

[image: Oracle Corporation]

Contents

Title and Copyright Information

Preface

	About this Guide
	Audience
	How to Use This Guide
	Documentation Accessibility
	Related Documents
	Conventions

What's New

	11g Release 1 (11.1.1.6)
	11g Release 1 (11.1.1.5)
	11g Release 1 (11.1.1.4)
	11g Release 1 (11.1.1.3)
	11g Release 1 (11.1.1.2)
	11g Release 1 (11.1.1)

Part I Introduction

1 Overview of Web Services Security and Administration

	Web Services Security and Administration in Oracle Fusion Middleware 11g
	Web Service Security and Administration Tasks
	Securing and Administering Oracle Infrastructure Web Services
	Securing and Administering WebLogic Web Services
	Accessing the Security and Administration Tools
	Accessing Oracle Enterprise Manager Fusion Middleware Control
	Accessing Oracle WebLogic Administration Console
	Accessing the Web Services Custom WLST Commands

	Installing Oracle WSM on WebLogic Server

2 Understanding Web Services Security Concepts

	Securing Web Services
	Transport-level Security
	Application-level Security
	Web Service Security Requirements

	How Oracle Fusion Middleware Secures Web Services and Clients

3 Understanding Oracle WSM Policy Framework

	Overview of Oracle WSM Policy Framework
	What Are Policies?
	Building Policies Using Policy Assertions
	Attaching Policies to Subjects
	Attaching Policies Globally Using Policy Sets
	How Policies are Executed
	Oracle WSM Predefined Policies and Assertion Templates
	Defining Multiple Policy Alternatives (OR Groups)
	Overriding Security Policy Configuration
	Recommended Naming Conventions for Policies

4 Examining the Rearchitecture of Oracle WSM in Oracle Fusion Middleware

	How Oracle WSM 10g is Redesigned in Oracle Fusion Middleware 11g Release 1 (11.1.1)
	Comparing Oracle WSM 10g and Oracle WSM 11g Policies
	Comparing Oracle Application Server 10g WS-Security with Oracle WSM 11g
	Interoperability and Upgrade

Part II Basic Administration

5 Deploying Web Services Applications

	Overview
	Deploying Web Services Applications
	Undeploying a Web Services Application
	Redeploying a Web Services Application

6 Administering Web Services

	Viewing All Current Web Services for a Server
	Viewing the Web Services in a Domain Using WLST
	Navigating to the Web Services Summary Page for an Application
	Viewing the Web Services in Your Application
	Using Fusion Middleware Control
	Using WLST

	Viewing the Web Services and References in a SOA Composite
	Viewing the Details for a Web Service Endpoint
	Using Fusion Middleware Control
	Using WLST

	Viewing Web Service Clients
	Using Fusion Middleware Control
	Viewing SOA References
	Viewing Connection-Based Web Service Clients
	Viewing WebCenter Portlets
	Viewing Java EE Web Service Clients
	Viewing Asynchronous Web Service Callback Clients

	Using WLST

	Displaying the Web Service WSDL Document
	Configuring the Web Service Endpoint
	Using Fusion Middleware Control
	Using WLST

	Enabling or Disabling a Web Service
	Using Fusion Middleware Control
	Using WLST

	Enabling or Disabling RESTful Web Services
	Using Fusion Middleware Control
	Using WLST

	Enabling or Disabling the Display of the Web Service WSDL Document
	Using Fusion Middleware Control
	Using WLST

	Enabling or Disabling the Exchange of Metadata
	Enabling or Disabling the Web Service Test Endpoint
	Using Fusion Middleware Control
	Using WLST

	Validating the Request Message
	Configuring Web Services Atomic Transactions
	Using Fusion Middleware Control
	Using WLST

	Setting the Size of the Request Message
	Using Fusion Middleware Control
	Using WLST

	Configuring Asynchronous Web Services
	Enabling and Disabling MTOM
	Configuring the Web Service Client
	Using Fusion Middleware Control
	Configuring SOA References
	Configuring ADF DC Web Service Clients
	Configuring Asynchronous Web Service Callback Clients

	Using WLST

7 Managing Web Service Policies

	Overview of Web Services Policy Management
	Viewing Available Web Services Policies
	Navigating to the Web Services Policies Page in Fusion Middleware Control
	Displaying a List of the Available Policies Using WLST

	Viewing a Web Service Policy
	Searching for Web Service Policies
	Creating Web Service Policies
	Creating a New Web Service Policy
	Creating a Web Service Policy from an Existing Policy
	Importing Web Service Policies
	Creating Custom Policies

	Managing Policy Assertion Templates
	Navigating to the Web Services Assertion Templates Page
	Naming Conventions for Assertion Templates
	Viewing an Assertion Template
	Searching for an Assertion Template
	Creating an Assertion Template
	Editing an Assertion Template
	Editing the Configuration Properties
	Adding Assertions to a Policy
	Adding an OR Group to a Policy
	Configuring Assertions
	Exporting an Assertion Template
	Importing an Assertion Template
	Deleting an Assertion Template

	Validating Web Services Policies
	Editing Web Service Policies
	Versioning Web Service Policies
	Viewing the Version History of Web Services Policies
	About the Restore and Activate Policy Options
	Creating a New Version of a Web Service Policy
	Restoring an Earlier Version of a Web Service Policy
	Deleting Versions of a Web Service Policy

	Exporting Web Service Policies
	Deleting Web Service Policies
	Generating Client Policies
	Enabling or Disabling a Policy for a Single Policy Subject
	Using Fusion Middleware Control
	Using WLST

	Enabling or Disabling a Policy for All Subjects
	Enabling or Disabling Assertions Within a Policy
	Analyzing Policy Usage
	Policy Advertisement

8 Attaching Policies to Web Services

	Viewing the Policies That are Attached to a Web Service
	Using Fusion Middleware Control
	Using WLST

	Attaching Policies to Web Services
	Attaching a Policy to a Single Subject
	Attaching a Policy to a Web Service Using Fusion Middleware Control
	Attaching a Policy to a Web Service Using WLST

	Attaching a Policy to Multiple Subjects (Bulk Attachment)

	Validating Policy Subjects
	Attaching Policies to Oracle Infrastructure Web Service Clients
	Attaching Policies to Web Service Clients Using Fusion Middleware Control
	Attaching Policies to SOA References
	Attaching Policies to Connection-Based Web Service Clients
	Attaching Policies to Asynchronous Web Service Callback Clients

	Attaching Policies to Web Service Clients Using WLST

	Attaching Policies to Java EE Web Service Clients
	Attaching Web Service Policies Permitting Overrides
	Configuring Server-Side Override Properties for Message Protection Policies
	Setting Default Values for the Configuration Properties

	Configuring Server-Side Override Properties for Authorization Policies
	Setting Default Values for the Configuration Properties

	Overriding Configuration Properties When Attaching a Service Policy Using Fusion Middleware Control
	Overriding Configuration Properties When Attaching a Policy Using WLST

	Attaching Client Policies Permitting Overrides
	Attaching Client Policies Permitting Overrides Using Fusion Middleware Control
	Attaching Client Policies Permitting Overrides Using WLST

	Configuring User-Defined Client- or Server-Side Override Properties
	Scope of User-Defined Configuration Properties
	Adding a User-Defined Configuration Property
	Editing a User-Defined Configuration Property
	Deleting a User-Defined Configuration Property
	Overriding the Configuration Properties When Attaching a User-Defined Policy

9 Creating and Managing Policy Sets

	Understanding Global Policy Attachments Using Policy Sets
	Subject Types and Scope of Resources
	Typical Uses for Global Policy Attachments

	Navigating to the Policy Set Summary Page
	Displaying a List of Policy Sets Using WLST
	Viewing the Configuration of a Policy Set
	Using Fusion Middleware Control
	Using WLST

	Managing Repository Modification Sessions Using WLST
	Creating a Policy Set
	Using Fusion Middleware Control
	Using WLST

	Creating a Policy Set from an Existing Policy Set
	Using Fusion Middleware Control
	Using WLST

	Editing a Policy Set
	Using Fusion Middleware Control
	Using WLST

	Defining the Type and Scope of Resources
	Resource Type
	Resource Scope
	Determining the Namespace for a Web Service
	Examples

	Validating a Policy Set
	Overriding Configuration Properties for Globally Attached Policies
	Using Fusion Middleware Control
	Using WLST

	Specifying Run-time Constraints in Policy Sets
	Using Fusion Middleware Control
	Using WLST

	Disabling a Globally Attached Policy
	Enabling and Disabling a Policy Set
	Using Fusion Middleware Control
	Using WLST

	Deleting Policy Sets
	Using Fusion Middleware Control
	Using WLST

	Migrating Direct Policy Attachments to Global Policy Attachments
	Specifying the Priority of a Policy Attachment
	Determining the Secure Status of an Endpoint
	How the Effective Set of Policies is Calculated

10 Setting Up Your Environment for Policies

	Understanding Keys and Certificates
	Overview of Private Keys and Certificates
	How Different Security Policies Use Private Keys and Certificates
	Message Protection Policy Types
	Authentication Token Policy Types

	Setting Up Private Keys and Certificates for SSL Policies
	Setting up Private Keys and Certificates for Message Protection Policies

	Configuring Keystores for Message Protection
	Generating Private Keys and Creating the Java Keystore
	Configuring the Oracle WSM Keystore
	Using Fusion Middleware Control
	Using WLST

	Obtaining a Trusted Certificate and Importing it into the Keystore
	Setting Up the Web Service Client Keystore

	Configuring the Credential Store
	Adding Keys and User Credentials to the Credential Store
	Using Fusion Middleware Control
	Using WLST

	How Oracle WSM Locates Keystore And Key Passwords

	Configuring Keystores for SSL
	Which Policies Require You to Configure SSL?
	Which Policies Require You to Configure Two-Way SSL?
	How to Configure a Keystore on WebLogic Server
	Configuring SSL on WebLogic Server (One-Way)
	Configuring SSL on WebLogic Server (Two-Way)
	Configuring SSL for a Web Service Client
	Configuring Two-Way SSL for a Web Service Client

	Configuring SSL on Oracle HTTP Server
	One-Way SSL
	Two-Way SSL

	Hardware Integration
	Using Hardware Security Modules With Oracle WSM
	Using SafeNet Luna SA With Oracle WSM for Key Storage
	About Installing and Configuring the Luna SA HSM Client
	Configuring the JRE Used By Oracle WSM
	Logging On to Luna SA
	Copying Keys and Certificates from JKS to Luna SA
	Configuring Oracle WSM to Use Luna SA

	Configuring Oracle WSM for Oracle SPARC T4 Cryptographic Acceleration
	Terms You Need to Understand
	Overview of Oracle SPARC T4 Hardware Assisted Cryptographic Acceleration
	Configuring Transport-Level Security for Cryptographic Acceleration
	Configuring Message-level Security for Cryptographic Acceleration
	Additional Reading

	Using Service Identity Certification Extension
	Hostname Verification for the Certificate Included in WSDL
	Enabling or Disabling Service Identity Certificate Extension and Hostname Verification
	Ignoring the Service Identity Certificate Extension From the Client
	Ignoring Hostname Verification from the Client

	Configuring an Authentication Provider in WebLogic Server
	What Type of WebLogic Security Authentication Providers Must You Create?

	Configuring the SAML and Kerberos Login Modules
	Configuring SAML
	How the SAML Token is Validated
	Which Authentication Provider is Used?

	How to Configure SAML Web Service Client at Design Time
	Configure the Username for the SAML Assertion

	Including User Attributes in the Assertion
	Including User Roles in the Assertion
	How to Configure Oracle Platform Security Services (OPSS) for SAML Policies
	Adding an Additional SAML Assertion Issuer Name
	Configuring SAML Web Service Clients for Identity Switching
	Set the javax.xml.ws.security.auth.username Property
	Set the WSIdentityPermission Permission

	Defining a Trusted Distinguished Names List for SAML Signing Certificates
	Using Anonymous Users with SAML Policies

	Using Kerberos Tokens
	Configuring the KDC
	Initializing and Starting the MIT Kerberos KDC
	Creating Principals
	Configuring the Web Service Client to Use the Correct KDC
	Setting the Service Principal Name In the Web Service Client
	Setting the Service Principal Name In the Web Service Client at Design Time
	Configuring the Web Service to Use the Correct KDC
	Using the Correct Keytab File in Enterprise Manager
	Authenticating the User Corresponding to the Service Principal
	Creating a Ticket Cache for the Web Service Client

	Using Active Directory with Kerberos and Message Protection
	Setting Up the Web Service Client
	Create a User Account
	Create a Keytab File
	Set the Service Principal Name

	Set Up the Web Service

	SAML Message Protection Use Case
	What You Need to Know
	Requirements of the wss11_saml_token_with_message_protection_service_policy
	How Are Messages Protected Via Symmetric Keys?
	What Keys Must Be in the Keystore?
	Multi-Domain Use Case (Keystore Hardening)
	When to Override the SAML Issuer

	Main Steps
	Create a WebLogic Server User
	Create a Java Keystore
	Configure the Web Services Manager Keystore
	Store the Password for the Decryption Key in the Credential Store
	Attach the Policy to Your Web Service
	Attach the Policy to Your Web Service Client

	WS-Trust Policies and Configuration Steps
	Overview of Web Services WS-Trust
	How the STS Configuration is Obtained
	Typical Token Request and Response
	Example WS-Trust Use Case
	On Behalf Of Use Cases
	Token Lifetime
	What Token Types Are Exchanged?
	Overview of Sender Vouches in WS-Trust

	Setting Up Automatic Policy Configuration for STS
	Requirements for Automatic Policy Configuration
	Setting Up Automatic Policy Configuration: Main Steps
	Manually Configuring the STS Config Policy From the Web Service Client: Main Steps

	Using SAML Sender Vouches with WS Trust
	Available WS-Trust Policies
	Programmatic Configuration Overrides for WS-Trust Client Policies
	Supported STS Servers

	Examples Using WS-Trust with OpenSSO STS
	Configuring OpenSSO STS
	SAML Holder-of-Key With Message Protection Scenario
	SAML Sender Vouches with Message Protection Scenario
	SAML Bearer with Message Protection Scenario

11 Configuring Policies

	Determining Which Security Policies to Use
	Protecting Messages
	Message Protection Basics
	Example for Partial Encryption
	Security SwA Attachments

	Which Policies Offer Message Protection?

	Authentication-Only Policies and Configuration Steps
	oracle/wss_http_token_client_policy
	Settings You Can Change
	Properties You Can Configure
	How to Set Up the Web Service Client
	How to Set Up the Web Service Client at Design Time

	oracle/wss_http_token_service_policy
	Settings You Can Change
	Properties You Can Configure
	How to Set Up WebLogic Server

	oracle/wss_username_token_client_policy
	Settings You Can Change
	Properties You Can Configure
	How to Set Up the Web Service Client
	How to Set Up the Web Service Client At Design Time

	oracle/wss_username_token_service_policy
	Settings You Can Change
	Properties You Can Configure
	How to Set Up WebLogic Server

	oracle/wss10_saml_token_client_policy
	Settings You Can Change
	Properties You Can Configure
	How to Set Up the Web Service Client
	How to Set Up the Web Service Client at Design Time

	oracle/wss10_saml_token_service_policy
	Settings You Can Change
	Properties You Can Configure
	Configure the Login Module
	How to Set Up WebLogic Server

	oracle/wss10_saml20_token_client_policy
	Settings You Can Change
	Properties You Can Configure
	How to Set Up the Web Service Client
	How to Set Up the Web Service Client at Design Time

	oracle/wss10_saml20_token_service_policy
	Settings You Can Change
	Properties You Can Configure
	Configure the Login Module
	How to Set Up WebLogic Server

	oracle/wss11_kerberos_token_client_policy
	Settings You Can Change
	Properties You Can Configure
	How to Set Up the Web Service Client
	How to Set Up the Web Service Client at Design Time

	oracle/wss11_kerberos_token_service_policy
	Settings You Can Change
	Properties You Can Configure
	Configure the Login Module
	How to Configure WebLogic Server

	Message Protection-Only Policies and Configuration Steps
	oracle/wss10_message_protection_client_policy
	Settings You Can Change
	Properties You Can Configure
	How to Set Up the Web Service Client
	How to Set Up the Web Service Client at Design Time

	oracle/wss10_message_protection_service_policy
	Settings You Can Change
	Properties You Can Configure
	How to Set Up Oracle Platform Security Services (OPSS)

	oracle/wss11_message_protection_client_policy
	Settings You Can Change
	Properties You Can Configure
	How to Configure the Web Service Client
	How to Configure the Web Service Client at Design Time

	oracle/wss11_message_protection_service_policy
	Settings You Can Change
	Properties You Can Configure
	How to Set Up Oracle Platform Security Services (OPSS)

	Message Protection and Authentication Policies and Configuration Steps
	Configuring a Policy With an OR Group
	oracle/wss_http_token_over_ssl_client_policy
	Setting You Can Change
	Properties You Can Configure
	How to Set Up the Web Services Client
	How to Set Up the Web Service Client at Design Time

	oracle/wss_http_token_over_ssl_service_policy
	Settings You Can Change
	Properties You Can Configure
	How to Set Up WebLogic Server

	oracle/wss_saml_token_bearer_over_ssl_client_policy
	Settings You Can Change
	Properties You Can Configure
	How to Set Up the Web Service Client
	How to Set Up the Web Service Client at Design Time

	oracle/wss_saml_token_bearer_over_ssl_service_policy
	Settings You Can Change
	Properties You Can Configure
	Configure the Login Module
	How to Set Up Oracle Platform Security Services (OPSS)

	oracle/wss_saml20_token_bearer_over_ssl_client_policy
	Settings You Can Change
	Properties You Can Configure
	How to Set Up the Web Service Client
	How to Set Up the Web Service Client at Design Time

	oracle/wss_saml20_token_bearer_over_ssl_service_policy
	Settings You Can Change
	Properties You Can Configure
	Configure the Login Module
	How to Set Up Oracle Platform Security Services (OPSS)

	oracle/wss_saml_token_over_ssl_client_policy
	Settings You Can Change
	Properties You Can Configure
	How to Set Up the Web Service Client
	How to Set Up the Web Service Client at Design Time

	oracle/wss_saml_token_over_ssl_service_policy
	Settings You Can Change
	Properties You Can Configure
	Configure the Login Module.
	How to Set Up WebLogic Server

	oracle/wss_saml20_token_over_ssl_client_policy
	Settings You Can Change
	Properties You Can Configure
	How to Set Up the Web Service Client
	How to Set Up the Web Service Client at Design Time

	oracle/wss_saml20_token_over_ssl_service_policy
	Settings You Can Change
	Properties You Can Configure
	Configure the Login Module.
	How to Set Up WebLogic Server

	oracle/wss_username_token_over_ssl_client_policy
	Settings You Can Change
	Properties You Can Configure
	How to Set Up the Web Service Client
	How to Set Up the Web Service Client at Design Time

	oracle/wss_username_token_over_ssl_service_policy
	Settings You Can Change
	Properties You Can Configure
	How to Set Up WebLogic Server

	oracle/wss10_saml_hok_token_with_message_protection_client_policy
	Settings You Can Change
	Properties You Can Configure
	How to Set Up the Web Service Client
	How to Set Up the Web Service Client at Design Time

	oracle/wss10_saml_hok_token_with_message_protection_service_policy
	Configure the Login Module
	How to Set Up WebLogic Server

	oracle/wss10_saml_token_with_message_integrity_client_policy
	Settings You Can Change
	Properties You Can Configure
	How to Set Up the Web Service Client
	How to Set Up the Web Service Client at Design Time

	oracle/wss10_saml_token_with_message_integrity_service_policy
	Settings You Can Change
	Properties You Can Configure
	Configure the Login Module
	How to Set Up WebLogic Server

	oracle/wss10_saml_token_with_message_protection_client_policy
	Settings You Can Change
	Properties You Can Configure
	How to Set Up the Web Service Client
	How to Set Up the Web Service Client at Design Time

	oracle/wss10_saml_token_with_message_protection_service_policy
	Settings You Can Change
	Properties You Can Configure
	Configure the Login Module
	How to Set Up WebLogic Server

	oracle/wss10_saml20_token_with_message_protection_client_policy
	Settings You Can Change
	Properties You Can Configure
	How to Set Up the Web Service Client
	How to Set Up the Web Service Client at Design Time

	oracle/wss10_saml20_token_with_message_protection_service_policy
	Settings You Can Change
	Properties You Can Configure
	Configure the Login Module
	How to Set Up WebLogic Server

	oracle/wss10_saml_token_with_message_protection_ski_basic256_client_policy
	Settings You Can Change
	Properties You Can Configure
	How to Set Up the Web Service Client
	How to Set Up the Web Service Client at Design Time

	oracle/wss10_saml_token_with_message_protection_ski_basic256_service_policy
	Settings You Can Change
	Properties You Can Configure
	Configure the Login Module
	How to Set Up WebLogic Server

	oracle/wss10_username_id_propagation_with_msg_protection_client_policy
	Settings You Can Change
	Properties You Can Configure
	How to Set Up the Web Service Client
	How to Set Up the Web Service Client at Design Time

	oracle/wss10_username_id_propagation_with_msg_protection_service_policy
	Settings You Can Change
	Properties You Can Configure
	How to Set Up WebLogic Server

	oracle/wss10_username_token_with_message_protection_client_policy
	Settings You Can Change
	Properties You Can Configure
	How to Set Up the Web Service Client
	How to Set Up the Web Service Client at Design Time

	oracle/wss10_username_token_with_message_protection_service_policy
	Settings You Can Change
	Properties You Can Configure
	How to Set Up WebLogic Server

	oracle/wss10_username_token_with_message_protection_ski_basic256_client_policy
	Settings You Can Change
	Properties You Can Configure
	How to Set Up the Web Service Client
	How to Set Up the Web Service Client at Design Time

	oracle/wss10_username_token_with_message_protection_ski_basic256_service_policy
	Settings You Can Change
	Properties You Can Configure
	How to Set Up WebLogic Server

	oracle/wss10_x509_token_with_message_protection_client_policy
	Settings You Can Change
	Properties You Can Configure
	How to Set Up the Web Service Client
	How to Set Up the Web Service Client at Design Time

	oracle/wss10_x509_token_with_message_protection_service_policy
	Settings You Can Change
	Attributes You Can Configure
	How to Set Up Oracle Platform Security Services (OPSS)

	oracle/wss11_kerberos_token_with_message_protection_client_policy
	Settings You Can Change
	Properties You Can Configure
	How to Set up the Web Service Client
	How to Set Up the Web Service Client at Design Time

	oracle/wss11_kerberos_token_with_message_protection_service_policy
	Settings You Can Change
	Properties You Can Configure
	Configure the Login Module
	How to Set Up Oracle Platform Security Services (OPSS)

	oracle/wss11_kerberos_token_with_message_protection_basic128_client_policy
	Settings You Can Change
	Properties You Can Configure
	How to Set up the Web Service Client
	How to Set Up the Web Service Client at Design Time

	oracle/wss11_kerberos_token_with_message_protection_basic128_service_policy
	Settings You Can Change
	Properties You Can Configure
	Configure the Login Module
	How to Set Up Oracle Platform Security Services (OPSS)

	oracle/wss11_saml_token_identity_switch_with_message_protection_client_policy
	Settings You Can Change
	Properties You Can Configure
	How to Set Up the Web Service Client
	How to Set Up the Web Service Client at Design Time

	oracle/wss11_saml_token_with_message_protection_client_policy
	Settings You Can Change
	Properties You Can Configure
	How to Set Up the Web Service Client
	How to Set Up the Web Service Client at Design Time

	oracle/wss11_saml_token_with_message_protection_service_policy
	Settings You Can Change
	Properties You Can Configure
	Configure the Login Module
	How to Set Up Oracle Platform Security Services (OPSS)

	oracle/wss11_saml20_token_with_message_protection_client_policy
	Settings You Can Change
	Properties You Can Configure
	How to Set Up the Web Service Client
	How to Set Up the Web Service Client at Design Time

	oracle/wss11_saml20_token_with_message_protection_service_policy
	Settings You Can Change
	Properties You Can Configure
	Configure the Login Module
	How to Set Up Oracle Platform Security Services (OPSS)

	oracle/wss11_username_token_with_message_protection_client_policy
	Settings You Can Change
	Properties You Can Configure
	How to Set Up the Web Service Client
	How to Set Up the Web Service Client at Design Time

	oracle/wss11_username_token_with_message_protection_service_policy
	Settings You Can Change
	Properties You Can Configure
	How to Set Up Oracle Platform Security Services (OPSS)

	oracle/wss11_x509_token_with_message_protection_client_policy
	Settings You Can Change
	Properties You Can Configure
	How to Set Up the Web Service Client
	How to Set Up the Web Service Client at Design Time

	oracle/wss11_x509_token_with_message_protection_service_policy
	Settings You Can Change
	Properties You Can Configure
	How to Set Up Oracle Platform Security Services (OPSS)

	Authorization Policies and Configuration Steps
	Determining Which Resources to Protect
	How Authorization Permissions Are Determined
	OPSS Resource Name Can Include Operation Name

	oracle/binding_authorization_denyall_policy
	Settings You Can Change
	Properties You Can Configure
	How to Set Up Oracle Platform Security Services (OPSS)

	oracle/binding_authorization_permitall_policy
	Settings You Can Change
	Properties You Can Configure
	How to Set Up Oracle Platform Security Services (OPSS)

	oracle/binding_permission_authorization_policy
	Settings You Can Change
	Attributes You Can Configure
	How to Set Up Oracle Platform Security Services (OPSS)

	oracle/component_authorization_denyall_policy
	Settings You Can Change
	Properties You Can Configure
	How to Set Up Oracle Platform Security Services (OPSS)

	oracle/component_authorization_permitall_policy
	Settings You Can Change
	Properties You Can Configure
	How to Set Up Oracle Platform Security Services (OPSS)

	oracle/component_permission_authorization_policy
	Settings You Can Change
	Properties You Can Configure
	How to Set Up Oracle Platform Security Services (OPSS)

	oracle/whitelist_authorization_policy
	Settings You Can Change
	Properties You Can Configure
	How to Set Up Oracle Platform Security Services (OPSS)
	How to Successfully Invoke Services Using This Policy
	Configuring Oracle HTTP Server to Specify Request Origin

	WS-Addressing Policies and Configuration Steps
	oracle/wsaddr_policy
	How to Set Up the Web Service Client
	How to Set Up the Web Service Client at Design Time
	How to Set Up Oracle Platform Security Services (OPSS)

	WS-Trust Policies
	oracle/sts_trust_config_service_policy
	Policy Assertion
	Settings You Can Change
	Properties You Can Configure
	How to Set Up the Web Service

	oracle/sts_trust_config_client_policy
	Policy Assertion
	Settings You Can Change
	Properties You Can Configure
	How to Set Up the Web Service Client
	How to Set Up the Web Service Client at Design Time
	How to Set Up the Web Service

	oracle/wss_sts_issued_saml_bearer_token_over_ssl_client_policy
	Policy Assertion
	Settings You Can Change
	Properties You Can Configure
	How to Set Up the Web Service Client
	How to Set Up the Web Service Client at Design Time

	oracle/wss_sts_issued_saml_bearer_token_over_ssl_service_policy
	Policy Assertion
	Settings You Can Change
	Properties You Can Configure
	How to Set Up the Web Service

	oracle/wss11_sts_issued_saml_hok_with_message_protection_client_policy
	Policy Assertion
	Settings You Can Change
	Properties You Can Configure
	How to Set Up the Web Service Client
	How to Set Up the Web Service Client at Design Time

	oracle/wss11_sts_issued_saml_hok_with_message_protection_service_policy
	Policy Assertion
	Settings You Can Change
	Properties You Can Configure
	How to Set Up the Web Service

	oracle/wss11_sts_issued_saml_with_message_protection_client_policy
	Policy Assertion
	Settings You Can Change
	Properties You Can Configure
	How to Set Up the Web Service Client
	How to Set Up the Web Service Client at Design Time

	MTOM Attachment Policies and Configuration Steps
	oracle/wsmtom_policy
	How to Set Up the Web Service Client
	How to Set Up the Web Service Client at Design Time
	How to Set Up Oracle Platform Security Services (OPSS)

	Reliable Messaging Policies and Configuration Steps
	WS-RM Policy Properties
	oracle/wsrm10_policy
	How to Set Up the Web Service Client
	How to Set Up the Web Service Client at Design Time
	How to Set Up Oracle Platform Security Services (OPSS)

	oracle/wsrm11_policy
	How to Set Up the Web Service Client
	How to Set Up the Web Service Client at Design Time
	How to Set Up Oracle Platform Security Services (OPSS)

	Management Policies and Configuration Steps
	oracle/log_policy
	Settings You Can Change
	Properties You Can Configure
	How to Set Up the Web Service or Client
	How to Set Up Oracle Platform Security Services (OPSS)

	Attaching Policy Files to Web Services and Clients
	Using Client Programmatic Configuration Overrides
	Configuration Override Example

	Configuring Local Optimization for a Policy
	Controlling When Local Optimization is Used
	Configuring the Policy-Level Optimization Control

12 Testing Web Services

	Testing Your Web Services
	Editing the Input Arguments as XML Source
	Enabling Security Testing
	Supported Client Security Policies

	Enabling Quality of Service Testing
	Enabling HTTP Transport Options
	Stress Testing the Web Service Operation
	Disabling the Test Page for a Web Service

13 Monitoring the Performance of Web Services

	Overview of Performance Monitoring
	When Are Web Service Statistics Started or Reset?
	Viewing Web Service Statistics for an Application
	Viewing Web Service Statistics for a Server Instance
	Viewing Web Service Statistics for an Individual Web Service
	Viewing Operation Statistics for a Web Service Endpoint
	Viewing Web Service Statistics for Java EE Web Service Clients
	Viewing the Security Violations for a Web Service

Part III Advanced Administration

14 Advanced Administration

	Registering Web Services and Sources
	UDDI Basics
	WSIL Basics
	Viewing Registered Sources and Web Services
	Registering a Source
	Registering Web Services from a UDDI Source
	Registering Web Services from a WSIL Source
	Deleting a Web Service or Web Service Source

	Publishing Web Services to UDDI
	Publishing a Web Service to UDDI from a Registered Source
	Publishing a Web Service to UDDI from an Application
	Configuring the Proxy Server for UDDI

	Auditing Web Services
	Configuring Audit Policies
	Managing Audit Data Collection and Storage
	Viewing Audit Reports

	Managing the WSDL
	Adding Security to a Running Client
	Configuring Platform Policy Properties
	Configuring a Web Service on a Remote Policy Manager and Tuning the Policy Cache
	Configuring Web Service Policy Retrieval
	Tuning Web Service Security Policy Enforcement
	Defining Identity Extension Properties
	Defining Trusted Issuers and Trusted Distinguished Name List for Signing Certificates
	Configuring Oracle WSM with a Domain-Wide Administration Port
	Setting Up the Java Object Cache
	Running the configure-joc.py Script

	Modifying the Default User
	Changing the JMS System User for Asynchronous Web Services

15 Managing Application Migration Between Environments

	Overview of Web Service Application Migration
	Overview of Horizontal Policy Migration
	Sample Use Cases for Deployment Descriptor Migration
	Scaling a Deployed ADF Business Control or WebCenter Web Service Application in a Cluster
	Propagating Run-time Policy Changes in an ADF Business Control or WebCenter Web Service Environment

	Migrating Policies
	Migrating Policy Configuration
	Migrating Keystores
	Migrating Users and Groups
	Migrating Credentials
	Migrating Username and Password
	Migrating Keystores and Encryption Key Passwords

	Migrating Oracle Platform Security Services Application and System Policies
	Migrating Oracle Platform Security Services Configuration
	Migrating SSL
	Migrating Kerberos Configuration

	Migrating Assertion Templates
	Migrating Deployment Descriptors

16 Diagnosing Problems

	Diagnosing Problems with Oracle WSM Policy Manager
	Diagnosing Common Problems with Oracle WSM
	Unable to Connect to the Policy Manager
	Key or Credential Store Error After an Application Invokes Web Service
	Trust Certificate Error After Application Invokes Web Service
	SAML Assertion Error Appears During Identity Propagation
	Policy Access Error After an Application Invokes Web Service
	Unable to Access User in Credential Store
	Authorization Error After an Application Invokes Web Service
	Timestamp Error After an Application Invokes Web Service
	Multiple Authentication Security Policy Error After an Application Invokes a Web Service

	Diagnosing Policy Attachment Issues Using WLST
	Diagnosing Problems Using Logs
	Using Diagnostic Logs for Web Services
	Setting the Log Level for Diagnostic Logs
	Viewing Diagnostic Logs
	Filtering Diagnostic Logs
	Logging Oracle WSM Debug Messages

	Using Message Logs for Web Services
	Configuring Message Logs
	Viewing Message Logs
	Filtering Message Logs

	Reviewing Sample Logs
	Sample Log: Oracle WSM Policy Manager Not Available
	Sample Log: Security Keystore Not Configured
	Sample Log: Certificate Not Available

	Configuring Log Files for a Web Service

17 Maintaining the Oracle WSM Repository

	About the Oracle WSM Repository
	Registering an Oracle WSM Repository
	Understanding the Different Mechanisms for Importing and Exporting Policies
	Importing and Exporting Documents in the Repository
	Migrating Policies Between Application Environments
	Exporting Policies from the Oracle WSM Repository for Use in JDeveloper

	Patching Policies in the Repository
	Backing Up and Restoring the Oracle WSM Repository
	Upgrading the Oracle WSM Policies in the Repository
	Rebuilding the Oracle WSM Repository

Part IV WebLogic Web Service Administration

18 Securing and Administering WebLogic Web Services

	Steps to Secure and Administer WebLogic Web Services
	Attaching Policies to WebLogic Web Services and Clients
	Attaching Oracle WSM Policies to WebLogic Web Services
	Attaching Oracle WSM Policies to WebLogic Web Service Clients
	Attaching WebLogic Web Service Policies to WebLogic Web Services
	Attaching WebLogic Web Service Policies to WebLogic Web Service Clients

Part V Reference

A Web Service Security Standards

	Web Services Interoperability Organization—Basic Security Profile
	Transport Layer Security—SSL
	XML Encryption (Confidentiality)
	XML Signature (Integrity, Authenticity)
	WS-Security
	WS-Security Tokens
	Username
	X.509 Certificate
	Kerberos Token
	SAML Token

	WS-Policy
	WS-SecurityPolicy
	Web Services Addressing (WS-Addressing)
	WS-Trust
	WS-ReliableMessaging

B Predefined Policies

	Security Policies
	Authentication Only Policies
	oracle/wss_http_token_client_policy
	oracle/wss_http_token_service_policy
	oracle/wss_username_token_client_policy
	oracle/wss_username_token_service_policy
	oracle/wss10_saml_token_client_policy
	oracle/wss10_saml_token_service_policy
	oracle/wss10_saml20_token_client_policy
	oracle/wss10_saml20_token_service_policy
	oracle/wss11_kerberos_token_client_policy
	oracle/wss11_kerberos_token_service_policy

	Message Protection Only Policies
	oracle/wss10_message_protection_client_policy
	oracle/wss10_message_protection_service_policy
	oracle/wss11_message_protection_client_policy
	oracle/wss11_message_protection_service_policy

	Message Protection and Authentication Policies
	oracle/wss_http_token_over_ssl_client_policy
	oracle/wss_http_token_over_ssl_service_policy
	oracle/wss_saml_or_username_token_service_policy
	oracle/wss_saml_or_username_token_over_ssl_service_policy
	oracle/wss_saml_token_bearer_over_ssl_client_policy
	oracle/wss_saml_token_bearer_over_ssl_service_policy
	oracle/wss_saml20_token_bearer_over_ssl_client_policy
	oracle/wss_saml20_token_bearer_over_ssl_service_policy
	oracle/wss_saml_token_over_ssl_client_policy
	oracle/wss_saml_token_over_ssl_service_policy
	oracle/wss_saml20_token_over_ssl_client_policy
	oracle/wss_saml20_token_over_ssl_service_policy
	oracle/wss_username_token_over_ssl_client_policy
	oracle/wss_username_token_over_ssl_service_policy
	oracle/wss10_saml_hok_with_message_protection_client_policy
	oracle/wss10_saml_hok_token_with_message_protection_service_policy
	oracle/wss10_saml_token_with_message_integrity_client_policy
	oracle/wss10_saml_token_with_message_integrity_service_policy
	oracle/wss10_saml_token_with_message_protection_client_policy
	oracle/wss10_saml_token_with_message_protection_service_policy
	oracle/wss10_saml20_token_with_message_protection_client_policy
	oracle/wss10_saml20_token_with_message_protection_service_policy
	oracle/wss10_saml_token_with_message_protection_ski_basic256_client_policy
	oracle/wss10_saml_token_with_message_protection_ski_basic256_service_policy
	oracle/wss10_username_id_propagation_with_msg_protection_client_policy
	oracle/wss10_username_id_propagation_with_msg_protection_service_policy
	oracle/wss10_username_token_with_message_protection_client_policy
	oracle/wss10_username_token_with_message_protection_service_policy
	oracle/wss10_username_token_with_message_protection_ski_basic256_client_policy
	oracle/wss10_username_token_with_message_protection_ski_basic256_service_policy
	oracle/wss10_x509_token_with_message_protection_client_policy
	oracle/wss10_x509_token_with_message_protection_service_policy
	oracle/wss11_kerberos_token_with_message_protection_client_policy
	oracle/wss11_kerberos_token_with_message_protection_service_policy
	oracle/wss11_kerberos_token_with_message_protection_basic128_client_policy
	oracle/wss11_kerberos_token_with_message_protection_basic128__service_policy
	oracle/wss11_saml_token_with_message_protection_client_policy
	oracle/wss11_saml20_token_with_message_protection_client_policy
	oracle/wss11_saml_token_with_identity_switch_message_protection_client_policy
	oracle/wss11_saml_token_with_message_protection_service_policy
	oracle/wss11_saml20_token_with_message_protection_service_policy
	oracle/wss11_saml_or_username_token_with_message_protection_service_policy
	oracle/wss11_username_token_with_message_protection_client_policy
	oracle/wss11_username_token_with_message_protection_service_policy
	oracle/wss11_x509_token_with_message_protection_client_policy
	oracle/wss11_x509_token_with_message_protection_service_policy

	WS-Trust Policies
	oracle/sts_trust_config_service_policy
	oracle/sts_trust_config_client_policy
	oracle/wss_sts_issued_saml_bearer_token_over_ssl_client_policy
	oracle/wss_sts_issued_saml_bearer_token_over_ssl_service_policy
	oracle/wss11_sts_issued_saml_hok_with_message_protection_client_policy
	oracle/wss11_sts_issued_saml_hok_with_message_protection_service_policy
	oracle/wss11_sts_issued_saml_with_message_protection_client_policy

	Authorization Only Policies
	oracle/binding_authorization_denyall_policy
	oracle/binding_authorization_permitall_policy
	oracle/binding_permission_authorization_policy
	oracle/component_authorization_denyall_policy
	oracle/component_authorization_permitall_policy
	oracle/component_permission_authorization_policy
	oracle/whitelist_authorization_policy

	WS-Addressing Policies
	oracle/wsaddr_policy

	MTOM Attachment Policies
	oracle/wsmtom_policy

	Reliable Messaging Policies
	oracle/wsrm10_policy
	oracle/wsrm11_policy

	Management Policies
	oracle/log_policy

	No Behavior Policies
	oracle/no_authentication_service_policy
	oracle/no_authentication_client_policy
	oracle/no_messageprotection_service_policy
	oracle/no_messageprotection_client_policy
	oracle/no_authorization_service_policy
	oracle/no_authorization_component_policy
	oracle/no_addressing_policy
	oracle/no_mtom_policy
	oracle/no_wsrm_policy

C Predefined Assertion Templates

	Security Assertion Templates
	Authentication Only Assertion Templates
	oracle/wss_http_token_client_template
	oracle/wss_http_token_service_template
	oracle/wss_username_token_client_template
	oracle/wss_username_token_service_template
	oracle/wss10_saml_token_client_template
	oracle/wss10_saml_token_service_template
	oracle/wss10_saml20_token_client_template
	oracle/wss10_saml20_token_service_template
	oracle/wss11_kerberos_token_client_template
	oracle/wss11_kerberos_token_service_template

	Message-Protection Only Assertion Templates
	oracle/wss10_message_protection_client_template
	oracle/wss10_message_protection_service_template
	oracle/wss11_message_protection_client_template
	oracle/wss11_message_protection_service_template

	Message Protection and Authentication Assertion Templates
	oracle/wss_http_token_over_ssl_client_template
	oracle/wss_http_token_over_ssl_service_template
	oracle/wss_saml_token_bearer_over_ssl_client_template
	oracle/wss_saml_token_bearer_over_ssl_service_template
	oracle/wss_saml20_token_bearer_over_ssl_client_template
	oracle/wss_saml20_token_bearer_over_ssl_service_template
	oracle/wss_saml_token_over_ssl_client_template
	oracle/wss_saml_token_over_ssl_service_template
	oracle/wss_saml20_token_over_ssl_client_template
	oracle/wss_saml20_token_over_ssl_service_template
	oracle/wss_username_token_over_ssl_client_template
	oracle/wss_username_token_over_ssl_service_template
	oracle/wss10_saml_hok_token_with_message_protection_client_template
	oracle/wss10_saml_hok_token_with_message_protection_service_template
	oracle/wss10_saml_token_with_message_protection_client_template
	oracle/wss10_saml_token_with_message_protection_service_template
	oracle/wss10_saml20_token_with_message_protection_client_template
	oracle/wss10_saml20_token_with_message_protection_service_template
	oracle/wss10_username_token_with_message_protection_client_template
	oracle/wss10_username_token_with_message_protection_service_template
	oracle/wss10_x509_token_with_message_protection_client_template
	oracle/wss10_x509_token_with_message_protection_service_template
	oracle/wss11_kerberos_token_with_message_protection_client_template
	oracle/wss11_kerberos_token_with_message_protection_service_template
	oracle/wss11_saml_token_with_message_protection_client_template
	oracle/wss11_saml_token_with_message_protection_service_template
	oracle/wss11_saml20_token_with_message_protection_client_template
	oracle/wss11_saml20_token_with_message_protection_service_template
	oracle/wss11_username_token_with_message_protection_client_template
	oracle/wss11_username_token_with_message_protection_service_template
	oracle/wss11_x509_token_with_message_protection_client_template
	oracle/wss11_x509_token_with_message_protection_service_template

	WS-Trust Assertion Templates
	oracle/sts_trust_config_client_template
	oracle/sts_trust_config_service_template
	oracle/wss_sts_issued_saml_bearer_token_over_ssl_client_template
	oracle/wss_sts_issued_saml_bearer_token_over_ssl_service_template
	oracle/wss11_sts_issued_saml_hok_with_message_protection_client_template
	oracle/wss11_sts_issued_saml_hok_with_message_protection_service_template
	oracle/wss11_sts_issued_saml_with_message_protection_client_template

	Authorization Assertion Templates
	oracle/binding_authorization_template
	oracle/binding_permission_authorization_template
	oracle/component_authorization_template
	oracle/component_permission_authorization_template

	Supported Algorithm Suites
	Message Signing and Encryption Settings for Request, Response, and Fault Messages

	Management Assertion Templates
	oracle/security_log_template

	No Behavior Assertion Templates

D Schema Reference for Predefined Assertions

	Graphical Representation
	Element Descriptions
	wsp:Policy
	Attributes
	Example

	wsp:ExactlyOne
	Attributes
	Example

	orasp:Assertion
	Attributes
	Example

	orawsp:bindings
	Example

	orawsp:Config
	Attributes
	Example

	orawsp:PropertySet
	Attributes
	Example

	orawsp:Property
	Attributes
	Example

	orawsp:Description
	Example

	orawsp:Value
	Example

	orawsp:guard
	Examples

	orawsp:resource-match
	Examples

	orawsp:action-match
	Examples

	orawsp:constraint-match
	Example

	oralgp:Logging
	Example

	orasp:binding-authorization
	Example

	orasp:binding-permission-authorization
	Example

	orasp:coreid-security
	Example

	orasp:http-security
	Example

	orasp:kerberos-security
	Example

	orasp:sca-component-authorization
	Example

	orasp:sca-component-permission-authorization
	Example

	orasp:sts-trust-config
	Attributes
	Example

	orasp:wss10-anonymous-with-certificates
	Example

	orasp:wss10-mutual-auth-with-certificates
	Example

	orasp:wss10-saml-hok-with-certificates
	Example

	orasp:wss10-saml-token
	Example

	orasp:wss10-saml-with-certificates
	Example

	orasp:wss10-username-with-certificates
	Example

	orasp:wss11-anonymous-with-certificates
	Example

	orasp:wss11-mutual-auth-with-certificates
	Example

	orasp:wss11-saml-with-certificates
	Example

	orasp:wss11-sts-issued-token-with-certificates
	Attributes
	Example

	orasp:wss11-username-with-certificates
	Example

	orasp:wss-saml-token-bearer-over-ssl
	Example

	orasp:wss-saml-token-over-ssl
	Example

	orasp:wss-sts-issued-token-over-ssl
	Attributes
	Example

	orasp:wss-username-token
	Example

	orasp:wss-username-token-over-ssl
	Example

	rm:RMAssertion
	Example

	wsaw:UsingAddressing
	Example

	wsoma:OptimizedMimeSerialization
	Example

	oralgp:fault
	Example

	oralgp:request
	Example

	oralgp:response
	Example

	oralgp:msg-log
	Example

	orasp:attachment
	Attributes
	Example

	orasp:auth-header
	Attributes
	Examples

	orasp:body
	Example

	orasp:check-permission
	Example

	orasp:coreid-token
	Attributes
	Example

	orasp:denyAll
	Example

	orasp:element
	Attributes
	Example

	orasp:encrypted-elements
	Example

	orasp:encrypted-parts
	Example

	orasp:fault
	Example

	orasp:header
	Attributes
	Example

	orasp:issued-token
	Attributes
	Example

	orasp:kerberos-token
	Attributes
	Example

	orasp:msg-security
	Attributes
	Example

	orasp:permitAll
	Example

	orasp:request
	Example

	orasp:require-tls
	Attributes
	Examples

	orasp:response
	Example

	orasp:role
	Attribute
	Example

	orasp:saml-token
	Attributes
	Example

	orasp:signed-elements
	Example

	orasp:signed-parts
	Example

	orasp:username-token
	Attributes
	Example

	orasp:x509-token
	Attributes
	Example

	orawsp:Description
	Example

E Schema Reference for Policy Sets

	Graphical Representation
	Element Descriptions
	policySet
	Attributes

	wsp:policyReference
	Attributes
	Example

	orawsp:OverrideProperty
	Example

Oracle® Fusion Middleware

Security and Administrator's Guide for Web Services

11g Release 1 (11.1.1)

B32511-07

November 2011

This document describes how to administer and secure Web services.

Oracle Fusion Middleware Security and Administrator's Guide for Web Services, 11g Release 1 (11.1.1)

B32511-07

Copyright © 2007, 2011, Oracle and/or its affiliates. All rights reserved.

Primary Author: Oracle Corporation

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software License (December 2007). Oracle America, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.

Preface

This section describes the intended audience, how to use this guide, and provides information about documentation accessibility.

About this Guide

This guide describes the tasks required to secure and administer Web services, providing details describing how to:

	
Deploy, configure, test, and monitor Web services.

	
Enable, publish, and register Web services.

	
Attach policies for security, messaging, addressing, and management of Web services, and analyzing policy usage.

	
Create new policies and assertion templates, and manage and configure existing policies.

	
Manage policy lifecycle to transition from a test to production environment.

	
Manage your file-based and database stores in your development and production environments, respectively.

	
Diagnose problems.

Audience

This guide is intended for:

	
System and security administrators who administer Web services and manage security

	
Application developers who are developing Web services and testing the security prior to deployment of the Web services

	
Security architects who create security policies

How to Use This Guide

It is recommended that you review Oracle Fusion Middleware Introducing Web Services document to gain a better understanding of the two Web service stacks supported in Oracle Fusion Middleware 11g.

The document is organized as follows:

	
Part I, "Introduction" introduces you to the concepts and tasks required to secure and administer Web services, and describes a set of common use cases.

Chapter 4, "Examining the Rearchitecture of Oracle WSM in Oracle Fusion Middleware" discusses how the features of Oracle WSM have been rearchitected in Oracle Fusion Middleware 11g Release 1 (11.1.1). If you are an existing Oracle Web Services Manager 10g (Oracle WSM) customer, it is recommended that you review this chapter.

	
Part II, "Basic Administration" describes the basic administration tasks that you can perform, such as deploying and configuring Web services; managing and attaching, and configuring policies; testing and monitoring Web services, and more.

	
Part III, "Advanced Administration" describes the advanced administration tasks such as publishing and auditing Web services; migrating from a file-based store; managing policy lifecycle, diagnosing problems, and more.

	
Part IV, "WebLogic Web Service Administration" describes how to secure and administer WebLogic (Java EE) Web services.

	
Part V, "Reference" provides reference information describing Web service security standards; predefined policy and assertion templates; and assertion schemas.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers have access to electronic support through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Related Documents

For more information, see the following documents in the Oracle Fusion Middleware 11g Release 1 (11.1.1) documentation set:

	
Oracle Fusion Middleware Introducing Web Services

	
Developer's Guide for Oracle Infrastructure Web Services

	
Introducing WebLogic Web Services for Oracle WebLogic Server

	
Extensibility Guide for Oracle Web Services Manager

	
Interoperability Guide for Oracle Web Services Manager

	
Getting Started With JAX-WS Web Services for Oracle WebLogic Server

	
Programming Advanced Features of JAX-WS Web Services for Oracle WebLogic Server

	
Getting Started With JAX-RPC Web Services for Oracle WebLogic Server

	
Programming Advanced Features of JAX-RPC Web Services for Oracle WebLogic Server

	
Securing WebLogic Web Services for Oracle WebLogic Server

	
WebLogic Web Services Reference for Oracle WebLogic Server

	
Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

	
Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework

	
Oracle Fusion Middleware Developer's Guide for Oracle WebCenter Portal

	
"Developing with Web Services" in the Oracle JDeveloper online help

See also the Oracle Web Services Manager Technology page at: http://www.oracle.com/technology/products/webservices_manager/index.html.

Conventions

The following text conventions are used in this document:

	Convention	Meaning
	boldface	Boldface type indicates graphical user interface elements associated with an action, or terms defined in text or the glossary.
	italic	Italic type indicates book titles, emphasis, or placeholder variables for which you supply particular values.
	monospace	Monospace type indicates commands within a paragraph, URLs, code in examples, text that appears on the screen, or text that you enter.

What's New

11g Release 1 (11.1.1) includes a complete redesign of Oracle Web Services Manager 10g and Web services security management. For more details about what has changed in Release 11g, see Chapter 4, "Examining the Rearchitecture of Oracle WSM in Oracle Fusion Middleware."

The following topics provide a summary of the features and enhancements in each of the 11g Release 1 releases:

	
11g Release 1 (11.1.1.6)

	
11g Release 1 (11.1.1.5)

	
11g Release 1 (11.1.1.4)

	
11g Release 1 (11.1.1.3)

	
11g Release 1 (11.1.1.2)

	
11g Release 1 (11.1.1)

11g Release 1 (11.1.1.6)

11g Release 1 (11.1.1.6) includes the following new features and enhancements:

Global Policy Attachment Enhancements

The global policy attachment feature has been enhanced as follows:

	
Support for attaching policies globally at the partition, service or reference, and port and component levels for clients and services. For more information, see "Subject Types and Scope of Resources".

	
Support for a new WLST command (deleteAllPolicySets) that allows a user to delete all policy set documents in the repository. For more information, see "Deleting Policy Sets".

	
Support for configuration overrides for global policy attachments. For more information, see "Overriding Configuration Properties for Globally Attached Policies".

	
Ability to specify the priority of a policy attachment which allows an administrator to indicate a preference over which policy attachment is used. For more information, see "Specifying the Priority of a Policy Attachment".

	
Improved visibility into the endpoint configuration using Fusion Middleware Control, including the ability to see the secure status of the endpoints, any configuration overrides, and if the endpoints have a valid configuration. For more information, see "Determining the Secure Status of an Endpoint".

Run-Time Constraints

Oracle WSM provides the ability to specify a run-time constraint that determines the context in which the policy set is relevant, for example external clients outside a firewall versus internal clients. For more information, see "Specifying Run-time Constraints in Policy Sets".

Oracle SPARC Server T-Series Cryptographic Acceleration Support

Ability to configure Oracle WSM to take advantage of Oracle SPARC Server Cryptographic Acceleration. For more information, see "Configuring Oracle WSM for Oracle SPARC T4 Cryptographic Acceleration".

Enhanced Support for WebLogic Java EE Clients in Fusion Middleware Control

Ability to use Fusion Middleware Control to view and monitor Java EE clients and attach Oracle WSM policies.

	
A new tab, Java EE Web Service Clients, has been added to the Web Services (Java EE) Home page for viewing information about Java EE clients. For more information, see "Viewing Java EE Web Service Clients".

	
Ability to attach Oracle WSM policies to Java EE clients. For more information, see "Attaching Policies to Java EE Web Service Clients".

	
Ability to view Web Service statistics for the run-time client instances in a Java EE application. For more information, see "Viewing Web Service Statistics for Java EE Web Service Clients".

Test Web Service Enhancements

Enhanced ability to test Web service security using Oracle WSM policies. For more information, see Chapter 12, "Testing Web Services."

Derived Keys and Encrypt Signature Controls Enabled in Fusion Middleware Control

Oracle WSM supports the Derived Key setting in wss11 message protection policies and the Encrypt Signature setting in wss10 and wss11 message protection policies. You can now enable these features using Fusion Middleware Control in the Message Security settings in message protection policies. For more information about these settings, refer to the message protection assertion templates described in Appendix C, "Predefined Assertion Templates."

No Server Restart Required for JKS Keystore Changes

You no longer need to restart the server when you make changes to the JKS keystore. For more information about the JKS keystore, see "Generating Private Keys and Creating the Java Keystore".

Support for Anonymous User with SAML Policies

Oracle WSM supports propagating the anonymous user with SAML policies. For more information, see "Using Anonymous Users with SAML Policies".

Database Support

Oracle WSM is certified with MySQL and Oracle Edition Based Redefinitions (EBR).

Versioned Web Services

Oracle WSM supports multiple versions (namespaces) of a Web service. Service names in WLST input and output, and Fusion Middleware Control, now require the use of the namespace with the service name, for example {http://mynamespace/}myService. For more information, see the following topics:

	
"Specifying a Service Name" in "Web Services Custom WLST Commands" in WebLogic Scripting Tool Command Reference

	
"listWebServices" in "Web Services Custom WLST Commands" in WebLogic Scripting Tool Command Reference

	
"Determining the Namespace for a Web Service"

SAML Issuer Changes

You no longer need to define SAML issuers in the SAML login module. In this release, if you define a SAML issuer using the Platform Policy Configuration page, any issuers added in the SAML login module are ignored. Also, when SAML issuers are added using the platform policy configuration, you do not need to restart the server. For more information, see "Defining Trusted Issuers and Trusted Distinguished Name List for Signing Certificates".

Additional OR Groups Added to wss11_saml_or_username_token_with_message_protection_service_policy

The oracle/wss11_saml_or_username_token_with_message_protection_service_policy now includes five assertions:

	
wss11_saml_token_with_message_protection

	
wss11_username_token_with_message_protection

	
wss_saml_token_bearer_over_ssl

	
wss_username_token_over_ssl

	
wss_http_token_over_ssl

For more information, see "Configuring a Policy With an OR Group".

11g Release 1 (11.1.1.5)

11g Release 1 (11.1.1.5) includes the following updates and enhancements:

	
Added two new attributes to the asynchronous Web service queue annotations, @AsyncWebServiceQueue and @AsyncWebServiceResponseQueue. These new attributes, listed below, enable you to configure the initial and maximum sizes of the Message-driven bean (MDB) pool size, respectively:

	
messageProcessorInitialPoolSize

	
messageProcessorMaxPoolSize

For more information, refer to the following topics in "Annotation Reference" in Developer's Guide for Oracle Infrastructure Web Services:

	
@AsyncWebServiceQueue Annotation

	
@AsyncWebServiceResponseQueue Annotation

	
Enhanced diagnostic and troubleshooting documentation to include additional information about diagnosing common problems with Oracle WSM and policy attachment issues using WLST. For more information, see "Diagnosing Problems".

	
Enhanced message protection keystore configuration documentation. For more information, see the following topics:

	
"Understanding Keys and Certificates"

	
"Configuring Keystores for Message Protection"

	
"Configuring the Credential Store"

	
Reorganized documentation describing configuration overrides. For more information, see the following topics:

	
"Attaching Web Service Policies Permitting Overrides"

	
"Attaching Client Policies Permitting Overrides", specifically a new section "Attaching Client Policies Permitting Overrides Using WLST".

	
Added documentation that describes how to modify a default users group or role to ensure they have the proper permissions to access the Policy Manager. For more information, see "Modify the User's Group or Role".

11g Release 1 (11.1.1.4)

11g Release 1 (11.1.1.4) includes the following new features:

Global Policy Attachments

Oracle Infrastructure Web services provide the ability to create and attach policy sets to subjects on a global scope (domain, server, application, or SOA composite). See:

	
For conceptual information about policy sets, see "Attaching Policies Globally Using Policy Sets".

	
For information on configuring and managing policy sets using Oracle Enterprise Manager Fusion Middleware Control, see "Creating and Managing Policy Sets".

	
For information on configuring and managing policy sets using WLST, see "Web Services Custom WLST Commands" in the WebLogic Scripting Tool Command Reference.

	
For information on importing and exporting policy sets using WLST, see "Importing and Exporting Documents in the Repository".

Oracle Web Services Manager and Oracle Infrastructure Web Services supported on IBM WebSphere

Differences in behavior, and any limitations, are described in "Managing Web Services on IBM WebSphere" in the Oracle Fusion Middleware Third-Party Application Server Guide.

SAML 2.0 Support

There is new configuration control for overriding policy attachments and new predefined SAML 2.0 policies.

	
A new SAML 2.0 Login Module has been added. See "Configuring the SAML and Kerberos Login Modules".

	
New predefined SAML 2.0 policies have been added. See "Predefined Assertion Templates".

Client-side WS-Trust Support

Support for WS-Trust 1.3 policies has been added. WS-Trust extensions provide methods for issuing, renewing, and validating security tokens. See "WS-Trust Policies and Configuration Steps".

	
A new Automatic Policy Configuration feature dynamically generates the information about an STS config policy by parsing the STS WSDL document. See "Setting Up Automatic Policy Configuration for STS".

	
New predefined WS-Trust assertions have been added. See "Predefined Assertion Templates".

Hardware Token Support

Oracle WSM provides the ability to use the LunaSA Hardware Security Manager (HSM) for key storage. See "Using Hardware Security Modules With Oracle WSM".

Oracle WebLogic Web Services Monitoring Enhancements

The Web Service Endpoint page in Oracle Enterprise Manager Fusion Middleware Control provides the ability to monitor policy violations for WebLogic JAX-WS Web services. In addition, the tab that displays Oracle WSM policy information has been renamed to OWSM Policies. For WebLogic JAX-RPC Web services, the endpoint tab is labeled WebLogic Policy Violations.

For more information on monitoring Web services, see "Monitoring the Performance of Web Services".

Usage Analysis Enhancements

The Usage Analysis page in Oracle Enterprise Manager Fusion Middleware Control provides:

	
The option to filter the Policy Subject List by subject type.

	
The option to view the available policy subjects in the entire enterprise or only in the local domain/cell.

	
The total number of policy subjects to which the policy is attached in the Attachment Count field.

For more information on policy usage analysis, see "Analyzing Policy Usage".

Test Web Service Enhancements

The Request/Response tabs on Test Web Services page in Oracle Enterprise Manager Fusion Middleware Control have enhanced usability, as follows:

	
The Request tab sections are now collapsed by default.

	
On the Response tab, the Test Status results has better readability and the composite test results are now highlighted.

For more information on testing Web services, see "Testing Web Services".

Install Oracle WSM on a Standalone WebLogic Server

If you have a standalone WebLogic Server environment with JAX-WS Web services and clients deployed, you can install Oracle WSM and use it to secure your Web services and clients. For more information, see "Installing Oracle WSM on WebLogic Server".

Enhanced Specification Support for WS-Policy 1.5 and WS-SecurityPolicy 1.2, 1.3

Supported versions, with links to the specifications, are provided in "Supported Standards" in Developer's Guide for Oracle Infrastructure Web Services.

For information about valid version combinations, see "Policy Advertisement".

New Extensibility Guide for Creating Custom Assertions

All information related to developing custom assertions has been moved from this guide and into the new Extensibility Guide for Oracle Web Services Manager.

11g Release 1 (11.1.1.3)

11g Release 1 (11.1.1.3) includes the following new features:

	
Oracle WSM policy attachment to WebLogic Java EE endpoints using Oracle Enterprise Manager Fusion Middleware Control

	
Deployment descriptor migration for ADF Business Connect and WebCenter applications using the WebLogic Scripting Tool (WLST)

	
Cross-domain policy management of Oracle WSM Policies

	
Advertise policies for WebLogic JAX-WS Web services secured with Oracle WSM security policies

	
Web services atomic transaction support for SOA Web services and references and WebLogic JAX-WS Web services

	
Ability to configure a remote policy store at design time in JDeveloper. For more information, see "Using a Different Oracle WSM Policy Store" in "Developing with Web Services" in the JDeveloper Online Help.

	
Shared policy store for Oracle Infrastructure Web services and WebLogic Web services. For information about managing policies in the shared policy store, see "Using Custom Web Service Policies" in "Developing with Web Services" in the JDeveloper Online Help.

	
Ability to register Web service sources and to publish registered Web services to UDDI

	
Support for the DB2 database in the MDS repository

	
Ability to attach policies to Oracle Infrastructure Web Service providers

	
Ability to view assertion details for a policy when attaching to an endpoint

	
Ability to include a timestamp property for assertion templates that define Transport Security (SSL)

	
Ability to manually configure WebLogic Web service repository retrieval properties in Oracle Enterprise Manager Fusion Middleware Control

11g Release 1 (11.1.1.2)

11g Release 1 (11.1.1.2) includes the following new features:

	
Enhanced administration and policy management for asynchronous Web services

	
Ability to define policy alternatives (OR groups)

	
Service-side policy configuration overrides

	
Oracle WSM policy attachment using the WebLogic Scripting Tool (WLST)

	
Ability to upgrade the Oracle WSM policies in the Oracle WSM Repository using WLST commands

	
Service identity certification extension for Web services that implement a message-protection policy. The Web service's public certificate is published in the WSDL, and it is no longer necessary for the Web service client to store the Web service's public certificate in its domain-level keystore.

	
Enhanced support for permission-based authorization using the oracle.wsm.security.WSFunctionPermission permission check class. In this release, the resource target of the WSFunctionPermission is enhanced to include the actual Web service operation name.

	
Ability to browse WSIL documents and import UDDI v3 registries using Fusion Middleware Control, and register services accordingly

	
Compliance with WSI-Basic Security Profile

	
Support for testing RESTful Web services in Fusion Middleware Control Test Web Service page

	
Support for Microsoft SQL Server in the MDS repository

	
Ability to use the same Oracle WSM Repository to manage policies across multiple domains. In previous releases, a repository could only be used by a single domain.

	
New document, Oracle Fusion Middleware Interoperability Guide for Oracle Web Services Manager, that contains the interoperability content previously provided in this document

	
Interoperability is certified between Oracle Web Services Manager and Axis 1.4 and WSS4J 1.58 security environments

11g Release 1 (11.1.1)

11g Release 1 (11.1.1) includes the following new features:

	
Integration with the Oracle Fusion Middleware framework

	
Shared authorization and authentication infrastructure for Web applications and Web services through Oracle Platform Security Services

	
Automatic identity propagation

	
Integrated configuration, management, and monitoring of Web services using Oracle Enterprise Manager Fusion Middleware Control

	
Use of the Oracle Metadata Repository via Oracle Enterprise Manager Fusion Middleware Control

	
Integrated security management and monitoring of WebLogic Web services

	
Integrated policy attachment and monitoring support for WebLogic Web services

	
Enhanced support for Web services security standards

	
Enterprise policy framework with full standards support (WS-Policy, WS-SecurityPolicy, and WS-PolicyAttachment)

	
Run Time Services Oriented Architecture (SOA) governance support through reusable run-time policies and bulk attachment of policies

	
Policy usage and impact analysis

Part I

Introduction

Part I contains the following chapters:

	
Chapter 1, "Overview of Web Services Security and Administration"

	
Chapter 2, "Understanding Web Services Security Concepts"

	
Chapter 3, "Understanding Oracle WSM Policy Framework"

	
Chapter 4, "Examining the Rearchitecture of Oracle WSM in Oracle Fusion Middleware"

1 Overview of Web Services Security and Administration

Companies worldwide are actively deploying service-oriented architectures (SOA) using Web services, both in intranet and internet environments. While Web services offer many advantages over traditional alternatives (for example, distributed objects or custom software), deploying networks of interconnected Web services still presents key challenges, particularly in terms of security and administration.

This chapter provides an overview of Web services security and administration in Oracle Fusion Middleware 11g.

	
Web Services Security and Administration in Oracle Fusion Middleware 11g

	
Web Service Security and Administration Tasks

	
Securing and Administering Oracle Infrastructure Web Services

	
Securing and Administering WebLogic Web Services

	
Accessing the Security and Administration Tools

	
Installing Oracle WSM on WebLogic Server

	
Note:

Oracle Web Services Manager and Oracle Infrastructure Web Services are also supported on IBM WebSphere. Differences in behavior, and any limitations, are described in "Managing Web Services on IBM WebSphere" in Oracle Fusion Middleware Third-Party Application Server Guide.

Web Services Security and Administration in Oracle Fusion Middleware 11g

The following highlights the main features of Oracle Fusion Middleware 11g Release 1 (11.1.1):

	
Oracle Web Services Manager (WSM) security and management has been completely redesigned and rearchitected. The previous release, Oracle WSM 10g, was delivered as a standalone product or as a component of the Oracle SOA Suite. In the 11g release, Oracle WSM has been integrated into the Oracle WebLogic Server. For complete details, see "Examining the Rearchitecture of Oracle WSM in Oracle Fusion Middleware".

	
Oracle Web services can be classified into the following categories:

	
WebLogic (Java EE) Web services (see "Securing and Administering WebLogic Web Services")

	
Oracle Infrastructure Web services—SOA, ADF, and WebCenter services (see "Securing and Administering Oracle Infrastructure Web Services")

For more information about the two Web service categories and the types of Web services and clients in Oracle Fusion Middleware 11g, see Oracle Fusion Middleware Introducing Web Services.

	
To support the two categories, there are two types of policies that can be attached to Web services, as defined in the following table.

Table 1-1 Types of Web Service Policies

	Type of Policy	Description
	
Oracle Web Services Manager (WSM) Policy

	
Policy provided by the Oracle WSM.

You can attach Oracle WSM policies to SOA, ADF, and WebCenter Web services. You can attach Oracle WSM security policies only to WebLogic JAX-WS Web services to interface with the SOA/ADF/WebCenter Web services, for example. (You cannot attach Oracle WSM policies to JAX-RPC Web services.)

You manage Oracle WSM policies from Oracle Enterprise Manager Fusion Middleware Control and from the command line using custom WebLogic Scripting Tool (WLST) commands.

	
WebLogic Web Service Policy

	
Policy provided by WebLogic Server. For more information about the WebLogic Web service policies, see Securing WebLogic Web Services for Oracle WebLogic Server.

A subset of WebLogic Web service policies interoperate with Oracle WSM policies. For more information, see "Interoperability with Oracle WebLogic Server 11g Web Service Security Environments" in Interoperability Guide for Oracle Web Services Manager.

You manage WebLogic Web service policies from WebLogic Administration Console.

	
Application developers can use Oracle JDeveloper to leverage the security and management features of the Oracle WSM policy framework. For more information about attaching policies using Oracle JDeveloper, see the following sections:

	
"Attaching Policies to Binding Components and Service Components" in Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite.

	
"Securing Web Service Data Controls" in Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.

	
"Using Oracle Web Services Manager Security Policies" in Securing WebLogic Web Services for Oracle WebLogic Server

	
"Using Policies with Web Services" in the "Developing with Web Services" section of the Oracle JDeveloper online help

	
System administrators can use the following tools to secure and administer Web services:

	
Oracle Enterprise Manager Fusion Middleware Control to secure and administer Oracle Infrastructure Web services, and to secure and test WebLogic (Java EE) Web services.

	
Oracle WebLogic Administration Console to secure and administer WebLogic (Java EE) Web services.

	
Oracle WebLogic Scripting Tool (WLST) to view, configure, and secure SOA, ADF, and WebCenter Web services.

Web Service Security and Administration Tasks

The following list provides an example of the tasks required to secure and administer Web services:

	
Deploy, configure, test, and monitor Web services.

	
Enable, publish, and register Web services.

	
Directly attach policies to policy subjects to secure and manage Web services and analyze policy usage.

	
Attach policies on a global scope to a range of subjects of the same type to secure and manage Web services. Supported scopes include domain, server, application, partition, module, SOA composite, service, SOA reference, port, and component.

	
Create new policies and assertion templates, and manage and configure existing policies.

	
Create custom assertions to meet the requirements of your application.

	
Manage policy lifecycle to transition from a test to production environment.

	
Manage your file-based and database stores in your development and production environments, respectively.

	
Test interoperability with other Web services.

	
Diagnose problems.

The steps to develop, secure, and administer Web services vary based on the Web service category in use. The following sections outline the steps required:

	
Securing and Administering Oracle Infrastructure Web Services

	
Securing and Administering WebLogic Web Services

Securing and Administering Oracle Infrastructure Web Services

To secure and administer Oracle Infrastructure Web services:

	
At development time, application developers can attach policies, using Oracle JDeveloper or other IDE, to leverage the security and management features of the Oracle WSM policy framework. For more information about attaching policies using Oracle JDeveloper, see the following sections:

	
"Attaching Policies to Binding Components and Service Components" in Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite.

	
"Securing Web Service Data Controls" in Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.

	
"Using Policies with Web Services" in the "Developing with Web Services" section of the Oracle JDeveloper online help.

	
System administrators can use the tools described in Table 1-2 to secure and administer Oracle Infrastructure Web services.

Table 1-2 Tools Used to Secure and Administer Oracle Infrastructure Web Services

	Use this tool...	To...
	
Oracle Enterprise Manager Fusion Middleware Control

	
Secure and administer SOA, ADF, and WebCenter services, performing the tasks described in "Web Service Security and Administration Tasks".

To access Oracle Enterprise Manager Fusion Middleware Control, see "Accessing Oracle Enterprise Manager Fusion Middleware Control".

Oracle Enterprise Manager Fusion Middleware Control leverages Oracle Web Services Manager (WSM) to centrally define security and management policies, and enforce them locally at run time. For more information about Oracle WSM, see "Understanding Oracle WSM Policy Framework".

For more information about Oracle Enterprise Manager Fusion Middleware Control, see "Getting Started Using Oracle Enterprise Manager Fusion Middleware Control" in Oracle Fusion Middleware Administrator's Guide.

	
WebLogic Scripting Tool (WLST)

	
Perform Web service configuration and policy management tasks.

To access WLST, see "Accessing the Web Services Custom WLST Commands".

For more information about using WLST, see "Getting Started Using the Oracle WebLogic Scripting Tool (WLST)" in Oracle Fusion Middleware Administrator's Guide.

Part II, "Basic Administration" and Part III, "Advanced Administration" describe how to secure and administer SOA, ADF, and WebCenter services in detail.

Securing and Administering WebLogic Web Services

To secure and administer WebLogic Web services:

	
At development time, application developers can attach security policies using Oracle JDeveloper or other IDE. For more information, see the following topics:

	
"Using Policies with Web Services" in the "Developing with Web Services" section of the Oracle JDeveloper online help.

	
"Using Oracle Web Services Manager Security Policies" in Securing WebLogic Web Services for Oracle WebLogic Server

	
System administrators can use the tools defined in Table 1-3 to secure and administer WebLogic Web services.

Table 1-3 Tools Used to Secure and Administer WebLogic Web Services

	Use this tool . . .	To perform the following tasks . . .
	
Oracle Enterprise Manager Fusion Middleware Control

	
Leverage Oracle WSM to perform the following tasks:

	
Enforce policies at run time.

	
Manage Oracle WSM security policies and attach to WebLogic Java EE Web services (not clients).

	
Advertise policies for JAX-WS WebLogic Web services secured with Oracle WSM security policies.

	
Test the WebLogic Web service.

	
Monitor the run-time performance of WebLogic Web services.

For more information about Oracle WSM, see "Understanding Oracle WSM Policy Framework".

To access Oracle Enterprise Manager Fusion Middleware Control, see "Accessing Oracle Enterprise Manager Fusion Middleware Control".

For more information about Oracle Enterprise Manager Fusion Middleware Control, see "Getting Started Using Oracle Enterprise Manager Fusion Middleware Control" in Oracle Fusion Middleware Administrator's Guide.

Note: The following features are not supported for WebLogic Web services in the 11g release:

	
WS-SecureConversation, WS-Trust, MTOM, WS-Addressing, WS-ReliableMessaging, or WS-AtomicTransaction using Oracle WSM policies.

	
Security and administration of JAX-RPC WebLogic Web services.

	
Oracle WebLogic Server Administration Console

	
Secure and manage WebLogic Web services.

To access the Oracle WebLogic Server Administration Console, see "Accessing Oracle WebLogic Administration Console".

For more information about using the Oracle WebLogic Server Administration Console to secure and administer WebLogic Web services, see "Web Services" in the Oracle WebLogic Server Administration Console Help.

Part IV, "WebLogic Web Service Administration" provides a roadmap for securing and administering WebLogic Web services.

Accessing the Security and Administration Tools

The following sections describe how to access the security and administration tools described in the previous sections.

Accessing Oracle Enterprise Manager Fusion Middleware Control

To access Oracle Enterprise Manager Fusion Middleware Control:

	
Start the Oracle WebLogic Server instance.

For more information, see "Start and stop servers" in the Oracle WebLogic Server Administration Console Help.

	
Open a supported Web browser and navigate to the following URL:

http://hostname:port/em

The Login page displays.

	
Enter the username and password.

The default user name for the administrator user is weblogic. This is the account you can use to log in to Fusion Middleware Control for the first time. The password is the one you supplied during the installation of Oracle Fusion Middleware.

	
Click Login.

For more information, see "Getting Started Using Oracle Enterprise Manager Fusion Middleware Control" in Oracle Fusion Middleware Administrator's Guide.

Accessing Oracle WebLogic Administration Console

To access Oracle WebLogic Administration Console:

	
Start the Oracle WebLogic Server.

For more information, see "Start and stop servers" in the Oracle WebLogic Server Administration Console Help.

	
Open a supported Web browser and navigate to one of the following URLs:

http://hostname:port/console
https://hostname:port/console

hostname specifies the DNS name or IP address of the Oracle WebLogic Administration Server and port specifies the address of the port on which the Oracle WebLogic Administration Server is listening for requests (7001 by default).

Use https if you started the Oracle WebLogic Server using the Secure Sockets Layer (SSL).

For a list of supported browsers, see System Requirements and Supported Platforms for Oracle WebLogic Server at: http://www.oracle.com/technology/software/products/ias/files/fusion_certification.html.

The Login page displays.

	
Enter the username and password.

You may have specified the username and password during the installation process. This may be the same username and password that you use to start the Oracle Administration Server. Or, a username that is granted one of the default global security roles.

	
Click Log In.

For more information, see "Start the Console" in the Oracle WebLogic Server Administration Console Help.

Accessing the Web Services Custom WLST Commands

To access the Web services WLST commands:

	
Go to the Oracle Common home directory for your installation, for example /home/Oracle/Middleware/oracle_common.

For information about the Oracle Common home directory and installing Oracle Fusion Middleware, see the Oracle Fusion Middleware Installation Planning Guide.

	
Start WLST using the WLST.sh/cmd command located in the oracle_common/common/bin directory. For example:

	
/home/Oracle/Middleware/oracle_common/common/bin/wlst.sh (UNIX)

	
C:\Oracle\Middleware\oracle_common\common\bin\wlst.cmd (Windows)

When executed, these commands start WLST in offline mode. To use the Web services WLST commands, you must use WLST in online mode.

	
Start Oracle WebLogic Server.

For more information, see "Start and stop servers" in the Oracle WebLogic Server Administration Console Help.

	
Connect to the running WebLogic Server instance using the connect() command. For example, the following command connects WLST to the Admin Server at the URL myAdminServer.oracle.com:7001 using the username/password credentials weblogic/welcome1:

connect("weblogic","welcome1","t3://myAdminServer.oracle.com:7001")

For more information about using WLST, see "Using the WebLogic Scripting Tool" in Oracle WebLogic Scripting Tool.

For more information about the Web Services WLST commands, see "Web Services Custom WLST Commands" in WebLogic Scripting Tool Command Reference.

Installing Oracle WSM on WebLogic Server

Oracle WSM is installed by default when you install Oracle Fusion Middleware SOA Suite or Oracle Application Development Runtime. However, if you have a standalone WebLogic Server environment with JAX-WS Web services and clients deployed, you can install Oracle WSM and use it to secure your Web services and clients.

	
Note:

Oracle WSM is licensed only through SOA Suite; a standalone license is not available. To secure Web service clients and services using Oracle WSM on base Weblogic Server, you must acquire a SOA Suite license in addition to a Weblogic Server license.

To use Oracle WSM with WebLogic Server, you need Java Required Files (JRF) and Oracle Enterprise Manager Fusion Middleware Control. JRF consists of those components, such as Oracle WSM, that provide common functionality for Oracle business applications and application frameworks. Oracle Enterprise Manager Fusion Middleware Control is used to secure and administer WebLogic Web services.

Neither JRF or Fusion Middleware Control are included in the WebLogic Server installation. The following procedure describes the steps required to install and configure Oracle WSM with WebLogic Server.

	
Prepare for the installation by reviewing the concepts and requirements as described in the Oracle Fusion Middleware Installation Planning Guide.

	
Download the following Oracle Fusion Middleware software components:

	
Oracle WebLogic Server

	
Oracle Application Development Runtime

	
Oracle Fusion Middleware Repository Creation Utility

For download sites, see "Obtain the Oracle Fusion Middleware Software" in Oracle Fusion Middleware Installation Planning Guide.

	
Create the MDS schema in your database.

Oracle Application Developer includes Oracle WSM Policy Manager and Oracle WSM-PM Extension. These components require that the MDS schema exists in your database prior to installation. You must run the Repository Creation Utility (RCU) to create the MDS schema in your database. For instructions, see "Creating Schemas" in Oracle Fusion Middleware Repository Creation Utility User's Guide.

	
Note:

In the Select Components screen, be sure to select Metadata Services under AS Common Schemas.

	
Install WebLogic Server. For detailed instructions, see Installation Guide for Oracle WebLogic Server.

Be sure to take note of the location that you specify for the Middleware Home directory as you will need to provide it during the Application Developer installation.

	
Install Application Developer. For detailed instructions, see "Installation Instructions" in Oracle Fusion Middleware Installation Guide for Application Developer.

	
Note:

In the Specify Installation Location screen, specify the Middleware home location that you provided during the WebLogic Server installation.

	
Create a domain that includes Oracle Enterprise Manager, Oracle WSM, and JRF using the Configuration Wizard. For details, see "Configuring Application Developer" in Oracle Fusion Middleware Installation Guide for Application Developer.

	
Note:

In the Select Domain Source screen of the Configuration Wizard, select Oracle Enterprise Manager and Oracle WSM Policy Manager. Oracle JRF is automatically selected as a dependency.

You can now secure and administer WebLogic Web services as described in "Securing and Administering WebLogic Web Services".

2 Understanding Web Services Security Concepts

This chapter introduces the Web services security concepts. It is divided into the following sections:

	
Securing Web Services

	
How Oracle Fusion Middleware Secures Web Services and Clients

For an introduction to general Web service concepts, see "What are Web Services" in Oracle Fusion Middleware Introducing Web Services.

Securing Web Services

Because of its nature (loosely coupled connections) and its use of open access (mainly HTTP), SOA implemented by Web services adds a new set of requirements to the security landscape. Web services security includes several aspects:

	
Authentication—Verifying that the user is who she claims to be. A user's identity is verified based on the credentials presented by that user, such as:

	
Something one has, for example, credentials issued by a trusted authority such as a passport (real world) or a smart card (IT world).

	
Something one knows, for example, a shared secret such as a password.

	
Something one is, for example, biometric information.

Using a combination of several types of credentials is referred to as "strong" authentication, for example using an ATM card (something one has) with a PIN or password (something one knows).

	
Authorization (or Access Control)—Granting access to specific resources based on an authenticated user's entitlements. Entitlements are defined by one or several attributes. An attribute is the property or characteristic of a user, for example, if "Marc" is the user, "conference speaker" is the attribute.

	
Confidentiality, privacy—Keeping information secret. Accesses a message, for example a Web service request or an email, as well as the identity of the sending and receiving parties in a confidential manner. Confidentiality and privacy can be achieved by encrypting the content of a message and obfuscating the sending and receiving parties' identities.

	
Integrity, non repudiation—Making sure that a message remains unaltered during transit by having the sender digitally sign the message. A digital signature is used to validate the signature and provides non-repudiation. The timestamp in the signature prevents anyone from replaying this message after the expiration.

Web services security requirements also involve credential mediation (exchanging security tokens in a trusted environment), and service capabilities and constraints (defining what a Web service can do, under what circumstances).

In many cases, Web services security tools such as Oracle WSM rely on Public Key Infrastructure (PKI) environments. A PKI uses cryptographic keys (mathematical functions used to encrypt or decrypt data). Keys can be private or public. In an asymmetric cipher model, the receiving party's public key is used to encrypt plaintext, and the receiving party's matching private key is used to decrypt the ciphertext. Also, a private key is used to create a digital signature by signing the message, and the public key is used for verifying the signature. Public-key certificates (or certificates, for short) are used to guarantee the integrity of public keys.

Web services security requirements are supported by industry standards both at the transport level (Secure Socket Layer) and at the application level relying on XML frameworks.

For more information about the specifications, standards, and security tokens supported by Web services, see Appendix A, "Web Service Security Standards."

	
Note:

Oracle has been instrumental in contributing to emerging standards, in particular the specifications hosted by the OASIS Web Services Secure Exchange technical committee.

Transport-level Security

Secure Socket Layer (SSL), otherwise known as Transport Layer Security (TLS), the Internet Engineering Task Force (IETF) officially standardized version of SSL, is the most widely used transport-level data-communication protocol providing:

	
Authentication (the communication is established between two trusted parties).

	
Confidentiality (the data exchanged is encrypted).

	
Message integrity (the data is checked for possible corruption).

	
Secure key exchange between client and server.

SSL provides a secure communication channel, however, when the data is not "in transit," the data is not protected. This makes the environment vulnerable to attacks in multi-step transactions. (SSL provides point-to-point security, as opposed to end-to-end security.)

Application-level Security

Application-level security complements transport-level security. Application-level security is based on XML frameworks defining confidentiality, integrity, authenticity; message structure; trust management and federation.

Data confidentiality is implemented by XML Encryption. XML Encryption defines how digital content is encrypted and decrypted, how the encryption key information is passed to a recipient, and how encrypted data is identified to facilitate decryption.

Data integrity and authenticity are implemented by XML Signature. XML Signature binds the sender's identity (or "signing entity") to an XML document. Signing and signature verification can be done using asymmetric or symmetric keys.

Signature ensures non-repudiation of the signing entity and proves that messages have not been altered since they were signed. Message structure and message security are implemented by SOAP and its security extension, WS-Security. WS-Security defines how to attach XML Signature and XML Encryption headers to SOAP messages. In addition, WS-Security provides profiles for 5 security tokens: Username (with password digest), X.509 certificate, Kerberos ticket, Security Assertion Markup Language (SAML) assertion, and REL (rights markup) document.

The SOAP envelope body includes the business payload, for example a purchase order, a financial document, or simply a call to another Web service. SAML is one of the most interesting security tokens because it supports both authentication and authorization. SAML is an open framework for sharing security information on the Internet through XML documents. SAML includes 3 parts:

	
SAML Assertion—How you define authentication and authorization information.

	
SAML Protocol—How you ask (SAML Request) and get (SAML Response) the assertions you need.

	
SAML Bindings and Profiles—How SAML assertions ride "on" (Bindings) and "in" (Profiles) industry-standard transport and messaging frameworks.

The full SAML specification is used in browser-based federation cases. However, web services security systems such as Oracle WSM only use SAML assertions. The protocol and bindings are taken care of by WS-Security and the transport protocol, for example HTTP.

SAML assertions and references to assertion identifiers are contained in the WS-Security Header element, which in turn is included in the SOAP Envelope Header element (described in the WS-Security SAML Token Profile). The SAML security token is particularly relevant in situations where identity propagation is essential.

Web Service Security Requirements

The following summarize the Web service security requirements:

	
The use of transport security to protect the communication channel between the Web service consumer and Web service provider.

	
Message-level security to ensure confidentiality by digitally encrypting message parts; integrity using digital signatures; and authentication by requiring username, X.509, or SAML tokens.

Oracle Web Services Manager (WSM) is designed to define and implement Web services security in heterogeneous environments, including authentication, authorization, message encryption and decryption, signature generation and validation, and identity propagation across multiple Web services used to complete a single transaction.

How Oracle Fusion Middleware Secures Web Services and Clients

Figure 2-1 shows an Oracle Fusion Middleware application that demonstrates some common interactions between Web services and their clients. How security is managed at each step in the process is explained following the figure.

The Oracle WSM Policy Manager (labeled as OWSM in Figure 2-1) is the security linchpin for Oracle Fusion Middleware Web services and SOA applications. For more information about how the Oracle WSM Policy Manager manages the policy framework, see Chapter 3, "Understanding Oracle WSM Policy Framework."

	
Note:

To ensure the security of your Web services, the Policy Manager must be running before starting any Web services. If the Policy Manager is deployed on a separate server (other than the servers running Web services), make sure that it is up and running before starting the other servers.

Figure 2-1 Example of Oracle Fusion Middleware Application

[image: Description of Figure 2-1 follows]

Description of "Figure 2-1 Example of Oracle Fusion Middleware Application"

As shown in the previous figure, there are two types of policies that can be attached to Web services: Oracle WSM policies and WebLogic Server polices. For more information, see Table 1-1, "Types of Web Service Policies".

The following describes in more detail the Web service and client interactions called out in the previous figure, and how security is managed at each step in the process. As noted in the figure, security is managed using both Oracle WSM policies and WebLogic Web service policies.

	
At design time, you attach Oracle WSM and WebLogic Web service policies to applications programmatically using your favorite IDE, such as Oracle JDeveloper.

Alternatively, at deployment time you attach policies to SOA composites, ADF, and WebCenter applications using the Oracle Enterprise Manager Fusion Middleware Control, and to WebLogic Web services (Java EE) using the WebLogic Server Administration Console (not shown in the figure).

Note: Policies that are attached to WebLogic Web services at design time cannot be detached at deployment time. You can only attach new policies.

	
A user logs in to the ADF Web application.

The user may be internal or external to Company A.

	
Using a Web service data control, the ADF Web application accesses a service, such as a WebLogic Web service, a SOA composite application, or an ADF Business Component.

At the Web service client side, Oracle WSM intercepts the SOAP message request to the service, injects the relevant tokens, and signs and encrypts the message, as required by the attached policies.

At the Web service side, Oracle WSM intercepts the SOAP message request to the service, extracts the tokens, and verifies the client's credentials against an identity management infrastructure (for example, a file, an LDAP-compliant directory, or Oracle Access Manager), as required by the attached policies.

	
Interactions with the SOA service components (shown in the figure) include:

	
The SOA service component accesses an ADF Business Component to query or update tables in a database.

	
A WebCenter client access the SOA service component to process a customer request.

	
The SOA service component accesses the Web service internal to Company A to accomplish a specific task.

	
The SOA service component accesses a Web service via an external provider (Company B) to accomplish a specific task. As long as you know the URL that identifies the WSDL document, you can access the Web service.

Again, at the Web service client side, Oracle WSM intercepts the SOAP message request to the service, injects the relevant tokens, and signs and encrypts the message, as required by the attached policies.

At the Web service side, Oracle WSM intercepts the SOAP message request to the service, extracts the tokens, and verifies the client's credentials against an identity management infrastructure (for example, a file, an LDAP-compliant directory, or Oracle Access Manager), as required by the attached policies.

	
A client accesses a WebLogic Java EE Web service.

In this case, components in a larger composite application interact with the WebLogic Web service. An Oracle WSM policy is used to secure the WebLogic JAX-WS Web service client. A WebLogic Web service policy is used to secure the WebLogic JAX-RPC service client.

3 Understanding Oracle WSM Policy Framework

This chapter contains the following sections:

	
Overview of Oracle WSM Policy Framework

	
What Are Policies?

	
Building Policies Using Policy Assertions

	
Attaching Policies to Subjects

	
Attaching Policies Globally Using Policy Sets

	
How Policies are Executed

	
Oracle WSM Predefined Policies and Assertion Templates

	
Defining Multiple Policy Alternatives (OR Groups)

	
Overriding Security Policy Configuration

	
Recommended Naming Conventions for Policies

Overview of Oracle WSM Policy Framework

Oracle Web Services Manager (WSM) provides a policy framework to manage and secure Web services consistently across your organization. Oracle WSM can be used by both developers, at design time, and system administrators in production environments.

The policy framework is built using the WS-Policy standard. The Oracle WSM Policy Enforcement Point (PEP) leverages Oracle Platform Security Service (OPSS) and the Oracle WebLogic Server authenticator for authentication and permission-based authorization, as shown in the following figure.

Figure 3-1 Oracle WSM Policy Framework Leverages OPSS and Oracle WebLogic Server Security

[image: Description of Figure 3-1 follows]

Description of "Figure 3-1 Oracle WSM Policy Framework Leverages OPSS and Oracle WebLogic Server Security"

Developers can leverage the Oracle WSM policy framework from Oracle JDeveloper. For more information, see "Developing with Web Services" in the Oracle JDeveloper online help.

System administrators can leverage the Oracle WSM through the Oracle Enterprise Manager Fusion Middleware Control to:

	
Centrally define policies using the Oracle WSM Policy Manager.

	
Enforce Oracle WSM security and management polices locally at run time.

All of Oracle WSM's functionality is accessible to administrators from Oracle Enterprise Manager Fusion Middleware Control. Part II, "Basic Administration" and Part III, "Advanced Administration" describe the security and administration tasks in more detail.

The following list provides examples of specific tasks that you can perform using Oracle WSM:

	
Handle WS-Security (for example, encryption, decryption, signing, signature validation, and so on)

	
Define authentication and authorization policies against an LDAP directory.

	
Generate standard security tokens (such as SAML tokens) to propagate identities across multiple Web services used in a single transaction.

	
Segment policies into different namespaces by creating policies within different folders.

	
Examine log files.

Figure 3-2 shows the main components of Oracle WSM architecture.

Figure 3-2 Components of Oracle WSM Architecture

[image: Description of Figure 3-2 follows]

Description of "Figure 3-2 Components of Oracle WSM Architecture"

Table 3-1 describes the components of Oracle WSM shown in the previous figure.

Table 3-1 Components of Oracle WSM Architecture

	Oracle WSM Component	Description
	
Oracle Enterprise Manager Fusion Middleware Control

	
Enables administrators to access Oracle WSM's functionality to manage, secure, and monitor Web services.

	
Oracle JDeveloper

	
Provides a full-featured Java IDE for SOA that can be used for end-to-end development of Web services. Using visual and declarative tools, developers can build Oracle SOA, ADF, WebCenter, and WebLogic Java EE Web services, automatically deploy them to an instance of Oracle WebLogic Server, and immediately test the running Web service. Alternatively, JDeveloper can be used to drive the creation of Web services from WSDL descriptions. JDeveloper is Ant-aware. You can use this tool to build and run Ant scripts for assembling the client and for assembling and deploying the service. For more information, see the Oracle JDeveloper online help. For information about installing JDeveloper, see Oracle Fusion Middleware Installation Guide for Oracle JDeveloper.

	
WebLogic Scripting Tool (WSLT)

	
Enables administrators to view and configure Web services, and manage Web service policies from the command line. For more information, see WebLogic Scripting Tool Command Reference.

	
Oracle WSM Policy Manager

	
Reads/writes the policies, including predefined and custom policies from the Oracle WSM Repository.

	
Oracle WSM Agent

	
Manages the enforcement of policies via the Policy Interceptor Pipeline.

	
Policy Interceptors

	
Enforce policies, including reliable messaging, management, addressing, security, and Message Transmission Optimization Mechanism (MTOM). For more information, see "How Policies are Executed".

	
Oracle WSM Repository

	
Stores Oracle WSM metadata, such as policies, policy sets, assertions templates, and policy usage data. The Oracle WSM Repository is available as a database (for production use) or as files in the file system (for development use in JDeveloper).

	
Oracle Fusion Middleware Database

	
Provides database support for the Oracle WSM Repository.

What Are Policies?

Policies describe the capabilities and requirements of a Web service such as whether and how a message must be secured, whether and how a message must be delivered reliably, and so on.

Oracle Fusion Middleware 11g Release 1 (11.1.1) supports the types of policies defined in Table 3-2. The policies are part of the Oracle WSM enterprise policy framework which allows policies to be centrally created and managed.

Table 3-2 Types of Policies

	Policy Type	Description
	
WS-Reliable Messaging

	
Reliable messaging policies that implement the WS-ReliableMessaging standard describes a wire-level protocol that allows guaranteed delivery of SOAP messages, and can maintain the order of sequence in which a set of messages are delivered.

The technology can be used to ensure that messages are delivered in the correct order. If a message is delivered out of order, the receiving system can be configured to guarantee that the messages will be processed in the correct order. The system can also be configured to deliver messages at least once, not more than once, or exactly once. If a message is lost, the sending system re-transmits the message until the receiving system acknowledges it receipt.

	
Management

	
Management policies that log request, response, and fault messages to a message log. Management policies may include custom policies.

	
WS-Addressing

	
WS-Addressing policies that verify that SOAP messages include WS-Addressing headers in conformance with the WS-Addressing specification. Transport-level data is included in the XML message rather than relying on the network-level transport to convey this information.

	
Security

	
Security policies that implement the WS-Security 1.0 and 1.1 standards. They enforce message protection (message integrity and message confidentiality), and authentication and authorization of Web service requesters and providers. The following token profiles are supported: username token, X.509 certificate, Kerberos ticket, and Security Assertion Markup Language (SAML) assertion. For more information about Web service security concepts and standards, see "Understanding Web Services Security Concepts" and "Web Service Security Standards"

	
Message Transmission Optimization Mechanism (MTOM)

	
Binary content, such as an image in JPEG format, can be passed between the client and the Web service. In order to be passed, the binary content is typically inserted into an XML document as an xsd:base64Binary string. Transmitting the binary content in this format greatly increase the size of the message sent over the wire and is expensive in terms of the required processing space and time.

Using Message Transmission Optimization Mechanism (MTOM), binary content can be sent as a MIME attachment, which reduces the transmission size on the wire. The binary content is semantically part of the XML document. Attaching an MTOM policy ensures that the message is converted to a MIME attachment before it is sent to the Web service or client.

Building Policies Using Policy Assertions

A policy is comprised of one or more policy assertions. A policy assertion is the smallest unit of a policy that performs a specific action for the request and response operations. Assertions, like policies, belong to one of the following categories: Reliable Messaging, Management, WS-Addressing, Security, and MTOM.

Policy assertions are chained together in a pipeline. The assertions in a policy are executed on the request message and the response message, and the same set of assertions are executed on both types of messages. The assertions are executed in the order in which they appear in the pipeline.

Figure 3-3 illustrates a typical execution flow. For the request message, Assertion 1 is executed first, followed by Assertion 2, and Assertion n. Although the same assertions may be executed on the response message (if a response is returned at all), the actions performed on the response message differ from the request message, and the assertions are executed on the response message in reverse order. For the response message in Figure 3-3, Assertion n is executed first, followed by Assertion 2, then Assertion 1.

Figure 3-3 Policy Containing Assertions

[image: Description of Figure 3-3 follows]

Description of "Figure 3-3 Policy Containing Assertions"

For example, in Figure 3-4, the policy contains two assertions:

	
wss11-username-with-certificates—Built using the wss11_username_token_with_message_protection_service_template, authenticates the user based on credentials in the WS-Security UsernameToken SOAP header.

	
binding-authorization—Built using the binding_authorization_template, provides simple role-based authorization for the request based on the authenticated subject at the SOAP binding level.

Figure 3-4 Example Policy With Two Assertions

[image: Description of Figure 3-4 follows]

Description of "Figure 3-4 Example Policy With Two Assertions"

When the request message is sent to the Web service, the assertions are executed in the order shown. When the response message is returned to the client, the same assertions are executed, but this time in reverse order. The behavior of the assertion for the request message differs from the behavior for the response message. And, in some instances, it is possible that nothing happens on the response. For example, in the example above, the authorization assertion is only executed as part of the request.

Attaching Policies to Subjects

A policy subject is the target resource to which the policies are attached. Policy subjects include Web services endpoints, Web service clients, SOA service endpoints, SOA clients, and SOA components. There are different policies for different types of resources (for example, a Web service or a SOA component).

You can attach one or more policies to a policy subject, either by directly attaching an individual policy to a subject, or using bulk attachment. You can also attach policies globally to a set of subjects by type using policy sets. For more information, see "Attaching Policies Globally Using Policy Sets". When the policy is attached to a policy subject, enforcement of the policy begins immediately.

If a policy on the client side is modifying the message, for example to encrypt the message, there must be a corresponding policy on the Web service side, for example, to decrypt the policy. Otherwise, the message request will fail.

Attaching Policies Globally Using Policy Sets

	
Note:

Policy sets are supported for Oracle Infrastructure Web services only.

A policy set, which can contain multiple policy references, is an abstract representation that provides a means to attach policies globally to a range of endpoints of the same type. Attaching policies globally using policy sets allows the administrator to ensure that all subjects are secured in situations where the developer, assembler, or deployer did not explicitly specify the policies to be attached. Policies that are attached using a policy set are considered externally attached. For more information about attaching policies globally using policy sets, see Chapter 9, "Creating and Managing Policy Sets."

How Policies are Executed

When a request is made from a service consumer (also known as a client) to a service provider (also known as a Web service), the request is intercepted by one or more policy interceptors. These interceptors execute policies that are attached to the client and to the Web service. There are five types of interceptors (reliable messaging, management, WS-Addressing, security, and MTOM) that together form a policy interceptor chain. Each interceptor executes policies of the same type. The security interceptor intercepts and executes security policies, the MTOM interceptor intercepts and executes MTOM policies, and so on.

Policies attached to a client or Web service are executed in a specific order via the Policy Interceptor Pipeline, as shown in Figure 3-5.

Figure 3-5 Policy Interceptors Acting on Messages Between a Client and Web Service

[image: Description of Figure 3-5 follows]

Description of "Figure 3-5 Policy Interceptors Acting on Messages Between a Client and Web Service"

As shown in the previous figure, when a client or a Web service initiates a message, whether it be a request message in the case of a client, or a response message in the case of a Web service, the policies are intercepted in the following order: Reliable Messaging, Management, Addressing, Security, and MTOM. When a client or a Web service receives a message, that is, a request message in the case of the Web service or a response message in the case of a client, the policies are executed in the reverse order: MTOM, Security, Addressing, Management, and Reliable Messaging.

A message may have one or more policies attached. Not every message will contain each type of policy. A message may contain a security policy and an MTOM policy. In this instance, the security interceptor executes the security policy, and the MTOM interceptor executes the MTOM policy. In this example, the other interceptors are not involved in processing the message.

The following describes how the policy interceptors act on messages between the client and the Web service. (Refer to Figure 3-5.)

	
The client sends a request message to a Web service.

	
The policy interceptors intercept and execute the policies attached to the client. After the client policies are successfully executed, the request message is sent to the Web service.

	
The request message is intercepted by policy interceptors which then execute any service policies that are attached to the Web service.

	
After the service policies are successfully executed, the request message is passed to the Web service. The Web service executes the request message and returns a response message.

	
The response message is intercepted by the policy interceptors which execute the service policies attached to the Web service. After the service policies are successfully executed, the response message is sent to the client.

	
The response message is intercepted by the policy interceptors which execute any client policies attached to the client.

	
After the client policies are successfully executed, the response message is passed to the client.

Oracle WSM Predefined Policies and Assertion Templates

There is a set of predefined policies and assertion templates that are automatically available when you install Oracle Fusion Middleware. The predefined policies are based on common best practice policy patterns used in customer deployments.

You can immediately begin attaching these predefined policies to your Web services or clients. You can configure the predefined policies or create a new policy by making a copy of one of the predefined policies.

Predefined policies are constructed using assertions based on predefined assertion templates. You can create new assertion templates, as required.

For more information about the predefined policies and assertion templates, see:

	
"Predefined Policies".

	
"Predefined Assertion Templates".

	
Note:

WS-SecurityPolicy defines scenarios that describe examples of how to set up WS-SecurityPolicy policies for several security token types described in the WS-Security specification (supporting both WS-Security 1.0 and 1.1). The Oracle WSM predefined policies support a subset of the WS-SecurityPolicy scenarios that represents the most common customer use cases.

Defining Multiple Policy Alternatives (OR Groups)

To define multiple alternatives for policy enforcement, you can define a set of assertions, called an OR group, within a service policy. At run time, based on the assertions defined in the OR group on the service side, a client has the flexibility to choose which one of the assertions to enforce.

For example, if a service-side policy defines an OR group that consists of the following assertions:

	
wss11-saml-with-certificates

	
wss11-username-with-certificates

At run-time, the client can choose to enforce either the wss11-saml-with certificates assertion OR wss11-username-with-certificates assertion.

There is no limit to the number of assertions that can be included in an OR group. Each assertion must be valid for the policy and should support the policy requirements. For example, you should not include a log assertion in an OR group that otherwise contains security assertions and that is designed to enforce security. In this case, the log assertion would pass in the event the security assertions failed, resulting in no security.

There are three predefined service policies that contain OR groups:

	
oracle/wss_saml_or_username_token_over_ssl_service_policy—For more information, see "oracle/wss_saml_or_username_token_over_ssl_service_policy".

	
oracle/wss_saml_or_username_token_service_policy—For more information, see "oracle/wss_saml_or_username_token_service_policy".

	
oracle/wss11_saml_or_username_token_with_message_protection_service_policy—For more information, see "oracle/wss11_saml_or_username_token_with_message_protection_service_policy".

Overriding Security Policy Configuration

Multiple Web services or clients may use the same policy. Each may have different policy configuration requirements such as username and password.

Oracle WSM policy configuration override enables you to update the configuration on a per service or client basis without creating new policies for each. In this way, you can create policies that define default configuration values and customize those values based on your run-time requirements.

For example, you might specify the username and password when configuring a client policy, as the information may vary from client to client.

For more information about overriding security policy configuration, see "Attaching Client Policies Permitting Overrides" and "Attaching Web Service Policies Permitting Overrides".

You can define whether a configuration property is overridable when creating custom assertions, as described in "Creating Custom Assertions" in Extensibility Guide for Oracle Web Services Manager.

Recommended Naming Conventions for Policies

The valid characters for directory, policy, and assertion template names are:

	
Uppercase and lowercase letters

	
Numerals

	
Currency symbol ($)

	
Underscore (_)

	
Hyphen (-)

	
Spaces

	
Note:

The first character in the name cannot be a hyphen or space.

Oracle recommends that you encode as much information as possible into the name of the policy so that you can tell, at a glance, what the policy does. For example, one of the predefined security policies that is delivered with Oracle Fusion Middleware 11g Release 1 (11.1.1) is named oracle/wss10_username_token_with_message_protection_service_policy. Figure 3-6 identifies the different parts of this predefined policy name.

Figure 3-6 Identifying the Different Parts of a Policy Name

[image: Description of Figure 3-6 follows]

Description of "Figure 3-6 Identifying the Different Parts of a Policy Name"

The following convention is used to name the predefined policies. The parts of the policy name are separated with an underscore character (_).

	
Path Location – All policies are identified by the directory in which the policy is located. All predefined policies that come with the product are in the oracle directory.

	
Web services Standard – If the policy uses a WS-Security standard, it is identified with wss10 (WS-Security 1.0) or wss11 (WS-Security 1.1). Or it could just be set to wss to indicate that it is independent of WS-Security 1.0 or 1.1.

	
Authentication token – If the policy authenticates users, then the type of token is specified. The predefined options include:

	
http_token – HTTP token

	
kerberos_token – Kerberos token

	
saml_token – SAML token

	
username_token – Username and password token

	
x509_token – X.509 certificate token

You can also define custom authentication tokens.

	
Transport security – If the policy requires that the message be sent over a secure transport layer, then the token name is followed by over_ssl, for example, wss_http_token_over_ssl_client_template.

	
Message protection – If the policy also provides message confidentiality and message integrity, then this is indicated using the phrase with_message_protection as in Figure 3-6.

	
Policy Type – Indicates the type of policy or assertion template— client or service. Use the term policy to indicate that it is a policy, or template to indicate that it is an assertion template. For example, there are predefined policy and template assertions that are distinguished, as follows:

wss10_message_protection_service_policy

wss10_message_protection_service_template

Whatever conventions you adopt, Oracle recommends you take some time to consider how to name your policies. This will make it easier for you to keep track of your policies as your enterprise grows and you create new policies.

It is recommended that you keep any policies you create in a directory that is separate from the oracle directory where the predefined policies are located. You can organize your policies at the root level, in a directory other than oracle, or in subdirectories. For example, all of the following are valid:

	
wss10_message_protection_service_policy

	
oracle/hq/wss10_message_protection_service_policy

	
hq/wss10_message_protection_service_policy

	
Note:

IUse of the prefix "oracle_" in the policy name (for example, oracle_wss_http_token_service_policy) is not recommended as a best practice.

4 Examining the Rearchitecture of Oracle WSM in Oracle Fusion Middleware

In Oracle Fusion Middleware 11g Release 1 (11.1.1), Oracle Web Services Manager (WSM) security and management has been completely redesigned and rearchitected. The previous release, Oracle WSM 10g, was delivered as a standalone product or as a component of the Oracle SOA Suite. In the 11g release, Oracle WSM has been integrated with Oracle WebLogic Server as part of the Oracle Fusion Middleware SOA Suite.

This chapter contains the following sections:

	
How Oracle WSM 10g is Redesigned in Oracle Fusion Middleware 11g Release 1 (11.1.1)

	
Comparing Oracle WSM 10g and Oracle WSM 11g Policies

	
Comparing Oracle Application Server 10g WS-Security with Oracle WSM 11g

	
Interoperability and Upgrade

How Oracle WSM 10g is Redesigned in Oracle Fusion Middleware 11g Release 1 (11.1.1)

Oracle WSM 10g has been rearchitected in Oracle Fusion Middleware 11g Release 1 (11.1.1), as follows:

	
Oracle WSM Agent functionality is integrated into Oracle WebLogic Server. In Oracle Fusion Middleware 11g, the Oracle WSM 10g Agents are managed by the security and management policy interceptors.

	
Policy management and monitoring is integrated into Oracle Enterprise Manager Fusion Middleware Control. The functions of the Oracle WSM Monitor and the Web Services Manager Control have been integrated into Fusion Middleware Control. This allows you to manage your enterprise from one central location.

	
Oracle WSM Policy Manager enforces additional Web service QoS requirements. The Oracle WSM Policy Manager manages not only security policies, but it also manages other types of policies such as Message Transmission Optimization Mechanism (MTOM), Reliable Messaging, Addressing, and Management.

	
The Oracle WSM Database is replaced by the Oracle WSM Repository which stores Oracle WSM metadata such as policies, policy sets, assertions templates, and policy usage data. The Oracle WSM Repository is available as a database (for production use) or as files in the file system (for development use in JDeveloper).

	
Oracle WSM 10g policies have been replaced by Oracle WSM 11g policies. For a discussion of the differences between the policies in 10g and 11g, see "Comparing Oracle WSM 10g and Oracle WSM 11g Policies".

Some Oracle WSM 10g features will not be supported in the first release of Oracle Fusion Middleware:

	
A subset of Oracle WSM 10g components will not be supported in this first release of Oracle Fusion Middleware 11g.

You can continue to use the Oracle WSM 10g Gateway components with Oracle WSM 10g policies in your applications. For information about Oracle WSM 10g interoperability, see "Interoperability with Oracle WSM 10g Security Environments" in Interoperability Guide for Oracle Web Services Manager.

	
Oracle WSM 10g supported policy enforcement agents for third-party application servers, such as IBM WebSphere and Red Hat JBoss. Oracle Fusion Middleware 11g Release 1 (11.1.1) only supports Oracle WebLogic Server. Support for third-party application servers will follow this release.

The comparison between 10g and 11g components is summarized in Table 4-1 and the components are identified in Figure 4-1 and Figure 4-2.

Table 4-1 Comparison of Oracle WSM 10g and Oracle Fusion Middleware 11g Release 1 (11.1.1)

	
	Description of Functionality	Oracle WSM 10g Component	Oracle Fusion Middleware 11g Release 1 (11.1.1) Component
	
1

	
Policy enforcement point

	
Oracle WSM Server and Client Agents, Oracle WSM Gateway

	
Oracle WSM Agent which manages the policy interceptors There is no equivalent component for the Oracle WSM Gateway in Oracle Fusion Middleware 11g Release 1 (11.1.1).

	
2

	
GUI Component to author policies and attach policies to Web services

	
Web Services Manager Control

	
Oracle Enterprise Manager Fusion Middleware Control

	
3

	
Component to manage policies

	
Oracle WSM Policy Manager

	
Oracle WSM Policy Manager

	
4

	
Component used to monitor Web services data

	
Oracle WSM Monitor

	
Oracle Enterprise Manager Fusion Middleware Control and Oracle Enterprise Manager Grid Control

	
5

	
Policy Store

	
Oracle WSM Database

	
Oracle WSM Repository

Figure 4-1 illustrate the Oracle WSM 10g components, and the numbers in Table 4-1 identify the components in this figure.

Figure 4-1 Oracle WSM 10g Components

[image: Description of Figure 4-1 follows]

Description of "Figure 4-1 Oracle WSM 10g Components"

Figure 4-2 shows the Oracle Fusion Middleware 11g Release 1 (11.1.1) components, and the numbers in Table 4-1 correspond to the components in the figure.

