

19 Performing Block Media Recovery

This chapter explains how to restore and recover individual data blocks within a data file. This chapter contains the following topics:

	
Overview of Block Media Recovery

	
Prerequisites for Block Media Recovery

	
Recovering Individual Blocks

	
Recovering All Blocks in V$DATABASE_BLOCK_CORRUPTION

	
See Also:

	
Oracle Database Backup and Recovery Reference for RECOVER syntax

	
Oracle Database Reference for details about the V$DATABASE_BLOCK_CORRUPTION view

Overview of Block Media Recovery

This section explains the purpose and basic concepts of block media recovery.

Purpose of Block Media Recovery

You can use block media recovery to recover one or more corrupt data blocks within a data file. Block media recovery provides the following advantages over data file media recovery:

	
Lowers the mean time to recover (MTTR) because only blocks needing recovery are restored and recovered

	
Enables affected data files to remain online during recovery

Without block media recovery, if even a single block is corrupt, then you must take the data file offline and restore a backup of the data file. You must apply all redo generated for the data file after the backup was created. The entire file is unavailable until media recovery completes. With block media recovery, only the blocks actually being recovered are unavailable during the recovery.

Block media recovery is most useful for physical corruption problems that involve a small, well-known number of blocks. Block-level data loss usually results from intermittent, random I/O errors that do not cause widespread data loss, and memory corruptions that are written to disk. Block media recovery is not intended for cases where the extent of data loss or corruption is unknown and the entire data file requires recovery. In such cases, data file media recovery is the best solution.

Basic Concepts of Block Media Recovery

Usually, the database marks a block as media corrupt and then writes it to disk when the corruption is first encountered. No subsequent read of the block is successful until the block is recovered. You can perform block recovery only on blocks that are marked corrupt or that fail a corruption check.

If the database on which the corruption occurs is associated with a real-time query physical standby database, then the database automatically attempts to perform block media recovery. The primary database searches for good copies of blocks on the standby database and, if they are found, repairs the blocks with no impact to the query that encountered the corrupt block. The Oracle Database physical block corruption message (ORA-1578) is displayed only if the database cannot repair the corruption.

Whenever block corruption has been automatically detected, you can perform block media recovery manually with the RECOVER ... BLOCK command. By default, RMAN first searches for good blocks in the real-time query physical standby database, then flashback logs and then blocks in full or level 0 incremental backups.

	
Note:

For block media recovery to work automatically, the physical standby database must be in real-time query mode. An Oracle Active Data Guard license is required.

If a corrupt data block is discovered on a real-time query physical standby database, the server attempts to repair the corruption by obtaining a copy of the block from the primary database. The repair is performed in the background, enabling subsequent queries to succeed if the repair is successful. Automatic block repair is attempted if the following database initialization parameters are configured on the standby database as described:

	
The LOG_ARCHIVE_CONFIG parameter is configured with a DG_CONFIG list and a LOG_ARCHIVE_DEST_n parameter is configured for the primary database with the DB_UNIQUE_NAME attribute

or

	
The FAL_SERVER parameter is configured and its value contains an Oracle Net service name for the primary database

	
Note:

If a corrupt block is detected during validation, such as by the RMAN VALIDATE command, then recovery is not initiated automatically.

	
See Also:

	
Oracle Database Backup and Recovery Reference for RECOVER ... BLOCK syntax

	
Oracle Data Guard Concepts and Administration to learn about the real-time query option for standby databases

Identification of Corrupt Blocks

The V$DATABASE_BLOCK_CORRUPTION view displays blocks marked corrupt by database components such as RMAN, ANALYZE, dbv, and SQL queries. The following types of corruption result in the addition of rows to this view:

	
Physical corruption (sometimes called media corruption)

The database does not recognize the block: the checksum is invalid, the block contains all zeros, or the block header is corrupt.

Physical corruption checking is enabled by default. You can turn off checksum checking by specifying the NOCHECKSUM option of the BACKUP command, but other physical consistency checks, such as checks of the block headers and footers, cannot be disabled.

	
Logical corruption

The block has a valid checksum, the header and footer match, and so on, but the contents are logically inconsistent. Block media recovery may not be able to repair all logical block corruptions. In these cases, alternate recovery methods, such as tablespace point-in-time recovery, or dropping and re-creating the affected objects, may repair the corruption.

Logical corruption checking is disabled by default. You can turn it on by specifying the CHECK LOGICAL option of the BACKUP, RESTORE, RECOVER, and VALIDATE commands.

The database can detect some corruptions by validating relationships between blocks and segments, but cannot detect them by a check of an individual block. The V$DATABASE_BLOCK_CORRUPTION view does not record at this level of granularity.

Missing Redo During Block Recovery

Like data file media recovery, block media recovery cannot generally survive a missing or inaccessible archived log, although it attempts restore failover when looking for usable copies of archived redo log files, as described in "Restore Failover". Also, block media recovery cannot survive physical redo corruptions that result in checksum failure. However, block media recovery can survive gaps in the redo stream if the missing or corrupt redo records do not affect the blocks being recovered. Whereas data file recovery requires an unbroken series of redo changes from the beginning of recovery to the end, block media recovery only requires an unbroken set of redo changes for the blocks being recovered.

	
Note:

Each block is recovered independently during block media recovery, so recovery may be successful for a subset of blocks.

When RMAN first detects missing or corrupt redo records during block media recovery, it does not immediately signal an error because the block undergoing recovery may create one later in the redo stream. When a block is re-created, all previous redo for that block becomes irrelevant because the redo applies to an old incarnation of the block. For example, the database creates a new a block when users drop or truncate a table and then use the block for other data.

Assume that media recovery is performed on block 13 as depicted in Figure 19-1.

Figure 19-1 Performing RMAN Media Recovery

[image: Diagram of example block recovery]

Description of "Figure 19-1 Performing RMAN Media Recovery"

After block recovery begins, RMAN discovers that change 120 is missing from the redo stream, either because the log block is corrupt or because the log cannot be found. RMAN continues recovery assuming that block 13 will be re-created later in the redo stream. Assume that in change 140 a user drops the table employees stored in block 13, allocates a new table in this block, and inserts data into the new table. At this point, the database formats block 13 as a new block. Recovery can now proceed with this block even though some redo preceding the recreation operation was missing.

Prerequisites for Block Media Recovery

The following prerequisites apply to the RECOVER ... BLOCK command:

	
The target database must run in ARCHIVELOG mode and be open or mounted with a current control file.

	
If the target database is a standby database, then it must be in a consistent state, recovery cannot be in session, and the backup must be older than the corrupted file.

	
The backups of the data files containing the corrupt blocks must be full or level 0 backups and not proxy copies.

If only proxy copy backups exist, then you can restore them to a nondefault location on disk, in which case RMAN considers them data file copies and searches them for blocks during block media recovery.

	
RMAN can use only archived redo logs for the recovery.

RMAN cannot use level 1 incremental backups. Block media recovery cannot survive a missing or inaccessible archived redo log, although it can sometimes survive missing redo records.

	
Flashback Database must be enabled on the target database for RMAN to search the flashback logs for good copies of corrupt blocks.

If flashback logging is enabled and contains older, uncorrupted versions of the corrupt blocks, then RMAN can use these blocks, possibly speeding up the recovery.

	
The target database must be associated with a real-time query physical standby database for RMAN to search the database for good copies of corrupt blocks.

Recovering Individual Blocks

Typically, block corruption is reported in the following locations:

	
Results of the LIST FAILURE, VALIDATE, or BACKUP ... VALIDATE command

	
The V$DATABASE_BLOCK_CORRUPTION view

	
Error messages in standard output

	
The alert log

	
User trace files

	
Results of the SQL commands ANALYZE TABLE and ANALYZE INDEX

	
Results of the DBVERIFY utility

	
Third-party media management output

For example, you may discover the following messages in a user trace file:

ORA-01578: ORACLE data block corrupted (file # 7, block # 3)
ORA-01110: data file 7: '/oracle/oradata/trgt/tools01.dbf'
ORA-01578: ORACLE data block corrupted (file # 2, block # 235)
ORA-01110: data file 2: '/oracle/oradata/trgt/undotbs01.dbf'

In the following procedure, you identify the blocks that require recovery and then use any available backup to restore and recover these blocks.

To recover specific data blocks:

	
Obtain the data file numbers and block numbers of the corrupted blocks.

The easiest way to locate trace files and the alert log is to connect SQL*Plus to the target database and execute the following query:

SELECT NAME, VALUE
FROM V$DIAG_INFO;

	
Start RMAN and connect to the target database, which must be mounted or open.

	
Run the SHOW ALL command to confirm that the appropriate channels are preconfigured.

	
Run the RECOVER ... BLOCK command at the RMAN prompt, specifying the file and block numbers for the corrupted blocks.

The following example recovers two blocks.

RECOVER
 DATAFILE 8 BLOCK 13
 DATAFILE 2 BLOCK 19;

You can also specify various options to control RMAN behavior. The following example indicates that only backups with the tag mondayam are used when searching for blocks. You could use the FROM BACKUPSET option to restrict the type of backup that RMAN searches, or the EXCLUDE FLASHBACK LOG option to restrict RMAN from searching the flashback logs.

RECOVER
 DATAFILE 8 BLOCK 13
 DATAFILE 2 BLOCK 199
 FROM TAG mondayam;

Recovering All Blocks in V$DATABASE_BLOCK_CORRUPTION

In this scenario, RMAN automatically recovers all blocks listed in the V$DATABASE_BLOCK_CORRUPTION view.

To recover all blocks logged in V$DATABASE_BLOCK_CORRUPTION:

	
Start SQL*Plus and connect to the target database.

	
Query V$DATABASE_BLOCK_CORRUPTION to determine whether corrupt blocks exist. For example, execute the following statement:

SQL> SELECT * FROM V$DATABASE_BLOCK_CORRUPTION;

	
Start RMAN and connect to the target database.

	
Recover all blocks marked corrupt in V$DATABASE_BLOCK_CORRUPTION.

The following command repairs all physically corrupted blocks recorded in the view:

RMAN> RECOVER CORRUPTION LIST;

After the blocks are recovered, the database removes them from V$DATABASE_BLOCK_CORRUPTION.

	
See Also:

Oracle Database Backup and Recovery Reference to learn about the RECOVER ... BLOCK command

13 Managing a Recovery Catalog

This chapter explains how to manage an RMAN recovery catalog. The catalog is a database schema that contains the RMAN repository data for one or more target databases. This chapter contains the following topics:

	
Overview of the Recovery Catalog

	
Creating a Recovery Catalog

	
Registering a Database in the Recovery Catalog

	
Cataloging Backups in the Recovery Catalog

	
Creating and Managing Virtual Private Catalogs

	
Protecting the Recovery Catalog

	
Managing Stored Scripts

	
Maintaining a Recovery Catalog

	
Dropping a Recovery Catalog

	
See Also:

	
Chapter 12, "Maintaining RMAN Backups and Repository Records"to learn how to manage the RMAN repository as stored in the control file, without a recovery catalog

	
The compatibility matrix in Oracle Database Backup and Recovery Reference for descriptions of supported interoperability scenarios

Overview of the Recovery Catalog

This section explains the basic concepts related to managing a recovery catalog.

Purpose of the Recovery Catalog

A recovery catalog is a database schema used by RMAN to store metadata about one or more Oracle databases. Typically, you store the catalog in a dedicated database. A recovery catalog provides the following benefits:

	
A recovery catalog creates redundancy for the RMAN repository stored in the control file of each target database. The recovery catalog serves as a secondary metadata repository. If the target control file and all backups are lost, then the RMAN metadata still exists in the recovery catalog.

	
A recovery catalog centralizes metadata for all your target databases. Storing the metadata in a single place makes reporting and administration tasks easier to perform.

	
A recovery catalog can store metadata history much longer than the control file. This capability is useful if you must do a recovery that goes further back in time than the history in the control file. The added complexity of managing a recovery catalog database can be offset by the convenience of having the extended backup history available.

Some RMAN features function only when you use a recovery catalog. For example, you can store RMAN scripts in a recovery catalog. The chief advantage of a stored script is that it is available to any RMAN client that can connect to the target database and recovery catalog. Command files are only available if the RMAN client has access to the file system on which they are stored.

A recovery catalog is required when you use RMAN in a Data Guard environment. By storing backup metadata for all primary and standby databases, the catalog enables you to offload backup tasks to one standby database while enabling you to restore backups on other databases in the environment.

Basic Concepts for the Recovery Catalog

The recovery catalog contains metadata about RMAN operations for each registered target database. When RMAN is connected to a recovery catalog, RMAN obtains its metadata exclusively from the catalog. The catalog includes the following types of metadata:

	
Data file and archived redo log backup sets and backup pieces

	
Data file copies

	
Archived redo logs and their copies

	
Database structure (tablespaces and datafiles)

	
Stored scripts, which are named user-created sequences of RMAN commands

	
Persistent RMAN configuration settings

Database Registration

The process of enrolling of a database in a recovery catalog for RMAN use is called registration. The recommended practice is to register every target database in your environment in a single recovery catalog. For example, you can register databases prod1, prod2, and prod3 in a single catalog owned by catowner in the database catdb.

	
See Also:

"Registering a Database in the Recovery Catalog"

Centralization of Metadata in a Base Recovery Catalog

The owner of a centralized recovery catalog, which is also called the base recovery catalog, can grant or revoke restricted access to the catalog to other database users. Each restricted user has full read/write access to his own metadata, which is called a virtual private catalog. The RMAN metadata is stored in the schema of the virtual private catalog owner. The owner of the base recovery catalog determines which objects each virtual private catalog user can access.

You can use a recovery catalog in an environment in which you use or have used different versions of Oracle Database. As a result, your environment can have different versions of the RMAN client, recovery catalog database, recovery catalog schema, and target database. "Importing and Moving a Recovery Catalog" explains how to merge multiple recovery catalog schemas into one.

	
See Also:

"Creating and Managing Virtual Private Catalogs"

Recovery Catalog Resynchronization

For RMAN operations such as backup, restore, and crosscheck, RMAN always first updates the control file and then propagates the metadata to the recovery catalog. This flow of metadata from the mounted control file to the recovery catalog, which is known as recovery catalog resynchronization, ensures that the metadata that RMAN obtains from the control file is current.

	
See Also:

"Resynchronizing the Recovery Catalog"

Stored Scripts

You can use a stored script as an alternative to a command file for managing frequently used sequences of RMAN commands. The script is stored in the recovery catalog rather than on the file system.

A local stored script is associated with the target database to which RMAN is connected when the script is created, and can only be executed when you are connected to this target database. A global stored script can be run against any database registered in the recovery catalog. A virtual private catalog user has read-only access to global scripts. Creating or updating global scripts must be done while connected to the base recovery catalog.

	
See Also:

"Managing Stored Scripts"

Recovery Catalog in a Data Guard Environment

As explained in "RMAN in a Data Guard Environment", you must use a recovery catalog to manage RMAN metadata for all physical databases, both primary and standby databases, in the Data Guard environment. RMAN uses the recovery catalog as the single source of truth for the Data Guard environment.

RMAN can use the recovery catalog to update a primary or standby control file in a reverse resynchronization. In this case, the metadata flows from the catalog to the control file rather than the other way around. RMAN automatically performs resynchronizations in most situations in which they are needed. Thus, you should not need to use the RESYNC command to manually resynchronize very often.

	
See Also:

Oracle Data Guard Concepts and Administration to learn how to configure the RMAN environment for use with a standby database

Basic Steps of Managing a Recovery Catalog

The basic steps for setting up a recovery catalog for use by RMAN are as follows:

	
Create the recovery catalog.

"Creating a Recovery Catalog" explains how to perform this task.

	
Register your target databases in the recovery catalog.

This step enables RMAN to store metadata for the target databases in the recovery catalog. "Registering a Database in the Recovery Catalog" explains this task.

	
If needed, catalog any older backups whose records are no longer stored in the target control file.

"Cataloging Backups in the Recovery Catalog" explains how to perform this task.

	
If needed, create virtual private catalogs for specific users and determine the metadata to which they are permitted access.

"Creating and Managing Virtual Private Catalogs" explains how to perform this task.

	
Protect the recovery catalog by including it in your backup and recovery strategy.

"Protecting the Recovery Catalog" explains how to back up and recover the catalog and increase its availability.

The remainder of the chapter explains how to manage the recovery catalog after it is operational. You can perform the following tasks:

	
"Managing Stored Scripts" explains how to store RMAN scripts in the recovery catalog and manage them.

	
Chapter 11, "Reporting on RMAN Operations" explains how to report on RMAN operations. You can use the LIST and REPORT commands with or without a recovery catalog. "Querying Recovery Catalog Views" explains how to report on RMAN operations with fixed views in the recovery catalog.

	
"Maintaining a Recovery Catalog" explains a variety of tasks for ongoing recovery catalog maintenance, including how to import one recovery catalog into another recovery catalog.

If you no longer want to maintain a recovery catalog, then see "Dropping a Recovery Catalog".

Creating a Recovery Catalog

This section explains the phases of recovery catalog creation. This section contains the following topics:

	
Configuring the Recovery Catalog Database

	
Creating the Recovery Catalog Schema Owner

	
Executing the CREATE CATALOG Command

Configuring the Recovery Catalog Database

When you use a recovery catalog, RMAN requires that you maintain a recovery catalog schema. The recovery catalog is stored in the default tablespace of the schema. The SYS user cannot be the owner of the recovery catalog.

Decide which database you will use to install the recovery catalog schema, and also how you will back up this database. Also, decide whether to operate the catalog database in ARCHIVELOG mode, which is recommended.

	
Note:

Do not use the target database to be backed up as the database for the recovery catalog. The recovery catalog must be protected if the target database is lost.

Planning the Size of the Recovery Catalog Schema

You must allocate space to be used by the catalog schema. The size of the recovery catalog schema depends upon the number of databases monitored by the catalog. The schema also grows as the number of archived redo log files and backups for each database increases. Finally, if you use RMAN stored scripts stored in the catalog, some space must be allocated for those scripts.

For example, assume that the trgt database has 100 files, and that you back up the database once a day, producing 50 backup sets containing 1 backup piece each. If you assume that each row in the backup piece table uses the maximum amount of space, then one daily backup consumes less than 170 kilobytes in the recovery catalog. So, if you back up once a day for a year, then the total storage in this period is about 62 megabytes. Assume approximately the same amount for archived logs. Thus, the worst case is about 120 megabytes for a year for metadata storage. For a more typical case in which only a portion of the backup piece row space is used, 15 MB for each year is realistic.

If you plan to register multiple databases in your recovery catalog, then remember to add up the space required for each one based on the previous calculation to arrive at a total size for the default tablespace of the recovery catalog schema.

Allocating Disk Space for the Recovery Catalog Database

If you are creating your recovery catalog in an existing database, then add enough room to hold the default tablespace for the recovery catalog schema. If you are creating a new database to hold your recovery catalog, then in addition to the space for the recovery catalog schema itself, allow space for other files in the recovery catalog database:

	
SYSTEM and SYSAUX tablespaces

	
Temporary tablespaces

	
Undo tablespaces

	
Online redo log files

Most of the space used in the recovery catalog database is devoted to supporting tablespaces, for example, the SYSTEM, temporary, and undo tablespaces. Table 13-1 describes typical space requirements.

Table 13-1 Typical Recovery Catalog Space Requirements for 1 Year

	Type of Space	Space Requirement
	
SYSTEM tablespace

	
90 MB

	
Temp tablespace

	
5 MB

	
Rollback or undo tablespace

	
5 MB

	
Recovery catalog tablespace

	
15 MB for each database registered in the recovery catalog

	
Online redo logs

	
1 MB each (three groups, each with two members)

	
Caution:

Ensure that the recovery catalog and target databases do not reside on the same disk. If both your recovery catalog and your target database suffer hard disk failure, then your recovery process is much more difficult. If possible, take other measures as well to eliminate common points of failure between your recovery catalog database and the databases that you are backing up.

Creating the Recovery Catalog Schema Owner

After choosing the recovery catalog database and creating the necessary space, you are ready to create the owner of the recovery catalog and grant this user necessary privileges. Assume the following background information for the instructions in the following sections:

	
User SYS has SYSDBA privileges on the recovery catalog database catdb.

	
A tablespace called tools in the recovery catalog database catdb stores the recovery catalog. If you use an RMAN reserved word as a tablespace name, you must enclose it in quotes and put it in uppercase. (See Oracle Database Backup and Recovery Reference for a list of RMAN reserved words.)

	
A tablespace called temp exists in the recovery catalog database.

To create the recovery catalog schema in the recovery catalog database:

	
Start SQL*Plus and connect with administrator privileges to the database containing the recovery catalog. In this example, the database is catdb.

	
Create a user and schema for the recovery catalog. For example, you could enter the following SQL statement (replacing password with a user-defined password):

CREATE USER rman IDENTIFIED BY password
 TEMPORARY TABLESPACE temp
 DEFAULT TABLESPACE tools
 QUOTA UNLIMITED ON tools;

	
Note:

Create a password that is secure. See Oracle Database Security Guide for more information.

	
Grant the RECOVERY_CATALOG_OWNER role to the schema owner. This role provides the user with all privileges required to maintain and query the recovery catalog.

GRANT RECOVERY_CATALOG_OWNER TO rman;

Executing the CREATE CATALOG Command

After creating the catalog owner, create the catalog tables with the RMAN CREATE CATALOG command. The command creates the catalog in the default tablespace of the catalog owner.

To create the recovery catalog:

	
Start RMAN and connect to the database that will contain the catalog. Connect to the database as the recovery catalog owner.

	
Run the CREATE CATALOG command to create the catalog. The creation of the catalog can take several minutes. If the catalog tablespace is this user's default tablespace, then you can run the following command:

RMAN> CREATE CATALOG;

You can specify the tablespace name for the catalog in the CREATE CATALOG command. For example:

RMAN> CREATE CATALOG TABLESPACE cat_tbs;

	
Note:

If the tablespace name that you want to use for the recovery catalog is an RMAN reserved word, then it must be uppercase and enclosed in quotes. For example:

CREATE CATALOG TABLESPACE 'CATALOG';

	
You can check the results by using SQL*Plus to query the recovery catalog to see which tables were created:

SQL> SELECT TABLE_NAME FROM USER_TABLES;

	
See Also:

Oracle Database SQL Language Reference for the SQL syntax for the GRANT and CREATE USER statements, and Oracle Database Backup and Recovery Reference for CREATE CATALOG command syntax

Registering a Database in the Recovery Catalog

This section describes how to maintain target database records in the recovery catalog. It contains the following sections:

	
About Registration of a Database in the Recovery Catalog

	
Registering a Database with the REGISTER DATABASE Command

About Registration of a Database in the Recovery Catalog

The process of enrolling of a target database in a recovery catalog is called registration. If a target database is not registered in the recovery catalog, then RMAN cannot use the catalog to store metadata for operations on this database. You can still perform RMAN operations on an unregistered database: RMAN always stores its metadata in the control file of the target database.

If you are not using the recovery catalog in a Data Guard environment, then use the REGISTER command to register each database. Each database must have a unique DBID. If you use the RMAN DUPLICATE command or the CREATE DATABASE statement in SQL, then the database is assigned a unique DBID automatically. If you create a database by other means, then the copied database may have the same DBID as its source database. You can change the DBID with the DBNEWID utility so that you can register the source and copy databases in the same catalog.

You can use the UNREGISTER command to unregister a database from the recovery catalog.

About Standby Database Registration

In a Data Guard environment, the primary and standby databases share the same DBID and database name. To be eligible for registration in the recovery catalog, each database in the Data Guard environment must have different DB_UNIQUE_NAME values. The DB_UNIQUE_NAME parameter for a database is set in its initialization parameter file.

If you use RMAN in a Data Guard environment, then you can use the REGISTER DATABASE command only for the primary database. You can use the following techniques to register a standby database in the recovery catalog:

	
When you connect to a standby database as TARGET, RMAN automatically registers the database in the recovery catalog.

	
When you run the CONFIGURE DB_UNIQUE_NAME command for a standby database that is not known to the recovery catalog, RMAN automatically registers this standby database if its primary database is registered.

	
See Also:

	
"Unregistering a Target Database from the Recovery Catalog"

	
Oracle Database Backup and Recovery Reference for DUPLICATE command syntax

	
Oracle Database Utilities to learn how to use the DBNEWID utility to change the DBID

	
Oracle Data Guard Concepts and Administration to learn about using RMAN in a Data Guard environment

Registering a Database with the REGISTER DATABASE Command

The first step in using a recovery catalog with a target database is registering the target database in the recovery catalog. If you use the catalog in a Data Guard environment, then you can only register the primary database in this way.

Use the following procedure:

	
Start RMAN and connect to a target database and recovery catalog. The recovery catalog database must be open.

For example, issue the following command to connect to the catalog database with the net service name catdb as user rman (who owns the catalog schema):

% rman TARGET / CATALOG rman@catdb

	
If the target database is not mounted, then mount or open it:

STARTUP MOUNT;

	
Register the target database in the connected recovery catalog:

REGISTER DATABASE;

RMAN creates rows in the catalog tables to contain information about the target database, then copies all pertinent data about the target database from the control file into the catalog, synchronizing the catalog with the control file.

	
Verify that the registration was successful by running REPORT SCHEMA:

REPORT SCHEMA;

Report of database schema
File Size(MB) Tablespace RB segs Datafile Name
---- ---------- ---------------- ------- -------------------
1 307200 SYSTEM NO /oracle/oradata/trgt/system01.dbf
2 20480 UNDOTBS YES /oracle/oradata/trgt/undotbs01.dbf
3 10240 CWMLITE NO /oracle/oradata/trgt/cwmlite01.dbf
4 10240 DRSYS NO /oracle/oradata/trgt/drsys01.dbf
5 10240 EXAMPLE NO /oracle/oradata/trgt/example01.dbf
6 10240 INDX NO /oracle/oradata/trgt/indx01.dbf
7 10240 TOOLS NO /oracle/oradata/trgt/tools01.dbf
8 10240 USERS NO /oracle/oradata/trgt/users01.dbf

Cataloging Backups in the Recovery Catalog

If you have data file copies, backup pieces, or archived logs on disk, then you can catalog them in the recovery catalog with the CATALOG command. When using a recovery catalog, cataloging older backups that have aged out of the control file lets RMAN use the older backups during restore operations. The following commands illustrate this technique:

CATALOG DATAFILECOPY '/disk1/old_datafiles/01_01_2003/users01.dbf';
CATALOG ARCHIVELOG '/disk1/arch_logs/archive1_731.dbf',
 '/disk1/arch_logs/archive1_732.dbf';
CATALOG BACKUPPIECE '/disk1/backups/backup_820.bkp';

You can also catalog multiple backup files in a directory at once by using the CATALOG START WITH command, as shown in the following example:

CATALOG START WITH '/disk1/backups/';

RMAN lists the files to be added to the RMAN repository and prompts for confirmation before adding the backups. Be careful when creating your prefix with CATALOG START WITH. RMAN scans all paths for all files on disk that begin with the specified prefix. The prefix is not just a directory name. Using the wrong prefix can cause the cataloging of the wrong set of files.

For example, assume that a group of directories /disk1/backups, /disk1/backups-year2003, /disk1/backupsets, and /disk1/backupsets/test and so on, all contain backup files. The following command catalogs all files in all of these directories, because /disk1/backups is a prefix for the paths for all of these directories:

CATALOG START WITH '/disk1/backups';

To catalog only backups in the /disk1/backups directory, the correct command would be as follows:

CATALOG START WITH '/disk1/backups/';

	
See Also:

	
Oracle Database Backup and Recovery Reference for REGISTER syntax

	
Oracle Database Upgrade Guide for issues relating to database migration

Creating and Managing Virtual Private Catalogs

About Virtual Private Catalogs

By default, all of the users of an RMAN recovery catalog have full privileges to insert, update, and delete any metadata in the catalog. For example, if the administrators of two unrelated databases share the same recovery catalog, each administrator could, whether inadvertently or maliciously, destroy catalog data for the other's database. In many enterprises, this situation is tolerated because the same people manage many different databases and also manage the recovery catalog. But in other enterprises where clear separation of duty exists between administrators of various databases, and between the DBA and the administrator of the recovery catalog, you may desire to restrict each database administrator to modify only backup metadata belonging to those databases that they are responsible for, while still keeping the benefits of a single, centrally-managed, RMAN recovery catalog. This goal can be achieved by implementing virtual private catalogs.

Every 11g recovery catalog supports virtual private catalogs, but they are not used unless explicitly created. There is no restriction to the number of virtual private catalogs that can created beneath one recovery catalog. Each virtual private catalog is owned by a database schema user which is different than the user who owns the recovery catalog.

After creating one or more virtual private catalogs, using the directions that follow, the administrator for the recovery catalog grants each virtual private catalog the privilege to use that catalog for one or more databases that are currently registered in the recovery catalog. The administrator of the recovery catalog can also grant the privilege to register new databases while using a virtual private catalog.

	
Note:

Every virtual private catalog has access to all global stored scripts and those non-global stored scripts that belong to those databases for which this virtual private catalog has privileges. Virtual private catalogs cannot access non-global stored scripts that belong to databases that they do not have privileges for, and they cannot create global stored scripts.

The basic steps for creating a virtual private catalog are as follows:

	
Create the database user who will own the virtual private catalog (if this user does not exist) and grant this user access privileges.

This task is described in "Creating and Granting Privileges to a Virtual Private Catalog Owner".

	
Create the virtual private catalog.

This task is described in "Creating a Virtual Private Catalog".

After the virtual private catalog is created, you can revoke catalog access privileges as necessary. This task is described in "Revoking Privileges from a Virtual Private Catalog Owner". "Dropping a Virtual Private Catalog" explains how to drop a virtual private catalog.

If the recovery catalog is a virtual private catalog, then the RMAN client connecting to it must be at patch level 10.1.0.6 or 10.2.0.3. Oracle9i RMAN clients cannot connect to a virtual private catalog. This version restriction does not affect RMAN client connections to an Oracle Database 11g base recovery catalog, even if it has some virtual private catalog users.

	
See Also:

Oracle Database Backup and Recovery Reference for details about RMAN version compatibility

Creating and Granting Privileges to a Virtual Private Catalog Owner

This section assumes that you created the base recovery catalog.

Assume that the following databases are registered in the base recovery catalog: prod1, prod2, and prod3. The database user who owns the base recovery catalog is catowner. You want to create database user vpc1 and grant this user access privileges only to prod1 and prod2. By default, a virtual private catalog owner has no access to the base recovery catalog.

To create and grant privileges to a virtual private catalog owner:

	
Start SQL*Plus and connect to the recovery catalog database with administrator privileges.

	
If the user that will own the virtual private catalog does not exist, then create the user.

For example, if you want to create database user vpc1 to own the catalog, then you could execute the following command (replacing password with a user-defined password):

SQL> CREATE USER vpc1 IDENTIFIED BY password
 2 DEFAULT TABLESPACE vpcusers
 3 QUOTA UNLIMITED ON vpcusers;

	
Note:

Create a password that is secure. See Oracle Database Security Guide for more information.

	
Grant the RECOVERY_CATALOG_OWNER role to the database user that will own the virtual private catalog, and then exit SQL*Plus.

The following example grants the role to user vpc1:

SQL> GRANT recovery_catalog_owner TO vpc1;
SQL> EXIT;

	
Start RMAN and connect to the recovery catalog database as the base recovery catalog owner (not the virtual private catalog owner).

The following example connects to the base recovery catalog as catowner:

% rman
RMAN> CONNECT CATALOG catowner@catdb;

recovery catalog database Password: password
connected to recovery catalog database

	
Grant desired privileges to the virtual private catalog owner.

The following example gives user vpc1 access to the metadata for prod1 and prod2 (but not prod3):

RMAN> GRANT CATALOG FOR DATABASE prod1 TO vpc1;
RMAN> GRANT CATALOG FOR DATABASE prod2 TO vpc1;

You can also use a DBID rather than a database name. The virtual private catalog user does not have access to the metadata for any other databases registered in the recovery catalog.

You can also grant the user the ability to register new target databases in the recovery catalog. For example:

RMAN> GRANT REGISTER DATABASE TO vpc1;

Creating a Virtual Private Catalog

This section assumes that the virtual private catalog owner has been given the RECOVERY_CATALOG_OWNER database role. Also, the base recovery catalog owner used the GRANT command to give the virtual private catalog owner access to metadata in the base recovery catalog.

To create a virtual private catalog:

	
Start RMAN and connect to the recovery catalog database as the virtual private catalog owner (not the base recovery catalog owner).

The following example connects to the recovery catalog as vpc1:

% rman
RMAN> CONNECT CATALOG vpc1@catdb;

	
Create the virtual private catalog.

The following command creates the virtual private catalog:

RMAN> CREATE VIRTUAL CATALOG;

	
If you intend to use a 10.2 or earlier release of RMAN with this virtual private catalog, then execute the following PL/SQL procedure (where base_catalog_owner is the database user who owns the base recovery catalog):

SQL> EXECUTE base_catalog_owner.DBMS_RCVCAT.CREATE_VIRTUAL_CATALOG;

Revoking Privileges from a Virtual Private Catalog Owner

This section assumes that you have created a virtual private catalog.

Assume that two databases are registered in the base recovery catalog: prod1 and prod2. As owner of the base recovery catalog, you have granted the vpc1 user access privileges to prod1. You have also granted this user the right to register databases in his virtual private catalog. Now you want to revoke privileges from vpc1.

To revoke privileges from a virtual private catalog owner:

	
Start RMAN and connect to the recovery catalog database as the recovery catalog owner (not the virtual private catalog owner).

The following example connects to the recovery catalog as catowner:

% rman
RMAN> CONNECT CATALOG catowner@catdb;

	
Revoke specified privileges from the virtual private catalog owner.

The following command revokes access to the metadata for prod1 from virtual private catalog owner vpc1:

REVOKE CATALOG FOR DATABASE prod1 FROM vpc1;

You can also specify a DBID rather than a database name. The catalog vpc1 retains all other granted catalog privileges.

You can also revoke the privilege to register new target databases in the recovery catalog. For example:

REVOKE REGISTER DATABASE FROM vpc1;

Dropping a Virtual Private Catalog

This section assumes that you have created a virtual private catalog and now want to drop it. When you drop a virtual private catalog, you do not remove the base recovery catalog itself, but only drop the synonyms and views that refer to the base recovery catalog.

To drop a virtual private catalog:

	
Start RMAN and connect to the recovery catalog database as the virtual private catalog owner (not the base recovery catalog owner).

The following example connects to the recovery catalog as user vpc1:

% rman
RMAN> CONNECT CATALOG vpc1@catdb;

	
Drop the catalog.

If you are using an Oracle Database 11g or later RMAN executable, then drop the virtual private catalog with the DROP CATALOG command:

RMAN> DROP CATALOG;

If you are using an Oracle Database 10g or earlier RMAN executable, then you cannot use the DROP CATALOG command. Instead, connect SQL*Plus to the catalog database as the virtual private catalog user, then execute the following PL/SQL procedure (where base_catalog_owner is the database user who owns the base recovery catalog):

SQL> EXECUTE base_catalog_owner.DBMS_RCVCAT.DELETE_VIRTUAL_CATALOG;

Protecting the Recovery Catalog

Include the recovery catalog database in your backup and recovery strategy. If you do not back up the recovery catalog and a disk failure occurs that destroys the recovery catalog database, then you may lose the metadata in the catalog. Without the recovery catalog contents, recovery of your other databases is likely to be more difficult.

Backing Up the Recovery Catalog

A single recovery catalog can store metadata for multiple target databases. Consequently, loss of the recovery catalog can be disastrous. You should back up the recovery catalog frequently. This section provides general guidelines for developing a strategy for protecting the recovery catalog.

Backing Up the Recovery Catalog Frequently

The recovery catalog database is a database like any other, and is also a key part of your backup and recovery strategy. Protect the recovery catalog as you would protect any other part of your database, by backing it up. The backup strategy for your recovery catalog database should be part of your overall backup and recovery strategy.

Back up the recovery catalog with the same frequency that you back up a target database. For example, if you make a weekly whole database backup of a target database, then back up the recovery catalog after the backup of the target database. This backup of the recovery catalog can help you in a disaster recovery scenario. Even if you must restore the recovery catalog database with a control file autobackup, you can use the full record of backups in your restored recovery catalog database to restore the target database.

Choosing the Appropriate Technique for Physical Backups

When backing up the recovery catalog database, you can use RMAN to make the backups. As illustrated in Figure 13-1, start RMAN with the NOCATALOG option so that the repository for RMAN is the control file in the catalog database.

Figure 13-1 Using the Control File as the Repository for Backups of the Recovery Catalog

[image: System diagram using control file as backup repository]

Description of "Figure 13-1 Using the Control File as the Repository for Backups of the Recovery Catalog"

Follow these guidelines when developing an RMAN backup strategy for the recovery catalog database:

	
Run the recovery catalog database in ARCHIVELOG mode so that you can do point-in-time recovery if needed.

	
Set the retention policy to a REDUNDANCY value greater than 1.

	
Back up the database to two separate media (for example, disk and tape).

	
Run BACKUP DATABASE PLUS ARCHIVELOG at regular intervals, to a media manager if available, or just to disk.

	
Do not use another recovery catalog as the repository for the backups.

	
Configure the control file autobackup feature to ON.

With this strategy, the control file autobackup feature ensures that the recovery catalog database can always be recovered, so long as the control file autobackup is available.

	
See Also:

"Performing Disaster Recovery" for more information for recovery with a control file autobackup

Separating the Recovery Catalog from the Target Database

A recovery catalog is only effective when separated from the data that it is designed to protect. Thus, you should never store a recovery catalog containing the RMAN repository for a database in the same database as the target database. Also, do not store the catalog database on the same disks as the target database.

To illustrate why data separation is advised, assume that you store the catalog for database prod1 in prod1. If prod1 suffers a total media failure, and if the recovery catalog for prod1 is also stored in prod1, then if you lose the database you also lose the recovery catalog. At this point the only option is to restore an autobackup of the control file for prod1 and use it to restore and recover the database without the benefit of any information stored in the recovery catalog.

Exporting the Recovery Catalog Data for Logical Backups

Logical backups of the RMAN recovery catalog created with the Data Pump Export utility can be a useful supplement for physical backups. If a recovery catalog database is damaged, you can use Data Pump Import to quickly reimport the exported recovery catalog data into another database and rebuild the catalog.

Recovering the Recovery Catalog

Restoring and recovering the recovery catalog database is much like restoring and recovering any other database with RMAN. You can restore the control file and server parameter file for the recovery catalog database from an autobackup, then restore and perform complete recovery on the rest of the database. If you are in a situation where you are using multiple recovery catalogs, then you can also use another recovery catalog to record metadata about backups of this recovery catalog database.

If recovery of the recovery catalog database through the normal Oracle recovery procedures is not possible, then you must re-create the catalog. Examples of this worst-case scenario include:

	
A recovery catalog database that has never been backed up

	
A recovery catalog database that has been backed up, but cannot be recovered because the data file backups or archived logs are not available

You have the following options for partially re-creating the contents of the missing recovery catalog:

	
Use the RESYNC CATALOG command to update the recovery catalog with any RMAN repository information from the control file of the target database or a control file copy. Any metadata from control file records that aged out of the control file is lost.

	
Issue CATALOG START WITH... commands to recatalog any available backups.

To minimize the likelihood of this worst-case scenario, your backup strategy should at least include backing up the recovery catalog. This technique is described in "Backing Up the Recovery Catalog".

	
See Also:

	
Oracle Database Backup and Recovery Reference for information about the CATALOG command

	
Oracle Database Backup and Recovery Reference for information about the CROSSCHECK command

Managing Stored Scripts

As explained in "About Stored Scripts", you can store scripts in the recovery catalog. This section explains how to create and manage stored scripts.

About Stored Scripts

You can use a stored script as an alternative to a command file for managing frequently used sequences of RMAN commands. The script is stored in the recovery catalog rather than on the file system.

Stored scripts can be local or global. A local script is associated with the target database to which RMAN is connected when the script is created, and can only be executed when you are connected to that target database. A global stored script can be run against any database registered in the recovery catalog, if the RMAN client is connected to the recovery catalog and a target database.

The commands allowable within the brackets of the CREATE SCRIPT command are the same commands supported within a RUN block. Any command that is legal within a RUN command is permitted in the stored script. The following commands are not legal within stored scripts: RUN, @, and @@.

When specifying a script name, RMAN permits but generally does not require that you use quotes around the name of a stored script. If the name begins with a digit or is an RMAN reserved word, however, then you must put quotes around the name to use it as a stored script name. Consider avoiding stored script names that begin with nonalphabetic characters or that are the same as RMAN reserved words.

Consider using a naming convention to avoid confusion between global and local stored scripts. For the EXECUTE SCRIPT, DELETE SCRIPT and PRINT SCRIPT commands, if the script name passed as an argument is not the name of a script defined for the connected target instance, then RMAN looks for a global script by the same name. For example, if the global script global_backup is in the recovery catalog, but no local stored script global_backup is defined for the target database, then the following command deletes the global script:

DELETE SCRIPT global_backup;

To use commands related to stored scripts, even global scripts, you must be connected to both a recovery catalog and a target database instance.

Creating Stored Scripts

You can use the CREATE SCRIPT command to create a stored script. If GLOBAL is specified, then a global script with this name must not exist in the recovery catalog. If GLOBAL is not specified, then a local script must not exist with the same name for the same target database. You can also use the REPLACE SCRIPT to create a script or update an existing script.

To create a stored script:

	
Start RMAN and connect to a target database and recovery catalog (if used).

	
Run the CREATE SCRIPT command.

The following example illustrates creation of a local script:

CREATE SCRIPT full_backup
{
 BACKUP DATABASE PLUS ARCHIVELOG;
 DELETE OBSOLETE;
}

For a global script, the syntax is similar:

CREATE GLOBAL SCRIPT global_full_backup
{
 BACKUP DATABASE PLUS ARCHIVELOG;
 DELETE OBSOLETE;
}

Optionally, you can provide a COMMENT with descriptive information:

CREATE GLOBAL SCRIPT global_full_backup
COMMENT 'use only with ARCHIVELOG mode databases'
{
 BACKUP DATABASE PLUS ARCHIVELOG;
 DELETE OBSOLETE;
}

You can also create a script by reading its contents from a text file. The file must begin with a left brace ({) character, contain a series of commands valid within a RUN block, and end with a right brace (}) character. Otherwise, a syntax error is signalled, just as if the commands were entered at the keyboard.

CREATE SCRIPT full_backup
 FROM FILE '/tmp/my_script_file.txt';

	
Examine the output.

If no errors are displayed, then RMAN successfully created the script and stored in the recovery catalog.

	
See Also:

Oracle Database Backup and Recovery Reference for the list of RMAN reserved words

Replacing Stored Scripts

To update stored scripts, use the REPLACE SCRIPT command. If you are replacing a local script, then you must be connected to the target database that you connected to when you created the script. If the script does not exist, then RMAN creates it.

To replace a stored script:

	
Start RMAN and connect to a target database and recovery catalog (if used).

	
Execute REPLACE SCRIPT.

This following example updates the script full_backup with new contents:

REPLACE SCRIPT full_backup
{
 BACKUP DATABASE PLUS ARCHIVELOG;
}

You can update global scripts by specifying the GLOBAL keyword as follows:

REPLACE GLOBAL SCRIPT global_full_backup
COMMENT 'A script for full backup to be used with any database'
{
 BACKUP AS BACKUPSET DATABASE PLUS ARCHIVELOG;
}

As with CREATE SCRIPT, you can update a local or global stored script from a text file with the following form of the command:

REPLACE GLOBAL SCRIPT global_full_backup
 FROM FILE '/tmp/my_script_file.txt';

	
See Also:

Oracle Database Backup and Recovery Reference for REPLACE SCRIPT command syntax

Executing Stored Scripts

Use the EXECUTE SCRIPT command to run a stored script. If GLOBAL is specified, then a global script with this name must exist in the recovery catalog; otherwise, RMAN returns error RMAN-06004. If GLOBAL is not specified, then RMAN searches for a local stored script defined for the current target database. If no local script with this name is found, then RMAN searches for a global script by the same name and executes it if one is found.

To execute a stored script:

	
Start RMAN and connect to a target database and recovery catalog (if used).

	
If needed, use SHOW to examine your configured channels.

Your script uses the automatic channels configured at the time you execute the script. Use ALLOCATE CHANNEL commands in the script if you must override the configured channels. Because of the RUN block, if an RMAN command in the script fails, subsequent RMAN commands in the script do not execute.

	
Run EXECUTE SCRIPT. This command requires a RUN block, as shown in the following example:

RUN
{
 EXECUTE SCRIPT full_backup;
}

The preceding command invokes a local script if one is with the name specified. If no local script is found, but there is a global script with the name specified, then RMAN executes the global script.

You can also use EXECUTE GLOBAL SCRIPT to control which script is invoked if a local and a global script have the same name. If there is no local script called global_full_backup, the following two commands have the same effect:

RUN
{
 EXECUTE GLOBAL SCRIPT global_full_backup;
}

RUN
{
 EXECUTE SCRIPT global_full_backup;
}

	
See Also:

Oracle Database Backup and Recovery Reference for EXECUTE SCRIPT command syntax

Creating and Executing Dynamic Stored Scripts

You can specify substitution variables in the CREATE SCRIPT command. When you start RMAN on the command line, the USING clause specifies one or more values for use in substitution variables in a command file. As in SQL*Plus, &1 indicates where to place the first value, &2 indicates where to place the second value, and so on.

To create and use a dynamic stored script:

	
Create a command file that contains a CREATE SCRIPT statement with substitution variables for values that must be dynamically updated.

The following example uses substitution variables for the name of the tape set, for a string in the FORMAT specification, and for the name of the restore point.

CREATE SCRIPT quarterly {
 ALLOCATE CHANNEL c1
 DEVICE TYPE sbt
 PARMS 'ENV=(OB_MEDIA_FAMILY=&1)';
 BACKUP
 TAG &2
 FORMAT '/disk2/bck/&1%U.bck'
 KEEP FOREVER
 RESTORE POINT &3
 DATABASE;
}

	
Connect RMAN to a target database (which must be mounted or open) and recovery catalog, specifying the initial values for the recovery catalog script.

For example, enter the following command:

% rman TARGET / CATALOG rman@catdb USING arc_backup bck0906 FY06Q3

A recovery catalog is required for KEEP FOREVER, but is not required for any other KEEP option.

	
Run the command file created in the first step to create the stored script.

For example, run the /tmp/catscript.rman command file as follows:

RMAN> @/tmp/catscript.rman

This step creates but does not execute the stored script.

	
Every quarter, execute the stored script, passing values for the substitution variables.

The following example executes the recovery catalog script named quarterly. The example specifies arc_backup as the name of the media family (set of tapes), bck1206 as part of the FORMAT string and FY06Q4 as the name of the restore point.

RUN
{
 EXECUTE SCRIPT quarterly
 USING arc_backup
 bck1206
 FY06Q4;
}

	
See Also:

"Making Database Backups for Long-Term Storage"

Printing Stored Scripts

The PRINT SCRIPT command displays a stored script or writes it out to a file.

To print stored scripts:

	
Start RMAN and connect to a target database and recovery catalog.

	
Run the PRINT SCRIPT command as follows:

PRINT SCRIPT full_backup;

To send the contents of a script to a file, use this form of the command:

PRINT SCRIPT full_backup
 TO FILE '/tmp/my_script_file.txt';

For global scripts, the analogous syntax would be as follows:

PRINT GLOBAL SCRIPT global_full_backup;
PRINT GLOBAL SCRIPT global_full_backup
 TO FILE '/tmp/my_script_file.txt';

	
See Also:

Oracle Database Backup and Recovery Reference for PRINT SCRIPT command syntax

Listing Stored Script Names

Use the LIST ... SCRIPT NAMES command to display the names of scripts defined in the recovery catalog. LIST GLOBAL SCRIPT NAMES and LIST ALL SCRIPT NAMES are the only commands that work when RMAN is connected to a recovery catalog without connecting to a target instance; the other forms of the LIST ... SCRIPT NAMES command require a recovery catalog connection.

To list stored script names:

	
Start RMAN and connect to a target database and recovery catalog.

	
Run the LIST ... SCRIPT NAMES command.

For example, run the following command to list the names of all global and local scripts that can be executed for the currently connected target database:

LIST SCRIPT NAMES;

The following example lists only global script names:

LIST GLOBAL SCRIPT NAMES;

To list the names of all scripts stored in the current recovery catalog, including global scripts and local scripts for all target databases registered in the recovery catalog, use the following form of the command:

LIST ALL SCRIPT NAMES;

For each script listed, the output indicates which target database the script is defined for (or whether a script is global).

	
See Also:

Oracle Database Backup and Recovery Reference for LIST SCRIPT NAMES command syntax and output format

Deleting Stored Scripts

Use the DELETE GLOBAL SCRIPT command to delete a stored script from the recovery catalog.

To delete a stored script:

	
Start RMAN and connect to a target database and recovery catalog.

	
Enter the DELETE SCRIPT command.

If you use DELETE SCRIPT without GLOBAL, and there is no stored script for the target database with the specified name, then RMAN looks for a global stored script by the specified name and deletes the global script if it exists. For example, suppose you enter the following command:

DELETE SCRIPT 'global_full_backup';

In this case, RMAN looks for a script global_full_backup defined for the connected target database, and if it did not find one, it searches the global scripts for a script called global_full_backup and delete that script.

To delete a global stored script, use DELETE GLOBAL SCRIPT:

DELETE GLOBAL SCRIPT 'global_full_backup';

	
See Also:

Oracle Database Backup and Recovery Reference for DELETE SCRIPT command syntax

Executing a Stored Script at RMAN Startup

To run the RMAN client and start a stored script in the recovery catalog on startup, use the SCRIPT argument when starting the RMAN client. For example, you could enter the following command to execute script /tmp/fbkp.cmd:

% rman TARGET / CATALOG rman@catdb SCRIPT '/tmp/fbkp.cmd';

You must connect to a recovery catalog, which contains the stored script, and target database, to which the script applies, when starting the RMAN client.

If local and global stored scripts are defined with the same name, then RMAN always executes the local script.

	
See Also:

Oracle Database Backup and Recovery Reference for full RMAN client command line syntax

Maintaining a Recovery Catalog

This section describes various management and maintenance tasks. This section contains the following topics:

	
About Recovery Catalog Maintenance

	
Resynchronizing the Recovery Catalog

	
Updating the Recovery Catalog After Changing a DB_UNIQUE_NAME

	
Unregistering a Target Database from the Recovery Catalog

	
Resetting the Database Incarnation in the Recovery Catalog

	
Upgrading the Recovery Catalog

	
Importing and Moving a Recovery Catalog

About Recovery Catalog Maintenance

After you have created a recovery catalog and registered your target databases, you must maintain this catalog. For example, you must run the RMAN maintenance commands, which are explained in Chapter 12, "Maintaining RMAN Backups and Repository Records", to update backup records and to delete backups that are no longer needed. You must perform this type of maintenance regardless of whether you use RMAN with a recovery catalog. Other types of maintenance, such as upgrading a recovery catalog schema, are specific to use of RMAN with a recovery catalog.

If you use a recovery catalog in a Data Guard environment, then special considerations apply for backups and database files recorded in the catalog. See "RMAN File Management in a Data Guard Environment" for an explanation of when backups are accessible to RMAN and how RMAN maintenance commands work with accessible backups.

Resynchronizing the Recovery Catalog

When RMAN performs a resynchronization, it compares the recovery catalog to either the current or backup control file of the target database and updates the catalog with metadata that is missing or changed. Most RMAN commands perform a resynchronization automatically when the target control file is mounted and the catalog is available. In a Data Guard environment, RMAN can perform a reverse resynchronization to update a database control file with metadata from the catalog.

About Resynchronization of the Recovery Catalog

Resynchronization of the recovery catalog ensures that the metadata that RMAN obtains from the control file stays current. Resynchronizations can be full or partial.

In a partial resynchronization, RMAN reads the current control file of the target database to update changed metadata about new backups, new archived redo logs, and so on. RMAN does not resynchronize metadata about the database physical schema.

In a full resynchronization, RMAN updates all changed records, including those for the database schema. RMAN performs a full resynchronization after structural changes to database (adding or dropping database files, creating new incarnation, and so on) or after changes to the RMAN persistent configuration.

RMAN creates a snapshot control file, which is a temporary backup control file, when it performs a full resynchronization. The database ensures that only one RMAN session accesses a snapshot control file at any point in time. RMAN creates the snapshot control file in an operating system-specific location on the target database host. You can specify the name and location of the snapshot control file, as explained in "Configuring the Snapshot Control File Location".

This snapshot control file ensures that RMAN has a consistent view of the control file. Because the control file is intended for short-term use, it is not registered in the catalog. RMAN records the control file checkpoint in the recovery catalog to indicate the currency of the catalog.

	
See Also:

Oracle Database Backup and Recovery Reference for more information about the RESYNC command

Recovery Catalog Resynchronization in a Data Guard Environment

RMAN only automatically resynchronizes the recovery catalog with a database when connected to this database as TARGET. Thus, RMAN does not automatically resynchronize every database in a Data Guard environment when connected as TARGET to one database in the environment. You can use the RESYNC CATALOG FROM DB_UNIQUE_NAME command to manually resynchronize the recovery catalog with a database in the Data Guard environment.

For an example of a manual resynchronization, assume that RMAN is connected as TARGET to production database prod, and that you have used CONFIGURE to create a configuration for dgprod3. If you run RESYNC CATALOG FROM DB_UNIQUE_NAME dgprod3, then RMAN resynchronizes the recovery catalog with the dgprod3 control file. In this case RMAN performs both a normal resynchronization, in which metadata flows from the dgprod3 control file to the catalog, and a reverse resynchronization. In a reverse resynchronization, RMAN uses the persistent configurations in the recovery catalog to update the dgprod3 control file.

	
See Also:

Oracle Data Guard Concepts and Administration

Deciding When to Resynchronize the Recovery Catalog

RMAN automatically resynchronizes the recovery catalog when RMAN is connected to a target database and recovery catalog and you have executed RMAN commands. Thus, you should not need to manually run the RESYNC CATALOG command very often. The following sections describe situations requiring a manual catalog resynchronization.

Resynchronizing After the Recovery Catalog is Unavailable

If the recovery catalog is unavailable when you issue RMAN commands that cause a partial resynchronization, then open the catalog database later and resynchronize it manually with the RESYNC CATALOG command.

For example, the target database may be in New York while the recovery catalog database is in Japan. You may not want to make daily backups of the target database in CATALOG mode, to avoid depending on the availability of a geographically distant database. In such a case you could connect to the catalog as often as feasible and run the RESYNC CATALOG command.

Resynchronizing in ARCHIVELOG Mode When You Back Up Infrequently

Assume that a target database runs in ARCHIVELOG mode. Also assume that you do the following:

	
Back up the database infrequently (for example, hundreds of redo logs are archived between database backups)

	
Generate a high number of log switches every day (for example, 1000 switches between catalog resynchronizations)

In this case, you may want to manually resynchronize the recovery catalog regularly because the recovery catalog is not updated automatically when a redo log switch occurs or when a redo log is archived. The database stores metadata about redo log switches and archived redo logs only in the control file. You must periodically resynchronize to propagate this information into the recovery catalog.

How frequently you must resynchronize the recovery catalog depends on the rate at which the database archives redo logs. The cost of the operation is proportional to the number of records in the control file that have been inserted or changed since the previous resynchronization. If no records have been inserted or changed, then the cost of resynchronization is very low; if many records have been inserted or changed, then the resynchronization is more time-consuming.

Resynchronizing After Configuring a Standby Database

You can create or change an RMAN configuration for a standby database even when not connected to this database as TARGET. You perform this task with the CONFIGURE DB_UNIQUE_NAME or CONFIGURE ... FOR DB_UNIQUE_NAME command. As explained in "Manually Resynchronizing the Recovery Catalog", you can resynchronize the standby database manually to update the control file of the standby database.

Resynchronizing the Recovery Catalog Before Control File Records Age Out

Your goal is to ensure that the metadata in the recovery catalog is current. Because the recovery catalog obtains its metadata from the target control file, the currency of the data in the catalog depends on the currency of the data in the control file. You must make sure that the backup metadata in the control file is recorded in the catalog before it is overwritten with new records.

The CONTROL_FILE_RECORD_KEEP_TIME initialization parameter determines the minimum number of days that records are retained in the control file before they are candidates for being overwritten. Thus, you must ensure that you resynchronize the recovery catalog with the control file records before these records are erased. You should perform either of the following actions at intervals less than the CONTROL_FILE_RECORD_KEEP_TIME setting:

	
Make a backup, thereby performing an implicit resynchronization of the recovery catalog

	
Manually resynchronize the recovery catalog with the RESYNC CATALOG command

Make sure that CONTROL_FILE_RECORD_KEEP_TIME is longer than the interval between backups or resynchronizations. Otherwise, control file records could be reused before they are propagated to the recovery catalog. An extra week is a safe margin in most circumstances.

	
Caution:

Never set CONTROL_FILE_RECORD_KEEP_TIME to 0. If you do, then backup records may be overwritten in the control file before RMAN can add them to the catalog.

One problem can arise if the control file becomes too large. The size of the target database control file grows depending on the number of:

	
Backups that you perform

	
Archived redo logs that the database generates

	
Days that this information is stored in the control file

If the control file grows so large that it can no longer expand because it has reached either the maximum number of blocks or the maximum number of records, then the database may overwrite the oldest records even if their age is less than the CONTROL_FILE_RECORD_KEEP_TIME setting. In this case, the database writes a message to the alert log. If you discover that this situation occurs frequently, then reducing the value of CONTROL_FILE_RECORD_KEEP_TIME and increase the frequency of resynchronizations.

	
See Also:

	
Oracle Database Reference for more information about the CONTROL_FILE_RECORD_KEEP_TIME parameter

	
Oracle Database Administrator's Guide for more detailed information on other aspects of control file management

	
"Preventing the Loss of Control File Records" to learn how to monitor the overwriting of control file records

Manually Resynchronizing the Recovery Catalog

Use RESYNC CATALOG to force a full resynchronization of the recovery catalog with a target database control file. You can specify a database unique name with RESYNC FROM DB_UNIQUE_NAME or ALL, depending on whether you want to resynchronize a specific database or all databases in the Data Guard environment. Typically, you would perform this operation after you have run the CONFIGURE command for a standby database, but have not yet connected to this standby database.

	
Start RMAN and connect to a target database and recovery catalog.

	
Mount or open the target database:

STARTUP MOUNT;

	
Resynchronize the recovery catalog.

Run the RESYNC CATALOG command at the RMAN prompt as follows:

RESYNC CATALOG;

The following example resynchronizes the control file of standby1:

RESYNC CATALOG FROM DB_UNIQUE_NAME standby1;

The following variation resynchronizes the control files for all databases in the Data Guard environment:

RESYNC CATALOG FROM DB_UNIQUE_NAME ALL;

	
See Also:

	
Oracle Database Backup and Recovery Reference for RESYNC CATALOG command syntax

	
Oracle Data Guard Concepts and Administration to learn how to configure the RMAN environment for use with a standby database

Updating the Recovery Catalog After Changing a DB_UNIQUE_NAME

You may decide to change the DB_UNIQUE_NAME of a database in a Data Guard environment. In this case, you can run the CHANGE DB_UNIQUE_NAME command to associate the metadata stored in recovery catalog for the old DB_UNIQUE_NAME to the new DB_UNIQUE_NAME. The CHANGE DB_UNIQUE_NAME command does not actually change the DB_UNIQUE_NAME of the database itself. Instead, it updates the catalog metadata for the database whose unique name has been or will be changed.

The following procedure assumes that the DB_UNIQUE_NAME of the primary database is prodny, and that you have changed the DB_UNIQUE_NAME of a standby database from prodsf1 to prodsf2. You can use the same procedure after changing the DB_UNIQUE_NAME of a primary database, except in Step 1 connect RMAN as TARGET to a standby database instead of a primary database.

To update the recovery catalog after a DB_UNIQUE_NAME is changed:

	
Connect RMAN to the primary database as TARGET and also to the recovery catalog. For example, enter the following commands:

% rman
RMAN> CONNECT CATALOG catowner@catdb

recovery catalog database Password: password
connected to recovery catalog database

RMAN> CONNECT TARGET SYS@prodny

target database Password: password
connected to target database: PRODNY (DBID=39525561)

	
List the DB_UNQUE_NAME values known to the recovery catalog.

Run the following LIST command:

RMAN> LIST DB_UNIQUE_NAME OF DATABASE;

	
Change the DB_UNIQUE_NAME in the RMAN metadata.

The following example changes the database unique name from standby database prodsf1 to prodsf2:

RMAN> CHANGE DB_UNIQUE_NAME FROM prodsf1 TO prodsf2;

Unregistering a Target Database from the Recovery Catalog

You can use the UNREGISTER DATABASE command to unregister a database from the recovery catalog. When a database is unregistered from the recovery catalog, all RMAN repository records in the recovery catalog are lost. The database can be registered again, but the recovery catalog records for that database are then based on the contents of the control file at the time of reregistration. Records older than the CONTROLFILE_RECORD_KEEP_TIME setting in the target database control file are lost. Stored scripts, which are not stored in the control file, are also lost.

