121
hostmap 139
job 168
lun 195
profile 210
report 213
san_host 224
snmp_host 241
storage_domain 263
system_alert 283
ups 302
volume_group 309
disable
 account 65
 event_notification 119, 121
smprovider 236
disable DHCP
 system 271
display 263
 iscsi 152
 job 169
 report 214
 san 217
 task 295
 time 298
 ups 303
 version 304
display details 139
 clone_lun 103
 event_log 113
 lun 198
 profile 210
 san_host 225
 smprovider 236
 snmp_host 241
 storage_allocation 257
 system_log 292
 volume_group 309
display results
 system 272
 system_alert 284
download
 report 214
 system_log 291
enable
 account 65
 event_notification 119, 121
smprovider 236
enable DHCP
 system 271
failback
 slammer 232
force control unit failure
 slammer 233
set up
 environment variable 14
shutdown
 system 273
test
 call_home 86
threshold
 system_alert 285
uninstall
 CLI 27
 Pillar Axiom CLI 27
upgrade
 CLI 26
 Pillar Axiom CLI 26
validate
 software_update 247
verify data consistency
 brick 73
HP-UX
 supported version 12
I
initiators, iSCSI
 maximum for each iSCSI port 57
install
 CLI 13
 Pillar Axiom CLI 13
IP addresses
 limits
 data type and length 59
iscsi
 command 145
 description 145
 how to
 display 152
 list 152
 parameters 147
 syntax 145
iSCSI protocol
 maximum objects 57
J
job
 command 156
 description 156
 how to
 add 158
 delete 168
 display 169
 list 168
 modify 165
 parameters 158
 syntax 156
L
libc.so library
 supported version 12
limits
 field input 58
 system objects 56
limits for field definitions 56
Linux
 supported version 12
log in
 CLI 17
 Pillar Axiom CLI 17
 user ID 17
log out
 CLI 18
 Pillar Axiom CLI 18
login
 command 170
 description 170
 parameters 170
 syntax 170
login attempts
 limits 57
login time-out period 57
logout
 command 173
 description 173
 parameters 173
 syntax 173
lun
 command 174
 description 174
 how to
 add 177
 copy 174, 189
 delete 195
 display details 198
 list 198
 maximum capacity 195
 modify 183
 parameters 177
 syntax 174
LUN copy, example 40
LUN modify, example 38
LUN view details, example 32
luncopy
 See lun how to copy
LUNs
 limits
 names 58
 number of 56
 size 56
M
modify
 administrator accounts 28
modify a LUN, example 38
multiple
 administrator accounts 28

N
network
 configure
 administrator account 28
NIS naming service
 limits
 domain name length

O
online help 9
operating limits, system 56
Oracle Technical Network (OTN) 10
output 21
output, standard 21
output, text 21
output, XML 21

P
parameters
 account 63
 brick 71
 call_home 81
 clone_lun 91
 errors 110
 event_log 113
 event_notification 118
 haltpoint 124
 help 129
 host_group 134
 hostmap 137
 iscsi 147
 job 158
 login 170
 logout 173
 lun 177
 pilot 201
 profile 204
 report 213
 san 217
 san_host 220
 slammer 230
 smprovider 236
 snmp_host 238
 software_update 244
 statistics 253
 storage_allocation 257
 storage_domain 262
 system 268
 system_alert 283
 system_log 289
 task 294
 time 297
 ups 301
 version 304
 volume_group 307
 parsing 21
 password
 environment variable 14
 PDS_HOST 172
 environment variable 14
 PDS_PASSWORD 172
 environment variable 14
 PDS_SESSIONKEY 170
 PDS_USER 172
 environment variable 14
 performance profiles
 See profile
 Perl
 download 13
 Pillar Axiom CLI 11
 command
 help 19
 download
 software 13
 how to
 install 13
 log in 17
 log out 18
 uninstall 27
 upgrade 26
 install 13
 log in 17
 log out 18
 Perl 11
 platform
 version 12
 Python 11
 run the utility 17
 system requirement 12
 uninstall 27
 upgrade 26
 XML 11
 Pillar Axiom Path Manager
 limits
 number of data paths 57
 number of HBA ports 57
 number of Pillar Axiom systems 57
 Pillar Axiom system
 limits
 length of object names 58
 name length 58
 pilot
check server health 201
command 200
description 200
how to 201
display 201
forcefailover 201
list 201
send information to SAN 201
parameters 201
syntax 201
Pilot
settings
gateway IP 271
IP address 271
netmask 271
plain-text output 21
platform
version
Pillar Axiom CLI 12
privileges
Administrator 1 role 30
Administrator 2 role 30
administrator accounts 28
Monitor role 30
Pillar Support role 30
Primary Administrator role 30
Support role 30
product support 9
profile
command 203
description 203
how to
add 204
delete 210
display details 210
list 210
parameters 204
syntax 203
Python
Pillar Axiom CLI 11