Figure 4-2 Oracle Fusion Middleware 11g Web Services Security Components

[image: Description of Figure 4-2 follows]

Description of "Figure 4-2 Oracle Fusion Middleware 11g Web Services Security Components"

Comparing Oracle WSM 10g and Oracle WSM 11g Policies

In both Oracle WSM 10g and Oracle WSM 11g, policies are used to enforce security. However, the structure of the policies is somewhat different. In Oracle WSM 10g a policy consists of a Request Pipeline and a Response Pipeline, each comprised of one or more policy steps.

For example, in Figure 4-3, the Request Pipeline consists of the following policy steps: Extract Credentials, LDAP Authenticate, and LDAP Authorize. The Response Pipeline contains a different policy step, XML Encrypt. The Request Pipeline and Response Pipelines can be comprised of different policy steps, and, therefore, different behaviors can be executed in the request and response messages.

Figure 4-3 Oracle WSM 10g Policy Pipeline

[image: Description of Figure 4-3 follows]

Description of "Figure 4-3 Oracle WSM 10g Policy Pipeline"

In Oracle WSM 11g, policies are comprised of one or more assertions, and you control the assertions that are used in the request and response messages. For example, in Figure 4-4, the example 11g policy contains two assertions:

	
wss11-username-with-certificates

	
binding-authorization

Figure 4-4 Oracle WSM 11g Policy Pipeline

[image: Description of Figure 4-4 follows]

Description of "Figure 4-4 Oracle WSM 11g Policy Pipeline"

When the request message is sent to the Web service, the assertions are executed in the order shown. When the response message is returned to the client, the same assertions are executed, but this time in reverse order. The behavior of the assertion for the request message differs from the behavior for the response message. And, in some instances, it is possible that nothing happens on the response. For example, in the example above, the authorization assertion is only executed as part of the request.

For information about how the Oracle WSM 10.1.3 policy steps can be mapped to Oracle WSM 11g predefined policies, see "Upgrading Oracle Web Services Manager Policies" in Oracle Fusion Middleware Upgrade Guide for Oracle SOA Suite, WebCenter Portal, and ADF Release 11g.

Comparing Oracle Application Server 10g WS-Security with Oracle WSM 11g

The following list identifies the primary enhancements to Oracle WSM 11g over Oracle Application Server 10g WS-Security:

	
Centralized policy management. Using the Oracle WSM Policy Manager, you centrally define security and management policies.

	
Custom policy support. You can create custom policies that support your security and management policy requirements, if the predefined policies do not meet your needs.

	
Toolset used to manage and attach policies. Security administrators can use Oracle Enterprise Manager Fusion Middleware Control to manage and attach Web services. Developers can attach security policies at development time, using Oracle JDeveloper or other IDE.

	
Policies managed at the enterprise level. Policies are defined at the enterprise level and not at the application level.

Interoperability and Upgrade

Oracle WSM 11g can interoperate with the following 10.1.3 components:

	
Oracle WSM, as described in "Interoperability with Oracle WSM 10g Security Environments" in Interoperability Guide for Oracle Web Services Manager.

	
Oracle WSM gateways, as described in "Interoperability with Oracle WSM 10g Security Environments" in Interoperability Guide for Oracle Web Services Manager.

	
Application Server, as described in "Interoperability with Oracle Containers for J2EE (OC4J) 10g Security Environments" in Interoperability Guide for Oracle Web Services Manager.

In addition, you can interoperate with the following components:

	
WebLogic Web services, as described "Interoperability with Oracle WebLogic Server 11g Web Service Security Environments" in Interoperability Guide for Oracle Web Services Manager.

	
Microsoft .NET, as described in "Interoperability with Microsoft WCF/.NET 3.5 Security Environments" in Interoperability Guide for Oracle Web Services Manager.

	
Oracle Service Bus, as described in "Interoperability with Oracle Service Bus 10g Security Environments" in Interoperability Guide for Oracle Web Services Manager.

	
Axis 1.4 and WSS4J 1.58, as described in "Interoperability with Axis 1.4 and WSS4J 1.58 Security Environments" in Interoperability Guide for Oracle Web Services Manager.

You can upgrade the following 10.1.3 features to Oracle Fusion Middleware 11g Release 1 (11.1.1):

	
OC4J Web services 10.1.3 to WebLogic Web services. See "Upgrading Your Java EE Applications" in Oracle Fusion Middleware Upgrade Guide for Java EE Release 11g.

	
Oracle WSM 10.1.3 policies to Oracle WSM 11g . See "Upgrading Oracle Web Services Manager (WSM) Policies" in Oracle Fusion Middleware Upgrade Guide for Oracle SOA Suite, WebCenter Portal, and ADF Release 11g.

	
Oracle Containers for Java (OC4J) 10.1.3 security environments to OWSM 11g. See "Upgrading Oracle Containers for J2EE (OC4J) Security Environments" in Oracle Fusion Middleware Upgrade Guide for Oracle SOA Suite, WebCenter Portal, and ADF Release 11g.

Part II

Basic Administration

Part II contains the following chapters:

	
Chapter 5, "Deploying Web Services Applications"

	
Chapter 6, "Administering Web Services"

	
Chapter 7, "Managing Web Service Policies"

	
Chapter 8, "Attaching Policies to Web Services"

	
Chapter 9, "Creating and Managing Policy Sets"

	
Chapter 10, "Setting Up Your Environment for Policies"

	
Chapter 11, "Configuring Policies"

	
Chapter 12, "Testing Web Services"

	
Chapter 13, "Monitoring the Performance of Web Services"

5 Deploying Web Services Applications

This chapter contains the following sections:

	
Overview

	
Deploying Web Services Applications

	
Redeploying a Web Services Application

	
Undeploying a Web Services Application

Overview

As you work with Web services, you will find that you can deploy and undeploy their associated applications in different ways. Follow these guidelines when deploying applications associated with Web services:

	
Use Oracle Enterprise Manager Fusion Middleware Control to deploy Java EE applications that require Oracle Metadata Services (MDS) or that take advantage of the Oracle Application Development Framework (Oracle ADF).

	
If your application is a SOA composite, use the SOA Composite deployment wizard.

	
If your application is a WebCenter application, use Oracle Enterprise Manager Fusion Middleware Control.

	
If your application is not a SOA composite or it does not require an MDS repository or ADF connections, then you can deploy your application using Fusion Middleware Control or the Oracle WebLogic Server Administration Console.

	
Note:

To deploy WebLogic Web services, use only the Oracle WebLogic Administration Console.

This chapter provides an overview of the basic procedure for deploying a Web service application. For more information about deploying applications, see "Deploying Applications" in Oracle Fusion Middleware Administrator's Guide. In particular, take note of the following sections:

	
Deploying, Undeploying, and Redeploying Java EE Applications

	
Deploying, Undeploying, and Redeploying Oracle ADF Applications

	
Deploying, Undeploying, and Redeploying SOA Composite Applications

	
Deploying, Undeploying, and Redeploying WebCenter Applications

Deploying Web Services Applications

The following is an overview of the basic procedure for deploying a Web service application using the Oracle Enterprise Manager Fusion Middleware Control.

To deploy a Web services application

	
From the navigation pane, expand WebLogic Domain.

	
Expand the domain in which you want to deploy the Web service, and then select the instance of the server on which you want to deploy it.

	
Using Fusion Middleware Control, click WebLogic Server.

	
Select Application Deployment, and then select Deploy.

The first screen of the Deploy process is displayed, as shown in Figure 5-1.

Figure 5-1 Select Archive Page

[image: Description of Figure 5-1 follows]

Description of "Figure 5-1 Select Archive Page"

	
Click on one of the following Archive or Exploded Directory options:

	
Archive is on the machine where this web browser is running.

	
Archive or exploded directory is on the server where Enterprise Manager is running.

	
A deployment plan is an XML file that you use to configure an application for deployment to a specific environment. If you do not already have a deployment plan for the Web services application you are deploying, one is created for you when you deploy the application.

Click one of the following Deployment Plan options:

	
Automatically create a new deployment plan

	
Deployment plan is present on local host

	
Deployment plan is already present on the server where Enterprise Manager is running

	
Click Next.

	
On the Select Target page, select the target (WebLogic server or cluster) to which you want this application deployed, and click Next.

Figure 5-2 Select Target Page

[image: Description of Figure 5-2 follows]

Description of "Figure 5-2 Select Target Page"

	
On the Application Attributes page, enter the attributes for this Web services application, and click Next. Application Name is the only required attribute.

However, if you want to be able to later redeploy this Web service application without first having to undeploy it, you must also assign a version number.

The context root is the URI for the web module. Each web module or EJB module that contains web services may have a context root.

Figure 5-3 Application Attributes Page

[image: Description of Figure 5-3 follows]

Description of "Figure 5-3 Application Attributes Page"

	
On the Deployment Settings page, edit the deployment settings for this Web services application, as shown in Figure 5-4.

Figure 5-4 Deployment Settings Page

[image: Description of Figure 5-4 follows]

Description of "Figure 5-4 Deployment Settings Page"

	
To save a copy of the deployment plan to your local system, click Save Deployment Plan.

	
To edit the deployment plan, possibly to add advanced deployment options, click Edit Deployment Plan. If you do so, the Edit Deployment Plan screen is displayed, as shown in Figure 5-5. After making changes to the deployment plan, click Apply to make the change effective.

Figure 5-5 Edit Deployment Plan

[image: Description of Figure 5-5 follows]

Description of "Figure 5-5 Edit Deployment Plan"

	
Click Deploy on the Deployment Settings page. If successful, the Deployment Succeeded screen is displayed.

Undeploying a Web Services Application

The procedure for undeploying or redeploying a Web service is the same as the procedure for any application.

To undeploy a Web services application

	
From the navigation pane, expand Application Deployments, then select the application that you want to undeploy.

The Application Deployment is displayed

	
Using Fusion Middleware Control, click Application Deployment.

	
From the Application Deployment menu, select Application Deployment, then Undeploy.

The undeploy confirmation page is displayed.

	
Click Undeploy.

Processing messages are displayed.

	
When the operation completes, click Close.

Redeploying a Web Services Application

When you redeploy a Web service application, the running application is automatically stopped and then restarted.

Redeploy an application if:

	
You have made changes to the application and you want to make the changes available.

	
You have made changes to the deployment plan.

	
You want to redeploy an entirely new archive file in a new location.

When you redeploy an application, you can redeploy the original archive file or exploded directory, or you can specify a new archive file in place of the original one. You can also change the deployment plan that is associated with the application.

	
Note:

Applications that were previously deployed without a version cannot be redeployed. To redeploy the not-versioned applications, you need to undeploy and deploy the application.

To redeploy a Web services application

The steps that you follow to redeploy a Web service application are identical to those required when you first deployed the application (see Deploying Web Services Applications), with two exceptions: you must redeploy the application with a new version, and you can optionally set the retirement policy for the current version. Both of these actions occur at Step 3 of redeployment process, as shown in Figure 5-6.

Figure 5-6 Setting Application Attributes During Redeploy

[image: Description of Figure 5-6 follows]

Description of "Figure 5-6 Setting Application Attributes During Redeploy"

6 Administering Web Services

Oracle Enterprise Manager Fusion Middleware Control is the primary interface that you can use to manage Oracle Fusion Middleware Web Services. You can also use WebLogic Scripting Tool (WLST) commands to perform some configuration tasks for SOA, ADF, and WebCenter services. This chapter describes how to navigate to the pages in Fusion Middleware Control where you perform many of the tasks to manage your Web services, and it describes how to perform basic administration tasks. When applicable, it describes how to perform the task using WLST also. This chapter includes the following sections:

	
Viewing All Current Web Services for a Server

	
Viewing the Web Services in a Domain Using WLST

	
Navigating to the Web Services Summary Page for an Application

	
Viewing the Web Services in Your Application

	
Viewing the Web Services and References in a SOA Composite

	
Viewing the Details for a Web Service Endpoint

	
Viewing Web Service Clients

	
Displaying the Web Service WSDL Document

	
Configuring the Web Service Endpoint

	
Enabling or Disabling a Web Service

	
Enabling or Disabling RESTful Web Services

	
Enabling or Disabling the Display of the Web Service WSDL Document

	
Enabling or Disabling the Exchange of Metadata

	
Enabling or Disabling the Web Service Test Endpoint

	
Validating the Request Message

	
Configuring Web Services Atomic Transactions

	
Setting the Size of the Request Message

	
Configuring Asynchronous Web Services

	
Enabling and Disabling MTOM

	
Configuring the Web Service Client

Viewing All Current Web Services for a Server

Follow the procedures below to view all of the currently-deployed Web services for a given server.

To view all current currently-deployed Web services for a given server:

	
In the navigator pane, expand WebLogic Domain to show the domain in which you want to see the Web services.

	
Expand the domain.

	
Select the server for which you want to view all current Web services.

	
Using Fusion Middleware Control, click WebLogic Server and then Web Services. The server-specific Web Services Summary page appears, as shown in Figure 6-1.

You can view tabs for Java EE Web services, non-SOA Oracle Web services such as those for ADF and WebCenter, and SOA Web services.

The tabs that are displayed depend on the Web services deployed on that server.

From this page you can click Attach Policies to attach one or more policies to one or more Web services. Note that attaching policies from this page (bulk attachment) does not perform validation on the policies that you attach.

Figure 6-1 Server-Specific Web Services Summary Page

[image: Description of Figure 6-1 follows]

Description of "Figure 6-1 Server-Specific Web Services Summary Page"

Viewing the Web Services in a Domain Using WLST

	
Note:

This procedure applies to Oracle Infrastructure Web services only.

To view all the current Web services in a domain:

	
Connect to the running instance of WebLogic Server for which you want to view the Web services as described in "Accessing the Web Services Custom WLST Commands".

	
Use the listWebServices() WLST command to display a list of the Web services. If you don't specify a Web service application or a SOA composite, the command lists all services in all applications and composites for every server instance in the domain.

listWebServices (application,composite,[detail])

For example:

wls:/jrfServer_domain/serverConfig> listWebServices()

/jrfServer_domain/jrfServer/jaxws-sut-no-policy :
 moduleName=jaxws-service, moduleType=web, serviceName={http://namespace/}TestService

/jrfServer_domain/jrfServer/jaxws-sut :
 moduleName=jaxws-sut-service, moduleType=web, serviceName={http://namespace/}TestService

	
Set the detail argument of the listWebServices command to true to view the endpoint (port) and policy details for all applications and composites in the domain, the secure status of the endpoints, any configuration overrides and constraints, and if the endpoints have a valid configuration. Because you can specify the priority of a global or directly attached policy (using the reference.priority configuration override), the effective field indicates if directly attached policies are in effect for the endpoint.

	
Note:

To simplify endpoint management, all directly attached policies are shown in the output regardless of whether they are in effect for the endpoint. In contrast, only globally attached policies that are in effect for the endpoint are displayed.

An endpoint is considered secure if the policies attached to it (either directly or externally) enforce authentication, authorization, or message protection behaviors.

	
Note:

The listWebServices command output does not include details on SOA components, including policy attachments.

For example:

wls:/jrfServer_domain/serverConfig> listWebServices(detail='true')

/jrfServer_domain/jrfServer_admin/jaxws-sut-no-policy :
 moduleName=jaxws-service, moduleType=web, serviceName={http://namespace/}TestService
 enableTestPage: true
 enableWSDL: true

 TestPort http://host.us.oracle.com:9315/jaxws-service/TestService
 enable: true
 enableREST: false
 enableSOAP: true
 maxRequestSize: -1
 loggingLevel: NULL
 wsat.flowOption: NEVER
 wsat.version: DEFAULT
 Constraint: No Constraint
 (global) security : oracle/wss_saml_or_username_token_service_policy, enabled=true
 /policysets/global/all-domains-default-web-service-policies : Domain("*")
 reference.priority=1
 Constraint: HTTPHeader('VIRTUAL_HOST_TYPE','external')
 (global) security : oracle/wss10_message_protection_service_policy, enabled=true
 /policysets/global/domainExternal : Domain("*")
 Attached policy or policies are valid; endpoint is secure.

/jrfServer_domain/jrfServer_admin/jaxws-sut :
 moduleName=jaxws-sut-service, moduleType=web, serviceName={http://namespace/}TestService
 enableTestPage: true
 enableWSDL: true

 TestPort http://host.us.oracle.com:9315/jaxws-sut-service/TestService
 enable: true
 enableREST: false
 enableSOAP: true
 maxRequestSize: -1
 loggingLevel: NULL
 wsat.flowOption: NEVER
 wsat.version: DEFAULT
 management : oracle/log_policy, enabled=true
 security : oracle/wss_username_token_service_policy , enabled=true , effective=false
 Constraint: No Constraint
 (global) security : oracle/wss_saml_or_username_token_service_policy, enabled=true
 /policysets/global/all-domains-default-web-service-policies : Domain("*")
 reference.priority=1
 Constraint: HTTPHeader('VIRTUAL_HOST_TYPE','external')
 (global) security : oracle/wss10_message_protection_service_policy, enabled=true
 /policysets/global/domainExternal : Domain("*")
 Attached policy or policies are valid; endpoint is secure.

For more information about the listWebServices command, see "Web Services Custom WLST Commands" in WebLogic Scripting Tool Command Reference.

Navigating to the Web Services Summary Page for an Application

Follow the procedure below to navigate to the page where you can see the list of Web services for your application.

To navigate to the Web services summary page for an application:

	
From the navigator pane, click the plus sign (+) for the Application Deployments folder to expose the applications in the domain, and select the application.

The Application Deployment home page is displayed.

	
Using Fusion Middleware Control, click Application Deployment, then click Web Services.

This takes you to the Web Services summary page for your application. Figure 6-2 shows the Web Services summary page for an ADF or WebCenter application.

	
Note:

In the Web Service Details section of the page, Oracle Infrastructure Web service provider endpoints display n/a in the Endpoint Enabled column.

Figure 6-3 shows the Web Services summary page for a WebLogic Java EE application.

	
Note:

The Java EE Web Service Clients tab is displayed only if there are client instances in the application.

Figure 6-2 Web Services Home Page for ADF and WebCenter Applications

[image: Description of Figure 6-2 follows]

Description of "Figure 6-2 Web Services Home Page for ADF and WebCenter Applications"

Figure 6-3 Web Services Home Page for WebLogic Java EE Applications

[image: Description of Figure 6-3 follows]

Description of "Figure 6-3 Web Services Home Page for WebLogic Java EE Applications"

Viewing the Web Services in Your Application

Use the procedures described in the following sections to view the Web services in your application.

Using Fusion Middleware Control

Navigate to the home page for your Web service, as described in "Navigating to the Web Services Summary Page for an Application". From the Web Services Summary page, you can do the following:

	
View the Web services in the application.

	
View the Web service configuration, endpoint status, policy faults, and more. (ADF and WebCenter applications only.)

	
View and monitor Web services faults, including Security, Reliable Messaging, MTOM, Management, and Service faults. (ADF and WebCenter applications only.)

	
View and monitor Security violations, including authentication, authorization, message integrity, and message confidentiality violations. (ADF and WebCenter applications only.)

	
Navigate to pages where you can configure your Web services endpoints, including enabling and disabling the endpoint, and attaching policies to Web services.

Using WLST

	
Note:

This procedure applies to Oracle Infrastructure Web services only.

To view the Web services in your application:

	
Connect to the running instance of WebLogic Server to which the application is deployed as described in "Accessing the Web Services Custom WLST Commands".

	
Use the listWebServices WLST command to display a list of the Web services in your application. You must specify the complete application path name to identify the application and the server instance to which it is deployed.

listWebServices (application,composite,[detail]

For example:

wls:/wls-domain/serverConfig>listWebServices("wls-domain/AdminServer/jaxwsejb30ws")
/wls-domain/AdminServer/jaxwsejb30ws:
 moduleName=jaxwsejb,moduleType=web,serviceName={http://namespace/}JaxwsWithHandlerChainBeanService
 moduleName=jaxwsejb, moduleType=web, serviceName={http://namespace/}WsdlConcreteService
 moduleName=jaxwsejb, moduleType=web, serviceName={http://namespace/}EchoEJBService
 moduleName=jaxwsejb, moduleType=web, serviceName={http://namespace/}CalculatorService
 moduleName=jaxwsejb, moduleType=web, serviceName={http://namespace/}DoclitWrapperWTJService

For details about the listWebServices command, see "Web Services Custom WLST Commands" in WebLogic Scripting Tool Command Reference.

Viewing the Web Services and References in a SOA Composite

Use the following procedure to view the Web services, references, and components in a SOA composite application:

	
From the navigator, click the plus sign (+) for SOA deployments.

	
Select soa-infra, expand the SOA partition (for example, the default partition) and select the target SOA composite application.

The SOA composite home page displays.

	
Select the Dashboard tab if it is not already selected.

The Component Metrics section of this tab lists the SOA components being used in the composite application, and the Services and References section displays the Web service and reference bindings, as shown in Figure 6-4.

Figure 6-4 SOA Composite Application Dashboard Page

[image: Description of Figure 6-4 follows]

Description of "Figure 6-4 SOA Composite Application Dashboard Page"

Viewing the Details for a Web Service Endpoint

Use the procedures described in the following sections to view the details for a Web service endpoint (port) using Oracle Enterprise Manager Fusion Middleware Control and WLST.

Using Fusion Middleware Control

In Fusion Middleware Control, the steps you follow to view the details for a Web service endpoint depend on the application type, as described in the following sections.

To view the details for a non-SOA Oracle Infrastructure or WebLogic Web service endpoint:

	
Navigate to the Web Services Summary page as described in "Navigating to the Web Services Summary Page for an Application".

	
In the Web Service Details section of the page, click on the plus (+) for the Web service to display the Web service endpoints if they are not already displayed.

	
Click the name of the endpoint to navigate to the Web Service Endpoint page.

	
From the Web Service Endpoint page, you can do the following:

	
Click the Operations tab to see the list of operations for this endpoint.

	
Click the OWSM Policies tab to see the policies attached to this endpoint, if the endpoint has a valid configuration, and if it is secure.

	
Click the Charts tab to see a graphical display of the faults for this endpoint. (Oracle Infrastructure Web Services only.)

	
Click the Configuration tab to see the configuration for this endpoint. (Oracle Infrastructure Web Services only.)

	
Note:

You can also view details about security violations for an endpoint. For more information, see "Viewing the Security Violations for a Web Service".

As an alternative method of viewing the details for a Web service endpoint, you can instead navigate to the server-wide Web Services Summary page, as described in "Viewing All Current Web Services for a Server", which lists all of the Web services, and click the name of the endpoint to navigate to the specific Web Service Endpoint page.

To view the Web service endpoint configuration for a SOA composite application:

	
Navigate to the home page for the SOA composite as described in "Viewing the Web Services and References in a SOA Composite".

	
In the Services and References section of the page, click the name of the service or reference to display the Service Home or Reference Home page, as appropriate.

	
From the Service Home or Reference Home page, you can do the following:

	
Click the Dashboard tab, if it is not already selected, to see a graphic representation of the total incoming messages and faults since server startup, and recently rejected messages, including the message name, time of the fault, and the type of fault (business or system).

	
Click the Policies tab to view or change the policies attached to this endpoint.

	
Click the Faults and Rejected Messages tab to see a list of faults and rejected messages, including details such as the error message, time of the fault, and the associated composite instance ID.

	
Click the Properties tab to view and modify the configuration for this endpoint.

For additional information about SOA composite endpoints, see "Administering Binding Components" in Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle Business Process Management Suite.

Using WLST

To view the details for a Web service endpoint (port):

	
Note:

This procedure applies to Oracle Infrastructure Web services only.

	
Connect to the running instance of WebLogic Server to which the application is deployed as described in "Accessing the Web Services Custom WLST Commands".

	
Use the listWebServices WLST command to display a list of the Web services in your application as described in "Viewing the Web Services in Your Application".

	
Use the listWebServicePorts command to display the endpoint name and endpoint URL for a Web service.

listWebServicePorts(application,moduleOrCompName,moduleType,serviceName)

For example, to display the endpoint for the WsdlConcreteService:

wls:/wls-domain/serverConfig> listWebServicePorts("/wls-domain/AdminServer/jaxwsejb30ws","jaxwsejb",
"web","{http://namespace/}WsdlConcreteService")

WsdlConcretePort http://host.us.oracle.com:7001/jaxwsejb/WsdlAbstract

	
Use the listWebServiceConfiguration command to view the configuration details for a Web service endpoint.

listWebServiceConfiguration(application,moduleOrCompName,moduleType,serviceName,[subjectName])

For example, to view the configuration details for the WsdlConcretePort:

wls:/wls-domain/serverConfig> listWebServiceConfiguration("/wls-domain/AdminServer/jaxwsejb30ws",
"jaxwsejb","web","{http://namespace/}WsdlConcreteService","WsdlConcretePort")
enable: true
enableREST: false
maxRequestSize: -1
loggingLevel: NULL

	
Use the listWebServicePolicies command to view the policies that are attached to a Web service endpoint.

listWebServicePolicies(application,moduleOrCompName,moduleType,serviceName,subjectName)

For example, to view the policies attached to the WsdlConcretePort endpoint and any policy override settings:

wls:/wls_domain/serverConfig> listWebServicePolicies("/wls_domain/AdminServer/jaxwsejb30ws",
"jaxwsejb","web","{http://namespace/}WsdlConcreteService","WsdlConcretePort")

WsdlConcretePort :
addressing : oracle/wsaddr_policy , enabled=true
management : oracle/log_policy , enabled=true
security : oracle/wss_username_token_service_policy, enabled=true
Attached policy or policies are valid; endpoint is secure.

For more information about these WLST commands and their arguments, see "Web Services Custom WLST Commands" in WebLogic Scripting Tool Command Reference.

Viewing Web Service Clients

The following sections describe how to view Web service clients for your application.

Using Fusion Middleware Control

The steps you follow to view a Web service client depend on the application type (SOA reference, ADF DC, WebCenter, or asynchronous Callback client), as described in the following sections.

Viewing SOA References

Use the following procedure to view a SOA reference client:

	
From the navigator pane, click the plus sign (+) for SOA deployments.

	
Select soa-infra, expand the SOA partition (for example, the default partition) and select the target SOA composite application.

The SOA composite home page displays.

	
Click the Dashboard tab, if it is not already selected.

	
In the Services and References portion of the page, select the SOA reference to view.

	
In the Reference Home page, click the tabs to view the client data.

Viewing Connection-Based Web Service Clients

Use the following procedure to view a connection-based Web service client such as an ADF DC Web service client, ADF JAX-WS Indirection Proxy, or WebCenter client:

	
From the navigator pane, click the plus sign (+) for the Application Deployments folder to expose the applications in the farm, and select the application.

The Application Deployment home page is displayed.

	
From the Application Deployment menu, select ADF, and then Configure ADF Connections.

	
On the ADF Connections Configuration page, select a connection from the Web Service Connections section of the page, and then select the endpoint from the Configure Web Service list.

	
In the Configure Web Service page, click the tabs to view the client data.

Viewing WebCenter Portlets

Use the following procedure to view a WebCenter portlet:

	
From the navigator pane, click the plus sign (+) for the WebCenter folder and WebCenter Spaces folder to display the WebCenter spaces.

	
Click the name of the WebCenter space to view.

	
From the WebCenter menu, select Settings and Service Configuration.

The Webcenter Service Configuration page is displayed.

	
Select Portlet Producers to view the WebCenter portlets.

Viewing Java EE Web Service Clients

Use the following procedure to view Java EE Web service clients:

	
From the navigator pane, click the plus sign (+) for the Application Deployments folder to expose the applications in the farm, and select the Java EE application.

The Application Deployment home page is displayed.

	
From the Application Deployment menu, select Web Services.

The Web Services (Java EE) home page is displayed.

	
Select the Java EE Web Service Clients tab to view the clients in the application.

	
Use the Monitoring tab to view the run-time client instances in the application.

	
Use the Configuration tab to view the client ports and attach or detach policies.

Viewing Asynchronous Web Service Callback Clients

Use the following procedure to view an asynchronous Web service Callback client. Callback clients are used only by asynchronous Web services to return the response to the caller. For more information, see "Developing Asynchronous Web Services" in Developer's Guide for Oracle Infrastructure Web Services.

	
Navigate to the endpoint for the asynchronous Web service, as described in "Viewing the Details for a Web Service Endpoint".

	
Click Callback Client in the upper right portion of the endpoint page.

Using WLST

Use the following procedure to view the Web service clients using WLST commands:

	
Note:

This procedure applies to Oracle Infrastructure Web service clients only.

	
Connect to the running instance of WebLogic Server to which the application is deployed as described in "Accessing the Web Services Custom WLST Commands".

	
Use the listWebServiceClients WLST command to display a list of the Web service clients.

listWebServiceClients(application,composite,[detail])

This command enables you to list the clients for an application, a SOA composite, or a domain. To list the client information for an application or SOA composite, specify the appropriate argument. If you do not specify an application or SOA composite, the command outputs information, including the module name, module type, and SOA reference name for all the Web service clients in all applications and composites in every server instance in the domain. To view details about each client, including the endpoint and policies, set the detail argument to true.

For example:

wls:/soainfra/serverConfig> listWebServiceClients(detail=true)

/soainfra/soa_server1/soa-infra :
 compositeName=default/SampleSOAFirstPrj[1.0], moduleType=soa, serviceRefName=ReferenceToSecondSOA
 BPELProcess1_pt serviceWSDLURI=
 http://localhost:8001/soa-infra/services/default/
 SampleSOASecondPrj/BPELProcess1.wsdl
 oracle.webservices.contentTransferEncoding=base64
 oracle.webservices.charsetEncoding=UTF-8
 oracle.webservices.operationStyleProperty=document
 oracle.webservices.soapVersion=soap1.1
 oracle.webservices.chunkSize=4096
 oracle.webservices.preemptiveBasicAuth=false
 oracle.webservices.session.maintain=false
 oracle.webservices.encodingStyleProperty=
 http://schemas.xmlsoap.org/soap/encoding/
 oracle.webservices.donotChunk=true
 No attached policies found; endpoint is not secure.

/soainfra/AdminServer/ADFDCApp :
 moduleName=adfdc, moduleType=wsconn, serviceRefName=AppModuleService
 AppModuleServiceSoapHttpPort serviceWSDLURI=
 http://localhost:8001/ADF-App-context-root/
 AppModuleService?wsdl
 security : oracle/wss_username_token_client_policy, enabled=true
 Attached policy or policies are valid; endpoint is secure.

Note that the output displays SOA references (using the serviceRefName argument) for the SOA composites default/SampleSOAFirstPrj[1.0]. To list the SOA references for a SOA composite, specify the composite name in the command, for example listWebServiceClients(None,'default/SampleSOAFirstPrj[1.0]').

ADF and WebCenter clients are specified by the moduleType=wsconn argument in the output.

For more information about the WLST commands and their arguments, see "Web Services Custom WLST Commands" in WebLogic Scripting Tool Command Reference.

Displaying the Web Service WSDL Document

Follow the procedure below to display the WSDL document for a Web service.

To display the WSDL document for a Web service:

	
Navigate to the Web Services Summary page.

	
In the Web Service Details section of the page, click on the plus (+) for the Web service to display the Web service endpoints if they are not already displayed.

	
Click the name of the endpoint to navigate to the Web Service Endpoint page.

	
In the WSDL Document field, click the endpoint name to display the WSDL for the Web service (Figure 6-5).

Figure 6-5 Web Service Endpoint page with Web Service WSDL

[image: Description of Figure 6-5 follows]

Description of "Figure 6-5 Web Service Endpoint page with Web Service WSDL"

Configuring the Web Service Endpoint

Follow the procedures below to configure the Web service endpoint (or port).

	
Note:

The procedures described in this section apply to Oracle Infrastructure Web services and providers only.
Oracle Infrastructure Web service providers implement the java.xml.ws.Provider interface. On the Web Service Endpoint page, they display the Implementation Class and provide a subset of configuration properties.

Using Fusion Middleware Control

Use the following procedure to configure the Web service endpoint using Fusion Middleware Control:

	
Navigate to the Web Service Endpoint page, or the Service Home page (for SOA composites), as described in "Viewing the Details for a Web Service Endpoint".

	
Click the Configuration tab. For SOA composites, click the Properties tab.

	
Set the configuration attributes and click Apply.

For more information about setting the configuration attributes, see:

	
"Enabling or Disabling a Web Service"

	
"Enabling or Disabling RESTful Web Services"

	
"Enabling or Disabling the Display of the Web Service WSDL Document"

	
"Enabling or Disabling the Exchange of Metadata"

	
"Enabling or Disabling the Web Service Test Endpoint"

	
"Setting the Log Level for Diagnostic Logs"

	
"Validating the Request Message"

	
"Configuring Web Services Atomic Transactions"

	
"Setting the Size of the Request Message"

	
"Configuring Asynchronous Web Services"

	
For ADF and WebCenter applications, restart the Web service application. You do not need to restart a SOA composite.

	
Note:

You need to wait approximately 30 seconds (or the equivalent of the configured Graceful Shutdown Timeout time) between stopping and restarting the application. During this time, the server is allowing all global transactions to complete before shutting down the application. If you do not wait the configured Graceful Shutdown Timeout time, then the application will not be restarted appropriately and you will not be able to access it. To avoid waiting the graceful shutdown timeout period, you can restart the application twice.

Using WLST

Use the following procedure to configure the Web service endpoint (port) using WLST:

	
Connect to the running instance of WebLogic Server to which the application is deployed as described in "Accessing the Web Services Custom WLST Commands".

	
Use the listWebServices WLST command to display a list of the Web services in your application as described in "Viewing the Web Services in Your Application".

	
Use the listWebServicePorts command to display the endpoint name and endpoint URL for a Web service.

listWebServicePorts(application,moduleOrCompName,moduleType,serviceName)

For example, to display the endpoint for the WsdlConcreteService:

wls:/wls-domain/serverConfig> listWebServicePorts("/wls-domain/AdminServer/jaxwsejb30ws",None,"web",
"{http://namespace/}WsdlConcreteService")

WsdlConcretePort http://host.us.oracle.com:7001/jaxwsejb/WsdlAbstract

	
Use the listWebServiceConfiguration command to view the configuration details for a Web service endpoint.

listWebServiceConfiguration(application,moduleOrCompName,moduleType,serviceName,[subjectName])

For example, to view the configuration details for the WsdlConcretePort:

wls:/wls-domain/serverConfig> listWebServiceConfiguration("/wls-domain/AdminServer/jaxwsejb30ws","jaxwsejb",
"web","{http://namespace/}WsdlConcreteService","WsdlConcretePort")
enable: true
enableREST: false
maxRequestSize: -1
loggingLevel: NULL

Alternatively, you can set the detail argument to true in the listWebServices command to view the configuration details for the endpoint as shown in "Viewing the Web Services in a Domain Using WLST" in "Viewing All Current Web Services for a Server".

	
Use the setWebServiceConfiguration command to set or change the endpoint configuration. Specify the properties to be set or changed using the itemProperties argument.

setWebServiceConfiguration(application,moduleOrCompName,moduleType,
serviceName,subjectName,itemProperties)

For example, to change the logging level to SEVERE for the WsdlConcretePort, use the following command:

wls:/wls-domain/serverConfig> setWebServiceConfiguration("/wls-domain/AdminServer/jaxwsejb30ws",
"jaxwsejb","web","{http://namespace/}WsdlConcreteService","WsdlConcretePort",
[("loggingLevel","SEVERE")])

Please restart application to uptake the policy changes.

For more information about the configurable properties, see:

	
"Enabling or Disabling a Web Service"

	
"Enabling or Disabling RESTful Web Services"

	
"Enabling or Disabling the Display of the Web Service WSDL Document"

	
"Enabling or Disabling the Web Service Test Endpoint"

	
"Configuring Web Services Atomic Transactions"

	
"Setting the Size of the Request Message"

	
"Setting the Log Level for Diagnostic Logs"

	
Note:

If any configuration item contains an unrecognized property name or an invalid value, this set command is rejected and an error message is displayed.

	
For ADF and WebCenter applications, restart the Web service application. You do not need to restart a SOA composite.

	
Note:

You need to wait approximately 30 seconds (or the equivalent of the configured Graceful Shutdown Timeout time) between stopping and restarting the application. During this time, the server is allowing all global transactions to complete before shutting down the application. If you do not wait the configured Graceful Shutdown Timeout time, then the application will not be restarted appropriately and you will not be able to access it. To avoid waiting the graceful shutdown timeout period, you can restart the application twice.

For more information about these WLST commands and their arguments, see "Web Services Custom WLST Commands" in WebLogic Scripting Tool Command Reference.

Enabling or Disabling a Web Service

When a Web service application is deployed, the Web service endpoint is enabled by default if no errors are encountered. If there are errors, the Web service application is deployed, but the Web service endpoint is not enabled.

You may need to temporarily make a Web service unavailable by disabling the Web service. For example, you may need to correct an invalid policy reference. When you disable a Web service, requests to the Web service will fail. To disable a Web service, you must make the endpoint on which the Web service receives requests unavailable.

	
Note:

The procedures described in this section apply to Oracle Infrastructure Web services only.

Using Fusion Middleware Control

To disable an ADF or WebCenter Web service endpoint:

	
Navigate to the Web Services Summary page.

	
In the Web Service Details section of the page, click on the plus (+) for the Web service to display the Web service endpoints if they are not already displayed.

	
Click the name of the endpoint to navigate to the Web Service Endpoint page.

	
From the Web Service Endpoint page, click the Configuration tab.

	
In the Endpoint Enabled field, select Disabled from the menu, and click Apply.

	
Restart the application that uses the Web service.

	
Note:

You need to wait approximately 30 seconds (or the equivalent of the configured Graceful Shutdown Timeout time) between stopping and restarting the application. During this time, the server is allowing all global transactions to complete before shutting down the application. If you do not wait the configured Graceful Shutdown Timeout time, then the application will not be restarted appropriately and you will not be able to access it. To avoid waiting the graceful shutdown timeout period, you can restart the application twice.

Using WLST

To disable a Web service endpoint (port) using WLST, use the setWebServiceConfiguration command. Set the enable property of the itemProperties argument to false to disable the endpoint and to true to enable it.

The procedure for using this command is described in "Using WLST" in "Configuring the Web Service Endpoint".

For example, to disable the endpoint WsdlConcretePort, use the following command:

wls:/wls-domain/serverConfig> setWebServiceConfiguration
("/wls-domain/AdminServer/jaxwsejb30ws","jaxwsejb","web","{http://namespace/}WsdlConcreteService",
"WsdlConcretePort",[("enable","false")])

Please restart application to uptake the policy changes.

For more information about this WLST command, see "Web Services Custom WLST Commands" in WebLogic Scripting Tool Command Reference.

Enabling or Disabling RESTful Web Services

You can enable or disable a Web services endpoint to accept messages in Representational State Transfer (REST) format.

	
Note:

The procedures described in this section apply to Oracle Infrastructure Web services only.

Using Fusion Middleware Control

To enable or disable Web service styles:

	
Navigate to the Web Service Endpoint page, or the Service Home page (for SOA composites), as described in "Viewing the Details for a Web Service Endpoint".

	
Click the Configuration tab. For SOA composites, click the Properties tab.

	
In the REST Enabled field, select True from the menu to enable REST, or select False to disable REST, and click Apply.

Figure 6-8 indicates the location of the REST Enabled field for an ADF or WebCenter endpoint.

Figure 6-6 Enabling and Disabling RESTful Web Services

[image: Description of Figure 6-6 follows]

Description of "Figure 6-6 Enabling and Disabling RESTful Web Services"

	
For ADF and WebCenter applications, restart the Web service application. You do not need to restart a SOA composite.

	
Note:

You need to wait approximately 30 seconds (or the equivalent of the configured Graceful Shutdown Timeout time) between stopping and restarting the application. During this time, the server is allowing all global transactions to complete before shutting down the application. If you do not wait the configured Graceful Shutdown Timeout time, then the application will not be restarted appropriately and you will not be able to access it. To avoid waiting the graceful shutdown timeout period, you can restart the application twice.

Using WLST

To enable or disable a Web services endpoint (port) to accept messages in REST format using WLST, use the setWebServiceConfiguration command. Set the enableREST property of the itemProperties argument to true to enable REST and to false to disable it.

The procedure for using this command is described in "Using WLST" in "Configuring the Web Service Endpoint".

For example, to enable the REST format for the WsdlConcretePort, use the following command:

wls:/wls-domain/serverConfig> setWebServiceConfiguration
("/wls-domain/AdminServer/jaxwsejb30ws","jaxwsejb","web","{http://namespace/}WsdlConcreteService",
"WsdlConcretePort",[("enableREST","true")])

Please restart application to uptake the policy changes.

For more information about this WLST command, see "Web Services Custom WLST Commands" in WebLogic Scripting Tool Command Reference.

Enabling or Disabling the Display of the Web Service WSDL Document

The following procedures describe how to enable or disable the display of the Web service WSDL document.

	
Note:

The procedures described in this section apply to Oracle Infrastructure Web services and providers only.

Using Fusion Middleware Control

To enable or disable the display of the Web service WSDL document:

	
Navigate to the Web Service Endpoint page, or the Service Home page (for SOA composites), as described in "Viewing the Details for a Web Service Endpoint".

	
Click the Configuration tab. For SOA composites, click the Properties tab.

	
From the WSDL Enabled field, select True from the menu to enable the display of the WSDL or False to disable the display of the WSDL, and click Apply.

	
For ADF and WebCenter applications, restart the Web service application. You do not need to restart a SOA composite.

	
Note:

You need to wait approximately 30 seconds (or the equivalent of the configured Graceful Shutdown Timeout time) between stopping and restarting the application. During this time, the server is allowing all global transactions to complete before shutting down the application. If you do not wait the configured Graceful Shutdown Timeout time, then the application will not be restarted appropriately and you will not be able to access it. To avoid waiting the graceful shutdown timeout period, you can restart the application twice.

Using WLST

To enable or disable the display of a WSDL document for a Web service endpoint (port), use the setWebServiceConfiguration command. Set the enableWSDL property of the itemProperties argument to true to enable display the WSDL and to false to disable it.

The procedure for using this command is described in "Using WLST" in "Configuring the Web Service Endpoint".

For example, to enable the WSDL display for the WsdlConcretePort, use the following command:

wls:/wls-domain/serverConfig> setWebServiceConfiguration ("/wls-domain/AdminServer/jaxwsejb30ws","jaxwsejb","web",
"{http://namespace/}WsdlConcreteService","WsdlConcretePort",[("enableWSDL","true")])

Please restart application to uptake the policy changes.

For more information about this WLST command, see "Web Services Custom WLST Commands" in WebLogic Scripting Tool Command Reference.

Enabling or Disabling the Exchange of Metadata

The following procedure describes how to enable or disable the exchange of Web service metadata.

	
Note:

The procedure described in this section applies to Oracle Infrastructure Web services only.

To enable or disable the exchange of metadata:

	
Navigate to the Web Service Endpoint page, or the Service Home page (for SOA composites), as described in "Viewing the Details for a Web Service Endpoint".

	
Click the Configuration tab. For SOA composites, click the Properties tab.

	
In the Metadata Exchange Enabled field, select True from the menu to enable the exchange of metadata or False to disable the exchange of metadata, and click Apply.

	
For ADF and WebCenter applications, restart the Web service application. You do not need to restart a SOA composite.

	
Note:

You need to wait approximately 30 seconds (or the equivalent of the configured Graceful Shutdown Timeout time) between stopping and restarting the application. During this time, the server is allowing all global transactions to complete before shutting down the application. If you do not wait the configured Graceful Shutdown Timeout time, then the application will not be restarted appropriately and you will not be able to access it. To avoid waiting the graceful shutdown timeout period, you can restart the application twice.

Enabling or Disabling the Web Service Test Endpoint

The following procedures describes how to enable or disable the Web service test endpoint using Fusion Middleware Control and WLST.

	
Note:

The procedures described in this section apply to Oracle Infrastructure Web services and providers only.

Using Fusion Middleware Control

To enable or disable the Web service test endpoint:

	
Note:

This flag does not control the availability of the Web Services Test link.

	
Navigate to the Web Service Endpoint page, or the Service Home page (for SOA composites), as described in "Viewing the Details for a Web Service Endpoint".

	
Click the Configuration tab. For SOA composites, click the Properties tab.

	
In the Endpoint Test Enabled field, select True from the menu to enable the test endpoint or False to disable the test endpoint, and click Apply.

	
For ADF and WebCenter applications, restart the Web service application. You do not need to restart a SOA composite.

	
Note:

You need to wait approximately 30 seconds (or the equivalent of the configured Graceful Shutdown Timeout time) between stopping and restarting the application. During this time, the server is allowing all global transactions to complete before shutting down the application. If you do not wait the configured Graceful Shutdown Timeout time, then the application will not be restarted appropriately and you will not be able to access it. To avoid waiting the graceful shutdown timeout period, you can restart the application twice.

Using WLST

To enable or disable the Web service test endpoint, use the setWebServiceConfiguration command. Set the enableTestPage property of the itemProperties argument to true to enable the test endpoint and to false to disable it.

The procedure for using this command is described in "Using WLST" in "Configuring the Web Service Endpoint".

For example, to enable the test endpoint for the WsdlConcretePort, use the following command:

wls:/wls-domain/serverConfig> setWebServiceConfiguration
("/wls-domain/AdminServer/jaxwsejb30ws","jaxwsejb","web","{http://namespace/}WsdlConcreteService",
"WsdlConcretePort",[("enableTestPage","true")])

Please restart application to uptake the policy changes.

For more information about this WLST command, see "Web Services Custom WLST Commands" in WebLogic Scripting Tool Command Reference.

Validating the Request Message

The following procedure describes how to enable or disable the validation of the request message against the schema.

	
Note:

The procedure described in this section applies to Oracle Infrastructure Web services only.

To enable or disable schema validation:

	
Navigate to the Web Service Endpoint page, or the Service Home page (for SOA composites), as described in "Viewing the Details for a Web Service Endpoint".

	
Click the Configuration tab. For SOA composites, click the Properties tab.

	
In the Schema validation field, select True from the menu to enable schema validation or False to disable schema validation, and click Apply.

	
For ADF and WebCenter applications, restart the Web service application. You do not need to restart a SOA composite.

	
Note:

You need to wait approximately 30 seconds (or the equivalent of the configured Graceful Shutdown Timeout time) between stopping and restarting the application. During this time, the server is allowing all global transactions to complete before shutting down the application. If you do not wait the configured Graceful Shutdown Timeout time, then the application will not be restarted appropriately and you will not be able to access it. To avoid waiting the graceful shutdown timeout period, you can restart the application twice.

Configuring Web Services Atomic Transactions

WebLogic Web services support the WS-Coordination and WS-AtomicTransaction (WS-AT) specifications. Therefore, you can configure Web services atomic transactions to enable interoperability between Oracle WebLogic Server and other vendor's transaction processing systems, such as WebSphere, JBoss, Microsoft .NET, and so on.

Web services atomic transactions are supported for WebLogic JAX-WS Web services and SOA Web services and references. You can enable and configure Web services atomic transactions at design time as described in the following topics:

	
"Using Web Services Atomic Transactions" in Programming Advanced Features of JAX-WS Web Services for Oracle WebLogic Server

	
"WS-Atomic Transaction Support" in Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

For WebLogic JAX-WS Web services, you can configure Web services atomic transactions at deployment time using the WebLogic Server Administration Console. For more information, see "Configure Web service atomic transactions" in the Oracle WebLogic Server Administration Console Help.

For SOA Web services and references, you can configure Web services atomic transactions at deployment time, on the service or reference endpoint, using Oracle Enterprise Manager Fusion Middleware Control or WLST. Refer to the following sections for detailed procedures using both interfaces.

For information about configuring Web service atomic transactions for SOA references, see "Configuring the Web Service Client".

Using Fusion Middleware Control

To configure atomic transactions for a SOA Web service:

	
Navigate to the SOA composite home page as described in "Viewing the Web Services and References in a SOA Composite".

	
In the Services and References section of the page, select the service to be configured.

	
In the Service Home page, click the Properties tab.

	
In the Atomic Transaction Version field, select the version of the Web service atomic transaction coordination context that is supported for the SOA service. The value specified must be consistent across the entire transaction. Valid values are:

	
WSAT10

	
WSAT11

	
WSAT12

	
Default

If you select Default, all three versions are accepted.

	
Note:

This property works with SOA Web services that have synchronous-only operations and with Web services that have both synchronous and asynchronous operations. It does not work with SOA Web services with asynchronous-only operations.

	
In the Atomic Transaction Flow Option field, select whether the transaction coordination context is to be passed with the transaction flow into the SOA Web service.

Valid values on the SOA Web service are:

	
Never – Do not export transaction coordination context. This is the default.

	
Supports – Export transaction coordination context if transaction is available.

	
Mandatory – Export transaction coordination context. An exception is thrown if there is no active transaction.

	
Note:

This property works with Web services that have synchronous-only operations or that have combined synchronous and asynchronous operations. It does not work with Web services with asynchronous-only operations.

Figure 6-7 Configuring SOA Web Services Atomic Transactions

[image: Description of Figure 6-7 follows]

Description of "Figure 6-7 Configuring SOA Web Services Atomic Transactions"

	
Click Apply.

Using WLST

To configure atomic transactions for a SOA Web service endpoint using WLST, use the setWebServiceConfiguration command. The procedure for using this command is described in "Using WLST" in "Configuring the Web Service Endpoint".

	
Note:

To configure Web service atomic transactions for SOA references, you use the setWebServiceClientStubProperty command. For additional information, see "Configuring the Web Service Client".

Specify values for the itemProperties argument as described in the following table.

Table 6-1 SOA Web Service Atomic Transaction WLST Configuration Properties

	Property	Description	Valid Values
	
wsat.flowOption

	
Atomic transaction flow option

	
	
"NEVER" – Do not export transaction coordination context. This is the default.

	
"SUPPORTS" – Export transaction coordination context if transaction is available.

	
"MANDATORY" – Export coordination context. An exception is thrown if there is no active transaction.

	
wsat.version

	
Atomic transaction version

	
	
"WSAT10"

	
"WSAT11"

	
"WSAT12"

	
"DEFAULT"—If you specify DEFAULT, all three versions are accepted.

For example, to configure atomic transactions for the TaskService_pt Web service endpoint of the default/SimpleApproval[1.0] SOA composite application, use the following command:

wls:/soa-infra/serverConfig>setWebServiceConfiguration
("soa-infra","default/SimpleApproval[1.0]","soa","client",
"TaskService_pt",[("wsat.flowOption","MANDATORY"),("wsat.version", "DEFAULT")])

To verify the settings, use the list(None,None,true) command:

wls:/soainfra/serverConfig>listWebServices(None,None,true) /soainfra/soa_server1/soa-infra:
 compositeName=default/SimpleApproval[1.0], moduleType=soa,
 serviceName=client
 enableTestPage: true
 enableWSDL: true
 TaskService_pt http://myhost:8001/soa-infra/services/default/SimpleApproval!1.0/client
 enable: true
 enableREST: false
 enableSOAP: true
 maxRequestSize: -1
 loggingLevel: NULL
 wsat.flowOption: MANDATORY
 wsat.version: DEFAULT
 No policies attached; endpoint is not secure.

	
Note:

The listWebServices command output does not include details on SOA components, including policy attachments.

For more information about this WLST command, see "Web Services Custom WLST Commands" in WebLogic Scripting Tool Command Reference.

Setting the Size of the Request Message

The maximum size of the request message to the Web service can be configured using the procedures provided in the following sections.

	
Note:

The procedures described in this section apply to Oracle Infrastructure Web services and providers only.

Using Fusion Middleware Control

To set the size of the request message:

	
Navigate to the Web Service Endpoint page, or the Service Home page (for SOA composites), as described in "Viewing the Details for a Web Service Endpoint".

	
Click the Configuration tab. For SOA composites, click the Properties tab.

	
Set the Maximum Request Size and the Unit of Maximum Request Size and click Apply.

	
Note:

If you set the Maximum Request Size to -1, indicating that there is no maximum request size, then the Unit of Maximum Request Size setting is irrelevant and defaults to bytes.

Figure 6-8 Setting Size of Request Message

[image: Description of Figure 6-8 follows]

Description of "Figure 6-8 Setting Size of Request Message"

-1 sets no limit to the size of the message. Or, you can set a maximum limit to the message by entering a number in the text box and selecting the unit of measurement.

	
For ADF and WebCenter applications, restart the Web service application. You do not need to restart a SOA composite.

	
Note:

You need to wait approximately 30 seconds (or the equivalent of the configured Graceful Shutdown Timeout time) between stopping and restarting the application. During this time, the server is allowing all global transactions to complete before shutting down the application. If you do not wait the configured Graceful Shutdown Timeout time, then the application will not be restarted appropriately and you will not be able to access it. To avoid waiting the graceful shutdown timeout period, you can restart the application twice.

Using WLST

To set the size of a request message for a Web service endpoint (port), use the setWebServiceConfiguration command. Set the maxRequestSize property of the itemProperties argument to the desired value. Enter a long integer to set the maximum value, or -1 to set no limit to the size of the message. The default is -1.

The procedure for using this command is described in "Using WLST" in "Configuring the Web Service Endpoint".

For example, to specify that there is no message limit size for the WsdlConcretePort, use the following command:

wls:/wls-domain/serverConfig> setWebServiceConfiguration
("/wls-domain/AdminServer/jaxwsejb30ws","jaxwsejb","web","{http://namespace/}WsdlConcreteService",
"WsdlConcretePort",[("maxRequestSize","-1")])

For more information about this WLST command, see "Web Services Custom WLST Commands" in WebLogic Scripting Tool Command Reference.

Configuring Asynchronous Web Services

When you invoke a Web service synchronously, the invoking client application waits for the response to return before it can continue with its work. In cases where the response returns immediately, this method of invoking the Web service might be adequate. However, because request processing can be delayed, it is often useful for the client application to continue its work and handle the response later on. By calling a Web service asynchronously, the client can continue its processing, without interrupt, and will be notified when the asynchronous response is returned.

For information about developing asynchronous Web services, see "Developing Asynchronous Web Services" in Developer's Guide for Oracle Infrastructure Web Services.

The following procedure describes how to configure your deployed asynchronous Web services. You can also configure asynchronous Callback client, as described in "Configuring Asynchronous Web Service Callback Clients".

To configure asynchronous Web services:

	
Navigate to the Web Services Summary page.

	
In the Web Service Details section of the page, click on the plus (+) for the Web service to display the Web service endpoints if they are not already displayed.

	
Click the name of the endpoint of the asynchronous Web service to navigate to the Web Service Endpoint page.

For an asynchronous Web service, the Asynchronous flag at the top of the page is set to True. Review the following flags, which provide more information about the asynchronous Web service:

	
Transaction Enabled for Request Queue—Flag that specifies whether transactions are enabled on the request queue.

	
Using Response Queue—Flag that specifies whether a response queue is being used. If set to false, then the response is sent directly to the Web service client, without being stored.

	
Transaction Enabled for Response Queue—Flag that specifies whether transactions are enabled on the response queue.

These flags are configured at design time. For more information, see "Developing Asynchronous Web Services" in Developer's Guide for Oracle Infrastructure Web Services.

	
From the Web Service Endpoint page, click the Configuration tab.

	
Under the Asynchronous Web Service section of the page, you can set the configuration properties defined in Table 6-2.

	
Note:

The configuration properties defined in Table 6-2 appear and are valid only for asynchronous Web services.

Table 6-2 Configuration Properties for Asynchronous Web Services

	Configuration Property	Description
	
JMS Request Queue Connection Factory Name

	
Name of the connection factory for the JMS request queue. The default JMS connection factory, weblogic.jms.XAConnectionFactory, provided with the base domain is used by default.

	
JMS Request Queue Name

	
Name of the request queue. The following queue is used by default: oracle.j2ee.ws.server.async.DefaultRequestQueue.

	
JMS Response Queue Connection Factory Name

	
Name of the connection factory for the JMS response queue. The default JMS connection factory, weblogic.jms.XAConnectionFactory, provided with the base domain is used by default.

	
JMS Response Queue Name

	
Name of the request queue. The following queue is used by default: oracle.j2ee.ws.server.async.DefaultResponseQueue.

	
JMS System User

	
The user that is authorized to use the JMS queues. By default, this property is set to OracleSystemUser.

Note: For most users, the OracleSystemUser is sufficient. However, if you need to change this user to another user in your security realm, you can do so using the instructions provided in "Changing the JMS System User for Asynchronous Web Services".

	
Click Apply.

	
For ADF and WebCenter applications, restart the Web service application. You do not need to restart a SOA composite.

	
Note:

You need to wait approximately 30 seconds (or the equivalent of the configured Graceful Shutdown Timeout time) between stopping and restarting the application. During this time, the server is allowing all global transactions to complete before shutting down the application. If you do not wait the configured Graceful Shutdown Timeout time, then the application will not be restarted appropriately and you will not be able to access it. To avoid waiting the graceful shutdown timeout period, you can restart the application twice.

Enabling and Disabling MTOM

Support for MTOM is provided by attaching the oracle/wsmtom_policy policy to a Web service. You can enable or disable MTOM for a Web service by enabling or disabling this policy. See "Enabling or Disabling a Policy for a Single Policy Subject" for more information.

You must restart the application after enabling or disabling MTOM.

Configuring the Web Service Client

	
Note:

The procedures described in this section apply to Oracle Infrastructure Web services only.

For the Web service clients in your application, including SOA references, ADF data control, and asynchronous Web service Callback clients, you can set the configuration properties defined in Table 6-3.

Table 6-3 Configuration Properties for Web Service Clients

	Configuration Property	Property Name	Description
	
General

	
	

	
UDDI ServiceKey

(SOA reference clients only)

	
oracle.soa.uddi.serviceKey

	
Specifies the service key of the Oracle Service Registry (OSR) if UDDI is used for run-time resolution of the endpoint.

For more information, see "Changing the Endpoint Reference and Service Key for Oracle Service Registry Integration" in Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle Business Process Management Suite.

	
Endpoint Address

	
javax.xml.ws.service.endpoint.address

	
Endpoint URL to which the client will send the request.

Note: This property is not available for asynchronous Web service Callback clients.

	
Maintain Session

	
javax.xml.ws.session.maintain

	
Flag that specifies whether the session should be maintained.

Note: This property is not available for asynchronous Web service Callback clients.

	
Atomic Transaction Version

(SOA reference clients only)

	
wsat.Version

	
Specifies the version of the SOA Web service atomic transaction coordination context used for outbound messages only.

The value specified must be consistent across the entire transaction.

Valid values are WSAT10, WSAT11, WSAT12, and Default.

Note that if the flow option is set to WSDL Driven, you cannot specify a version. The version advertised in the WSDL is used.

If the flow option is set to Supports or Mandatory and you specify the Default option, then WSAT10 is used.

Note: In WLST, the valid values must be specified as "WSAT10", "WSAT11", "WSAT12", and "DEFAULT". Use of an an invalid value results in an error message.

	
Atomic Transaction Flow Option

(SOA reference clients only)

	
wsat.flowOption

	
Specifies whether the transaction coordination context is passed with the transaction flow.

Valid values on the SOA reference client are:

	
Never (default) – Do not export transaction coordination context.

	
Supports – Export transaction coordination context if transaction is available.

	
Mandatory – Export transaction coordination context. An exception is thrown if there is no active transaction.

	
WSDL Driven – Use the value set in the WSDL.

Note: In WLST, the valid values must be specified as "NEVER", "SUPPORTS", "MANDATORY", and "WSDLDriven". Use of an invalid value results in an error message.

	
HTTP Chunking

	
	

	
Stop Chunking

	
oracle.webservices.donotChunk

	
Flag that specifies whether chunking is enabled for client requests.

	
Chunking Size (bytes)

	
oracle.webservices.chunkSize

	
Size of the request chunk in bytes.

	
HTTP Timeout

	
	

	
HTTP Read Timeout (ms)

	
oracle.webservices.httpReadTimeout

	
Length of the request read timeout in milliseconds.

	
HTTP Connection Timeout (ms)

	
oracle.webservices.httpConnTimeout

	
Length of the request connection timeout in milliseconds.

	
HTTP Basic Authentication

	
	

	
HTTP User Name

	
(javax.xml.ws.security.auth.username)

oracle.webservices.auth.username

	
Authenticated HTTP user name.

	
HTTP User Password

	
(javax.xml.ws.security.auth.password)

oracle.webservices.auth.password

	
Authenticated HTTP user password.

	
Preemptive

	
oracle.webservices.preemptiveBasicAuth

	
Flag that specifies whether security will be sent with the request without being challenged.

	
HTTP Proxy

	
	

	
Proxy Host

	
oracle.webservices.proxyHost

	
URL of proxy to which client will send the request.

	
Proxy Port

	
oracle.webservices.proxyPort

	
Port number of the proxy.

	
Proxy User Name

	
oracle.webservices.proxyUsername

	
Valid user name to access the proxy.

	
Proxy User Password

	
oracle.webservices.proxyPassword

	
Valid password to access the proxy.

	
Proxy Realm

	
oracle.webservices.proxyAuthRealm

	
Realm used by the proxy.

	
Proxy Authentication Type

	
oracle.webservices.proxyAuthType

	
Authentication type used by the proxy.

The following sections describe how to configure Web service clients using Fusion Middleware Control and WLST.

Using Fusion Middleware Control

The following procedures describe how to configure SOA reference, ADF DC, WebCenter, and asynchronous Web service Callback clients.

Configuring SOA References

The following procedure describes how to configure a SOA reference.

	
View the SOA reference, as described in "Viewing SOA References".

	
Click the Properties tab.

	
Set the property values as required. Refer to Table 6-3.

	
Click Apply.

Configuring ADF DC Web Service Clients

The following procedure describes how to configure an ADF DC Web service client.

	
View the ADF DC Web service client, as described in "Viewing Connection-Based Web Service Clients".

	
Click the Configuration tab.

	
Set the configuration values as required. Refer to Table 6-3.

	
Click Apply.

Configuring Asynchronous Web Service Callback Clients

The following procedure describes how to configure an asynchronous Web service Callback client. Callback clients are used only by asynchronous Web services to return the response to the caller. For more information, see "Developing Asynchronous Web Services" in Developer's Guide for Oracle Infrastructure Web Services.

To configure an asynchronous Web service Callback client:

	
Navigate to the endpoint for the asynchronous Web service, as described in "Viewing the Details for a Web Service Endpoint".

	
Click Callback Client in the upper right portion of the endpoint page.

	
Click the Configuration tab.

	
Set the configuration values as required. Refer to Table 6-3.

	
Click Apply.

Using WLST

Use the following procedure to configure the Web service client endpoint (port) using WLST:

	
Connect to the running instance of WebLogic Server to which the application is deployed as described in "Accessing the Web Services Custom WLST Commands".

	
Use the listWebServiceClients WLST command to display a list of the Web service clients in your application as described in "Viewing Web Service Clients".

	
Use the listWebServiceClientPorts command to display the endpoint name and endpoint URL for a Web service client.

listWebServiceClientPorts(application,moduleOrCompName,moduleType,serviceRefName)

For example, to display the endpoint for the service reference client:

wls:/wls-domain/serverConfig> listWebServiceClientPorts('/base_domain/AdminServer/application1#V2.0',
'test1','wsconn','client')

HelloWorld_pt

	
Use the listWebServiceClientStubProperties command to view the configuration details for a Web service client endpoint.

listWebServiceClientStubProperties(application, moduleOrCompName, moduleType, serviceRefName,portInfoName)

For example, to view the configuration details for the HelloWorld_pt:

wls:/wls-domain/serverConfig> listWebServiceClientPorts('/base_domain/AdminServer/application1#V2.0',
'test1','wsconn','client','HelloWorld_pt')

keystore.recipient.alias=A1
saml.issuer.name=B1
user.roles.include=C1

Alternatively, you can set the detail argument to true in the listWebServiceClients command to view the configuration details for the endpoint as shown in "Using WLST" in "Viewing Web Service Clients".

	
Do one of the following:

	
Use the setWebServiceClientStubProperty command to set or change a single stub property of a Web service client endpoint. Specify the property to be set or changed using the propName and propValue arguments. To remove a property, specify a blank value for the propValue argument.

setWebServiceClientStubProperty(application,moduleOrCompName,moduleType,
 serviceRefName,portInfoName,propName,[propValue])

For example, to change the keystore.recipient.alias to oracle for the HelloWorld_pt, use the following command:

wls:/wls-domain/serverConfig> setWebServiceClientStubProperty('/base_domain/AdminServer/application1#V2.0',
'test1','wsconn','client','HelloWorld_pt','keystore.recipient.alias','oracle')

	
Use the setWebServiceClientStubProperties command to configure the set of properties of a Web service client endpoint. Specify the properties to be set or changed using the properties argument.

setWebServiceClientStubProperties(application, moduleOrCompName,
 moduleType, serviceRefName, portInfoName, properties)

This command configures or resets all of the stub properties for the Oracle WSM client security policy attached to the client. Each property that you list in the command is set to the value you specify. If a property that was previously set is not explicitly specified in this command, it is reset to the default for the property. If no default exists, the property is removed.

For example, to configure atomic transactions for the TaskReference_pt SOA reference endpoint of the default/SimpleRef[1.0] SOA composite application, use the following command:

wls:soainfra/serverConfig>
 setWebServiceClientStubProperties('soa-infra','default/SimpleRef[1.0]',
'soa','client', 'TaskReference_pt',
[("wsat.flowOption","SUPPORTS"),("wsat.Version","DEFAULT")])

To verify that the reference is properly configured, enter the following command:

wls:soainfra/serverConfig>listWebServiceClients(None, None, true)

 /soainfra/soa_server1/soa-infra:
 compositeName=default/SimpleRef[1.0], moduleType=soa, serviceRefName=client
 TaskReference_pt
 wsat.version=DEFAULT
 wsat.flowOption=SUPPORTS

For more information about the client properties that you can set, see Table 6-3, "Configuration Properties for Web Service Clients". When specifying these properties, use the format shown in the Property Name column.

You can also set the properties described in "Attaching Client Policies Permitting Overrides".

	
For ADF and WebCenter applications, restart the Web service application. You do not need to restart a SOA composite.

For more information about these WLST commands and their arguments, see "Web Services Custom WLST Commands" in WebLogic Scripting Tool Command Reference.

7 Managing Web Service Policies

This chapter includes the following sections:

	
Overview of Web Services Policy Management

	
Viewing Available Web Services Policies

	
Viewing a Web Service Policy

	
Searching for Web Service Policies

	
Creating Web Service Policies

	
Managing Policy Assertion Templates

	
Validating Web Services Policies

	
Editing Web Service Policies

	
Versioning Web Service Policies

	
Exporting Web Service Policies

	
Deleting Web Service Policies

	
Generating Client Policies

	
Enabling or Disabling a Policy for a Single Policy Subject

	
Enabling or Disabling a Policy for All Subjects

	
Enabling or Disabling Assertions Within a Policy

	
Analyzing Policy Usage

	
Policy Advertisement

Overview of Web Services Policy Management

For information about Web services policies and how Oracle Fusion Middleware uses policies to manage Quality of Service (QoS) for Web services, see "Understanding Oracle WSM Policy Framework"."

Viewing Available Web Services Policies

You can use both Fusion Middleware Control and the WebLogic Scripting Tool (WLST) to view the Web service polices in your domain. In Fusion Middleware Control, you view the policies using the Web Services Policies page.

Use the procedures in the following sections to view a list of the policies.

Navigating to the Web Services Policies Page in Fusion Middleware Control

You manage the Web services policies in your farm from the Web Services Policies page. From this page, you can view, create, edit, and delete Web services policies.

	
In the navigator pane, expand WebLogic Domain to show the domain for which you want to see the policies. Select the domain.

	
Using Fusion Middleware Control, click WebLogic Domain, then Web Services and then Policies.

The Web Services Policies page is displayed (Figure 7-1).

Figure 7-1 Web Services Policy Page

[image: Description of Figure 7-1 follows]

Description of "Figure 7-1 Web Services Policy Page"

Displaying a List of the Available Policies Using WLST

To display a list of the available policies using WLST:

	
Connect to the running instance of WebLogic Server for which you want to view the Web services as described in "Accessing the Web Services Custom WLST Commands".

	
Use the listAvailableWebServicePolicies() WLST command to display a list of the Web services.

listAvailableWebServicePolicies([category],[subject])

For example:

wls:/base_domain/domainRuntime> listAvailableWebServicePolicies()

List of available OWSM policy - total : 58
security : oracle/binding_authorization_denyall_policy
security : oracle/binding_authorization_permitall_policy
security : oracle/binding_permission_authorization_policy
security : oracle/component_authorization_denyall_policy
security : oracle/component_authorization_permitall_policy
security : oracle/component_permission_authorization_policy
management : oracle/log_policy
addressing : oracle/wsaddr_policy
mtom : oracle/wsmtom_policy
wsrm : oracle/wsrm10_policy
wsrm : oracle/wsrm11_policy

	
Use the optional category and subject arguments to specify the policy category, such as security or management, and the policy subject type, such as server or client.

For example:

wls:/base_domain/domainRuntime> listAvailableWebServicePolicies("security","server")
List of available OWSM policy - total : 39
security : oracle/wss_saml_or_username_token_service_policy
security : oracle/wss10_username_token_with_message_protection_service_policy
security : oracle/wss10_x509_token_with_message_protection_service_policy
security : oracle/no_messageprotection_service_policy
security : oracle/wss_saml_or_username_token_over_ssl_service_policy
security : oracle/wss10_username_token_with_message_protection_ski_basic256_service_policy
security : oracle/wss11_saml20_token_with_message_protection_service_policy
security : oracle/wss_sts_issued_saml_bearer_token_over_ssl_service_policy
security : oracle/wss11_sts_issued_saml_hok_with_message_protection_service_policy
security : oracle/wss11_kerberos_token_service_policy

Viewing a Web Service Policy

Follow the procedure below to view the policy details in read-only mode.

To view a Web service policy

	
Navigate to the Web Services Policy page, as described in "Navigating to the Web Services Policies Page in Fusion Middleware Control".

	
From the Web Services Policies page, select a policy from the Policies table and click View.

	
When you are done viewing the policy, click Return to Web Services Policies.

Searching for Web Service Policies

In the Web Services Policies page, you can narrow down the number of policies that are returned by specifying criteria in the Search Filter (Figure 7-2).

The wildcard character asterisk (*) in the Name field matches any characters.

Figure 7-2 Search Filter Criteria

[image: Description of Figure 7-2 follows]

Description of "Figure 7-2 Search Filter Criteria"

The policies that are returned are those that match the criteria specified in the Category, Applies To, and Name fields (Table 7-1).

Table 7-1 Search Filter Criteria

	Field	Description
	
Category

	
Category to which the Web service policy belongs. The options are:

	
All

	
Security

	
MTOM Attachments

	
Reliable Messaging

	
WS-Addressing

	
Management

	
Applies To

	
Policy subject to which the policy can be attached. The options are:

	
All – All means that the policy is targeted for any type of endpoint. All refers to the policies that can be applied to Service Endpoints, or Service Clients, or SOA Components.

	
Service Endpoints – Policies that can be attached to Web services. See "Types of Web Services and Clients" in Oracle Fusion Middleware Introducing Web Services.

	
Service Clients – Policies that can be attached to Web service clients. See "Types of Web Services and Clients" in Oracle Fusion Middleware Introducing Web Services.

	
SOA Components – Policies that can be attached to SOA components

SOA Web services are categorized as Service Endpoints, and SOA references are categorized as Service Clients.

	
Name

	
Name of the policy. You can enter the complete name or part of policy name. For example, if you enter http, any policy with http in any part of its name is returned.

For example, if Security is selected in the Category field, and Service Endpoints is selected in the Applies To field, and the Name field is left blank, then the policies returned are those security policies that can be attached to Web service endpoints.

Creating Web Service Policies

You can create a Web service policy in one of the following ways:

	
Creating a new policy using assertion templates

	
Creating a policy from an existing policy

	
Importing a policy from a file

	
Creating custom policies

The sections that follow describe how to create policies using each of these methods.

Creating a New Web Service Policy

Follow the procedure below to create a new policy using one or more assertion templates.

To create a new Web service policy

	
Navigate to the Web Services Policy page, as described in "Navigating to the Web Services Policies Page in Fusion Middleware Control".

	
From the Category menu, select the category to which this policy will belong and click Create.

	
Note:

The Create button is available only for the Security and Management categories.

	
In the Create Policy page (Figure 7-3), enter the path, name, and brief description for your policy. All policies are identified by the directory in which the policy is located.

Oracle recommends that you follow the policy naming conventions described in "Recommended Naming Conventions for Policies".

Figure 7-3 Create Policy Page

[image: Description of Figure 7-3 follows]

Description of "Figure 7-3 Create Policy Page"

	
Note:

You cannot edit the name of a policy once the policy is created. To change the policy name, you will need to copy the policy and assign it a different name.

	
Set the Local Optimization control. See "Configuring Local Optimization for a Policy" for a description of the Local Optimization control.

	
By default, the policy is enabled. If you want to disable the policy, clear the Enabled box. A policy that is not enabled is not enforced at run time.

	
Specify the type of policy subjects the policy can be attached to by selecting from the Applies To menu. If you select Service Bindings, then specify whether the policy can be attached to Web service endpoints, Web service clients, or to both.

Of the predefined assertions, only assertions (which you add next) of type security/logging can be added under Service Category Both. If you plan to add other types of assertions, choose Service Endpoints or Service Clients.

	
To add a single assertion:

	
In the Assertions section, click Add.

	
In the Add Assertion box, enter a meaningful name for your assertion, and select an assertion template from the Assertion Template list.

See Appendix C, "Predefined Assertion Templates" for information on the Oracle Fusion Middleware Web Services policy assertion templates.

	
Click OK.

	
To add an OR group, click Add OR Group. For more details, see "Adding an OR Group to a Policy".

	
In the Assertions section, select the assertion you just added.

	
In the Assertion Details section, enter a description for the assertion.

	
If active for the assertion category, on the Settings tab specify the properties for the assertion. Click the Help icon for information on setting the properties.

	
If active for the assertion category, click the Configurations tab to set the configuration options. Click the Help icon for information on setting the properties.

	
Add additional assertions as needed.

	
When you have finished adding assertions, select the assertions and use the Up and Down controls to order them as needed. Assertions are invoked in the order in which they appear in the list.

	
Click Validate to verify that the policy does not contain errors. For more information on policy validation, see "Validating Web Services Policies".

If the policy is invalid, it is disabled as a precaution. After you correct the validation issues, you will have to enable the policy.

	
Click Save.

Creating a Web Service Policy from an Existing Policy

You can take a Web service policy and use it as a base for creating another policy. By default, Oracle Fusion Middleware 11g Release 1 (11.1.1) comes with predefined policies. You can create a copy of one of the predefined policies or you can create a copy of a policy that you have created. Once the policy is created, you can treat it like any other policy, adding or deleting assertions, and modifying existing assertions.

To make a copy of a Web service policy

	
Navigate to the Web Services Policy page, as described in "Navigating to the Web Services Policies Page in Fusion Middleware Control".

	
From the Web Services Policies page, select a policy from the Policies list and click Create Like.

	
In the Create Policy page, enter a name for the policy.

The word Copy is appended to the name of the copied policy and, by default, this is the name assigned to the new policy. For example, if the policy being copied is named oracle/wss10_username_token_service, then the default name of the copy is oracle/wss10_username_token_service_Copy.

It is recommended that you change the name of this new policy to be more meaningful in your environment.

	
Modify the policy as required, including the assertions.

	
Click Validate to verify that the policy does not contain errors. For more information on policy validation, see "Validating Web Services Policies".

	
Click Save.

Importing Web Service Policies

Follow the procedure in this section to import a policy into the Oracle WSM repository. Once the policy is imported, you can attach it to Web services and make changes to it.

	
Note:

The policy name you import must not already exist in the repository.
Be aware that "policy name" and "file name" are different. The policy name is specified by the name attribute of the policy content; the file name is the name of the policy file. You might find it convenient for the two names to match, but it is not required.

You cannot prefix the name of a policy with oracle_. Otherwise, you will receive exceptions when you try to use the policy.

To import a Web service policy

	
Navigate to the Web Services Policy page, as described in "Navigating to the Web Services Policies Page in Fusion Middleware Control".

	
From the Web Services Policies page, click Import From File.

	
In the Create Policy From File box, enter the file path of the file in the Select Policy File Box. Or, you can click on the Browse button and select the policy file.

	
Click OK.

Creating Custom Policies

For information about creating custom Web service policies using custom assertions, see "Creating Custom Assertions" in Extensibility Guide for Oracle Web Services Manager.

Managing Policy Assertion Templates

Your Fusion Middleware installation includes predefined assertion templates that you can use to construct your policies or copy to create new policies. For additional information, see "Building Policies Using Policy Assertions".

You can add one or more assertions to a policy. The predefined assertions are described in Appendix C, "Predefined Assertion Templates". Assertions are executed in the order in which they appear in the list. You can change the order of the assertions in the list by selecting the assertion and clicking the Up or Down arrow.

The following sections provide more information about working with assertions:

	
"Navigating to the Web Services Assertion Templates Page"

	
"Naming Conventions for Assertion Templates"

	
"Viewing an Assertion Template"

	
"Searching for an Assertion Template"

	
"Creating an Assertion Template"

	
"Editing an Assertion Template"

	
"Editing the Configuration Properties"

	
"Adding Assertions to a Policy"

	
"Adding an OR Group to a Policy"

	
"Configuring Assertions"

	
"Exporting an Assertion Template"

	
"Importing an Assertion Template"

	
"Deleting an Assertion Template"

Navigating to the Web Services Assertion Templates Page

You can manage your assertion templates at the domain level from the Web Services Assertion Template page. From this page, you can copy, edit, and delete assertion templates.

To navigate to the Web Services Assertion Templates page:

	
In the Navigator pane, expand WebLogic Domain.

	
Click the domain for which you want to manage assertion templates.

	
From the WebLogic Domain menu select Web Services > Policies.

The Web Services Policies page is displayed.

	
Click Web Services Assertion Templates in the upper right corner of the page.

The Web Services Assertion Templates page is displayed, as shown in the following figure.

Figure 7-4 Web Services Assertion Templates Page

[image: Description of Figure 7-4 follows]

Description of "Figure 7-4 Web Services Assertion Templates Page"

Naming Conventions for Assertion Templates

The same naming conventions used to name predefined policies are used to name the assertion templates. Assertion templates begin with the directory name oracle/ and are identified with the suffix _template at the end; for example, oracle/wss10_message_protection_service_template. For more information on naming conventions for predefined policies, see "Recommended Naming Conventions for Policies".

Viewing an Assertion Template

Follow the steps in this section to view an assertion template.

	
Navigate to the Web Services Assertion Templates page, as described in "Navigating to the Web Services Assertion Templates Page".

	
From the table, select the assertion template that you want to view.

	
Click View.

	
In the View Template page, review the assertion.

	
When you are done, click Return to Web Services Assertion Templates.

Searching for an Assertion Template

You can search for a Web service assertion template by category, name, or both. To do so:

	
Navigate to the Web Services Assertion Templates page, as described in "Navigating to the Web Services Assertion Templates Page".

	
Perform one or more of the following steps:

	
To search for assertion templates in a specific category (or all categories), select a category from the Category list.

Valid categories include: All, Security, MTOM Attachments, Reliable Messaging, WS-Addressing, and Management.

	
To search for an assertion template that contains a specific string, enter a string in the Name field.

Specify any portion of the name of an assertion template to display all assertion templates that contain the string for the specified category.

	
Click the Search Assertion Templates icon next to the Name field.

The assertion templates list is refreshed to include only those assertion templates that match the specified search criteria.

Creating an Assertion Template

A new assertion template is created based on an existing assertion. Pick the assertion template that most closely matches the desired behavior, then make any changes required to get the new behavior.

To create an assertion template:

	
Navigate to the Web Services Assertion Templates page, as described in "Navigating to the Web Services Assertion Templates Page".

	
Select the assertion template from the Assertion Templates table that you want to copy.

	
Click Create Like.

The following graphic shows the Create Template page.

Figure 7-5 Create Template Page

[image: Description of Figure 7-5 follows]

Description of "Figure 7-5 Create Template Page"

	
In the Template Information section, edit the name of the assertion and, optionally, enter a brief description.

The word Copy is appended to the name of the copied assertion template and, by default, this is the name assigned to the new assertion template. For example, if the assertion template being copied is named oracle/wss10_username_token_service_template, then the default name of the copy is oracle/wss10_username_token_service_template_Copy.

It is recommended that you change the name of this new assertion template to be more meaningful in your environment.

	
Click Save.

The assertion is added to the Assertion Templates table. You can now select the new assertion and click Edit to configure the assertion.

Editing an Assertion Template

	
Note:

Oracle recommends that you do not edit the predefined assertion templates so that you will always have a known set of valid templates.

Follow the steps in this section to edit an assertion template.

	
Navigate to the Web Services Assertions Templates page, as described in "Navigating to the Web Services Assertion Templates Page".

	
From the table, select the assertion template that you want to edit.

	
Click Edit.

	
Click the Settings or Configuration tabs and edit the assertion template as required.

The settings that can be edited for each template are described in Appendix C, "Predefined Assertion Templates.". For information about the properties that you can edit from the Configuration tab, see "Editing the Configuration Properties".

	
When you are finished editing the template, click Save.

Editing the Configuration Properties

Predefined security assertion templates include configuration properties that you can configure to match your environment. For example, properties that are configurable in assertion templates include csf-key, saml.issuer.name, keystore.recipient.alias, and role, among others. When you edit an existing predefined assertion template or create an assertion template using the Create Like option in Fusion Middleware Control, you can configure the following settings for each property:

	
Note:

Oracle recommends that you do not edit the predefined assertion templates so that you will always have a known set of valid templates.

	
Description—Description of the property.

	
Value—Current value.

	
Default—Default value. This value is used if the Value field is not set.

	
Content Type—Can be one of the following:

	
Constant—Property cannot be overridden.

	
Required—Property is required and can be overridden.

	
Optional—Property is optional and can be overridden.

To configure the properties:

	
Select the assertion template to be edited as described in "Editing an Assertion Template".

	
Click the Configurations tab.

The list of properties for the template are displayed.

	
Select the property from the list and click Edit.

The Edit Configure Property box is displayed, as shown in Figure 7-6.

Figure 7-6 Edit Configure Property Window Displayed When Creating an Assertion

[image: Description of Figure 7-6 follows]

Description of "Figure 7-6 Edit Configure Property Window Displayed When Creating an Assertion"

	
Enter the values for your configuration and click OK.

	
Note:

When you add an assertion to a policy, as described in "Adding Assertions to a Policy", you can configure the assertion identify store properties, specifically the Value, Default, and Description properties, to match your environment. The Content Type property setting defined in the assertion template cannot be changed, and is not displayed in the Edit Configure Property window.

Adding Assertions to a Policy

You can add assertions from the Create Policy page, the Copy Policy page, or the Edit Policy Detail page.

Each policy can contain only one assertion for each of the following categories: MTOM Attachments and Reliable Messaging. The policy can contain any number of assertions belonging to the Security category; however, the combination of assertions must be valid. For more information on valid assertions, see "Validating Web Services Policies".

To add an assertion to a policy:

	
Navigate to the Create Policy page, the Create Like page, or the Edit Policy Detail page.

	
In the Assertions section, click Add.

	
In the Add Assertion box, enter the name for your assertion, and select an assertion from the Assertion Template list.

	
Click OK.

	
To configure the assertion, click the Settings tab and edit the settings as required.

	
To edit the configuration properties, click the Configurations tab.

The list of configuration properties defined for the assertion are displayed.

	
Select the property to be edited and click Edit.

The Edit Configure Property window is displayed as shown in Figure 7-7.

Figure 7-7 Edit Configure Property Window Displayed When Displayed in a Policy

[image: Description of Figure 7-7 follows]

Description of "Figure 7-7 Edit Configure Property Window Displayed When Displayed in a Policy"

	
Edit the Configuration properties and click OK.

Note that you can edit only the Description, Value, and Default properties. The Content Type property setting defined in the assertion template cannot be changed, and is not displayed. For details about these properties, see "Editing the Configuration Properties".

	
When you are done, click Save to save the policy.

Adding an OR Group to a Policy

You can create an OR group, consisting of one or more assertions, enabling a single policy to accept multiple types of security tokens. A client can enforce any one of the policies that are defined in the OR group. For more information, see "Defining Multiple Policy Alternatives (OR Groups)".

You can add only one OR group to a policy. Once you have generated an OR Group, the Add OR Group button is greyed out.

You can add an OR group from the Create Policy page, the Copy Policy page, or the Edit Policy Detail page.

To add an OR group to a policy:

	
Navigate to the Create Policy page, the Create Like page, or the Edit Policy Detail page.

	
In the Assertion List section, click Add OR Group.

	
In the Add OR Group dialog, enter the name of the first assertion in the group, and select an assertion template from the Assertion Template list.

	
Click OK.

The assertion is added under the OR Group.

	
To add additional assertions to the OR group:

	
Ensure that an assertion within the OR group is currently selected.

	
Click Add.

	
In the Add Assertion dialog, enter the name of the assertion in the group, and select an assertion template from the Assertion Template list.

	
Click OK.

	
To configure the assertions, see "Configuring Assertions".

The policy attribute values for attachTo and category limit the assertions that are valid within the current policy. All assertions within an OR group must be compatible with the attachTo and category attribute values in order to be considered.

	
When you have finished adding assertions to the OR group, select the assertions and use the Up and Down controls to order them as needed. Assertions are considered for invocation in the order that they appear on the list.

	
To delete an assertion from the OR group, select the assertion and click Delete. To delete the entire OR group, select the OR group and click Delete.

Configuring Assertions

Once an assertion has been added to a policy, you can configure the assertion attributes. You can configure assertions from the Create Policy page, the Create Like page, or the Edit Policy Detail page.

To configure an assertion:

	
Navigate to the Create Policy page, the Create Like page, or the Edit Policy Detail page.

	
In the Assertions section of the page, select the assertion to be configured in the assertion table.

	
Click the Settings or Configurations tab.

	
Edit the Settings and Configuration properties, and click Save.

See Appendix C, "Predefined Assertion Templates" for more information about the Settings and Configuration assertion properties. For information about the configuration properties displayed on the Configurations tab, see "Editing the Configuration Properties".

Exporting an Assertion Template

You can export individual assertion templates from Oracle Enterprise Manager Fusion Middleware Control. You can then copy the assertion template to a directory or import the assertion template to move it to another repository. Once moved, you can import the assertion template, as described in "Importing an Assertion Template".

To export an assertion template:

	
Navigate to the Web Services Assertions Templates page, as described in "Navigating to the Web Services Assertion Templates Page".

	
Select the assertion template from the Assertion Templates table that you want to export to a file.

	
Click Export to File.

You are prompted to open or save the file.

	
Select Save File.

	
Click Ok.

	
Navigate to the location on your local directory to which you want to save the file and update the filename as desired.

	
Click Save.

Importing an Assertion Template

Follow the steps in this section to view an assertion template.

	
Navigate to the Web Services Assertions Templates page, as described in "Navigating to the Web Services Assertion Templates Page".

	
Click Import From File.

You are prompted to provide the assertion template file.

	
Click Browse to navigate to the directory where the assertion template file is located and select the assertion template to be imported.

	
Click OK.

The assertion template appears in the Assertion Templates table.

Deleting an Assertion Template

Follow the steps in this section to delete an assertion template.

	
Navigate to the Web Services Assertions Templates page, as described in "Navigating to the Web Services Assertion Templates Page".

	
Select the assertion template from the Assertion Templates table that you want to delete.

	
Click Delete.

You are prompted to confirm that you want to delete the assertion template.

	
Click OK.

Validating Web Services Policies

There are restrictions on the type and number of policy assertions that are permitted in a Web service policy. When you validate a policy, Enterprise Manager checks to see if the policy is consistent with these restrictions. A policy can contain only assertions that belong to a single category. Therefore, you cannot combine a Security assertion with an MTOM assertion in the same policy. The policy type is determined by the category of the assertion. Therefore, a policy containing a security assertion is a security policy, a policy containing a management assertion is a management policy, and so on. Security assertions are further categorized into subcategories: authentication, logging, message protection (msg-protection), and authorization.

There are restrictions on the number and type of assertions you can have in a policy. The restrictions are as follows:

	
MTOM and Reliable Messaging policies can contain only one assertion.

	
A security policy can contain multiple security assertions; however, there can be only one assertion from the following subcategories in a policy: encryption, signing, and authentication.

	
Some assertions contain both authentication and message protection. For example, if you view the oracle/wss11_username_token_with_message_protection_service_policy, you will see that the second assertion falls into two categories: security/authentication and security/msg-protection. See Figure 7-8.

Figure 7-8 Assertion Belonging to Two Categories

[image: Description of Figure 7-8 follows]

Description of "Figure 7-8 Assertion Belonging to Two Categories"

	
A security policy can contain any number of security_log_template assertions. For example, if you view any of the predefined security policies, you will see two logging assertions included.

Oracle recommends that you create one policy for authentication and message protection, and a second policy for authorization. If you create a policy that contains both an authentication and an authorization assertion, then the authentication assertion must precede the authorization assertion.

When you validate your policies, the validation process checks to see that your policies meet these requirements. If the validation fails during policy creation, the policy is created but is marked as disabled.

To validate a policy:

	
From the Create Policy or Edit Policy page, make any changes to your policy.

	
Click Validate.

If successful, the Validation successful message appears.

If not successful, the resulting error message describes the problem.

Editing Web Service Policies

You can make changes to the policies you create or to the predefined policies that come with the product. However, Oracle recommends that you do not change the predefined policies so that you will always have a known set of valid policies to work with.

The changes take effect at the next polling interval for policy changes. If you are using a database-based metadata repository, each time you save a change to your policy, a new version is created, and the older versions are retained.

To edit Web service policies:

	
Navigate to the Web Services Policy page, as described in "Navigating to the Web Services Policies Page in Fusion Middleware Control".

	
From the Web Services Policies page, select a policy from the Policies table and click Edit.

	
On the Edit Policy page, make the changes to the policy.

	
Click Save.

Versioning Web Service Policies

Whenever a change to a policy is saved, this results in a new version of the policy being automatically created and the version number being incremented. The Policy Manager maintains the history of these changes, and you can go back to an earlier version.

For example, you might find it useful to create two different versions of a policy, perhaps one with logging and one without, and alternate between them. As another example, you might have an occasional need to use a policy such as oracle/binding_authorization_denyall_policy policy with selected roles to temporarily lock down access to a Web service.

By using the versioning feature, you can reuse multiple versions of a policy without having to recreate them every time you need them.

The following sections describe versioning in more detail:

	
"Viewing the Version History of Web Services Policies"

	
"About the Restore and Activate Policy Options"

	
"Creating a New Version of a Web Service Policy"

	
"Restoring an Earlier Version of a Web Service Policy"

	
"Deleting Versions of a Web Service Policy"

	
Note:

The versioning feature described in this section requires that you use a database-based Oracle WSM Repository. If you are not using a database-based repository, versioning information is not maintained or displayed.

Viewing the Version History of Web Services Policies

You can view the version history for a Web service policy from the Web Services Policy page, as described in the following procedure.

To view the Web services policy version history:

	
Navigate to the Web Services Policy page, as described in "Navigating to the Web Services Policies Page in Fusion Middleware Control".

	
From the Web Services Policy page, select a policy from the Policies table and click View.

In the Policy Information section, you see the version information, including the Version Number of the active version and the date that the policy was last updated.

	
In the View Policy page, click Version History Link (Figure 7-9) to go to the View Policy Version History page.

Figure 7-9 Version History Link on the Edit Policy Page

[image: Description of Figure 7-9 follows]

Description of "Figure 7-9 Version History Link on the Edit Policy Page"

	
The policies appear in order in the Policy Version History table with the active policy shown first (Figure 7-10). The active policy has the highest version number, and is the only policy that can be attached to a subject. However, you can make an earlier version of a policy the active policy.

Figure 7-10 View Policy Version History Page

[image: Description of Figure 7-10 follows]

Description of "Figure 7-10 View Policy Version History Page"

About the Restore and Activate Policy Options

You can make an earlier version active by selecting a policy from the Policy Version History table (Figure 7-10), and clicking either the Restore or Activate Policy buttons. In both instances, the selected policy is made the current, active policy, and the policy version number is incremented. The following describes the difference between the Restore and Activate Policy options:

	
Clicking Restore, the earlier version of the policy is retained. You can make the earlier version the active version without deleting it. Use Restore if you are modifying your policy and want to keep earlier versions of the policy.

	
Clicking Activate Policy, the selected policy is now the current active policy. The earlier version of the policy is deleted, and the current version is incremented by 1. For example, assume that you have version 1 and version 3 of the policy. You select version 1 and click Activate Policy. The policy is activated as version 4, and version 1 is deleted.

The Activate Policy option can be used in situations where you need to switch between different versions, but you do not want to keep adding policy versions. For example, you may use one version of the policy during business hours and another version during non-business hours. You want to switch between the versions, but you do not want to accumulate multiple versions of the same policy. Therefore, you use Activate Policy to delete the earlier version.

You can also delete any version of the policy, except the active policy, from the Policy Version History table by selecting the policy and clicking Delete. You cannot edit the policy from the Policy Version History page. You must edit a policy from the Web Services Management page.

Creating a New Version of a Web Service Policy

You create a new version of an existing Web service policy by making any desired changes and saving the policy.

	
Note:

Save does an implicit validation. If the validation fails, the policy is persisted, but the status is set to Disabled.

To create a new version of a Web service policy:

	
From the Edit Policy page, make a change to your policy.

	
Click Save.

In the Policy Information section of the page, the version number for the policy is incremented by 1.

Restoring an Earlier Version of a Web Service Policy

Follow the procedure below to return to an earlier version of a policy.

To restore an earlier version of a Web service policy

	
From the View Policy page, click Version History Link, as shown in Figure 7-11.

Figure 7-11 Version History Link on Edit Policy Page

[image: Description of Figure 7-11 follows]

Description of "Figure 7-11 Version History Link on Edit Policy Page"

	
In the Policy History table, select a policy and click Restore or click Activate Policy .

	
Note:

Restore saves the earlier version of the policy, and Activate Policy deletes the earlier version.

If you click Restore, the selected policy is now the current active policy. The earlier version of the policy is retained, and the current version is incremented by 1.

If you click Activate Policy, the selected policy is now the current active policy. The earlier version of the policy is deleted, and the current version is incremented by 1.

Deleting Versions of a Web Service Policy

Follow the procedure below to permanently remove earlier versions of a policy. You can delete all versions except the active policy version. To delete all versions of the policy, including the active version, see "Deleting Web Service Policies".

To delete a Web service policy version

	
From the Copy Policy page or the Edit Policy Detail page, click Version History Link.

	
In the Policy History table, select the policy want to remove, and click Delete.

	
A dialog box appears with a message asking you to confirm the deletion. Click OK.

The selected policy is deleted from the Metadata Services Repository and the Policy History table.

Exporting Web Service Policies

You might want to export a policy to copy it from a development environment to a production environment, or to simply view the policy in another tool or application. Follow the procedure in this section to export a policy from the Oracle WSM repository. Once the policy is exported, you can import it to another policy store, attach it to Web services, make changes to it, and so forth.

To export a Web service policy

	
Navigate to the Web Services Policy page, as described in "Navigating to the Web Services Policies Page in Fusion Middleware Control".

	
Select the policy that you want to export from the list.

	
From the Web Services Policies page, click Export to File.

	
Save the policy in the filename of your choice. (Use only ASCII characters in the filename.)

	
Note:

You cannot prefix the name of a policy with oracle_. When you export a predefined policy file, the file is renamed from oracle/<policyname> to oracle_<policyname>. You should change this name. Otherwise, you will receive exceptions when trying to use the policy.

Deleting Web Service Policies

Before you delete a policy, Oracle recommends that you verify that the policy is not attached to any policy subjects. You can see the policy subjects that are attached to a policy by doing a policy dependency analysis. See "Analyzing Policy Usage" for more information. If you try to delete a policy that is attached to a subject, you will receive a warning. You will not be prevented from deleting an attached policy. However, the Web service request will fail the next time the subject to which the policy is attached is invoked.

When you delete a policy, the active policy and all previous versions of the policy are deleted. To retain the active policy version and delete only the previous versions of the policy, see "Versioning Web Service Policies".

To delete a Web service policy:

	
Navigate to the Web Services Policy page, as described in "Navigating to the Web Services Policies Page in Fusion Middleware Control".

	
From the Web Services Policies page, select a policy from the Policies table and click Delete.

	
A dialog box appears asking you to confirm the deletion. Click OK.

Generating Client Policies

Once you have created the service policy, you can use the Web service WSDL to generate an equivalent client policy with the parameters required to call that service.

You must use the Oracle WSDL instead of the standard WSDL to generate the client policy. The URL for the Web service must be appended with ?orawsdl, instead of ?wsdl. Generating the policy increases the likelihood that the client policy will work with the service policy.

Once a policy is generated, you can edit the policy. The policy is populated with the client assertion that is the matching pair to the service assertion. For example, if the service policy contained the assertion, wss_http_token_service_template, then the generated client policy is populated with its counterpart, wss_http_token_client_template.

However, the client security policies that are generated will not contain any configuration information. Therefore, once the policies are generated, use the client assertion template and import the configuration information into your client policy. In the example, you would import configuration information from the client assertion template, wss_http_token_client_template. After you have made the desired changes to the policy, you must save the policy. Once a policy is saved, you can access it from the Web Services Management page.

You can also delete any generated policies that you do not need. For example, you may want to delete duplicates of already existing MTOM or Reliable Messaging policies.

To generate a Web service client policy

	
Determine the WSDL for the Web service for which you want to generate a Web service client policy.

	
Navigate to the Web Services Policy page, as described in "Navigating to the Web Services Policies Page in Fusion Middleware Control".

	
From the Web Services Policies page, click Generate Client Policies, as shown in Figure 7-12.

Figure 7-12 Generate Client Policies on the Web Services Policies Page

[image: Description of Figure 7-12 follows]

Description of "Figure 7-12 Generate Client Policies on the Web Services Policies Page"

	
In the Generated Client Policies page, enter the URL to the Web service WSDL using the following format: Web_service_endpoint?orawsdl, and click the control to access the Web service and ports, as shown in Figure 7-13.

	
Note:

You must use ?orawsdl, instead of ?wsdl, to get the WSDL that is used to generate the corresponding client policy. Prepend ora to wsdl to accomplish this.

The Web_service_endpoint is the URL to the Web service. The service policy information in the Oracle WSDL published for the Web service is used as the basis for generating the initial client policies.

Figure 7-13 Getting the Web Service and Ports

[image: Description of Figure 7-13 follows]

Description of "Figure 7-13 Getting the Web Service and Ports"

	
In the Generated Client Policies page (Figure 7-14), click Generate to generate the client policies, as shown in Figure 7-14.

Figure 7-14 Generated Client Policies Page

[image: Description of Figure 7-14 follows]

Description of "Figure 7-14 Generated Client Policies Page"

	
Select a generated policy from the table and click Edit.

	
In the Edit Policy page, edit the policy as necessary.

	
Click Validate to validate your changes.

	
Click Save to save the changes to your policy.

	
You are returned to the Generated Client Policies page. Edit the other policies as needed.

Once the policy is saved, you can navigate to the Web Services Management page and find the policy in the Policies table.

Enabling or Disabling a Policy for a Single Policy Subject

When a policy is attached to a Web service, it is enabled by default. You may temporarily disable a policy for a single endpoint without disassociating it from the Web service. When the policy is disabled for an endpoint, it is not enforced for that endpoint.

Using Fusion Middleware Control

Policies must be individually enabled or disabled for the endpoint; you cannot enable or disable multiple policies at the same time.

To enable or disable a policy attachment:

	
From the Web Service Endpoint page, click the OWSM Policies tab.

	
Select the policy you want to enable or disable.

For Oracle Infrastructure Web services, select a policy from the Directly Attached Policies table.

	
Select Enable or Disable to enable or disable the policy, respectively, and confirm your selection. (See Figure 7-15.)

Figure 7-15 Enabling or Disabling a Policy Attachment

[image: Description of Figure 7-15 follows]

Description of "Figure 7-15 Enabling or Disabling a Policy Attachment"

Using WLST

	
Note:

The procedure described in this section applies to Oracle Infrastructure Web services only.

To enable or disable a policy or multiple policies attached to an endpoint (port):

	
Connect to the running instance of WebLogic Server for which you want to view the Web services as described in "Accessing the Web Services Custom WLST Commands".

	
Use the listWebServicePolicies WLST command to display a list of the Web service policies attached to the desired port.

listWebServicePolicies(application,moduleOrCompName,moduleType,serviceName,
subjectName)

For example, to see a list of the policies attached to the WsdlConcretePort, use the following command:

wls:/base_domain/domainRuntime> listWebServicePolicies('/base_domain/soa_server1/jaxwsejb30ws',
'jaxwsejb','web','{http://namespace/}WsdlConcreteService','WsdlConcretePort')

WsdlConcretePort :
security : oracle/binding_authorization_denyall_policy , enabled=true
security : oracle/wss_username_token_service_policy , enabled=true

	
Enable or disable a single policy using the enableWebServicePolicy command and setting the enable argument to true or false, respectively.

enableWebServicePolicy(application, moduleOrCompName, moduleType, serviceName, subjectName,
policyURI,[enable], [subjectType=None]))

For example, to disable the oracle/binding_authorization_denyall_policy, enter the following command:

wls:/base_domain/domainRuntime> enableWebServicePolicy('/base_domain/soa_server1/jaxwsejb30ws',
'jaxwsejb','web','{http://namespace/}WsdlConcreteService','WsdlConcretePort','oracle/binding_authorization_denyall_policy',false)

	
Enable or disable multiple policies attached to a port using the enableWebServicePolicies command and setting the enable argument to true or false, respectively.

enableWebServicePolicies(application, moduleOrCompName, moduleType, serviceName, subjectName,
policyURIs,[enable],[subjectType=None]))

For example:

wls:/base_domain/domainRuntime> enableWebServicePolicies('/base_domain/soa_server1/jaxwsejb30ws',
'jaxwsejb','web','{http://namespace/}WsdlConcreteService','WsdlConcretePort',
['oracle/binding_authorization_denyall_policy',oracle/wss_username_token_service_policy],false)

	
For ADF and WebCenter applications, restart the Web service application. You do not need to restart a SOA composite.

For more information about these WLST commands and their arguments, see "Web Services Custom WLST Commands" in WebLogic Scripting Tool Command Reference.

Enabling or Disabling a Policy for All Subjects

When a policy is created, it is enabled by default unless it has validation errors. A policy can be globally enabled or disabled from the Edit Policy page. You can enable or disable the policy from one central location, and it will be enabled or disabled for any policy subject to which it is attached.

When you disable a policy from the Edit Policy page, the policy continues to be attached to the policy subjects, but the policy is not enforced. You may want to temporarily disable a policy if you discover that there is a problem with the policy that is causing all requests to a Web service to fail. Once the problem is corrected, you can globally enable the policy.

Before disabling a policy, you may want to click Usage Analysis Link (see "Analyzing Policy Usage") to see the policy subjects to which the policy is attached. The change to the policy takes effect at the next polling interval for policy changes.

You may also selectively enable or disable a policy for a specific policy subject rather than for all policy subjects. See "Enabling or Disabling a Policy for a Single Policy Subject" for more information.

To enable or disable a Web service policy for all policy subjects:

	
Navigate to the Web Services Policy page, as described in "Navigating to the Web Services Policies Page in Fusion Middleware Control".

	
Select a policy from the Policies table and click Edit.

	
In the Policy Information section of the Edit Policy page, select or deselect the Enabled box to enable or disable the policy, respectively (see Figure 7-16).

Figure 7-16 Enabled Box on the Edit Policy Page

[image: Description of Figure 7-16 follows]

Description of "Figure 7-16 Enabled Box on the Edit Policy Page"

	
Click Save.

Enabling or Disabling Assertions Within a Policy

Rather than enable or disable an entire policy, you may wish to enable or disable one or more of the assertions that are contained within a policy. This provides a more fine-grained level of control over the assertions that are executed.

For example, all predefined Web service security policies contain an instance of the logging assertion template, oracle/security_log_template, to capture the entire SOAP message before and after the primary security assertion is executed. By default, the log assertion is not enforced. You must enable it in order for the SOAP message to be logged in message logs. (It is recommended that the logging assertion be enabled for debugging and auditing purposes only. For more information about logging, see "Diagnosing Problems Using Logs".)

To enable or disable one or more assertions within a policy:

	
Navigate to the Web Services Policy page, as described in "Navigating to the Web Services Policies Page in Fusion Middleware Control".

	
Select a policy from the Policies table and click Edit.

	
In the Assertions section of the Edit Policy page, select or deselect the Enforced box to enable or disable the assertion within the policy, respectively (see Figure 7-17).

Figure 7-17 Enable or Disable an Assertion Within a Policy

[image: Description of Figure 7-17 follows]

Description of "Figure 7-17 Enable or Disable an Assertion Within a Policy"

	
Click Save.

Analyzing Policy Usage

	
Note:

The policy usage feature described in this section requires that you use a database-based Oracle WSM Repository. If you are not using a database-based repository, policy usage information is not available.

Policies are created and managed at the domain level. The central management of policies gives you the ability to reuse policies and attach them to multiple policy subjects. Any change to a policy (for example, editing a policy or deleting a policy) affects all policy subjects to which the policy is attached. Therefore, before making any changes to your policies, Oracle recommends you do a usage analysis to see which subjects are using a particular policy.

	
Note:

The usage analysis simply identifies which policy subjects will be affected; it does not define the effect of the change. You need to evaluate the change on each of the policy subjects and determine if you should proceed.

To perform a usage analysis:

	
Navigate to the Web Services Policies page as described in "Navigating to the Web Services Policies Page in Fusion Middleware Control".

The Attachment Count column of the Policies table shows the number of subjects to which a policy is attached.

	
Click the number in the Attachment Count column for the selected policy to display the Usage Analysis page (Figure 7-18).

Alternatively, you can select the policy from the Policies table and click View. In the Policy Information region of the page, click the Attachment Count number in the Usage Analysis field to display the Usage Analysis page.

Figure 7-18 Usage Analysis for a Policy

[image: Description of Figure 7-18 follows]

Description of "Figure 7-18 Usage Analysis for a Policy"

The Policy Subject List is filtered by subject type. The table displays a list of the policy subjects, of the selected type, to which the policy is attached. Subjects are organized using the following subject types: Repository Document, SOA Component, SOA Reference, SOA Service, WLS Web Service Client, WLS Web Service Endpoint, Asynchronous Callback Client, Web Service Connection, Web Service Client, and Web Service Endpoint. Note that the Policy Subject List summary table displays fields that are relevant to the selected policy subject type only.

The total number of policy subjects to which the policy is attached is shown at the bottom of the page in the Attachment Count field.

	
To view the other policy subjects to which the policy is attached, select the subject type from the Subject Type menu.

The Subject Type menu provides an attachment count for each subject type to which the policy is attached.

Figure 7-19 Subject Type Menu on Usage Analysis Page

[image: Description of Figure 7-19 follows]

Description of "Figure 7-19 Subject Type Menu on Usage Analysis Page"

	
In cases where multiple domains share the same Oracle WSM Repository to store Oracle WSM metadata, you can specify whether you want to view policy subjects in the Local Domain or in all domains in the enterprise. To view the policy subjects for all domains in the enterprise, select Enterprise in the View Option field.

Figure 7-20 View Option Field on Usage Analysis Page

[image: Description of Figure 7-20 follows]

Description of "Figure 7-20 View Option Field on Usage Analysis Page"

Please note:

	
Both enabled and disabled policy references are included in the policy usage count. For information about disabling a policy reference, see "Enabling or Disabling a Policy for a Single Policy Subject" and "Enabling or Disabling a Policy for All Subjects".

	
After attaching a policy to an Oracle Infrastructure Web Service endpoint, you need to restart the Web service application to display an accurate policy usage count. You do not need to restart a SOA composite or a WebLogic Java EE Web service application.

	
You must invoke an ADF DC client to display an accurate policy usage count.

Policy Advertisement

For a standard WSDL (?wsdl), you can publish different version combinations for WS-Policy and WS-SecurityPolicy. For example, http://localhost:8080/abc?wsdl&wsp=1.5&wssp=1.2 returns a WSDL with the following policy versions published: WS-Policy 1.5 and WS-SecurityPolicy 1.2.

	
Note:

For an Oracle WSDL (?orawsdl), you cannot advertise different version combinations for WS-Policy and WS-SecurityPolicy. For ?orawsdl, the policy is advertised with the following versions only: WS-Policy 1.2 and WS-SecurityPolicy 1.1 with Oracle extensions.

Table 7-2 lists the valid version combinations.

Table 7-2 Policy Advertisement

	Version Combination	Description
	
?wsdl

	
WS-Policy 1.2 and WS-SecurityPolicy 1.1

	
?wsdl&wsp=1.5

	
WS-Policy version 1.5 and WS-SecurityPolicy 1.3

	
?wsdl&wssp=1.2

	
WS-Policy versions 1.5 and WS-SecurityPolicy 1.2

	
?wsdl&wssp=1.3

	
WS-Policy versions 1.5 and WS-SecurityPolicy 1.3

	
?wsdl&wsp=1.5&wssp=1.2

	
WS-Policy 1.5 and WS-SecurityPolicy 1.2

	
?wsdl&wsp=1.5&wssp=1.3

	
WS-Policy 1.5 and WS-SecurityPolicy 1.3

	
?wsdl&wsp=1.2&wssp=1.2

	
WS-Policy 1.2 and WS-SecurityPolicy 1.2

8 Attaching Policies to Web Services

This chapter includes the following sections:

	
Viewing the Policies That are Attached to a Web Service

	
Attaching Policies to Web Services

	
Validating Policy Subjects

	
Attaching Policies to Oracle Infrastructure Web Service Clients

	
Attaching Policies to Java EE Web Service Clients

	
Attaching Web Service Policies Permitting Overrides

	
Attaching Client Policies Permitting Overrides

	
Configuring User-Defined Client- or Server-Side Override Properties

Viewing the Policies That are Attached to a Web Service

The following sections describe how to view the policies that are attached to a Web service using Fusion Middleware Control and the WebLogic Scripting Tool (WLST).