Unregistering a Target Database When Not in a Data Guard Environment

This scenario assumes that you are not using the recovery catalog to store metadata for primary and standby databases.

To unregister a database:

	
Start RMAN and connect as TARGET to the database to unregister. Also connect to the recovery catalog.

It is not necessary to connect to the target database, but if you do not, then you must specify the name of the target database in the UNREGISTER command. If multiple databases have the same name in the recovery catalog, then you must create a RUN block around the command and use SET DBID to set the DBID for the database.

	
Make a note of the DBID as displayed by RMAN at startup.

For example, RMAN outputs a line of the following form when it connects to a target database that is open:

connected to target database: PROD (DBID=39525561)

	
As a precaution, it may be useful to list all of the backups recorded in the recovery catalog using LIST BACKUP SUMMARY and LIST COPY SUMMARY. This way, you can recatalog backups not known to the control file if you later decide to reregister the database.

	
If your intention is to actually delete all backups of the database completely, then run DELETE statements to delete all existing backups. Do not delete all backups if your intention is only to remove the database from the recovery catalog and rely on the control file to store the RMAN metadata for this database.

The following commands illustrate how to delete backups:

DELETE BACKUP DEVICE TYPE sbt;
DELETE BACKUP DEVICE TYPE DISK;
DELETE COPY;

RMAN lists the backups that it intends to delete and prompts for confirmation before deleting them.

	
Run the UNREGISTER DATABASE command. For example:

UNREGISTER DATABASE;

RMAN displays the database name and DBID, and prompts you for a confirmation:

database name is "RDBMS" and DBID is 931696259

Do you really want to unregister the database (enter YES or NO)? yes

When the process is complete, RMAN outputs the following message:

database unregistered from the recovery catalog

Unregistering a Standby Database

The UNREGISTER command supports a DB_UNIQUE_NAME clause for use in a Data Guard environment. You can use this clause to remove metadata for a specific database.

The recovery catalog associates a backup with a particular database. When you unregister a database, RMAN updates the database name for these backup files to null. Thus, the backups are still recorded but have no owner. You can execute the CHANGE ... RESET DB_UNIQUE_NAME command to associate ownership of the currently ownerless backups to a different database. If you specify INCLUDING BACKUPS on the UNREGISTER command, then RMAN removes the backup metadata for the unregistered database as well.

In this scenario, assume that primary database lnx3 has associated standby databases standby1. You want to unregister the standby database.

To unregister a standby database:

	
Start RMAN and connect as TARGET to the primary database. Also, connect RMAN to a recovery catalog.

For example, enter the following commands:

% rman
RMAN> CONNECT TARGET SYS@lnx3

target database Password: password
connected to target database: LNX3 (DBID=781317675)

RMAN> CONNECT CATALOG rman@catdb

	
List the database unique names.

For example, execute the LIST DB_UNIQUE_NAME command as follows:

RMAN> LIST DB_UNIQUE_NAME OF DATABASE;

List of Databases
DB Key DB Name DB ID Database Role Db_unique_name
------- ------- ----------------- --------------- ------------------
1 LNX3 781317675 STANDBY STANDBY
1 LNX3 781317675 PRIMARY LNX3

	
Run the UNREGISTER DB_UNIQUE_NAME command.

For example, execute the UNREGISTER command as follows to unregister database standby:

RMAN> UNREGISTER DB_UNIQUE_NAME standby;

RMAN displays the database name and DBID, and prompts you for a confirmation:

database db_unique_name is "standby", db_name is "LNX3" and DBID is 781317675

Do you really want to unregister the database (enter YES or NO)? yes

When the process is complete, RMAN outputs the following message:

database with db_unique_name standby unregistered from the recovery catalog

Resetting the Database Incarnation in the Recovery Catalog

As explained in "Database Incarnations", you create an incarnation of the database when you open the database with the RESETLOGS option. You can access a record of the new incarnation in the V$DATABASE_INCARNATION view.

If you open the database with the RESETLOGS option, then a new database incarnation record is automatically created in the recovery catalog. The database also implicitly and automatically issues a RESET DATABASE command, which specifies that this new incarnation of the database is the current incarnation. All subsequent backups and log archiving done by the target database is associated with the new database incarnation.

Whenever RMAN returns the database to an SCN before the current RESETLOGS SCN, using either RESTORE and RECOVER or FLASHBACK DATABASE, the RESET DATABASE TO INCARNATION command is required. However, you do not need to execute RESET DATABASE TO INCARNATION explicitly in the following scenarios because RMAN runs the command implicitly with Flashback.

	
You use FLASHBACK DATABASE to rewind the database to an SCN in the direct ancestral path (see "Database Incarnations" for an explanation of the direct ancestral path).

	
You use FLASHBACK DATABASE to rewind the database to a restore point.

The following procedure explains how to reset the database incarnation when recovering through a RESETLOGS.

To reset the recovery catalog to an older incarnation for media recovery:

	
Determine the incarnation key of the desired database incarnation. Obtain the incarnation key value by issuing a LIST command:

LIST INCARNATION OF DATABASE trgt;

List of Database Incarnations
DB Key Inc Key DB Name DB ID STATUS Reset SCN Reset Time
------- ------- ------- ------ ------- ---------- ----------
1 2 TRGT 1224038686 PARENT 1 02-JUL-02
1 582 TRGT 1224038686 CURRENT 59727 10-JUL-02

The incarnation key is listed in the Inc Key column.

	
Reset the database to the old incarnation. For example, enter:

RESET DATABASE TO INCARNATION 2;

	
If the control file of the previous incarnation is available and mounted, then skip to Step 6 of this procedure. Otherwise, shut down the database and start it without mounting. For example:

SHUTDOWN IMMEDIATE
STARTUP NOMOUNT

	
Restore a control file from the old incarnation. If you have a control file tagged, then specify the tag. Otherwise, you can run the SET UNTIL command, as in this example:

RUN
{
 SET UNTIL 'SYSDATE-45';
 RESTORE CONTROLFILE; # only if current control file is not available
}

	
Mount the restored control file:

ALTER DATABASE MOUNT;

	
Run RESTORE and RECOVER commands to restore and recover the database files from the prior incarnation, then open the database with the RESETLOGS option. For example, enter:

RESTORE DATABASE;
RECOVER DATABASE;
ALTER DATABASE OPEN RESETLOGS;

	
See Also:

Oracle Database Backup and Recovery Reference for RESET DATABASE syntax, Oracle Database Backup and Recovery Reference for LIST syntax

Upgrading the Recovery Catalog

This section explains what a recovery catalog upgrade is and when you must do it.

About Recovery Catalog Upgrades

If you use a version of the recovery catalog schema that is older than that required by the RMAN client, then you must upgrade it. The compatibility matrix in Oracle Database Backup and Recovery Reference explains which schema versions are compatible with which versions of RMAN. For example, you must upgrade the catalog if you use an Oracle Database 11g RMAN client with a release 10.2 version of the recovery catalog schema.

The Oracle Database 10gR1 version of the recovery catalog schema requires the CREATE TYPE privilege. If you created the recovery catalog owner in a release before 10gR1, and if you granted the RECOVERY_CATALOG_OWNER role when it did not include the CREATE TYPE privilege, then you must grant CREATE TYPE to this user explicitly before upgrading the catalog.

You receive an error when issuing UPGRADE CATALOG if the recovery catalog is at a version greater than that required by the RMAN client. RMAN permits the UPGRADE CATALOG command to be run if the recovery catalog is current and does not require upgrading, however, so that you can re-create packages at any time if necessary. Check the message log for error messages generated during the upgrade.

Special Considerations in a Data Guard Environment

Assume that you upgrade the recovery catalog schema to Oracle Database 11g in a Data Guard environment. When RMAN connects to a standby database, it automatically registers the new database information and resynchronizes to obtain the file names from the control file.

During the resynchronization, RMAN associates the names with the target database name. Because the recovery catalog contains historical metadata, some records in the catalog are not known to the control file. For example, the standby1 control file does not know about all backups made on primary1. The database unique names for these old records is null. As explained in "About Recovery Catalog Maintenance", you can use CROSSCHECK to fix these records.

Determining the Schema Version of the Recovery Catalog

The schema version of the recovery catalog is stored in the recovery catalog itself. The information is important in case you maintain multiple databases of different versions in your production system, and must determine whether the catalog schema version is usable with a specific target database version.

To determine the schema version of the recovery catalog:

	
Start SQL*Plus and connect to the recovery catalog database as the catalog owner.

	
Query the RCVER table to obtain the schema version, as in the following example (sample output included):

SELECT *
FROM rcver;

VERSION

10.02.00

If the table displays multiple rows, then the highest version in the RCVER table is the current catalog schema version. The table stores only the major version numbers and not the patch numbers. For example, assume that the rcver table displays the following rows:

VERSION

08.01.07
09.00.01
10.02.00

These rows indicate that the catalog was created with a release 8.1.7 executable, then upgraded to release 9.0.1, and finally upgraded to release 10.2.0. The current version of the catalog schema is 10.2.0.

	
See Also:

Oracle Database Backup and Recovery Reference for the complete set of compatibility rules governing the RMAN environment

Using the UPGRADE CATALOG Command

This scenario assumes that you are upgrading a recovery catalog schema to the current version.

To upgrade the recovery catalog:

	
If you created the recovery catalog owner in a release before 10gR1, and if the RECOVERY_CATALOG_OWNER role did not include the CREATE TYPE privilege, then grant it.

For example, start SQL*Plus and connect to the recovery catalog database with administrator privileges. You can then execute the following GRANT statement:

SQL> GRANT CREATE TYPE TO rman;
SQL> EXIT;

	
Start RMAN and connect RMAN to the recovery catalog database.

	
Run the UPGRADE CATALOG command:

RMAN> UPGRADE CATALOG;

recovery catalog owner is rman
enter UPGRADE CATALOG command again to confirm catalog upgrade

	
Run the UPDATE CATALOG command again to confirm:

RMAN> UPGRADE CATALOG;

recovery catalog upgraded to version 11.01.00
DBMS_RCVMAN package upgraded to version 11.01.00
DBMS_RCVCAT package upgraded to version 11.01.00

	
See Also:

	
Oracle Database Backup and Recovery Reference for UPGRADE CATALOG command syntax

	
Oracle Database Backup and Recovery Reference for information about recovery catalog compatibility

	
Oracle Database Upgrade Guide for complete compatibility and migration information

Importing and Moving a Recovery Catalog

You can use the IMPORT CATALOG command in RMAN to merge one recovery catalog schema into another. This command is useful in the following situations:

	
You have multiple recovery catalog schemas for different versions of the database. You want to merge all existing schemas into one without losing backup metadata.

	
You want to move a recovery catalog from one database to another database.

About Recovery Catalog Imports

When using IMPORT CATALOG, the source catalog schema is the catalog schema that you want to import into a different schema. The destination catalog schema is the catalog schema into which you intend to import the source catalog schema.

By default, RMAN imports metadata from all target databases registered in the source recovery catalog. Optionally, you can specify the list of database IDs to be imported from the source catalog schema.

By default, RMAN unregisters the imported databases from the source catalog schema after a successful import. To indicate whether the unregister was successful, RMAN prints messages before and after unregistering the merged databases. You can also specify the NO UNREGISTER option to specify that the databases should not be unregistered from the destination catalog.

A stored script is either global or local. It is possible for global scripts, but not local scripts, to have name conflicts during import because the destination schema contains the script name. In this case, RMAN renames the global script name to COPY OF script_name. For example, RMAN renames bp_cmd to COPY OF bp_cmd.

If the renamed global script is still not unique, then RMAN renames it to COPY(2) OF script_name. If this script name also exists, then RMAN renames the script to COPY(3) OF script_name. RMAN continues the COPY(n) OF pattern until the script is uniquely named.

Prerequisites for Importing a Recovery Catalog

As shown in compatibility matrix in Oracle Database Backup and Recovery Reference, a target database, recovery catalog database, and recovery catalog schema can be at different database versions. The recommended practice is to import all existing recovery catalogs into a single recovery catalog at the latest version of the recovery catalog schema. "Determining the Schema Version of the Recovery Catalog" explains how to determine the catalog version. Check the compatibility matrix to determine which schema versions are compatible in your environment.

When using IMPORT CATALOG, the version of the source recovery catalog schema must be equal to the current version of the RMAN executable with which you run the command. If the source catalog schema is a lower version, then upgrade it to the current version before importing the schema. "Upgrading the Recovery Catalog" explains how to upgrade. If the source recovery catalog schema is a higher version, then retry the import with a higher version RMAN executable.

No database can be registered in both the source and destination catalog schema. If a database is currently registered in both catalog schemas, then unregister the database from source catalog schema before performing the import.

Importing a Recovery Catalog

When importing one recovery catalog into another, no connection to a target database is necessary. RMAN only needs connectivity to the source and destination catalogs.

In this example, database srcdb contains a 10.2 recovery catalog schema owned by user 102cat, while database destdb contains an 11.1 recovery catalog schema owned by user 111cat.

To import a recovery catalog:

	
Start RMAN and connect as CATALOG to the destination recovery catalog schema. For example:

% rman
RMAN> CONNECT CATALOG 111cat@destdb;

	
Import the source recovery catalog schema, specifying the connection string for the source catalog.

For example, enter the following command to import the catalog owned by 102cat on database srcdb:

IMPORT CATALOG 102cat@srcdb;

A variation is to import metadata for a subset of the target databases registered in the source catalog. You can specify the databases by DBID or database name, as shown in the following examples:

IMPORT CATALOG 102cat@srcdb DBID=1423241, 1423242;
IMPORT CATALOG 102cat@srcdb DB_NAME=prod3, prod4;

	
Optionally, connect to a target database to check that the metadata was successfully imported. For example, the following commands connect to database prod1 as TARGET and list all backups for this database:

LIST BACKUP;

Moving a Recovery Catalog

The procedure for moving a recovery catalog from one database to another is a variation of the procedure for importing a catalog. In this scenario, the source database is the database containing the existing recovery catalog, while the destination database will contain the moved recovery catalog.

To move a recovery catalog from the source database to the destination database:

	
Create a recovery catalog on the destination database, but do not register any databases in the new catalog.

"Creating a Recovery Catalog" explains how to perform this task.

	
Import the source catalog into the catalog created in the preceding step.

"Importing a Recovery Catalog" explains how to perform this task.

Dropping a Recovery Catalog

The DROP CATALOG command removes those objects that were created by the CREATE CATALOG command. If the user who owns the recovery catalog also owns objects that were not created by CREATE CATALOG, then the DROP CATALOG command does not remove these objects.

If you drop a recovery catalog, and if you have no backups of the recovery catalog schema, then backups of all target databases registered in this catalog may become unusable. However, the control file of every target database still retains a record of recent backups of this database.

The DROP CATALOG command is not appropriate for unregistering a single database from a recovery catalog that has multiple target databases registered. Dropping the recovery catalog deletes the recovery catalog record of backups for all target databases registered in the catalog.

To drop a recovery catalog schema:

	
Start RMAN and connect to a target database and recovery catalog. Connect to the recovery catalog as the owner of the catalog schema to be dropped.

The following example connects to a recovery catalog as user catowner:

% rman TARGET / CATALOG catowner@catdb

	
Run the DROP CATALOG command:

DROP CATALOG;

recovery catalog owner is catowner
enter DROP CATALOG command again to confirm catalog removal

	
Run the DROP CATALOG command again to confirm:

DROP CATALOG;

	
Note:

Even after you drop the recovery catalog, the control file still contains records about the backups. To purge RMAN repository records from the control file, re-create the control file.

	
See Also:

Oracle Database Backup and Recovery Reference for DROP CATALOG command syntax, and "Unregistering a Target Database from the Recovery Catalog" to learn how to unregister a database from the catalog

17 Performing Complete Database Recovery

This chapter explains how to use RMAN to return your database to normal operation after the loss of one or more data files. This chapter contains the following topics:

	
Overview of Complete Database Recovery

	
Preparing for Complete Database Recovery

	
Performing Complete Database Recovery

Overview of Complete Database Recovery

This section explains the purpose of complete restore and recovery of the database and specifies the scope of the chapter.

Purpose of Complete Database Recovery

This chapter assumes that some or all of your data files are lost or damaged. Typically, this situation is caused by a media failure or accidental deletion. Your goal is to return the database to normal operation by restoring the damaged files from RMAN backups and recovering all database changes.

Scope of This Chapter

This chapter explain how to use complete recovery to fix the most common database problems. This chapter makes the following assumptions:

	
You have lost some or all data files and your goal is to recover all changes, but you have not lost all current control files or an entire online redo log group.

Chapter 18, "Performing Flashback and Database Point-in-Time Recovery" explains how to recover some but not all database changes. Chapter 30, "Performing User-Managed Recovery: Advanced Scenarios" explains how to respond when some but not all current control files or members of an online redo log group are lost. "Performing Recovery with a Backup Control File" explains how to recover the database when all control files are lost.

	
Your database is using the current server parameter file.

To restore a backup server parameter file, see "Restoring the Server Parameter File".

	
You have the complete set of archived redo logs and incremental backups needed for recovery of your data file backups. Every data file either has a backup, or a complete set of online and archived redo logs goes back to the creation of a data file with no backup.

RMAN can handle lost data files without user intervention during restore and recovery. When a data file is lost, the possible cases can be classified as follows:

	
The control file knows about the data file, that is, you backed up the control file after data file creation, but the data file itself is not backed up. If the data file record is in the control file, then RESTORE creates the data file in the original location or in a user-specified location. The RECOVER command can then apply the necessary logs to the data file.

	
The control file does not have the data file record, that is, you did not back up the control file after data file creation. During recovery, the database detects the missing data file and reports it to RMAN, which creates a new data file and continues recovery by applying the remaining logs. If the data file was created in a parent incarnation, then it is created during the restore or recovery phase as appropriate.

	
You are not restoring and recovering an encrypted tablespace.

If you perform media recovery on an encrypted tablespace, then the Oracle wallet must be open when performing media recovery of this tablespace. See Oracle Database Administrator's Guide to learn about encrypted tablespaces.

	
Your database runs in a single-instance configuration.

While RMAN can restore and recover databases in Oracle RAC and Data Guard configurations, these scenarios are beyond the scope of this manual.

	
You are using the RMAN client rather than Oracle Enterprise Manager.

Enterprise Manager provides access to RMAN through a set of wizards. These wizards lead you through a variety of recovery procedures based on an analysis of your database, your available backups, and your data recovery objectives.

By using Enterprise Manager, you can perform the simpler restore and recovery scenarios outlined in this chapter. You can also use more sophisticated restore and recovery techniques such as point-in-time recovery and database flashback, which allow for efficient repair of media failures and user errors. Typically, using Enterprise Manager is simpler than using the RMAN command-line client directly.

	
See Also:

	
Oracle Real Application Clusters Administration and Deployment Guide for more information about using RMAN with Oracle RAC

	
Oracle Data Guard Concepts and Administration for more information about using RMAN with Data Guard

	
Oracle Database 2 Day DBA for more details on the restore and recovery features of Enterprise Manager

Preparing for Complete Database Recovery

While RMAN simplifies most database restore and recovery tasks, you must still plan your database restore and recovery strategy based on which database files have been lost and your recovery goal. This section contains the following topics:

	
Identifying the Database Files to Restore or Recover

	
Determining the DBID of the Database

	
Previewing Backups Used in Restore Operations

	
Validating Backups Before Restoring Them

	
Restoring Archived Redo Logs Needed for Recovery

Identifying the Database Files to Restore or Recover

The techniques for determining which files require restore or recovery depend upon the type of file that is lost.

Identifying a Lost Control File

It is usually obvious when the control file of your database is lost. The database shuts down immediately when any of the multiplexed control files becomes inaccessible. Also, the database reports an error if you try to start it without a valid control file at each location specified in the CONTROL_FILES initialization parameter.

Loss of some but not all copies of your control file does not require you to restore a control file from backup. If at least one control file remains intact, then you can either copy an intact copy of the control file over the damaged or missing control file, or update the initialization parameter file so that it does not refer to the damaged or missing control file. After the CONTROL_FILES parameter references only present, intact copies of the control file, you can restart your database.

If you restore the control file from backup, then you must perform media recovery of the whole database and then open it with the OPEN RESETLOGS option, even if no data files must be restored. This technique is described in "Performing Recovery with a Backup Control File".

Identifying Datafiles Requiring Media Recovery

When and how to recover depends on the state of the database and the location of its data files.

Identifying Datafiles with RMAN

An easy technique for determining which data files are missing is to run a VALIDATE DATABASE command, which attempts to read all specified data files. For example, start the RMAN client and run the following commands to validate the database (sample output included).

Example 17-1 BACKUP VALIDATE DATABASE

RMAN> VALIDATE DATABASE;

Starting validate at 20-OCT-06
allocated channel: ORA_DISK_1
channel ORA_DISK_1: SID=90 device type=DISK
could not read file header for datafile 7 error reason 4
RMAN-00571: ===
RMAN-00569: =============== ERROR MESSAGE STACK FOLLOWS ===============
RMAN-00571: ===
RMAN-03002: failure of backup command at 10/20/2007 13:05:43
RMAN-06056: could not access datafile 7

The output in Example 17-1 indicates that data file 7 is inaccessible. You can then run the REPORT SCHEMA command to obtain the tablespace name and file name for data file 7 as follows (sample output included):

RMAN> REPORT SCHEMA;

Report of database schema for database with db_unique_name RDBMS

List of Permanent Datafiles
===========================
File Size(MB) Tablespace RB segs Datafile Name
---- -------- -------------------- ------- ------------------------
1 450 SYSTEM *** +DATAFILE/tbs_01.f
2 86 SYSAUX *** +DATAFILE/tbs_ax1.f
3 15 UD1 *** +DATAFILE/tbs_undo1.f
4 2 SYSTEM *** +DATAFILE/tbs_02.f
5 2 TBS_1 *** +DATAFILE/tbs_11.f
6 2 TBS_1 *** +DATAFILE/tbs_12.f
7 2 TBS_2 *** +DATAFILE/tbs_21.f

List of Temporary Files
=======================
File Size(MB) Tablespace Maxsize(MB) Tempfile Name
---- -------- -------------------- ----------- --------------------
1 40 TEMP 32767 +DATAFILE/tbs_tmp1.f

Identifying Datafiles with SQL

Although VALIDATE DATABASE is a good technique for determining whether files are inaccessible, you may want to use SQL queries to obtain more detailed information.

To determine whether data files require media recovery:

	
Start SQL*Plus and connect to the target database instance with administrator privileges.

	
Determine the status of the database by executing the following SQL query:

SELECT STATUS FROM V$INSTANCE;

If the status is OPEN, then the database is open. Nevertheless, some data files may require media recovery.

	
Query V$DATAFILE_HEADER to determine the status of your data files. Run the following SQL statements to check the data file headers:

SELECT FILE#, STATUS, ERROR, RECOVER, TABLESPACE_NAME, NAME
FROM V$DATAFILE_HEADER
WHERE RECOVER = 'YES'
OR (RECOVER IS NULL AND ERROR IS NOT NULL);

Each row returned represents a data file that either requires media recovery or has an error requiring a restore. Check the RECOVER and ERROR columns. RECOVER indicates whether a file needs media recovery, and ERROR indicates whether there was an error reading and validating the data file header.

If ERROR is not NULL, then the data file header cannot be read and validated. Check for a temporary hardware or operating system problem causing the error. If there is no such problem, you must restore the file or switch to a copy.

If the ERROR column is NULL and the RECOVER column is YES, then the file requires media recovery (and may also require a restore from backup).

	
Note:

Because V$DATAFILE_HEADER only reads the header block of each data file, it does not detect all problems that require the data file to be restored. For example, this view cannot tell whether a data file contains corrupt data blocks.

	
Optionally, query V$RECOVER_FILE to list data files requiring recovery by data file number with their status and error information. For example, execute the following query:

SELECT FILE#, ERROR, ONLINE_STATUS, CHANGE#, TIME
FROM V$RECOVER_FILE;

	
Note:

You cannot use V$RECOVER_FILE with a control file restored from backup or a control file that was re-created after the time of the media failure affecting the data files. A restored or re-created control file does not contain the information needed to update V$RECOVER_FILE accurately.

To find data file and tablespace names, you can also perform useful joins using the data file number and the V$DATAFILE and V$TABLESPACE views. For example:

SELECT r.FILE# AS df#, d.NAME AS df_name, t.NAME AS tbsp_name,
 d.STATUS, r.ERROR, r.CHANGE#, r.TIME
FROM V$RECOVER_FILE r, V$DATAFILE d, V$TABLESPACE t
WHERE t.TS# = d.TS#
AND d.FILE# = r.FILE#;

The ERROR column identifies the problem for each file requiring recovery.

	
See Also:

Oracle Database Reference for information about the V$ views

Determining the DBID of the Database

In situations requiring the recovery of your server parameter file or control file from autobackup, you must know the DBID. You should record the DBID along with other basic information about your database.

If you do not have a record of the DBID of your database, then you can find it in the following places without opening your database:

	
The DBID is used in forming the file name for the control file autobackup. Locate this file, and then refer to "Configuring the Control File Autobackup Format" to determine where the DBID appears in the file name.

	
If you have any text files that preserve the output from an RMAN session, then the DBID is displayed by the RMAN client when it starts up and connects to your database. Typical output follows:

% rman TARGET /

Recovery Manager: Release 11.1.0.6.0 - Production on Wed Jul 11 17:51:30 2007

Copyright (c) 1982, 2007, Oracle. All rights reserved.

connected to target database: PROD (DBID=36508508)

Previewing Backups Used in Restore Operations

You can apply RESTORE ... PREVIEW to any RESTORE operation to create a detailed list of every backup to be used in the requested RESTORE operation, and the necessary target SCN for recovery after the RESTORE operation is complete. This command accesses the RMAN repository to query the backup metadata, but does not actually read the backup files to ensure that they can be restored.

As an alternative to RESTORE ... PREVIEW, you can use the RESTORE ... VALIDATE HEADER command. In addition to listing the files needed for restore and recovery, the RESTORE ... VALIDATE HEADER command validates the backup file headers to determine whether the files on disk or in the media management catalog correspond to the metadata in the RMAN repository.

When planning your restore and recovery operation, use RESTORE ... PREVIEW or RESTORE ... VALIDATE HEADER to ensure that all required backups are available or to identify situations in which you may want to direct RMAN to use or avoid specific backups.

To preview backups to be used in a restore operation:

	
Run a RESTORE command with the PREVIEW option.

For example, run one of the following commands:

RESTORE DATABASE PREVIEW;
RESTORE ARCHIVELOG FROM TIME 'SYSDATE-7' PREVIEW;

If the report produced by RESTORE ... PREVIEW provides too much information, then specify the SUMMARY option as shown in the following example:

RESTORE DATABASE PREVIEW SUMMARY;

If satisfied with the output, then stop here. If the output indicates that RMAN will request a backup from a tape that you know is temporarily unavailable, then continue with this procedure. If the output indicates that a backup is stored offsite, then skip to "Recalling Offsite Backups".

	
If needed, use the CHANGE command to set the backup status of any temporarily unavailable backups to UNAVAILABLE.

"Updating a Backup to Status AVAILABLE or UNAVAILABLE" explains how to perform this task.

	
Optionally, run RESTORE ... PREVIEW again to confirm that the restore does not attempt to use unavailable backups.

	
See Also:

Oracle Database Backup and Recovery Reference for details on interpreting RESTORE ... PREVIEW output, which is in the same format as the output of the LIST command

Recalling Offsite Backups

Some media managers provide status information to RMAN about which backups are offsite. An offsite backup is stored in a remote location, such as a secure storage facility, and cannot be restored unless the media manager retrieves the media.

Offsite backups are marked as AVAILABLE in the RMAN repository even though the media must be retrieved from storage before the backup can be restored. If RMAN attempts to restore a offsite backup, then the restore job fails.

You can use RESTORE ... PREVIEW to identify offsite backups. The command output indicates whether backups are stored offsite, as shown by the text at the end of the sample output in Example 17-2.

Example 17-2 RESTORE ... PREVIEW Output

List of Backup Sets
===================

BS Key Size Device Type Elapsed Time Completion Time
------- ---------- ----------- ------------ ---------------
9 2.25M SBT_TAPE 00:00:00 21-MAY-07
 BP Key: 9 Status: AVAILABLE Compressed: NO Tag: TAG20070521T144258
 Handle: 0aii9k7i_1_1 Media: 0aii9k7i_1_1

 List of Archived Logs in backup set 9
 Thrd Seq Low SCN Low Time Next SCN Next Time
 ---- ------- ---------- --------- ---------- ---------
 1 1 392314 21-MAY-07 392541 21-MAY-07
 1 2 392541 21-MAY-07 392545 21-MAY-07
 1 3 392545 21-MAY-07 392548 21-MAY-07
 1 4 392548 21-MAY-07 395066 21-MAY-07
 1 5 395066 21-MAY-07 395095 21-MAY-07
 1 6 395095 21-MAY-07 395355 21-MAY-07

List of remote backup files
============================
 Handle: aii9k7i_1_1 Media: 0aii9k7i_1_1
validation succeeded for backup piece
Finished restore at 21-MAY-07
released channel: dev1

You can use RESTORE ... PREVIEW RECALL to instruct the media manager to make offsite backups available.

To recall offsite backups:

	
If backups are stored offsite, then execute a RESTORE ... PREVIEW command with the RECALL option.

The following example initiates recall for the offsite archived log backups shown in Example 17-2 (sample output included):

RESTORE ARCHIVELOG ALL PREVIEW RECALL;

The following sample output indicates that RMAN initiated a recall:

List of Backup Sets
===================

BS Key Size Device Type Elapsed Time Completion Time
------- ---------- ----------- ------------ ---------------
9 2.25M SBT_TAPE 00:00:00 21-MAY-07
 BP Key: 9 Status: AVAILABLE Compressed: NO Tag: TAG20070521T144258
 Handle: VAULT0aii9k7i_1_1 Media: /tmp,VAULT0aii9k7i_1_1

 List of Archived Logs in backup set 9
 Thrd Seq Low SCN Low Time Next SCN Next Time
 ---- ------- ---------- --------- ---------- ---------
 1 1 392314 21-MAY-07 392541 21-MAY-07
 1 2 392541 21-MAY-07 392545 21-MAY-07
 1 3 392545 21-MAY-07 392548 21-MAY-07
 1 4 392548 21-MAY-07 395066 21-MAY-07
 1 5 395066 21-MAY-07 395095 21-MAY-07
 1 6 395095 21-MAY-07 395355 21-MAY-07

Initiated recall for the following list of remote backup files
==
 Handle: VAULT0aii9k7i_1_1 Media: /tmp,VAULT0aii9k7i_1_1
validation succeeded for backup piece
Finished restore at 21-MAY-07
released channel: dev1

	
Run the RESTORE ... PREVIEW command. If necessary, return to the previous step until no backups needed for the restore are reported as offsite.

Validating Backups Before Restoring Them

While the procedures in "Previewing Backups Used in Restore Operations" indicate which backups will be restored, they do not verify that the backups are actually usable. You can run RMAN commands to test the availability of usable backups for any RESTORE operation, or test the contents of a specific backup for use in RESTORE operations. The contents of the backups are actually read and checked for corruption. You have the following validation options:

	
RESTORE ... VALIDATE tests whether RMAN can restore a specific object from a backup. RMAN chooses which backups to use.

	
VALIDATE BACKUPSET tests the validity of a backup set that you specify.

	
See Also:

Chapter 16, "Validating Database Files and Backups"

Restoring Archived Redo Logs Needed for Recovery

RMAN restores archived redo log files from backup automatically as needed to perform recovery. You can also restore archived redo logs manually to save the time needed to restore these files later during the RECOVER command, or if you want to store the restored archived redo log files in some new location. RMAN also gives you the flexibility of restoring all archive redo log files, the current ones or archive redo log files from a specified previous incarnation of the database.

By default, RMAN restores archived redo logs with names constructed using the LOG_ARCHIVE_FORMAT and the highest LOG_ARCHIVE_DEST_n parameters of the target database. These parameters are combined in a platform-specific fashion to form the name of the restored archived log.

RMAN

Restoring Archived Redo Logs to a New Location

You can override the default location for restored archived redo logs with the SET ARCHIVELOG DESTINATION command. This command manually stages archived logs to different locations while a database restore is occurring. During recovery, RMAN knows where to find the newly restored archived logs; it does not require them to be in the location specified in the initialization parameter file.

To restore archived redo logs to a new location:

	
Start RMAN and connect to a target database.

	
Ensure that the database is mounted or open.

	
Perform the following operations within a RUN command:

	
Specify the new location for the restored archived redo logs using SET ARCHIVELOG DESTINATION.

	
Either explicitly restore the archived redo logs or execute commands that automatically restore the logs.

The following sample RUN command explicitly restores all backup archived logs to a new location:

RUN
{
 SET ARCHIVELOG DESTINATION TO '/oracle/temp_restore';
 RESTORE ARCHIVELOG ALL;
 # restore and recover datafiles as needed
 .
 .
 .
}

The following example sets the archived log destination and then uses RECOVER DATABASE to restore archived logs from this destination automatically:

RUN
{
 SET ARCHIVELOG DESTINATION TO '/oracle/temp_restore';
 RESTORE DATABASE;
 RECOVER DATABASE; # restores and recovers logs automatically
}

Restoring Archived Redo Logs to Multiple Locations

You can specify restore destinations for archived logs multiple times in one RUN block, to distribute restored logs among several destinations. (You cannot, however specify multiple destinations simultaneously to produce multiple copies of the same log during the restore operation.) You can use this feature to manage disk space used to contain the restored logs.

This example restores 300 archived redo logs from backup, distributing them across the directories /fs1/tmp, /fs2/tmp, and /fs3/tmp:

RUN
{
 # Set a new location for logs 1 through 100.
 SET ARCHIVELOG DESTINATION TO '/fs1/tmp';
 RESTORE ARCHIVELOG FROM SEQUENCE 1 UNTIL SEQUENCE 100;
 # Set a new location for logs 101 through 200.
 SET ARCHIVELOG DESTINATION TO '/fs2/tmp';
 RESTORE ARCHIVELOG FROM SEQUENCE 101 UNTIL SEQUENCE 200;
 # Set a new location for logs 201 through 300.
 SET ARCHIVELOG DESTINATION TO '/fs3/tmp';
 RESTORE ARCHIVELOG FROM SEQUENCE 201 UNTIL SEQUENCE 300;
 # restore and recover datafiles as needed
 .
 .
 .
}

When you issue a RECOVER command, RMAN finds the needed restored archived logs automatically across the destinations to which they were restored, and applies them to the data files.

Performing Complete Database Recovery

This section assumes that you have already performed the tasks in "Preparing for Complete Database Recovery". This section describes the basic outline of complete database recovery, which is intended to encompass a wide range of different scenarios.

About Complete Database Recovery

You use the RESTORE and RECOVER commands to restore and recover the database. During the recovery, RMAN automatically restores backups of any needed archived redo logs. If backups are stored on a media manager, then channels must be configured in advance or a RUN block with ALLOCATE CHANNEL commands must be used to enable access to backups stored there.

If RMAN restores archived redo logs to the fast recovery area during a recovery, then it automatically deletes the restored logs after applying them to the data files. Otherwise, you can use the DELETE ARCHIVELOG command to delete restored archived redo logs from disk when they are no longer needed for recovery. For example, you can enter the following command:

RECOVER DATABASE DELETE ARCHIVELOG;

Restoring Datafiles to a Nondefault Location

If you cannot restore data files to their default locations, then you must update the control file to reflect the new locations of the data files. Use the RMAN SET NEWNAME command within a RUN command to specify the new file name. Afterward, use a SWITCH command, which is equivalent to using the SQL statement ALTER DATABASE RENAME FILE, to update the names of the data files in the control file. SWITCH DATAFILE ALL updates the control file to reflect the new names for all data files for which a SET NEWNAME has been issued in a RUN command.

	
See Also:

Oracle Database Backup and Recovery Reference for SWITCH syntax

Decryption of Backups

If RMAN is restoring encrypted backups, then RMAN automatically decrypts backup sets when their contents are restored. Transparently encrypted backups require no intervention to restore, as long as the Oracle wallet is open and available.

Password-encrypted backups require the correct password to be entered before they can be restored. You must enter the encryption password with the SET DECRYPTION command. If restoring from a group of backups that were created with different passwords, then specify all of the required passwords on the SET DECRYPTION command. RMAN automatically uses the correct password with each backup set.

	
See Also:

	
"Configuring Backup Encryption" to learn how to configure transparent backup encryption

	
"Encrypting RMAN Backups" to learn how to create encrypted backups

Performing Complete Recovery of the Whole Database

This scenario assumes that database trgt has lost most or all of its data files. It also assumes that the database uses a fast recovery area.

After restore and recovery of a whole database, when the database is open, missing temporary tablespaces that were recorded in the control file are re-created with their previous creation size, AUTOEXTEND, and MAXSIZE attributes. Only temporary tablespaces that are missing are re-created. If a temp file exists at the location recorded in the RMAN repository but has an invalid header, then RMAN does not re-create the temp file.

If the temp files were created as Oracle managed files, then they are re-created in the current DB_CREATE_FILE_DEST location. Otherwise, they are re-created at their previous locations. If RMAN cannot re-create the file due to an I/O error or some other cause, then the error is reported in the alert log and the database open operation continues.

To restore and recover the whole database:

	
Start RMAN and connect to a target database.

For example, enter the following command:

% rman
RMAN> CONNECT TARGET /

RMAN displays the database status when it connects: not started, not mounted, not open (when the database is mounted but not open), or none (when the database is open).

	
If the database is not mounted, then mount but do not open the database.

For example, enter the following command:

STARTUP MOUNT;

	
Use the SHOW command to see which channels are preconfigured.

For example, enter the following command (sample output is included):

SHOW ALL;

RMAN configuration parameters for database with db_unique_name PROD1 are:
.
.
.
CONFIGURE DEFAULT DEVICE TYPE TO DISK; # default
CONFIGURE DEVICE TYPE DISK PARALLELISM 1 BACKUP TYPE TO BACKUPSET; # default
CONFIGURE DEVICE TYPE SBT_TAPE PARALLELISM 1 BACKUP TYPE TO BACKUPSET; # default
CONFIGURE CHANNEL DEVICE TYPE 'SBT_TAPE' PARMS "SBT_LIBRARY=/usr/local/oracle/backup/lib/libobk.so";

If the necessary devices and channels are already configured, then no action is necessary. Otherwise, you can use the CONFIGURE command to configure automatic channels, or include ALLOCATE CHANNEL commands within a RUN block.

	
If restoring password-protected encrypted backups, then specify the password.

Use the SET DECRYPTION IDENTIFIED BY command to specify a password for password-protected backups, as shown in the following example (where password represents the actual password that you enter):

SET DECRYPTION IDENTIFIED BY password;

If you created backups with different passwords, then you can run the SET DECRYPTION IDENTIFIED BY password command multiple times, specifying all of the possible passwords that might be required to restore the backups.

	
Restore and recover the database. Do one of the following:

	
If you are restoring all data files to their original locations, then execute RESTORE DATABASE and RECOVER DATABASE sequentially at the RMAN prompt.

For example, enter the following commands if automatic channels are configured (sample output included):

RMAN> RESTORE DATABASE;

Starting restore at 20-JUN-06
allocated channel: ORA_DISK_1
channel ORA_DISK_1: SID=35 device type=DISK
allocated channel: ORA_SBT_TAPE_1
channel ORA_SBT_TAPE_1: SID=34 device type=SBT_TAPE
channel ORA_SBT_TAPE_1: Oracle Secure Backup

channel ORA_DISK_1: starting datafile backup set restore
channel ORA_DISK_1: specifying datafile(s) to restore from backup set
channel ORA_DISK_1: restoring datafile 00001 to /disk1/oracle/dbs/tbs_01.f
channel ORA_DISK_1: restoring datafile 00002 to /disk1/oracle/dbs/tbs_ax1.f
.
.
.
Finished restore at 20-JUN-06

RMAN> RECOVER DATABASE;

Starting recover at 20-JUN-06
using channel ORA_DISK_1
allocated channel: ORA_SBT_TAPE_1
channel ORA_SBT_TAPE_1: SID=34 device type=SBT_TAPE
channel ORA_SBT_TAPE_1: Oracle Secure Backup

starting media recovery

channel ORA_DISK_1: starting archived log restore to default destination
channel ORA_DISK_1: restoring archived log
archived log thread=1 sequence=5
channel ORA_DISK_1: restoring archived log
archived log thread=1 sequence=6
.
.
.
channel ORA_DISK_1: reading from backup piece /disk1/oracle/work/orcva/TKRM/backupset/2007_06_20/o1_mf_annnn_TAG20070620T113128_29jhr197_.bkp
channel ORA_DISK_1: piece handle=/disk1/oracle/work/orcva/TKRM/backupset/2007_06_20/o1_mf_annnn_TAG20070620T113128_29jhr197_.bkp tag=TAG20070620T113128
channel ORA_DISK_1: restored backup piece 1
channel ORA_DISK_1: restore complete, elapsed time: 00:00:02
archived log file name=/disk1/oracle/work/orcva/TKRM/archivelog/2007_06_20/o1_mf_1_5_29jhv47k_.arc thread=1 sequence=5
channel default: deleting archived log(s)
.
.
.
media recovery complete, elapsed time: 00:00:15
Finished recover at 20-JUN-06

If you manually allocate channels, then you must issue the RESTORE and RECOVER commands together within a RUN block as shown in the following example:

RUN
{
 ALLOCATE CHANNEL c1 DEVICE TYPE sbt;
 RESTORE DATABASE;
 RECOVER DATABASE;
}

	
If you are restoring some data files to new locations, then execute RESTORE DATABASE and RECOVER DATABASE sequentially in a RUN command. Use the SET NEWNAME to rename data files, as described in "Restoring Datafiles to a Nondefault Location".

The following example restores the database, specifying new names for three of the data files, and then recovers the database:

RUN
{
 SET NEWNAME FOR DATAFILE 2 TO '/disk2/df2.dbf';
 SET NEWNAME FOR DATAFILE 3 TO '/disk2/df3.dbf';
 SET NEWNAME FOR DATAFILE 4 TO '/disk2/df4.dbf';
 RESTORE DATABASE;
 SWITCH DATAFILE ALL;
 RECOVER DATABASE;
}

	
Examine the output to see if media recovery was successful. If so, open the database.

For example, enter the following command:

ALTER DATABASE OPEN;

Performing Complete Recovery of a Tablespace

In the basic scenario, the database is open, and some but not all of the data files are damaged. You want to restore and recover the damaged tablespace while leaving the database open so that the rest of the database remains available. This scenario assumes that database trgt has lost tablespace users.

To restore and recover a tablespace:

	
Start RMAN and connect to a target database.

	
If the database is open, then take the data file requiring recovery offline.

For example, enter the following command to take users offline:

SQL "ALTER TABLESPACE users OFFLINE IMMEDIATE";

	
Use the SHOW command to see which channels are preconfigured.

For example, enter the following command (sample output is included):

SHOW ALL;

RMAN configuration parameters for database with db_unique_name PROD1 are:
.
.
.
CONFIGURE DEFAULT DEVICE TYPE TO DISK; # default
CONFIGURE DEVICE TYPE DISK PARALLELISM 1 BACKUP TYPE TO BACKUPSET; # default
CONFIGURE DEVICE TYPE SBT_TAPE PARALLELISM 1 BACKUP TYPE TO BACKUPSET; # default
CONFIGURE CHANNEL DEVICE TYPE 'SBT_TAPE' PARMS "SBT_LIBRARY=/usr/local/oracle/backup/lib/libobk.so";

If the necessary devices and channels are already configured, then no action is necessary. Otherwise, you can use the CONFIGURE command to configure automatic channels, or include ALLOCATE CHANNEL commands within a RUN block.

	
If restoring password-protected encrypted backups, then specify the password.

Use the SET DECRYPTION IDENTIFIED BY command to specify a password for password-protected backups, as shown in the following example (where password represents the actual password that you enter):

SET DECRYPTION IDENTIFIED BY password;

	
Restore and recover the tablespace. Do one of the following:

	
If you are restoring data files to their original locations, then run the RESTORE TABLESPACE and RECOVER TABLESPACE commands at the RMAN prompt.

For example, enter the following command if automatic channels are configured (sample output included):

RMAN> RESTORE TABLESPACE users;

Starting restore at 20-JUN-06
allocated channel: ORA_DISK_1
channel ORA_DISK_1: SID=37 device type=DISK
allocated channel: ORA_SBT_TAPE_1
channel ORA_SBT_TAPE_1: SID=38 device type=SBT_TAPE
channel ORA_SBT_TAPE_1: Oracle Secure Backup

channel ORA_DISK_1: starting datafile backup set restore
channel ORA_DISK_1: specifying datafile(s) to restore from backup set
channel ORA_DISK_1: restoring datafile 00012 to /disk1/oracle/dbs/users01.f
channel ORA_DISK_1: restoring datafile 00013 to /disk1/oracle/dbs/users02.f
channel ORA_DISK_1: restoring datafile 00021 to /disk1/oracle/dbs/users03.f
channel ORA_DISK_1: reading from backup piece /disk1/oracle/work/orcva/TKRM/backupset/2007_06_20/o1_mf_nnndf_TAG20070620T105435_29jflwor_.bkp
channel ORA_DISK_1: piece handle=/disk1/oracle/work/orcva/TKRM/backupset/2007_06_20/o1_mf_nnndf_TAG20070620T105435_29jflwor_.bkp tag=TAG20070620T105435
channel ORA_DISK_1: restored backup piece 1
channel ORA_DISK_1: restore complete, elapsed time: 00:00:01
Finished restore at 20-JUN-06

RMAN> RECOVER TABLESPACE users;

Starting recover at 20-JUN-06
using channel ORA_DISK_1
using channel ORA_SBT_TAPE_1

starting media recovery

archived log for thread 1 with sequence 27 is already on disk as file /disk1/oracle/work/orcva/TKRM/archivelog/2007_06_20/o1_mf_1_27_29jjmtc9_.arc
archived log for thread 1 with sequence 28 is already on disk as file /disk1/oracle/work/orcva/TKRM/archivelog/2007_06_20/o1_mf_1_28_29jjnc5x_.arc
.
.
.
channel ORA_DISK_1: starting archived log restore to default destination
channel ORA_DISK_1: restoring archived log
archived log thread=1 sequence=5
channel ORA_DISK_1: restoring archived log
archived log thread=1 sequence=6
channel ORA_DISK_1: restoring archived log
archived log thread=1 sequence=7
.
.
.
channel ORA_DISK_1: reading from backup piece /disk1/oracle/work/orcva/TKRM/backupset/2007_06_20/o1_mf_annnn_TAG20070620T113128_29jhr197_.bkp
channel ORA_DISK_1: piece handle=/disk1/oracle/work/orcva/TKRM/backupset/2007_06_20/o1_mf_annnn_TAG20070620T113128_29jhr197_.bkp tag=TAG20070620T113128
channel ORA_DISK_1: restored backup piece 1
channel ORA_DISK_1: restore complete, elapsed time: 00:00:02
archived log file name=/disk1/oracle/work/orcva/TKRM/archivelog/2007_06_20/o1_mf_1_5_29jkdvjq_.arc thread=1 sequence=5
channel default: deleting archived log(s)
archived log file name=/disk1/oracle/work/orcva/TKRM/archivelog/2007_06_20/o1_mf_1_5_29jkdvjq_.arc RECID=91 STAMP=593611179
archived log file name=/disk1/oracle/work/orcva/TKRM/archivelog/2007_06_20/o1_mf_1_6_29jkdvbz_.arc thread=1 sequence=6
channel default: deleting archived log(s)
.
.
.
media recovery complete, elapsed time: 00:00:01
Finished recover at 20-JUN-06

	
If you are restoring some data files to new locations, then execute RESTORE TABLESPACE and RECOVER TABLESPACE in a RUN command. Use the SET NEWNAME to rename data files, as described in "Restoring Datafiles to a Nondefault Location".

The following example restores the data files in tablespaces users to a new location, then performs recovery. Assume that the old data files were stored in the /disk1 path and the new ones are stored in the /disk2 path.

RUN
{
 # specify the new location for each datafile
 SET NEWNAME FOR DATAFILE '/disk1/oracle/dbs/users01.f' TO
 '/disk2/users01.f';
 SET NEWNAME FOR DATAFILE '/disk1/oracle/dbs/users02.f' TO
 '/disk2/users02.f';
 SET NEWNAME FOR DATAFILE '/disk1/oracle/dbs/users03.f' TO
 '/disk2/users03.f';
 RESTORE TABLESPACE users;
 SWITCH DATAFILE ALL; # update control file with new file names
 RECOVER TABLESPACE users;
}

	
Examine the output to see if recovery was successful. If so, bring the recovered tablespace back online.

For example, enter the following command:

SQL "ALTER TABLESPACE users ONLINE";

Performing Complete Recovery After Switching to a Copy

If you have image copies of the inaccessible data files in the fast recovery area, then you can use the SWITCH DATAFILE ... TO COPY command to point the control file at the data file copy and then use RECOVER to recover lost changes. You can also use the SWITCH DATABASE TO COPY command to point the control file at a copy of the whole database. Because you do not need to restore backups, this recovery technique takes less time than traditional restore and recovery.

	
Note:

A SWITCH TABLESPACE ... TO COPY command is also supported for cases when all data files in a tablespace are lost and copies of all data files exist. The same restriction exists for SWITCH DATABASE TO COPY.

Switching to a Data File Copy

In the basic scenario, the database is open, and some but not all of the data files are damaged. During the course of the day, a data file goes missing due to storage failure. You must repair this file, but cannot afford the time to do a restore and recovery from a backup. You decide to use a recent image copy backup as the new file, thus eliminating restore time. This scenario assumes that database trgt has lost data file 4.

To switch to a data file copy and perform recovery:

	
Start RMAN and connect to a target database.

	
If the database is open, then take the tablespace requiring recovery offline.

Enter the following command to take data file 4 offline:

SQL "ALTER DATABASE DATAFILE 4 OFFLINE";

	
Switch the offline data file to the latest copy.

Enter the following command to point the control file to the latest image copy of data file 4:

SWITCH DATAFILE 4 TO COPY;

	
Recover the data file with the RECOVER DATAFILE command.

Enter the following command:

RECOVER DATAFILE 4;

RMAN automatically restores archived redo logs and incremental backups. Because the database uses a fast recovery area, RMAN automatically deletes them after they have been applied.

	
Examine the output to see if recovery was successful. If so, bring the recovered data file back online.

Enter the following command to bring data file 4 online:

SQL "ALTER DATABASE DATAFILE 4 ONLINE";

Switching to a Database Copy

In this scenario, the database is shut down, and all of the data files are damaged. You have image copies of all the damaged data files. You decide to use the existing image copies as the new data files, thus eliminating restore time.

To switch to a database copy and perform recovery:

	
Start RMAN and connect to a target database.

	
Mount the database.

	
Switch the database to the latest copy.

Enter the following command to point the control file to the latest image copy of the database:

SWITCH DATABASE TO COPY;

	
Recover the database with the RECOVER DATABASE command.

Enter the following command:

RECOVER DATABASE;

RMAN automatically restores archived redo logs and incremental backups. Because the database uses a fast recovery area, RMAN automatically deletes them after they have been applied.

	
Examine the output to see if recovery was successful. If so, open the database.

Enter the following command to open the database:

ALTER DATABASE OPEN;

[image: Oracle Corporation]

16 Validating Database Files and Backups

This chapter explains how to check the integrity of database files and backups. This chapter contains the following topics:

	
Overview of RMAN Validation

	
Checking for Block Corruption with the VALIDATE Command

	
Validating Database Files with BACKUP VALIDATE

	
Validating Backups Before Restoring Them

Overview of RMAN Validation

This section explains the basic concepts and tasks involved in RMAN validation.

Purpose of RMAN Validation

The main purpose of RMAN validation is to check for corrupt blocks and missing files. You can also use RMAN to determine whether backups can be restored. You can use the following RMAN commands to perform validation:

	
VALIDATE

	
BACKUP ... VALIDATE

	
RESTORE ... VALIDATE

	
See Also:

	
Oracle Database Backup and Recovery Reference for VALIDATE syntax

	
Oracle Database Backup and Recovery Reference for RESTORE ... VALIDATE syntax

Basic Concepts of RMAN Validation

The database prevents operations that result in unusable backup files or corrupted restored datafiles. The database automatically does the following:

	
Blocks access to datafiles while they are being restored or recovered

	
Permits only one restore operation for each data file at a time

	
Ensures that incremental backups are applied in the correct order

	
Stores information in backup files to allow detection of corruption

	
Checks a block every time it is read or written in an attempt to report a corruption as soon as it has been detected

Checksums and Corrupt Blocks

A corrupt block is a block that has been changed so that it differs from what Oracle Database expects to find. Block corruptions can be caused by various failures including, but not limited to the following:

	
Faulty disks and disk controllers

	
Faulty memory

	
Oracle Database software defects

DB_BLOCK_CHECKSUM is a database initialization parameter that controls the writing of checksums for the blocks in datafiles and online redo log files in the database (not backups). If DB_BLOCK_CHECKSUM is typical, then the database computes a checksum for each block during normal operations and stores it in the header of the block before writing it to disk. When the database reads the block from disk later, it recomputes the checksum and compares it to the stored value. If the values do not match, then the block is corrupt.

By default, the BACKUP command computes a checksum for each block and stores it in the backup. The BACKUP command ignores the values of DB_BLOCK_CHECKSUM because this initialization parameter applies to datafiles in the database, not backups.

Physical and Logical Block Corruption

In a physical corruption, which is also called a media corruption, the database does not recognize the block at all: the checksum is invalid, the block contains all zeros, or the header and footer of the block do not match.

	
Note:

By default, the BACKUP command computes a checksum for each block and stores it in the backup. If you specify the NOCHECKSUM option, then RMAN does not perform a checksum of the blocks when creating the backup.

In a logical corruption, the contents of the block are logically inconsistent. Examples of logical corruption include corruption of a row piece or index entry. If RMAN detects logical corruption, then it logs the block in the alert log and server session trace file.

By default, RMAN does not check for logical corruption. If you specify CHECK LOGICAL on the BACKUP command, however, then RMAN tests data and index blocks for logical corruption, such as corruption of a row piece or index entry, and log them in the alert log located in the Automatic Diagnostic Repository (ADR). If you use RMAN with the following configuration when backing up or restoring files, then it detects all types of block corruption that are possible to detect:

	
In the initialization parameter file of a database, set DB_BLOCK_CHECKSUM=typical so that the database calculates data file checksums automatically (not for backups, but for data files in use by the database)

	
Do not precede the BACKUP command with SET MAXCORRUPT so that RMAN does not tolerate any unmarked block corruptions.

	
In a BACKUP command, do not specify the NOCHECKSUM option so that RMAN calculates a checksum when writing backups

	
In BACKUP and RESTORE commands, specify the CHECK LOGICAL option so that RMAN checks for logical and physical corruption

Limits for Corrupt Blocks in RMAN Backups

You can use the SET MAXCORRUPT command to set the total number of unmarked corruptions permitted in a file for RMAN backups. The default is zero, meaning that RMAN does not tolerate unmarked corrupt blocks of any kind.

If the MAXCORRUPT limit is exceeded when RMAN encounters an unmarked corrupt block during a backup, then RMAN terminates the backup. Otherwise, RMAN writes the newly detected corrupt block to the backup with a special header indicating that the block is marked corrupt. You can use the VALIDATE command to determine which blocks are already marked as corrupt and to find any previously unmarked corrupt blocks.

Because RMAN allows previously marked corrupt blocks in a backup, and because RMAN can be instructed to allow previously unmarked corrupt blocks to be marked as corrupt in the backup (when MAXCORRUPT is used), it is possible to restore a data file that has several blocks marked as corrupt. If you backup this restored data file (assuming no new corruptions have happened), even without MAXCORRUPT setting, then the backup succeeds. This is because the previously marked corruptions do not stop RMAN from completing the backup.

	
See Also:

Oracle Database Backup and Recovery Reference for SET MAXCORRUPT syntax

Detection of Block Corruption

Oracle Database supports different techniques for detecting, repairing, and monitoring block corruption. The technique depends on whether the corruption is interblock corruption or intrablock corruption. In intrablock corruption, the corruption occurs within the block itself. This corruption can be either physical or logical. In an interblock corruption, the corruption occurs between blocks and can only be logical.

For example, the V$DATABASE_BLOCK_CORRUPTION view records intrablock corruptions, while the Automatic Diagnostic Repository (ADR) tracks all types of corruptions. Table 16-1 summarizes how the database treats different types of block corruption.

Table 16-1 Detection, Repair, and Monitoring of Block Corruption

	Response	Intrablock Corruption	Interblock Corruption
	
Detection

	
All database utilities detect intrablock corruption, including RMAN (for example, the BACKUP command) and the DBVERIFY utility. If a database process can encounter the ORA-1578 error, then it can detect the corruption and monitor it.

	
Only DBVERIFY and the ANALYZE statement detect interblock corruption.

	
Tracking

	
The V$DATABASE_BLOCK_CORRUPTION view displays blocks marked corrupt by Oracle Database components such as RMAN commands, ANALYZE, dbv, SQL queries, and so on. Any process that encounters an intrablock corruption records the block corruption in this view and in ADR.

	
The database monitors this type of block corruption in ADR.

	
Repair

	
Repair techniques include block media recovery, restoring data files, recovering with incremental backups, and block newing. Block media recovery can repair physical corruptions, but not logical corruptions.

Any RMAN command that fixes or detects that a block is repaired updates V$DATABASE_BLOCK_CORRUPTION. For example, RMAN updates the repository at end of successful block media recovery. If a BACKUP, RESTORE, or VALIDATE command detects that a block is no longer corrupted, then it removes the repaired block from the view.

	
You must fix interblock corruption with manual techniques such as dropping an object, rebuilding an index, and so on.

	
See Also:

	
Chapter 17, "Performing Complete Database Recovery"

	
Chapter 19, "Performing Block Media Recovery"

	
Oracle Database Administrator's Guide to learn about ADR

Checking for Block Corruption with the VALIDATE Command

You can use the VALIDATE command to manually check for physical and logical corruptions in database files. This command performs the same types of checks as BACKUP VALIDATE, but VALIDATE can check a larger selection of objects. For example, you can validate individual blocks with the VALIDATE DATAFILE ... BLOCK command.

When validating whole files, RMAN checks every block of the input files. If the backup validation discovers previously unmarked corrupt blocks, then RMAN updates the V$DATABASE_BLOCK_CORRUPTION view with rows describing the corruptions.

Use VALIDATE BACKUPSET when you suspect that one or more backup pieces in a backup set are missing or have been damaged. This command checks every block in a backup set to ensure that the backup can be restored. If RMAN finds block corruption, then it issues an error and terminates the validation. The command VALIDATE BACKUPSET enables you to choose which backups to check, whereas the VALIDATE option of the RESTORE command lets RMAN choose.

To use VALIDATE to check database files and backups:

	
Start RMAN and connect to a target database.

	
Execute the VALIDATE command with the desired options.

For example, to validate all datafiles and control files (and the server parameter file if one is in use), execute the following command at the RMAN prompt:

RMAN> VALIDATE DATABASE;

Alternatively, you can validate a particular backup set by using the form of the command shown in the following example (sample output included).

RMAN> VALIDATE BACKUPSET 22;

Starting validate at 17-AUG-06
using channel ORA_DISK_1
allocated channel: ORA_SBT_TAPE_1
channel ORA_SBT_TAPE_1: SID=89 device type=SBT_TAPE
channel ORA_SBT_TAPE_1: Oracle Secure Backup
channel ORA_DISK_1: starting validation of datafile backup set
channel ORA_DISK_1: reading from backup piece /disk1/oracle/work/orcva/RDBMS/backupset/2007_08_16/o1_mf_nnndf_TAG20070816T153034_2g774bt2_.bkp
channel ORA_DISK_1: piece handle=/disk1/oracle/work/orcva/RDBMS/backupset/2007_08_16/o1_mf_nnndf_TAG20070816T153034_2g774bt2_.bkp tag=TAG20070816T153034
channel ORA_DISK_1: restored backup piece 1
channel ORA_DISK_1: validation complete, elapsed time: 00:00:01
Finished validate at 17-AUG-06

The following example illustrates how you can check individual data blocks within a data file for corruption.

RMAN> VALIDATE DATAFILE 1 BLOCK 10;

Starting validate at 17-AUG-06
using channel ORA_DISK_1
channel ORA_DISK_1: starting validation of datafile
channel ORA_DISK_1: specifying datafile(s) for validation
input datafile file number=00001 name=/disk1/oracle/dbs/tbs_01.f
channel ORA_DISK_1: validation complete, elapsed time: 00:00:01
List of Datafiles
=================
File Status Marked Corrupt Empty Blocks Blocks Examined High SCN
---- ------ -------------- ------------ --------------- ----------
1 OK 0 2 127 481907
 File Name: /disk1/oracle/dbs/tbs_01.f
 Block Type Blocks Failing Blocks Processed
 ---------- -------------- ----------------
 Data 0 36
 Index 0 31
 Other 0 58

Finished validate at 17-AUG-06

Make Parallel the Validation of a Data File

If you must validate a large data file, then RMAN can make the work parallel by dividing the file into sections and processing each file section in parallel. If multiple channels are configured or allocated, and if you want the channels to make parallel the validation, then specify the SECTION SIZE parameter of the VALIDATE command.