report
command 212
description 212
format 214
how to
delete 213
display 214
download 214
generate 168, 213
list 214
parameters 213
syntax 212
return codes 23
RHEL
supported version 12
roles
Administrator 1 role 30
Administrator 2 role 30
Monitor role 30
Pillar Support role 30
Primary Administrator role 30
Support role 30

S
sales information 10
san
command 216
description 216
how to
display 217
list 217
panic 217
parameters 217
syntax 216
SAN host
See san_host
SAN hosts
limits
names 58
SAN LUN
See lun
san_host
command 218
description 218
how to
add 220
delete 224
display details 225
list 224
modify 222
parameters 220
syntax 218
sanhost
See san_host
sanlun
See lun
scheduled software updates
limits
 name length 58
script language 11
scripts
 about 50
 manage session keys 51
security settings, account
 account management 28
 administrator accounts 28
session
 terminate 28
session information
 environment variable 14
session time-out period 57
setup
 environment variable 14
slammer
 command 228
 description 228
 how to
 command 231
 failback 232
 force control unit failure 233
 list 231
 modify 230
 modify agent ha flags 233
 reenable 233
 rejoin 232
 remove 234
 reset control unit 233
 run diagnostics 232
 parameters 230
 syntax 228
Slammer storage controllers
limits
 name length 58
SMI 235
smprovider
 command 235
 description 235
 how to
 disable 236
 display details 236
 enable 236
 list 236
 parameters 236
 syntax 235
SMProvider
 See smprovider
snaplun
See clone_lun
SNMP agent
 limits
 community strings 60
SNMP Host
 See snmp_host
snmp_host
 command 237
 description 237
 how to
 add 238
 delete 241
 display details 241
 list 241
 modify 239
 parameters 238
 syntax 237
software
 download 13
software_update
 command 242
 description 242
 how to
 add 244
 install 245
 list 244
 validate 247
 parameters 244
 syntax 243
Solaris
 supported version 12
standard output 21
statistics
 command 252
 description 252
 how to
 list 253
 parameters 253
 syntax 252
Storage Domains
 Brick limits 58
 maximum number 58
 name limits
 names 58
storage management initiative 235
storage_domain 263
storage_allocation
 command 256
 description 256
 how to
 display details 257
 list 257
 parameters 257
 syntax 256
command 294
description 294
how to
display 295
list 294
parameters 294
syntax 294

TCP connections
maximum for each iSCSI port 57

technical support 9

technical support 9
 telephone numbers
limits
 data type and length 59

terminate
 session 28
time
command 296
description 296
how to
display 298
list 298
modify 297
parameters 297
syntax 296

training programs 9

typographical conventions 8

U
uninstall
 CLI 27
 Pillar Axiom CLI 27

upgrade
 CLI 26
 Pillar Axiom CLI 26

ups
command 300
description 300
how to
 add 301
delete 302
display 303
list 303
modify 302
parameters 301
syntax 300

user ID
 environment variable 14
 log in 17

V
VDS 235
verify data consistency 73
version

command 304
description 304
how to
display 304
list 304
parameters 304
syntax 304

view LUN details, example 32
view system configuration, example 34
view system events, example 41
view system performance statistics, example 42
VLAN IDs
 data type and length 59
 maximum for each iSCSI port 57

volgrp
 See volume_group

volume groups
 limits
 name length 58
 number of 56
 See volume_group

volume_group
command 306
description 306
how to
 add 308
delete 309
display details 309
list 309
modify 308
parameters 307
syntax 307

VSS 235

W
Windows
 supported version 12

X
XML
 Pillar Axiom CLI 11
 XML command output 21
 XML output, errors 24