Using Fusion Middleware Control

To view the policies that are attached to a Web service:

	
Navigate to the home page for the Web service, as described in "Navigating to the Web Services Summary Page for an Application".

	
In the Web Service Details section of the page, click on the plus (+) for the Web service to display the Web service endpoints if they are not already displayed.

	
Click the name of a endpoint to navigate to the Web Service Endpoints page for a particular Web service.

	
Click the OWSM Policies tab.

Figure 8-1 shows the screen display for an Oracle Infrastructure Web service endpoint that has both globally and directly attached policies. The output displays the globally attached policies that are in effect for the endpoint, all directly attached policies, and whether the endpoint has a valid configuration and is secure. You can view the run-time constraints, if any, configured for a policy set by placing your mouse over the policy set name, or clicking the red dot at the front of the policy set name. For more information about run-time constraints, see "Specifying Run-time Constraints in Policy Sets".

Because you can specify the priority of a globally or directly attached policy, as described in "Specifying the Priority of a Policy Attachment", the Effective field for a directly attached policy indicates if it is in effect for the endpoint. Note that to simplify endpoint management, all directly attached policies are shown in the output regardless of whether they are in effect. In contrast, only globally attached policies that are in effect for the endpoint are displayed. For details about effective policies for an endpoint, see "How the Effective Set of Policies is Calculated".

Figure 8-1 Policies Attached to an Oracle Infrastructure Web Service Endpoint

[image: Description of Figure 8-1 follows]

Description of "Figure 8-1 Policies Attached to an Oracle Infrastructure Web Service Endpoint"

Figure 8-2 shows the screen display for a WebLogic Java EE endpoint. Only policies that are directly attached to an endpoint are displayed. Globally attached policies are not available.

Figure 8-2 Policies Attached to a WebLogic Java EE Web Service Endpoint

[image: Description of Figure 8-2 follows]

Description of "Figure 8-2 Policies Attached to a WebLogic Java EE Web Service Endpoint"

Using WLST

Use the following procedure to view the policies that are attached to a Web service:

	
Note:

This procedure applies to Oracle Infrastructure Web services only.

	
Connect to the running instance of WebLogic Server to which the application is deployed as described in "Accessing the Web Services Custom WLST Commands".

	
Use the listWebServices WLST command to display a list of the Web services in your application as described in "Viewing the Web Services in Your Application".

	
Use the listWebServicePorts command to display the port name and endpoint URL for a Web service.

listWebServicePorts(application,moduleOrCompName,moduleType,serviceName)

For example, to display the port for the WsdlConcreteService:

wls:/wls-domain/serverConfig> listWebServicePorts("/wls-domain/AdminServer/jaxwsejb30ws",
"jaxwsejb","web","WsdlConcreteService")

WsdlConcretePort http://host.us.oracle.com:7001/jaxwsejb/WsdlAbstract

	
Use the listWebServicePolicies command to view the policies that are attached to a Web service port.

listWebServicePolicies(application,moduleOrCompName,moduleType,serviceName,subjectName)

For example, to view the policies attached to the WsdlConcretePort port and any policy override settings:

wls:/wls_domain/serverConfig> listWebServicePolicies("/wls_domain/AdminServer/jaxwsejb30ws",
"jaxwsejb","web","WsdlConcreteService","WsdlConcretePort")

WsdlConcretePort :
addressing : oracle/wsaddr_policy , enabled=true
management : oracle/log_policy , enabled=true
security : oracle/wss_username_token_service_policy, enabled=true
Attached policy or policies are valid; endpoint is secure.

Attaching Policies to Web Services

The following sections describe how to attach policies to a single subject, to multiple subjects (bulk attachment), and to validate the subject once policies are attached:

	
"Attaching a Policy to a Single Subject"

	
"Attaching a Policy to Multiple Subjects (Bulk Attachment)"

Attaching a Policy to a Single Subject

A subject is an entity to which a policy can be associated. You can attach one or more policies to a subject.

The order in which policies are attached to a subject or appear in the list of attached polices does not determine the order in which policies are executed. As a message is passed between the client and the Web service, the order of the interceptors in the policy interceptor chain determines the order in which the policies are executed.

See "How Policies are Executed" for more information.

	
Note:

Policy attachment is not synchronized automatically for SOA, ADF, and WebCenter services in a cluster. When using SOA, ADF, and WebCenter services in a cluster, you must attach and/or detach policies to each instance of the cluster. This issue does not apply to WebLogic Java EE Web services and SOA composite services.

Attaching a Policy to a Web Service Using Fusion Middleware Control

Follow this procedure to attach a policy to a single Web service endpoint. See "Attaching a Policy to Multiple Subjects (Bulk Attachment)" to attach a policy to multiple Web services at the same time.

	
Note:

For WebLogic Java EE Web services policy attachment using Fusion Middleware Control:
	
Only Oracle WSM security policies can be attached.

	
Oracle WSM policies and WebLogic Web Service policies cannot be attached to the same endpoint. If a WebLogic Java EE endpoint has WebLogic polices attached, you cannot attach Oracle WSM security policies using Fusion Middleware Control. Note that WebLogic policies can be attached using the WebLogic Server Administration Console. You cannot attach WebLogic policies using Fusion Middleware Control.

To attach a policy to a Web service:

	
Navigate to the home page for the Web service, as described in "Navigating to the Web Services Summary Page for an Application".

	
In the Web Service Details section of the page, click on the plus (+) for the Web service to display the Web service endpoints, if they are not already displayed.

	
Click the name of a endpoint to navigate to the Web Service Endpoints page for a particular Web service.

	
Click the OWSM Policies tab.

The policies that are already globally and directly attached to the endpoint are displayed as shown in Figure 8-1.

	
Click Attach/Detach.

	
Select a policy from the Available Policies list, and click Attach. See Figure 8-3.

Figure 8-3 Attaching Policies to a Web Service

[image: Description of Figure 8-3 follows]

Description of "Figure 8-3 Attaching Policies to a Web Service "

	
To view details about a policy, select the policy and click the View Detail icon. A pop-up window provides a full read-only description of the policy and lists the assertions that it contains. See Figure 8-4. Click OK when you are finished reviewing the details of the policy.

Figure 8-4 Viewing Details about a Policy

[image: Description of Figure 8-4 follows]

Description of "Figure 8-4 Viewing Details about a Policy"

	
Continue selecting and attaching policies. When you are finished, click Validate to verify that the combination of policies selected is valid.

	
Click OK.

	
The Web Service Endpoint page now displays the attached policy on the OWSM Policies tab as shown in Figure 8-1.

	
Note:

The output displays the globally attached policies that are in effect for the endpoint, all directly attached policies, and whether the endpoint has a valid configuration and is secure. Because you can specify the priority of a globally or directly attached policy, as described in "Specifying the Priority of a Policy Attachment", the Effective field for a directly attached policy indicates if it is in effect for the endpoint. Note that to simplify endpoint management, all directly attached policies are shown in the output regardless of whether they are in effect. In contrast, only globally attached policies that are in effect for the endpoint are displayed. For details about effective policies for an endpoint, see "How the Effective Set of Policies is Calculated".

	
For ADF and WebCenter applications, restart the Web service application. You do not need to restart a SOA composite or a WebLogic Java EE Web service application.

	
Note:

You need to wait approximately 30 seconds (or the equivalent of the configured Graceful Shutdown Timeout time) between stopping and restarting the application. During this time, the server is allowing all global transactions to complete before shutting down the application. If you do not wait the configured Graceful Shutdown Timeout time, then the application will not be restarted appropriately and you will not be able to access it. To avoid waiting the graceful shutdown timeout period, you can restart the application twice.

Attaching a Policy to a Web Service Using WLST

Use the following procedure to attach (or detach) a single policy, or multiple policies, to a single Web service port using WLST.

	
Note:

This procedure applies to Oracle Infrastructure Web services only.

	
View the list of policies currently attached to the port as described in "Using WLST" in "Viewing the Policies That are Attached to a Web Service".

	
View the list of available policies as described in "Displaying a List of the Available Policies Using WLST".

	
To attach policies, do one of the following:

	
Use the attachWebServicePolicy command to attach a single policy to a Web service port. Specify the policy to be attached using the policyURI argument. If you specify a policy that is already attached or exists, then this command enables the policy if it is disabled.

attachWebServicePolicy(application, moduleOrCompName, moduleType, serviceName,
subjectName, policyURI, [subjectType=None]

For example, to attach the policy oracle/wss_username_token_service_policy to the WsdlConcretePort of the WsdlConcreteService, use the following command:

wls:/wls_domain/serverConfig> attachWebServicePolicy("/wls_domain/AdminServer/jaxwsejb30ws",
"jaxwsejb","web","WsdlConcreteService","WsdlConcretePort",
"oracle/wss_username_token_service_policy")

	
Use the attachWebServicePolicies command to attach multiple policies to a Web service port. Specify the policies to be attached using the policyURIs argument. If any of the policies that you specify in this command are already attached, then this command enables the policies that are already attached (if they are disabled), and attaches the others.

attachWebServicePolicies(application, moduleOrCompName, moduleType,
 serviceName, subjectName, policyURIs, [subjectType=None]

For example, to attach the policies oracle/wss_username_token_service_policy and oracle/wsrm10_policyto the WsdlConcretePort of the WsdlConcreteService, use the following command:

wls:/wls_domain/serverConfig> attachWebServicePolicies("/wls_domain/AdminServer/jaxwsejb30ws",
"jaxwsejb","web","WsdlConcreteService","WsdlConcretePort",
["oracle/wss_username_token_service_policy","oracle/wsrm10_policy"])

Please restart application to uptake the policy changes.

	
Note:

The policyURIs are validated through the Oracle WSM Policy Manager APIs if the wsm-pm application is installed on WebLogic Server and is available. If the policy validation fails, a message is displayed and the command is not executed.
If the wsm-pm application is not installed or is not available, these commands are not executed.

For additional information about validating policies, see "Validating Policy Subjects".

	
To detach policies, do one of the following:

	
Use the detachWebServicePolicy command to detach a single policy from a Web service port. Specify the policy to be detached using the policyURI argument.

detachWebServicePolicy(application, moduleOrCompName, moduleType,
 serviceName, subjectName, policyURI, [subjectType=None]

For example, to detach the policy oracle/wss_username_token_service_policy from the WsdlConcretePort of the WsdlConcreteService, use the following command:

wls:/wls_domain/serverConfig> detachWebServicePolicy("/wls_domain/AdminServer/jaxwsejb30ws",
"jaxwsejb","web","WsdlConcreteService","WsdlConcretePort",
"oracle/wss_username_token_service_policy")

	
Use the detachWebServicePolicies command to detach multiple policies from a Web service port. Specify the policies to be detached using the policyURIs argument.

detachWebServicePolicies(application, moduleOrCompName, moduleType,
serviceName, subjectName, policyURIs, [subjectType=None]

For example, to detach the policies oracle/wss_username_token_service_policy and oracle/wsrm10_policyto the WsdlConcretePort of the WsdlConcreteService, use the following command:

wls:/wls_domain/serverConfig> detachWebServicePolicies("/wls_domain/AdminServer/jaxwsejb30ws",
"jaxwsejb","web","WsdlConcreteService","WsdlConcretePort",
["oracle/wss_username_token_service_policy","oracle/wsrm10_policy"])

Please restart application to uptake the policy changes.

	
For ADF and WebCenter applications, restart the Web service application. You do not need to restart a SOA composite.

	
Note:

You need to wait approximately 30 seconds (or the equivalent of the configured Graceful Shutdown Timeout time) between stopping and restarting the application. During this time, the server is allowing all global transactions to complete before shutting down the application. If you do not wait the configured Graceful Shutdown Timeout time, then the application will not be restarted appropriately and you will not be able to access it. To avoid waiting the graceful shutdown timeout period, you can restart the application twice.

For more information about the WLST commands and their arguments, see "Web Services Custom WLST Commands" in WebLogic Scripting Tool Command Reference.

Attaching a Policy to Multiple Subjects (Bulk Attachment)

From the Application pages, you can attach one or more policies to one or more Web services.

	
Notes:

The bulk attachment mechanism does not perform validation on the policies that you attach.
The bulk attachment mechanism does not prevent you from creating an unsupported configuration such as having multiple authentication policies, or from attaching the same policy multiple times, and so forth.

Policy attachment is not synchronized automatically for SOA, ADF, and WebCenter services in a cluster. When using SOA, ADF, and WebCenter services in a cluster, you must attach and/or detach policies to each instance of the cluster. This issue does not apply to WebLogic Java EE Web services and SOA composite services.

To attach a policy to multiple Web services within an application:

	
In the navigator pane, expand WebLogic Domain to show the domain in which you want to attach the policy.

	
Select the domain, and then the instance of the server to which you want to attach the policy. The server can be an Administration Server or a Managed Server.

	
Using Fusion Middleware Control, click WebLogic Server and then Web Services.

	
From the Web Services Summary page, click Attach Policies.

	
From the Select Policy Subjects page, select one or more applications to which to attach a policy, as shown in Figure 8-5.

Use the Search control to search for a particular policy subject type, a particular application name, or the type of Web service to which you want to attach a policy. Valid policy subject types include: Web Service Endpoint, Web Service Client, Web Service Connection, SOA Component, SOA Service, SOA Reference, Asynchronous Callback Client, or WLS Web Service Endpoint. For more information about asynchronous callback clients, see "Developing Asynchronous Web Services" in Developer's Guide for Oracle Infrastructure Web Services.

For example, if you choose to search for a policy subject type of Web Service Client, only available Web service clients, if any, are displayed.

To select more than one application, press the Ctrl key and click the applications.

Figure 8-5 Select Subjects Page

[image: Description of Figure 8-5 follows]

Description of "Figure 8-5 Select Subjects Page"

	
Click Next.

	
From the Select Policies page, select one or more policies that you want to attach to the selected applications, as shown in Figure 8-6. The Select Policies page shows only those policies that you can apply to all of the subjects selected in the previous step.

	
Note:

You can attach only security policies to WebLogic Java EE Web service endpoints using Fusion Middleware Control. If you attempt to attach a non-security policy to a WebLogic Web service endpoint, the action is ignored.

To select more than one policy, press the Ctrl key and click the policies you want to attach.

Figure 8-6 Select Policies Page

[image: Description of Figure 8-6 follows]

Description of "Figure 8-6 Select Policies Page"

	
Click Next.

The Summary page displays the applications you selected and the policies that will be attached to those applications, as shown in Figure 8-7.

Figure 8-7 Attachment Summary Page

[image: Description of Figure 8-7 follows]

Description of "Figure 8-7 Attachment Summary Page"

	
Click Back to make any changes, or click Attach to complete the bulk attachment.

	
For ADF and WebCenter applications, restart the Web service application. You do not need to restart a SOA composite or a WebLogic Java EE Web service application.

	
Note:

You need to wait approximately 30 seconds (or the equivalent of the configured Graceful Shutdown Timeout time) between stopping and restarting the application. During this time, the server is allowing all global transactions to complete before shutting down the application. If you do not wait the configured Graceful Shutdown Timeout time, then the application will not be restarted appropriately and you will not be able to access it. To avoid waiting the graceful shutdown timeout period, you can restart the application twice.

Validating Policy Subjects

The type and number of assertions within a policy may be valid and, therefore, a policy may be internally consistent and valid. However, when more than one policy is attached to a policy subject, the combination of policies must also be valid. Specifically, the following must be true:

	
Note:

When you view a policy, only the major category, such as security, is displayed. To see the subtype (such as authorization), see the Assertion Details section of the assertion template on which the policy is based.

	
Only one MTOM policy can be attached to a policy subject.

	
Only one Reliable Messaging policy can be attached to a policy subject.

	
Only one WS-Addressing policy can be attached to a policy subject.

	
Only one Security policy with subtype authentication can be attached to a subject.

	
Only one Security policy with subtype sts-config can be attached to a subject.

	
If an authentication policy and an authorization policy are both attached to a policy subject, the authentication policy must precede the authorization policy.

	
There may be one or more security policies attached to a policy subject. For example, a security policy can contain an assertion that belongs to the authentication or message protection subtype categories, or an assertion that belongs to both subtype categories. The second security policy contains an assertion that belongs to the authorization subtype.

	
If the policies attached to a subject are exact duplicates of each other, including any configuration overrides, the policy attachment is viewed as a duplicate and the configuration is valid.

	
If the policy requires a particular transport protocol (for example, HTTP or HTTPS), it checks to see that the Web service uses the expected transport protocol. (The check is done at run time.)

The run time automatically enforce STS-Trust configuration policies first and authorization policies last

You cannot use policy subject validation to check the validity of multiple policy subjects when you use the bulk attachment feature. After you attach the policies to your subjects with this feature, you must validate each subject individually.

	
Note:

The policy subject validation does not validate the XML schema of the policy. Therefore, if you manually edit the policy file, you must use another tool to check that the XML is valid.

To check for policy subject validation:

	
From the navigator pane, click the plus sign (+) for the Application Deployments folder to expose the applications in the farm, and select the application.

The Application Deployment home page is displayed.

	
Using Fusion Middleware Control, click Application Deployment, then click Web Services.

This takes you to the Web Services summary page for your application.

	
In the Web Service Details section of the page, click on the plus (+) for the Web service to display the Web service ports if they are not already displayed.

	
Click the name of the port to navigate to the Web Service Endpoints page.

	
Click the Policies tab.

	
Click Attach/Detach.

	
Click Validate.

If there is a validation error, a dialog box appears describing the error. Fix the error and do a policy subject validation again.

Attaching Policies to Oracle Infrastructure Web Service Clients

This section describes how to attach a policy to an Oracle Infrastructure Web service client, including SOA reference, ADF Data Control (DC), and asynchronous Web service Callback clients.

When using WLST to attach policies to a Web service client, the steps that you follow are the same for all Web service client types. The argument settings specify the type of client to which you are attaching the policy.

	
Note:

For information about attaching Oracle WSM policies to WebLogic Java EE Web service clients, see "Attaching Policies to Java EE Web Service Clients".

Attaching Policies to Web Service Clients Using Fusion Middleware Control

In Fusion Middleware Control, the steps you follow to attach a policy to a Web service client are the same for all Web service client types. However, how you navigate to the Web service client varies based on the application type, as described in the following sections.

Attaching Policies to SOA References

The following procedures describe how to attach policies to SOA references. For more information about developing SOA references, see Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite.

To attach policies to a SOA reference:

	
View the SOA reference, as described in "Viewing SOA References".

	
Select the Policies tab.

	
In the Directly Attached Policies section of the page, click Attach/Detach.

	
From the Available Policies section of the page, select one or more policies that you want to attach. Click Validate to validate the policy, or Check Services Compatibility to make sure that the client policies are compatible with the service policies.

	
Click Attach when you are sure that you want to attach the policy or policies.

	
Click OK.

Attaching Policies to Connection-Based Web Service Clients

The following procedure describes how to attach policies to a connection-based Web service client such as an ADF DC Web service client, ADF JAX-WS Indirection Proxy, or WebCenter client.

For more information about developing ADF DC Web service clients, see "Using ADF Model in a Fusion Web Application" in Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.

To attach policies to a connection-based Web service client:

	
Use Fusion Middleware Control to expand Application Deployments.

	
Select the target application.

	
From the Application Deployment menu, select ADF, and then Configure ADF Connections.

	
On the ADF Connections Configuration page, select a row in the Web Service Connections list, and then use the Configure Web Service list to configure the Web Service client.

	
On the Web Service Client page, select the OWSM Policies tab.

	
In the Directly Attached Policies section of the page, click Attach/Detach.

	
On the Available Policies section of the page, select one or more policies that you want to attach. Click Validate to validate the policy, or Check Services Compatibility to make sure that the client policies are compatible with the service policies.

	
Click Attach when you are sure that you want to attach the policy or policies.

	
Click OK.

Attaching Policies to Asynchronous Web Service Callback Clients

The following procedure describes how to attach policies to an asynchronous Web service Callback client. For more information about developing asynchronous Web services and callback clients, see "Developing Asynchronous Web Services" in Developer's Guide for Oracle Infrastructure Web Services.

To attach policies to an asynchronous Callback client:

	
Navigate to the endpoint for the asynchronous Web service, as described in "Viewing the Details for a Web Service Endpoint".

	
Click Callback Client in the upper right portion of the endpoint page.

	
Click the Policy tab.

	
Click Attach/Detach.

	
On the Available Policies portion of the page, select one or more policies that you want to attach. Click Validate to validate the policy, or Check Services Compatibility to make sure that the client policies are compatible with the service policies.

	
Click Attach when you are sure that you want to attach the policy or policies.

	
Click OK.

Attaching Policies to Web Service Clients Using WLST

The following procedure describes how to attach policies to SOA references, connection-based Web service clients (such as an ADF DC Web service client, ADF JAX-WS Indirection Proxy, or WebCenter client), and asynchronous Web service callback clients. The steps that you follow are the same for each type of client. However, the argument settings will vary depending on the type of client to which you are attaching or detaching policies.

	
View the Web service clients as described in Using WLST in "Viewing Web Service Clients".

	
Use the listWebServiceClientPorts command to display the port name and endpoint URL for a Web service client.

listWebServiceClientPorts(application,moduleOrCompName,moduleType,serviceRefName)

For example, to display the port for the service reference client:

wls:/wls-domain/serverConfig> listWebServiceClientPorts('/base_domain/AdminServer/application1#V2.0',
'test1','wsconn','client')

HelloWorld_pt

	
View the list of available policies as described in "Displaying a List of the Available Policies Using WLST".

To view only available client policies, set the subject argument to client. For example:

listAvailableWebServicePolicies("","client")

	
To attach policies, do one of the following:

	
Use the attachWebServiceClientPolicy command to attach a single policy to a Web service client port.

attachWebServiceClientPolicy(application, moduleOrCompName, moduleType,
serviceRefName, portInfoName, policyURI, [subjectType=None]

Set the arguments as follows:

	
For a SOA reference, specify the name of the SOA composite using the moduleOrCompName argument, specify soa for the moduleType argument, and the name of the SOA reference using the serviceRefName argument.

	
For a connection-based Web service client such as an ADF DC Web service client, ADF JAX-WS Indirection Proxy, or WebCenter client, specify the name of the client application using the application argument, specify wsconn for the moduleType argument, and the service reference name using the serviceRefName argument.

	
For an asynchronous Web service callback client, specify web for the moduleType argument. Specify the name of the client application or SOA composite using the application and moduleOrCompName arguments, respectively.

	
For all client types, specify the name of the port using the portInfoName argument.

	
Specify the policy to be attached using the policyURI argument. If you specify a policy that is already attached or exists, then this command enables the policy if it is disabled.

For example, to attach the client policy oracle/wss_username_token_client_policy to the HelloWorld_pt of the client service, use the following command:

wls:/wls_domain/serverConfig> attachWebServiceClientPolicy("/wls_domain/AdminServer/application1#2.0",
"test1","wsconn","client","HelloWorld_pt","oracle/wss_username_token_client_policy")

	
Use the attachWebServiceClientPolicies command to attach multiple policies to a Web service client port. Set the arguments as described for attaching a single client policy above, however you specify multiple policies to be attached using the policyURIs argument. If any of the policies that you specify in this command are already attached, then this command enables the policies that are already attached (if they are disabled), and attaches the others.

attachWebServiceClientPolicies(application, moduleOrCompName,
moduleType, serviceRefName, portInfoName, policyURIs, [subjectType=None]

For example, to attach the policies oracle/wss_username_token_client_policy and oracle/wsrm10_policy to the HelloWorld_pt of the client service, use the following command:

wls:/wls_domain/serverConfig> attachWebServiceClientPolicies("/wls_domain/AdminServer/application1#2.0",
"test1","wsconn","client","HelloWorld_pt",
["oracle/wss_username_token_client_policy","oracle/wsrm10_policy"])

Please restart application to uptake the policy changes.

	
Note:

The policyURIs are validated through the Oracle WSM Policy Manager APIs if the wsm-pm application is installed on WebLogic Server and is available. If the policy validation fails, a message is displayed and the command is not executed.
If the wsm-pm application is not installed or is not available, these commands are not executed.

For additional information about validating policies, see "Validating Policy Subjects".

	
To detach policies, do one of the following:

	
Use the detachWebServiceClientPolicy command to detach a single policy from a Web service client port.

detachWebServiceClientPolicy(application, moduleOrCompName, moduleType,
serviceRefName, portInfoName, policyURI, [subjectType=None]

Set the arguments as described in step 4 above.

For example, to detach the client policy oracle/wss_username_token_client_policy from the HelloWorld_pt of the client service, use the following command:

wls:/wls_domain/serverConfig> detachWebServiceClientPolicy("/wls_domain/AdminServer/application1#2.0",
"test1","wsconn","client","HelloWorld_pt","oracle/wss_username_token_client_policy")

	
Use the detachWebServiceClientPolicies command to detach multiple policies from a Web service client port. Set the arguments as described for detaching a single client policy above, however you specify multiple policies to be detached using the policyURIs argument.

detachWebServiceClientPolicies(application, moduleOrCompName,
moduleType, serviceRefName, portInfoName, policyURIs, [subjectType=None]]

For example, to detach the policies oracle/wss_username_token_client_policy and oracle/wsrm10_policy from the HelloWorld_pt of the client service, use the following command:

wls:/wls_domain/serverConfig> detachWebServiceClientPolicies("/wls_domain/AdminServer/application1#2.0",
"test1","wsconn","client","HelloWorld_pt",
["oracle/wss_username_token_client_policy","oracle/wsrm10_policy"])

Please restart application to uptake the policy changes.

	
Note:

When you detach a client-side security policy, you must manually remove any configuration overrides because client configuration overrides are applied at the port level. Otherwise, the override remains in effect for all future policy attachments to this port, both globally and directly.

	
For ADF DC and WebCenter client applications, restart the Web service client application. You do not need to restart a SOA composite.

For more information about these WLST commands and their arguments, see "Web Services Custom WLST Commands" in WebLogic Scripting Tool Command Reference.

Attaching Policies to Java EE Web Service Clients

This section describes how to attach a policy to a WebLogic Java EE Web service client.

	
Notes:

For WebLogic Java EE Web service client policy attachment using Fusion Middleware Control:
	
Only Oracle WSM security policies can be attached.

	
Oracle WSM policies and WebLogic Web service policies cannot be attached to the same endpoint. If a WebLogic Java EE endpoint has WebLogic polices attached, you cannot attach Oracle WSM security policies using Fusion Middleware Control. Note that WebLogic policies can be attached using the WebLogic Server Administration Console or programmatically. You cannot attach WebLogic policies using Fusion Middleware Control.

	
Oracle recommends that you use Fusion Middleware Control to attach Oracle WSM policies to a Web service client post-deployment. If you attach Oracle WSM policies programmatically at development time, you will not be able to modify or delete the policies using Fusion Middleware Control after the client application is deployed.

To attach a policy to a Java EE Web service client:

	
Navigate to the home page for the Java EE Web service, as described in "Navigating to the Web Services Summary Page for an Application".

	
Select the Java EE Web Service Clients tab to view the clients in the application.

	
Select the Configuration tab to view the available client ports to which you can attach policies, as shown in Figure 8-8.

	
Notes:

If a port is associated with a run-time client instance, click the + node to expand the port name to view the instance with which it is associated. You can also attach policies to ports that are defined in the client application but are not currently associated with a run-time client instance.
To ensure that the latest policies are always enforced, it is important to follow Oracle's recommended best practices when developing your WebLogic Java EE Web service client. That is, you should explicitly close client instances when processing is complete. If the client instances are not closed, any policy changes in the repository are not enforced on the client. For more information about the best practices, see "Roadmaps for Developing Web Service Clients" in Programming Advanced Features of JAX-WS Web Services for Oracle WebLogic Server.

Figure 8-8 Java EE Web Service Clients

[image: Description of Figure 8-8 follows]

Description of "Figure 8-8 Java EE Web Service Clients"

	
Click the name of the client port to navigate to the Java EE Web Service Client Port page.

	
Click Attach/Detach.

	
In the Available Policies section of the page, select one or more policies that you want to attach. Click Validate to verify that the combination of policies selected is valid, then click OK.

The attached policy is shown on the Java EE Web Service Client Port page, as shown in

Figure 8-9 Attaching Policies to WebLogic Java EE Web Service Client Ports

[image: Description of Figure 8-9 follows]

Description of "Figure 8-9 Attaching Policies to WebLogic Java EE Web Service Client Ports"

	
Optionally, specify configuration overrides for an attached policy. To do so:

	
Select the policy for which you want to configure the overrides in the OWSM Policies section of the page.

The properties that you can override are displayed in the Security Configuration Details section of the page.

	
Enter the override value in the Current Value field for the property and click Apply.

For more information about configuring overrides, see "Attaching Client Policies Permitting Overrides".

Attaching Web Service Policies Permitting Overrides

	
Note:

The procedures described in this section apply to Oracle Infrastructure Web services only.

You can specify a value for server-side configuration properties in a predefined or custom Web service policy, and then either use that value each time you attach the policy to a Web service or override it on a per-attachment basis.

For example, you might specify an IP address as a configuration property, and then validate the IP address from your Web service.

The scope for the server-side configuration property value is limited to the specific policy. That is, you could have two policies with the same server-side configuration property name, say P1, attached to the same Web service endpoint, and the two P1 properties can have different values.

Server-side properties that you can override are of two types:

	
Predefined policy configuration properties—The server-side configuration properties included with the predefined policies allow you to override certain domain-wide configuration settings from a policy, such as the CSF key used for storing the signature-key password.

	
User-defined policy configuration properties—For a user-defined property, you can add a property that has meaning in your environment. You can add a user-defined server-side property to the predefined policies, or to a custom policy. For more information about creating and configuring user-defined policy configuration properties, see "Configuring User-Defined Client- or Server-Side Override Properties".

The following sections describe how to attach Web service policies permitting overrides in more detail:

	
"Configuring Server-Side Override Properties for Message Protection Policies"

	
"Configuring Server-Side Override Properties for Authorization Policies"

	
"Overriding Configuration Properties When Attaching a Service Policy Using Fusion Middleware Control"

	
"Overriding Configuration Properties When Attaching a Policy Using WLST"

Configuring Server-Side Override Properties for Message Protection Policies

The predefined Oracle WSM message protection policies define the set of server-side override properties shown in Table 8-1.

If you set (or then override) these properties, the new values are used in the attached Web service instead of the keystore passwords you configure as part of setting up the keystore for message protection, as described in "Configuring Keystores for Message Protection".

If you do not set these properties and leave the default blank values, the values you configure as part of setting up the keystore for message protection are used instead, as described in "Configuring Keystores for Message Protection".

Table 8-1 Server-Side Configuration Properties for Message Protection Policies

	Property Name	Default Value	Description
	
keystore.sig.csf.key

	
Blank

	
The alias and password used for storing the signature key password in the keystore.

This property allows you to specify the signature key on a per-attachment level instead of at the domain level.

(Applicable only to WSS10 message protection policies)

	
keystore.enc.csf.key

	
Blank

	
The alias and password used for storing the decryption key password in the keystore.

This property allows you to specify the decryption key on a per-attachment level instead of at the domain level.

(Applicable to WSS10 and WSS11 message protection synchronous policies)

	
saml.enveloped.signature.required

	
True

	
Set to false (in both client and service policy) to have the bearer token be unsigned.

By default (true), the bearer token is signed using the domain signature key. You can override this by using the keystore.sig.csf.key property in the bearer client policy.

	
reference.priority

	
Blank

	
Use to set the priority of a policy attachment in the effective policy calculation. For more information, see "Specifying the Priority of a Policy Attachment".

	
propagate.identity.context

	
Blank

	
Reserved for future use.

Setting Default Values for the Configuration Properties

By default, the keystore.sig.csf.key, keystore.enc.csf.key, and reference.priority properties have a blank value. You can choose to set a value such that any Web service that attaches the policy can use these values, or override the values when you attach the policy.

To set a value of a configuration property for a policy:

	
Navigate to the Web Services Policies page, as described in "Navigating to the Web Services Policies Page in Fusion Middleware Control".

	
From the Web Services Policies page, select the message protection policy from the Policies table and click Edit.

	
On the Edit Policy page, click the Configurations tab.

	
Select the configuration property and click Edit to make the change to the keystore.sig.csf.key, keystore.enc.csf.key, reference.priority properties based on the keys in your keystore. See Figure 8-10 for a partial screen.

Figure 8-10 Server-Side Configuration Properties

[image: Description of Figure 8-10 follows]

Description of "Figure 8-10 Server-Side Configuration Properties"

	
Validate your changes.

	
Click Save.

Configuring Server-Side Override Properties for Authorization Policies

For the predefined oracle/binding_permission_authorization_policy policy defines the set of server-side override properties shown in Table 8-2. You can use these properties to set a different action and resource.

If you set (or then override) these properties, the new values are used in the attached Web service instead of the action and resource you configure as described in "How Authorization Permissions Are Determined".

Table 8-2 Server-Side Configuration Property for Authorization Policies

	Property Name	Default Value	Description
	
action

	
*

	
Specify the operations for which this policy should be enforced.

	
resource

	
*

	
Specify the Web service name (Namespace of Web service plus ServiceName)

Setting Default Values for the Configuration Properties

By default, the action and resource properties have a value of *. You can choose to set a different value such that any Web service that attaches the policy can use that value, or override the value when you attach the policy.

To set a value for the configuration property:

	
Navigate to the Web Services Policy page, as described in "Navigating to the Web Services Policies Page in Fusion Middleware Control".

	
From the Web Services Policies page, select the oracle/binding_permission_authorization_policy policy from the Policies table and click Edit.

	
On the Edit Policy page, click the Configurations tab.

	
Select the configuration property and click Edit to make the change to the action or resource property based on your environment.

	
Validate your changes.

	
Click Save.

Overriding Configuration Properties When Attaching a Service Policy Using Fusion Middleware Control

After you attach a policy that includes a server-side overridable configuration property, you can then override the existing value. In WLST, you do so using the setWebServicePolicyOverride command as described in "Overriding Configuration Properties When Attaching a Policy Using WLST".

To override a configuration property using Fusion Middleware Control:

	
Select the attached policy with the overridable configuration property.

The Override Policy Configuration button is displayed as shown in Figure 8-11.

	
Note:

The Override Policy Configuration button is displayed only when the selected policy contains configuration properties that can be overridden.

Figure 8-11 Override Policy Configuration Button

[image: Description of Figure 8-11 follows]

Description of "Figure 8-11 Override Policy Configuration Button"

	
Select Override Policy Configuration.

The Security Configuration Details window is displayed, as shown in Figure 8-12. This figure shows the overridable properties for the oracle/wss10_message_protection_service_policy.

Figure 8-12 Overriding a Policy Configuration Property

[image: Description of Figure 8-12 follows]

Description of "Figure 8-12 Overriding a Policy Configuration Property"

	
Enter the override value in the Value field for the property and click Apply.

The property is overridden on a per-attachment basis.

For example, assume that you have not changed the value of the keystore.sig.csf.key property for the oracle/wss10_message_protection_service_policy and that it is still blank. If Web service A attaches the oracle/wss10_message_protection_service_policy and overrides the keystore.sig.csf.key property to be "sigkey," the keystore.sig.csf.key property has a value of "sigkey" only for the oracle/wss10_message_protection_service_policy attached to Web service A.

For all other policies, keystore.sig.csf.key uses the value you configure as part of setting up the keystore for message protection, as described in "Configuring Keystores for Message Protection".

Overriding Configuration Properties When Attaching a Policy Using WLST

	
Note:

This procedure applies to Oracle Infrastructure Web services only.

When you attach a policy that has an overridable property, you can override the existing value using the setWebServicePolicyOverride command. To do so, use the following procedure.

	
Attach the policy to the service as described in "Attaching a Policy to a Web Service Using WLST".

	
Use the setWebServicePolicyOverride command to override policy properties.

setWebServicePolicyOverride(application,moduleOrCompName,moduleType,
serviceName,portName,policyURI,properties)

You can override the properties listed in Table 8-1 and Table 8-2, and user-defined properties as described in "Configuring User-Defined Client- or Server-Side Override Properties".

For example, to override the keystore.sig.csf.key property in the oracle/wss10_message_protection_service_policy policy, use the following command:

wls:/wls-domain/serverConfig>setWebServicePolicyOverride
('/wls_domain/AdminServer/Jaxwsejb30ws','jaxwsejb',
'web','WsdlConcreteService','WsdlConcretePort',
"oracle/wss10_message_protection_service_policy",[("keystore.sig.csf.key","sigkey")])

	
Notes:

If the policy that you specify is not attached to the port, an error message is displayed and/or an exception is thrown.
If you set the properties argument to None, then all policy overrides are removed.

	
For ADF and WebCenter applications, restart the Web service application. You do not need to restart a SOA composite.

	
Note:

You need to wait approximately 30 seconds (or the equivalent of the configured Graceful Shutdown Timeout time) between stopping and restarting the application. During this time, the server is allowing all global transactions to complete before shutting down the application. If you do not wait the configured Graceful Shutdown Timeout time, then the application will not be restarted appropriately and you will not be able to access it. To avoid waiting the graceful shutdown timeout period, you can restart the application twice.

For more information about this WLST command and its arguments, see "Web Services Custom WLST Commands" in WebLogic Scripting Tool Command Reference.

Attaching Client Policies Permitting Overrides

The policy configuration override feature allows you to specify certain Web service client configuration information on a per-client basis, in addition to, or in lieu of setting it globally for any attachment of the policy. This targeting of configuration information limits the number of distinct policies you need to maintain.

You can define a single policy, and specify a default value for a configuration value. Rather than creating multiple policies with slightly varied configurations, you could use the same generic policy and override specific values to meet your requirements.

For example, the oracle/wss_http_token_client_policy policy is one example of a policy that includes the csf-key property, which has a default value of basic.credentials. The value signifies a key that maps to a username/password. It might happen that you will always use the same key value any time you attach this policy to any number of Web service clients. In this case, you can specify the key value on the oracle/wss_http_token_client_policy policy Configurations page and have it apply to every instance.

However, you also have the option to override this key value on a per-client basis.

In Web service client policies, you may be able to override one or more of the properties defined in Table 8-3, depending on the policy that you attach.

If you need to clear an overridden configuration property, set it to an empty string. Before you clear it, remember that other policies could be using the same property. The properties are client-specific and there could be multiple policies that are attached to the same client that use the same property.

	
Note:

When you detach a client-side security policy, you must manually remove any configuration overrides because client configuration overrides are applied at the port level. Otherwise, the override remains in effect for all future policy attachments to this port, both globally and directly.

Table 8-3 Overridable Properties in Web Service Client Policies

	Property	Notes
	
attesting.mapping.attribute

	
Optional, does not have to be set.

	
caller.principal.name

	
Client's principal name as generated using the ktpass command and mapped to the username for which the kerberos token should be generated. Use the following format: <username>@<REALM NAME>.

Note: keytab.location and caller.principal.name are required for propagating client identity for Java EE applications.

	
csf-key

	
Must be set on policy Configuration page or overridden.

	
keystore.enc.csf.key

	
Optional, does not have to be set.

Note: The keystore.enc.csf.key property puts the client's certificate in the replyTo header.

For WSS11 policies, keystore.enc.csf.key is used for asynchronous clients only. For WSS10 policies, keystore.enc.csf.key is used for both asynchronous and synchronous clients.

	
keystore.recipient.alias

	
Can be set on policy Configuration page or overridden. Superseded by the Service Identity Certification Extension feature, as described in "Using Service Identity Certification Extension". If the certificate is published in the WSDL, then the client override property value is ignored.

	
keystore.sig.csf.key

	
Optional, does not have to be set.

	
keytab.location

	
Location of the client's keytab file.

Note: keytab.location and caller.principal.name are required for propagating client identity for Java EE applications.

	
on.behalf.of

	
Optional, does not have to be set. Used only when sts_trust_config_client_policy is attached to a client Web service.

	
propagate.identity.context

	
Reserved for future use.

	
reference.priority

	
Optional, does not have to be set. Used to specify the priority of the policy attachment in the effective policy calculation. For more information, see "Specifying the Priority of a Policy Attachment".

	
saml.assertion.filename

	
Optional, does not have to be set.

	
saml.audience.uri

	
Optional, does not have to be set.

	
saml.enveloped.signature.required

	
Optional, does not have to be set. Default value is true.

	
saml.issuer.name

	
Optional, does not have to be set.

	
service.principal.name

	
Must be set on policy Configuration page or overridden.

Principal name for the Web service that needs to be protected, using the format <host>/<machine name>@<REALM NAME>. For example, HTTP/mymachine@MYREALM.COM.

	
subject.precedence

	
Optional, does not have to be set.

Note: For the wss11_saml_token_identity_switch_with_message_protection_client_policy policy, subject.precedence is required and set to false to allow for the use of a client-specified username rather than the authenticated subject.

If subject.precedence is true, the user name to create the SAML assertion is obtained only from the Subject. Similarly, if subject.precedence is false, the user name to create the SAML assertion is obtained only from the csf-key username property.

For all other SAML policies, subject.precedence is set to true and you can override it.

Applications from which Oracle WSM accepts the externally-supplied identity must have the WSIdentityPermission permission. This is to avoid potentially rogue applications from providing an identity to Oracle WSM.

See "Configuring SAML Web Service Clients for Identity Switching" for information about how to use subject.precedence. In particular, you need to "Set the javax.xml.ws.security.auth.username Property", and "Set the WSIdentityPermission Permission".

	
sts.auth.on.behalf.of.csf.key

	
Optional, does not have to be set. Used only when sts_trust_config_client_policy is attached to a client Web service.

	
sts.auth.user.csf.key

	
One or both of sts.auth.user.csf.key or sts.auth.x509.csf.key must be set, based on the STS configuration policy. Used only when sts_trust_config_client_policy is attached to a client Web service.

	
sts.auth.x509.csf.key

	
One or both of sts.auth.user.csf.key or sts.auth.x509.csf.key must be set, based on the STS configuration policy. Used only when sts_trust_config_client_policy is attached to a client Web service.

	
sts.keystore.recipient.alias

	
Must be set on policy Configuration page or overridden. Used only when sts_trust_config_client_policy is attached to a client Web service.

	
user.attributes

	
Optional, does not have to be set.

	
user.roles.include

	
Optional, does not have to be set.

Attaching Client Policies Permitting Overrides Using Fusion Middleware Control

To override a client configuration property using Fusion Middleware Control:

	
Attach a policy to a Web service client, as described in "Attaching Policies to Oracle Infrastructure Web Service Clients".

	
After you attach a client policy that includes a property that you can override, select the policy, then supply a value for the property in the Security Configuration Details section of the OWSM Policies page, as shown in Figure 8-13.

Figure 8-13 Overriding a Client Configuration Property

[image: Description of Figure 8-13 follows]

Description of "Figure 8-13 Overriding a Client Configuration Property"

Attaching Client Policies Permitting Overrides Using WLST

	
Note:

This procedure applies to Oracle Infrastructure Web services only.

When you attach a client policy that has an overridable property, you can override the existing value using the setWebServiceClientStubProperties command.

To override a client configuration property using WLST:

	
Attach the policy to the Web service client, as described in "Attaching Policies to Web Service Clients Using WLST".

	
Use the setWebServiceClientStubProperties command to override policy properties.

setWebServiceClientStubProperties(application, moduleOrCompName,
 moduleType, serviceRefName, portInfoName, properties)

For example:

wls:soainfra/serverConfig>
setWebServiceClientStubProperties('/soa_domain/soa_server1/adf_dc_to_bc',
 'ADF_BC', 'wsconn', 'AppModuleService', 'AppModuleServiceSoapHttpPort',
[("csf-key",”HCM_APPID”)])

	
For ADF DC and WebCenter client applications, restart the Web service client application. You do not need to restart a SOA composite.

	
Note:

You need to wait approximately 30 seconds (or the equivalent of the configured Graceful Shutdown Timeout time) between stopping and restarting the application. During this time, the server is allowing all global transactions to complete before shutting down the application. If you do not wait the configured Graceful Shutdown Timeout time, then the application will not be restarted appropriately and you will not be able to access it. To avoid waiting the graceful shutdown timeout period, you can restart the application twice.

For more information about this WLST command and its arguments, see "Web Services Custom WLST Commands" in WebLogic Scripting Tool Command Reference.

Configuring User-Defined Client- or Server-Side Override Properties

	
Note:

The procedures described in this section apply to Oracle Infrastructure Web services only.

You can use the Add New Configure Property feature to add one or more configuration properties that have meaning in your environment. Specifically, you can add one or more user-defined server- or client-side properties to the predefined policies, or to a custom policy. Then, you can either use the user-defined property as-is, or override it when you attach the policy.

In both cases, the property must already exist in the policy before you can override it when attaching the policy to a Web service or client. That is, you can override only those properties that are already present in the policy.

Therefore, you would typically add a user-supplied property with some default value to the predefined or custom policy, and then override it on a per-attachment basis.

You can add a user-defined property of type required, optional, or constant, but you cannot override a property of type constant.

The following sections describe how to configure user-defined override properties:

	
"Scope of User-Defined Configuration Properties"

	
"Adding a User-Defined Configuration Property"

	
"Editing a User-Defined Configuration Property"

	
"Deleting a User-Defined Configuration Property"

	
"Overriding the Configuration Properties When Attaching a User-Defined Policy"

Scope of User-Defined Configuration Properties

As with the predefined configuration properties, the scope for user-defined configuration properties in a policy differs for clients and Web services. Consider the following:

	
The scope for a client-side configuration property value is the client. There could be multiple policies that are attached to the same client that use the same property.

	
The scope for a server-side configuration property value is limited to the specific policy. That is, you could have two policies with the same server-side configuration property name, say P1, attached to the same Web service endpoint, and the two P1 properties can have different values.

Adding a User-Defined Configuration Property

You edit the predefined or custom policy to add a user-defined configuration property.

To add a user-defined configuration property:

	
Navigate to the Web Services Policy page, as described in "Navigating to the Web Services Policies Page in Fusion Middleware Control".

	
From the Web Services Policies page, select the policy for which you want to add a property from the Policies table and click Edit.

	
On the Edit Policy page, click the Configurations tab.

	
Click Add. The Add New Configure Property dialog box shown in Figure 8-14 appears.

Figure 8-14 Adding a New Configuration Property

[image: Description of Figure 8-14 follows]

Description of "Figure 8-14 Adding a New Configuration Property"

	
Enter the following information and click OK.

	
Property Set is your name for the group (set) to which you want this property to belong. This is a required field.

	
Name is your name for the property. The name must be unique for this policy. This is a required field.

	
Description is your description for the property.

	
Value is the current String value for the property. This is a required field.

	
Default is the default String value for the property if it is not otherwise set.

	
Content Type can be one of Constant, Optional, or Required. You can subsequently override only properties of type Optional and Required.

	
Validate the policy.

	
Click Save.

Editing a User-Defined Configuration Property

You can edit a user-defined configuration property if you need to change it.

To edit a user-defined configuration property:

	
Navigate to the Web Services Policy page, as described in "Navigating to the Web Services Policies Page in Fusion Middleware Control".

	
From the Web Services Policies page, select the policy for which you want to edit a property from the Policies table and click Edit.

	
On the Edit Policy page, click the Configurations tab.

	
Select the user-defined configuration property you want to edit and click Edit.

	
Make any needed changes.

	
Validate the policy.

	
Click Save.

Deleting a User-Defined Configuration Property

You can delete a user-defined configuration property if you no longer need it.

To delete a user-defined configuration property:

	
Navigate to the Web Services Policy page, as described in "Navigating to the Web Services Policies Page in Fusion Middleware Control".

	
From the Web Services Policies page, select the policy for which you want to delete a property from the Policies table and click Edit.

	
On the Edit Policy page, click the Configurations tab.

	
Select the user-defined configuration property you want to delete and click Delete.

	
Validate the policy.

	
Click Save.

Overriding the Configuration Properties When Attaching a User-Defined Policy

Attach the user-defined policy as described in "Attaching a Policy to a Single Subject", "Attaching a Policy to Multiple Subjects (Bulk Attachment)", or "Attaching Policies to Oracle Infrastructure Web Service Clients" as appropriate.

When you attach a policy that has a user-defined configuration property, you can override the existing value as follows:

	
To override a user-defined configuration property for a Web service policy:

	
Using Fusion Middleware Control, see "Overriding Configuration Properties When Attaching a Service Policy Using Fusion Middleware Control".

	
Using WLST, use the setWebServicePolicyOverride command, as described in "Overriding Configuration Properties When Attaching a Policy Using WLST".

	
To override a user-defined configuration property for a Web service client policy:

	
Using Fusion Middleware Control, see "Attaching Client Policies Permitting Overrides".]

	
Using WLST, use the setWebServiceClientStubProperties command, as described in "Attaching Client Policies Permitting Overrides Using WLST".

9 Creating and Managing Policy Sets

Policy sets provide a means to attach policies globally to a range of endpoints of the same type. This chapter describes how to manage and create policy sets using Oracle Enterprise Manager Fusion Middleware Control and the command line interface WebLogic Scripting Tool (WLST). For information about attaching policies to policy subjects directly, see Chapter 8, "Attaching Policies to Web Services".

This chapter includes the following sections:

	
Understanding Global Policy Attachments Using Policy Sets

	
Navigating to the Policy Set Summary Page

	
Displaying a List of Policy Sets Using WLST

	
Viewing the Configuration of a Policy Set

	
Managing Repository Modification Sessions Using WLST

	
Creating a Policy Set

	
Creating a Policy Set from an Existing Policy Set

	
Editing a Policy Set

	
Defining the Type and Scope of Resources

	
Validating a Policy Set

	
Overriding Configuration Properties for Globally Attached Policies

	
Specifying Run-time Constraints in Policy Sets

	
Disabling a Globally Attached Policy

	
Enabling and Disabling a Policy Set

	
Deleting Policy Sets

	
Migrating Direct Policy Attachments to Global Policy Attachments

	
Specifying the Priority of a Policy Attachment

	
Determining the Secure Status of an Endpoint

	
How the Effective Set of Policies is Calculated

	
Notes:

The procedures in this chapter apply to Oracle Infrastructure Web Services only.
To view the help for the WLST commands described in this chapter, connect to a running instance of the server and enter help('wsmManage').

Understanding Global Policy Attachments Using Policy Sets

In addition to attaching policies directly to endpoints, you can create policy sets that allow you to attach policies globally to a range of endpoints of the same type, regardless of the deployment state. You can create and manage policy sets using both Fusion Middleware Control and the WebLogic Scripting Tool, WLST. Both methods are described in this chapter. Reference information about the WLST commands is provided in "Web Services Custom WLST Commands" in WebLogic Scripting Tool Command Reference

Attaching policies globally using policy sets allows an administrator to ensure that all subjects are secured in situations where the developer, assembler, or deployer did not explicitly specify the policies to be attached. For example, if the developer did not specify policies in annotations or include policy references in deployment descriptors, then the deployer must attach them or chance a potential security risk. By attaching policies globally to a set of subjects by type, the administrator can ensure that all subjects are secured by default independent of, and even prior to, deployment. The administrator can, for example, define a policy set that attaches a security policy to all Web service endpoints in a domain. In this case, any new services added to the domain automatically inherit the security configuration defined in the policy set. For more information, see "Determining the Secure Status of an Endpoint".

Policies attached globally using policy sets also provide the following:

	
The ability to specify configuration overrides on a referenced policy that apply to all endpoints to which the policy set is scoped. For information about configuring overrides, see "Overriding Configuration Properties for Globally Attached Policies".

	
The ability to specify a run-time constraint that determines the context in which the policy set is relevant. For example, you can specify that a service use message protection when communicating with external clients only since the message may be transmitted over insecure public networks. However, when communicating with internal clients on a trusted network, message protection may not be required. For more information, see "Specifying Run-time Constraints in Policy Sets".

You can disable a globally attached policy for a specific endpoint or range of endpoints using predefined policies that do not enforce any behavior that are included with your Fusion Middleware installation. When you attach one of these policies to a specific endpoint or at a lower scope, you disable the behavior of the policy that was attached globally at the higher scope. For more information, see "Disabling a Globally Attached Policy".

Policy set definitions are stored as separate XML documents in the Oracle WSM Repository under the /policysets/global directory.

Subject Types and Scope of Resources

Policy subjects to which policy sets can be attached include SOA components, SOA service endpoints, SOA references, Web services endpoints, Web service clients, Web service connections, and asynchronous callback clients. Policy sets can be attached at the following scopes:

	
Domain — all policy subjects of the specified type in a domain

	
Server instance—all policy subjects of the specified type in a server instance

	
Application or Partition—all policy subjects of the specified type in an application or SOA partition

	
Application module or SOA composite—all policy subjects of the specified type in an application module or SOA composite

	
Service or reference—all policy subjects of the specified type in a SOA service or reference

	
Port or component—all policy subjects of the specified type in a port or SOA component

For more information, see "Defining the Type and Scope of Resources".

Typical Uses for Global Policy Attachments

Typical scenarios in which attaching policies globally can be useful include:

	
All subjects of a given type need to be protected with the same set of policies, each using their default configuration. For example, all services in a domain need to be protected with authentication (using SAML or Username token) and WSS11 message protection. You can create a policy set to attach the appropriate policy to all services in the domain.

	
A subset of subjects need to be protected with the same set of policies, but these policies are different from the domain-wide default. For example, all services need to be protected with authentication (using SAML or Username token), but the General Ledger application also needs stronger WSS11 message protection. You create one policy set that attaches an authentication policy to all services, and a second policy set that attaches the stronger message protection policy to the General Ledger application.

	
A single subject needs to be protected by a policy in a category that is not already covered by the current set of global policy attachments and both policies need to be applied. For example, a highly-sensitive financials-based service endpoint requires permission for a client to access it in addition to the authentication and message protection required. In this case, directly attach the authorization policy to the financials-based service endpoint. The direct attachment is combined with the policies attached globally and both policies will be enforced.

	
An application has been deployed with design-time policy attachments and needs to convert to using global policy attachments. The migrateAttachments WLST command can be used to migrate the attachments. For more information, see "Migrating Direct Policy Attachments to Global Policy Attachments".

Navigating to the Policy Set Summary Page

You can manage your policy sets at the domain level from the Policy Set Summary page. From this page, you can view, create, copy, edit, and delete policy sets.

To navigate to the Policy Set Summary page:

	
In the Navigator pane, expand WebLogic Domain.

	
Select the domain for which you want to manage policy sets.

	
From the WebLogic Domain menu, select Web Services then Policy Sets.

The Policy Set Summary page is displayed, as shown in Figure 9-1.

Figure 9-1 Policy Set Summary Page

[image: Description of Figure 9-1 follows]

Description of "Figure 9-1 Policy Set Summary Page"

Displaying a List of Policy Sets Using WLST

To display a list of the policy sets in the repository:

	
Connect to the running instance of WebLogic Server as described in "Accessing the Web Services Custom WLST Commands".

	
Use the listPolicySets command to display a list of the policy sets in the repository.

listPolicySets ([type=None])

You can limit the display to include only those policy sets that apply to a specific type of policy subject resource types. To specify the type of subject, you must use the abbreviations specified in Table 9-1, "Policy Subject Resource Types".

For example, to display a list of policy sets that apply to Web service endpoints:

wls:/jrfserver_domain/serverConfig>listPolicySets('ws-service')
 Global Policy Sets in Repository:
 app-only-web-service-policies
 all-domains-default-web-service-policies

For more information about this WLST command, see "Web Services Custom WLST Commands" in WebLogic Scripting Tool Command Reference.

Viewing the Configuration of a Policy Set

The following sections describe how to view a policy set using either Fusion Middleware Control or the command-line interface WebLogic Scripting Tool (WLST).

Using Fusion Middleware Control

To view a policy set:

	
Navigate to the Policy Set Summary page as described in "Navigating to the Policy Set Summary Page".

	
In the Policy Set Summary page, select a policy set from the table and click View.

	
When you are done viewing the policy set, click Return to Policy Sets.

Figure 9-2 Viewing a Policy Set

[image: Description of Figure 9-2 follows]

Description of "Figure 9-2 Viewing a Policy Set"

Using WLST

To view the configuration of a specific policy set in the repository:

	
Connect to the running instance of WebLogic Server as described in "Accessing the Web Services Custom WLST Commands".

	
Use the displayPolicySet command to display the configuration of a specified policy set.

displayPolicySet ([name=None])

When you execute this command outside of a repository session, you can display the configuration of any policy set using the name argument. If the policy set does not exist, an error message is displayed.

If you are creating or modifying a policy set in a repository session, you do not need to specify the name argument. The current policy set is used by default. If the policy set is being modified, then the modified version is displayed. Otherwise, the latest version in the repository is displayed.

For example:

wls:/jrfserver_domain/serverConfig>displayPolicySet('int-only-web-service-policies')

 Policy Set Details:

Name: int-only-web-services-policies
Type of Resources: Web Service Endpoint
Scope of Resources: Domain("*")
Constraint: !HTTPHeader("VIRTUAL_HOST_TYPE","external")
Description: Policies for non-external client requests
Enabled: true
Policy Reference: security : oracle/wss_saml_or_username_token_service_policy, enabled=true
 reference.priority=1
 management : oracle/log_policy, enabled=true

For more information about this WLST command, see "Web Services Custom WLST Commands" in WebLogic Scripting Tool Command Reference.

Managing Repository Modification Sessions Using WLST

When using WLST to create, modify, and delete policy sets, you must execute the commands in the context of a repository session. Each repository session applies to a single policy set only.

To create a session in which the repository will be modified, use the beginRepositorySession command. After you have entered the desired commands to create, modify, or delete a policy set, you write the contents of the session to the repository using the commitRepositorySession command.

Use the describeRepositorySession command to describe the contents of the current session.

To exit a repository session without writing the contents to the repository, use the abortRepositorySession command.

Examples of these commands are provided in the subsequent sections. For additional information, see "Web Services Custom WLST Commands" in WebLogic Scripting Tool Command Reference.

Creating a Policy Set

The following sections describe how to create a policy set using either Fusion Middleware Control or the command line interface WebLogic Scripting Tool, WLST.

Using Fusion Middleware Control

To create a policy set:

	
Navigate to the Policy Set Summary page as described in "Navigating to the Policy Set Summary Page".

	
From the Policy Set Summary page, click Create.

The first page of the policy set creation wizard is displayed.

	
In the Enter General Information page, as shown in Figure 9-3, enter a name for the policy set.

Figure 9-3 Enter General Information Page

[image: Description of Figure 9-3 follows]

Description of "Figure 9-3 Enter General Information Page"

	
Select the Enabled check box if you want to enable the policy set.

	
In the Type of Resources field, select the type of policy subject to which you want to attach policies. On the next page you define the scope of resources to which you want the policy set to apply. The type of policy subjects that you can select are as follows:

	
SOA Component

	
SOA Service

	
SOA Reference

	
Web Service Connection

	
Web Service Endpoint

	
Web Service Client

	
Asynchronous Callback Client

	
Optionally, add a description of the policy set, and click Next.

	
In the Enter Resource Scope page, enter at least one pattern string that defines the scope for the resource type you selected in the previous step. The following resource scopes are supported:

	
Domain

	
Server Instance

	
SOA Partition

	
Application

	
Application Module

	
SOA Composite

	
SOA Service

	
SOA Reference

	
SOA Component

	
Port

	
Note:

To specify a resource scope, you must enter a pattern string in at least one Pattern field on this page.

The list of available resource scopes is determined by the Resource Type you selected on the previous page. For example, if you selected Web Service Endpoint, the resource scopes available are Domain, Server Instance, Application, Application Module, SOA Service or Web Service Endpoint, and Port. For SOA Service resource types, the resource scopes available are Domain, Server Instance, SOA Partition, SOA Composite, SOA Service or Web Service Endpoint, and Port.

For example, to attach the policies to all Web Service endpoints in the domain, enter a pattern string to represent the name of the domain only. You do not need to complete any of the other fields. To attach the policies at a finer scope, for example at the application or application module level, enter a pattern string to represent the name of the application or the module in the Pattern field. You can use an asterisk (*) as a wildcard character anywhere within the string to match any number of characters at its position; you can specify multiple wildcards within the string. Note that if you use only an asterisk wildcard for Domain, the scope level will affect all domains in the enterprise.

If you provide a pattern string for multiple resource scopes, such as Domain Name and Server Instance Name, the filtering conditions are ANDed together; for example, Domain("myDomain*") AND Server ("*SOA*"). For more information about specifying the resource type and scope, and an example that specifies multiple resource scopes, see "Defining the Type and Scope of Resources".

Figure 9-4 Enter Resource Scope Page

[image: Description of Figure 9-4 follows]

Description of "Figure 9-4 Enter Resource Scope Page"

	
Click Next.

	
In the Enter Constraint page, optionally enter a constraint to be applied to the policy set that determines the context in which the policy set is relevant. For example, you can specify that a service use message protection when communicating with external clients since the message may be transmitted over insecure public networks. However, when communicating with internal clients on a trusted network, message protection may not be required.

To specify a constraint, in the Constraint Expression Details section of the page, select the Enabled check box, provide a header name and value in the HTTP Header Name and HTTP Header Value fields, optionally select the !(NOT) Operator to invert the constraint, and click Update Constraint. Then click Next.

For more information about specifying a constraint, see "Specifying Run-time Constraints in Policy Sets".

	
In the Add Policy References page, select a policy from the Available Policies list, and click Attach.

To view details about a policy, select the policy and click the View Detail icon. A pop-up window provides a full read-only description of the policy and lists the assertions that it contains. Click OK when you are finished reviewing the details of the policy.

	
Continue selecting and attaching policies. When you are finished, click Validate to verify that the combination of policies selected are valid.

Figure 9-5 Add Policy References Page

[image: Description of Figure 9-5 follows]

Description of "Figure 9-5 Add Policy References Page"

	
Click Next to view the Policy Set Summary Page.

	
Review the policy set summary information. If you are satisfied with the policy set, click Save.

Note that if the validation fails, the policy set is still saved, but in disabled mode.

Figure 9-6 Policy Set Summary Page in Create Policy Set Wizard

[image: Description of Figure 9-6 follows]

Description of "Figure 9-6 Policy Set Summary Page in Create Policy Set Wizard"

Using WLST

Use the following procedure to create a policy set using WLST.

	
Connect to the running instance of WebLogic Server as described in "Accessing the Web Services Custom WLST Commands".

	
Begin a repository session using the beginRepositorySession command.

The beginRepositorySession command is used to create a session in which the repository will be modified. All creation, modification, or deletion commands must be performed in the context of a session. A session can only act on a single document.

For example:

wls:/jrfserver_domain/serverConfig> beginRepositorySession()

Repository session begun.

	
Use the createPolicySet command to create a new, empty policy set. The name, type, and attachTo arguments are required.

createPolicySet(name, type, attachTo, [description=None], [enable='true'])

Where:

	
name represents the name of the new, empty policy set.

	
type represents the type of policy subject to which the new policy set applies.

	
attachTo represents the scope of resources to which the policy set will be attached. This argument must use a supported expression that defines a valid resource scope in a supported format. For more information, see "Defining the Type and Scope of Resources".

You do not need to enter the exact domain name for the resource scope. Wildcards are permitted, as shown in the example. For details, see "Defining the Type and Scope of Resources".

	
description represents an optional argument that provides a description of the policy set.

	
enable specifies if the policy set is enabled or disabled. This argument is optional.

For example, to create a policy set for all services in a domain using only the required arguments:

wls:/jrfserver_domain/serverConfig> createPolicySet('all-domains-default-web-service-policies', 'ws-service', 'Domain("*")')

Description defaulted to "Global policy attachments for Web Service Endpoint resources."The policy set was created successfully in the session.

Note that because no description was specified on the command line, a default description was provided.

For additional details about the arguments for this command, see "Web Services Custom WLST Commands" in WebLogic Scripting Tool Command Reference.

	
Specify a description using the setPolicySetDescription command.

setPolicySetDescription(description)

For example, to set the description as "Default policies for web services in any domain", use the following command:

wls:/jrfserver_domain/serverConfig> setPolicySetDescription('Default policies for web services in any domain')

Description updated.

	
To attach a policy to the current policy set, use the attachPolicySetPolicy command. The policy, identified by the specified URI using the uri argument, is attached to the endpoints specified in the policy set. You can repeat this command as needed to attach all the desired policies to the policy set.

attachPolicySetPolicy(uri)

For example, to attach the policy 'oracle/wss11_saml_or_username_token_with_message_protection_service_policy' to the subjects specified in the policy set, enter the following command:

wls:/jrfserver_domain/serverConfig>attachPolicySetPolicy('oracle/wss11_saml_or_username_token_with_message_protection_service_policy')

Policy reference added.

	
Optionally, specify a configuration override or a run-time constraint. For details, refer to the following topics:

	
"Using WLST" in "Overriding Configuration Properties for Globally Attached Policies".

	
"Using WLST"in "Specifying Run-time Constraints in Policy Sets"

	
Optionally, display the configuration of the policy set during the current repository session using the displayPolicySet command.

displayPolicySet(name=None)

Note that when you execute this command within a repository session, you do not need to specify the name argument. The current policy set is used by default. If the policy set is being modified, then the modified version is displayed. Otherwise, the latest version in the repository is displayed.

For example:

wls:/jrfserver_domain/serverConfig>displayPolicySet()

Policy Set Details:

Name: all-domains-default-web-service-policies
Type of Resources: Web Service Endpoint
Scope of Resources: Domain("*")
Description: Default policies for web services in any domain
Enabled: true
Policy Reference: security : oracle/wss11_saml_or_username_token_with_message_protection_service_policy, enabled=true

	
Validate the policy set using the validatePolicySet command.

validatePolicySet(name=None)

If a name is not provided, then the command validates the policy set being created or modified in the current session. Note that you can also execute this command outside of a repository session. If you do so, the name argument is required.

For example:

wls:/jrfserver_domain/serverConfig> validatePolicySet()

The policy set all-domains-default-web-service-policies is valid.

	
Write the contents of the current repository session to the repository using the commitRepositorySession command.

wls:/jrfserver_domain/serverConfig> commitRepositorySession()

The policy set all-domains-default-web-service-policies is valid.
Creating policy set all-domains-default-web-service-policies in repository.

Repository session committed successfully.

Alternately, you can choose to cancel any changes by using the abortRepositorySession command, which discards any changes that were made to the repository during the session.

For more information about these WLST commands and their arguments, see "Web Services Custom WLST Commands" in WebLogic Scripting Tool Command Reference.

Creating a Policy Set from an Existing Policy Set

You can use an existing policy set as the base for a new policy set. The following sections describe how to create a new policy set from an existing policy set using either Fusion Middleware Control or the command line interface WebLogic Scripting Tool, WLST.

Note that when you create a policy set from an existing policy set, all values and attachments are copied into the new one. You can modify the resource scope and the policy attachments in the new policy set, but you cannot change the type of resource to which it applies.

Using Fusion Middleware Control

To create a policy set using an existing policy set:

	
Navigate to the Policy Set Summary page as described in "Navigating to the Policy Set Summary Page".

	
In the Policy Set Summary page, select the policy set that you want to copy and click Create Like.

	
In the Enter General Information page, enter a new name and description for the policy set.

Note the following:

	
The default new policy set name is created by appending "_Copy" to the base policy set name. For example, if the base policy set is named all-domains-default-web-service-policies, the name displayed for the copy is all-domains-default-web-service-policies_Copy.

	
The Resource Type field is read-only. When you clone a policy set, you can modify the scope but not the type of resources to which the policy set will be attached.

	
Select or clear the Enabled check box to enable or disable the policy set.

	
Click Next.

	
In the Enter Resource Scope page, modify the scope as desired and click Next.

	
Note:

To specify a resource scope, a pattern string must be provided in at least one Pattern field on this page.

	
In the Enter Constraint page, optionally specify a constraint or modify an existing constraint. Click Update Constraint, then click Next.

For more information, see "Specifying Run-time Constraints in Policy Sets".

	
In the Add Policy References page, modify the policy attachments as desired. When you are finished, click Validate to verify that the combination of polices selected is valid.

	
Click Next to view the Policy Set Summary Page.

	
Review the policy set summary information. If you are satisfied with the policy set, click Save.

Using WLST

To create a policy set from an existing policy set:

	
Connect to the running instance of WebLogic Server as described in "Accessing the Web Services Custom WLST Commands".

	
Begin a repository session using the beginRepositorySession command.

For example:

wls:/jrfserver_domain/serverConfig> beginRepositorySession()

Repository session begun.

	
Use the clonePolicySet command to create a policy set using an existing policy set.

clonePolicySet(name, source, [attachTo=None,] [description=None], [enable='true'])

Where:

	
name represents the name of the new, cloned policy set.

	
source specifies the name of the policy set to be cloned.

	
attachTo represents the scope of resources to which the policy set will be attached. This argument, if provided, must use a supported expression that defines a valid resource scope in a supported format. You do not need to enter the exact name for the resource scope. Wildcards are permitted, as shown in the example. For more information, see "Defining the Type and Scope of Resources".

If this argument is not specified, then the expression used in the source policy set to identify the scope of resources is retained. You can also modify the resource scope using the attachPolicySet command, as described in step 0

	
description represents an optional argument that provides a description of the cloned policy set.

	
enable specifies if the policy set is enabled or disabled. This argument is optional.

For example, to clone a policy set:

wls:/jrfServer_domain/serverConfig>clonePolicySet
('app-only-web-service-policies','all-domains-default-web-service-policies',
 None, 'Default policies for application jaxws-sut')

The policy set was cloned successfully in the session.

Note that the attachTo argument was not specified in this example.

For details about the arguments for this command, see "Web Services Custom WLST Commands" in WebLogic Scripting Tool Command Reference.

	
Optionally, view the configuration of the policy set using the displayPolicySet command.

For example:

wls:/jrfServer_domain/serverConfig> displayPolicySet()

Policy Set Details:

Name: app-only-web-service-policies
Type of Resources: Web Service Endpoint
Scope of Resources: Domain("jrfServer_domain")
Description: Default policies for application jaxws-sut
Enabled: true
Policy Reference: security : oracle/wss11_saml_or_username_token_with_message_protection_service_policy, enabled=true

	
To change the resource scope of the attachments, use the attachPolicySet command.

attachPolicySet(expression)

Where:

	
expression is a supported expression that defines the resource scope, in a supported format, that is valid for the resource type defined in the policy set. For example, for SOA resource types, you cannot define the resource scope to be an application. The supported resource scopes for SOA resource types are Domain, Server, and Composite. For more information, see "Defining the Type and Scope of Resources"

For example, to attach the policies in the policy set only to the application named jaxws-sut, enter the following command:

wls:/jrfServer_domain/serverConfig> attachPolicySet('Application("jaxws-sut")')

Scope of resources updated.

	
Optionally, specify a configuration override or a run-time constraint. For details, refer to the following topics:

	
"Using WLST" in "Overriding Configuration Properties for Globally Attached Policies".

	
"Using WLST"in "Specifying Run-time Constraints in Policy Sets"

	
Optionally, view the configuration of the cloned policy set using the displayPolicySet command.

For example:

wls:/jrfserver_domain/serverConfig>displayPolicySet()

Policy Set Details:

Name: app-only-web-service-policies
Type of Resources: Web Service Endpoint
Scope of Resources: Application("jaxws-sut")
Description: Default policies for application jaxws-sut
Enabled: true
Policy Reference: security : oracle/wss11_saml_or_username_token_with_message_protection_service_policy, enabled=true

	
Write the contents of the current repository session to the repository using the commitRepositorySession command.

For example:

wls:/jrfserver_domain/serverConfig>commitRepositorySession()
The policy set app-only-web-service-policies is valid.
Creating policy set app-only-web-service-policies in repository.

Repository session committed successfully.

Alternately, you can choose to cancel any changes by using the abortRepositorySession command, which discards any changes that were made to the repository during the session.

For more information about these WLST commands and their arguments, see "Web Services Custom WLST Commands" in WebLogic Scripting Tool Command Reference.

Editing a Policy Set

The following sections describe how to edit an existing policy set using either Fusion Middleware Control or the command line interface WebLogic Scripting Tool, WLST.

Using Fusion Middleware Control

To edit an existing policy set:

	
Navigate to the Policy Set Summary page as described in "Navigating to the Policy Set Summary Page".

	
In the Policy Set Summary page, select the policy set that you want to edit and click Edit.

	
In the Enter General Information page, select or clear the Enabled check box to enable or disable the policy set. You can also edit the policy set description.

Note that the Name and Type of Resources fields are read-only.

	
Click Next.

	
In the Enter Resource Scope page, modify the scope as desired and click Next.

	
In the Enter Constraint page, optionally specify a constraint or modify an existing constraint. Click Update Constraint, then click Next.

For more information about specifying a constraint, see "Specifying Run-time Constraints in Policy Sets".

	
In the Add Policy References page, modify the policy attachments as desired. When you are finished, click Validate to verify that the combination of polices selected is valid.

	
Click Next to view the Policy Set Summary Page.

	
Review the policy set summary information. If you are satisfied with the policy set, click Save.

Using WLST

To edit a policy set:

	
Connect to the running instance of WebLogic Server as described in "Accessing the Web Services Custom WLST Commands".

	
Begin a repository session using the beginRepositorySession command.

For example:

wls:/jrfserver_domain/serverConfig> beginRepositorySession()

Repository session begun.

	
Use the modifyPolicySet command to select an existing policy set to edit.

modifyPolicySet(name)

The latest version of the named policy set will be loaded into the current session. For example, to edit a policy set to add policies, use the following command:

wls:/jrfServer_domain/serverConfig> modifyPolicySet('all-domains-default-web-service-policies')

The policy set is ready for modification in the session.

	
Edit the policy set as desired. For example:

	
To add policies to the policy set, use the attachPolicySetPolicy command, identifying the policy by a specified URI using the uri argument.

attachPolicySetPolicy(uri)

To add the oracle/wss_saml_or_username_token_service_policy and the oracle/log_policy policies to the policy set, enter the following commands:

wls:/jrfServer_domain/serverConfig> attachPolicySetPolicy('oracle/wss_saml_or_username_token_service_policy')

Policy reference added.

wls:/jrfServer_domain/serverConfig>attachPolicySetPolicy('oracle/log_policy')

Policy reference added.

	
To remove policies from the policy set, use the detachPolicySetPolicy command, identifying the policy by a specified URI using the uri argument.

detachPolicySetPolicy(uri)

To remove the oracle/wss11_saml_or_username_token_with_message_protection_service_policy from the policy set, enter the following:

wls:/jrfServer_domain/serverConfig> detachPolicySetPolicy('oracle/wss11_saml_or_username_token_with_message_protection_service_policy')

Policy reference removed.

	
To enable or disable a policy attachment in the policy set, use the enablePolicySetPolicy command, identifying the policy by a specified URI using the uri argument.

enablePolicySetPolicy(uri,[enable=true])

The default is true.

To disable the oracle/log_policy, enter the following:

wls:/jrfServer_domain/serverConfig> enablePolicySetPolicy('oracle/log_policy',false)

Policy reference disabled.

	
Optionally, specify a configuration override or a run-time constraint. For details, refer to the following topics:

	
"Using WLST" in "Overriding Configuration Properties for Globally Attached Policies".

	
"Using WLST"in "Specifying Run-time Constraints in Policy Sets"

	
Validate the policy set using the ValidatePolicySet command.

For example:

wls:/jrfServer_domain/serverConfig> validatePolicySet()

The policy set app-only-web-service-policies is valid.

	
Optionally, display the modified policy set using the displayPolicySet command.

wls:/jrfServer_domain/serverConfig>displayPolicySet()

Policy Set Details:

Name: all-domains-default-web-service-policies
Type of Resources: Web Service Endpoint
Scope of Resources: Domain("*")
Description: Default policies for web services in any domain
Enabled: true
Policy Reference: security : oracle/wss_saml_or_username_token_service_policy, enabled=true
 management : oracle/log_policy, enabled=false

	
To write the contents of the current repository session to the repository, use the commitRepositorySession command.

wls:/jrfServer_domain/serverConfig> commitRepositorySession()

The policy set all-domains-default-web-service-policies is valid.
Updating policy set all-domains-default-web-service-policies in repository.

Repository session committed successfully.

Alternately, you can choose to cancel any changes by using the abortRepositorySession command, which discards any changes that were made to the repository during the session.

For more information about the WLST commands and their arguments, see "Web Services Custom WLST Commands" in WebLogic Scripting Tool Command Reference.

Defining the Type and Scope of Resources

The resource type, or subject type, identifies the type of endpoint to which the policy set applies. It is mapped to the appliesTo attribute of the policy set. The resource scope identifies the location within the resource where the policy set containing policies should be applied. It is mapped to the attachTo attribute of the policy set and is used for conflict resolution when multiple policy sets exist.

To attach policies globally across a set of resources, you must specify the type of policy subjects to which the policy set applies and the scope of resources within the topology of the enterprise.

Resource Type

In Fusion Middleware Control, you select the resource type from a menu when you are creating a policy set. When you create a policy set using WLST, you must use specific abbreviations for these resource types. Table 9-1 lists the type of resources that you select in EM, the abbreviations that are required in WLST, and the resource scopes that are valid for each resource type.

Table 9-1 Policy Subject Resource Types

	Fusion Middleware Control
	WLST	Valid Resource Scope
	
SOA Component

	
sca-component

	
	
Domain

	
Server Instance

	
SOA Partition

	
SOA Composite

	
SOA Component

	
SOA Reference

	
sca-reference

	
	
Domain

	
Server Instance

	
SOA Partition

	
SOA Composite

	
SOA Reference

	
Port

	
SOA Service

	
sca-service

	
	
Domain

	
Server Instance

	
SOA Partition

	
SOA Composite

	
SOA Service

	
Port

	
Web Service Endpoint

	
ws-service

	
	
Domain

	
Server Instance

	
Application

	
Application Module

	
Web Service Endpoint

	
Port

	
Web Service Client

	
ws-client

	
	
Domain

	
Server Instance

	
Application

	
Application Module

	
Web Service Client

	
Port

	
Web Service Connection

	
ws-connection

	
	
Domain

	
Server Instance

	
Application

	
Application Module

	
SOA Reference or Web Service Client

	
Port

	
Asynchronous Callback Client

	
ws-callback

	
	
Domain

	
Server Instance

	
Application

	
Application Module

	
Web Service Endpoint

	
Port

Resource Scope

In Fusion Middleware Control, you specify the scope by entering a pattern string that represents the name associated with the resource scope. For example, to attach a policy set to all Web service endpoints in a domain, you enter a pattern that represents the name of the domain in the Domain Name field.When specifying the resource scope in WLST, you need to use a supported expression for each scope. The supported expressions are described in Table 9-2. These expressions are required for the following arguments:

	
attachTo argument of the createPolicySet and clonePolicySet commands

	
expression argument of the attachPolicySet command

For both Fusion Middleware Control and WLST, you can enter the complete name, or a partial value using wildcards. An asterisk (*) is permitted as a wildcard character anywhere within the string to match any number of characters at its position. You can specify multiple wildcards at any position within the string. For example, for the domain name jrf_domain, you can enter jrf*, or *rf*domain, or any number of combinations. You need to provide only a single pattern for a scope. If you do not specify a pattern string for a resource scope, asterisk (*) is assumed. You can use single or double quotes. If multiple values are provided, then all of the expressions must match for the policy set to be considered attached to the policy subject.

The following is a list of the supported expressions for the resource scope.

Table 9-2 Supported Expressions for the Resource Scope

	Supported Expression	Description
	
Domain("expression")

	
This value will be matched against a policy subject based on the management domain in which it is deployed.

	
Server("expression")

	
This value will be matched against a policy subject based on the server instance in which it is deployed.

	
Application("expression")

	
This value will be matched against a policy subject based on the name of the application in which it is located.

	
Partition('expression")

	
This value will be matched against a policy subject based on the name of the partition in which it is located.

	
Module("expression")

	
This value will be matched against a policy subject based on the name of the application module in which it is located.

	
Composite("expression")

	
This value will be matched against a policy subject based on the name of the SOA composite in which it is located.

Note: For a composite, the expression should use the composite name only, for example:

Composite("*Basic_SOA_Client*")

Do not include the SOA partition or composite revision number in the expression.

	
Reference("expression")

	
This value will be matched against a policy subject based on the name of the reference in which it is located.

	
Service("expression")

	
This value will be matched against a policy subject based on the name of the service in which it is located.

Note: For a service, the expression must include the namespace and the service name, for example:

Service("{http://mynamespace/}myService")

For applications assembled prior to PS5, the namespace is not displayed in the listWebServices output or in Fusion Middleware Control where the service name is displayed. In this case, you can determine the namespace as described in "Determining the Namespace for a Web Service".

	
Component("expression")

	
This value will be matched against a policy subject based on the name of the component in which it is located.

	
Port("expression")

	
This value will be matched against a policy subject based on the name of the port in which it is located.

Determining the Namespace for a Web Service

For applications assembled prior to PS5, the namespace is not displayed with the service name in the output for WLST commands, or in Fusion Middleware Control where the service name is displayed. To specify a service as a resource scope, you need to include the namespace with the service name. You can determine the namespace for a service from the Web service WSDL document. To do so:

	
Display the WSDL document for the Web service endpoint as described in "Displaying the Web Service WSDL Document".

	
In the WSDL document, locate the wsdl:definitions element, which includes the target namespace for the service.

For example, in the TestService WSDL:

http://host:7001/jaxws-service/TestService?WSDL

The following wsdl:definitions element is included:

<wsdl:definitions name="TestService"targetNamespace="http://service.jaxws.wsm.oracle/">

To specify a complete service name, combine the namespace with the service name. Using the example above, the complete service name is as follows:

{http://service.jaxws.wsm.oracle/}TestService

Examples

The following examples demonstrate how to create policy sets using different resource types and scopes.

Example 9-1 creates a policy set for an asynchronous callback client (ws-callback) resource type. In this example, the policy set is attached at a specific application scope, and applies to all services that satisfy the filter condition (Domain AND Server AND Application).

Example 9-1 Asynchronous Callback Client Resource Type Policy Set

beginRepositorySession()
createPolicySet('Async callback client', 'ws-callback',
 'Domain('FinancialDomain') and Server ('*payable*') and Application('Expense*')',
'Global policy for asynchronous callback client', true)
attachPolicySetPolicy('oracle/wss10_saml_token_client_policy')
validatePolicySet()
commitRepositorySession()
displayPolicySet('Async callback client')

Example 9-2 creates a policy set named web_connection_cost_service for a Web service connection (ws-connection) resource type. In this example, the policy set is attached at a specific application module scope, and applies to all services that satisfy the filter condition (Domain AND Server AND Application AND Module).

Example 9-2 Web Service Connection Resource Type Policy Set

beginRepositorySession()
createPolicySet('web_connection_cost_service', 'ws-connection',
 'Domain("SCMDomain") and Server("*CostManagementServer*") and Application("ScmCst*") and Module("*Costs")', enable=true)
attachPolicySetPolicy('oracle/wss10_saml_token_client_policy')
validatePolicySet()
commitRepositorySession()
displayPolicySet('web_connection_cost_service')

Validating a Policy Set

In addition to validating that the policy set adheres to the rules described in "Validating Policy Subjects", policy set validation also performs the following checks:

	
Validates that the defined resource type and scope is valid for the policy set

	
Validates that the value entered for the resource scope contains a supported expression in a supported format

	
Validates that any referenced policies are available and compatible with each other. For example, the policies are compatible if their categories are not in conflict with each other.

	
Note:

To ensure there are no conflicts between policy attachments, you can use Fusion Middleware Control and WLST commands to determine if Web service endpoints contain a valid and secure configuration. For more information, see "Determining the Secure Status of an Endpoint".
For troubleshooting information, see "Diagnosing Policy Attachment Issues Using WLST".

Overriding Configuration Properties for Globally Attached Policies

If a policy referenced in a policy set contains overridable properties, you can override the existing value of the property for that policy set using either Fusion Middleware Control or WLST.

Using Fusion Middleware Control

To override a configuration property in a policy referenced in a policy set:

	
Go to the Policy Set Summary page as described in "Navigating to the Policy Set Summary Page".

	
From the Policy Set Summary page, select the policy set containing the policy for which you want to configure overrides.

If the policy set references policies with overridable properties, the Override Policy Configuration button is displayed, as shown in Figure 9-7.

Figure 9-7 Policy Set Override Policy Configuration Button

[image: Description of Figure 9-7 follows]

Description of "Figure 9-7 Policy Set Override Policy Configuration Button"

	
Select Override Policy Configuration.

The Override Policy Configuration page is displayed, as shown in Figure 9-8.

Figure 9-8 Policy Set Override Policy Configuration Page

[image: Description of Figure 9-8 follows]

Description of "Figure 9-8 Policy Set Override Policy Configuration Page"

	
In the Policy References table, select the policy for which you want to override the configuration property. If the policy contains overridable properties, the Override Policy Configuration button is displayed.

	
Select Override Policy Configuration. The Security Configuration Details page is displayed, containing a list of the configuration properties that can be overridden in the selected policy.

Figure 9-9 shows the overridable properties for the oracle/wss11_saml_or_username_token_with_message_protection_service_policy.

Figure 9-9 Policy Set Security Configuration Details Page

[image: Description of Figure 9-9 follows]

Description of "Figure 9-9 Policy Set Security Configuration Details Page"

	
Enter the override value in the Value field for the property and click Apply.

The property will be overridden for all endpoints to which the policy set applies.

For more information about configuration overrides and the properties that can be overridden, see the following sections:

	
"Attaching Web Service Policies Permitting Overrides"

	
"Attaching Client Policies Permitting Overrides"

	
"Configuring User-Defined Client- or Server-Side Override Properties"

Using WLST

You can specify a configuration override in a policy referenced in a policy set using the setPolicySetPolicyOverride command. This command can be used only during the creation or modification of a policy set within the context of a repository session. The following procedure describes how to specify a configuration override while editing an existing policy set, but you can also use this command in a repository session while creating a new policy set or creating a policy set from an existing policy set.

	
Begin a repository session using the beginRepositorySession command.

For example:

wls:/jrfserver_domain/serverConfig> beginRepositorySession()

Repository session begun.

	
Use the modifyPolicySet command to select an existing policy set to edit.

modifyPolicySet(name)

The latest version of the named policy set will be loaded into the current session. For example, enter the following command:

wls:/jrfServer_domain/serverConfig> modifyPolicySet('all-domains-default-web-service-policies')

The policy set is ready for modification in the session.

	
Optionally, view the configuration of the policy set using the displayPolicySet command.

For example:

wls:/jrfserver_domain/serverConfig>displayPolicySet()

Policy Set Details:

Name: all-domains-default-web-service-policies
Type of Resources: Web Service Endpoint
Scope of Resources: Domain("*")
Description: Default policies for web services in any domain
Enabled: true
Policy Reference: security : oracle/wss_saml_or_username_token_service_policy, enabled=true
 management : oracle/log_policy, enabled=false

	
Specify the configuration override using the setPolicySetPolicyOverride command.

For example, to specify a configuration override for the reference.priority property, enter the following command:

wls:/jrfserver_domain/serverConfig>setPolicySetPolicyOverride('oracle/wss_saml_or_username_token_service_policy',
'reference.priority','1')

The configuration override property "reference.priority" having value "1" has
been added to the reference to policy with URI "oracle/wss_saml_or_username_token_service_policy".

	
Optionally, view the configuration of the policy set.

For example:

wls:/jrfserver_domain/serverConfig>displayPolicySet()

Policy Set Details:

Name: all-domains-default-web-service-policies
Type of Resources: Web Service Endpoint
Scope of Resources: Domain("*")
Description: Default policies for web services in any domain
Enabled: true
Policy Reference: security : oracle/wss_saml_or_username_token_service_policy, enabled=true
 reference.priority=1
 management : oracle/log_policy, enabled=false

Note that the reference.priority configuration override is now shown in the output (in bold in the above example.)

	
Validate the policy set using the ValidatePolicySet command.

For example:

wls:/jrfServer_domain/serverConfig> validatePolicySet()

The policy set all-domains-default-web-service-policies is valid.

	
To write the contents of the current repository session to the repository, use the commitRepositorySession command.

wls:/jrfServer_domain/serverConfig> commitRepositorySession()

The policy set all-domains-default-web-service-policies is valid.
Updating policy set all-domains-default-web-service-policies in repository.

Repository session committed successfully.

Specifying Run-time Constraints in Policy Sets

Applications can be deployed into environments that expose the same services to both external and internal clients. In these environments, it is often desirable to enforce different security behaviors based on where the client is located.

For example, in an environment consisting of a single Fusion Middleware server (WebLogic Server) hosting Web services, Oracle HTTP Server is configured at the front end to listen for HTTP requests from two separate networks. One of these networks is used to transport all private internal requests, while the other network is used to transport all external requests. Access via the external network is through a firewall. Since physical access to the internal network is highly restricted, requests from this network are already protected. Therefore, it is only necessary to enforce authentication and authorization. By not enforcing message protection, the load on the server is reduced and performance is increased. However, all requests from the external network are considered to be insecure since it can be potentially accessed by anyone. In this case, in addition to authentication and authorization, message protection (confidentiality and integrity) must be enforced. Performance for these requests will be lower, but is considered acceptable since the alternatives (such as data leaks, replay attacks, and so on) are far worse.

To ensure that a policy set is applied appropriately for an external network, the administrator needs to specify a constraint expression against which the policy set is evaluated. The value of the expression indicates the runtime context for which the policy set is relevant.

The constraint expression must specify a valid header name and value. The following expressions are certified in this release:

	
HTTPHeader("VIRTUAL_HOST_TYPE","External")—Sets the constraint as external and indicates that the policy set should apply to all external requests received through Oracle HTTP Server.

	
!HTTPHeader("VIRTUAL_HOST_TYPE","External")—Sets the constraint as NOT external and indicates that the policy set should apply to all incoming requests not received through Oracle HTTP server, such as those from an internal network.

	
Note:

The run-time constraint function HTTPHeader is only certified to use when Oracle HTTP Server is configured at the front end and the Oracle HTTP Server administrator has added a custom VIRTUAL_HOST_TYPE header to the request. For details about adding the header to the request, see "Configuring Oracle HTTP Server to Specify Request Origin". Although that procedure refers to the whitelist_authorization_policy, it also applies to specifying the request origin for run-time constraints.

When specifying constraints, the following rules apply:

	
If multiple policy sets specify the same constraint, standard effective policy calculation rules apply. For details about the standard effective policy rules, see "How the Effective Set of Policies is Calculated".

	
If multiple policy sets specify different constraints, the effective set of policies is calculated against each type of constraint independently. That is, the effective set of policies is evaluated for all external requests and a separate effective set of policies is evaluated against all non-external requests.

	
If no run-time constraint is specified in a policy set, it applies to all requests; that is, both external and non-external requests.

Figure 9-10 illustrates the effective policies for external and non-external requests determined using constraints in three different policy sets.

Figure 9-10 Effective Policy Calculation for Policy Sets with Run Time Constraints

[image: Description of Figure 9-10 follows]

Description of "Figure 9-10 Effective Policy Calculation for Policy Sets with Run Time Constraints"

Using Fusion Middleware Control

You can specify a run-time constraint when you are creating, editing, or cloning a policy set using the policy set wizard. After you specify the scope for the policy set, the Enter Constraint page is displayed. If you are editing or cloning a policy set with a constraint specified, the constraint currently configured in the policy set is displayed, as shown in Figure 9-11. If you are creating a new policy set, these fields are blank.

Figure 9-11 Enter Constraint Page in Policy Set Wizard

[image: Description of Figure 9-11 follows]

Description of "Figure 9-11 Enter Constraint Page in Policy Set Wizard"

To specify a constraint:

	
In the Constraint Expression Details section of the page, select the Enabled check box to enable the constraint.

	
Optionally, select the !(NOT) Operator to invert the constraint.

	
Enter a header name and header value for the HTTPHeader constraint function in the HTTP Header Name and HTTP Header Value fields, respectively. If the constraint is enabled, the HTTP Header Name field is required.

For example, as shown in Figure 9-11, to specify a constraint that applies to external clients only, enter VIRTUAL_HOST_TYPE in the HTTP Header Name field and External in the HTTP Header Value field.

	
Click Update Constraint.

The constraint expression is displayed in the Constraint field, for example HTTPHeader('VIRTUAL_HOST_TYPE','External').

Using WLST

You can specify a constraint in a policy set using the setPolicySetConstraint command. This command can be used only during the creation or modification of a policy set within the context of a repository session.

The following procedure describes how to specify a run-time constraint while creating a new policy set, but you can also use the setPolicySetConstraint command in a repository session while editing an existing policy set or creating a new policy set from an existing policy set.

	
Begin a repository session using the beginRepositorySession command.

For example:

wls:/jrfServer_domain/serverConfig> beginRepositorySession()

Repository session begun.

	
Use the createPolicySet command to create a new policy set.

For example, to create a policy set for that provides authentication and message protection to external clients at the domain scope:

wls:/jrfServer_domain/serverConfig>createPolicySet('domainExternal','ws-service','Domain("*")','Authentication and message protection at domain scope for external clients')

The policy set was created successfully in the session.

For details about creating a policy set using WLST, see"Using WLST" in "Creating a Policy Set".

	
Attach a policy to the current policy set using the attachPolicySetPolicy command.

For example, to attach the policy 'oracle/wss10_message_protection_service_policy' to the subjects specified in the policy set, enter the following command:

wls:/jrfServer_domain/serverConfig>attachPolicySetPolicy('oracle/wss11_saml_or_username_token_with_message_protection_service_policy

Policy reference added.

	
Specify a run-time constraint using the setPolicySetConstraint(constraint) command. The constraint argument must use a supported expression that defines a valid run-time constraint in a supported format. The following expressions are certified in this release:

	
HTTPHeader("VIRTUAL_HOST_TYPE","External")

	
!HTTPHeader("VIRTUAL_HOST_TYPE","External")

For example, to specify a constraint that applies to external clients only, enter the following command:

wls:/jrfServer_domain/serverConfig>setPolicySetConstraint('HTTPHeader("VIRTUAL_HOST_TYPE","External")')

Constraint updated.

	
Optionally, display the configuration of the policy set during the current repository session using the displayPolicySet command.

For example:

wls:/jrfServer_domain/serverConfig>displayPolicySet()

Policy Set Details:

Name: domainExternal
Type of Resources: Web Service Endpoint
Scope of Resources: Domain("em_domain")
Constraint: HTTPHeader("VIRTUAL_HOST_TYPE","External")
Description: Authentication and message protection at domain scope for external clients
Enabled: true
Policy Reference: security : oracle/wss11_saml_or_username_token_with_message_protection_service_policy, enabled=true

	
Write the contents of the current repository session to the repository using the commitRepositorySession command.

wls:/jrfServer_domain/serverConfig> commitRepositorySession()

The policy set domainMsgExternal is valid.
Creating policy set domainMsgExternal in repository.
Repository session committed successfully.

Disabling a Globally Attached Policy

To explicitly disable a globally attached policy for specific endpoints, predefined policies that do not enforce any behavior are included with your Fusion Middleware installation. You can disable a globally, or externally, attached policy by attaching one of these predefined policies that contains the same category of assertions as the policy to be disabled. You can attach the no behavior policy either directly to an endpoint, or globally at a lower scope, such as at the application or module level. By default, a policy that is directly attached takes precedence over a policy that is globally attached and a policy that is globally attached at a lower scope takes precedence over a policy that is globally attached at a higher scope. For more information, see "How the Effective Set of Policies is Calculated".

For example, if an authentication policy is globally attached to all service endpoints in a domain, you can disable it for a specific Web service endpoint by directly attaching the oracle/no_authentication_service_policy to the endpoint. Alternatively, to disable the authentication policy for only an application in the domain, you can create a policy set that attaches the oracle/no_authentication_service_policy only to the service endpoints in the application.

	
Note:

If the globally attached policy that you are disabling contains any other assertions, those assertions are disabled also. For example, if the global policy to be disabled is oracle/wss10_saml_token_with_message_protection_client_policy and you attach the no behavior oracle/no_authentication_service_policy to an endpoint at lower scope (or directly), both the authentication and the message protection assertions of the globally attached policy are disabled.

For details about directly attaching a policy to an endpoint, see "Attaching a Policy to a Single Subject". For more information about the no behavior policies, see "No Behavior Policies".

	
Note:

Do not delete these no behavior policies. All of the policies use the same no_behavior assertion. An assertion template is not provided, therefore if you delete the policies, there is no way to recreate them manually. If they are deleted by mistake, the only way to restore them is to rebuild the repository. For more information, see "Rebuilding the Oracle WSM Repository".

Enabling and Disabling a Policy Set

The following sections describe how to enable or disable a policy set using either Fusion Middleware Control or the command line interface WebLogic Scripting Tool, WLST.

Using Fusion Middleware Control

To enable or disable a policy set using Fusion Middleware Control, edit the policy set as described in "Editing a Policy Set". To enable the policy set if it is disabled, select the Enabled check box. To disable the policy set, clear the Enabled check box.

Note that you must click Next through the remaining steps, then click Save to save the updated policy set.

Figure 9-12 Enabling and Disabling a Policy Set

[image: Description of Figure 9-12 follows]

Description of "Figure 9-12 Enabling and Disabling a Policy Set"

Using WLST

To enable or disable a policy set:

	
Connect to the running instance of WebLogic Server as described in "Accessing the Web Services Custom WLST Commands".

	
Begin a repository session using the beginRepositorySession command.

For example:

wls:/jrfserver_domain/serverConfig> beginRepositorySession()

Repository session begun.

	
Specify the policy set to be modified using the modifyPolicySet command.

For example:

wls:/jrfServer_domain/serverConfig> modifyPolicySet('all-domains-default-web-service-policies')

The policy set is ready for modification in the session.

	
Use the enablePolicySet command to enable or disable a policy set.

enablePolicySet([enable=true])

Set the enable argument to true to enable a policy set if it is disabled. The default is true. Set the enable argument to false to disable a policy set.

For example, to disable a policy set:

wls:/jrfServer_domain/serverConfig> enablePolicySet(false)

Policy set disabled.

	
Validate the policy set using the ValidatePolicySet command.

For example:

wls:/jrfServer_domain/serverConfig> validatePolicySet()

The policy set app-only-web-service-policies is valid.

	
To write the contents of the current repository session to the repository, use the commitRepositorySession command.

wls:/jrfServer_domain/serverConfig> commitRepositorySession()

The policy set all-domains-default-web-service-policies is valid.
Updating policy set all-domains-default-web-service-policies in repository.

Repository session committed successfully.

Alternately, you can choose to cancel any changes by using the abortRepositorySession command, which discards any changes that were made to the repository during the session.

For more information about the WLST commands and their arguments, see "Web Services Custom WLST Commands" in WebLogic Scripting Tool Command Reference.

Deleting Policy Sets

The following sections describe how to delete policy sets using Fusion Middleware Control or the command line interface WebLogic Scripting Tool, WLST.

Using Fusion Middleware Control

To delete a policy set:

	
Navigate to the Policy Set Summary page as described in "Navigating to the Policy Set Summary Page".

	
In the Policy Set Summary page, select a policy set from the table and click Delete.

	
A dialog box displays asking you to confirm the deletion. Click OK.

Using WLST

You can use the following commands to delete policy sets in the repository:

	
deletePolicySet—Deletes an individual policy set within the context of a repository session.

	
deleteAllPolicySets—Delete select or all policy sets in the repository. This command can be used inside or outside a repository session.

To delete an individual policy set in a repository session:

	
Connect to the running instance of WebLogic Server as described in "Accessing the Web Services Custom WLST Commands".

	
Begin a repository session using the beginRepositorySession command.

For example:

wls:/jrfserver_domain/serverConfig> beginRepositorySession()

Repository session begun.

	
Optionally, list the policy sets in the repository using the listPolicySets command.

wls:/jrfServer_domain/serverConfig> listPolicySets()

Global Policy Sets in Repository:
 app-only-web-service-policies
 all-domains-default-web-service-policies

	
Delete the desired policy set using the deletePolicySet command.

deletePolicySet (name)

For example:

wls:/jrfServer_domain/serverConfig> deletePolicySet('app-only-web-service-policies')

The policy set was deleted successfully in the session.

	
To write the contents of the current repository session to the repository, use the commitRepositorySession command.

wls:/jrfServer_domain/serverConfig> commitRepositorySession()

Deleting policy set app-only-web-service-policies from repository.

Repository session committed successfully.

Alternately, you can choose to cancel any changes by using the abortRepositorySession command, which discards any changes that were made to the repository during the session.

To delete all or select policy sets in the repository:

	
Connect to the running instance of WebLogic Server as described in "Accessing the Web Services Custom WLST Commands".

	
Optionally, list the policy sets in the repository using the listPolicySets command.

wls:/jrfServer_domain/serverConfig> listPolicySets()

Global Policy Sets in Repository:
 all-domains-default-web-service-policies
 ws-1
 ws-2

	
Delete the desired policy sets using the deleteAllPolicySets() command. You can specify whether to force deletion of all the policy sets (using the force argument), or prompt to select individual policy sets for deletion. This command defaults to prompt mode.

deleteAllPolicySets(mode)

For example, to specify the policy sets to be deleted:

wls:/jrfServer_domain/serverConfig> deleteAllPolicySets()

Starting Operation deleteAllPolicySets ...
Policy Set Name: ws-2
Select "ws-2" for deletion (yes/no/cancel)? yes
Policy Set Name: all-domains-default-web-service-policies
Select "all-domains-default-web-service-policies" for deletion (yes/no/cancel)? no
Policy Set Name: ws-1
Select "ws-1" for deletion (yes/no/cancel)? yes

All the selected policy sets were deleted successfully from repository.

deleteAllPolicySets Operation Completed.

To force the deletion of all policy sets:

wls:/jrfServer_domain/serverConfig> deleteAllPolicySets('force')

Starting Operation deleteAllPolicySets ...

All policy sets were deleted successfully from repository.

deleteAllPolicySets Operation Completed.

For more information about the WLST commands and their arguments, see "Web Services Custom WLST Commands" in WebLogic Scripting Tool Command Reference.

Migrating Direct Policy Attachments to Global Policy Attachments

You can use the migrateAttachments WLST command to migrate direct (local) policy attachments to external global policy attachments if they are identical. Migrating identical policy attachments improves manageability by reducing the number of physical attachments that need to be maintained. A direct policy attachment is identical if its URI is the same as one provided by a global policy attachment, and if it does not have any configuration overrides. You cannot migrate the following:

	
Programmatic policy attachments.

	
Direct or global policy attachments to SOA components

	
Notes:

A direct attachment with an unscoped override will be migrated but an attachment with a scoped override will not. This is because after running the migrateAttachments command, the enforcement of the policies on all subjects remains the same, even though some policies are globally attached.

To migrate policy attachments:

	
Connect to the running instance of WebLogic Server as described in "Accessing the Web Services Custom WLST Commands".

	
Migrate the attachments using the migrateAttachments command. You can specify whether to force the migration (force), prompt for confirmation before each migration (prompt), or simply list the migrations that would occur (preview). If no mode is specified, the default is prompt.

migrateAttachments(mode=None)

For example, to prompt, by default, for confirmation of each potential attachment migration, enter the following command. Note in the output that there are identical global and direct policy attachments for the jaxws-sut application that can be migrated.

wls:/jrfServer_domain/serverConfig> migrateAttachments()

--
Application Path: /jrfServer_domain/jrfServer/jaxws-sut-no-policy
Web Service Name: TestService
Module Type: web
Module Name: jaxws-service
Port: TestPort

--
Application Path: /jrfServer_domain/jrfServer/jaxws-sut
Web Service Name: TestService
Module Type: web
Module Name: jaxws-sut-service
Port: TestPort
Policy Reference: management : oracle/log_policy, enabled=true
 security : oracle/wss_username_token_service_policy, enabled=true
 (global) /policysets/global/migrate_example : oracle/wss_username_token_service_policy

Migrate "oracle/wss_username_token_service_policy" (yes/no/cancel)? yes
"oracle/wss_username_token_service_policy" was migrated successfully.

For more information about the arguments for this command, see "Web Services Custom WLST Commands" in WebLogic Scripting Tool Command Reference.

Specifying the Priority of a Policy Attachment

The predefined policies provided in your installation include a configuration override, reference.priority, that allows an administrator to indicate a preference over which policy attachment is used. By default, an attached policy has a reference.priority of 0 if no other value has been specified.

For example, an administrator can globally attach a policy at the domain scope and specify a reference priority of 1 or greater to ensure that it takes precedence over any directly attached policies, without having to modify the direct attachments. If the administrator wants to make an exception for a particular direct attachment, then they can specify a reference priority for that attachment to elevate its priority above that of the global policy attachment. The policy attachment with the highest integer value for reference.priority takes precedence in the effective policy calculation, regardless of whether it is directly or externally attached, or its scope.

The value of reference.priority can be specified as follows:

	
String values "true", "yes" and "on".

These string values are equivalent to integer value 1. Any other string values will be treated as integer value 0.

	
Integer values within the following range

	
MAX_VALUE = 2147483647 or (231 - 1)

	
MIN_VALUE = -2147483648 or (-231)

For more information, see the following topics:

	
"Overriding Configuration Properties for Globally Attached Policies"

	
"Attaching Web Service Policies Permitting Overrides"

	
"How the Effective Set of Policies is Calculated"

Determining the Secure Status of an Endpoint

Global policy attachments provide the ability to adhere to a "secure by default" philosophy in which all subjects are secured even if the developer, assembler or deployer did not explicitly specify the policies to be attached. That is, using a policy set the administrator can ensure that one or more policies are automatically applied if none are explicitly attached.

An administrator can determine if all subjects in a domain are secure, and if the endpoint configuration is valid, using both WLST and Fusion Middleware Control.

Note the following:

	
An endpoint is considered secure if the policies attached to it (either directly or globally) enforce authentication, authorization, or message protection behaviors. A disabled policy or a disabled assertion within a policy does not enforce anything.

	
An endpoint has a valid configuration if there is no conflict in the combination of attached policies according to the effective set of policies calculation. For more information, see "How the Effective Set of Policies is Calculated"

Because you can specify the priority of a globally or directly attached policy, as described in "Specifying the Priority of a Policy Attachment", the Effective field for a directly attached policy indicates if it is in effect for the endpoint. Note that to simplify endpoint management, all directly attached policies are shown in the output regardless of whether they are in effect. In contrast, only globally attached policies that are in effect for the endpoint are displayed.

Using Fusion Middleware Control, you can view whether the configuration is valid and if the endpoint is secure on the Web Service Endpoint page. Figure 9-13 shows a valid configuration with a secure endpoint.

Figure 9-13 Web Service Endpoint Page With Valid and Secure Endpoint Configuration

[image: Description of Figure 9-13 follows]

Description of "Figure 9-13 Web Service Endpoint Page With Valid and Secure Endpoint Configuration"

Using WLST, you can generate a list of endpoints and their secured status using the listWebServices and listWebServiceClients WLST commands. The output from these commands, when the detail argument is set to true as shown in Example 9-3, provides endpoint and policy details for all applications and composites in the domain, the secure status of the endpoints, any configuration overrides and constraints, and if the endpoints have a valid configuration.

Example 9-3 listWebServicesOutput with Valid and Secure Endpoint Configuration

wls:/jrfServer_domain/serverConfig> listWebServices(detail='true')

/jrfServer_domain/jrfServer_admin/jaxws-sut :
 moduleName=jaxws-sut-service, moduleType=web, serviceName={http://namespace/}TestService
 enableTestPage: true
 enableWSDL: true

 TestPort http://host.us.oracle.com:9315/jaxws-sut-service/TestService
 enable: true
 enableREST: false
 enableSOAP: true
 maxRequestSize: -1
 loggingLevel: NULL
 management : oracle/log_policy, enabled=true
 security : oracle/wss_username_token_service_policy , enabled=true , effective=false
 Constraint: No Constraint
 (global) security : oracle/wss_saml_or_username_token_service_policy, enabled=true
 /policysets/global/all-domains-default-web-service-policies : Domain("*")
 reference.priority=1
 Constraint: HTTPHeader('VIRTUAL_HOST_TYPE','external')
 (global) security : oracle/wss10_message_protection_service_policy, enabled=true
 /policysets/global/domainExternal : Domain("*")
 Attached policy or policies are valid; endpoint is secure.

For more information about using these WLST commands, see "Viewing the Web Services in a Domain Using WLST".

How the Effective Set of Policies is Calculated

Oracle WSM places a limit on the number of policies that may be attached to a subject based on the categories of the assertions that they contain. In most cases, attaching two or more policies containing the same assertion categories is forbidden. For example, it does not allow two policies containing authentication assertions to be attached to a policy subject, although it does allow one policy containing an authentication assertion and one containing an authorization assertion to be attached to the same subject. If multiple policies containing the same assertion category are attached to a subject, and the assertions conflict, the configuration is considered invalid. For details about the number and combination of policies that can be attached to a subject, see "Validating Policy Subjects"

To support the attachment of policies both directly and externally (globally), the determination of the effective set of policies for a subject takes into account the category of assertions within each policy. Note that policies that are directly attached are attached at the port scope. By default, if a subject has a policy attached at the port scope (such as a directly attached policy) with an assertion of a given category, then any policies with conflicting assertions of the same category referenced by an external policy set at a higher scope will be excluded from the effective set of policies for the subject, unless the reference.priority configuration override is set, as described below. This process will be repeated at each subject scope. Narrower/lower scopes take precedence over broader/higher scopes. The decreasing order of precedence of policy attachments as determined by scope is as follows:

	
Port (Scope:1)

	
Component (Scope:1)

	
Service (Scope:2)

	
Reference (Scope:2)

	
Composite (Scope: 3)

	
Module (Scope:3

	
Partition (Scope:4)

	
Application (Scope:4)

	
Server (Scope:5)

	
Domain (Scope:6)

For example, a policy attachment at the application scope will be excluded from the effective set of policies for a subject if it contains conflicting assertions of the same category as a policy that was attached at the module scope or attached directly. For additional information about resource scopes, see "Defining the Type and Scope of Resources".

By using the reference.priority configuration override, the administrator can override the default precedence determined by scope and specify a preference over which policy attachment is used. The policy attachment with the highest priority takes precedence, irrespective of its scope.

When using reference.priority overrides, the following rules apply:

	
The policy attachment with the highest priority (highest integer value) takes precedence, regardless of scope.

	
If attachments contain conflicting assertions of the same category and have the same priority specified, the more specific scope takes precedence.

	
If attachments contain conflicting assertions of the same category, priority, and scope, then the configuration is invalid.

When run-time constraints are applied to policy sets, the following rules apply:

	
Each unique constraint creates an independent set of policies. The effective policy calculation is performed only on the set of policies with the same constraint.