If you specify a section size that is larger than the size of the file, then RMAN does not create file sections. If you specify a small section size that would produce more than 256 sections, then RMAN increases the section size to a value that results in exactly 256 sections.

To make parallel the validation of a data file:

	
Start RMAN and connect to a target database. The target database must be mounted or open.

	
Run VALIDATE with the SECTION SIZE parameter.

The following example allocates two channels and validates a large data file. The section size is 1200 MB.

RUN
{
 ALLOCATE CHANNEL c1 DEVICE TYPE DISK;
 ALLOCATE CHANNEL c2 DEVICE TYPE DISK;
 VALIDATE DATAFILE 1 SECTION SIZE 1200M;
}

	
See Also:

	
"Dividing the Backup of a Large Data File into Sections"

	
Oracle Database Backup and Recovery Reference to learn about the VALIDATE command

Validating Database Files with BACKUP VALIDATE

You can use the BACKUP VALIDATE command to do the following:

	
Check datafiles for physical and logical block corruption

	
Confirm that all database files exist and are in the correct locations

When you run BACKUP VALIDATE, RMAN reads the files to be backed up in their entirety, as it would during a real backup. RMAN does not, however, actually produce any backup sets or image copies.

You cannot use the BACKUPSET, MAXCORRUPT, or PROXY parameters with BACKUP VALIDATE. To validate specific backup sets, run the VALIDATE command.

To validate files with the BACKUP VALIDATE command:

	
Start RMAN and connect to a target database and recovery catalog (if used).

	
Run the BACKUP VALIDATE command.

For example, you can validate that all database files and archived logs can be backed up by running a command as shown in the following example. This command checks for physical corruptions only.

BACKUP VALIDATE
 DATABASE
 ARCHIVELOG ALL;

To check for logical corruptions in addition to physical corruptions, run the following variation of the preceding command:

BACKUP VALIDATE
 CHECK LOGICAL
 DATABASE
 ARCHIVELOG ALL;

In the preceding examples, the RMAN client displays the same output that it would if it were really backing up the files. If RMAN cannot back up one or more of the files, then it issues an error message. For example, RMAN may show output similar to the following:

RMAN-00571: ===
RMAN-00569: =============== ERROR MESSAGE STACK FOLLOWS ===============
RMAN-00571: ===
RMAN-03002: failure of backup command at 08/29/2007 14:33:47
ORA-19625: error identifying file /oracle/oradata/trgt/arch/archive1_6.dbf
ORA-27037: unable to obtain file status
SVR4 Error: 2: No such file or directory
Additional information: 3

	
See Also:

	
Oracle Database Backup and Recovery Reference for BACKUP syntax

	
Chapter 19, "Performing Block Media Recovery"to learn how to repair corrupt blocks discovered by BACKUP VALIDATE

Validating Backups Before Restoring Them

You can run RESTORE ... VALIDATE to test whether RMAN can restore a specific file or set of files from a backup. RMAN chooses which backups to use.

The database must be mounted or open for this command. You do not have to take datafiles offline when validating the restore of datafiles, because validation of backups of the datafiles only reads the backups and does not affect the production datafiles.

When validating files on disk or tape, RMAN reads all blocks in the backup piece or image copy. RMAN also validates offsite backups. The validation is identical to a real restore operation except that RMAN does not write output files.

	
Note:

As an additional test measure, you can perform a trial recovery with the RECOVER ... TEST command. A trial recovery applies redo in a way similar to normal recovery, but it is in memory only and it rolls back its changes after the trial.

To validate backups with the RESTORE command:

	
Run the RESTORE command with the VALIDATE option.

This following example illustrates validating the restore of the database and all archived redo logs:

RESTORE DATABASE VALIDATE;
RESTORE ARCHIVELOG ALL VALIDATE;

If you do not see an RMAN error stack, then skip the subsequent steps. The lack of error messages means that RMAN had confirmed that it can use these backups successfully during a real restore and recovery.

	
If you see error messages in the output and the RMAN-06026 message, then investigate the cause of the problem. If possible, correct the problem that is preventing RMAN from validating the backups and retry the validation.

The following error means that RMAN cannot restore one or more of the specified files from your available backups:

RMAN-06026: some targets not found - aborting restore

The following sample output shows that RMAN encountered a problem reading the specified backup:

RMAN-03009: failure of restore command on c1 channel at 12-DEC-06 23:22:30
ORA-19505: failed to identify file "oracle/dbs/1fafv9gl_1_1"
ORA-27037: unable to obtain file status
SVR4 Error: 2: No such file or directory
Additional information: 3

	
See Also:

Oracle Database Backup and Recovery Reference to learn about the RESTORE ... VALIDATE command

Part VIII

Performing User-Managed Backup and Recovery

The following chapters describe how to perform backup and recovery when using a user-managed backup and recovery strategy, that is, one that does not depend upon RMAN. This part of the book contains these chapters:

	
Chapter 28, "Making User-Managed Database Backups"

	
Chapter 29, "Performing User-Managed Database Flashback and Recovery"

	
Chapter 30, "Performing User-Managed Recovery: Advanced Scenarios"

Part III

Backing Up and Archiving Data

The chapters in this part describe how to use the RMAN utility to perform advanced backup and recovery operations, and explain RMAN performance tuning and troubleshooting.

This part contains these chapters:

	
Chapter 8, "RMAN Backup Concepts"

	
Chapter 9, "Backing Up the Database"

	
Chapter 10, "Backing Up the Database: Advanced Topics"

14 RMAN Data Repair Concepts

This chapter describes the general concepts that you must understand to perform data repair. This chapter contains the following topics:

	
Overview of RMAN Data Repair

	
RMAN Restore Operations

	
RMAN Media Recovery

Overview of RMAN Data Repair

As explained in "Data Protection", a principal purpose of a backup and recovery strategy is data protection. The key to an effective, efficient strategy is to understand the basic options of data repair.

Problems Requiring Data Repair

While several problems can halt the normal operation of an Oracle database or affect database I/O operations, only the following typically require DBA intervention and data repair: user errors, application errors, and media failures.

User Errors

User errors occur when, either due to an error in application logic or a manual mistake, data in your database is changed or deleted incorrectly. For example, a user logs in to the wrong database and drops a database table. User errors are estimated to be the greatest single cause of database downtime.

Application Errors

Sometimes a software malfunction can corrupt data blocks. In a physical corruption, which is also called a media corruption, the database does not recognize the block.

Media Failures

A media failure occurs when a problem external to the database prevents it from reading from or writing to a file during normal operations. Typical media failures include disk failures and the deletion of database files. Media failures are less common than user or application errors, but your backup and recovery strategy should prepare for them.

RMAN Data Repair Techniques

Depending on the situations you anticipate, consider incorporating each of the following options into your strategy for responding to data loss, and then set up your database to make these options possible.

	
Data Recovery Advisor

This Oracle Database infrastructure can diagnose failures, advise you on how to respond to them, and repair the failures automatically.

"Overview of Data Recovery Advisor" explains the basic concepts of Data Recovery Advisor.

	
logical flashback features

This subset of Oracle Flashback Technology features enables you to view or rewind individual database objects or transactions to a past time. These features do not require use of RMAN.

"Overview of Oracle Flashback Technology and Database Point-in-Time Recovery" explains the basic concepts of the logical flashback features and provides pointers where appropriate.

	
Oracle Flashback Database

Flashback Database is a block-level recovery mechanism that is similar to media recovery, but is generally faster and does not require a backup to be restored. You can return your whole database to a previous state without restoring old copies of your data files from backup, as long as you have enabled flashback logging in advance. You must have a fast recovery area configured for logging for flashback database or guaranteed restore points.

"Basic Concepts of Point-in-Time Recovery and Flashback Features" explains the basic concepts of Flashback Database.

	
data file media recovery

This form of media recovery enables you to restore data file backups and apply archived redo logs or incremental backups to recover lost changes. You can either recover a whole database or a subset of the database. Data file media recovery is the most general-purpose form of recovery and can protect against both physical and logical failures.

The general concepts of data file media recovery are explained in this chapter. The techniques are described in Chapter 17, "Performing Complete Database Recovery" and "Performing Database Point-in-Time Recovery".

	
block media recovery

This form of media recovery enables you to recover individual blocks within a data file rather than the whole data file.

"Overview of Block Media Recovery" explains the basic concepts of block media recovery.

	
tablespace point-in-time recovery (TSPITR)

This is a specialized form of point-in-time recovery in which you recover one or more tablespaces to a time earlier than the rest of the database.

"Overview of RMAN TSPITR" explains the basic concepts of TSPITR.

In general, the concepts required to use the preceding repair techniques are explained along with the techniques. This chapter explains concepts that are common to several RMAN data repair solutions.

RMAN Restore Operations

In an RMAN restore operation, you select files to be restored and then run the RESTORE command. Typically, you restore files in preparation for media recovery. You can restore the following types of files:

	
Database (all datafiles)

	
Tablespaces

	
Control files

	
Archived redo logs

	
Server parameter files

You can specify either the default location or a new location for restored datafiles and control files. If you restore to the default location, then RMAN overwrites any files with the same name that currently exist in this location. Alternatively, you can use the SET NEWNAME command to specify new locations for restored datafiles. You can then run a SWITCH command to update the control file to indicate that the restored files in their new locations are now the current datafiles.

	
See Also:

Oracle Database Backup and Recovery Reference for RESTORE syntax and prerequisites, Oracle Database Backup and Recovery Reference for SET NEWNAME syntax, and Oracle Database Backup and Recovery Reference for SWITCH syntax

Backup Selection

RMAN uses the records of available backup sets or image copies in the RMAN repository to select the best available backups for use in the restore operation. The most recent backup available, or the most recent backup satisfying any UNTIL clause specified in the RESTORE command, is the preferred choice. If two backups are from the same point in time, then RMAN prefers image copies over backup sets because RMAN can restore more quickly from image copies than from backup sets (especially those stored on tape).

All specifications of the RESTORE command must be satisfied before RMAN restores a backup. Unless limited by the DEVICE TYPE clause, the RESTORE command searches for backups on all device types of configured channels. If no available backup in the repository satisfies all the specified criteria, then RMAN returns an error indicating that the file cannot be restored.

If you use only manually allocated channels, then a backup job may fail if there is no usable backup on the media for which you allocated channels. Configuring automatic channels makes it more likely that RMAN can find and restore a backup that satisfies the specified criteria.

If backup sets are protected with backup encryption, then RMAN automatically decrypts them when their contents are restored. Transparently encrypted backups require no intervention to restore, as long as the Oracle wallet is open and available. Password-encrypted backups require the correct password to be entered before they can be restored.

	
See Also:

"Configuring Advanced Channel Options"

Restore Failover

RMAN automatically uses restore failover to skip corrupted or inaccessible backups and look for usable backups. When a backup is not found, or contains corrupt data, RMAN automatically looks for another backup from which to restore the desired files.

RMAN generates messages that indicate the type of failover that it is performing. For example, when RMAN fails over to another backup of the same file, it generates a message similar to the following:

failover to piece handle=/u01/backup/db_1 tag=BACKUP_031009

If no usable copies are available, then RMAN searches for previous backups. The message generated is similar to the following example:

ORA-19624: operation failed, retry possible
ORA-19505: failed to identify file "/u01/backup/db_1"
ORA-27037: unable to obtain file status
SVR4 Error: 2: No such file or directory
Additional information: 3
failover to previous backup

RMAN performs restore failover repeatedly until it has exhausted all possible backups. If all of the backups are unusable or no backups exists, then RMAN attempts to re-create the data file. Restore failover is also used when there are errors restoring archived redo logs during RECOVER, RECOVER ... BLOCK, and FLASHBACK DATABASE commands.

Restore Optimization

RMAN uses restore optimization to avoid restoring data files from backup when possible. If a data file is present in the correct location and its header contains the expected information, then RMAN does not restore the data file from backup.

	
Note:

Restore optimization only checks the data file header. It does not the scan the data file body for corrupted blocks.

You can use the FORCE option of the RESTORE command to override this behavior and restore the requested files unconditionally.

Restore optimization is particularly useful when an operation that restores several data files is interrupted. For example, assume that a full database restore encounters a power failure after all except one data file have been restored. If you run the same RESTORE command again, then RMAN only restores the single data file that was not restored during the previous attempt.

Restore optimization is also used when duplicating a database. If a data file at the duplicate is in the correct place with the correct header contents, then the data file is not duplicated. Unlike RESTORE, DUPLICATE does not support a FORCE option. To force RMAN to duplicate a data file that is skipped due to restore optimization, delete the data file from the duplicate before running the DUPLICATE command.

	
See Also:

Oracle Real Application Clusters Administration and Deployment Guide for description of RESTORE behavior in an Oracle RAC configuration

RMAN Media Recovery

In media recovery, RMAN applies changes to restored data to roll forward this data in time. RMAN can perform either data file media recovery or block media recovery.

Data file media recovery is the application of redo logs or incremental backups to a restored data file to update it to the current time or some other specified time. As explained in Oracle Database Concepts, you can use RMAN to perform complete recovery, database point-in-time recovery (DBPITR), or tablespace point-in-time recovery (TSPITR). You can use the RESTORE command to restore backups of lost and damaged data files or control files and the RECOVER command to perform media recovery.

Block media recovery is the recovery of individual data blocks rather than entire data files. This section explains data file media recovery only. Block media recovery, which is a specialized form of media recovery, is explained in "Overview of Block Media Recovery".

Selection of Incremental Backups and Archived Redo Logs

RMAN automates media recovery. RMAN automatically restores and applies both incremental backups and archived redo logs in whatever combination is most efficient.

If the RMAN repository indicates that no copies of a required log sequence number exist on disk, then it automatically restores the required log from backup. By default, RMAN restores the archived logs to the fast recovery area, if an archiving destination is set to USE_DB_RECOVERY_FILE_DEST. Otherwise, RMAN restores the logs to the first local archiving destination specified in the initialization parameter file.

	
See Also:

Oracle Database Backup and Recovery Reference for CROSSCHECK syntax

Database Incarnations

A database incarnation is created whenever you open the database with the RESETLOGS option. After complete recovery, you can resume normal operations without an OPEN RESETLOGS. After a DBPITR or recovery with a backup control file, however, you must open the database with the RESETLOGS option, thereby creating a new incarnation of the database. The database requires a new incarnation to avoid confusion when two different redo streams have the same SCNs, but occurred at different times. If you apply the wrong redo to your database, then you corrupt it.

The existence of multiple incarnations of a single database determines how RMAN treats backups that are not in the current incarnation path. Usually, the current database incarnation is the correct one to use. Nevertheless, in some cases resetting the database to a previous incarnation is the best approach. For example, you may be dissatisfied with the results of a point-in-time recovery that you have performed and want to return the database to a time before the RESETLOGS. An understanding of database incarnations is helpful to prepare for such situations.

OPEN RESETLOGS Operations

When you open the database with the RESETLOGS option, the database performs the following actions:

	
Archives the current online redo logs (if they are accessible) and then erases the contents of the online redo logs and resets the log sequence number to 1.

For example, if the current online redo logs are sequence 1000 and 1001 when you open RESETLOGS, then the database archives logs 1000 and 1001 and then resets the online redo logs to sequence 1 and 2.

	
Creates the online redo log files if they do not currently exist.

	
Initializes redo thread records and online redo log records in the control file to the beginning of the new database incarnation.

More specifically, the database sets the redo thread status to closed, sets the current thread sequence in the redo thread records to 1, sets the thread checkpoint of each redo thread to the beginning of log sequence 1, chooses one redo log from each thread and initialize its sequence to 1, and so on.

	
Updates all current datafiles and online redo logs and all subsequent archived redo logs with a new RESETLOGS SCN and time stamp.

Because the database does not apply an archived redo log to a data file unless the RESETLOGS SCN and time stamps match, the RESETLOGS requirement prevents you from corrupting data files with archived logs that are not from direct parent incarnations of the current incarnation. The relationship among incarnations is explained more fully in the following section.

In previous releases, it was recommended that you back up the database immediately after the OPEN RESETLOGS. Because you can now easily recover a pre-RESETLOGS backup like any other backup, making a new database backup is optional. To perform recovery through RESETLOGS you must have all archived logs generated after the most recent backup and at least one control file (current, backup, or created).

Relationship Among Database Incarnations

Database incarnations can stand in the following relationships to each other:

	
The current incarnation is the one in which the database is currently operating.

	
The incarnation from which the current incarnation branched following an OPEN RESETLOGS operation is the parent incarnation of the current incarnation.

	
The parent of the parent incarnation is an ancestor incarnation. Any parent of an ancestor incarnation is also an ancestor of the current incarnation.

	
The direct ancestral path of the current incarnation begins with the earliest incarnation and includes only the branches to an ancestor of the current incarnation, the parent incarnation, or the current incarnation.

An incarnation number is used to uniquely tag and identify a stream of redo. Figure 14-1 illustrates a database that goes through several incarnations, each with a different incarnation number.

Figure 14-1 Database Incarnation History

[image: Diagram showing the incarnation history of a database]

Description of "Figure 14-1 Database Incarnation History"

Incarnation 1 of the database starts at SCN 1 and continues through SCN 1000 to SCN 2000. Suppose that at SCN 2000 in incarnation 1, you perform a point-in-time recovery back to SCN 1000, and then open the database with the RESETLOGS option. Incarnation 2 now begins at SCN 1000 and continues to SCN 3000. In this example, incarnation 1 is the parent of incarnation 2.

Suppose that at SCN 3000 in incarnation 2, you perform a point-in-time recovery to SCN 2000 and open the database with the RESETLOGS option. In this case, incarnation 2 is the parent of incarnation 3. Incarnation 1 is an ancestor of incarnation 3.

When DBPITR or Flashback Database has occurred in database, an SCN can refer to multiple points in time, depending on which incarnation is current. For example, SCN 1500 in Figure 14-1 could refer to an SCN in incarnation 1 or 2.

You can use the RESET DATABASE TO INCARNATION command to specify that SCNs are to be interpreted in the frame of reference of a specific database incarnation. The RESET DATABASE TO INCARNATION command is required when you use FLASHBACK, RESTORE, or RECOVER to return to an SCN in a noncurrent database incarnation. However, RMAN executes the RESET DATABASE TO INCARNATION command implicitly with Flashback, as explained in "Resetting the Database Incarnation in the Recovery Catalog".

	
See Also:

	
"Recovering the Database to an Ancestor Incarnation"

	
Oracle Database Backup and Recovery Reference for details about the RESET DATABASE command

Orphaned Backups

When a database goes through multiple incarnations, some backups can become orphaned backups. Orphaned backups are backups created during incarnations of the database that are not in the direct ancestral path.

Assume the scenario shown in Figure 14-1. If incarnation 3 is the current incarnation, then the following backups are orphaned:

	
All backups from incarnation 1 after SCN 1000

	
All backups from incarnation 2 after SCN 2000

In contrast, the following backups are not orphaned because they are in the direct ancestral path:

	
All backups from incarnation 1 before SCN 1000

	
All backups from incarnation 2 before SCN 2000

	
All backups from incarnation 3

You can use orphaned backups when you intend to restore the database to an SCN not in the direct ancestral path. RMAN can restore backups from parent and ancestor incarnations and recover to the current time, even across OPEN RESETLOGS operations, as long as a continuous path of archived logs exists from the earliest backups to the point to which you want to recover. If you restore a control file from an incarnation in which the changes represented in the backups had not been abandoned, then RMAN can also restore and recover orphaned backups.

10 Backing Up the Database: Advanced Topics

This chapter explains advanced RMAN backup procedures. This chapter contains the following topics:

	
Limiting the Size of RMAN Backup Sets

	
Using Backup Optimization to Skip Files

	
Skipping Offline, Read-Only, and Inaccessible Files

	
Duplexing Backup Sets

	
Making Split Mirror Backups with RMAN

	
Encrypting RMAN Backups

	
Restarting RMAN Backups

	
Managing Backup Windows

	
See Also:

Chapter 9, "Backing Up the Database" for basic backup procedures

Limiting the Size of RMAN Backup Sets

As explained in "Configuring the Maximum Size of Backup Sets", you can use the CONFIGURE command to create persistent settings that govern backup set size. This control is helpful when backing up very large files. If you do not have a backup set size persistently configured, then you can also use the BACKUP ... MAXSETSIZE command to limit the size of backup sets.

You can use the CONFIGURE command, but not the BACKUP command, to set a limit for the size of individual backup pieces. This control is especially useful when you use a media manager that has restrictions on the sizes of files, or when you must back up very large files. See "Configuring the Maximum Size of Backup Pieces" for more information.

About Backup Set Size

The MAXSETSIZE parameter of the BACKUP command specifies a maximum size for a backup set in units of bytes (default), kilobytes, megabytes, or gigabytes. Thus, to limit a backup set to 305 MB, specify MAXSETSIZE 305M. RMAN attempts to limit all backup sets to this size.

You can use BACKUP ... MAXSETSIZE to limit the size of backup sets so that the database is divided among multiple backup sets. If the backup fails partway through, then you can use the restartable backup feature to back up only those files that were not backed up during the previous attempt. See "Restarting RMAN Backups" to learn how to restart RMAN backups.

In some cases the MAXSETSIZE value may be too small to contain the largest file that you are backing up. When determining whether MAXSETSIZE is too small, RMAN uses the size of the original data file rather than the file size after compression. RMAN displays an error stack such as the following:

RMAN-00571: ===
RMAN-00569: =============== ERROR MESSAGE STACK FOLLOWS ===============
RMAN-00571: ===
RMAN-03002: failure of backup command at 11/03/06 14:40:33
RMAN-06182: archive log larger than MAXSETSIZE: thread 1 seq 1
 /oracle/oradata/trgt/arch/archive1_1.dbf

	
See Also:

Oracle Database Backup and Recovery Reference to learn about the CONFIGURE MAXSETSIZE command

Limiting the Size of Backup Sets with BACKUP ... MAXSETSIZE

Backup piece size is an issue in those situations where it exceeds the maximum file size of the file system or media management software. Use the MAXSETSIZE parameter of the CONFIGURE CHANNEL or ALLOCATE CHANNEL command to limit the size of backup pieces.

To limit the size of backup sets:

	
Start RMAN and connect to a target database and recovery catalog (if used).

	
Execute the BACKUP command with the MAXSETSIZE parameter.

The following example backs up archived logs to tape, limiting the size of each backup set to 100 MB:

BACKUP DEVICE TYPE sbt
 MAXSETSIZE 100M
 ARCHIVELOG ALL;

Dividing the Backup of a Large Data File into Sections

If you specify the SECTION SIZE parameter on the BACKUP command, then RMAN creates a backup set in which each backup piece contains the blocks from one file section. A file section is a contiguous range of blocks in a file. This type of backup is called a multisection backup.

	
Note:

You cannot specify SECTION SIZE with MAXPIECESIZE.

The purpose of multisection backups is to enable RMAN channels to back up a single large file in parallel. RMAN divides the work among multiple channels, with each channel backing up one file section in a file. Backing up a file in separate sections can improve the performance of backups of large datafiles.

If a multisection backup completes successfully, then none of the backup sets generated during the backup contain a partial data file. If a multisection backup is unsuccessful, then it is possible for the RMAN metadata to contain a record for a partial backup set. RMAN does not consider partial backups for restore and recovery. You must use the DELETE command to delete the partial backup set.

If you specify a section size that is larger than the size of the file, then RMAN does not use multisection backup for the file. If you specify a small section size that would produce more than 256 sections, then RMAN increases the section size to a value that results in exactly 256 sections.

To make a multisection backup:

	
Start RMAN and connect to a target database and recovery catalog (if used).

	
If necessary, configure channel parallelism so that RMAN can make the backup parallel.

	
Execute BACKUP with the SECTION SIZE parameter.

For example, suppose that the users tablespace contains a single data file of 900 MB. Also assume that three SBT channels are configured, with the parallelism setting for the SBT device set to 3. You can break up the data file in this tablespace into file sections as shown in the following example:

BACKUP
 SECTION SIZE 300M
 TABLESPACE users;

In this example, each of the three SBT channels backs up a 300 MB file section of the users data file.

	
See Also:

"Make Parallel the Validation of a Data File" to learn how to validate sections of a large data file

Using Backup Optimization to Skip Files

As explained in "Backup Optimization and the CONFIGURE command", you run the CONFIGURE BACKUP OPTIMIZATION command to enable backup optimization. When certain criteria are met, RMAN skips backups of files that are identical to files that are already backed up.

For the following scenarios, assume that you configure backup optimization and a retention policy as shown in the following example.

Example 10-1 Configuring Backup Optimization

CONFIGURE DEFAULT DEVICE TYPE TO sbt;
CONFIGURE BACKUP OPTIMIZATION ON;
CONFIGURE RETENTION POLICY TO RECOVERY WINDOW OF 4 DAYS;

With RMAN configured as shown in Example 10-1, you run the following command every night to back up the database to tape:

BACKUP DATABASE;

Because backup optimization is configured, RMAN skips backups of offline and read-only data files only if the most recent backups were made on or after the earliest point in the recovery window. RMAN does not skip backups when the most recent backups are older than the window. For example, optimization ensures you do not end up with a new backup of a read-only data file every night, so long as one backup set containing this file exists within the recovery window.

	
See Also:

	
"Backup Optimization for SBT Backups with Recovery Window Retention Policy" for a scenario involving backup optimization and recovery windows

	
Oracle Database Backup and Recovery Reference for a detailed description of criteria used by CONFIGURE BACKUP OPTIMIZATION to determine whether a file is identical and can potentially be skipped

Optimizing a Daily Archived Log Backup to a Single Tape: Scenario

Assume that you want to back up all the archived logs every night, but you do not want to have multiple copies of each log sequence number. With RMAN configured as shown in Example 10-1, you run the following command in a script nightly at 1 a.m.:

BACKUP DEVICE TYPE sbt
 ARCHIVELOG ALL;

RMAN skips all logs except those produced in the last 24 hours. In this way, you keep only one copy of each archived log on tape.

Optimizing a Daily Archived Log Backup to Multiple Media Families: Scenario

In Oracle Secure Backup, a media family is a named group of volumes with a set of shared, user-defined attributes. In this scenario, you back up logs that are not on tape to one media family, then back up the same logs to a second media family. Finally, you delete old logs.

With RMAN configured as shown in Example 10-2, run the following script at the same time every night to back up the logs generated during the previous day to two separate media families.

Example 10-2 Backing Up Archived Redo Logs to Multiple Media Families

The following command backs up just the logs that are not on tape. The
first copies are saved to the tapes from the media family "log_family1".
RUN
{
 ALLOCATE CHANNEL c1 DEVICE TYPE sbt
 PARMS 'ENV=(OB_MEDIA_FAMILY=log_family1)';
 BACKUP ARCHIVELOG ALL;
}
Make one more copy of the archived logs and save them to tapes from a
different media family
RUN
{
 ALLOCATE CHANNEL c2 DEVICE TYPE sbt
 PARMS 'ENV=(OB_MEDIA_FAMILY=log_family2)';
 BACKUP ARCHIVELOG
 NOT BACKED UP 2 TIMES;
}

If your goal is to delete logs from disk that have been backed up two times to SBT, then the simplest way to achieve the goal is with an archived redo log deletion policy. The following one-time configuration specifies that archived redo logs are eligible for deletion from disk if two archived log backups exist on tape:

CONFIGURE ARCHIVELOG DELETION POLICY
 TO BACKED UP 2 TIMES TO DEVICE TYPE sbt;

After running the script in Example 10-2, you can delete unneeded logs by executing DELETE ARCHIVELOG ALL.

Creating a Weekly Secondary Backup of Archived Logs: Example

Assume a more sophisticated scenario in which your goal is to back up the archived logs to tape every day. You are worried about tape failure, however, so you want to ensure that you have more than copy of each log sequence number on an separate tape before you perform your weekly deletion of logs from disk. This scenario assumes that the database is not using a fast recovery area.

First, perform a one-time configuration as follows:

CONFIGURE BACKUP OPTIMIZATION ON;
CONFIGURE DEVICE TYPE sbt PARALLELISM 1;
CONFIGURE default DEVICE TYPE TO sbt;
CONFIGURE CHANNEL DEVICE TYPE sbt PARMS 'ENV=(OB_MEDIA_FAMILY=first_copy);

Because you have optimization enabled, you can run the following command every evening to back up all archived logs to the first_copy media family that have not been backed up:

BACKUP ARCHIVELOG ALL TAG first_copy;

Every Friday evening you create an additional backup of all archived logs in a different media family. At the end of the backup, you want to delete all archived logs that have at least two copies on tape. So you run the following script:

RUN
{
 # manually allocate a channel, to specify that the backup run by this
 # channel should go to both media families "first_copy" and "second_copy"
 ALLOCATE CHANNEL c1 DEVICE TYPE sbt
 PARMS 'ENV=(OB_MEDIA_FAMILY=second_copy)';
 ALLOCATE CHANNEL c2 DEVICE TYPE sbt
 PARMS 'ENV=(OB_MEDIA_FAMILY=first_copy)';
 BACKUP
 CHANNEL c1
 ARCHIVELOG
 UNTIL TIME 'SYSDATE'
 NOT BACKED UP 2 TIMES # back up only logs without 2 backups on tape
 TAG SECOND_COPY;
 BACKUP
 CHANNEL c2
 ARCHIVELOG
 UNTIL TIME 'SYSDATE'
 NOT BACKED UP 2 TIMES # back up only logs without 2 backups on tape
 TAG FIRST_COPY;
}

now delete from disk all logs that have been backed up to tape at least twice
DELETE
 ARCHIVELOG ALL
 BACKED UP 2 TIMES TO DEVICE TYPE sbt;

The following table explains the effects of the daily and weekly backup scripts.

Table 10-1 Effects of Daily and Weekly Scripts

	Script	Tape Contents After Script	Disk Contents After Script
	
Daily

	
Archived logs that have not yet been backed up are now in media family first_copy.

	
All archived logs created since the last DELETE command are still on disk.

	
Weekly

	
Archived logs that have fewer than two backups on tape are now in media families first_copy and second_copy.

	
All archived logs that have been backed up at least twice to tape are deleted.

After the weekly backup, you can send the tape from the media family second_copy to offsite storage. You should use this tape backup only if the primary tape from pool first_copy is damaged. Because the secondary tape is offsite, you do not want RMAN to use it for recovery, so you can mark the backup as unavailable:

CHANGE BACKUP OF ARCHIVELOG TAG SECOND_COPY UNAVAILABLE;

	
See Also:

	
Chapter 12, "Maintaining RMAN Backups and Repository Records" to learn how to change the status of and delete backups

	
Oracle Database Backup and Recovery Reference to learn about the CHANGE and DELETE commands

Skipping Offline, Read-Only, and Inaccessible Files

By default, the BACKUP command terminates when it cannot access a data file. You can specify parameters to prevent termination, as listed in Table 10-2.

Table 10-2 BACKUP ... SKIP Options

	If you specify . . .	Then RMAN skips . . .
	
SKIP INACCESSIBLE

	
Datafiles that RMAN cannot be read.

	
SKIP OFFLINE

	
Offline datafiles. Some offline datafiles can still be read because they exist on disk. Others have been deleted or moved and so cannot be read, making them inaccessible.

	
SKIP READONLY

	
Datafiles in read-only tablespaces.

The following example uses an automatic channel to back up the database, and skips all datafiles that might cause the backup job to terminate.

Example 10-3 Skipping Files During an RMAN Backup

BACKUP DATABASE
 SKIP INACCESSIBLE
 SKIP READONLY
 SKIP OFFLINE;

Duplexing Backup Sets

RMAN can make up to four copies of a backup set simultaneously, each an exact duplicate of the others. A copy of a duplexed backup set is a copy of each backup piece in the backup set, with each copy getting a unique copy number (for example, 0tcm8u2s_1_1 and 0tcm8u2s_1_2). It is not possible to duplex backup sets to the fast recovery area.

You can use BACKUP ... COPIES or CONFIGURE ... BACKUP COPIES to duplex backup sets. RMAN can duplex backups to either disk or tape, but cannot duplex backups to tape and disk simultaneously. For DISK channels, specify multiple values in the FORMAT option to direct the multiple copies to different physical disks. For SBT channels, if you use a media manager that supports Version 2 of the SBT API, then the media manager automatically writes each copy to a separate medium (for example, a separate tape). When backing up to tape, ensure that the number of copies does not exceed the number of available tape devices.

Duplexing applies only to backup sets, not image copies. It is an error to specify the BACKUP... COPIES when creating image copy backups, and the CONFIGURE... BACKUP COPIES setting is ignored for image copy backups.

	
See Also:

"Multiple Copies of RMAN Backups" for a conceptual overview of RMAN backup copies

Duplexing Backup Sets with CONFIGURE BACKUP COPIES

As explained in "Configuring Backup Duplexing", the CONFIGURE ... BACKUP COPIES command specifies the number of identical backup sets to create on the specified device type. This setting applies to all backup sets except control file autobackups (because the autobackup of a control file always produces one copy) and backup sets when backed up with the BACKUP BACKUPSET command.

To duplex a backup with CONFIGURE ... BACKUP COPIES:

	
Configure the number of copies on the desired device type for datafiles and archived redo logs on the desired device types.

By default, CONFIGURE ... BACKUP COPIES is set to 1 for each device type. The following example configures duplexing for datafiles and archived logs on tape and also duplexing for datafiles (but not archived redo logs) on disk:

CONFIGURE DEVICE TYPE sbt PARALLELISM 1;
CONFIGURE DEFAULT DEVICE TYPE TO sbt;
CONFIGURE CHANNEL DEVICE TYPE DISK FORMAT '/disk1/%U', '/disk2/%U';
CONFIGURE DATAFILE BACKUP COPIES FOR DEVICE TYPE sbt TO 2;
CONFIGURE ARCHIVELOG BACKUP COPIES FOR DEVICE TYPE sbt TO 2;
CONFIGURE DATAFILE BACKUP COPIES FOR DEVICE TYPE DISK TO 2;

	
Execute the BACKUP command.

The following command backs up the database and archived logs to tape, making two copies of each data file and archived log:

BACKUP AS BACKUPSET DATABASE PLUS ARCHIVELOG;

Because of the configured formats for the disk channel, the following command backs up the database to disk, placing one copy of the backup sets produced in the /disk1 directory and the other in the /disk2 directory:

BACKUP DEVICE TYPE DISK AS BACKUPSET DATABASE;

If the FORMAT clause were not configured on CONFIGURE CHANNNEL, then you specify FORMAT on the BACKUP command itself. For example, you issue the following command:

BACKUP AS BACKUPSET DATABASE
 FORMAT '/disk1/%U',
 '/disk2/%U';

	
Issue a LIST BACKUP command to see a listing of backup sets and pieces.

For example, enter the following command:

LIST BACKUP SUMMARY;

The #Copies column shows the number of backup sets, which may have been produced by duplexing or by multiple backup commands.

	
See Also:

"Configuring Backup Duplexing" to learn about the CONFIGURE BACKUP COPIES command, and "Configuring the Environment for RMAN Backups" to learn about basic backup configuration options

Duplexing Backup Sets with BACKUP ... COPIES

The COPIES option of the BACKUP command overrides every other COPIES or DUPLEX setting to control duplexing of backup sets.

To duplex a backup with BACKUP ... COPIES:

	
Specify the number of identical copies with the COPIES option of the BACKUP command. For example, run the following to make three copies of each backup set in the default DISK location:

BACKUP AS BACKUPSET DEVICE TYPE DISK
 COPIES 3
 INCREMENTAL LEVEL 0
 DATABASE;

Because you specified COPIES in the BACKUP command, RMAN makes three backup sets of each data file regardless of the CONFIGURE DATAFILE COPIES setting.

	
Issue a LIST BACKUP command to see a listing of backup sets and pieces (the #Copies column shows the number of copies, which may have been produced through duplexing or through multiple invocations of the BACKUP command). For example, enter:

LIST BACKUP SUMMARY;

Making Split Mirror Backups with RMAN

Many sites keep a backup of the database stored on disk in case a media failure occurs on the primary database or an incorrect user action requires point-in-time recovery. A data file backup on disk simplifies the restore step of recovery, making recovery much quicker and more reliable.

	
Caution:

Never make backups, split mirror or otherwise, of online redo logs. Restoring online redo log backups can create two archived logs with the same sequence number but different contents. Also, it is best to use the BACKUP CONTROLFILE command rather than a split mirror to make control file backups.

One way of creating a data file backup on disk is to use disk mirroring. For example, the operating system can maintain three identical copies of each file in the database. In this configuration, you can split off a mirrored copy of the database to use as a backup.

RMAN does not automate the splitting of mirrors, but can make use of split mirrors in backup and recovery. For example, RMAN can treat a split mirror of a data file as a data file copy, and can also back up this copy to disk or tape. The procedure in this section explains how to make a split mirror backup with the ALTER SYSTEM SUSPEND/RESUME functionality.

Some mirroring technology does not require Oracle Database to suspend all I/O before a mirror can be separated and used as a backup. Refer to your storage manager, volume manager, or file system documentation for information about whether you must suspend I/O from the database instance.

To make a split mirror backup of a tablespace by using SUSPEND/RESUME:

	
Start RMAN and then place the tablespaces to back up into backup mode with the ALTER TABLESPACE ... BEGIN BACKUP statement. (To place all tablespaces in backup mode, you can the ALTER DATABASE BEGIN BACKUP instead.)

For example, to place tablespace users in backup mode, you connect RMAN to a target database and run the following SQL command:

SQL 'ALTER TABLESPACE users BEGIN BACKUP';

	
Suspend I/O if your mirroring software or hardware requires it. For example, enter the following command in RMAN:

SQL 'ALTER SYSTEM SUSPEND';

	
Split the mirrors for the underlying datafiles contained in these tablespaces.

	
Take the database out of the suspended state. For example, enter the following command in RMAN:

SQL 'ALTER SYSTEM RESUME';

	
Take the tablespaces out of backup mode. For example, enter:

SQL 'ALTER TABLESPACE users END BACKUP';

You can also use ALTER DATABASE END BACKUP to take all tablespaces out of backup mode.

	
Catalog the user-managed mirror copies as data file copies with the CATALOG command. For example, enter:

CATALOG DATAFILECOPY '/dk2/oradata/trgt/users01.dbf'; # catalog split mirror

	
Back up the data file copies. For example, run the BACKUP DATAFILECOPY command at the prompt:

BACKUP DATAFILECOPY '/dk2/oradata/trgt/users01.dbf';

	
When you are ready to resilver a split mirror, first use the CHANGE ... UNCATALOG command to uncatalog the data file copies you cataloged in Step 6. For example, enter:

CHANGE DATAFILECOPY '/dk2/oradata/trgt/users01.dbf' UNCATALOG;

	
Resilver the split mirror for the affected datafiles.

	
See Also:

	
"Making User-Managed Backups in SUSPEND Mode"

	
Oracle Database Administrator's Guide for more information about the SUSPEND/RESUME feature

	
Oracle Database SQL Language Reference for the ALTER SYSTEM SUSPEND syntax

Encrypting RMAN Backups

As explained in "Configuring Backup Encryption", you can protect RMAN backup sets with backup encryption. Encrypted backups cannot be read if they are obtained by unauthorized users. The RMAN backup encryption feature requires the Enterprise Edition of the database.

About RMAN Backup Encryption Settings

Backup encryption is performed based on the encryption settings specified with the following commands:

	
CONFIGURE ENCRYPTION

You can use this command to persistently configure transparent encryption. You cannot persistently configure dual mode or password mode encryption.

	
SET ENCRYPTION

You can use this command to configure dual mode or password mode encryption at the RMAN session level.

	
Note:

Wallet-based encryption is more secure than password-based encryption because no passwords are involved. You should use password-based encryption only when absolutely necessary because your backups must be transportable.

The database uses a new encryption key for every encrypted backup. The backup encryption key is then encrypted with either the password, the database master key, or both, depending on the chosen encryption mode. Individual backup encryption keys or passwords are never stored in clear text.

A single restore operation can process backups encrypted in different modes. For each backup piece that it restores, RMAN checks whether it is encrypted. Transparently encrypted backups need no intervention if the Oracle wallet is open and available.

If password encryption is detected, then RMAN searches for a matching key in the list of passwords entered in the SET DECRYPTION command. If RMAN finds a usable key, then the restore operation proceeds. Otherwise, RMAN searches for a key in the Oracle wallet. If RMAN finds a usable key, then the restore operation proceeds; otherwise, RMAN signals an error that the backup piece cannot be decrypted.

	
Note:

If RMAN restores a set of backups created with different passwords, then all required passwords must be included with SET DECRYPTION.

RMAN encryption is a CPU-intensive operation and can affect backup performance. The actual amount of CPU utilization during encryption depends on whether both input and output devices for disk and SBT produce and consume data faster than the CPU can encrypt it. Here are a few guidelines for managing and trying to maximize CPU performance:

	
Because encrypted backups consume more CPU resources than unencrypted backups, you can improve performance of encrypted backups to disk by using more RMAN channels. A general rule is to use the same number of channels as the number of CPU cores in your system. For example, use two channels for a dual-core processor.

	
If both the disk subsystem and SBT-subsystem are fast, you can expect very high CPU utilization. You may want to consider slowing the rate of the backup by setting the RMAN READRATE parameter. For example, you can set an upper limit for block reads so that RMAN does not consume excessive disk bandwidth and thereby degrade online performance.

	
See Also:

	
"Performing Complete Database Recovery" to learn how to restore password-encrypted backups

	
"Determining the Encryption Status of Backup Pieces"

	
Oracle Database Backup and Recovery Reference to learn about the ENCRYPTION and DECRYPTION options of the SET command

Making Transparent-Mode Encrypted Backups

If you have configured transparent encryption with the CONFIGURE command as explained in "Configuring RMAN Backup Encryption Modes", then no additional commands are required to make encrypted backups. Make RMAN backups as normal.

Making Password-Mode Encrypted Backups

You can set an encryption password in an RMAN session by executing the SET ENCRYPTION BY PASSWORD command. If transparent encryption is configured, then specify the ONLY keyword to indicate that the backups should be protected with a password and not with the configured transparent encryption.

	
Note:

Create a password that is secure. See Oracle Database Security Guide for more information.

To make password-mode encrypted backups:

	
Start RMAN and connect to a target database and recovery catalog (if used).

	
Execute the SET ENCRYPTION ON IDENTIFIED BY password ONLY command.

The following example sets the encryption password for all tablespaces (where password is a placeholder for the actual password that you enter) in the backup and specifies ONLY to indicate that the encryption is password-only:

SET ENCRYPTION IDENTIFIED BY password ONLY ON FOR ALL TABLESPACES;

	
Back up the database.

For example, enter the following command:

BACKUP DATABASE PLUS ARCHIVELOG;

Making Dual-Mode Encrypted Backups

Use the SET ENCRYPTION BY PASSWORD command at the RMAN prompt to make password-protected backups. If transparent encryption is configured, then omit the ONLY keyword to indicate that the backups should be protected with a password and also with the configured transparent encryption.

	
Note:

Create a password that is secure. See Oracle Database Security Guide for more information.

To make dual-mode encrypted backups:

	
Start RMAN and connect to a target database and recovery catalog (if used).

	
Execute the SET ENCRYPTION BY PASSWORD command, making sure to omit the ONLY keyword.

The following example sets the encryption password for all tablespaces (where password is a placeholder for the actual password that you enter) in the backup and omits ONLY to indicate dual-mode encryption:

SET ENCRYPTION IDENTIFIED BY password ON FOR ALL TABLESPACES;

	
Back up the database.

For example, enter the following command:

BACKUP DATABASE PLUS ARCHIVELOG;

Restarting RMAN Backups

With the restartable backup feature, RMAN backs up only those files that were not backed up after a specified date.

About Restartable Backups

The minimum unit of restartability is a data file. However, if a backup set contains one backup piece, and if this piece contains blocks from multiple data files, then the unit of restartability is the backup piece. The unit of restartability for image copies is a data file.

The benefit of restartable backups is that if the backup generates multiple backup sets, then the backup sets that completed successfully do not have to be rerun. However, if the entire database is written into one backup set, and if the backup fails halfway through, then the entire backup has to be restarted.

Any I/O errors that RMAN encounters when reading files or writing to the backup pieces or image copies cause RMAN to terminate the backup job in progress. For example, if RMAN tries to back up a data file but the data file is not on disk, then RMAN terminates the backup. If multiple channels are being used or redundant copies of backups are being created, however, then RMAN may be able to continue the backup without user intervention.

RMAN can back up only those files that have not been backed up since a specified date. Use this feature after a backup fails to back up the parts of the database missed by the failed backup.

You can restart a backup by specifying the SINCE TIME clause on the BACKUP command. If the SINCE TIME is later than the completion time, then RMAN backs up the file. If you use BACKUP DATABASE NOT BACKED UP without the SINCE TIME parameter, then RMAN only backs up files that have never been backed up.

	
See Also:

Oracle Database Backup and Recovery Reference for BACKUP ... NOT BACKED UP syntax

Restarting a Backup After It Partially Completes

Use the SINCE TIME parameter of the BACKUP command to specify a date after which a new backup is required. If the SINCE TIME is later than the completion time, then RMAN backs up the file. If you use BACKUP DATABASE NOT BACKED UP without the SINCE TIME parameter, then RMAN only backs up files that have never been backed up.

To only back up files that were not backed up after a specified date:

	
Start RMAN and connect to a target database and recovery catalog (if used).

	
Execute the BACKUP ... NOT BACKED UP SINCE TIME command.

Specify a valid date in the SINCE TIME parameter. The following example uses the default configured channel to back up all database files and archived redo logs that have not been backed up in the last two weeks:

BACKUP
 NOT BACKED UP SINCE TIME 'SYSDATE-14'
 DATABASE PLUS ARCHIVELOG;

	
See Also:

Oracle Database Backup and Recovery Reference for an example of how to use the BACKUP command to restart a backup that did not complete

Managing Backup Windows

This section explains how to use backup windows to set limits for the time span in which a backup job can complete.

About Backup Windows

A backup window is a period of time during which a backup must complete. For example, you may want to restrict your database backups to a window of time when user activity on your system is low, such as between 2:00 a.m. and 6:00 a.m.

RMAN backs up the least recently backed up files first. By default, RMAN backs up the files at the maximum possible speed. Specifying a window does not mean that RMAN backs up data faster than normal to ensure that the backup completes before the window ends.

By default, if the backup is not complete within the DURATION time, then RMAN interrupts the backup and reports an error. If the BACKUP command is in a RUN command, then the RUN command terminates. Any completed backup sets are retained and can be used in restore operations, even if the entire backup is not complete. Thus, if you retry a job that was interrupted when the available duration expired, each successive attempt covers more of the files needing backup. Any incomplete backup sets are discarded.

Specifying a Backup Duration

Use the DURATION parameter of the BACKUP command to specify how long a given backup job is allowed to run.

To specify a backup duration:

	
Start RMAN and connect to a target database and recovery catalog (if used).

	
Execute the BACKUP DURATION command.

For example, run the following command at 2:00 a.m. to specify that the backup should run until 6:00 a.m.:

BACKUP
 DURATION 4:00
 TABLESPACE users;

	
See Also:

Oracle Database Backup and Recovery Reference for the syntax of the BACKUP command

Permitting Partial Backups in a Backup Window

When you specify PARTIAL, RMAN does not report an error when a backup is interrupted because of the end of the backup window. Instead, RMAN displays a message showing which files are not backed up. If the BACKUP command is part of a RUN block, then the remaining commands in the RUN block continue to execute.

If you specify FILESPERSET 1, then RMAN puts each file into its own backup set. When a backup is interrupted at the end of the backup window, only the backup of the file currently being backed up is lost. All backup sets completed during the window are saved, minimizing the lost work caused by the end of the backup window.

To prevent RMAN from issuing an error when a backup partially completes:

	
Start RMAN and connect to a target database and recovery catalog (if used).

	
Execute the BACKUP DURATION command with the PARTIAL option.

For example, you run the following command at 2:00 a.m. to specify that the backup should run until 6:00 a.m. and that each data file should be in a separate backup set:

BACKUP
 DURATION 4:00 PARTIAL
 TABLESPACE users
 FILESPERSET 1;

Minimizing Backup Load and Duration

When using DURATION you can run the backup with the maximum possible performance, or run as slowly as possible while still finishing within the allotted time, to minimize the performance impact of backup tasks. To maximize performance, use the MINIMIZE TIME option with DURATION, as shown in Example 10-4.

Example 10-4 Using MINIMIZE TIME with BACKUP DURATION

BACKUP
 DURATION 4:00 PARTIAL
 MINIMIZE TIME
 DATABASE
 FILESPERSET 1;

To extend the backup to use the full time available, use the MINIMIZE LOAD option, as in Example 10-5.

Example 10-5 Using MINIMIZE LOAD with BACKUP DURATION

BACKUP
 DURATION 4:00 PARTIAL
 MINIMIZE LOAD
 DATABASE
 FILESPERSET 1;

In Example 10-5, RMAN monitors the progress of the running backup, and periodically estimates how long the backup takes to complete at its present rate. If RMAN estimates that the backup will finish before the end of the backup window, then it slows down the rate of backup so that the full available duration is used. This reduces the overhead on the database associated with the backup.

Note these issues when using DURATION and MINIMIZE LOAD with a tape backup:

	
Efficient backup to tape requires tape streaming. If you use MINIMIZE LOAD, then RMAN may reduce the rate of backup to the point where tape streaming is not optimal.

	
RMAN holds the tape resource for the entire duration of the backup window. This prevents the use of the tape resource for any other purpose during the backup window.

Because of these concerns, it is not recommended that you use MINIMIZE LOAD when backing up to tape.

	
See Also:

"Media Manager Component of the Write Phase for SBT" for more details on efficient tape handling

Oracle® Database

Backup and Recovery User's Guide

11g Release 2 (11.2)

E10642-05

July 2011

A guide to backup and recovery of Oracle databases, including RMAN backup and recovery, RMAN data transfer, Oracle Flashback Technology, and user-managed backup and recovery

Oracle Database Backup and Recovery User's Guide, 11g Release 2 (11.2)

E10642-05

Copyright © 2003, 2011, Oracle and/or its affiliates. All rights reserved.

Primary Author: Lance Ashdown

Contributors: Katherine Weill, Tammy Bednar, Anand Beldalker, Timothy Chien, Mark Dilman, Raymond Guzman, Stephan Haisley, Wei Hu, Alex Hwang, Ashok Joshi, Vasudha Krishnaswamy, J. William Lee, Valarie Moore, Muthu Olagappan, Vsevolod Panteleenko, Francisco Sanchez, Vinay Srihari, Margaret Susairaj, Mike Stewart, Steven Wertheimer, Wanli Yang, Rob Zijlstra

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software License (December 2007). Oracle America, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.

24 Duplicating a Database

This chapter describes how to use the DUPLICATE command to create an independently functioning database copy.

This chapter contains the following topics:

	
Overview of RMAN Database Duplication

	
Preparing to Duplicate a Database

	
Placing the Source Database in the Proper State

	
Starting RMAN and Connecting to Databases

	
Configuring RMAN Channels for Use in Duplication

	
Duplicating a Database

	
Restarting DUPLICATE After a Failure

Overview of RMAN Database Duplication

Database duplication is the use of the DUPLICATE command to copy all or a subset of the data in a source database. The duplicate database (the copied database) functions entirely independently from the source database (the database being copied).

Purpose of Database Duplication

A duplicate database is useful for a variety of purposes, most of which involve testing. You can perform the following tasks in a duplicate database:

	
Test backup and recovery procedures

	
Test an upgrade to a new release of Oracle Database

	
Test the effect of applications on database performance

	
Create a standby database

	
Generate reports

For example, you can duplicate the production database on host1 to host2, and then use the duplicate database on host2 to practice restoring and recovering this database while the production database on host1 operates as usual.

If you copy a database with operating system utilities instead of the DUPLICATE command, then the DBID of the copied database remains the same as the original database. To register the copy database in the same recovery catalog with the original, you must change the DBID with the DBNEWID utility (see Oracle Database Utilities). In contrast, the DUPLICATE command automatically assigns the duplicate database a different DBID so that it can be registered in the same recovery catalog as the source database.

The DUPLICATE command can create a fully functional copy of your database or a physical standby database, which serves a very different purpose. A standby database is a copy of the primary database that you update continually with archived log files from the primary database. If the primary database is inaccessible, then you can fail over to the standby database, which becomes the new primary database. A database copy, however, cannot be used in this way: it is not intended for failover scenarios and does not support the various standby recovery and failover options.

	
See Also:

Oracle Data Guard Concepts and Administration to learn how to create a standby database with the DUPLICATE command

Basic Concepts of Database Duplication

The source host is the computer that hosts the source database. The source database instance is the instance associated with the source database.

The destination host is the computer that hosts the duplicate database. The source host and destination host can be the same or different computers. The database instance associated with the duplicate database is called the auxiliary instance.

Techniques for Duplicating a Database

RMAN supports two basic types of duplication: active database duplication and backup-based duplication. RMAN can perform backup-based duplication with or without either of the following connections:

	
Target

	
Recovery catalog

A connection to both is required for active database duplication.

Figure 24-1 shows the decision tree for the two duplication techniques.

Figure 24-1 Duplication Techniques

[image: Surrounding text describes Figure 24-1 .]

Active Database Duplication

In active database duplication, RMAN connects as TARGET to the source database instance and as AUXILIARY to the auxiliary instance. RMAN copies the live source database over the network to the auxiliary instance, thereby creating the duplicate database. No backups of the source database are required. Figure 24-2 illustrates active database duplication.

Figure 24-2 Active Database Duplication

[image: Surrounding text describes Figure 24-2 .]

Backup-Based Duplication

In backup-based duplication, RMAN creates the duplicate database by using pre-existing RMAN backups and copies. This technique of duplication uses one of the following mutually exclusive subtechniques:

	
Duplication without a target database connection, RMAN obtains metadata about backups from a recovery catalog.

	
Duplication without a target database connection and without a recovery catalog. RMAN obtains metadata about where backups and copies reside from BACKUP LOCATION.

	
Duplication with a target database connection. RMAN obtains metadata about backups from the target database control file or from the recovery catalog.

Figure 24-3 illustrates backup-based duplication without a target connection. RMAN connects to a recovery catalog database instance and the auxiliary instance. The destination host must have access to the RMAN backups required to create the duplicate database.

Figure 24-3 Backup-Based Duplication Without a Target Connection

[image: Surrounding text describes Figure 24-3 .]

Figure 24-4 illustrates backup-based duplication without connections to the target or to the recovery catalog database instance. RMAN connects to the auxiliary instance of the duplicate database on the destination host. A disk backup location containing all the backups or copies for duplication must be available to the destination host.

Figure 24-4 Backup-Based Duplication Without a Target Connection or Recovery Catalog Connection

[image: Surrounding text describes Figure 24-4 .]

Figure 24-5 illustrates backup-based duplication with a target connection. RMAN connects to the source database instance and the auxiliary instance. Optionally, RMAN can connect to a recovery catalog database (not shown in the figure). The destination host must have access to the RMAN backups required to create the duplicate database.

Figure 24-5 Backup-Based Duplication with a Target Connection

[image: Surrounding text describes Figure 24-5 .]

Contents of a Duplicate Database

A duplicate database can include the same contents as the source database or only a subset of the tablespaces in the source database. For example, you can use the TABLESPACE option to duplicate only specified tablespaces, or the SKIP READONLY option to exclude read-only tablespaces from the duplicate database.

How RMAN Duplicates a Database

For backup-based duplication, the principal work of the duplication is performed by the auxiliary channels. These channels correspond to a server session on the auxiliary instance on the destination host. For active database duplication the primary work is performed by target channels.

RMAN must perform database point-in-time recovery, even when no explicit point in time is provided for duplication. Point-in-time recovery is required because the online redo log files in the source database are not backed up and cannot be applied to the duplicate database. The farthest point of recovery of the duplicate database is the most recent redo log file archived by the source database.

As part of the duplicating operation, RMAN automates the following steps:

	
Creates a default server parameter file for the auxiliary instance if the following conditions are true:

	
Duplication does not involve a standby database.

	
Server parameter files are not being duplicated.

	
The auxiliary instance was not started with a server parameter file.

	
Restores from backup or copies from active database the latest control file that satisfies the UNTIL clause requirements.

	
Mounts the restored or copied backup control file from the active database.

	
Uses the RMAN repository to select the backups for restoring the data files to the auxiliary instance. This step applies to backup-based duplication.

	
Restores and copies the duplicate data files and recovers them with incremental backups and archived redo log files to a noncurrent point in time.

	
Shuts down and restarts the database instance in NOMOUNT mode.

	
Creates a new control file, which then creates and stores the new DBID in the data files.

	
Opens the duplicate database with the RESETLOGS option and creates the online redo log for the new database.

	
See Also:

The DUPLICATE entry in Oracle Database Backup and Recovery Reference for a complete list of which files are copied to the duplicate database

Basic Steps of Database Duplication

This section describes the basic steps of database duplication. Follow the link in each step for further instructions.

To duplicate a database:

	
Prepare for database duplication.

See "Preparing to Duplicate a Database".

	
Start RMAN and connect to the necessary database instances.

See "Starting RMAN and Connecting to Databases".

	
Place the source database in the proper state (if necessary).

See "Placing the Source Database in the Proper State".

	
Configure RMAN channels (if necessary).

See "Configuring RMAN Channels for Use in Duplication".

	
Perform the duplication.

See "Duplicating a Database".

Preparing to Duplicate a Database

Before duplicating the database, you must decide how to perform the duplication and then prepare the database environment, including the auxiliary database instance.

To prepare for duplication:

	
Choose a duplication technique.

See "Step 1: Choosing a Duplication Technique".

	
Choose a strategy for naming the duplicate database files.

See "Step 2: Choosing a Strategy for Naming Duplicate Files".

	
For a backup-based strategy, make the backups accessible to the auxiliary instance; otherwise, skip this step.

See "Step 3: Making Backups Accessible to the Duplicate Instance".

	
Prepare remote access to databases.

See "Step 4: Preparing Remote Access to Databases".

	
Prepare the auxiliary instance.

See "Step 5: Creating an Initialization Parameter File and Starting the Auxiliary Instance".

Step 1: Choosing a Duplication Technique

Your business requirements and the database environment determine which duplication technique is best for your situation. Consider the following questions:

	
Are you familiar with the prerequisites for each duplication technique?

Review the "Prerequisites" section of the DUPLICATE command entry in Oracle Database Backup and Recovery Reference for a complete list. Some prerequisites are common to all duplication techniques, such as the following:

	
The source and duplicate databases must be on the same platform. The DUPLICATE command considers 32-bit and 64-bit versions of the same operating system as belonging to the same platform.

	
The DUPLICATE command requires at least one auxiliary channel to perform the work of the duplication on the auxiliary instance.

Other prerequisites are specific and depend on the duplication technique. For example, active duplication requires that the source and auxiliary instances use the same password as the source database, whereas backup-based duplication without connections to the target database and recovery catalog requires only that all backups and database copies reside in a single location.

	
Do backups of the source database already exist?

The principal advantage of active database duplication is that it does not require source database backups. Active duplication copies mounted or online database files over a network to the auxiliary instance. One disadvantage of this technique is the negative performance effect on the network. Another disadvantage is that the source database is running processes required to transfer the files to the auxiliary host, thereby affecting the source database and production workload.

If the source database backups already exist, and if the effect on the network is unacceptable, then backup-based duplication may be a better option. You can copy backups to temporary storage and transfer them manually to the destination host. If duplication is made with a connection to the target or the recovery catalog, then the backup files on the destination host must have the same file specification as they had on the source host. Otherwise, this is not a requirement.

	
Is a recovery catalog available?

If a recovery catalog exists, then you can perform backup-based duplication without connecting RMAN as TARGET to the source database. This technique is advantageous where network connections from the auxiliary host to the source database are restricted or prone to intermittent disruptions. In duplication without a TARGET connection, the source database is unaffected by the duplication.

	
How much disk space is available on the destination host?

The disk space on the destination host can be an issue when you perform duplication using disk backups. For example, if the source database is 1 terabyte (TB), and if you duplicate the database from disk backups without using shared disk or network file system (NFS), then you must have at least 2 terabytes (TB) of space available on the destination host. In some environments, manual transfer of backups is necessary because NFS performance is a bottleneck.

	
Are the source and destination hosts connected by a LAN or a WAN?

Performance of active database duplication is probably slower on a wide area network (WAN) than a local area network (LAN). If the performance degradation on a WAN is unacceptable, then backup-based duplication may be the only viable option.

	
When do you plan to duplicate the database?

If you must duplicate the database during a period of high user activity, then the loss of network throughput caused by active duplication may be a problem, making backup-based duplication a better choice. Also, in active database duplication the RMAN channels required for copying files to the auxiliary host can affect performance.

Step 2: Choosing a Strategy for Naming Duplicate Files

When duplicating a database, RMAN generates names for the duplicate control files, data files, temp files, and online redo log files. Therefore, you must decide on a naming strategy for these files.

Oracle recommends the simplest duplication strategy, which is to configure the duplicate database to use the same names as the source database. Using the same names means that your environment meets the following requirements:

	
If the source database uses ASM disk groups, then the duplicate database must use ASM disk groups with the same names.