	
When no constraint is specified in a policy set (the default), the policy reference in this set is merged with the set of policies from each separate constraint. The effective policy calculation is then performed on each set of policies to determine the effective set of policies for each constraint.

For more information about run-time constraints, see "Specifying Run-time Constraints in Policy Sets".

The effective set of policies calculation takes into account the status of each policy attachment. If a policy, a policy reference in a policy set, or a policy set is disabled, it is removed from the effective set of policies for a subject.

If no reference.priority override is specified, a globally attached policy can be overridden by attaching a policy containing assertions with the same categories at a lower scope (for example at the port scope with a direct attachment). As a special case of this, a globally attached policy can be effectively disabled for a specific subject by attaching a policy with the same category of assertions that does not enforce any behavior. For more information about the policies that do not enforce any behavior, see "No Behavior Policies".

The following examples demonstrate the results in effective policy calculations:

	
Direct attachment: oracle/wss_username_token_service_policy

External attachment: oracle/wss_saml_or_username_token_service_policy @ Domain('*')

Result: Direct attachment due to lower scope— oracle/wss_username_token_service_policy

	
Direct attachment: oracle/wss_username_token_service_policy

External attachment: oracle/wss_saml_or_username_token_service_policy @ Domain('*') with reference.priority=1

Result: External attachment due to higher priority—oracle/wss_saml_or_username_token_service_policy @ Domain('*')

	
External attachment: oracle/wss_username_token_service_policy @ Server('*')

External attachment: oracle/wss_saml_or_username_token_service_policy @ Domain('*')

Result: External attachment due to lower scope—oracle/wss_username_token_service_policy @ Server('*')

	
External attachment: oracle/wss_username_token_service_policy @ Server('*')

External attachment: oracle/wss10_message_protection_service_policy @ Domain('*')

Result: Both attachments valid due to non-conflicting assertion categories—oracle/wss_username_token_service_policy @ Server('*') and oracle/wss10_message_protection_service_policy @ Domain('*')

	
External attachment: oracle/wss_username_token_service_policy @ Domain('*')

External attachment: oracle/wss_saml_or_username_token_service_policy @ Domain('*')

Result: Invalid. Policies with conflicting assertion categories specified at the same scope.

	
Direct attachment: oracle/wss11_saml_token_with_message_protection_service_policy

External attachment: oracle/wss11_username_token_with_message_protection_service_policy @ Port('TestPort')

Result: Invalid. Policies with conflicting assertion categories specified at the same scope.

	
Direct attachment: oracle/wss11_saml_token_with_message_protection_service_policy

External attachment: oracle/wss11_username_token_with_message_protection_service_policy @ Port('TestPort') with reference.priority="true"

Result: External attachment due to higher priority scope—oracle/wss11_username_token_with_message_protection_service_policy @ Port('TestPort')

	
Note:

The amount of time it takes for a global policy attachment to take effect is determined by the Oracle WSM policy accessor and policy cache property settings. By default, this delay can be up to a maximum of 11 minutes. To reduce the amount of the delay, you can tune the following cache property settings:
	
Policy Accessor

cache.refresh.initial, default 600000 milliseconds (10 minutes)

cache.refresh.repeat, default 600000 milliseconds (10 minutes)

	
Policy Cache

cache.tolerance, default is 60000 milliseconds (1 minute)

For details about tuning these properties, see "Configuring Platform Policy Properties".

10 Setting Up Your Environment for Policies

This chapter describes how to set up your Fusion Middleware Control and WebLogic Server environments for security policies.

This chapter includes the following sections:

	
Understanding Keys and Certificates

	
Configuring Keystores for Message Protection

	
Configuring the Credential Store

	
Configuring Keystores for SSL

	
Configuring SSL on Oracle HTTP Server

	
Hardware Integration

	
Using Service Identity Certification Extension

	
Configuring an Authentication Provider in WebLogic Server

	
Configuring the SAML and Kerberos Login Modules

	
Configuring SAML

	
Using Kerberos Tokens

	
SAML Message Protection Use Case

	
WS-Trust Policies and Configuration Steps

	
Examples Using WS-Trust with OpenSSO STS

Understanding Keys and Certificates

Before you can use any message protection security policies or message protection and authentication with SSL security policies, you need to set up your keystores and truststores. (Authentication-only security policies do not require keys.)

The keystore contains the entities private keys and certificates associated with those private keys. A truststore contains certificates from a Certificate Authority (CA), or other entities that this entity trusts. The keystore and the truststore can be maintained together in a common store, such as with Oracle Web Services Manager (WSM).

Before configuring your Web services, you need to determine the type of private keys and certificates required, the names for the keys and keystores, and then set up your environment accordingly.

Overview of Private Keys and Certificates

Private keys, digital certificates, and trusted certificate authorities establish and verify server identity and trust.

SSL uses public key encryption technology for authentication. With public key encryption, a public key and a private key are generated for a server. Data encrypted with the public key can only be decrypted using the corresponding private key and data verified with a public key can only have been signed with the corresponding private key. The private key is carefully protected so that only the owner can decrypt messages that were encrypted using the public key.

The public key is embedded in a digital certificate with additional information describing the owner of the public key, such as name, street address, and e-mail address. A private key and digital certificate provide identity for the server.

The data embedded in a digital certificate is verified by a certificate authority and digitally signed with the certificate authority's digital certificate. Well-known certificate authorities include Verisign and Entrust.net. The trusted certificate authority (CA) certificate establishes trust for a certificate.

An application participating in an SSL connection is authenticated when the other party evaluates and accepts the application's digital certificate. Web browsers, servers, and other SSL-enabled applications generally accept as genuine any digital certificate that is signed by a trusted certificate authority and is otherwise valid. For example, a digital certificate can be invalidated because it has expired or the digital certificate of the certificate authority used to sign it expired. A server certificate can be invalidated if the host name in the digital certificate of the server does not match the URL specified by the client.

The different types of trusted certificates, along with the benefits and disadvantages of each, that you can use in your environment are as follows:

	
Self-signed certificates — A self-signed certificate is a certificate that is signed by the entity creating it.

Benefits:

	
Easy to generate because you can do it yourself, for example using the keytool command as described in "Generating Private Keys and Creating the Java Keystore".

	
Can be used in production as long as you use only a new certificate that you have generated.

Disadvantages:

	
Self-signed certificates can quickly become unmanageable if you have many clients and services that need to communicate with each other. For example, if you have three clients communicating with two services, you need to generate a private key and self-signed certificate for both services, and then import the two certificates into the truststore of all three clients.

	
Demonstration Certificate Authority (CA) signed certificates— WebLogic Server includes a set of demonstration private keys, digital certificates, and trusted certificate authorities that are for development only.

Benefits:

	
Easy to use because they are available and configured for use in the default WebLogic Server installation in a development environment.

Disadvantages:

	
Should never be used in a production environment. The private key of the demo certificate CA is available to all installations of WebLogic Server, therefore each installation can generate a demo CA signed certificate using the same key. As a result, you cannot trust these certificates.

	
Internal CA signed certificates — An internal CA signed certificate is a certificate that you issue yourself using an internal CA that you can setup for your intranet. This type of certificate can be used if your services are mostly internal only.

Benefits:

	
You have complete control over the certificate issuance process because you create the certificates yourself.You can control to whom the certificates are issued, how long the certificates remain valid, and so on. For example, if you are issuing certificates to your partners, you can issue them only to partners in good standing.

Disadvantages:

	
You need to ensure that all clients have the internal CA root certificate imported into their truststore.

	
External CA signed certificates — An external CA signed certificate is a certificate that has been issued by a reputable CA such as Verisign and Entrust.net. This type of certificate should be used if your services are external facing.

Benefits:

	
In most cases, clients are already set up to trust these external CAs. Therefore, those clients do not have to modify their truststore.

Disadvantages:

	
You do not have any control over the certificate issuance process.

How Different Security Policies Use Private Keys and Certificates

Oracle WSM security policies that require the use of private keys address two aspects: message protection and authentication:

	
Message protection encompasses two concepts, message confidentiality and message integrity. Message confidentiality involves keeping the data secret and is achieved by encrypting the content of messages. Message integrity ensures that a message remains unaltered during transit by having the sender digitally sign the message.

	
Authentication involves verifying that the user is who they claim to be. A user's identity is verified based on the credentials presented by that user.

The predefined Oracle WSM policies that are included with your installation support various options for message protection and authentication. These options are described in the following sections.

	
Note:

The naming convention used for Oracle WSM policies identifies the type of options being used. For example, the policy oracle/wss10_username_token_with_message_protection_service_policy is a message protection service policy that uses the wss10 Web services standard and requires a username_token for authentication. For more information about policy naming conventions, see "Recommended Naming Conventions for Policies".

Message Protection Policy Types

The types of message protection policies and how they work are described in the following sections.

SSL

Policies that include the SSL option, such as oracle/wss_saml_or_username_token_over_ssl_service_policy, use one-way SSL for message protection. When using policies of this type, you need to do the following:

	
On the service side, set up private keys at the SSL termination point as described in "Setting Up Private Keys and Certificates for SSL Policies".

	
On the client side, set up the truststore to trust the service keys.

The private key is used to protect the messages for the SSL handshake, at which time the client and service agree on a shared session key. After the SSL handshake, the private key is not used, and all traffic between the client and the service are signed and encrypted using the shared session key.

wss11

Policies of this type use WS-Security 1.1 for message protection. When using wss11 policies, you need to do the following:

	
On the service side, set up private keys and define as the Encryption Key Alias in the Oracle WSM Keystore Configuration screen. For details see "Configuring the Oracle WSM Keystore".

	
On the client side, you need to configure the client-side trust by obtaining the server's certificate in one of the following ways:

	
Use the service's public certificate published in the WSDL using the Service Identity Certificate extension as described in "Using Service Identity Certification Extension". You also need to import either the server certificate itself, or the root certificate from the CA that issued the server certificate, into the client truststore. You can choose any alias name for the server certificate.

	
Import the server certificate into the client keystore using any alias you choose, and specify that alias using the keystore.recipient.alias property using a configuration override when you attach the policy. For this method you need to import the actual server certificate, you cannot import the CA root certificate.

For each request, the following occurs:

	
The client creates a symmetric key, encrypts this symmetric key with the service's public key as configured with Encryption Key Alias, and then encrypts and signs the whole message with the symmetric key.

	
When the service receives the message, it decrypts the encrypted key first, and then decrypts and verifies the whole message.

	
The Web service then uses the same symmetric key to encrypt and sign the response that it sends back to the client.

wss10

Policies of this type use WS-Security 1.0 for message protection. When using wss10 policies, you need to do the following:

	
Set up private keys on both the client and service side. On the client side, you need to set a signature key alias, and on the service side you need both an encryption key alias and signature key alias. Note that you can normally use the same key for both.

	
On the client side, you need to configure the client-side trust by obtaining the server's certificate in one of the following ways:

	
Use the service's public certificate published in the WSDL using the Service Identity Certificate extension as described in "Using Service Identity Certification Extension". You also need to import either the server certificate itself, or the root certificate from the CA that issued the server certificate, into the client truststore. You can choose any alias name for the server certificate.

	
Import the server certificate into the client keystore using any alias you choose, and specify that alias using the keystore.recipient.alias property using a configuration override when you attach the policy. For this method you need to import the actual server certificate, you cannot import the CA root certificate.

	
On the service side, you need to configure the service to trust the client, either by importing these certificates directly, or importing the CA that issued these certificates.

Similar to the wss11 option, the client creates a symmetric key, and then encrypts the symmetric key with the service's public key. The difference, however, is that it only uses this symmetric key for encrypting the message; it doesn't use it for signing the message. Instead, the client signs the request message with its own private signature key as defined by the Signature Key alias, and the service signs the response with its private signature key.

Authentication Token Policy Types

The tokens that are supported for authentication, and the private keys and certificates that are used with these policy types are described in the following sections.

Note that in the following sections, "signature key alias" is used to mean different things in different contexts.

	
In SAML sender vouches policies, it is the key used to sign the SAML assertion. This proves the authenticity of the SAML assertion, and SAML Login module will then assert the user specified in the SAML assertion.

	
In wss10 policies, it is used to sign the request and response message to prevent them from being tampered over the wire.

	
In X.509 authentication policies, it is used to authenticate a particular end user.

Username Token

A username token carries basic authentication information such as a username and password. When a username token is used with an authentication-only policy, no private keys are used. When used in a policy that includes authentication and message protection, the keys required for message protection are required.

Kerberos Token

A Kerberos token is comprised of a binary authentication and session token. When a kerberos token is used with an authentication-only policy, no private keys are used. When used in a policy that includes authentication and message protection, the keys required for message protection are required.

X.509 Certificate Token

Request messages are signed with the end user's signature key. On the client side you need to configure a signature key alias with the end user's signature key.

SAML Sender Vouches Token

In sender vouches, the client signs the SAML token with its own private signature key.

Use the SAML sender vouches token with each of the message protection options as follows:

	
With SSL: SAML sender vouches requires two-way SSL. Therefore, you need to set up an SSL client-side private key, and corresponding trust certificate on the service side. If your SSL terminates before WebLogic Server, such as in the Oracle HTTP Server or in the Load balancer, you must configure these layers to propagate the client certificate all the way to WebLogic Server.

	
With wss11: Normally wss11 does not need a client-side signature key. However, when you use wss11 with SAML, you need to set up a signature key on the client side, and configure it using the signature key alias. You also need to add this client certificate or its issuer to the service's truststore.

	
With wss10: There is no additional setup to use SAML. The regular client signature key that is used for signing the request is also used for signing the SAML token.

	
Note:

Be very cautious when using the SAML signature key. It is a very powerful key as it enables the client side to impersonate any user. Consider configuring the server side to limit the number of SAML signers that is accepts, by setting up a Trusted DN list. For information about setting up a trusted DN, see "Defining Trusted Issuers and Trusted Distinguished Name List for Signing Certificates".

SAML Bearer and SAML HOK Tokens from an STS

For these options, the client does not construct the SAML token. Instead it is STS that constructs and signs the SAML token.

When using tokens from an STS, you must add the STS's certificate or its issuer to the service's truststore. Optionally, you can configure the STS in the Trusted DN list.

Setting Up Private Keys and Certificates for SSL Policies

The following list summarizes the keys and trust you need to configure on the client and service side to use SSL policies:

	
Service-side configuration: For SSL security policies, you need to setup the private keys at the SSL termination point. These termination points typically consist of one of the following:

	
Java EE container, such as WebLogic Server. For configuration details, see "Configuring Keystores for SSL".

	
Oracle HTTP Server, if you have configured it as a Web proxy between the client and WebLogic Server. For configuration details, see "Configuring SSL on Oracle HTTP Server".

	
Load balancer, if you have a load balancer in front of WebLogic Server or Oracle HTTP Server.

	
Note:

With SSL you can only have one private key per server, so if there are multiple Web services running on the same server, they all use the same private key. This SSL private key needs to be generated with the same DN as the host name, although for testing purposes, you can turn off the host name verifier on the client side.

Sample basic configuration: Use the demonstration digital certificates, private keys, and trusted CA certificates that are included with WebLogic Server. These keys and certificates are provided for development use only and should not be used in a production environment.

Advanced configuration: In a production environment, use an internal or external CA.

	
Client-side configuration: On the client side, you need to import the server certificates into the client truststore. If the server side is using self-signed certificates, you need to include them directly. If the server side is using certificates that are signed using a CA, import the CA root certificate into the client truststore. Note that each type of Web service client has a different client truststore:

	
For WebLogic Server Web services, you need to import the keys into the WebLogic Server trust store. The demonstration CA certificate is already present in the WebLogic Server truststore.

	
For Oracle Infrastructure Web services you need to specify the truststore using javax.net.ssl* system properties, or specify it in the connection. For details, see "Configuring SSL for a Web Service Client".

	
For SOA composite applications, you need to specify the truststore using the javax.net.ssl* property as described in "Configuring SOA Composite Applications for Two-Way SSL Communication" in Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle Business Process Management Suite.

	
For asynchronous Web services, you need to configure the truststore as described in "Configuring SSL for Asynchronous Web Services" in Developer's Guide for Oracle Infrastructure Web Services.

Setting up Private Keys and Certificates for Message Protection Policies

For Oracle WSM message protection security policies, you need to setup your private keys in the Oracle WSM keystore.

There is a single Oracle WSM keystore per domain, and it is shared by all Web services and clients running in the domain. This keystore contains both private keys and trust certificates. The JDK cacerts file is not used by Oracle WSM.

Sample Basic Configuration

The easiest way to set up the Oracle WSM keystore is to create a single self-signed private key and use it for the entire domain. When you create the private key and keystore, you specify a name and a password for the keystore, for example default-keystore.jks as the keystore name and welcome1 as the password for the keystore. You also specify an alias name and password to use when referring to the private key, for example orakey as the alias name and welcome1 as the key password. You can use the same key and alias for both the signature key alias and the encryption key alias, and the same password for both the keystore and the alias. You do not need to add any trusted certificates, as certificates associated with private keys are automatically considered as trusted.

Once you have created the keys and keystore, you need to provide the keystore password, and alias names and passwords to Oracle Web Services Manager.You can do so using either Fusion Middleware Control or WLST.

The procedures in "Generating Private Keys and Creating the Java Keystore" and "Configuring the Oracle WSM Keystore" describe how to setup this basic configuration using the names and passwords specified in this example. In your own environment, you should use names and passwords that are appropriate for your configuration.

As long as your client and server are on the same domain, this set up is sufficient to work with most of the policies. That is, you can use any wss10 or wss11 policies with or without SAML.

If you have multiple related domains that share a common JPS root, you can copy this keystore file to all the domains. By doing so, all the related domains will share this single key for all encryption and signing.

Advanced Setup Considerations

As described in "Sample Basic Configuration", the simplest way to set up message protection security is to have a single private key for all Web services in the domain.

For more sensitive Web services, you need to configure each Web service to use its own distinct private encryption key. These private keys need to exist in the Oracle WSM keystore. Ensure that each one uses a different alias name, for example ServiceA, and ServiceB, and that you add the aliases to the credential store. When you attach a policy to the service, you need to use a configuration override to indicate the specific alias name that the Web service requires, otherwise it will use the default alias that you configured for the domain, for example orakey.

The procedure in "Adding Keys and User Credentials to the Credential Store" describes how to add these sample aliases to the credential store.

You should also use trusted certificates issued by an internal or external CA, instead of self-signed certificates, because it is much easier to manage the trusted CA certificates. Be sure, however, to set up the SAML signers Trusted DN list, as described in "Defining Trusted Issuers and Trusted Distinguished Name List for Signing Certificates". This is especially important if you import external CA certificates into the Oracle WSM Keystore, otherwise any user with a certificate will be able to sign a SAML token and impersonate any user.

Configuring Keystores for Message Protection

Message protection involves encrypting the message for message confidentiality and signing the message for message integrity. To sign and encrypt SOAP messages, you use public and private signature and encryption keys that you store in the Oracle Web Services Manager (WSM) keystore for the WebLogic domain. The keystore configuration is domain wide: all Web services and Web service clients in the domain use this keystore.

	
Note:

The Oracle WSM run time does not use the WebLogic Server keystore that is configured using the WebLogic Server Administration Console and used for SSL as documented in "Configuring Keystores for SSL".

To create and configure the Java Keystore for message protection, use the procedures in the following sections:

	
Generating Private Keys and Creating the Java Keystore

	
Configuring the Oracle WSM Keystore

	
Note:

These procedures describe how to setup the basic configuration, using the names and passwords specified in the example, as described in "Sample Basic Configuration", and illustrated in Figure 10-8. In your own environment, you should use names and passwords that are appropriate for your configuration.

Generating Private Keys and Creating the Java Keystore

The following section provides an outline of how to create a private key pair and the Java keystore (JKS) using the keytool utility. You can find more detailed information on the commands and arguments for the keytool utility at this Web address.

http://download.oracle.com/javase/6/docs/technotes/tools/windows/keytool.html

	
Go to the domain_home/config/fmwconfig directory, where domain_home is the name and location of the domain for which the keystore is to be used.

	
Enter a keytool command such as the following to generate the key pair, and to create the keystore if it does not already exist:

keytool -genkeypair -keyalg RSA -alias orakey -keypass welcome1 -keystore default-keystore.jks -storepass welcome1 -validity 3600

	
Note:

You may need to add the jdk/bin directory to your PATH variable definition to invoke the keytool command.

In this command:

	
genkeypair creates a new public/private key pair that is stored in an entry specified by the alias parameter

	
keyalg specifies the algorithm to be used to generate the key pair, in this example RSA

	
Note:

The default key pair generation algorithm is Digital Signature Algorithm (DSA). DSA keys can only be used for signing, whereas RSA keys can be used for both signing and encryption. Therefore, if you are using the same key for encryption and signing (which is a typical scenario), make sure you explicitly specify -keyalg RSA, otherwise keytool will default to DSA.

	
alias specifies the alias name orakey to use when referring to the keypair

	
keypass specifies that the password welcome1 be used to protect the private key of the generated key pair

	
keystore creates a keystore named default-keystore.jks. If the keystore already exists, the key pair will be added to the keystore.

	
storepass specifies welcome1 as the password used to protect the integrity of the keystore.

	
validity indicates that the keypair is valid for 3600 days.

The keytool utility prompts for the name, organizational unit and organization, locality (city, state, country) to be used to create the key:

What is your first and last name?
 [Unknown]: orcladmin
What is the name of your organizational unit?
 [Unknown]: Doc
What is the name of your organization?
 [Unknown]: Oracle
What is the name of your City or Locality?
 [Unknown]: US
What is the name of your State or Province?
 [Unknown]: US
What is the two-letter country code for this unit?
 [Unknown]: US
Is CN=orcladmin, OU=Doc, O=Oracle, L=US, ST=US, C=US correct?
 [no]: y

	
Optionally, import trusted certificates into the keystore as described in "Obtaining a Trusted Certificate and Importing it into the Keystore"

	
Optionally, use the keytool -list command to view the contents of the keystore:

keytool -list -keystore default-keystore.jks

When prompted, provide the password for the keystore that you specified when you created the keystore.

Enter keystore password:

Keystore type: JKS
Keystore provider: SUN

Your keystore contains 1 entry

Alias name: orakey
Creation date: Mar 9, 2011
Entry type: PrivateKeyEntry
Certificate chain length: 1
Certificate[1]:
Owner: CN=orcladmin, OU=Doc, O=Oracle, L=US, ST=US, C=US
Issuer: CN=orcladmin, OU=Doc, O=Oracle, L=US, ST=US, C=US
Serial number: 4d77aff6
Valid from: Wed Mar 09 11:51:02 EST 2011 until: Fri Jan 15 11:51:02 EST 2021
Certificate fingerprints:
 MD5: DF:EC:3C:60:CF:8B:10:A7:73:3A:51:99:4C:A3:D0:2E
 SHA1: E0:52:58:EB:34:51:E4:9B:D4:13:C2:CB:F3:CC:08:89:EF:4E:4E:05
 Signature algorithm name: SHA1withRSA
 Version: 3

Configuring the Oracle WSM Keystore

The following section describes how to use Oracle Enterprise Manager Fusion Middleware Control to configure the Oracle WSM keystore. This is the recommended method for configuring the keystore. If your environment does not include Fusion Middleware Control, you can also use WebLogic Scripting Tool (WLST) commands, as described in "Using WLST".

Using Fusion Middleware Control

When you use Fusion Middleware Control to configure the Oracle WSM keystore, entries are created in the credential store for the credential map oracle.wsm.security, and any keys that you define. Use the following procedure to configure the keystore:

	
In the Navigator pane, expand WebLogic Domain to show the domain for which you need to configure the keystore. Select the domain.

	
From the WebLogic Domain menu, select Security then Security Provider Configuration, as shown in Figure 10-1.

Figure 10-1 WebLogic Domain Security Provider Configuration Menu

[image: Description of Figure 10-1 follows]

Description of "Figure 10-1 WebLogic Domain Security Provider Configuration Menu"

The Security Provider Configuration page is displayed, as shown in Figure 10-2.

Figure 10-2 Security Provider Configuration Page

[image: Description of Figure 10-2 follows]

Description of "Figure 10-2 Security Provider Configuration Page"

	
Click the plus sign (+) to expand the Keystore control near the bottom of the page, then click Configure.

The Web Services Manager Keystore Configuration page is displayed, as shown in Figure 10-3.

Figure 10-3 Web Services Manager Keystore Configuration

[image: Description of Figure 10-3 follows]

Description of "Figure 10-3 Web Services Manager Keystore Configuration"

	
In the Keystore Type drop-down, select Java Key Store (JKS), if it is not already selected.

	
Notes:

Hardware security modules (HSM) are also certified to operate with Oracle Advanced Security. For more information, see "Using Hardware Security Modules With Oracle WSM"
You can also select Public Key Cryptographic Standards (PKCS-11) when using cryptographic acceleration, as described in Step 6 of "Configuring Message-level Security for Cryptographic Acceleration". You use the PKCS-11 keystore type when hardware token support is required.

	
In the Access Attributes section of the page, provide the name and path of the keystore, and the passwords as follows:

	
In the Keystore Path field, enter the path and name for the keystore that you created as described in "Generating Private Keys and Creating the Java Keystore". This field defaults to ./default-keystore.jks, which represents the default Java keystore name, default-keystore.jks, located in the domain_name/config/fmwconfig directory. If you used a different name or location for the keystore, enter that value instead.

	
In the Password and Confirm Password fields, enter the password for the keystore. This password must match the password you used when you created the keystore using the keytool utility, as described in "Generating Private Keys and Creating the Java Keystore", for example welcome1.

	
In the Identity Certificates section of the page, enter the alias and passwords for the signature and encryption keys as follows:

	
For the Signature Key, enter the alias name in the Key Alias field, and the password for the alias in the Signature Password and Confirm Password fields. The values you specify here must match the values in the keystore. For example, orakey and welcome1.

	
For the Encryption Key, enter the alias name in the Crypt Alias field, and the password for the alias in the Crypt Password and Confirm Password fields. The values you specify here must match the values in the keystore. For example, orakey and welcome1.

The alias and password for the signature and encryption keys define the string alias and password used to store and retrieve the keys. These values are created in the credential store as sign-csf-key and enc-csf-key.

	
Click OK to submit the changes.

Note that all fields on this page require a server restart to take effect.

Using WLST

Follow these steps to configure the credential store to access the Oracle WSM keystore using WLST commands.

	
Go to the Oracle Common home directory for your installation, for example /home/Oracle/Middleware/oracle_common.

For information about the Oracle Common home directory and installing Oracle Fusion Middleware, see the Oracle Fusion Middleware Installation Planning Guide.

	
Start WLST using the WLST.sh/cmd command located in the oracle_common/common/bin directory. For example:

	
/home/Oracle/Middleware/oracle_common/common/bin/wlst.sh (UNIX)

	
C:\Oracle\Middleware\oracle_common\common\bin\wlst.cmd (Windows)

When executed, these commands start WLST in offline mode. To use the credential store WLST commands, you must use WLST in online mode.

	
Start Oracle WebLogic Server.

For more information, see "Start and stop servers" in the Oracle WebLogic Server Administration Console Help.

	
Connect to the running WebLogic Server instance using the connect() command. For example, the following command connects WLST to the Administration Server at the URL myAdminServer.oracle.com:7001 using the username/password credentials weblogic/welcome1:

connect("weblogic","welcome1","t3://myAdminServer.oracle.com:7001")

	
Enter the createCred command to create an entry in the credential store for the keystore name and password as follows:

createCred(map="oracle.wsm.security", key="keystore-csf-key", user="owsm", password="welcome1", desc="Keystore key")

Note that you can enter any value for user. This field is ignored for the keystore-csf-key entry. The value of password must match the password that you specified when you created the keystore as described in "Generating Private Keys and Creating the Java Keystore" (in this example welcome1).

	
Enter the createCred command to create an entry in the credential store for the signature key alias and password as follows:

createCred(map="oracle.wsm.security", key="sign-csf-key", user="orakey", password="welcome1", desc="Signing key")

The values of user and password must match the alias name and password for the signature key in the keystore that you specified when you created the keystore as described in "Generating Private Keys and Creating the Java Keystore". In this example, the values are orakey and welcome1.).

	
Enter the createCred command to create an entry in the credential store for the encryption key alias and password as follows:

createCred(map="oracle.wsm.security", key="enc-csf-key", user="orakey", password="welcome1", desc="Encryption key")

The values of user and password must match the alias name and password for the encryption key in the keystore that you specified when you created the keystore as described in "Generating Private Keys and Creating the Java Keystore". In this example, the values are orakey and welcome1.).

	
View the details about a key in the credential store using the listCred command as shown in the following example:

listCred(map="oracle.wsm.security", key="enc-csf-key")

Obtaining a Trusted Certificate and Importing it into the Keystore

You can obtain a certificate from a Certificate Authority (CA), such as Verisign or Entrust.net, and include it in the keystore. To get the certificate, you must create a Certificate Request and submit it to the CA. The CA will authenticate the certificate requestor and create a digital certificate based on the request.

To obtain a trusted certificate and import the certificate into the keystore:

	
Generate the private key and self-signed certificate. The self-signed certificate will be replaced by the trusted certificate.

	
Note:

If your keystore already contains a self-signed certificate that you created previously, as described in "Generating Private Keys and Creating the Java Keystore", you can ignore this step and proceed to step 2.

Use the keytool -genkeypair command to generate the key pair for a specified alias, in this example orakey. It will create the keystore if it did not exist.

keytool -genkeypair -keyalg RSA -alias orakey -keypass welcome1 -keystore default-keystore.jks -storepass welcome1 -validity 3600

	
Generate the certificate request.

Use the keytool -certreq command to generate the request. The following command generates a certificate request for the orakey alias and a Certificate Signing Request (CSR) named certreq_file.

keytool -certreq -alias orakey -sigalg "SHA1withRSA" -file certreq_file -storetype jks -keystore default-keystore.jks

	
Submit the CSR file to a CA such as VeriSign, for example. The CA will authenticate the request and return a certificate or a certificate chain.

	
Import the CA root certificate which authenticates the CA's public key.

Use the keytool -importcert command to import the trusted CA root certificate (named VerisignCAcert.cer in this example), using the alias verisignca into the default-keystore.jks keystore. The keytool utility prompts for the needed password.

keytool -importcert -alias verisignca -trustcacerts -file VerisignCAcert.cer -keystore default-keystore.jks

	
Replace the self-signed certificate with the trusted CA certificate issued by the CA in response to the certificate request.

Use the keytool -importcert command. The following command replaces the self-signed certificate for the alias orakey with the trusted CA certificate named, in this example, MyCertIssuedByVerisign.cer. The keytool utility prompts for the needed password.

keytool -importcert -trustcacerts -alias orakey -file MyCertIssuedByVerisign.cer -keystore default-keystore.jks

Setting Up the Web Service Client Keystore

You need to create a Java Key Store (JKS) keystore to store the signature and encryption keys required by the X.509 token on the client. Keys are used for a variety of purposes, including authentication and data integrity. For example:

	
To sign data, you must have the signer's private key.

	
To verify a signature, you must have a trusted CA certificate and the public key that matches the private key.

	
To encrypt data, you must have the recipient's public key. The Web service's base64-encoded public certificate is published in the WSDL for use by the Web service client, as described in "Using Service Identity Certification Extension".

	
To decrypt data, you must have the private key that corresponds to the public key.

These trusted certificates and public and private keys are stored in the keystore. The following sections describe the requirements for the different types of message protection policies, how to create and use these keystores, and how to obtain trusted certificates.

	
"How Different Security Policies Use Private Keys and Certificates"

	
"Generating Private Keys and Creating the Java Keystore"

	
"Obtaining a Trusted Certificate and Importing it into the Keystore"

Configuring the Credential Store

Oracle WSM uses the Credential Store Framework (CSF) to manage the credentials in a secure form. The CSF provides a way to store, retrieve, and delete credentials for a Web Service and other applications. Oracle WSM uses the credential store to look up the following:

	
Alias names and passwords for keys in the Java keystore

For details about how Oracle WSM uses the credential store to look up alias names and passwords from the Java keystore, see "How Oracle WSM Locates Keystore And Key Passwords".

	
Usernames and passwords used for authentication

Suppose, for example, that you have a Web service that accepts a username token for authentication. If you create a Web service client to talk to this Web service, you need to configure the Web service client with a username and password that can be sent to the Web service. You store this username and password in the credential store (using either Fusion Middleware Control or WLST) and assign it a csf key.

For example, the oracle/wss_username_token_client_policy policy includes the csf-key property, with a default value of basic.credentials. To use the wss_username_token_client_policy, you should create a new password credential in the CSF using the credential name basic.credentials, and the username and password with which the client needs to connect. If you have two Web service clients that use this same client policy, these clients can either share the same password credential, which defaults to basic.credentials, or each one can have its own credential. In the latter case, you need to create two password credentials in the CSF, for example App1.credentials and App2.credentials, for Client1 and Client2 respectively. For Client1, you set the csf-key configuration override to App1.credentials, and for Client2, you set the csf-key property to App2.credentials. For more information, see "Attaching Client Policies Permitting Overrides". Note that in both cases, the usernames and passwords must represent valid users in the OPSS identity store.

A password credential can store a username and password. A generic credential can store any credential object.

The CSF configuration is maintained in the jps-config.xml file in the domain-home/config/fmwconfig directory.

When you configure the Oracle WSM keystore using Fusion Middleware Control, as described in "Configuring the Oracle WSM Keystore", the aliases and passwords that you specify are securely stored in the credential store. If, however, you add other aliases to the keystore, or you need to add authentication credentials for a client, you need to ensure that they are configured and stored in the credential store also, as described in the following section.

Adding Keys and User Credentials to the Credential Store

You can use Fusion Middleware Control or WLST commands to add keys and user credentials to the credential store. Both methods are described in the following procedures.

	
Note:

The example procedures in this section describe how to add user credentials for the basic.credentials key as described above, and the example ServiceA and ServiceB aliases described in "Advanced Setup Considerations". In your own environment, you should use aliases and passwords that are appropriate for your configuration.
Before adding key credentials to the credential store, ensure that the private keys and aliases exist in the keystore. You can create them using commands such as the following:

keytool -genkeypair -keyalg RSA -alias ServiceA -keypass welcome1 -keystore default-keystore.jks -storepass welcome1 -validity 3600

keytool -genkeypair -keyalg RSA -alias ServiceB -keypass welcome3 -keystore default-keystore.jks -storepass welcome1 -validity 3600

For more information about the keystore, see "Generating Private Keys and Creating the Java Keystore".

Using Fusion Middleware Control

Follow these steps in Fusion Middleware Control to add keys and certificates to the credential store:

	
In the Navigator pane, expand WebLogic Domain to show the domain for which you need to configure the keystore. Select the domain.

	
From the WebLogic Domain menu, select Security then Credentials.

Figure 10-4 Credential Store Menu

[image: Description of Figure 10-4 follows]

Description of "Figure 10-4 Credential Store Menu"

The Credentials page is displayed, as shown in Figure 10-5.

Figure 10-5 Credential Store Provider Configuration Page

[image: Description of Figure 10-5 follows]

Description of "Figure 10-5 Credential Store Provider Configuration Page"

Note that in this configuration, the oracle.wsm.security credential map already exists in the credential store. This credential map was created when you configured the Oracle WSM keystore as described in "Configuring the Oracle WSM Keystore". If you do not see this credential map in your configuration, you can create it by clicking the Create Map button, and entering oracle.wsm.security in the Map Name field.

	
Optionally, expand the oracle.wsm.security map in the Credential table to view the keys that have been configured in the map. Figure 10-6 illustrates a sample Oracle WSM credential store configuration.

Figure 10-6 Keys Configured in Oracle WSM Credential Map

[image: Description of Figure 10-6 follows]

Description of "Figure 10-6 Keys Configured in Oracle WSM Credential Map"

You can edit the keys in the credential map by selecting the key and clicking Edit. Make sure that any changes you make in the credential store are consistent with the definition of the key in the Oracle WSM Java keystore.

	
Click Create Key to create new entries in the oracle.wsm.security credential map, for example for the ServiceA and ServiceB aliases. The Create Key dialog box appears, as shown in Figure 10-7.

Figure 10-7 Create Key Dialog Box

[image: Description of Figure 10-7 follows]

Description of "Figure 10-7 Create Key Dialog Box"

	
From the Select Map menu, select the map name oracle.wsm.security if it is not already selected.

	
In the Key field, enter csfServiceA to create a key-value pair to access the key store.

	
From the Type menu, select Password.

	
In the User Name field, enter the alias name that you specified for the private key in the keystore, for example ServiceA.

	
In the Password and Confirm Password fields, enter the password that you specified for the alias in the keystore, for example welcome1.

	
In the Description field, enter a description of for the entry, for example, Key for ServiceA.

	
Click OK.

	
Click Create Key again and provide the values for any additional keystore aliases, such as csfServiceB for the ServiceB alias.

	
Optionally, click Create Key to create entries in the oracle.wsm.security credential map for the any csf-key user credentials, for example basic.credentials, as follows:

	
From the Select Map menu, select the map name oracle.wsm.security if it is not already selected.

	
In the Key field, enter basic.credentials. In this example, we use basic.credentials but you can specify any name you choose for the key.

	
From the Type menu, select Password.

	
In the User Name field, enter a valid username that exists in the OPSS identity store, for example AppID.

	
In the Password and Confirm Password fields, enter a valid password for the user, for example AppPWord%.

	
In the Description field, enter a description of for the entry, for example, Username and Password for basic.credential key.

	
Click OK.

	
Restart the server.

Using WLST

Follow these steps to add additional keys and user credentials to the credential store using WLST commands.

	
Go to the Oracle Common home directory for your installation, for example /home/Oracle/Middleware/oracle_common.

For information about the Oracle Common home directory and installing Oracle Fusion Middleware, see the Oracle Fusion Middleware Installation Planning Guide.

	
Start WLST using the WLST.sh/cmd command located in the oracle_common/common/bin directory. For example:

	
/home/Oracle/Middleware/oracle_common/common/bin/wlst.sh (UNIX)

	
C:\Oracle\Middleware\oracle_common\common\bin\wlst.cmd (Windows)

When executed, these commands start WLST in offline mode. To use the credential store WLST commands, you must use WLST in online mode.

	
Start Oracle WebLogic Server.

For more information, see "Start and stop servers" in the Oracle WebLogic Server Administration Console Help.

	
Connect to the running WebLogic Server instance using the connect() command. For example, the following command connects WLST to the Administration Server at the URL myAdminServer.oracle.com:7001 using the username/password credentials weblogic/welcome1:

connect("weblogic","welcome1","t3://myAdminServer.oracle.com:7001")

	
Use the createCred command to create entries in the oracle.wsm.security credential map for the ServiceA and ServiceB aliases. For example, create an entry csfServiceA for the ServiceA alias, using a command such as the following:

wls:/DefaultDomain/serverConfig> createCred(map="oracle.wsm.security", key="csfServiceA", user="ServiceA", password="welcome1", desc="Key for ServiceA")

	
Repeat step 5 to create an entry for any additional aliases, for example csfServiceB, for the ServiceB alias.

	
Use the createCred command to create entries in the oracle.wsm.security credential map for the any csf-key user credentials, for example basic.credentials.

wls:/DefaultDomain/serverConfig> createCred(map="oracle.wsm.security", key="basic.credentials", user="AppID", password="AppPWord%", desc="Key for ServiceA")

	
View the details about a key in the credential store using the listCred command as shown in the following example:

listCred(map="oracle.wsm.security", key="csfServiceA")

How Oracle WSM Locates Keystore And Key Passwords

Oracle WSM expects keystore and key passwords to be in the Credential Store Framework (CSF). Here is how it works.

	
A JKS keystore file is protected by a keystore password.

	
A keystore file consists of zero or more private keys, and zero or more trusted certificates. Each private key has its own password, (although it is common to set the key passwords to be the same as the keystore password). Oracle WSM needs to know both the keystore password and key password.

	
The CSF consists of many maps, each with a distinct name. Oracle WSM only uses the map oracle.wsm.security.

	
Inside each map is a mapping from multiple csf-key entries to corresponding credentials. A csf-key is just a simple name, but there can be many different types of credentials. The most common type of credential is a password credential which is primarily comprised of a username and a password.

Oracle WSM refers to the following csf-keys inside the oracle.wsm.security map:

	
keystore-csf-key - This key should contain the keystore password. The username is ignored.

	
enc-csf-key - This key should contain the encryption key alias as the username, and the corresponding key password.

	
sign-csf-key - This key should contain the signature key alias as the username, and the corresponding key password.

In addition to these csf-keys, you should add a csf-key entry for every new private key that you want Oracle WSM to use, for example when you want to specify signature and encryption keys in configuration overrides.

Figure 10-8 illustrates the relationship between the keystore configuration in the OPSS, the oracle.wsm.security map in the credential store, and the Oracle WSM Java keystore.

Figure 10-8 Oracle WSM Keystore Configuration for Message Protection

[image: Description of Figure 10-8 follows]

Description of "Figure 10-8 Oracle WSM Keystore Configuration for Message Protection"

As shown in the figure:

	
The keystore.csf.map property points to the Oracle WSM map in the credential store that contains the CSF aliases. In this case keystore.csf.map is defined as the recommended name oracle.wsm.security, but it can be any value.

	
The keystore.pass.csf.key property points to the CSF alias keystore-csf-key that is mapped to the username and password of the keystore. Only the password is used; username is redundant in the case of the keystore.

	
The keystore.sig.csf.key property points to the CSF alias sign-csf-key that is mapped to the username and password of the private key that is used for signing.

	
The keystore.enc.csf.key property points to the CSF alias enc-csf-key that is mapped to the username and password of the private key that is used for decryption.

Configuring Keystores for SSL

If you want to use any of the policies listed in "Which Policies Require You to Configure SSL?" or "Which Policies Require You to Configure Two-Way SSL?", you must configure keystores for SSL.

SSL provides secure connections by allowing two applications connecting over a network to authenticate the other's identity and by encrypting the data exchanged between the applications.

Authentication allows a server, and optionally a client, to verify the identity of the application on the other end of a network connection. Encryption makes data transmitted over the network intelligible only to the intended recipient. A client certificate (two-way SSL) can be used to authenticate the user.

This section describes how to set up a Web service client and the WebLogic Server Web service container to send requests over SSL.

To use SSL in a Web service application, you need to:

	
Configure the WebLogic Server keystore and SSL settings.

	
Configure the Web service client keystore and SSL settings.

These steps are described in the sections that follow.

Which Policies Require You to Configure SSL?

The predefined policies that require you to configure SSL are as follows:

	
oracle/wss_http_token_over_ssl_service_policy

	
oracle/wss_http_token_over_ssl_client_policy

	
oracle/wss_saml_token_bearer_over_ssl_server_policy

	
oracle/wss_saml_token_bearer_over_ssl_client_policy

	
oracle/wss_saml_token_over_ssl_service_policy

	
oracle/wss_saml_token_over_ssl_client_policy

	
oracle/wss_sts_issued_saml_bearer_token_over_ssl_client_template

	
oracle/wss_sts_issued_saml_bearer_token_over_ssl_service_template

	
oracle/wss_username_token_over_ssl_service_policy

	
oracle/wss_username_token_over_ssl_client_policy

In addition, you can create a new policy that requires SSL by using the following templates:

	
oracle/wss_http_token_over_ssl_service_template

	
oracle/wss_http_token_over_ssl_client_template

	
oracle/wss_saml_token_bearer_over_ssl_service_template

	
oracle/wss_saml_token_bearer_over_ssl_client_template

	
oracle/wss_saml_token_over_ssl_service_template

	
oracle/wss_saml_token_over_ssl_client_template

	
oracle/wss_sts_issued_saml_bearer_token_over_ssl_client_template

	
oracle/wss_sts_issued_saml_bearer_token_over_ssl_service_template

	
oracle/wss_username_token_over_ssl_service_template

	
oracle/wss_username_token_over_ssl_client_template

See Appendix C, "Predefined Assertion Templates" and Appendix B, "Predefined Policies" for more information on these assertions and policies.

Which Policies Require You to Configure Two-Way SSL?

The predefined policies that require you to configure two-way SSL are as follows:

	
oracle/wss_saml_token_over_ssl_client_policy

	
oracle/wss_saml_token_over_ssl_service_policy

	
oracle/wss_username_token_over_ssl_client_policy, when mutual authentication is selected.

	
oracle/wss_username_token_over_ssl_service_policy, when mutual authentication is selected.

	
oracle/wss_http_token_over_ssl_client_policy, when mutual authentication is selected.

	
oracle/wss_http_token_over_ssl_service_policy, when mutual authentication is selected.

In addition, you can create a new policy that requires two-way SSL by using the following templates:

	
oracle/wss_saml_token_over_ssl_client_template

	
oracle/wss_saml_token_over_ssl_service_template

How to Configure a Keystore on WebLogic Server

Private keys, digital certificates, and trusted certificate authority certificates establish and verify identity and trust in the WebLogic Server environment.

This section briefly summarizes the steps that are required to configure the keystore in WebLogic Server. See the following two sources for complete information:

	
Oracle WebLogic Server Administration Console Help for complete information, particularly the topic "Servers: Configuration: Keystores."

	
Securing Oracle WebLogic Server, particularly Configuring Identity and Trust.

WebLogic Server is configured with a default identity keystore DemoIdentity.jks and a default trust keystore DemoTrust.jks. In addition, WebLogic Server trusts the certificate authorities in the cacerts file in the JDK. This default keystore configuration is appropriate for testing and development purposes. However, these keystores should not be used in a production environment.

To configure identity and trust for a server:

	
Obtain digital certificates, private keys, and trusted CA certificates from the keytool utility, or a reputable vendor such as Entrust or Verisign, and include them in the keystore.

To get the certificate, you must create a Certificate Request and submit it to the CA. The CA will authenticate the certificate requestor and create a digital certificate based on the request.

The PEM (Privacy Enhanced Mail) format is the preferred format for private keys, digital certificates, and trusted certificate authorities (CAs).

If you use the keytool utility, the default key pair generation algorithm is Digital Signature Algorithm (DSA). WebLogic Server does not support DSA. Specify another key pair generation and signature algorithm such as RSA when using WebLogic Server. For more information about the keytool utility, see the keytool-Key and Certificate Management Tool description at http://download.oracle.com/javase/6/docs/technotes/tools/windows/keytool.html.

You can also use the digital certificates, private keys, and trusted CA certificates provided by the WebLogic Server kit. The demonstration digital certificates, private keys, and trusted CA certificates should be used only in a development environment.

	
Create one keystore for identity and one for trust. The preferred keystore format is JKS (Java KeyStore).

	
Load the private keys and trusted CAs into the keystores.

	
In the left pane of the Console, expand Environment and select Servers.

	
Click the name of the server for which you want to configure the identity and trust keystores.

	
Select Configuration, and then Keystores.

	
In the Keystores field, select the method for storing and managing private keys/digital certificate pairs and trusted CA certificates. These options are available:

	
Custom Identity and Custom Trust: Identity and trust keystores you create.

	
Demo Identity and Demo Trust: The demonstration identity and trust keystores, located in the ..\server\lib directory and the JDK cacerts keystore, are configured by default. Use for development only.

	
Custom Identity and Java Standard Trust: A keystore you create and the trusted CAs defined in the cacerts file in the JAVA_HOME\jre\lib\security directory.

	
Custom Identity and Command Line Trust: An identity keystore you create and command-line arguments that specify the location of the trust keystore.

	
In the Identity section, define attributes for the identity keystore.

	
Custom Identity Keystore: The fully qualified path to the identity keystore.

	
Custom Identity Keystore Type: The type of the keystore. Generally, this attribute is Java KeyStore (JKS); if left blank, it defaults to JKS.

	
Custom Identity Keystore Passphrase: The password you will enter when reading or writing to the keystore. This attribute is optional or required depending on the type of keystore. All keystores require the passphrase to write to the keystore. However, some keystores do not require the passphrase to read from the keystore. WebLogic Server only reads from the keystore so whether or not you define this property depends on the requirements of the keystore.

	
Note:

The passphrase for the Demo Identity keystore is DemoIdentityKeyStorePassPhrase.

	
In the Trust section, define properties for the trust keystore.

If you chose Java Standard Trust as your keystore, specify the password defined when creating the keystore. Confirm the password.

If you chose Custom Trust, define the following attributes:

	
Custom Trust Keystore: The fully qualified path to the trust keystore.

	
Custom Trust Keystore Type: The type of the keystore. Generally, this attribute is JKS; if left blank, it defaults to JKS.

	
Custom Trust Keystore Passphrase: The password you will enter when reading or writing to the keystore. This attribute is optional or required depending on the type of keystore. All keystores require the passphrase to write to the keystore. However, some keystores do not require the passphrase to read from the keystore. WebLogic Server only reads from the keystore, so whether or not you define this property depends on the requirements of the keystore.

	
The changes are automatically activated.

Configuring SSL on WebLogic Server (One-Way)

With one-way SSL, the server is required to present a certificate to the client but the client is not required to present a certificate to the server.

After you configure identity and trust keystores for a WebLogic Server instance as described in "Configuring Keystores for SSL", you configure its SSL attributes. These attributes describe the location of the identity key and certificate in the keystore specified on the Configuration: Keystores page. Use the Configuration: SSL page to specify this information.

This section summarizes the steps required to configure SSL on WebLogic Server. For complete information, see Securing Oracle WebLogic Server.

To configure SSL:

	
In the left pane of the WebLogic Server Administration Console, expand Environment and select Servers.

	
Click the name of the server for which you want to configure SSL.

	
Select Configuration, and then the SSL page, and choose the location of identity (certificate and private key) and trust (trusted CAs) for WebLogic Server.

	
Set SSL attributes for the private key alias and password.

	
At the bottom of the page, click Advanced.

	
Set Hostname Verification to None.

	
Indicate the number of times WebLogic Server can use an exportable key between a domestic server and an exportable client before generating a new key. The more secure you want WebLogic Server to be, the fewer times the key should be used before generating a new key.

	
Set the Two Way Client Cert Behavior control to Client Certs Not Requested.

	
Specify the inbound and outbound SSL certificate validation methods. These options are available:

	
Builtin SSL Validation Only: Uses the built-in trusted CA-based validation. This is the default.

	
Built-in SSL Validation and Cert Path Validators: Uses the built-in trusted CA-based validation and uses configured CertPathValidator providers to perform extra validation.

Configuring SSL on WebLogic Server (Two-Way)

With two-way SSL, the server presents a certificate to the client and the client presents a certificate to the server. WebLogic Server can be configured to require clients to submit valid and trusted certificates before completing the SSL handshake.

After you configure identity and trust keystores for a WebLogic Server instance as described in "Configuring Keystores for SSL", you can configure its two-way SSL attributes if the policy or template you are using requires it, as described in "Which Policies Require You to Configure Two-Way SSL?".

This section summarizes the steps required to configure SSL on WebLogic Server. For complete information, see Securing Oracle WebLogic Server.

To configure two-way SSL:

	
In the left pane of the WebLogic Server Administration Console, expand Environment and select Servers.

	
Click the name of the server for which you want to configure SSL.

	
Select Configuration, and then the SSL page, and choose the location of identity (certificate and private key) and trust (trusted CAs) for WebLogic Server.

	
Set SSL attributes for the private key alias and password.

	
At the bottom of the page, click Advanced.

	
Set Hostname Verification to None.

	
Indicate the number of times WebLogic Server can use an exportable key between a domestic server and an exportable client before generating a new key. The more secure you want WebLogic Server to be, the fewer times the key should be used before generating a new key.

	
Set the Use Server Certs control if needed. Setting this control determines whether a Web service client hosted on WebLogic Server should use the server certificates/key as the client identity when initiating a connection over HTTPS.

	
Set the Two Way Client Cert Behavior control to Client Certs Requested and Enforced.

	
Specify the inbound and outbound SSL certificate validation methods. These options are available:

	
Builtin SSL Validation Only: Uses the built-in trusted CA-based validation. This is the default.

	
Builtin SSL Validation and Cert Path Validators: Uses the built-in trusted CA-based validation and uses configured CertPathValidator providers to perform extra validation.

Configuring SSL for a Web Service Client

The core WebLogic Server security subsystem uses private key and X.509 certificate pairs, stored in the default keystores, for SSL.

You must ensure that the Web service client trusts the X.509 certificate that WebLogic Server uses to digitally sign the request. Do one of the following:

	
Ensure that WebLogic Server obtains a digital certificate that the client automatically trusts, because it has been issued by a trusted certificate authority.

	
Create a certificate registry that lists all the individual certificates trusted by WebLogic Server, and then ensure that the client trusts these registered certificates.

To configure SSL for a Web service client:

	
Create a keystore used by the client application. Oracle recommends that you create one client keystore per application user.

You can use the keytool utility to perform this step. For development purposes, the keytool utility is the easiest way to get started.

	
Create a private key and digital certificate pair, and load it into the client keystore.

Make sure that the certificate's key usage allows both encryption and digital signatures. Oracle requires a key length of 1024 bits or larger.

	
Make sure that the following properties are set in the client's JVM:

	
javax.net.ssl.trustStore -- The name of the file that contains the trust store.

	
javax.net.ssl.trustStoreType -- The type of KeyStore object that you want the default TrustManager to use.

	
javax.net.ssl.trustStorePassword -- The password for the KeyStore object that you want the default TrustManager to use.

Configuring Two-Way SSL for a Web Service Client

	
Note:

See "Configuring SOA Composite Applications for Two-Way SSL Communication" in Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle Business Process Management Suite for specific configuration steps when a SOA application is the Web service client over two-way SSL.

You must ensure that WebLogic Server is able to validate the X.509 certificate that the client uses to digitally sign its request, and that WebLogic Server in turn uses to encrypt its responses to the client. Do one of the following:

	
Ensure that the client application obtains a digital certificate that WebLogic Server automatically trusts, because it has been issued by a trusted certificate authority.

	
Create a certificate registry that lists all the individual certificates trusted by WebLogic Server, and then ensure that the client uses one of these registered certificates.

To configure SSL for a Web service client:

	
Create a keystore used by the client application. Oracle recommends that you create one client keystore per application user.

You can use the keytool utility to perform this step. For development purposes, the keytool utility is the easiest way to get started.

	
Create a private key and digital certificate pair, and load it into the client keystore.

Make sure that the certificate's key usage allows both encryption and digital signatures. Oracle requires a key length of 1024 bits or larger.

	
Make sure that the following properties are set in the client's JVM:

	
javax.net.ssl.trustStore -- The name of the file that contains the trust store.

	
javax.net.ssl.trustStoreType -- The type of KeyStore object that you want the default TrustManager to use.

	
javax.net.ssl.trustStorePassword -- The password for the KeyStore object that you want the default TrustManager to use.

	
javax.net.ssl.keyStore -- The name of the file that contains the KeyStore object.

	
javax.net.ssl.keyStoreType -- The type of KeyStore object.

	
javax.net.ssl.keyStorePassword -- The password for the KeyStore.

Configuring SSL on Oracle HTTP Server

The HTTPS protocol uses an industry standard protocol called Secure Sockets Layer (SSL) to establish secure connections between clients and servers. You can use the HTTPS/SSL support offered by the Oracle HTTP Server as one of the communication protocols to communicate between the client and the Web service. This section describes how to set up a Web service client and a Web service using Oracle WSM policies to send requests over SSL. Oracle HTTP Server is configured as a Web proxy that intermediates between the client and Oracle WebLogic Server. SSL is enabled at Oracle HTTP Server and SSL transport is turned on between the client and Oracle HTTP Server. Communication remains non-SSL between Oracle HTTP Server and WebLogic Server. This section describes how to configure the policies that require one-way SSL and two-way SSL.

For more information, see:

	
"Configuring SSL in Oracle Fusion Middleware", in Oracle Fusion Middleware Administrator's Guide

	
"Configuring SSL" in Securing Oracle WebLogic Server

	
"Set Up SSL" in the Oracle WebLogic Server Administration Console Help

	
"Configuring Secure Sockets Layer" in Oracle Fusion Middleware Administrator's Guide for Oracle HTTP Server

One-Way SSL

For more information on the Oracle WSM policies that require one-way SSL configuration, see "Which Policies Require You to Configure SSL?".

To use one-way SSL, you need to:

	
Configure the Oracle HTTP Server as follows:

	
In the file ORACLE_INSTANCE/config/OHS/<ohs_name>/ssl.conf, configure Oracle HTTP Server as a Web proxy and specify the list of URLs you want to access, as shown in Example 10-1.

Example 10-1 Specifying URLs in ssl.conf

added properties for configuring OHS as webproxy
<IfModule weblogic_module>
WebLogicHost <host>
WebLogicPort <port>
SecureProxy Off
WlProxySSL On
Debug ALL
WlLogFile /tmp/weblogic.log
#the location attributes list the urls you want to access via OHS
<Location
 /myWlsService>
 SetHandler weblogic-handler
 WebLogicHost <host>
 WeblogicPort <port>
</Location>

	
In the same file, set the following properties under virtual host configuration to ensure the client certificate information is sent to WebLogic Server:

SSLVerifyClient optional

	
By default, SSL in enabled on Oracle HTTP Server. The default https port is 4443. For more information on configuring this port, see "Configuring SSL in Oracle Fusion Middleware" in Oracle Fusion Middleware Administrator's Guide.

	
Restart Oracle HTTP Server.

For more information, see "Configuring SSL in Oracle Fusion Middleware" in Oracle Fusion Middleware Administrator's Guide.

	
Create a wallet as described at "Managing Keystores, Wallets, and Certificates" in Oracle Fusion Middleware Administrator's Guide and replace the default wallet. The default wallet is located in the ORACLE_INSTANCE/config/OHS/<ohs_name>/keystores/default directory. See Example 10-2 for sample commands for creating a wallet.

Example 10-2 Sample Commands for One-Way SSL

./orapki wallet create -wallet <wallet_location> -pwd welcome1 -auto_login
./orapki wallet display -wallet <wallet_location> -pwd welcome1
./orapki cert display -cert <wallet_location>/ohs.crt

./orapki wallet add -wallet <wallet_location> -keysize 512 -dn "CN=<host_name>,OU=st,O=owsm,L=N,ST=delhi,C=IN"
-self_signed -validity 700 -serial_num 20 -cert <wallet_location>/ohs.crt -user_cert -pwd welcome1

./orapki wallet display -wallet <wallet_location> -pwd welcome1

JAVA_HOME/bin/keytool -import -trustcacerts -file ohs.crt -alias sslcert -keystore client_keystore.jks -storepass welcome1

	
In the Oracle WebLogic Administration Console, perform the following:

	
Navigate to the Servers page in the Environment tab.

	
Click Adminserver and in Configuration, select General.

	
In the Advanced section, check the following: WebLogic Plug-In Enabled, and Client Cert Proxy Enabled.

	
Save the changes.

	
Set the same parameters for the SOA server.

For more information, see "Server: Configuration: General" in the Oracle WebLogic Server Administration Console Help.

To modify the client to use one-way (server authentication mode), create a JSE client from the Web service using JDeveloper. Modify the parameters and properties as described in Example 10-3.

Example 10-3 JSE Client Using SSL

public static void main(String [] args)
 {
 class1Service = new Class1Service();
 SecurityPolicyFeature[] securityFeatures =
 new SecurityPolicyFeature[] { new SecurityPolicyFeature("oracle/wss_
saml_token_over_ssl_client_policy") };
 Class1 class1 = class1Service.getClass1Port(securityFeatures);
 ((BindingProvider) class1).getRequestContext().put(BindingProvider.ENDPOINT_
ADDRESS_PROPERTY,
 "https://<host>:4443/myWlsService/Class1Port");

 ((BindingProvider) class1).getRequestContext().put(BindingProvider.USERNAME_
PROPERTY, "weblogic");
 System.setProperty("javax.net.ssl.trustStore","D:\\OWSM_
QA\\11g\\PS2\\OHS\\wallet\\client_keystore.jks");
 System.setProperty("javax.net.ssl.trustStorePassword","welcome1");
 System.setProperty("javax.net.ssl.trustStoreType","JKS");

 System.setProperty("weblogic.security.SSL.ignoreHostnameVerification" ,
 "true");
 System.setProperty("java.protocol.handler.pkgs",
 "com.sun.net.ssl.internal.www.protocol");
 System.setProperty("javax.net.debug","all");

 System.out.println("Call to the SSL service...");
 String response1 = class1.sayHello("test");
 System.out.println("Response = " + response1);
 }

Two-Way SSL

For more information on the Oracle WSM policies that require two-way SSL configuration, see "Which Policies Require You to Configure Two-Way SSL?".

To use two-way SSL, you need to:

	
Configure the Oracle HTTP Server as follows:

	
In the file ORACLE_INSTANCE/config/OHS/<ohs_name>/ssl.conf, configure Oracle HTTP Server as a Web proxy and specify the list of URLs you want to access as shown in Example 10-4.

Example 10-4 Specifying URLs in ssl.conf

 # added properties for configuring OHS as webproxy
<IfModule weblogic_module>
WebLogicHost <host>
WebLogicPort <port>
SecureProxy Off
WlProxySSL On
Debug ALL
WlLogFile /tmp/weblogic.log
#the location attributes list the urls you want to access via OHS
<Location /myWlsService>
 SetHandler weblogic-handler
 WebLogicHost <host>
 WeblogicPort <port>
</Location>

	
In the same file, set the following properties under virtual host configuration to ensure the client certificate information is sent to the WebLogic Server:

SSLVerifyClient optional

SSLOptions +StdEnvVars +ExportCertData

SSLOptions +ExportCertData is a mod_ssl directive that ensures certificate-related information is sent to WebLogic Server. SSLOptions +StdEnvVars +ExportCertData ensures that SSL-related information is sent.

	
By default, SSL in enabled on Oracle HTTP Server. The default https port is 4443. For more information on configuring this port, see "Configuring SSL in Oracle Fusion Middleware" in Oracle Fusion Middleware Administrator's Guide.

	
Restart Oracle HTTP Server.

For more information, see "Configuring SSL in Oracle Fusion Middleware" in Oracle Fusion Middleware Administrator's Guide.

	
Create a wallet as described at "Managing Keystores, Wallets, and Certificates" in Oracle Fusion Middleware Administrator's Guide and replace the default wallet. The default wallet is located in the ORACLE_INSTANCE/config/OHS/<ohs_name>/keystores/default directory. See Example 10-5 for sample commands.

Example 10-5 Sample Commands for Two-Way SSL

JAVA_HOME/bin/keytool -genkey -alias twowayssl -keyalg RSA
 -keystore twowaykeystore.jks -storepass welcome1 -validity 700
./orapki wallet add -wallet <wallet_location> -cert
 <wallet_location>/twowayssl.crt -trusted_cert -pwd welcome1

	
In the Oracle WebLogic Administration Console, perform the following:

	
Navigate to the Servers page in the Environment tab.

	
Click Adminserver and in Configuration, select General.

	
In the Advanced section, check the following: WebLogic Plug-In Enabled, and Client Cert Proxy Enabled.

	
Save the changes.

	
Set the same parameters for the SOA server.

For more information, see "Server: Configuration: General" in the Oracle WebLogic Server Administration Console Help.

To modify the client to use two-way (mutual authentication mode) SSL, create a JSE client from the Web service using JDeveloper. Modify the parameters and properties as described in Example 10-6.

Example 10-6 JSE Client Using SSL

public static void main(String [] args)
 {
 class1Service = new Class1Service();
 SecurityPolicyFeature[] securityFeatures =
 new SecurityPolicyFeature[] { new SecurityPolicyFeature("oracle/wss_
username_token_over_ssl_client_policy") };
 Class1 class1 = class1Service.getClass1Port(securityFeatures);
 ((BindingProvider) class1).getRequestContext().put(BindingProvider.ENDPOINT_
ADDRESS_PROPERTY,
 "https://<host>:4443/myWlsService/Class1Port");

 ((BindingProvider) class1).getRequestContext().put(BindingProvider.USERNAME_
PROPERTY, "weblogic");
 ((BindingProvider) class1).getRequestContext().put(BindingProvider.PASSWORD_
PROPERTY, "welcome1");
 System.setProperty("javax.net.ssl.trustStore","D:\\OWSM_
QA\\11g\\PS2\\OHS\\wallet\\twowaykeystore.jks");
 System.setProperty("javax.net.ssl.trustStorePassword","welcome1");
 System.setProperty("javax.net.ssl.trustStoreType","JKS");
 System.setProperty("javax.net.ssl.keyStore","D:\\OWSM_QA\\11g\\PS2\\OHS\\wallet\\twowaykeystore.jks");
 System.setProperty("javax.net.ssl.keyStorePassword","welcome1");
 System.setProperty("javax.net.ssl.keyStoreType","JKS");

 System.setProperty("weblogic.security.SSL.ignoreHostnameVerification" ,
 "true");
 System.setProperty("java.protocol.handler.pkgs",
 "com.sun.net.ssl.internal.www.protocol");
 System.setProperty("javax.net.debug","all");

 System.out.println("Call to the SSL service...");
 String response1 = class1.sayHello("test");
 System.out.println("Response = " + response1);
 }

Hardware Integration

This section describes setup information for the following hardware-related topics:

	
"Using Hardware Security Modules With Oracle WSM"

	
"Configuring Oracle WSM for Oracle SPARC T4 Cryptographic Acceleration"

Using Hardware Security Modules With Oracle WSM

Hardware security modules (HSM) are certified to operate with Oracle Advanced Security. These modules provide a secure way to store keys and off-load cryptographic processing.

Using SafeNet Luna SA With Oracle WSM for Key Storage

SafeNet Luna SA is a network-attached, (HSM featuring cryptographic processing and hardware key management for applications. Luna SA is designed to protect critical cryptographic keys across a wide range of security applications.

Some key advantages of using Luna SA with Oracle WSM are:

	
Network shareability

	
Most secure with keys always in hardware

	
FIPS validated

	
Note:

You must contact your SafeNet representative to obtain certified hardware and software to use with Oracle Advanced Security.

By default, Oracle Web Services Manager (Oracle WSM) uses Java Key Store (JKS) for key storage. Keys and certificates required by Oracle WSM for cryptographic operations are fetched from a keystore file. When Luna SA is available in-network, it can be leveraged by Oracle WSM for key storage purposes and cryptographic operations.

This section includes the following topics:

	
"About Installing and Configuring the Luna SA HSM Client"

	
"Configuring the JRE Used By Oracle WSM"

	
"Logging On to Luna SA"

	
"Copying Keys and Certificates from JKS to Luna SA"

	
"Configuring Oracle WSM to Use Luna SA"

About Installing and Configuring the Luna SA HSM Client

The Luna SA HSM client needs to be installed on the host that has a running instance of Oracle WSM. Then the Luna SA HSM client will communicate with an available Luna SA HSM network. However, this section does not cover Luna SA client installation, nor does it cover the Luna SA network installation and setup, which are out of scope for this document. Instead, you should refer to the Luna SA documentation for those instructions, at http://www.safenet-inc.com/Products/Detail.aspx?id=2147483853&terms=search.

Before you installing the Luna SA HSM client, verify the following checklist:

	
You already have Luna SA installed and available in you network.

	
You are logged in as root or as a user that has installation permission.

	
You have a Luna SA client installation CD or software image.

	
You have all required passwords for Luna SA, including an administrator password and a partition password.

	
Note:

You must contact your SafeNet representative to have the hardware security module, and to acquire the necessary library.
These tasks must be performed before you can use an Luna SA hardware security module with Oracle WSM

Configuring the JRE Used By Oracle WSM

After installing the Luna SA client, you need to configure the JRE that will be used by the Oracle WSM setup.

	
Copy the following JAR files from the /usr/lunasa/jsp/lib directory to the $JAVA_HOME/jre/lib/ext directory:

	
LunaJCASP.jar

	
LunaJCESP.jar

	
Copy the libLunaAPI.so file to the java.library.path.

	
Edit the $JAVA_HOME/jre/lib/security/java.security file to include two Luna providers.

At the end of the security.providers list add these two Luna providers:

security.provider.n=com.chrysalisits.crypto.LunaJCAProvider
security.provider.n+1=com.chrysalisits.cryptox.LunaJCEProvider

where

n specifies the preference order that determines the order in which providers are searched for requested algorithms when no specific provider is requested. The order is 1-based; 1 is the most preferred, followed by 2, and so on.

Logging On to Luna SA

Before you can use Luna SA with Oracle WSM, you must log on to the Luna SA server. This is one-time process that creates a Luna log-in session on the client machine. This session remains active until the client or server machine is rebooted, or when someone explicitly logs out of the Luna session.

You must use the salogin utility to log in. The salogin utility establishes a connection between the client and the HSM partition for a particular application. It takes an application ID as an argument. This application id consists of two parts: a high and a low ID.

Before invoking the salogin utility, you need to add an entry to the Chrystoki.conf file, which registers the application ID. The Chrystoki.conf file is usually found in the /etc/ directory. This is also a one-time process.

	
Edit the /etc/Chrystoki.conf file by adding the application ID to the end of file. For example:

Misc = { AppIdMajor=<major id>; AppIdMinor=<minor id>; }

	
Log into the Luna SA server, by entering:

/salogin -o -s <partition number> -i <AppIdMajor>:<AppIdMinor> -v -p <partition_password>

This opens a session for the application ID you provided. The salogin is in the /usr/lunasa/bin directory.

	
To log out of the Luna SA server, enter:

salogin -c -s <slot number> -i <AppIdMajor>:<AppIdMinor>

Copying Keys and Certificates from JKS to Luna SA

If keys and certificates are currently in the JKS, then you need to move all keys and certificates to LunaSA. You can use the cmu script provided by LunaSA for importing keys and certificates.

	
The cmu importKey command imports an RSA|DSA private key from a file onto an HSM. (Supports PKCS12(RSA), PKCS8(RSA/DSA), or PKCS1(RSA)).

	
The cmu import command imports an X.509 certificate from a file onto an HSM.

Configuring Oracle WSM to Use Luna SA

As part of configuring Oracle WSM to use Luna SA, the keystore type has to be changed to Luna from the default Java Key Store (JKS) value.

Follow these steps to configure the keystore type:

	
In the navigator pane, expand WebLogic Domain to show the domain for which you need to configure the keystore. Select the domain.

	
Using Fusion Middleware Control, click WebLogic Domain, then Security, and then Security Provider Configuration.

	
Click the plus sign (+) to expand the Keystore control near the bottom of the page, and then click Configure.

The Web Services Manager Keystore Configuration page is displayed, as shown in Figure 10-9.

Figure 10-9 Web Services Manager Keystore Configuration Page

[image: Description of Figure 10-9 follows]

Description of "Figure 10-9 Web Services Manager Keystore Configuration Page"

	
In the Keystore Type drop-down, select Hardware Security Module (HSM).

	
After the Keystore Configuration page refreshes, enter Luna in the HSM Provider Type field, as shown is Figure 10-10.

Figure 10-10 Web Services Manager Keystore Configuration Page (Refreshed)

[image: Description of Figure 10-10 follows]

Description of "Figure 10-10 Web Services Manager Keystore Configuration Page (Refreshed)"

	
In the Key Alias and Crypt Alias fields, enter an alias for the signature and encryption keys. (Note that Luna SA does not require passwords to access the keystore and private keys.)

For HSMs, only a key alias is required so all *csf.key (keystore.sig.csf.key and keystore.enc.csf.key) properties should have a direct alias and not credential store keys. This information is also applicable to configuration overrides of *csf.key properties.

	
Click OK to submit the changes.

	
Restart Fusion Middleware Control.

Configuring Oracle WSM for Oracle SPARC T4 Cryptographic Acceleration

Oracle WSM supports the use of Oracle SPARC T4 processor-based servers, which eliminate the need for third-party security hardware by integrating computing, security, and I/O on a single chip. Deploying Oracle WSM on Oracle SPARC T4 based servers transparently leverages the T4 processor based cryptographic capabilities. This delivers high-performance security for scenarios that rely on compute-intensive cryptographic operations, such as those imposed by transport-layer and message-layer protection policies.

This section describes how to configure Oracle WSM to take advantage of cryptographic acceleration capabilities of Oracle SPARC T4 processor-based servers.

This section applies only to users who are running Oracle SPARC T4 processor-based servers running Oracle Solaris 10 8/11 or later.

The following topics are described:

	
"Terms You Need to Understand"

	
"Overview of Oracle SPARC T4 Hardware Assisted Cryptographic Acceleration"

	
"Configuring Transport-Level Security for Cryptographic Acceleration"

	
"Configuring Message-level Security for Cryptographic Acceleration"

	
"Additional Reading"

Terms You Need to Understand

This section uses the following terms that you need to understand. Refer to the whitepaper described in "Additional Reading" for a complete discussion of these terms.

	
PKCS#11 token — A token that generically refers to all the hardware and software tokens that implement the PKCS#11 API. The PKCS#11 API is an RSA standard for integrating hardware cryptographic accelerators, cryptographic tokens (for example, SCA-6000), and smart cards.

A software based PKCS#11 token is a PKCS#11 token implemented entirely in software (for example, Solaris PKCS11 Softtoken.)

	
Solaris Cryptographic Framework — The Solaris Cryptographic Framework (SCF) library plays a vital role in providing application access to hardware-assisted cryptographic acceleration provided by Oracle T-series processors and Hardware Security Modules (HSM), including the Oracle Sun Crypto Accelerator 6000 PCIe Card (SCA-6000) and third-party HSMs. SCF is based on PKCS#11 standard interfaces and provides a set of cryptographic services for kernel-level and user-level consumers to perform cryptographic operations.

Overview of Oracle SPARC T4 Hardware Assisted Cryptographic Acceleration

The Oracle SPARC T4 processor is part of Oracle's SPARC T-series processors family, which combines multiprocessing at the processor core level and hardware multithreading inside of each core with an efficient instruction pipeline to enable Chip Level Multi-Threading (CMT). These processors present a unique “System-on-a-Chip” design principle that incorporates specialized features such as on-chip/on-core cryptographic acceleration, 10 Gigabit Ethernet networking, and hardware-enabled virtualization capabilities. Each core of the Oracle SPARC T4 processor contains a Stream Processing Unit (SPU) to perform processing of cryptographic operations at the same clock speed as the core. The SPU is designed to achieve wire-speed encryption and decryption on the processor's 10 GbE ports.

Configuring and deploying Oracle WSM on Oracle SPARC T4 based servers delivers high performance by leveraging the T4 on-core cryptographic instructions to perform computationally intensive cryptographic operations as part of Web service security transactions using SSL and WS-Security mechanisms. For example, all message protection policies are computationally intensive.

Oracle WSM makes use of SPARC T4 processor based cryptographic acceleration in the following scenarios:

	
Transport-level security, as described in "Configuring Transport-Level Security for Cryptographic Acceleration".

Oracle WSM and WebLogic Server rely on the underlying Java Cryptographic Extensions (JCE) provider for supporting SSLv3/TLSv1 based secure communication. On Oracle Solaris/SPARC-based deployments, the Sun JCE provider is bundled with the Java runtime environment.

The Java PKCS#11 interfaces off-load and accelerate the compute-intensive cryptographic workloads (for example, RSA, AES and ECC) of SSL/TLS protocols by using the on-core cryptographic instructions of SPARC T4 processor.

	
Message-level security, as described in "Configuring Message-level Security for Cryptographic Acceleration".

Message-level security builds on cryptographic operations that support Web Services security standards such as WS-Security, WS-SecurityPolicy, and WS-Trust.

In particular, Web services security makes use of public-key encryption, digital signature (for example, RSA, DSA and ECC), bulk encryption (for example, AES, 3DES, and DES) and message digest (for example, SHA-1, SHA-2, and MD5) functions intended for supporting XML encryption, XML digital signature and related cryptographic operations.

Oracle WSM implements a dedicated PKCS#11 interface to delegate cryptographic operations (via SCF) to on-core cryptographic instructions of SPARC T4 processor.

Configuring Transport-Level Security for Cryptographic Acceleration

Perform the following tasks to configure cryptographic acceleration for transport-level security:

	
Configure the WebLogic Server keystore, as described in "Configure keystores" in the Oracle WebLogic Server Administration Console Help.

Choose "Custom Identity and Java Standard Trust" and Java KeyStore (JKS).

	
Enable JSSE SSL for WebLogic Server.

Using JSSE based SSL automatically leverages the SunPKCS11 provider implementation pre-configured with the Java runtime environment on Solaris SPARC.

See "Enabling and Disabling the JSSE-Based SSL Implementation" in Securing Oracle WebLogic Server for the steps to follow.

	
Confirm the use of the SunPKCS11 provider.

The SunPKCS11 provider is a Java based PKCS#11 implementation that integrates with underlying PKCS#11 implementations provided by the SCF and its exposed cryptographic providers.

In a typical WebLogic server installation on Solaris, the Java runtime environment is pre-configured to make use of the SunPKCS11 provider.

Therefore, make sure that the SunPKCS11 provider is listed as the first provider in the $JAVA_HOME/jre/lib/security/java.security properties file:

security.provider.1=sun.security.pkcs11.SunPKCS11 ${java.home}/lib/security/sunpkcs11-solaris.cfg

The relevant portion of the default Solaris $JAVA_HOME/jre/lib/security/java.security file is shown in Example 10-7.

Example 10-7 Partial java.security File

#
List of providers and their preference orders (see above):
#
security.provider.1=sun.security.pkcs11.SunPKCS11 ${java.home}/lib/security/sunpkcs11-solaris.cfg
security.provider.2=sun.security.provider.Sun
security.provider.3=sun.security.rsa.SunRsaSign
security.provider.4=com.sun.net.ssl.internal.ssl.Provider
security.provider.5=com.sun.crypto.provider.SunJCE
security.provider.6=sun.security.jgss.SunProvider
security.provider.7=com.sun.security.sasl.Provider
security.provider.8=org.jcp.xml.dsig.internal.dom.XMLDSigRI
security.provider.9=sun.security.smartcardio.SunPCSC

	
Restart WebLogic Server.

	
Verify that the SSL configuration is working.

Configuring Message-level Security for Cryptographic Acceleration

Perform the following tasks to configure cryptographic acceleration for message-level security:

	
From the Solaris command line, create a PKCS11 keystore.

To create and initialize a PKCS11 keystore, use the pktool setpin command.

When you specify keystore=pkcs11, the keystore defaults to "Sun Software PKCS#11 softtoken."

If the softoken keystore has not yet been initialized, use "changeme" as the original passphrase.

pktool setpin keystore=pkcs11
Enter token passphrase:
Create new passphrase:
Re-enter new passphrase:
Passphrase changed.

	
Generate private keys for the keystore.

pktool genkeypair keystore=pkcs11 keytype=rsa keylen=1024 hash=sha1

	
Alternatively, you can choose to import the key from a Java keystore to the Solaris Softtoken keystore by using the following command.

keytool –importkeystore
-srckeystore /opt/Oracle/Middleware/default-keystore.jks
-destkeystore NONE -srcstoretype JKS
-deststoretype PKCS11
 -srcstorepass changeme -deststorepass your-scfpassword

	
From the Solaris command line, verify that the keys are present in the Solaris Softtoken keystore.

keytool -list -storetype pkcs11 -keystore NONE

	
Make sure that the algorithm suites of the policies you use are not in the disabledMechanisms list in the $JAVA_HOME/jre/lib/security/sunpkcs11-solaris.cfgsunpkcs11-solaris.cfg configuration file.

For example, if the specified algorithm suite for a policy is Basic256Rsa15 as shown in Figure 10-11, it uses Aes256 encryption and KwAes256/kwRsA15 for key wrap. In this case, make sure that CKM_AES is not in the disabledMechanisms list in the configuration file.

Figure 10-11 Sample Algorithm Suite

[image: Description of Figure 10-11 follows]

Description of "Figure 10-11 Sample Algorithm Suite"

See Appendix A Sun PKCS#11 Provider's Supported Algorithms in the Java PKCS#11 Reference Guide for the list of supported algorithms.

	
Configure the Oracle WSM keystore.

Follow these steps to configure the PKCS11 keystore type:

	
In the navigator pane, expand WebLogic Domain to show the domain for which you need to configure the keystore. Select the domain.

	
Using Fusion Middleware Control, click WebLogic Domain, then Security, and then Security Provider Configuration.

	
Click the plus sign (+) to expand the Keystore control near the bottom of the page, and then click Configure.

The Web Services Manager Keystore Configuration page is displayed, as shown in Figure 10-9.

Figure 10-12 Web Services Manager Keystore Configuration Page

[image: Description of Figure 10-12 follows]

Description of "Figure 10-12 Web Services Manager Keystore Configuration Page"

	
In the Keystore Type drop-down, select Public Key Cryptographic Standards (PKCS-11), as shown is Figure 10-10.

Figure 10-13 Web Services Manager PKCS-11 Keystore

[image: PKCS Keystore Configuration.]

Description of "Figure 10-13 Web Services Manager PKCS-11 Keystore"

	
Enter the password for the keystore and confirm it. This password must match the PKCS11 keystore password you entered in Step 1.

	
In the Key Alias and Crypt Alias fields, enter an alias for the signature and encryption keys and the corresponding key passwords. The alias and password for the signature and encryption keys define the string alias and passwords used to store and retrieve these keys. These keys must be present in the PKCS11 keystore.

	
Click OK to submit the changes.

	
Restart Fusion Middleware Control.

	
Verify the configuration.

To ensure the hardware-assisted cryptographic acceleration is correctly configured and working, use the following Solaris DTrace script.

#!/usr/sbin/dtrace -s
pid$1:libsoftcrypto:yf*:entry,
pid$1:libmd:yf*:entry
{
 @[probefunc] = count();
}
tick-10sec
{
 printa(@);
 clear(@);
 trunc(@,0);
}
tick-100sec
{exit(0);}

Save this script as a file named cryptoverify.d. Run this script with the WebLogic Server's Java process ID as a command line argument, as follows:

dtrace -s cryptoverify.d <WeblogicServer Process ID>

For example, in an encryption scenario using the AES algorithm, a positive and growing value of aes jobs indicates that cryptographic acceleration is operational on the target AES bulk encryption payloads.

Additional Reading

For information on deploying Oracle WSM on Oracle SPARC T2+/T3 processors, refer to the whitepaper "High Performance Security for SOA and XML Web Services Using Oracle Web Services Manager and Oracle SPARC Enterprise T-series Servers," which is available at http://www.oracle.com/technetwork/articles/systems-hardware-architecture/hi-perf-soa-xml-svcs-172821.pdf.

The whitepaper is the definitive source for cryptographic acceleration information for using Oracle SPARC T2+ and T3 processor based servers

The whitepaper covers many additional pertinent topics such as Solaris Cryptographic Framework components, using Solaris Kernel SSL (KSSL), and performance characteristics.

Using Service Identity Certification Extension

For Web services that implement a message-protection policy, the Web service's base64-encoded public certificate is published in the WSDL. The certificate is included for message protection policies whether or not the policy encrypts or decrypts data.

	
Note:

In prior releases of Oracle WSM, for Web services that implemented a message-protection policy the Web service client needed to store the Web service's public certificate in its domain-level keystore. The client then used the keystore.recipient.alias property to identify the certificate in the keystore. To do this, you either identified the keystore.recipient.alias property on the Configurations page or overrode it on a per-client basis using the Security Configuration Details control when attaching the policy (or programmatically).

The certificate in the WSDL is the service's public key by default, as determined by the Encryption Key you specified when you configured the keystore as described in "Configuring Keystores for Message Protection".

If this certificate is not found in the WSDL, the keystore.recipient.alias property is used instead and the certificate must be in the client's domain-level keystore as before.

	
Note:

Self-signed certificates must be available in the client-side keystore to be trusted.

Hostname Verification for the Certificate Included in WSDL

The hostname verification feature ensures that a certificate retrieved from a WSDL was not the subject of a substitution attack or "man in the middle" attack and is indeed the expected certificate.

To to this, Oracle WSM validates that the common name (CN) or the subject Group Base Distinguished Name (DN) in the certificate matches the hostname of the service.

This feature depends upon the subject DN of the certificate.

By default, hostname verification is disabled.

Enabling or Disabling Service Identity Certificate Extension and Hostname Verification

You use Fusion Middleware Control to enable or disable service identity certificate extension and hostname verification.

The properties on the Identity Extension tab enable you to specify whether to enforce Web service policies by publishing the X509 certificate in the WSDL. In addition, if the X509 is published, you can also specify whether to ignore hostname verification.

Service identity certificate extension is enabled by default; hostname verification is disabled by default.

	
Note:

Service identity certificate extension does not set the encryption key from which the public key is derived. You must first specify this key as described in "Configuring Keystores for Message Protection".

To enable or disable service identity certificate extension and hostname verification:

	
Set the encryption key from which the public key is derived, as described in "Configuring Keystores for Message Protection".

If you use a service side override to override the encryption key or keystore for a Web service, the certificate corresponding to the overridden key is used.

	
From the navigation pane, expand WebLogic Domain.

	
Select the domain in which you want to enable or disable service identity certificate extension and hostname verification.

	
Using Fusion Middleware Control, click WebLogic Domain.

	
Select Web Services, and then select Platform Policy Configuration.

	
Select the Identity Extension tab.

	
To modify a identity extension property, select it and then click Edit. In the Edit Property window, you can edit the Value field to change the default amount for each property.

	
wsm.ignore.identity.wsdl – Specifies whether to enable or disable the consumption of the X509 Certificate from a client-side WSDL, per domain. By default, this property is enabled (false), which means that the certificate from the WSDL will be used by the client run time for encryption. You can disable the consumption of the X509 Certificate by changing the default setting to true.

	
wsm.ignore.hostname.verification – Specifies whether to ignore the hostname verification feature per domain. By default this property is disabled (true). However, you can enable hostname verification by setting the property to false.

	
To delete an existing property, select it and then click Delete.

	
Click Apply to apply the property updates.

Ignoring the Service Identity Certificate Extension From the Client

	
Note:

By default, if the certificate is published in the WSDL, then the client override property value for keystore.recipient.alias is ignored.

For a Java EE client, the value of the wsm.ignore.identity.wsdl property is read automatically and no additional configuration is required. Set this property in Fusion Middleware Control to turn identity verification on and off, as described in "Enabling or Disabling Service Identity Certificate Extension and Hostname Verification".

For a JSE client, the Web service client must take explicit action to ignore the certificate in the WSDL and rely solely on the keystore.recipient.alias property it sets.

To do this, set the value of wsm.ignore.identity.wsdl to true:

BindingProvider.getRequestContext().put(SecurityConstants.ClientConstants.WSM_IGNORE_IDENTITY_WSDL, "true");

Ignoring Hostname Verification from the Client

For a Java EE client, the value of the wsm.ignore.hostname.verification property is read automatically and no additional configuration is required. Set this property in Fusion Middleware Control to turn hostname verification on and off, as described in "Enabling or Disabling Service Identity Certificate Extension and Hostname Verification".

For a JSE client, the Web service client must take explicit action to ignore hostname verification.

To do this, set the value of wsm.ignore.hostname.verification to true:

BindingProvider.getRequestContext().put(SecurityConstants.ClientConstants.WSM_IGNORE_HOSTNAME_VERIFICATION,"false");

Configuring an Authentication Provider in WebLogic Server

This section introduces WebLogic Server security features that are described in detail in Securing Oracle WebLogic Server and in the Oracle WebLogic Server Administration Console Help. This section provides only a brief introduction to the security features, and concentrates on how they relate to configuring policies.

Policies that use any of the supported token types -- including username, X.509, Kerberos, SAML, HTTP BASIC and so forth -- require an authentication provider, such as the WebLogic Default Authentication provider.

The following policies fall into this category:

	
oracle/wss_http_token_service_policy

	
oracle/wss_username_token_service_policy

	
oracle/wss_username_token_over_ssl_service_policy

	
oracle/wss11_username_token_with_message_protection_service_policy

	
oracle/wss10_username_token_with_message_protection_service_policy

	
oracle/wss10_username_token_with_message_protection_ski_basic256_service_policy

	
oracle/wss10_x509_token_with_message_protection_service_policy

	
oracle/wss10_saml_token_service_policy

	
oracle/wss10_saml_token_with_message_protection_service_policy

	
oracle/wss_saml_token_over_ssl

	
oracle/wss_saml_token_bearer_over_ssl_service_policy

	
oracle/wss10_saml_hok_token_with_message_protection_service_policy

	
oracle/wss11_saml_token_with_message_protection_service_policy

	
oracle/wss10_saml_token_with_message_protection_ski_basic256_service_policy

	
oracle/wss11_x509_token_with_message_protection_service_policy

What Type of WebLogic Security Authentication Providers Must You Create?

You can configure any of the WebLogic Server Authentication providers for use with Oracle WSM. That is, you can use any of the following Web logic Server Authentication providers, regardless of the token type:

	
The WebLogic Authentication provider, also known as the DefaultAuthenticator.

	
Oracle Internet DirectoryAuthenticator or Oracle Virtual Directory Authenticator.

	
LDAP Authenticator or Open LDAP Authenticator.

	
RDBMS Authentication providers.

	
Note:

If you use an RDBMS authentication provider, or any other non-LDAP-based provider, there is a limitation that you cannot specify custom attributes to be added to the SAML assertion that Oracle WSM generates. This limitation does not exist for any of the LDAP-based providers.

This means that for policies that use SAML, Kerberos, and X.509 tokens, you do not have to configure a WebLogic Server provider to handle these specific token types.

More specifically, the Oracle WSM runtime does not use any other WebLogic Server providers, including but not limited to:

	
Any Identity Assertion provider

	
X509 providers

Oracle WSM policies based on an X509 token do not use the WebLogic Server X509 Identity Assertion provider.

	
SAML providers

Oracle WSM policies based on a SAML token do not use the WebLogic Server SAML providers.

	
Credential Mapper providers

	
Authorization providers

	
Role Mapper providers

	
Certification Path provider

	
Auditing provider

Configuring the SAML and Kerberos Login Modules

The SAML and Kerberos policies have associated login modules, as determined by the assertions that make up the policy. When you attach a SAML policy to a Web service, you can edit the login policy and make any needed changes.

You can configure the following SAML and Kerberos login modules:

	
saml.loginmodule—The SAML login module is a Java Authentication and Authorization Service (JAAS) login module that accepts SAML assertions for a login. The SAML login module enables the Web services to run using the login context of the principal created from the SAML assertion.

	
saml2.loginmodule—The SAML2 login module is a JAAS login module that accepts SAML2 assertions for a login. The SAML2 login module enables the Web services to run using the login context of the principal created from the SAML2 assertion.

	
krb5.loginmodule—The Kerberos login module is a JAAS login module that authenticates users using Kerberos protocols. The Kerberos login module has optional properties that you can configure.

(Login modules associated with other policy types do not have settings specific to the Web service policies.)

To configure a login module:

	
In the navigator pane, expand WebLogic Domain to show the domain for which you need to configure the login module. Select the domain.

	
Using Fusion Middleware Control, click WebLogic Domain, then Security, and then Security Provider Configuration.

	
From the list of login modules, select a login module and click Edit.

For example, if you select the saml.loginmodule from the list of login modules and click Edit, the Edit Login Module page shown in Figure 10-14is displayed.

Figure 10-14 Edit Login Module Page for SAML Login Module

[image: Description of Figure 10-14 follows]

Description of "Figure 10-14 Edit Login Module Page for SAML Login Module"

	
Note:

Do not edit the default values in the General Properties section or unexpected results may occur. The default values for these properties are as follows:
	
Control Flag —Required

	
Debug — true

	
Add All Roles — true

	
Log Level — Fine

	
Optionally, in the SAML Specific Attributes section, configure an alternate Issuer attribute if required for your configuration. For SAML policies, the Issuers attribute is required. This attribute specifies the name of the issuer of the SAML or SAML2 token. For predefined Oracle SAML policies and assertions, the default value is www.oracle.com. If you are using the predefined SAML policies (or assertions) for both the Web service client and Web service sides, you can generally use the defaults and not configure any issuer. For more information, see "Adding an Additional SAML Assertion Issuer Name".

	
In the Custom Properties section of the page, configure any custom properties for the login module.

To add a property, click Add and enter a property name and value in the Add New Property window. Click OK to add the property to the Custom Properties list.

To change the value of an existing property, you need to delete the property from the Custom Properties list and add a new property with the revised value.

Table 10-1 lists the SAML and Kerberos login modules and describes properties that you can configure.

Table 10-1 SAML and Kerberos Login Modules Attributes and Properties

	Login Module Service Name	Property	Description
	
saml.loginmodule

saml2.loginmodule

	
oracle.security.jps.assert.saml.identity

	
A domain-wide property used to determine the mapping between the SAML subject and the user. Valid values include:

	
false—When this flag is set to false, the username in the SAML subject is mapped to the actual user in the identity store. The user roles and subject are created with username and roles specified in the identity store. This is the default.

	
true—When this flag is set to true, the SAML subject is treated as a logical/virtual user. The user is not mapped to the actual user in the identity store. The subject is populated only with the username from the SAML subject. Because the subject is treated as a virtual user, identity store configuration is not required and the Authentication Provider is not invoked for all SAML policies in the domain using this login module.

	
	
oracle.security.jps.add.assertion.to.subject

	
Boolean flag used to indicate whether the SAML assertion should be added to the authenticated subject as a private credential. The default is true.

	
krb5.loginmodule

	
principal

	
The name of the principal that should be used. It can be a simple username, such as "testuser", or a service name such as "host/testhost.eng.sun.com". You can use the principal option to set the principal when there are credentials for multiple principals in the keyTab or when you want a specific ticket cache only.

	
	
useKeyTab

	
True or false. Set this to true if you want the module to get the principal's key from the keytab (default value is False). If keytab is not set, then the module will locate the keytab from the Kerberos configuration file. If it is not specified in the Kerberos configuration file then it will look for the file {user.home}{file.separator}krb5.keytab.

	
	
storeKey

	
Set this to True to if you want the principal's key to be stored in the Subject's private credentials.

	
	
keyTab

	
Set this to the file name of the keytab to get principal's secret key.

	
	
doNotPrompt

	
Set this to true if you do not want to be prompted for the password if credentials cannot be obtained from the cache or keytab (default is false). If set to true, authentication will fail if credentials cannot be obtained from the cache or keytab.

Configuring SAML

The SAML standard defines a common XML framework for creating, requesting, and exchanging security assertions between software entities on the Web. The SAML Token profile is part of the core set of WS-Security standards, and specifies how SAML assertions can be used for Web services security. SAML also provides a standard way to represent a security token that can be passed across the multiple steps of a business process or transaction, from browser to portal to networks of Web services.

If you use any of the following predefined policies, you must configure SAML:

	
oracle/wss_saml_token_bearer_over_ssl_server_policy

	
oracle/wss_saml_token_bearer_over_ssl_client_policy

	
oracle/wss_saml_token_over_ssl_service_policy

	
oracle/wss_saml_token_over_ssl_client_policy

	
oracle/wss10_saml_token_service_policy

	
oracle/wss10_saml_token_client_policy

	
oracle/wss10_saml20_token_service_policy

	
oracle/wss10_saml20_token_client_policy

	
oracle/wss10_saml_token_with_message_protection_client_policy

	
oracle/wss10_saml_token_with_message_protection_service_policy

	
oracle/wss10_saml20_token_with_message_protection_client_policy

	
oracle/wss10_saml20_token_with_message_protection_service_policy

	
oracle/wss10_saml_token_with_message_protection_ski_basic256_client_policy

	
oracle/wss10_saml_token_with_message_protection_ski_basic256_service_policy

	
oracle/wss10_saml_hok_token_with_message_protection_service_policy

	
oracle/wss10_saml_hok_token_with_message_protection_client_policy

	
oracle/wss10_saml_token_with_message_integrity_service_policy

	
oracle/wss10_saml_token_with_message_integrity_client_policy

	
oracle/wss11_saml_token_with_message_protection_service_policy

	
oracle/wss11_saml_token_with_message_protection_client_policy

	
oracle/wss11_saml20_token_with_message_protection_service_policy

	
oracle/wss11_saml20_token_with_message_protection_client_policy

The following sections provide more information about SAML configuration:

	
"How the SAML Token is Validated"

	
"How to Configure SAML Web Service Client at Design Time"

	
"Including User Attributes in the Assertion"

	
"Including User Roles in the Assertion"

	
"How to Configure Oracle Platform Security Services (OPSS) for SAML Policies"

	
"Adding an Additional SAML Assertion Issuer Name"

	
"Configuring SAML Web Service Clients for Identity Switching"

	
"Defining a Trusted Distinguished Names List for SAML Signing Certificates"

	
"Using Anonymous Users with SAML Policies"

How the SAML Token is Validated

The SAML login module verifies the SAML tokens on behalf of the Web service. The SAML login module then extracts the username from the verified token and (indirectly) passes it to Oracle Platform Security Services (OPSS) to complete the authentication.

Which Authentication Provider is Used?

Any configured Authentication provider as described in "Configuring an Authentication Provider in WebLogic Server" can then be invoked.

How to Configure SAML Web Service Client at Design Time

Follow the steps described in this section to configure the SAML Web service client at design time. (If you attach the SAML policies to the Web service client at deploy time, you do not need to configure these properties and they are not exposed in Fusion Middleware Control.)

You can also include user roles in the assertion and change the SAML assertion issuer name, as described in subsequent sections.

Configure the Username for the SAML Assertion

For a JSE client application, configure the username as a BindingProvider property:

Map<String,Object> reqContext = ((BindingProvider) proxy).getRequestContext() reqContext.put(BindingProvider.USERNAME_PROPERTY, "jdoe")

where proxy refers to the Web service proxy used for invoking the actual Web service.

For a Java EE client, if the user is already authenticated and a subject is established in the container, then the username is obtained from the subject automatically and no additional configuration is required.

For example, if user jdoe is already authenticated to the Java EE application and you are making a Web service call from that Java EE application, the username jdoe will be automatically propagated.

However, if the user is not authenticated, then you need to configure the username in the BindingProvider as in the JSE case.

Including User Attributes in the Assertion

SAML client policies include the user.attributes property that you can use to add user attributes to the SAML assertion.

To do this, you specify the attributes to be included as a comma-separated list. For example, attrib1,attrib2. The attribute names you specify must exactly match valid attributes in the configured identity store.

user.attributes requires that the Subject is available and subject.precedence is set to true. (If subject.precedence is true, the user name to create the SAML assertion is obtained only from the Subject.)

The Oracle WSM runtime reads the values for these attributes from the configured identity store, and then includes the attributes and their values in the SAML assertion.

The user.attributes property is supported for a single identity store, and by default only the first identity store in the list is used. The user must therefore exist and be valid in the identity store used by the configured WebLogic Server Authentication provider. Authentication providers are described in "Configuring an Authentication Provider in WebLogic Server".

If you have more than one identity store configured, and you want to search for the user in all identity stores, follow these steps to enable searching in all configured identity stores.

	
In the navigator pane, expand WebLogic Domain to show the domain for which you need to configure the identity store provider. Select the domain.

	
Using Fusion Middleware Control, click WebLogic Domain, then Security, and then Security Provider Configuration.

	
In the Identity Store Provider section of the page, click Configure to configure parameters that interact with the identity store.

The Identity Store Configuration page is displayed, as shown in Figure 10-15.

Figure 10-15 Identity Store Configuration Page

[image: Description of Figure 10-15 follows]

Description of "Figure 10-15 Identity Store Configuration Page"

	
Click Add to add a custom property.

	
Add the property "virtualize" with a value of "true", as shown in Figure 10-16.

Figure 10-16 Adding the virtualize property

[image: Description of Figure 10-16 follows]

Description of "Figure 10-16 Adding the virtualize property"

	
Click OK to submit the changes.

	
Restart Fusion Middleware Control.

Including User Roles in the Assertion

You can pass the user's role as an attribute statement in the SAML assertion. To do this at post-deploy time, configure the user.role.include property to "true." The default value in the policy is "false."

To configure the user's role at design time, set the user.role.include property to "true" in the BindingProvider.

How to Configure Oracle Platform Security Services (OPSS) for SAML Policies

Follow these steps to configure OPSS for the predefined SAML policies:

	
Configure the SAML login module, as described in "Configuring the SAML and Kerberos Login Modules".

By default, the SAML assertion issuer name is www.oracle.com. The saml.issuer.name client property must be www.oracle.com if you are using the predefined SAML policies (or assertions) on both the Web service client and Web service sides. Therefore, you can generally use the defaults and not configure any issuer.

See "Adding an Additional SAML Assertion Issuer Name" for information on adding an additional issuer.

	
Configure the Authentication provider in the WebLogic Server Administration Console.

	
If you will be using policies that involve signatures related to SAML assertions (for example, SAML holder-of-key policies) where a key referenced by the assertion is used to sign the message, or sender-vouches policies where the sender's key is used to sign the message, you need to configure keys and certificates for signing and verification, as described in "Configuring Keystores for Message Protection".

	
If you will be using policies that require SSL, you need to configure SSL, as described in "Configuring Keystores for SSL".

Adding an Additional SAML Assertion Issuer Name

The SAML issuer name is generally www.oracle.com if you are using the predefined SAML policies (or assertions) on both the Web service client and Web service sides. Therefore, you can generally use the defaults and not configure any issuer.

There are two circumstances in which you need to add additional issuers:

	
For a SAML predefined Web service policy or assertion, you set a value for the saml.trusted.issuer property. If you set a value for this property, you must add that trusted issuer to the Issuers list.

	
For a SAML predefined Web service policy or assertion, you set a value for the saml.issuer.name property. If you set a value for this property, you must add that trusted issuer to the Issuers list with the same value.

	
If a different client, for instance .NET/STS, is talking to a Web service protected by a predefined SAML policy, then you need to add that issuer to the Issuers list.

	
Note:

Although you can add an issuer by the mechanism described here, it is for backward compatibility only. The preferred method is to configure trusted issuers at the platform policy configuration level. See "Defining Trusted Issuers and Trusted Distinguished Name List for Signing Certificates".
There is a hierarchy that determines how trusted issuers are determined:

	
First, the list of trusted issuers configured for policies (or overridden) is checked and used.

	
If not configured for policies (or overridden), the configuration at the platform policy configuration is checked and used. See "Defining Trusted Issuers and Trusted Distinguished Name List for Signing Certificates".

	
If not configured for policies (or overridden) or configured at the platform policy configuration, only then is the Issuers list defined in the SAML login module used.

If you do define the SAML issuers by the mechanism described here, the issuers are persisted in jps-config.xml, and any changes take effect only after a restart of the domain.

To add an additional SAML assertion issuer to the Issuers list:

	
In the navigator pane, expand WebLogic Domain to show the domain for which you need to add the issuer. Select the domain.

	
Using Fusion Middleware Control, click WebLogic Domain, then Security, and then Security Provider Configuration.

	
Select the SAML or SAML2 login module as appropriate and click Edit.

	
From the SAML Specific Attributes section of the page, click Add to add an additional issuer name, as shown in Figure 10-17.

Figure 10-17 Adding a SAML Issuer to the Login Module

[image: Description of Figure 10-17 follows]

Description of "Figure 10-17 Adding a SAML Issuer to the Login Module"

	
For a client policy, at deploy time, specify a value for saml.issuer.name on the Configurations page for the SAML client policy, or override it on a per-client basis using the Security Configuration Details control when you attach the policy. The default value in the policy is www.oracle.com.

To configure the issuer at design time, set the saml.issuer.name property in the BindingProvider.

Configuring SAML Web Service Clients for Identity Switching

Oracle WSM includes the wss11_saml_token_identity_switch_with_message_protection_client_policy policy that enables identity switching. Identity switching means that the policy propagates a different identity than the one based on the authenticated Subject.

You might have a scenario in which your SOA application needs to specify which user identity to use in client-side Web service policies, and then dynamically switch the user associated with the SAML token in the outbound Web service request. Instead of using the username from the Subject, this policy allows you to set a new user name when sending the SAML Web service request.

The wss11_saml_token_identity_switch_with_message_protection_client_policy policy creates the SAML token based on the user ID set via the property javax.xml.ws.security.auth.username.

Consider the following use case in which a Web service client calls a SOA application, which in turn becomes the client for a Web service.

client -> SOA -> web service

In this use case:

	
The client is secured with the wss11_username_with_message_protection_client_policy policy. It communicates with the SOA entry point as user end_user1.

	
The SOA entry point is protected by wss11_username_with_message_protection_service_policy. The SOA application authenticates the end user and establishes the Subject based on end_user1. However, it wants to propagate a different identity to the external Web service.

Therefore, to do identity switching, attach the wss11_saml_identity_switch_message_protection_client_policy policy to the SOA reference binding component.

	
The username that is propagated is determined dynamically by the BPEL process, which is a component in the SOA application. The username is set as BPEL property javax.xml.ws.security.auth.username with the dynamically determined username value. The external Web service can be protected by wss11_saml_with_message_protection_service_policy. It receives the switched user and not end_user1.

	
A similar scenario can be used by a Java EE application (replacing SOA in this scenario with the Java EE application) that establishes the Subject based on an end user but then needs to propagate a different identity. In the case of Java EE, you can set the user name programmatically as follows:

((BindingProvider) port).getRequestContext().put(BindingProvider.USERNAME_PROPERTY, config.get(USERNAME));

	
Use Fusion Middleware Control to add the WSIdentityPermission permission to the SOA reference binding component.

The wss11_saml_token_identity_switch_with_message_protection_client_policy policy requires that an application to which the policy is attached must have the WSIdentityPermission permission. That is, applications from which Oracle WSM accepts the externally-supplied identity must have the WSIdentityPermission permission.

This is to avoid potentially rogue applications from providing an identity to Oracle WSM.

	
Note:

The wss11_saml_token_identity_switch_with_message_protection_client_policy policy disables local optimization (see "Configuring Local Optimization for a Policy" for SOA to SOA interactions on the same server.)
This policy is compatible with the wss11_saml_token_with_message_protection_service_policy policy on the Web service.

Set the javax.xml.ws.security.auth.username Property

For SOA:

The SOA composite has a BPEL process as one SOA service component. A BPEL process provides process orchestration and storage of synchronous and asynchronous processes.

You can define a BPEL property with the exact name javax.xml.ws.security.auth.username. The value for this property can be the identity that the SOA application wants to propagate, which could potentially be determined dynamically by the BPEL process.

For Java EE:

Set the BindingProvider.USERNAME_PROPERTY property.

Set the WSIdentityPermission Permission

The Web service client (for example, the SOA reference binding component) to which you attached the wss11_saml_token_identity_switch_with_message_protection_client_policy policy must have the oracle.wsm.security.WSIdentityPermission permission.

To use Fusion Middleware Control to add the oracle.wsm.security.WSIdentityPermission permission to the SOA reference binding component as a System Grant, perform the following steps:

	
In the navigator pane, expand WebLogic Domain to show the domain for which you need to configure the application. Select the domain.

	
Using Fusion Middleware Control, click WebLogic Domain, then Security, and then System Policies. System policies are the system-wide policies applied to all applications deployed to the current WebLogic Domain.

	
From the System Policies page, select the arrow icon in the Permission field to search the system security grants.

	
Select one of the codebase permissions to use as a starting point and click Create Like.

	
In the Grant Details section of the page, enter file:${common.components.home}/modules/oracle.wsm.agent.common_11.1.1/wsm-agent-core.jar in the Codebase field.

	
In the Permissions section of the page, select the starting point permission class and click Edit.

	
Enter oracle.wsm.security.WSIdentityPermission in the Permission Class field. The resource name is the composite name for SOA, and the application name for a Java EE client. The action is always assert, as shown in Figure 10-18.

Figure 10-18 Editing the WSIdentityPermission

[image: Description of Figure 10-18 follows]

Description of "Figure 10-18 Editing the WSIdentityPermission"

To use WLST to add the oracle.wsm.security.WSIdentityPermission permission, execute the following command:

grantPermission(codeBaseURL="file:${common.components.home}/modules/
oracle.wsm.agent.common_11.1.1/wsm-agent-core.jar",
 permClass="oracle.wsm.security.WSIdentityPermission",
 permTarget="resource=yourAppName",
 permActions="assert")

In this command:

	
codeBaseURL must point to wsm-agent-core.jar.

	
permTarget syntax is "resource=yourAppName/compositeName". The resource name is the composite name for SOA, and the application name for a Java EE client.

	
permActions is always "assert".

Defining a Trusted Distinguished Names List for SAML Signing Certificates

For additional security, you can define a list of trusted distinguish names (DNs) for SAML signing certificates.

By default, Oracle WSM checks the incoming issuer name against the list of configured issuers, and checks the SAML signature against the configured certificates in the Oracle WSM keystore. If you define a trusted DNs list, Oracle WSM also verifies that the SAML signature is signed by the particular certificate(s) that is associated with that issuer.

Configuration of the trusted DNs list is optional; it is available for users that require more fine-grained control to associate each issuer with a list of one or more signing certificates. If you do not define a list of DNs for a trusted issuer, then Oracle WSM allows signing by any certificate, as long as that certificate is trusted by the certificates present in the Oracle WSM keystore.

For more information about defining a trusted DNs list for SAML signing certificates, see "Defining Trusted Issuers and Trusted Distinguished Name List for Signing Certificates".

Using Anonymous Users with SAML Policies

All SAML policies allow anonymous users to be propagated. For example if you have an ADF application that can work with either authenticated users or an anonymous user, and this ADF application needs to make a call to a Web service and propagate the current user, then you can propagate both the authenticated users and the anonymous user using any of the SAML policies. From the security perspective, propagating the anonymous user over SAML is equivalent to the client not sending any authentication tokens to the service.

Allowing anonymous users over SAML is provided as a convenience so that you can have one policy that supports both authenticated and anonymous users. Note, however, that anonymous propagation over SAML is non-standard and will not interoperate with other vendors. It should only be used when both the client and the Web service are using Oracle WSM.

Using Kerberos Tokens

Oracle Fusion Middleware 11g Release 1 (11.1.1) provides support for Kerberos tokens with the following predefined policies:

	
oracle/wss11_kerberos_token_client_policy

	
oracle/wss11_kerberos_token_service_policy

	
oracle/wss11_kerberos_token_with_message_protection_client_policy

	
oracle/wss11_kerberos_token_with_message_protection_service_policy

	
oracle/wss11_kerberos_token_with_message_protection_basic128_client_policy

	
oracle/wss11_kerberos_token_with_message_protection_basic128_service_policy

You may also create a policy using the following assertion templates:

	
oracle/wss11_kerberos_token_client_template

	
oracle/wss11_kerberos_token_service_template

	
oracle/wss11_kerberos_token_with_message_protection_client_template

	
oracle/wss11_kerberos_token_with_message_protection_service_template

See Appendix C, "Predefined Assertion Templates" and Appendix B, "Predefined Policies" for more information on these assertions and policies.

Configuring the KDC

Follow the steps described in this section to configure the Key Distribution Center (KDC) for use by the Web service client and Web service.

You can also use Microsoft Active Directory with KDC. See "Using Active Directory with Kerberos and Message Protection".

Initializing and Starting the MIT Kerberos KDC

Initialize KDC database. For example, on UNIX you might run the following command as root, where oracle.com is your default realm:

root# /usr/kerberos/sbin/krb5_util -r oracle.com -s

Start the kerberos service processes. For example, on UNIX you might run the following commands as root.:

root# /usr/kerberos/sbin/krb5kdc &
root# /usr/kerberos/sbin/kadmind &

Creating Principals

Create two accounts in the KDC user registry. The first account is for the end user; that is, the Web service client principal. The second account is for the Web service principal.

One way to create these accounts is with the kadmin.local tool, which is typically provided with MIT KDC distributions. For example:

>sudo su - # become root
>cd /usr/kerberos/sbin/kadmin.local
>kadmin.local>addprinc fmwadmin -pw welcome1
>kadmin.local> addprinc SOAP/myhost.oracle.com -randkey
>kadmin.local>listprincs # to see the added principals

The Web service principal name (SOAP/myhost.oracle.com) is shown in the example as being created with a random password. The Web service principals use keytables (a file that stores the service principal name and key) to log into Keberos System. Using a random password increases security.

Configuring the Web Service Client to Use the Correct KDC

The Web service client needs to be configured to authenticate against the right KDC.

The configuration for the KDC resides at /etc/krb5.conf for UNIX hosts, and at C:\windows\krb5.ini for Windows hosts.

A sample krb5.conf is shown in Example 10-8. Note the following:

	
The file tells the kerberos run time the realm of operation and the KDC endpoint to contact.

	
For Kerberos token policies to work, three additional properties need to be specified in the libdefaults section of this file:

	
default_tkt_enctypes

	
default_tgs_enctypes

	
permitted_enctypes

The order of cipher suites is significant and should comply with the algorithm suite used in the client-side Kerberos policy. For example, if the KDC-supported enc-types are des3-cbc-sha1, des-cbc-md5, des-cbc-crc, arcfour-hmac, then the following order of enc-types entries should be used in client's krb5.conf for the following policies:

	
wss11_kerberos_with_message_protection_client_policy:

	
default_tkt_enctypes = des3-cbc-sha1 des-cbc-md5 des-cbc-crc arcfour-hmac

	
default_tgs_enctypes = des3-cbc-sha1 des-cbc-md5 des-cbc-crc arcfour-hmac

	
permitted_enctypes = des3-cbc-sha1 des-cbc-md5 des-cbc-crc arcfour-hmac

	
wss11_kerberos_with_message_protection_basic128_client_policy:

	
default_tkt_enctypes = arcfour-hmac des3-cbc-sha1 des-cbc-md5 des-cbc-crc

	
default_tgs_enctypes = arcfour-hmac des3-cbc-sha1 des-cbc-md5 des-cbc-crc

	
permitted_enctypes = arcfour-hmac des3-cbc-sha1 des-cbc-md5 des-cbc-crc

Example 10-8 Sample krb5.conf File

[logging]
default = FILE:/var/log/krb5libs.log
kdc = FILE:/var/log/krb5kdc.log
admin_server = FILE:/var/log/kadmind.log

[libdefaults]
default_realm = oracle.com
dns_lookup_realm = false
dns_lookup_kdc = false
default_tkt_enctypes = des3-cbc-sha1 des-cbc-md5 des-cbc-crc arcfour-hmac
default_tgs_enctypes = des3-cbc-sha1 des-cbc-md5 des-cbc-crc arcfour-hmac
permitted_enctypes = des3-cbc-sha1 des-cbc-md5 des-cbc-crc arcfour-hmac

[realms]
oracle.com =
{kdc = someadminserver.com:88 admin_server = someadminserver.com:749

default_domain = us.oracle.com }
[domain_realm]
us.oracle.com = oracle.com

[kdc]
profile = /var/kerberos/krb5kdc/kdc.conf

[appdefaults]
pam =
{ debug = false ticket_lifetime = 36000 renew_lifetime = 36000

forwardable = true krb4_convert = false }

Setting the Service Principal Name In the Web Service Client

The Web service client that is enforcing Kerberos client-side policies needs to know the service principal name of the service it is trying to access. You set the service principal name in "Creating Principals".

You can specify a value for service.principal.name on the Configurations page, or override it on a per-client basis using the Security Configuration Details control when you attach the policy. The default (place holder) value is HOST/localhost@oracle.com.

Setting the Service Principal Name In the Web Service Client at Design Time

The Web service client that is enforcing Kerberos client-side policies needs to know the service principal name of the service it is trying to access. You set the service principal name in "Creating Principals".

Use a configuration override to specify the service principal name at design time, as follows:

JAX-WS Clients:
((BindingProvider)port).getRequestContext().put(SecurityConstants.ClientConstants.WSSEC_KERBEROS_SERVICE_PRINCIPAL,
SOAP/myhost.oracle.com@oracle.com);

Configuring the Web Service to Use the Correct KDC

Configure the Web service to authenticate against the correct KDC. The configuration for the KDC resides at /etc/krb5.conf for UNIX hosts, and at C:\windows\krb5.ini for Windows hosts.

A sample KDC configuration for a Web service client is shown in Example 10-8. This example also applies to the Web service KDC configuration.

Using the Correct Keytab File in Enterprise Manager

To use the correct keytab file, you

	
Extract and install the keytab File

	
Modify the krb5 login module

These tasks are described in the sections that follow.

Extract and Export the Keytab File

Extract the key table file, which is often referred to as the keytab, for the service principal account from the KDC and install on the machine where the Web service implementation is hosted.

For example. you can use a tool such as kadmin.local to extract the keytab for the service principal name, as follows:

>kadmin.local>ktadd -k /tmp/krb5.keytab SOAP/myhost.oracle.com

Export the keytab file to the machine where the Web service is hosted. The keytab is a binary file; if you ftp it, use binary mode.

Modify the krb5 Login Module to use the Keytab File

Modify the krb5 login module as described in "Configuring the SAML and Kerberos Login Modules" to identify the location of the Web service KDC file.

For example, assume that the keytab file is installed at /scratch/myhome/krb5.keytab. Note the changes for the keytab and principal properties:

	
principal value=SOAP/myhost.oracle.com@oracle.com

	
useKeyTab value=true

	
storeKey value=true

	
keyTab value=/scratch/myhome/krb5.keytab

	
doNotPrompt value=true

Authenticating the User Corresponding to the Service Principal

The Web services run time must be able to verify the validity of the kerberos token.

If the token is valid, Oracle Platform Security Services (OPSS) must then be able to authenticate the user corresponding to the service principal against one of the configured WebLogic Server Authentication providers. (Authentication providers are described in "Configuring an Authentication Provider in WebLogic Server".)

The user must therefore exist and be valid in the identity store used by the Authentication provider.

For example, consider a service principal such as SOAP/myhost.oracle.com@oracle.com. In this example, a user with the name SOAP/myhost.oracle.com must exist in the identity store. Note that @domain should not be part of your user entry.

Creating a Ticket Cache for the Web Service Client

Perform the following steps to create a ticket cache for the Web service client:

	
Log in to the Kerberos system using the user principal you created for the client.

>kinit fmwadmin welcome1

	
This creates a ticket cache on the file system with ticket granting ticket. To see this:

>klist -e

Information similar to the following is displayed:

Credentials cache: /tmp/krb5cc_36687
Default principal: fmwadmin@oracle.com, 1 entry found.
[1] Service Principal: krbtgt/oracle.com@oracle.com
 Valid starting: Sep 28, 2007 17:20
 Expires: Sep 29, 2007 17:20
 Encryption type: DES3 CBC mode with SHA1-KD

Make sure the encryption type reflects what is shown above.

	
Run the Web service client.

Alternatively, you can run the Web service client without first logging into the Kerberos . You are prompted for the Kerberos user name and password. Note that in this case a ticket cache is not created on the file system; it is maintained in memory.

Using Active Directory with Kerberos and Message Protection

You can use Microsoft Active Directory with the Key Distribution Center (KDC) as your KDC. This section describes how to configure the KDC through Active Directory for use with Kerberos and message protection.

This section assumes that you are already familiar with Active Directory. See your Active Directory documentation for additional details.

Setting Up the Web Service Client

This section describes the following tasks:

	
"Create a User Account"

	
"Create a Keytab File"

	
"Set the Service Principal Name"

Create a User Account

Use Active Directory to create a new user account. Do not use DES encryption. By default, the user account is created with RC4-HMAC.

For example, you might create a user testpol with the user logon name test/testpol.

The user logon name should be of the form container/name. You can create the account in any container.

Create a Keytab File

Use ktpass to create a keytab file:

ktpass -princ test/testpol@{domain} -pass {...} -mapuser testpol -out
 testpol.keytab -ptype KRB5_NT_PRINCIPAL -target {domain}

where test/testpol is the Service Principal Name and it is mapped to the user testpol. Do not set /desonly or crypto as des-cbc-crc.

Set the Service Principal Name

Use setSpn to map the Service Principal Name to the user:

setSpn -A test/testpol testpol
setSpn -L testpol (this should display the availabel mapping)

There should be only one Service Principal Name mapped to the user. If there are multiple Service Principal Names mapped to the user, remove them using setSpn -D <spname> <username>.

Set Up the Web Service

Perform the following steps to set up the Web service:

	
Attach the Kerberos policy to your Web service.

	
Configure the Web service client to authenticate against the right KDC.

The configuration for the KDC resides at /etc/krb5.conf for UNIX hosts, and at C:\windows\krb5.ini for Windows hosts.

Configure the default domain and realm in the krb5.conf or krb5.ini file. Enable the RC4-HMAC encryption type (available in JDK6).

[libdefaults]

default_tkt_enctypes = rc4-hmac
default_tgs_enctypes = rc4-hmac
permitted_enctypes = rc4-hmac

	
Export the keytab file you created in "Create a Keytab File" to the system where the Web service is hosted. The keytab is a binary file; if you ftp it, use binary mode.

	
Verify the keytab file using kinit:

kinit -k -t <absolute path the the keytab file> <Service Principal Name>

	
Modify the krb5 login module as described in "Configuring the SAML and Kerberos Login Modules" to specify the keytab location and the Service Principal Name.

Use the absolute path to the keytab file. Also, be sure to add @realmname to the Service Principal Name. For example:

principal value=test/testpol@oracle.com

SAML Message Protection Use Case

Assume that you have a Web service client that you want to protect with the wss11_saml_token_with_message_protection_client_policy policy, and a corresponding Web service that you want to protect with the wss11_saml_token_with_message_protection_service_policy policy.

This section steps through the procedure for using these two policies.

The following topics are described:

	
"What You Need to Know"

	
"Requirements of the wss11_saml_token_with_message_protection_service_policy"

	
"How Are Messages Protected Via Symmetric Keys?"

	
"What Keys Must Be in the Keystore?"

	
"Multi-Domain Use Case (Keystore Hardening)"

	
"When to Override the SAML Issuer"

	
"Main Steps"

	
"Create a WebLogic Server User"

	
"Create a Java Keystore"

	
"Configure the Web Services Manager Keystore"

	
"Store the Password for the Decryption Key in the Credential Store"

	
"Attach the Policy to Your Web Service"

	
"Attach the Policy to Your Web Service Client"

What You Need to Know

This section describes what you need to know to configure this SAML message protection use case. The following topics are described:

	
"Requirements of the wss11_saml_token_with_message_protection_service_policy"

	
"How Are Messages Protected Via Symmetric Keys?"

	
"What Keys Must Be in the Keystore?"

	
"Multi-Domain Use Case (Keystore Hardening)"

	
"When to Override the SAML Issuer"

Requirements of the wss11_saml_token_with_message_protection_service_policy

wss11_saml_token_with_message_protection_service_policy enforces message-level protection (that is, message integrity and message confidentiality), and SAML-based authentication for inbound SOAP requests in accordance with the WS-Security 1.1 standard.

Messages are protected using WS-Security's Basic 128 suite of symmetric key technologies, specifically RSA key mechanisms for message confidentiality, SHA-1 hashing algorithm for message integrity, and AES-128 bit encryption. For more information about the available algorithms for message protection, see "Supported Algorithm Suites".

Therefore, when you use the keytool (or other tool) to create the signature and encryption keys needed by this policy, you need to make sure you use the RSA key mechanism, the SHA-1 algorithm, and AES-128 bit encryption to satisfy the policy requirements for the key.

How Are Messages Protected Via Symmetric Keys?

This policy uses symmetric key technology. Symmetric key cryptography relies on a single, shared secret key, as follows:

	
The client creates the symmetric key, uses it to sign and encrypt the message, and shares it with the Web service in the request message.

To protect the symmetric key, the symmetric key sent in the request message is encrypted using the service's certificate.

	
The Web service uses the symmetric key in the request message to verify the signature of the request message and decrypt it, and to then sign and encrypt the response message.

Consider the following process flow.

To create the request, the Oracle WSM agent does the following:

	
Generates the shared symmetric key and uses it to both sign and encrypt the request message.

	
Uses its own private key to "endorse" the signature of the request message.

	
Uses the Web service's public key to encrypt the symmetric key.

	
Sends the symmetric key along with the request to the Web service. The client sends its public key in the request so that the Web service can verify the endorsement.

When the Web service gets the request, it does the following:

	
Uses its private key to decrypt the symmetric key.

	
Uses the symmetric key to decrypt the request message and to verify its signature.

	
Uses the client's public key in the request message to verify the endorsement signature.

To send the response back to the client, the Web service does the following:

	
Uses the same client-generated symmetric key sent along with the request to sign the response message.

	
Uses the same client-generated symmetric key to encrypt the response message.

When the Oracle WSM agent receives the response message, it does the following:

	
Uses the symmetric key it generated initially to decrypt the response message.

	
Uses the symmetric key it generated initially to verify signature of the response message.

What Keys Must Be in the Keystore?

If the client and Web service are in the same domain with access to the same keystore, they can share the same private/public key pair.

That is, the client can use the private key “orakey” to endorse the signature of the request message and the public key “orakey” to encrypt the symmetric key. The Web service in turn uses the public key “orakey” to verify the endorsement, and the private key “orakey” to decrypt the symmetric key.

For demonstration purposes, this use case creates one key pair.

Multi-Domain Use Case (Keystore Hardening)

If the client and Web service are not in the same domain and do not have access to the same keystore, the client and Web service must each have a private/public key pair.

Consider the following requirements in a multiple-domain use case, as shown in Table 10-2.

Table 10-2 Multiple-Domain Use Case Requirements

	Web Service Client	Web Service
	
Needs its own private/public key pair in the client keystore.

	
Needs its own private/public key pair in the service keystore.

	
Needs the Web service public key.

	
Needs the intermediary and root certificate corresponding to the client's public key in the keystore.

These certificates will be used to verify the signature by generating a trusted certificate chain.

	
Generates symmetric key at run time

	
Needs the symmetric key, but this is sent in the request message.

For the public key the client uses to encrypt the symmetric key -- that is, the public key of the Web service -- you have two approaches:

	
The Web service's base64-encoded public certificate is published in the WSDL for use by the Web service client, as described in "Using Service Identity Certification Extension". Therefore, in this use the Web service's public key does not have to be in the client's keystore.

	
If the certificates is not published in the WSDL, you can specify a value for keystore.recipient.alias on the Configurations page, or override it on a per-client basis using the Security Configuration Details control when you attach the policy. The keystore recipient alias specifies the alias used to look up the public key in the keystore when retrieving a key for encryption of outbound SOAP messages. In this approach, the Web service's public key must be in the client's keystore.

When to Override the SAML Issuer

The saml.issuer.name property of the client policy identifies the issuer of the SAML token, and defaults to a value of www.oracle.com. This use case uses the www.oracle.com default.

You can optionally specify a value for saml.issuer.name on the Configurations page, or override it on a per-client basis using the Security Configuration Details control when you attach the policy.

If you do use a different SAML authority (issuer) in the policy, that issuer name must be configured in the client and included in the list of possible issuers in the SAML login module. See "Adding an Additional SAML Assertion Issuer Name" for information on how to do this.

Main Steps

This section describes the steps you follow to configure the SAML message protection use case. The following topics are described:

	
"Create a WebLogic Server User"

	
"Create a Java Keystore"

	
"Configure the Web Services Manager Keystore"

	
"Store the Password for the Decryption Key in the Credential Store"

	
"Attach the Policy to Your Web Service"

	
"Attach the Policy to Your Web Service Client"

Create a WebLogic Server User

The user in the SAML token must already exist in the WebLogic Server identity store.

The Web service run time extracts the SAML token from the WS-Security header and uses the name in the SAML token to validate the user against the WebLogic Server identity store.

Specifically, the SAML login module (see "Configuring the SAML and Kerberos Login Modules" verifies the SAML tokens on behalf of the Web service. The SAML login module then extracts the username from the verified token and (indirectly) passes it to Oracle Platform Security Services (OPSS) to complete the authentication.

Any configured WebLogic Server authentication provider can then be invoked, including the default Authentication provider.

Create the User

You use the WebLogic Server Administration Console to add the user to the identity store, as described in the Oracle WebLogic Server Administration Console Help.

The steps are repeated here for ease of use.

To create a user in the WebLogic Server Administration Console:

	
In the left pane select Security Realms.

	
On the Summary of Security Realms page select the name of the realm (for example, myrealm).

	
On the Settings for Realm Name page select Users and Groups and then Users.

The User table displays the names of all users defined in the Authentication provider.

	
Click New.

	
In the Name field of the Create New User page enter the name of the user.

User names are case sensitive and must be unique. Do not use commas, tabs or any other characters in the following comma-separated list: <>, #, |, &, ?, (), { }

	
(Optional) In the Description field, enter a description. The description might be the user's full name.

	
In the Provider drop-down list, select the Authentication provider for the user.

If multiple WebLogic Authentication providers are configured in the security realm, they will appear in the list. Select which WebLogic Authentication provider's database should store information for the new user.

	
In the Password field, enter a password for the user.

The minimum password length for a user defined in the WebLogic Authentication provider is 8 characters.

	
Re-enter the password for the user in the Confirm Password field.

	
Click OK to save your changes.

The user name appears in the User table.

Create a Java Keystore

This section provides an outline of how to create and manage the Java keystore with the keytool utility. It describes how to create a keystore and load the private key and trusted CA certificates.

You can find more detailed information on the commands and arguments for the keytool utility at the following Web address: http://download.oracle.com/javase/6/docs/technotes/tools/windows/keytool.html.

	
Note:

You specify an alias when you add an entity to the keystore using the -genkey command to generate a key pair (public and private key), or when you use the -import command to add a certificate or certificate chain to the list of trusted certificates.
Subsequent keytool commands must use this same alias to refer to the entity.

	
Create a new key pair and self-signed certificate.

Use the genKey command to create the key pair (public and private key). genKey creates a new private key if one does not exist.

The following command generates an RSA key, with RSA-SHA1 as the signature algorithm, with the alias "orakey" in the default-keystore.jks keystore. You can choose any alias name; you do not need to name your alias "orakey".

keytool -genkey -alias orakey -keyalg "RSA" -sigalg "SHA1withRSA" -dname "CN=test, C=US" -keystore default-keystore.jks

The keytool utility prompts for the needed key and keystore passwords. You need these passwords later.

	
Generate a certificate request to the certificate authority.

Use the -certreq command to generate the request. The following commands generates a certificate request for the orakey alias.

The CA will return a certificate or a certificate chain.

keytool -certreq -alias orakey -sigalg "SHA1withRSA" -file certreq_file -storetype jks -keystore default-keystore.jks

	
Replace (import) the self-signed certificate with the trusted CA certificate.

You must replace the existing self-signed certificate with the certificate returned from the CA. To do this, use the -import command. The following command replaces the trusted CA certificate in the default-keystore.jks keystore. The keytool utility prompts for the needed password.

keytool -import -alias orakey -file certreq_file -keystore default-keystore.jks

Configure the Web Services Manager Keystore

Perform the following steps to configure the Oracle Web Services Manager keystore:

	
In the navigator pane, expand WebLogic Domain to show the domain for which you need to configure the keystore. Select the domain.

	
Using Fusion Middleware Control, click WebLogic Domain, then Security, and then Security Provider Configuration.

Click the plus sign (+) to expand the Keystore control near the bottom of the page, then click Configure.

The Web Services Manager Keystore Configuration page is displayed, as shown in Figure 10-3.

	
If it is not already enabled, click the Configure Keystore Management check box.

	
Enter the path and name for the keystore that you created. By default, the keystore name is default-keystore.jks, as used in this use case. The keystore type must be JKS.

	
Enter the password for the keystore and confirm it.

	
Enter the alias and password for the signature and encryption keys.

In this use case, orakey is the alias for both the signature and encryption keys.

Confirm the passwords.

	
Click OK to submit the changes.

Note that all fields on this page require a restart of Fusion Middleware Control to take effect.

Store the Password for the Decryption Key in the Credential Store

You must store the password for the decryption key in the credential store, as described in "Adding Keys and User Credentials to the Credential Store". Use keystore.enc.csf.key as the key name.

Attach the Policy to Your Web Service

Attach wss11_saml_token_with_message_protection_service_policy to your Web service as described in "Attaching a Policy to a Single Subject".

Configure the policy assertion for message signing and message encryption.

The default is to sign and encrypt the entire body for the request the response. You have the option to not do this and to instead specify the specific body elements that you want to sign and encrypt. You can also additionally specify header elements that you want to sign and encrypt. Whatever you set here mush match the client policy settings.

	
Note:

You can override keystore.sig.csf.key and keystore.enc.csf.key, as described in "Attaching Web Service Policies Permitting Overrides".
If you do override these values, the keys for the new values must be in the keystore. That is, overriding the values does not free you from the requirement of configuring these keys in the keystores.

Attach the Policy to Your Web Service Client

Attach wss11_saml_token_with_message_protection_client_policy to your Web service client, as described in "Attaching Policies to Oracle Infrastructure Web Service Clients".

Configure the policy assertion for message signing, message encryption, or both.

The default is to sign and encrypt the entire body. You have the option to not do this and to instead specify the specific body elements that you want to sign and encrypt. You can also additionally specify header elements that you want to sign and encrypt. Whatever you set here must match the Web service policy settings.

The Web service's base64-encoded public certificate is published in the WSDL for use by the Web service client, as described in "Using Service Identity Certification Extension". The certificate in the WSDL is the service's public key by default, as determined by the encryption key you specified (“orakey”) when you configured the Web Services Manager keystore.

Therefore, you do not need to set or change keystore.recipient.alias.

You can optionally specify a value for saml.issuer.name on the Configurations page, or override it on a per-client basis using the Security Configuration Details control when you attach the policy. The saml.issuer.name property defaults to a value of www.oracle.com. See "When to Override the SAML Issuer".

You can specify a value for user.roles.include on the Configurations page, or override it on a per-client basis using the Security Configuration Details control when you attach the policy.

WS-Trust Policies and Configuration Steps

This section describes the predefined WS-Trust policies and how to configure and use them. The following topics are described:

	
"Overview of Web Services WS-Trust"

	
"Setting Up Automatic Policy Configuration for STS"

	
"Programmatic Configuration Overrides for WS-Trust Client Policies"

	
"Supported STS Servers"

	
"Available WS-Trust Policies"

Overview of Web Services WS-Trust

The WS-Trust 1.3 specification defines extensions to WS-Security that provide a framework for requesting and issuing security tokens, and to broker trust relationships. WS-Trust extensions provide methods for issuing, renewing, and validating security tokens.

To secure communication between a Web service client and a Web service, the two parties must exchange security credentials. As defined in the WS-Trust specification, these credentials can be obtained from a trusted SecurityTokenService (STS), which acts as trust broker. That is, the STS must be trusted by both the Web service client and the Web service to provide interoperable security tokens.

This section describes the following topics:

	
"How the STS Configuration is Obtained"

	
"Typical Token Request and Response"

	
"Example WS-Trust Use Case"

	
"Token Lifetime"

	
"What Token Types Are Exchanged?"

	
"Overview of Sender Vouches in WS-Trust"

How the STS Configuration is Obtained

Typically, your environment will have only one STS. If you have a hundred different Web services, all of which have attached this STS config policy, you can easily change all of your Web services to point to a different STS by changing the policy.

The STS is also a Web service. To communicate with the STS, the client application needs to know the STS details, such as the port-uri, port-endpoint, wsdl-uri, and the security tokens it can accept from clients trying to authenticate to it.

There are two mechanisms by which STS information becomes available to the client.

	
Automatic (Client STS) Policy Configuration (see "Setting Up Automatic Policy Configuration for STS") is involved. Automatic Policy Configuration dynamically generates the information about the STS by parsing the STS WSDL document.

Automatic Policy Configuration is triggered when the STS config policy is attached to the Web service and not the client. Additionally, the only information provided in the STS config policy is the port-uri of the target STS.

When this policy is attached to the Web service along with the issued token service policy, the port-uri of the STS appears as the Issuer-Address in the IssuedToken assertion of the Web service WSDL. As a result, all the other STS information (target namespace, service name, endpoint, and so forth) is obtained by accessing the STS WSDL and is saved in memory as the STS config. This information is stored only in memory and is not persisted in the Oracle WSM repository. (For details about the repository, see Chapter 17, "Maintaining the Oracle WSM Repository."

If you specify the STS URI in the Web service STS config policy and attach it to the Web service, the client is forced to use that STS; it cannot override it.

	
You do not use Automatic Policy Configuration and instead attach the STS config policy to the client and specify all the STS-related information (port-endpoint, port-uri, public key alias, a reference to an Oracle WSM client policy to be used for authenticating to the STS) before invoking the Web service. In this case, all the information is already available to the run time from the STS config policy.

Typical Token Request and Response

The general token request/response process works as follows. These steps are explained further in the use case described in "Example WS-Trust Use Case".

	
The Web service client wants to invoke a Web service. The Oracle WSM agent attempts to fetch the WSDL of the Web service and extract the issued token service policy. The Oracle WSM agent uses the local client policy (as optionally overridden) to talk to the STS identified in the WSDL.

The Web service policy can require the issued token to be from a specific STS.

	
The Web service client requests that the STS issue a token. The Web service client can request the token from a specific STS.

The Request Security Token (RST) is a request for a security token. The RequestSecurityTokenResponse (RSTR) is a response generated by the STS in response to the RST with claims for the requested user.

	
The Web service client processes the RSTR sent by the STS and propagates the issued token to the Web service.

	
The Web service processes and verifies the issued token and generates a response back.

Example WS-Trust Use Case

This section describes a sample use case for WS-Trust.

	
The Web service client invokes a Web service. The WSDL for the Web service indicates that the Web service requires a security token from a specific STS.

	
The Web service client (the requestor) sends an authentication request, with accompanying credentials, to the STS.

	
The STS verifies the credentials presented by the client, and then in response issues a security token that provides proof that the client has authenticated with the STS. The response message RSTR has the token and (optionally) claims for the authenticated user.

	
The requestor verifies the RSTR, extracts the token, and passes it to the Web service.

	
The Web service receives the issued token and verifies that the token was issued by a trusted STS. This proves that the client has successfully authenticated with the STS.

Once the token is validated, the Web service processes the request and responds back.

Figure 10-19 illustrates the message flows between the requestor, STS, and the Web service.

Figure 10-19 STS Use Case Message Flow

[image: Description of Figure 10-19 follows]

Description of "Figure 10-19 STS Use Case Message Flow"

On Behalf Of Use Cases

"On Behalf Of" is an identity propagation use case, in which the Web service client requests the STS token on behalf of another entity.

Consider the following scenario:

	
The Web service client invokes the STS to get a token for another entity. This entity can be the end user or any other external entity. The entity's credentials are included in the RST in the onBehalfOf element.

	
The STS verifies the credentials presented by the Web service client and issues a security token for the entity identified in the onBehalfOf element.

	
The Web service client verifies the RSTR, extracts the token, and passes it to the Web service.

	
The Web service receives the SAML assertion for the end user and verifies that the token was issued by a trusted STS.

The "On Behalf Of" use case relies on the sts.auth.on.behalf.of.csf.key and on.behalf.of properties described in Table 8-3. If the "On Behalf Of" username is obtained from the Subject, it is a username without a password.

If sts.auth.on.behalf.of.csf.key identifies a CSF key for the "On Behalf Of" user entity, the identity established using that CSF key is sent on behalf of the other entity. It can be a username with or without a password.

Token Lifetime

The RSTR response message from an STS may contain a lifetime element (<trust:Lifetime>) indicating the validity of the returned token. If the lifetime element is present, Oracle WSM validates the timestamp and rejects the message if the response has expired.

What Token Types Are Exchanged?

Although an STS can theoretically receive any token from the client and exchange it for any other token, in practice the STS generally accepts one of the following tokens and returns a SAML assertion:

	
Username token. For this token type:

	
The Web service client sends a user name and password to the STS.

	
The STS verifies the password and returns a SAML assertion.

	
The client sends the SAML assertion to the Web service.

This scenario is useful when the Web service does not have the ability to verify passwords, so it relies on the STS to verify them.

	
Kerberos token. For this token type:

	
The client sends a user name and password to a KDC and gets a Kerberos token.

	
The client sends the Kerberos token to the STS and gets a SAML assertion.

	
The client sends the SAML assertion to the Web service.

This scenario is useful in Windows environments. Clients running on the Windows machine have the logged-on user context, and they can use this context to get a SAML assertion from the STS for that user.

In this scenario, the clients do not have the password so they cannot use a username token, they can use only Kerberos.

	
X509 token -- For this token type the client uses a private key to authenticate itself to the STS.

In response, the STS generally returns one of the following tokens:

	
SAML Holder of Key Symmetric. The SAML assertion that is returned by the STS is meant only for the particular client that sent its client token (username token, Kerberos, X509, etc) to the STS.

A rogue client should not be allowed to steal this SAML assertion and use it. This is accomplished by a “proof key,” which can be either symmetric or asymmetric.

A symmetric proof key is generated on the STS side, or on the client side, or by taking inputs from both sides, as described in "How the Proof Key is Determined (SAML HOK Only)".

The STS puts this symmetric proof key in the SAML HOK assertion in an encrypted form that only the Web service can decrypt. Then, it signs the entire SAML assertion (including the encrypted proof key) and sends it to the client.

When the client sends this SAML assertion to the server, it also needs to sign something with this proof key. The Web service will at first verify the STS signature of the SAML assertion, extract the proof key from the SAML assertion, and then decrypt it and verify the client's signature. This client's signature “proves” to the server that the client has the proof key.

Because this proof key is never sent in clear text, a rogue client cannot get it by network sniffing. Even if a rogue client gets the SAML assertion by network sniffing, it cannot make use of it, because it does not have the proof key and cannot sign with it. Therefore, the rogue client cannot prove to the server that it is allowed to use the SAML assertion.

	
SAML Holder of Key Asymmetric. The asymmetric proof key works as follows.

	
The client generates a public/private key pair.

	
It keeps the private key and securely sends the public key to the STS along with its token (username token, Kerberos, X509, and so forth.)

	
The STS verifies the client's token, and returns a SAML assertion containing the public key. The entire SAML assertion (including the public key) is signed by the STS and returned to the client.

	
The client then sends a SAML HOK asymmetric assertion to a Web service, and it signs something with the private key of that public-private key pair.

	
The Web service verifies the STS's signature of the SAML assertion, then extracts the public key from the SAML assertion and uses it to verify the client's signature.

This client's signature proves to the Web service that the SAML assertion is being used correctly, and was not stolen and replayed.

	
Note:

Unlike in the case of SAML HOK symmetric key, this public key in SAML HOK is not encrypted. This reduces the amount of configuration required on the STS side.
For SAML HOK symmetric, the STS must be configured with each Web service's certificate so that it can encrypt the symmetric key for that Web service. This is not required for SAML HOK asymmetric.

Also, the same SAML HOK asymmetric token can be sent to any Web service because it is not encrypted with a particular Web service's key.

	
Note:

Even though there is a public/private key pair, there is no certificate involved. That is, the public key is not sent to a Certificate Authority to request a certificate.
Instead, the STS acts similar to a CA. A CA takes in a public key and returns a certificate. In this case, the STS takes in a public key and returns a SAML assertion.

However, unlike a certificate whose lifetime is usually in many years, the SAML assertion issued by the STS usually has a lifetime of a few hours, after which the client would have to generate a new key pair and request a new SAML assertion.

Because of this short life, there is no need for the revocation checking that is required for certificates. This makes it attractive on the client side, because there are no client keys to manage.

	
SAML Bearer -- The SAML bearer key has no proof key associated with it. Therefore, it must be used over SSL to prevent any rogue client from stealing and replaying it.

How the Proof Key is Determined (SAML HOK Only)

For SAML Holder of Key (HOK), a proof key is required to protect communications between the client and the Web service. The proof key indicates proof of possession of the token associated with the requested security token.

You specify the requirements for the proof key type in the oracle/wss11_sts_issued_saml_hok_with_message_protection_service_policy policy in the <key-type> entry in the <sp:IssuedToken> policy assertion. For example,

<orasp:request-security-token-templateorasp:key-type = "Symmetric"

or

orasp:key-type = "Public"

Symmetric, asymmetric, and no proof key (not defined) are supported.

These possible values of <key-type> are contained in the WS-Trust 1.3 specifications:

	
http://docs.oasis-open.org/ws-sx/ws-trust/200512/PublicKey

	
http://docs.oasis-open.org/ws-sx/ws-trust/200512/SymmetricKey

Calculating a Symmetric Proof Key

If a symmetric proof key is required by the Web service's security policy, the requestor can pass some key material (entropy) that can be included in the calculation of the proof key. The Web service policy can indicate whether client entropy, STS entropy, or both are required.

However, the STS determines what to use for the proof key. When processing the token request, the STS can:

	
Accept the client entropy as the sole key material for the proof key. In this case, there is no <wst:RequestedProofToken> element present in RSTR; the proof key is implied.

The Oracle WSM agent uses the client entropy as the key material for signing and encryption.

	
Accept the client entropy as partial key material and contribute additional STS server-side entropy as partial key material to compute the proof key as a function of both partial key materials.

There is a <wst:Entropy> element containing the STS-supplied entropy in the RSTR. The <wst:RequestedProofToken> element is also present in RSTR and it contains the computed key mechanism. The default value for the algorithm is http://docs.oasis-open.org/ws-sx/ws-trust/200512/CK/PSHA1.

The Oracle WSM agent and the STS compute the proof key by combining both entropies using the specified computed key mechanism.

	
Reject the client-side entropy and use the STS server-side entropy as the sole key material for the proof key.

There is a <wst:RequestedProofToken> element present in RSTR that contains the proof key. The Oracle WSM agent uses the STS entropy as the key material for signing and encryption.

Requesting an Asymmetric Proof Key

An asymmetric proof key uses private/public key pairs, and is termed "asymmetric" because the public and private keys are different.

When requesting an asymmetric key token, the RST includes the wst:KeyType element with the following URI: http://docs.oasis-open.org/ws-sx/ws-trust/200512/PublicKey.

Overview of Sender Vouches in WS-Trust

An STS typically returns a SAML HOK or SAML Bearer token. However, an STS can also return SAML sender vouches tokens.

SAML sender vouches has a completely different trust model. In HOK and Bearer the the SAML assertion is issued by an STS and is signed by the STS. In this case, the Web service does not trust the client directly, but it trusts the STS. When the Web service receives an HOK or Bearer token, it verifies the signature against the trusted STS.

This indirect trust model greatly simplifies the trust store management. That is, if there are five clients talking to five Web services using message protection, then each of the Web services must know the five client public keys. Therefore, if there an STS in between, the Web services need to know only the public key of the STS.

For SAML sender vouches, the Web service trusts the client directly. A SAML sender vouches token is typically directly generated by a client and signed by the client private key. However a client may choose to ask the STS to generate the token. The STS does not sign the SAML assertion in this case, and simply returns it to the client. The client signs the SAML sender vouches token as before and sends it to the Web service. The Web service is not aware that the client obtained the SAML sender vouches token from an STS and it checks the client signature.

Setting Up Automatic Policy Configuration for STS

Automatic Policy Configuration dynamically generates the information about the STS by parsing the STS WSDL document.

When the STS config policy is attached to the Web service (and not to the client) Automatic Policy Configuration happens at run time on the first connect from client to server.

The only information you provide in the STS config policy (oracle/sts_trust_config_service_policy) is the port-uri of the target STS. When this policy is attached to the Web service (along with the issued token service policy) the port-uri of the STS appears as the Issuer-Address in the IssuedToken assertion of the Web service WSDL.

As a result, Oracle WSM obtains the other STS information (target namespace, service name, endpoint, and so forth) by accessing the STS WSDL and is saved in memory as the STS config. This information is saved in memory but is not persisted in MDS.

This section describes the following topics:

	
"Requirements for Automatic Policy Configuration"

	
"Setting Up Automatic Policy Configuration: Main Steps"

	
"Manually Configuring the STS Config Policy From the Web Service Client: Main Steps"

Requirements for Automatic Policy Configuration

There are several requirements for successfully communicating with the STS using Automatic Policy Configuration:

	
Automatic Policy Configuration does not work with JSE clients. If you are using JSE clients in a WS-TRUST scenario, you need to provide all the STS configuration information to the client by attaching both the sts_trust_config_client_policy and the issued token client policy.

	
The oracle/sts_trust_config_service_policy policy must be attached to the Web service. If it is not, you cannot use Automatic Policy Configuration and must instead manually configure the oracle/sts_trust_config_client_policy policy for the client, as described in "Manually Configuring the STS Config Policy From the Web Service Client: Main Steps".

	
Automatic Policy Configuration cannot be used for SAML sender vouches confirmation because the trust is between the Web service and the client. The Web service WSDL will not have any information about the STS.

	
The certificate and public key alias of the STS must be in the keystore. The default alias name is sts-csf-key. See "Configuring Keystores for Message Protection" for information on how to do this.

	
The client's public key must be available in the STS keystore.

Setting Up Automatic Policy Configuration: Main Steps

Perform the following steps to use Automatic Policy Configuration.

	
"Configure a Policy for Automatic Policy Configuration"

	
"Configure a Web Service Client for Automatic Policy Configuration"

	
"Configure a Web Service for Automatic Policy Configuration"

Configure a Policy for Automatic Policy Configuration

Perform the following steps to configure a policy for automatic policy configuration:

	
Decide which STS your Web service trusts and import that STS's public certificate into the Oracle WSM keystore.

	
Optionally, add the Distinguished Name of the STS to the Trusted STS list, as described in "Defining Trusted Issuers and Trusted Distinguished Name List for Signing Certificates".

	
If you want to use SAML HOK symmetric, you need to add an entry in the Oracle OpenSSO STS configuration for your Web service and the certificate of your Web service. The STS encrypts symmetric keys using this certificate.

	
Make a copy of the sts_trust_config_service_policy policy.

	
Edit the orasp:port-uri field to add the port-uri of the STS.

An STS usually exposes multiple URI points for different input and output token types; use the URI corresponding to the token that you want. For Oracle OpenSSO STS, the possible values for orasp:port-uri are as follows:

	
http://<host:port>/openssosts/sts/wss10x509

	
http://<host:port>/openssosts/sts/wss10un

	
http://<host:port>/openssosts/sts/wss11kerberos

	
https://<host:ssl_port>/openssosts/sts/tlswss10un

Configure a Web Service Client for Automatic Policy Configuration

Perform the following steps to configure a Web service client for automatic policy configuration:

	
Attach the issue token policy to your Web service client, depending on what type of token the Web service requires.

The following predefined issue token policies are provided:

	
oracle/wss11_sts_issued_saml_hok_with_message_protection_client_policy for SAML HOK.

	
oracle/wss_sts_issued_saml_bearer_token_over_ssl_client_policy for SAML Bearer.

	
Set or override the following properties of the issued token policy depending on the use case. See Table 8-3 for the property descriptions.

	
sts.auth.user.csf.key

	
sts.auth.x509.csf.key

	
sts.keystore.recipient.alias

	
sts.auth.keytab.location

	
sts.auth.caller.principal.name

	
sts.auth.service.principal.name

	
sts.auth.on.behalf.of.csf.key

	
on.behalf.of

sts.keystore.recipient.alias is used for the client to STS communication for message protection and is sufficient if the client to STS communication is using wss11 message protection.

However, if it is using wss10 message protection, you need to additionally set up the signing key and encryption key for the client, and then import the trust for these keys into the STS configuration.

	
Make sure the STS public certificate and credentials are present in the keystore and the client's public key is available in the STS keystore. See "Configuring Keystores for Message Protection" for information on how to do this.

Configure a Web Service for Automatic Policy Configuration

	
Attach the edited sts_trust_config_service_policy to the Web service.

	
Note:

You must attach both the sts_trust_config_service_policy policy and an STS issued-token service policy. The policies work as a pair.

	
Attach the issued-token service policy (corresponding to the one attached to the client). There are two predefined issue token policies:

	
oracle/wss11_sts_issued_saml_hok_with_message_protection_service_policy -- Use this when you want your service to accept SAML HOK asymmetric or symmetric. Do not use SSL for this policy.

As with all other wss11 message protection policies, you must set up an encryption key.

You can modify some options in the policy. For example, whether you want SAML 1.1 or 2.0, and whether you want asymmetric or symmetric keys.

	
oracle/wss_sts_issued_saml_bearer_token_over_ssl_service_policy -- Use this when you want SAML Bearer. However, you must set up your Web service for SSL to use this policy.

You can specify whether you want SAML 1.1 or 2.0.

	
Override keystore.enc.csf.key in the issued-token service policy, if required.

	
Make sure the client's public key is available in the Oracle WSM keystore.

Manually Configuring the STS Config Policy From the Web Service Client: Main Steps

You are encouraged to configure the STS config policy from the Web service, as described in "Setting Up Automatic Policy Configuration for STS". However, in the following situations you must configure it from the Web service client:

	
If you did not configure the STS config policy from the Web service, or

	
If you are using the SAML sender vouches confirmation method, or

	
If you are using a JSE client. Automatic Policy Configuration does not work with JSE clients.

Perform the following steps to configure the STS config policy from the Web service client.

	
Optionally, use Fusion Middleware Control to create a new policy from the oracle/sts_trust_config_template (see "Creating a New Web Service Policy") or from an existing oracle/sts_trust_config_client_policy policy (see "Creating a Web Service Policy from an Existing Policy").

You might find that having a unique policy makes configuration more obvious.

	
Use Fusion Middleware Control to edit your chosen oracle/sts_trust_config_client_policy policy.

	
The predefined oracle/sts_trust_config_client_policy policy is shown in Example 10-9. At a minimum, you need to provide the following information:

	
Issuer address -- Port-uri is the actual endpoint URI of the STS.

	
Oracle WSM security policy reference -- policy-reference-uri is the client policy URI that will be used by the client to communicate with the STS. The policy you choose depends on the authentication requirements of the STS, as identified in its WSDL.

How you set this parameter determines what you must later set or override in the issue token client policy:

	
If policy-reference-uri points to a username-based policy, then you later configure the sts.auth.user.csf.key parameter to authenticate to STS and create a username token. You also configure sts.auth.x509.csf.key to specify the signature and encryption key alias.

	
If the policy-reference-uri points to an x509-based policy, then you later configure the sts.auth.x509.csf.key parameter to specify the X509 certificate for authenticating to the STS.

	
port-endpoint -- This is the endpoint of the Web service, specified as target-namespace#wsdl.endpoint(service-name/port-name).

	
Alias of STS Certificate -- sts-keystore-recipient-alias is the alias of the STS certificate you added to the keystore. The default alias name is sts-csf-key.

Example 10-9 oracle/sts_trust_config_client_policy

<orasp:sts-trust-config
 xmlns:orasp="http://schemas.oracle.com/ws/2006/01/securitypolicy"
 xmlns:orawsp="http://schemas.oracle.com/ws/2006/01/policy"
 orasp:policy-reference-uri="oracle/wss10_username_token_with_message_protection_client_policy"
 orasp:port-endpoint="target-namespace#wsdl.endpoint(service-name/port-name)"
 orasp:port-uri="http://host:port/sts-service" orasp:soap-version="12"
 orasp:sts-keystore-recipient-alias="sts-csf-key"
 orasp:wsdl-uri="http://host:port/sts?wsdl" orawsp:Enforced="true"
 orawsp:Silent="true" orawsp:category="security/sts-config" orawsp:name="STS Trust Configuration">
<orawsp:bindings>
<orawsp:Config orawsp:configType="declarative" orawsp:name="StsTrustConfig">
<orawsp:PropertySet orawsp:name="standard-security-properties">
<orawsp:Property orawsp:contentType="constant" orawsp:name="role" orawsp:type="string">
<orawsp:Value>ultimateReceiver</orawsp:Value>
</orawsp:Property>
</orawsp:PropertySet>
</orawsp:Config>
</orawsp:bindings>
</orasp:sts-trust-config>

	
Save your changes.

	
If you have not already done so, select an issue token client policy from the client policies listed in Table 10-3. Your choices are:

	
oracle/wss_sts_issued_saml_bearer_token_over_ssl_client_policy

	
oracle/wss11_sts_issued_saml_hok_with_message_protection_client_policy

	
oracle/wss11_sts_issued_saml_with_message_protection_client_policy

	
Attach both Web service client policies to your Web service client, as described in "Attaching Client Policies Permitting Overrides". You must attach the policies in this order:

	
sts_trust_config_client_policy

	
Issued token client policy

If you attach multiple instances of oracle/sts_trust_config_client_policy, no error is generated. However, only one instance is enforced, and you cannot control which instance that is.

	
Use Fusion Middleware Control to edit your chosen issue token client policy.

	
Save your changes.

Using SAML Sender Vouches with WS Trust

To set up SAML sender vouches with WS-Trust, configure the Web service without an issued token policy; that is, use the oracle/wss11_saml_token_with_message_protection_service_policy policy.

Configure the client with an issue token policy. Use the oracle/wss11_sts_issued_saml_with_message_protection_client_policy, which is meant for SAML sender vouches, and also an STS config policy.

The Automatic Policy Configuration feature (see "Setting Up Automatic Policy Configuration for STS") cannot be used for SAML sender vouches because the Web service WSDL will not have information about the STS.

Available WS-Trust Policies

The available WS-Trust policies are listed in Table 10-3.

Table 10-3 Available WS-Trust Policies

	Name	Description
	
oracle/sts_trust_config_service_policy

	
Use this policy to specify the STS configuration information that is used to invoke the STS for token exchange. You use this policy with the Web service.

	
oracle/sts_trust_config_client_policy

	
Use this policy to specify the STS configuration information that is used to invoke the STS for token exchange. You use this policy with the Web service client only when not using Automatic Policy Configuration.

	
oracle/wss_sts_issued_saml_bearer_token_over_ssl_client_policy

	
This policy inserts SAML bearer assertion issued by a trusted STS. Messages are protected using SSL.

	
oracle/wss_sts_issued_saml_bearer_token_over_ssl_service_policy

	
This policy authenticates users using credentials provided in SAML tokens with confirmation method bearer in the WS-Security SOAP header. The credentials in the SAML token are authenticated against a SAML login module. The policy verifies that the transport protocol provides SSL message protection. This policy can be applied to any SOAP-based endpoint.

	
oracle/wss11_sts_issued_saml_hok_with_message_protection_client_policy

	
This policy inserts a SAML HOK assertion issued by a trusted STS. Messages are protected using proof key material provided by STS.

	
oracle/wss11_sts_issued_saml_hok_with_message_protection_service_policy

	
This policy authenticates a SAML HOK assertion issued by a trusted STS. Messages are protected using WS-Security's Basic 128 suite of symmetric key technologies.

	
oracle/wss11_sts_issued_saml_with_message_protection_client_policy

	
This policy inserts a SAML sender vouches assertion issued by a trusted STS. Messages are protected using the client's private key.

Programmatic Configuration Overrides for WS-Trust Client Policies

Table 11-2 shows the properties you can set via programmatic configuration overrides for a given policy.

Table 10-4 describes a series of sample use cases that show how to override STS properties programmatically.

Table 10-4 STS Programmatic Configuration Use Cases

	Use Case	Sample Code
	
Token exchange username token – SAML with symmetric proof key

	
(BindingProvider) port).getRequestContext().put(SecurityConstants.ClientConstants.WSM_STS_AUTH_USER_CSF_KEY, "my-user-csf-key");

(BindingProvider) port).getRequestContext().put(SecurityConstants.ClientConstants.WSM_STS_AUTH_X509_CSF_KEY, "my-x509-csf-key");

	
Token exchange x509 token – SAML with symmetric proof key

	
(BindingProvider) port).getRequestContext().put(SecurityConstants.ClientConstants.WSM_STS_AUTH_X509_CSF_KEY, "my-x509-csf-key");

	
Token exchange username token – SAML with asymmetric proof key

	
(BindingProvider) port).getRequestContext().put(SecurityConstants.ClientConstants.WSM_STS_AUTH_USER_CSF_KEY, "my-user-csf-key");

(BindingProvider) port).getRequestContext().put(SecurityConstants.ClientConstants.WSM_STS_AUTH_X509_CSF_KEY, "my-x509-csf-key");

	
Token exchange x509 token – SAML with asymmetric proof key

	
(BindingProvider) port).getRequestContext().put(SecurityConstants.ClientConstants.WSM_STS_AUTH_X509_CSF_KEY, "my-x509-csf-key");

	
On Behalf Of token exchange with On Behalf Of username from Subject, requestor token username – SAML with symmetric proof key

	
(BindingProvider) port).getRequestContext().put(SecurityConstants.ClientConstants.WSM_STS_AUTH_USER_CSF_KEY, "my-user-csf-key");

on.behalf.of must be set to true.

	
On Behalf Of token exchange with On Behalf Of username, requestor token username – SAML with symmetric proof key

	
(BindingProvider) port).getRequestContext().put(SecurityConstants.ClientConstants.WSM_STS_AUTH_ON_BEHALF_OF_CSF_KEY, "my-on-behalf-of-csf-key");

(BindingProvider) port).getRequestContext().put(SecurityConstants.ClientConstants.WSM_STS_AUTH_X509_CSF_KEY, "my-x509-csf-key");

on.behalf.of must be set to true.

	
On Behalf Of token exchange with On Behalf Of username, with requestor token x509 – SAML with symmetric proof key

	
(BindingProvider) port).getRequestContext().put(SecurityConstants.ClientConstants.WSM_STS_AUTH_ON_BEHALF_OF_CSF_KEY, "my-on-behalf-of-csf-key");

(BindingProvider) port).getRequestContext().put(SecurityConstants.ClientConstants.WSM_STS_AUTH_X509_CSF_KEY, "my-x509-csf-key");

on.behalf.of must be set to true.

	
On Behalf Of token exchange with On Behalf Of username from Subject, with requestor token username – SAML with asymmetric proof key

	
(BindingProvider) port).getRequestContext().put(SecurityConstants.ClientConstants.WSM_STS_AUTH_USER_CSF_KEY, "my-user-csf-key");

on.behalf.of must be set to true.

	
On Behalf Of token exchange with On Behalf Of username, with requestor token username – SAML with asymmetric proof key

	
(BindingProvider) port).getRequestContext().put(SecurityConstants.ClientConstants.WSM_STS_AUTH_ON_BEHALF_OF_CSF_KEY, "my-on-behalf-of-csf-key");

(BindingProvider) port).getRequestContext().put(SecurityConstants.ClientConstants.WSM_STS_AUTH_USER_CSF_KEY, "my-user-csf-key");

on.behalf.of must be set to true.

	
On Behalf Of token exchange with On Behalf Of username, with requestor token x509 - SAML with asymmetric proof key

	
(BindingProvider) port).getRequestContext().put(SecurityConstants.ClientConstants.WSM_STS_AUTH_ON_BEHALF_OF_CSF_KEY, "my-on-behalf-of-csf-key");

(BindingProvider) port).getRequestContext().put(SecurityConstants.ClientConstants.WSM_STS_AUTH_X509_CSF_KEY, "my-x509-csf-key");

on.behalf.of must be set to true.

Supported STS Servers

Oracle WSM provides a standard WS-Trust client. This client has been certified to interoperate with OpenSSO STS server. To step through example scenarios using OpenSSO STS server, see "Examples Using WS-Trust with OpenSSO STS".

Examples Using WS-Trust with OpenSSO STS

The following sections provide end-to-end examples using WS-Trust with Open SSO Security Token Service (STS) server to configure the following security scenarios:

	
"Configuring OpenSSO STS"

	
"SAML Holder-of-Key With Message Protection Scenario"

	
"SAML Sender Vouches with Message Protection Scenario"

	
"SAML Bearer with Message Protection Scenario"

Configuring OpenSSO STS

The following procedure describes the steps required to configure OpenSSO STS for use with each of the example scenarios described in this section.

	
Log in to the OpenSSO STS instance.

	
Navigate to Configuration > Global > Security Token Service.

	
Under Security: Security Mechanism: Security Token Accepted by STS Services enable all options.

	
Under the Credential for User Token section, add a new credential for the token with the name and password set as required. Set this to test/test.

	
Under the On Behalf of Token section, select ldapService from the Authentication Chain for On Behalf of Token drop-down list.

	
Under the Signing section, enable the following options:

- Is Request Signature Verified

- Is Response Signed Enabled (select Body and Timestamp)

	
Under the Encryption section, enable the following options:

- Is Request Decrypted (select Body and Header)

- Is Response Encrypted

	
Select AES from the Encryption Algorithm drop-down list, and select 128 from the Encryption Strength drop-down list.

	
To support the WS-Security 1.1 Kerberos token with message protection requestor token, under the Kerberos Configuration section and configure the following values:

Table 10-5 OpenSSO STS Kerberos Token With Message Protection Configuration

	Configure this property . . .	To specify . . .
	
Kerberos Domain Server

	
Fully qualified hostname of the domain server.

	
Kerberos Domain

	
Domain name.

	
Kerberos Service Principal

	
Service principal name in the following format: <host>/<machine name>@<REALM NAME>

	
Kerberos Key Tab File

	
Location of the key tab file created for the STS.

	
Is Verify Kerberos Signature

	
Enable only when JDK6 is used.

	
To support SSL, perform the following steps:

	
In the Token Issuance Attributes section, edit the SSL Endpoint based on your OpenSSO instance.

	
Under Signing, enable the Disable signature validation when transport is secured with SSL option.

	
Under Encryption, enable the Disable decryption when transport is secured with SSL option.

	
To support SSL on the server hosting the OpenSSO STS:

	
On the WebLogic Server hosting the OpenSSO STS, to configure SSL, perform the steps described in "Configuring Keystores for SSL".

	
On Glassfish server hosting the Open SSO STS, perform the following steps:

	
Generate a new key pair for the application server by issuing the following command:

keytool -genkey -keyalg <algorithm for generating the key pair> -keystore keystore.jks -validity <days> -alias <alias_name>

For example:

keytool -genkey -keyalg RSA -keystore <glassfish_install_dir>/domains/<sts_deploy_domain>/config/keystore.jks -validity 365 -alias owsm

When prompted for first and last name, enter the hostname of the machine for which the certificate is to be generated. Also enter the appropriate details for the other prompts.

	
Generate a Certificate Signing Request (CSR) by issuing the following command:

keytool -certreq -alias owsm -file owsm.csr -keystore keystore.jks -storepass changeit

The request that is generated and written to the owsm.csr file needs to be submitted to a Certificate Authority in order to get a valid certificate. For example, the Certificate Management Server maintained by the OpenSSO QA team at https://mahogany.red.iplanet.com.

	
Access the Certificate Management Server at https://mahogany.red.iplanet.com, click SSL Server in the left pane, and paste the contents of the .csr file, starting from BEGIN CERTIFICATE REQUEST and ending at END CERTIFICATE REQUEST, into the PKCS # 10 Request field.

Fill out the other fields, as appropriate, and submit the request. Once the request is approved, the certificate can be retrieved from the retrieval tab on the same page.

	
Copy the certificate content (PKCS # 7 format) starting from BEGIN CERTIFICATE to END CERTIFICATE into a file with .cert extension and import the server certificate into the <glassfish_install_dir>/domains/<sts_deploy_domain>/config/keystore.jks file by using the following keytool command:

keytool -import -v -alias owsm -file owsm.cert -keystore keystore.jks -storepass changeit

Enter YES when prompted if you trust the certificate.

	
Access the Certificate Authority's SSL Certificate. Go to https://mahogany.red.iplanet.com and navigate to SSL Server -> Retrieval tab -> List Certificates -> Find. Click on the first Details button on the page and copy the Base 64 encoded certificate into another .cert file. For example: mahogany.cert

	
Import this certificate with alias as "rootca" into the <glassfish_install_dir>/domains/<sts_deploy_domain>/config/cacerts.jks file, using the following command:

keytool -import -v -alias rootca -file mahogany.cert -keystore cacerts.jks -storepass changeit

	
The previous step may need to be repeated for client side truststore.jks file. Delete any existing rootca aliases from that file and import the new one as shown above (changing the location of the keystore file).

	
To configure GlassFish with the new certificate, access the Administration Console at http://hostname:admin-port/. Navigate to Configuration -> HTTP Service -> http-listener2 (default SSL enabled port) -> SSL, and change the certificate nickname from s1as (self-signed cert) to owsm.

	
Restart Glassfish.

SAML Holder-of-Key With Message Protection Scenario

The following procedure describes how to configure SAML holder-of-key with message protection using WS-Trust with OpenSSO STS. This example uses a WebLogic Web service and SOA Composite client to demonstrate the scenario.

To configure SAML holder-of-key with message protection using WS-Trust with OpenSSO STS:

	
Configure OpenSSO STS, as described "Configuring OpenSSO STS".

	
Configure the STS service policy following the steps described in "Configure a Policy for Automatic Policy Configuration".

Make a copy of oracle/sts_trust_config_service_policy and edit the policy configuration, as described below, based on the requestor token type.

To support WS-Security 1.0 username token with message protection requestor token:

	
orasp:port-uri="http://<host>:<port>/openssosts/sts/wss10un"

	
orasp:wsdl-uri="http://<host>:<port>/openssosts/sts/wss10un?wsdl" (Optional)

To support WS-Security 1.0 username token over SSL with message protection requestor token:

	
orasp:port-uri="https://<host:ssl_port>/openssosts/sts/tlswss10un"

	
orasp:wsdl-uri="https://<host:ssl_port>/openssosts/sts/tlswss10un?wsdl" (Optional)

To support WS-Security 1.0 X509 token with message protection requestor token:

	
orasp:port-uri="http://<host>:<port>/openssosts/sts/wss10x509"

	
orasp:wsdl-uri="http://<host>:<port>/openssosts/sts/wss10x509?wsdl" (Optional)

To support WS-Security 1.1 Kerberos token with message protection requestor token:

	
orasp:port-uri="http://<host>:<port>/openssosts/sts/wss11kerberos"

	
orasp:wsdl-uri="http://<host>:<port>/openssosts/sts/wss11kerberos?wsdl" (Optional)

	
Configure the Web service policy following the steps described in "Configure a Web Service for Automatic Policy Configuration".

Attach the policy created in step 2 followed by the oracle/wss11_sts_issued_saml_hok_with_message_protection_service_policy to the WebLogic Web service. For more information, see "Attaching a Policy to a Single Subject".

	
Note:

By default, the oracle/wss11_sts_issued_saml_hok_with_message_protection_service_policy policy is configured with token type of SAML 1.1. If you wish to configure the token type to be SAML 2.0, you will need to make a copy of the policy and edit it, as described in Creating a Web Service Policy from an Existing Policy. (This value should match the client policy.)

	
Configure the Web service client policy following the steps described in "Configure a Web Service Client for Automatic Policy Configuration".

Attach the oracle/wss11_sts_issued_saml_hok_with_message_protection_client_policy policy to the SOA composite client and override the client configuration properties described in Table 8-3, as required for your requestor token.

The sts.auth.user.csf.key should be set to the user credentials available in the default OpenSSO STS configuration. Namely, username test, with password set to test. Though, it is not required to be set for the X509 requestor token.

	
Note:

For more information about overriding client configuration properties when attaching a policy, see "Attaching Policies to Oracle Infrastructure Web Service Clients".
By default, the oracle/wss11_sts_issued_saml_hok_with_message_protection_client_policy policy is configured with token type of SAML 1.1. If you wish to configure the token type to be SAML 2.0, you will need to make a copy of the policy and edit it, as described in Creating a Web Service Policy from an Existing Policy. (This value should match the service policy.)

SAML Sender Vouches with Message Protection Scenario

	
Note:

Before proceeding, it is recommended that you review "Using SAML Sender Vouches with WS Trust".

The following procedure describes how to configure SAML sender vouches with message protection using WS-Trust with OpenSSO STS. This example uses a WebLogic Web service and SOA Composite client to demonstrate the scenario.

To configure SAML sender vouches with message protection using WS-Trust with OpenSSO STS:

	
Configure OpenSSO STS, as described "Configuring OpenSSO STS".

	
Configure the client-side STS policy following the steps described in "Manually Configuring the STS Config Policy From the Web Service Client: Main Steps".

	
Note:

Automatic Policy Configuration cannot be used for SAML sender vouches confirmation because the trust is between the Web service and the client. For more information, see "Using SAML Sender Vouches with WS Trust".

Make a copy of oracle/sts_trust_config_client_policy and edit the policy configuration based on the requestor token type.

To support WS-Security 1.0 username token with message protection requestor token:

	
orasp:policy-reference-uri="oracle/wss10_username_token_with_message_protection_client_policy"

	
orasp:port-endpoint="http://<host>:<port>/openfm/SecurityTokenService/#wsdl.endpoint(SecurityTokenService/ISecurityTokenService_Port_UN_WSS10_SOAP12):

	
orasp:port-uri="http://<host>:<port>/openssosts/sts/wss10un"

	
orasp:sts-keystore-recipient-alias="test"

To support WS-Security 1.0 username token over SSL with message protection requestor token:

	
orasp:policy-reference-uri="oracle/wss_username_token_over_ssl_client_policy"

	
orasp:port-endpoint="http://localhost:8080/openfm/SecurityTokenService/#wsdl.endpoint(SecurityTokenService/ISecurityTokenService_Port_TLS_UN_WSS10_SOAP12)"

	
orasp:port-uri="https://<host:ssl_port>/openssosts/sts/tlswss10un"

	
orasp:sts-keystore-recipient-alias="test"

To support WS-Security 1.0 X509 token with message protection requestor token:

	
orasp:policy-reference-uri="oracle/wss10_x509_token_with_message_protection_client_policy"

	
orasp:port-endpoint="http://localhost:8080/openfm/SecurityTokenService/#wsdl.endpoint(SecurityTokenService/ISecurityTokenService_Port_X509_WSS10_SOAP12)"

	
orasp:port-uri="http://<host>:<port>/openssosts/sts/wss10x509"

	
orasp:sts-keystore-recipient-alias="test"

	
Attach the oracle/wss11_saml_token_with_message_protection_service_policy policy to the WebLogic Web service (there is no corresponding issued token policy for SAML sender vouches scenarios) and override the keystore.enc.csf.key to specify the service encryption key alias and password.

	
Note:

By default, the oracle/wss11_saml_hok_with_message_protection_service_policy policy is configured with token type of SAML 1.1. If you wish to configure the token type to be SAML 2.0, you will need to make a copy of the policy and edit it, as described in Creating a Web Service Policy from an Existing Policy.

	
Attach the policy created in step 2 followed by the oracle/ws11_sts_issued_saml_with_message_protection_client_policy policy to the SOA composite client and override the client configuration properties described in Table 8-3, as required for your requestor token.

The "On Behalf Of" use case relies on the sts.auth.on.behalf.of.csf.key and on.behalf.of properties described in Table 8-3. For more information, see "On Behalf Of Use Cases".

The on.behalf.of property should be set to true. The sts.auth.on.behalf.of.csf.key should be set to the user credentials available in the default Open SSO STS configuration that support the "on behalf of" use case. Namely, demo, with password set to changeit.

	
Note:

For more information about overriding client configuration properties when attaching a policy, see "Attaching Policies to Oracle Infrastructure Web Service Clients".

	
To grant permission to the client application to request a token from OpenSSO STS "on behalf of" a user, edit the <MW_HOME>/user_projects/domains/base_domain/config/fmwconfig/system-jazn-data.xml file to include the following code:

<grant>
 <grantee>
 <codesource>
 <url>
file:${common.components.home}/modules/oracle.wsm.agent.common_11.1.1/wsm-agent-core.jar
 </url>
 </codesource>
 </grantee>
 <permissions>
 <permission>
 <class>oracle.wsm.security.WSIdentityPermission</class>
 <name>resource=<Client App. Name></name>
 <actions>assert</actions>
 </permission>
 </permissions>
</grant>

SAML Bearer with Message Protection Scenario

The following procedure describes how to configure SAML bearer with message protection using WS-Trust with OpenSSO STS. This example uses a WebLogic Web service and SOA Composite client to demonstrate the scenario.

To configure SAML bearer with message protection using WS-Trust with OpenSSO STS:

	
Configure OpenSSO STS. as described "Configuring OpenSSO STS".

	
Configure the STS policy following the steps described in "Configure a Policy for Automatic Policy Configuration".

Make a copy of oracle/sts_trust_config_service_policy and edit the policy configuration, as described below, based on the requestor token type.

To support WS-Security 1.0 username token with message protection requestor token:

	
orasp:port-uri="http://<host>:<port>/openssosts/sts/wss10un"

	
orasp:wsdl-uri="http://<host>:<port>/openssosts/sts/wss10un?wsdl" (Optional)

To support WS-Security 1.0 username token over SSL with message protection requestor token:

	
orasp:port-uri="https://<host:ssl_port>/openssosts/sts/tlswss10un"

	
orasp:wsdl-uri="https://<host:ssl_port>/openssosts/sts/tlswss10un?wsdl" (Optional)

To support WS-Security 1.0 X509 token with message protection requestor token:

	
orasp:port-uri="http://<host>:<port>/openssosts/sts/wss10x509"

	
orasp:wsdl-uri="http://<host>:<port>/openssosts/sts/wss10x509?wsdl" (Optional)

To support WS-Security 1.1 Kerberos token with message protection requestor token:

	
orasp:port-uri="http://<host>:<port>/openssosts/sts/wss11kerberos"

	
orasp:wsdl-uri="http://<host>:<port>/openssosts/sts/wss11kerberos?wsdl" (Optional)

	
Configure the Web service policy following the steps described in "Configure a Web Service for Automatic Policy Configuration".

Attach the policy created in step 2 followed by the oracle/wss11_sts_issued_saml_bearer_token_over_ssl_service_policy. For more information, see "Attaching a Policy to a Single Subject".

	
Configure the Web service client policy following the steps described in "Configure a Web Service Client for Automatic Policy Configuration".

Attach the oracle/ws11_sts_issued_saml_bearer_token_over_ssl_client_policy policy to the SOA composite client and override the client configuration properties described in Table 8-3, as required for your requestor token.

The sts.auth.user.csf.key should be set to the user credentials available in the default OpenSSO STS configuration. Namely, username test, with password set to test. Though, it is not required to be set for the X509 requestor token.

	
Note:

For more information about overriding client configuration properties when attaching a policy, see "Attaching Policies to Oracle Infrastructure Web Service Clients".

11 Configuring Policies

This chapter discusses how to configure policies in Web services and Web service clients to achieve Quality of Service (QoS) requirements.

The predefined policies are described in Appendix B, "Predefined Policies". This Appendix is the definitive source of information for the format of the policies. Some information from the Appendix is repeated here for your convenience.

This chapter includes the following sections:

	
Determining Which Security Policies to Use

	
Protecting Messages

	
Authentication-Only Policies and Configuration Steps

	
Message Protection-Only Policies and Configuration Steps

	
Message Protection and Authentication Policies and Configuration Steps

	
Authorization Policies and Configuration Steps

	
WS-Addressing Policies and Configuration Steps

	
WS-Trust Policies

	
MTOM Attachment Policies and Configuration Steps

	
Reliable Messaging Policies and Configuration Steps

	
Management Policies and Configuration Steps

	
Attaching Policy Files to Web Services and Clients

	
Using Client Programmatic Configuration Overrides

	
Configuring Local Optimization for a Policy

Determining Which Security Policies to Use

Use the following series of questions to help you identify the security policies that best meet your requirements:

	
What are the basic requirements of your security policy? Decide if you need to only authenticate users, or if you only need message protection, or if you need both.

	
Do you require authentication only? If yes, then go to step 2.

	
Do you require authorization only? If yes, then see "Authorization Policies and Configuration Steps"

	
Do you require authentication and authorization? If yes, then go to step 3.

	
Do you only require message protection? If yes, then see "Message Protection-Only Policies and Configuration Steps".

	
Do you require both authentication and message protection? If yes, then go to step 4.

	
If you only require authentication, then there are two basic questions you need to consider:

	
Where will the token be inserted? Will the token to be inserted in the transport layer or in a SOAP header?

	
Do you need to use a particular type of token? The supported credentials for authentication-only policies are username/password, SAML, and Kerberos tokens.

	
If you require authentication and authorization, then you need to consider the following:

	
Review the considerations provided for authentication in step 2.

	
Review "Authorization Policies and Configuration Steps" for more information about authorization policies.

	
If you require both authentication and message protection, then you need to consider the following:

	
Will message protection be handled in the transport layer? If yes, then there are four sets of policies to choose from: Username over SSL, SAML over SSL (Sender-Vouches), SAML over SSL (Token Bearer), and HTTP token over SSL.

In one set of policies (wss_http_token_over_ssl_client_policy and wss_http_token_over_ssl_service_policy) authentication is also handled in the transport layer. For the other three polices, authentication takes place in the SOAP header.

If you are using the WS-Security V1.0 or V1.1 standard, then both authentication and message protection occur in the SOAP header. There are five pairs of policies supporting the following tokens: username/password, SAML, and X.509 certificates.

For more information, see "Message Protection and Authentication Policies and Configuration Steps".

Protecting Messages

Message protection involves encrypting the message for message confidentiality and signing the message for message integrity. Oracle Fusion Middleware predefined policies and any policy you create using one of the message-protection assertion templates provide the options for message confidentiality, message integrity, or both.

The following steps summarizes what you must do to configure the clients and services for message protection:

	
Attach the appropriate message protection policy to each of the clients and services.

	
If you want message integrity, then the message must be signed.

	
If you want message confidentiality, then the message must be encrypted.

	
Add the required public and private keys to the keystores of the clients and services. This step requires you to configure the keystore, as described in "Configuring Keystores for Message Protection".

Message Protection Basics

Message protection encompasses two concepts, message confidentiality and message integrity.

Message confidentiality involves keeping the data secret, as well as the identities of the sending and receiving parties. Confidentiality is achieved by encrypting the content of messages and obfuscating the identities of the sending and receiving parties. The sender uses the recipient's public key to encrypt the message. Only the recipient's private key can successfully decrypt the message, ensuring that it cannot be read by third parties while in transit. The Web service's base64-encoded public certificate is published in the WSDL for use by the Web service client, as described in "Using Service Identity Certification Extension".

Message integrity is achieved by having an authority digitally sign the message. Digital signatures are used to authenticate the sender of the SOAP message and to ensure the integrity of the SOAP message (that is, to ensure that the SOAP message is not altered while in transit).

When a digital signature is applied to a SOAP message, a unique hash is produced from the message, and this hash is then encrypted with the sender's private key. When the message is received, the recipient decrypts the hash using the sender's public key.

	
Note:

Generally, the recipient does not need to have the sender's public key in its keystore to validate the certificate. It is sufficient to have the root certificate in the keystore to verify the certificate chain. However, if the sender's public key is not present in the message, as in the case of the Thumbprint and SerialIssuer mechanisms, the sender's public key must be in the recipient's keystore.

This serves to authenticate the sender, because only the sender could have encrypted the hash with the private key. It also serves to ensure that the SOAP message has not been tampered with while in transit, because the recipient can compare the hash sent with the message with a hash produced on the recipient's end.

The message-protection assertion templates and predefined policies can be used to protect request and response messages by doing the following:

	
Signing messages

	
Encrypting messages

	
Signing and encrypting messages

	
Decrypting messages

	
Verifying signatures

	
Decrypting messages and verifying signatures

The Fusion Middleware Control user interface for the predefined message protection policies makes it easy to specify which message parts are signed, encrypted, or both. You can require that the entire body be signed, encrypted, or both, or identity specific header and body elements. The following is an example of partial encryption.

Example for Partial Encryption

In this example, a part of the SOAP message is encrypted using Fusion Middleware Control:

	
Create a simple Web service that approves a credit card number (cardNr). A sample payload is shown in Example 11-1.

Example 11-1 Example of a Payload

<soapenv:Body wsu:Id="Body-2grW1pYwjwsoskbLuMJZzg22"
xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-ws
security-utility-1.0.xsd">

 <aaav:validateTheCard xmlns:aaav="http://aaavalidatecred/">
 <aaav:cardNr>string</aaav:cardNr>
 <aaav:firstName>string</aaav:firstName>
 <aaav:lastName>string</aaav:lastName>
 <aaav:validUntilDate>string</aaav:validUntilDate>
 </aaav:validateTheCard>

 </soapenv:Body>

	
In Fusion Middleware Control, select a message protection policy and click Edit.

	
In the Settings tab, select the Request tab.

	
In the Message Encrypt Setting section, deselect Include Entire Body (Figure 11-1).

	
Expand Body Elements and click Add.

	
Enter the Namespace and the Element Name. In this example, only the card number is encrypted as follows:

Namespace = http://aaavalidatecred/

Element Name = //aaav:cardNr

For more information on other fields in the Edit Policy page, see Table C-92. Example 11-2 shows what the policy would look like.

Example 11-2 Sample Policy with Partial Encryption

 <orasp:encrypted-elements>
 <orasp:element orasp:namespace="http://aaavalidatecred/"
orasp:name="cardNr">n/a</orasp:element>
 </orasp:encrypted-elements>

	
Click Yes to add the Body Elements and Save to save the modified policy.

Figure 11-1 Example of Partial Encryption of Message Protection Policies

[image: Description of Figure 11-1 follows]

Description of "Figure 11-1 Example of Partial Encryption of Message Protection Policies"

Security SwA Attachments

Packaging as attachments in SOAP messages has become common for any data that cannot be placed inside SOAP Envelope. The primary SOAP message can reference additional entities as attachments or attachments with MIME headers.

Each SwA attachment is a MIME part and contains the MIME header. Include SwA Attachment signs the attachment but not the MIME header corresponding to that. Include MIME Headers signs the corresponding MIME headers as well as the attachments.

Which Policies Offer Message Protection?

The following policies offer message protection. The subsequent sections for each of these policies later in this chapter describe how each policy implements message protection.

	
oracle/wss10_message_protection_client_policy

	
oracle/wss10_message_protection_service_policy

	
oracle/wss10_username_id_propagation_with_msg_protection_client_policy

	
oracle/wss10_username_id_propagation_with_msg_protection_service_policy

	
oracle/wss10_username_token_with_message_protection_client_policy

	
oracle/wss10_username_token_with_message_protection_service_policy

	
oracle/wss10_username_token_with_message_protection_ski_basic256_client_policy

	
oracle/wss10_username_token_with_message_protection_ski_basic256_service_policy

	
oracle/wss10_x509_token_with_message_protection_client_policy

	
oracle/wss10_x509_token_with_message_protection_service_policy

	
oracle/wss10_saml_token_with_message_protection_client_policy

	
oracle/wss10_saml_token_with_message_protection_service_policy

	
oracle/wss10_saml20_token_with_message_protection_client_policy

	
oracle/wss10_saml20_token_with_message_protection_service_policy

	
oracle/wss10_saml_hok_token_with_message_protection_client_policy

	
oracle/wss10_saml_hok_token_with_message_protection_service_policy

	
oracle/wss10_saml_token_with_message_protection_ski_basic256_client_policy

	
oracle/wss10_saml_token_with_message_protection_ski_basic256_service_policy

	
oracle/wss11_message_protection_client_policy

	
oracle/wss11_message_protection_service_policy

	
oracle/wss11_kerberos_token_with_message_protection_client_policy

	
oracle/wss11_kerberos_token_with_message_protection_service_policy

	
oracle/wss11_kerberos_token_with_message_protection_basic128_client_policy

	
oracle/wss11_kerberos_token_with_message_protection_basic128_service_policy

	
oracle/wss11_saml_token_with_message_protection_client_policy

	
oracle/wss11_saml_token_with_message_protection_service_policy

	
oracle/wss11_saml20_token_with_message_protection_client_policy

	
oracle/wss11_saml20_token_with_message_protection_service_policy

	
oracle/wss11_sts_issued_saml_hok_with_message_protection_client_policy

	
oracle/wss11_sts_issued_saml_hok_with_message_protection_service_policy

	
oracle/wss11_sts_issued_saml_with_message_protection_client_policy

	
oracle/wss11_username_token_with_message_protection_client_policy

	
oracle/wss11_username_token_with_message_protection_service_policy

	
oracle/wss11_x509_token_with_message_protection_client_policy

	
oracle/wss11_x509_token_with_message_protection_service_policy

Both the WS-Security 1.0 and WS-Security 1.1 standards are supported. Use the assertion template or predefined policy that supports the standard which both the Web service and client share in common. If you are starting anew, use the WS-Security 1.1 standard because it provides more options and requires less PKI deployment.

The assertion templates support partial signing and encryption as well as full signing and encryption of the message body. For those assertion templates or predefined policies that provide SOAP message protection, the default behavior is to protect the entire SOAP message body by signing and encrypting the entire SOAP body. You can configure the assertions and policies to protect selected elements, if you wish.

Authentication-Only Policies and Configuration Steps

Table B-1 in Appendix B, "Predefined Policies" summarizes the security policies that enforce authentication only, and indicates whether the token is inserted at the transport layer or SOAP header.

This section lists the authentication-only predefined policies, indicates the type of Web service to which they apply, and provides a link to the configuration steps you must perform to use them.

oracle/wss_http_token_client_policy

The oracle/wss_http_token_client_policy policy includes credentials in the HTTP header for outbound client requests. It is the analogous client policy to the oracle/wss_http_token_service_policy service endpoint policy.

This policy contains the following assertion template: oracle/wss_http_token_client_template. See "oracle/wss_http_token_client_template" for more information about the assertion.

Settings You Can Change

See Table C-2.

Properties You Can Configure

See Table C-3.

How to Set Up the Web Service Client

You can specify a value for csf-key on the Configurations page, or override it on a per-client basis using the Security Configuration Details control when you attach the policy.

The value signifies a key that maps to a username/password. See "Adding Keys and User Credentials to the Credential Store" for information on how to add the key to the credential store.

If you do not set the Require Mutual Authentication control, one-way SSL is involved. See "Configuring SSL for a Web Service Client".

If you do set the Require Mutual Authentication control, the client must supply credentials, and expect credentials back from the Web service. See "Configuring Two-Way SSL for a Web Service Client".

How to Set Up the Web Service Client at Design Time

See "Using Client Programmatic Configuration Overrides" for a description of the configuration settings you can override.

The client must pass the credentials in the HTTP header.

If you do not set the Require Mutual Authentication control, one-way SSL is involved. See "Configuring SSL for a Web Service Client".

If you do set the Require Mutual Authentication control, the client must supply credentials, and expect credentials back from the Web service. See "Configuring Two-Way SSL for a Web Service Client".

oracle/wss_http_token_service_policy

The wss_http_token_service_policy uses the credentials in the HTTP header to authenticate users.

This policy contains the following assertion template: oracle/wss_http_token_service_template. See "oracle/wss_http_token_service_template" for more information about the assertion.

Settings You Can Change

See Table C-2.

Properties You Can Configure

See Table C-4.

How to Set Up WebLogic Server

The Web service must authenticate the supplied username and password credentials against the configured authentication source.

Use the WebLogic Server Administration Console to add an Authentication provider to the active security realm for the WebLogic domain in which the Web service is deployed, as described in "Configuring an Authentication Provider in WebLogic Server".

For mutual SSL authentication, you must configure WebLogic Server. See "Configuring SSL on WebLogic Server (Two-Way)".

oracle/wss_username_token_client_policy

	
Note:

This policy is not secure; it transmits the password in clear text. You should use this policy in low security situations only, or when you know that the transport is protected using some other mechanism. Alternatively, consider using the SSL version of this policy, oracle/wss_username_token_over_ssl_client_policy.

This policy includes credentials in the WS-Security UsernameToken header for all outbound SOAP request messages. A plain text mechanism is supported, in addition to a password not being required. It is the analogous client policy to the oracle/wss_username_token_service_policy service endpoint policy.

This policy contains the following assertion template: oracle/wss_username_token_client_template. See "oracle/wss_username_token_client_template" for more information about the assertion.

Settings You Can Change

See Table C-5.

Properties You Can Configure

See Table C-6.

How to Set Up the Web Service Client

You can specify a value for csf-key on the Configurations page, or override it on a per-client basis using the Security Configuration Details control when you attach the policy.

The value signifies a key that maps to a username/password. See "Adding Keys and User Credentials to the Credential Store" for information on how to add the key to the credential store.

If you specify a password type of None on the Settings page, you do not need to include a password in the key.

How to Set Up the Web Service Client At Design Time

See "Using Client Programmatic Configuration Overrides" for a description of the configuration settings you can override.

The client must include a WS-Security UsernameToken element (<wsse:UsernameToken/>) in the SOAP request message. The client provides a username and password for authentication.

oracle/wss_username_token_service_policy

	
Note:

This policy is not secure; it transmits the password in clear text. You should use this policy in low security situations only, or when you know that the transport is protected using some other mechanism. Alternatively, consider using the SSL version of this policy, oracle/wss_username_token_over_ssl_service_policy.

This policy uses the credentials in the UsernameToken WS-Security SOAP header to authenticate users. The plain text mechanism is supported.

This policy contains the following assertion template: oracle/wss_username_token_service_template. See "oracle/wss_username_token_service_template" for more information about the assertion.

Settings You Can Change

See Table C-5.

Properties You Can Configure

See Table C-7.

How to Set Up WebLogic Server

Use the WebLogic Server Administration Console to add an Authentication provider to the active security realm for the WebLogic domain in which the Web service is deployed, as described in "Configuring an Authentication Provider in WebLogic Server".

oracle/wss10_saml_token_client_policy

	
Note:

This policy is not secure and is provided for demonstration purposes only. Although the SAML issuer name is present, the SAML token is not endorsed. Therefore, it is possible to spoof the message.

This policy includes SAML tokens in outbound SOAP request messages.

This policy contains the following assertion template: oracle/wss10_saml_token_client_template. See "oracle/wss10_saml_token_client_template" for more information about the assertion.

Settings You Can Change

See Table C-8.

Properties You Can Configure

See Table C-9.

How to Set Up the Web Service Client

See "Configuring SAML".

You can specify a value for saml.issuer.name on the Configurations page, or override it on a per-client basis using the Security Configuration Details control when you attach the policy. The saml.issuer.name property defaults to a value of www.oracle.com. See "Adding an Additional SAML Assertion Issuer Name" for additional considerations.

How to Set Up the Web Service Client at Design Time

See "How to Configure SAML Web Service Client at Design Time".

See "Using Client Programmatic Configuration Overrides" for a description of the configuration settings you can override.

Include a WS-Security Header Element (<saml:Assertion>) that inserts a SAML token in the outbound SOAP message. The confirmation type is always sender-vouches.

oracle/wss10_saml_token_service_policy

	
Note:

This policy is not secure and is provided for demonstration purposes only. Although the SAML issuer name is present, the SAML token is not endorsed. Therefore, it is possible to spoof the message.

This policy authenticates users using credentials provided in SAML tokens in the WS-Security SOAP header.

This policy contains the following assertion template: oracle/wss10_saml_token_service_template. See "oracle/wss10_saml_token_service_template" for more information about the assertion.

Settings You Can Change

See Table C-8.

Properties You Can Configure

See Table C-10.

Configure the Login Module

Configure the saml.loginmodule login module. See "Configuring the SAML and Kerberos Login Modules" for more information.

How to Set Up Oracle Platform Security Services (OPSS)

See "Configuring SAML".

How to Set Up WebLogic Server

Use the WebLogic Server Administration Console to add an Authentication provider to the active security realm for the WebLogic domain in which the Web service is deployed, as described in "Configuring an Authentication Provider in WebLogic Server".

The SAML login module extracts the username from the verified token and passes it to the provider.

oracle/wss10_saml20_token_client_policy

	
Note:

This policy is not secure and is provided for demonstration purposes only. Although the SAML issuer name is present, the SAML token is not endorsed. Therefore, it is possible to spoof the message.

This policy includes SAML tokens in outbound SOAP request messages.

This policy contains the following assertion template: oracle/wss10_saml20_token_client_template. See "oracle/wss10_saml20_token_client_template" for more information about the assertion.

Settings You Can Change

See Table C-11.

Properties You Can Configure

See Table C-12.

How to Set Up the Web Service Client

See "Configuring SAML".

You can specify a value for saml.issuer.name on the Configurations page, or override it on a per-client basis using the Security Configuration Details control when you attach the policy. The saml.issuer.name property defaults to a value of www.oracle.com. See "Adding an Additional SAML Assertion Issuer Name" for additional considerations.

How to Set Up the Web Service Client at Design Time

See "How to Configure SAML Web Service Client at Design Time".

See "Using Client Programmatic Configuration Overrides" for a description of the configuration settings you can override.

Include a WS-Security Header Element (<saml:Assertion>) that inserts a SAML token in the outbound SOAP message. The confirmation type is always sender-vouches.

oracle/wss10_saml20_token_service_policy

	
Note:

This policy is not secure and is provided for demonstration purposes only. Although the SAML issuer name is present, the SAML token is not endorsed. Therefore, it is possible to spoof the message.

This policy authenticates users using credentials provided in SAML tokens in the WS-Security SOAP header.

This policy contains the following assertion template: oracle/wss10_saml20_token_service_template. See "oracle/wss10_saml20_token_service_template" for more information about the assertion.

Settings You Can Change

See Table C-11.

Properties You Can Configure

See Table C-13.

Configure the Login Module

Configure the saml2.loginmodule login module. See "Configuring the SAML and Kerberos Login Modules" for more information.

How to Set Up Oracle Platform Security Services (OPSS)

See "Configuring SAML".

How to Set Up WebLogic Server

Use the WebLogic Server Administration Console to add an Authentication provider to the active security realm for the WebLogic domain in which the Web service is deployed, as described in "Configuring an Authentication Provider in WebLogic Server".

The SAML login module extracts the username from the verified token and passes it to the provider.

oracle/wss11_kerberos_token_client_policy

This policy includes a Kerberos token in the WS-Security header in accordance with the WS-Security Kerberos Token Profile v1.1 standard.

Service principal names (SPN) are a key component in Kerberos authentication. SPNs are unique identifiers for services running on servers. Every service that uses Kerberos authentication needs to have an SPN set for it so that clients can identify the service on the network. If an SPN is not set for a service, clients have no way of locating that service and Kerberos authentication is not possible.

This policy contains the following assertion template: oracle/wss11_kerberos_token_client_template. See "oracle/wss11_kerberos_token_with_message_protection_client_template" for more information about the assertion.

Settings You Can Change

See Table C-58.

Properties You Can Configure

See Table C-59.

How to Set Up the Web Service Client

See "Using Kerberos Tokens".

The Web service client that is enforcing Kerberos client side policies needs to know the service principal name of the service it is trying to access. You can specify a value for service.principal.name on the Configurations page, or override it on a per-client basis using the Security Configuration Details control when you attach the policy. The default value (place holder) is HOST/localhost@oracle.com.

How to Set Up the Web Service Client at Design Time

See "Using Kerberos Tokens".

You must set the service principal name. The service principal name specifies the name of the service principal for which the client requests a ticket from the KDC.

If the Kerberos authentication is successful, then send the obtained Kerberos ticket and authenticator to the Web service enclosed in a BinarySecurityToken element in the SOAP Security header.

oracle/wss11_kerberos_token_service_policy

This policy is enforced in accordance with the WS-Security Kerberos Token Profile v1.1 standard.

Service principal names (SPN) are a key component in Kerberos authentication. SPNs are unique identifiers for services running on servers. Every service that uses Kerberos authentication needs to have an SPN set for it so that clients can identify the service on the network. If an SPN is not set for a service, clients have no way of locating that service and Kerberos authentication is not possible.

This policy contains the following assertion template: oracle/wss11_kerberos_token_service_template. See "oracle/wss11_kerberos_token_with_message_protection_service_template" for more information about the assertion.

Settings You Can Change

See Table C-58.

Properties You Can Configure

None required.

Configure the Login Module

Configure the krb5.loginmodule login module. See "Configuring the SAML and Kerberos Login Modules" for more information.

How to Configure WebLogic Server

Use the WebLogic Server Administration Console to add an Authentication provider to the active security realm for the WebLogic domain in which the Web service is deployed, as described in "Configuring an Authentication Provider in WebLogic Server".

Message Protection-Only Policies and Configuration Steps

See "Protecting Messages" for a description of how the predefined policies implement message protection.

Table B-2 summarizes the policies that enforce only message protection, and indicates whether the policy is enforced at the transport layer or SOAP header.

Message protection-only policies do not authenticate or authorize the requester.

There may be either one or two Security policies attached to a policy subject. A Security policy can contain an assertion that belongs to the authentication or message protection (as in this case) subtype categories, or a single assertion that belongs to both subtype categories. You can then use an assertion that belongs to the authorization subtype to authorize the requester.

oracle/wss10_message_protection_client_policy

This policy provides message protection (integrity and confidentiality) for outbound SOAP requests in accordance with the WS-Security 1.0 standard.

This policy contains the following assertion template: oracle/wss10_message_protection_client_template. See "oracle/wss10_message_protection_client_policy" for more information about the assertion.

Settings You Can Change

See Table C-18.

Properties You Can Configure

See Table C-19.

How to Set Up the Web Service Client

Configure the policy assertion for message signing, message encryption, or both.

This policy requires you to set up the Oracle WSM keystore, as described in "Configuring Keystores for Message Protection".

The Web service's base64-encoded public certificate is published in the WSDL for use by the Web service client, as described in "Using Service Identity Certification Extension".

As an alternative, you can specify a value for keystore.recipient.alias on the Configurations page, or override it on a per-client basis using the Security Configuration Details control when you attach the policy. The keystore.recipient.alias specifies the alias used to look up the public key in the keystore when retrieving a key for encryption of outbound SOAP messages.

You can specify a value for keystore.sig.csf.key and keystore.enc.csf.key on the Configurations page, or override them on a per-client basis using the Security Configuration Details control when you attach the policy.

How to Set Up the Web Service Client at Design Time

This policy requires you to set up the Web service client keystore, as described in "Setting Up the Web Service Client Keystore". The policy specifically requires that the client's and Web service's respective keystores already contain digital certificates containing each other's public key.

See "Using Client Programmatic Configuration Overrides" for a description of the configuration settings you can override.

Configure the policy assertion for message signing, message encryption, or both.

Example 11-3 shows the typical structure of a signature included in the Security header in conformance with the WS-Security 1.0 standards. In this example, the body element of the SOAP message is signed.

Example 11-3 WS-Security 1.0 Message Integrity of SOAP Message

<dsig:Signature xmlns:dsig="http://www.w3.org/2000/09/xmldsig#">
 <dsig:SignedInfo>
 <dsig:CanonicalizationMethod
 Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#"/>
 <dsig:SignatureMethod Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1"/>
 <dsig:Reference URI="#Timestamp-...">
 <dsig:Transforms>
 <dsig:Transform Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#"/>
 </dsig:Transforms>
 <dsig:DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
 <dsig:DigestValue>...</dsig:DigestValue>
 </dsig:Reference>
 <dsig:Reference URI="#Body-...">
 <dsig:Transforms>
 <dsig:Transform Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#"/>
 </dsig:Transforms>
 <dsig:DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
 <dsig:DigestValue>...</dsig:DigestValue>
 </dsig:Reference>
 <dsig:Reference URI="#KeyInfo-...">
 <dsig:Transforms>
 <dsig:Transform
Algorithm="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0#STR-Transform">
 <TransformationParameters xmlns="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd">
 <CanonicalizationMethod Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#" xmlns="http://www.w3.org/2000/09/xmldsig#"/>
 </TransformationParameters>
 </dsig:Transform>
 </dsig:Transforms>
 <dsig:DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
 <dsig:DigestValue>...</dsig:DigestValue>
 </dsig:Reference>
 </dsig:SignedInfo>
 <dsig:SignatureValue>....</dsig:SignatureValue>
 <dsig:KeyInfo Id="KeyInfo-...">
 <wsse:SecurityTokenReference xmlns="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd">
 <wsse:KeyIdentifier ValueType="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0#X509SubjectKeyIdentifier"
EncodingType="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0#Base64Binary">
...</wsse:KeyIdentifier>
 </wsse:SecurityTokenReference>
 </dsig:KeyInfo>
</dsig:Signature>

Example 11-4 is an example of the typical structure of encryption elements included in the Security header in conformance with the WS-Security 1.0 standards. In this example, the body element is encrypted.

Example 11-4 WS-Security 1.0 Message Confidentiality of SOAP Message

<env:Body xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd" wsu:Id="Body-JA9fsCRnqbFJ0ocBAMKb7g22">
 <xenc:EncryptedData xmlns:xenc="http://www.w3.org/2001/04/xmlenc#" Type="http://www.w3.org/2001/04/xmlenc#Content" Id="...">
 <xenc:EncryptionMethod Algorithm="http://www.w3.org/2001/04/xmlenc#aes256-cbc"/>
 <xenc:CipherData>
 <xenc:CipherValue>...</xenc:CipherValue>
 </xenc:CipherData>
 </xenc:EncryptedData>
</env:Body>

oracle/wss10_message_protection_service_policy

This policy enforces message protection (integrity and confidentiality) for inbound SOAP requests in accordance with the WS-Security 1.0 standard.

The messages are protected using WS-Security's Basic 128 suite of asymmetric key technologies, specifically RSA key mechanism for message confidentiality, SHA-1 hashing algorithm for message integrity, and AES-128 bit encryption. This policy does not authenticate or authorize the requester.

This policy contains the following assertion template: oracle/wss10_message_protection_service_template. See "oracle/wss10_message_protection_service_template" for more information about the assertion.

Settings You Can Change

See Table C-18.

Properties You Can Configure

See Table C-20. You also have the option to override the keystore.sig.csf.key and keystore.enc.csf.key server-side configuration properties, as described in "Attaching Web Service Policies Permitting Overrides".

How to Set Up Oracle Platform Security Services (OPSS)

Configure the policy assertion for message signing, message encryption, or both.

This policy requires you to set up the Oracle WSM keystore, as described in "Configuring Keystores for Message Protection".

Store the trusted certificate that corresponds to the client's private key (used to sign the message) in the keystore. You also need to store the service's private key in the keystore for decrypting the message, and the CA root certificate.

You must store the password for the decryption key in the credential store, as described in "Adding Keys and User Credentials to the Credential Store". Use keystore.enc.csf.key as the key name.

You also have the option to override the keystore.sig.csf.key and keystore.enc.csf.key server-side configuration properties, as described in "Attaching Web Service Policies Permitting Overrides".

oracle/wss11_message_protection_client_policy

This policy provides message integrity and confidentiality for outbound SOAP requests in accordance with the WS-Security 1.1 standard.

This policy contains the following assertion template: oracle/wss11_message_protection_client_template. See "oracle/wss11_message_protection_client_template" for more information about the assertion.

Settings You Can Change

See Table C-21.

Properties You Can Configure

See Table C-22.

How to Configure the Web Service Client

Configure the policy assertion for message signing, message encryption, or both.

This policy requires you to set up the Oracle WSM keystore, as described in "Configuring Keystores for Message Protection".

The Web service's base64-encoded public certificate is published in the WSDL for use by the Web service client, as described in "Using Service Identity Certification Extension".

As an alternative, you can specify a value for keystore.recipient.alias on the Configurations page, or override it on a per-client basis using the Security Configuration Details control when you attach the policy. The keystore recipient alias specifies the alias used to look up the public key in the keystore when retrieving a key for encryption of outbound SOAP messages.

You can specify a value for keystore.enc.csf.key on the Configurations page, or override it on a per-client basis using the Security Configuration Details control when you attach the policy.

How to Configure the Web Service Client at Design Time

This policy requires you to set up the Web service client keystore, as described in "Setting Up the Web Service Client Keystore". The policy specifically requires that the client's and Web service's respective keystores already contain digital certificates containing each other's public key.

This policy uses symmetric key technology, which is an encryption method that uses the same shared key to encrypt and decrypt data. The symmetric key is used to sign the message.

See "Using Client Programmatic Configuration Overrides" for a description of the configuration settings you can override.

Configure the policy assertion for message signing, message encryption, or both.

Example 11-5 is an example of the typical structure of encryption elements included in the Security header in conformance with the WS-Security 1.1 standards. In this example, the body element is encrypted.

Example 11-5 WS-Security 1.1 Message Confidentiality of SOAP Message

<xenc:EncryptedKey xmlns:xenc="http://www.w3.org/2001/04/xmlenc#" Id="EK-...">
<xenc:EncryptionMethod Algorithm="http://www.w3.org/2001/04/xmlenc#rsa-oaep-mgf1p">
<dsig:DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1" xmlns:dsig="http://www.w3.org/2000/09/xmldsig#" />
</xenc:EncryptionMethod>
<dsig:KeyInfo xmlns:dsig="http://www.w3.org/2000/09/xmldsig#">
<wsse:SecurityTokenReference xmlns="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd">
<wsse:KeyIdentifier ValueType="http://docs.oasis-open.org/wss/oasis-wss-soap-message-security-1.1#ThumbprintSHA1"
EncodingType="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0#Base64Binary">...</wsse:KeyIdentifier>
</wsse:SecurityTokenReference>
</dsig:KeyInfo>
<xenc:CipherData>
<xenc:CipherValue>...</xenc:CipherValue>
</xenc:CipherData>
<xenc:ReferenceList>
<xenc:DataReference URI="#_..." />
</xenc:ReferenceList>
</xenc:EncryptedKey>
<env:Body xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd" wsu:Id="Body-...">
 <xenc:EncryptedData xmlns:xenc="http://www.w3.org/2001/04/xmlenc#" Type="http://www.w3.org/2001/04/xmlenc#Content" Id="...">
 <xenc:EncryptionMethod Algorithm="http://www.w3.org/2001/04/xmlenc#aes256-cbc" />
 <dsig:KeyInfo xmlns:dsig="http://www.w3.org/2000/09/xmldsig#">
 <wsse:SecurityTokenReference xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd"
xmlns="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd">
 <wsse:Reference URI="#EK-..." ValueType="http://docs.oasis-open.org/wss/oasis-wss-soap-message-security-1.1#EncryptedKey" />
 </wsse:SecurityTokenReference>
 </dsig:KeyInfo>
 <xenc:CipherData>
 <xenc:CipherValue>...</xenc:CipherValue>
 </xenc:CipherData>
 </xenc:EncryptedData>
</env:Body>

oracle/wss11_message_protection_service_policy

This policy enforces message integrity and confidentiality for inbound SOAP requests in accordance with the WS-Security 1.1 standard.

This policy contains the following assertion template: oracle/wss11_message_protection_service_template. See "oracle/wss11_message_protection_service_template" for more information about the assertion.

Settings You Can Change

See Table C-21.

Properties You Can Configure

See Table C-23. You also have the option to override the keystore.enc.csf.key server-side configuration property, as described in "Attaching Web Service Policies Permitting Overrides".

How to Set Up Oracle Platform Security Services (OPSS)

Configure the policy assertion for message signing, message encryption, or both.

This policy requires you to set up the Oracle WSM keystore, as described in "Configuring Keystores for Message Protection".

Store the trusted certificate that corresponds to the client's private key (used to sign the message) in the keystore. You also need to store the service's private key in the keystore for decrypting the message, and the CA root certificate.

You must store the password for the decryption key in the credential store, as described in "Adding Keys and User Credentials to the Credential Store". Use keystore.enc.csf.key as the key name.

You also have the option to override the keystore.enc.csf.key server-side configuration property, as described in "Attaching Web Service Policies Permitting Overrides".

Message Protection and Authentication Policies and Configuration Steps

Table B-3 summarizes the policies that enforce both message protection and authentication, and indicates whether the policy is enforced at the transport layer or SOAP header. These polices are described in the sections that follow.

See "Protecting Messages" for a description of how the predefined policies implement message protection.

Configuring a Policy With an OR Group

The following policies contain assertions as an OR group—meaning that either type of assertion can be enforced by a client:

	
oracle/wss11_saml_or_username_token_with_message_protection_service_policy

	
oracle/wss_saml_or_username_token_over_ssl_service_policy

	
oracle/wss_saml_or_username_token_service_policy

In addition, you can add an OR group to the policy of your choice, as described in "Adding an OR Group to a Policy".

The oracle/wss11_saml_or_username_token_with_message_protection_service_policy policy contains the following assertion templates:

	
oracle/wss11_saml_token_with_message_protection_service_template. For information about configuring the policy, see "oracle/wss11_saml_token_with_message_protection_service_policy".

	
oracle/wss11_username_token_with_message_protection_service_template. For information about configuring the policy, see "oracle/wss11_username_token_with_message_protection_service_policy".

	
oracle/wss_saml_token_bearer_over_ssl_service_template. For information about configuring the policy, see "oracle/wss_saml_token_bearer_over_ssl_service_policy".

	
oracle/wss_username_token_over_ssl_service_template. For information about configuring the policy, see "oracle/wss_username_token_over_ssl_service_policy".

	
oracle/wss_http_token_over_ssl_service_template. For information about configuring the policy, see "oracle/wss_http_token_over_ssl_service_policy".

The oracle/wss_saml_or_username_token_over_ssl_service_policy policy contains the following assertion templates:

	
oracle/wss_saml_token_over_ssl_service_template. For information about configuring the policy, see "oracle/wss_saml_token_over_ssl_service_policy".

	
oracle/wss_username_token_over_ssl_service_template. For information about configuring the policy, see "oracle/wss_username_token_over_ssl_service_policy".

The oracle/wss_saml_or_username_token_service_policy policy contains the following assertion templates:

	
oracle/wss_saml_token_service_template. For information about configuring the policy, see "oracle/wss10_saml_token_service_policy".

	
oracle/wss_username_token_service_template. For information about configuring the policy, see "oracle/wss_username_token_service_policy".

oracle/wss_http_token_over_ssl_client_policy

This policy includes credentials in the HTTP header for outbound client requests.

This policy also verifies that the transport protocol is HTTPS. Requests over a non-HTTPS transport protocol are refused. This policy can be applied to any HTTP-based endpoint.

	
Note:

Currently only HTTP basic authentication is supported.

This policy contains the following assertion template: oracle/wss_http_token_over_ssl_client_template. See "oracle/wss_http_token_over_ssl_client_template" for more information about the assertion.

Setting You Can Change

See Table C-25.

Properties You Can Configure

See Table C-26.

How to Set Up the Web Services Client

You can specify a value for csf-key on the Configurations page, or override it on a per-client basis using the Security Configuration Details control when you attach the policy.

The value signifies a key that maps to a username/password. See "Adding Keys and User Credentials to the Credential Store" for information on how to add the key to the credential store.

If you do not set the Require Mutual Authentication control, one-way SSL is involved. See "Configuring SSL for a Web Service Client".

If you do set the Require Mutual Authentication control, the client must supply credentials, and expect credentials back from the Web service. See "Configuring Two-Way SSL for a Web Service Client".

How to Set Up the Web Service Client at Design Time

See "Using Client Programmatic Configuration Overrides" for a description of the configuration settings you can override.

The client must pass the credentials in the HTTP header.

If you do not set the Require Mutual Authentication control, one-way SSL is involved. See "Configuring SSL for a Web Service Client".

If you do set the Require Mutual Authentication control, the client must supply credentials, and expect credentials back from the Web service. See "Configuring Two-Way SSL for a Web Service Client".

oracle/wss_http_token_over_ssl_service_policy

This policy extracts the credentials in the HTTP header and authenticates users.

This policy verifies that the transport protocol is HTTPS. Requests over a non-HTTPS transport protocol are refused. This policy can be applied to any HTTP-based endpoint.

	
Note:

Currently only HTTP basic authentication is supported.

This policy contains the following assertion template: oracle/wss_http_token_over_ssl_service_template. See "oracle/wss_http_token_over_ssl_service_template" for more information about the assertion.

Settings You Can Change

See Table C-25.

Properties You Can Configure

See Table C-27.

How to Set Up WebLogic Server

Configure SSL, as described in "Configuring SSL on WebLogic Server (One-Way)", or as in "Configuring SSL on WebLogic Server (Two-Way)" if Allow Mutual Authentication is checked.

Use the WebLogic Server Administration Console to add an Authentication provider to the active security realm for the WebLogic domain in which the Web service is deployed, as described in "Configuring an Authentication Provider in WebLogic Server".

oracle/wss_saml_token_bearer_over_ssl_client_policy

This policy includes SAML tokens in outbound SOAP request messages. The SAML token with confirmation method Bearer is created automatically.

This policy contains the following assertion template: oracle/wss_saml_token_bearer_over_ssl_client_template. See "oracle/wss_saml_token_bearer_over_ssl_client_template" for more information about the assertion.

Settings You Can Change

See Table C-28

Properties You Can Configure

See Table C-29

How to Set Up the Web Service Client

See "How to Configure SAML Web Service Client at Design Time".

If you do not set the Require Mutual Authentication control, one-way SSL is involved, as described in "Configuring SSL for a Web Service Client".

If you do set the Require Mutual Authentication control, the client must supply credentials, and expect credentials back from the Web service. See "Configuring Two-Way SSL for a Web Service Client".

How to Set Up the Web Service Client at Design Time

See "How to Configure SAML Web Service Client at Design Time".

See "Using Client Programmatic Configuration Overrides" for a description of the configuration settings you can override.

If you do not set the Require Mutual Authentication control, one-way SSL is involved, as described in "Configuring SSL for a Web Service Client".

If you do set the Require Mutual Authentication control, the client must supply credentials, and expect credentials back from the Web service. See "Configuring Two-Way SSL for a Web Service Client".

oracle/wss_saml_token_bearer_over_ssl_service_policy

This policy authenticates users using credentials provided in SAML tokens with confirmation method 'Bearer' in the WS-Security SOAP header.

This policy contains the following assertion template: oracle/wss_saml_token_bearer_over_ssl_service_template. See "oracle/wss_saml_token_bearer_over_ssl_service_template" for more information about the assertion.

Settings You Can Change

See Table C-28.

Properties You Can Configure

See Table C-30.

Configure the Login Module

Configure the saml.loginmodule login module. See "Configuring the SAML and Kerberos Login Modules" for more information.

How to Set Up Oracle Platform Security Services (OPSS)

See "Configuring SAML".

How to Set Up WebLogic Server

Use the WebLogic Server Administration Console to add an Authentication provider to the active security realm for the WebLogic domain in which the Web service is deployed, as described in "Configuring an Authentication Provider in WebLogic Server".

The SAML login module extracts the username from the verified token and passes it to the Authentication provider.

To configure SSL, see "Configuring SSL on WebLogic Server (One-Way)", or "Configuring SSL on WebLogic Server (Two-Way)" if Require Mutual Authentication is checked.

oracle/wss_saml20_token_bearer_over_ssl_client_policy

This policy includes SAML tokens in outbound SOAP request messages. The SAML token with confirmation method Bearer is created automatically.

This policy contains the following assertion template: oracle/wss_saml20_token_bearer_over_ssl_client_template. See "oracle/wss_saml20_token_bearer_over_ssl_client_template" for more information about the assertion.

Settings You Can Change

See Table C-31.

Properties You Can Configure

See Table C-32.

How to Set Up the Web Service Client

See "How to Configure SAML Web Service Client at Design Time".

If you do not set the Require Mutual Authentication control, one-way SSL is involved, as described in "Configuring SSL for a Web Service Client".

If you do set the Require Mutual Authentication control, the client must supply credentials, and expect credentials back from the Web service. See "Configuring Two-Way SSL for a Web Service Client".

How to Set Up the Web Service Client at Design Time

See "How to Configure SAML Web Service Client at Design Time".

See "Using Client Programmatic Configuration Overrides" for a description of the configuration settings you can override.

If you do not set the Require Mutual Authentication control, one-way SSL is involved, as described in "Configuring SSL for a Web Service Client".

If you do set the Require Mutual Authentication control, the client must supply credentials, and expect credentials back from the Web service. See "Configuring Two-Way SSL for a Web Service Client".

oracle/wss_saml20_token_bearer_over_ssl_service_policy

This policy authenticates users using credentials provided in SAML tokens with confirmation method 'Bearer' in the WS-Security SOAP header.

This policy contains the following assertion template: oracle/wss_saml20_token_bearer_over_ssl_service_template. See "oracle/wss_saml20_token_bearer_over_ssl_service_template" for more information about the assertion.

Settings You Can Change

See Table C-31.

Properties You Can Configure

See Table C-33.

Configure the Login Module

Configure the saml2.loginmodule login module. See "Configuring the SAML and Kerberos Login Modules" for more information.

How to Set Up Oracle Platform Security Services (OPSS)

See "Configuring SAML".

How to Set Up WebLogic Server

Use the WebLogic Server Administration Console to add an Authentication provider to the active security realm for the WebLogic domain in which the Web service is deployed, as described in "Configuring an Authentication Provider in WebLogic Server".

The SAML login module extracts the username from the verified token and passes it to the Authentication provider.

To configure SSL, see "Configuring SSL on WebLogic Server (One-Way)", or "Configuring SSL on WebLogic Server (Two-Way)" if Require Mutual Authentication is checked.

oracle/wss_saml_token_over_ssl_client_policy

This policy enables the authentication of credentials provided via a SAML token within WS-Security SOAP header.

This policy contains the following assertion template: oracle/wss_saml_token_over_ssl_client_template. See "oracle/wss_saml_token_over_ssl_client_template" for more information about the assertion.

Settings You Can Change

See Table C-34.

Properties You Can Configure

See Table C-35.

How to Set Up the Web Service Client

See "How to Configure SAML Web Service Client at Design Time".

If you do not set the Require Mutual Authentication control, one-way SSL is involved, as described in "Configuring SSL for a Web Service Client".

If you do set the Require Mutual Authentication control, the client must supply credentials, and expect credentials back from the Web service. See "Configuring Two-Way SSL for a Web Service Client".

How to Set Up the Web Service Client at Design Time

See "How to Configure SAML Web Service Client at Design Time".

See "Using Client Programmatic Configuration Overrides" for a description of the configuration settings you can override.