	
If the source database files are Oracle Managed Files, then the auxiliary instance must set DB_FILE_CREATE_DEST to the same directory location as the source database. Although the directories are the same on the source and destination hosts, Oracle Database chooses the relative names for the duplicate files.

	
If this is an Oracle RAC environment, then you must use the same ORACLE_SID for both the source and destination hosts.

	
If the names of the database files in the source database contain a path, then this path name must be the same in the duplicate database.

When you configure your environment as suggested, no additional configuration is required to name the duplicate files.

	
See Also:

"Specifying Alternative Names for Duplicate Database Files" for an explanation of the more complex strategy of using different names for the duplicate files

Step 3: Making Backups Accessible to the Duplicate Instance

	
Note:

If you are performing active database duplication, then skip this section and proceed to "Step 4: Preparing Remote Access to Databases".

When duplicating with a target and recovery catalog or just a target connection, RMAN uses metadata in the RMAN repository to locate backups and archived redo log files needed for duplication. If RMAN is connected to a recovery catalog, then RMAN obtains the backup metadata from the catalog. If RMAN is not connected to a catalog, as may be the case when performing backup-based duplication with a target connection, then RMAN obtains metadata from the control file.

Unless you are duplicating without a connection to the target and to the recovery catalog, the names of the backups must be available with the same names recorded in the RMAN repository. Ensure that auxiliary channels on the destination host can access all data file backups and archived redo log files (required to restore and recover the duplicate database to the desired point in time). If not, duplication fails. The archived redo log files can be available either as image copies or backup sets.

	
Note:

The database backup need not have been generated with BACKUP DATABASE. You can mix full and incremental backups of individual data files, but a full backup of every data file is required.

Making SBT Backups Accessible to the Auxiliary Instance

The steps in this task are specific to your media manager configuration.

To make SBT backups accessible to the auxiliary instance:

	
If necessary, install media management software on the destination host.

	
Make the tapes with the backups accessible to the destination host. Typically, you do one of the following:

	
Physically move the tapes to a drive attached to the remote host.

	
Use a network-accessible tape server.

	
If necessary, inform the remote media management software about the existence of the tapes.

Making Disk Backups Accessible to the Auxiliary Instance

When you make disk backups accessible to the auxiliary instance, your strategy depends on whether or not you duplicate the database while connected to the target or recovery catalog. If you do not connect to the target or recovery catalog, then you must designate a BACKUP LOCATION for the duplication.

When you use a BACKUP LOCATION, the backups and copies can reside in a shared location or can be moved to the BACKUP LOCATION on the destination host. In the latter case, you do not need to preserve the name or the original path of the backup or copy. The location specified by the BACKUP LOCATION option must contain sufficient backup sets, image copies, and archived logs to restore all of the files being duplicated, and recover them to the desired point in time.

It is not required that all of the backups be from the same point in time, or that they all be backup sets, or all image copies. Data file backups can be supplied as either image copies or backup sets. Archived logs can be supplied either in their normal format or as backup sets of archived logs.

When you use backups from different points in time, the backup location must contain archived logs covering the time from the start of the oldest backup until the desired recovery point.

If the backup location contains backup files from multiple databases, then the DATABASE clause must specify the name of the database that is to be duplicated. If the backup location contains backup files from multiple databases having the same name, then the DATABASE clause must specify both the name and DBID of the database that is to be duplicated.

The source database's Fast Recovery Area is particularly well suited for use as a backup location because it almost always contains all of the files needed for the duplication. To use a Fast Recovery Area as a backup location, you can either remotely access it from the destination system, or copy its contents to the destination system.

When you are not using a BACKUP LOCATION, your strategy depends on the following mutually exclusive scenarios:

	
Identical file systems for source and destination hosts

This scenario is the simplest and Oracle recommends it. For example, assume that the backups of the source database are stored in /dsk1/bkp. In this case, you can make disk backups accessible to the destination host in either of these ways:

	
Manually transfer backups from the source host to an identical path in the destination host. For example, if the backups are in /dsk1/bkp on the source host, then use FTP to transfer them to /dsk1/bkp on the destination host.

	
Use NFS or shared disks and ensure that the same path is accessible in the destination host. For example, assuming the source host can access /dsk1/bkp, use NFS to mount /dsk1/bkp on the destination host and use /dsk1/bkp as the mount point name.

	
Different file systems for source and destination hosts

In this case you cannot use the same directory name on the destination host as you use on the source host. You have the following options:

	
You can use shared disk to make backups available. This section explains the shared disk technique.

	
You cannot use shared disk to make backups available. "Making Disk Backups Accessible Without Shared Disk" explains this technique.

Assume that you have two hosts, srchost and dsthost, and access to NFS or shared disk. The database on srchost is called srcdb. The backups of srcdb reside in /dsk1/bkp on host srchost. The directory /dsk1/bkp is already in use on the destination host, but the directory /dsk2/dup is not in use in either host.

To transfer the backups from the source host to the destination host:

	
Create a backup storage directory in either the source or destination host.

For this example, create backup directory /dsk2/dup on the destination host.

	
Mount the directory created in the previous step on the other host, ensuring that the directory and the mount point names are the same.

For example, if you created /dsk2/dup on the destination host, then use NFS to mount this directory as /dsk2/dup on the source host.

	
Make the backups available in the new location on the destination host. You can use either of the following techniques:

	
Connect RMAN to the source database as TARGET and use the BACKUP command to back up the backups, as explained in "Backing Up RMAN Backups". For example, use the BACKUP COPY OF DATABASE command to copy the backups in /dsk1/bkp on the source host to /dsk2/dup on the source host. In this case, RMAN automatically catalogs the backups in the new location.

	
Use an operating system utility to transfer the backups to the new location. For example, use FTP to transfer the backups from /dsk1/bkp on the source host to /dsk2/dup on the destination host, or use the cp command to copy the backups from /dsk1/bkp on the source host to /dsk2/dup on the source host. Afterward, connect RMAN to the source database as TARGET and use the CATALOG command to update the RMAN repository with the location of the manually transferred backups.

Step 4: Preparing Remote Access to Databases

When a database must be accessed from another host, you must set up a password file and Oracle Net connectivity. Be aware of the potential security consequences of this type of setup.

Establishing Connectivity in Required Cases

To create a password file manually:

Follow the instructions in Oracle Database Administrator's Guide to create a password file.

The types of file names allowed for password files and the location of the password file are both platform specific and operating system-specific.

	
See Also:

	
Oracle Data Guard Concepts and Administration to create a password file manually

	
Oracle Database Advanced Security Administrator's Guide

To establish Oracle Net connectivity and set up a static listener:

Follow the instructions in Oracle Database Net Services Administrator's Guide to configure a client for connection to a database and add static service information for the listener.

Creating a Password File for the Auxiliary Instance

You have the following options for creating a password file for the auxiliary instance on the destination host:

	
Create the password file manually.

There are additional requirements for the case of DUPLICATE ... FROM ACTIVE DATABASE. You must use the SYS user ID, and the password must match the password of the source database. You may want to create the password file with a single password so that you can start the auxiliary instance and enable the source database to connect to it.

	
Specify the PASSWORD FILE option on the DUPLICATE... FROM ACTIVE DATABASE command.

In this case, RMAN copies the source database password file to the destination host and overwrites any existing password file for the auxiliary instance. This technique is useful if the source database password file has multiple passwords that you want to make available on the duplicate database.

	
See Also:

Oracle Database Administrator's Guide

	
Note:

If you create a standby database with the FROM ACTIVE DATABASE option, then RMAN always copies the password file to the standby host.

Step 5: Creating an Initialization Parameter File and Starting the Auxiliary Instance

The location and content of the initialization parameter file depend on your choice in "Step 2: Choosing a Strategy for Naming Duplicate Files". This section makes the following assumptions:

	
You choose the recommended technique of using the same naming strategy for the source and destination hosts. Thus for Oracle RAC environments, you use the same ORACLE_SID for source and destination hosts.

	
You create a text-based initialization parameter file for the auxiliary instance. See Table 25-5, "Auxiliary Instance Initialization Parameters".

	
The initialization parameter file is located in the operating system-specific default location of the host on which SQL*Plus runs.

For example, on Linux and UNIX the default initialization parameter file name is ORACLE_HOME/dbs/initORACLE_SID.ora and on Windows the file name is ORACLE_HOME\database\initORACLE_SID.ora.

	
You plan to specify the SPFILE clause on the DUPLICATE command.

The DUPLICATE ... SPFILE technique is easiest because during duplication RMAN automatically copies the server parameter file from the source database to the auxiliary instance or restores it from backup. If a server parameter file exists on the auxiliary instance, then RMAN overwrites it.

If you cannot meet the preceding requirements, then see "Duplicating a Database When No Server Parameter File Exists".

To create an initialization parameter file and start the auxiliary instance:

	
Using a text editor, create an empty file for use as a text-based initialization parameter file.

	
Copy the initialization parameter file to the operating system-specific default location on the host where SQL*Plus runs.

	
In the parameter file, set DB_NAME to an arbitrary value.

DB_NAME is the only required initialization parameter. The following example shows a sample DB_NAME setting:

DB_NAME=somevalue

	
If necessary, set other initialization parameters like those needed for Oracle RAC, and for connecting by using a user ID that has SYSDBA privileges through Oracle Net.

	
Start SQL*Plus and connect to the auxiliary instance with SYSDBA privileges. Start the auxiliary instance in NOMOUNT mode (no PFILE parameter on the STARTUP command is necessary if the file is in the default location):

SQL> STARTUP NOMOUNT

	
Note:

Ensure that the auxiliary instance is started with a text-based initialization parameter file and not a server parameter file. Do not create a control file or try to mount or open the auxiliary instance.

Placing the Source Database in the Proper State

	
Note:

If you are performing backup-based duplication without a target connection, then skip to "Configuring RMAN Channels for Use in Duplication".

If RMAN is connected to the source database as TARGET, then the source database must be in the proper state for the duplication.

To ensure that the source database is in the proper state:

	
If the source database instance is not mounted or open, then mount or open it.

	
If you are performing active database duplication, then ensure that the following additional requirements are met:

	
If the source database is open, then archiving must be enabled.

	
If the source database is not open, then the database does not require instance recovery.

Starting RMAN and Connecting to Databases

In this task, you must start the RMAN client and connect to the database instances required by the duplication technique chosen in "Step 1: Choosing a Duplication Technique". The RMAN client can be located on any host so long as it can connect to the necessary databases over the network.

To start RMAN and connect to the target and auxiliary instances:

	
Start the RMAN client on any host that can connect to the necessary database instances.

	
At the RMAN prompt, run CONNECT commands for the database instances required for your duplication technique:

	
For active database duplication, you must connect to the source database as TARGET and to the auxiliary instance as AUXILIARY. You must use the same SYSDBA password for both instances and must supply the net service name to connect to the AUXILIARY instance. A recovery catalog connection is optional.

	
For backup-based duplication without a target connection, you must connect to the auxiliary instance as AUXILIARY and the recovery catalog as CATALOG.

	
For backup-based duplication with a target connection, you must connect to the source database as TARGET and auxiliary instance as AUXILIARY. A recovery catalog is optional.

	
For backup-based duplication without target and recovery catalog connections, you must connect to the auxiliary instance as AUXILIARY.

In the following example of active database duplication, a connection is established to three database instances, all using net service names:

RMAN> CONNECT TARGET SYS/sysdba@prod; # source database
connected to target database: PROD (DBID=39525561)

RMAN> CONNECT AUXILIARY SYS/sysdba@dupdb; # duplicate database instance
connected to auxiliary database: DUPDB (not mounted)

RMAN> CONNECT CATALOG rman/rman@catdb; # recovery catalog database
connected to recovery catalog database

Configuring RMAN Channels for Use in Duplication

The channel on the auxiliary instance, not the source database instance, restores RMAN backups in backup-based duplication. The channel configuration depends on your duplication technique.

Configuring Channels for Active Database Duplication

In active database duplication, you do not have to change your source database channel configuration or configure AUXILIARY channels. However, you may want to increase the parallelism setting of your source database disk channels so that RMAN copies files over the network in parallel.

	
See Also:

Oracle Database Backup and Recovery Reference for information about the CONFIGURE command

Configuring Channels for Backup-Based Duplication

RMAN can use the same channel configurations on the source database for duplication on the destination host. RMAN can use these configurations even if the source database channels do not specify the AUXILIARY option.

Note the following additional considerations:

	
The channel type (DISK or sbt) of the auxiliary channel must match the backup media. In general, the more channels you allocate for disk backups, the faster the duplication. You cannot increase the speed of duplication after the disks reach their maximum read/write rate. For tape backups, limit the number of channels to the number of devices available.

	
If the auxiliary channels need special parameters (for example, to point to a different media manager), then you can configure an automatic channel with the AUXILIARY option of the CONFIGURE command.

	
When you perform duplication without a target connection and without a recovery catalog, only disk channels can be used. If no user-allocated channels are used, then only one channel initially restores the control file. After the control file is mounted, the number of allocated channels depends on the configuration in the restored control file.

Duplicating a Database

This section describes the most basic procedure to duplicate a database. This section makes the following assumptions:

	
You are duplicating the database to a remote host. The duplicate database files use the same names as the source database files.

	
Note:

When running the DUPLICATE command in this configuration, you must specify the NOFILENAMECHECK option on the DUPLICATE command. If you duplicate a database on the same host as the source database, then verify that NOFILENAMECHECK is not specified.

	
You are duplicating the entire database. For other scenarios, see "Duplicating a Subset of the Source Database Tablespaces".

To duplicate a database to a remote host with the same directory structure:

	
Ensure that you have completed Steps 1 through 4 in "Basic Steps of Database Duplication".

	
Run the DUPLICATE command.

Example 24-1 illustrates how to perform active duplication when the SPFILE clause is specified. DUPLICATE requires the NOFILENAMECHECK option because the source database files have the same names as the duplicate database files.

The PASSWORD FILE option specifies that RMAN should copy the password file to the destination host. RMAN automatically copies the server parameter file to the destination host, starts the auxiliary instance with the server parameter file, copies all necessary database files and archived redo logs over the network to the destination host, and recovers the database. Finally, RMAN opens the database with the RESETLOGS option to create the online redo log.

Example 24-1 Duplicating to a Host with the Same Directory Structure (Active)

DUPLICATE TARGET DATABASE TO dupdb
 FROM ACTIVE DATABASE
 PASSWORD FILE
 SPFILE
 NOFILENAMECHECK;

Backup-Based Duplication Without a Target Connection: Example

In this variation of Example 24-1, RMAN does not use a TARGET connection to the source database. Example 24-2 creates a duplicate of the source database prod as it appeared in 2007 in a previous database incarnation. RMAN is not connected to the source database but must be connected to a recovery catalog because no BACKUP LOCATION is provided.

Example 24-2 Duplicating a Database to a Past Point in Time (Backup-Based)

DUPLICATE DATABASE prod TO dupdb
 DBID 8675309 # DBID of source database
 UNTIL TIME "TO_DATE('11/01/2007', 'MM/DD/YYYY')"
 SPFILE
 NOFILENAMECHECK;

Note the following characteristics of Example 24-2:

	
The FROM ACTIVE DATABASE clause is not specified. By not specifying this clause, you instruct RMAN to perform backup-based duplication.

	
The DBID is specified because the source database name prod is not unique in the recovery catalog.

	
NOFILENAMECHECK check is specified because it is necessary when the duplicate database files use the same names as the source database files.

Assume a variation in which you want to restore an archival backup, which is all-inclusive in the sense that every file needed to restore and recover the database is included. The recommended technique for restoring an archival backup for testing is to create a temporary instance and use the DUPLICATE command. In this way, you avoid interfering with the source database.

In the DUPLICATE command you must specify the restore point that was created with the archival backup. You can only specify TO RESTORE POINT if RMAN is connected to a catalog, or to the source database when the restore point exists in the control file. Example 24-3 specifies restore point TESTDB103107.

Example 24-3 Using an Archival Backup for Backup-Based Duplication

DUPLICATE DATABASE prod TO dupdb
 TO RESTORE POINT TESTDB103107
 DBID 8675309 # DBID of source database
 SPFILE
 NOFILENAMECHECK;

Backup-Based Duplication with a Target Connection: Example

Assume a backup-based variation of Example 24-1 in which RMAN is connected as TARGET to the source database. Example 24-4 recovers the duplicate database to 1 week ago to view the data in the source database as it appeared then.

Example 24-4 Duplicating a Database to a Past Point in Time (Backup-Based)

DUPLICATE TARGET DATABASE TO dupdb
 SPFILE
 NOFILENAMECHECK
 UNTIL TIME 'SYSDATE-7';

Note the following characteristics of Example 24-4:

	
The FROM ACTIVE DATABASE clause is not specified. By not specifying this clause, you instruct RMAN to perform backup-based duplication.

	
The NOFILENAMECHECK option is specified because it is necessary when the duplicate database files use the same names as the source database files.

Backup-Based Duplication Without a Target and a Recovery Catalog Connection: Example

In the variation of Example 24-1, shown in Example 24-5, RMAN does not use a TARGET connection to the source database or a CATALOG connection to a recovery catalog. All backup and copies necessary for duplication until November 11 of 2007 at 2:00 PM, including a control file backup or copy, have been placed under /prod_backups.

Example 24-5 Duplicating a Database Without a Target and Recovery Catalog Connection (Backup-Based)

DUPLICATE DATABASE TO dupdb
 UNTIL TIME "TO_DATE('11/01/2007 14:00:00', 'MM/DD/YYYY HH24:MI:SS')"
 SPFILE
 BACKUP LOCATION '/prod_backups'
 NOFILENAMECHECK;

Note the following characteristics of Example 24-5:

	
The database name is not specified. By not specifying a database name with the DATABASE keyword, DUPLICATE obtains the database name and DBID from the backups. An error is displayed if backups for more than one database were found in the BACKUP LOCATION.

	
Use of the BACKUP LOCATION clause identifies the type of duplication as backup-based with neither a target connection nor recovery catalog.

	
The UNTIL TIME option is specified. It is the only UNTIL subclause permitted with the BACKUP LOCATION clause.

	
The NOFILENAMECHECK option check is specified because it is necessary when the duplicate database files use the same names as the source database files.

Example 24-6 Duplicating a Database to a Past Point in Time (Backup-Based)

DUPLICATE TARGET DATABASE TO dupdb
 SPFILE
 NOFILENAMECHECK
 UNTIL TIME 'SYSDATE-7';

Note the following characteristics of Example 24-6:

	
The FROM ACTIVE DATABASE clause is not specified. Omitting this clause instructs RMAN to perform backup-based duplication.

	
The NOFILENAMECHECK option check is specified because it is necessary when the duplicate database files use the same names as the source database files.

Restarting DUPLICATE After a Failure

RMAN automatically optimizes a DUPLICATE command that is a repeat of a previously failed DUPLICATE command. The repeat DUPLICATE command notices which data files were successfully copied earlier and does not copy them again. This applies to all forms of duplication, whether they are backup-based (with or without a target connection) or active database duplication. The automatic optimization of the DUPLICATE command can be especially useful when a failure occurs during the duplication of very large databases.

If a DUPLICATE operation fails, you need only run the DUPLICATE command again, using the same parameters contained in the original DUPLICATE command. The second DUPLICATE operation:

	
Locates the data files that were successfully duplicated by the initial DUPLICATE command.

	
Displays a message similar to the following for each data file that it does not need to duplicate again:

RMAN-05560: Using previous duplicated file /oradata/new/data01.f for datafile 1 with checkpoint SCN of 1654665

	
Restores only the missing or incomplete data files, thereby avoiding re-copying and restoring all the data files.

Before you attempt to resume a failed DUPLICATE operation, you must reset the auxiliary instance to NOMOUNT mode. One way to do this is to exit RMAN, use SQL*Plus to reset the auxiliary instance to NOMOUNT mode, start RMAN and then repeat the DUPLICATE command. If you do not want RMAN to automatically recover from a failed DUPLICATE operation, specify the keyword NORESUME to disable the functionality. Using the keyword NORESUME in the first invocation of DUPLICATE prevents a subsequent DUPLICATE command for the new database from using this automatic optimization.

List of Examples

	2-1 LIST FAILURE and ADVISE FAILURE
	2-2 REPAIR FAILURE
	4-1 Checking the Syntax of a Command File with Bad Syntax
	4-2 Connecting to a Target Database from the System Prompt
	4-3 Connecting to a Target Database from the System Prompt
	4-4 Connecting to Target and Catalog Databases from the System Prompt
	4-5 Connecting to the Target and Catalog Databases from the RMAN Prompt
	5-1 SHOW ALL Command
	5-2 Configuring a Nondefault Backup Location
	5-3 Configuring an ASM Disk Location
	5-4 Configuring Parallelism for an SBT Device
	5-5 Configuring the Backup Type for an SBT Device
	5-6 PARMS Setting for Oracle Secure Backup
	5-7 Backing Up the Server Parameter File to Tape
	5-8 Restoring the Server Parameter File from Tape
	6-1 Configuring Channel Parallelism for Tape Devices
	6-2 Configuring Basic Compression for Backup
	8-1 Specifying Filenames with DB_FILE_NAME_CONVERT
	8-2 Backing Up Backup Sets to Tape
	8-3 Managing Space Allocation
	9-1 Specifying Device Type DISK
	9-2 Making Image Copies
	9-3 Making Backup Sets
	9-4 Applying a Tag to a Backup Set
	9-5 Applying Tags to Image Copies
	9-6 Assigning Tags to Output Copies
	9-7 Making Compressed Backups
	9-8 Backing Up a Database in NOARCHIVELOG Mode
	9-9 Basic Incremental Update Script
	9-10 Advanced Incremental Update Script
	9-11 Creating a Temporary Archival Backup
	10-1 Configuring Backup Optimization
	10-2 Backing Up Archived Redo Logs to Multiple Media Families
	10-3 Skipping Files During an RMAN Backup
	10-4 Using MINIMIZE TIME with BACKUP DURATION
	10-5 Using MINIMIZE LOAD with BACKUP DURATION
	12-1 Fast Recovery Area Space Consumption
	15-1 Sample Repair Script
	17-1 BACKUP VALIDATE DATABASE
	17-2 RESTORE ... PREVIEW Output
	18-1 Dropping Multiple Objects with the Same Name
	18-2 Renaming Dropped Tables
	18-3 Tracking Flashback Database Progress - Restore Phase
	20-1 Restoring the Server Parameter File from a Control File Autobackup
	20-2 Setting the DBID and Restoring the Control File from Autobackup
	20-3 Restoring a Database on a New Host
	21-1 Querying DBMS_TTS.TRANSPORT_SET_CHECK for a Subset of Tablespaces
	21-2 Querying TS_PITR_OBJECTS_TO_BE_DROPPED
	21-3 Using SCN and TS_PITR_OBJECTS_TO_BE_DROPPED
	21-4 Performing TSPITR on Two Tablespaces
	21-5 Renaming Recovery Set Files
	21-6 Redirecting ASM files
	21-7 Renaming Auxiliary Set Oracle Managed Files (OMF) in TSPITR
	21-8 Using SET NEWNAME
	23-1 RMAN Syntax Error
	24-1 Duplicating to a Host with the Same Directory Structure (Active)
	24-2 Duplicating a Database to a Past Point in Time (Backup-Based)
	24-3 Using an Archival Backup for Backup-Based Duplication
	24-4 Duplicating a Database to a Past Point in Time (Backup-Based)
	24-5 Duplicating a Database Without a Target and Recovery Catalog Connection (Backup-Based)
	24-6 Duplicating a Database to a Past Point in Time (Backup-Based)
	25-1 Duplicating with SET NEWNAME FOR DATAFILE
	25-2 Duplicating with SET NEWNAME FOR DATAFILE and FOR TABLESPACE
	25-3 Duplicating with SET NEWNAME FOR DATABASE
	25-4 Duplicating from a File System to ASM (Active)
	25-5 Duplicating from ASM to ASM (Active)
	25-6 Duplicating with SET NEWNAME FOR DATAFILE and FOR TABLESPACE
	25-7 Using SET NEWNAME to Create Files in an ASM Disk Group
	25-8 Sample Initialization Parameter File for the Auxiliary Instance
	25-9 Excluding Read-Only Tablespaces
	25-10 Excluding Specified Tablespaces
	25-11 Including Specified Tablespaces
	25-12 Including Specified Tablespaces
	26-1 Specifying an Auxiliary Instance Parameter File
	26-2 Creating a Transportable Tablespace Set
	26-3 Specifying an End SCN
	26-4 Specifying an End Restore Point
	26-5 Specifying an End Time
	26-6 Specifying Output File Locations
	26-7 Using SET NEWNAME FOR DATAFILE to Name Auxiliary Data Files
	27-1 Executing DBMS_TDB.CHECK_DB
	27-2 Executing DBMS_TDB.CHECK_EXTERNAL
	27-3 Converting a Database on the Source Host
	27-4 Executing CONVERT DATABASE ON DESTINATION PLATFORM

28 Making User-Managed Database Backups

This chapter describes methods of backing up an Oracle database in a user-managed backup and recovery strategy, that is, a strategy that does not depend on using Recovery Manager (RMAN).

This chapter contains the following topics:

	
Querying V$ Views to Obtain Backup Information

	
Making User-Managed Backups of the Whole Database

	
Making User-Managed Backups of Tablespaces and Data Files

	
Making User-Managed Backups of the Control File

	
Making User-Managed Backups of Archived Redo Logs

	
Making User-Managed Backups in SUSPEND Mode

	
Making User-Managed Backups to Raw Devices

	
Making Backups with the Volume Shadow Copy Service (VSS)

	
Verifying User-Managed Data File Backups

Querying V$ Views to Obtain Backup Information

Before making a backup, you must identify all the files in your database and decide what to back up. You can use V$ views to obtain this information.

Listing Database Files Before a Backup

Use the V$DATAFILE and V$CONTROLFILE views to identify the data files and control files for your database. This same procedure works whether you named these files manually or allowed Oracle Managed Files to name them.

	
Caution:

Never back up online redo log files.

To list data files and control files:

	
Start SQL*Plus and query V$DATAFILE to obtain a list of data files. For example, enter:

SELECT NAME FROM V$DATAFILE;

You can also join the V$TABLESPACE and V$DATAFILE views to obtain a listing of data files along with their associated tablespaces:

SELECT t.NAME "Tablespace", f.NAME "Datafile"
FROM V$TABLESPACE t, V$DATAFILE f
WHERE t.TS# = f.TS#
ORDER BY t.NAME;

	
Obtain the file names of the current control files by querying the V$CONTROLFILE view. For example, issue the following query:

SELECT NAME FROM V$CONTROLFILE;

You must back up only one copy of a multiplexed control file.

	
If you plan to perform control file backup with the ALTER DATABASE BACKUP CONTROLFILE TO 'filename' statement, then save a list of all data files and online redo log files with the control file backup. Because the current database structure may not match the database structure at the time a given control file backup was created, saving a list of files recorded in the backup control file can aid the recovery procedure.

Determining Data File Status for Online Tablespace Backups

To check whether a data file is part of a current online tablespace backup, query the V$BACKUP view.

This view is useful only for user-managed online tablespace backups, because neither RMAN backups nor offline tablespace backups require the data files of a tablespace to be in backup mode. Some user-managed backup procedures require you to place the tablespace in backup mode to protect against the possibility of a fractured block. However, updates to the database create more than the usual amount of redo in backup mode.

The V$BACKUP view is most useful when the database is open. It is also useful immediately after an instance failure because it shows the backup status of the files at the time of the failure. Use this information to determine whether you have left any tablespaces in backup mode.

V$BACKUP is not useful if the control file currently in use is a restored backup or a new control file created after the media failure occurred. A restored or re-created control file does not contain the information that the database needs to populate V$BACKUP accurately. Also, if you have restored a backup of a file, this file's STATUS in V$BACKUP reflects the backup status of the older version of the file, not the most current version. Thus, this view can contain misleading data about restored files.

For example, the following query displays which data files are currently included in a tablespace that has been placed in backup mode:

SELECT t.name AS "TB_NAME", d.file# as "DF#", d.name AS "DF_NAME", b.status
FROM V$DATAFILE d, V$TABLESPACE t, V$BACKUP b
WHERE d.TS#=t.TS#
AND b.FILE#=d.FILE#
AND b.STATUS='ACTIVE';

The following sample output shows that the tools and users tablespaces currently have ACTIVE status:

TB_NAME DF# DF_NAME STATUS
---------------------- ---------- -------------------------------- ------
TOOLS 7 /oracle/oradata/trgt/tools01.dbf ACTIVE
USERS 8 /oracle/oradata/trgt/users01.dbf ACTIVE

In the STATUS column, NOT ACTIVE indicates that the file is not currently in backup mode (that is, you have not executed the ALTER TABLESPACE ... BEGIN BACKUP or ALTER DATABASE BEGIN BACKUP statement), whereas ACTIVE indicates that the file is currently in backup mode.

Making User-Managed Backups of the Whole Database

You can make a whole database backup of all files in a database after the database has been shut down with the NORMAL, IMMEDIATE, or TRANSACTIONAL options. A whole database backup taken while the database is open or after an instance failure or SHUTDOWN ABORT command is inconsistent. In such cases, the files are inconsistent with the database checkpoint SCN.

You can make a whole database backup if a database is operating in either ARCHIVELOG or NOARCHIVELOG mode. If you run the database in NOARCHIVELOG mode, however, then the backup must be consistent; that is, you must shut down the database cleanly before the backup.

The set of backup files that results from a consistent whole database backup is consistent because all files are checkpointed to the same SCN. You can restore the consistent database backup without further recovery. After restoring the backup files, you can perform additional recovery steps to recover the database to a more current time if the database is operated in ARCHIVELOG mode. Also, you can take inconsistent whole database backups if your database is in ARCHIVELOG mode.

Control files play a crucial role in database restore and recovery. For databases running in ARCHIVELOG mode, Oracle recommends that you back up control files with the ALTER DATABASE BACKUP CONTROLFILE TO 'filename' statement.

	
See Also:

"Making User-Managed Backups of the Control File" for more information about backing up control files

Making Consistent Whole Database Backups

This section describes how to back up the database with an operating system utility.

To make a consistent whole database backup:

	
If the database is open, then use SQL*Plus to shut down the database with the NORMAL, IMMEDIATE, or TRANSACTIONAL options.

	
Use an operating system utility to make backups of all data files and all control files specified by the CONTROL_FILES parameter of the initialization parameter file. Also, back up the initialization parameter file and other Oracle product initialization files. To find these files, do a search for *.ora starting in your Oracle home directory and recursively search all of its subdirectories.

For example, you can back up the data files, control files, and archived logs to /disk2/backup as follows:

% cp $ORACLE_HOME/oradata/trgt/*.dbf /disk2/backup
% cp $ORACLE_HOME/oradata/trgt/arch/* /disk2/backup/arch

	
Restart the database with the STARTUP command in SQL*Plus.

	
See Also:

Oracle Database Administrator's Guide for more information about starting up and shutting down a database

Making User-Managed Backups of Tablespaces and Data Files

The technique for making user-managed backups of tablespaces and data files depends on whether the files are offline or online.

Making User-Managed Backups of Offline Tablespaces and Data Files

Note the following guidelines when backing up offline tablespaces:

	
You cannot take offline the SYSTEM tablespace or a tablespace with active undo segments. The following technique cannot be used for such tablespaces.

	
Assume that a table is in tablespace Primary and its index is in tablespace Index. Taking tablespace Index offline while leaving tablespace Primary online can cause errors when data manipulation language (DML) is issued against the indexed tables located in Primary. The problem appears only when the access method chosen by the optimizer must access the indexes in the Index tablespace.

To back up offline tablespaces:

	
Before beginning a backup of a tablespace, identify the tablespace's data files by querying the DBA_DATA_FILES view. For example, assume that you want to back up the users tablespace. Enter the following statement in SQL*Plus:

SELECT TABLESPACE_NAME, FILE_NAME
 FROM SYS.DBA_DATA_FILES
 WHERE TABLESPACE_NAME = 'USERS';

TABLESPACE_NAME FILE_NAME
------------------------------- --------------------------------
USERS /oracle/oradata/trgt/users01.dbf

In this example, /oracle/oradata/trgt/users01.dbf is a fully specified file name corresponding to the data file in the users tablespace.

	
Take the tablespace offline using normal priority if possible, because it guarantees that you can subsequently bring the tablespace online without having to recover it. For example:

SQL> ALTER TABLESPACE users OFFLINE NORMAL;

	
Back up the offline data files. For example:

% cp /oracle/oradata/trgt/users01.dbf /d2/users01_'date "+%m_%d_%y"'.dbf

	
Bring the tablespace online. For example:

ALTER TABLESPACE users ONLINE;

	
Note:

If you took the tablespace offline using temporary or immediate priority, then you cannot bring the tablespace online unless you perform tablespace recovery.

	
Archive the unarchived redo logs so that the redo required to recover the tablespace backup is archived. For example, enter:

ALTER SYSTEM ARCHIVE LOG CURRENT;

Making User-Managed Backups of Online Tablespaces and Data Files

You can back up all or only specific data files of an online tablespace while the database is open. The procedure differs depending on whether the online tablespace is read/write or read-only.

	
Note:

You should not back up temporary tablespaces.

Making User-Managed Backups of Online Read/Write Tablespaces

You must put a read/write tablespace in backup mode to make user-managed data file backups when the tablespace is online and the database is open. The ALTER TABLESPACE ... BEGIN BACKUP statement places a tablespace in backup mode. In backup mode, the database copies whole changed data blocks into the redo stream. After you take the tablespace out of backup mode with the ALTER TABLESPACE ... END BACKUP or ALTER DATABASE END BACKUP statement, the database advances the data file checkpoint SCN to the current database checkpoint SCN.

When restoring a data file backed up in this way, the database asks for the appropriate set of redo log files to apply if recovery is needed. The redo logs contain all changes required to recover the data files and make them consistent.

To back up online read/write tablespaces in an open database:

	
Before beginning a backup of a tablespace, use the DBA_DATA_FILES data dictionary view to identify all of the data files in the tablespace. For example, assume that you want to back up the users tablespace. Enter the following:

SELECT TABLESPACE_NAME, FILE_NAME
FROM SYS.DBA_DATA_FILES
WHERE TABLESPACE_NAME = 'USERS';

TABLESPACE_NAME FILE_NAME
------------------------------- --------------------
USERS /oracle/oradata/trgt/users01.dbf
USERS /oracle/oradata/trgt/users02.dbf

	
Mark the beginning of the online tablespace backup. For example, the following statement marks the start of an online backup for the tablespace users:

SQL> ALTER TABLESPACE users BEGIN BACKUP;

	
Caution:

If you do not use BEGIN BACKUP to mark the beginning of an online tablespace backup and wait for this statement to complete before starting your copies of online tablespaces, then the data file copies produced are not usable for subsequent recovery operations. Attempting to recover such a backup is risky and can return errors that result in inconsistent data. For example, the attempted recovery operation can issue a fuzzy file warning, and can lead to an inconsistent database that you cannot open.

	
Back up the online data files of the online tablespace with operating system commands. For example, Linux and UNIX users might enter:

% cp /oracle/oradata/trgt/users01.dbf /d2/users01_'date "+%m_%d_%y"'.dbf
% cp /oracle/oradata/trgt/users02.dbf /d2/users02_'date "+%m_%d_%y"'.dbf

	
After backing up the data files of the online tablespace, run the SQL statement ALTER TABLESPACE with the END BACKUP option. For example, the following statement ends the online backup of the tablespace users:

SQL> ALTER TABLESPACE users END BACKUP;

	
Archive the unarchived redo logs so that the redo required to recover the tablespace backup is archived. For example, enter:

SQL> ALTER SYSTEM ARCHIVE LOG CURRENT;

	
Caution:

If you fail to take the tablespace out of backup mode, then Oracle Database continues to write copies of data blocks in this tablespace to the online redo logs, causing performance problems. Also, you receive an ORA-01149 error if you try to shut down the database with the tablespaces still in backup mode.

Making Multiple User-Managed Backups of Online Read/Write Tablespaces

When backing up several online tablespaces, you can back them up either serially or in parallel. Use either of the following procedures depending on your needs.

Backing Up Online Tablespaces in Parallel

You can simultaneously create data file copies of multiple tablespaces requiring backups in backup mode. Note, however, that by putting all tablespaces in online mode at once, you can generate large redo logs if there is heavy update activity on the affected tablespaces, because the redo must contain a copy of each changed data block in each changed data file. Be sure to consider the size of the likely redo before using the procedure outlined here.

To back up online tablespaces in parallel:

	
Prepare the online tablespaces for backup by issuing all necessary ALTER TABLESPACE statements at once. For example, put tablespaces users, tools, and indx in backup mode as follows:

SQL> ALTER TABLESPACE users BEGIN BACKUP;
SQL> ALTER TABLESPACE tools BEGIN BACKUP;
SQL> ALTER TABLESPACE indx BEGIN BACKUP;

If you are backing up all tablespaces, you might want to use this command:

SQL> ALTER DATABASE BEGIN BACKUP;

	
Back up all files of the online tablespaces. For example, a Linux or UNIX user might back up data files with the *.dbf suffix as follows:

% cp $ORACLE_HOME/oradata/trgt/*.dbf /disk2/backup/

	
Take the tablespaces out of backup mode as in the following example:

SQL> ALTER TABLESPACE users END BACKUP;
SQL> ALTER TABLESPACE tools END BACKUP;
SQL> ALTER TABLESPACE indx END BACKUP;

Again, if you are handling all data files at once you can use the ALTER DATABASE command instead of ALTER TABLESPACE:

SQL> ALTER DATABASE END BACKUP;

	
Archive the online redo logs so that the redo required to recover the tablespace backups is available for later media recovery. For example, enter:

SQL> ALTER SYSTEM ARCHIVE LOG CURRENT;

Backing Up Online Tablespaces Serially

You can place all tablespaces requiring online backups in backup mode one at a time. Oracle recommends the serial backup option because it minimizes the time between ALTER TABLESPACE ... BEGIN/END BACKUP statements. During online backups, more redo information is generated for the tablespace because whole data blocks are copied into the redo log.

To back up online tablespaces serially:

	
Prepare a tablespace for online backup. For example, to put tablespace users in backup mode enter the following:

SQL> ALTER TABLESPACE users BEGIN BACKUP;

In this case you probably do not want to use ALTER DATABASE BEGIN BACKUP to put all tablespaces in backup mode simultaneously, because of the unnecessary volume of redo log information generated for tablespaces in online mode.

	
Back up the data files in the tablespace. For example, enter:

% cp /oracle/oradata/trgt/users01.dbf /d2/users01_'date "+%m_%d_%y"'.dbf

	
Take the tablespace out of backup mode. For example, enter:

SQL> ALTER TABLESPACE users END BACKUP;

	
Repeat this procedure for each remaining tablespace.

	
Archive the unarchived redo logs so that the redo required to recover the tablespace backups is archived. For example, enter:

SQL> ALTER SYSTEM ARCHIVE LOG CURRENT;

Ending a Backup After an Instance Failure or SHUTDOWN ABORT

The following situations can cause a tablespace backup to fail and be incomplete:

	
The backup completed, but you did not run the ALTER TABLESPACE ... END BACKUP statement.

	
An instance failure or SHUTDOWN ABORT interrupted the backup.

Whenever recovery from a failure is required, if a data file is in backup mode when an attempt is made to open it, then the database does not open the data file until either a recovery command is issued, or the data file is taken out of backup mode.

For example, the database may display a message such as the following at startup:

ORA-01113: file 12 needs media recovery
ORA-01110: data file 12: '/oracle/dbs/tbs_41.f'

If the database indicates that the data files for multiple tablespaces require media recovery because you forgot to end the online backups for these tablespaces, then so long as the database is mounted, running the ALTER DATABASE END BACKUP statement takes all the data files out of backup mode simultaneously.

In high availability situations, and in situations when no database administrator (DBA) is monitoring the database, the requirement for user intervention is intolerable. Hence, you can write a failure recovery script that does the following:

	
Mounts the database

	
Runs the ALTER DATABASE END BACKUP statement

	
Runs ALTER DATABASE OPEN, allowing the system to come up automatically

An automated crash recovery script containing ALTER DATABASE END BACKUP is especially useful in the following situations:

	
All nodes in an Oracle Real Application Clusters (Oracle RAC) configuration fail.

	
One node fails in a cold failover cluster (that is, a cluster that is not an Oracle RAC configuration in which the secondary node must mount and recover the database when the first node fails).

Alternatively, you can take the following manual measures after the system fails with tablespaces in backup mode:

	
Recover the database and avoid issuing END BACKUP statements altogether.

	
Mount the database, then run the ALTER TABLESPACE ... END BACKUP statement for each tablespace still in backup mode.

Ending Backup Mode with the ALTER DATABASE END BACKUP Statement

You can run the ALTER DATABASE END BACKUP statement when you have multiple tablespaces still in backup mode. The primary purpose of this command is to allow a crash recovery script to restart a failed system without DBA intervention. You can also perform the following procedure manually.

To take tablespaces out of backup mode simultaneously:

	
Mount but do not open the database. For example, enter:

SQL> STARTUP MOUNT

	
If you are performing this procedure manually (that is, not as part of a failure recovery script), query the V$BACKUP view to list the data files of the tablespaces that were being backed up before the database was restarted:

SQL> SELECT * FROM V$BACKUP WHERE STATUS = 'ACTIVE';
FILE# STATUS CHANGE# TIME
---------- ------------------ ---------- ---------
 12 ACTIVE 20863 25-NOV-02
 13 ACTIVE 20863 25-NOV-02
 20 ACTIVE 20863 25-NOV-02
 3 rows selected.

	
Issue the ALTER DATABASE END BACKUP statement to take all data files currently in backup mode out of backup mode. For example, enter:

SQL> ALTER DATABASE END BACKUP;

You can use this statement only when the database is mounted but not open. If the database is open, then use ALTER TABLESPACE ... END BACKUP or ALTER DATABASE DATAFILE ... END BACKUP for each affected tablespace or data file.

	
Caution:

Do not use ALTER DATABASE END BACKUP if you have restored any of the affected files from a backup.

Ending Backup Mode with the SQL*Plus RECOVER Command

The ALTER DATABASE END BACKUP statement is not the only way to respond to a failed online backup; you can also run the SQL*Plus RECOVER command. This method is useful when you are not sure whether someone has restored a backup, because if someone has indeed restored a backup, then the RECOVER command brings the backup up-to-date. Only run the ALTER DATABASE END BACKUP or ALTER TABLESPACE ... END BACKUP statement if you are sure that the files are current.

	
Note:

The RECOVER command method is slow because the database must scan redo generated from the beginning of the online backup.

To take tablespaces out of backup mode with the RECOVER command:

	
Mount the database. For example, enter:

SQL> STARTUP MOUNT

	
Recover the database as usual. For example, enter:

SQL> RECOVER DATABASE

	
Use the V$BACKUP view to confirm that there are no active data files:

SQL> SELECT * FROM V$BACKUP WHERE STATUS = 'ACTIVE';
FILE# STATUS CHANGE# TIME
---------- ------------------ ---------- ---------
0 rows selected.

	
See Also:

Chapter 29, "Performing User-Managed Database Flashback and Recovery" for information about recovering a database

Making User-Managed Backups of Read-Only Tablespaces

When backing up an online read-only tablespace, you can simply back up the online data files. You do not have to place the tablespace in backup mode because the database is not permitting changes to the data files.

If the set of read-only tablespaces is self-contained, then in addition to backing up the tablespaces with operating system commands, you can also export the tablespace metadata with the transportable tablespace functionality. If a media error or a user error occurs (such as accidentally dropping a table in the read-only tablespace), you can transport the tablespace back into the database.

	
See Also:

Oracle Database Administrator's Guide to learn how to transport tablespaces

To back up online read-only tablespaces in an open database:

	
Query the DBA_TABLESPACES view to determine which tablespaces are read-only. For example, run this query:

SELECT TABLESPACE_NAME, STATUS
FROM DBA_TABLESPACES
WHERE STATUS = 'READ ONLY';

	
Before beginning a backup of a read-only tablespace, identify all of the tablespace's data files by querying the DBA_DATA_FILES data dictionary view. For example, assume that you want to back up the history tablespace:

SELECT TABLESPACE_NAME, FILE_NAME
FROM SYS.DBA_DATA_FILES
WHERE TABLESPACE_NAME = 'HISTORY';

TABLESPACE_NAME FILE_NAME
------------------------------- --------------------
HISTORY /oracle/oradata/trgt/history01.dbf
HISTORY /oracle/oradata/trgt/history02.dbf

	
Back up the online data files of the read-only tablespace with operating system commands. You do not have to take the tablespace offline or put the tablespace in backup mode because users are automatically prevented from making changes to the read-only tablespace. For example:

% cp $ORACLE_HOME/oradata/trgt/history*.dbf /disk2/backup/

	
Note:

When restoring a backup of a read-only tablespace, take the tablespace offline, restore the data files, then bring the tablespace online. A backup of a read-only tablespace is still usable if the read-only tablespace is made read/write after the backup, but the restored backup requires recovery.

	
Optionally, export the metadata in the read-only tablespace. By using the transportable tablespace feature, you can quickly restore the data files and import the metadata in case of media failure or user error. For example, export the metadata for tablespace history as follows:

% expdp DIRECTORY=dpump_dir1 DUMPFILE=hs.dmp TRANSPORT_TABLESPACES=history
 LOGFILE=tts.log

	
See Also:

Oracle Database Reference for more information about the DBA_DATA_FILES and DBA_TABLESPACES views

Making User-Managed Backups of the Control File

Back up the control file of a database after making a structural modification to a database operating in ARCHIVELOG mode. To back up a database's control file, you must have the ALTER DATABASE system privilege.

Backing Up the Control File to a Binary File

The primary method for backing up the control file is to use a SQL statement to generate a binary file. A binary backup is preferable to a trace file backup because it contains additional information such as the archived log history, offline range for read-only and offline tablespaces, and backup sets and copies (if you use RMAN). If COMPATIBLE is 10.2 or higher, binary control file backups include temp file entries.

To back up the control file after a structural change:

	
Make the desired change to the database. For example, you may create a tablespace:

CREATE TABLESPACE tbs_1 DATAFILE 'file_1.f' SIZE 10M;

	
Back up the database's control file, specifying a file name for the output binary file. The following example backs up a control file to /disk1/backup/cf.bak:

ALTER DATABASE BACKUP CONTROLFILE TO '/disk1/backup/cf.bak' REUSE;

Specify REUSE to make the new control file overwrite one that currently exists.

Backing Up the Control File to a Trace File

You can back up the control file to a text file that contains a CREATE CONTROLFILE statement. You can edit the trace file to create a script that creates a new control file based on the control file that was current when you created the trace file.

If you specify neither the RESETLOGS nor NORESETLOGS option in the SQL statement, then the resulting trace file contains versions of the control file for both RESETLOGS and NORESETLOGS options. Temp file entries are included in the output using ALTER TABLESPACE ... ADD TEMPFILE statements.

To avoid recovering offline normal or read-only tablespaces, edit them out of the CREATE CONTROLFILE statement. When you open the database with the re-created control file, the database marks these omitted files as MISSING. You can run an ALTER DATABASE RENAME FILE statement to rename them to their original file names.

The trace file containing the CREATE CONTROLFILE statement is stored in a subdirectory determined by the DIAGNOSTIC_DEST initialization parameter. You can look in the database alert log for the name and location of the trace file to which the CREATE CONTROLFILE statement was written. See Oracle Database Administrator's Guide to learn how to locate the alert log.

To back up the control file to a trace file:

	
Mount or open the database.

	
Execute the following SQL statement:

ALTER DATABASE BACKUP CONTROLFILE TO TRACE;

	
See Also:

"Recovery of Read-Only Files with a Re-Created Control File" for special issues relating to read-only, offline normal, and temporary files included in CREATE CONTROLFILE statements

Making User-Managed Backups of Archived Redo Logs

To save disk space in your primary archiving location, you may want to back up archived logs to tape or to an alternative disk location. If you archive to multiple locations, then only back up one copy of each log sequence number.

To back up archived redo logs:

	
To determine which archived redo log files the database has generated, query V$ARCHIVED_LOG. For example, run the following query:

SELECT THREAD#,SEQUENCE#,NAME
FROM V$ARCHIVED_LOG;

	
Back up one copy of each log sequence number by using an operating system utility. This example backs up all logs in the primary archiving location to a disk devoted to log backups:

% cp $ORACLE_HOME/oracle/trgt/arch/* /disk2/backup/arch

	
See Also:

Oracle Database Reference for more information about the data dictionary views

Making User-Managed Backups in SUSPEND Mode

This section contains the following topics:

	
About the Suspend/Resume Feature

	
Making Backups in a Suspended Database

About the Suspend/Resume Feature

Some third-party tools allow you to mirror a set of disks or logical devices, that is, maintain an exact duplicate of the primary data in another location, and then split the mirror. Splitting the mirror involves separating the copies so that you can use them independently.

With the SUSPEND/RESUME functionality, you can suspend I/O to the database, then split the mirror and make a backup of the split mirror. By using this feature, which complements the backup mode functionality, you can suspend database I/Os so that no new I/O can be performed. You can then access the suspended database to make backups without I/O interference.

You do not need to use SUSPEND/RESUME to make split mirror backups, unless your system requires the database cache to be free of dirty buffers before a volume can be split. Some RAID devices benefit from suspending writes while the split operation is occurring; your RAID vendor can advise you on whether your system would benefit from this feature.

The ALTER SYSTEM SUSPEND statement suspends the database by halting I/Os to data file headers, data files, and control files. When the database is suspended, all preexisting I/O operations can complete; however, any new database I/O access attempts are queued.

The ALTER SYSTEM SUSPEND and ALTER SYSTEM RESUME statements operate on the database and not just the instance. If the ALTER SYSTEM SUSPEND statement is entered on one system in an Oracle RAC configuration, then the internal locking mechanisms propagate the halt request across instances, thereby suspending I/O operations for all active instances in a given cluster.

Making Backups in a Suspended Database

After a successful database suspension, you can back up the database to disk or break the mirrors. Because suspending a database does not guarantee immediate termination of I/O, Oracle recommends that you precede the ALTER SYSTEM SUSPEND statement with a BEGIN BACKUP statement so that the tablespaces are placed in backup mode.

You must use conventional user-managed backup methods to back up split mirrors. RMAN cannot make database backups or copies because these operations require reading the data file headers. After the database backup is finished or the mirrors are resilvered, then you can resume normal database operations using the ALTER SYSTEM RESUME statement.

Backing up a suspended database without splitting mirrors can cause an extended database outage because the database is inaccessible during this time. If backups are taken by splitting mirrors, however, then the outage is nominal. The outage time depends on the size of cache to flush, the number of data files, and the time required to break the mirror.

Note the following restrictions for the SUSPEND/RESUME feature:

	
In an Oracle RAC configuration, you should not start a new instance while the original nodes are suspended.

	
No checkpoint is initiated by the ALTER SYSTEM SUSPEND or ALTER SYSTEM RESUME statements.

	
You cannot issue SHUTDOWN with IMMEDIATE, NORMAL, or TRANSACTIONAL options while the database is suspended.

	
Issuing SHUTDOWN ABORT on a database that is suspended reactivates the database. This prevents media recovery or failure recovery from getting into a unresponsive state.

To make a split mirror backup in SUSPEND mode:

	
Place the database tablespaces in backup mode. For example, to place tablespace users in backup mode, enter:

ALTER TABLESPACE users BEGIN BACKUP;

If you are backing up all of the tablespaces for your database, you can instead use:

ALTER DATABASE BEGIN BACKUP;

	
Caution:

Do not use the ALTER SYSTEM SUSPEND statement as a substitute for placing a tablespace in backup mode.

	
If your mirror system has problems with splitting a mirror while disk writes are occurring, then suspend the database. For example, issue the following statement:

ALTER SYSTEM SUSPEND;

	
Verify that the database is suspended by querying the V$INSTANCE view. For example:

SELECT DATABASE_STATUS FROM V$INSTANCE;

DATABASE_STATUS

SUSPENDED

	
Split the mirrors at the operating system or hardware level.

	
End the database suspension. For example, issue the following statement:

ALTER SYSTEM RESUME;

	
Establish that the database is active by querying the V$INSTANCE view. For example, enter:

SELECT DATABASE_STATUS FROM V$INSTANCE;

DATABASE_STATUS

ACTIVE

	
Take the specified tablespaces out of backup mode. For example, enter the following statement to take tablespace users out of backup mode:

ALTER TABLESPACE users END BACKUP;

	
Copy the control file and archive the online redo logs as usual for a backup.

	
See Also:

	
"Making Split Mirror Backups with RMAN"

	
Oracle Database Administrator's Guide for more information about the SUSPEND/RESUME feature

	
Oracle Database SQL Language Reference for the ALTER SYSTEM SUSPEND syntax

Making User-Managed Backups to Raw Devices

A raw device is a disk or partition that does not have a file system. A raw device can contain only a single file. Backing up files on raw devices poses operating system specific issues. The following sections discuss some of these issues on UNIX, Linux, and Windows.

Backing Up to Raw Devices on Linux and UNIX

The dd command on Linux and UNIX is the most common backup utility for backing up to or from raw devices. See your operating system-specific documentation for complete details about this utility.

Using dd effectively requires that you specify the correct options, based on your database. Table 28-1 lists details about your database that affect the options you use for dd.

Table 28-1 Aspects of the Database Important for dd Usage

	Data	Explanation
	
Block size

	
You can specify the size of the buffer that dd uses to copy data. For example, you can specify that dd should copy data in units of 8 KB or 64 KB. The block size for dd need not correspond to either the Oracle block size or the operating system block size: it is the size of the buffer used by dd when making the copy.

	
Raw offset

	
On some systems, the beginning of the file on the raw device is reserved for use by the operating system. This storage space is called the raw offset. Oracle should not back up or restore these bytes.

	
Size of Oracle Database block 0

	
At the beginning of every Oracle database file, the operating system-specific code places an Oracle block called block 0. The generic Oracle code does not recognize this block, but the block is included in the size of the file on the operating system. Typically, this block is the same size as the other Oracle blocks in the file.

The information in Table 28-1 enables you to set the dd options specified in Table 28-2.

Table 28-2 Options for dd Command

	This Option...	Specifies...
	
if

	
The name of the input file, that is, the file that you are reading

	
of

	
The name of the output file, that is, the file to which you are writing

	
bs

	
The buffer size used by dd to copy data

	
skip

	
The number of dd buffers to skip on the input raw device if a raw offset exists. For example, if you are backing up a file on a raw device with a 64 KB raw offset, and the dd buffer size is 8 KB, then you can specify skip=8 so that the copy starts at offset 64 KB.

	
seek

	
The number of dd buffers to skip on the output raw device if a raw offset exists. For example, if you are backing up a file onto a raw device with a 64 KB raw offset, and the dd buffer size is 8 KB, then you can specify skip=8 so that the copy starts at offset 64 KB.

	
count

	
The number of blocks on the input raw device for dd to copy. It is best to specify the exact number of blocks to copy when copying from a raw device to a file system; otherwise extra space at the end of the raw volume that is not used by the Oracle data file is copied to the file system.

Remember to include block 0 in the total size of the input file. For example, if the dd block size is 8 KB, and you are backing up a 30720 KB data file, then you can set count=3841. This value for count actually backs up 30728 KB: the extra 8 KB are for Oracle block 0.

Because a raw device can be the input or output device for a backup, you have four possible scenarios for the backup. The possible options for dd depend on which scenario you choose, as illustrated in Table 28-3.

Table 28-3 Scenarios Involving dd Backups

	Backing Up from ...	Backing Up to ...	Options Specified for dd Command
	
Raw device

	
Raw device

	
if, of, bs, skip, seek, count

	
Raw device

	
File system

	
if, of, bs, skip, count

	
File system

	
Raw device

	
if, of, bs, seek

	
File system

	
File system

	
if, of, bs

Backing Up with the dd Utility on Linux and UNIX: Examples

For these examples of dd utility usage, assume the following:

	
You are backing up a 30720 KB data file.

	
The beginning of the data file has a block 0 of 8 KB.

	
The raw offset is 64 KB.

	
You set the dd block size to 8 KB when a raw device is involved in the copy.

In the following example, you back up from one raw device to another raw device:

% dd if=/dev/rsd1b of=/dev/rsd2b bs=8k skip=8 seek=8 count=3841

In the following example, you back up from a raw device to a file system:

% dd if=/dev/rsd1b of=/backup/df1.dbf bs=8k skip=8 count=3841

In the following example, you back up from a file system to a raw device:

% dd if=/backup/df1.dbf of=/dev/rsd2b bs=8k seek=8

In the following example, you back up from a file system to a file system, and set the block size to a high value to boost I/O performance:

% dd if=/oracle/dbs/df1.dbf of=/backup/df1.dbf bs=1024k

Backing Up to Raw Devices on Windows

Like Linux and UNIX, Windows supports raw disk partitions in which the database can store data files, online logs, and control files. Each raw partition is assigned either a drive letter or physical drive number and does not contain a file system. As in Linux and UNIX, each raw partition on Windows is mapped to a single file.

Windows differs from Linux and UNIX in the naming convention for Oracle files. On Windows, raw data file names are formatted as follows:

\\.\drive_letter:
\\.\PHYSICALDRIVEdrive_number

For example, the following are possible raw file names:

\\.\G:
\\.\PHYSICALDRIVE3

The procedure for making user-managed backups of raw data files is basically the same as for copying files on a Windows file system, except that you should use the Oracle OCOPY utility rather than the Windows-supplied copy.exe or ntbackup.exe utilities. OCOPY supports 64-bit file I/O, physical raw drives, and raw files. The OCOPY utility cannot back up directly to tape.

To display online documentation for OCOPY, enter OCOPY by itself at the Windows prompt. Sample output follows:

Usage of OCOPY:
 ocopy from_file [to_file [a | size_1 [size_n]]]
 ocopy -b from_file to_drive
 ocopy -r from_drive to_dir

Note the important OCOPY options described in Table 28-4.

Table 28-4 OCOPY Options

	Option	Action
	
b

	
Splits the input file into multiple output files. This option is useful for backing up to devices that are smaller than the input file.

	
r

	
Combines multiple input files and writes to a single output file. This option is useful for restoring backups created with the -b option.

Backing Up with OCOPY: Example

In this example, assume the following:

	
Data file 12 is mounted on the \\.\G: raw partition.

	
The C: drive mounts a file system.

	
The database is open.

To back up the data file on the raw partition \\.\G: to a local file system, you can run the following command at the prompt after placing data file 12 in backup mode:

OCOPY "\\.G:" C:\backup\datafile12.bak

Specifying the -b and -r Options for OCOPY: Example

In this example, assume the following:

	
\\.\G: is a raw partition containing data file 7

	
The E: drive is a removable disk drive.

	
The database is open.

To back up the data file onto drive E:, you can execute the following command at the Windows prompt after placing data file 7 in backup mode:

first argument is filename, second argument is drive
OCOPY -b "\\.\G:" E:\

When drive E: fills up, you can use another disk. In this way, you can divide the backup of data file 7 into multiple files.

Similarly, to restore the backup, take the tablespace containing data file 7 offline and run this command:

first argument is drive, second argument is directory
OCOPY -r E:\ "\\.\G:"

Making Backups with the Volume Shadow Copy Service (VSS)

Volume Shadow Copy Service (VSS) is a set of Windows APIs that enable applications to create consistent snapshots called shadow copies. The Oracle VSS writer runs as a service on Windows systems and is integrated with VSS-enabled applications. You can use these applications to create snapshots of database files managed by the Oracle instance. For example, you can make shadow copies of an Oracle database while it is open read/write.

	
See Also:

Oracle Database Platform Guide for Microsoft Windows to learn how to back up and recover the database with VSS-enabled applications

Verifying User-Managed Data File Backups

You should periodically verify your backups to ensure that they are usable for recovery.

Testing the Restoration of Data File Backups

The best way to test the usability of data file backups is to restore them to a separate host and attempt to open the database, performing media recovery if necessary. This option requires that you have a separate host available for the restore procedure.

	
See Also:

"Performing Complete Database Recovery" to learn how to recover files with SQL*Plus

Running the DBVERIFY Utility

The DBVERIFY program is an external command-line utility that performs a physical data structure integrity check on an offline data file. Use DBVERIFY to ensure that a user-managed backup of a data file is valid before it is restored or as a diagnostic aid when you have encountered data corruption problems.

The name and location of DBVERIFY is dependent on your operating system. For example, to perform an integrity check on data file users01.dbf on Linux or UNIX, run the dbv command as follows:

% dbv file=users01.dbf

Sample dbv output follows:

DBVERIFY - Verification starting : FILE = users01.dbf

DBVERIFY - Verification complete

Total Pages Examined : 250
Total Pages Processed (Data) : 1
Total Pages Failing (Data) : 0
Total Pages Processed (Index): 0
Total Pages Failing (Index): 0
Total Pages Processed (Other): 2
Total Pages Processed (Seg) : 0
Total Pages Failing (Seg) : 0
Total Pages Empty : 247
Total Pages Marked Corrupt : 0
Total Pages Influx : 0

	
See Also:

Oracle Database Utilities to learn about DBVERIFY

23 Troubleshooting RMAN Operations

This chapter describes how to troubleshoot Recovery Manager. This chapter contains the following topics:

	
Interpreting RMAN Message Output

	
Using V$ Views for RMAN Troubleshooting

	
Testing the Media Management API

	
Terminating an RMAN Command

Interpreting RMAN Message Output

Recovery Manager provides detailed error messages that can aid in troubleshooting problems. Also, Oracle Database and the third-party media vendors generate useful debugging output of their own. The following discussion explains how to identify and interpret the different errors that you may encounter.

Identifying Types of Message Output

Output that is useful for troubleshooting failed or unresponsive RMAN jobs is located in several different places, as explained in Table 23-1.

Table 23-1 Types of Message Output

	Type of Output	Produced By	Location	Description
	
RMAN messages

	
RMAN

	
Completed job information is in V$RMAN_STATUS and RC_RMAN_STATUS. Current job information is in V$RMAN_OUTPUT.

When running RMAN from the command line, you can direct output to the following places:

	
Standard output

	
A log file specified by LOG on the command line or the SPOOL LOG command

	
A file created by redirecting RMAN output (for example, in UNIX, using the'>' operator)

	
Contains actions relevant to the RMAN job and error messages generated by RMAN, the database server, and the media vendor. RMAN error messages have an RMAN- prefix. Normal action descriptions do not have a prefix.

You can execute the following PL/SQL to remove all entries from V$RMAN_STATUS:

SYS.DBMS_BACKUP_RESTORE.resetCfileSection(28);

The preceding function removes all job-related entries. No rows are visible until new backup jobs are shown in V$RMAN_BACKUP_JOB_DETAILS.

	
alert_SID.log

	
Oracle Database

	
The alert subdirectory of the Automatic Diagnostic Repository (ADR) home

	
Contains a chronological log of errors, initialization parameter settings, and administration operations. Records values for overwritten control file records.

	
Oracle trace file

	
Oracle Database

	
The trace subdirectory of the ADR home

	
Contains detailed output generated by Oracle Database processes. This file is created when an ORA-600 or ORA-3113 error message occurs, whenever RMAN cannot allocate a channel, and when the database fails to load the media management library.

	
sbtio.log

	
Third-party media management software

	
The trace subdirectory of the ADR home

	
Contains vendor-specific information written by the media management software. This log does not contain Oracle Database or RMAN errors.

	
Media manager log file

	
Third-party media management software

	
The file names for any media manager logs other than sbtio.log are determined by the media management software.

	
Contains information about the functioning of the media management device

Recognizing RMAN Error Message Stacks

RMAN reports errors as they occur. If an error is not retrievable, that is, if RMAN cannot perform failover to another channel to complete a particular job step, then RMAN also reports a summary of the errors after all job sets complete. This feature is known as deferred error reporting.

One way to determine whether RMAN encountered an error is to examine its return code, as described in "Identifying RMAN Return Codes". A second way is to search the RMAN output for the string RMAN-00569, which is the message number for the error stack banner. All RMAN errors are preceded by this error message. If you do not see an RMAN-00569 message in the output, then there are no errors. Example 23-1 shows a syntax error.

Example 23-1 RMAN Syntax Error

RMAN-00571: ===
RMAN-00569: =============== ERROR MESSAGE STACK FOLLOWS ===============
RMAN-00571: ===
RMAN-00558: error encountered while parsing input commands
RMAN-01005: syntax error: found ")": expecting one of: "archivelog, backup, backupset, controlfilecopy, current, database, datafile, datafilecopy, (, plus, ;, tablespace"
RMAN-01007: at line 1 column 18 file: standard input

Identifying Error Codes

Typically, you find the following types of error codes in RMAN message stacks:

	
Errors prefixed with RMAN-

	
Errors prefixed with ORA-

	
Errors preceded by the line Additional information:

	
See Also:

Oracle Database Error Messages for explanations of RMAN and ORA error codes

RMAN Error Message Numbers

Table 23-2 indicates the error ranges for common RMAN error messages, all of which are described in Oracle Database Error Messages.

Table 23-2 RMAN Error Message Ranges

	Error Range	Cause
	
0550-0999

	
Command-line interpreter

	
1000-1999

	
Keyword analyzer

	
2000-2999

	
Syntax analyzer

	
3000-3999

	
Main layer

	
4000-4999

	
Services layer

	
5000-5499

	
Compilation of RESTORE or RECOVER command

	
5500-5999

	
Compilation of DUPLICATE command

	
6000-6999

	
General compilation

	
7000-7999

	
General execution

	
8000-8999

	
PL/SQL programs

	
9000-9999

	
Low-level keyword analyzer

	
10000-10999

	
Server-side execution

	
11000-11999

	
Interphase errors between PL/SQL and RMAN

	
12000-12999

	
Recovery catalog packages

ORA-19511: Media Manager Errors

If a media manager error occurs, ORA-19511 is signaled, and the media manager is expected to provide RMAN a descriptive error. RMAN displays the error passed back to it by the media manager. For example, you might see this:

ORA-19511: Error received from media manager layer, error text:
 sbtpvt_open_input: file .* does not exist or cannot be accessed, errno = 2

The message from the media manager should provide you with enough information to let you fix the root problem. If it does not, you should refer to the documentation for your media manager or contact your media management vendor support representative for further information. ORA-19511 errors originate with the media manager, not with Oracle Database. The database just passes the message on from the media manager. The cause can be addressed only by the media management vendor.

If you are still using an SBT 1.1-compliant media management layer, you may see some additional error message text. Output from an SBT 1.1-compliant media management layer is similar to the following:

ORA-19507: failed to retrieve sequential file, handle="c-140148591-20031014-06", parms=""
ORA-27007: failed to open file
Additional information: 7000
Additional information: 2
ORA-19511: Error received from media manager layer, error text:
 SBT error = 7000, errno = 0, sbtopen: backup file not found

The "Additional information" provided uses error codes specific to SBT 1.1. The values displayed correspond to the media manager message numbers and error text listed in Table 23-3. RMAN again signals the error, as an ORA-19511 Error received from media manager layer error, and a general error message related to the error code returned from the media manager and including the SBT 1.1 error number is then displayed.

The SBT 1.1 error messages are listed here for your reference. Table 23-3 lists media manager message numbers and their corresponding error text. In the error codes, O/S stands for operating system. The errors marked with an asterisk (*) are internal and should not typically be seen during normal operation.

Table 23-3 Media Manager Error Message Ranges

	Cause	No.	Message
	
sbtopen

	
7000

7001

7002*

7003

7004

7005

7006

7007

7008

7009

7010

7011

7012*

	
Backup file not found (only returned for read)

File exists (only returned for write)

Bad mode specified

Invalid block size specified

No tape device found

Device found, but busy; try again later

Tape volume not found

Tape volume is in-use

I/O Error

Can't connect with Media Manager

Permission denied

O/S error for example malloc, fork error

Invalid argument(s) to sbtopen

	
sbtclose

	
7020*

7021*

7022

7023

7024*

7025

	
Invalid file handle or file not open

Invalid flags to sbtclose

I/O error

O/S error

Invalid argument(s) to sbtclose

Can't connect with Media Manager

	
sbtwrite

	
7040*

7041

7042

7043

7044*

	
Invalid file handle or file not open

End of volume reached

I/O error

O/S error

Invalid argument(s) to sbtwrite

	
sbtread

	
7060*

7061

7062

7063

7064

7065*

	
Invalid file handle or file not open

EOF encountered

End of volume reached

I/O error

O/S error

Invalid argument(s) to sbtread

	
sbtremove

	
7080

7081

7082

7083

7084

7085

7086*

	
Backup file not found

Backup file in use

I/O Error

Can't connect with Media Manager

Permission denied

O/S error

Invalid argument(s) to sbtremove

	
sbtinfo

	
7090

7091

7092

7093

7094

7095*

	
Backup file not found

I/O Error

Can't connect with Media Manager

Permission denied

O/S error

Invalid argument(s) to sbtinfo

	
sbtinit

	
7110*

7111

	
Invalid argument(s) to sbtinit

O/S error

Interpreting RMAN Error Stacks

Sometimes you may find it difficult to identify the useful messages in the RMAN error stack. Note the following tips and suggestions:

	
Read the messages from the bottom up, because this is the order in which RMAN issues the messages. The last one or two errors displayed in the stack are often the most informative.

	
When you are using an SBT 1.1 media management layer and you are presented with SBT 1.1 style error messages containing the "Additional information:" numeric error codes, look for the ORA-19511 message that follows for the text of error messages passed back to RMAN by the media manager. These should identify the real failure in the media management layer.

	
Look for the RMAN-03002 or RMAN-03009 message (RMAN-03009 is the same as RMAN-03002 but includes the channel ID), immediately following the error banner. These messages indicate which command failed. Syntax errors generate RMAN-00558.

	
Identify the basic type of error according to the error range chart in Table 23-2 and then refer to Oracle Database Error Messages for information about the most important messages.

Interpreting RMAN Errors: Example

You attempt a backup of tablespace users and receive the following message:

Starting backup at 29-AUG-02
using channel ORA_DISK_1
RMAN-00571: ===
RMAN-00569: =============== ERROR MESSAGE STACK FOLLOWS ===============
RMAN-00571: ===
RMAN-03002: failure of backup command at 08/29/2002 15:14:03
RMAN-20202: tablespace not found in the recovery catalog
RMAN-06019: could not translate tablespace name "USESR"

The RMAN-03002 error indicates that the BACKUP command failed. You read the last two messages in the stack first and immediately see the problem: no tablespace user appears in the recovery catalog because you mistyped the name.

Interpreting Server Errors: Example

Assume that you attempt to recover a tablespace and receive the following errors:

RMAN> RECOVER TABLESPACE users;

Starting recover at 29-AUG-07
using channel ORA_DISK_1

starting media recovery
media recovery failed
RMAN-00571: ===
RMAN-00569: =============== ERROR MESSAGE STACK FOLLOWS ===============
RMAN-00571: ===
RMAN-03002: failure of recover command at 08/29/2007 15:18:43
RMAN-11003: failure during parse/execution of SQL statement: alter database recover if needed tablespace USERS
ORA-00283: recovery session canceled due to errors
ORA-01124: cannot recover data file 8 - file is in use or recovery
ORA-01110: data file 8: '/oracle/oradata/trgt/users01.dbf'

As suggested, you start reading from the bottom up. The ORA-01110 message explains there was a problem with the recovery of data file users01.dbf. The second error indicates that the database cannot recover the data file because it is in use or already being recovered. The remaining RMAN errors indicate that the recovery session was canceled due to the server errors. Hence, you conclude that because you were not already recovering this data file, the problem must be that the data file is online and you must take it offline and restore a backup.

Interpreting SBT 2.0 Media Management Errors: Example

Assume that you use a tape drive and see the following output during a backup job:

RMAN-00571: ===
RMAN-00569: =============== ERROR MESSAGE STACK FOLLOWS ===============
RMAN-00571: ===
ORA-19624: operation failed, retry possible
ORA-19507: failed to retrieve sequential file, handle="/tmp/mydir", parms=""
ORA-27029: skgfrtrv: sbtrestore returned error
ORA-19511: Error received from media manager layer, error text:
 sbtpvt_open_input:file /tmp/mydir does not exist or cannot be accessed, errno=2

The error text displayed following the ORA-19511 error is generated by the media manager and describes the real source of the failure. See the media manager documentation to interpret this error.

Interpreting SBT 1.1 Media Management Errors: Example

Assume that you use a tape drive and see the following output during a backup job:

RMAN-00571: ===
RMAN-00569: =============== ERROR MESSAGE STACK FOLLOWS ===============
RMAN-00571: ===
RMAN-03009: failure of backup command on c1 channel at 09/04/2007 13:18:19
ORA-19506: failed to create sequential file, name="07d36ecp_1_1", parms=""
ORA-27007: failed to open file
SVR4 Error: 2: No such file or directory
Additional information: 7005
Additional information: 1
ORA-19511: Error received from media manager layer, error text:
 SBT error = 7005, errno = 2, sbtopen: system error

The main information of interest returned by SBT 1.1 media managers is the error code in the "Additional information" line:

Additional information: 7005

Referring to Table 23-3, you discover that error 7005 means that the media management device is busy. So, the media management software is not able to write to the device because it is in use or there is a problem with it.

	
Note:

The sbtio.log contains information written by the media management software, not Oracle Database. Thus, you must consult your media vendor documentation to interpret the error codes and messages. If no information is written to the sbtio.log, then contact your media manager support to ask whether they are writing error messages in some other location, or whether there are steps you must take to have the media manager errors appear in sbtio.log.

Identifying RMAN Return Codes

One way to determine whether RMAN encountered an error is to examine its return code or exit status. The RMAN client returns 0 to the shell from which it was invoked if no errors occurred, and a nonzero error value otherwise.

How you access this return code depends upon the environment from which you invoked the RMAN client. For example, if you run UNIX with the C shell, then, when RMAN completes, the return code is placed in a shell variable called $status. The method of returning exit status is a detail specific to the host operating system rather than the RMAN client.

Using V$ Views for RMAN Troubleshooting

When LIST, REPORT, and SHOW do not provide all the information that you need for RMAN operations, some V$ views can provide more details.

Sometimes it is useful to identify exactly what a server session performing a backup and recovery job is doing. The views described in Table 23-4 are useful for obtaining information about RMAN jobs.

Table 23-4 Useful V$ Views for Troubleshooting

	View	Description
	
V$PROCESS

	
Identifies currently active processes

	
V$SESSION

	
Identifies currently active sessions. Use this view to determine which database server sessions correspond to which RMAN allocated channels.

	
V$SESSION_WAIT

	
Lists the events or resources for which sessions are waiting

You can use the preceding views to perform the following tasks:

	
Monitoring RMAN Interaction with the Media Manager

	
Correlating Server Sessions with RMAN Channels

Monitoring RMAN Interaction with the Media Manager

You can use the event names in the dynamic performance event views to monitor RMAN calls to the media management API. The event names have one-to-one correspondence with SBT functions, as shown in the following examples:

Backup: MML v1 open backup piece
Backup: MML v1 read backup piece
Backup: MML v1 write backup piece
Backup: MML v1 query backup piece
Backup: MML v1 delete backup piece
Backup: MML v1 close backup piece
.
.
.

To obtain the complete list of SBT events, you can use the following query:

SELECT NAME
FROM V$EVENT_NAME
WHERE NAME LIKE '%MML%';

Before making a call to any of functions in the media management API, the server adds a row in V$SESSION_WAIT, with the STATE column including the string WAITING. The V$SESSION_WAIT.SECONDS_IN_WAIT column shows the number of seconds that the server has been waiting for this call to return. After an SBT function is returned from the media manager, this row disappears.

A row in V$SESSION_WAIT corresponding to an SBT event name does not indicate a problem, because the server updates these rows at run time. The rows appear and disappear as calls are made and returned. However, if the SECONDS_IN_WAIT column is high, then the media manager may be suspended.

To monitor the SBT events, you can run the following SQL query:

COLUMN EVENT FORMAT a17
COLUMN SECONDS_IN_WAIT FORMAT 999
COLUMN STATE FORMAT a15
COLUMN CLIENT_INFO FORMAT a30

SELECT p.SPID, EVENT, SECONDS_IN_WAIT AS SEC_WAIT,
 sw.STATE, CLIENT_INFO
FROM V$SESSION_WAIT sw, V$SESSION s, V$PROCESS p
WHERE sw.EVENT LIKE '%MML%'
AND s.SID=sw.SID
AND s.PADDR=p.ADDR;

Examine the SQL output to determine which SBT functions are waiting. For example, the following output indicates that RMAN has been waiting for the sbtbackup function to return for 10 minutes:

SPID EVENT SEC_WAIT STATE CLIENT_INFO
---- ----------------- ---------- --------------- ------------------------------
8642 Backup: MML creat 600 WAITING rman channel=ORA_SBT_TAPE_1

	
Note:

The V$SESSION_WAIT view shows only database events, not media manager events.

	
See Also:

Oracle Database Reference for descriptions of the V$SESSION_WAIT view.

Correlating Server Sessions with RMAN Channels

To identify which server sessions correspond to which RMAN channels, you can query V$SESSION and V$PROCESS. The SPID column of V$PROCESS identifies the operating system ID number for the process or thread. For example, on UNIX the SPID column shows the process ID, whereas on Windows the SPID column shows the thread ID. You have two basic methods for obtaining this information, depending on whether you have multiple RMAN sessions active concurrently.

Matching Server Sessions with Channels When One RMAN Session Is Active

When only one RMAN session is active, the easiest method for determining the server session ID for an RMAN channel is to execute the following query on the target database while the RMAN job is executing:

COLUMN CLIENT_INFO FORMAT a30
COLUMN SID FORMAT 999
COLUMN SPID FORMAT 9999

SELECT s.SID, p.SPID, s.CLIENT_INFO
FROM V$PROCESS p, V$SESSION s
WHERE p.ADDR = s.PADDR
AND CLIENT_INFO LIKE 'rman%';

The following shows sample output:

 SID SPID CLIENT_INFO
---- ------------ ------------------------------
 14 8374 rman channel=ORA_SBT_TAPE_1

If you set an ID using the RMAN SET COMMAND ID command instead of using the system-generated default ID, then search for that value in the CLIENT_INFO column instead of 'rman%'.

Matching Server Sessions with Channels in Multiple RMAN Sessions

If more than one RMAN session is active, then it is possible for the V$SESSION.CLIENT_INFO column to yield the same information for a channel in each session. For example:

 SID SPID CLIENT_INFO
---- ------------ ------------------------------
 14 8374 rman channel=ORA_SBT_TAPE_1
 9 8642 rman channel=ORA_SBT_TAPE_1

In this case, you have the following methods for determining which channel corresponds to which SID value.

Obtaining the Channel ID from the RMAN Output

In this method, you must first obtain the sid values from the RMAN output and then use these values in your SQL query.

To correlate a process with a channel during a backup:

	
In an active session, run the RMAN job as usual and examine the output to get the sid for the channel. For example, the output may show:

Starting backup at 21-AUG-01
allocated channel: ORA_SBT_TAPE_1
channel ORA_SBT_TAPE_1: sid=14 devtype=SBT_TAPE

	
Start a SQL*Plus session and then query the joined V$SESSION and V$PROCESS views while the RMAN job is executing. For example, enter:

COLUMN CLIENT_INFO FORMAT a30
COLUMN SID FORMAT 999
COLUMN SPID FORMAT 9999

SELECT s.SID, p.SPID, s.CLIENT_INFO
FROM V$PROCESS p, V$SESSION s
WHERE p.ADDR = s.PADDR
AND CLIENT_INFO LIKE 'rman%'
/

Use the sid value obtained from the first step to determine which channel corresponds to which server session:

 SID SPID CLIENT_INFO
---------- ------------ ------------------------------
 14 2036 rman channel=ORA_SBT_TAPE_1
 12 2066 rman channel=ORA_SBT_TAPE_1

Correlating Server Sessions with Channels by Using SET COMMAND ID

In this method, you specify a command ID string in the RMAN backup script. You can then query V$SESSION.CLIENT_INFO for this string.

To correlate a process with a channel during a backup:

	
In each session, set the COMMAND ID to a different value after allocating the channels and then back up the desired object. For example, enter the following in session 1:

RUN
{
 ALLOCATE CHANNEL c1 TYPE disk;
 SET COMMAND ID TO 'sess1';
 BACKUP DATABASE;
}

Set the command ID to a string such as sess2 in the job running in session 2:

RUN
{
 ALLOCATE CHANNEL c1 TYPE sbt;
 SET COMMAND ID TO 'sess2';
 BACKUP DATABASE;
}

	
Start a SQL*Plus session and then query the joined V$SESSION and V$PROCESS views while the RMAN job is executing. For example, enter:

SELECT SID, SPID, CLIENT_INFO
FROM V$PROCESS p, V$SESSION s
WHERE p.ADDR = s.PADDR
AND CLIENT_INFO LIKE '%id=sess%';

If you run the SET COMMAND ID command in the RMAN job, then the CLIENT_INFO column displays in the following format:

id=command_id,rman channel=channel_id

For example, the following shows sample output:

 SID SPID CLIENT_INFO
---- ------------ ------------------------------
 11 8358 id=sess1
 15 8638 id=sess2
 14 8374 id=sess1,rman channel=c1
 9 8642 id=sess2,rman channel=c1

The rows that contain the string rman channel show the channel performing the backup. The remaining rows are for the connections to the target database.

	
See Also:

Oracle Database Backup and Recovery Reference for SET COMMAND ID syntax, and Oracle Database Reference for more information about V$SESSION and V$PROCESS

Testing the Media Management API

On some platforms, Oracle provides a diagnostic tool called sbttest. This utility performs a simple test of the media management software by acting as the Oracle database server and attempting to communicate with the media manager.

Obtaining the sbttest Utility

On UNIX, the sbttest utility is typically located in $ORACLE_HOME/bin. If for some reason the utility is not included with your platform, then contact Oracle Support Services to obtain the C version of the program. You can compile this version of the program on all UNIX platforms.

On platforms such as Solaris, you do not have to relink when using sbttest. On other platforms, relinking may be necessary.

Obtaining Online Documentation for the sbttest Utility

For online documentation of sbttest, issue the following on the command line:

% sbttest

The program displays the list of possible arguments for the program:

Error: backup file name must be specified
Usage: sbttest backup_file_name # this is the only required parameter
 <-dbname database_name>
 <-trace trace_file_name>
 <-remove_before>
 <-no_remove_after>
 <-read_only>
 <-no_regular_backup_restore>
 <-no_proxy_backup>
 <-no_proxy_restore>
 <-file_type n>
 <-copy_number n>
 <-media_pool n>
 <-os_res_size n>
 <-pl_res_size n>
 <-block_size block_size>
 <-block_count block_count>
 <-proxy_file os_file_name bk_file_name
 [os_res_size pl_res_size block_size block_count]>
 <-libname sbt_library_name>

The display also indicates the meaning of each argument. For example, following is the description for two optional parameters:

Optional parameters:
 -dbname specifies the database name which will be used by SBT
 to identify the backup file. The default is "sbtdb"
 -trace specifies the name of a file where the Media Management
 software will write diagnostic messages.

Using the sbttest Utility

Use sbttest to perform a quick test of the media manager.

If sbttest returns 0, then the test ran without error, which means that the media manager is correctly installed and can accept a data stream and return the same data when requested. If sbttest returns a nonzero value, then either the media manager is not installed or it is not configured correctly.

To use sbttest:

	
Confirm that the program is installed and included in the system path by typing sbttest at the command line:

% sbttest

If the program is operational, then you should see a display of the online documentation.

	
Execute the program, specifying any of the arguments described in the online documentation. For example, enter the following to create test file some_file.f and write the output to sbtio.log:

% sbttest some_file.f -trace sbtio.log

You can also test a backup of an existing data file. For example, this command tests data file tbs_33.f of database prod:

% sbttest tbs_33.f -dbname prod

	
Examine the output. If the program encounters an error, then it provides messages describing the failure. For example, if the database cannot find the library, you see:

libobk.so could not be loaded. Check that it is installed properly, and that
 LD_LIBRARY_PATH environment variable (or its equivalent on your platform)
 includes the directory where this file can be found. Here is some additional
 information on the cause of this error:
ld.so.1: sbttest: fatal: libobk.so: open failed: No such file or directory

In some cases, sbttest can work but an RMAN backup does not. The reasons can be the following:

	
The user who starts sbttest is not the owner of the Oracle Database processes.

	
If the database server is not linked with the media management library or cannot load it dynamically when needed, then RMAN backups to the media manager fail, but sbttest may still work.

	
The sbttest program passes all environment parameters from the shell but RMAN does not.

Terminating an RMAN Command

There are several ways to terminate an RMAN command in the middle of execution:

	
The preferred method is to press Control+C (or the equivalent "attention" key combination for your system) in the RMAN interface. This also terminates allocated channels, unless they are suspended in the media management code, as happens when, for example, they are waiting for a tape to be mounted.

	
You can end the server session corresponding to the RMAN channel by running the SQL ALTER SYSTEM KILL SESSION statement.

	
You can terminate the server session corresponding to the RMAN channel on the operating system.

Terminating the Session with ALTER SYSTEM KILL SESSION

You can identify the Oracle session ID for an RMAN channel by looking in the RMAN log for messages with the format shown in the following example:

channel ch1: sid=15 devtype=SBT_TAPE

The sid and devtype are displayed for each allocated channel. The Oracle Database sid is different from the operating system process ID. You can end the session using a SQL ALTER SYSTEM KILL SESSION statement.

ALTER SYSTEM KILL SESSION takes two arguments, the sid printed in the RMAN message and a serial number, both of which can be obtained by querying V$SESSION. For example, run the following statement, where sid_in_rman_output is the number from the RMAN message:

SELECT SERIAL#
FROM V$SESSION
WHERE SID=sid_in_rman_output;

Then, run the following statement, substituting the sid_in_rman_output and serial number obtained from the query:

ALTER SYSTEM KILL SESSION 'sid_in_rman_output,serial#';

This statement has no effect on the session if the session stopped in media manager code.

Terminating the Session at the Operating System Level

Finding and terminating the processes that are associated with the server sessions is operating system-specific. On some platforms, the server sessions are not associated with any processes at all. See your operating system-specific documentation for more information.

Terminating an RMAN Session That Is Not Responding in the Media Manager

You may sometimes need to terminate an RMAN job that is not responding in the media manager. The best way to terminate RMAN when the channel connections are not responding in the media manager is to terminate the session in the media manager. If this action does not solve the problem, then on some platforms, such as Linux, you may be able to terminate the Oracle Database processes of the connections. (Terminating the Oracle processes may cause problems with the media manager. See your media manager documentation for details.)

Components of an RMAN Session

The nature of an RMAN session depends on the operating system. In UNIX, an RMAN session has the following processes associated with it:

	
The RMAN client process itself

	
The default channel, the initial connection to the target database

	
One target connection to the target database corresponding to each allocated channel

	
The catalog connection to the recovery catalog database, if you use a recovery catalog

	
An auxiliary connection to an auxiliary instance, during DUPLICATE or TSPITR operations

	
A polling connection to the target database, used for monitoring RMAN command execution on the various allocated channels. By default, RMAN makes one polling connection. RMAN makes additional polling connections if you use different connect strings in the ALLOCATE CHANNEL or CONFIGURE CHANNEL commands. One polling connection exists for each distinct connect string used in the ALLOCATE CHANNEL or CONFIGURE CHANNEL command.

Process Behavior During a Suspended Job

RMAN usually stops responding because a channel connection is waiting in the media manager code for a tape resource. The catalog connection and the default channel appear to suspend, because they are waiting for RMAN to tell them what to do. Polling connections seem to be in an infinite loop while polling the RPC under the control of the RMAN process.

If you terminate the RMAN process itself, then you also terminate the catalog connection, the auxiliary connection, the default channel, and the polling connections. If target and auxiliary connections are suspended but not while executing media manager code, they also terminate. If either the target connection or any of the auxiliary connections are executing in the media management layer, then they do not terminate until the processes are manually terminated at the operating system level.

Not all media managers can detect the termination of the Oracle Database process. Those which cannot may keep resources busy or continue processing. Consult your media manager documentation for details.

Terminating the catalog connection does not cause the RMAN process to terminate because RMAN is not performing catalog operations while the backup or restore is in progress. Removing default channel and polling connections causes the RMAN process to detect that one channel is no longer present and then exits. In this case, the connections to the unresponsive channels remain active as described previously.

Terminating an RMAN Session: Basic Steps

After the unresponsive channels in the media manager code are terminated, the RMAN process detects this termination and exits, removing all connections except target connections that are still operative in the media management layer. The warning about the media manager resources still applies in this case.

To terminate an Oracle Database process that is not responding in the media manager:

	
Query V$SESSION and V$SESSION_WAIT as described in "Using V$ Views for RMAN Troubleshooting". For example, execute the following query:

COLUMN EVENT FORMAT a17
COLUMN SECONDS_IN_WAIT FORMAT 999
COLUMN STATE FORMAT a10
COLUMN CLIENT_INFO FORMAT a30

SELECT p.SPID, s.EVENT, s.SECONDS_IN_WAIT AS SEC_WAIT,
 sw.STATE, s.CLIENT_INFO
FROM V$SESSION_WAIT sw, V$SESSION s, V$PROCESS p
WHERE sw.EVENT LIKE '%MML%'
AND s.SID=sw.SID
AND s.PADDR=p.ADDR;

Examine the SQL output to determine which SBT functions are waiting. For example, the output may be as follows:

SPID EVENT SEC_WAIT STATE CLIENT_INFO
---- ----------------- ---------- ---------- -----------------------------
8642 Backup:MML write 600 WAITING rman channel=ORA_SBT_TAPE_1
8374 Backup:MML write 600 WAITING rman channel=ORA_SBT_TAPE_2

	
Using operating system-level tools appropriate to your platform, end the unresponsive sessions. For example, on Linux execute a kill -9 command:

% kill -9 8642 8374

Some platforms include a command-line utility called orakill that enables you to terminate a specific thread. From a command prompt, run the following command, where sid identifies the database instance to target, and the thread_id is the SPID value from the query in Step 1:

orakill sid thread_id

	
Check that the media manager also clears its processes. If any remain, the next backup or restore operation may freeze again, due to the previous problems in the backup or restore operation. In some media managers, the only solution is to shut down and restart the media manager. If the documentation from the media manager does not provide the needed information, contact technical support for the media manager.

	
See Also:

Your operating system-specific documentation for the relevant commands

Glossary

active database duplication

A duplicate database that is created over a network without restoring backups of the target database. This technique is an alternative to backup-based duplication.

ancestor incarnation

The parent incarnation is the database incarnation from which the current incarnation branched following an OPEN RESETLOGS operation. The parent of the parent incarnation is an ancestor incarnation. Any parent of an ancestor incarnation is also an ancestor incarnation.

archival backup

A database backup that is exempted from the normal backup and recovery strategy. Typically, these backups are archived onto separate storage media and retained for long periods.

archived redo log

A copy of a filled member of an online redo log group made when the database is in ARCHIVELOG mode. After the LGWR process fills each online redo log with redo records, the archiver process copies the log to one or more redo log archiving destinations. This copy is the archived redo log. RMAN does not distinguish between an original archived redo log and an image copy of an archived redo log; both are considered image copies.

archived redo log deletion policy

A configurable, persistent RMAN policy that governs when archived redo logs can be deleted. You can configure the policy with the CONFIGURE ARCHIVELOG DELETION POLICY command.

archived redo log failover

An RMAN features that enables RMAN to complete a backup even when some archived log destinations are missing logs or have logs with corrupt blocks. For example, if you back up logs in the fast recovery area that RMAN determines are corrupt, RMAN can search for logs in other archiving locations and back them up instead if they are intact.

ARCHIVELOG mode

The mode of the database in which Oracle Database copies filled online redo logs to disk. Specify the mode at database creation or with the ALTER DATABASE ARCHIVELOG statement.

See Also: archived redo log, NOARCHIVELOG mode

archiving

The operation in which a filled online redo log file is copied to an offline log archiving destination. An offline copy of an online redo logs is called an archived redo log. You must run the database in ARCHIVELOG mode to archive redo logs.

asynchronous I/O

A server process can begin an I/O and then perform other work while waiting for the I/O to complete while RMAN is either reading or writing data. RMAN can also begin multiple I/O operations before waiting for the first I/O to complete.

automatic channel allocation

The ability of RMAN to perform backup and restore tasks without requiring the use of the ALLOCATE CHANNNEL command. You can use the CONFIGURE command to specify disk and tape channels. Then, you can issue commands such as BACKUP and RESTORE at the RMAN command prompt without manually allocating channels. RMAN uses whatever configured channels that it needs to execute the commands.

Automatic Diagnostic Repository (ADR)

A system-managed repository for storing and organizing database trace files and other diagnostic data. ADR provides a comprehensive view of all the serious errors encountered by the database and maintains all relevant data needed for problem diagnostic and their eventual resolution. The repository contains data describing incidents, traces, dumps, alert messages, data repair records, data integrity check records, SQL trace information, core dumps, and so on.

The initialization parameter DIAGNOSTIC_DEST specifies the location of the ADR base, which is the directory that contains one or more ADR homes. Each ADR home is used by a product or a product instance to store diagnostic data in well-defined subdirectories. For example, diagnostic data for an Oracle database instance is stored in its ADR home, which includes an alert subdirectory for alert messages, a trace subdirectory for trace files, and so on. The easiest way to locate trace files and the alert log is to run the following SQL query: SELECT NAME, VALUE FROM V$DIAG_INFO.

Automatic Storage Management (ASM)

A vertical integration of both the file system and the volume manager built specifically for Oracle database files. ASM consolidates storage devices into easily managed disk groups and provides benefits such as mirroring and striping without requiring a third-party logical volume manager.

automatic undo management mode

A mode of the database in which undo data is stored in a dedicated undo tablespace. The only undo management that you must perform is the creation of the undo tablespace. All other undo management is performed automatically.

auxiliary channel

An RMAN channel that is connected to an auxiliary instance. An auxiliary channel is specified with the AUXILIARY keyword of the ALLOCATE CHANNEL or CONFIGURE CHANNEL command.

auxiliary database

(1) A database created from target database backups with the RMAN DUPLICATE command.

(2) A temporary database that is restored to a new location and then started with a new instance name during tablespace point-in-time recovery (TSPITR). A TSPITR auxiliary database contains the recovery set and auxiliary set.

auxiliary destination

In a transportable tablespace operation, the location on disk where auxiliary set files such as the parameter file, data files (other than those of the tablespaces being transported), control files, and online redo logs of the auxiliary instance can be stored.

auxiliary instance

The Oracle instance associated with an auxiliary database, or the temporary instance used in tablespace point-in-time recovery (TSPITR) or a transportable tablespace operation.

auxiliary set

In TSPITR, the set of files that is not in the recovery set but which must be restored in the auxiliary database for the TSPITR operation to be successful. In a transportable tablespace operation, the auxiliary set includes data files and other files required for the tablespace transport but which are not themselves part of the recovery set.

backup

(1) A backup copy of data, that is, a database, tablespace, table, data file, control file, or archived redo log. Backups can be physical (at the database file level) or logical (at the database object level). Physical backups can be created by using RMAN to back up one or more data files, control files or archived redo log files. You can create logical backups with Data Pump Export.

(2) In an RMAN context, the output of the BACKUP command. The output format of a backup can be a backup set, proxy copy, or image copy. Logs archived by the database are considered copies rather than backups.

backup and recovery

The set of concepts, procedures, and strategies involved in protecting the database against data loss due to media failure or users errors.

backup control file

A backup of the control file. You can back up the control file with the RMAN backup command or with the SQL statement ALTER DATABASE BACKUP CONTROLFILE TO 'filename'.

backup encryption

The encryption of backup sets by using an algorithm listed in V$RMAN_ENCRYPTION_ALGORITHMS. RMAN can transparently encrypt data written to backup sets and decrypt those backup sets when they are needed in a RESTORE operation. RMAN offers three modes of encryption: transparent, password-protected, and dual-mode.

backup mode

The database mode (also called hot backup mode) initiated when you issue the ALTER TABLESPACE ... BEGIN BACKUP or ALTER DATABASE BEGIN BACKUP command before taking an online backup. You take a tablespace out of backup mode when you issue the ALTER TABLESPACE ... END BACKUP or ALTER DATABASE END BACKUP command.

When making a user-managed backup of data files in an online tablespace, you must place the tablespace in backup mode to protect against the possibility of a fractured block. In backup mode, updates to the database create more than the usual amount of redo. Each time a block in the buffer cache becomes dirty, the database must write an image of the changed block to the redo log file, in addition to recording the changes to the data. RMAN does not require you to put the database in backup mode.

See Also: corrupt block

backup optimization

A configuration enabling RMAN to automatically skip backups of files that it has already backed up. You enable and disable backup optimization with the CONFIGURE command.

backup piece

The physical file format used to store an RMAN backup set. Each logical backup set contains one or more physical backup pieces.

backup retention policy

A user-defined policy for determining how long backups and archived logs must be retained for media recovery. You can define a retention policy in terms of backup redundancy or a recovery window. RMAN retains the data file backups required to satisfy the current retention policy, and any archived redo logs required for complete recovery of those data file backups.

backup set

A backup of one or more data files, control files, server parameter files, and archived redo log files. Each backup set consists of one or more binary files. Each binary file is called a backup piece. Backup pieces are written in a proprietary format that can only be created or restored by RMAN.

Backup sets are produced by the RMAN BACKUP command. A backup set usually consists of only one backup piece. RMAN divides the contents of a backup set among multiple backup pieces only if you limit the backup piece size using the MAXPIECESIZE option of the ALLOCATE CHANNEL or CONFIGURE CHANNEL command.

See Also: unused block compression, multiplexing, RMAN

backup undo optimization

The exclusion of undo not needed for recovery of an RMAN backup because it describes and contains committed transactions. Backup undo optimization applies to level 0 and full backups. It is built-in RMAN behavior and cannot be disabled.

For example, a user updates the SALARIES table in the USERS tablespace. The change is written to the USERS tablespace, while the before image of the data is written to the UNDO tablespace. A subsequent RMAN backup of the UNDO tablespace may not include the undo for the salary change.

backup window

A period of time during which a backup activity must complete.

backup-based duplication

A duplicate database that is created by restoring and recovering backups of the target database. This technique is an alternative to active database duplication.

base recovery catalog

The entirety of the recovery catalog schema. The base recovery catalog is distinguished from a virtual private catalog, which is a subset of a recovery catalog.

binary compression

A technique whereby RMAN applies a compression algorithm to data in backup sets.

block change tracking

A database option that causes Oracle to track data file blocks affected by each database update. The tracking information is stored in a block change tracking file. When block change tracking is enabled, RMAN uses the record of changed blocks from the change tracking file to improve incremental backup performance by only reading those blocks known to have changed, instead of reading data files in their entirety.

block change tracking file

A binary file used by RMAN to record changed blocks to improve incremental backup performance. You create and rename this file with the ALTER DATABASE statement.

block media recovery

The recovery of specified blocks within a data file with the Recovery Manager RECOVER ... BLOCK command. Block media recovery leaves the affected data files online and restores and recovers only the damaged or corrupted blocks.

breaking a mirror

The termination of a disk mirroring procedure so that a mirror image is no longer kept up-do-date.

channel

An RMAN channel represents one stream of data to or from a backup device. A channel can either be a DISK channel (used to perform disk I/O) or an SBT channel (used to perform I/O through a third-party media manager). Each allocated channel starts a new Oracle Database session. The session then performs backup, restore, and recovery operations.

See Also: target database

channel parallelism

Allocating multiple channels for RMAN operations.

data integrity check

An invocation of a checker, which is a diagnostic procedure registered with the Health Monitor.

checkpoint

A data structure that defines an SCN in the redo thread of a database. Checkpoints are recorded in the control file and each data file header, and are a crucial element of recovery.

checksum

A number calculated by the database from all the bytes stored in a data or redo block. If the DB_BLOCK_CHECKSUM initialization parameter is enabled, then the database calculates the checksum for every data file or online redo log block and stores it in the block header when writing to disk. The database can use the checksum value to check consistency.

circular reuse records

Control file records containing information used by RMAN for backups and recovery operations. These records are arranged in a logical ring. When all available record slots are full, Oracle either expands the control file to make room for a new records or overwrites the oldest record. The CONTROL_FILE_RECORD_KEEP_TIME initialization parameter controls how many days records must be kept before they can be overwritten. The default for CONTROL_FILE_RECORD_KEEP_TIME is 7 days.

See Also: noncircular reuse records

closed backup

A backup of one or more database files taken while the database is closed. Typically, closed backups are whole database backups. If you closed the database consistently, then all the files in the backup are consistent. Otherwise, the backups are inconsistent.

See Also: consistent shutdown, consistent backup

cold backup

See closed backup

command file

In an RMAN context, a client-side text file containing a sequence of RMAN commands. You can run command files with the @ or @@ commands from within RMAN or from the operating system prompt with the @ or CMDFILE parameters.

complete recovery

Recovery of one or more data files that applies all redo generated after the restored backup. Typically, you perform complete media recovery when media failure damages one or more data files or control files. You fully recover the damaged files using all redo generated since the restored backup was taken.

See Also: incomplete recovery

consistent backup

A whole database backup that you can open with the RESETLOGS option without performing media recovery. You do not need to apply redo to this backup to make it consistent. Unless you apply the redo generated since the consistent backup was created, however, you lose all transactions since the time of the consistent backup.

You can only take consistent backups after you have performed a consistent shutdown of the database. The database must not be re-opened until the backup has completed.

See Also: fuzzy file, inconsistent backup

consistent shutdown

A database shut down with the IMMEDIATE, TRASACTIONAL, or NORMAL options of the statement. A database shut down cleanly does not require recovery; it is already in a consistent state.

control file autobackup

The automatic backup of the current control file and server parameter file that RMAN makes after backups and, if the database is in ARCHIVELOG mode, after structural changes.

The control file autobackup has a default file name that allows RMAN to restore it even if the control file and recovery catalog are lost. You can override the default file name.

convert script

A script generated by the CONVERT DATABASE command that you can use to convert data file formats on the destination host.

copy

To back up a bit-for-bit image of an Oracle file (Oracle data files, control files, and archived redo logs) onto disk. You can copy in two ways:

	
Using operating system utilities (for example, the UNIX cp or dd)

	
Using the RMAN BACKUP AS COPY command

See Also: backup

corrupt block

An Oracle block that is not in a recognized Oracle format, or whose contents are not internally consistent. Typically, corruptions are caused by faulty hardware or operating system problems. Oracle identifies corrupt blocks as either logically corrupt (an Oracle internal error) or media corrupt (the block format is not correct).

You can repair a media corrupt block with block media recovery, or dropping the database object that contains the corrupt block so that its blocks are reused for another object. If media corruption is due to faulty hardware, then neither solution works until the hardware fault is corrected.

crash recovery

The automatic application of online redo records to a database after either a single-instance database crashes or all instances of an Oracle Real Applications Cluster configuration crash. Crash recovery only requires redo from the online logs: archived redo logs are not required.

See Also: recover

crosscheck

A check to determine whether files on disk or in the media management catalog correspond to the data in the RMAN repository. Because the media manager can mark tapes as expired or unusable, and because files can be deleted from disk or otherwise become corrupted, the RMAN repository can contain outdated information about backups. Run the CROSSCHECK command to perform a crosscheck.

See Also: validation

cumulative incremental backup

An incremental backup that backs up all the blocks changed since the most recent backup at level 0. When recovering with cumulative incremental backups, only the most recent cumulative incremental backup must be applied.

See Also: differential incremental backup, incremental backup

current incarnation

The database incarnation in which the database is currently generating redo.

current online redo log

The online redo log file in which the LGWR background process is currently logging redo records.

See Also: redo log, redo log group

data repair

The use of media recovery or Oracle Flashback Technology to recover lost or corrupted data.

Data Recovery Advisor

An Oracle Database tool that automatically diagnoses persistent data failures, presents repair options to the user, and executes repairs at the user's request.

database area

A location for the Oracle managed data files, control files, and online redo log files. The database area is specified by the DB_CREATE_FILE_DEST initialization parameter.

database checkpoint

The thread checkpoint that has the lowest SCN. All changes in all enabled redo threads with SCNs before the database checkpoint SCN are guaranteed to have been written to disk.

See Also: checkpoint, data file checkpoint

database identifier

See DBID

database point-in-time recovery (DBPITR)

The recovery of an entire database to a specified past target time, SCN, or log sequence number.

See Also: incomplete recovery, tablespace point-in-time recovery (TSPITR)

database registration

See registration

data file checkpoint

A data structure that defines an SCN in the redo thread of a database for a particular data file. Every data file has a checkpoint SCN, which you can view in V$DATAFILE.CHECKPOINT_CHANGE#. All changes with an SCN lower than this SCN are guaranteed to be in the data file.

data file media recovery

The application of redo records to a restored data file to roll it forward to a more current time. Unless you are doing block media recovery, the data file must be offline while being recovered.

DBID

An internal, uniquely generated number that differentiates databases. Oracle creates this number automatically when you create the database.

destination host

The computer on which a duplicate database resides.

destination platform

When using the RMAN CONVERT command, the platform on which the destination database is running. The destination database is the database into which you are transporting data.

differential incremental backup

A type of incremental backup that backs up all blocks that have changed since the most recent backup at level 1 or level 0. For example, in a differential level 1 backup RMAN determines which level 1 or level 0 incremental backup is most recent and then backs up all blocks changed since that backup. Differential backups are the default type of incremental backup. When recovering using differential incremental backups, RMAN must apply all differential incremental level 1 backups since the restored data file backup.

See Also: cumulative incremental backup, incremental backup

direct ancestral path

When multiple OPEN RESETLOGS operations have been performed, the incarnation path that includes the parent incarnation of the current database incarnation and each ancestor incarnation of the current incarnation.

disaster recovery

A strategic response to the loss of all data associated with a database installation. For example, a fire may destroy a server in a data center, forcing you to reinstall Oracle Database on a new server and recover the lost database from backups.

disk controller

A hardware component that is responsible for controlling one or more disk drives.

disk group

A collection of disks that are managed as a unit by Automatic Storage Management (ASM). The components of a disk group include disks, files, and allocation units.

disk quota

A user-specified limit to the size of the fast recovery area. When the disk quota is reached, Oracle automatically deletes files that are no longer needed.

duplexed backup set

In RMAN, a duplexed backup set is an RMAN-generated identical copy of a backup set. Each backup piece is in the original backup set is copied, with each copy getting a unique copy number (for example, 0tcm8u2s_1_1 and 0tcm8u2s_1_2).

duplicate database

A database created from target database backups using the RMAN duplicate command.

See Also: auxiliary database

expired backup

A backup whose status in the RMAN repository is EXPIRED, which means that the backup was not found. RMAN marks backups and copies as expired when you run a CROSSCHECK command and the files are absent or inaccessible.

export

The extraction of logical data (that is, not physical files) from a database into a binary file using Data Pump Export. You can then use Data Pump Import to import the data into a database.

See Also: logical backup

export dump file

A file created by the Data Pump Export utility. The dump file set is made up of one or more disk files that contain table data, database object metadata, and control information. The files are written in a proprietary, binary format.

failure

For Data Recovery Advisor, a failure is a persistent data corruption that has been diagnosed by the database. A failure can manifest itself as observable symptoms such as error messages and alerts, but a failure is different from a symptom because it represents a diagnosed problem. Failures are recorded in a repository for diagnostic data located outside of the database.

For each failure, Data Recovery Advisor generates a problem statement that unambiguously describes it. Examples of failures include inaccessible data files and corrupted undo segments. Data Recovery Advisor maps every failure to a repair option or set of repair options.

failure priority

The priority of a failure diagnosed by Data Recovery Advisor. Every failure that is not closed has CRITICAL, HIGH, or LOW status. You can manually change the status of HIGH and LOW failures with the CHANGE command.

failure status

The status of a failure diagnosed by Data Recovery Advisor. Every failure has OPEN or CLOSED status.

file section

A contiguous range of blocks in a data file. A multisection backup processes a large file in parallel by copying each section to a separate backup piece.

fast recovery area

An optional disk location that you can use to store recovery-related files such as control file and online redo log copies, archived redo log files, flashback logs, and RMAN backups. Oracle Database and RMAN manage the files in the fast recovery area automatically. You can specify the disk quota, which is the maximum size of the fast recovery area. Formerly referred to as flash recovery area.

flashback data archive

A historical repository of transactional changes to every record in a table for the duration of the record's lifetime. A flashback data archive enables you to use some logical flashback features to transparently access historical data from far in the past.

flashback database window

The range of SCNs for which there is currently enough flashback log data to support the FLASHBACK DATABASE command. The flashback database window cannot extend further back than the earliest SCN in the available flashback logs.

flashback logs

Oracle-generated logs used to perform flashback database operations. The database can only write flashback logs to the fast recovery area. Flashback logs are written sequentially and are not archived. They cannot be backed up to disk.

flashback retention target

A user-specified time or SCN that specifies how far into the past you want to be able to perform a flashback of the database.

foreign archived redo log

An archived redo log received by a logical standby database for a LogMiner session. Unlike normal archived logs, foreign archived logs have a different DBID. For this reason, they cannot be backed up or restored on a logical standby database.

fractured block

A block in which the header and footer are not consistent at a given SCN. In a user-managed backup, an operating system utility can back up a data file at the same time that DBWR is updating the file. It is possible for the operating system utility to read a block in a half-updated state, so that the block that is copied to the backup media is updated in its first half, while the second half contains older data. In this case, the block is fractured.

For non-RMAN backups, the ALTER TABLESPACE ... BEGIN BACKUP or ALTER DATABASE BEGIN BACKUP command is the solution for the fractured block problem. When a tablespace is in backup mode, and a change is made to a data block, the database logs a copy of the entire block image before the change so that the database can reconstruct this block if media recovery finds that this block was fractured.

full backup

A non-incremental RMAN backup. The word "full" does not refer to how much of the database is backed up, but to the fact that the backup is not incremental. Consequently, you can make a full backup of one data file.

full resynchronization

An RMAN operation that updates the recovery catalog with all changed metadata in the database's control file. You can initiate a full catalog resynchronization by issuing the RMAN command RESYNC CATALOG. (It is rarely necessary to use RESYNC CATALOG because RMAN automatically performs resynchronizations when needed.)

fuzzy file

A data file that contains at least one block with an SCN greater than or equal to the checkpoint SCN in the data file header. Fuzzy files are possible because database writer does not update the SCN in the file header with each file block write. For example, this situation occurs when Oracle updates a data file that is in backup mode. A fuzzy file that is restored always requires media recovery.

guaranteed restore point

A restore point for which the database is guaranteed to retain the flashback logs for an Oracle Flashback Database operation. Unlike a normal restore point, a guaranteed restore point does not age out of the control file and must be explicitly dropped. Guaranteed restore points use space in the fast recovery area, which must be defined.

hot backup

See online backup

hot backup mode

See backup mode

image copy

A bit-for-bit copy of a single data file, archived redo log file, or control file that is:

	
Usable as-is to perform recovery (unlike a backup set, which uses unused block compression and is in an RMAN-specific format)

	
Generated with the RMAN BACKUP AS COPY command, an operating system command such as the UNIX cp, or by the Oracle archiver process

incarnation

A separate version of a database. The incarnation of the database changes when you open it with the RESETLOGS option, but you can recover backups from a prior incarnation so long as the necessary redo is available.

incomplete recovery

A synonym for database point-in-time recovery (DBPITR).

See Also: complete recovery, media recovery, recover

inconsistent backup

A backup in which some files in the backup contain changes that were made after the files were checkpointed. This type of backup needs recovery before it can be made consistent. Inconsistent backups are usually created by taking online database backups. You can also make an inconsistent backup by backing up data files while a database is closed, either:

	
Immediately after the crash of an Oracle instance (or, in an Oracle RAC configuration, all instances)

	
After shutting down the database using SHUTDOWN ABORT

Inconsistent backups are only useful if the database is in ARCHIVELOG mode and all archived redo logs created since the backup are available.

See Also: consistent backup, online backup, system change number (SCN), whole database backup

incremental backup

An RMAN backup in which only modified blocks are backed up. Incremental backups are classified by level. A level 0 incremental backup performs the same function as a full backup in that they both back up all blocks that have ever been used. The difference is that a full backup does not affect blocks backed up by subsequent incremental backups, whereas an incremental backup does affect blocks backed up by subsequent incremental backups.

Incremental backups at level 1 back up only blocks that have changed since previous incremental backups. Blocks that have not changed are not backed up. An incremental backup can be either a differential incremental backup or a cumulative incremental backup.

incrementally updated backup

An RMAN data file copy that is updated by an incremental backup. An effective backup strategy is to copy a data file, make an incremental backup, and then merge the incremental backup into the image copy. This strategy reduces the time required for media recovery because the image copy is updated with the latest data block changes.

instance failure

The termination of an Oracle instance due to a hardware failure, Oracle internal error, or SHUTDOWN ABORT statement. Crash or instance recovery is always required after an instance failure.

instance recovery

In an Oracle RAC configuration, the application of redo data to an open database by an instance when this instance discovers that another instance has crashed.

See Also: recover

interblock corruption

A type of block corruption in which the corruption occurs between blocks rather than within the block itself. This type of corruption can only be logical corruption.

intrablock corruption

A type of block corruption in which the corruption occurs within the block itself. this type of corruption can be either a physical corruption or logical corruption.

level 0 incremental backup

An RMAN incremental backup that backs up all data blocks in the data files being backed up. An incremental backup at level 0 is identical in content to a full backup, but unlike a full backup the level 0 backup is considered a part of the incremental backup strategy.

level of multiplexing

The number of input files simultaneously read and then written into the same RMAN backup piece.

LogMiner

A utility that enables log files to be read, analyzed, and interpreted with SQL statements.

See Also: archived redo log

log sequence number

A number that uniquely identifies a set of redo records in a redo log file. When Oracle fills one online redo log file and switches to a different one, Oracle automatically assigns the new file a log sequence number.

See Also: log switch, redo log

log switch

The point at which LGWR stops writing to the active redo log file and switches to the next available redo log file. LGWR switches when either the active log file is filled with redo records or you force a switch manually.

See Also: redo log

logical backup

A backup of database schema objects, such as tables. Logical backups are created and restored with the Oracle Data Pump Export utility. You can restore objects from logical backups using the Data Pump Import utility.

logical flashback features

The set of Oracle Flashback Technology features other than Oracle Flashback Database. The logical features enable you to view or rewind individual database objects or transactions to a past time.

logical corruption

A type of corruption in which the block has a valid checksum, the header and footer match, and so on, but the contents are logically inconsistent.

long-term backup

A backup that you want to exclude from a backup retention policy, but want to record in the recovery catalog. Typically, long-term backups are snapshots of the database that you may want to use in the future for report generation.

lost write

A write to persistent storage that the database believes has occurred based on information from the I/O subsystem, when in fact the write has not occurred.

mean time to recover (MTTR)

The time required to perform recovery.

media failure

Damage to the disks containing any of the files used by Oracle, such as the data files, archived redo log files, or control file. When Oracle detects media failure, it takes the affected files offline.

See Also: media recovery

media manager

A third-party networked backup system that can be integrated with Recovery Manager so that database backups can be written directly to tertiary storage.

media manager multiplexing

Multiplexing in which the media manager rather than RMAN manages the mixing of blocks during an RMAN backup. One type of media manager multiplexing occurs when the media manager writes the concurrent output from multiple RMAN channels to a single sequential device. Another type occurs when a backup mixes database files and non-database files on the same tape.

media management catalog

A catalog of records maintained by a media manager. This catalog is completely independent from the RMAN recovery catalog. The Oracle Secure Backup catalog is an example of a media management catalog.

media management library

A software library that RMAN can use to back up to tertiary storage. An SBT interface conforms to a published API and is supplied by a media management vendor. Oracle Secure Backup includes an SBT interface for use with RMAN.

media recovery

The application of redo or incremental backups to a restored backup data file or individual data block.

When performing media recovery, you can recover a database, tablespace, data file, or set of blocks within a data file. Media recovery can be either complete recovery (in which all changes in the redo logs are applied) or incomplete recovery (in which only changes up to a specified point in time are applied). Media recovery is only possible when the database is in ARCHIVELOG mode.

See Also: block media recovery, recover

mirroring

Maintaining identical copies of data on one or more disks. Typically, mirroring is performed on duplicate hard disks at the operating system level, so that if a disk is unavailable, then the other disk can continue to service requests without interruptions. When mirroring files, Oracle Database writes once while the operating system writes to multiple disks. When multiplexing files, Oracle Database writes the same data to multiple files.

MTTR

See mean time to recover (MTTR)

multiplexed backup set

A backup set that contains blocks from multiple input files. For example, you could multiplex 10 data files into one backup set. Only whole files, never partial files, are included in a backup set.

multiplexing

The meaning of the term depends on which files are multiplexed:

	
online redo logs

The automated maintenance of multiple identical copies of the online redo log.

	
control file

The automated maintenance of multiple identical copies of a database control file.

	
backup set

The RMAN technique of reading database files simultaneously from the disks and then writing the blocks to the same backup piece.

	
archived redo logs

The Oracle archiver process can archive multiple copies of a redo log.

See Also: mirroring

multisection backup

An RMAN backup set in which each backup piece contains a file section, which is a contiguous range of blocks in a data file. A multisection backup set contains multiple backup pieces, but a backup set never contains only a part of a data file.

You create a multisection backup by specifying the SECTION SIZE parameter on the BACKUP command. An RMAN channel can process each file section independently, either serially or in parallel. Thus, in a multisection backup, multiple channels can back up a single file.

native transfer rate

In a tape drive, the speed of writing to a tape without compression. This speed represents the upper limit of the backup rate.

NOARCHIVELOG mode

The mode of the database in which Oracle does not require filled online redo logs to be archived before they can be overwritten. Specify the mode at database creation or change it with the ALTER DATABASE NOARCHIVELOG command.

If you run in NOARCHIVELOG mode, it severely limits the possibilities for recovery of lost or damaged data.

See Also: archived redo log, ARCHIVELOG mode

noncircular reuse records

Control file records containing critical information needed by the Oracle database. These records are never automatically overwritten. Some examples of information in noncircular reuse records include the locations of data files and online redo logs.

See Also: circular reuse records

normal restore point

A label for an SCN or time. For commands that support an SCN or time, you can often specify a restore point. Normal restore points exist in the circular list and can be overwritten in the control file. However, if the restore point pertains to an archival backup, then it is preserved in the recovery catalog.

obsolete backup

A backup that is not needed to satisfy the current backup retention policy. For example, if your retention policy dictates that you must maintain one backup of each data file, but you have two backups of data file 1, then the second backup of data file 1 is considered obsolete.

offline normal

A tablespace is offline normal when taken offline with the ALTER TABLESPACE ... OFFLINE NORMAL statement. The data files in the tablespace are checkpointed and do not require recovery before being brought online. If a tablespace is not taken offline normal, then its data files must be recovered before being brought online.

offsite backup

An SBT backup that requires retrieval by the media manager before RMAN can restore it. You can list offsite backups with RESTORE ... PREVIEW.

online backup

A backup of one or more data files taken while a database is open and the data files are online. When you make a user-managed backup while the database is open, you must put the tablespaces in backup mode by issuing an ALTER TABLESPACE BEGIN BACKUP command. (You can also use ALTER DATABASE BEGIN BACKUP to put all tablespaces in your database into backup mode in one step.)

You should not put tablespaces in backup mode when performing backups with RMAN.

online redo log

The online redo log is a set of two or more files that record all changes made to the database. Whenever a change is made to the database, Oracle generates a redo record in the redo buffer. The LGWR process writes the contents of the redo buffer into the online redo log.

The current online redo log is the one being written to by LGWR. When LGWR gets to the end of the file, it performs a log switch and begins writing to a new log file. If you run the database in ARCHIVELOG mode, then each filled online redo log file must be copied to one or more archiving locations before LGWR can overwrite them.

See Also: archived redo log

online redo log group

The Oracle online redo log consists of two or more online redo log groups. Each group contains one or more identical online redo log members. An online redo log member is a physical file containing the redo records.

online redo log member

A physical online redo log file within an online redo log group. Each log group must have one or more members. Each member of a group is identical.

operating system backup

See user-managed backup

operating system backup and recovery

See user-managed backup and recovery

Oracle Flashback Database

The return of the whole database to a prior consistent SCN by the FLASHBACK DATABASE command in RMAN or SQL. A database flashback is different from traditional media recovery because it does not involve the restore of physical files, instead restoring your current data files to past states using saved images of changed data blocks. This feature uses flashback logs and archived redo logs.

Oracle Flashback Technology

A set of Oracle Database features that provide an additional layer of data protection. These features include Oracle Flashback Query, Oracle Flashback Version Query, Oracle Flashback Transaction Query, Oracle Flashback Transaction, Oracle Flashback Table, Oracle Flashback Drop, and Oracle Flashback Database.

You can use flashback features to view past states of data and rewind parts or all of your database. In general, flashback features are more efficient and less disruptive than media recovery in most situations in which they apply.

Oracle managed file

A database file managed by the Oracle Managed Files feature.

Oracle Managed Files (OMF)

A service that automates naming, location, creation, and deletion of database files such as control files, redo log files, data files and others, based on a few initialization parameters. You can use Oracle managed files on top of a traditional file system supported by the host operating system, for example, VxFS or ODM. It can simplify many aspects of the database administration by eliminating the need to devise your own policies for such details.

Oracle Secure Backup

An Oracle media manager that supplies reliable data protection through file system backup to tape. The Oracle Secure Backup SBT interface also enables you to use RMAN to back up Oracle databases. All major tape drives and tape libraries in SAN, Gigabit Ethernet, and SCSI environments are supported.

Oracle VSS writer

A service on Windows systems that acts as coordinator between an Oracle database instance and other Volume Shadow Copy Service (VSS) components, enabling data providers to create a shadow copy of files managed by the Oracle instance. For example, the Oracle VSS writer can place data files in hot backup mode to provide a recoverable copy of these data files in a shadow copy set.