If you do not set the Require Mutual Authentication control, one-way SSL is involved, as described in "Configuring SSL for a Web Service Client".

If you do set the Require Mutual Authentication control, the client must supply credentials, and expect credentials back from the Web service. See "Configuring Two-Way SSL for a Web Service Client".

oracle/wss_saml_token_over_ssl_service_policy

This policy enforces the authentication of credentials provided via a SAML token within WS-Security SOAP header.

This policy contains the following assertion template: oracle/wss_saml_token_over_ssl_service_template. See "oracle/wss_saml_token_over_ssl_service_template" for more information about the assertion.

Settings You Can Change

See Table C-34

Properties You Can Configure

See Table C-36

Configure the Login Module.

Configure the saml.loginmodule login module. See "Configuring the SAML and Kerberos Login Modules" for more information.

How to Set Up Oracle Platform Security Services (OPSS)

See "Configuring SAML".

How to Set Up WebLogic Server

Use the WebLogic Server Administration Console to add an Authentication provider to the active security realm for the WebLogic domain in which the Web service is deployed, as described in "Configuring an Authentication Provider in WebLogic Server".

The SAML login module extracts the username from the verified token and passes it to the Authentication provider.

To configure SSL, see "Configuring SSL on WebLogic Server (One-Way)", or "Configuring SSL on WebLogic Server (Two-Way)" if Require Mutual Authentication is checked.

oracle/wss_saml20_token_over_ssl_client_policy

This policy enables the authentication of credentials provided via a SAML token within WS-Security SOAP header.

This policy contains the following assertion template: oracle/wss_saml20_token_over_ssl_client_template. See "oracle/wss_saml20_token_over_ssl_client_template" for more information about the assertion.

Settings You Can Change

See Table C-37.

Properties You Can Configure

See Table C-38.

How to Set Up the Web Service Client

See "How to Configure SAML Web Service Client at Design Time".

If you do not set the Require Mutual Authentication control, one-way SSL is involved, as described in "Configuring SSL for a Web Service Client".

If you do set the Require Mutual Authentication control, the client must supply credentials, and expect credentials back from the Web service. See "Configuring Two-Way SSL for a Web Service Client".

How to Set Up the Web Service Client at Design Time

See "How to Configure SAML Web Service Client at Design Time".

See "Using Client Programmatic Configuration Overrides" for a description of the configuration settings you can override.

If you do not set the Require Mutual Authentication control, one-way SSL is involved, as described in "Configuring SSL for a Web Service Client".

If you do set the Require Mutual Authentication control, the client must supply credentials, and expect credentials back from the Web service. See "Configuring Two-Way SSL for a Web Service Client".

oracle/wss_saml20_token_over_ssl_service_policy

This policy enforces the authentication of credentials provided via a SAML token within WS-Security SOAP header.

This policy contains the following assertion template: oracle/wss_saml_token_over_ssl_service_template. See "oracle/wss_saml20_token_over_ssl_service_template" for more information about the assertion.

Settings You Can Change

See Table C-37

Properties You Can Configure

See Table C-39.

Configure the Login Module.

Configure the saml2.loginmodule login module. See "Configuring the SAML and Kerberos Login Modules" for more information.

How to Set Up Oracle Platform Security Services (OPSS)

See "Configuring SAML".

How to Set Up WebLogic Server

Use the WebLogic Server Administration Console to add an Authentication provider to the active security realm for the WebLogic domain in which the Web service is deployed, as described in "Configuring an Authentication Provider in WebLogic Server".

The SAML login module extracts the username from the verified token and passes it to the Authentication provider.

To configure SSL, see "Configuring SSL on WebLogic Server (One-Way)", or "Configuring SSL on WebLogic Server (Two-Way)" if Require Mutual Authentication is checked.

oracle/wss_username_token_over_ssl_client_policy

This policy includes credentials in the WS-Security UsernameToken header in outbound SOAP request messages. The plain text mechanism is supported. The policy also uses SSL for achieving transport layer security.

This policy contains the following assertion template: oracle/wss_username_token_over_ssl_client_template. See "oracle/wss_username_token_over_ssl_client_template" for more information about the assertion.

Settings You Can Change

See Table C-40.

Properties You Can Configure

See Table C-41.

How to Set Up the Web Service Client

If you do not set the Require Mutual Authentication control, one-way SSL is involved, as described in "Configuring SSL for a Web Service Client".

If you do set the Require Mutual Authentication control, the client must supply credentials, and expect credentials back from the Web service. See "Configuring Two-Way SSL for a Web Service Client".

You can specify a value for csf-key on the Configurations page, or override it on a per-client basis using the Security Configuration Details control when you attach the policy.

The value signifies a key that maps to a username/password. See "Adding Keys and User Credentials to the Credential Store" for information on how to add the key to the credential store.

If you specify a password type of None on the Settings page, you do not need to include a password in the key.

How to Set Up the Web Service Client at Design Time

The client must include a WS-Security UsernameToken element (<wsse:UsernameToken/>) in the SOAP request message. The client provides a username and password for authentication.

See "Using Client Programmatic Configuration Overrides" for a description of the configuration settings you can override.

If you do not set the Require Mutual Authentication control, one-way SSL is involved. See "Configuring SSL for a Web Service Client".

If you do set the Require Mutual Authentication control, the client must supply credentials, and expect credentials back from the Web service. See "Configuring Two-Way SSL for a Web Service Client".

oracle/wss_username_token_over_ssl_service_policy

This policy uses the credentials in the UsernameToken WS-Security SOAP header to authenticate users. The plain text mechanism is supported.

This policy contains the following assertion template: oracle/wss_username_token_over_ssl_service_template. See "oracle/wss_username_token_over_ssl_service_template" for more information about the assertion.

Settings You Can Change

See Table C-40.

Properties You Can Configure

See Table C-42.

How to Set Up WebLogic Server

Use the WebLogic Server Administration Console to add an Authentication provider to the active security realm for the WebLogic domain in which the Web service is deployed, as described in "Configuring an Authentication Provider in WebLogic Server".

The username and password must exist and be valid.

To configure SSL, see "Configuring SSL on WebLogic Server (One-Way)", or "Configuring SSL on WebLogic Server (Two-Way)" if Require Mutual Authentication is checked.

oracle/wss10_saml_hok_token_with_message_protection_client_policy

This policy provides message-level protection and SAML holder of key based authentication for outbound SOAP messages in accordance with the WS-Security 1.0 standard.

This policy contains the following assertion template: oracle/wss10_saml_hok_token_with_message_integrity_client_template. See "oracle/wss10_saml_hok_token_with_message_protection_service_template" for more information about the assertion.

Settings You Can Change

See Table C-43.

Properties You Can Configure

See Table C-44.

How to Set Up the Web Service Client

See "How to Configure SAML Web Service Client at Design Time".

Override the saml.assertion.filename property to point to the file that has the holder-of-key assertion.

Configure the policy assertion for message signing, message encryption, or both.

This policy requires you to set up the Oracle WSM keystore, as described in "Configuring Keystores for Message Protection".

You can specify a value for saml.issuer.name on the Configurations page, or override it on a per-client basis using the Security Configuration Details control when you attach the policy. The saml.issuer.name property defaults to a value of www.oracle.com. See "Adding an Additional SAML Assertion Issuer Name" for additional considerations.

The Web service's base64-encoded public certificate is published in the WSDL for use by the Web service client, as described in "Using Service Identity Certification Extension".

As an alternative, you can specify a value for keystore.recipient.alias on the Configurations page, or override it on a per-client basis using the Security Configuration Details control when you attach the policy. The keystore recipient alias specifies the alias used to look up the public key in the keystore when retrieving a key for encryption of outbound SOAP messages.

You can specify a value for keystore.sig.csf.key and keystore.enc.csf.key on the Configurations page, or override them on a per-client basis using the Security Configuration Details control when you attach the policy.

How to Set Up the Web Service Client at Design Time

See "How to Configure SAML Web Service Client at Design Time".

This policy requires you to set up the Web service client keystore, as described in "Setting Up the Web Service Client Keystore". The policy specifically requires that the client's and Web service's respective keystores already contain digital certificates containing each other's public key.

Override the saml.assertion.filename property to point to the file that has the holder-of-key assertion. See "Using Client Programmatic Configuration Overrides" for a description of the configuration settings you can override.

Configure the policy assertion for message signing, message encryption, or both.

Example 11-3 shows the typical structure of a signature included in the Security header in conformance with the WS-Security 1.0 standards. In this example, the body element of the SOAP message is signed.

Example 11-4 is an example of the typical structure of encryption elements included in the Security header in conformance with the WS-Security 1.0 standards. In this example, the body element is encrypted.

oracle/wss10_saml_hok_token_with_message_protection_service_policy

This policy enforces message-level protection and SAML holder of key based authentication for inbound SOAP requests in accordance with the WS-Security 1.0 standard.

This policy contains the following assertion template: oracle/wss10_saml_hok_token_with_message_integrity_service_template. See "oracle/wss10_saml_hok_token_with_message_protection_service_template" for more information about the assertion.

Configure the Login Module

Configure the saml.loginmodule login module. See "Configuring the SAML and Kerberos Login Modules" for more information.

How to Set Up WebLogic Server

Use the WebLogic Server Administration Console to add an Authentication provider to the active security realm for the WebLogic domain in which the Web service is deployed, as described in "Configuring an Authentication Provider in WebLogic Server".

The SAML login module extracts the username from the verified token and passes it to the Authentication provider.

How to Set Up Oracle Platform Security Services (OPSS)

See "Configuring SAML".

Configure the policy assertion for message signing, message encryption, or both.

This policy requires you to set up the Oracle WSM keystore, as described in "Configuring Keystores for Message Protection".

	
Note:

A CertificateExpiredException is returned if an expired certificate is present in the keystore, regardless of whether this certificate is being referenced. To resolve this exception, remove the expired certificate from the keystore.

Store the trusted certificate of the SAML authority in the keystore.

Store the trusted certificate that corresponds to the client's private key (used to sign the message) in the keystore. You also need to store the service's private key in the keystore for decrypting the message, and the CA root certificate.

You must store the password for the decryption key in the credential store, as described in "Adding Keys and User Credentials to the Credential Store". Use keystore.enc.csf.key as the key name.

You also have the option to override the keystore.sig.csf.key and keystore.enc.csf.key server-side configuration properties, as described in "Attaching Web Service Policies Permitting Overrides".

oracle/wss10_saml_token_with_message_integrity_client_policy

This policy provides message-level integrity and SAML-based authentication for outbound SOAP messages in accordance with the WS-Security 1.0 standard.

This policy contains the following assertion template: oracle/wss10_saml_token_with_message_integrity_client_template. See "oracle/wss10_saml20_token_with_message_protection_client_template" for more information about the assertion.

Settings You Can Change

See Table C-49.

Properties You Can Configure

See Table C-50.

How to Set Up the Web Service Client

See "Configuring SAML".

This policy requires you to set up the Oracle WSM keystore, as described in "Configuring Keystores for Message Protection".

You can specify a value for saml.issuer.name on the Configurations page, or override it on a per-client basis using the Security Configuration Details control when you attach the policy. The saml.issuer.name property defaults to a value of www.oracle.com. See "Adding an Additional SAML Assertion Issuer Name" for additional considerations.

You can specify a value for user.roles.include on the Configurations page, or override it on a per-client basis using the Security Configuration Details control when you attach the policy.

You can specify a value for keystore.sig.csf.key and keystore.enc.csf.key on the Configurations page, or override them on a per-client basis using the Security Configuration Details control when you attach the policy.

How to Set Up the Web Service Client at Design Time

See "How to Configure SAML Web Service Client at Design Time".

See "Using Client Programmatic Configuration Overrides" for a description of the configuration settings you can override.

This policy requires you to set up the Web service client keystore, as described in "Setting Up the Web Service Client Keystore". The policy specifically requires that the client's and Web service's respective keystores already contain digital certificates containing each other's public key.

Include a WS-Security Header Element (<saml:Assertion>) that inserts a SAML token in the outbound SOAP message. The confirmation type is always sender-vouches.

Example 11-3 shows the typical structure of a signature included in the Security header in conformance with the WS-Security 1.0 standards. In this example, the body element of the SOAP message is signed.

Example 11-4 is an example of the typical structure of encryption elements included in the Security header in conformance with the WS-Security 1.0 standards. In this example, the body element is encrypted.

oracle/wss10_saml_token_with_message_integrity_service_policy

This policy enforces message-level integrity protection and SAML-based authentication for inbound SOAP requests in accordance with the WS-Security 1.0 standard.

This policy contains the following assertion template: oracle/wss10_saml_token_with_message_protection_service_template. See "oracle/wss10_saml_token_with_message_protection_service_template" for more information about the assertion.

Settings You Can Change

See Table C-49.

Properties You Can Configure

See Table C-51.

You also have the option to override the keystore.sig.csf.key and keystore.enc.csf.key server-side configuration properties, as described in "Attaching Web Service Policies Permitting Overrides".

Configure the Login Module

Configure the saml.loginmodule login module. See "Configuring the SAML and Kerberos Login Modules" for more information.

How to Set Up Oracle Platform Security Services (OPSS)

See "Configuring SAML".

You also have the option to override the keystore.sig.csf.key and keystore.enc.csf.key server-side configuration properties, as described in "Attaching Web Service Policies Permitting Overrides".

How to Set Up WebLogic Server

Use the WebLogic Server Administration Console to add an Authentication provider to the active security realm for the WebLogic domain in which the Web service is deployed, as described in "Configuring an Authentication Provider in WebLogic Server".

The SAML login module extracts the username from the verified token and passes it to the Authentication provider.

oracle/wss10_saml_token_with_message_protection_client_policy

This policy provides message-level protection and SAML-based authentication for outbound SOAP messages in accordance with the WS-Security 1.0 standard.

This policy contains the following assertion template: oracle/wss10_saml_token_with_message_protection_client_template. See "oracle/wss10_saml_token_with_message_protection_client_template" for more information about the assertion.

Settings You Can Change

See Table C-46.

Properties You Can Configure

See Table C-47.

How to Set Up the Web Service Client

See "Configuring SAML".

Configure the policy assertion for message signing, message encryption, or both.

This policy requires you to set up the Oracle WSM keystore, as described in "Configuring Keystores for Message Protection".

The Web service's base64-encoded public certificate is published in the WSDL for use by the Web service client, as described in "Using Service Identity Certification Extension".

As an alternative, you can specify a value for keystore.recipient.alias on the Configurations page, or override it on a per-client basis using the Security Configuration Details control when you attach the policy. The keystore recipient alias specifies the alias used to look up the public key in the keystore when retrieving a key for encryption of outbound SOAP messages.

You can specify a value for keystore.sig.csf.key and keystore.enc.csf.key on the Configurations page, or override them on a per-client basis using the Security Configuration Details control when you attach the policy.

You can specify a value for saml.issuer.name on the Configurations page, or override it on a per-client basis using the Security Configuration Details control when you attach the policy. The saml.issuer.name property defaults to a value of www.oracle.com. See "Adding an Additional SAML Assertion Issuer Name" for additional considerations.

You can specify a value for user.roles.include on the Configurations page, or override it on a per-client basis using the Security Configuration Details control when you attach the policy.

How to Set Up the Web Service Client at Design Time

See "How to Configure SAML Web Service Client at Design Time".

This policy requires you to set up the Web service client keystore, as described in "Setting Up the Web Service Client Keystore". The policy specifically requires that the client's and Web service's respective keystores already contain digital certificates containing each other's public key.

See "Using Client Programmatic Configuration Overrides" for a description of the configuration settings you can override.

Configure the policy assertion for message signing, message encryption, or both.

Example 11-3 shows the typical structure of a signature included in the Security header in conformance with the WS-Security 1.0 standards. In this example, the body element of the SOAP message is signed.

Example 11-4 is an example of the typical structure of encryption elements included in the Security header in conformance with the WS-Security 1.0 standards. In this example, the body element is encrypted.

oracle/wss10_saml_token_with_message_protection_service_policy

This policy enforces message-level protection and SAML-based authentication for inbound SOAP requests in accordance with the WS-Security 1.0 standard.

This policy contains the following assertion template: oracle/wss10_saml_token_with_message_protection_service_template. See "oracle/wss10_saml_token_with_message_protection_service_template" for more information about the assertion.

Settings You Can Change

See Table C-46.

Properties You Can Configure

See Table C-48.

You also have the option to override the keystore.sig.csf.key and keystore.enc.csf.key server-side configuration properties, as described in "Attaching Web Service Policies Permitting Overrides".

Configure the Login Module

Configure the saml.loginmodule login module. See "Configuring the SAML and Kerberos Login Modules" for more information.

How to Set Up WebLogic Server

Use the WebLogic Server Administration Console to add an Authentication provider to the active security realm for the WebLogic domain in which the Web service is deployed, as described in "Configuring an Authentication Provider in WebLogic Server".

The SAML login module extracts the username from the verified token and passes it to the Authentication provider.

How to Set Up Oracle Platform Security Services (OPSS)

See "Configuring SAML".

Configure the policy assertion for message signing, message encryption, or both.

This policy requires you to set up the Oracle WSM keystore, as described in "Configuring Keystores for Message Protection".

Store the trusted certificate that corresponds to the client's private key (used to sign the message) in the keystore. You also need to store the service's private key in the keystore for decrypting the message, and the CA root certificate.

You must store the password for the decryption key in the credential store, as described in "Adding Keys and User Credentials to the Credential Store". Use keystore.enc.csf.key as the key name.

You also have the option to override the keystore.sig.csf.key and keystore.enc.csf.key server-side configuration properties, as described in "Attaching Web Service Policies Permitting Overrides".

oracle/wss10_saml20_token_with_message_protection_client_policy

This policy provides message-level protection and SAML-based authentication for outbound SOAP messages in accordance with the WS-Security 1.0 standard.

This policy contains the following assertion template: oracle/wss10_saml20_token_with_message_protection_client_template. See "oracle/wss10_saml20_token_with_message_protection_client_template" for more information about the assertion.

Settings You Can Change

See Table C-49.

Properties You Can Configure

See Table C-50.

How to Set Up the Web Service Client

See "Configuring SAML".

Configure the policy assertion for message signing, message encryption, or both.

This policy requires you to set up the Oracle WSM keystore, as described in "Configuring Keystores for Message Protection".

The Web service's base64-encoded public certificate is published in the WSDL for use by the Web service client, as described in "Using Service Identity Certification Extension".

As an alternative, you can specify a value for keystore.recipient.alias on the Configurations page, or override it on a per-client basis using the Security Configuration Details control when you attach the policy. The keystore recipient alias specifies the alias used to look up the public key in the keystore when retrieving a key for encryption of outbound SOAP messages.

You can specify a value for keystore.sig.csf.key and keystore.enc.csf.key on the Configurations page, or override them on a per-client basis using the Security Configuration Details control when you attach the policy.

You can specify a value for saml.issuer.name on the Configurations page, or override it on a per-client basis using the Security Configuration Details control when you attach the policy. The saml.issuer.name property defaults to a value of www.oracle.com. See "Adding an Additional SAML Assertion Issuer Name" for additional considerations.

You can specify a value for user.roles.include on the Configurations page, or override it on a per-client basis using the Security Configuration Details control when you attach the policy.

How to Set Up the Web Service Client at Design Time

See "How to Configure SAML Web Service Client at Design Time".

This policy requires you to set up the Web service client keystore, as described in "Setting Up the Web Service Client Keystore". The policy specifically requires that the client's and Web service's respective keystores already contain digital certificates containing each other's public key.

See "Using Client Programmatic Configuration Overrides" for a description of the configuration settings you can override.

Configure the policy assertion for message signing, message encryption, or both.

Example 11-3 shows the typical structure of a signature included in the Security header in conformance with the WS-Security 1.0 standards. In this example, the body element of the SOAP message is signed.

Example 11-4 is an example of the typical structure of encryption elements included in the Security header in conformance with the WS-Security 1.0 standards. In this example, the body element is encrypted.

oracle/wss10_saml20_token_with_message_protection_service_policy

This policy enforces message-level protection and SAML-based authentication for inbound SOAP requests in accordance with the WS-Security 1.0 standard.

This policy contains the following assertion template: oracle/wss10_sam20l_token_with_message_protection_service_template. See "oracle/wss10_saml20_token_with_message_protection_service_template" for more information about the assertion.

Settings You Can Change

See Table C-49.

Properties You Can Configure

See Table C-51.

You also have the option to override the keystore.sig.csf.key and keystore.enc.csf.key server-side configuration properties, as described in "Attaching Web Service Policies Permitting Overrides".

Configure the Login Module

Configure the saml2.loginmodule login module. See "Configuring the SAML and Kerberos Login Modules" for more information.

How to Set Up WebLogic Server

Use the WebLogic Server Administration Console to add an Authentication provider to the active security realm for the WebLogic domain in which the Web service is deployed, as described in "Configuring an Authentication Provider in WebLogic Server".

The SAML login module extracts the username from the verified token and passes it to the Authentication provider.

How to Set Up Oracle Platform Security Services (OPSS)

See "Configuring SAML".

Configure the policy assertion for message signing, message encryption, or both.

This policy requires you to set up the Oracle WSM keystore, as described in "Configuring Keystores for Message Protection".

Store the trusted certificate that corresponds to the client's private key (used to sign the message) in the keystore. You also need to store the service's private key in the keystore for decrypting the message, and the CA root certificate.

You must store the password for the decryption key in the credential store, as described in "Adding Keys and User Credentials to the Credential Store". Use keystore.enc.csf.key as the key name.

You also have the option to override the keystore.sig.csf.key and keystore.enc.csf.key server-side configuration properties, as described in "Attaching Web Service Policies Permitting Overrides".

oracle/wss10_saml_token_with_message_protection_ski_basic256_client_policy

This policy provides message-level protection and SAML-based authentication for outbound SOAP messages in accordance with the WS-Security 1.0 standard.

This policy uses the Subject Key Identifier (ski) reference mechanism for the encryption key in the request, and for both the signature and encryption keys in the response.

This policy contains the following assertion template: oracle/wss10_saml_token_with_message_protection_client_template. See "oracle/wss10_saml_token_with_message_protection_client_template" for more information about the assertion.

	
Note:

Due to the import restrictions of some countries, the jurisdiction policy files distributed with the JDK 5.0 software have built-in restrictions on available cryptographic strength.
By default, policies that use the basic192 algorithms and above do not work with the bundled JRE/JDK. To use these algorithms, you need to download the JCE Extension jars (Java Cryptography Extension (JCE) Unlimited Strength Jurisdiction Policy Files 5.0) file from http://www.oracle.com/technetwork/java/javase/downloads/index-jdk5-jsp-142662.html.

To use these policy files, you need to replace the following JAR files in $JAVA_HOME/jre/lib/security with the corresponding JARs from the JCE Extension:

	
US_export_policy.jar

	
local_policy.jar

You should back up your existing JAR files before replacing them.

Settings You Can Change

See Table C-46.

Properties You Can Configure

See Table C-47.

How to Set Up the Web Service Client

See "Configuring SAML".

Configure the policy assertion for message signing, message encryption, or both.

This policy requires you to set up the Oracle WSM keystore, as described in "Configuring Keystores for Message Protection".

The Web service's base64-encoded public certificate is published in the WSDL for use by the Web service client, as described in "Using Service Identity Certification Extension".

As an alternative, you can specify a value for keystore.recipient.alias on the Configurations page, or override it on a per-client basis using the Security Configuration Details control when you attach the policy. The keystore recipient alias specifies the alias used to look up the public key in the keystore when retrieving a key for encryption of outbound SOAP messages.

You can specify a value for keystore.sig.csf.key and keystore.enc.csf.key on the Configurations page, or override them on a per-client basis using the Security Configuration Details control when you attach the policy.

You can specify a value for saml.issuer.name on the Configurations page, or override it on a per-client basis using the Security Configuration Details control when you attach the policy. The saml.issuer.name property defaults to a value of www.oracle.com. See "Adding an Additional SAML Assertion Issuer Name" for additional considerations.

You can specify a value for user.roles.include on the Configurations page, or override it on a per-client basis using the Security Configuration Details control when you attach the policy.

How to Set Up the Web Service Client at Design Time

See "How to Configure SAML Web Service Client at Design Time".

This policy requires you to set up the Web service client keystore, as described in "Setting Up the Web Service Client Keystore". The policy specifically requires that the client's and Web service's respective keystores already contain digital certificates containing each other's public key.

See "Using Client Programmatic Configuration Overrides" for a description of the configuration settings you can override.

Configure the policy assertion for message signing, message encryption, or both.

Example 11-3 shows the typical structure of a signature included in the Security header in conformance with the WS-Security 1.0 standards. In this example, the body element of the SOAP message is signed.

Example 11-4 is an example of the typical structure of encryption elements included in the Security header in conformance with the WS-Security 1.0 standards. In this example, the body element is encrypted.

oracle/wss10_saml_token_with_message_protection_ski_basic256_service_policy

This policy enforces message-level protection and SAML-based authentication for inbound SOAP requests in accordance with the WS-Security 1.0 standard.

This policy uses the Subject Key Identifier (ski) reference mechanism for the encryption key in the request, and for both the signature and encryption keys in the response.

This policy contains the following assertion template: oracle/wss10_saml_token_with_message_protection_service_template. See "oracle/wss10_saml_token_with_message_protection_service_template" for more information about the assertion.

	
Note:

Due to the import restrictions of some countries, the jurisdiction policy files distributed with the JDK 5.0 software have built-in restrictions on available cryptographic strength.
By default, policies that use the basic192 algorithms and above do not work with the bundled JRE/JDK. To use these algorithms, you need to download the JCE Extension jars (Java Cryptography Extension (JCE) Unlimited Strength Jurisdiction Policy Files 5.0) file from http://www.oracle.com/technetwork/java/javase/downloads/index-jdk5-jsp-142662.html.

To use these policy files, you need to replace the following JAR files in $JAVA_HOME/jre/lib/security with the corresponding JARs from the JCE Extension:

	
US_export_policy.jar

	
local_policy.jar

You should back up your existing JAR files before replacing them.

Settings You Can Change

See Table C-46.

Properties You Can Configure

See Table C-48.

You also have the option to override the keystore.sig.csf.key and keystore.enc.csf.key server-side configuration properties, as described in "Attaching Web Service Policies Permitting Overrides".

Configure the Login Module

Configure the saml.loginmodule login module. See "Configuring the SAML and Kerberos Login Modules" for more information.

How to Set Up WebLogic Server

Use the WebLogic Server Administration Console to add an Authentication provider to the active security realm for the WebLogic domain in which the Web service is deployed, as described in "Configuring an Authentication Provider in WebLogic Server".

The SAML login module extracts the username from the verified token and passes it to the Authentication provider.

How to Set Up Oracle Platform Security Services (OPSS)

See "Configuring SAML".

Configure the policy assertion for message signing, message encryption, or both.

This policy requires you to set up the keystore. When using the ski reference mechanism, use OpenSSL or another such utility to create the certificate.

Store the trusted certificate that corresponds to the client's private key (used to sign the message) in the keystore. You also need to store the service's private key in the keystore for decrypting the message, and the CA root certificate.

You must store the password for the decryption key in the credential store, as described in "Adding Keys and User Credentials to the Credential Store". Use keystore.enc.csf.key as the key name.

You also have the option to override the keystore.sig.csf.key and keystore.enc.csf.key server-side configuration properties, as described in "Attaching Web Service Policies Permitting Overrides".

oracle/wss10_username_id_propagation_with_msg_protection_client_policy

This policy provides message-level protection (that is, integrity and confidentiality) and identity propagation for outbound SOAP requests in accordance with the WS-Security 1.0 standard.

This policy contains the following assertion template: oracle/wss10_username_id_propagation_with_msg_protection_client_template. See "oracle/wss10_username_token_with_message_protection_client_template" for more information about the assertion.

Settings You Can Change

See Table C-52.

Properties You Can Configure

See Table C-53.

How to Set Up the Web Service Client

Configure the policy assertion for message signing, message encryption, or both.

This policy requires you to set up the Oracle WSM keystore, as described in "Configuring Keystores for Message Protection".

The Web service's base64-encoded public certificate is published in the WSDL for use by the Web service client, as described in "Using Service Identity Certification Extension".

As an alternative, you can specify a value for keystore.recipient.alias on the Configurations page, or override it on a per-client basis using the Security Configuration Details control when you attach the policy. The keystore recipient alias specifies the alias used to look up the public key in the keystore when retrieving a key for encryption of outbound SOAP messages.

You can specify a value for keystore.sig.csf.key and keystore.enc.csf.key on the Configurations page, or override them on a per-client basis using the Security Configuration Details control when you attach the policy.

How to Set Up the Web Service Client at Design Time

The client must include a WS-Security UsernameToken element (<wsse:UsernameToken/>) in the SOAP request message. The client provides a username and password for authentication.

This policy requires you to set up the Web service client keystore, as described in "Setting Up the Web Service Client Keystore". The policy specifically requires that the client's and Web service's respective keystores already contain digital certificates containing each other's public key.

Configure the policy assertion for message signing, message encryption, or both.

See "Using Client Programmatic Configuration Overrides" for a description of the configuration settings you can override.

Example 11-3 shows the typical structure of a signature included in the Security header in conformance with the WS-Security 1.0 standards. In this example, the body element of the SOAP message is signed.

Example 11-4 is an example of the typical structure of encryption elements included in the Security header in conformance with the WS-Security 1.0 standards. In this example, the body element is encrypted.

oracle/wss10_username_id_propagation_with_msg_protection_service_policy

This policy enforces message level protection (that is, integrity and confidentiality) and identity propagation for inbound SOAP requests using mechanisms described in WS-Security 1.0.

This policy contains the following assertion template: oracle/wss10_username_id_propagation_with_msg_protection_service_template. See "oracle/wss10_username_token_with_message_protection_service_template" for more information about the assertion.

Settings You Can Change

See Table C-53.

Properties You Can Configure

See Table C-55. You also have the option to override the keystore.sig.csf.key and keystore.enc.csf.key server-side configuration properties, as described in "Attaching Web Service Policies Permitting Overrides".

How to Set Up WebLogic Server

Use the WebLogic Server Administration Console to add an Authentication provider to the active security realm for the WebLogic domain in which the Web service is deployed, as described in "Configuring an Authentication Provider in WebLogic Server".

The SAML login module extracts the username from the verified token and passes it to the Authentication provider.

How to Set Up Oracle Platform Security Services (OPSS

Configure the policy assertion for message signing, message encryption, or both.

This policy requires you to set up the Oracle WSM keystore, as described in "Configuring Keystores for Message Protection".

Store the trusted certificate that corresponds to the client's private key (used to sign the message) in the keystore. You also need to store the service's private key in the keystore for decrypting the message, and the CA root certificate.

You must store the password for the decryption key in the credential store, as described in "Adding Keys and User Credentials to the Credential Store". Use keystore.enc.csf.key as the key name.

You also have the option to override the keystore.sig.csf.key and keystore.enc.csf.key server-side configuration properties, as described in "Attaching Web Service Policies Permitting Overrides".

oracle/wss10_username_token_with_message_protection_client_policy

This policy provides message-level protection (message integrity and confidentiality) and authentication for outbound SOAP requests in accordance with the WS-Security 1.0 standard.

This policy contains the following assertion template: oracle/wss10_username_token_with_message_protection_client_template. See "oracle/wss10_username_token_with_message_protection_client_template" for more information about the assertion.

Settings You Can Change

See Table C-52.

Properties You Can Configure

See Table C-53.

How to Set Up the Web Service Client

Configure the policy assertion for message signing, message encryption, or both.

This policy requires you to set up the Oracle WSM keystore, as described in "Configuring Keystores for Message Protection".

The Web service's base64-encoded public certificate is published in the WSDL for use by the Web service client, as described in "Using Service Identity Certification Extension".

As an alternative, you can specify a value for keystore.recipient.alias on the Configurations page, or override it on a per-client basis using the Security Configuration Details control when you attach the policy. The keystore recipient alias specifies the alias used to look up the public key in the keystore when retrieving a key for encryption of outbound SOAP messages.

You can specify a value for keystore.sig.csf.key and keystore.enc.csf.key on the Configurations page, or override them on a per-client basis using the Security Configuration Details control when you attach the policy.

You can specify a value for csf-key on the Configurations page, or override it on a per-client basis using the Security Configuration Details control when you attach the policy.

The value signifies a key that maps to a username/password. See "Adding Keys and User Credentials to the Credential Store" for information on how to add the key to the credential store.

How to Set Up the Web Service Client at Design Time

Configure the policy assertion for message signing, message encryption, or both.

See "Using Client Programmatic Configuration Overrides" for a description of the configuration settings you can override.

This policy requires you to set up the Web service client keystore, as described in "Setting Up the Web Service Client Keystore". The policy specifically requires that the client's and Web service's respective keystores already contain digital certificates containing each other's public key.

Example 11-3 shows the typical structure of a signature included in the Security header in conformance with the WS-Security 1.0 standards. In this example, the body element of the SOAP message is signed.

Example 11-4 is an example of the typical structure of encryption elements included in the Security header in conformance with the WS-Security 1.0 standards. In this example, the body element is encrypted.

oracle/wss10_username_token_with_message_protection_service_policy

This policy enforces message-level protection (message integrity and confidentiality) and authentication for inbound SOAP requests in accordance with the WS-Security 1.0 standard.

This policy contains the following assertion template: oracle/wss10_username_token_with_message_protection_service_template. See "oracle/wss10_username_token_with_message_protection_service_template" for more information about the assertion.

Settings You Can Change

See Table C-52.

Properties You Can Configure

See Table C-54. You also have the option to override the keystore.sig.csf.key and keystore.enc.csf.key server-side configuration properties, as described in "Attaching Web Service Policies Permitting Overrides".

How to Set Up WebLogic Server

Use the WebLogic Server Administration Console to add an Authentication provider to the active security realm for the WebLogic domain in which the Web service is deployed, as described in "Configuring an Authentication Provider in WebLogic Server".

How to Set Up Oracle Platform Security Services (OPSS)

Configure the policy assertion for message signing, message encryption, or both.

This policy requires you to set up the Oracle WSM keystore, as described in "Configuring Keystores for Message Protection".

Store the trusted certificate that corresponds to the client's private key (used to sign the message) in the keystore. You also need to store the service's private key in the keystore for decrypting the message, and the CA root certificate.

You must store the password for the decryption key in the credential store, as described in "Adding Keys and User Credentials to the Credential Store". Use keystore.enc.csf.key as the key name.

You also have the option to override the keystore.sig.csf.key and keystore.enc.csf.key server-side configuration properties, as described in "Attaching Web Service Policies Permitting Overrides".

oracle/wss10_username_token_with_message_protection_ski_basic256_client_policy

This policy provides message-level protection (message integrity and confidentiality) and authentication for outbound SOAP requests in accordance with the WS-Security 1.0 standard.

This policy uses the Subject Key Identifier (ski) reference mechanism for the encryption key in the request, and for both the signature and encryption keys in the response.

This policy contains the following assertion template: oracle/wss10_username_token_with_message_protection_client_template. See "oracle/wss10_username_token_with_message_protection_client_template" for more information about the assertion.

	
Note:

Due to the import restrictions of some countries, the jurisdiction policy files distributed with the JDK 5.0 software have built-in restrictions on available cryptographic strength.
By default, policies that use the basic192 algorithms and above do not work with the bundled JRE/JDK. To use these algorithms, you need to download the JCE Extension jars (Java Cryptography Extension (JCE) Unlimited Strength Jurisdiction Policy Files 5.0) file from http://www.oracle.com/technetwork/java/javase/downloads/index-jdk5-jsp-142662.html.

To use these policy files, you need to replace the following JAR files in $JAVA_HOME/jre/lib/security with the corresponding JARs from the JCE Extension:

	
US_export_policy.jar

	
local_policy.jar

You should back up your existing JAR files before replacing them.

Settings You Can Change

See Table C-52.

Properties You Can Configure

See Table C-53.

How to Set Up the Web Service Client

Configure the policy assertion for message signing, message encryption, or both.

This policy requires you to set up the Oracle WSM keystore, as described in "Configuring Keystores for Message Protection".

The Web service's base64-encoded public certificate is published in the WSDL for use by the Web service client, as described in "Using Service Identity Certification Extension".

As an alternative, you can specify a value for keystore.recipient.alias on the Configurations page, or override it on a per-client basis using the Security Configuration Details control when you attach the policy. The keystore recipient alias specifies the alias used to look up the public key in the keystore when retrieving a key for encryption of outbound SOAP messages.

You can specify a value for keystore.sig.csf.key and keystore.enc.csf.key on the Configurations page, or override them on a per-client basis using the Security Configuration Details control when you attach the policy.

You can specify a value for csf-key on the Configurations page, or override it on a per-client basis using the Security Configuration Details control when you attach the policy.

The value signifies a key that maps to a username/password. See "Adding Keys and User Credentials to the Credential Store" for information on how to add the key to the credential store.

How to Set Up the Web Service Client at Design Time

Configure the policy assertion for message signing, message encryption, or both.

See "Using Client Programmatic Configuration Overrides" for a description of the configuration settings you can override.

This policy requires you to set up the Web service client keystore, as described in "Setting Up the Web Service Client Keystore". The policy specifically requires that the client's and Web service's respective keystores already contain digital certificates containing each other's public key.

Example 11-3 shows the typical structure of a signature included in the Security header in conformance with the WS-Security 1.0 standards. In this example, the body element of the SOAP message is signed.

Example 11-4 is an example of the typical structure of encryption elements included in the Security header in conformance with the WS-Security 1.0 standards. In this example, the body element is encrypted.

oracle/wss10_username_token_with_message_protection_ski_basic256_service_policy

This policy enforces message-level protection (message integrity and confidentiality) and authentication for inbound SOAP requests in accordance with the WS-Security 1.0 standard.

This policy uses the Subject Key Identifier (ski) reference mechanism for the encryption key in the request, and for both the signature and encryption keys in the response.

This policy contains the following assertion template: oracle/wss10_username_token_with_message_protection_service_template. See "oracle/wss10_username_token_with_message_protection_service_template" for more information about the assertion.

	
Note:

Due to the import restrictions of some countries, the jurisdiction policy files distributed with the JDK 5.0 software have built-in restrictions on available cryptographic strength.
By default, policies that use the basic192 algorithms and above do not work with the bundled JRE/JDK. To use these algorithms, you need to download the JCE Extension jars (Java Cryptography Extension (JCE) Unlimited Strength Jurisdiction Policy Files 5.0) file from http://www.oracle.com/technetwork/java/javase/downloads/index-jdk5-jsp-142662.html.

To use these policy files, you need to replace the following JAR files in $JAVA_HOME/jre/lib/security with the corresponding JARs from the JCE Extension:

	
US_export_policy.jar

	
local_policy.jar

You should back up your existing JAR files before replacing them.

Settings You Can Change

See Table C-52.

Properties You Can Configure

See Table C-54. You also have the option to override the keystore.sig.csf.key and keystore.enc.csf.key server-side configuration properties, as described in "Attaching Web Service Policies Permitting Overrides".

How to Set Up WebLogic Server

Use the WebLogic Server Administration Console to add an Authentication provider to the active security realm for the WebLogic domain in which the Web service is deployed, as described in "Configuring an Authentication Provider in WebLogic Server".

How to Set Up Oracle Platform Security Services (OPSS)

Configure the policy assertion for message signing, message encryption, or both.

This policy requires you to set up the keystore. When using the ski reference mechanism, use OpenSSL or another such utility to create the certificate.

Store the trusted certificate that corresponds to the client's private key (used to sign the message) in the keystore. You also need to store the service's private key in the keystore for decrypting the message, and the CA root certificate.

You must store the password for the decryption key in the credential store, as described in "Adding Keys and User Credentials to the Credential Store". Use keystore.enc.csf.key as the key name.

You also have the option to override the keystore.sig.csf.key and keystore.enc.csf.key server-side configuration properties, as described in "Attaching Web Service Policies Permitting Overrides".

oracle/wss10_x509_token_with_message_protection_client_policy

This policy provides message-level protection and certificate credential population for outbound SOAP requests in accordance with the WS-Security 1.0 standard.

This policy contains the following assertion template: oracle/wss10_x509_token_with_message_protection_client_template. See "oracle/wss10_x509_token_with_message_protection_client_template" for more information about the assertion.

Settings You Can Change

See Table C-55.

Properties You Can Configure

See Table C-56.

How to Set Up the Web Service Client

Configure the policy assertion for message signing, message encryption, or both.

This policy requires you to set up the Oracle WSM keystore, as described in "Configuring Keystores for Message Protection".

The Web service's base64-encoded public certificate is published in the WSDL for use by the Web service client, as described in "Using Service Identity Certification Extension".

As an alternative, you can specify a value for keystore.recipient.alias on the Configurations page, or override it on a per-client basis using the Security Configuration Details control when you attach the policy. The keystore recipient alias specifies the alias used to look up the public key in the keystore when retrieving a key for encryption of outbound SOAP messages.

You can specify a value for keystore.sig.csf.key and keystore.enc.csf.key on the Configurations page, or override them on a per-client basis using the Security Configuration Details control when you attach the policy.

How to Set Up the Web Service Client at Design Time

The Web service client needs to provide valid X.509 authentication credentials in the SOAP message through the WS-Security binary security token.

This policy requires you to set up the Web service client keystore, as described in "Setting Up the Web Service Client Keystore". The policy specifically requires that the client's and Web service's respective keystores already contain digital certificates containing each other's public key.

See "Using Client Programmatic Configuration Overrides" for a description of the configuration settings you can override.

Configure the policy assertion for message signing, message encryption, or both.

Example 11-3 shows the typical structure of a signature included in the Security header in conformance with the WS-Security 1.0 standards. In this example, the body element of the SOAP message is signed.

Example 11-4 is an example of the typical structure of encryption elements included in the Security header in conformance with the WS-Security 1.0 standards. In this example, the body element is encrypted.

oracle/wss10_x509_token_with_message_protection_service_policy

This policy enforces message-level protection and certificate-based authentication for inbound SOAP requests in accordance with the WS-Security 1.0 standard.

This policy contains the following assertion template: oracle/wss10_x509_token_with_message_protection_service_template. See "oracle/wss10_x509_token_with_message_protection_service_template" for more information about the assertion.

Settings You Can Change

See Table C-55.

Attributes You Can Configure

See Table C-57. You also have the option to override the keystore.sig.csf.key and keystore.enc.csf.key server-side configuration properties, as described in "Attaching Web Service Policies Permitting Overrides".

How to Set Up Oracle Platform Security Services (OPSS)

Configure the policy assertion for message signing, message encryption, or both.

This policy requires you to set up the Oracle WSM keystore, as described in "Configuring Keystores for Message Protection".

Store the trusted certificate that corresponds to the client's private key (used to sign the message) in the keystore. You also need to store the service's private key in the keystore for decrypting the message, and the CA root certificate.

You must store the password for the decryption key in the credential store, as described in "Adding Keys and User Credentials to the Credential Store". Use keystore.enc.csf.key as the key name.

You also have the option to override the keystore.sig.csf.key and keystore.enc.csf.key server-side configuration properties, as described in "Attaching Web Service Policies Permitting Overrides".

How to Set Up WebLogic Server

You need to configure an Authentication provider, as described in "Configuring an Authentication Provider in WebLogic Server".

oracle/wss11_kerberos_token_with_message_protection_client_policy

This policy includes a Kerberos token in the WS-Security header, and uses Kerberos keys to guarantee message integrity and confidentiality, in accordance with the WS-Security Kerberos Token Profile v1.1 standard.

This policy contains the following assertion template: oracle/wss11_kerberos_token_with_message_protection_client_template. See "oracle/wss11_kerberos_token_with_message_protection_client_template" for more information about the assertion.

Settings You Can Change

See Table C-58.

Properties You Can Configure

See Table C-59.

How to Set up the Web Service Client

Configure the policy assertion for message signing, message encryption, or both.

This policy requires you to set up the Oracle WSM keystore, as described in "Configuring Keystores for Message Protection".

You can specify a value for keystore.sig.csf.key and keystore.enc.csf.key on the Configurations page, or override them on a per-client basis using the Security Configuration Details control when you attach the policy.

Also see "Using Kerberos Tokens".

How to Set Up the Web Service Client at Design Time

This policy requires you to set up the Web service client keystore, as described in "Setting Up the Web Service Client Keystore".

Also see "Using Kerberos Tokens".

See "Using Client Programmatic Configuration Overrides" for a description of the configuration settings you can override.

Configure the policy assertion for message signing, message encryption, or both.

Example 11-5 is an example of the typical structure of encryption elements included in the Security header in conformance with the WS-Security 1.1 standards. In this example, the body element is encrypted.

oracle/wss11_kerberos_token_with_message_protection_service_policy

This policy is enforced in accordance with the WS-Security Kerberos Token Profile v1.1 standard.

This policy contains the following assertion template: oracle/wss11_kerberos_token_with_message_protection_service_template. See "oracle/wss11_kerberos_token_with_message_protection_service_template" for more information about the assertion.

Settings You Can Change

See Table C-58.

Properties You Can Configure

You have the option to override the keystore.enc.csf.key server-side configuration property, as described in "Attaching Web Service Policies Permitting Overrides".

Configure the Login Module

Configure the krb5.loginmodule login module. See "Configuring the SAML and Kerberos Login Modules".

How to Set Up Oracle Platform Security Services (OPSS)

Configure the policy assertion for message signing, message encryption, or both.

This policy requires you to set up the keystore, as described in "Configuring Keystores for Message Protection".

Store the trusted certificate that corresponds to the client's private key (used to sign the message) in the keystore. You also need to store the service's private key in the keystore for decrypting the message, and the CA root certificate.

You must store the password for the decryption key in the credential store, as described in "Adding Keys and User Credentials to the Credential Store". Use keystore.enc.csf.key as the key name.

You also have the option to override the keystore.enc.csf.key server-side configuration property, as described in "Attaching Web Service Policies Permitting Overrides".

Configure Kerberos, as described in "Using Kerberos Tokens".

How to Set Up WebLogic Server

Use the WebLogic Server Administration Console to add an Authentication provider to the active security realm for the WebLogic domain in which the Web service is deployed, as described in "Configuring an Authentication Provider in WebLogic Server".

oracle/wss11_kerberos_token_with_message_protection_basic128_client_policy

This policy includes a Kerberos token in the WS-Security header, and uses Kerberos keys to guarantee message integrity and confidentiality, in accordance with the WS-Security Kerberos Token Profile v1.1 standard.

The policy uses Basic128 as the algorithm suite.

This policy contains the following assertion template: oracle/wss11_kerberos_token_with_message_protection_client_template. See "oracle/wss11_kerberos_token_with_message_protection_client_template" for more information about the assertion.

Settings You Can Change

See Table C-58.

Properties You Can Configure

See Table C-59.

How to Set up the Web Service Client

Configure the policy assertion for message signing, message encryption, or both.

This policy requires you to set up the Oracle WSM keystore, as described in "Configuring Keystores for Message Protection".

You can specify a value for keystore.sig.csf.key and keystore.enc.csf.key on the Configurations page, or override them on a per-client basis using the Security Configuration Details control when you attach the policy.

Also see "Using Kerberos Tokens".

How to Set Up the Web Service Client at Design Time

This policy requires you to set up the Web service client keystore, as described in "Setting Up the Web Service Client Keystore".

Also see "Using Kerberos Tokens".

See "Using Client Programmatic Configuration Overrides" for a description of the configuration settings you can override.

Configure the policy assertion for message signing, message encryption, or both.

Example 11-5 is an example of the typical structure of encryption elements included in the Security header in conformance with the WS-Security 1.1 standards. In this example, the body element is encrypted.

oracle/wss11_kerberos_token_with_message_protection_basic128_service_policy

This policy is enforced in accordance with the WS-Security Kerberos Token Profile v1.1 standard.

The policy uses Basic128 as the algorithm suite.

This policy contains the following assertion template: oracle/wss11_kerberos_token_with_message_protection_service_template. See "oracle/wss11_kerberos_token_with_message_protection_service_template" for more information about the assertion.

Settings You Can Change

See Table C-58.

Properties You Can Configure

You have the option to override the keystore.enc.csf.key server-side configuration property, as described in "Attaching Web Service Policies Permitting Overrides".

Configure the Login Module

Configure the krb5.loginmodule login module. See "Configuring the SAML and Kerberos Login Modules".

How to Set Up Oracle Platform Security Services (OPSS)

Configure the policy assertion for message signing, message encryption, or both.

This policy requires you to set up the keystore, as described in "Configuring Keystores for Message Protection".

Store the trusted certificate that corresponds to the client's private key (used to sign the message) in the keystore. You also need to store the service's private key in the keystore for decrypting the message, and the CA root certificate.

You must store the password for the decryption key in the credential store, as described in "Adding Keys and User Credentials to the Credential Store". Use keystore.enc.csf.key as the key name.

You also have the option to override the keystore.enc.csf.key server-side configuration property, as described in "Attaching Web Service Policies Permitting Overrides".

Configure Kerberos, as described in "Using Kerberos Tokens".

How to Set Up WebLogic Server

Use the WebLogic Server Administration Console to add an Authentication provider to the active security realm for the WebLogic domain in which the Web service is deployed, as described in "Configuring an Authentication Provider in WebLogic Server".

oracle/wss11_saml_token_identity_switch_with_message_protection_client_policy

This policy enables identity switching. Identity switching means that the policy propagates a different identity than the one based on the authenticated Subject. Instead of using the username from the Subject, this policy allows you to set a new user name when sending the SAML Web service request.

This policy enables message level protection and SAML token population for outbound SOAP requests using mechanisms described in WS-Security 1.1.

This policy contains the following assertion template: oracle/wss11_saml_token_with_message_protection_client_template. See "oracle/wss11_saml_token_with_message_protection_client_template" for more information about the assertion.

Settings You Can Change

See Table C-60.

Properties You Can Configure

See Table C-61.

How to Set Up the Web Service Client

You attach the wss11_saml_token_identity_switch_with_message_protection_client_policy to a Web service client of any type.

subject.precedence is set to false to allow for the use of a client-specified username rather than the authenticated subject. (If subject.precedence is false, the user name to create the SAML assertion is obtained only from the csf-key username property.) The wss11_saml_token_identity_switch_with_message_protection_client_policy policy requires that an application to which the policy is attached must have the WSIdentityPermission permission. That is, applications from which Oracle WSM accepts the externally-supplied identity must have the WSIdentityPermission permission. This is to avoid potentially rogue applications from providing an identity to Oracle WSM.

See "Configuring SAML Web Service Clients for Identity Switching" for information about how to use this policy. In particular, you need to "Set the javax.xml.ws.security.auth.username Property", and "Set the WSIdentityPermission Permission".

See "How to Configure SAML Web Service Client at Design Time" for additional SAML considerations.

Configure the policy assertion for message signing, message encryption, or both.

This policy requires you to set up the Oracle WSM keystore, as described in "Configuring Keystores for Message Protection".

The Web service's base64-encoded public certificate is published in the WSDL for use by the Web service client, as described in "Using Service Identity Certification Extension".

As an alternative, you can specify a value for keystore.recipient.alias on the Configurations page, or override it on a per-client basis using the Security Configuration Details control when you attach the policy. The keystore recipient alias specifies the alias used to look up the public key in the keystore when retrieving a key for encryption of outbound SOAP messages.

You can specify a value for keystore.sig.csf.key and keystore.enc.csf.key on the Configurations page, or override them on a per-client basis using the Security Configuration Details control when you attach the policy.

You can specify a value for saml.issuer.name on the Configurations page, or override it on a per-client basis using the Security Configuration Details control when you attach the policy. The saml.issuer.name property defaults to a value of www.oracle.com. See "Adding an Additional SAML Assertion Issuer Name" for additional considerations.

You can specify a value for saml.audience.uri on the Configurations page, or override it on a per-client basis using the Security Configuration Details control when you attach the policy.

You can specify a value for user.roles.include on the Configurations page, or override it on a per-client basis using the Security Configuration Details control when you attach the policy.

How to Set Up the Web Service Client at Design Time

See "How to Configure SAML Web Service Client at Design Time".

This policy requires you to set up the Web service client keystore, as described in "Setting Up the Web Service Client Keystore". The policy specifically requires that the client's and Web service's respective keystores already contain digital certificates containing each other's public key.

See "Using Client Programmatic Configuration Overrides" for a description of the configuration settings you can override.

Configure the policy assertion for message signing, message encryption, or both.

Example 11-5 is an example of the typical structure of encryption elements included in the Security header in conformance with the WS-Security 1.1 standards. In this example, the body element is encrypted.

oracle/wss11_saml_token_with_message_protection_client_policy

This policy enables message level protection and SAML token population for outbound SOAP requests using mechanisms described in WS-Security 1.1.

This policy contains the following assertion template: oracle/wss11_saml_token_with_message_protection_client_template. See "oracle/wss11_saml_token_with_message_protection_client_template" for more information about the assertion.

Settings You Can Change

See Table C-60.

Properties You Can Configure

See Table C-61.

How to Set Up the Web Service Client

See "How to Configure SAML Web Service Client at Design Time".

Configure the policy assertion for message signing, message encryption, or both.

This policy requires you to set up the Oracle WSM keystore, as described in "Configuring Keystores for Message Protection".

The Web service's base64-encoded public certificate is published in the WSDL for use by the Web service client, as described in "Using Service Identity Certification Extension".

As an alternative, you can specify a value for keystore.recipient.alias on the Configurations page, or override it on a per-client basis using the Security Configuration Details control when you attach the policy. The keystore recipient alias specifies the alias used to look up the public key in the keystore when retrieving a key for encryption of outbound SOAP messages.

You can specify a value for keystore.sig.csf.key and keystore.enc.csf.key on the Configurations page, or override them on a per-client basis using the Security Configuration Details control when you attach the policy.

You can specify a value for saml.issuer.name on the Configurations page, or override it on a per-client basis using the Security Configuration Details control when you attach the policy. The saml.issuer.name property defaults to a value of www.oracle.com. See "Adding an Additional SAML Assertion Issuer Name" for additional considerations.

You can specify a value for user.roles.include on the Configurations page, or override it on a per-client basis using the Security Configuration Details control when you attach the policy.

How to Set Up the Web Service Client at Design Time

See "How to Configure SAML Web Service Client at Design Time".

This policy requires you to set up the Web service client keystore, as described in "Setting Up the Web Service Client Keystore". The policy specifically requires that the client's and Web service's respective keystores already contain digital certificates containing each other's public key.

See "Using Client Programmatic Configuration Overrides" for a description of the configuration settings you can override.

Configure the policy assertion for message signing, message encryption, or both.

Example 11-5 is an example of the typical structure of encryption elements included in the Security header in conformance with the WS-Security 1.1 standards. In this example, the body element is encrypted.

oracle/wss11_saml_token_with_message_protection_service_policy

This policy enforces message-level integrity protection and SAML-based authentication for inbound SOAP requests in accordance with the WS-Security 1.1 standard.

This policy contains the following assertion template: oracle/wss11_saml_token_with_message_protection_service_template. See "oracle/wss11_saml_token_with_message_protection_service_template" for more information about the assertion.

Settings You Can Change

See Table C-60.

Properties You Can Configure

See Table C-62.

You also have the option to override the keystore.enc.csf.key server-side configuration property, as described in "Attaching Web Service Policies Permitting Overrides".

Configure the Login Module

Configure the saml.loginmodule login module. See "Configuring the SAML and Kerberos Login Modules".

How to Set Up Oracle Platform Security Services (OPSS)

See "Configuring SAML".

Configure the policy assertion for message signing, message encryption, or both.

This policy requires you to set up the keystore, as described in "Configuring Keystores for Message Protection".

Store the trusted certificate that corresponds to the client's private key (used to sign the message) in the keystore. You also need to store the service's private key in the keystore for decrypting the message, and the CA root certificate.

You must store the password for the decryption key in the credential store, as described in "Adding Keys and User Credentials to the Credential Store". Use keystore.enc.csf.key as the key name.

You also have the option to override the keystore.enc.csf.key server-side configuration property, as described in "Attaching Web Service Policies Permitting Overrides".

How to Set Up WebLogic Server

Use the WebLogic Server Administration Console to add an Authentication provider to the active security realm for the WebLogic domain in which the Web service is deployed, as described in "Configuring an Authentication Provider in WebLogic Server".

The SAML login module extracts the username from the verified token and passes it to the Authentication provider.

oracle/wss11_saml20_token_with_message_protection_client_policy

This policy enables message level protection and SAML token population for outbound SOAP requests using mechanisms described in WS-Security 1.1.

This policy contains the following assertion template: oracle/wss11_saml20_token_with_message_protection_client_template. See "oracle/wss11_saml20_token_with_message_protection_client_template" for more information about the assertion.

Settings You Can Change

See Table C-63.

Properties You Can Configure

See Table C-64.

How to Set Up the Web Service Client

See "How to Configure SAML Web Service Client at Design Time".

Configure the policy assertion for message signing, message encryption, or both.

This policy requires you to set up the Oracle WSM keystore, as described in "Configuring Keystores for Message Protection".

The Web service's base64-encoded public certificate is published in the WSDL for use by the Web service client, as described in "Using Service Identity Certification Extension".

As an alternative, you can specify a value for keystore.recipient.alias on the Configurations page, or override it on a per-client basis using the Security Configuration Details control when you attach the policy. The keystore recipient alias specifies the alias used to look up the public key in the keystore when retrieving a key for encryption of outbound SOAP messages.

You can specify a value for keystore.sig.csf.key and keystore.enc.csf.key on the Configurations page, or override them on a per-client basis using the Security Configuration Details control when you attach the policy.

You can specify a value for saml.issuer.name on the Configurations page, or override it on a per-client basis using the Security Configuration Details control when you attach the policy. The saml.issuer.name property defaults to a value of www.oracle.com. See "Adding an Additional SAML Assertion Issuer Name" for additional considerations.

You can specify a value for user.roles.include on the Configurations page, or override it on a per-client basis using the Security Configuration Details control when you attach the policy.

How to Set Up the Web Service Client at Design Time

See "How to Configure SAML Web Service Client at Design Time".

This policy requires you to set up the Web service client keystore, as described in "Setting Up the Web Service Client Keystore". The policy specifically requires that the client's and Web service's respective keystores already contain digital certificates containing each other's public key.

See "Using Client Programmatic Configuration Overrides" for a description of the configuration settings you can override.

Configure the policy assertion for message signing, message encryption, or both.

Example 11-5 is an example of the typical structure of encryption elements included in the Security header in conformance with the WS-Security 1.1 standards. In this example, the body element is encrypted.

oracle/wss11_saml20_token_with_message_protection_service_policy

This policy enforces message-level integrity protection and SAML-based authentication for inbound SOAP requests in accordance with the WS-Security 1.1 standard.

This policy contains the following assertion template: oracle/wss11_saml20_token_with_message_protection_service_template. See "oracle/wss11_saml20_token_with_message_protection_service_template" for more information about the assertion.

Settings You Can Change

See Table C-63.

Properties You Can Configure

See Table C-65.

You also have the option to override the keystore.enc.csf.key server-side configuration property, as described in "Attaching Web Service Policies Permitting Overrides".

Configure the Login Module

Configure the saml2.loginmodule login module. See "Configuring the SAML and Kerberos Login Modules".

How to Set Up Oracle Platform Security Services (OPSS)

See "Configuring SAML".

Configure the policy assertion for message signing, message encryption, or both.

This policy requires you to set up the keystore, as described in "Configuring Keystores for Message Protection".

Store the trusted certificate that corresponds to the client's private key (used to sign the message) in the keystore. You also need to store the service's private key in the keystore for decrypting the message, and the CA root certificate.

You must store the password for the decryption key in the credential store, as described in "Adding Keys and User Credentials to the Credential Store". Use keystore.enc.csf.key as the key name.

You also have the option to override the keystore.enc.csf.key server-side configuration property, as described in "Attaching Web Service Policies Permitting Overrides".

How to Set Up WebLogic Server

Use the WebLogic Server Administration Console to add an Authentication provider to the active security realm for the WebLogic domain in which the Web service is deployed, as described in "Configuring an Authentication Provider in WebLogic Server".

The SAML login module extracts the username from the verified token and passes it to the Authentication provider.

oracle/wss11_username_token_with_message_protection_client_policy

This policy provides message-level protection and authentication for outbound SOAP requests in accordance with the WS-Security 1.1 standard.

This policy contains the following assertion template: oracle/wss11_username_token_with_message_protection_client_template. See "oracle/wss11_username_token_with_message_protection_client_template" for more information about the assertion.

Settings You Can Change

See Table C-66.

Properties You Can Configure

See Table C-67.

How to Set Up the Web Service Client

Configure the policy assertion for message signing, message encryption, or both.

This policy requires you to set up the Oracle WSM keystore, as described in "Configuring Keystores for Message Protection".

The Web service's base64-encoded public certificate is published in the WSDL for use by the Web service client, as described in "Using Service Identity Certification Extension".

As an alternative, you can specify a value for keystore.recipient.alias on the Configurations page, or override it on a per-client basis using the Security Configuration Details control when you attach the policy. The keystore recipient alias specifies the alias used to look up the public key in the keystore when retrieving a key for encryption of outbound SOAP messages.

You can specify a value for keystore.enc.csf.key on the Configurations page, or override it on a per-client basis using the Security Configuration Details control when you attach the policy.

How to Set Up the Web Service Client at Design Time

This policy uses symmetric key technology, which is an encryption method that uses the same shared key to encrypt and decrypt data. The symmetric key is used to sign the message.

Configure the policy assertion for message signing, message encryption, or both.

See "Using Client Programmatic Configuration Overrides" for a description of the configuration settings you can override.

Example 11-5 is an example of the typical structure of encryption elements included in the Security header in conformance with the WS-Security 1.1 standards. In this example, the body element is encrypted.

oracle/wss11_username_token_with_message_protection_service_policy

This policy enforces message-level protection (that is, message integrity and message confidentiality) and authentication for inbound SOAP requests in accordance with the WS-Security 1.1 standard.

This policy contains the following assertion template: oracle/wss11_username_token_with_message_protection_service_template. See "oracle/wss11_username_token_with_message_protection_service_template" for more information about the assertion.

Settings You Can Change

See Table C-66.

Properties You Can Configure

See Table C-68. You also have the option to override the keystore.enc.csf.key server-side configuration property, as described in "Attaching Web Service Policies Permitting Overrides".

How to Set Up Oracle Platform Security Services (OPSS)

Configure the policy assertion for message signing, message encryption, or both.

This policy requires you to set up the keystore, as described in "Configuring Keystores for Message Protection".

Store the trusted certificate that corresponds to the client's private key (used to sign the message) in the keystore. You also need to store the service's private key in the keystore for decrypting the message, and the CA root certificate.

You must store the password for the decryption key in the credential store, as described in "Adding Keys and User Credentials to the Credential Store". Use keystore.enc.csf.key as the key name.

You also have the option to override the keystore.enc.csf.key server-side configuration property, as described in "Attaching Web Service Policies Permitting Overrides".

How to Set Up WebLogic Server

Use the WebLogic Server Administration Console to add an Authentication provider to the active security realm for the WebLogic domain in which the Web service is deployed, as described in "Configuring an Authentication Provider in WebLogic Server".

oracle/wss11_x509_token_with_message_protection_client_policy

This policy provides message-level protection and certificate-based authentication for outbound SOAP requests in accordance with the WS-Security 1.1 standard.

This policy contains the following assertion template: oracle/wss11_x509_token_with_message_protection_client_template. See "oracle/wss11_x509_token_with_message_protection_client_template" for more information about the assertion.

Settings You Can Change

See Table C-69.

Properties You Can Configure

See Table C-70.

How to Set Up the Web Service Client

Configure the policy assertion for message signing, message encryption, or both.

This policy requires you to set up the Oracle WSM keystore, as described in "Configuring Keystores for Message Protection".

The Web service's base64-encoded public certificate is published in the WSDL for use by the Web service client, as described in "Using Service Identity Certification Extension".

As an alternative, you can specify a value for keystore.recipient.alias on the Configurations page, or override it on a per-client basis using the Security Configuration Details control when you attach the policy. The keystore recipient alias specifies the alias used to look up the public key in the keystore when retrieving a key for encryption of outbound SOAP messages.

You can specify a value for keystore.sig.csf.key and keystore.enc.csf.key on the Configurations page, or override them on a per-client basis using the Security Configuration Details control when you attach the policy.

How to Set Up the Web Service Client at Design Time

This policy requires you to set up the Web service client keystore, as described in "Setting Up the Web Service Client Keystore". The policy specifically requires that the client's and Web service's respective keystores already contain digital certificates containing each other's public key.

The Web service client needs to provide valid X.509 authentication credentials in the SOAP message through the WS-Security binary security token.

See "Using Client Programmatic Configuration Overrides" for a description of the configuration settings you can override.

Configure the policy assertion for message signing, message encryption, or both.

Example 11-5 is an example of the typical structure of encryption elements included in the Security header in conformance with the WS-Security 1.1 standards. In this example, the body element is encrypted.

oracle/wss11_x509_token_with_message_protection_service_policy

This policy enforces message-level protection and certificate-based authentication for inbound SOAP requests in accordance with the WS-Security 1.1 standard.

This policy contains the following assertion template: oracle/wss11_x509_token_with_message_protection_service_template. See "oracle/wss11_x509_token_with_message_protection_service_template" for more information about the assertion.

Settings You Can Change

See Table C-69.

Properties You Can Configure

See Table C-71. You also have the option to override the keystore.enc.csf.key server-side configuration property, as described in "Attaching Web Service Policies Permitting Overrides".

How to Set Up Oracle Platform Security Services (OPSS)

Configure the policy assertion for message signing, message encryption, or both.

This policy requires you to set up the keystore, as described in "Configuring Keystores for Message Protection".

Store the trusted certificate that corresponds to the client's private key (used to sign the message) in the keystore. You also need to store the service's private key in the keystore for decrypting the message, and the CA root certificate.

You must store the password for the decryption key in the credential store, as described in "Adding Keys and User Credentials to the Credential Store". Use keystore.enc.csf.key as the key name.

You also have the option to override the keystore.enc.csf.key server-side configuration property, as described in "Attaching Web Service Policies Permitting Overrides".

How to Set Up WebLogic Server

You need to configure the Authentication provider, as described in "Configuring an Authentication Provider in WebLogic Server".

Authorization Policies and Configuration Steps

Frequently, authentication is the first step of determining whether a user should be given access to a Web service. After the user is authenticated, the second step is to verify that the user is authorized to access the Web service. This is accomplished using an authorization policy. You can create an authorization policy using the binding_authorization_template or the component_authorization_template assertion templates.

Policies created with these templates perform role- or permission-based access control (RBAC) and check that the authenticated user has been granted one of the roles or permissions allowed access to the Web service.

Appendix B, "Predefined Policies" summarizes the security policies that enforce authorization, and indicates whether the policy is enforced at the transport layer or SOAP header.

	
Note:

The authorization polices can follow any authentication policy where the subject is established.
You cannot attach both a permitall and denyall policy to the same Web service.

Determining Which Resources to Protect

The authorization policies provide the following properties that you can use to specify which resources you want the policy to protect. Not all of the predefined policies feature all of the properties.

	
Constraint Pattern -- Expression that represents the constraints against which authorization checks are performed. The constraints expression is specified using the following two messageContext properties:

	
messageContext.authenticationMethod—Determines the authentication method used to authenticate the user. The only valid value is SAML_SV.

	
messageContext.requestOrigin—Determines whether the request originated from an internal or external network. This property is valid only when using Oracle HTTP Server and the Oracle HTTP server administrator has added a custom VIRTUAL_HOST_TYPE header to the request. For details about adding this header to a request, see "Configuring Oracle HTTP Server to Specify Request Origin".

Note the following:

	
The Constraint Pattern properties and their values are case sensitive.

	
The constraint expression uses the following standard supported operators: ==, !=, &&, || and !.

In the following example, the role-based authorization assertion will be executed only if the current message does not contain a SAML_SV token OR the request origin is not internal.

${!(messageContext.authenticationMethod =='SAML_SV'|| messageContext.requestOrigin == 'internal')}

	
Note:

This property is valid for authorization policies based on the binding_authorization_template only. For policies based on other authorization assertion templates, this property is reserved for future use.

	
Action Pattern -- The Web service operation for which permission-based checks are performed. This value can be a comma-separated list of values. This field accepts wildcards. * means all Web service operations.

The valid values for Action Pattern are determined by the Web service methods. For example, if the Web service method is validate(amountAvailable), enter the Action Pattern as validate.

	
Resource Pattern -- The name of the resource for which permission-based checks are performed. This field accepts wildcards, and the default is * for all resources in the Web services protected by the policy.

By convention you enter the Resource Pattern as (namespace of Web service + Web service name).

For example, if the namespace of the Web service is http://project11 and the Web service name is CreditValidation, you would enter the Resource Name as http://project11/CreditValidation.

If you specify a specific Resource Pattern, the policy is enforced only for those Web services that match the criteria. That is, entering a specific Resource Pattern limits the scope of the authorization policy. This condition also applies if you have bulk-attached this authorization policy to multiple subjects. The default of * protects all resources (namespace of Web service + Web service name) of the bulk-attached Web services.

	
Permission Check Class -- By default, it is oracle.wsm.security.WSFunctionPermission. The class must be in the classpath.

	
Authorization Setting -- Possible values are Permit All, Deny All, and Selected Roles. If you choose Selected Roles, you must then select from the enterprise (Global) roles defined in WebLogic Server, which may include the following:

	
AdminChannelUser

	
Anonymous

	
AppTester

	
CrossDomainConnector

	
Deployer

	
Monitor

	
Operator

	
OracleSystemRole

How Authorization Permissions Are Determined

Conceptually, determining whether an authenticated subject is authorized to access a particular resource protected by a Web service policy has two parts that work in tandem.

	
The Resource Pattern, and Action Pattern parameters on the Policy Settings page for the policy determine what resources are being protected by the policy, as shown in Figure 11-2. (You can also override the Resource Pattern and Action Pattern properties, as described in "Configuring Server-Side Override Properties for Authorization Policies".)

You have the option to change the Permission Check Class configuration property for the policy, which identifies the permission class as per JAAS standards. The permission class must be available in the application or server classpath.

The custom permission class must extend the abstract Permission class and implement the Serializable interface. See the Javadoc at http://java.sun.com/j2se/1.5.0/docs/api/java/security/Permission.html. The default is oracle.wsm.security.WSFunctionPermission.

Figure 11-2 The Permission Settings for a Policy

[image: Description of Figure 11-2 follows]

Description of "Figure 11-2 The Permission Settings for a Policy"

	
The OPSS Application Policies page specifies whether the authenticated subject has invoke access to the Resource Name listed there, as shown in Figure 11-3.

Figure 11-3 Adding a Permission on the OPSS Create Application Grant Page

[image: Description of Figure 11-3 follows]

Description of "Figure 11-3 Adding a Permission on the OPSS Create Application Grant Page"

OPSS uses the Policy Settings page for the Web service to determine which resources require an authorization check. Then, access to the resource is allowed if the authenticated subject has been granted WSFunctionPermission (or other permission) for that resource via OPSS.

	
Note:

If you changed the Permission Check Class configuration property for the policy to a custom class, use the custom class here as well.

Consider further the example shown in Figure 11-2 and Figure 11-3.

On the Policy Settings page, assume that you specify the following to protect the validate method of the http://project11/CreditValidation Web service:

Action pattern: validate
Resource pattern: http://project11/CreditValidation
Permission Check Class oracle.wsm.security.WSFunctionPermission

Then, on the OPSS Application Policies page, you would use http://project11/CreditValidation#validate for the Resource Name to specify that the authenticated subject has permission to invoke this resource:

Permission Class: oracle.wsm.security.WSFunctionPermission
Resource Name: http://project11/CreditValidation#validate
Permissions Action: invoke

You can grant the WSFunctionPermission permission to a user, a group, or an application role. If you grant WSFunctionPermission to a user or group it will apply to all applications that are deployed in the domain.

OPSS Resource Name Can Include Operation Name

In previous releases of Fusion Middleware Control, the Resource Name on the OPSS Application Policies page was determined by name-space-of-webservice/ServiceName. For example, if the name space of a Web service was http://project1/ and the service name was CreditValidation, the Resource Name would have been http://project1/CreditValidation. You could also use an asterisk (*) wildcard for providing permission to all the actions or all resources.

In this release, the resource target of the WSFunctionPermission is enhanced to include the actual Web service operation name. The syntax for the Resource Name is now name-space-of-webservice/servicename#[operation name]. (For a component it is compositename/componentname#[operation name].)]

You must now include at least the name-space-of-webservice/service name. That is, you can no longer use an asterisk (*) wildcard for providing permission to all the actions or all resources.

Instead, to specify all operations for a Web service, simply leave the operation name blank. For example, name-space-of-webservice/servicename#

Permission Action is always invoke.

oracle/binding_authorization_denyall_policy

This policy provides a simple role-based authorization policy based on the authenticated subject.

This policy denies all users with any role.

This policy should follow an authentication policy where the subject is established and can be attached to any SOAP-based endpoint.

You must have already configured a WebLogic Authentication provider, as described in "Configure Authentication and Identity Assertion providers" in the Oracle WebLogic Server Administration Console Help.

This policy contains the following assertion template: oracle/binding_authorization_template

See "oracle/binding_authorization_template" for more information about the assertion.

Settings You Can Change

See Table C-86.

To add roles:

	
Click Selected Roles.

	
Click Add.

	
To add roles, click the check box next to each role you want to add in the Roles Available column and click Move. To add all roles, click Move All.

To remove roles, click the check box next to each role you want to remove in the Roles Selected to Add column, and click Remove. To remove all roles, click Remove All.

To search for roles, enter a search string in the Role Name search box and click the go arrow. The Roles Available column is updated to include only those roles that match the search string.

	
Click OK.

To delete roles:

	
Select the role that you want to delete in the Selected Roles list.

	
Click Delete.

Properties You Can Configure

None defined.

How to Set Up Oracle Platform Security Services (OPSS)

If you specify one or more of the WebLogic Server enterprise roles, the authenticated subject must already have that role. You use the WebLogic Server Administration Console to grant a role to a user or group, as described in the Oracle WebLogic Server Administration Console Help.

You must configure a WebLogic Authentication provider, as described in "Configure Authentication and Identity Assertion providers" in the Oracle WebLogic Server Administration Console Help.

oracle/binding_authorization_permitall_policy

This policy provides a simple role-based authorization policy based on the authenticated subject.

This policy permits all users with any roles.

This policy should follow an authentication policy where the subject is established and can be attached to any SOAP-based endpoint.

You must have already configured a WebLogic Authentication provider, as described in "Configure Authentication and Identity Assertion providers" in the Oracle WebLogic Server Administration Console Help.

This policy contains the following assertion template: oracle/binding_authorization_template. See "oracle/binding_authorization_template" for more information about the assertion.

Settings You Can Change

See Table C-86.

To add roles:

	
Click Selected Roles.

	
Click Add.

	
To add roles, click the check box next to each role you want to add in the Roles Available column and click Move. To add all roles, click Move All.

To remove roles, click the check box next to each role you want to remove in the Roles Selected to Add column, and click Remove. To remove all roles, click Remove All.

To search for roles, enter a search string in the Role Name search box and click the go arrow. The Roles Available column is updated to include only those roles that match the search string.

	
Click OK.

To delete roles:

	
Select the role that you want to delete in the Selected Roles list.

	
Click Delete.

Properties You Can Configure

None defined.

How to Set Up Oracle Platform Security Services (OPSS)

If you specify one or more of the WebLogic Server enterprise roles, the authenticated subject must already have that role. You use the WebLogic Server Administration Console to grant a role to a user or group, as described in the Oracle WebLogic Server Administration Console Help.

You must configure a WebLogic Authentication provider, as described in "Configure Authentication and Identity Assertion providers" in the Oracle WebLogic Server Administration Console Help.

oracle/binding_permission_authorization_policy

This policy provides a permission-based authorization policy based on the authenticated subject.

This policy ensures that the subject has permission to perform the operation. To do this, the Authorization Policy executor leverages OPSS to check if the authenticated subject has been granted oracle.wsm.security.WSFunctionPermission (or whatever permission class is specified in Permission Check Class) using the Resource Pattern and Action Pattern as parameters.

This policy should follow an authentication policy where the subject is established and can be attached to any SOAP-based endpoint.

This policy contains the following assertion template: oracle/binding_permission_authorization_template. See "oracle/binding_permission_authorization_template" for more information about the assertion.

Settings You Can Change

See Table C-87.

Attributes You Can Configure

You have the option to change the permission_class configuration property for the policy, which identifies the permission class as per JAAS standards. The permission class must be available in the application or server classpath.

The custom permission class must extend the abstract Permission class and implement the Serializable interface. See the Javadoc at http://java.sun.com/j2se/1.5.0/docs/api/java/security/Permission.html.

The default is oracle.wsm.security.WSFunctionPermission.

How to Set Up Oracle Platform Security Services (OPSS)

Use Fusion Middleware Control to grant the WSFunctionPermission (or other) permission to the user, group, or application that will attempt to authenticate to the Web service.

You have the option to change the permission_class configuration property for the policy, which identifies the permission class as per JAAS standards. The class must be available in the server classpath. The default is oracle.wsm.security.WSFunctionPermission.

You must configure a WebLogic Authentication provider, as described in "Configure Authentication and Identity Assertion providers" in the Oracle WebLogic Server Administration Console Help.

oracle/component_authorization_denyall_policy

This policy provides a simple role-based authorization policy based on the authenticated subject.

This policy denies all users with any roles.

You must have already configured a WebLogic Authentication provider, as described in "Configure Authentication and Identity Assertion providers" in the Oracle WebLogic Server Administration Console Help.

This policy should follow an authentication policy where the subject is established and can be attached to any SCA-based endpoint.

This policy contains the following assertion template: oracle/component_authorization_template. See "oracle/component_authorization_template" for more information about the assertion.

Settings You Can Change

See Table C-89.

To add roles:

	
Click Add.

	
To add roles, click the check box next to each role you want to add in the Roles Available column and click Move. To add all roles, click Move All.

To remove roles, click the check box next to each role you want to remove in the Roles Selected to Add column, and click Remove. To remove all roles, click Remove All.

To search for roles, enter a search string in the Role Name search box and click the go arrow. The Roles Available column is updated to include only those roles that match the search string.

	
Click OK.

To delete roles:

	
Select the role that you want to delete in the Selected Roles list.

	
Click Delete.

Properties You Can Configure

None defined.

How to Set Up Oracle Platform Security Services (OPSS)

If you specify one or more of the WebLogic Server enterprise roles, the authenticated subject must already have that role. You use the WebLogic Server Administration Console to grant a role to a user or group, as described in the Oracle WebLogic Server Administration Console Help.

You must configure a WebLogic Authentication provider, as described in "Configure Authentication and Identity Assertion providers" in the Oracle WebLogic Server Administration Console Help.

oracle/component_authorization_permitall_policy

This policy provides a simple role-based authorization policy based on the authenticated subject.

This policy permits all users with any roles.

You must have already configured a WebLogic Authentication provider, as described in "Configure Authentication and Identity Assertion providers" in the Oracle WebLogic Server Administration Console Help.

It should follow an authentication policy where the subject is established and can be attached to any SCA-based endpoint.

This policy contains the following assertion template: oracle/component_authorization_template. See "oracle/component_authorization_template" for more information about the assertion.

Settings You Can Change

See Table C-89.

To add roles:

	
Click Add.

	
To add roles, click the check box next to each role you want to add in the Roles Available column and click Move. To add all roles, click Move All.

To remove roles, click the check box next to each role you want to remove in the Roles Selected to Add column, and click Remove. To remove all roles, click Remove All.

To search for roles, enter a search string in the Role Name search box and click the go arrow. The Roles Available column is updated to include only those roles that match the search string.

	
Click OK.

To delete roles:

	
Select the role that you want to delete in the Selected Roles list.

	
Click Delete.

Properties You Can Configure

None defined.

How to Set Up Oracle Platform Security Services (OPSS)

If you specify one or more of the WebLogic Server enterprise roles, the authenticated subject must already have that role. You use the WebLogic Server Administration Console to grant a role to a user or group, as described in the Oracle WebLogic Server Administration Console Help.

You must configure a WebLogic Authentication provider, as described in "Configure Authentication and Identity Assertion providers" in the Oracle WebLogic Server Administration Console Help.

oracle/component_permission_authorization_policy

This policy provides a permission-based authorization policy based on the authenticated subject.

This policy ensures that the subject has permission to perform the operation. To do this, the Authorization Policy executor leverages OPSS to check if the authenticated subject has been granted oracle.wsm.security.WSFunctionPermission (or whatever permission class is specified in Permission Check Class) using the Resource Pattern and Action Pattern as parameters. Resource Pattern and Action Pattern are used to identify if the authorization assertion is to be enforced for this particular request. Access is allowed if the authenticated subject has been granted WSFunctionPermission.

You can grant the WSFunctionPermission permission to a user, a group, or an application role. If you grant WSFunctionPermission to a user or group it will apply to all applications that are deployed in the domain.

This policy should follow an authentication policy where the subject is established and can be attached to any SCA-based endpoint.

This policy contains the following assertion template: oracle/component_permission_authorization_template. See "oracle/component_permission_authorization_template" for more information about the assertion.

Settings You Can Change

See Table C-90.

Properties You Can Configure

None defined.

How to Set Up Oracle Platform Security Services (OPSS)

Use Fusion Middleware Control to grant the WSFunctionPermission permission to the user, group, or application that will attempt to authenticate to the Web service.

You must configure a WebLogic Authentication provider, as described in "Configure Authentication and Identity Assertion providers" in the Oracle WebLogic Server Administration Console Help.

oracle/whitelist_authorization_policy

This policy is a special case of role-based authorization policy based on the authenticated subject.

This policy will let requests in only if one of the following conditions is true:

	
The authenticated token is SAML Sender Vouches.

	
The user is in a particular role (the default is trustedEnterpriseRole, that establishes the user as a trusted entity

	
The request is coming from within a private network.

This policy can be attached to any SOAP-based endpoint.

This policy contains the following assertion template: oracle/binding_authorization_template.

See "oracle/binding_authorization_template" for more information about the assertion.

You must configure a WebLogic Authentication provider, as described in "Configure Authentication and Identity Assertion providers" in the Oracle WebLogic Server Administration Console Help.

Settings You Can Change

See Table C-86.

To add roles:

	
Click Add.

	
To add roles, click the check box next to each role you want to add in the Roles Available column and click Move. To add all roles, click Move All.

To remove roles, click the check box next to each role you want to remove in the Roles Selected to Add column, and click Remove. To remove all roles, click Remove All.

To search for roles, enter a search string in the Role Name search box and click the go arrow. The Roles Available column is updated to include only those roles that match the search string.

	
Click OK.

To delete roles:

	
Select the role that you want to delete in the Selected Roles list.

	
Click Delete.

Properties You Can Configure

None defined.

How to Set Up Oracle Platform Security Services (OPSS)

If you specify one or more of the WebLogic Server enterprise roles, the authenticated subject must already have that role. You use the WebLogic Server Administration Console to grant a role to a user or group, as described in the Oracle WebLogic Server Administration Console Help.

You must configure a WebLogic Authentication provider, as described in "Configure Authentication and Identity Assertion providers" in the Oracle WebLogic Server Administration Console Help.

How to Successfully Invoke Services Using This Policy

To successfully invoke a service that has the whitelist_authorization_policy attached, you must do one of the following:

	
If the service accepts SAML sender vouches for authentication (for example, a SAML token service policy is attached to the service), you must attach the corresponding SAML token client policy to the client.

	
If the service accepts username/password for authentication (for example, a username token service policy is attached to the service), you must attach the corresponding username token client policy to the client and make sure that the client is in a trusted role as defined in the policy. (By default, the role defined in the predefined policy is trustedEnterpriseRole. You need to modify this role in the predefined policy.)

	
If the service is invoked using Oracle HTTP Server, and it is configured to indicate that the request came from a private internal network (see "Configuring Oracle HTTP Server to Specify Request Origin"), then a client on the internal network only has to attach the corresponding username token client policy at the client side.

Configuring Oracle HTTP Server to Specify Request Origin

The Constraint Pattern property setting contains a requestOrigin field that specifies whether the request originated from an internal or external network. This property is valid only when using Oracle HTTP Server and the Oracle HTTP server administrator has added a custom VIRTUAL_HOST_TYPE header to the request.

To do so, the administrator must modify the httpd.conf file as follows:

	
Verify that the module mod_headers is loaded.

	
Set the VIRTUAL_HOST_TYPE header name in the RequestHeader. Valid values are internal and external. Use the following command syntax:

RequestHeader set|append|add|unset header [value [env=[!]variable]]

For example, to configure the virtual host for internal requests:

<VirtualHost *:7777>
RequestHeader set VIRTUAL_HOST_TYPE "internal"
</VirtualHost>

To configure the virtual host for external requests:

<VirtualHost *:8888>
RequestHeader set VIRTUAL_HOST_TYPE "external"
</VirtualHost>

In these examples, all the requests coming from outside of the private network are routed through virtual host:8888 and all the requests coming from the internal private network are routed through virtual host:7777.

Note that you must also add these ports in the httpd.conf file as listen ports so that the applications are available on the ports externally.

	
Restart the Oracle HTTP Server.

WS-Addressing Policies and Configuration Steps

The Web Services Addressing (WS-Addressing) specification (http://www.w3.org/TR/ws-addr-core/) provides transport-neutral mechanisms to address Web services and messages. In particular, the specification defines a number of XML elements used to identify Web service endpoints and to secure end-to-end endpoint identification in messages.

This section describes the predefined WS-Addressing policies.

oracle/wsaddr_policy

This policy causes the platform to check inbound messages for the presence of WS-Addressing headers conforming to the W3C 2005 Final WS-Addressing Policy standard. In addition, it causes the platform to include a WS-Addressing header in outbound SOAP messages.

How to Set Up the Web Service Client

No configuration is needed.

How to Set Up the Web Service Client at Design Time

Configure WS-Addressing for the Web service client as described in the Web Services Addressing 1.0 - SOAP Binding specification (http://www.w3.org/TR/ws-addr-soap/).

How to Set Up Oracle Platform Security Services (OPSS)

No configuration is needed.

WS-Trust Policies

This section describes the predefined WS-Trust policies. The predefined policies conform to the WS-Trust 1.3 specification.

oracle/sts_trust_config_service_policy

Use this policy to specify the STS configuration information that is used to invoke the STS for token exchange.

This policy contains the following assertion template: oracle/sts_trust_config_service_template. See "oracle/sts_trust_config_service_template" for more information about the assertion.

Policy Assertion

The oracle/sts_trust_config_service_policy policy assertion is as follows:

<?xml version = '1.0' encoding = 'UTF-8'?>
<wsp:Policy
 xmlns:oralgp = "http://schemas.oracle.com/ws/2006/01/loggingpolicy"
 xmlns:orasp = "http://schemas.oracle.com/ws/2006/01/securitypolicy"
 orawsp:description = "i18n:oracle.wsm.resources.policydescription.PolicyDescriptionBundle_oracle/sts_
trust_config_service_policy_PolyDescKey"
 orawsp:displayName = "i18n:oracle.wsm.resources.policydescription.PolicyDescriptionBundle_oracle/sts_
trust_config_service_policy_PolyDispNameKey"
 wsu:Id = "sts_trust_config_service_policy"
 orawsp:attachTo = "binding.server"
 orawsp:status = "enabled"
 xmlns:orawsp = "http://schemas.oracle.com/ws/2006/01/policy"
 Name = "oracle/sts_trust_config_service_policy"
 xmlns:wsp = "http://schemas.xmlsoap.org/ws/2004/09/policy"
 xmlns:wsu = "http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd"
 orawsp:category = "security"
 orawsp:local-optimization = "off">

 <orasp:sts-trust-config
 orawsp:Silent = "true"
 orawsp:Enforced = "true"
 orawsp:name = "STS Trust Configuration"
 orawsp:category = "security/sts-config"
 orasp:wsdl-uri = "http://host:port/sts?wsdl"
 orasp:port-uri = "http://host:port/sts-service"
 orasp:soap-version="12">
 <orawsp:bindings>
 <orawsp:Config orawsp:name = "StsTrustConfig" orawsp:configType = "declarative">
 <orawsp:PropertySet orawsp:name="standard-security-properties">
 <orawsp:Property orawsp:name="role" orawsp:type="string" orawsp:contentType="constant">
 <orawsp:Value>ultimateReceiver</orawsp:Value>
 </orawsp:Property>
 </orawsp:PropertySet>
 </orawsp:Config>
 </orawsp:bindings>
 </orasp:sts-trust-config>
</wsp:Policy>

Settings You Can Change

You can change the settings shown in Table C-75.

Properties You Can Configure

You can configure the properties shown in Table C-76.

How to Set Up the Web Service

See "Setting Up Automatic Policy Configuration for STS" for the steps to follow.

oracle/sts_trust_config_client_policy

Use this policy to specify the STS client configuration information that is used to invoke the STS for token exchange.

Use this policy only if you are not using Automatic (Client STS) Policy Configuration, as described in "Setting Up Automatic Policy Configuration for STS"

If you attach multiple instances of oracle/sts_trust_config_client_policy, no error is generated. However, only one instance is enforced, and you cannot control which instance that is.

This policy contains the following assertion template: oracle/sts_trust_config_template. See "oracle/sts_trust_config_client_template" for more information about the assertion.

Policy Assertion

The oracle/sts_trust_config_client_policy policy assertion is as follows:

<?xml version = '1.0' encoding = 'UTF-8'?>
<wsp:Policy
 xmlns:oralgp = "http://schemas.oracle.com/ws/2006/01/loggingpolicy"
 xmlns:orasp = "http://schemas.oracle.com/ws/2006/01/securitypolicy"
 orawsp:description =
 "i18n:oracle.wsm.resources.policydescription.PolicyDescriptionBundle_oracle/sts_trust_config_client_policy_PolyDescKey"
 orawsp:displayName =
 "i18n:oracle.wsm.resources.policydescription.PolicyDescriptionBundle_oracle/sts_trust_config_client_policy_PolyDispNameKey"
 wsu:Id = "sts_trust_config_client_policy"
 orawsp:attachTo = "binding.client"
 orawsp:status = "enabled"
 xmlns:orawsp = "http://schemas.oracle.com/ws/2006/01/policy"
 Name = "oracle/sts_trust_config_client_policy"
 xmlns:wsp = "http://schemas.xmlsoap.org/ws/2004/09/policy"
 xmlns:wsu = "http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd"
 orawsp:category = "security"
 orawsp:local-optimization = "off">

 <orasp:sts-trust-config
 orawsp:Silent = "true"
 orawsp:Enforced = "true"
 orawsp:name = "STS Trust Configuration"
 orawsp:category = "security/sts-config"
 orasp:wsdl-uri = "http://host:port/sts?wsdl"
 orasp:port-uri = "http://host:port/sts-service"
orasp:port-endpoint="target-namespace#wsdl.endpoint(service-name/port-name)"
 orasp:policy-reference-uri="oracle/policy-name"
 orasp:soap-version="12"
 orasp:sts-keystore-recipient-alias="sts-csf-key">
 <orawsp:bindings>
 <orawsp:Config orawsp:name = "StsTrustConfig" orawsp:configType = "declarative">
 <orawsp:PropertySet orawsp:name="standard-security-properties">
 <orawsp:Property orawsp:name="role" orawsp:type="string" orawsp:contentType="constant">
 <orawsp:Value>ultimateReceiver</orawsp:Value>
 </orawsp:Property>
 </orawsp:PropertySet>
 </orawsp:Config>
 </orawsp:bindings>
 </orasp:sts-trust-config>
</wsp:Policy>

Settings You Can Change

You can change the settings shown in Table C-73.

Properties You Can Configure

You can configure the properties shown in Table C-74.

How to Set Up the Web Service Client

You are encouraged to configure the STS config policy from the Web service, as described in "Setting Up Automatic Policy Configuration for STS".

However, if you did not configure the STS config policy from the Web service, or if you are using the SAML sender vouches confirmation method, you must then configure it from the Web service client. See "Manually Configuring the STS Config Policy From the Web Service Client: Main Steps" for information on how to set up the Web service client.

How to Set Up the Web Service Client at Design Time

You are encouraged to configure the STS config policy from the Web service, as described in "Setting Up Automatic Policy Configuration for STS".

However, if you did not configure the STS config policy from the Web service, or if you are using the SAML sender vouches confirmation method, you must then configure it from the Web service client as described in this section.

See "Manually Configuring the STS Config Policy From the Web Service Client: Main Steps" for additional information on how to set up the Web service client.

You can set up and attach the oracle/sts_trust_config_client_policy policy programmatically, as shown in Example 11-6 and Example 11-7.

Example 11-6 Sample JSE Proxy Client

URL endpointUrl = new URL(getWebConnectionString() + "/jaxws-test-service/jaxws-test-port");

ServiceDelegateImpl client = new ServiceDelegateImpl(
 new URL(endpointUrl.toString() + "?WSDL"),
 new QName("http://jaxws.oracle.com/targetNamespace/JaxwsService", "JaxwsService"),
 OracleService.class);

JaxwsService port = client.getPort(
 new QName("http://jaxws.oracle.com/targetNamespace/JaxwsService", "JaxwsServicePort"),
 test.jaxws.client.JaxwsService.class);

((BindingProvider)port).getRequestContext().put(BindingProvider.ENDPOINT_ADDRESS_PROPERTY,endpointUrl.toExternalForm());
((BindingProvider)port).getRequestContext().put(ClientConstants.CLIENT_CONFIG,
 fileToElement(new File("./jaxws/client/dat/oracle-webservice-client.xml")));

The related oracle-webservice-client.xml file with the STS config policy and STS issue policy is shown in Example 11-7.

Example 11-7 Sample oracle-webservice-client.xml

<?xml version="1.0" encoding="UTF-8"?>
<oracle-webservice-clients>
 <webservice-client>
 <port-info>
 <policy-references>
 <policy-reference uri="oracle/sts_trust_config_client_policy" category="security"/>
 <policy-reference uri="oracle/wss11_sts_issue_saml_hok_with_message_protection_client_policy " category="security"/>
 </policy-references>
 </port-info>
 </webservice-client>
</oracle-webservice-clients>

How to Set Up the Web Service

See "Setting Up Automatic Policy Configuration for STS" for the steps to follow.

oracle/wss_sts_issued_saml_bearer_token_over_ssl_client_policy

This policy inserts a SAML bearer assertion issued by a trusted STS. Messages are protected using SSL.

This policy contains the following assertion template: oracle/wss_sts_issued_saml_bearer_token_over_ssl_client_policy_template. See "WS-Trust Assertion Templates" for more information about the assertion.

Policy Assertion

The oracle/wss_sts_issued_saml_bearer_token_over_ssl_client_policy assertion is as follows:

<orasp:wss-sts-issued-token-over-ssl
 xmlns:orasp="http://schemas.oracle.com/ws/2006/01/securitypolicy"
 xmlns:orawsp="http://schemas.oracle.com/ws/2006/01/policy"
 orasp:require-applies-to="true" orasp:require-client-entropy="true"
 orasp:require-server-entropy="true" orasp:trust-version="13"
 orawsp:Enforced="true" orawsp:Silent="false"
 orawsp:category="security/authentication, security/msg-protection"
 orawsp:name="WS-Security 1.1, issued token over ssl">
<orasp:issued-token orasp:require-external-reference="true"
 orasp:require-internal-reference="true" orasp:use-derived-keys="false">
<orasp:request-security-token-template orasp:key-type="Bearer" orasp:token-type="SAML11"/>
</orasp:issued-token>
<orasp:require-tls orasp:include-timestamp="true" orasp:mutual-auth="false"/>
<orawsp:bindings>
<orawsp:Config orawsp:configType="declarative" orawsp:name="WssStsIssuedTokenOverSSLConfig">
<orawsp:PropertySet orawsp:name="standard-security-properties">
<orawsp:Property orawsp:contentType="optional" orawsp:name="sts.auth.user.csf.key" orawsp:type="string">
<orawsp:Value/>
</orawsp:Property>
<orawsp:Property orawsp:contentType="optional" orawsp:name="sts.auth.x509.csf.key" orawsp:type="string">
<orawsp:Value/>
</orawsp:Property>
<orawsp:Property orawsp:name="on.behalf.of" orawsp:type="boolean">
<orawsp:Value>false</orawsp:Value>
</orawsp:Property>
<orawsp:Property orawsp:contentType="optional" orawsp:name="sts.auth.on.behalf.of.csf.key" orawsp:type="string">
<orawsp:Value/>
</orawsp:Property>
<orawsp:Property orawsp:contentType="optional" orawsp:name="sts.auth.service.principal.name" orawsp:type="string">
<orawsp:Value>HOST/localhost@EXAMPLE.COM</orawsp:Value>
</orawsp:Property>
<orawsp:Property orawsp:contentType="optional" orawsp:name="sts.auth.keytab.location" orawsp:type="string">
<orawsp:Value/>
</orawsp:Property>
<orawsp:Property orawsp:contentType="optional" orawsp:name="sts.auth.caller.principal.name" orawsp:type="string">
<orawsp:Value/>
</orawsp:Property>
</orawsp:PropertySet>
</orawsp:Config>
</orawsp:bindings>
</orasp:wss-sts-issued-token-over-ssl>

Settings You Can Change

You can change the settings shown in Table C-77.

Properties You Can Configure

You can configure the properties shown in Table C-78.

How to Set Up the Web Service Client

See "Setting Up Automatic Policy Configuration: Main Steps" for information on how to set up the Web service client.

This policy requires you to set up the Oracle WSM keystore to specify a key (username/password or X.509) to authenticate to the STS. See "Configuring Keystores for Message Protection".

See "Programmatic Configuration Overrides for WS-Trust Client Policies" for a description of the configuration settings you can override.

If you do not set Require Mutual Authentication, one-way SSL is involved. See "Configuring SSL for a Web Service Client".

If you do set Require Mutual Authentication, the client must supply credentials, and expect credentials back from the Web service. See "Configuring Two-Way SSL for a Web Service Client".

How to Set Up the Web Service Client at Design Time

See "Setting Up Automatic Policy Configuration: Main Steps" for information on how to set up the Web service client.

This policy requires you to set up the Oracle WSM keystore to specify a key (username/password or X.509) to authenticate to the STS. See "Configuring Keystores for Message Protection".

See "Using Client Programmatic Configuration Overrides" for a description of the configuration settings you can override. See "Programmatic Configuration Overrides for WS-Trust Client Policies" for examples of overriding STS configuration settings.

If you do not set Require Mutual Authentication, one-way SSL is involved. See "Configuring SSL for a Web Service Client".

If you do set the Require Mutual Authentication control, the client must supply credentials, and expect credentials back from the Web service. See "Configuring Two-Way SSL for a Web Service Client".

oracle/wss_sts_issued_saml_bearer_token_over_ssl_service_policy

This policy authenticates a SAML bearer assertion issued by a trusted STS. Messages are protected using SSL.

This policy contains the following assertion template: oracle/wss_sts_issued_saml_bearer_token_over_ssl_service_policy_template. See "WS-Trust Assertion Templates" for more information about the assertion.

Policy Assertion

The oracle/wss_sts_issued_saml_bearer_token_over_ssl_service_policy assertion is as follows:

<orasp:wss-sts-issued-token-over-ssl
xmlns:orasp="http://schemas.oracle.com/ws/2006/01/securitypolicy"
xmlns:orawsp="http://schemas.oracle.com/ws/2006/01/policy"
orasp:require-applies-to="true" orasp:require-client-entropy="true"
orasp:require-server-entropy="true" orasp:trust-version="13"
orawsp:Enforced="true" orawsp:Silent="false"
orawsp:category="security/authentication, security/msg-protection"
orawsp:name="WS-Security 1.1, issued token over ssl">
<orasp:issued-token orasp:require-external-reference="true"
orasp:require-internal-reference="true" orasp:use-derived-keys="false">
<orasp:request-security-token-template orasp:key-type="Bearer" orasp:token-type="SAML11"/>
</orasp:issued-token>
<orasp:require-tls orasp:include-timestamp="true" orasp:mutual-auth="false"/>
<orawsp:bindings>
<orawsp:Config orawsp:configType="declarative" orawsp:name="WssStsIssuedTokenOverSSLConfig">
<orawsp:PropertySet orawsp:name="standard-security-properties">
<orawsp:Property orawsp:contentType="constant" orawsp:name="role" orawsp:type="string">
<orawsp:Value>ultimateReceiver</orawsp:Value>
</orawsp:Property>
</orawsp:PropertySet>
</orawsp:Config>
</orawsp:bindings>
</orasp:wss-sts-issued-token-over-ssl>

Settings You Can Change

See Table C-77.

Properties You Can Configure

You can configure the properties shown in Table C-79.

How to Set Up the Web Service

See "Setting Up Automatic Policy Configuration: Main Steps" for information on how to set up the Web service.

To configure SSL, see "Configuring SSL on WebLogic Server (One-Way)", or "Configuring SSL on WebLogic Server (Two-Way)" if Require Mutual Authentication is checked.

oracle/wss11_sts_issued_saml_hok_with_message_protection_client_policy

This policy inserts a SAML HOK assertion issued by a trusted STS (Security Token Service). Messages are protected using proof key material provided by the STS.

This policy contains the following assertion template: oracle/wss11_sts_issued_saml_hok_with_message_protection_client_template. See "WS-Trust Assertion Templates" for more information about the assertion.

Policy Assertion

The oracle/wss11_sts_issued_saml_hok_with_message_protection_client_policy assertion is as follows:

<orasp:wss11-sts-issued-token-with-certificates
xmlns:orasp="http://schemas.oracle.com/ws/2006/01/securitypolicy"
xmlns:orawsp="http://schemas.oracle.com/ws/2006/01/policy"
orasp:require-applies-to="true" orasp:require-client-entropy="true"
orasp:require-server-entropy="true" orasp:trust-version="13"
orawsp:Enforced="true" orawsp:Silent="false"
orawsp:category="security/authentication, security/msg-protection"
orawsp:name="WS-Security 1.1, issued tokee">
<orasp:issued-token orasp:require-external-reference="true"
orasp:require-internal-reference="true" orasp:use-derived-keys="false">
<orasp:request-security-token-template orasp:algorithm-suite="Basic128"
orasp:key-type="Symmetric" orasp:token-type="SAML11"/>
</orasp:issued-token>
<orasp:x509-token orasp:enc-key-ref-mech="thumbprint" orasp:is-encrypted="false"
orasp:is-signed="true" orasp:sign-key-ref-mech="thumbprint"/>
<orasp:msg-security orasp:algorithm-suite="Basic128"
orasp:confirm-signature="true" orasp:encrypt-signature="false"
orasp:include-timestamp="true" orasp:sign-then-encrypt="true"
orasp:use-derived-keys="false">
<orasp:request>
<orasp:signed-parts>
<orasp:body/>
<orasp:header orasp:namespace="http://www.w3.org/2005/08/addressing"/>
<orasp:header orasp:namespace="http://schemas.xmlsoap.org/ws/2004/08/addressing"/>
<orasp:header orasp:name="fmw-context" orasp:namespace="http://xmlns.oracle.com/fmw/context/1.0"/>
</orasp:signed-parts>
<orasp:encrypted-parts>
<orasp:body/>
<orasp:header orasp:name="fmw-context" orasp:namespace="http://xmlns.oracle.com/fmw/context/1.0"/>
</orasp:encrypted-parts>
</orasp:request>
<orasp:response>
<orasp:signed-parts>
<orasp:body/>
</orasp:signed-parts>
<orasp:encrypted-parts>
<orasp:body/>
</orasp:encrypted-parts>
</orasp:response>
<orasp:fault/>
</orasp:msg-security>
<orawsp:bindings>
<orawsp:Config orawsp:configType="declarative" orawsp:name="Wss11StsIssuedTokenWithCertsConfig">
<orawsp:PropertySet orawsp:name="standard-security-properties">
<orawsp:Property orawsp:contentType="optional" orawsp:name="sts.auth.user.csf.key" orawsp:type="string">
<orawsp:Value/>
</orawsp:Property>
<orawsp:Property orawsp:contentType="optional" orawsp:name="sts.auth.x509.csf.key" orawsp:type="string">
<orawsp:Value>enc-csf-key</orawsp:Value>
</orawsp:Property>
<orawsp:Property orawsp:name="on.behalf.of" orawsp:type="boolean">
<orawsp:Value>false</orawsp:Value>
</orawsp:Property>
<orawsp:Property orawsp:contentType="optional" orawsp:name="sts.auth.on.behalf.of.csf.key" orawsp:type="string">
<orawsp:Value/>
</orawsp:Property>
<orawsp:Property orawsp:name="keystore.recipient.alias" orawsp:type="string">
<orawsp:Value>orakey</orawsp:Value>
</orawsp:Property>
<orawsp:Property orawsp:contentType="optional" orawsp:name="keystore.enc.csf.key" orawsp:type="string">
<orawsp:Value/>
</orawsp:Property>
<orawsp:Property orawsp:contentType="optional" orawsp:name="sts.auth.service.principal.name" orawsp:type="string">
<orawsp:Value>HOST/localhost@EXAMPLE.COM</orawsp:Value>
</orawsp:Property>
<orawsp:Property orawsp:contentType="optional" orawsp:name="sts.auth.keytab.location" orawsp:type="string">
<orawsp:Value/>
</orawsp:Property>
<orawsp:Property orawsp:contentType="optional" orawsp:name="sts.auth.caller.principal.name" orawsp:type="string">
<orawsp:Value/>
</orawsp:Property>
</orawsp:PropertySet>
</orawsp:Config>
</orawsp:bindings>
</orasp:wss11-sts-issued-token-with-certificates>

Settings You Can Change

You can change the settings shown in Table C-80.

Properties You Can Configure

You can configure the properties shown in Table C-81.

How to Set Up the Web Service Client

See "Setting Up Automatic Policy Configuration: Main Steps" for information on how to set up the Web service client.

This policy requires you to set up the Oracle WSM keystore to specify a key (username/password or X.509) to authenticate to the STS. See "Configuring Keystores for Message Protection".

See "Programmatic Configuration Overrides for WS-Trust Client Policies" for a description of the configuration settings you can override.

Configure the policy assertion for message signing, message encryption, or both.

The Web service's base64-encoded public certificate is published in the WSDL for use by the Web service client, as described in "Using Service Identity Certification Extension".

As an alternative, you can specify a value for keystore.recipient.alias, or override it on a per-client basis when you attach the policy. The keystore recipient alias specifies the alias used to look up the public key in the keystore when retrieving a key for encryption of outbound SOAP messages.

You can specify a value for keystore.enc.csf.key, or override them on a per-client basis when you attach the policy.

How to Set Up the Web Service Client at Design Time

See "Setting Up Automatic Policy Configuration: Main Steps" for information on how to set up the Web service client.

This policy requires you to set up the Oracle WSM keystore to specify a key (username/password or X.509) to authenticate to the STS. See "Configuring Keystores for Message Protection".

See "Using Client Programmatic Configuration Overrides" for a description of the configuration settings you can override. See "Programmatic Configuration Overrides for WS-Trust Client Policies" for examples of overriding STS configuration settings.

Configure the policy assertion for message signing, message encryption, or both.

The Web service's base64-encoded public certificate is published in the WSDL for use by the Web service client, as described in "Using Service Identity Certification Extension".

As an alternative, you can specify a value for keystore.recipient.alias, or override it on a per-client basis when you attach the policy. The keystore recipient alias specifies the alias used to look up the public key in the keystore when retrieving a key for encryption of outbound SOAP messages.

You can specify a value for keystore.enc.csf.key, or override them on a per-client basis when you attach the policy.

oracle/wss11_sts_issued_saml_hok_with_message_protection_service_policy

This policy authenticates a SAML HOK assertion issued by a trusted STS (Security Token Service). Messages are protected using WS-Security's Basic 128 suite of symmetric key technologies.

This policy contains the following assertion template: oracle/wss11_sts_issued_saml_hok_with_message_protection_service_template. See "WS-Trust Assertion Templates" for more information about the assertion.

Policy Assertion

The oracle/wss11_sts_issued_saml_hok_with_message_protection_service_policy assertion is as follows:

<orasp:wss11-sts-issued-token-with-certificates
xmlns:orasp="http://schemas.oracle.com/ws/2006/01/securitypolicy"
xmlns:orawsp="http://schemas.oracle.com/ws/2006/01/policy"
orasp:require-applies-to="true" orasp:require-client-entropy="true"
orasp:require-server-entropy="true" orasp:trust-version="13"
orawsp:Enforced="true" orawsp:Silent="false"
orawsp:category="security/authentication, security/msg-protection"
orawsp:name="WS-Security 1.1, issued tokee">
<orasp:issued-token orasp:require-external-reference="true"
orasp:require-internal-reference="true" orasp:use-derived-keys="false">
<orasp:request-security-token-template orasp:algorithm-suite="Basic128"
orasp:key-type="Symmetric" orasp:token-type="SAML11"/>
</orasp:issued-token>
<orasp:x509-token orasp:enc-key-ref-mech="thumbprint" orasp:is-encrypted="false"
orasp:is-signed="true" orasp:sign-key-ref-mech="thumbprint"/>
<orasp:msg-security orasp:algorithm-suite="Basic128"
orasp:confirm-signature="true" orasp:encrypt-signature="false"
orasp:include-timestamp="true" orasp:sign-then-encrypt="true"
orasp:use-derived-keys="false">
<orasp:request>
<orasp:signed-parts>
<orasp:body/>
<orasp:header orasp:namespace="http://www.w3.org/2005/08/addressing"/>
<orasp:header orasp:namespace="http://schemas.xmlsoap.org/ws/2004/08/addressing"/>
<orasp:header orasp:name="fmw-context" orasp:namespace="http://xmlns.oracle.com/fmw/context/1.0"/>
</orasp:signed-parts>
<orasp:encrypted-parts>
<orasp:body/>
<orasp:header orasp:name="fmw-context" orasp:namespace="http://xmlns.oracle.com/fmw/context/1.0"/>
</orasp:encrypted-parts>
</orasp:request>
<orasp:response>
<orasp:signed-parts>
<orasp:body/>
</orasp:signed-parts>
<orasp:encrypted-parts>
<orasp:body/>
</orasp:encrypted-parts>
</orasp:response>
<orasp:fault/>
</orasp:msg-security>
<orawsp:bindings>
<orawsp:Config orawsp:configType="declarative" orawsp:name="Wss11StsIssuedTokenWithCertsConfig">
<orawsp:PropertySet orawsp:name="standard-security-properties">
<orawsp:Property orawsp:contentType="optional" orawsp:name="keystore.enc.csf.key" orawsp:type="string">
<orawsp:Value/>
</orawsp:Property>
<orawsp:Property orawsp:contentType="constant" orawsp:name="role" orawsp:type="string">
<orawsp:Value>ultimateReceiver</orawsp:Value>
</orawsp:Property>
</orawsp:PropertySet>
</orawsp:Config>
</orawsp:bindings>
</orasp:wss11-sts-issued-token-with-certificates>

Settings You Can Change

You can change the settings shown in Table C-80.