Oracle-suggested backup strategy

A backup strategy available through a wizard in Oracle Enterprise Manager. The strategy involves periodically applying a level 1 incremental backup to a level 0 backup to create an incrementally updated backup. If run daily, this strategy provides 24 hour point-in-time recovery from disk.

orphaned backups

Backups that were not made in the direct ancestral path of the current incarnation of the database. Orphaned backups cannot be used in the current incarnation.

parallel recovery

A form of recovery in which several processes simultaneously apply changes from redo log files. The RECOVERY_PARALLELISM initialization parameter determines the level of parallelism for instance and crash recovery. You can use the PARALLEL and NOPARALLEL options of the RECOVER command to control parallelism for media recovery.Oracle Database automatically chooses the optimum degree of recovery parallelism. Manually setting the level of parallelism for instance, crash, or media recovery is usually not recommended or necessary.

parent incarnation

The database incarnation from which the current incarnation branched following an OPEN RESETLOGS operation.

partial resynchronization

A type of resynchronization in which RMAN transfers data about archived logs, backup sets, and data file copies from the target control file to the recovery catalog.

password file

A file created by the ORAPWD command, and required if you want to connect using the SYSDBA or SYSOPER privileges over a network. For details on password files, see the Oracle Database Administrator's Guide.

physical backup

A backup of physical files. A physical backup contrasts with a logical backup such as a table export.

physical corruption

A type of corruption in which the database does not recognize a corrupt block. The database may not recognize the block because the checksum is invalid, the block contains all zeros, or the header and footer of the block do not match.

physical schema

The data files, control files, and redo logs in a database at a given time. Issue the RMAN REPORT SCHEMA command to obtain a list of tablespaces and data files.

physical standby database

A copy of a production database that you can use for disaster protection.

point-in-time recovery

The incomplete recovery of database files to a noncurrent time. Point-in-time recovery is also known as incomplete recovery.

See Also: media recovery, recover

problem

A critical error in the database that is recorded in the Automatic Diagnostic Repository (ADR). Critical errors include internal errors and other severe errors. Each problem has a problem key, which is a set of attributes that describe the problem. The problem key includes the ORA error number, error parameter values, and other information.

proxy copy

A backup in which the media manager manages the transfer of data between the media storage device and disk during RMAN backup and restore operations.

raw device

A disk or partition without a file system. Thus, you cannot use ls, Windows Explorer, and so on to view their contents. The raw partition appears to Oracle Database as a single file.

recover

To recover a database file or a database is typically to perform media recovery, crash recovery, or instance recovery. This term can also be used generically to refer to reconstructing or re-creating lost data by any means.

See Also: complete recovery, incomplete recovery

recovery

When used to refer to a database file or a database, the application of redo data or incremental backups to database files to reconstruct lost changes. The three types of recovery are instance recovery, crash recovery, and media recovery. Oracle Database performs the first two types of recovery automatically using online redo records; only media recovery requires you to restore a backup and issue commands.

See Also: complete recovery, incomplete recovery

recovery catalog

A set of Oracle tables and views used by RMAN to store RMAN repository information about one or more Oracle databases. RMAN uses this metadata to manage the backup, restore, and recovery of Oracle databases.

Use of a recovery catalog is optional although it is highly recommended. For example, starting with Oracle Database 11g, a single recovery catalog schema can keep track of database file names for all databases in a Data Guard environment. This catalog schema also keeps track of where the online redo logs, standby redo logs, temp files, archived redo logs, backup sets, and image copies are created for all databases.

The primary storage for RMAN repository information for a database is always in the control file of the database. A recovery catalog is periodically updated with RMAN repository data from the control file. In the event of the loss of your control file, the recovery catalog can provide most or all of the lost metadata required for restore and recovery of your database. The recovery catalog can also store records of archival backups and RMAN stored scripts for use with target databases.

See Also: recovery catalog database

recovery catalog database

An Oracle database that contains a recovery catalog schema. You should not store the recovery catalog in the target database.

recovery catalog schema

The recovery catalog database schema that contains the recovery catalog tables and views.

Recovery Manager (RMAN)

The primary utility for physical backup and recovery of Oracle databases. RMAN keeps records of Oracle databases in its own structure called an RMAN repository, manages storage of backups, validates backups. You can use it with or without the central information repository called a recovery catalog. If you do not use a recovery catalog, then RMAN uses the database's control file to store information necessary for backup and recovery operations. You can use RMAN with third-party media management software to back up files to tertiary storage.

See Also: backup piece, backup set, copy, media manager, recovery catalog

recovery set

One or more tablespaces that are being recovered to an earlier point in time during tablespace point-in-time recovery (TSPITR). After TSPITR, all database objects in the recovery set have been recovered to the same point in time.

See Also: auxiliary set

recovery window

A recovery window is one type of RMAN backup retention policy, in which the DBA specifies a period of time and RMAN ensures retention of backups and archived redo logs required for point-in-time recovery to any time during the recovery window. The interval always ends with the current time and extends back in time for the number of days specified by the user.

For example, if the retention policy is set for a recovery window of seven days, and the current time is 11:00 AM on Tuesday, RMAN retains the backups required to allow point-in-time recovery back to 11:00 AM on the previous Tuesday.

recycle bin

A data dictionary table containing information about dropped objects. Dropped tables and any associated objects such as indexes, constraints, nested tables, and so on are not removed and still occupy space. The Flashback Drop feature uses the recycle bin to retrieve dropped objects.

redo log

A redo log can be either an online redo log or an archived redo log. The online redo log is a set of two or more redo log groups that records all changes made to Oracle data files and control files. An archived redo log is a copy of an online redo log that has been written to an offline destination.

redo log group

Each online redo log member (which corresponds to an online redo log file) belongs to a redo log group. Redo log groups contain one or more members. A redo log group with multiple members is called a multiplexed redo log group. The contents of all members of a redo log group are identical.

redo thread

The redo generated by an instance. If the database runs in a single instance configuration, then the database has only one thread of redo.

redundancy

In a retention policy, the setting that determines many copies of each backed-up file to keep. A redundancy-based retention policy is contrasted with retention policy that uses a recovery window.

redundancy set

A set of backups enabling you to recover from the failure or loss of any Oracle database file.

registration

In RMAN, the execution of a REGISTER DATABASE command to record the existence of a target database in the recovery catalog. A target database is uniquely identified in the catalog by its DBID. You can register multiple databases in the same catalog, and also register the same database in multiple catalogs.

repair

For Data Recovery Advisor, a repair is an action or set of actions that fixes one or more failures. Examples repairs include block media recovery, data file media recovery, Oracle Flashback Database, and so on.

repair option

For Data Recovery Advisor, one possible technique for repairing a failure. Different repair options are intended to fix the same problem, but represent different advantages and disadvantages in terms of repair time and data loss.

RESETLOGS

A technique for opening a database that archives any current online redo logs (if using ARCHIVELOG mode), resets the log sequence number to 1, and clears the online redo logs. An ALTER DATABASE OPEN RESETLOGS statement begins a new database incarnation. The starting SCN for the new incarnation, sometimes called the RESETLOGS SCN, is the incomplete recovery SCN of the media recovery preceding the OPEN RESETLOGS, plus one.

An ALTER DATABASE OPEN RESETLOGS statement is required after incomplete recovery or recovery with a backup control file. An OPEN RESETLOGS operation does not affect the recoverability of the database. Backups from before the OPEN RESETLOGS operation remain valid and can be used along with backups taken after the OPEN RESETLOGS operation to repair any damage to the database.

resilver a split mirror

The process of making the contents of a split mirror identical with the contents of the storage devices from which the mirror was split. The operating system or the hardware managing the mirror refreshes a broken mirror from the half that is up-to-date and then maintains both sides of the mirror.

restartable backup

The feature that enables RMAN to back up only those files that have not been backed up since a specified date. The unit of restartability is last completed backup set or image copy. You can use this feature after a backup fails to back up the parts of the database missed by the failed backup.

restore

The replacement of a lost or damaged file with a backup. You can restore files either with commands such as UNIX cp or the RMAN RESTORE command.

restore failover

The automatic search by RMAN for usable backups in a restore operation if a corrupted or inaccessible backup is found.

restore optimization

The default behavior in which RMAN avoids restoring data files from backup when possible.

restore point

A user-defined a name associated with an SCN of the database corresponding to the time of the creation of the restore point. A restore point can be a guaranteed restore point or a normal restore point.

resynchronization

The operation that updates the recovery catalog with current metadata from the target database control file. You can initiate a full resynchronization of the catalog by issuing a RESYNC CATALOG command. A partial resynchronization transfers information to the recovery catalog about archived redo log files, backup sets, and data file copies. RMAN resynchronizes the recovery catalog automatically when needed.

retention policy

See backup retention policy

reverse resynchronization

In a Data Guard environment, the updating of a primary or standby database control file with metadata obtained from the recovery catalog. For example, if you configure persistent RMAN settings for a standby database that is not the connected target database, then RMAN performs a reverse resynchronization the next time RMAN connects as target to the standby database. In this way, the recovery catalog keeps the metadata in the control files in a Data Guard environment up to date.

RMAN

See Recovery Manager (RMAN)

RMAN backup job

The set of BACKUP commands executed within a single RMAN session. For example, assume that you start the RMAN client, execute BACKUP DATABASE, BACKUP ARCHIVELOG, and RECOVER COPY, and then exit the RMAN client. The RMAN backup job consists of the database backup and the archived redo log backup.

RMAN client

An Oracle Database executable that interprets commands, directs server sessions to execute those commands, and records its activity in the target database control file. The RMAN executable is automatically installed with the database and is typically located in the same directory as the other database executables. For example, the RMAN client on Linux is named rman and is located in $ORACLE_HOME/bin.

RMAN job

The set of RMAN commands executed in an RMAN session. For example, assume that you start the RMAN client, execute BACKUP DATABASE, BACKUP ARCHIVELOG, and RECOVER COPY, and then exit the RMAN client. The RMAN job consists of the two backups and the roll forward of the data file copy.

RMAN maintenance commands

Commands that you can use the manage RMAN metadata records and backups. The maintenance commands are CATALOG, CHANGE, CROSSCHECK, and DELETE.

RMAN repository

The record of RMAN metadata about backup and recovery operations on the target database. The authoritative copy of the RMAN repository is always stored in the control file of the target database. A recovery catalog can also be used for longer-term storage of the RMAN repository, and can serve as an alternate source of RMAN repository data if the control file of your database is lost.

See Also: recovery catalog database, resynchronization

RMAN session

An RMAN session begins when the RMAN client is started and ends when you exit from the client or the RMAN process is terminated. Multiple RMAN commands can be executed in a single RMAN session.

rollback segments

Database segments that record the before-images of changes to the database.

rolling back

The use of rollback segments to undo uncommitted changes applied to the database during the rolling forward stage of recover.

rolling forward

The application of redo records or incremental backups to data files and control files to recover changes to those files.

See Also: rolling back

RUN block

A series of RMAN commands that are executed sequentially.

SBT

System Backup to Tape. This term specifies a nondisk backup device type, typically a tape library or tape drive. RMAN supports channels of type disk and SBT.

shadow copy

In the Volume Shadow Copy Service (VSS) infrastructure on Windows, a consistent snapshot of a component or volume.

snapshot control file

A copy of a database control file created in an operating system-specific location by Recovery Manager. RMAN creates the snapshot control file so that it has a consistent version of a control file to use when either resynchronizing the recovery catalog or backing up the control file.

source database

The database that you are copying when you create a duplicate database.

source host

The host on which a source database resides.

source platform

When using the RMAN CONVERT command, the platform on which the source database is running. The source database contains the data to be transported to a database running on a different platform.

split mirror backup

A backup of database files that were previously mirrored. Some third-party tools allow you to use mirroring a set of disks or logical devices, that is, maintain an exact duplicate of the primary data in another location. Splitting a mirror involves separating the file copies so that you can use them independently. With the ALTER SYSTEM SUSPEND/RESUME database feature, you can suspend I/O to the database, split the mirror, and make a backup of the split mirror.

stored script

A sequence of RMAN commands stored in the recovery catalog. Stored scripts can be global or local. Global scripts can be shared by all databases registered in the recovery catalog.

synchronous I/O

A server process can perform only one task at a time while RMAN is either reading or writing data.

system change number (SCN)

A stamp that defines a committed version of a database at a point in time. Oracle assigns every committed transaction a unique SCN.

tablespace destination

In a transportable tablespace operation, the location on disk which (by default) contains the data file copies and other output files when the tablespace transport command completes.

tablespace point-in-time recovery (TSPITR)

The recovery of one or more non-SYSTEM tablespaces to a noncurrent time. You use RMAN to perform TSPITR.

tag

Identifier for an RMAN backup. If you generate a backup set, then the tag is assigned to each backup piece rather than to the backup set. If you do not specify a tag for a backup, then RMAN assigns one automatically.

target database

In an RMAN environment, the database to which you are connected as TARGET. The target database is the database on which you are performing RMAN operations.

target host

The computer on which a target database resides.

target instance

In an RMAN environment, the instance associated with a target database.

temp file

A file that belongs to a temporary tablespace and is created with the TEMPFILE option. Temporary tablespaces cannot contain permanent database objects such as tables, and are typically used for sorting. Because temp files cannot contain permanent objects, RMAN does not back them up. RMAN does keep track of the locations of temp files in the control file, however, and during recovery re-creates the temp files as needed at those locations.

transport script

A script generated by the CONVERT DATABASE command. This script contains SQL statements used to create the new database on the destination platform.

transportable tablespace

A feature that transports a set of tablespaces from one database to another, or from one database to itself. Transporting a tablespace into a database is like creating a tablespace with loaded data.

transportable tablespace set

Data files for the set of tablespaces in a transportable tablespace operation, and an export file containing metadata for the set of tablespaces. You use Data Pump Export to perform the export.

trial recovery

A simulated recovery initiated with the RECOVER ... TEST command in RMAN or SQL*Plus. A trial recovery applies redo in a way similar to normal media recovery, but it never writes its changes to disk and it always rolls back its changes. Trial recovery occurs only in memory.

undo retention period

The minimum amount of time that Oracle Database attempts to retain old undo data in the undo tablespace before overwriting it. Old (committed) undo data that is older than the current undo retention period is said to be expired. Old undo data with an age that is less than the current undo retention period is said to be unexpired.

undo tablespace

A dedicated tablespace that stores only undo information when the database is run in automatic undo management mode.

unused block compression

A feature by which RMAN reduces the size of data file backup sets by skipping data blocks. RMAN always skips blocks that have never been used. Under certain conditions, which are described in the BACKUP AS BACKUPSET entry in Oracle Database Backup and Recovery Reference, RMAN also skips previously used blocks that are not currently being used.

user-managed backup

A backups made using a non-RMAN method, for example, using an operating system utility. For example, you can make a user-managed backup by running the cp command on Linux or the COPY command on Windows. A user-managed backup is also called an operating system backup.

user-managed backup and recovery

A backup and recovery strategy for an Oracle database that does not use RMAN. This term is equivalent to operating system backup and recovery. You can back up and restore database files using operating system utilities (for example, the cp command in UNIX), and recover using the SQL*Plus RECOVER command.

validation

In an RMAN context, a test that checks database files for block corruption or checks a backup set to determine whether it can be restored. RMAN can check for both physical and logical block corruption.

virtual private catalog

A subset of the metadata in a base recovery catalog to which a database user is granted access. The owner of a base recovery catalog can grant or revoke restricted access to the recovery catalog to other database users. Each restricted user has full read/write access to his own virtual private catalog.

Volume Shadow Copy Service (VSS)

An infrastructure on Windows server platforms that enables requestors, writers, and providers to participate in the creation of a consistent snapshot called a shadow copy. The VSS service uses well-defined COM interfaces. See Oracle Database Platform Guide for Microsoft Windows to learn how to use RMAN with VSS.

whole database backup

A backup of the control file and all data files that belong to a database.

29 Performing User-Managed Database Flashback and Recovery

This chapter describes how to restore and recover a database and use the flashback features of Oracle Database in a user-managed backup and recovery strategy. A user-managed backup and recovery strategy means a method that does not depend on RMAN.

This chapter contains the following topics:

	
Performing Flashback Database with SQL*Plus

	
Overview of User-Managed Media Recovery

	
Performing Complete Database Recovery

	
Performing Incomplete Database Recovery

	
Recovering a Database in NOARCHIVELOG Mode

	
Troubleshooting Media Recovery

Performing Flashback Database with SQL*Plus

Oracle Flashback Database returns your entire database to a previous state without requiring you to restore files from backup. The SQL*Plus FLASHBACK DATABASE command performs the same function as the RMAN FLASHBACK DATABASE command: it returns the database to a prior state.

Flashback Database requires you to create a fast recovery area for your database and enable the collection of flashback logs. See Chapter 18, "Performing Flashback and Database Point-in-Time Recovery" for more details about how the Flashback Database feature works, requirements for using Flashback Database, and how to enable the collection of flashback logs required for Flashback Database. The requirements and preparations are the same whether you use RMAN or SQL*Plus.

To perform a flashback of the database with SQL*Plus:

	
Query the target database to determine the range of possible flashback SCNs. The following SQL*Plus queries show you the latest and earliest SCN in the flashback window:

SELECT CURRENT_SCN FROM V$DATABASE;

SELECT OLDEST_FLASHBACK_SCN, OLDEST_FLASHBACK_TIME
FROM V$FLASHBACK_DATABASE_LOG;

	
Use other flashback features if necessary to identify the SCN or time of the unwanted changes to your database.

	
Start SQL*Plus with administrator privileges and run the FLASHBACK DATABASE statement to return the database to a prior TIMESTAMP or SCN. For example:

FLASHBACK DATABASE TO SCN 46963;
FLASHBACK DATABASE TO TIMESTAMP '2002-11-05 14:00:00';
FLASHBACK DATABASE
 TO TIMESTAMP to_timestamp('2002-11-11 16:00:00', 'YYYY-MM-DD HH24:MI:SS');

	
When the operation completes, open the database read-only and perform queries to verify that you have recovered the data you need.

If your chosen target time was not far enough in the past, then use another FLASHBACK DATABASE statement. Otherwise, you can use RECOVER DATABASE to return the database to the present time and then try another FLASHBACK DATABASE statement.

	
When satisfied with the results, open the database with the RESETLOGS option.

If appropriate, you can also use Data Pump Export to save lost data, use RECOVER DATABASE to return the database to the present, and reimport the lost object.

	
See Also:

Oracle Database Advanced Application Developer's Guide to learn how to use related flashback features such as Oracle Flashback Query and Oracle Flashback Transaction Query

Overview of User-Managed Media Recovery

This section provides an overview of recovery with SQL*Plus. This section contains the following topics:

	
About User-Managed Restore and Recovery

	
Automatic Recovery with the RECOVER Command

	
Recovery When Archived Logs Are in the Default Location

	
Recovery When Archived Logs Are in a Nondefault Location

	
Recovery Cancellation

	
Parallel Media Recovery

About User-Managed Restore and Recovery

Typically, you restore a file when a media failure or user error has damaged or deleted multiple data files. In a user-managed restore operation, you use an operating system utility to restore a backup of the file.

If a media failure affects data files, then the recovery procedure depends on:

	
The archiving mode of the database: ARCHIVELOG or NOARCHIVELOG

	
The type of media failure

	
The files affected by the media failure (data files, control files, archived redo logs, and the server parameter file are all candidates for restore operations)

If either a permanent or temporary media failure affects any data files of a database operating in NOARCHIVELOG mode, then the database automatically shuts down. If the media failure is temporary, then correct the underlying problem and restart the database. Usually, crash recovery recovers all committed transactions from the online redo log. If the media failure is permanent, then recover the database as described in "Recovering a Database in NOARCHIVELOG Mode".

Table 29-1 explains the implications for media recovery when you lose files in a database that runs in ARCHIVELOG mode.

Table 29-1 User-Managed Restore Operations

	If You Lose...	Then...
	
Data files in the SYSTEM tablespace or data files with active undo segments

	
The database automatically shuts down. If the hardware problem is temporary, then fix it and restart the database. Usually, crash recovery recovers lost transactions. If the hardware problem is permanent, then restore the data files from backups and recover the database as described in "Performing Closed Database Recovery".

	
Data files not in the SYSTEM tablespace or data files that do not contain active rollback or undo segments

	
Affected data files are taken offline, but the database stays open. If the unaffected portions of the database must remain available, then do not shut down the database. Take tablespaces containing problem data files offline using the temporary option, then recover them as described in "Performing Open Database Recovery".

	
All copies of the current control file

	
You must restore a backup control file and then open the database with the RESETLOGS option.

If you do not have a backup, then you can attempt to re-create the control file. If possible, use the script included in the ALTER DATABASE BACKUP CONTROLFILE TO TRACE output. Additional work may be required to match the control file structure with the current database structure.

	
One copy of a multiplexed control file

	
Copy an intact multiplexed control file into the location of the damaged or missing control file and open the database. If you cannot copy the control file to its original location, then edit the initialization parameter file to reflect a new location or remove the damaged control file. Then, open the database.

	
One or more archived logs required for media recovery

	
You must restore backups of these archived logs for recovery to proceed. You can restore either to the default or nondefault location. If you do not have backups, then you must perform incomplete recovery up to an SCN before the first missing redo log and open RESETLOGS.

	
The server parameter file (SPFILE)

	
If you have a backup of the server parameter file, then restore it. Alternatively, if you have a backup of the client-side initialization parameter file, then you can restore a backup of this file, start the instance, and then re-create the server parameter file.

	
Note:

Restore and recovery of Oracle Managed Files is no different from restore and recovery of user-named files.

To perform media recovery, Oracle recommends that you use the RECOVER statement in SQL*Plus. You can also use the SQL statement ALTER DATABASE RECOVER, but the RECOVER statement is usually simpler. To start any type of media recovery, you must adhere to the following restrictions:

	
You must have administrator privileges.

	
All recovery sessions must be compatible.

	
One session cannot start complete media recovery while another performs incomplete media recovery.

	
You cannot start media recovery if you are connected to the database through a shared server process.

Automatic Recovery with the RECOVER Command

When using SQL*Plus to perform media recovery, the easiest strategy is to perform automatic recovery with the SQL*Plus RECOVER command. Automatic recovery initiates recovery without manually prompting SQL*Plus to apply each individual archived redo log.

When using SQL*Plus, you have the following options for automating the application of the default file names of archived redo logs needed during recovery:

	
Issuing SET AUTORECOVERY ON before issuing the RECOVER command. If you perform recovery with SET AUTORECOVERY OFF, which is the default, then you must enter file names manually or accept the suggested file name by pressing Enter.

	
Specifying the AUTOMATIC keyword as an option of the RECOVER command.

In either case, no interaction is required when you issue the RECOVER command if the necessary files are in the correct locations with the correct names. When the database successfully applies a redo log file, the following message is returned:

Log applied.

You are then prompted for the next redo log in the sequence. If the most recently applied log is the last required log, then recovery is terminated.

The file names used for automatic recovery are derived from the concatenated values of LOG_ARCHIVE_FORMAT with LOG_ARCHIVE_DEST_n, where n is the highest value among all enabled, local destinations. For example, assume that the following initialization parameter settings are in effect in the database instance:

LOG_ARCHIVE_DEST_1 = "LOCATION=/arc_dest/loc1/"
LOG_ARCHIVE_DEST_2 = "LOCATION=/arc_dest/loc2/"
LOG_ARCHIVE_DEST_STATE_1 = DEFER
LOG_ARCHIVE_DEST_STATE_2 = ENABLE
LOG_ARCHIVE_FORMAT = arch_%t_%s_%r.arc

In this example, SQL*Plus automatically suggests the file name /arc_dest/loc2/arch_%t_%s_%r.arc (where %t is the thread, %s is the sequence and %r is the resetlogs ID).

Automatic Recovery with SET AUTORECOVERY

After restoring data file backups, you can run the SET AUTORECOVERY ON command to enable on automatic recovery. For example, you could enter the following commands in SQL*Plus to perform automatic recovery and open the database:

STARTUP MOUNT
SET AUTORECOVERY ON
RECOVER DATABASE
ALTER DATABASE OPEN;

	
Note:

After issuing the SQL*Plus RECOVER command, you can view all files that have been considered for recovery in the V$RECOVERY_FILE_STATUS view. You can access status information for each file in the V$RECOVERY_STATUS view. These views are not accessible after you terminate the recovery session.

Automatic Recovery with the AUTOMATIC Option of the RECOVER Command

Besides using SET AUTORECOVERY to turn on automatic recovery, you can also simply specify the AUTOMATIC keyword in the RECOVER command. For example, you could enter the following commands in SQL*Plus to perform automatic recovery and open the database:

STARTUP MOUNT
RECOVER AUTOMATIC DATABASE
ALTER DATABASE OPEN;

If you use an Oracle Real Application Clusters configuration, and if you are performing incomplete recovery or using a backup control file, then the database can only compute the name of the first archived redo log file from the first redo thread. You may have to manually apply the first log file from the other redo threads. After the first log file in a given thread has been supplied, the database can suggest the names of the subsequent logs in this thread.

Recovery When Archived Logs Are in the Default Location

Recovering when the archived logs are in their default location is the simplest case. As a log is needed, the database suggests the file name. If you run nonautomatic media recovery with SQL*Plus, then the output is displayed in the format shown by this example:

ORA-00279: change 53577 generated at 11/26/02 19:20:58 needed for thread 1
ORA-00289: suggestion : /oracle/oradata/trgt/arch/arcr_1_802.arc
ORA-00280: change 53577 for thread 1 is in sequence #802
Specify log: [<RET> for suggested | AUTO | FROM logsource | CANCEL]

Similar messages are returned when you use an ALTER DATABASE ... RECOVER statement. However, no prompt is displayed.

The database constructs suggested archived log file names by concatenating the current values of the initialization parameters LOG_ARCHIVE_DEST_n (where n is the highest value among all enabled, local destinations) and LOG_ARCHIVE_FORMAT and using log history data from the control file. The following are possible settings:

LOG_ARCHIVE_DEST_1 = 'LOCATION = /oracle/oradata/trgt/arch/'
LOG_ARCHIVE_FORMAT = arcr_%t_%s.arc

SELECT NAME FROM V$ARCHIVED_LOG;

NAME
--
/oracle/oradata/trgt/arch/arcr_1_467.arc
/oracle/oradata/trgt/arch/arcr_1_468.arc
/oracle/oradata/trgt/arch/arcr_1_469.arc

Thus, if all the required archived log files are mounted at the LOG_ARCHIVE_DEST_1 destination, and if the value for LOG_ARCHIVE_FORMAT is never altered, then the database can suggest and apply log files to complete media recovery automatically.

Recovery When Archived Logs Are in a Nondefault Location

Performing media recovery when archived logs are not in their default location adds an extra step. You have the following mutually exclusive options:

	
Edit the LOG_ARCHIVE_DEST_n parameter that specifies the location of the archived redo logs, then recover as usual.

	
Use the SET statement in SQL*Plus to specify the nondefault log location before recovery, or the LOGFILE parameter of the RECOVER command

Resetting the Archived Log Destination

You can edit the initialization parameter file or issue ALTER SYSTEM statements to change the default location of the archived redo logs.

To change the default archived log location before recovery:

	
Use an operating system utility to restore the archived logs to a nondefault location. For example, enter:

% cp /backup/arch/* /tmp/

	
Change the value for the archive log parameter to the nondefault location. You can issue ALTER SYSTEM statements while the instance is started, or edit the initialization parameter file and then start the database instance. For example, while the instance is shut down edit the parameter file as follows:

LOG_ARCHIVE_DEST_1 = 'LOCATION=/tmp/'
LOG_ARCHIVE_FORMAT = arcr_%t_%s.arc

	
Using SQL*Plus, start a new instance by specifying the edited initialization parameter file, and then mount the database. For example, enter:

STARTUP MOUNT

	
Begin media recovery as usual. For example, enter:

RECOVER DATABASE

Overriding the Archived Log Destination

In some cases, you may want to override the current setting for the archiving destination parameter as a source for archived log files.

To recover archived logs in a nondefault location with SET LOGSOURCE:

	
Using an operating system utility, copy the archived redo logs to an alternative location. For example, enter:

% cp $ORACLE_HOME/oradata/trgt/arch/* /tmp

	
Specify the alternative location within SQL*Plus for the recovery operation. Use the LOGSOURCE parameter of the SET statement. For example, start SQL*Plus and run:

SET LOGSOURCE "/tmp"

	
Recover the offline tablespace. For example, to recover the offline tablespace users do the following:

RECOVER AUTOMATIC TABLESPACE users

	
Alternatively, you can avoid running SET LOGSOURCE and simply run:

RECOVER AUTOMATIC TABLESPACE users FROM "/tmp"

	
Note:

Overriding the redo log source does not affect the archive redo log destination for online redo log groups being archived.

Recovery Cancellation

If you start media recovery and must then interrupt it, then either enter CANCEL when prompted for a redo log file, or use your operating system's interrupt signal if you must terminate when recovering an individual data file, or when automated recovery is in progress. After recovery is canceled, you can resume it later with the RECOVER command. Recovery resumes where it left off when it was canceled.

Parallel Media Recovery

By default, Oracle Database uses parallel media recovery to improve performance of the roll forward phase of media recovery. In parallel recovery of media, the database uses a "division of labor" approach to allocate different processes to different data blocks while rolling forward, thereby making the procedure more efficient. The number of processes used is derived from the CPU_COUNT initialization parameter, which by default equals the number of CPUs on the system. For example, if parallel recovery is performed on a system where CPU_COUNT is 4, and only one data file is recovered, then four spawned processes read blocks from the archive logs and apply redo.

Typically, media recovery is limited by data block reads and writes. Parallel recovery attempts to use all of the available I/O bandwidth of the system to improve performance. Unless there is a system I/O bottleneck or poor asynchronous I/O support, parallel recovery is likely to improve performance of recovery.

To override the default behavior of performing parallel recovery, use the SQL*Plus RECOVER command with the NOPARALLEL option, or RECOVER PARALLEL 0. The RECOVERY_PARALLELISM initialization parameter controls instance or crash recovery only. Media recovery is not affected by the value used for RECOVERY_PARALLELISM.

	
See Also:

SQL*Plus User's Guide and Reference for more information about the SQL*Plus RECOVER ... PARALLEL and NOPARALLEL commands

Performing Complete Database Recovery

Typically, you perform complete recovery of the database when a media failure makes one or more data files inaccessible. The V$RECOVER_FILE view indicates which files need recovery. When you perform complete database recovery, you use all available redo to recover the database to the current SCN.

Depending on the circumstances, you can either recover the whole database at once or recover individual tablespaces or data files. Because you do not have to open the database with the RESETLOGS option after complete recovery, you have the option of recovering some data files at one time and the remaining data files later.

The procedures in this section assume the following:

	
The current control file is available. If you must restore or re-create the control file, then see "Recovering After the Loss of All Current Control Files" and "Re-Creating a Control File".

	
You have backups of all needed data files. If you are missing data file backups, then see "Re-Creating Data Files When Backups Are Unavailable".

	
All necessary archived redo logs are available. If you are missing redo required to completely recover the database, then you must perform database point-in-time recovery. See "Performing Incomplete Database Recovery".

This section describes the steps necessary to complete media recovery operations, and includes the following topics:

	
Performing Closed Database Recovery

	
Performing Open Database Recovery

Performing Closed Database Recovery

This section describes steps to perform complete recovery while the database is not open. You can recover either all damaged data files in one operation or perform individual recovery of each damaged data file in separate operations.

To restore and recover damaged or missing data files:

	
If the database is open, query V$RECOVER_FILE to determine which data files must be recovered and why they must be recovered.

If you are planning to perform complete recovery rather than point-in-time recovery, then you can recover only those data files that require recovery, rather than the whole database. For point-in-time recovery, you must restore and recover all data files, unless you perform TSPITR as described in Chapter 21, "Performing RMAN Tablespace Point-in-Time Recovery (TSPITR)". You can also use Flashback Database, but this procedure affects all data files and returns the entire database to a past time.

You can query the V$RECOVER_FILE view to list data files requiring recovery by data file number with their status and error information.

SELECT FILE#, ERROR, ONLINE_STATUS, CHANGE#, TIME
FROM V$RECOVER_FILE;

	
Note:

You cannot use V$RECOVER_FILE with a control file restored from backup or a control file that was re-created after the time of the media failure affecting the data files. A restored or re-created control file does not contain the information needed to update V$RECOVER_FILE accurately.

You can also perform useful joins by using the data file number and the V$DATAFILE and V$TABLESPACE views to get the data file and tablespace names. Use the following SQL*Plus commands to format the output of the query:

COL DF# FORMAT 999
COL DF_NAME FORMAT A35
COL TBSP_NAME FORMAT A7
COL STATUS FORMAT A7
COL ERROR FORMAT A10
COL CHANGE# FORMAT 99999999
SELECT r.FILE# AS df#, d.NAME AS df_name, t.NAME AS tbsp_name,
 d.STATUS, r.ERROR, r.CHANGE#, r.TIME
FROM V$RECOVER_FILE r, V$DATAFILE d, V$TABLESPACE t
WHERE t.TS# = d.TS#
AND d.FILE# = r.FILE#;

The ERROR column identifies the problem for each file requiring recovery.

	
Query the V$ARCHIVED_LOG and V$RECOVERY_LOG views to determine which archived redo log files are needed.

V$ARCHIVED_LOG lists file names for all archived redo logs, whereas V$RECOVERY_LOG lists only the archived redo logs that the database needs to perform media recovery. The latter view also includes the probable names of the files based on the naming convention specified by using the LOG_ARCHIVE_FORMAT parameter.

	
Note:

V$RECOVERY_LOG is only populated when media recovery is required for a data file. Thus, this view is not useful for a planned recovery, such as recovery from a user error.
If a data file requires recovery, but no backup of the data file exists, then you need all redo generated starting from the time when the data file was added to the database.

	
If all archived logs are available in the default location, then skip to the Step 4.

If some archived logs must be restored, and if sufficient space is available, then restore the required archived redo log files to the location specified by LOG_ARCHIVE_DEST_1. The database locates the correct log automatically when required during media recovery. For example, you might enter a command such as the following on Linux or UNIX:

% cp /disk2/arch/* $ORACLE_HOME/oradata/trgt/arch

If sufficient space is not available, then restore some or all of the required archived redo log files to an alternative location.

	
If the database is open, then shut it down. For example:

SHUTDOWN IMMEDIATE

	
Inspect the media to determine the source of the problem.

If the hardware problem that caused the media failure was temporary, and if the data was undamaged (for example, a disk or controller power failure occurred), then no media recovery is required: start the database and resume normal operations.

If you cannot repair the problem, then proceed to the Step 6.

	
If the files are permanently damaged, then identify the most recent backups for the damaged files. Restore only the data files damaged by the media failure: do not restore undamaged data files or any online redo log files.

For example, if ORACLE_HOME/oradata/trgt/users01.dbf is the only damaged file, then you may find that /backup/users01_10_24_02.dbf is the most recent backup of this file. If you do not have a backup of a specific data file, then you may be able to create an empty replacement file that can be recovered.

	
Use an operating system utility to restore the data files to their default location or to a new location. For example, a Linux or UNIX user restoring users01.dbf to its default location might enter:

% cp /backup/users01_10_24_06.dbf $ORACLE_HOME/oradata/trgt/users01.dbf

Use the following guidelines when determining where to restore data file backups:

	
If the hardware problem is repaired and you can restore the data files to their default locations, then restore the data files to their default locations and begin media recovery.

	
If the hardware problem persists and you cannot restore data files to their original locations, then restore the data files to an alternative storage device. Indicate the new location of these files in the control file with the ALTER DATABASE RENAME FILE statement. See Oracle Database Administrator's Guide.

	
If you are restoring a data file to a raw disk or partition, then the technique is basically the same as when you are restoring to a file on a file system. Be aware of the naming conventions for files on raw devices (which differ depending on the operating system), and use an operating system utility that supports raw devices.

	
Connect to the database with administrator privileges. Then start a new instance and mount, but do not open, the database. For example, enter:

STARTUP MOUNT

	
If you restored one or more damaged data files to alternative locations, then update the control file of the database to reflect the new data file names. For example, to change the file name of the data file in tablespace users you might enter:

ALTER DATABASE RENAME FILE '?/oradata/trgt/users01.dbf' TO
 '/disk2/users01.dbf';

	
Obtain the data file names and statuses of all data files by checking the list of data files that normally accompanies the current control file or by querying the V$DATAFILE view. For example, enter:

SELECT NAME,STATUS FROM V$DATAFILE;

	
Ensure that all data files requiring recovery are online. The only exceptions are data files in an offline tablespace that was taken offline normally or data files in a read-only tablespace. For example, to guarantee that a data file named /oracle/dbs/tbs_10.f is online, enter the following:

ALTER DATABASE DATAFILE '/oracle/dbs/tbs_10.f' ONLINE;

If a specified data file is already online, then the database ignores the statement. If you prefer, create a script to bring all data files online at once, as in the following example:

SPOOL onlineall.sql
SELECT 'ALTER DATABASE DATAFILE '''||name||''' ONLINE;' FROM V$DATAFILE;
SPOOL OFF

SQL> @onlineall

	
If you restored archived redo logs to an alternative location, then you can specify the location before media recovery with the LOGSOURCE parameter of the SET command in SQL*Plus. For example, if the logs are staged in /tmp, you can enter the following command:

SET LOGSOURCE /tmp

Alternatively, you can skip Step 12 and use the FROM parameter on the RECOVER command as in Step 13. For example, if the logs are staged in /tmp, you can enter the following command:

RECOVER AUTOMATIC FROM '/tmp' DATABASE

	
Note:

Overriding the redo log source does not affect the archive redo log destination for online redo log groups being archived.

	
Issue a statement to recover the database, tablespace, or data file. For example, enter one of the following RECOVER commands:

RECOVER AUTOMATIC DATABASE # whole database
RECOVER AUTOMATIC TABLESPACE users # specific tablespace
RECOVER AUTOMATIC DATAFILE '?/oradata/trgt/users01.dbf'; # specific data file

If you choose not to automate the application of archived redo logs, then you must accept or reject each prompted log. If you automate recovery, then the database applies the logs automatically. Recovery continues until all required archived and online redo logs have been applied to the restored data files. The database notifies you when media recovery is complete:

Media recovery complete.

If no archived redo logs are required for complete media recovery, then the database applies all necessary online redo log files and terminates recovery.

	
After recovery terminates, open the database for use:

ALTER DATABASE OPEN;

	
See Also:

"Overview of User-Managed Media Recovery" for more information about applying redo log filesOracle Database Reference

	
After archived logs are applied, and after making sure that a copy of each archived log group still exists in offline storage, delete the restored copy of the archived redo log file to free disk space. For example:

% rm /tmp/*.arc

	
See Also:

"Overview of User-Managed Media Recovery" for an overview of log application during media recovery

Performing Open Database Recovery

It is possible for a media failure to occur while the database remains open, leaving the undamaged data files online and available for use. Damaged data files—but not the tablespaces that contain them—are automatically taken offline if the database writer cannot write to them. If the database writer cannot open a data file, an error is still returned. Queries that cannot read damaged files return errors, but the data files are not taken offline because of the failed queries. For example, you may run a SQL query and see output such as:

ERROR at line 1:
ORA-01116: error in opening database file 3
ORA-01110: data file 11: '/oracle/oradata/trgt/cwmlite02.dbf'
ORA-27041: unable to open file
SVR4 Error: 2: No such file or directory
Additional information: 3

You cannot use the procedure in this section to perform complete media recovery on the SYSTEM tablespace while the database is open. If the media failure damages data files of the SYSTEM tablespace, then the database automatically shuts down.

To restore data files in an open database:

	
Follow Step 1 through Step 3 in "Performing Closed Database Recovery".

	
If the database is open, then take all tablespaces containing damaged data files offline. For example, if the tablespaces users and tools contain damaged data files, then execute the following SQL statements:

ALTER TABLESPACE users OFFLINE TEMPORARY;
ALTER TABLESPACE tools OFFLINE TEMPORARY;

If you specify TEMPORARY, then Oracle Database creates a checkpoint for all online data files in the tablespace. Files that are offline when you issue this statement may require media recovery before you bring the tablespace back online. If you specify IMMEDIATE, then you must perform media recovery on the tablespace before bringing it back online.

	
Inspect the media to determine the source of the problem.

As explained in "Running the DBVERIFY Utility", you can use the DBVERIFY utility to run an integrity check on offline data files.

If the hardware problem that caused the media failure was temporary, and if the data was undamaged, then no media recovery is required. You can bring the offline tablespaces online and resume normal operations. If you cannot repair the problem, or if DBVERIFY reports corrupt blocks, then proceed to the Step 4.

	
If files are permanently damaged, then use operating system commands to restore the most recent backup files of only the data files damaged by the media failure. For example, to restore users01.dbf you might use the cp command on Linux or UNIX as follows:

% cp /disk2/backup/users01.dbf $ORACLE_HOME/oradata/trgt/users01.dbf

If the hardware problem is fixed and the data files can be restored to their original locations, then do so. Otherwise, restore the data files to an alternative storage device. Do not restore undamaged data files, online redo logs, or control files.

	
Note:

In some circumstances, if you do not have a backup of a specific data file, you can use the ALTER DATABASE CREATE DATAFILE statement to create an empty replacement file that is recoverable.

	
If you restored one or more damaged data files to alternative locations, then update the control file of the database to reflect the new data file names. For example, to change the file name of the data file in tablespace users you might enter:

ALTER DATABASE RENAME FILE '?/oradata/trgt/users01.dbf' TO
 '/disk2/users01.dbf';

	
If you restored archived redo logs to an alternative location, then you can specify the location before media recovery with the LOGSOURCE parameter of the SET command in SQL*Plus. For example, if the logs are staged in /tmp, you can enter the following command:

SET LOGSOURCE /tmp

Alternatively, you can skip Step 6 and use the FROM parameter on the RECOVER command as in Step 7. For example, if the logs are staged in /tmp, you can enter the following command:

RECOVER AUTOMATIC FROM '/tmp' TABLESPACE users, tools;

	
Note:

Overriding the redo log source does not affect the archive redo log destination for online redo log groups being archived.

	
Connect to the database with administrator privileges, and start offline tablespace recovery of all damaged data files in one or more offline tablespaces using one step. For example, recover users and tools as follows:

RECOVER AUTOMATIC TABLESPACE users, tools;

The database begins the roll forward phase of media recovery by applying the necessary archived and online redo logs to reconstruct the restored data files. Unless the application of files is automated with the RECOVER AUTOMATIC or SET AUTORECOVERY ON commands, the database prompts for each required redo log file.

Recovery continues until all required archived logs have been applied to the data files. The online redo logs are then automatically applied to the restored data files to complete media recovery. If no archived redo logs are required for complete media recovery, then the database does not prompt for any. Instead, all necessary online redo logs are applied, and media recovery is complete.

	
When the damaged tablespaces are recovered up to the moment that media failure occurred, bring the offline tablespaces online. For example, to bring tablespaces users and tools online, issue the following statements:

ALTER TABLESPACE users ONLINE;
ALTER TABLESPACE tools ONLINE;

	
See Also:

Oracle Database Administrator's Guide to learn about creating data files and Oracle Database SQL Language Reference to learn about ALTER DATABASE RENAME FILE

Performing Incomplete Database Recovery

Typically, you perform database point-in-time recovery (DBPITR) in the following situations:

	
You want to recover the database to an SCN before a user or administrative error.

	
The database contains corrupt blocks.

	
Complete database recovery failed because all necessary archived redo logs were not available.

	
You are creating a test database or a reporting database from production database backups.

If the database is operating in ARCHIVELOG mode, and if the only copy of an archived redo log file is damaged, then the damaged file does not affect the present operation of the database. Table 29-2 describes situations that can arise depending on when the redo log was written and when you backed up the data file.

Table 29-2 Loss of Archived Redo Logs

	If You Backed Up...	Then...
	
All data files after the filled online redo log group (which is now archived) was written

	
The archived version of the filled online redo log group is not required for complete media recovery.

	
A specific data file before the filled online redo log group was written

	
If the corresponding data file is damaged by a permanent media failure, then use the most recent backup of the damaged data file and perform tablespace point-in-time recovery of the damaged data file, up to the damaged archived redo log file.

	
Caution:

If you know that an archived redo log group has been damaged, then immediately back up all data files so that you have a whole database backup that does not require the damaged archived redo log.

The technique for DBPITR is very similar to the technique described in "Performing Closed Database Recovery", except that you terminate DBPITR by specifying a particular time or SCN or entering CANCEL. Cancel-based recovery prompts you with the suggested file names of archived redo logs. Recovery stops when you specify CANCEL instead of a file name or when all redo has been applied to the data files. Cancel-based recovery is the best technique to control which archived log terminates recovery.

The procedures in this section assume the following:

	
The current control file is available. If you must restore or re-create the control file, then see "Recovering After the Loss of All Current Control Files".

	
You have backups of all needed data files. If you are missing data file backups, then see "Re-Creating Data Files When Backups Are Unavailable".

This section contains the following topics:

	
Performing Cancel-Based Incomplete Recovery

	
Performing Time-Based or Change-Based Incomplete Recovery

Performing Cancel-Based Incomplete Recovery

In cancel-based recovery, recovery proceeds by prompting you with the suggested file names of archived redo log files. Recovery stops when you specify CANCEL instead of a file name or when all redo has been applied to the data files.

To perform cancel-based recovery:

	
Follow Step1 through Step 8 in "Performing Closed Database Recovery".

	
Begin cancel-based recovery by issuing the following command in SQL*Plus:

RECOVER DATABASE UNTIL CANCEL

	
Note:

If you fail to specify the UNTIL clause on the RECOVER command, then the database assumes a complete recovery and does not open until all redo is applied.

The database applies the necessary redo log files to reconstruct the restored data files. The database supplies the name it expects to find from LOG_ARCHIVE_DEST_1 and requests you to stop or proceed with applying the log file. If the control file is a backup, then you must supply the names of the online redo logs if you want to apply the changes in these logs.

	
Continue applying redo log files until the last log has been applied to the restored data files, then cancel recovery by executing the following command:

CANCEL

The database indicates whether recovery is successful. If you cancel before all the data files have been recovered to a consistent SCN and then try to open the database, then you get an ORA-1113 error if more recovery is necessary. You can query V$RECOVER_FILE to determine whether more recovery is needed, or if a backup of a data file was not restored before starting incomplete recovery.

	
Open the database with the RESETLOGS option. You must always reset the logs after incomplete recovery or recovery with a backup control file. For example:

ALTER DATABASE OPEN RESETLOGS;

If you attempt to use OPEN RESETLOGS when you should not, or if you neglect to reset the log when you should, then the database returns an error and does not open the database. Correct the problem and try again.

	
See Also:

"About User-Managed Media Recovery Problems" for descriptions of situations that can cause ALTER DATABASE OPEN RESETLOGS to fail

	
After opening the database with the RESETLOGS option, check the alert log.

	
Note:

The easiest way to locate trace files and the alert log is to run the following SQL query: SELECT NAME, VALUE FROM V$DIAG_INFO.

When you open with the RESETLOGS option, the database returns different messages depending on whether recovery was complete or incomplete. If the recovery was complete, then the following message appears in the alert log:

RESETLOGS after complete recovery through change scn

If the recovery was incomplete, then this message is reported in the alert log, where scn refers to the end point of incomplete recovery:

RESETLOGS after incomplete recovery UNTIL CHANGE scn

Also check the alert log to determine whether the database detected inconsistencies between the data dictionary and the control file. Table 29-3 describes two possible scenarios.

Table 29-3 Inconsistencies Between Data Dictionary and Control File

	Data File Listed in Control File	Data File Listed in the Data Dictionary	Result
	
Yes

	
No

	
References to the unlisted data file are removed from the control file. A message in the alert log indicates what was found.

	
No

	
Yes

	
The database creates a placeholder entry in the control file under MISSINGnnnnn (where nnnnn is the file number in decimal). MISSINGnnnnn is flagged in the control file as offline and requiring media recovery. You can make the data file corresponding to MISSINGnnnnn accessible by using ALTER DATABASE RENAME FILE for MISSINGnnnnn so that it points to the data file. If you do not have a backup of this data file, then drop the tablespace.

Performing Time-Based or Change-Based Incomplete Recovery

This section describes how to specify an SCN or time for the end point of recovery. If your database is affected by seasonal time changes (for example, daylight savings time), then you may experience a problem if a time appears twice in the redo log and you want to recover to the second, or later time. To handle time changes, perform cancel-based or change-based recovery.

To perform change-based or time-based recovery:

	
Follows Step 1 through Step 8 in "Performing Closed Database Recovery".

	
Issue the RECOVER DATABASE UNTIL statement to begin recovery. If recovering to an SCN, then specify as a decimal number without quotation marks. For example, to recover through SCN 10034 issue:

RECOVER DATABASE UNTIL CHANGE 10034;

If recovering to a time, then the time is always specified using the following format, delimited by single quotation marks: 'YYYY-MM-DD:HH24:MI:SS'. The following statement recovers the database up to a specified time:

RECOVER DATABASE UNTIL TIME '2000-12-31:12:47:30'

	
Apply the necessary redo log files to recover the restored data files. The database automatically terminates the recovery when it reaches the correct time, and returns a message indicating whether recovery is successful.

	
Note:

Unless recovery is automated, the database supplies the name from LOG_ARCHIVE_DEST_1 and asks you to stop or proceed with after each log. If the control file is a backup, then after the archived logs are applied you must supply the names of the online logs.

	
Follow Steps 4 and 5 in "Performing Cancel-Based Incomplete Recovery".

Recovering a Database in NOARCHIVELOG Mode

If a media failure damages data files in a NOARCHIVELOG database, then the only option for recovery is usually to restore a consistent whole database backup. If you are using logical backups created by Oracle Data Pump Export to supplement regular physical backups, then you can also attempt to restore the database by importing an exported backup of the database into a re-created database or a database restored from an old backup.

To restore and recover the most recent whole database backup:

	
If the database is open, then shut down the database. For example, enter:

SHUTDOWN IMMEDIATE

	
If possible, correct the media problem so that the backup database files can be restored to their original locations.

	
Restore the most recent whole database backup with operating system commands. Restore all of the data files and control files of the whole database backup, not just the damaged files. If the hardware problem has not been corrected and some or all of the database files must be restored to alternative locations, then restore the whole database backup to a new location. The following example restores a whole database backup to its default location:

% cp /backup/*.dbf $ORACLE_HOME/oradata/trgt/

	
If necessary, edit the restored initialization parameter file to indicate the new location of the control files. For example:

CONTROL_FILES = "/new_disk/oradata/trgt/control01.dbf"

	
Start an instance using the restored and edited parameter file and mount, but do not open, the database. For example:

STARTUP MOUNT

	
If the restored data file names will be different (as will be the case when you restore to a different file system or directory, on the same node or a different node), then update the control file to reflect the new data file locations. For example, to rename data file 1 you might enter:

ALTER DATABASE RENAME FILE '?/oradata/trgt/system01.dbf' TO
 '/new_disk/oradata/system01.dbf';

	
If the online redo logs were located on a damaged disk, and the hardware problem is not corrected, then specify a new location for each affected online log. For example, enter:

ALTER DATABASE RENAME FILE '?/oradata/trgt/redo01.log' TO
 '/new_disk/oradata/redo_01.log';
ALTER DATABASE RENAME FILE '?/oradata/trgt/redo02.log' TO
 '/new_disk/oradata/redo_02.log';

	
Because online redo logs are never backed up, you cannot restore them with the data files and control files. To enable the database to reset the online redo logs, you must first mimic incomplete recovery:

RECOVER DATABASE UNTIL CANCEL
CANCEL

	
Open the database in RESETLOGS mode. This command clears the online redo logs and resets the log sequence to 1:

ALTER DATABASE OPEN RESETLOGS;

If you restore a NOARCHIVELOG database backup and then reset the log, the action discards all changes to the database made from the time the backup was taken to the time of the failure.

	
See Also:

Oracle Database Administrator's Guide for more information about renaming and relocating data files, and Oracle Database SQL Language Reference to learn about ALTER DATABASE RENAME FILE

Troubleshooting Media Recovery

This section describes how to troubleshoot user-managed media recovery, that is, media recovery performed without using Recovery Manager (RMAN). This section includes the following topics:

	
About User-Managed Media Recovery Problems

	
Investigating the Media Recovery Problem: Phase 1

	
Trying to Fix the Recovery Problem Without Corrupting Blocks: Phase 2

	
Deciding Whether to Allow Recovery to Mark as Corrupt Blocks: Phase 3

	
Allowing Recovery to Corrupt Blocks: Phase 4

	
Performing Trial Recovery

About User-Managed Media Recovery Problems

Table 29-4 describes potential problems that can occur during media recovery.

Table 29-4 Media Recovery Problems

	Problem	Description
	
Missing or misnamed archived log

	
Recovery stops because the database cannot find the archived log recorded in the control file.

	
When you attempt to open the database, error ORA-1113 indicates that a data file needs media recovery.

	
This error commonly occurs because:

	
You are performing incomplete recovery but failed to restore all needed data file backups.

	
Incomplete recovery stopped before data files reached a consistent SCN.

	
You are recovering data files from an online backup, but not enough redo was applied to make the data files consistent.

	
You are performing recovery with a backup control file, and did not specify the location of a needed online redo log.

	
A data file is undergoing media recovery when you attempt to open the database.

	
Data files needing recovery were not brought online before you execute the RECOVER DATABASE command, and so were not recovered.

	
Redo record problems

	
Two possible cases are as follows:

	
Recovery stops because of failed consistency checks, a problem called stuck recovery. Stuck recovery can occur when an underlying operating system or storage system loses a write issued by the database during normal operation.

	
The database signals an internal error when applying the redo. This problem can be caused by an Oracle Database bug. If checksum verification is not being used, then the errors can also be caused by corruptions to the redo or data blocks.

	
Corrupted archived logs

	
Logs may be corrupted while they are stored on or copied between storage systems. If DB_BLOCK_CHECKSUM is enabled, then the database usually signals a checksum error. If checksum checking is disabled, then log corruption may appear as a problem with redo.

	
Archived logs with incompatible parallel redo format

	
If you enable the parallel redo feature, then the database generates redo logs in a new format. Prior releases of Oracle are unable to apply parallel redo logs. However, releases before Oracle9i Database Release 2 (9.2) can detect the parallel redo format and indicate the inconsistency with the following error message: External error 00303, 00000, "cannot process Parallel Redo".

	
Corrupted data blocks

	
A data file backup may have contained a corrupted data block, or the data block may become corrupted either during recovery or when it is copied to the backup. If DB_BLOCK_CHECKSUM is enabled, then the database computes a checksum for each block during normal operations and stores it in the block before writing it to disk. When the database reads the block from disk later, it recomputes the checksum and compares it to the stored value. If they do not match, then the database signals a checksum error. If checksum checking is disabled, then the problem may also appear as a redo corruption.

	
Random problems

	
Memory corruptions and other transient problems can occur during recovery.

The symptoms of media recovery problems are usually external or internal errors signaled during recovery. For example, an external error indicates that a redo block or a data block has failed checksum verification checks. Internal errors can be caused by either bugs in the database or errors arising from the underlying operating system and hardware.

If media recovery encounters a problem while recovering a database backup, then whether it is a stuck recovery problem or a problem during redo application, the database always stops and leaves the data files undergoing recovery in a consistent state, that is, at a consistent SCN preceding the failure. You can then do one of the following:

	
Open the database read-only to investigate the problem.

	
Open the database with the RESETLOGS option, if the requirements for opening RESETLOGS have been met. The RESETLOGS restrictions apply to opening the physical standby database as well, because a standby database is updated by a form of media recovery.

In general, opening the database read-only or opening with the RESETLOGS option requires all online data files to be recovered to the same SCN. If this requirement is not met, then the database may signal ORA-1113 or other errors when you attempt to open it. Some common causes of ORA-1113 are described in Table 29-4.

The basic methodology for responding to media recovery problems occurs in the following phases:

	
Try to identify the cause of the problem. Run a trial recovery if needed.

	
If the problem is related to missing redo logs or if you suspect that there is a redo log, memory, or data block corruption, then try to resolve the problem using the methods described in Table 29-5.

	
If you cannot resolve the problem using the methods described in Table 29-5, then do one of the following:

	
Open the database with the RESETLOGS option if you are recovering a whole database backup. If you have performed serial media recovery, then the database contains all the changes up to but not including the changes at the SCN where the corruption occurred. No changes from this SCN onward are in the recovered part of the database. If you have restored online backups, then opening RESETLOGS succeeds only if you have recovered through all the ALTER ... END BACKUP operations in the redo stream.

	
Proceed with recovery by allowing media recovery to corrupt data blocks. After media recovery completes, try performing block media recovery using RMAN.

	
Call Oracle Support Services as a last resort.

	
See Also:

"Performing Disaster Recovery" to learn about block media recovery

Investigating the Media Recovery Problem: Phase 1

If media recovery encounters a problem, then obtain as much information as possible after recovery halts. You do not want to waste time fixing the wrong problem, which may make matters worse.

The goal of this initial investigation is to determine whether the problem is caused by incorrect setup, corrupted redo logs, corrupted data blocks, memory corruption, or other problems. If you see a checksum error on a data block, then the data block is corrupted. If you see a checksum error on a redo log block, then the redo log is corrupted.

Sometimes the cause of a recovery problem can be difficult to determine. Nevertheless, the methods in this section enable you to quickly recover a database even when you do not completely understand the cause of the problem.

To investigate media recovery problems:

	
Examine the alert.log to see whether the error messages give general information about the nature of the problem. For example, does the alert_SID.log indicate any checksum failures? Does the alert_SID.log indicate that media recovery may have to corrupt data blocks in order to continue?

	
Check the trace file generated by the Oracle Database during recovery. It may contain additional error information.

Trying to Fix the Recovery Problem Without Corrupting Blocks: Phase 2

Depending on the type of media recovery problem you suspect, you have different solutions at your disposal. You can try one or a combination of the techniques described in Table 29-5. These solutions are common repair techniques and fairly safe for resolving most media recovery issues.

Table 29-5 Media Recovery Solutions

	If You Suspect...	Then...
	
Missing or misnamed archived redo logs

	
Determine whether you entered the correct file name. If you did, then check whether the log is missing from the operating system. If it is missing, and if you have a backup, then restore the backup and apply the log. If you do not have a backup, then if possible perform incomplete recovery up to the point of the missing log.

	
ORA-1113 for ALTER DATABASE OPEN

	
Review the causes of this error in Table 29-4. Ensure that all read/write data files requiring recovery are online.

If you use a backup control file for recovery, then the control file and data files must be at a consistent SCN for the database to be opened. If you do not have the necessary redo, then you must re-create the control file.

	
Corrupt archived logs

	
The log is corrupted if the checksum verification on the log redo block fails. If DB_BLOCK_CHECKSUM was not enabled either during the recovery session or when the database generated the redo, then recovery problems may be caused by corrupted logs. If the log is corrupt and an alternate copy of the corrupt log is available, then try to apply it and see whether this tactic fixes the problem.

The DB_BLOCK_CHECKSUM initialization parameter determines whether checksums are computed for redo log and data blocks.

	
Archived logs with incompatible parallel redo format

	
If you run an Oracle Database release before Oracle9i Database Release 2, and if you attempt to apply redo logs created with the parallel redo format, then you must do the following steps:

	
Upgrade the database to a later release.

	
Perform media recovery.

	
Shut down the database consistently and back up the database.

	
Downgrade the database to the original release.

	
Memory corruption or transient problems

	
You may be able to fix the problem by shutting down the database and restarting recovery. The database should be left in a consistent state if the second attempt also fails.

	
Corrupt data blocks

	
Restore and recover the data file again with user-managed methods, or restore and recover individual data blocks with the RMAN RECOVER ... BLOCK command. This technique may fix the problem.

A data block is corrupted if the checksum verification on the block fails. If DB_BLOCK_CHECKING is disabled, then a corrupted data block problem may appear as a redo problem. If you must proceed with media recovery, then you may want to allow media recovery to mark the block as corrupt for now, continue recovery, and then use RMAN to perform block media recovery later.

If you cannot fix the problem with the methods described in Table 29-5, then there may be no easy way to fix the problem without losing data. You have these options:

	
Open the database with the RESETLOGS option (for whole database recovery).

This solution discards all changes after the point where the redo problem occurred, but guarantees a logically consistent database.

	
Allow media recovery to corrupt one or more data blocks and then proceed.

This option only succeeds if the alert log indicates that recovery can continue if it is allowed to corrupt a data block, which should be the case for most recovery problems. This option is best if you must start the database quickly and recover all changes. If you are considering this option, then proceed to "Deciding Whether to Allow Recovery to Mark as Corrupt Blocks: Phase 3".

	
See Also:

"Performing Block Media Recovery"to learn how to perform block media recovery with the RECOVER ... BLOCK command

Deciding Whether to Allow Recovery to Mark as Corrupt Blocks: Phase 3

When media recovery encounters a problem, the alert log may indicate that recovery can continue if it is allowed to mark as corrupt the data block causing the problem. The alert log contains information about the block: its block type, block address, the tablespace it belongs to, and so forth. For blocks containing user data, the alert log may also report the data object number.

In this case, the database can proceed with recovery if it is allowed to mark the problem block as corrupt. Nevertheless, this response is not always advisable. For example, if the block is an important block in the SYSTEM tablespace, marking the block as corrupt can eventually prevent you from opening the recovered database. Another consideration is whether the recovery problem is isolated. If this problem is followed immediately by many other problems in the redo stream, then you may want to open the database with the RESETLOGS option.

For a block containing user data, you can usually query the database to discover which object or table owns this block. If the database is not open, then you should be able to open the database read-only, even if you are recovering a whole database backup. The following example cancels recovery and opens the database read-only:

CANCEL
ALTER DATABASE OPEN READ ONLY;

Assume that the data object number reported in the alert_SID.log is 8031. You can determine the owner, object name, and object type by issuing this query:

SELECT OWNER, OBJECT_NAME, SUBOBJECT_NAME, OBJECT_TYPE
FROM DBA_OBJECTS
WHERE DATA_OBJECT_ID = 8031;

To determine whether a recovery problem is isolated, you can run a diagnostic trial recovery, which scans the redo stream for problems but does not actually make any changes to the recovered database. If a trial recovery discovers any recovery problems, then it reports them in the alert_SID.log. You can use the RECOVER ... TEST statement to invoke trial recovery, as described in "Executing the RECOVER ... TEST Statement".

After you have done these investigations, you can follow the guidelines in Table 29-6 to decide whether to allow recovery to permit corrupt blocks.

Table 29-6 Guidelines for Allowing Recovery to Permit Corrupt Blocks

	If the Problem Is...	and the Block Is...	Then...
	
Not isolated

	
	
You should probably open the database with the RESETLOGS option. This response is important for stuck recovery problems, because stuck recovery can be caused by the operating system or a storage system losing writes. If an operating system or storage system suddenly fails, then it can cause stuck recovery problems on several blocks.

	
Isolated

	
In the SYSTEM tablespace

	
Do not corrupt the block, because it may eventually prevent you from opening the database. However, sometimes data in the SYSTEM tablespace is unimportant. If you must corrupt a SYSTEM block and recover all changes, then contact Oracle Support Services.

	
Isolated

	
Index data

	
Consider corrupting index blocks because the index can be rebuilt later after the database has been recovered.

	
Isolated

	
User data

	
Decide based on the importance of the data. If you continue with data file recovery and corrupt a block, then you lose data in the block. However, you can use RMAN to perform block media recovery later, after data file recovery completes. If you open RESETLOGS, then the database is consistent but loses any changes made after the point where recovery was stopped.

	
Isolated

	
Rollback or undo data

	
If all of the transactions are committed, then consider corrupting the rollback or undo block. The database is not harmed if the transactions that generated the undo are never rolled back. However, if those transactions are rolled back, then corrupting the undo block can cause problems. If you are unsure, then contact Oracle Support Services.

	
See Also:

"Performing Trial Recovery" to learn how to perform trial recovery, and "Allowing Recovery to Corrupt Blocks: Phase 4" if you decide to allow recovery to permit corrupt blocks

Allowing Recovery to Corrupt Blocks: Phase 4

If you decide to allow recovery to proceed despite block corruptions, then run the RECOVER command with the ALLOW n CORRUPTION clause, where n is the number of allowable corrupt blocks.

To allow recovery to corrupt blocks:

	
Ensure that all normal recovery preconditions are met. For example, if the database is open, then take tablespaces offline before attempting recovery.

	
Run the RECOVER command as in the following example:

RECOVER DATABASE ALLOW 5 CORRUPTION

Performing Trial Recovery

When problems such as stuck recovery occur, you have a difficult choice. If the block is relatively unimportant, and if the problem is isolated, then it is better to corrupt the block. But if the problem is not isolated, then it may be better to open the database with the RESETLOGS option.

Because of this situation, Oracle Database supports trial recovery. A trial recovery applies redo in a way similar to normal media recovery, but it never writes its changes to disk and it always rolls back its changes. Trial recovery occurs only in memory.

	
See Also:

"Allowing Recovery to Corrupt Blocks: Phase 4"

How Trial Recovery Works

By default, if a trial recovery encounters a stuck recovery or similar problem, then it always marks the data block as corrupt in memory when this action can allow recovery to proceed. The database writes errors generated during trial recovery to alert files. These errors are clearly marked as test run errors.

Like normal media recovery, trial recovery can prompt you for archived log file names and ask you to apply them. Trial recovery ends when:

	
The database runs out of the maximum number of buffers in memory that trial recovery is permitted to use

	
An unrecoverable error is signaled, that is, an error that cannot be resolved by corrupting a data block

	
You cancel or interrupt the recovery session

	
The next redo record in the redo stream changes the control file

	
All requested redo has been applied

When trial recovery ends, the database removes all effects of the test run from the system—except the possible error messages in the alert files. If the instance fails during trial recovery, then the database removes all effects of trial recovery from the system, because trial recovery never writes changes to disk.

Trial recovery lets you foresee what problems might occur if you were to continue with normal recovery. For problems caused by ongoing memory corruption, trial recovery and normal recovery can encounter different errors.

Executing the RECOVER ... TEST Statement

You can use the TEST option for any RECOVER command. For example, you can start SQL*Plus and then issue any of the following commands:

RECOVER DATABASE TEST
RECOVER DATABASE USING BACKUP CONTROLFILE UNTIL CANCEL TEST
RECOVER TABLESPACE users TEST
RECOVER DATABASE UNTIL CANCEL TEST

By default, trial recovery always attempts to corrupt blocks in memory if this action allows trial recovery to proceed. Trial recovery by default can corrupt an unlimited number of data blocks. You can specify the ALLOW n CORRUPTION clause on the RECOVER ... TEST statement to limit the number of data blocks that trial recovery can corrupt in memory.

A trial recovery command is usable in any scenario in which a normal recovery command is usable. Nevertheless, you should only need to run trial recovery when recovery runs into problems.

Part VII

Transferring Data with RMAN

The following chapters describe how to use RMAN for database and tablespace transport and migration. This part of the book contains these chapters:

	
Chapter 24, "Duplicating a Database"

	
Chapter 25, "Duplicating a Database: Advanced Topics,"

	
Chapter 26, "Creating Transportable Tablespace Sets"

	
Chapter 27, "Transporting Data Across Platforms"

2 Getting Started with RMAN

This chapter is intended for new users who want to start using RMAN right away without first reading the more detailed chapters in this book. This chapter provides the briefest possible digest of the most important RMAN concepts and tasks. It is not a substitute for the rest of the backup and recovery documentation set.

This chapter contains the following topics:

	
Overview of the RMAN Environment

	
Starting RMAN and Connecting to a Database

	
Showing the Default RMAN Configuration

	
Backing Up a Database

	
Reporting on RMAN Operations

	
Maintaining RMAN Backups

	
Diagnosing and Repairing Failures with Data Recovery Advisor

	
Rewinding a Database with Flashback Database

	
Restoring and Recovering Database Files

Overview of the RMAN Environment

Recovery Manager (RMAN) is an Oracle Database client that performs backup and recovery tasks on your databases and automates administration of your backup strategies. It greatly simplifies backing up, restoring, and recovering database files.

The RMAN environment consists of the utilities and databases that play a role in backing up your data. At a minimum, the environment for RMAN must include the following components:

	
A target database

An Oracle database to which RMAN is connected with the TARGET keyword. A target database is a database on which RMAN is performing backup and recovery operations. RMAN always maintains metadata about its operations on a database in the control file of the database. The RMAN metadata is known as the RMAN repository.

	
The RMAN client

An Oracle Database executable that interprets commands, directs server sessions to execute those commands, and records its activity in the target database control file. The RMAN executable is automatically installed with the database and is typically located in the same directory as the other database executables. For example, the RMAN client on Linux is located in $ORACLE_HOME/bin.

Some environments use the following optional components:

	
A fast recovery area

A disk location in which the database can store and manage files related to backup and recovery. You set the fast recovery area location and size with the DB_RECOVERY_FILE_DEST and DB_RECOVERY_FILE_DEST_SIZE initialization parameters.

	
A media manager

An application required for RMAN to interact with sequential media devices such as tape libraries. A media manager controls these devices during backup and recovery, managing the loading, labeling, and unloading of media. Media management devices are sometimes called SBT (system backup to tape) devices.

	
A recovery catalog

A separate database schema used to record RMAN activity against one or more target databases. A recovery catalog preserves RMAN repository metadata if the control file is lost, making it much easier to restore and recover following the loss of the control file. The database may overwrite older records in the control file, but RMAN maintains records forever in the catalog unless the records are deleted by the user.

This chapter explains how to use RMAN in the most basic configuration, which is without a recovery catalog or media manager.

	
See Also:

	
Chapter 3, "Recovery Manager Architecture"for a more detailed overview of the RMAN environment

	
Oracle Database Backup and Recovery Reference for BACKUP command syntax and semantics

Starting RMAN and Connecting to a Database

The RMAN client is started by issuing the rman command at the command prompt of your operating system. RMAN then displays a prompt for your commands as shown in the following example:

% rman
RMAN>

RMAN connections to a database are specified and authenticated in the same way as SQL*Plus connections to a database. The only difference is that RMAN connections to a target or auxiliary database require the SYSDBA privilege. The AS SYSDBA keywords are implied and cannot be explicitly specified. See Oracle Database Administrator's Guide to learn about database connection options for SQL*Plus.

	
Caution:

Good security practice requires that passwords should not be entered in plain text on the command line. You should enter passwords in RMAN only when requested by an RMAN prompt. See Oracle Database Security Guide to learn about password protection.

You can connect to a database with command-line options or by using the CONNECT TARGET command. The following example starts RMAN and then connects to a target database through Oracle Net, AS SYSDBA is not specified because it is implied. RMAN prompts for a password.

% rman
RMAN> CONNECT TARGET SYS@prod

target database Password: password
connected to target database: PROD (DBID=39525561)

The following variation starts RMAN and then connects to a target database by using operating system authentication:

% rman
RMAN> CONNECT TARGET /

connected to target database: PROD (DBID=39525561)

To quit the RMAN client, enter EXIT at the RMAN prompt:

RMAN> EXIT

Syntax of Common RMAN Command-line Options

RMAN
[TARGET connectStringSpec
| { CATALOG connectStringSpec }
| LOG ['] filename ['] [APPEND]
.
.
.
]...

connectStringSpec::=
['] [userid] [/ [password]] [@net_service_name] [']

The following example appends the output from an RMAN session to a text file at /tmp/msglog.log

% rman TARGET / LOG /tmp/msglog.log APPEND

	
See Also:

Chapter 4, "Starting and Interacting with the RMAN Client," to learn more about starting and using the RMAN client

Showing the Default RMAN Configuration

The RMAN backup and recovery environment is preconfigured for each target database. The configuration is persistent and applies to all subsequent operations on this target database, even if you exit and restart RMAN.

RMAN configured settings can specify backup devices, configure a connection to a backup device (known as a channel), policies affecting backup strategy, and others. The default configuration is adequate for most purposes.

To show the current configuration for a database:

	
Start RMAN and connect to a target database.

	
Run the SHOW ALL command.

For example, enter the command at the RMAN prompt as follows:

RMAN> SHOW ALL;

The output lists the CONFIGURE commands to re-create this configuration.

	
See Also:

Chapter 5, "Configuring the RMAN Environment," and Chapter 6, "Configuring the RMAN Environment: Advanced Topics," to learn how to configure the RMAN environment

Backing Up a Database

Use the BACKUP command to back up files. RMAN backs up data to the configured default device for the type of backup requested. By default, RMAN creates backups on disk. If a fast recovery area is enabled, and if you do not specify the FORMAT parameter (see Table 2-1), then RMAN creates backups in the recovery area and automatically gives them unique names.

By default, RMAN creates backup sets rather than image copies. A backup set consists of one or more backup pieces, which are physical files written in a format that only RMAN can access. A multiplexed backup set contains the blocks from multiple input files. RMAN can write backup sets to disk or tape.

If you specify BACKUP AS COPY, then RMAN copies each file as an image copy, which is a bit-for-bit copy of a database file created on disk. Image copies are identical to copies created with operating system commands like cp on Linux or COPY on Windows, but are recorded in the RMAN repository and so are usable by RMAN. You can use RMAN to make image copies while the database is open.

	
See Also:

	
Chapter 8, "RMAN Backup Concepts," to learn concepts relating to RMAN backups

	
Chapter 9, "Backing Up the Database," to learn how to back up database files with RMAN

	
Oracle Database Backup and Recovery Reference for BACKUP command syntax and semantics

Backing Up a Database in ARCHIVELOG Mode

If a database runs in ARCHIVELOG mode, then you can back up the database while it is open. The backup is called an inconsistent backup because redo is required during recovery to bring the database to a consistent state. If you have the archived redo logs needed to recover the backup, open database backups are as effective for data protection as consistent backups.

To back up the database and archived redo logs while the database is open:

	
Start RMAN and connect to a target database.

	
Run the BACKUP DATABASE command.

For example, enter the following command at the RMAN prompt to back up the database and all archived redo log files to the default backup device:

RMAN> BACKUP DATABASE PLUS ARCHIVELOG;

Backing Up a Database in NOARCHIVELOG Mode

If a database runs in NOARCHIVELOG mode, then the only valid database backup is a consistent backup. For the backup to be consistent, the database must be mounted after a consistent shutdown. No recovery is required after restoring the backup.

To make a consistent database backup:

	
Start RMAN and connect to a target database.

	
Shut down the database consistently and then mount it.

For example, enter the following commands to guarantee that the database is in a consistent state for a backup:

RMAN> SHUTDOWN IMMEDIATE;
RMAN> STARTUP FORCE DBA;
RMAN> SHUTDOWN IMMEDIATE;
RMAN> STARTUP MOUNT;

	
Run the BACKUP DATABASE command.

For example, enter the following command at the RMAN prompt to back up the database to the default backup device:

RMAN> BACKUP DATABASE;

The following variation of the command creates image copy backups of all data files in the database:

RMAN> BACKUP AS COPY DATABASE;

	
Open the database and resume normal operations.

The following command opens the database:

RMAN> ALTER DATABASE OPEN;

Typical Backup Options

The BACKUP command includes a host of options, parameters, and clauses that control backup output. Table 2-1 lists some typical backup options.

Table 2-1 Common Backup Options

	Option	Description	Example
	
FORMAT

	
Specifies a location and name for backup pieces and copies. You must use substitution variables to generate unique file names.

The most common substitution variable is %U, which generates a unique name. Others include %d for the DB_NAME, %t for the backup set time stamp, %s for the backup set number, and %p for the backup piece number.

	

BACKUP
 FORMAT 'AL_%d/%t/%s/%p'
 ARCHIVELOG LIKE '%arc_dest%';

	
TAG

	
Specifies a user-defined string as a label for the backup. If you do not specify a tag , then RMAN assigns a default tag with the date and time. Tags are always stored in the RMAN repository in uppercase.

	

BACKUP
 TAG 'weekly_full_db_bkup'
 DATABASE MAXSETSIZE 10M;

	
See Also:

"Specifying Backup Output Options"

Making Incremental Backups

If you specify BACKUP INCREMENTAL, then RMAN creates an incremental backup of a database. Incremental backups capture block-level changes to a database made after a previous incremental backup. Incremental backups are generally smaller and faster to make than full database backups. Recovery with incremental backups is faster than using redo logs alone.

The starting point for an incremental backup strategy is a level 0 incremental backup, which backs up all blocks in the database. An incremental backup at level 0 is identical in content to a full backup, however, unlike a full backup the level 0 backup is considered a part of the incremental backup strategy.

A level 1 incremental backup contains only blocks changed after a previous incremental backup. If no level 0 backup exists in either the current or parent database incarnation when you run a level 1 backup, then RMAN makes a level 0 backup automatically.

	
Note:

You cannot make incremental backups when a NOARCHIVELOG database is open, although you can make incremental backups when the database is mounted after a consistent shutdown.

A level 1 backup can be a cumulative incremental backup, which includes all blocks changed since the most recent level 0 backup, or a differential incremental backup, which includes only blocks changed since the most recent incremental backup. Incremental backups are differential by default.

When restoring incremental backups, RMAN uses the level 0 backup as the starting point, then updates changed blocks based on level 1 backups where possible to avoid reapplying changes from redo one at a time. Recovering with incremental backups requires no additional effort on your part. If incremental backups are available, then RMAN uses them during recovery.

To make incremental backups of the database:

	
Start RMAN and connect to a target database.

	
Run the BACKUP INCREMENTAL command.

The following example creates a level 0 incremental backup to serve as a base for an incremental backup strategy:

BACKUP INCREMENTAL LEVEL 0 DATABASE;

The following example creates a level 1 cumulative incremental backup:

BACKUP INCREMENTAL LEVEL 1 CUMULATIVE DATABASE;

The following example creates a level 1 differential incremental backup:

BACKUP INCREMENTAL LEVEL 1 DATABASE;

	
See Also:

"Incremental Backups" for a more detailed conceptual overview of incremental backups and "Making and Updating Incremental Backups"

Making Incrementally Updated Backups

The RMAN incrementally updated backup feature is an efficient incremental backup strategy. The strategy has the following main features:

	
The strategy requires a level 0 data file copy as a base. This copy has either a system-defined or user-defined tag.

	
Periodically, level 1 differential backups are created with the same tag as the level 0 data file copy. The BACKUP FOR RECOVER OF COPY command specifies that an incremental backup should contain only blocks changed since the most recent incremental backup with the same tag.

	
Periodically, the incremental backups are applied to the level 0 data file copy. Because the data file copy has been updated with more recent changes, it now requires less media recovery.

Table 2-2 explains which options to use with FOR RECOVER OF COPY to implement an incrementally updated backup strategy.

Table 2-2 FOR RECOVER OF COPY Options

	BACKUP Option	Description	Example
	
FOR RECOVER OF COPY WITH TAG 'tag_name'

	
Use TAG to identify the tag of the data file copy serving as basis for the backup strategy. RMAN automatically assigns the same tag to every level 1 backup of this copy.

If no level 0 data file copy with the specified tag exists in either the current or parent database incarnation, then RMAN creates a level 0 data file copy with the specified tag.

	

BACKUP
 INCREMENTAL LEVEL 1
 FOR RECOVER OF COPY
 WITH TAG 'incr_update'
 DATABASE;

	
FOR RECOVER OF COPY DATAFILECOPY FORMAT 'format'

	
Specifies where RMAN creates the data file copy if a copy does not exist. If you add a new data file to the database, then you do not need to change your script, because RMAN automatically creates the level 0 copy required by the incremental backup routine.

	

BACKUP
 INCREMENTAL LEVEL 1
 FOR RECOVER OF COPY
 DATAFILECOPY FORMAT
 '/disk2/df1.cpy'
 DATABASE;

To implement an incrementally updated backup strategy:

	
Start RMAN and connect to a target database.

	
Run the RECOVER COPY and BACKUP INCREMENTAL commands.

The following script, run on a regular basis, is all that is required to implement a strategy based on incrementally updated backups.

RECOVER COPY OF DATABASE
 WITH TAG 'incr_update';
BACKUP
 INCREMENTAL LEVEL 1
 FOR RECOVER OF COPY WITH TAG 'incr_update'
 DATABASE;

	
See Also:

"Incrementally Updating Backups"

Validating Database Files and Backups

You can use the VALIDATE command to confirm that all database files exist, are in their correct location, and are free of physical corruption. The CHECK LOGICAL option also checks for logical block corruption.

To validate database files:

	
Start RMAN and connect to a target database.

	
Run the BACKUP VALIDATE ... command for the desired files.

For example, enter the following commands to validate all database files and archived redo log files for physical and logical corruption:

BACKUP VALIDATE CHECK LOGICAL
 DATABASE ARCHIVELOG ALL;

You can also use the VALIDATE command to check individual data blocks, as shown in the following example:

VALIDATE DATAFILE 4 BLOCK 10 TO 13;

You can also validate backup sets, as shown in the following example:

VALIDATE BACKUPSET 3;

You specify backup sets by primary key, which is shown in the output of the LIST BACKUP command.

	
See Also:

	
Chapter 16, "Validating Database Files and Backups"

	
Oracle Database Backup and Recovery Reference for VALIDATE command syntax and semantics

Scripting RMAN Operations

RMAN supports the use of command files to manage recurring tasks such as weekly backups. A command file is a client-side text file containing RMAN commands, exactly as you enter them at the RMAN prompt. You can use any file extension. The RUN command provides a degree of flow-of-control in your scripts.

To create and run a command file:

	
Use a text editor to create a command file.

For example, create a command file with the following contents:

my_command_file.txt
CONNECT TARGET /
BACKUP DATABASE PLUS ARCHIVELOG;
LIST BACKUP;
EXIT;

	
Start RMAN and then execute the contents of a command file by running the @ command at the RMAN prompt:

% rman
RMAN> @/my_dir/my_command_file.txt # runs specified command file

You can also launch RMAN with a command file to run, as shown here:

% rman @/my_dir/my_command_file.txt

	
See Also:

"Using Command Files with RMAN" to learn more about command files, and "Using Substitution Variables in Command Files" to learn how to use substitution variables in command files and pass parameters at run time

Reporting on RMAN Operations

The RMAN LIST and REPORT commands generate reports on backup activities based on the RMAN repository. Use the SHOW ALL command to display the current RMAN configuration.

Listing Backups

Run the LIST BACKUP and LIST COPY commands to display information about backups and data file copies listed in the repository. For backups, you can control the format of LIST output with the options in Table 2-3 and Table 2-4.

Table 2-3 LIST Options for Backups

	Option	Example	Explanation
	
BY BACKUP

	
LIST BACKUP OF DATABASE BY BACKUP

	
Organizes the output by backup set. This is the default mode of presentation.

	
BY FILE

	
LIST BACKUP BY FILE

	
Lists the backups according to which file was backed up.

	
SUMMARY

	
LIST BACKUP SUMMARY

	
Displays summary output.

For both backups and copies you have additional options shown in Table 2-4.

Table 2-4 Additional LIST Options

	Option	Example	Explanation
	
EXPIRED

	
LIST EXPIRED COPY

	
Lists backups that are recorded in the RMAN repository but that were not present at the expected location on disk or tape during the last CROSSCHECK command. An expired backup may have been deleted by an operating system utility.

	
RECOVERABLE

	
LIST BACKUP RECOVERABLE

	
Lists data file backups or copies that have status AVAILABLE in the RMAN repository and that can be restored and recovered.

To list backups and copies:

	
Start RMAN and connect to a target database.

	
Run the LIST command at the RMAN prompt.

You can display specific objects, as in the following examples:

LIST BACKUP OF DATABASE;
LIST COPY OF DATAFILE 1, 2;
LIST BACKUP OF ARCHIVELOG FROM SEQUENCE 10;
LIST BACKUPSET OF DATAFILE 1;

	
See Also:

	
"Listing Backups and Recovery-Related Objects" to learn more about the LIST command

	
Oracle Database Backup and Recovery Reference for LIST command syntax

Reporting on Database Files and Backups

The REPORT command performs more complex analysis than LIST. Some main options are shown in Table 2-5.

Table 2-5 REPORT Options

	Option	Example	Explanation
	
NEED BACKUP

	
REPORT NEED BACKUP DATABASE

	
Shows which files need backing up under current retention policy. Use optional REDUNDANCY and RECOVERY WINDOW parameters to specify different criteria.

	
OBSOLETE

	
REPORT OBSOLETE

	
Lists backups that are obsolete under the configured backup retention policy. Use the optional REDUNDANCY and RECOVERY WINDOW parameters to override the default.

	
SCHEMA

	
REPORT SCHEMA

	
Reports the tablespaces and data files in the database at the current time (default) or a different time.

	
UNRECOVERABLE

	
REPORT UNRECOVERABLE

	
Lists all data files for which an unrecoverable operation has been performed against an object in the data file since the last backup of the data file.

To generate reports of database files and backups:

	
Start RMAN and connect to a target database.

	
Run the REPORT command at the RMAN prompt.

The following example reports backups that are obsolete according to the currently configured backup retention policy:

REPORT OBSOLETE;

The following example reports the data files and temp files in the database:

REPORT SCHEMA;

	
See Also:

"Reporting on Backups and Database Schema" to learn how to use the REPORT command for RMAN reporting

Maintaining RMAN Backups

RMAN repository metadata is always stored in the control file of the target database. The RMAN maintenance commands use this metadata when managing backups.

Cross-checking Backups

The CROSSCHECK command synchronizes the logical records of RMAN backups and copies with the files on storage media. If a backup is on disk, then CROSSCHECK determines whether the header of the file is valid. If a backup is on tape, then RMAN queries the RMAN repository for the names and locations of the backup pieces. It is a good idea to crosscheck backups and copies before deleting them.

To crosscheck all backups and copies on disk:

	
Start RMAN and connect to a target database.

	
Run the CROSSCHECK command, as shown in the following example:

CROSSCHECK BACKUP;
CROSSCHECK COPY;

	
See Also:

"Crosschecking the RMAN Repository" to learn how to crosscheck RMAN backups

Deleting Obsolete Backups

The DELETE command removes RMAN backups and copies from disk and tape, updates the status of the files to DELETED in the control file repository, and removes the records from the recovery catalog (if you use a catalog). If you run RMAN interactively, and if you do not specify the NOPROMPT option, then DELETE displays a list of files and prompts for confirmation before deleting any file in the list.

The DELETE OBSOLETE command is particular useful because RMAN deletes backups and data file copies recorded in the RMAN repository that are obsolete, that is, no longer needed. You can use options on the DELETE command to specify what is obsolete or use the configured backup retention policy.

To delete obsolete backups and copies:

	
Start RMAN and connect to a target database.

	
Run the DELETE OBSOLETE command, as shown in the following example:

DELETE OBSOLETE;

	
See Also:

"Deleting RMAN Backups and Archived Redo Logs" to learn how to use the DELETE command

Diagnosing and Repairing Failures with Data Recovery Advisor

The simplest way to diagnose and repair database problems is to use the Data Recovery Advisor. This Oracle Database tool provides an infrastructure for diagnosing persistent data failures, presenting repair options to the user, and automatically executing repairs.

	
See Also:

"Overview of Data Recovery Advisor"

Listing Failures and Determining Repair Options

A failure is a persistent data corruption detected by the Health Monitor. Examples include physical and logical data block corruptions and missing data files. Each failure has a failure priority and failure status. The priority can be CRITICAL, HIGH, or LOW. The status can be OPEN or CLOSED.

You can run the LIST FAILURE command to show all known failures. If failures exist, then run the ADVISE FAILURE command in the same session to determine manual and automated repair options. The following example illustrates these two commands (sample output included).

Example 2-1 LIST FAILURE and ADVISE FAILURE

RMAN> LIST FAILURE;

List of Database Failures
=========================

Failure ID Priority Status Time Detected Summary
---------- -------- --------- ------------- -------
142 HIGH OPEN 23-APR-07 One or more non-system datafiles are missing
101 HIGH OPEN 23-APR-07 Datafile 1: '/disk1/oradata/prod/system01.dbf'
 contains one or more corrupt blocks

RMAN> ADVISE FAILURE;

List of Database Failures
=========================

Failure ID Priority Status Time Detected Summary
---------- -------- --------- ------------- -------
142 HIGH OPEN 23-APR-07 One or more non-system datafiles are missing
101 HIGH OPEN 23-APR-07 Datafile 1: '/disk1/oradata/prod/system01.dbf'
 contains one or more corrupt blocks

analyzing automatic repair options; this may take some time
using channel ORA_DISK_1
analyzing automatic repair options complete

Mandatory Manual Actions
========================
no manual actions available

Optional Manual Actions
=======================
1. If file /disk1/oradata/prod/users01.dbf was unintentionally renamed or moved, restore it

Automated Repair Options
========================
Option Repair Description
------ ------------------
1 Restore and recover datafile 28; Perform block media recovery of
 block 56416 in file 1
 Strategy: The repair includes complete media recovery with no data loss
 Repair script: /disk1/oracle/log/diag/rdbms/prod/prod/hm/reco_660500184.hm

The ADVISE FAILURE output shows both manual and automated repair options. First try to fix the problem manually. If you cannot fix the problem manually, then review the automated repair section.

An automated repair option describes a server-managed repair for one or more failures. Repairs are consolidated when possible so that a single repair can fix multiple failures. The repair option indicates which repair is performed and whether data is lost by performing the repair operation.

In Example 2-1, the output indicates the file name of a repair script containing RMAN commands. If you do not want to use Data Recovery Advisor to repair the failure automatically, then you can use the script as the basis of your own recovery strategy.

	
See Also:

"Listing Failures" and "Determining Repair Options"

Repairing Failures

After running LIST FAILURE and ADVISE FAILURE in an RMAN session, you can run REPAIR FAILURE to execute a repair option. If you execute REPAIR FAILURE with no other command options, then RMAN uses the first repair option of the most recent ADVISE FAILURE command in the current session. Alternatively, specify the repair option number obtained from the most recent ADVISE FAILURE command. Example 2-2 illustrates how to repair the failures identified in Example 2-1.

Example 2-2 REPAIR FAILURE

RMAN> REPAIR FAILURE;

By default, REPAIR FAILURE prompts for confirmation before it begins executing. After executing a repair, Data Recovery Advisor reevaluates all existing failures on the possibility that they may also have been fixed. Data Recovery Advisor always verifies that failures are still relevant and automatically closes fixed failures. If a repair fails to complete because of an error, then the error triggers a new assessment and re-evaluation of existing failures and repairs.

	
See Also:

"Repairing Failures"

Rewinding a Database with Flashback Database

You can use the Oracle Flashback Database to rewind the whole database to a past time. Unlike media recovery, you do not need to restore data files to return the database to a past state.

To use the RMAN FLASHBACK DATABASE command, your database must have been previously configured to generate flashback logs. This configuration task is described in "Flashback Database". Flashback Database works by rewinding changes to the data files that exist at the moment that you run the command. You cannot use the command to repair media failures or missing data files.

The database must be mounted when you issue FLASHBACK DATABASE. If you have previously created a restore point, then you can flash back to this restore point if it falls within the flashback database window.

To rewind a database with Flashback Database:

	
Start RMAN and connect to a target database.

	
Ensure that the database is in a mounted state.

The following commands shut down and then mount the database:

SHUTDOWN IMMEDIATE;
STARTUP MOUNT;

	
Run the FLASHBACK DATABASE command.

The following examples illustrate different forms of the command:

FLASHBACK DATABASE TO SCN 861150;

FLASHBACK DATABASE
 TO RESTORE POINT BEFORE_CHANGES;

FLASHBACK DATABASE
 TO TIMESTAMP TO_DATE(04-DEC-2009 03:30:00','DD-MON-YYYY HH24:MI:SS');

	
After performing the Flashback Database, open the database read-only in SQL*Plus and run some queries to verify the database contents.

Open the database read-only as follows:

SQL "ALTER DATABASE OPEN READ ONLY";

	
If satisfied with the results, then issue the following sequence of commands to shut down and then open the database:

SHUTDOWN IMMEDIATE;
STARTUP MOUNT;
ALTER DATABASE OPEN RESETLOGS;

	
See Also:

"Rewinding a Database with Flashback Database"

Restoring and Recovering Database Files

Use the RESTORE and RECOVER commands for RMAN restore and recovery of physical database files. Restoring data files is retrieving them from backups as needed for a recovery operation. Media recovery is the application of changes from redo logs and incremental backups to a restored data file to bring the data file forward to a desired SCN or point in time.

	
See Also:

Chapter 17, "Performing Complete Database Recovery"

Preparing to Restore and Recover Database Files

If you must recover the database because a media failure damages database files, then you should first ensure that you have the necessary backups. You can use the RESTORE ... PREVIEW command to report, but not restore, the backups that RMAN could use to restore to the specified time. RMAN queries the metadata and does not actually read the backup files. The database can be open when you run this command.

To preview a database restore and recovery:

	
Start RMAN and connect to the target database.

	
Optionally, list the current tablespaces and data files, as shown in the following command:

RMAN> REPORT SCHEMA;

	
Run the RESTORE DATABASE command with the PREVIEW option.

The following command specifies SUMMARY so that the backup metadata is not displayed in verbose mode (sample output included):

RMAN> RESTORE DATABASE PREVIEW SUMMARY;

Starting restore at 21-MAY-07
allocated channel: ORA_DISK_1
channel ORA_DISK_1: SID=80 device type=DISK

List of Backups
===============
Key TY LV S Device Type Completion Time #Pieces #Copies Compressed Tag
------- -- -- - ----------- --------------- ------- ------- ---------- ---
11 B F A DISK 18-MAY-07 1 2 NO TAG20070518T181114
13 B F A DISK 18-MAY-07 1 2 NO TAG20070518T181114
using channel ORA_DISK_1

List of Archived Log Copies for database with db_unique_name PROD
===

Key Thrd Seq S Low Time
------- ---- ------- - ---------
47 1 18 A 18-MAY-07
 Name: /disk1/oracle/dbs/db1r_60ffa882_1_18_0622902157.arc

Media recovery start SCN is 586534
Recovery must be done beyond SCN 587194 to clear datafile fuzziness
validation succeeded for backup piece
Finished restore at 21-MAY-07

Recovering the Whole Database

Use the RESTORE DATABASE and RECOVER DATABASE commands to recover the whole database. You must have previously made backups of all needed files. This scenario assumes that you can restore all data files to their original locations. If the original locations are inaccessible, then use the SET NEWNAME command as described in "Restoring Datafiles to a Nondefault Location".

To recover the whole database:

	
Prepare for recovery as explained in "Preparing to Restore and Recover Database Files".

	
Place the database in a mounted state.

The following example terminates the database instance (if it is started) and mounts the database:

RMAN> STARTUP FORCE MOUNT;

	
Restore the database.

The following example uses the preconfigured disk channel to restore the database:

RMAN> RESTORE DATABASE;

	
Recover the database, as shown in the following example:

RMAN> RECOVER DATABASE;

	
Open the database, as shown in the following example:

RMAN> ALTER DATABASE OPEN;

Recovering Tablespaces

Use the RESTORE TABLESPACE and RECOVER TABLESPACE commands on individual tablespaces when the database is open. In this case, must take the tablespace that needs recovery offline, restore and then recover the tablespace, and bring the recovered tablespace online.

If you cannot restore a data file to a new location, then use the RMAN SET NEWNAME command within a RUN command to specify the new file name. Afterward, use a SWITCH DATAFILE ALL command, which is equivalent to using the SQL statement ALTER DATABASE RENAME FILE, to update the control file to reflect the new names for all data files for which a SET NEWNAME has been issued in the RUN command.

Unlike in user-managed media recovery, you should not place an online tablespace in backup mode. Unlike user-managed tools, RMAN does not require extra logging or backup mode because it knows the format of data blocks.

To recover an individual tablespace when the database is open:

	
Prepare for recovery as explained in "Preparing to Restore and Recover Database Files".

	
Take the tablespace to be recovered offline:

The following example takes the USERS tablespace offline:

RMAN> SQL 'ALTER TABLESPACE users OFFLINE';

	
Restore and recover the tablespace.

The following RUN command, which you execute at the RMAN prompt, sets a new name for the data file in the USERS tablespace:

RUN
{
 SET NEWNAME FOR DATAFILE '/disk1/oradata/prod/users01.dbf'
 TO '/disk2/users01.dbf';
 RESTORE TABLESPACE users;
 SWITCH DATAFILE ALL; # update control file with new file names
 RECOVER TABLESPACE users;
}

	
Bring the tablespace online, as shown in the following example:

RMAN> SQL 'ALTER TABLESPACE users ONLINE';

You can also use RESTORE DATAFILE and RECOVER DATAFILE for recovery at the data file level.

	
See Also:

	
"Performing Complete Recovery of a Tablespace"

	
"Online Backups and Backup Mode"

Recovering Individual Data Blocks

RMAN can recover individual corrupted data file blocks. When RMAN performs a complete scan of a file for a backup, any corrupted blocks are listed in V$DATABASE_BLOCK_CORRUPTION. Corruption is usually reported in alert logs, trace files, or results of SQL queries.

To recover data blocks:

	
Obtain the block numbers of the corrupted blocks if you do not have this information.

The easiest way to locate trace files and the alert log is to connect SQL*Plus to the target database and execute the following query:

SQL> SELECT NAME, VALUE
 2 FROM V$DIAG_INFO;

	
Start RMAN and connect to the target database.

	
Run the RECOVER command to repair the blocks.

The following RMAN command recovers all corrupted blocks:

RMAN> RECOVER CORRUPTION LIST;

You can also recover individual blocks, as shown in the following example:

RMAN> RECOVER DATAFILE 1 BLOCK 233, 235 DATAFILE 2 BLOCK 100 TO 200;

	
See Also:

Chapter 19, "Performing Block Media Recovery"

Part I

Overview of Backup and Recovery

The chapters in this part introduce backup and recovery and explain how to devise a backup and recovery strategy:

	
Chapter 1, " Introduction to Backup and Recovery"

	
Chapter 2, "Getting Started with RMAN"

12 Maintaining RMAN Backups and Repository Records

This chapter describes how to manage the RMAN repository records and RMAN backups and copies. This chapter also explains maintenance tasks related to the fast recovery area. This chapter contains the following topics:

	
Overview of RMAN Backup and Repository Maintenance

	
Maintaining the Control File Repository

	
Maintaining the Fast Recovery Area

	
Updating the RMAN Repository

	
Deleting RMAN Backups and Archived Redo Logs

	
Dropping a Database

	
See Also:

Chapter 13, "Managing a Recovery Catalog" for RMAN maintenance issues that are specific to a recovery catalog

Overview of RMAN Backup and Repository Maintenance

This section explains the purpose and basic concepts of RMAN repository maintenance.

Purpose of Backup and Repository Maintenance

The recommended maintenance strategy is to configure a fast recovery area, a backup retention policy, and an archived redo log deletion policy. In this case, the database automatically maintains and deletes backups and archived redo logs as needed. However, manual maintenance of database backups and archived redo logs is sometimes necessary.

Managing RMAN backups involves the following related tasks:

	
Managing the database backups that are stored on disk or tape

	
Managing the records of those backups in the RMAN repository

An important part of RMAN maintenance is deleting backups that are no longer needed. If you configure a fast recovery area, then the database automatically deletes unneeded files in this area automatically; even so, you may want to delete backups and copies from tape. You may even need to delete an entire database. You can use an RMAN command to perform these tasks.

The fast recovery area may require occasional maintenance. For example, the fast recovery area may become full, in which case you can add space to it. Alternatively, you may want to change the location of the recovery area.

It is possible for the RMAN repository to fail to reflect the true state of files on disk or tape. For example, a user may delete a backup from disk with an operating system utility. In this case, the RMAN repository shows that the file exists when it does not. In a similar situation, a tape containing RMAN backups may be corrupted. You can use RMAN maintenance commands to update the repository with accurate information.

Basic Concepts of Backup and Repository Maintenance

The RMAN maintenance commands are summarized as follows:

	
The CATALOG command enables you to add records about RMAN and user-managed backups that are currently not recorded in the RMAN repository, or to remove records for backups that are recorded.

	
The CHANGE command enables you to update the status of records in the RMAN repository.

	
The CROSSCHECK command enables you to synchronize the logical backup records with the physical reality of files in backup storage.

	
The DELETE command enables you to delete backups from the operating system.

Maintenance Commands and RMAN Repository Metadata

RMAN always stores its metadata in the control file of each target database on which it performs operations. If you register a target database in the recovery catalog, then RMAN stores the metadata for this target database in the recovery catalog. All of the RMAN maintenance commands work with or without a recovery catalog.

	
See Also:

"Maintaining a Recovery Catalog"

Maintenance Commands in a Data Guard Environment

The database in a Data Guard environment that creates a backup or copy is associated with the file. For example, if RMAN is connected to target database standby1 and backs it up, then this backup is associated with standby1.

If backups are accessible to RMAN according to the criteria specified in "RMAN File Management in a Data Guard Environment", you can use RMAN maintenance commands such as CHANGE, DELETE, and CROSSCHECK for backups when connected to any primary or standby database.

Crosschecks in a Data Guard Environment

For a crosscheck, RMAN can only update the status of a file from AVAILABLE to EXPIRED when connected to the database associated with the file. Thus, if RMAN crosschecks a file and does not find it, and if the file is associated with a database to which it is not connected as TARGET, then RMAN prompts you to perform the crosscheck when connected to the target database associated with the file. RMAN performs a crosscheck when you run the CROSSCHECK or CHANGE ... AVAILABLE command.

Deletion in a Data Guard Environment

RMAN can delete files when connected to any database. If RMAN is not connected as TARGET to the database associated with a file, and if RMAN cannot delete a file successfully, then RMAN prompts you to connect as TARGET to the database associated with the file. You must then use DELETE ... FORCE to delete the file metadata.

Updates to RMAN Metadata in a Data Guard Environment

If a maintenance command changes RMAN metadata only, then you can connect RMAN as TARGET to any database in the Data Guard environment. Commands that change only metadata include:

	
CHANGE ... UNAVAILABLE or CHANGE ... UNCATALOG

	
CHANGE ... KEEP or CHANGE ... NOKEEP

	
CHANGE ... RESET DB_UNIQUE_NAME

By default, the CHANGE command only operates on files that are accessible according to the rules specified in "Accessibility of Backups in a Data Guard Environment". However, you can change the status of files associated with a database other than the target database by using the FOR DB_UNIQUE_NAME option.

Files Not Associated with a Database

In some cases the DB_UNIQUE_NAME may not be known for a specific file. For example, the value of DB_UNIQUE_NAME is null when the database name is not known to the recovery catalog, as for Oracle9i databases that are registered in a recovery catalog. Also, rows can have a DB_UNIQUE_NAME of null because a database has been upgraded to the current version, but the recovery catalog schema has not reconciled the DB_UNIQUE_NAME values for all files. By default, RMAN associates files whose SITE_KEY is null with the database to which RMAN is connected as TARGET. A backup remains associated with a database unless you explicitly use the CHANGE ... RESET DB_UNIQUE_NAME to associate the backup with a different database.

	
See Also:

	
Oracle Data Guard Concepts and Administration to learn how to use RMAN to back up and restore files in a Data Guard environment

	
Oracle Database Backup and Recovery Reference for descriptions of the RMAN maintenance commands

Maintaining the Control File Repository

RMAN is designed to work without a recovery catalog. If you choose not to use a recovery catalog, however, then the control file of each target database is the exclusive repository for RMAN metadata. You should know how information is stored in the control file and ensure that your backup and recovery strategy protects the control file.

	
See Also:

Oracle Database Administrator's Guide for an overview of the control file and more details about managing control files

About Control File Records

The control file contains two types of records: circular reuse records and noncircular reuse records.

Circular reuse records contain noncritical information that is eligible to be overwritten if needed. These records contain information that is continually generated by the database. When all available record slots are full, the database either expands the control file to make room for a new record or overwrites the oldest record. The CONTROL_FILE_RECORD_KEEP_TIME initialization parameter specifies the minimum age in days of a record before it can be reused.

Noncircular reuse records contain critical information that does not change often and cannot be overwritten. Some examples of information in noncircular reuse records include datafiles, online redo log files, and redo threads.

As you make backups of a target database, the database records these backups in the control file. To prevent the control file from growing too large because of the addition of new records, records can be reused if they are older than a threshold that you specify. The CONTROL_FILE_RECORD_KEEP_TIME initialization parameter determines the minimum age in days of a record before it can be overwritten:

CONTROL_FILE_RECORD_KEEP_TIME = integer

For example, if the parameter value is 14, then any record of age 14 days or older is a candidate for reuse. Information in an overwritten record is lost. The oldest record available for reuse is used first.

When the database must add new RMAN repository records to the control file, but no record is older than the threshold, the database attempts to expand the size of the control file. If the underlying operating system prevents the expansion of the control file (due to a disk full condition, for instance), then the database overwrites the oldest record in the control file.

The database records the overwrite in the alert log located in the Automatic Diagnostic Repository (ADR). For each record that it overwrites, the database records an entry in the alert log similar to the following:

kccwnc: following control file record written over:
RECID #72 Recno 72 Record timestamp
07/28/06 22:15:21
Thread=1 Seq#=3460
Backup set key: stamp=372031415, count=17
Low scn: 0x0000.3af33f36
07/27/06 21:00:08
Next scn: 0x0000.3af3871b
07/27/06 23:23:54
Resetlogs scn and time
scn: 0x0000.00000001

Fast Recovery Area and Control File Records

When a control file record containing information about a file created in the fast recovery area is about to be reused, the database attempts to delete the file from the fast recovery area when the file is eligible for deletion. Otherwise, the database expands the size of the control file section containing the record for this file. The database logs the expansion in the alert log with a message like this example, where nnnn is the number of the control file record type:

kccwnc: trying to expand control file section nnnn for Oracle Managed Files

If the control file is at the maximum size supported under the host operating system, then the database cannot expand the control file. In such a situation, this warning appears in the alert log:

WARNING: Oracle Managed File filename is unknown to control file. This is the result of limitation in control file size that could not keep all recovery area files.

The preceding message means that the control file cannot hold a record of all fast recovery area files needed to satisfy the configured retention policy. The next section explains how to respond to this situation.

	
See Also:

Oracle Database Reference for information about the CONTROL_FILE_RECORD_KEEP_TIME initialization parameter

Preventing the Loss of Control File Records

The best way to prevent the loss of RMAN metadata because of overwritten control file records is to use a recovery catalog. If you cannot use a recovery catalog, then you can take the following measures:

	
Set the CONTROL_FILE_RECORD_KEEP_TIME value to slightly longer than the oldest file that you must keep. For example, if you back up the whole database once a week, then you must keep every backup for at least 7 days. Set CONTROL_FILE_RECORD_KEEP_TIME to a value such as 10 or 14. The default value of CONTROL_FILE_RECORD_KEEP_TIME is 7 days.

	
Caution:

Regardless of whether you use a recovery catalog, never use RMAN when CONTROL_FILE_RECORD_KEEP_TIME is set to 0. If you do, then you may lose backup records.

	
Store the control file in a file system rather than on a raw device so that it can expand.

	
Monitor the alert log to ensure that Oracle Database is not overwriting control file records. The alert log is located in the Automatic Diagnostic Repository (ADR).

If you use a fast recovery area, then follow these guidelines to avoid a situation in which the control file cannot hold a record of all fast recovery area files needed to satisfy the backup retention policy:

	
If the block size of the control file is not at its maximum, then use a larger block size, preferably 32 kilobytes.

To achieve this aim, you must set the SYSTEM tablespace block size to be greater than or equal to the control file block size, and re-create the control file after changing DB_BLOCK_SIZE. The files in the fast recovery area are recataloged, but the records for files on tape are lost.

	
Make the files in the fast recovery area eligible for deletion by backing them up to tertiary storage such as tape.

For example, you can use BACKUP RECOVERY AREA to specifically back up files in the fast recovery area to a media manager.

	
If the backup retention policy is keeping backups and archived logs longer than your business requirements, then you can make more files in the fast recovery area eligible for deletion by changing the retention policy to a shorter recovery window or lower degree of redundancy.

Protecting the Control File

If you are not using a recovery catalog to store RMAN metadata, then it is doubly important that you protect each target database control file. You can use the following strategy to protect the control file.

To protect the control file:

	
Create redundant copies of control files through multiplexing or operating system mirroring.

In this way, the database can survive the loss of a subset of the control files without requiring you to restore a control file from backup. Oracle recommends that you use a minimum of two multiplexed or mirrored control files on separate disks.

	
Configure the control file autobackup feature.

In this case, RMAN automatically backs up the control file when you run certain RMAN commands. If a control file autobackup is available, RMAN can restore the server parameter and backup control file, and mount the database. After the control file is mounted, you can restore the remainder of the database.

	
Keep a record of the database DBID.

If you lose the control files, then you can use the DBID to recover the database.

	
See Also:

	
"Backing Up Control Files with RMAN" to learn about manual and automatic control file backups

	
"Control File and Server Parameter File Autobackups"

Maintaining the Fast Recovery Area

Although the fast recovery area is largely self-managing, some situations may require database administration intervention.

Deletion Rules for the Fast Recovery Area

"Overview of the Fast Recovery Area" explains the contents of the fast recovery area and the difference between permanent and transient files. Review this section before proceeding. The following rules govern when files become eligible for deletion from the recovery area:

	
Permanent files are never eligible for deletion.

	
Files that are obsolete under the retention policy are eligible for deletion.

"Configuring the Backup Retention Policy" explains how to configure the retention policy.

	
Transient files that have been copied to tape are eligible for deletion.

	
Archived redo logs are not eligible for deletion until all the consumers of the logs have satisfied their requirements.

"Configuring an Archived Redo Log Deletion Policy" explains how to configure an archived redo log deletion policy that determines when logs are eligible to be deleted. Consumers of logs can include RMAN, standby databases, Oracle Streams databases, and the Flashback Database feature. See Oracle Data Guard Concepts and Administration to learn about archived redo log management in a Data Guard environment.

	
Foreign archived logs that have been mined by a LogMiner session on a logical standby database are eligible for deletion. Because it is generated from a different database than the current database, a foreign archived redo log has a different DBID than the current archived redo logs.

The safe and reliable way to control deletion of from the fast recovery area is to configure your retention policy () and archived log deletion policy (see "Configuring an Archived Redo Log Deletion Policy"). To increase the likelihood that files moved to tape are retained on disk, increase the fast recovery area quota.

Monitoring Fast Recovery Area Space Usage

You can use the V$RECOVERY_FILE_DEST and V$RECOVERY_AREA_USAGE views to determine whether you have allocated enough space for your fast recovery area. Query the V$RECOVERY_FILE_DEST view to discover the current location, disk quota, space in use, space reclaimable by deleting files, and total number of files in the fast recovery area. For example, enter the query shown in Example 12-1 (sample output included). The space columns specify the amount in bytes.

Example 12-1 Fast Recovery Area Space Consumption

SELECT * FROM V$RECOVERY_FILE_DEST;

NAME SPACE_LIMIT SPACE_USED SPACE_RECLAIMABLE NUMBER_OF_FILES
-------------- ----------- ---------- ----------------- ---------------
/mydisk/rcva 5368709120 109240320 256000 28

Query the V$RECOVERY_AREA_USAGE view to discover the percentage of the total disk quota used by different types of files. Also, you can determine how much space for each type of file can be reclaimed by deleting files that are obsolete, redundant, or backed up to tape. For example, enter the following query (sample output included):

SELECT * FROM V$RECOVERY_AREA_USAGE;

FILE_TYPE PERCENT_SPACE_USED PERCENT_SPACE_RECLAIMABLE NUMBER_OF_FILES
------------ ------------------ ------------------------- ---------------
CONTROLFILE 0 0 0
ONLINELOG 2 0 22
ARCHIVELOG 4.05 2.01 31
BACKUPPIECE 3.94 3.86 8
IMAGECOPY 15.64 10.43 66
FLASHBACKLOG .08 0 1

When guaranteed restore points are defined on your database, you should monitor the amount of space used in your fast recovery area for files required to meet the guarantee. Use the query for viewing guaranteed restore points in "Listing Restore Points" and see the STORAGE_SIZE column to determine the space required for files related to each guaranteed restore point.

	
See Also:

Oracle Database Reference for more details on the V$RECOVERY_FILE_DEST and V$RECOVERY_AREA_USAGE views

Managing Space for Flashback Logs in the Fast Recovery Area

"Logging for Flashback Database with Guaranteed Restore Points Defined" explains the rules for flashback log deletion. You cannot manage the flashback logs in the fast recovery area directly other than by setting the flashback retention target or using guaranteed restore points. Nevertheless, you can manage fast recovery area space as a whole to maximize the space available for retention of flashback logs. In this way you increase the likelihood of achieving the flashback target.

To make space for flashback logs, back up the other contents of your fast recovery area to tape with commands such as BACKUP RECOVERY AREA, BACKUP BACKUPSET, and so on. Oracle Database automatically removes obsolete files from the fast recovery area. If offloading backups to tape still does not create enough space to satisfy the backup retention policy and flashback retention target, then allocate more space in the fast recovery area.

	
Note:

You cannot back up flashback logs. Thus, the BACKUP RECOVERY AREA operation does not include the flashback logs when backing up the fast recovery area contents to tape.

Responding to a Full Fast Recovery Area

If the RMAN retention policy requires keeping a set of backups larger than the fast recovery area disk quota, or if the retention policy is set to NONE, then the fast recovery area can fill completely with no reclaimable space.

The database issues a warning alert when reclaimable space is less than 15% and a critical alert when reclaimable space is less than 3%. To warn the DBA of this condition, an entry is added to the alert log and to the DBA_OUTSTANDING_ALERTS table (used by Enterprise Manager). Nevertheless, the database continues to consume space in the fast recovery area until there is no reclaimable space left.

When the recovery area is completely full, the error displayed is as follows, where nnnnn is the number of bytes required and mmmmm is the disk quota:

ORA-19809: limit exceeded for recovery files
ORA-19804: cannot reclaim nnnnn bytes disk space from mmmmm limit

You have several choices for how to resolve a full fast recovery area when no files are eligible for deletion:

	
Make more disk space available and increase DB_RECOVERY_FILE_DEST_SIZE to reflect the additional space.

	
Move backups from the fast recovery area to tertiary storage such as tape.

One convenient way to back up all of your recovery area files to tape at once is the BACKUP RECOVERY AREA command. After you transfer backups from the recovery area to tape, you can delete files from the fast recovery area (see "Deleting RMAN Backups and Archived Redo Logs"). Flashback logs cannot be backed up outside the recovery area and are not backed up by BACKUP RECOVERY AREA.

	
Run DELETE for any files that have been removed with an operating system utility.

If you use host operating system commands to delete files, then the database is not aware of the resulting free space. You can run the RMAN CROSSCHECK command to have RMAN recheck the contents of the fast recovery area and identify expired files, and then use the DELETE EXPIRED command to delete every expired backup from the RMAN repository.

	
Ensure that your guaranteed restore points are necessary. If not, delete them as described in "Dropping Restore Points".

Flashback logs that are not needed for a guaranteed restore point are deleted automatically to gain space for other files in the fast recovery area. A guaranteed restore point forces the retention of flashback logs required to perform Flashback Database to the restore point SCN.

	
Review your backup retention policy and, if using Data Guard, your archived redo log deletion policy.

	
See Also:

Chapter 9, "Backing Up the Database" to decide on a retention policy, and Oracle Data Guard Concepts and Administration for more information about archived log deletion policy with Data Guard

Changing the Fast Recovery Area to a New Location

If you must move the fast recovery area of your database to a new location, then follow this procedure:

	
Start a SQL*Plus on the target database and change the DB_RECOVERY_FILE_DEST initialization parameter. For example, enter the following command to set the destination to the ASM disk group disk1:

ALTER SYSTEM SET DB_RECOVERY_FILE_DEST='+disk1' SCOPE=BOTH SID='*';

After you change this parameter, all new fast recovery area files are created in the new location.

	
Either leave or move the permanent files, flashback logs, and transient files in the old flash recovery location.

If you leave the existing files in the flash recovery, then the database deletes the transient files from the old fast recovery area as they become eligible for deletion.

If you must move the old files to the new fast recovery area, then see the Oracle Database Storage Administrator's Guide. The procedure for moving database files into and out of an ASM disk group with RMAN works when moving files into and out of a fast recovery area.

Disabling the Fast Recovery Area

Before disabling the fast recovery area, you must first drop all guaranteed restore points and then turn off Flashback Database. Once these prerequisites have been met, you can disable the fast recovery area by setting the DB_RECOVERY_FILE_DEST initialization parameter to a null string. For example, use the following SQL statement to change the parameter on a running database:

ALTER SYSTEM SET DB_RECOVERY_FILE_DEST='' SCOPE=BOTH SID='*';

The database no longer provides the space management features of the fast recovery area for the files stored in the old DB_RECOVERY_FILE_DEST location. The files are still known to the RMAN repository, however, and available for backup and restore activities.

Responding to an Instance Crash During File Creation

As a rule, the fast recovery area is self-maintaining. When an instance crashes during the creation of a file in the fast recovery area, however, the database may leave the file in the fast recovery area. When this situation occurs, the alert log contains the following error, where location is the location of the fast recovery area:

ORA-19816: WARNING: Files may exist in location that are not known to database.

In such a situation, use the RMAN command CATALOG RECOVERY AREA to recatalog any such files. If the file header of the file in question is corrupted, then delete the file manually with an operating system utility.

Updating the RMAN Repository

This section explains how to ensure that the RMAN repository accurately reflects the reality of the RMAN-related files stored on disk and tape. Several situations can cause a discrepancy between the repository and the files that it records, including tape or disk failures and user-managed copies or deletions of RMAN-related files.

This section contains the following topics:

	
Crosschecking the RMAN Repository

	
Changing the Repository Status of Backups and Copies

	
Adding Backup Records to the RMAN Repository

	
Removing Records from the RMAN Repository

Crosschecking the RMAN Repository

To ensure that data about backups in the recovery catalog or control file is synchronized with corresponding data on disk or in the media management catalog, perform a crosscheck. The CROSSCHECK command operates only on files that are currently recorded in the RMAN repository.

If you use a fast recovery area, backup retention policy, and archived redo log deletion policy, then you should not need to perform crosschecks very often. If you delete files by means other than RMAN, then you should perform a crosscheck periodically to ensure that the repository data stays current.

About RMAN Crosschecks

Crosschecks update outdated RMAN repository information about backups whose repository records do not match their physical status. For example, if a user removes archived logs from disk with an operating system command, the repository still indicates that the logs are on disk, when in fact they are not.

Figure 12-1 illustrates a crosscheck of a media manager. RMAN queries the RMAN repository for the names and locations of the four backup sets to be checked. RMAN sends this information to the target database server, which queries the media management software about the backups. The media management software then checks its media catalog and reports back to the server that backup set 3 is missing. RMAN updates the status of backup set 3 to EXPIRED in the repository. The record for backup set 3 is deleted once you run DELETE EXPIRED.

Figure 12-1 Crosschecking a Media Manager

[image: Diagram of crosschecking a media manager]

Description of "Figure 12-1 Crosschecking a Media Manager"

Crosschecks are useful because they can do the following:

	
Update outdated information about backups that disappeared from disk or tape or became corrupted

	
Update the repository if you delete archived redo logs or other files with operating system commands

Use the crosscheck feature to check the status of a backup on disk or tape. If the backup is on disk, then CROSSCHECK checks whether the header of the file is valid. If a backup is on tape, then the command checks that the backups exist in the media management software catalog.

Backup pieces and image copies can have the status AVAILABLE, EXPIRED, or UNAVAILABLE. You can view the status of backups by running the RMAN LIST command or by querying V$BACKUP_FILES or recovery catalog views such as RC_DATAFILE_COPY or RC_ARCHIVED_LOG. A crosscheck updates the RMAN repository so that all of these techniques provide accurate information. RMAN updates each backup in the RMAN repository to status EXPIRED if the backup is no longer available. If a new crosscheck determines that an expired backup is available again, then RMAN updates its status to AVAILABLE.

	
Note:

The CROSSCHECK command does not delete operating system files or remove repository records. You must use the DELETE command for these operations.

You can issue the DELETE EXPIRED command to delete all expired backups. RMAN removes the record for the expired file from the repository. If for some reason the file still exists on the media, then RMAN issues warnings and lists the mismatched objects that cannot be deleted.

	
See Also:

	
Oracle Database Backup and Recovery Reference for CROSSCHECK syntax and a description of the possible status values

	
Oracle Database Backup and Recovery Reference for DELETE syntax

Crosschecking All Backups and Copies

After connecting to the target database and recovery catalog (if you use one), run CROSSCHECK commands as needed to verify the status and availability of backups known to RMAN.

You can configure or manually allocate multiple channels before issuing CROSSCHECK or DELETE commands. RMAN searches for each backup on all channels that have the same device type as the channel used to create the backup. The multichannel feature is primarily intended for use when crosschecking or deleting backups on both disk and tape within a single command. For example, assume that you have an SBT channel configured as follows:

CONFIGURE DEVICE TYPE sbt PARALLELISM 1;
CONFIGURE DEFAULT DEVICE TYPE sbt;

In this case you can run the following commands to crosscheck both disk and SBT:

CROSSCHECK BACKUP;
CROSSCHECK COPY;

RMAN uses both the SBT channel and the preconfigured disk channel to perform the crosscheck. Sample output follows:

allocated channel: ORA_SBT_TAPE_1
channel ORA_SBT_TAPE_1: sid=12 devtype=SBT_TAPE
channel ORA_SBT_TAPE_1: WARNING: Oracle Test Disk API
using channel ORA_DISK_1
crosschecked backup piece: found to be 'AVAILABLE'
backup piece handle=/oracle/dbs/16c5esv4_1_1 recid=36 stamp=408384484
crosschecked backup piece: found to be 'AVAILABLE'
backup piece handle=/oracle/dbs/c-674966176-20000915-01 recid=37 stamp=408384496
crosschecked backup piece: found to be 'AVAILABLE'
backup piece handle=12c5erb2_1_1 recid=32 stamp=408382820
 .
 .
 .

If you do not have an automatic SBT channel configured, then you can manually allocate maintenance channels on disk and tape.

RUN
{
 ALLOCATE CHANNEL FOR MAINTENANCE DEVICE TYPE sbt;
 CROSSCHECK BACKUP;
 CROSSCHECK COPY;
}

You do not have to manually allocate a disk channel because RMAN uses the preconfigured disk channel.

Crosschecking Specific Backup Sets and Copies

You can use the LIST command to report your backups and then use the CROSSCHECK command to check that specific backups described in the LIST output still exist. The DELETE EXPIRED command deletes repository records for backups that fail the crosscheck.

To crosscheck specified backups:

	
Start RMAN and connect to a target database and recovery catalog (if used).

	
Run a LIST command to identify the backups to be checked.

For example, run the following command:

LIST BACKUP; # lists all backup sets, proxy copies, and image copies

	
Crosscheck the desired backups or copies.