Properties You Can Configure

You can configure the properties shown in Table C-82. You also have the option to override the keystore.enc.csf.key server-side configuration property, as described in "Attaching Web Service Policies Permitting Overrides".

How to Set Up the Web Service

See "Setting Up Automatic Policy Configuration: Main Steps" for information on how to set up the Web service.

oracle/wss11_sts_issued_saml_with_message_protection_client_policy

This policy inserts a SAML sender vouches assertion issued by a trusted STS (Security Token Service). Messages are protected using the client's private key.

This policy contains the following assertion template: oracle/wss11_sts_issued_saml_with_message_protection_client_policy. See "WS-Trust Assertion Templates" for more information about the assertion.

Policy Assertion

The oracle/wss11_sts_issued_saml_with_message_protection_client_policy policy assertion is as follows:

<orasp:wss11-sts-issued-token-with-certificates
xmlns:orasp="http://schemas.oracle.com/ws/2006/01/securitypolicy"
xmlns:orawsp="http://schemas.oracle.com/ws/2006/01/policy"
orasp:require-applies-to="true" orasp:require-client-entropy="true"
orasp:require-server-entropy="true" orasp:trust-version="13"
orawsp:Enforced="true" orawsp:Silent="false"
orawsp:category="security/authentication, security/msg-protection"
orawsp:name="WS-Security 1.1, issued token">
<orasp:issued-token orasp:require-external-reference="true"
orasp:require-internal-reference="true" orasp:use-derived-keys="false">
<orasp:request-security-token-template orasp:algorithm-suite="Basic128"
orasp:token-type="SAML11"/>
</orasp:issued-token>
<orasp:x509-token orasp:enc-key-ref-mech="thumbprint" orasp:is-encrypted="false"
orasp:is-signed="true" orasp:sign-key-ref-mech="direct"/>
<orasp:msg-security orasp:algorithm-suite="Basic128"
orasp:confirm-signature="true" orasp:encrypt-signature="false"
orasp:include-timestamp="true" orasp:sign-then-encrypt="true"
orasp:use-derived-keys="false">
<orasp:request>
<orasp:signed-parts>
<orasp:body/>
<orasp:header orasp:namespace="http://www.w3.org/2005/08/addressing"/>
<orasp:header orasp:namespace="http://schemas.xmlsoap.org/ws/2004/08/addressing"/>
<orasp:header orasp:name="fmw-context" orasp:namespace="http://xmlns.oracle.com/fmw/context/1.0"/>
</orasp:signed-parts>
<orasp:encrypted-parts>
<orasp:body/>
<orasp:header orasp:name="fmw-context" orasp:namespace="http://xmlns.oracle.com/fmw/context/1.0"/>
</orasp:encrypted-parts>
</orasp:request>
<orasp:response>
<orasp:signed-parts>
<orasp:body/>
</orasp:signed-parts>
<orasp:encrypted-parts>
<orasp:body/>
</orasp:encrypted-parts>
</orasp:response>
<orasp:fault/>
</orasp:msg-security>
<orawsp:bindings>
<orawsp:Config orawsp:configType="declarative" orawsp:name="Wss11StsIssuedTokenWithCertsConfig">
<orawsp:PropertySet orawsp:name="standard-security-properties">
<orawsp:Property orawsp:contentType="optional" orawsp:name="sts.auth.user.csf.key" orawsp:type="string">
<orawsp:Value/>
</orawsp:Property>
<orawsp:Property orawsp:contentType="optional" orawsp:name="sts.auth.x509.csf.key" orawsp:type="string">
<orawsp:Value/>
</orawsp:Property>
<orawsp:Property orawsp:name="on.behalf.of" orawsp:type="boolean">
<orawsp:Value>true</orawsp:Value>
</orawsp:Property>
<orawsp:Property orawsp:contentType="optional" orawsp:name="sts.auth.on.behalf.of.csf.key" orawsp:type="string">
<orawsp:Value/>
</orawsp:Property>
<orawsp:Property orawsp:contentType="optional" orawsp:name="keystore.recipient.alias" orawsp:type="string">
<orawsp:Value>orakey</orawsp:Value>
</orawsp:Property>
<orawsp:Property orawsp:contentType="optional" orawsp:name="keystore.enc.csf.key" orawsp:type="string">
<orawsp:Value/>
</orawsp:Property>
</orawsp:PropertySet>
</orawsp:Config>
</orawsp:bindings>
</orasp:wss11-sts-issued-token-with-certificates>

Settings You Can Change

You can change the settings shown in Table C-83.

Properties You Can Configure

You can configure the properties shown in Table C-84.

How to Set Up the Web Service Client

See "Setting Up Automatic Policy Configuration: Main Steps" for information on how to set up the Web service client.

This policy requires you to set up the Oracle WSM keystore to specify a key (username/password or X.509) to authenticate to the STS. See "Configuring Keystores for Message Protection".

See "Programmatic Configuration Overrides for WS-Trust Client Policies" for a description of the configuration settings you can override.

Configure the policy assertion for message signing, message encryption, or both.

The Web service's base64-encoded public certificate is published in the WSDL for use by the Web service client, as described in "Using Service Identity Certification Extension".

As an alternative, you can specify a value for keystore.recipient.alias, or override it on a per-client basis when you attach the policy. The keystore recipient alias specifies the alias used to look up the public key in the keystore when retrieving a key for encryption of outbound SOAP messages.

You can specify a value for keystore.enc.csf.key, or override them on a per-client basis when you attach the policy.

How to Set Up the Web Service Client at Design Time

See "Setting Up Automatic Policy Configuration: Main Steps" for information on how to set up the Web service client.

This policy requires you to set up the Oracle WSM keystore to specify a key (username/password or X.509) to authenticate to the STS. See "Configuring Keystores for Message Protection".

See "Using Client Programmatic Configuration Overrides" for a description of the configuration settings you can override. See "Programmatic Configuration Overrides for WS-Trust Client Policies" for examples of overriding STS configuration settings.

The Web service's base64-encoded public certificate is published in the WSDL for use by the Web service client, as described in "Using Service Identity Certification Extension".

As an alternative, you can specify a value for keystore.recipient.alias, or override it on a per-client basis when you attach the policy. The keystore recipient alias specifies the alias used to look up the public key in the keystore when retrieving a key for encryption of outbound SOAP messages.

You can specify a value for keystore.enc.csf.key, or override them on a per-client basis when you attach the policy.

Configure the policy assertion for message signing, message encryption, or both.

MTOM Attachment Policies and Configuration Steps

This section describes the predefined MTOM policies.

There are two potential behaviors for using MTOM with Oracle Infrastructure Web services, depending on how you configure MTOM:

	
If you configure MTOM from Fusion Middleware Control by attaching the oracle/wsmtom_policy policy (either via local or Global Policy Attachment), the endpoint throws a fault if the request is not MTOM encoded. The MTOM policy rejects inbound messages that are not in MTOM format and verifies that outbound messages are in MTOM format. In this use, requests must be MTOM-enabled.

	
If you configure MTOM for an ADF BC Web service outside of Fusion Middleware Control, such as by editing the MTOM-enabled switch in oracle-webservices.xml or by directly adding the @MTOM annotation to the Web service, the endpoint can accept MTOM requests but does not return a fault if the request is not MTOM encoded. In this use, requests might be MTOM-enabled, but there is no requirement that they must be.

oracle/wsmtom_policy

SOAP Message Transmission Optimization Mechanism/XML-binary Optimized Packaging (MTOM/XOP) defines a method for optimizing the transmission of XML data of type xs:base64Binary or xs:hexBinary in SOAP messages.

The Message Transmission Optimization Mechanism (MTOM) policy rejects inbound messages that are not in MTOM format and verifies that outbound messages are in MTOM format.

MTOM refers to specifications http://www.w3.org/TR/2005/REC-soap12-mtom-20050125 and http://www.w3.org/Submission/2006/SUBM-soap11mtom10-20060405 for SOAP 1.2 and SOAP 1.1 bindings, respectively.

How to Set Up the Web Service Client

No configuration is required.

How to Set Up the Web Service Client at Design Time

To enable MTOM on the client of the Web service, pass the javax.xml.ws.soap.MTOMFeature as a parameter when creating the Web service proxy or dispatch, as illustrated in the following example.

package examples.webservices.mtom.client;
import javax.xml.ws.soap.MTOMFeature;
public class Main {
 public static void main(String[] args) {
 String FOO = "FOO";
 MtomService service = new MtomService()
 MtomPortType port = service.getMtomPortTypePort(new MTOMFeature());
 String result = null;
 result = port.echoBinaryAsString(FOO.getBytes());
 System.out.println("Got result: " + result);
 }
}

How to Set Up Oracle Platform Security Services (OPSS)

No configuration is required.

Reliable Messaging Policies and Configuration Steps

WS-ReliableMessaging makes message exchanges reliable. It ensures that messages are delivered reliably between distributed applications regardless of software component, system, or network failures. Ordered delivery is assured and automatic retransmission of failed messages does not have to be coded by each client application.

Consider using reliable messaging if your Web service is experiencing the following problems:

	
network failures or dropped connections

	
messages are lost in transit

	
messages are arriving at their destination out of order

WS-ReliableMessaging considers the source and destination of a message to be independent of the client/server model. That is, the client and the server can each act simultaneously as both a message source and destination on the communications path.

This section describes the predefined Reliable Messaging policies.

WS-RM Policy Properties

Table 11-1 lists the properties that you can set for the WS-RM policies.

Table 11-1 WS-RM Policy Properties

	Property Name	Description	Default Value Used by Policy	Possible Values
	
DeliveryAssurance

	
Delivery assurance. The following defines the delivery assurance types:

	
At Most Once—Messages are delivered at most once, without duplication.

	
At Least Once—Every message is delivered at least once. It is possible that some messages are delivered more than once.

	
Exactly Once—Every message is delivered exactly once, without duplication.

	
Messages are delivered in the order that they were sent. This delivery assurance can be combined with one of the preceding three assurances.

	
InOrder

	
InOrder

AtLeastOnce

AtLeastOnceInOrder

ExactlyOnce

ExactlyOnceInOrder

AtMostOnce

AtMostOnceInOrder

	
StoreType

	
Type of message store.

	
InMemory

	
InMemory

FileSystem (not fully supported)

JDBC

	
StoreName

	
Name of the message store.

	
oracle

	
String value

	
jdbc-connection-name

	
JNDI reference to a JDBC data source. This field is valid only if StoreType is set to JDBC. This value takes precedence over jdbc-connection-url. The username and password will be used if both are present.

	
jdbc/MessagesStore

	
Valid JDBC store

	
InactivityTimeout

	
Amount of time, in milliseconds, that can elapse between message exchanges associated with a particular WS-ReliableMessaging sequence. Once this value is reached, the sequence will be terminated and discarded automatically.

	
600000

	
The amount of time in milliseconds.

	
BaseRetransmissionInterval

	
Interval, in milliseconds, that the source endpoint waits after transmitting a message and before it retransmits the message if it receives no acknowledgment for that message.

	
3000

	
The amount of time in milliseconds.

oracle/wsrm10_policy

This policy provides support for version 1.0 of the Web Services Reliable Messaging protocol. This policy can be attached to any SOAP-based client or endpoint.

How to Set Up the Web Service Client

The Web service client will automatically detect the WSDL policy assertions at run time and use them to enable the advertised version of WS-RM on the client.

How to Set Up the Web Service Client at Design Time

For multi-message sequences, the client code must include explicit invocations of methods for delimiting sequence boundaries. Otherwise, every message is wrapped in its own sequence

Edit the client to enable a reliable messaging session for the messages sent to the service. The oracle.webservices.rm.client.RMSessionLifecycle interface provides the client with a mechanism for demarcating WS-RM sequence boundaries.

Example 11-8 illustrates sample WS-RM client code. In the code, a new TestService is created. The TestPort, through which the client will communicate with the service, is retrieved. The port object is cast to a RMSessionLifecycle object and a reliable messaging session is opened on it (openSession). After the messages are sent to the service, the session is closed (closeSession).

Example 11-8 Sample WS-Rm Client Code

public class ClientServlet extends HttpServlet {

 public void doGet(HttpServletRequest request,
 HttpServletResponse response) throws ServletException,
 IOException {

 int num1 = Integer.parseInt(request.getParameter("num1"));
 int num2 = Integer.parseInt(request.getParameter("num2"));
 String outputStr = null;

 TestService service = new TestService();
 Test port = service.getTestPort();

 try {
 ((RMSessionLifecycle) port).openSession();
 outputStr = port.hello(inputStr);
 } catch (Exception e) {
 e.printStackTrace();
 outputStr = e.getMessage();
 } finally {
 ((RMSessionLifecycle) port).closeSession();
 response.getOutputStream().write(outputStr.getBytes());
 }
 }
}

How to Set Up Oracle Platform Security Services (OPSS)

No additional configuration is required.

oracle/wsrm11_policy

This policy provides support for version 1.1 of the Web Services Reliable Messaging protocol. This policy can be attached to any SOAP-based client or endpoint.

How to Set Up the Web Service Client

The Web service client will automatically detect the WSDL policy assertions at run time and use them to enable the advertised version of WS-RM on the client.

How to Set Up the Web Service Client at Design Time

For multi-message sequences, the client code must include explicit invocations of methods for delimiting sequence boundaries. Otherwise, every message is wrapped in its own sequence

Edit the client to enable a reliable messaging session for the messages sent to the service. The oracle.webservices.rm.client.RMSessionLifecycle interface provides the client with a mechanism for demarcating WS-RM sequence boundaries.

Example 11-8 illustrates a servlet client. In the code, a new TestService is created. The TestPort, through which the client will communicate with the service, is retrieved. The port object is cast to a RMSessionLifecycle object and a reliable messaging session is opened on it (openSession). After the messages are sent to the service, the session is closed (closeSession).

How to Set Up Oracle Platform Security Services (OPSS)

No additional configuration is required.

Management Policies and Configuration Steps

This section describes the predefined Management policies.

oracle/log_policy

This policy causes the request, response, and fault messages to be sent to a message log.

This policy contains the following assertion template: oracle/log_template. See "oracle/security_log_template" for more information about the assertion.

Settings You Can Change

See Table C-94.

Properties You Can Configure

None defined.

How to Set Up the Web Service or Client

Determine whether you want to log messages for the request and response, based on the following categories:

	
all

	
header

	
SOAP body

	
SOAP envelope

How to Set Up Oracle Platform Security Services (OPSS)

Messages are logged to the message log for the domain.

To view the message log

	
In the navigator pane, expand WebLogic Domain to show the domain for which you want to see the logged messages. Select the domain.

	
Using Fusion Middleware Control, click WebLogic Domain, then Logs and then View Log Messages.

Attaching Policy Files to Web Services and Clients

There are two ways to attach policies to Web service clients and Web services: at the client and service design time, and post deployment.

Post-deployment, you attach security and management policies to SOA composites, ADF, and WebCenter applications using the Oracle Enterprise Manager Fusion Middleware Control. This method provides the most power and flexibility because it moves Web service security to the control of the security administrator.

At design time, Oracle JDeveloper automates ADF and SOA client policy attachment. Or, you can attach Oracle WSM security and management policies to applications programmatically. You typically do this using your favorite IDE, such as Oracle JDeveloper.

Either way, the client-side policy must be the equivalent of the one associated with the Web service. If the two files are different, and there is a conflict in the assertions contained in the files, then the invoke of the Web service operation returns an error.

For example, if the oracle/wss_http_token_over_ssl_service_policy policy requires mutual authentication, the client policy must also be set for mutual authentication.

For the predefined policies, both client and Web service policies are included. If you create a new policy, generating the policy as described in "Creating Web Service Policies" increases the likelihood that the client policy will work with the service policy.

Using Client Programmatic Configuration Overrides

"Attaching Client Policies Permitting Overrides" describes the policy configuration override feature that allows you to specify certain Web service client configuration information when you attach a policy. However, you can also override this configuration information programmatically at design time. This section describes client programmatic overrides.

Table 11-2 shows the properties you can set via programmatic configuration overrides for a given policy. Example 11-9 shows an example of setting these properties from a program.

Table 11-2 Properties Set Via Programmatic Configuration Overrides

	Property List	Description	Applies to These Policies
	
oracle.wsm.security.util.SecurityConstants.ClientConstants.CALLER_PRINCIPAL_NAME

	
Client's principal name as generated using the ktpass command and mapped to the username for which the kerberos token should be generated. Use the following format: <username>@<REALM NAME>.

Note: keytab.location and caller.principal.name are required for propagating client identity for Java EE applications.

	
wss11_kerberos_token_with_message_protection_client_policy

	
oracle.wsm.security.util.SecurityConstants.ClientConstants.WSS_CSF_KEY

	
Gets the username and password corresponding to the csf-key specified in the credential store if the credential store is available to the client.

Instead of using this property, you can also explicitly set the username and password as shown in Example 11-9

	
oracle/wss10_username_token_with_message_protection_client_policy

oracle/wss10_username_token_with_message_protection_ski_basic256_client_policy

oracle/wss11_username_token_with_message_protection_client_policy

oracle/wss_username_token_client_policy

oracle/wss_username_token_over_ssl_client_policy

oracle/wss10_username_id_propagation_with_msg_protection_client_policy

oracle/wss_http_token_client_policy

oracle/wss_http_token_over_ssl_client_policy

	
oracle.wsm.security.util.SecurityConstants.ClientConstants.WSS_KEYSTORE_LOCATION

	
This property sets the location of the keystore file. If provided, this value will override any statically configured value. Type: java.lang.String

	
oracle/wss10_message_protection_client_policy

oracle/wss10_saml_hok_token_with_message_protection_client_policy

oracle/wss10_saml_token_with_message_integrity_client_policy

oracle/wss10_saml_token_with_message_protection_client_policy

oracle/wss10_saml_token_with_message_protection_ski_basic256_client_policy

oracle/wss10_username_token_with_message_protection_client_policy

oracle/wss10_username_token_with_message_protection_ski_basic256_client_policy

oracle/wss10_x509_token_with_message_protection_client_policy

oracle/wss11_kerberos_token_with_message_protection_client_policy

oracle/wss11_message_protection_client_policy

oracle/wss11_saml_token_with_message_protection_client_policy

oracle/wss11_username_token_with_message_protection_client_policy

oracle/wss11_x509_token_with_message_protection_client_policy

	
oracle.wsm.security.util.SecurityConstants.ClientConstants.WSS_KEYSTORE_TYPE

	
This property sets the type of keystore file. If provided, this value will override any statically configured value. Type: java.lang.String Default is JKS.

	
oracle/wss10_message_protection_client_policy

oracle/wss10_saml_hok_token_with_message_protection_client_policy

oracle/wss10_saml_token_with_message_integrity_client_policy

oracle/wss10_saml_token_with_message_protection_client_policy

oracle/wss10_saml_token_with_message_protection_ski_basic256_client_policy

oracle/wss10_username_token_with_message_protection_client_policy

oracle/wss10_username_token_with_message_protection_ski_basic256_client_policy

oracle/wss10_x509_token_with_message_protection_client_policy

oracle/wss11_kerberos_token_with_message_protection_client_policy

oracle/wss11_message_protection_client_policy

oracle/wss11_saml_token_with_message_protection_client_policy

oracle/wss11_username_token_with_message_protection_client_policy

oracle/wss11_x509_token_with_message_protection_client_policy

	
oracle.wsm.security.util.SecurityConstants.ClientConstants.WSS_KEYSTORE_PASSWORD

	
This property sets the password of the keystore file. If provided, this value will override any statically configured value. Type: java.lang.String

	
oracle/wss10_message_protection_client_policy

oracle/wss10_saml_hok_token_with_message_protection_client_policy

oracle/wss10_saml_token_with_message_integrity_client_policy

oracle/wss10_saml_token_with_message_protection_client_policy

oracle/wss10_saml_token_with_message_protection_ski_basic256_client_policy

oracle/wss10_username_token_with_message_protection_client_policy

oracle/wss10_username_token_with_message_protection_ski_basic256_client_policy

oracle/wss10_x509_token_with_message_protection_client_policy

oracle/wss11_kerberos_token_with_message_protection_client_policy

oracle/wss11_message_protection_client_policy

oracle/wss11_saml_token_with_message_protection_client_policy

oracle/wss11_username_token_with_message_protection_client_policy

oracle/wss11_x509_token_with_message_protection_client_policy

	
oracle.wsm.security.util.SecurityConstants.ClientConstants.WSS_SIG_KEY_ALIAS

	
This property sets the alias of the key within the keystore that will be used for digital signatures. If provided, this value will override any statically configured value. Type: java.lang.String

For WSS11 policies, this property is used only in the case of mutual authentication.

	
oracle/wss10_message_protection_client_policy

oracle/wss10_saml_hok_token_with_message_protection_client_policy

oracle/wss10_saml_token_with_message_integrity_client_policy

oracle/wss10_saml_token_with_message_protection_client_policy

oracle/wss10_saml_token_with_message_protection_ski_basic256_client_policy

oracle/wss10_username_token_with_message_protection_client_policy

oracle/wss10_username_token_with_message_protection_ski_basic256_client_policy

oracle/wss10_x509_token_with_message_protection_client_policy

oracle/wss11_kerberos_token_with_message_protection_client_policy

oracle/wss11_message_protection_client_policy

oracle/wss11_saml_token_with_message_protection_client_policy

oracle/wss11_username_token_with_message_protection_client_policy

oracle/wss11_x509_token_with_message_protection_client_policy

	
oracle.wsm.security.util.SecurityConstants.ClientConstants.WSS_SIG_KEY_PASSWORD

	
This property sets the password for the alias of the key within the keystore that will be used for digital signatures. If provided, this value will override any statically configured value. Type: java.lang.String

For WSS11 policies, this property is used only in the case of mutual authentication.

	
oracle/wss10_message_protection_client_policy

oracle/wss10_saml_hok_token_with_message_protection_client_policy

oracle/wss10_saml_token_with_message_integrity_client_policy

oracle/wss10_saml_token_with_message_protection_client_policy

oracle/wss10_saml_token_with_message_protection_ski_basic256_client_policy

oracle/wss10_username_token_with_message_protection_client_policy

oracle/wss10_username_token_with_message_protection_ski_basic256_client_policy

oracle/wss10_x509_token_with_message_protection_client_policy

oracle/wss11_kerberos_token_with_message_protection_client_policy

oracle/wss11_message_protection_client_policy

oracle/wss11_saml_token_with_message_protection_client_policy

oracle/wss11_username_token_with_message_protection_client_policy

oracle/wss11_x509_token_with_message_protection_client_policy

	
oracle.wsm.security.util.SecurityConstants.ClientConstants.WSS_ENC_KEY_ALIAS

	
This property sets the alias of the key within the keystore that will be used to decrypt the response from the service. If provided, this value will override any statically configured value. Type: java.lang.String

Not used in WSS11 policies.

	
oracle/wss10_message_protection_client_policy

oracle/wss10_saml_hok_token_with_message_protection_client_policy

oracle/wss10_saml_token_with_message_integrity_client_policy

oracle/wss10_saml_token_with_message_protection_client_policy

oracle/wss10_saml_token_with_message_protection_ski_basic256_client_policy

oracle/wss10_username_token_with_message_protection_client_policy

oracle/wss10_username_token_with_message_protection_ski_basic256_client_policy

oracle/wss10_x509_token_with_message_protection_client_policy

	
oracle.wsm.security.util.SecurityConstants.ClientConstants.WSS_ENC_KEY_PASSWORD

	
This property sets the password for the key within the keystore that will be used for decryption. If provided, this value will override any statically configured value. Type: java.lang.String

Not used in WSS11 policies.

	
oracle/wss10_message_protection_client_policy

oracle/wss10_saml_hok_token_with_message_protection_client_policy

oracle/wss10_saml_token_with_message_integrity_client_policy

oracle/wss10_saml_token_with_message_protection_client_policy

oracle/wss10_saml_token_with_message_protection_ski_basic256_client_policy

oracle/wss10_username_token_with_message_protection_client_policy

oracle/wss10_username_token_with_message_protection_ski_basic256_client_policy

oracle/wss10_x509_token_with_message_protection_client_policy

	
oracle.wsm.security.util.SecurityConstants.ClientConstants.WSS_RECIPIENT_KEY_ALIAS

	
This property sets the alias for the recipient's public key that is used to encrypt type outbound message. If provided this value will override any static configuration value. Type: java.lang.String

	
oracle/wss10_message_protection_client_policy

oracle/wss10_saml_hok_token_with_message_protection_client_policy

oracle/wss10_saml_token_with_message_integrity_client_policy

oracle/wss10_saml_token_with_message_protection_client_policy

oracle/wss10_saml_token_with_message_protection_ski_basic256_client_policy

oracle/wss10_username_token_with_message_protection_client_policy

oracle/wss10_username_token_with_message_protection_ski_basic256_client_policy

oracle/wss10_x509_token_with_message_protection_client_policy

oracle/wss11_kerberos_token_with_message_protection_client_policy

oracle/wss11_message_protection_client_policy

oracle/wss11_saml_token_with_message_protection_client_policy

oracle/wss11_username_token_with_message_protection_client_policy

oracle/wss11_x509_token_with_message_protection_client_policy

	
oracle.wsm.security.util.SecurityConstants.ClientConstants.WSM_SUBJECT_PRECEDENCE

	
In case of SAML client policies, set this property to false if there is a need to use a client-specified username rather than subject.

	
Applies to all of the SAML client policies listed in "Configuring SAML".

	
oracle.wsm.security.util.SecurityConstants.ClientConstants.WSM_SAML_ISSUER_NAME

	
This property sets the SAML issuer name when trying access a service that is protected using SAML mechanism. If provided this value will override any static configuration value. Type: java.lang.String

	
Applies to all of the SAML client policies listed in "Configuring SAML".

	
oracle.wsm.security.util.SecurityConstants.ClientConstants.WSM_INCLUDE_USER_ROLES

	
This property sets the user roles in a SAML assertion.

	
Applies to all of the SAML client policies listed in "Configuring SAML".

	
oracle.wsm.security.util.SecurityConstants.ClientConstants.WSM_SAML_ASSERTION_FILE_NAME

	
For SAML HOK policies, this file contains the assertion

	
Applies to all of the SAML client policies listed in "Configuring SAML".

	
oracle.wsm.security.util.SecurityConstants.ClientConstants.WSS_KERBEROS_SERVICE_PRINCIPAL

	
This property sets the service principal name when trying access a service that is protected using the Kerberos mechanism. If provided this value will override any static configuration value. Type: java.lang.String

	
oracle/wss11_kerberos_token_with_message_protection_client_policy

	
BindingProvider.USERNAME_PROPERTY (javax.xml.ws.security.auth.username)

	
User name for authentication.

	
Used by username policies, and SAML policies including identity switching policies.

For username client policies, you have two options:

	
csf-key

	
BindingProvider.USERNAME_PROPERTY and BindingProvider.PASSWORDproperty.

For SAML client policies including the identity switch policy, use BindingProvider.USERNAME_PROPERTY.

	
BindingProvider.PASSWORD_PROPERTY (javax.xml.ws.security.auth.password)

	
Password for authentication.

	
Used by username client policies.

	
oracle.wsm.security.util.SecurityConstants.ClientConstants.WSM_STS_AUTH_X509_CSF_KEY

	
Use to configure X509 certificate for authenticating to the STS.

If the policy-reference-uri in the STS configuration policy points to an x509-based policy, then you configure the sts.auth.x509.csf.key property to specify the X509 certificate for authenticating to the STS.

	
oracle/wss_sts_issued_saml_bearer_token_over_ssl_client_policy

oracle/wss11_sts_issued_saml_hok_with_message_protection_client_policy

oracle/wss11_sts_issued_saml_with_message_protection_client_policy

	
oracle.wsm.security.util.SecurityConstants.ClientConstants.WSM_STS_AUTH_USER_CSF_KEY

	
Use to configure the username/password to authenticate to the STS.

If policy-reference-uri in the STS configuration policy points to a username-based policy, then you configure the sts.auth.user.csf.key property to specify a username/password to authenticate to the STS.

	
oracle/wss_sts_issued_saml_bearer_token_over_ssl_client_policy

oracle/wss11_sts_issued_saml_hok_with_message_protection_client_policy

oracle/wss11_sts_issued_saml_with_message_protection_client_policy

	
oracle.wsm.security.util.SecurityConstants.ClientConstants.WSM_STS_AUTH_ON_BEHALF_OF_CSF_KEY

	
Optional property. Use to configure on behalf of entity. If present, it will be given preference over Subject (if it exists).

	
oracle/wss_sts_issued_saml_bearer_token_over_ssl_client_policy

oracle/wss11_sts_issued_saml_hok_with_message_protection_client_policy

oracle/wss11_sts_issued_saml_with_message_protection_client_policy

	
oracle.wsm.security.util.SecurityConstants.ClientConstants.ON_BEHALF_OF

	
Optional property. Override this property to indicate whether the request is on behalf of an another entity. The default value for this flag is true. When set to true and sts.auth.on.behalf.of.csf.key is configured, then it will be given preference and the identity established using that CSF key will be send in the on behalf of.

Otherwise, if the subject is already established, then the username from the subject will be sent as onBehalfOf token.

If sts.auth.on.behalf.of.csf.key is not set and the subject does not exist, on.behalf.of is treated as a token exchange for the requestor and not for another entity. It is not included in an onBehalfOf element in the request.

	
oracle/wss_sts_issued_saml_bearer_token_over_ssl_client_policy

oracle/wss11_sts_issued_saml_hok_with_message_protection_client_policy

oracle/wss11_sts_issued_saml_with_message_protection_client_policy

	
oracle.wsm.security.util.SecurityConstants.ClientConstants.STS_KEYSTORE_RECIPIENT_ALIAS

	
The public key alias of the STS.

	
oracle/wss_sts_issued_saml_bearer_token_over_ssl_client_policy

oracle/wss11_sts_issued_saml_hok_with_message_protection_client_policy

oracle/wss11_sts_issued_saml_with_message_protection_client_policy

	
oracle.wsm.security.util.SecurityConstants.ClientConstants.ATTESTING_MAPPING_ATTRIBUTE

	
The mapping attribute used to represent the attesting entity. Only the DN is currently supported. This attribute is applicable only to sender vouches and then only to message protection use cases. It is not applicable to SAML over SSL policies.

	
wss10_saml20_token_with_message_protection_client_policy

wss11_saml20_token_with_message_protection_client_policy

	
oracle.wsm.security.util.SecurityConstants.ClientConstants.SAML_AUDIENCE_URI

	
Represents the relying party, as a comma-separated URI. This field accepts wildcards.

	
wss10_saml_token_client_policy

wss10_saml20_token_client_policy

wss_saml_token_bearer_over_ssl_client_policy

wss_saml20_token_bearer_over_ssl_client_policy

wss_saml_token_over_ssl_client_policy

wss_saml20_token_over_ssl_client_policy

wss10_saml_token_with_message_protection_client_policy

wss10_saml20_token_with_message_protection_client_policy

wss11_saml_token_with_message_protection_client_policy

wss11_saml20_token_with_message_protection_client_policy

Configuration Override Example

Example 11-9 shows an example of a Web service client overriding the keystore and username/password.

If you need to clear an overridden configuration property, set it to an empty string.

Before you clear it, remember that other policies could be using the same property. The properties are client-specific and there could be multiple policies that are attached to the same client that use the same property.

Example 11-9 Overriding the Keystore and Username/Password

package example;
import oracle.wsm.security.utils.SecurityConstants;
public class MyClientJaxWs {
 public static void main(String[] args) {
 try {
 URL serviceWsdl = new URL("http://localhost/myApp/myPort?WSDL");
 QName serviceName = new QName("MyNamespace", "MyService");
 Service service = Service.create(serviceWsdl, serviceName);
 MyInterface proxy = service.getPort(MyInterface.class);
 RequestContext context = ((BindingProvider)proxy).getRequestContext();
 context.put(oracle.webservices.ClientConstants.CLIENT_CONFIG, new File("c:/dat/client-pdd.xml"));
 context.put(BindingProvider.USERNAME_PROPERTY, getCurrentUsername());
 context.put(BindingProvider.PASSWORD_PROPERTY, getCurrentPassword());
 context.put(SecurityConstants.ClientConstants.WSS_KEYSTORE_LOCATION, "c:/mykeystore.jks");
 context.put(SecurityConstants.ClientConstants.WSS_KEYSTORE_PASSWORD, "keystorepassword");
 context.put(SecurityConstants.ClientConstants.WSS_KEYSTORE_TYPE, "JKS");
 context.put(SecurityConstants.ClientConstants.WSS_SIG_KEY_ALIAS, "your signature alias");
 context.put(SecurityConstants.ClientConstants.WSS_SIG_KEY_PASSWORD, "your signature password");
 context.put(SecurityConstants.ClientConstants.WSS_ENC_KEY_ALIAS, "your encryption alias");
 context.put(SecurityConstants.ClientConstants.WSS_ENC_KEY_PASSWORD, "your encryption password");
 System.out.println(proxy.myOperation("MyInput"));
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
}

In Example 11-9, the contents of c:/dat/client-pdd.xml referenced might be as follows:

! -- The contents of c:/dat/client-pdd.xml file mentioned above -- >
<oracle-webservice-clients>
 <webservice-client>
 <port-info>
 <policy-references>
 <policy-reference uri="management/Log_Msg_Policy" category="management"/>
 <policy-reference uri="oracle/wss10_username_token_with_message_protection_client_policy" category="security"/>
 </policy-references>
 </port-info>
 </webservice-client>
</oracle-webservice-clients>

Configuring Local Optimization for a Policy

Oracle WSM supports a SOA local optimization feature for composite-to-composite invocations in which the reference of one composite specifies a Web service binding to a second composite running in the same container. Local optimization enables you to bypass the HTTP stack and SOAP/normalized message conversions during run time.

This SOA local optimization feature is described in "Policy Attachments and Local Optimization in Composite-to-Composite Invocations" in Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle Business Process Management Suite and summarized here.

Controlling When Local Optimization is Used

There are two ways to control the local optimization feature, and they have different scope:

	
By adding the oracle.webservices.local.optimization property in the binding section of the composite.xml file. There are two possible values, true and false:

	
true -- Local optimization is used if the policy supports it as shown in Table 11-3 and the policy-level control is configured to use it as described in "Configuring the Policy-Level Optimization Control".

If optimization is used, the policy is not applied.

	
false -- Local optimization is not used, regardless of the how the policy-level control is configured and the default policy setting for the local-optimization property shown in Table 11-3.

This setting forces the policy to be applied.

The composite-level property is independent of the policy-level configuration. That is, if you want to turn off the optimization regardless of whether a policy is attached, set the composite-level property to false.

See "Policy Attachments and Local Optimization in Composite-to-Composite Invocations" for information on overriding the local-optimization setting for a policy by adding the oracle.webservices.local.optimization property in the binding section of the composite.xml file.

	
By configuring the optimization control for a policy, as described in "Configuring the Policy-Level Optimization Control". The policy-level property controls the optimization wherever the policy is used, except as overridden by the composite-level property.

Configuring the Policy-Level Optimization Control

	
Notes:

If there is a policy attached to the Web service, the policy may not be invoked if this optimization is used. Therefore, for each policy you need to decide whether you want to use the local optimization.
Oracle recommends that you do not change the optimization settings for the predefined policies because doing so may cause the policies to not be invoked, resulting in unexpected behavior.

The optimization control is available when you create or edit a policy, as shown in Figure 11-4.

Figure 11-4 Local Optimization Control When Creating a Policy

[image: Description of Figure 11-4 follows]

Description of "Figure 11-4 Local Optimization Control When Creating a Policy"

There are three possible settings for the Local Optimization control: On, Off, and Check Identity:

	
On -- Optimization is turned on and the policy is not applied.

	
Off -- Optimization is turned off and the policy is applied. The request goes through the usual WS/SOAP/HTTP process.

	
Check Identity -- Optimize only if a JAAS subject already exists in the current thread, indicating that authentication has already succeeded. Otherwise, go through the usual WS/SOAP/HTTP process.

Table 11-3 shows the predefined policies, and describes how each policy implements the local optimization feature.

Table 11-3 Default Optimization Setting of Predefined Policies

	Policy Name	Default Optimization Setting
	
oracle/wsaddr10_policy

	
On

	
oracle/binding_authorization_denyall_policy

	
Always Off

	
oracle/binding_authorization_permitall_policy

	
Always Off

	
oracle/binding_permission_authorization_policy

	
Always Off

	
oracle/component_authorization_all_policy

	
Does not apply to bindings

	
oracle/log_policy

	
On

	
oracle/no_addressing_policy

	
Off

	
oracle/no_authentication_client_policy

	
Off

	
oracle/no_authentication_service_policy

	
Off

	
oracle/no_authorization_component_policy

	
Off

	
oracle/no_authorization_service_policy

	
Off

	
oracle/no_messageprotection_client_policy

	
Off

	
oracle/no_messageprotection_service_policy

	
Off

	
oracle/no_mtom_policy

	
Off

	
oracle/no_wsrm_policy

	
Off

	
oracle/sts_trust_config_client_policy

	
Off

	
oracle/sts_trust_config_service_policy

	
Off

	
oracle/whitelist_authorization_policy

	
Always Off

	
oracle/wsaddr_policy

	
On

	
oracle/wsmtom_policy

	
On

	
oracle/wsrm10_policy

	
On

	
oracle/wsrm11_policy

	
On

	
oracle/wss_http_token_client_policy

	
Off

	
oracle/wss_http_token_service_policy

	
Off

	
oracle/wss_http_token_over_ssl_client_policy

	
Off

	
oracle/wss_http_token_over_ssl_service_policy

	
Off

	
oracle/wss11_kerberos_token_client_policy

	
Off

	
oracle/wss11_kerberos_token_service_policy

	
Off

	
oracle/wss_username_token_client_policy

	
Off

	
oracle/wss_username_token_service_policy

	
Off

	
oracle/wss_username_token_over_ssl_client_policy

	
Off

	
oracle/wss_username_token_over_ssl_service_policy

	
Off

	
oracle/wss10_message_protection_client_policy

	
On

	
oracle/wss10_message_protection_service_policy

	
On

	
oracle/wss10_username_token_with_message_protection_client_policy

	
Off

	
oracle/wss10_username_token_with_message_protection_service_policy

	
Off

	
oracle/wss10_x509_token_with_message_protection_client_policy

	
Off

	
oracle/wss10_x509_token_with_message_protection_service_policy

	
Off

	
oracle/wss10_saml_token_with_message_protection_client_policy

	
Check Identity

	
oracle/wss10_saml_token_with_message_protection_service_policy

	
Check Identity

	
oracle/wss11_saml_token_with_message_protection_client_policy

	
Check Identity

	
oracle/wss11_saml_token_with_message_protection_service_policy

	
Check Identity

	
oracle/wss11_saml20_token_with_message_protection_client_policy

	
Check Identity

	
oracle/wss11_saml20_token_with_message_protection_service_policy

	
Check Identity

	
oracle/wss11_sts_issued_saml_hok_with_message_protection_client_policy

	
Off

	
oracle/wss11_sts_issued_saml_hok_with_message_protection_service_policy

	
Off

	
oracle/wss11_sts_issued_saml_with_message_protection_client_policy

	
Off

	
oracle/wss11_sts_issued_saml_with_message_protection_client_policy

	
Off

	
oracle/wss10_saml_token_with_message_integrity_client_policy

	
Check Identity

	
oracle/wss10_saml_token_with_message_integrity_service_policy

	
Check Identity

	
oracle/wss10_saml20_token_with_message_protection_client_policy

	
Check Identity

	
oracle/wss10_saml20_token_with_message_protection_service_policy

	
Check Identity

	
oracle/wss10_saml_token_client_policy

	
Check Identity

	
oracle/wss10_saml_token_service_policy

	
Check Identity

	
oracle/wss10_saml20_token_client_policy

	
Check Identity

	
oracle/wss10_saml20_token_service_policy

	
Check Identity

	
oracle/wss10_username_id_propagation_with_msg_protection_client_policy

	
Check Identity

	
oracle/wss10_username_id_propagation_with_msg_protection_service_policy

	
Check Identity

	
oracle/wss11_message_protection_client_policy

	
On

	
oracle/wss11_message_protection_service_policy

	
On

	
oracle/wss11_username_token_with_message_protection_client_policy

	
Off

	
oracle/wss11_username_token_with_message_protection_service_policy

	
Off

	
oracle/wss11_x509_token_with_message_protection_client_policy

	
Off

	
oracle/wss11_x509_token_with_message_protection_service_policy

	
Off

	
oracle/wsrm10_policy

	
On

	
oracle/wsrm11_policy

	
On

	
oracle/wss10_username_token_with_message_protection_ski_basic256_client_policy

	
Off

	
oracle/wss10_username_token_with_message_protection_ski_basic256_service_policy

	
Off

	
oracle/wss10_saml_token_with_message_protection_ski_basic256_client_policy

	
Check Identity

	
oracle/wss10_saml_token_with_message_protection_ski_basic256_service_policy

	
Check Identity

	
wss11_saml_or_username_token_with_message_protection_client_policy

	
Check Identity

	
wss11_saml_or_username_token_with_message_protection_service_policy

	
Check Identity

	
wss11_saml_token_identity_switch_with_message_protection_client_policy

	
Off

	
wss10_saml_hok_token_with_message_protection_client_policy

	
Off

	
wss10_saml_hok_token_with_message_protection_service_policy

	
Off

	
oracle/wss_saml_or_username_token_over_ssl_service_policy

	
Check Identity

	
oracle/wss_saml_or_username_token_service_policy

	
Check Identity

	
wss_saml_token_over_ssl_client_policy

	
Check Identity

	
wss_saml_token_over_ssl_service_policy

	
Check Identity

	
wss_saml20_token_over_ssl_client_policy

	
Check Identity

	
wss_saml20_token_over_ssl_service_policy

	
Check Identity

	
wss_saml_token_bearer_over_ssl_client_policy

	
Check Identity

	
wss_saml_token_bearer_over_ssl_service_policy

	
Check Identity

	
oracle/wss_sts_issued_saml_bearer_token_over_ssl_client_policy

	
Off

	
oracle/wss_sts_issued_saml_bearer_token_over_ssl_service_policy

	
Off

	
wss_saml20_token_bearer_over_ssl_client_policy

	
Check Identity

	
wss_saml20_token_bearer_over_ssl_service_policy

	
Check Identity

	
wss11_kerberos_token_with_message_protection_client_policy

	
Off

	
wss11_kerberos_token_with_message_protection_service_policy

	
Off

	
wss11_kerberos_token_with_message_protection_basic128_client_policy

	
Off

	
wss11_kerberos_token_with_message_protection_basic128_service_policy

	
Off

12 Testing Web Services

This chapter includes the following sections:

	
Testing Your Web Services

	
Editing the Input Arguments as XML Source

	
Enabling Security Testing

	
Enabling Quality of Service Testing

	
Enabling HTTP Transport Options

	
Stress Testing the Web Service Operation

	
Disabling the Test Page for a Web Service

Testing Your Web Services

This section describes how to use the Fusion Middleware Control Test Web Service page to verify that you are receiving the expected results from the Web service.

The Test Web Service page allows you to test any of the operations exposed by a Web service. You can test Web services that are deployed on any accessible host; the Web service does not have to be deployed on this host.

	
Note:

The Test Web Service page can parse WSDL URLs that contain ASCII characters only. If the URL contains non-ASCII characters, the parse operation fails. To test a Web service that has non-ASCII characters in the URL, allow your browser to convert the WSDL URL and use the resulting encoded WSDL URL in the Test Web Service page.
When testing Web services that use policies, the Oracle WSM component must be installed in the same domain from which Fusion Middleware Control is being run. Otherwise, an invalid policy exception will be returned.

You can navigate to the Test Web Service page in many ways. This section describes two typical ways to do so.

To test your Web service

	
Access the Test Web Service page using either of these typical ways to do so.

	
From the Oracle WebLogic Server Domain Home page:

	
In the navigator pane, expand WebLogic Domain to show the domain in which you want to test a Web service.

	
Select the domain.

	
From the WebLogic Domain menu, select Web Services, and then Test Web Service. The Test Web Service input page appears.

	
Enter the WSDL of the Web service you want to test. If you do not know the WSDL, click the search icon and select from the registered Web services, if any.

	
Click Parse WSDL.

If the WSDL is secured with HTTP Basic Authentication, click HTTP Basic Auth Option for WSDL Access and enter the username and password before parsing the WSDL.

The complete Test Web Services page displays, as shown in Figure 12-1.

	
From the Web Service Application Home page:

	
In the navigator pane, expand Application Deployments to view the applications in the domain.

	
Select the application for which you want to test the Web service.

	
In the Web Services section of the page, click Test for the Web service endpoint you want to test.

The Test Web Service page displays, as shown in Figure 12-1. Note that the WSDL field is automatically populated with the WSDL for the endpoint.

	
Click Parse WSDL.

If the WSDL is secured with HTTP Basic Authentication, click HTTP Basic Auth Option for WSDL Access and enter the username and password before parsing the WSDL.

The Test Web Service page is shown in Figure 12-1. Note that the test option sections are collapsed by default.

Figure 12-1 Test Web Service Page in Collapsed View

[image: Description of Figure 12-1 follows]

Description of "Figure 12-1 Test Web Service Page in Collapsed View"

	
Select the service and port to be tested. If the WSDL has multiple services and ports, these fields are available as drop-down menus. If the WSDL has only one service and port, these fields are read-only, as shown in Figure 12-1.

	
Select the operation that you want to test from the Operation menu. The available operations are determined from the WSDL.

To test a RESTful Web service, select the GET or POST service port operations.

	
If you want to change the endpoint URL of the test, click Edit Endpoint URL and make the change.

	
Select the Request tab if it is not already selected.

	
Expand the test option sections by clicking the plus sign (+) next to the section name. The expanded view of the Test Web Service page is shown in Figure 12-2.

Figure 12-2 Bottom Portion of Test Web Service Page in Expanded View

[image: Description of Figure 12-2 follows]

Description of "Figure 12-2 Bottom Portion of Test Web Service Page in Expanded View"

	
In the Security section, specify whether you want to test a Web service using Oracle WSM security policies, basic HTTP authentication, authentication from a custom policy, or no credentials. The security setting is not determined from a policy in the WSDL; you can specify the type of security you want to test. The default is None. Depending on the option selected, additional fields are displayed. For details about the options available, see "Enabling Security Testing".

When testing RESTful Web services, because the SOAP protocol is not used, the only security options are HTTP Basic Authentication or None.

	
In the Quality of Service section, specify whether you want to explicitly test a Reliable Messaging (WS-RM), WS-Addressing, or MTOM policy. For details about the options available, see "Enabling Quality of Service Testing".

	
Note:

This section is not available when testing RESTful Web services.

	
In the HTTP Transport section, the test mechanism uses the WSDL to determine whether a SOAP action is available to test. If available, specify whether you want send the request with the SOAP action HTTP header. For more information, see "Enabling HTTP Transport Options".

	
Note:

This section is not available when testing RESTful Web services.

	
In the Additional Test Options section, select the Enable Stress Test option if you want to invoke the Web service multiple times simultaneously. If you select this option, you can also provide values for the stress test options, or accept the defaults. For more information, see "Stress Testing the Web Service Operation".

	
In the Input Arguments section, enter the input arguments for the Web service in the Value fields. The parameters and type, and the required input values, are determined from the WSDL.

Select Tree View or XML View to toggle between a hierarchical list of input parameters and the XML content.

	
Click Test Web Service to initiate the test.

The test results appear in the Response tab upon completion.

If the test is successful, the Test Status field indicates Request Successfully received and the response time is displayed, as shown in Figure 12-3.

	
Note:

When running SOA composite tests, the Response tab will indicate whether a new composite was generated. You can also click the Launch Flow Trace button to open the Flow Trace window, where you can view the flow of the message through various composite and component instances.

Figure 12-3 Successful Test

[image: Description of Figure 12-3 follows]

Description of "Figure 12-3 Successful Test"

If the test fails, an error message is displayed. For example, Figure 12-4 shows an error resulting from a type error in the var-Int parameter. In this particular instance, string data was entered when an int was expected.

	
Note:

The results on the Response tab are a simplified version of the standard Web service results.

	

Figure 12-4 Data Validation Error

[image: Description of Figure 12-4 follows]

Description of "Figure 12-4 Data Validation Error"

Editing the Input Arguments as XML Source

You can view the input arguments in a user-friendly form, or you can edit the XML source code directly. If you edit the XML source directly, you must enter valid XML. Use the drop-down list in the Input Arguments section of the page to toggle between Tree View and XML View.

Enabling Security Testing

You can use the Test Web Service Page to test Web services security using Oracle WSM security policies, HTTP basic authentication, or custom policies. You can choose the type of test by selecting one of the options in the Security section of the page.

The security setting is not determined from a policy in the WSDL; you can specify the type of security you want to test. The default is None.

The following options available, and described in more detail in the subsequent sections:

	
OWSM Security Policies– Uses the credentials and other security options required by the Oracle WSM security policies for authentication and message protection.

	
HTTP Basic Auth – Inserts the username and password credentials in the HTTP transport header. Both the username and password are required.

If you do specify a username and password, they must exist and be valid.)

	
Advanced – Uses a custom policy to authenticate the user. You must specify the URI for the policy. You can also specify configuration overrides.

	
None – No credentials are included.

	
Note:

When testing RESTful Web services, because the SOAP protocol is not used, the only security options are HTTP Basic Authentication or None.

OWSM Security Policies

The options available when you select OWSM Security Policies, are shown in Figure 12-5. Note that in this figure the Advanced Options field is selected to display all of the available fields.

Figure 12-5 OWSM Security Policies Test Options

[image: Description of Figure 12-5 follows]

Description of "Figure 12-5 OWSM Security Policies Test Options"

To test the Web service security using Oracle WSM security policies:

	
From the Compatible Client Policies list, which displays the compatible client policies as specified in the WSDL, select the client policy to test.

Alternatively, to perform a negative test on the endpoint, you can select a non-compatible policy, or All from the Other Client Policies list.

	
Notes:

Non-security policies and policies not supported by the test function are shown as read-only and cannot be selected. For a list of client policies supported by the test function, see "Supported Client Security Policies".
Service polices that support multiple client security policies are not supported by the test function.

The Configuration Properties required by the selected policy are indicated with an asterisk (*). For example:

	
For username_token and http_token policies, the Username and Password fields are required; for SAML policies only the Username field is required.

	
For message protection and SSL policies, the JKS Keystore Location and JKS Keystore Password fields are required.

	
Provide values for the required fields as determined by the policy.

If the JKS Keystore Location and JKS Keystore Password fields are required by the policy, enter the location and password of a temporary user-created keystore that is NFS accessible and click Load Keys. The associated keystore fields under Advanced Options are populated with the aliases specified in the keystore.

For more information about creating a keystore, see "Generating Private Keys and Creating the Java Keystore".

	
Click Advanced Options. Additional keystore alias and SAML properties fields are displayed. Properties required by the selected policies are indicated with an asterisk. Enter the required values, or provide override values in the applicable fields.

HTTP Basic Auth

This option requires Username and Password credentials that are inserted into the HTTP transport header. The username and password must exist and be valid for the WebLogic Server.

Advanced

The options available when you select the Advanced option are shown in Figure 12-6.

Figure 12-6 Advanced Test Options

[image: Description of Figure 12-6 follows]

Description of "Figure 12-6 Advanced Test Options"

The Advanced option allows you to use a custom policy to test the Web service security. To do so:

	
Specify the URI of the custom policy in the Policy URI field. This field is required.

	
Specify any configuration overrides for the policy in the Name and Value fields. To add properties, click Add and provide the name/value pair for the configuration override. To delete a property, select it in the table and click Delete.

	
Note:

Properties must be specified using the full name of each property, for example oracle.wsm.security.util.SecurityConstants.ClientConstants.WSS_KEYSTORE_LOCATION. For a complete list of property names for overridable properties, see Table 11-2 in "Using Client Programmatic Configuration Overrides".

Supported Client Security Policies

The following Oracle WSM client security policies are supported by the test function:

	
oracle/wss_http_token_client_policy

	
oracle/wss_http_token_over_ssl_client_policy

	
oracle/wss_saml_token_bearer_over_ssl_client_policy

	
oracle/wss_saml_token_over_ssl_client_policy

	
oracle/wss_saml20_token_bearer_over_ssl_client_policy

	
oracle/wss_saml20_token_over_ssl_client_policy

	
oracle/wss_username_token_client_policy

	
oracle/wss_username_token_over_ssl_client_policy

	
oracle/wss10_message_protection_client_policy

	
oracle/wss10_saml_token_with_message_integrity_client_policy

	
oracle/wss10_saml_token_with_message_protection_client_policy

	
oracle/wss10_saml_token_with_message_protection_ski_basic256_client_policy

	
oracle/wss10_saml20_token_with_message_protection_client_policy

	
oracle/wss10_username_id_propagation_with_msg_protection_client_policy

	
oracle/wss10_username_token_with_message_protection_client_policy

	
oracle/wss10_username_token_with_message_protection_ski_basic256_client_policy

	
oracle/wss10_x509_token_with_message_protection_client_policy

	
oracle/wss11_message_protection_client_policy

	
oracle/wss11_saml_token_identity_switch_with_message_protection_client_policy

	
oracle/wss11_saml_token_with_message_protection_client_policy

	
oracle/wss11_saml20_token_with_message_protection_client_policy

	
oracle/wss11_username_token_with_message_protection_client_policy

	
oracle/wss11_x509_token_with_message_protection_client_policy

Enabling Quality of Service Testing

	
Note:

This section is not applicable when testing RESTful Web services.

Three characteristics of Quality of Service (QoS) can be tested: reliable messaging (WS-RM), WS-Addressing, and Message Transmission Optimization Mechanism (MTOM) in the Quality of Service section of the Test Web Service Page (Figure 12-7). For each type of Quality of Service, there are three options:

	
WSDL Default – Execute the default behavior of the WSDL. For example, if WSDL Default is selected for MTOM, and the WSDL contains a reference to an MTOM policy, the policy is enforced. If the WSDL does not contain a reference to an MTOM policy, then no MTOM policy is enforced.

	
None – No policy for the specific QoS, even if it is included in the WSDL, is executed. For example, if None is selected for WS-RM, no reliable messaging policy is enforced. If the WSDL contains a reference to a reliable messaging policy, it is ignored.

	
Custom – Enforce a custom policy. For example, if a WS-Addressing policy is referenced in the WSDL, this policy will be ignored, and the policy specified in URI will be used instead.

	
URI – Specify the location of the policy to be enforced.

Figure 12-7 Quality of Service Parameters on the Test Web Service Page

[image: Description of Figure 12-7 follows]

Description of "Figure 12-7 Quality of Service Parameters on the Test Web Service Page"

Enabling HTTP Transport Options

	
Note:

This section is not applicable when testing RESTful Web services.

The test mechanism uses the WSDL to determine whether a SOAP action is available to test. If the WSDL soap:operation has a soapAction attribute, then this is displayed and Enable SOAP Action is enabled.

When a request is sent with Enable SOAP Action enabled, then the SOAP action HTTP header is sent.

To change this behavior, clear the Enable SOAP Action box, in which case the HTTP header is not sent. Or, you can override the behavior by providing a different value in the SOAP Action field. (You must already know the SOAP action that you want to test, and the syntax.)

Figure 12-8 HTTP Transport Options on the Test Web Service Page

[image: Description of Figure 12-8 follows]

Description of "Figure 12-8 HTTP Transport Options on the Test Web Service Page"

Stress Testing the Web Service Operation

Select the Enable Stress Test check box (Figure 12-9) to invoke a continuous series of invocations of the Web service operation (Figure 12-9). The following options are available:

	
Concurrent Threads – The number of concurrent threads on which the invocations should be sent. The default is 5 threads.

	
Loops per Thread – The number of times to invoke the operation. The default is 10 times.

	
Delay in Milliseconds – The number of milliseconds to wait between operation invocations. The default is 1000 milliseconds (1 second).

Figure 12-9 Stress Testing Parameters on the Test Web Service Page

[image: Description of Figure 12-9 follows]

Description of "Figure 12-9 Stress Testing Parameters on the Test Web Service Page"

When you invoke the test, a progress box indicates the test status. When the stress test is complete, a confirmation page displays the results of the test.

The Response tab provides additional information about the stress test, including the number of tests with errors, and the average, minimum, and maximum response times. Details about each test are provided in tabular form. For each test, you can view the thread and loop numbers, the duration of the test, the start and end times for the test, and the invocation status. You can filter the fields displayed in the table using the View menu.

Figure 12-10 Stress Test Results on Test Web Service Page

[image: Description of Figure 12-10 follows]

Description of "Figure 12-10 Stress Test Results on Test Web Service Page"

Disabling the Test Page for a Web Service

	
Note:

This section does not apply to Java EE Web services.

Disabling the test page for a Web service allows you to increase security by reducing the externally visible details of an application that exposes Web services.

	
Note:

Disabling the Endpoint Test Enabled control affects only the Web service's externally-visible test page. It does not affect the Web service test feature described in this chapter.

To disable the Test Page using Fusion Middleware Control

	
Navigate to the Web Services summary page, as described in "Navigating to the Web Services Summary Page for an Application".

	
In the Web Service Details section of the page, click on the plus (+) for the Web service to display the Web service ports if they are not already displayed.

	
Click the name of the port to navigate to the Web Service Endpoint page.

	
Click the Configuration tab.

	
In the Endpoint Test Enabled field, select False from the list.

	
Click Apply.

13 Monitoring the Performance of Web Services

This chapter describes how to monitor the performance of a Web service using Fusion Middleware Control. The chapter includes the following sections:

	
Overview of Performance Monitoring

	
When Are Web Service Statistics Started or Reset?

	
Viewing Web Service Statistics for an Application

	
Viewing Web Service Statistics for a Server Instance

	
Viewing Web Service Statistics for an Individual Web Service

	
Viewing Operation Statistics for a Web Service Endpoint

	
Viewing Web Service Statistics for Java EE Web Service Clients

	
Viewing the Security Violations for a Web Service

In addition to the monitoring features described in this chapter, see "Analyzing Policy Usage" to analyze how policies are used by one or more Web services.

Overview of Performance Monitoring

	
Note:

Not all of the monitoring features described in this chapter apply to Java EE Web services.

From the Web Services home page in Fusion Middleware Control, you can do the following:

	
Monitor Web services faults, including Security, Reliable Messaging, MTOM, Management, and Service faults.

	
Monitor Security failures, including authentication, authorization, message integrity, and message confidentiality failures.

	
Configure your Web services ports, including enabling and disabling the port, attaching policies to Web services, and enabling or disabling policies.

The Application home page also displays select Web service details if the application includes Web services.

When Are Web Service Statistics Started or Reset?

The statistics described in this chapter are started or reset when any one of the following events occur:

	
When the application is being deployed for the first time.

	
When the application is redeployed.

	
If the application is already deployed, and the hosting server is restarted.

Viewing Web Service Statistics for an Application

In Fusion Middleware Control, the Web Services summary page for an application displays the collective Summary and fault/violation information for all Web services in the application, as shown in Figure 13-1.

The Charts section shows a graphical view of all security faults for a Web service.

To navigate to the Web Service Summary page for a Web service

	
From the navigator pane, click the plus sign (+) for the Application Deployments folder to expose the applications in the domain, and select the application.

The Application Deployment home page is displayed.

	
Using Fusion Middleware Control, click Application Deployment, then click Web Services.

The Web Services Summary page for this application is displayed.

The page displays Web service endpoints as well as application-level metrics.

For Oracle Infrastructure Web services, the following Web service-wide statistics are displayed:

	
Web Services (Number of Web services in the application)

	
Web Service Endpoints

	
Web Service Endpoints Disabled

	
Total Policy Violations

	
Total Faults

	
Invocations Completed

Figure 13-1 Web Services Performance Summary and Charts

[image: Description of Figure 13-1 follows]

Description of "Figure 13-1 Web Services Performance Summary and Charts"

For WebLogic Java EE Web services, the following Web service-wide statistics are displayed:

	
Server Name (server on which the application is running)

	
Web Services (number of Web services in the application)

	
Web Service Endpoints

	
Java EE Web Service Clients (number of run-time client instances in the application)

	
Java EE Web Service Client Ports (number of Web service client ports in the application to which you can attach Oracle WSM policies)

Figure 13-2 Java EE Web Services Summary

[image: Description of Figure 13-2 follows]

Description of "Figure 13-2 Java EE Web Services Summary"

Viewing Web Service Statistics for a Server Instance

The server-side Web services page displays statistics for all of the Web services on that server.

To view the Web service statistics for a server

	
In the navigator pane, expand WebLogic Domain to show the domain for which you want to see the policies and select the domain.

	
Expand the domain to show the servers in that domain. Select the server for which you want to view the statistics.

	
Using Fusion Middleware Control, click WebLogic Server, and then Web Services.

	
The Web services statistics page for the server is displayed, as shown in Figure 13-3.

Depending on the types of Web services you have deployed, tabs are available for the following Web service types: Java EE, Oracle Infrastructure Web Services, and SOA.

Figure 13-3 Web Services for a Server

[image: Description of Figure 13-3 follows]

Description of "Figure 13-3 Web Services for a Server"

Viewing Web Service Statistics for an Individual Web Service

The Web Service Details section of the Web Services Summary page displays statistics on a per-Web service basis, as shown in Figure 13-4. The following statistics are displayed:

	
Name of the Web service. Click the plus sign (+) for the Web service to display the Web service endpoint.

	
Endpoint Enabled—Flag that specifies whether the Web service is enabled or disabled. For Oracle Infrastructure Web service providers, this field displays n/a.

	
Start Time—Time the Web service was started.

	
Invocations Completed—Number of completed requests to this endpoint.

	
Average Invocation Time—Average time for all Web service invocations to be processed.

	
Policy Faults—Number of failed requests because a policy was not successfully executed.

	
Total Faults—Total number of failed requests.

Figure 13-4 Web Service-Specific Statistics

[image: Description of Figure 13-4 follows]

Description of "Figure 13-4 Web Service-Specific Statistics"

Viewing Operation Statistics for a Web Service Endpoint

To display operation statistics for a particular Web service endpoint:

	
In the Web Services Details section of the Web Services summary page, select the Web Service Endpoints tab.

	
Select the endpoint for which you want to display the statistics.

The Web Service Endpoint page is displayed.

	
Select the Operations tab if it is not already selected.

The following statistics are presented for Oracle Infrastructure Web services:

	
Operation Name—Name of the operation.

	
One Way—Flag that specifies whether the operation returns a value to the calling operation.

	
Action—URI of the action.

	
Input Encoding—Encoding style of the input message.

	
Output Encoding—Encoding style of the output message.

	
Invocations Completed—Number of completed requests to this endpoint.

	
Average Invocation Time—Average time for all Web service invocations to be processed.

	
Faults—Total number of faults for this endpoint.

The following statistics are presented for WebLogic Java EE Web services:

	
Name—Name of the operation.

	
Invocation Count—Number of times that the Web service was invoked.

	
Dispatch Time Average—Average time for all Web service invocations to be processed.

	
Execution Time Average—Average time for all Web service executions.

	
Response Time Average—Average time for all responses generated.

	
Response Count—Total number of responses generated from the Web service invocations.

	
Response Error Count—Total number of errors from responses generated from the Web service invocations.

Viewing Web Service Statistics for Java EE Web Service Clients

To display Web Service statistics for the run-time client instances in a Java EE application:

	
Navigate to the home page for the Java EE Web service, as described in "Navigating to the Web Services Summary Page for an Application".

	
Select the Java EE Web Service Clients tab to view the clients in the application.

	
Note:

This tab is available only if the application contains Java EE Web service clients.

	
Select the Monitoring tab, if it is not already selected to view the statistics for all run-time client instances in the application.

	
Note:

For JAX-WS Web services, the Web services run time creates system-defined client instances within a Web service endpoint that are used to send protocol-specific messages as required by that endpoint. These client instances are named after the Web service endpoint that they serve with the following suffix: -SystemClient. Monitoring information relevant to the system-defined client instances is provided to assist in evaluating the application.

	
Select the client in the Client column to display Web service statistics for that client.

The Java EE Web Service Client page is displayed, as shown in Figure 13-5.

Figure 13-5 Java EE Web Service Client Statistics

[image: Description of Figure 13-5 follows]

Description of "Figure 13-5 Java EE Web Service Client Statistics"

The following summary information is presented for the run-time client instance.

	
Application Name—The name of the application with which the client is associated.

	
Module Name—Name of the Java EE module in which the endpoint is running.

	
Web Service Endpoint—Name of the port which the client invokes.

	
Transport Protocol Type—Transport protocol required by the service.

	
Select the Invocations tab to view the invocation statistics for the client.

Table 13-1 lists the invocation statistics displayed for the run-time client instance.

Table 13-1 Invocation Statistics for Java EE Web Service Client

	Element	Description
	
Errors

	

	
Error Count

	
Total number of security faults and violations.

	
Response Error Count

	
Total number of errors from responses generated from invocations of this client instance

	
Invocation Statistics

	

	
Invocation Count

	
Total number of times that operations on service side have been invoked by the client instance in the current measurement period.

	
Dispatch Time Average (ms)

	
Average dispatch time for the current measurement period.

	
Dispatch Time Total (ms)

	
Total time for all dispatches of this operation in the current measurement period.

	
Execution Time Average (ms)

	
Average execution time of this operation.

	
Execution Time Total (ms)

	
Total time for all executions of this operation

	
Response Statistics

	

	
Response Count

	
Total number of responses generated from invocations of this operation.

	
Response Time Average (ms)

	
Average response time from the responses generated from invocations of this operation.

	
Response Time Total (ms)

	
Total time for all responses generated from invocations of this operation.

	
Select the WebLogic Policy Violations tab to the statistics for policy violations of this client run-time instance.

lists the policy violations for the client run-time instance.

Table 13-2 WebLogic Policy Violations for Java EE Web Service Client

	Element	Description
	
Summary

	

	
Total Faults

	
Total number of failed requests.

	
Policy Faults

	
Total number of policy faults.

	
Total Security Faults

	
Total number of security faults and violations.

	
Violations

	

	
Authentication Violations

	
Total number of authentication violations generated for this port. Only incoming message processing can add to the violation count.

	
Confidentiality Violations

	
Total number of confidentiality violations generated for this port. Both outgoing and incoming message processing can add to the violation count.

	
Integrity Violations

	
Total number of integrity violations generated for this port. Both outgoing and incoming message processing can add to the violation count.

	
Successes

	

	
Authentication Successes

	
Total number of authentication successes detected for this port. Only incoming message processing can add to the success count.

	
Confidentiality Successes

	
Total number of confidentiality successes generated for this port. Both outgoing and incoming message processing can add to the success count.

	
Integrity Successes

	
Total number of integrity successes generated for this port. Both outgoing and incoming message processing can add to the success count.

Viewing the Security Violations for a Web Service

Follow the procedure below to view security violations for a Web service.

To view the security violations for an Oracle Infrastructure Web service:

	
Navigate to the Web Services Summary page as described in "Navigating to the Web Services Summary Page for an Application".

	
In the Charts section of the page, select the Security Violations tab.

A graphical representation of the authentication, authorization, confidentiality, and integrity faults for all Web services in the application is displayed in the pie chart.

	
In the Web Service Details section of the page, click on the plus (+) for the Web service to display the Web service endpoints if they are not already displayed.

	
Click the name of the endpoint to navigate to the Web Service Endpoint page.

	
Click the Charts tab to see a graphical representation of all faults and all security violations for the endpoint.

	
Click the OWSM Policies tab.

Two tables are displayed.

The Globally Attached Policies table displays the name of the policy and the policy set that references it.

The Directly Attached Policies table displays the name of the policy and the policy status (whether the policy is enabled or disabled).

Both tables list the category to which the policy belongs (security, MTOM attachments, reliable messaging, WS-addressing, and management).

Table 13-3 lists the violation information provided for each type of policy attachment.

Table 13-3 Policy Violation Information for an Endpoint

	Violation Type	Description
	
Total Violations

	
Total number of faults for this policy.

Note: Total violations may not be equal to the sum of the security violations shown below (for example, Authentication, Authorization, Confidentiality, and Integrity). Other security violations that do not fall into these major categories and non-security violations are also captured in the total violations count.

	
Security Violations

	

	
Authentication

	
Number of authentication failures since the server was restarted.

	
Authorization

	
Number of authorization failures since the server was restarted.

	
Confidentiality

	
Number of message confidentiality failures since the server was restarted.

	
Integrity

	
Number of message integrity failures since the server was restarted.

To view the security violations for a WebLogic JAX-WS Web service:

	
Navigate to the Web Services Summary page as described in "Navigating to the Web Services Summary Page for an Application".

	
In the Web Service Details section of the page, click on the plus (+) for the Web service to display the Web service endpoints if they are not already displayed.

	
Click the name of the endpoint to navigate to the Web Service Endpoint page.

	
Do one of the following, depending on the type of policies attached to the endpoint:

	
If Oracle WSM policies are attached to the endpoint, click the OWSM Policies tab.

A list of the policies that are attached to the endpoint is displayed. For each policy, the table displays the name of the policy, the category of the policy (security, MTOM attachments, reliable messaging, WS-addressing, and management), and the policy status (whether the policy is enabled or disabled). Table 13-3 describes the violation information that is displayed for each Oracle WSM policy attached to the endpoint.

	
If WebLogic policies are attached to the endpoint, click the WebLogic Policy Violations tab.

This tab shows policy violation details about WebLogic policies attached to a JAX-WS endpoint. Table 13-4 describes the information provided on this page.

Table 13-4 WebLogic Policy Violation Data

	Element	Description
	
Summary

	

	
Total Faults

	
Total number of failed requests.

	
Policy Faults

	
Number of failed requests because a policy was not successfully executed.

	
Total Violations

	
Total number of faults for this policy.

	
Violations

	

	
Authentication Violations

	
Number of authentication failures since the server was restarted.

	
Confidentiality Violations

	
Number of message confidentiality failures since the server was restarted.

	
Integrity Violations

	
Number of message integrity failures since the server was restarted.

	
Successes

	

	
Authentication Successes

	
Number of authentication successes since the server was restarted.

	
Confidentiality Successes

	
Number of message confidentiality successes since the server was restarted.

	
Integrity Successes

	
Number of message integrity successes since the server was restarted.

To view the security violations for a WebLogic JAX-RPC Web service:

	
Navigate to the Web Services Summary page for the application.

	
In the Web Service Details section of the page, click on the plus (+) for the Web service to display the Web service endpoints if they are not already displayed.

	
Click the name of the endpoint to navigate to the Web Service Endpoint page.

	
Click the WebLogic Policy Violations tab.

This tab shows policy violation details about WebLogic policies attached to a JAX-RPC endpoint, as shown in Figure 13-6. For a description of the information displayed on this tab, see Table 13-4.

Figure 13-6 Security Violations for a WebLogic JAX-RPC Web Service Endpoint

[image: Description of Figure 13-6 follows]

Description of "Figure 13-6 Security Violations for a WebLogic JAX-RPC Web Service Endpoint"

Part III

Advanced Administration

Part III contains the following chapters:

	
Chapter 14, "Advanced Administration"

	
Chapter 15, "Managing Application Migration Between Environments"

	
Chapter 16, "Diagnosing Problems"

	
Chapter 17, "Maintaining the Oracle WSM Repository"

14 Advanced Administration

This chapter includes the following sections:

	
Registering Web Services and Sources

	
Publishing Web Services to UDDI

	
Auditing Web Services

	
Managing the WSDL

	
Adding Security to a Running Client

	
Configuring Platform Policy Properties

	
Configuring a Web Service on a Remote Policy Manager and Tuning the Policy Cache

	
Configuring Web Service Policy Retrieval

	
Tuning Web Service Security Policy Enforcement

	
Defining Identity Extension Properties

	
Defining Trusted Issuers and Trusted Distinguished Name List for Signing Certificates

	
Configuring Oracle WSM with a Domain-Wide Administration Port

	
Setting Up the Java Object Cache

	
Modifying the Default User

	
Changing the JMS System User for Asynchronous Web Services

Registering Web Services and Sources

A key feature of the Web services model is the ability to make Web services widely available and discoverable. UDDI is one approach to publishing and discovery of Web services that centralizes information about businesses and their services in registries. Another emerging alternative standard is the Web Services Inspection Language (WSIL) specification.

Oracle Enterprise Manager Fusion Middleware Control provides support for registering Web services that are published in WSIL documents and UDDI v3 registries. Any service that is available in a WSIL document or a UDDI v3 registry can be registered within Enterprise Manager.

You can also register meta information, or a profile, for sources of services to help you manage your registered services within Enterprise Manager. Once you register a source and assign it a logical name, you do not need to specify connectivity information, such as a URL for a WSDL, in the future. A domain can have multiple registered sources, and each registered source can have multiple registered services. Once you register a source, you can easily look up services that you can register to the source.

Service names and corresponding WSDLs must be unique within a registered single source. Once you have registered a service, an attempt to register another service with the same name, or a different name but the same WSDL URL as another service, is not valid.

Once you register a Web service, you can later, more conveniently, reference the service from a selection list within Enterprise Manager. For example, when testing a Web service as described in "Testing Your Web Services", instead of specifying a WSDL, you can click the Search icon and then select the WSDL from the list of registered services, as shown in Figure 14-1.

Figure 14-1 Selecting From a Registered Service

[image: Description of Figure 14-1 follows]

Description of "Figure 14-1 Selecting From a Registered Service"

UDDI Basics

Universal Description Discovery & Integration (UDDI) is an industry initiative that aims to enable businesses to quickly, easily, and dynamically find and carry out transactions with one another. A populated UDDI registry contains cataloged information about businesses; the services that they offer; and communication standards and interfaces they use to conduct transactions.

The owners of Web services publish them to the UDDI registry. Once published, the UDDI registry maintains pointers to the Web Service description and to the service. The UDDI allows clients to search this registry, find the intended service, and retrieve its details. These details include the service invocation point as well as other information to help identify the service and its functionality.

WSIL Basics

WSIL defines an Extensible Markup Language (XML) format for referencing Web service descriptions. These references are contained in a WSIL document, and refer to Web service descriptions (for example, WSDL files) and to other aggregations of Web services (for example, another WSIL document or a UDDI registry).

WSIL documents are typically distributed by the Web service provider. These documents describe how to inspect the provider's Web site for available Web services. Therefore, the WSIL standard also defines rules for how WSIL documents should be made available to consumers of Web services.

The WSIL model decentralizes Web service discovery. In contrast to UDDI registries, which centralize information on multiple business entities and services, WSIL makes it possible to provide Web service description information from any location. Unlike UDDI, WSIL is not concerned about business entity information, and does not require a specific service description format. It assumes that you know who the service provider is and relies on other standards for Web service description, such as WSDL.

Viewing Registered Sources and Web Services

Follow the steps in this section to view and edit a registered source and Web service.

	
In the navigator pane, expand WebLogic Domain to show the domain in which you want to view the registered sources and Web services.

	
Select the domain.

	
Using Fusion Middleware Control, select WebLogic Domain then Web Services and then Registered Services. The Registered Sources and Services page appears, as shown in Figure 14-2.

Figure 14-2 Viewing Registered Sources and Services

[image: Description of Figure 14-2 follows]

Description of "Figure 14-2 Viewing Registered Sources and Services"

In the Sources table, you can view the following information about each registered source:

	
Name—Logical name for the source

	
Description—Description of the source

	
Source URL—Location of the source in URL format

	
Type—Source type: UDDI v3 registry import, WSIL import from file, WSIL import from URL

	
User ID—User ID for the external source

You can customize the information that is displayed using the View menu. From this section of the page, you can also add new sources, edit or delete sources, register Web services for a source, and publish a Web service from a source to a predefined UDDI registry.

	
Select a source in the Sources table.

Each registered source can have multiple registered services. In the Services table, you can view the following information about the registered services imported from the selected source location:

	
Name—Name of the registered service

	
Description—Description of the service

	
Service location—Location of the service in URL format

You can customize the information that is displayed using the View menu. You can also display the WSDL for the selected service and test the selected Web service.

Registering a Source

You can register Web service sources of the following types:

	
UDDI v3 registry import

	
WSIL import from URL

	
WSIL import from file

Follow the steps in this section to register a source.

To register a source

	
In the navigator pane, expand WebLogic Domain to show the domain in which you want to register a Web service source.

	
Select the domain.

	
Using Fusion Middleware Control, select WebLogic Domain then Web Services and then Registered Services. The Registered Sources and Services page appears, as shown in Figure 14-2.

	
Click Add to register a new source. The Register New Source page appears, as shown in Figure 14-3.

Figure 14-3 Register New Source Page

[image: Description of Figure 14-3 follows]

Description of "Figure 14-3 Register New Source Page"

	
Enter the following information for the new source.

	
Name—A logical name for the source.

	
Description—A description of the source.

	
Type—choose from one of three options: UDDI v3 registry import, WSIL import from URL, or WSIL import from File

Additional information that you need to enter differs based on the option you select.

	
If you selected UDDI v3 registry import, enter the following information:

	
In the Source URL field, enter the UDDI inquiry URL, for example, http://somehost/uddi/inquiry.

	
To allow the services to be published to a UDDI source (which is an external UDDI registry), select the Enable box and complete the fields as follows:

	
In the Publication URL field, enter URL location of the registry to which you want to publish the service.

	
In the Security URL field, enter the URL location of the security port required to access the registry.

	
In the User ID and Password fields, enter the security credentials required to access the registry.

	
If you selected WSIL import from URL, enter the following information:

	
In the Source URL field, enter the location of the WSIL in URL form.

	
If a username and password are required to access the WSIL, select the Enable box in the Basic Authorization field. In the User ID and Password fields, enter the username and password.

	
If you selected WSIL import from File, click Browse (next to the WSIL File field) to select the WSIL file to be imported.

	
Click OK to register the source.

Registering Web Services from a UDDI Source

Follow the steps in this section to register Web services from a registered UDDI source.

	
In the navigator pane, expand WebLogic Domain to show the domain in which you want to register a Web service.

	
Select the domain.

	
Using Fusion Middleware Control, select WebLogic Domain then Web Services and then Registered Services. The Registered Sources page displays, as shown in Figure 14-1.

	
Select the UDDI source from which you want to register services. Note that the Type for a UDDI source is specified as UDDI v3 registry import.

	
Select Register Web Services.

The Register New Service page displays, as shown in Figure 14-4.

Figure 14-4 Register New Service from UDDI Source

[image: Description of Figure 14-4 follows]

Description of "Figure 14-4 Register New Service from UDDI Source"

The Register New Service page displays the source information, in read-only format, and a list of the services that are available in UDDI that you can register.

You can filter the list of available services that are displayed using the Service Name and Service Key fields. For example, to find calculator services, enter calc in the Service Name field. Only services that contain the calc string, such as calculator services are displayed. The search is not case-sensitive.

In the Services available in UDDI section of the page, you can view service details from UDDI for each service in the table by clicking the View Service Details icon. The Service Details from UDDI window displays information about the service such as the Service Name, Service Description, Service WSDL, Service Key, Business Key, and Service Location, among others.

You can edit the details of a service by clicking the Edit icon, which allows you to change the name and description of the selected service.

	
In the Services available in UDDI section of the page, select the service or services that you want to register from the source and click Register.

A confirmation message displays indicating that the service was registered successfully.

Registering Web Services from a WSIL Source

Follow the steps in this section to register Web services from a registered WSIL source.

	
In the navigator pane, expand WebLogic Domain to show the domain in which you want to register a Web service.

	
Select the domain.

	
Using Fusion Middleware Control, select WebLogic Domain then Web Services and then Registered Services. The Registered Sources and Services page displays, as shown in Figure 14-1.

	
Select the WSIL source from which you want to register services. Note that the Type for a WSIL source is specified as either WSIL import from File or WSIL import from URL.

	
Select Register Web Services.

The Register New Service page displays, as shown in Figure 14-5.

Figure 14-5 Register New Service from WSIL Source

[image: Description of Figure 14-5 follows]

Description of "Figure 14-5 Register New Service from WSIL Source"

The Register New Service page displays the Source information, in read-only format, and a list of available services, if any, in the WSIL that you can register, shown in the Services Available in WSIL table. If there are any WSIL references in the WSIL, they are listed in the References Available in WSIL table.

In the Services Available in WSIL table, you can edit the details of a service by clicking the Edit icon, which allows you to change the name and description of the selected service.

	
To register a service available from the current WSIL, select the service in the Services Available in WSIL table and click Register.

A confirmation message displays indicating that the service was registered successfully.

	
If the current WSIL also references other WSIL URLs or references, expand References Available in WSIL to display them. You can register the referenced Web services as well.

To register a service from a referenced WSIL instead of the current WSIL, click the Process icon for the reference in the References Available in WSIL table.

If the WSIL parses successfully, a new source is registered and the current WSIL source is replaced by the referenced WSIL. The services available in the referenced WSIL source are listed in the Services Available in WSIL table. You can then register services from the referenced WSIL.

	
Note:

For each new source created, _n is appended to the parent source name. For example, if the parent source name is wsil_file_1, then referenced new sources are named wsil_file_1_1, wsil_file_1_2) with source type WSIL URL. The new sources are listed in the Sources table in the Registered Sources and Services page.

If the WSIL does not parse successfully, an error message displays. Usually, in such cases, the system successfully registers the new source for the selected WSIL reference. However, because the system could not parse the WSIL document, the error message displays. Close the error dialog and click OK to return to the Registered Sources and Services page.

WSIL parsing can fail if the reference is bad or it needs authorization credentials. You can enable authorization for the WSIL source as described in "Registering a Source".

	
Note:

When the system fails to retrieve Web services from a registered source, because of connection or other failures, the Register New Service page is displayed with read only information for the source, but does not show any Web services. In such cases, click OK in the error dialog, if an error dialog is displayed, then click OK in the Register New Service page to return to the Registered Sources and Services page. To troubleshoot, you can then view the registered sources through other means. For example, if the source is a:

	
WSIL URL source, copy the URL to a browser address bar to view its contents.

	
WSIL file source, examine the WSIL file using an XML editor.

	
UDDI source, try to access the UDDI registry directly to investigate.

You can also review any related Enterprise Manager error logs.

Deleting a Web Service or Web Service Source

Follow the steps in this section to delete a Web service or a Web service source.

	
In the navigator pane, expand WebLogic Domain to show the domain in which you want to delete a Web service.

	
Select the domain.

	
Using Fusion Middleware Control, select WebLogic Domain then Web Services and then Registered Services. The Registered Sources and Services page displays, as shown in Figure 14-2.

	
Do one of the following:

	
To delete a source, select the source from the Sources table and click Delete.

A confirmation message displays. Click OK to delete the source.

	
To delete a service from a source, select the source in the Sources table.

The registered Web services are displayed in the Services table.

Select the service to be deleted from the Services table and click Delete.

A confirmation message displays. Click OK to delete the service.

Publishing Web Services to UDDI

You can publish Web services to UDDI from a registered UDDI source and from the Web services summary page for ADF, WebCenter, and Java EE applications. Registered UDDI sources are listed in the Registered Sources and Services page, which includes all sources and services registered in a domain. The Web services summary page lists the Web services in an application.

	
Notes:

You need to use a proxy to publish a service to UDDI, since this requires access to URLs outside of your firewall. For more information about the required proxy settings, see "Configuring the Proxy Server for UDDI".
If your services are already in Oracle Enterprise Repository (OER) then you should use the OER Exchange Utility to publish those services to Oracle Service Registry.

The following procedures describe how to publish Web services to UDDI.

	
"Publishing a Web Service to UDDI from a Registered Source"

	
"Publishing a Web Service to UDDI from an Application"

	
"Configuring the Proxy Server for UDDI"

Publishing a Web Service to UDDI from a Registered Source

To publish a Web service to UDDI from a registered source:

	
Navigate to the Registered Sources and Services page as described in "Viewing Registered Sources and Web Services".

	
Select the source row in the Sources table and then Publish to UDDI.

Figure 14-6 Registered Sources and Services Page with Publish to UDDI Selected

[image: Description of Figure 14-6 follows]

Description of "Figure 14-6 Registered Sources and Services Page with Publish to UDDI Selected"

	
In the Publish Service to UDDI window, enter the information about the service to be published:

	
Service Name is the name of the Web service to be published to the UDDI registry. This field is required.

	
Service Description is a description of the selected Web service.

	
Service Definition Location is the URL location of the service definition. This field is required.

	
UDDI Source is the name of the UDDI source from which the service is to be registered. This field is read only.

	
Business Name is the name of the data structure in the UDDI registry. It is assumed that the business has already been registered in the UDDI. Choose the Business name from the list. This field is required.

Figure 14-7 Publish Service to UDDI Window from a UDDI Source

[image: Description of Figure 14-7 follows]

Description of "Figure 14-7 Publish Service to UDDI Window from a UDDI Source"

	
Click OK in the Publish Service to UDDI window.

The system verifies that the service specified has a valid WSDL and that the UDDI registry has accepted the new entry or updated an existing one. If it is successful, a confirmation message displays and the service is published to the registry. Once the service is published in the UDDI, it becomes available to be registered to a source, as described in "Registering Web Services from a UDDI Source".

Any errors during the operation will result in an error message.

Note that you can only register the service to a source if it uses a unique WSDL.

Publishing a Web Service to UDDI from an Application

To publish a Web service to UDDI from an application:

	
Navigate to the Web Services summary page as described in "Navigating to the Web Services Summary Page for an Application".

	
From the Web Service Details section of the page, select the service to be published.

	
Select Actions, then Publish to UDDI. See Figure 14-8.

Figure 14-8 Web Services Summary Page with Publish to UDDI Selected

[image: Description of Figure 14-8 follows]

Description of "Figure 14-8 Web Services Summary Page with Publish to UDDI Selected"

	
In the Publish Service to UDDI dialog box (Figure 14-9), enter the information about the service to be published:

	
Service Name is the name of the Web service to be published to the UDDI registry. This field is required.

	
Service Description is a description of the selected Web service.

	
Service Definition Location is prepopulated with the URL location of the service definition (This field is read-only.)

	
UDDI Source is a logical name for the UDDI registry source. Choose the UDDI source from the list. This field is required.

	
Note:

The list contains the UDDI sources registered in the domain that have been enabled for publishing. For more information about registered sources, see "Registering Web Services and Sources".

	
Business Name is the name of the data structure in the UDDI registry. It is assumed that the business has already been registered in the UDDI. Choose the business name from the list. This field is required.

Figure 14-9 Publish Service to UDDI Dialog Box

[image: Description of Figure 14-9 follows]

Description of "Figure 14-9 Publish Service to UDDI Dialog Box"

	
Click OK to connect to the external UDDI registry and register the Web service.

Upon successfully registering the service, a confirmation message displays. Any errors during the operation will result in an error message.

Configuring the Proxy Server for UDDI

To access URLs outside of your firewall, you must use a proxy to publish a service to UDDI.

Before starting Oracle WebLogic, you must set the Java system properties defined in Table 14-1. You can set them as environment variables, or in Oracle WebLogic startup files.

Table 14-1 Java System Properties Used to Specify the Proxy Server for UDDI

	Property	Description
	
proxySet=true

	
Flag that specifies that the WebLogic proxy properties should be used.

	
http.proxyHost=proxyHost

	
Name of the host computer on which the proxy server is running.

	
http.proxyPort=proxyPort

	
Port to which the proxy server is listening.

	
http.nonProxyHosts=hostname | hostname | ...

	
List of hosts that should be reached directly, bypassing the proxy. Separate each host name using a | character.

For example:

set PROXY_SETTINGS="-DproxySet=true -Dhttp.proxyHost=www-proxy.us.oracle.com -Dhttp.proxyPort=80 -Dhttp.nonProxyHosts=localhost|${HOST}|*.us.oracle.com"

Auditing Web Services

Auditing describes the process of collecting and storing information about security events and the outcome of those events. An audit provides an electronic trail of selected system activity.

An audit policy defines the type and scope of events to be captured at run time. Although a very large array of system and user events can occur during an operation, the events that are actually audited depend on the audit policies in effect at run time. You can define component- or application-specific policies, or audit individual users.

You configure auditing for system components, including Web services, and applications at the domain level using the Audit Policy page. You can audit SOA, ADF, and WebCenter services.

Figure 14-10 Audit Policy Page

[image: Description of Figure 14-10 follows]

Description of "Figure 14-10 Audit Policy Page"

The audit policies table, at the center of the page, displays the audits that are currently in effect. The table includes the following information:

	
Name—Name of the system components and applications that you can audit.

	
Enable Audit—Identifies the components and applications for which auditing is currently in effect.

	
Filter—Specifies any filters that are currently in effect.

The following table summarizes the events that you can audit for Web services and the relevant component.

Table 14-2 Auditing Events for Web Services

	Enable auditing for the following Web service events . . .	Using this system component . . .
	
	
User authentication.

	
User authorization.

	
Policy enforcement, including message integrity, message confidentiality, and security policy.

	
Oracle Web Services Manager—Agent

	
	
Web service requests sent and responses received.

	
SOAP faults incurred.

	
Oracle Web Services

	
	
Oracle WSM policy creation, deletion, or modification.

	
Assertion template creation, deletion, or modification.

	
Oracle Web Services Manager

	
	
Oracle WSM policy attachment.

	
Oracle Web Services Manager— Policy Attachment

You can also audit the events for a specific user, for example, you can audit all events by an administrator.

For more information about configuring audit policies, see "Configuring and Managing Auditing" in Oracle Fusion Middleware Application Security Guide.

The following sections describe how to define audit policies and view audit data:

	
Configuring Audit Policies

	
Managing Audit Data Collection and Storage

	
Viewing Audit Reports

Configuring Audit Policies

Follow the steps in this section to configure audit policies.

	
In the Navigator pane, expand WebLogic Domain.

	
Click the domain for which you want to manage assertion templates.

	
From the WebLogic Domain menu select Security > Audit Policy.

The Audit Policy Settings page is displayed.

	
Select and audit level from the Audit Level menu.

Valid audit levels include:

	
None—Disables auditing.

	
Low—Audits a small scope of events. The subset of events is predefined individually for each component. For example, for a given component, Low may collect authentication and authorization events only.

	
Medium—Audits a medium scope of events (which is a superset of the events collected at the Low level). For example, for a given component, Medium may collect authentication, authorization, and policy authoring events.

	
Custom—Enables you to provide a custom auditing policy.

You can view the components and applications that are selected for audit at each level in the audit policies list. For all audit levels other than Custom, the information in the audit policies list is greyed out, as you cannot customize other audit level settings.

	
If you selected the Custom audit level, perform one of the following steps:

	
Select the information that you want to audit by clicking the associated checkbox in the Enable Audit column.

You can audit at the following levels of granularity: All events for a component, all events within a component event group, an individual event, or a specific outcome of an individual event (such as success or failure).

At the event outcome level, you can specify an edit filter. Filters are rules-based expressions that you can define to control the events that are returned. For example, you might specify an Initiator as a filter for policy management operations to track when policies were created, modified, or deleted by a specific user. To define a filter for an outcome level, click the Edit Filter icon in the appropriate column, specify the filter attributes, and click OK. The filter definition appears in the Filter column.

Deselect the checkbox for a component at a higher level to customize auditing for its subcomponents. You can select all components and applications by checking the checkbox adjacent to the column name.

	
To audit only failures for all system components and applications, Select Failures Only.

If selected, all checkboxes in the Enable Audit column are cleared.

	
If required, enter a comma-separated list of users in the Always Audit Users text box.

Specified users will always be audited, regardless of whether auditing is enabled or disabled, and at what level auditing is set.

	
Click Apply.

To revert all changes made during the current session, click Revert.

Managing Audit Data Collection and Storage

To manage the data collection and storage of audit information, you need to perform the following tasks:

	
Set up and manage an audit data repository.

You can store records using one of two repository modes: file and database. It is recommended that you use the database repository mode. The Oracle Business Intelligence Publisher-based audit reports only work in the database repository mode.

	
Set up audit event collection.

For more information, see "Managing the Audit Store" in Oracle Fusion Middleware Application Security Guide.

Viewing Audit Reports

For database repositories, data is exposed through pre-defined reports in Oracle Business Intelligence Publisher.

A number of predefined reports are available, such as: authentication and authorization history, Oracle WSM policy enforcement and management, and so on. For details about generating and viewing audit reports using Oracle Business Intelligence Publisher, see "Using Audit Analysis and Reporting" in Oracle Fusion Middleware Application Security Guide.

For file-based repositories, you can view the bus-stop files using a text editor and create your own custom queries.

Managing the WSDL

In some cases, you might not want the Web service WSDL to be accessible to the public. You can enable or disable public access to the WSDL from the Web Service Endpoint page.

	
Note:

In some cases, a Web service client needs to access a WSDL during invocation. If public access to the WSDL is disabled, the client will need to have a local copy of the WSDL.

To manage the WSDL:

	
Navigate to the Web Service endpoint configuration page, as described in "Configuring the Web Service Endpoint".

	
On the Configuration tab, set the WSDL Enabled field to True or False to enable of disable public access to your WSDL, respectively.

	
Click Apply.

Adding Security to a Running Client

Security policies can be attached to a running client using Oracle Enterprise Manager Fusion Middleware Control. You do not have to redeploy the client application to attach or detach policies from the client. See Chapter 8, "Attaching Policies to Web Services" for more information on how to attach policies using Fusion Middleware Control.

Configuring Platform Policy Properties

You can manage properties for the following components from the Platform Policy Configuration page:

	
Policy Accessor

	
Policy Cache

	
Policy Interceptors

	
Identity Extension

	
Trusted SAML clients

	
Trusted STS servers

To manage policy accessor, policy cache, policy interceptor, and identity extension properties:

	
In the navigator pane, expand WebLogic Domain to view the domains.

	
Select the domain for which you want to manage properties.

	
Select WebLogic Domain> Web Services > Platform Policy Configuration.

The Platform Policy Configuration page appears, as shown in Figure 14-11.

Figure 14-11 Platform Policy Configuration Page

[image: Description of Figure 14-11 follows]

Description of "Figure 14-11 Platform Policy Configuration Page"

	
Select the tab corresponding to the component for which you want to define properties:

	
"Configuring a Web Service on a Remote Policy Manager and Tuning the Policy Cache"

	
"Configuring Web Service Policy Retrieval"

	
"Tuning Web Service Security Policy Enforcement"

	
"Defining Identity Extension Properties"

	
"Defining Trusted Issuers and Trusted Distinguished Name List for Signing Certificates"

Configuring a Web Service on a Remote Policy Manager and Tuning the Policy Cache

By default, the Oracle Web Services Manager (WSM) supports an auto-discovery feature that it uses to locate and connect to an Oracle WSM Policy Manager within the same WebLogic domain. In certain scenarios auto-discovery may not work as expected.

	
Note:

When the Oracle WSM Policy Manager is deployed on a server that is configured to use SSL, the auto-discovery mechanism will only attempt to connect to Policy Managers on other SSL-configured servers. To ensure that the secure connection is maintained, Policy Managers deployed on servers that are not configured for SSL are ignored.

You may want to disable the auto-discovery feature, for example, in the following scenarios:

	
Your domain is split into two or more networks, especially if a firewall exists between them.

	
You want to access an Oracle WSM Policy Manager that is running in a different domain (without additional WebLogic security configuration).

	
You are running on a non-WebLogic application server that does not support the auto-discovery feature, such as WebSphere Application Server and JBOSS.

	
You prefer to override the default settings.

For Oracle Infrastructure Web service policies, on the Platform Policy Configuration page:

	
The Policy Accessor tab enables you to explicitly set a remote JNDI provider URL and corresponding csf-key credentials to access a Policy Manager in a remote domain or on another platform.

	
The Policy Cache tab allows you to tune the behavior of the policy cache delay for Web service endpoints, which can help to avoid network calls and increase performance when fetching policies from a remote Oracle WSM Policy Manager.

To configure a Web service on a remote Oracle WSM Policy Manager and tune the policy cache:

	
To access an Oracle WSM Policy Manager that is in a different domain—for example, if the Oracle WSM Policy Manager is in a domain that is different from the Web service client—enable cross-domain security between WebLogic Server domains, as described in "Enabling Cross Domain Security Between WebLogic Server Domains" in Securing Oracle WebLogic Server.

Cross domain security establishes trust between two WebLogic domain pairs by using a credential mapper to configure communication between these WebLogic domains.

	
Access the Platform Policy Configuration page, as described in "Configuring Platform Policy Properties".

	
Select the Policy Accessor tab.

	
Click Add to define a remote JNDI provider.

In the Add Property window, specify the following values:

	
In the Name field, enter the JNDI provider URL property as java.naming.provider.url.

	
In the Value field, enter the JNDI provider's URL for the remote domain, for example t3://host:port.

This specifies the location of a running Policy Manager in a different domain in order to access that Policy Manager. If this property is not specified, the auto-discovery feature attempts to look up the Policy Manager in the same domain.

	
Click OK.

	
Click Add to define a corresponding csf-key credential property. In the Add Property window, specify the following values:

	
In the Name field, enter the name of the JNDI provider's csf-key credential property as jndi.lookup.csf.key.

	
In the Value field, enter the csf-key credentials.

Because the Policy Manager is security enabled, the csf-key specifies the java.naming.security.principal and java.naming.security.credentials when using the JNDI URL to look up a Policy Manager.

	
Click OK.

For more information on storing, retrieving, and deleting credentials, see "Adding Keys and User Credentials to the Credential Store"

	
Select the Policy Cache tab.

	
To modify the policy cache property for Web service endpoints, select it and then click Edit. In the Edit Property window, you can edit the Value field to change the default amount for each property.

	
cache.tolerance – Amount of time (in milliseconds) between refreshes of the policy cache. This ensures that the policy set retrieved from the Web service endpoint policy cache is the most current version (that is, it has not exceeded the cache.tolerance value). If it is determined that the policy set is stale, the updated policy set is retrieved from the Oracle WSM Policy Manager and refreshed in the Web service endpoint policy cache. The default is 60000 milliseconds (1 minute).

Note: The refresh delay amount for Web service endpoints is aggregated with the value of the cache.refresh.repeat property (if any) on the Policy Accessor tab for the Oracle WSM Policy Manager. Therefore, you should verify whether this additional value produces the desired refresh delay when combined with the cache.refresh.repeat amount. For more information, see "Configuring Web Service Policy Retrieval".

	
To add another property, click Add, and in the Add Property window, specify the necessary values.

	
Click OK.

	
To modify an existing property, select it and then click Edit.

	
To delete an existing property, select it and then click Delete.

	
Click Apply to apply the property updates.

Configuring Web Service Policy Retrieval

The Policy Accessor tab also enables you to configure the retrieval of Oracle WebLogic Web service policies from a repository. This includes specifying the repository accessor type (for example, classpath, local, or remote), repository location (JARs, directory, or host and port), account information (for a remote repository), retry logic (for high availability), and cache tuning.

	
Access the Platform Policy Configuration page, as described in "Configuring Platform Policy Properties".

	
Select the Policy Accessor tab.

	
Click Add to add a policy retrieval property.

	
Use the following table to specify the available property names and values in the Add Property window:

Table 14-3 Properties in Add Property Window

	Element	Description
	
java.naming.provider.url

	
JNDI URL that specifies the location of a running Oracle WSM Policy Manager in another domain, for example t3://host:port. By default, this property is not specified. If this property is not specified, Oracle WSM auto-discovery attempts to look up the Policy Manager in the same domain.

	
jndi.lookup.csf.key

	
If the location of the Oracle WSM Policy Manager is provided in the java.naming.provider.url property, the jndi.lookup.csf.key provides credential configuration. Because the Oracle WSM Policy Manager is security enabled, the jndi.lookup.csf.key specifies the java.naming.security.principal and java.naming.security.credentials when using the JNDI URL to look up a Oracle WSM Policy Manager. By default, this property is not specified.

You should configure this property when:

	
You want to specify an explicit account to connect with the Oracle WSM Policy Manager rather than the system account, OracleSystemUser, that is used by Oracle WSM by default.

	
The Authentication Provider and LDAP directory that is configured does not support system accounts used by Oracle WebLogic, but which Oracle WSM relies on by default. Therefore, a different account in the LDAP directory must be used.

	
There is no concept of default system accounts in a particular application server, and so the system cannot rely on system accounts.

For more information on modifying the default user, see "Modifying the Default User".

	
cache.refresh.initial

	
Number of milliseconds to wait before initial cache refresh. The default is 600000 milliseconds (10 minutes).

	
cache.refresh.repeat

	
Number of milliseconds to wait between cache refreshes. The default is 600000 milliseconds (10 minutes).

	
missing.retry.delay

	
Number of milliseconds to wait before trying to retrieve a missing document. The default is 15000 milliseconds.

	
usage.record.delay

	
Number of milliseconds to wait before sending usage data. The default is 30000 milliseconds.

	
failure.retry.count

	
Number of times to retry after communication failure. The default is 2 retry attempts.

	
failure.retry.delay

	
Number of milliseconds to wait between retry attempts. The default is 5000 milliseconds.

	
oracle.wsm.policymanager.accessor.IRepositoryAccessor

	
Type of repository accessor class. The supported value is remote (Java EE).

	
To modify an existing property, select it and then click Edit.

	
To delete an existing property, select it and then click Delete.

	
Click Apply to apply the property updates.

Tuning Web Service Security Policy Enforcement

The BindingSecurityInterceptor property on the Policy Interceptors tab allows you to tune security policy enforcement by adjusting the default message timestamp skews between system clocks, the time-to-live for nonce messages in the policy cache, and the message expiration time.

Perform the following steps to tune the security policy enforcement:

	
Access the Platform Policy Configuration page, as described in "Configuring Platform Policy Properties".

	
Select the Policy Interceptors tab.

	
Select the BindingSecurityInterceptor security property on the list.

	
To modify a BindingSecurityInterceptor security property, select it and then click Edit. In the Edit Property window, you can edit the Value field to change the default amount for each property.

	
agent.clock.skew – Tolerance of time differences, in seconds, between client and server machines. For example, when timestamps are sent across in a message to a service that follows a different time zone, this property allows for the specified time tolerance. The default value is 300 seconds. Increase agent.clock.skew when:

	
The server's clock is ahead of the client's clock: If the server's clock is ahead of the client's clock then increase the agent.clock.skew. For example, if the server's clock is ahead of the client's clock by 10 minutes, then increase the server's agent.clock.skew to 10 minutes.

	
The client's clock is ahead of the server's clock: If the client's clock is ahead of the server's clock then increase the agent.clock.skew. For example, if the client's clock is ahead of the server's clock by 10 minutes, then increase the server's agent.clock.skew to 10 minutes.

	
agent.nonce.ttl – Total time-to-live, in seconds, for nonce in the cache when nonce is sent across in a message. This property caches the nonce and once this duration is over, the nonce is removed from the cache. The default value is 28800 seconds.

	
agent.expire.time – Duration of time, in seconds, before a message expires after its creation. This property is used in cases where a timestamp is sent across in the SOAP header to verify if the timestamp has expired or not. The default value is 300 seconds.

If the message expires when received by the service even when there is no time difference between the client's and service's clocks, then the message expiry time must be increased. The message expiry time is derived from the values of agent.expiry.time and the expiry time in the incoming message, and is the lesser of the two. For example, if the server's agent.expiry.time is set to 5 minutes and expiry time in the incoming message expiry time is 6 minutes, then the agent.expiry.time at the service side must be increased. On the other hand, if the server's agent.expiry.time is 5 minutes and the incoming message expiry time is 3 minutes, then the expiry time in the incoming message (that is, at the client side) must be increased. A higher value of the agent.expire.time may lead to a security vulnerability.

	
agent.allow.all.xpaths – Property that specifies whether Oracle WSM will accept all types of XPath transformations. By default, Oracle WSM only accepts the XPath transformation ancestor-or-self::*[namespace-uri()='<namespace>' and local-name()='<name>'] inside the signature (in the incoming soap message). Set this property to true to allow and accept all types of XPath transformations. The default is false. Note that enabling this property may result in XPath based Denial of Service attacks or other similar XPath based security vulnerabilities.

	
Click OK.

	
To delete an existing property, select it and then click Delete.

	
Click Apply to apply the property updates.

Defining Identity Extension Properties

The properties on the Identity Extension tab enable you to specify whether to enforce Web service policies by publishing the X509 certificate in the WSDL. If there is no need to publish the X509 certificate (for example, with SSL), you can override the default setting to avoid publishing the certificate. In addition, if the X509 is published, you can also specify whether to ignore the hostname verification feature.

For more information, see "Using Service Identity Certification Extension".

Defining Trusted Issuers and Trusted Distinguished Name List for Signing Certificates

The Trusted SAML clients and Trusted STS servers tabs enable you to define SAML trusted issuers and a list of trusted distinguished names (DNs) for SAML signing certificates.

This is the preferred method of adding SAML issuers. The list of SAML issuers that you define here becomes the default list that is applicable to all Web services in this domain. In addition, when you add an issuer using this method, it does not require a restart of the domain.

	
Note:

There is a hierarchy that determines how trusted issuers are determined:
	
The list of trusted issuers configured for policies (or overridden) is checked and used, as specified by the saml.trusted.issuers property for the policy. For example, see saml.trusted.issuers in Table C-13, "wss10_saml20_token_service_template Configurations".

	
If not configured for policies (or overridden), the configuration at the platform policy configuration as described in this section is checked and used.

	
If the list of trusted issuers is not configured for policies (or overridden) or configured at the platform policy configuration, only then is the Issuers list defined in the SAML login module used. For more information about the Issuers list defined in the SAML login module, see Step 4 in "Configuring the SAML and Kerberos Login Modules".

By default, Oracle WSM checks the incoming issuer name against the list of configured issuers, and checks the SAML signature against the configured certificates in the Oracle WSM keystore. If you define a trusted DNs list, Oracle WSM also verifies that the SAML signature is signed by the particular certificate(s) that is associated with that issuer.

Configuration of the trusted DNs list is optional; it is available for users that require more fine-grained control to associate each issuer with a list of one or more signing certificates. If you do not define a list of DNs for a trusted issuer, then Oracle WSM allows signing by any certificate, as long as that certificate is trusted by the certificates present in the Oracle WSM keystore.

Important Notes:

	
Using the Trusted SAML clients and Trusted STS servers tabs, you define the DNs of the signing certificates, not the certificates themselves.

	
The certificate must be imported into the Oracle WSM keystore or included in the message. If the certificate is provided in the message, its issuer must be imported into the Oracle WSM keystore.

	
For two-way SSL:

	
The certificate needs to be imported into the Java EE container's trust store.

	
The DN of the client SSL certificates are used for validation and need to be present in the trusted DNs list.

	
In all cases, the signing certificates must be trusted by the certificates present in the OWSM keystore.

To defined a trusted DNs list for SAML signing certificates:

	
Access the Platform Policy Configuration page, as described in "Configuring Platform Policy Properties".

	
Select the Trusted SAML clients or Trusted STS servers tab, depending on whether you want to define a trusted DNs list for trusted SAML clients or trusted STS servers. (For SAML sender vouches, the trusted SAML client list is used. For HOK and bearer, the trusted STS server list is used.) See Figure 14-12.

Figure 14-12 Adding Trusted Issuers on the Platform Policy Configuration Page

[image: Description of Figure 14-12 follows]

Description of "Figure 14-12 Adding Trusted Issuers on the Platform Policy Configuration Page"

	
Add one or more trusted issuers within the Trusted Issuers section of the page.

The default value is www.oracle.com.

Use the Add button to add a new trusted issuer. For example: www.yourcompany.com.

	
Select the trusted issuer for which you want to define a DN list in the Trusted Issuers section of the page.

	
Add one or more trusted DNs in the Trusted SAML clients or Trusted STS servers area of the page. Use a string that conforms to RFC 2253. For example: CN=abc.

For more information about RFC 2253, see http://www.ietf.org/rfc/rfc2253.txt.

Configuring Oracle WSM with a Domain-Wide Administration Port

When your domain is configured to use an administration port, all tasks performed by administrators must go through this port. By default, the Oracle WSM Policy Manager is targeted to a Managed Server. To use the Policy Manager with an administration port, you must target the Policy Manager to the Managed Server and the Administration Server.

For more information about the administration port, refer to the following topics:

	
"Understanding Network Channels" in Configuring Server Environments for Oracle WebLogic Server.

	
"Configure the domain-wide administration port" in Oracle WebLogic Server Administration Console Help.

Configuring Oracle WSM with a domain-wide administration port requires two main steps:

Step 1. Use the WebLogic Administration Console to target the Policy Manager to the Administration Server.

	
Access the WebLogic Administration Console as described in "Accessing Oracle WebLogic Administration Console".

You can also access the WebLogic Administration Console from the WebLogic Domain Home page in Fusion Middleware Control as follows:

	
Log in to Fusion Middleware Control as described in "Accessing Oracle Enterprise Manager Fusion Middleware Control".

	
In the navigator pane, expand WebLogic Domain and select the domain for which you want to access the Administration Console.

The WebLogic Domain home page is displayed.

	
From the WebLogic Domain menu, select WebLogic Server Administration Console. Alternatively, you can click the Oracle WebLogic Server Administration Console link in the Summary section of the page.

	
In the Welcome page, log in using a valid username and password.

	
In the left pane of the Console, click Deployments. A table in the right pane displays all deployed Enterprise Applications and Application Modules.

	
In the table, locate the wsm-pm application you want to re-target and click on its name. You may have to click Next several times to find the application.

The Settings page for the application is displayed.

	
Click the Targets tab.

The servers to which the Policy Manager application is targeted are shown in the Current Targets column of the table.

	
To target the wsm-pm application to the AdminServer, click Change Targets.

	
In the Servers box, select AdminServer if it is not already selected and click Yes.

The changes are activated automatically.

Step 2. Use Fusion Middleware Control to specify the policy accessor URL for the Policy Manager on the Administration Server.

	
Access the Platform Policy Configuration page, as described in "Configuring Platform Policy Properties".

	
Select the Policy Accessor tab.

	
Click Add to specify the JNDI provider URL for the Administration Server.

In the Add Property window, specify the following values:

	
In the Name field, enter the JNDI provider URL property as java.naming.provider.url.