The following sample commands illustrate different types of crosschecks:

CROSSCHECK BACKUP; # checks backup sets, proxy copies, and image copies
CROSSCHECK COPY OF DATABASE;
CROSSCHECK BACKUPSET 1338, 1339, 1340;
CROSSCHECK BACKUPPIECE TAG 'nightly_backup';
CROSSCHECK BACKUP OF ARCHIVELOG ALL SPFILE;
CROSSCHECK BACKUP OF DATAFILE "?/oradata/trgt/system01.dbf"
 COMPLETED AFTER 'SYSDATE-14';
CROSSCHECK CONTROLFILECOPY '/tmp/control01.ctl';
CROSSCHECK DATAFILECOPY 113, 114, 115;
CROSSCHECK PROXY 789;

	
See Also:

Oracle Database Backup and Recovery Reference for more details on using CROSSCHECK to check backups of specific files

Changing the Repository Status of Backups and Copies

This section explains how to change the repository records for backups and copies. You can change the status of a backup if it becomes temporarily available or unavailable. For example, if a mounted disk undergoes maintenance, then you can update the records for backups on the disk to status UNAVAILABLE.

Updating a Backup to Status AVAILABLE or UNAVAILABLE

Run the CHANGE ... UNAVAILABLE command when a backup cannot be found or has migrated offsite. RMAN does not use files with status UNAVAILABLE in RESTORE or RECOVER commands. If the file is later found or returns to the main site, then you can update its status again by issuing CHANGE ... AVAILABLE. The files in the fast recovery area cannot be marked as UNAVAILABLE.

To update the status of a file in the repository to UNAVAILABLE or AVAILABLE:

	
Issue a LIST command to determine the availability status of RMAN backups. For example, issue the following command to list all backups:

LIST BACKUP;

	
Run CHANGE with the UNAVAILABLE or AVAILABLE keyword to update its status in the RMAN repository.

The following examples illustrate forms of the CHANGE command:

CHANGE DATAFILECOPY '/tmp/control01.ctl' UNAVAILABLE;
CHANGE COPY OF ARCHIVELOG SEQUENCE BETWEEN 1000 AND 1012 UNAVAILABLE;
CHANGE BACKUPSET 12 UNAVAILABLE;
CHANGE BACKUP OF SPFILE TAG "TAG20020208T154556" UNAVAILABLE;
CHANGE DATAFILECOPY '/tmp/system01.dbf' AVAILABLE;
CHANGE BACKUPSET 12 AVAILABLE;
CHANGE BACKUP OF SPFILE TAG "TAG20020208T154556" AVAILABLE;

	
See Also:

Oracle Database Backup and Recovery Reference for CHANGE command syntax

Changing the Status of an Archival Backup

As explained in "Making Database Backups for Long-Term Storage", you can designate backups as exempt from the retention policy. This technique is useful for archiving backups to comply with business requirements. An archival backup is still a fully valid backup, however, and can be restored just as any other RMAN backup.

	
Note:

The KEEP FOREVER clause requires the use of a recovery catalog, because the control file cannot contain an infinitely large set of RMAN repository data.

You can use the CHANGE command to alter the KEEP status of an existing backup. For example, you may decide that you no longer want to keep a long-term backup. The same options available for BACKUP ... KEEP are available with CHANGE ... KEEP.

You cannot set KEEP attributes for backup sets or files stored in the fast recovery area.

To alter the KEEP status of an archival backup:

	
Issue a LIST command to list the backups. For example, issue the following command to list all backups:

LIST BACKUP;

	
Issue a CHANGE ... KEEP command to define a different retention period for this backup, or a CHANGE ... NOKEEP command to let the retention policy apply to this file.

This example allows a backup set to be subject to the backup retention policy:

CHANGE BACKUPSET 231 NOKEEP;

This example makes a data file copy exempt from the retention policy for 180 days:

CHANGE DATAFILECOPY '/tmp/system01.dbf' KEEP UNTIL TIME 'SYSDATE+180';

Adding Backup Records to the RMAN Repository

You can use the CATALOG command to make RMAN aware of the existence of archived logs not recorded in the repository or copies of database files that are created through means other than RMAN. This section contains the following topics:

	
About Cataloging Operations

	
Cataloging User-Managed Data File Copies

	
Cataloging Backup Pieces

	
Cataloging All Files in a Disk Location

About Cataloging Operations

The target database control file keeps records of all archived redo logs generated by the target database and all RMAN backups. The purpose of the CATALOG command is to add metadata to the repository when it does not have a record of files for RMAN.

Run the RMAN CATALOG command when:

	
You use an operating system utility to make copies of datafiles, archived logs, or backup pieces. In this case, the repository has no record of them.

	
You perform recovery with a backup control file and you change the archiving destination or format during recovery. In this situation, the repository does not have information about archived logs needed for recovery, and you must catalog these logs.

	
You want to catalog data file copy as a level 0 backup, thus enabling you to perform an incremental backup later by using the data file copy as the base of an incremental backup strategy.

	
You want to catalog user-managed copies of Oracle7 database files created before you migrated to a higher release, or of Oracle8 and higher database files created before you started to use RMAN. These data file copies enable you to recover the database if it fails after migration but before you have a chance to take a backup of the migrated database.

Whenever you make a user-managed copy, for example, by using the UNIX cp command to copy a data file, be sure to catalog it. When making user-managed copies, you can use the ALTER TABLESPACE ... BEGIN/END BACKUP statement to make data file copies off an online tablespace. Although RMAN does not create such data file copies, you can use the CATALOG command to add them to the recovery catalog so that RMAN is aware of them.

For a user-managed copy to be cataloged, it must be:

	
Accessible on disk

	
A complete image copy of a single file

	
Either a data file copy, control file copy, archived redo log copy, or backup piece copy

For example, if you store datafiles on mirrored disk drives, then you can create a user-managed copy by breaking the mirror. In this scenario, use the CATALOG command to notify RMAN of the existence of the user-managed copy after breaking the mirror. Before reforming the mirror, run a CHANGE ... UNCATALOG command to notify RMAN that the file copy no longer exists.

Cataloging User-Managed Data File Copies

Use the CATALOG command to propagate information about user-managed copies to the RMAN repository. After the files are cataloged, you can run the LIST command or query V$BACKUP_FILES view to confirm the information is contained in the RMAN repository.

To create and catalog a user-managed copy of a data file:

	
Make a data file copy with an operating system utility. ALTER TABLESPACE BEGIN/END BACKUP is necessary if the database is open and the data files are online while the backup is in progress. This example backs up an online data file, using the SQL*Plus HOST command to issue an operating system command.

SQL> ALTER TABLESPACE users BEGIN BACKUP;
SQL> host cp $ORACLE_HOME/oradata/trgt/users01.dbf /tmp/users01.dbf;
SQL> ALTER TABLESPACE users END BACKUP;

	
Start RMAN and connect to a target database and recovery catalog (if used).

	
Run the CATALOG command.

For example, enter the following command to catalog a user-managed data file copy:

CATALOG DATAFILECOPY '/tmp/users01.dbf';

If you try to catalog a data file copy from a database other than the connected target database, then RMAN issues an error such as the following:

RMAN-00571: ===
RMAN-00569: =============== ERROR MESSAGE STACK FOLLOWS ===============
RMAN-00571: ===
RMAN-03009: failure of catalog command on default channel at 08/29/2007 14:44:34
ORA-19563: datafile copy header validation failed for file /tmp/tools01.dbf

	
See Also:

Oracle Database Backup and Recovery Reference for CATALOG command syntax

Cataloging Backup Pieces

You can catalog backup pieces on disk. This technique is useful if you use an operating system utility to copy backup pieces from one location to another on the same host, or from one host to another. You can even catalog a backup piece from a prior incarnation of the database. RMAN can determine whether that backup piece can be used during a subsequent restore and recovery operation.

To catalog a backup piece:

	
Start RMAN and connect to a target database and recovery catalog (if used).

	
Catalog the file names of the backup pieces.

For example, enter the following command:

CATALOG BACKUPPIECE '/disk2/09dtq55d_1_2', '/disk2/0bdtqdou_1_1';

	
Optionally, run a LIST command or query V$ views to verify your changes.

Views include V$BACKUP_PIECE, V$BACKUP_SET, V$BACKUP_DATAFILE, V$BACKUP_REDOLOG, and V$BACKUP_SPFILE. The following query shows the names of backup pieces:

SELECT HANDLE
FROM V$BACKUP_PIECE;

	
See Also:

Oracle Database Backup and Recovery Reference for CATALOG BACKUPPIECE restrictions

Cataloging All Files in a Disk Location

If you use Automatic Storage Management (ASM), an Oracle Managed Files framework, or the fast recovery area, then you may want to recatalog files that are known to the disk management system but are no longer listed in the RMAN repository. This situation can occur when the intended mechanism for tracking file names fails due to media failure, software bug, or user error.

The CATALOG START WITH command enables you to search through all files in an ASM disk group, Oracle Managed Files location, or traditional file system directory and investigate those that are not recorded in the RMAN repository. If the command can catalog a file, then it does so. If it cannot catalog the file, then it makes its best guess about the contents of the skipped file.

The CATALOG RECOVERY AREA command enables you to catalog all files in the recovery area. Typically, you would not need to run this command manually because RMAN automatically runs it when it is needed, for example, when you restore or create a control file. You can run this command when files are copied into the fast recovery area by operating system utilities.

To catalog all files in a disk location:

	
Start RMAN and connect to a target database and recovery catalog (if used).

	
Run the CATALOG command, specifying the disk location whose files you want to catalog.

For example, enter the following commands:

CATALOG START WITH '+disk'; # catalog all files from an ASM disk group
CATALOG START WITH '/fs1/datafiles/'; # catalog all files in directory

	
Note:

Wildcard characters are not legal in the START WITH clause.

You can use the CATALOG RECOVERY AREA command to catalog all files in the recovery area. During this operation, any files in the recovery area not listed in the RMAN repository are added. For example:

CATALOG RECOVERY AREA;

	
Run a LIST command to verify that the files were cataloged.

Removing Records from the RMAN Repository

This section explains how to remove records for files from the RMAN repository.

About Uncataloging Operations

Run the CHANGE ... UNCATALOG command to perform the following actions on RMAN repository records:

	
Update a backup record in the control file repository to status DELETED

	
Delete a specific backup record from the recovery catalog (if you use one)

RMAN does not change the specified physical files: it only alters the repository records for these files.

You can use this command when you have deleted a backup through a means other than RMAN. For example, if you delete archived redo logs with an operating system utility, then remove the record for this log from the repository by issuing a CHANGE ARCHIVELOG ... UNCATALOG command.

Removing Records for Files Deleted with Operating System Utilities

In some circumstances, users may have removed backups or archived redo logs with operating system utilities. Unless you run CROSSCHECK, RMAN does not know about the deletion. You can use the CHANGE ... UNCATALOG command to update the RMAN repository for the absent files.

To remove the catalog record for a backup or archived redo log:

	
Run a CHANGE ... UNCATALOG command for the backups that you deleted from the operating system with operating system commands. This example deletes repository references to disk copies of the control file and data file 1:

CHANGE CONTROLFILECOPY '/tmp/control01.ctl' UNCATALOG;
CHANGE DATAFILECOPY '/tmp/system01.dbf' UNCATALOG;

	
Optionally, view the relevant recovery catalog view, for example, RC_DATAFILE_COPY or RC_CONTROLFILE_COPY, to confirm that a given record was removed. This query confirms that the record of copy 4833 was removed:

SELECT CDF_KEY, STATUS
FROM RC_DATAFILE_COPY
WHERE CDF_KEY = 4833;

CDF_KEY STATUS
---------- ------
0 rows selected.

Deleting RMAN Backups and Archived Redo Logs

You can use the RMAN DELETE command to delete archived redo logs and RMAN backups. For backups on disk, deleting backups physically removes the backup file from disk. For backups on SBT devices, the RMAN DELETE command instructs the media manager to delete the backup pieces or proxy copies on tape. In either case, RMAN updates the RMAN repository to reflect the deletion.

Overview of RMAN Deletion

Every RMAN backup produces a corresponding record in the RMAN repository. This record is stored in the control file. If a recovery catalog is used, then the record can also be found in the recovery catalog after the recovery catalog is resynchronized from the control file. For example, if you generate a full database backup set, then you can view the record for this backup set in V$BACKUP_SET. If you use a recovery catalog, then you can also access the record in the RC_BACKUP_SET catalog view.

The V$ control file views and recovery catalog views differ in the way that they store information, and this affects how RMAN handles repository records. The recovery catalog RMAN repository is stored in actual database tables, while the control file version of the repository is stored in an internal structure in the control file.

When you use an RMAN command to delete a backup or archived redo log file, RMAN does the following:

	
Removes the physical file from the operating system (if the file is still present)

	
Updates the file records in the control file to status DELETED

	
Removes the file records from the recovery catalog tables (if RMAN is connected to a recovery catalog)

Because of the way that control file data is stored, RMAN cannot remove the record from the control file, only update it to DELETED status. Because the recovery catalog tables are ordinary database tables, however, RMAN deletes rows from them in the same way that rows are deleted from any table.

RMAN Deletion Commands

Table 12-1 describes the RMAN commands that can delete backups.

Table 12-1 RMAN Deletion Commands

	Command	Purpose
	
DELETE

	
To delete backups, update the control file records to status DELETED, and remove their records from the recovery catalog (if a recovery catalog is used).

You can specify that DELETE should remove backups that are EXPIRED or OBSOLETE. If you run DELETE EXPIRED on a backup that exists, then RMAN issues a warning and does not delete the backup. If you use the DELETE command with the optional FORCE keyword, then RMAN deletes the specified backups, but ignores any I/O errors, including those that occur when a backup is missing from disk or tape. It then updates the RMAN repository to reflect the fact that the backup is deleted, regardless of whether RMAN was able to delete the file or whether the file was missing.

RMAN uses all configured channels to perform the deletion. If you use DELETE for files on devices that are not configured for automatic channels, then you must first use ALLOCATE CHANNEL FOR MAINTENANCE command. For example, if you made a backup with the SBT channel, but only a disk channel is configured, then you must manually allocate an SBT channel for DELETE. An automatic or manually allocated maintenance channel is required when you use DELETE command on a disk-only file.

	
BACKUP ... DELETE [ALL] INPUT

	
To back up archived logs, data file copies, or backup sets, then delete the input files from the operating system after the successful completion of the backup. RMAN also deletes and updates repository records for the deleted input files.

If you specify DELETE INPUT (without ALL), then RMAN deletes only the specific files that it backs up. If you specify ALL INPUT, then RMAN deletes all copies of the files recorded in the RMAN repository.

	
CHANGE ... UNCATALOG

	
To delete recovery catalog records for specified backups and change their control file records to status DELETED. The CHANGE ... UNCATALOG command only changes the RMAN repository record of backups, and does not actually delete backups.

The RMAN repository record for an object can sometimes fail to reflect the physical status of the object. For example, you back up an archived redo log to disk and then use an operating system utility to delete it. If you run DELETE without first running CROSSCHECK, then the repository erroneously lists the log as AVAILABLE. See Oracle Database Backup and Recovery Reference for a description of DELETE behavior when mismatches occur between the RMAN repository and physical media.

If you run RMAN interactively, then RMAN asks for confirmation before deleting any files. You can suppress these confirmations by using the NOPROMPT keyword with any form of the BACKUP command:

DELETE NOPROMPT ARCHIVELOG ALL;

Deletion of Archived Redo Logs

As explained in "Basic Concepts of Backup and Repository Maintenance", the recommended maintenance strategy is to configure a fast recovery area, a backup retention policy, and an archived redo log deletion policy. By default, the archived redo logs deletion policy is configured to NONE. In this case, the fast recovery area considers the logs eligible for deletion if they have been backed up at least once to disk or tape or the logs are obsolete according to the backup retention policy.

Archived redo logs can be deleted automatically by the database or by any of the user-initiated RMAN commands listed in Table 12-1. For logs in the recovery area, the database retains them as long as possible and automatically deletes eligible logs when disk space is required. You can delete eligible logs from any location, inside or outside the recovery area, with BACKUP ... DELETE INPUT or DELETE ARCHIVELOG. Both of these commands obey the archive redo log deletion policy when the policy is any setting other than NONE. You can override the archived redo log deletion policy settings by using the FORCE option in the DELETE command.

	
See Also:

	
"Configuring an Archived Redo Log Deletion Policy"

	
The CONFIGURE ARCHIVELOG DELETION POLICY entry in Oracle Database Backup and Recovery Reference for detailed information about policy options

Deleting All Backups and Copies

In some circumstances, you may need to delete all backup sets, proxy copies, and image copies associated with a database. For example, you no longer need a database and want to remove all related files from the system. An image copy is a file generated with BACKUP AS COPY command, a log archived by the database, or a file cataloged with the CATALOG command.

To delete all backups and copies:

	
Start RMAN and connect to a target database and recovery catalog (if used).

	
If necessary, allocate maintenance channels for the devices containing the backups to be deleted.

As explained in Table 12-1, RMAN uses all configured channels to perform the deletion. If channels are configured, then you do not need to manually allocate maintenance channels.

	
Crosscheck the backups and copies to ensure that the logical records are synchronized with the physical media.

CROSSCHECK BACKUP;
CROSSCHECK COPY;

	
Delete the backups and copies.

For example, enter the following commands and then enter YES when prompted:

DELETE BACKUP;
DELETE COPY;

If disk and tape channels are configured, then RMAN uses both the configured SBT channel and the preconfigured disk channel when deleting. RMAN prompts you for confirmation before deleting any files.

Deleting Specified Backups and Copies

You can use both the DELETE and BACKUP ... DELETE commands to delete specific backups and copies. The BACKUP ... DELETE command backs up the files first, typically to tape, and then deletes the input files afterward.

The DELETE command supports a wide range of options to identify objects to delete. For complete information about these options, see Oracle Database Backup and Recovery Reference. When deleting archived redo logs, RMAN uses the configured settings to determine whether a log can be deleted (see "Configuring an Archived Redo Log Deletion Policy").

To delete specified backups and copies:

	
Start RMAN and connect to a target database and recovery catalog (if used).

	
If necessary, allocate maintenance channels for the devices containing the backups to be deleted.

As explained in Table 12-1, RMAN uses all configured channels to perform the deletion. If channels are configured, then you do not need to manually allocate maintenance channels.

	
Delete the specified backups and copies.

The following examples show many of the common ways to specify backups and archived logs to delete with the DELETE command:

	
Deleting backups using primary keys from LIST output:

DELETE BACKUPPIECE 101;

	
Deleting backups by file name on disk:

DELETE CONTROLFILECOPY '/tmp/control01.ctl';

	
Deleting archived redo logs:

DELETE NOPROMPT ARCHIVELOG UNTIL SEQUENCE 300;

	
Deleting backups based on tags:

DELETE BACKUP TAG 'before_upgrade';

	
Delete backups based on the objects backed up and the media or disk location where the backup is stored:

DELETE BACKUP OF TABLESPACE users DEVICE TYPE sbt; # delete only from tape
DELETE COPY OF CONTROLFILE LIKE '/tmp/%';

	
Delete backups and archived redo logs from disk based on whether they are backed up on tape:

DELETE ARCHIVELOG ALL
 BACKED UP 3 TIMES TO sbt;

Deleting Specified Files with BACKUP ... DELETE

You can use BACKUP ... DELETE to back up archived redo logs, data file copies, or backup sets and then delete the input files after successfully backing them up. Specifying the DELETE INPUT option is equivalent to issuing the DELETE command for the input files. As explained in "Configuring an Archived Redo Log Deletion Policy", RMAN uses the configured settings to determine whether an archived redo log can be deleted.The ALL option in the DELETE ALL INPUT clause applies only to archived redo logs. If you run BACKUP ... DELETE ALL INPUT, then the command deletes all copies of corresponding archived redo logs or data file copies that match the selection criteria in the BACKUP command.

Deleting Expired RMAN Backups and Copies

If you run CROSSCHECK, and if RMAN cannot locate the files, then it updates their records in the RMAN repository to EXPIRED status. You can then use the DELETE EXPIRED command to remove records of expired backups and copies from the RMAN repository.

The DELETE EXPIRED command issues warnings if any files marked as EXPIRED actually exist. In rare cases, the repository can mark a file as EXPIRED even though it exists. For example, a directory containing a file is corrupted at the time of the crosscheck, but is later repaired, or the media manager was not configured properly and reported some backups as not existing when they really existed.

To delete expired repository records:

	
If you have not performed a crosscheck recently, then issue a CROSSCHECK command. For example, issue:

CROSSCHECK BACKUP;

	
Delete the expired backups. For example, issue:

DELETE EXPIRED BACKUP;

Deleting Obsolete RMAN Backups Based on Retention Policies

The RMAN DELETE command supports an OBSOLETE option, which deletes backups that are no longer needed to satisfy specified recoverability requirements. You can delete files that are obsolete according to the configured default retention policy, or another retention policy that you specify as an option to the DELETE OBSOLETE command. As with other forms of the DELETE command, the files deleted are removed from backup media, deleted from the recovery catalog, and marked as DELETED in the control file.

If you specify the DELETE OBSOLETE command with no arguments, then RMAN deletes all obsolete backups defined by the configured retention policy. For example:

DELETE OBSOLETE;

DELETE OBSOLETE Behavior When KEEP UNTIL TIME Expires

If the KEEP UNTIL TIME period has not expired for an archival backup, RMAN does not consider the backup as obsolete. As soon as the KEEP UNTIL period expires, however, the backup is immediately considered to be obsolete, regardless of any configured backup retention policy. Thus, DELETE OBSOLETE deletes any backup created with BACKUP ... KEEP UNTIL TIME if the KEEP time has expired.

	
See Also:

Oracle Database Backup and Recovery Reference for keepOption syntax

Dropping a Database

To remove a database from the operating system, you can use the DROP DATABASE command in RMAN. RMAN removes all datafiles, online redo logs, and control files belonging to the target database.

DROP DATABASE requires that RMAN be connected to the target database, and that the target database be mounted. The command does not require connection to the recovery catalog. If RMAN is connected to the recovery catalog, and if you specify the option INCLUDE COPIES AND BACKUPS, then RMAN also unregisters the database.

To delete a database:

	
Start RMAN and connect to a target database and recovery catalog (if used).

	
Catalog all backups that are associated with the database. For example, the following commands catalog files in the fast recovery area, and then in a secondary archiving destination:

CATALOG START WITH '+disk1'; # all files from recovery area on ASM disk
CATALOG START WITH '/arch_dest2'; # all files from second archiving location

	
Delete all backups and copies associated with the database. For example:

DELETE BACKUPSET; # deletes all backups
DELETE COPY; # deletes all image copies (including archived logs)

	
Remove the database from the operating system.

The following command deletes the database and automatically unregisters it from the recovery catalog (if used). RMAN prompts for confirmation.

DROP DATABASE;

	
See Also:

	
"Dropping a Database with SQL*Plus" to learn how to use the SQL DROP DATABASE statement

	
Oracle Database Backup and Recovery Reference for the RMAN DROP DATABASE command syntax

Part VI

Tuning and Troubleshooting

The following chapters describe how to tune and troubleshoot RMAN operations. This part of the book contains these chapters:

	
Chapter 22, "Tuning RMAN Performance"

	
Chapter 23, "Troubleshooting RMAN Operations"

Preface

This preface contains the following topics:

	
Audience

	
Documentation Accessibility

	
Related Documentation

	
Relocated Documentation

	
Conventions

Audience

Backup and Recovery User's Guide is intended for database administrators who perform the following tasks:

	
Back up, restore, and recover Oracle databases

	
Perform maintenance on backups of database files

	
Transfer data between a file system and ASM or between platforms when installing Oracle Database

To use this document, you must know the following:

	
Relational database concepts and basic database administration as described in Oracle Database Concepts and the Oracle Database Administrator's Guide

	
The operating system environment under which you run the database

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers have access to electronic support through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Related Documentation

For more information about backup and recovery, see these Oracle resources:

	
Oracle Database Backup and Recovery Reference

	
Oracle Database Utilities

	
Oracle Database Storage Administrator's Guide

You can access information about the Backup Solutions Program (BSP) at

http://www.oracle.com/technetwork/database/features/availability/bsp-088814.html

Many books in the documentation set use the sample schemas of the seed database, which is installed by default when you install Oracle Database. Refer to Oracle Database Sample Schemas for information about how these schemas were created and how you can use them yourself.

Relocated Documentation

The following chapters have been relocated:

	
Chapter 24: "Creating Transportable Tablespace Sets." You can reference this material in Oracle Database Administrator's Guide.

	
Chapter 26: "Performing ASM Data Migration." This information is now included in the Database Storage Administrator's Guide.

Conventions

The following text conventions are used in this document:

	Convention	Meaning
	boldface	Boldface type indicates graphical user interface elements associated with an action, or terms defined in text or the glossary.
	italic	Italic type indicates book titles, emphasis, or placeholder variables for which you supply particular values.
	monospace	Monospace type indicates commands within a paragraph, URLs, code in examples, text that appears on the screen, or text that you enter.

Index

A B C D E F G H I J K L M N O P Q R S T U V W

Symbols

	%b substitution variable
	
	SET NEWNAME, 25.1.1.1

	%d substitution variable
	
	BACKUP FORMAT, 2.4.3

	%f substitution variable
	
	SET NEWNAME, 25.1.1.1

	%I substitution variable
	
	SET NEWNAME, 25.1.1.1

	%N substitution variable
	
	SET NEWNAME, 25.1.1.1

	%p substitution variable
	
	BACKUP FORMAT, 2.4.3

	%s substitution variable
	
	BACKUP FORMAT, 2.4.3

	%t substitution variable
	
	BACKUP FORMAT, 2.4.3

	%U substitution variable, 9.2.3.1
	
	BACKUP FORMAT, 2.4.3
	SET NEWNAME, 25.1.1.1

A

	ABORT option
	
	SHUTDOWN statement, 29.5, 30.1.1, 30.1.2

	active database duplication, 4.5.4, 24.1.2.1.1
	Advanced Compression Option, 6.2.5.3
	Advanced Security Option, 6.2.6.1, 8.3.5
	ADVISE FAILURE command, 15.1.2.4, 15.4
	alert log, 12.2.2, 23.1.1
	ALLOCATE CHANNEL command, 5.1.4.1, 6.1.1, 9.2.3.1
	
	MAXPIECESIZE option, 6.2.2

	ALLOW ... CORRUPTION clause, RECOVER command, 29.6.5
	ALTER DATABASE statement
	
	CLEAR LOGFILE clause, 30.7.2.1.3
	END BACKUP clause, 28.3.2.3.1
	OPEN RESETLOGS clause, 13.8.5
	RECOVER clause, 29.2.4.2, 29.3.1, 29.3.2
	RESETLOGS option, 29.5

	ALTER SYSTEM statement
	
	KILL SESSION clause, 23.4.1
	RESUME clause, 28.6.2
	SUSPEND clause, 28.6.2, 28.6.2

	ALTER TABLESPACE statement
	
	BEGIN BACKUP clause, 28.3.2.1, 28.3.2.2.2
	END BACKUP option, 28.3.2.2.2

	application errors, 1.1.1.3
	archival backups, 1.1.2, 9.6.1, 9.6.1, 12.4.2.2
	archived redo log deletion policies, 5.6.1, 5.6.2, 9.4.3
	archived redo log files
	
	applying during media recovery, 29.2.1, 29.2.3, 29.2.4.2
	backing up, 9.4.2
	
	using RMAN, 9.4
	with other backups, 9.4.1.2

	cataloging, 12.4.3
	changing default location, 29.2.4.1
	corrupted, 29.6.1
	deleting, 14.3.1, 29.3.1
	deletion after backup, 9.4.1
	failover, 9.4.1.1
	incompatible format, 29.6.1
	location during recovery, 29.2.1
	loss of, 29.4
	restoring using RMAN, 17.2.5

	ARCHIVELOG mode
	
	backups in, 2.4.1

	AS SELECT clause
	
	CREATE TABLE statement, 30.5

	authentication, RMAN, 2.2
	autobackups, control file, 8.6, 8.6, 9.3.3, 9.6.2
	
	configuring, 5.1.5
	format, 5.1.5.1

	automated repairs
	
	Data Recovery Advisor, 1.4

	automatic channel allocation, 6.1.1
	automatic channels, 3.3, 3.3.2
	
	configuring, 6.1.2
	naming conventions, 3.3.2
	overriding, 6.1

	Automatic Diagnostic Repository (ADR), 5.2.4.1, 8.6.2, 12.2.1, 15.1.2.2, 16.1.2.2, 16.1.2.4, 23.1.1
	Automatic Storage Management (ASM)
	
	backups to, 9.2.3

	Automatic Workload Repository (AWR), 7.5.4
	AUTORECOVERY option
	
	SET statement, 29.2.2

	auxiliary channels, 24.1.2.3
	auxiliary instance parameter file
	
	with TRANSPORT TABLESPACE, 26.2

	availability
	
	of RMAN backups, 12.4.2.1

	AVAILABLE option
	
	of CHANGE command, 12.4.2.1

B

	backup and recovery
	
	definition, 1.1
	introduction, 1
	solutions, 1.2
	strategy, 1.1.1
	user-managed, 1.2

	BACKUP command, 2.4, 2.4.1, 2.4.2, 3.3.2, 3.7.2.3, 5.3.5, 5.5.1, 6.1.1, 6.2.1, 6.2.4, 8.1, 8.1, 8.3, 9.1.2, 9.4.3
	
	ARCHIVELOG option, 9.4.1.2, 9.4.2
	AS COMPRESSION BACKUPSET option, 9.2.5
	AS COPY option, 2.4, 8.4.1, 8.4.1
	BACKUPSET option, 6.2.6.1, 6.2.6.1, 8.5, 8.5.2.1, 8.5.2.1, 8.5.2.1, 9.7.1, 9.7.1, 9.7.2
	CHANNEL option, 5.1.4.3
	COMPRESSED BACKUPSET option, 9.2.5
	COPIES parameter, 8.5, 8.5.1
	COPY OF option, 8.5, 8.5.2.2, 9.7.1, 9.7.3
	CURRENT CONTROLFILE option, 9.3.3, 9.3.3.1
	DATABASE option, 9.3.1
	DATAFILE option, 9.3.2
	DB_FILE_NAME_CONVERT parameter, 8.4.1, 8.4.1
	DELETE INPUT option, 9.4.4, 9.4.4, 12.5.1.1
	DELETE option, 9.4.1
	DEVICE TYPE clause, 5.1.2, 5.5.1, 9.2.1, 9.2.1, 9.3.3.1
	DURATION parameter, 10.8.2
	FILESPERSET parameter, 8.3.9
	FOR RECOVER OF COPY option, 9.5.4.1
	FORMAT parameter, 2.4.3, 5.2.3, 5.2.5.1, 8.3.6, 8.5.1, 9.2.3
	INCREMENTAL option, 2.4.4, 2.4.4, 2.4.4.1, 9.5, 9.5.3, 9.5.3.1
	KEEP option, 9.6.1, 9.6.3.1, 9.6.3.1, 9.6.4
	MAXSETSIZE parameter, 10.1
	NOT BACKED UP clause, 9.4.3
	PLUS ARCHIVELOG option, 9.4.1.2, 9.4.1.2
	PROXY ONLY option, 8.3.10, 8.3.10
	PROXY option, 8.3.10
	RECOVERY AREA option, 9.7.1
	SECTION SIZE parameter, 8.3.1, 10.1.3
	SPFILE option, 9.3.4
	TABLESPACE option, 9.3.2
	TAG parameter, 2.4.3, 9.2.4.1, 9.2.4.1
	VALIDATE option, 2.4.5, 15.1.2.2, 15.3, 16.2

	BACKUP CONTROLFILE clause
	
	ALTER DATABASE statement, 28.1.1, 28.1.1

	BACKUP COPIES parameter
	
	CONFIGURE command, 6.2.3

	backup encryption, 6.2.6.1, 8.3.5, 14.2.1
	
	decrypting backups, 17.3.1.2
	default algorithm, 6.2.6
	dual-mode, 6.2.6.1.3, 10.6.4
	overview, 10.6
	password, 6.2.6.1.2, 10.6.3
	transparent, 6.2.6.1.1, 6.2.6.1.1, 10.6.2

	backup mode, 8.4.2
	
	ending with ALTER DATABASE END BACKUP, 28.3.2.3.1
	for online user-managed backups, 8.2, 28.3.2.1
	instance failure, 28.3.2.3

	backup optimization, 9.4.3
	
	configuring, 5.5, 10.2
	definition, 5.5.1, 9.4.3
	disabling, 5.5.1, 5.5.3
	enabling, 5.5.1, 5.5.3
	redundancy and, 5.5.2.2
	retention policies and, 5.5.2

	backup pieces, 8.3.1
	
	definition, 2.4
	maximum size, 6.2.2
	names, 8.3.6
	names on tape, 5.2.5.1

	backup retention policies, 1.1.2, 3.6, 5.3.1
	
	affect on backup optimization, 5.5.2
	configuring, 5.4, 5.4
	configuring for redundancy, 5.4.1
	definition, 8.8
	disabling, 5.4.3
	exempt backups, 9.6.1, 12.4.2.2
	recovery window, 8.8
	recovery windows, 5.4.2
	redundancy, 8.8, 8.8.2

	backup sets, 2.4, 8.1
	
	backing up, 8.5.2.1, 8.5.2.1, 9.7.1
	compressed, 5.1.3, 6.2.5, 9.2.5
	configuring as default, 5.1.3
	configuring maximum size, 6.2.1
	crosschecking, 12.4.1.1
	duplexing, 10.4
	how RMAN generates, 8.3.8
	limiting size, 8.3.8
	maximum size, 6.2.1, 10.1
	multiplexed, 2.4, 6.2.1, 8.3.9, 9.2.4.2, 22.2.1.1
	naming, 8.3.6
	overview, 8.3
	specifying maximum size, 8.3.7
	specifying number, 8.3.8
	testing restore of, 17.2.4

	Backup Solutions Program (BSP), 3.5.3
	backup strategy
	
	fast recovery area, 5.3

	backup tags, RMAN, 9.2.4
	backup techniques, comparison, 1.2
	backup windows, 10.8.1
	backup-based duplication, 24.1.2.1.1
	backups
	
	archival, 1.1.2, 9.6.1
	archived redo logs
	
	using RMAN, 9.4

	availability, 12.4.2.1
	backup sets, 9.7.1
	backups of, 8.5.2.1
	closed, 28.2
	consistent, 28.2, 28.2
	
	making using RMAN, 8.1.1

	control file, 9.3.3, 28.4
	control files, 28.4
	
	binary, 28.4.1

	correlating RMAN channels with, 23.2.2.2.1, 23.2.2.2.2
	crosschecking, 12.4.1, 12.4.1
	cumulative incremental, 8.7.1.2
	data file
	
	using RMAN, 9.7.2, 9.7.3

	DBVERIFY utility, 28.9
	default type for RMAN, 5.1.3
	determining data file status, 28.1.2
	duplexing, 6.2.3, 6.2.3, 10.4
	excluding tablespaces from backups, 6.2.4
	exempt from retention policy, 12.4.2.2
	expired, deleting, 12.5.4
	generating reports for, 11.1.2, 11.3.1
	image copies, 8.4
	inconsistent, 28.2
	
	making using RMAN, 8.1.1

	incremental, 8.7.1.1, 9.5, 10.4.1, 10.4.2
	incrementally updated, 9.5.4
	listing files needed, 28.1
	logical, 1.1.1
	long-term, 1.1.2
	managing, 12.1.1
	multisection, 3.3.2, 8.3.1, 16.2
	NOARCHIVELOG mode, 9.3.5
	obsolete, 8.8.3, 12.5.5
	offline, 28.3.1, 28.3.1, 28.3.1
	offsite, 17.2.3.1
	optimizing, 5.5.1, 9.4.3
	orphaned, 14.3.2.3
	physical, 1.1.1
	previewing, 17.2.3
	read-only tablespaces, 28.3.2.4
	recovering pre-RESETLOGS, 18.6.3
	recovery catalog, 13.6.1, 13.6.1
	Recovery Manager, 9.1.2
	reporting objects needing backups, 11.3.2
	restartable, 10.7.1
	restoring user-managed, 29.2.1
	server parameter files, 9.3.4
	skipping files during, 10.3
	split mirror, 8.4.2
	
	using RMAN, 10.5

	stored scripts, 13.1.2.4, 13.7.1
	tablespace, 28.3.2.2
	
	using RMAN, 9.3.2, 9.7.2, 9.7.3

	testing RMAN, 16.1.2.4, 16.2, 16.2, 16.3, 16.3
	
	using media manager, 5.2.4.2

	user-managed, 28
	validating, 16.2, 16.2, 16.3, 16.3
	verifying, 28.9
	whole database, 9.3.1, 9.3.1, 28.2

	BEGIN BACKUP clause
	
	ALTER TABLESPACE statement, 28.3.2.1

	binary compression for backups, 9.2.5
	block change tracking, 1.2, 8.7.2, 9.5.5, 9.5.5
	
	disk space used for, 9.5.5.1.3
	enabling and disabling, 9.5.5.2, 9.5.5.2, 9.5.5.3, 9.5.5.3
	moving the change tracking file, 9.5.5.5

	block corruptions, 1.1.1.3
	
	stored in V$DATABASE_BLOCK_CORRUPTION, 16.2

	block media recovery, 1.1.1.3, 16.1.2.4
	
	automatic, 19.1.2

	BSP. See Backup Solutions Program (BSP)

C

	cancel-based media recovery, 29.4.2
	canceling RMAN commands, 23.4
	CATALOG command, 12.4.3, 12.4.3
	
	START WITH parameter, 13.4

	CHANGE command
	
	AVAILABLE option, 12.4.2.1
	DB_UNIQUE_NAME parameter, 13.8.3
	RESET DB_UNIQUE_NAME option, 3.7.2.2
	UNCATALOG option, 12.4.4.1

	CHANGE FAILURE command, 15.6
	channels, RMAN, 3.3, 3.3
	
	auxiliary, 24.1.2.3
	configuring, 5.1.4
	configuring advanced options, 6.1
	definition, 2.3, 3.3
	generic, 5.1.4.1
	naming conventions, 3.3.2
	Oracle RAC environment, 6.1.2
	parallel, 5.1.4.3

	character sets
	
	setting for use with RMAN, 4.3

	circular reuse records, 12.2.1
	CLEAR LOGFILE clause
	
	of ALTER DATABASE, 30.7.2.1.3

	client, RMAN, 2.1, 2.1, 3.1, 3.5
	cold failover cluster
	
	definition, 28.3.2.3

	command files, RMAN, 2.4.6
	command interface
	
	RMAN, 3.2

	commands, Recovery Manager
	
	ADVISE FAILURE, 15.1.2.4, 15.4
	ALLOCATE CHANNEL, 5.1.4.1, 6.1.1, 6.2.2, 9.2.3.1
	BACKUP, 2.4, 2.4, 2.4.1, 2.4.2, 2.4.3, 2.4.4, 2.4.4, 2.4.4.1, 2.4.5, 3.3.2, 3.7.2.3, 5.1.2, 5.1.4.3, 5.2.3, 5.2.5.1, 5.3.5, 5.3.5, 5.5.1, 5.5.1, 6.1.1, 6.2.1, 6.2.4, 6.2.6.1, 8.1, 8.3, 8.3.1, 8.3.9, 8.3.10, 8.3.10, 8.4.1, 8.4.1, 8.5, 8.5, 8.5.1, 8.5.1, 8.5.2.1, 8.5.2.2, 9.1.2, 9.2.1, 9.2.4.1, 9.2.5, 9.3.1, 9.3.2, 9.3.2, 9.3.3, 9.3.3.1, 9.3.4, 9.4.1, 9.4.1.2, 9.4.1.2, 9.4.3, 9.4.3, 9.4.4, 9.5, 9.5.3, 9.5.3.1, 9.5.4.1, 9.6.1, 9.6.3.1, 9.6.4, 9.7.1, 9.7.1, 9.7.1, 9.7.2, 9.7.3
	
	PROXY ONLY option, 8.3.10
	PROXY option, 8.3.10

	BACKUP CURRENT CONTROLFILE, 9.3.3.1
	canceling, 23.4
	CATALOG, 12.4.3, 12.4.3, 12.4.3
	CHANGE, 3.7.2.2, 12.4.1, 12.4.1
	CHANGE FAILURE, 15.6
	CONFIGURE, 3.7.1, 5.1.4.1, 5.4, 5.7, 6.1.1, 6.2.2, 6.2.6.2, 6.3
	CREATE CATALOG, 13.2.3, 13.5.3
	CREATE SCRIPT, 13.7.2
	CROSSCHECK, 12.4.1, 12.4.1
	DELETE, 12.4.1.1, 12.4.3.1, 12.4.3.1, 12.5
	DROP CATALOG, 13.9
	DROP DATABASE, 12.6
	DUPLICATE, 24
	EXECUTE SCRIPT, 13.7.1, 13.7.4
	EXIT, 2.2
	FLASHBACK DATABASE, 7.1.1, 13.8.5
	GRANT, 13.5.2
	how RMAN interprets, 3.2
	IMPORT CATALOG, 13.8.7
	LIST, 2.5.1, 2.5.1, 11.1.2, 11.2, 11.2, 11.2.1, 13.8.5, 15.2
	
	INCARNATION option, 11.2.4, 13.8.5

	MAXSETSIZE, 6.2.1
	piping, 4.6
	PRINT SCRIPT, 13.7.6
	RECOVER, 14.3
	REPAIR FAILURE, 15.5.1, 15.6
	REPLACE SCRIPT, 13.7.3
	REPORT, 2.5.2, 11.3.1, 11.3.2
	
	NEED BACKUP option, 11.3.2

	RESET DATABASE
	
	INCARNATION option, 13.8.5

	RESTORE, 17.2.1.2, 17.2.1.2
	RESYNC CATALOG, 13.6.2, 13.8.2, 13.8.2.3
	
	FROM CONTROLFILECOPY option, 13.6.2

	REVOKE, 13.5.4
	SET, 6.2.6.1.2
	SHOW, 2.3, 5.1.1
	SPOOL, 15.5.1
	SWITCH, 17.3.4
	terminating, 23.4, 23.4
	UNREGISTER DATABASE, 13.8.4
	UPGRADE CATALOG, 13.8.6.1
	VALIDATE, 15.1.2.2, 15.3, 16.2

	commands, SQL*Plus
	
	RECOVER
	
	UNTIL TIME option, 29.4.2

	SET, 29.2.2, 29.2.4.2, 29.3.1, 29.3.2

	comments in RMAN syntax, 4.4.3
	COMPATIBLE initialization parameter, 6.2.6.1
	complete recovery
	
	overview, 17.1
	procedures, 29.3

	compressed backups, 5.1.3, 9.2.5
	
	algorithms, 6.2.5

	CONFIGURE command
	
	AUXNAME option, 6.3
	BACKUP OPTIMIZATION option, 5.5.3
	CHANNEL option, 5.1.4.1, 6.1.1
	CONTROLFILE AUTOBACKUP option, 8.6.1, 9.6.2
	DB_UNIQUE_NAME option, 5.7
	ENCRYPTION option, 6.2.6.2
	EXCLUDE option, 6.2.4
	FOR DB_UNIQUE_NAME option, 3.7.1
	MAXPIECESIZE option, 6.2.2
	MAXSETSIZE option, 6.2.1
	RETENTION POLICY clause, 8.8
	RETENTION POLICY option, 5.4

	configuring media managers, 5.2.3
	
	installing, 5.2.1
	prerequisites, 5.2.1

	configuring Recovery Manager
	
	autobackups, 5.1.5, 5.1.5.1, 8.6
	backup optimization, 5.5
	backup retention policies, 5.4
	backup set size, 6.2.1
	default backup type, 5.1.3
	default devices, 5.1.2
	overview, 5.1
	shared server, 6.5
	snapshot control file location, 6.4
	specific channels, 6.1.2
	tablespace exclusion for backups, 6.2.4

	consistent backups, 8.1.1
	
	using RMAN, 8.1.1
	whole database, 28.2

	control file autobackups, 12.2.3
	
	after structural changes to database, 8.6
	configuring, 5.1.5, 5.1.5, 5.1.5, 5.1.5.1, 5.1.5.1, 8.6, 8.6
	default format, 8.6.2
	format, 5.1.5.1

	control files
	
	backups, 28.1.1, 28.4
	
	binary, 28.4.1
	including within database backup, 9.3.3.1
	recovery using, 20.3.1
	using RMAN, 9.3.3

	circular reuse records, 12.2.1
	configuring location, 5.3.4
	creating after loss of all copies, 30.3
	finding file names, 28.1.1
	multiplexed, 5.3.1, 5.3.4, 12.2.3, 17.2.1.1, 28.1.1, 29.2.1, 30.1.1
	
	loss of, 30.1

	multiplexing, 12.2.3
	re-created, 30.3
	restoring, 20.3.1.1, 30.1.1, 30.1.2
	snapshot, 13.8.2.1
	
	specifying location of, 6.4

	user-managed restore after loss of all copies, 30.3

	CONTROL_FILE_RECORD_KEEP_TIME initialization parameter, 12.2.1, 12.2.2, 13.8.2.2.4
	CONTROL_FILES initialization parameter, 5.3.4.2, 20.3.1.1, 21.6.1.2, 30.1.2
	CONVERT command
	
	with tablespaces and data files, 27

	COPIES option
	
	BACKUP command, 10.4.2

	corrupt blocks, 14.1.1.2, 16.1.2.1, 29.6.1
	
	recovering, 19.1.2.1, 19.1.2.1
	RMAN and, 10.7.1

	CREATE CATALOG command, 13.2.3, 13.5.3
	CREATE DATAFILE clause, ALTER DATABASE statement, 30.4
	CREATE SCRIPT command, 13.7.2
	CREATE TABLE statement
	
	AS SELECT clause, 30.5

	CREATE TABLESPACE statement, 30.2.3
	CROSSCHECK command, 12.4.1, 12.4.1
	crosschecking, RMAN, 2.6, 12.1.2.2.1, 12.4.1, 12.4.1
	
	definition, 12.4.1.1
	recovery catalog with the media manager, 12.4.1.1

	cross-platform transportable tablespace, 27
	cumulative incremental backups, 2.4.4, 2.4.4.1, 8.7.1, 8.7.1.2

D

	data blocks, corrupted, 1.1.1.3, 1.2, 2.7.1, 2.9.4, 14.1.1.2, 15.3, 15.6, 16.2, 19.1.1, 29.6.1, 29.6.1
	data dictionary views, 28.3.1, 28.3.2.1, 28.3.2.4
	data files
	
	backing up, 9.3.2, 9.7.2, 9.7.3, 28.3.1
	determining status, 28.1.2
	listing, 28.1
	losing, 29.2.1
	recovery
	
	without backup, 30.4

	re-creating, 30.4
	renaming
	
	after recovery, 30.2.3

	restoring, 14.2

	Data Guard environment, 3.7.2.3
	
	archived log deletion policies, 5.6.1.2
	changing a DB_UNIQUE_NAME, 13.8.3
	configuring RMAN, 5.7
	reporting in a, 11.1.2.1
	RMAN backups, 9.1.2
	RMAN backups, accessibility of, 3.7.2.3
	RMAN backups, association of, 3.7.2.2
	RMAN backups, interchangeability of, 3.7.2.1, 9.3.3
	RMAN usage, 3.7

	data integrity checks, 1.4, 15.1.2.2, 15.3
	data preservation, definition of, 1.1.2
	data protection
	
	definition, 1.1.1

	Data Recovery Advisor, 2.7, 11.2.1, 14.1.2
	
	automated repairs, 1.4
	data integrity checks, 15.1.2.2, 15.3
	failure consolidation, 15.1.2.3.3
	failure priority, 15.1.2.3.2
	failures, 15.1.2.1, 15.1.2.3
	feasibility checks, 15.1.2.4
	overview, 1.4
	purpose, 15.1.1
	repair options, 15.4
	repairing failures, 15.5.1
	repairs, 15.1.2.1, 15.1.2.4, 15.1.2.4.1
	supported configurations, 15.1.2.5
	user interfaces, 15.1.2.1

	data repair
	
	overview, 14.1.1
	techniques, 14.1.2

	data transfer, RMAN, 1.1.3
	database connections
	
	Recovery Manager
	
	auxiliary database, 4.5.4
	hiding passwords, 4.5.5
	without a catalog, 4.5

	SYSDBA required for RMAN, 4.5.1.1
	types in RMAN, 4.5.1

	database point-in-time recovery, 18.5
	
	definition, 18.1.2.1
	Flashback Database and, 7.1.1, 18.1
	prerequisites, 18.5.1
	user-managed, 29.4

	databases
	
	listing for backups, 28.1
	media recovery procedures, user-managed, 29
	media recovery scenarios, 30
	recovery
	
	after control file damage, 30.1.1, 30.1.2

	registering in recovery catalog, 13.3.2, 13.3.2
	reporting on schemas, 11.3.5
	suspending, 28.6.1
	unregistering from recovery catalog, 13.8.4

	DB_BLOCK_CHECKSUM initialization parameter, 16.1.2.1
	DB_CREATE_FILE_DEST initialization parameter, 5.3.4.1, 9.5.5.2, 17.3.2
	DB_FILE_NAME_CONVERT initialization parameter, 21.6.1.2
	DB_FLASHBACK_RETENTION_TARGET initialization parameter, 5.3.2, 5.3.2.1, 5.3.2.3
	DB_LOST_WRITE_PROTECT initialization parameter, 6.6
	DB_NAME initialization parameter, 21.6.1.2
	DB_RECOVERY_FILE_DEST initialization parameter, 2.1, 5.3.2, 5.3.4.1
	DB_RECOVERY_FILE_DEST_SIZE initialization parameter, 2.1, 5.3.2
	DB_UNIQUE_NAME initialization parameter, 3.7, 3.7.2.2, 5.7, 11.1.2.1
	DBA_DATA_FILES view, 28.3.1, 28.3.2.1, 28.3.2.4
	DBID
	
	determining, 17.2.2
	problems registering copied database, 13.1.2.1
	setting with DBNEWID, 13.3.1

	DBMS_PIPE package, 4.6, 4.6
	DBNEWID utility, 13.3.1, 24.1.1
	DBPITR. See database point-in-time recovery
	DBVERIFY utility, 28.9
	DELETE command, 12.4.3.1, 12.5, 12.5.3
	
	EXPIRED option, 12.4.1.1, 12.5.4
	OBSOLETE option, 8.8.3, 8.8.3, 12.5.5

	deleting backups, 2.6.2, 12.5, 12.5, 12.5.1.1, 12.5.3
	deletion policies, archived redo log, 5.6.1
	
	enabling, 5.6.2

	devices, configuring default, 5.1.2
	differential incremental backups, 2.4.4, 8.7.1, 8.7.1.1
	direct ancestral path, 14.3.2.2, 18.4.2, 18.6.2
	disaster recovery, 1.1.2
	
	definition, 1.1.1.1

	disconnecting
	
	from Recovery Manager, 2.2

	disk API, 5.2.4
	disk failures, 1.1.1.1
	disk usage
	
	monitoring, 12.3.2

	DROP DATABASE command, 12.6
	dropped tables, retrieving, 18.3.1
	dropping a database, 12.6
	dropping the recovery catalog, 13.9
	dual mode backup encryption, 6.2.6.1.3, 6.2.6.1.3
	dual-mode backup encryption, 10.6.4
	dummy API, 5.2.4
	duplexing backup sets, 6.2.3, 6.2.3, 8.5.1, 10.4
	DUPLICATE command, 24
	duplicate databases, 3.1
	
	active database duplication, 4.5.4, 24.1.2.1.1
	backup-based duplication, 24.1.2.1.2
	
	no target connection, 24.1.2.1.2
	no target/recovery connection, 24.1.2.1.2
	target connection, 24.1.2.1.2

	generating file names, 24.2.2
	how RMAN creates, 24.1.2.3
	restarting after failed DUPLICATE, 24.7
	skipping offline normal tablespaces, 25.5.2
	skipping read-only tablespaces, 25.5

	DURATION parameter, BACKUP command, 10.8.2

E

	encrypted backups, 10.6, 14.2.1
	
	decrypting, 17.3.1.2

	environment variables
	
	NLS_DATE_FORMAT, 4.3
	NLS_LANG, 4.3

	error codes
	
	media manager, 23.1.3.2
	RMAN, 23.1, 23.1.3, 23.1.3.1

	error messages, RMAN
	
	interpreting, 23.1.4

	error stacks, RMAN
	
	interpreting, 23.1.4

	EXECUTE SCRIPT command, 13.7.4
	EXIT command, 2.2
	exiting RMAN, 2.2
	expired backups, 8.8, 12.4.1.1
	
	deleting, 12.5.4

	EXPIRED option
	
	DELETE command, 12.5.4

F

	failover, when restoring files, 14.2.2
	failures
	
	definition, 1.1.1
	media, 1.1.1.1
	See also recovery

	failures, Data Recovery Advisor, 15.1.2.1, 15.1.2.3
	
	consolidation, 15.1.2.3.3
	priority, 15.1.2.3.2

	fast recovery area, 3.1, 3.6, 18.1.2.2.1
	
	autobackups, 5.1.5.1
	changing locations, 12.3.5
	configuring, 5.3
	definition, 2.1
	disabling, 12.3.6
	effect of retention policy, 8.8.4
	enabling, 5.3.2
	flashback database window, 7.1.2
	maintaining, 12.3
	monitoring disk usage, 12.3.2
	monitoring usage, 12.3.2
	Oracle Managed Files, 5.3.1.1
	permanent and impermanent files, 5.3.1
	RMAN files in, 5.3.5
	setting location, 5.3.2.2
	setting size, 5.3.2.1
	snapshot control files, 6.4
	space management, 5.3.1.2

	feasibility checks, Data Recovery Advisor, 15.1.2.4
	file names, listing for backup, 28.1
	file sections, 8.3.7, 8.3.9, 10.1.3, 16.2
	flashback data archive
	
	definition, 1.3.1

	Flashback Database, 2.8, 14.1.2
	
	determining the flashback database window, 18.4.2
	flashback logs, 1.3.2, 7.2.1
	limitations, 7.1.3
	monitoring, 7.5.4
	overview, 1.3.2
	prerequisites, 18.4.1
	purpose, 18.1.1
	requirements, 7.3
	space management, 12.3.3
	
	estimating disk space requirement, 5.3.2.3

	tuning performance, 7.5.3

	FLASHBACK DATABASE command, 7.1.1, 18.4.2
	flashback database window, 7.1.2
	Flashback Drop, 18.1.2.2.2, 18.3.1
	flashback logs, 1.3.2, 2.8, 7.1.1, 12.3.3, 18.1.2.2.1
	
	guaranteed restore points and, 7.1.5

	flashback retention target, 7.1.1
	Flashback Table, 18.1.2.2.2
	
	using, 18.2.1, 18.2.2

	FLASHBACK TABLE statement, 18.2.1, 18.2.1, 18.2.2
	Flashback Technology, 18.1.2
	
	logical features, 18.1.2.2.2
	overview, 1.3

	flashback undrop
	
	restoring objects, 18.3.3

	formats, for RMAN backups, 9.2.3
	fractured blocks, 8.2
	
	detection, 8.2

	full backups, 8.7
	
	incremental backups and, 2.4.4

G

	generic channels
	
	definition, 5.1.4.1

	GRANT command, 13.5.2
	groups, redo log, 30.7.1, 30.7.1, 30.7.2, 30.7.2
	guaranteed restore points, 1.3.2, 5.3.2.1
	
	alternative to storage snapshots, 7.1.5.1
	compared to storage snapshots, 7.1.5.1
	creating, 7.4.1
	flashback logs and, 7.1.5
	requirements, 7.3
	space usage in fast recovery area, 7.4.2

H

	Health Monitor, 15.1.2.2
	hot backup mode
	
	failed backups, 28.3.2.3, 28.3.2.3.1
	for online user-managed backups, 28.3.2.1

I

	image copies, 2.4, 8.1, 8.4
	
	definition, 8.4
	testing restore of, 17.2.4

	IMPORT CATALOG command, 13.8.7
	INCARNATION option
	
	LIST command, 11.2.4, 13.8.5
	RESET DATABASE command, 13.8.5, 13.8.5

	incarnations, database, 11.2.4, 14.3.2, 18.4.2, 18.6.2
	INCLUDE CURRENT CONTROLFILE option
	
	BACKUP command, 9.3.3.1

	incomplete media recovery, 29.4
	incomplete recovery
	
	defined, 18.5
	in Oracle Real Application Clusters configuration, 29.2.2.2
	overview, 14.3
	time-based, 29.4.2
	with backup control file, 29.2.2.2

	inconsistent backups, 8.1.2
	
	using RMAN, 2.4.1, 8.1.1

	incremental backups, 2.4.4, 9.5
	
	block change tracking, 9.5.5
	differential, 8.7.1.1
	how RMAN applies, 14.3.1
	making, 9.5
	using RMAN, 10.4.1, 10.4.2

	initialization parameter file, 14.3
	initialization parameters
	
	CONTROL_FILES, 20.3.1.1, 30.1.2
	DB_FILE_NAME_CONVERT, 21.6.1.2
	DB_NAME, 21.6.1.2
	LARGE_POOL_SIZE, 22.4.3
	LOCK_NAME_SPACE, 21.6.1.2
	LOG_ARCHIVE_DEST_n, 29.2.3
	LOG_ARCHIVE_FORMAT, 29.2.3
	LOG_FILE_NAME_CONVERT, 21.6.1.2

	instance failures
	
	backup mode and, 28.3.2.3

	integrity checks, 16.1.2
	interpreting RMAN error stacks, 23.1.4
	interrupting media recovery, 29.2.5
	I/O errors
	
	effect on backups, 10.7.1

J

	jobs, RMAN
	
	monitoring progress, 22.3.1
	querying details about, 11.4.1

K

	KEEP option
	
	BACKUP command, 12.4.2.2

L

	level 0 incremental backups, 2.4.4, 8.7.1, 8.7.1, 8.7.2
	level 1 incremental backups, 8.7.1.1, 8.7.1.2
	LIST command, 2.5.1, 11.1.2, 11.2, 11.2.1
	
	FAILURE option, 15.2
	INCARNATION option, 13.8.5

	LOCK_NAME_SPACE initialization parameter, 21.6.1.2
	log sequence numbers, 29.2.1
	LOG_ARCHIVE_DEST_n initialization parameter, 5.3.4.3, 17.2.5, 29.2.2, 29.2.3, 29.2.3, 29.3.1, 29.4.1, 29.4.2
	LOG_ARCHIVE_FORMAT initialization parameter, 29.2.3
	LOG_FILE_NAME_CONVERT initialization parameter, 21.6.1.2
	logical backups, 1.1.1
	logical block corruption, 16.1.2.2
	LOGSOURCE variable
	
	SET statement, 29.2.4.2, 29.3.1, 29.3.2

	long waits, 22.3.2.2
	loss of
	
	inactive log group, 30.7.2.1

	lost writes, detecting, 6.6

M

	maintenance commands, RMAN, 2.6, 3.3.2, 12.1.2
	
	Data Guard environment, 12.1.2.2

	managing RMAN metadata, 11, 12, 12
	MAXPIECESIZE parameter
	
	SET command, 5.2.5.1

	MAXSETSIZE parameter
	
	BACKUP command, 6.2.1, 10.1
	CONFIGURE command, 6.2.1

	media failures, 1.1.1
	
	archived redo log file loss, 29.4
	complete recovery, 29.3
	complete recovery, user-managed, 29.3
	control file loss, 30.3
	data file loss, 29.2.1
	definition, 1.1.1.1
	NOARCHIVELOG mode, 29.5
	online redo log group loss, 30.7.2
	recovery, 29.3
	recovery procedures
	
	examples, 29.2.1

	Media Management Layer (MML) API, 3.5, 6.2.2
	media managers, 3.1, 3.3.1, 3.5, 3.5.2
	
	backing up files, 3.5.1
	backup piece names, 5.2.5.1
	Backup Solutions Program, 3.5.3
	catalog, 3.1
	configuring for use with RMAN, 5.2.3
	crosschecking, 12.4.1.1
	definition, 2.1
	error codes, 23.1.3.2
	file restrictions, 5.2.5.1
	installing, 5.2.1
	library location, 5.2.2
	linking
	
	testing, 5.2.4

	linking to software, 3.5.2, 5.2.2
	multiplexing backups, 8.3.9
	prerequisites for configuring, 5.2.1
	sbttest program, 23.3.1
	testing, 5.2.4
	testing backups, 5.2.4.2
	testing the API, 23.3
	third-party, 5.2
	troubleshooting, 5.2.4.2

	media recovery, 8.7.4
	
	ADD DATAFILE operation, 30.2.3
	after control file damage, 30.1.1, 30.1.2
	applying archived redo logs, 29.2.1
	cancel-based, 29.4, 29.4.2
	complete, 29.3
	
	closed database, 29.3.1

	complete, user-managed, 29.3
	corruption
	
	allowing to occur, 29.6.4

	data files
	
	without backup, 30.4

	errors, 29.6.1
	incomplete, 29.4
	interrupting, 29.2.5
	lost files
	
	lost archived redo log files, 29.4
	lost data files, 29.2.1
	lost mirrored cont