	
In the Value field, enter the JNDI provider's URL for the Administration Server, such as t3s://host:admin_port/wsm-pm.

For example, t3s://localhost:9002/wsm-pm.

This specifies the location of a running Policy Manager running on the Administration Server.

	
Click OK.

Setting Up the Java Object Cache

To protect against replay attacks, the wss_username_token_client_policy and wss_username_token_service_policy policies provide the option to require a nonce in the username token. A nonce is a unique number that can be used only once in a SOAP request and is used to prevent replay attacks.

The nonce is cached to prevent its reuse. However, in a cluster environment you must take steps to synchronize this cache across the Managed Servers. Otherwise, a request sent to a Web service running on one server can be replayed and sent to another Managed Server, where it will be processed. Oracle WSM uses an instance of Java Object Cache (JOC) to cache the nonce.

You use the ORACLE_HOME/bin/configure-joc.py Python script to configure the JOC on all of the Managed Servers in distributed mode. The script runs in WLST online mode and expects the Administration Server to be up and running.

	
Note:

After configuring the Java Object Cache, restart all affected Managed Servers for the configurations to take effect.

Running the configure-joc.py Script

To enable the JOC in distributed mode, perform the following steps:

	
Connect to the Administration Server using the command-line Oracle WebLogic Scripting Tool (WLST), for example:

ORACLE_HOME/oracle_common/common/bin/wlst.sh
$ connect()

Enter the Oracle WebLogic Administration user name and password when prompted.

	
After connecting to the Administration Server using WLST, start the script using the execfile command, for example:

wls:/mydomain/serverConfig>execfile('ORACLE_HOME/bin/configure-joc.py')

	
Configure JOC for all the Managed Servers for a given cluster.

Enter 'y' when the script prompts whether you want to specify a cluster name, and also specify the cluster name and discover port, when prompted. This discovers all the Managed Servers for the given cluster and configures the JOC for each Managed Server. The discover port is common for the entire JOC configuration across the cluster. For example:

Do you want to specify a cluster name (y/n) <y>
Enter Cluster Name : Spaces_Cluster
Enter Discover Port : 9988

Here is a walkthrough for using configure-joc.py for HA environments:

execfile('ORACLE_HOME/bin/configure-joc.py')
.
Enter Hostnames (eg host1,host2) : SOAHOST1, SOAHOST2
.
Do you want to specify a cluster name (y/n) <y>y
.
Enter Cluster Name : Spaces_Cluster
.
Enter Discover Port : 9988
.
Enter Distribute Mode (true|false) <true> : true
.
Do you want to exclude any server(s) from JOC configuration (y/n) <n> n

The script can also be used to perform the following JOC configurations:

	
Configure JOC for all specified Managed Servers.

Enter 'n' when the script prompts whether you want to specify a cluster name, and also specify the Managed Server and discover port, when prompted. For example:

Do you want to specify a cluster name (y/n) <y>n
Enter Managed Server and Discover Port (eg WLS_Spaces1:9988, WLS_Spaces2:9988) : WLS_Spaces1:9988,WLS_Spaces2:9988

	
Exclude JOC configuration for some Managed Servers.

The script allows you to specify the list of Managed Servers for which the JOC configuration "DistributeMode" will be set to 'false'. Enter 'y' when the script prompts whether you want to exclude any servers from JOC configuration, and enter the Managed Server names to be excluded, when prompted. For example:

Do you want to exclude any server(s) from JOC configuration (y/n) <n>y
Exclude Managed Server List (eg Server1,Server2) : WLS_Spaces1,WLS_Spaces3

	
Disable the distribution mode for all Managed Servers.

The script allows you to disable the distribution to all the Managed Servers for a specified cluster. Specify 'false' when the script prompts for the distribution mode. By default, the distribution mode is set to 'true'.

Verify JOC configuration using the CacheWatcher utility. For more information, see "Running CacheWatcher" in Oracle Fusion Middleware High Availability Guide.

You can configure the Java Object Cache (JOC) using the HA Power Tools tab in the Oracle WebLogic Administration Console as described in "Using HA Power Tools" in the Oracle Fusion Middleware High Availability Guide.

Modifying the Default User

The Oracle WSM Agent run time uses the OracleSystemUser account by default to communicate to the server.

To configure a different default user, perform the following steps:

	
Configure an Authentication Provider

	
Configure the Credential Store Provider

	
Configure the Platform Policy Configuration

	
Modify the User's Group or Role

Configure an Authentication Provider

To configure an authentication provider, perform the following steps:

	
Configure an authentication provider, as described in "Configure Authentication and Identity Assertion providers" in Oracle WebLogic Server Administration Console Help.

	
Select the name of the realm you are configuring (for example, myrealm).

	
In the Create a New Authentication Provider page, enter the name for Authentication Provider (for example, OID) and select the type Oracle Internet Directory Authenticator.

	
In the Settings section, set Control Flag to OPTIONAL.

In the Provider Specific tab, enter the following:

	
Host: the LDAP provider URL

	
Port: port number

	
Principal: administrator user details (the new default user)

For example, CN=orcladmin,CN=Users,DC=us,DC=oracle,DC=com

	
Credential: password for LDAP

	
Confirm Credential: password for LDAP

	
User Base DN

For example, CN=Users,DC=us,DC=oracle,DC=com

	
Group Base DN

For example, CN=Groups,DC=us,DC=oracle,DC=com

	
Restart WebLogic Server.

Configure the Credential Store Provider

Configure the credential store provider as described in "Adding Keys and User Credentials to the Credential Store" with the following parameters:

	
If a map does not already exist, select Create Map and enter the map name oracle.wsm.security.

	
In the Credential Store Provider table, select oracle.wsm.security.

	
In the Create Key dialog, enter the appropriate key; for example, OID. Enter the user name and password of the new default user (in this example, orcladmin and welcome1).

Configure the Platform Policy Configuration

To configure the Platform Policy, perform the following steps:

	
Log into Fusion Middleware Control with the new default user account.

	
In the navigator pane, expand WebLogic Domain to view the domains.

	
Select the domain for which you want to manage properties.

	
Select WebLogic Domain > Web Services > Platform Policy Configuration.

The Platform Policy Configuration page appears.

	
Select the Policy Accessor tab.

	
Click Add in the Policy Access Properties section.

	
In the Add New Configure Property dialog, enter the following:

	
Enter the name jndi.lookup.csf.key. This property provides credential configuration (java.naming.security.principal and java.naming.security.credentials) and is used when an account in the LDAP directory is configured to connect with the Oracle WSM Policy Manager.

	
Enter the value (in this example, OID).

	
Note:

The csf-key that you specify in this step must match the csf-key specified for the Policy Manager administrative user in the credential store. For more information, see "Configure the Credential Store Provider".

	
Click OK.

	
Click Apply and restart WebLogic Server.

Modify the User's Group or Role

Oracle WSM Policy Manager uses the logical role (policy.Accessor) to secure EJBs that are accessed by the Oracle WSM Agent runtime to access the policies. By default, the policy.Accessor role is mapped to the groups OracleSystemGroup and Administrators. Oracle WSM Agent run time uses the OracleSystemUser identity to access wsm-pm. The new default user must either be included in the Administrator or OracleSystemGroup (if the groups exist), or be mapped to the logical role policy.Accessor (if the Administrator or OracleSystemGroup groups do not exist).

To ensure the user has the required role, perform the following steps:

	
If the Administrator or OracleSystemGroup groups exist in the LDAP or identity store, perform the following:

	
In LDAP, add the user that you would like to use as a default administrative user.

	
In WebLogic Server Administration Console, ensure that the user exists in the Administrator group. For more information, see "Manage Users and Groups" in Oracle WebLogic Server Administration Console Help.

	
If the Administrator or OracleSystemGroup groups do not exist in the LDAP or identity store, map the new user to the required logical role and redeploy the wsm-pm application using the modified deployment plan. To map the new user or existing users (belonging to a group other than Administrator or OracleSystemGroup), perform the following steps:

	
Create a deployment plan for deploying wsm_pm.ear. Example 14-1 describes a sample deployment plan. A sample deployment plan, shipped with WebLogic, is available in the ORACLE_HOME/modules/oracle.wsm.pm_11.1.1/prov folder. Modify the section @to_be_replaced@ with the new user.

Example 14-1 Sample Deployment Plan

<?xml version='1.0' encoding='UTF-8'?>
<deployment-plan xmlns="http://xmlns.oracle.com/weblogic/deployment-plan"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://xmlns.oracle.com/weblogic/deployment-plan
 http://xmlns.oracle.com/weblogic/deployment-plan/1.0/deployment-plan.xsd">
 <application-name>oracle.wsm.pm_11.1.1</application-name>
 <variable-definition>
 <variable>
 <name>SecurityRoleAssignment_ejbRole_PrincipalName</name>
 <value>@to_be_replaced@</value>
 </variable>
 </variable-definition>
 <module-override>
 <module-name>wsm-pmserver-wls.jar</module-name>
 <module-type>ejb</module-type>
 <module-descriptor external="false">
 <root-element>weblogic-ejb-jar</root-element>
 <uri>META-INF/weblogic-ejb-jar.xml</uri>
 <variable-assignment>
 <name>SecurityRoleAssignment_ejbRole_PrincipalName</name>
 <xpath>/weblogic-ejb-jar/security-role-assignment/[role-name="policy.Accessor"]
/principal-name</xpath>
 <operation>replace</operation>
 </variable-assignment>
 </module-descriptor>
 </module-override>
</deployment-plan>

	
Redeploy the EAR.

For more information, see "Deploying an Application with a Deployment Plan" in Deploying Applications to Oracle WebLogic Server.

Changing the JMS System User for Asynchronous Web Services

By default, the JMS System User is set as the OracleSystemUser. For most users, this default value is sufficient. However, if you need to change this value to a custom user in your security realm, you can do so by changing the value of the user in Oracle Enterprise Manager Fusion Middleware Control and in the WebLogic Server Administration Console as described in the following procedure.

To change the JMS System User:

	
Access the Configuration tab on the Web Service Endpoint page for the asynchronous Web service as described in "Configuring Asynchronous Web Services".

	
Enter the name of the custom user in the JMS System User field and click Apply. See Figure 14-13.

	
Note:

The custom user must exist in the security realm and have the permissions required to access the JMS resources.

Figure 14-13 Setting the JMS System User for Asynchronous Web Services

[image: Description of Figure 14-13 follows]

Description of "Figure 14-13 Setting the JMS System User for Asynchronous Web Services"

	
Access the WebLogic Server Administration Console. To do so from Fusion Middleware Control, select the domain in the navigator pane. From the WebLogic Domain menu, select WebLogic Server Administration Console.

	
Log into the WebLogic Server Administration Console using a valid username and password with the required administrative privileges.

	
Click Deployments in the Domain Structure pane and navigate to the corresponding service_AsynchRequestProcessorMDB or service_AsynchResponseProcessorMDB MDBs. In these MDB names, service is the name of the asynchronous service for which you are changing the user name.

	
In the Change Center, select Lock & Edit.

	
Select the MDB name for the request or response MDB. (You will need to update the user name for both the request and response MDBs.) In the Settings page, select the Configuration tab.

	
In the Enterprise Bean Configuration section of the page, enter the custom user name in the Run As Principal Name field and click Save. See Figure 14-14.

Note that the user name you enter in this field must match the user name you entered for the JMS System User in Fusion Middleware Control.

Figure 14-14 WebLogic Server Administration Console Update for JMS System User

[image: Description of Figure 14-14 follows]

Description of "Figure 14-14 WebLogic Server Administration Console Update for JMS System User"

The configuration changes need to be saved in a new deployment plan.

	
Use the Save Deployment Plan Assistant to save the new deployment plan.

	
Repeat steps 7 and 8 for the second MDB. The changes are automatically saved to the new deployment plan.

	
In the Change Center, click Activate Changes.

	
Redeploy the application. For more information, see Chapter 5, "Deploying Web Services Applications."

15 Managing Application Migration Between Environments

This chapter describes how to migrate Web service applications between environments, such as from development or test to production. It includes the following sections:

	
Overview of Web Service Application Migration

	
Overview of Horizontal Policy Migration

	
Sample Use Cases for Deployment Descriptor Migration

	
Migrating Policies

	
Migrating Policy Configuration

	
Migrating Assertion Templates

	
Migrating Deployment Descriptors

Overview of Web Service Application Migration

To migrate Web service applications independently between environments, such as from test to production, or in a scaled clustered environment, you must export the policies and the deployment configuration information to the new environment so that you can deploy the application. Depending on your configuration, you may also need to migrate policy configuration artifacts and policy assertion templates.

A deployment descriptor is an XML file that contains the basic deployment configuration for an application. For WebLogic Server and WebLogic Java EE Web services applications, you create a deployment plan that contains the necessary deployment descriptors for deploying the application in a new environment.

For ADF Business Components and WebCenter services, however, run-time policy changes are persisted in proprietary deployment descriptor (PDD) files: oracle-webservices.xml and oracle-webservices-client.xml. Because these files are not included in the WebLogic deployment plan or exported with any other deployment descriptors, you must export and import these PDD files separately. You must also export and import these PDD files separately if you are scaling your application in a clustered environment.

Note that the following Oracle Infrastructure Web services components provide different configuration management mechanisms.

	
For a SOA composite, Web services and Oracle WSM configurations are persisted in a composite.xml file which is included in a configuration plan used for deployment configuration. The SOA framework provides its own mechanism for composite services and configuration lifecycle and synchronizations.

	
ADF Web Service data control configuration stores connection details for WebCenter services in a connections.xml file and all post-deployment changes as customizations in the Metadata Services (MDS) repository.

The general steps for migrating a Web service application from a development or test environment to a production environment are as follows:

	
Install and configure the production environment with the components that you need.

	
Migrate security information, such as users and groups, the identity and policy stores, and credentials. For more information, see "Migrating Policy Configuration".

	
Migrate policies and deployment configuration data as required. For more information, see "Migrating Policies" and "Migrating Deployment Descriptors". Modify any information that is specific to the new environment such as host name or ports.

	
Deploy the applications in the new environment.

For information about migrating Fusion Middleware applications between environments, see "Advanced Administration: Expanding Your Environment" in Oracle Fusion Middleware Administrator's Guide.

Overview of Horizontal Policy Migration

The following steps describe a typical scenario for how to create a policy and migrate the policy horizontally through the different stages of the application development and deployment cycles.

	
Use Oracle Enterprise Manager Fusion Middleware Control to create a policy.

For more information, see "Creating Web Service Policies".

	
Export the policy to a file.

For more information, see "Migrating Policies".

	
Copy the policy file to policy store location in the Oracle JDeveloper environment.

	
Create a Web service in Oracle JDeveloper and attach the policy to the Web service.

For more information, see "Using Policies with Web Services" in the "Developing with Web Services" section of the JDeveloper online help.

	
Deploy the Web service to the staging server, and test the Web service.

For more information, see "Developing Web Services" in the JDeveloper online help.

	
Import the policy to the production server environment.

For more information, see "Migrating Policies".

	
Migrate the following information, as required:

	
Policy configuration. See "Migrating Policy Configuration".

	
Assertion templates. See "Migrating Assertion Templates".

	
Deploy the application into the production environment, and test the Web service.

See "Deploying Web Services Applications" and "Testing Web Services".

Sample Use Cases for Deployment Descriptor Migration

The following sections provide sample use cases for ADF Business Control or WebCenter Web Service applications for which you must migrate the PDD files.

Scaling a Deployed ADF Business Control or WebCenter Web Service Application in a Cluster

The following steps describe a sample use case for scaling a deployed ADF Business Control or WebCenter Web service application within a cluster.

	
Deploy an ADF Business Control or WebCenter Web service application in a clustered WebLogic Server domain consisting of, for example, an Administration Server and two Managed Servers (MServer1 and MServer2). For deployment information, see Chapter 5, "Deploying Web Services Applications."

	
Using Fusion Middleware Control or WLST, modify the policy configuration. For example, attach a policy named oracle/wss_username_token_service_policy to the Web service on MServer2. For more information, see Chapter 8, "Attaching Policies to Web Services."

The configuration changes are persisted in the PDD files.

	
Restart the application.

	
Export the PDD to a JAR file using the exportJRFWSApplicationPDD command. For more information, see "Migrating Deployment Descriptors".

	
Using the WebLogic Server Administration Console, clone a new Managed Server named MServer3 in the cluster from MServer2. For more information, see "Clone Servers" in the Oracle WebLogic Server Administration Console Help.

	
Start the new Managed Server, MServer3.

Note that MServer3 does not have the policy oracle/wss_username_token_service_policy attached because it was attached after the application was initially deployed.

	
Import the JAR file containing the Oracle WSM PDD files that you created in step 4 to MServer3 using the importJRFWSApplicationPDD command. For more information, see "Migrating Deployment Descriptors".

	
Restart the application.

Propagating Run-time Policy Changes in an ADF Business Control or WebCenter Web Service Environment

The following steps describe a sample use case for propagating run-time policy changes for an ADF Business Control or WebCenter Web service application to all servers in a cluster.

	
Deploy an ADF Business Control or WebCenter Web service application in a clustered WebLogic Server domain consisting of, for example, an Administration Server and three Managed Servers (MServer1, MServer2, and MServer3). For deployment information, see Chapter 5, "Deploying Web Services Applications."

	
Using Fusion Middleware Control or WLST, modify the policy configuration. For example, detach all policies from MServer2. For more information, see Chapter 8, "Attaching Policies to Web Services."

The configuration changes are persisted in the PDD files.

	
Restart the application.

	
Export the PDD files from MServer2 to a JAR file using the exportJRFWSApplicationPDD command. For more information, see "Migrating Deployment Descriptors".

	
Use the savePddToAllAppInstancesInDomain command, with the restartApp argument set to true. For more information, see "Migrating Deployment Descriptors"

The policies are now detached from all server instances in the domain and the application is restarted.

Migrating Policies

You can export individual policies from Oracle Enterprise Manager Fusion Middleware Control. You can then copy the policy to a directory or import the policy to move it to another repository.

For details about exporting and importing policies using Fusion Middleware Control, see the following sections in "Managing Web Service Policies":

	
"Exporting Web Service Policies"

	
"Importing Web Service Policies"

Alternatively, you can use the exportRepository and importRepository WLST commands to export and import the policies. The following describes the steps required:

To migrate policies using WLST commands:

	
Export the Oracle WSM policies to a supported archive file, such as a zip file, using the exportRepository command.

For example, to export all Oracle WSM policies to an archive named policies.zip, enter the following:

wls:/jrfServer_domain/serverConfig> exportRepository('/tmp/policies.zip',['policies:oracle/%'])

Exporting "/policies/oracle/binding_authorization_denyall_policy"
Exporting "/policies/oracle/binding_authorization_permitall_policy"
Exporting "/policies/oracle/binding_permission_authorization_policy"
.
.
.
Exporting "/policies/oracle/wss_username_token_over_ssl_service_policy"
Exporting "/policies/oracle/wss_username_token_service_policy"
Successfully exported "84" documents.

	
Optionally, you can edit the archive after it has been created. If, for example, you do not want to migrate all the policies to the new environment, you can manually remove them from the archive.

	
Move the archive to the new machine. Ensure that the Oracle WSM Policy Manager is deployed on the new machine.

	
Import the Oracle WSM policies using the importRepository command. For example, to import the policies exported in the previous step:

wls:/jrfServer_domain/serverConfig> importRepository('/tmp/policies.zip')

Importing "META-INF/policies/oracle/binding_authorization_denyall_policy"
Importing "META-INF/policies/oracle/binding_authorization_permitall_policy"
Importing "META-INF/policies/oracle/binding_permission_authorization_policy"
.
.
.
Importing "META-INF/policies/oracle/wss_username_token_over_ssl_service_policy"
Importing "META-INF/policies/oracle/wss_username_token_service_policy"
Successfully imported "84" documents

For more information about these WLST commands, see "Web Services Custom WLST Commands" in WebLogic Scripting Tool Command Reference.

Migrating Policy Configuration

The following sections describe how to migrate the configuration artifacts for Oracle WSM policies. Sections include:

	
Migrating Keystores

	
Migrating Users and Groups

	
Migrating Credentials

	
Migrating Oracle Platform Security Services Application and System Policies

	
Migrating Oracle Platform Security Services Configuration

	
Migrating SSL

	
Migrating Kerberos Configuration

Migrating Keystores

If you are using message protection policies, you need to migrate your keystores. To migrate keystores:

	
Manually copy your keystores to the new environment.

For Java SE applications, copy the keystore to a user-defined location. For Java EE applications, copy the keystore to the same directory as the jps-config.xml file, namely DOMAIN_HOME/config/fmwconfig.

	
By default, the keystore is named default-keystore.jks. If you have renamed the keystore, you must configure the keystore name in the Oracle Platform Security Services keystore service instance.

For information about configuring the keystore, see "Configuring Keystores for Message Protection".

Migrating Users and Groups

Users and groups are maintained as part of the WebLogic Server security realm.

To migrate users and groups in embedded LDAP, you can migrate the data using either the Oracle WebLogic Administration Console or WLST. For a complete description of the steps required, see "Migrating Security Data" in Securing Oracle WebLogic Server.

To migrate users and groups in an LDAP store, there is no migration path. You need to recreate the users and groups and specify the assignments in the LDAP store in the new environment. See "Configuring Authentication Providers" in Securing Oracle WebLogic Server.

Migrating Credentials

There are two types of credentials maintained in the credential store that you may need to migrate:

	
Username and password

	
Keystore and encryption key passwords

The migration steps are described in the sections below.

Migrating Username and Password

If users are stored in an embedded LDAP and migrated, as described in "Migrating Users and Groups", then you simply migrate the existing credentials to the new credential store. For a complete description of the steps required, see "Migrating Security Data" in Securing Oracle WebLogic Server.

If users are stored in an LDAP store, there is no automated migration path. You need to recreate the credentials in the credential store. For more information about configuring credentials, see "Adding Keys and User Credentials to the Credential Store".

Migrating Keystores and Encryption Key Passwords

You can migrate keystores and encryption key passwords manually using the procedure described in "Migrating Credentials Manually" in "Deploying Secure Applications" in Oracle Fusion Middleware Application Security Guide.

Migrating Oracle Platform Security Services Application and System Policies

If your Web service uses authorization policies, you must migrate the Oracle Platform Security Services application and system policies that grant permissions. For more information, see "Migrating with the Script migrateSecurityStore" in "Configuring the OPSS Security Store" in Oracle Fusion Middleware Application Security Guide.

Migrating Oracle Platform Security Services Configuration

There is no automated migration path for Oracle Platform Security Services configuration. You must recreate the configuration in the new environment.

There are three types of configurations in the Oracle Platform Security Services that you may need to recreate:

	
SAML trusted assertion issuer names (applicable for all SAML policies).

If you use the default configuration for SAML trusted issuer configuration, then no migration is required. For information about configuring SAML in the new environment, see "Configuring the SAML and Kerberos Login Modules".

	
Keystore locations and CSF key configuration for keystore and keystore password (applicable for message protection policies only).

If you use the default configuration for keystores, then no migration is required. For information about configuring keystores in the new environment, see "Configuring Keystores for Message Protection".

	
Keytab location and service principal name (applicable to Kerberos policy).

For information about configuring the keytab location and service principal name in the new environment, see "Configuring the SAML and Kerberos Login Modules".

Migrating SSL

There is no automated migration path for SSL configuration. You must configure SSL keystores and settings in the new environment. For more information about configuring SSL keystores and settings in the new environment, see "Configuring Keystores for SSL".

Migrating Kerberos Configuration

To migrate the Kerberos configuration:

	
Copy the Kerberos configuration file to the new environment, matching the directory structure. The Kerberos configuration file is located in the following locations, based on your operating system:

	
UNIX: /etc/krb5.conf

	
Windows: C:\windows\krb5.ini

	
Initialize the ticket cache with the correct credentials.

For more information, see "Using Kerberos Tokens".

Migrating Assertion Templates

You can export individual assertion templates from Oracle Enterprise Manager Fusion Middleware Control. You can then copy the policy to a directory or import the policy to move it to another repository.

For details about exporting and importing assertion templates, see the following sections:

	
"Exporting an Assertion Template"

	
"Importing an Assertion Template"

Migrating Deployment Descriptors

To deploy an application in a new environment, you must export the application's deployment configuration to the new environment. Refer to the following topics for information about exporting WebLogic Java EE Web services, SOA composites, and ADF data control deployment configuration:

	
WebLogic Java EE Web services: "Exporting an Application for Deployment to New Environments"in Deploying Applications to Oracle WebLogic Server.

	
SOA composites: "Exporting a Running SOA Composite Application" in Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle Business Process Management Suite.

	
ADF data controls: "WebCenter Portal Configuration" in Oracle Fusion Middleware Administrator's Guide for Oracle WebCenter Portal .

Run-time Web service policy changes to ADF Business Control and WebCenter Web service applications are persisted in proprietary deployment descriptor (PDD) files. To preserve these policy changes in a scaled or new environment, or to propagate these changes in a domain, you must migrate the PDD files using WLST commands. The following procedure describes the steps required to migrate the PDD files.

	
Connect to the running instance of the WebLogic Administration Server in the domain in which the application is deployed. For instructions, see "Accessing the Web Services Custom WLST Commands".

	
Optionally, use the listWebServices(None,None,true) command to list all the Web services in all applications and composites in the domain.

For example:

wls:/wls-domain/serverConfig> listWebServices(None,None,true)

/wls-domain/ManagedServer1/j2wbasicPolicy:
 moduleName=j2wbasicPolicy, moduleType=web, serviceName={http://namespace/}WssUsernameService
 enableTestPage: true
 enableWSDL: true

 JRFWssUsernamePort http://host:port/j2wbasicPolicy/WssUsername
 enable: true
 enableREST: false
 enableSOAP: true
 maxRequestSize: -1
 loggingLevel: NULL
 security : oracle/wss_username_token_service_policy, enabled=true
 enableWSDL: true

 Attached policy or policies are valid; endpoint is secure.
.
.
.

	
Note:

The listWebServices command output does not include details on SOA components, including policy attachments.

	
Modify the policy configuration using Fusion Middleware Control or WLST. For example, to attach the policy oracle/wsmtom_policy policy to ManagedServer1 using WLST, enter the following command:

wls:/wls-domain/serverConfig> attachWebServicePolicy
('/wls-domain/ManagedServer1/j2wbasicPolicy','j2wbasicPolicy','web',
'WssUsernameService','JRFWssUsernamePort',
'oracle/wsmtom_policy,')

The policy change is persisted in the application PDD.

	
Restart the application.

	
Optionally, use the listWebServices(None,None,true) command again to verify that the policy is attached to the server instance. For example:

wls:/wls-domain/serverConfig> listWebServices(None,None,true)

/wls-domain/ManagedServer1/j2wbasicPolicy :
 moduleName=j2wbasicPolicy, moduleType=web, serviceName={http://namespace/}WssUsernameService
 enableTestPage: true
 enableWSDL: true

 JRFWssUsernamePort http://host:port/j2wbasicPolicy/WssUsername
 enable: true
 enableREST: false
 enableSOAP: true
 maxRequestSize: -1
 loggingLevel: NULL
 security : oracle/wss_username_token_service_policy , enabled=true
 mtom : oracle/wsmtom_policy , enabled=true

 Attached policy or policies are valid; endpoint is secure.

	
Export the application PDD to a JAR file using the exportJRFWSApplicationPDD WLST command.

exportJRFWSApplicationPDD(application,pddJarFileName=None)

For example, to export the PDD for the j2wbasicPolicy application using the default JAR filename, use the following command:

wls:/wls-domain/serverConfig> exportJRFWSApplicationPDD('/wls-domain/ManagedServer1/j2wbasicPolicy', None)

The default name and path to the JAR file is displayed.

/tmp/j2wbasicPolicy-PDD-20100115-145338.jar

	
If you are scaling your environment, use the WebLogic Server Administration Console to clone a new Managed Server. For more information, see "Clone Servers" in the Oracle WebLogic Server Administration Console Help.

If you are migrating your application to a new environment, ensure that the policies and any other configuration artifacts are copied to the new environment. For more information, see "Migrating Policies" and "Migrating Policy Configuration".

	
In a scaled environment, start the cloned Managed Server.

Note that the oracle/wsmtom_policy is not attached to the cloned Managed Server. To do so using the listWebServices command:

wls:/wls-domain/serverConfig> listWebServices(None,None,true)
.
.
.
/wls-domain/ClonedManagedServer/j2wbasicPolicy :
 moduleName=j2wbasicPolicy, moduleType=web,serviceName={http://namespace/}WssUsernameService
 enableTestPage: true
 enableWSDL: true

 JRFWssUsernamePort http://host:port/j2wbasicPolicy/WssUsername
 enable: true
 enableREST: false
 enableSOAP: true
 maxRequestSize: -1
 loggingLevel: NULL
 security: oracle/wss_username_token_service_policy , enabled=true

 Attached policy or policies are valid; endpoint is secure.

	
Import the application PDD to the new server, or to the new environment, using the importJRFWSApplicationPDD command.

importJRFWSApplicationPDD(application,pddJarFileName)

For example, to import the PDD JAR created in step 6 to the cloned Managed Server, use the following command:

wls:/wls-domain/serverConfig> importJRFWSApplicationPDD
('/wls-domain/ClonedManagedServer/j2wbasicPolicy','/tmp/j2wbasicPolicy-PDD-20100115-145338.jar')
application /wls-domain/ClonedManagedServer/j2wbasicPolicy PDD has been reset, please restart application now to uptake changes!

	
Restart the application and, optionally, verify the changes by executing the listWebServices(None,None,true) command again. For example:

wls:/wls-domain/serverConfig> listWebServices(None,None,true)
.
.
.
/wls-domain/ClonedManagedServer/j2wbasicPolicy :
 moduleName=j2wbasicPolicy, moduleType=web,serviceName={http://namespace/}WssUsernameService
 enableTestPage: true
 enableWSDL: true

 JRFWssUsernamePort http://host:port/j2wbasicPolicy/WssUsername
 enable: true
 enableREST: false
 enableSOAP: true
 maxRequestSize: -1
 loggingLevel: NULL
 security:oracle/wss_username_token_service_policy , enabled=true
 mtom : oracle/wsmtom_policy , enabled=true

 Attached policy or policies are valid; endpoint is secure.

	
Use the savePddToAllAppInstancesInDomain command to apply the policy changes (that you applied to a single server in step 9 using the importJRFWSApplicationPDD command) to all the server instances in the domain. This command is useful for propagating run-time policy changes to all servers in a cluster.

savePddToAllAppInstancesInDomain(applicationName,pddJarFileName,restartApp=true)

For example, to apply the same policy attachment to all server instances running the application in the domain, use the following command:

wls:/wls-domain/serverConfig> savePddToAllAppInstancesInDomain('j2wbasicPolicy','/tmp/j2wbasicPolicy-PDD-20100115-145338.jar',true)

The oracle/wsmtom_policy is now attached to all server instances in the domain and the application is automatically restarted.

	
Optionally, execute the listWebServices(None,None,true) command to verify the changes were applied to all servers.

For more information about these deployment migration WLST commands and their arguments, see "Web Services Custom WLST Commands" in WebLogic Scripting Tool Command Reference.

16 Diagnosing Problems

This chapter contains the following sections:

	
Diagnosing Problems with Oracle WSM Policy Manager

	
Diagnosing Common Problems with Oracle WSM

	
Diagnosing Policy Attachment Issues Using WLST

	
Diagnosing Problems Using Logs

	
Configuring Log Files for a Web Service

Diagnosing Problems with Oracle WSM Policy Manager

The Oracle WSM Policy Manager manages all Oracle WSM policies and needs to be running to use the Oracle WSM policy framework. You can check the current state of the Policy Manager and review its response time, load, and other data from the Oracle WSM Policy Manager page in Oracle Enterprise Manager Fusion Middleware Control.

To view the Oracle WSM Policy Manager page:

	
In the Navigator pane, expand Application Deployments.

	
Under Application Deployments, expand Internal Applications.

	
Select wsm-pm.

The Oracle WSM Policy Manager home page is displayed.

Figure 16-1 Oracle WSM Policy Manager Page

[image: Description of Figure 16-1 follows]

Description of "Figure 16-1 Oracle WSM Policy Manager Page"

	
From the Policy Manager page, you can perform one or more of the following tasks:

	
In the General area of the page, you can check the current state of the Policy Manager and identify the server to which it is deployed.

	
In the Response and Load section of the page, you can view the response time and current load. To view this information in tabular form, click Table View.

	
In the Entry Points section of the page, you can validate the connection to the Policy Manager. To do so, in the Web Modules table, click the Test Point URL for wsm-pm. On the Validate Policy Manager page, click the Validate Policy Manager link, as shown in Figure 16-2.

Figure 16-2 Validate Policy Manager Page

[image: Description of Figure 16-2 follows]

Description of "Figure 16-2 Validate Policy Manager Page"

You can also access the Validator page in a Web browser using the following URL:

http://host:port/wsm-pm/validator

In this URL, host and port represent the host and port number on which the Policy Manager is running.

If the connection to the Policy Manager fails, an error message is displayed. If the connection to the Policy Manager is successful, the Policy Manager Validator page displays the following information:

	
The status of the Policy Manager.

	
The total number of Oracle WSM policies in the Oracle WSM repository

	
The name, latest version, and description of all the Oracle WSM policies in the Oracle WSM repository.

	
The total number of Oracle WSM assertion templates in the repository

	
The name, latest version, and description of all the Oracle WSM assertion templates in the Oracle WSM repository.

	
The creation date and build label of the repository.

A sample Policy Manager Validator page is shown in Figure 16-3.

Figure 16-3 Policy Manager Validator Page

[image: Description of Figure 16-3 follows]

Description of "Figure 16-3 Policy Manager Validator Page"

For details about the Oracle WSM repository, see Chapter 17, "Maintaining the Oracle WSM Repository."

Diagnosing Common Problems with Oracle WSM

The following sections describe some common problems you may encounter while using Oracle WSM, as well as possible solutions:

	
Unable to Connect to the Policy Manager

	
Key or Credential Store Error After an Application Invokes Web Service

	
Trust Certificate Error After Application Invokes Web Service

	
SAML Assertion Error Appears During Identity Propagation

	
Policy Access Error After an Application Invokes Web Service

	
Unable to Access User in Credential Store

	
Authorization Error After an Application Invokes Web Service

	
Timestamp Error After an Application Invokes Web Service

	
Multiple Authentication Security Policy Error After an Application Invokes a Web Service

Unable to Connect to the Policy Manager

The following errors appear when you attempt to connect the Policy Manager:

	
WSM-06157: The repository database is not configured correctly or not running.

	
WSM-06160: The policy manager application has not been deployed or is not running.

	
WSM-06161: The policy manager application has not been deployed.

	
WSM-06162: The policy manager application is not running or is not configured correctly.

	
WSM-06159: Cannot connect to the policy manager due to credential issue.

Problem

The problem may be:

	
The Policy Manager is down. You can determine if the Policy Manager is down as follows:

	
The state of the Policy Manager in the General area of the Oracle WSM Policy Manager home page, as described in "Diagnosing Problems with Oracle WSM Policy Manager" is shown as shutdown.

	
The status of the wsm-pm internal application on the Farm home page in Enterprise Manager is Down, as shown in Figure 16-4. To access the Farm home page, select Farm_em_domain in the Navigator pane, or select Home from the Farm menu in the left-hand corner of the page.

Figure 16-4 Oracle WSM Policy Manager Shutdown (Farm Page)

[image: Description of Figure 16-4 follows]

Description of "Figure 16-4 Oracle WSM Policy Manager Shutdown (Farm Page)"

	
An error dialog box similar to the following displays when you attempt to access the Oracle WSM policy management pages in Enterprise Manager. This error information is also written to the diagnostic log file, as described in "Reviewing Sample Logs".

Figure 16-5 Error Message—Oracle WSM Policy Manager Unavailable

[image: Description of Figure 16-5 follows]

Description of "Figure 16-5 Error Message—Oracle WSM Policy Manager Unavailable"

	
The Policy Manager is targeted to an SSL server.

Oracle Web Services Manager (WSM) supports an auto-discovery feature that it uses to locate and connect to an Oracle WSM Policy Manager within the same WebLogic domain. If the domain includes an SSL-configured server that has a Policy Manager deployed, the auto-discovery logic will connect to that Policy Manager and will not try to connect to any Policy Managers deployed on non-SSL servers. To ensure that the secure connection is maintained, the auto-discovery logic will not attempt to connect to a Policy Manager on a non-SSL server, even if the SSL-enabled server goes down. Therefore, even though there is a Policy Manager running, because it is running on a non-SSL enabled server, it is ignored and an error message is displayed.

	
The credential required to access the Policy Manager is invalid or is not authorized.

	
The repository may not be configured correctly.

Solution

If the Policy Manager is down:

Restart the wsm-pm application as described in "Starting and Stopping Applications" in Oracle Fusion Middleware Administrator's Guide.

If the Policy Manager is targeted to an SSL Server:

	
Verify that the wsm-pm Policy Manager application is targeted to an SSL server. You can do so using the WebLogic Server Administration Console as described in "Target an Enterprise application to a server" in the Oracle WebLogic Server Administration Console Help.

	
Verify that SSL has been configured correctly and that there are no SSL certificate issues. For additional information, see "Configuring Keystores for SSL".

	
If the SSL-enabled server is down, restart it, and the Policy Manager application, as described in "Starting and Stopping Oracle Fusion Middleware" in Oracle Fusion Middleware Administrator's Guide.

	
If you want to use the Policy Manager on the non-SSL enabled server, untarget the Policy Manager application from the SSL-enabled server. For information about targeting applications to a server, see Managing Deployed Applications in Deploying Applications to Oracle WebLogic Server. To change the target server using the WebLogic Server Administration Console, see "Change target servers" in Oracle WebLogic Server Administration Console Help.

If there is a credential issue when attempting to access the Policy Manager:

By default, the Oracle WSM run time uses the OracleSystemUser account. If you are not using the default user accounts, you need to modify the configuration as described in "Modifying the Default User".

If there is a problem with the repository configuration:

	
Verify that the database and MDS schema are setup correctly. This configuration is performed as part of the installation process. For more information, see Oracle Fusion Middleware Repository Creation Utility User's Guide.

	
Verify that the JDBC configuration is correct. The JDBC configuration is defined when you create the domain using the Oracle Fusion Middleware Configuration Wizard. For more information, see Creating Domains Using the Configuration Wizard.

Key or Credential Store Error After an Application Invokes Web Service

After an application invokes a Web service, a key store or credential store error such as the following appears:

	
WSM-00056: The key <alias_name> is not retrieved

	
WSM-00256: The property "Keystore Sign Alias" is not set

Problem

The problem may be:

	
The alias for the signature key or encryption key in the Oracle WSM keystore configuration does not exist in the Oracle WSM keystore.

	
The signature key, encryption key, or Oracle WSM keystore password is not synchronized between the keystore file and the keystore configuration for Oracle WSM. That is, at least one of the passwords does not have identical values in both locations.

Solution

To verify the alias for the signature key and encryption key in the Oracle WSM keystore configuration exist in the Oracle WSM keystore file:

	
Use Fusion Middleware Control to identify the alias for the signature key and encryption key in the Oracle WSM keystore configuration by performing the procedure in "Configuring the Oracle WSM Keystore".

	
Verify the aliases identified in step 1 exist in the Oracle WSM keystore file. To do so, use the keytool -list command on the Oracle WSM keystore file, as described in step 4 of "Generating Private Keys and Creating the Java Keystore". For detailed information about using the keytool utility, see the keytool - Key and Certificate Management Tool document at the following URL:

http://download.oracle.com/javase/6/docs/technotes/tools/windows/keytool.html

	
Note:

If you are unable to locate the document at the above URL, you can access it by searching for it on the Search Java SE Technical Documentation Web page at:
http://download.oracle.com/javase/search.html

	
Ensure each alias is synchronized in both the keystore file and the Oracle WSM keystore configuration in the credential store. If they are not, you can edit the alias in the Oracle WSM keystore configuration by performing the procedure described in "Configuring the Oracle WSM Keystore". You can edit the alias in the Oracle WSM keystore file using the keytool -changealias command.

	
Note:

Before you edit an alias, be sure that doing so will not affect any other Web service.

	
If the alias for the signature key or encryption key does not exist in the Oracle WSM keystore file, add it as described in "Generating Private Keys and Creating the Java Keystore".

To ensure that the signature key, encryption key, and Oracle WSM keystore file passwords are each synchronized in the keystore file and the keystore configuration for Oracle WSM:

	
Use keytool to reset the passwords in the Oracle WSM keystore file. Because the passwords are not visible, resetting them is the only method to ensure that they have identical respective values in both locations.

	
Use the keytool -storepasswd command to reset the Oracle WSM keystore file password.

	
Use the keytool -keypasswd command to reset the signature key password and encryption key password.

	
Use Fusion Middleware Control to reset the passwords in the Oracle WSM keystore configuration to the same respective values you set in step 1, as described in "Configuring the Oracle WSM Keystore".

Trust Certificate Error After Application Invokes Web Service

After an application invokes a Web service, a trust certificate error such as the following appears:

WSM-00138: The path to the certificate is invalid due to exception

Problem

The problem may be, if the Web service is advertising its certificate in the Web Services Description Language (WSDL), the client may not be configured correctly to trust that certificate or its issuer.

Solution

To verify the client is configured to trust the Web service's certificate advertised in the WSDL or its issuer:

	
Verify the client keystore has either the certificate of the Web service or the certificate of its issuer.

Use the keytool –list command to identify the certificates in the client keystore. If either of the certificates is missing from the client keystore, use the keytool –importcert command to add them.

Refer to the keytool - Key and Certificate Management Tool document on the Java SE Technical Documentation Web site for more information about using keytool. You can access this document at the following URL:

http://download.oracle.com/javase/6/docs/technotes/tools/windows/keytool.html

	
If the certificate is not published in the service's WSDL, verify that the value for the keystore.recipient.alias override property of the client policy is identical to the alias of the certificate in the Oracle WSM keystore file.

For more information, see "Attaching Client Policies Permitting Overrides".

SAML Assertion Error Appears During Identity Propagation

After an application attempts to propagate a user's identity by calling a different application using Oracle SOA, InvalidSecurityToken, FailedAuthentication, and SAML assertion issuer related errors appear.

Problem

The problem may be:

	
The SAML issuer name for the SAML token is not configured or is configured incorrectly.

	
The subject.precedence configuration override is set incorrectly.

Solution

To troubleshoot the SAML issuer name configuration:

Verify that the SAML Issuer Name that the client is using is among the issuers configured in the Oracle WebLogic Server domain. To do so, perform the steps described in "Adding an Additional SAML Assertion Issuer Name".

If the SAML Issuer Name that the client is using is not configured as an issuer in the Oracle WebLogic Server domain, Oracle recommends changing the issuer name on the client by updating its saml.issuer.name override to one of the issuers configured in the domain.

If you cannot change the issuer name on the client, you can add its issuer name to the Oracle WebLogic Server domain by performing the steps in the "Adding an Additional SAML Assertion Issuer Name".

	
Note:

If you make any changes to the issuers configured in the Oracle WebLogic Server domain, you must restart the Managed Server where Oracle WSM is deployed.

To troubleshoot the subject.precedence configuration override:

	
Set the subject.precedence override value in your current client policy to false to change the identity to a different user. By default, the subject.precedence override is set to true.

	
Set the appropriate Credential Store Framework key override on the client policy that contains the user name and password of the user you want to send to the service. If an entry for this user does not exist in the Credential Store Framework, you must add it. For more information, see "Configuring the Credential Store"

	
Ensure the appropriate Web Services Identity Permission is set for the client application by performing the steps in "Configuring SAML Web Service Clients for Identity Switching".

Policy Access Error After an Application Invokes Web Service

After an application attempts to invoke a Web service, a policy access error such as the following appears:

	
WSM-06156: The policy URI is missing, empty or contains invalid characters.

	
WSM-06158: The referenced policy does not exist in the repository.

	
WSM-02017: The document was not found in the repository.

Problem

The problem may be:

	
The policy URI is missing or the policy name is misspelled.

	
The Policy Manager is down

	
The policy does not exist in the repository

	
The policy attachment is not in effect due to a cache delay.

Solution

To diagnose and solve policy access issues:

	
Verify that the Policy Manager is running as described in "Diagnosing Problems with Oracle WSM Policy Manager" and "Unable to Connect to the Policy Manager".

	
Verify that the mds-owsm datasource connection is reachable and available. For more information, see "Understanding and Managing Data Sources" in Oracle Fusion Middleware Administrator's Guide.

	
Verify that the policy exists in the Oracle WSM repository by viewing the contents of the repository using the Policy Manager Validator page. For details about accessing the Validator page and viewing the contents of the repository, see "Diagnosing Problems with Oracle WSM Policy Manager".

	
If the policy exists in the repository, verify that the policy URI is consistent with the policy URI in the repository.

	
If the policy does not exist in the Oracle WSM repository, do one of the following:

	
For predefined policies:

	
Verify that the repository has been upgraded with all of the latest predefined policies using the upgradeWSMPolicyRepository() command as described in "Upgrading the Oracle WSM Policies in the Repository".

	
Reset the contents of the repository using the resetWSMPolicyRepository command as described in "Rebuilding the Oracle WSM Repository".

	
For a custom policy:

	
Import it into the repository as described in "Importing Web Service Policies". For information on creating a custom policy, see "Creating Web Service Policies".

	
Check if the user is in a role that has the right permission granted. To modify any roles or permissions, refer to "Modify the User's Group or Role".

	
Verify the policy accessor and cache delay.

The amount of time it takes for a policy attachment to take effect is determined by the Oracle WSM policy accessor and policy cache property settings. By default, this delay can be up to a maximum of 11 minutes. To reduce the amount of the delay, if necessary, you can tune the following cache property settings:

	
Policy Accessor

cache.refresh.initial, default 600000 milliseconds (10 minutes)

cache.refresh.repeat, default 600000 milliseconds (10 minutes)

	
Policy Cache

cache.tolerance, default is 60000 milliseconds (1 minute)

For details about tuning these properties, see "Configuring Platform Policy Properties".

Unable to Access User in Credential Store

When Oracle WSM attempts to access a user in the credential store, an error such as the following occurs:

WSM-00015: The user name is missing

Problem

Oracle WSM cannot locate the user name in the credential store. This can be caused by any of the following:

	
The credential map oracle.wsm.security does not exist in the credential store.

	
The user is not listed in the map used by Oracle WSM.

	
The csf key for the entry does not exist in the credential store.

Solution

Verify that the credential map oracle.wsm.security exists in the credential store. Oracle WSM only reads from this credential store map.

To determine if the oracle.wsm.security credential map exists in the credential store, refer to the procedure in "Configuring the Credential Store".

If your application uses a credential map other than oracle.wsm.security, ensure that any users that Oracle OWSM needs to access are duplicated in the oracle.wsm.security credential map.

Authorization Error After an Application Invokes Web Service

After an application attempts to invoke a Web service, an error such as the following appears:

java.security.AccessControlException: access denied (oracle.wsm.security.WSFunctionPermission

Problem

Generally this is not really a problem rather intended behavior; that is, the system was unable to authorize the user for the action that the user is attempting. To debug check the calling server diagnostic log for the authorization error. The error may look similar to the following:

2011-01-06T22:15:43.691-08:00] [SalesServer_2] [ERROR] [] [oracle.jbo.server.svc.ServicePermissionCheckInterceptor_w2f8f5_Impl]
[tid: [ACTIVE].ExecuteThread: '7' for queue: 'weblogic.kernel.Default (self-tuning)']
[userId: FMW_APPS_CRM_SELFSERVICE_ADF_APPID]
[ecid: 004aIPwzJDGE8TQRyaI7T00001WJ00EJ8f,0:1:3:1:11:0x5f5e189:6:1]
[WEBSERVICE_PORT.name: PartnerServiceSoapHttpPort] [APP: SalesApp#V2.0]
[J2EE_MODULE.name: partnerCenterCorePublicModel]
[WEBSERVICE.name: PartnerService] [J2EE_APP.name: SalesApp_V2.0]
[URI: /partnerCenterCorePublicModel/PartnerService] [[
java.security.AccessControlException: access denied (oracle.wsm.security.WSFunctionPermission
http://xmlns.oracle.com/apps/partnerMgmt/partnerCenter/PartnerService#updatePartner invoke)
 at java.security.AccessControlContext.checkPermission(AccessControlContext.java:323)
 at java.security.AccessController.checkPermission(AccessController.java:546)
 at oracle.jbo.server.svc.ServicePermissionCheckInterceptor.checkPermission(ServicePermissionCheckInterceptor.java:103)
 at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)

Solution

Pay careful attention to the following information in the log, which is shown in bold text in the example above.

	
The application stripe name – which is SalesApp#V2.0 in the above log. Make sure it matches what you configured for your application. For information about how to configure the stripe name, see "Configuring the Servlet Filter and the EJB Interceptor" in Oracle Fusion Middleware Application Security Guide.

	
The permission grant, which is comprised of the following:

	
Resource name, which is http://xmlns.oracle.com/apps/partnerMgmt/partnerCenter/PartnerService#updatePartner in the above log.

	
Action, which is invoke in the above log.

Both of these pieces of information must be specified correctly in your permission grant. For more information, see "How Authorization Permissions Are Determined".

If your application uses an LDAP-based authenticator and stores all roles in the LDAP, ensure that Oracle WSM can access the users and roles as described in "Modifying the Default User".

Timestamp Error After an Application Invokes Web Service

After an application invokes a Web service, a timestamp or clockSkew error such as the following occurs:

WSM-00060: Error validating timestamp

Problem

The problem will either manifest itself as a timestamp validation or clockSkew error as shown below:

Caused By: FAULT CODE: InvalidSecurityToken FAULT MESSAGE: Found invalid condition "on or after" in SAML assertion.
Current Time:Fri Feb 11 22:16:42 IST 2011, clockSkew:300000 milli seconds, NotOnOrAfter Time:Fri Feb 11 14:21:42 IST 2011.

This problem usually happens if your server and client clocks are more than five minutes apart after they are converted to the same time zone.

Solution

Change your client or server clock in one of the following ways so that they are within five minutes, both set to the correct time:

	
Adjust the clockSkew as described in "Tuning Web Service Security Policy Enforcement".

	
Set the system clock

	
Use an ntp server to maintain the time

Multiple Authentication Security Policy Error After an Application Invokes a Web Service

After an application invokes a Web service, a multiple policy error (WSM-01823) appears in the log. This error appears, for example, if multiple authentication policies are attached to a subject.

Problem

More than one authentication policy was attached to a subject. This can happen if you have two policy sets that each attach an authentication policy to the same resource type, such as a Web service. For example, if you have two policy sets defined in the Oracle WSM repository for your domain and one defines the policy scope as Domain("domain_name") and the other as Domain ("*"). The following listing illustrates an example of this scenario.

wls:/soa_domain/serverConfig> displayPolicySet('default-domain-ws-domain_gpa')

 Policy Set Details:

 Name: default-domain-ws-domain_gpa
 Type of Resources: Web Service Endpoint
 Scope of Resources: Domain("soa_domain")
 Description: Global policy attachments for Web Service Endpoint resources.
 Enabled: true
 Policy Reference: security : oracle/wss11_saml_or_username_token_with_message_protection_service_policy, enabled=true

wls:/soa_domain/serverConfig> displayPolicySet('default-domain-ws-domain')

 Policy Set Details:

 Name: default-domain-ws-domain
 Type of Resources: Web Service Endpoint
 Scope of Resources: Domain("*")
 Description: Global policy attachments for Web Service Endpoint resources.
 Enabled: true
 Policy Reference: security : oracle/wss_saml_or_username_token_service_policy, enabled=true

In this example, there are two policy sets with different names and different authentication policies pointing to the same resource type on the domain.

	
Note:

If the authentication policies attached to the subject are exact duplicates of each other, including any configuration overrides, the policy attachment is viewed as a duplicate and the configuration is valid.

Solution

To verify if you have multiple policy sets attempting to attach authentication policies:

	
Use the listPolicySets() command to display a list of the policy sets in the domain. For more information about this command, see "Displaying a List of Policy Sets Using WLST".

	
Use the listWebServices or listWebServiceClients command, with the detail argument set to true, to view the endpoint (port) and policy details for all applications and composites in the domain, the secure status of the endpoints, any configuration overrides and constraints, and if the endpoints have a valid configuration.

Using the policy sets defined in the example scenario, the output from the listWebServices(detail=true) command is displayed as follows. Note that the two policies in conflict and the policy sets with which they are associated are shown in bold text.

wls:/soa_domain/serverConfig> listWebServices(detail=true)

/soa_domain/jrfServer_admin/jaxws-sut-no-policy :
 moduleName=jaxws-service, moduleType=web, serviceName={http://namespace/}TestService
 enableTestPage: true
 enableWSDL: true

 TestPort http://host.us.oracle.com:8344/jaxws-service/TestService
 enable: true
 enableREST: false
 enableSOAP: true
 maxRequestSize: -1
 loggingLevel: NULL
 Constraint: No Constraint
 (global) security : oracle/wss11_saml_or_username_token_with_message_protection_service_policy, enabled=true
 /policysets/global/default-domain-ws-domain_gpa : Domain("*")
 (global) security : oracle/wss_saml_or_username_token_service_policy, enabled=true
 /policysets/global/default-domain-ws-domain : Domain("*")
 Attached policy or policies are not valid.
 One or more attached policies are not compatible with endpoint or other attached policy.

	
If a conflict is found, do one of the following:

	
Delete one of the policy sets as described in "Deleting Policy Sets".

	
Disable one of the policy sets as described in "Enabling and Disabling a Policy Set".

For more information, see "Determining the Secure Status of an Endpoint".

Diagnosing Policy Attachment Issues Using WLST

To ensure that there are no conflicts between directly-attached policies and policies attached globally using policy sets, use the following WLST commands:

	
listWebServices (detail="true") — Displays a list of the Web services in a domain including endpoint configuration, the effective set of policies attached to each endpoint, the secure status of the endpoint, any configuration overrides and constraints, and if the endpoint has a valid configuration. For information about using this command, see "Viewing the Web Services in a Domain Using WLST".

	
listWebServiceClients (detail="true") — Displays a list of the Web service clients in a domain including endpoint configuration, the effective set of policies attached to each endpoint, the secure status of the endpoint, any configuration overrides and constraints, and if the endpoint has a valid configuration. For information about using this command, see "Viewing Web Service Clients", "Using WLST"

	
Note:

An endpoint is considered secure if the policies attached to it (either directly, or externally using a policy set) enforce authentication, authorization, or message protection behaviors.

If your configuration includes policies attached globally using policy sets, you can view information about the policy sets using the following commands:

	
listPolicySets() — Displays a list of the policy sets in the repository. For information about using this command, see "Displaying a List of Policy Sets Using WLST".

	
displayPolicySet() — Displays the configuration of a specific policy set. For information about using this command, see "Viewing the Configuration of a Policy Set", "Using WLST".

To view the effective policies for an endpoint using Fusion Middleware Control, see "Viewing the Policies That are Attached to a Web Service".

For more information about determining if the endpoint is secure and has a valid configuration, see "Determining the Secure Status of an Endpoint".

Sample Valid Configuration Output with Globally and Directly Attached Policies

The following example shows sample output from the listWebServices(detail=true) command for a valid configuration. Because you can specify the priority of a global or directly attached policy (using the reference.priority configuration override), the effective field indicates if directly attached policies are in effect for the endpoint.

	
Note:

To simplify endpoint management, all directly attached policies are shown in the output regardless of whether they are in effect for the endpoint. In contrast, only globally attached policies that are in effect for the endpoint are displayed.

/jrfServer_domain/jrfServer_admin/jaxws-sut :
 moduleName=jaxws-sut-service, moduleType=web, serviceName={http://namespace/}TestService
 enableTestPage: true
 enableWSDL: true

 TestPort http://host.us.oracle.com:9315/jaxws-sut-service/TestService
 enable: true
 enableREST: false
 enableSOAP: true
 maxRequestSize: -1
 loggingLevel: NULL
 management : oracle/log_policy, enabled=true
 security : oracle/wss_username_token_service_policy , enabled=true , effective=false
 Constraint: No Constraint
 (global) security : oracle/wss_saml_or_username_token_service_policy, enabled=true
 /policysets/global/all-domains-default-web-service-policies : Domain("*")
 reference.priority=1
 Constraint: HTTPHeader('VIRTUAL_HOST_TYPE','external')
 (global) security : oracle/wss10_message_protection_service_policy, enabled=true
 /policysets/global/domainExternal : Domain("*")
 Attached policy or policies are valid; endpoint is secure.

Sample Valid Configuration Output with Directly Attached Policies Only

The following example shows sample output from the listWebServices(detail=true) command for a valid configuration. The directly attached policy is shown in bold text.

/jrfServer_domain/jrfServer_admin/jaxws-sut-no-policy :
 moduleName=jaxws-service, moduleType=web, serviceName={http://namespace/}TestService
 enableTestPage: true
 enableWSDL: true

 TestPort http://host.us.oracle.com:8344/jaxws-service/TestService
 enable: true
 enableREST: false
 enableSOAP: true
 maxRequestSize: -1
 loggingLevel: NULL
 security : oracle/wss_saml_or_username_token_service_policy, enabled=true
 Attached policy or policies are valid; endpoint is secure.

Diagnosing Problems Using Logs

Oracle Fusion Middleware components, including Web services, generate log files containing messages that record all types of events, including startup and shutdown information, errors, warning messages, access information on HTTP requests, and so on. Each log message includes specific information such as time, component ID, and user to assist you in pinpointing and diagnosing problems that arise.

You can review log messages to diagnose problems with specific components, such as Web services. There are two categories of log files that you can reference to assist in diagnosing problems with Web services:

	
Diagnostic logs—Enable you to access diagnostic data about specific feature components in Oracle Fusion Middleware. For more information, see "Using Diagnostic Logs for Web Services".

There is a set of predefined diagnostic loggers. You can configure your own diagnostic logger, as described in "Configuring Log Files for a Web Service".

	
Message logs—Enable you to view elements of the SOAP message request. You control message log creation using policies. For more information, see "Using Message Logs for Web Services".

For more information about logging in Oracle Fusion Middleware, see "Managing Log Files and Diagnostic Data" in Oracle Fusion Middleware Administrator's Guide.

The following sections describe how to use diagnostic and message logs to diagnose problems. A set of sample logs is provided at the end of this section.

	
Using Diagnostic Logs for Web Services

	
Using Message Logs for Web Services

	
Reviewing Sample Logs

Using Diagnostic Logs for Web Services

Diagnostic logs enable you to access diagnostic data about specific feature components in Oracle Fusion Middleware.

The following sections describe how to view and manage diagnostic log files:

	
Setting the Log Level for Diagnostic Logs

	
Viewing Diagnostic Logs

	
Filtering Diagnostic Logs

	
Logging Oracle WSM Debug Messages

Setting the Log Level for Diagnostic Logs

You set the logging level for Web service and Oracle WSM components at the WebLogic Server level, using the Log Configuration page.

In addition, you can override the log levels set at the server level for a specific Web service endpoint from the Web Service Endpoint page. The logging level set at the Web service endpoint level must be "finer grained" than the level set at the WebLogic Server level. Otherwise, the logging level set at the WebLogic Server level will be used.

The following procedures describe how to set the log level for diagnostic logs at the WebLogic Server and Web service endpoint levels. For more information, see "Setting the Level of Information Written to Log Files" in Oracle Fusion Middleware Administrator's Guide.

To set the log level for diagnostics logs at the WebLogic Server level:

	
Navigate to the WebLogic Server for which you want to configure a logger.

	
In the navigator pane, expand WebLogic Domain.

	
Expand the domain.

	
Select the desired server from the list.

The WebLogic Server home page is displayed.

	
From the WebLogic Sever menu, select Logs > Log Configuration.

The Log Configuration page is displayed.

	
Select the Log Levels tab.

The list of loggers is displayed, as shown in Figure 16-6.

The Log Levels page shows the name of the logger, the current logging level, which you can edit, and the associated log file (for example, olh-handler). For information about configuring the log files, see "Configuring Log Files for a Web Service".

Figure 16-6 Log Levels Page

[image: Description of Figure 16-6 follows]

Description of "Figure 16-6 Log Levels Page"

	
Expand Root Logger.

	
Expand oracle.

	
Set the logging level for one or more of the following components:

	
oracle.webservices—Web service components.

	
oracle.wsm—Oracle WSM components.

You can fine tune the logging level by expanding either of the above components and specifying the logging level at the subcomponent level.

To change the logging level for a logger, navigate to the logger in the Logger Name column and select the desired logging level from the Oracle Diagnostic Logging Level (Java Level) drop-down menu.

For example, select TRACE:32 from the drop-down menu associated with the oracle.wsm logger.

By default, the logging levels are inherited from the parent and set to NOTIFICATION: 1 (INFO) for the Web service and Oracle WSM components and subcomponents.

	
Click Apply to store the new logging level.

To set the log level for diagnostic logs at the Web service endpoint level:

	
Navigate to the Web Service Endpoint page, as described in "Viewing the Details for a Web Service Endpoint".

	
Click the Configuration tab.

	
Set the Logging Level field to one of the following settings: Severe, Warning, Information, Configuration, Fine, Finer, Finest or NULL.

	
Note:

You can also set the log level at the Web service endpoint using the setWebServiceConfiguration WLST command. Set the loggingLevel property of the itemProperties argument to one of the following settings: SEVERE, WARNING, INFO, CONFIG, FINE, FINER, FINEST, or NULL. For details about using this command, see "setWebServiceConfiguration" in WebLogic Scripting Tool Command Reference.

Viewing Diagnostic Logs

You can view the diagnostic log files for an ADF and WebCenter Web service endpoint from the Log Messages page.

To view diagnostic logs for a Web service endpoint:

Navigate to the Web Service Endpoint page, as described in "Viewing the Details for a Web Service Endpoint", and in the Quick Links section of the Web Services Endpoint page (top right), click Diagnostic Logs.

	
Note:

You can view a summary of all faults incurred by the Web services in your application. For more information, see "Monitoring the Performance of Web Services".

The Log Messages page is displayed, as shown in the following figure.

Figure 16-7 Log Messages Page

[image: Description of Figure 16-7 follows]

Description of "Figure 16-7 Log Messages Page"

Click on a message in the message area to view more details at the bottom of the page. If desired, you can export a message to a text, XML, or CSV file by selecting the messages on the list and clicking Export Messages to File.

You can control the message content displayed using the following controls:

	
Search—Modify the search criteria. For more information, see "Filtering Diagnostic Logs".

	
View menu—Select the columns to display in the table. Click on a particular column to sort contents up or down.

	
Show menu—Group messages by type or ID, or view them in chronological order.

	
View Related Messages—View messages related to those selected on the list.

	
Broaden Target Scope—Broaden the scope of messages displayed. You can broaden the scope to include all messages for the domain, WebLogic Server, or Farm.

	
Refresh menu—Specify an automatic or manual refresh rate.

To view the contents of a generated log file:

	
Click the log file icon associated with a message to view the contents of that log file.

	
Click Target Log Files... to display the Log Files page and view or download the contents of all generated log files.

For more information, see "Viewing and Searching Log Files" in Oracle Fusion Middleware Administrator's Guide.

Filtering Diagnostic Logs

By default, the Log Messages page displays a summary of diagnostic messages logged over the last hour.

To filter diagnostic logs:

	
Filter the messages that are displayed by updating the search criteria using the following fields:

	
Date Range—Set the date range to one of the following:

	
Most Recent—Set the amount of time to define the duration.

	
Time Interval—Set the start and end dates to define the interval.

	
Message Types—Select the message types that you want to display.

	
Add Fields—Add other message fields to your search criteria, such as Message ID, Component, and so on.

	
Click Search once you have set the fields, as desired.

The messages area is updated with the filtered results.

For more information, see "Viewing and Searching Log Files" in Oracle Fusion Middleware Administrator's Guide.

Logging Oracle WSM Debug Messages

To debug Oracle WSM, pass one of the following properties when starting WebLogic Server, as required. For more information, see "Starting and Stopping Servers" in Managing Server Startup and Shutdown for Oracle WebLogic Server.

	
Note:

Enabling one or more of these properties may negatively impact performance for very large messages. When enabled, Oracle WSM creates temporary buffers which will result in additional load on the Java garbage collector.

Table 16-1 Startup Properties for Logging Oracle WSM Debug Messages

	Startup Property	Description
	
-Dxml.debug.verify=true

	
Logs the sequence of bytes produced during a signature verification failure. Verification errors are output to stderr and the diagnostic log file when the log level is set to at least ERROR.

	
-Dxml.debug.digest=true

	
Verifies that the sequence of bytes produced during signature generation canonicalization and signature verification match. Verification errors are output to stderr and the diagnostic log file when the log level is set to at least FINE.

	
-Dxml.debug.decrypt

	
Logs the sequence of bytes produced following a decryption failure before XML parsing. Verification errors are output to stderr and the diagnostic log file.

Using Message Logs for Web Services

Message logs enable you to access the contents of the SOAP message requests and responses for ADF and WebCenter Web services and clients. Messages logs are stored in a log file separate from the diagnostic messages, by default.

The following sections describe how to view and manage message log files:

	
Configuring Message Logs

	
Viewing Message Logs

	
Filtering Message Logs

Configuring Message Logs

You configure message logs for a Web service or client in one of the following ways:

	
Attach a policy that contains a logging assertion to the Web service or client.

There is one predefined logging assertion template: oracle/security_log_template, described in "oracle/security_log_template". This template is configured to log the entire SOAP message for the Web service request and response. By default, all predefined Web service security policies use this logging assertion to capture the entire SOAP message before and after the primary security assertion is executed. By default, the log assertion is not enforced. You must enable it in order for the SOAP message to be logged in message logs, as described in "Enabling or Disabling Assertions Within a Policy". It is recommended that the logging assertion be enabled for debugging and auditing purposes only.

	
Attach the oracle/log_policy policy to the Web service or client. For more information, see "oracle/log_policy".

	
Create your own logging policy or assertion template to further refine the elements of the SOAP message that are logged for the Web service request and response.

For example, you may wish to view only the SOAP body of the request message. To create a new policy, following the procedure described in "Creating Web Service Policies". You may wish to create a copy of the oracle/security_log_template assertion template and configure it for use in the new policy. For more information about creating a new assertion template, see "Creating an Assertion Template".

Viewing Message Logs

You can view the message log files for an ADF and WebCenter Web service endpoint from the Log Messages page.

To view message logs for a Web service endpoint:

Navigate to the Web Service Endpoint page, as described in "Viewing the Details for a Web Service Endpoint", and in the Quick Links section of the Web Services Endpoint page (top right), click Message Logs.

The Log Messages page is displayed, similar to Figure 16-7. For more details about the contents of the Log Messages page, see "Viewing Diagnostic Logs".

Filtering Message Logs

By default, the Log Messages page displays a summary of SOAP messages logged over the last hour. You can filter the messages that are displayed by updating the search criteria. The process is the same as for diagnostic logs; for more information, see "Filtering Diagnostic Logs".

By default, the Component and Module message fields are included as part of the Search criteria for message logs. The Component field is set to the WebLogic Server name; the Module field is set to oracle.wsm.msg.logging, which is the name of the message logging component.

Reviewing Sample Logs

The following sections provide excerpts from sample logs, demonstrating how to diagnose specific problems using the log entries.

	
Sample Log: Oracle WSM Policy Manager Not Available

	
Sample Log: Security Keystore Not Configured

	
Sample Log: Certificate Not Available

Sample Log: Oracle WSM Policy Manager Not Available

The following sample log excerpt indicates that the Oracle WSM Policy Manager is down. To resolve this issue, restart the wsm-pm application, as described in "Starting and Stopping Applications Using" in Oracle Fusion Middleware Administrator's Guide.

2009-02-16 16:21:28,029 [[ACTIVE] ExecuteThread: '4' for queue:
 'weblogic.kernel.Default (self-tuning)']
 ERROR policymgr.PolicyManagerModelBean logp.251 -
 Service lookup failed with URL:t3://host.us.oracle.com:7001/wsm-pm
 oracle.wsm.policymanager.PolicyManagerException: WSM-02118 :
 The query service cannot be created.
...

Sample Log: Security Keystore Not Configured

The following sample log excerpt indicates that an Oracle WSM security policy with message protection was applied, but the keystore was not configured. To resolve this security fault, configure the keystore, as described in "Configuring Keystores for Message Protection".

Feb 16, 2009 5:29:56 PM oracle.wsm.common.logging.WsmMessageLogger logSevere
 SEVERE: The specified Keystore file /scratch/sbollapa/stage131/user_projects/domains/sai131_domain/config/fmwconfig/default-keystore.jks
 cannot be found; it either does not exist or its path is not included in the
 application classpath.
 Feb 16, 2009 5:29:56 PM oracle.wsm.common.logging.WsmMessageLogger logSevere
 SEVERE: Keystore is not properly configured in jps config.
 Feb 16, 2009 5:29:56 PM oracle.wsm.common.logging.WsmLogUtil log
 SEVERE: failure in OWSM Agent processRequest, category=security,
 function=agent.function.client, application=default, composite=pe3test3,
 modelObj=Service1, + policy=null, policyVersion=null, assertionName=null
 oracle.wsm.common.sdk.WSMException: WSM-00101 : The specified Keystore file
 /scratch/sbollapa/stage131/user_projects/domains/sai131_domain/config/fmwconfig/default-keystore.jks cannot be found;
 it either does not exist or its path is not included in the application classpath.
...

Sample Log: Certificate Not Available

The following sample log excerpt indicates that an Oracle WSM security policy with message protection was applied that required a security certificate that was not available in the keystore. To resolve this security fault, configure the keystore with a certificate, as described in "Obtaining a Trusted Certificate and Importing it into the Keystore".

[2009-04-15T04:07:02.821-07:00] [jrfServer] [ERROR] [WSM-000062]
 [oracle.wsm.resources.security] [tid: [ACTIVE].ExecuteThread: '0' for
queue: 'weblogic.kernel.Default (self-tuning)'] [userId: <anonymous>]
 [ecid: 0000I2dTFG7DScT6uBe9UH19tRyv000000,0:1] [WEBSERVICE_PORT.name:
 NonCAAsCAMessageProtectionPolicyPort] [APP: jaxwsservices]
 [J2EE_MODULE.name: NonCAAsCAMessageProtectionPolicy] [WEBSERVICE.name:
 NonCAAsCAMessageProtectionPolicyService] [J2EE_APP.name: jaxwsservices]
 [arg: oracle.wsm.security.SecurityException: WSM-00062 :
 The path to the certificate used for the signature is invalid.]

[2009-04-15T04:07:02.810-07:00] [jrfServer] [NOTIFICATION] []
 [oracle.wsm.security.policy.scenario.processor.Wss11X509TokenProcessor]
 [tid: [ACTIVE].ExecuteThread: '0' for queue: 'weblogic.kernel.Default
 (self-tuning)'] [userId: <anonymous>]
[ecid: 0000I2dTFG7DScT6uBe9UH19tRyv000000,0:1]
[WEBSERVICE_PORT.name: NonCAAsCAMessageProtectionPolicyPort]
[APP: jaxwsservices] [J2EE_MODULE.name: NonCAAsCAMessageProtectionPolicy]
 [WEBSERVICE.name: NonCAAsCAMessageProtectionPolicyService] [J2EE_APP.name:
 jaxwsservices] Certificate path validation failed for signing certificate

[2009-04-15T04:07:02.821-07:00] [jrfServer] [ERROR] [WSM-00006]
 [oracle.wsm.resources.security] [tid: [ACTIVE].ExecuteThread: '0' for queue:
 'weblogic.kernel.Default (self-tuning)'] [userId: <anonymous>]
[ecid: 0000I2dTFG7DScT6uBe9UH19tRyv000000,0:1] [WEBSERVICE_PORT.name:
 NonCAAsCAMessageProtectionPolicyPort] [APP: jaxwsservices]
[J2EE_MODULE.name: NonCAAsCAMessageProtectionPolicy] [WEBSERVICE.name:
 NonCAAsCAMessageProtectionPolicyService] [J2EE_APP.name: jaxwsservices]
[arg: oracle.wsm.security.SecurityException: WSM-00062 : The path to the
 certificate used for the signature is invalid.] Error in receiving the request:
 oracle.wsm.security.SecurityException: WSM-00062 : The path to the certificate
 used for the signature is invalid.

Configuring Log Files for a Web Service

To further organize your logging data, you can configure the log files for a Web service. You can configure log files for SOA, ADF, and Web Center services.

The following table defines the default log files that are relevant to Oracle WSM.

Table 16-2 Default Log Files for Oracle WSM

	Default Log File	Description
	
odl-handler

	
Logs general diagnostic data for the Java EE components in the server.

	
owsm-message-handler

	
Logs SOAP messages as per Oracle WSM logging policies.

The following procedure describes how to set the log level for diagnostic logs at the WebLogic Server and Web service endpoint levels.

For more information about using Fusion Middleware Control or WLST to set the log levels, see "Setting the Level of Information Written to Log Files" in Oracle Fusion Middleware Administrator's Guide.

To configure the log files for a Web service:

	
Navigate to the WebLogic Server for which you want to configure a logger.

	
In the navigator pane, expand WebLogic Domain.

	
Expand the domain.

	
Select the desired server from the list.

The WebLogic Server home page is displayed.

	
From the WebLogic Sever menu, select Logs > Log Configuration.

The Log Configuration page is displayed.

	
Select the Log Files tab.

The current list of log files is displayed, as shown in Figure 16-8. The Log Configuration page shows the currently configured log path, file format, and rotation policy.

Figure 16-8 Current Log Files

[image: Description of Figure 16-8 follows]

Description of "Figure 16-8 Current Log Files"

	
If you wish to edit the log policy configuration, select the log file in the list and click Edit Configuration

The Edit Log File page is displayed.

Figure 16-9 Edit Log File Page

[image: Description of Figure 16-9 follows]

Description of "Figure 16-9 Edit Log File Page"

	
Edit the log file information, as required.

Table 16-3 Fields in Edit Log File Page

	Field	Description
	
Log Path

	
Path to the log file. This field is required.

	
Log File Format

	
Format of the log file. Valid values are text or XML.

	
Log Level

	
Default log level for the logger. Select a log level from the list. Valid values include:

	
INCIDENT_ERROR:1 (SEVERE+100)

	
ERROR:1 (SEVERE)

	
WARNING:1 (WARNING)

	
NOTIFICATION:1 (INFO)

	
NOTIFICATION:16 (CONFIG)

	
TRACE:1 (FINE)

	
TRACE:16 (FINER)

	
TRACE:32 (FINEST)

	
Use Default Attributes

	
Flag that specifies whether to use default attributes for the logger.

	
Supplemental Attributes

	
Supplemental attributes required.

	
Loggers to Associate

	
Components to associate with the logger.

	
Rotation Policy

	
Specify whether you wish to rotate log files based on file size of length of time. For more information, see "Configuring Log File Rotation" in Oracle Fusion Middleware Administrator's Guide.

If Size Based is selected as the rotational policy, Maximum Log Files Size is a required field. If Time Based is selected as the rotational policy, Frequency is a required field.

	
Click OK to edit the log file configuration.

17 Maintaining the Oracle WSM Repository

The following topics provide guidance for maintaining the Oracle WSM Repository:

	
About the Oracle WSM Repository

	
Registering an Oracle WSM Repository

	
Understanding the Different Mechanisms for Importing and Exporting Policies

	
Importing and Exporting Documents in the Repository

	
Migrating Policies Between Application Environments

	
Patching Policies in the Repository

	
Backing Up and Restoring the Oracle WSM Repository

	
Upgrading the Oracle WSM Policies in the Repository

	
Rebuilding the Oracle WSM Repository

About the Oracle WSM Repository

Oracle Web Services Manager (WSM) uses an MDS repository to store Oracle WSM metadata, such as policies, assertion templates, and policy usage data. The Oracle WSM Repository is available as a database (for production use) or as files in the file system (for development use in JDeveloper).

For a list of the databases that are supported for this release, see Oracle Fusion Middleware Supported System Configurations at: http://www.oracle.com/technology/software/products/ias/files/fusion_certification.html

Within the Oracle WSM Repository, each policy has a URI that is evaluated to form a path in which to locate a particular XML document containing the policy. Oracle WSM does not use the MDS customization feature, so all policies are stored as complete documents. Although MDS supports the ability to store multiple versions of a given document, Oracle WSM only accesses the latest version during policy enforcement.

Details about managing the MDS repository are provided in "Managing the MDS Repository" in Oracle Fusion Middleware Administrator's Guide.

Registering an Oracle WSM Repository

Before you can deploy an application to an MDS Repository, such as the Oracle WSM Repository, you must register the repository with the Oracle WebLogic domain. To register an Oracle WSM Repository:

	
In the Navigator pane, expand Metadata Repositories and select mds-owsm, as shown in Figure 17-1.

Figure 17-1 Metadata Repository in Navigation Pane

[image: Description of Figure 17-1 follows]

Description of "Figure 17-1 Metadata Repository in Navigation Pane"

	
Select Metadata Repository, then Administration, then Register/Deregister.

The Metadata Repositories page is displayed, as shown in Figure 17-2.

Figure 17-2 Registering an Oracle WSM Repository

[image: Description of Figure 17-2 follows]

Description of "Figure 17-2 Registering an Oracle WSM Repository"

	
Click Register and provide the required database connection and repository information to register the repository.

Complete details for registering and managing a metadata repository are provided in "Managing the Metadata Repository" in the Oracle Fusion Middleware Administrator's Guide.

Understanding the Different Mechanisms for Importing and Exporting Policies

You can use Enterprise Manager Fusion Middleware Control or WebLogic Scripting Tool (WLST) commands to import and export policies to and from the Oracle WSM Repository. Oracle Enterprise Manager Fusion Middleware Control provides the ability to selectively import and export one policy at a time. The procedures for importing and exporting policies using Fusion Middleware Control are described in the following sections:

	
"Importing Web Service Policies"

	
"Exporting Web Service Policies"

The WLST commands, importRepository and exportRepository, are provided to facilitate importing and exporting multiple Oracle WSM documents directly to and from the Oracle WSM Repository. For details about using these commands, see "Importing and Exporting Documents in the Repository".

When you import or export policies using either of these mechanisms, the operation is routed through an instance of the Oracle WSM Policy Manager application. At run time, when a request for a policy is made, the Policy Manager guarantees that the latest policy is always provided. Therefore, the latest policies are always enforced.

	
Note:

In earlier releases, the only WLST commands available to import and export polices were the importMetadata and exportMetadata MDS WLST commands. Oracle does not recommend using these commands for Oracle WSM documents because the operation is not routed through an instance of the Oracle WSM Policy Manager. Consequently, Oracle Web Services Manager may not be aware of the changes and may continue to enforce outdated policies. To ensure that only the latest polices are enforced, you must restart all the servers to which the Oracle WSM MDS repository is registered.

Importing and Exporting Documents in the Repository

You can import and export Oracle WSM documents to and from the Oracle WSM Repository using the importRepository and exportRepository commands.

To export documents from the repository to a supported ZIP archive file, use the exportRepository command.

exportRepository(archive,[documents=None],[expandReferences='false'])

Note the following:

	
If the archive specified using the archive argument already exists, you can choose to merge the documents into the existing archive, overwrite the existing archive, or cancel the operation.

	
Use the optional documents argument to specify the documents you want exported to the archive. If you do not specify this argument, then all assertion templates, intents, policies, and policy sets are exported. You can specify a list of the documents to be exported, or use a search expression to find specific documents in the repository. For example, to export a list of policies whose URI begins with either "oracle/wss10_" or "oracle/wss11_", enter the following:

wls:/jrfServer_domain/serverConfig>exportRepository('/tmp/test2.zip',['policies:oracle/wss10_%','policies:oracle/wss11_%'])

Exporting "/policies/oracle/wss10_message_protection_client_policy"
Exporting "/policies/oracle/wss10_message_protection_service_policy"
.
.
.
Exporting "/policies/oracle/wss11_x509_token_with_message_protection_client_policy"
Exporting "/policies/oracle/wss11_x509_token_with_message_protection_service_policy"
Successfully exported "43" documents.

	
Use the optional expandReferences argument to expand the policy references during the export. The default is false. When no list of documents is provided, expandReferences is true.

For example, to export active policy set documents and the policies they use:

wls:/jrfServer_domain/serverConfig>exportRepository('/tmp/repository-active.jar', ['policysets:global/%'], true)

Exporting "/policies/oracle/wsaddr_policy"
Exporting "/policies/oracle/wss11_saml_or_username_token_with_message_protection_service_policy"
Exporting "/policies/oracle/wss_username_token_service_policy"
Exporting "/policysets/global/all-domains-default-web-service-policies"
Exporting "/policysets/global/app-only-web-service-policies"
Exporting "/policysets/global/migrate_example"
Successfully exported "6" documents.

	
If you modify a document in the repository, you can update it in the archive file. For example, if you modified a policy set named module-web-service-policies, you can update the policy set in the archive using the following command:

wls:/jrfServer_domain/serverConfig>exportRepository('/tmp/repository-backup.jar', ['/policysets/global/module-web-service-policies'])

To import documents into the repository use the importRepository command.

importRepository(archive,[map=none],[generateMapFile='false'])

Note the following:

	
The archive argument, which is required, specifies the path to the archive file that contains the list of documents to be imported.

	
Optionally, you can use the map argument to provide the location of a file that describes how to map physical information in a policy set, from the source environment to the target environment. For example, you can use the map file to ensure that the resource scope expression in a policy set is updated to match the target environment, such as Domain("foo")=Domain("bar") If you specify a map file and it does not exist, the operation fails and an error is displayed.

	
You can set the optional generateMapFile argument to true to create a sample map file at the location specified by the map argument. No documents are imported when this argument is set to true. The default is false. After the file is created you can edit it using any text editor.

For example, to generate a map file /tmp/mapfile.txt for the /tmp/repository-active.jar, enter the following command:

wls:/jrfServer_domain/serverConfig>importRepository('/tmp/repository-active.jar', '/tmp/mapfile.txt', true)

Successfully generated "Resource Scope Mappings" file at "/tmp/mapfile.txt"

To import the active policy set archive /tmp/repository-active.jar using the map file /tmp/mapfile.txt, enter the following:

wls:/jrfServer_domain/serverConfig>importRepository('/tmp/repository-active.jar', '/tmp/mapfile.txt')

Importing "META-INF/policies/oracle/wsaddr_policy"
Importing "META-INF/policies/oracle/wss11_saml_or_username_token_with_message_protection_service_policy"
Importing "META-INF/policies/oracle/wss_username_token_service_policy"
Importing "META-INF/policysets/global/all-domains-default-web-service-policies"
Importing "META-INF/policysets/global/app-only-web-service-policies"
Importing "META-INF/policysets/global/migrate_example"
Successfully imported "6" documents

For more information about the WLST commands and their arguments, see "Web Services Custom WLST Commands" in WebLogic Scripting Tool Command Reference.

Migrating Policies Between Application Environments

Policies can be migrated through the different stages of the application development and deployment cycles, such as from development to production. Oracle recommends using the importRepository and exportRepository commands for policy migration, as described in "Migrating Policies".

Exporting Policies from the Oracle WSM Repository for Use in JDeveloper

In JDeveloper, you can add custom policies to the default policy store location at:

C:\Documents and Settings\user-dir\ApplicationData\JDeveloper\system11.1.1.2.x.x.x\DefaultDomain\oracle\store\gmds

Within this directory, Oracle WSM policies files must be included using one of the following directory structures:

	
Predefined Oracle WSM policies: owsm/policies/oracle/policy_file

	
Custom user policies: owsm/policies/policy_file

When exporting policy files from the Oracle WSM Repository for use in JDeveloper, this directory structure is not maintained. You must ensure that when adding the exported policy to the JDeveloper environment that you use the required directory structure noted above. Otherwise, the policies will not be available in the JDeveloper environment.

Patching Policies in the Repository

You can patch the Oracle WSM Repository using either Fusion Middleware Control or the WLST commands, as described in "Understanding the Different Mechanisms for Importing and Exporting Policies". When you create or update a policy, there are two possible scenarios to consider when you patch the repository:

	
You create a new policy or update an existing policy that uses a new policy URI. In this scenario, the patching of the repository acts as if a new file was added to the installation and, as a result, only impacts the components that expect to use the new policy. Once loaded, the policy is available to all applications. Generally speaking, using a new policy URI is the preferred model as policies are typically named to convey the behavior they represent.

	
You create a new policy or update an existing policy that uses an existing policy URI. In this scenario, the patching of the repository acts as if an existing file was overwritten with a new version and, therefore, impacts all components that are using the existing policy. Once loaded, all applications will use the new version of the policy. Reusing an existing URI is typically only done to make minor modifications to the behavior of a policy. Note that if you use WLST commands to patch the repository, you need to restart the server to ensure that the latest version of the policy is enforced. You do not need to restart if you use Fusion Middleware Control.

Backing Up and Restoring the Oracle WSM Repository

Use the exportRepository and importRepository WLST commands to back up and restore the Oracle WSM Repository. For more information about these commands, see "Importing and Exporting Documents in the Repository".

For example, to backup all the Oracle WSM artifacts in the repository, enter the following command:

wls:/jrfServer_domain/serverConfig>exportRepository('/tmp/repository-backup.jar')

Exporting "/assertiontemplates/oracle/binding_authorization_template"
Exporting "/assertiontemplates/oracle/binding_permission_authorization_template"
.
.
.
Exporting "/policies/oracle/binding_authorization_denyall_policy"
Exporting "/policies/oracle/binding_authorization_permitall_policy"
.
.
.
Exporting "/policysets/global/all-domains-default-web-service-policies"Exporting "/policysets/global/app-only-web-service-policies"
Successfully exported "170" documents.

To restore the repository from the backup, use the importRepository command to import all the Oracle WSM Repository artifacts.

For example, to restore the repository using the backup file created in the previous example, enter the following command:

wls:/jrfServer_domain/serverConfig>importRepository('/tmp/repository-backup.jar')

Importing "META-INF/assertiontemplates/oracle/binding_authorization_template"Importing "META-INF/assertiontemplates/oracle/binding_permission_authorization_template"
.
.
.
Importing "META-INF/policies/oracle/binding_authorization_denyall_policy"
Importing "META-INF/policies/oracle/binding_authorization_permitall_policy"
.
.
.
Importing "META-INF/policysets/global/all-domains-default-web-service-policies"Importing "META-INF/policysets/global/app-only-web-service-policies"
Successfully imported "170" documents.

For more information about the WLST commands and their arguments, see "Web Services Custom WLST Commands" in WebLogic Scripting Tool Command Reference.

Upgrading the Oracle WSM Policies in the Repository

Both predefined and custom Oracle WSM policies are stored in the Oracle WSM Repository. In subsequent releases, these predefined policies may be discontinued, changed, or additional predefined policies may be provided. You can use the Web services custom WLST commands to upgrade the repository with new or updated predefined policies when you install a new version of the Fusion Middleware software. You can also refresh the repository by deleting all Oracle WSM policies from the repository, including custom policies, and then repopulating it using the predefined policies provided in your installation. All of the policies in the repository are also revalidated when you upgrade the repository.

	
Note:

You should back up your existing policies to a safe location before deleting any policies. In the event you have any issues with the new policies, you can import the existing policies from the backup.

To upgrade the Oracle WSM Repository:

	
Install or patch the new version of Oracle Fusion Middleware. For more information, see "Understanding Your Installation Starting Point" in Oracle Fusion Middleware Installation Planning Guide.

	
Ensure that the Oracle WSM Repository to be upgraded is:

	
Registered with the new installation of Oracle Fusion Middleware. For more information, see "Registering an Oracle WSM Repository".

	
Upgraded to the latest schema version. For more information, see "Updating Your Schemas with Patch Set Assistant" in Oracle Fusion Middleware Patching Guide.

	
Invoke WLST from the Oracle home in which you installed the new version of Oracle Fusion Middleware as described in "Accessing the Web Services Custom WLST Commands".

	
Do one of the following:

	
To add new predefined policies that are provided in the latest installation of the Oracle Fusion Middleware software, enter the following command:

upgradeWSMPolicyRepository()

When you execute this command, a message is displayed indicating the policies that have been added to the repository. Note that existing predefined and user-defined custom policies in the repository are unchanged. The output message also displays a list of any existing predefined policies that have changed or discontinued in the latest release. If a policy has been discontinued and is no longer supported, Oracle recommends that you remove all references to it and then delete it using Oracle Enterprise Manager. If a predefined policy has changed in the latest release, Oracle recommends that you import the updated version of the policy using Oracle Enterprise Manager. For details about deleting and importing policies using Enterprise Manager, see Chapter 7, "Managing Web Service Policies."

	
To delete existing predefined policies stored in the repository and replace them with the latest set of predefined policies, use the following command:

resetWSMPolicyRepository(false)

User-defined custom policies are unchanged. An output message is displayed that lists the predefined policies that have been added, deleted, or replaced in the repository.

	
To delete all policies from the repository, including custom policies, and replace them with the latest set of predefined policies, use the following command:

resetWSMPolicyRepository(true)

	
Note:

Before you delete a policy, Oracle recommends that you verify that the policy is not attached to any policy subjects.

When you execute any of these commands, all existing policies are revalidated.

For more information about these WLST commands, see "Oracle WSM Repository Management Commands" in WebLogic Scripting Tool Command Reference.

Rebuilding the Oracle WSM Repository

In some circumstances, it may be desirable to rebuild the entire Oracle WSM Repository, including restoring the original predefined policies and assertion templates. For example, when starting a new project in a test environment it may be useful to reset the repository contents to their original state.

To rebuild the Oracle WSM Repository, perform the following steps:

	
Connect to the Administration Server instance of the WebLogic Server domain to which the repository is registered. For instructions, see "Accessing the Web Services Custom WLST Commands".

	
Note:

You should back up your existing policies to a safe location before deleting any policies or rebuilding the repository. In the event you have any issues with the new policies, you can import the existing policies from the backup.

	
Use the resetWSMPolicyRepository(true) command to delete all the documents from the Oracle WSM Repository and repopulate it with the set of predefined policies and assertion templates that were installed with the software. This is the preferred method.

For more information about the resetWSMPolicyRepository WLST command, see "Oracle WSM Repository Management Commands" in WebLogic Scripting Tool Command Reference.

	
Note:

Before you delete a policy, Oracle recommends that you verify that the policy is not attached to any policy subjects.

Part IV

WebLogic Web Service Administration

Part IV contains the following chapter:

	
Chapter 18, "Securing and Administering WebLogic Web Services"

18 Securing and Administering WebLogic Web Services

This chapter describes how to secure and administer WebLogic Web services, including the following sections:

	
Steps to Secure and Administer WebLogic Web Services

	
Attaching Policies to WebLogic Web Services and Clients

Steps to Secure and Administer WebLogic Web Services

Table 18-1 summarizes the steps required to administer and secure WebLogic Web services. For information about developing WebLogic Web services, see Getting Started With JAX-WS Web Services for Oracle WebLogic Server.

Table 18-1 Steps to Administer and Secure WebLogic Web Services

	#
	Step	Description
	
1

	
Deploy and administer the WebLogic Web service.

	
Use the Oracle WebLogic Server Administration Console to perform the following deployment and administration tasks:

	
Deploy a WebLogic Web service and view deployed services.

	
Start and stop a WebLogic Web service.

	
View the WebLogic Web service configuration.

	
Delete a WebLogic Web service.

	
View the SOAP message handlers.

	
View the WSDL.

For more information, see "Web Services" in the Oracle WebLogic Server Administration Console Help.

	
2

	
Attach the security and management policies to your WebLogic Web services and clients.

	
You can attach two types of policies to WebLogic Web services and clients at design and deployment time: Oracle WSM and WebLogic Web service policies. You can use Oracle Enterprise Manager Fusion Middleware Control to attach Oracle WSM security policies to WebLogic Java EE Web services and clients. For details, see "Attaching Policies to WebLogic Web Services and Clients".

	
3

	
Test the WebLogic Web services.

	
See "Testing Web Services".

	
4

	
Monitor the performance of WebLogic Web services.

	
See "Monitoring the Performance of Web Services".

Attaching Policies to WebLogic Web Services and Clients

In Oracle Fusion Middleware 11g Release 1 (11.1.1), you can provide security and management policy enforcement of WebLogic Web services using one of the following policy types: Oracle WSM or WebLogic Web service.

The following table describes each policy type.

Table 18-2 Policy Types Supported by WebLogic Web Services

	Type	Description
	
Oracle Web Services Manager (WSM) Policy

	
Provided by the Oracle WSM. For more information about the Oracle WSM and the predefined policies, see "Understanding Oracle WSM Policy Framework". You can attach Oracle WSM policies to WebLogic JAX-WS Web services and clients.

	
WebLogic Web Service Policy

	
Provided by Oracle WebLogic Server. For more information about the WebLogic Web service policies, see Securing WebLogic Web Services for Oracle WebLogic Server.

A subset of WebLogic Web service policies interoperate with Oracle WSM policies. For more information, see "Interoperability with Oracle WebLogic Server 11g Web Service Security Environments" in Interoperability Guide for Oracle Web Services Manager.

	
Note:

It is recommended that you use Oracle WSM policies whenever possible. You cannot mix your use of Oracle WSM and WebLogic Web service policies.

The following sections describe how to attach each type of policy to WebLogic Web services and clients.

	
Attaching Oracle WSM Policies to WebLogic Web Services

	
Attaching Oracle WSM Policies to WebLogic Web Service Clients

	
Attaching WebLogic Web Service Policies to WebLogic Web Services

	
Attaching WebLogic Web Service Policies to WebLogic Web Service Clients

Attaching Oracle WSM Policies to WebLogic Web Services

You attach Oracle WSM policies to WebLogic Web services at design time and after the Web service has been deployed.

	
At design time, use the weblogic.wsee.jws.jaxws.owsm.SecurityPolicy and weblogic.wsee.jws.jaxws.owsm.SecurityPolicies JWS annotations in your JWS file to associate policy files with your Web service. You can associate any number of policy files with a Web service, although it is up to you to ensure that the assertions do not contradict each other. You can specify a policy file at the class level of your JWS file. For more information, see the following sections:

	
"Using Oracle Web Services Manager Security Policies" in Securing WebLogic Web Services for Oracle WebLogic Server.

	
"Using Policies with Web Services" in "Developing with Web Services" in the Oracle JDeveloper online help.

	
After the Web service has been deployed, you can use the Oracle WebLogic Server Administration Console or Oracle Enterprise Manager Fusion Middleware Control to attach Oracle WSM policies to WebLogic Web services. For more information about attaching policies using the WebLogic Server Administration Console, see "Attach a WS-Policy file to a Web Service" in the Oracle WebLogic Server Administration Console Help. For more information about attaching policies using Fusion Middleware Control, see Chapter 8, "Attaching Policies to Web Services."

Attaching Oracle WSM Policies to WebLogic Web Service Clients

Oracle recommends that you use Oracle Enterprise Manager Fusion Middleware Control to attach Oracle WSM policies to a Web service client post-deployment. For more information, see "Attaching Policies to Java EE Web Service Clients". If you attach Oracle WSM policies programmatically at development time, you will not be able to modify or delete the policies using Fusion Middleware Control after the client application is deployed.

Attaching WebLogic Web Service Policies to WebLogic Web Services

You attach policies to WebLogic Web services at both design time and after the Web service has been deployed.

	
At design time, use the weblogic.jws.Policy and weblogic.jws.Policies JWS annotations in your JWS file to associate policy files with your Web service. You can associate any number of policy files with a Web service, although it is up to you to ensure that the assertions do not contradict each other. You can specify a policy file at the class level of your JWS file. For more information, see the following sections:

	
Securing WebLogic Web Services for Oracle WebLogic Server.

	
"Using Policies with Web Services" in "Developing with Web Services" in the Oracle JDeveloper online help.

	
After the Web service has been deployed, use the Oracle WebLogic Server Administration Console to attach WebLogic Web service policies to WebLogic Web services. For more information, see "Attach a WS-Policy file to a Web Service" in the Oracle WebLogic Server Administration Console Help.

Attaching WebLogic Web Service Policies to WebLogic Web Service Clients

You attach policies to WebLogic Web service clients at design time, using JAX-WS Stubs. For more information, see "Using a Client-side Security Policy File" in Securing WebLogic Web Services for Oracle WebLogic Server.

Part V

Reference

Part V contains the following chapters:

	
Appendix A, "Web Service Security Standards"

	
Appendix B, "Predefined Policies"

	
Appendix C, "Predefined Assertion Templates"

	
Appendix D, "Schema Reference for Predefined Assertions"

	
Appendix E, "Schema Reference for Policy Sets"

A Web Service Security Standards

	
Note:

This appendix summarizes the security standards for Oracle Infrastructure Web Services. For a complete list of the versions supported with links to the specifications, see "Supported Standards" in Developer's Guide for Oracle Infrastructure Web Services.
For a description of standards for WebLogic Web services, see "Features and Standards Supported by WebLogic Web Services" in Introducing WebLogic Web Services for Oracle WebLogic Server

Security standards are implemented in non-XML frameworks at the transport level, and in XML frameworks at the application level.

The following sections describe the standards that are key to providing secure and manageable SOA environments at both the transport and application levels.

	
Web Services Interoperability Organization—Basic Security Profile

	
Transport Layer Security—SSL

	
XML Encryption (Confidentiality)

	
XML Signature (Integrity, Authenticity)

	
WS-Security

	
WS-Security Tokens

	
WS-Policy

	
WS-SecurityPolicy

	
Web Services Addressing (WS-Addressing)

	
WS-Trust

	
WS-ReliableMessaging

	
See Also:

For a complete list of standards supported by Oracle WebLogic Web services, see "Features and Standards Supported by WebLogic Web Services" in Introducing WebLogic Web Services for Oracle WebLogic Server.

Web Services Interoperability Organization—Basic Security Profile

Oracle considers interoperability of Web services platforms to be more important than providing support for all possible edge cases of the Web services specifications. Oracle complies with the following specification from the Web Services Interoperability Organization and considers it to be the baseline for Web services interoperability:

	
Basic Security Profile 1.0: http://www.ws-i.org/Profiles/BasicSecurityProfile-1.0.html

Transport Layer Security—SSL

Secure Sockets Layer (SSL), also known as Transport Layer Security (TLS), is the most widely used transport-layer data-communication protocol. SSL provides the following:

	
Authentication—communication is established between two trusted parties.

	
Message confidentiality—data exchanged is encrypted.

	
Message integrity—data is checked for corruption.

	
Secure key exchange between client and server

SSL can be used in three modes:

	
No authentication: Neither the client nor the server authenticates itself to the other. No certificates are sent or exchanged. In this case, only confidentiality (encryption/decryption) is used.

	
One-way authentication (or server authentication): Only the server authenticates itself to the client. The server sends the client a certificate verifying that the server is authentic. This is typically the approach used for Internet transactions such as online banking.

	
Two-way authentication (or bilateral authentication): Both client and server authenticate themselves to each other by sending certificates to each other. This approach is necessary to prevent attacks from occurring between a proxy and a Web service endpoint.

SSL uses a combination of secret-key and public-key cryptography to secure communications. SSL traffic uses secret keys for encryption and decryption, and the exchange of public keys is used for mutual authentication of the parties involved in the communication.

XML Encryption (Confidentiality)

The XML encryption specification describes a process for encrypting data and representing the result in XML. Specifically, XML encryption defines:

	
How digital content is encrypted and decrypted.

	
How the encryption key information is passed to a recipient.

	
How encrypted data is identified to facilitate encryption.

An XML document may be encrypted as a whole or in part.

Example A-1 illustrates credit card data represented in XML.

Example A-1 XML Representation of Credit Card Data

 <PaymentInfo xmlns="http://www.example.com/payment">
 <CreditCard>
 <Name>John Smith</Name>
 <CreditCardNumber>4019 2445 0277 5567</NCreditCardNumber>
 <Limit>5000</Limit>
 <Issuer>Example Bank</Issuer>
 <Expiration>04/02</Expiration>
 </CreditCard>
 </PaymentInfo>

Example A-2 illustrates the same XML snippet with the credit card number encrypted and represented by a cipher value.

Example A-2 XML Representation of Encrypted Credit Card Data

 <PaymentInfo xmlns='http://www.example.com/payment">
 <CreditCard>
 <Name>John Smith</Name>
 <CreditcardNumber>
 <EncryptedData xmlns="http://www..." Type="http://www...">
 <CipherData>
 <CipherValue>A23B4...5C56</CipherValue>
 </CipherData>
 </EncryptedData>
 <Limit>5000</Limit>
 <Issuer>Example Bank</Issuer>
 <Expiration>04/02</Expiration>
 </CreditCard>
 </PaymentInfo>

	
See Also:

For more information about XML encryption, see "XML Encryption Syntax and Processing" specification at:

http://www.w3.org/TR/xmlenc-core

XML Signature (Integrity, Authenticity)

The XML Signature specification describes signature processing rules and syntax. XML Signature binds the sender's identity (or "signing entity") to an XML document. The document is signed using the sender's private key; the signature is verified using the sender's public key.

Signing and signature verification can be done using asymmetric or symmetric keys. XML Signature also ensures non-repudiation of the signing entity, that is, it provides proof that messages have not been altered since they were signed.

A signature can apply to a whole document or just part of a document, as shown in the following example.

Example A-3 XML Representation of Signed Data

<Signature xmlns="http://www.w3.org/2000/09/xmldsig#">
<!-- The signedInfo element allows us to sign any portion of a
 document -->
 <SignedInfo>
 <CanonicalizationMethod Algorithm="http://www..."/>
 <SignatureMethod Algorithm="http://www..."/>
 <Reference URI="#Body">
 <DigestMethod Algorithm="http://www..."/>
 <DigestValue>o+jtqlieRtF6DrUb...X8O9M/CmySg</DigestValue>
 </Reference>
 </SignedInfo>
 <!-- Following is the result of running the algorithm over the
 document. If changes are made to the document, the SignatureValue is
 changed. The security application verifies the SignatureValue,
 extracts the X.509 cert and uses it to authenticate the user -->
 <SignatureValue>oa+ttbsvSFi...EtRD2oNC5</SignatureValue>
 <KeyInfo>
 <KeyValue>
 <!-- Following is the public key that matches the private key
 that signs the document -->
 <RSAKeyValue>
 <Modulus>5TT/oolzTiP++Ls6GLQUM8xoFFrAlZQ...</Modulus>
 <Exponent>EQ==</Exponent>
 </RSAKeyValue>
 </KeyValue>
 <!-- Following is the certificate -->
 <X509Data>
 <X509Certificate>wDCCAXqgAwIBAgI...</X509Certificate>
 </X509Data>
 </KeyInfo>
</Signature>

	
See Also:

For more information about XML Signature, see the "XML Signature Syntax and Processing" specification at:

http://www.w3.org/TR/xmldsig-core

WS-Security

Web Services Security (WS-Security) specifies SOAP security extensions that provide confidentiality using XML Encryption and data integrity using XML Signature. WS-Security also includes profiles that specify how to insert different types of binary and XML security tokens in WS-Security headers for authentication and authorization purposes. WS-Security token profiles are described in the following sections

	
See Also:

For more information about WS-Security and its specification, see:

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss

WS-Security Tokens

Web services security supports the following security tokens:

	
Username—defines how a Web service consumer can supply a username as a credential for authentication). For more information, see "Username"

	
X.509 certificate—a signed data structure designed to send a public key to a receiving party. For more information, see "X.509 Certificate"

	
Kerberos ticket—a binary authentication and session token. For more information, see "Kerberos Token"

	
Security Assertion Markup Language (SAML) assertion—shares security information over the Internet through XML documents. For more information, see "SAML Token"

Username

The username token carries basic authentication information. The username-token element propagates username and password information to authenticate the message.

	
See Also:

For more information about the username token profile, see:

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-profile-1.0.pdf

X.509 Certificate

An X.509 digital certificate is a signed data structure designed to send a public key to a receiving party. A certificate includes standard fields such as certificate ID, issuer's Distinguished Name (DN), validity period, owner's DN, owner's public key, and so on.

Certificates are issued by certificate authorities (CA). A CA verifies an entity's identity and grants a certificate, signing it with the CA's private key. The CA publishes its own certificate which includes its public key.

Each network entity has a list of the certificates of the CAs it trusts. Before communicating with another entity, a given entity uses this list to verify that the signature of the other entity's certificate is from a trusted CA.

	
See Also:

For more information about the X.509 certificate token profile, see:

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0.pdf

Kerberos Token

Kerberos token is a cross-platform authentication and single sign-on system. The Kerberos protocol provides mutual authentication between two entities relying on a shared secret (symmetric keys). Kerberos uses the following terminology:

	
A Principal is an identity for a user (i.e., a user is assigned a principal), or an identity for an application offering Kerberos services.

	
A Realm is a Kerberos server environment; a Kerberos realm can be a domain name such as EXAMPLE.COM (by convention expressed in uppercase).

	
See Also:

For more information about the Kerberos token profile 1.1, see:

http://www.oasis-open.org/committees/download.php/16788/wss-v1.1-spec-os-KerberosTokenProfile.pdf

Kerberos involves a client, a server, and a trusted party to mediate between them called the Key Distribution Center (KDC). Each Kerberos realm has at least one KDC. KDCs come in different packages based on the operating platform used (for example, on Microsoft Windows, the KDC is a domain service). The Kerberos Token profile of WS-Security allows business partners to use Kerberos tokens in service-oriented architectures.

SAML Token

The Security Assertion Markup Language (SAML) is an open framework for sharing security information over the Internet through XML documents. SAML was designed to address the following:

	
Limitations of web browser cookies to a single domain: SAML provides a standard way to transfer cookies across multiple Internet domains.

	
Proprietary web single sign-on (SSO): SAML provides a standard way to implement SSO within a single domain or across multiple domains. This functionality is provided by the Oracle Identity Federation product.

	
Federation: SAML facilitates identity management (e.g., account linking when a single user is known to multiple web sites under different identities), also supported by Oracle Identity Federation.

	
Web Services Security: SAML provides a standard security token (a SAML assertion) that can be used with standard web services security frameworks (e.g., WS-Security) – This is the use of SAML that is particularly relevant to web services security, fully supported by Oracle WSM.

	
Identity propagation: SAML provides a standard way to represent a security token that can be passed across the multiple steps of a business process or transaction, from browser to portal to networks of web services, also a feature supported by Oracle WSM.

The SAML framework includes 4 parts:

	
Assertions: How you define authentication and authorization information.

	
Protocols: How you ask (SAML Request) and get (SAML Response) the assertions you need.

	
Bindings: How SAML Protocols ride on industry-standard transport (e.g., HTTP) and messaging frameworks (e.g., SOAP).

	
Profiles: How SAML Protocols and Bindings combine to support specific use cases.

In the context of WS-Security, only SAML assertions are used. The protocols and bindings are provided by the WS-Security framework. SAML is widely adopted by the industry, both for browser-based federation and federation enabled by web services flows.

SAML assertions are very popular security tokens within WS-Security because they are very expressive and can help prevent man-in-the-middle and replay attacks.

Typically, a SAML assertion makes statements about a principal (a user or an application). All SAML assertions include the following common information:

	
Issuer ID and issuance timestamp

	
Assertion ID

	
Subject

	
Name

	
Optional subject confirmation (for example, a public key)

	
Optional conditions (under which an assertion is valid)

	
Optional advice (on how an assertion was made)

SAML assertions can include three types of statements:

	
Authentication statement: issued by an authentication authority upon successful authentication of a subject. It asserts that Subject S was authenticated by Means M at Time T.

	
Attribute statement: issued by an attribute authority, based on policies. It asserts that Subject S is associated with Attributes A, B, etc. with values a, b, and so on.

	
Authorization decision statement (deprecated in SAML 2.0, now supported by XACML): issued by an authorization authority which decides whether to grant the request by Subject S, for Action A (e.g., read, write, etc.), to Resource R (e.g., a file, an application, a Web service), given Evidence E.

SAML assertions can be embedded (i.e., a SAML assertion can contain another SAML assertion). SAML assertions can be signed (using XML Signature) and/or encrypted (using XML Encryption).

	
See Also:

For more information about the SAML token profile, see:

http://docs.oasis-open.org/wss/oasis-wss-saml-token-profile-1.0.pdf

WS-Policy

Together with WS-Security, WS-Policy is another key industry standard for Oracle Fusion Middleware security.

A Web service provider may define conditions (or policies) under which a service is to be provided. The WS-Policy framework enables one to specify policy information that can be processed by web services applications, such as Oracle WSM.

A policy is expressed as one or more policy assertions representing a Web service's capabilities or requirements. For example, a policy assertion may stipulate that a request to a Web service be encrypted. Likewise, a policy assertion can define the maximum message size that a Web service can accept.

WS-Policy expressions are associated with various web services components using the WS-PolicyAttachment specification. WS-Policy information can be embedded in a WSDL file, thus making it easy to expose Web service policies through a UDDI registry.

WS-SecurityPolicy

WS-SecurityPolicy is part of the Web Services Secure Exchange (WS-SX) set of specifications hosted by OASIS (in addition to WS-SecurityPolicy, the WS-SX technical committee defines two other sets of specifications: WS-Trust and WS-SecureConversation, described later in this chapter).

WS-SecurityPolicy defines a set of security policy assertions used in the context of the WS-Policy framework. WS-SecurityPolicy assertions describe how messages are secured on a communication path. Oracle has contributed to the OASIS WS-SX technical committee several practical security scenarios (a subset of which is provided by Oracle WSM 11g). Each security scenario describes WS-SecurityPolicy policy expressions.

WS-SecurityPolicy scenarios describe examples of how to set up WS-SecurityPolicy policies for several security token types described in the WS-Security specification (supporting both WS-Security 1.0 and 1.1). The subset of the WS-SecurityPolicy scenarios supported by Oracle WSM 11g represents the most common customer use cases. Each scenario has been tested in multiple-vendor WS-Security environments.

To illustrate WS-SecurityPolicy, let's use a scenario supported by Oracle WSM: UsernameToken with plain text password. As mentioned earlier, Username token is one of the security tokens specified by WS-Security. This specific scenario uses a policy that says that a requester must send a password in a Username token to a recipient who has authority to validate that token. The password is a default requirement for the WS-Security Username Token Profile 1.1.

This scenario is only recommended when confidentiality of the password is not an issue, such as a pre-production test scenario with dummy passwords.

Example A-4 Example of WS-SecurityPolicy

<wsp:Policy>
 <sp:SupportingTokens>
 <wsp:Policy>
 <sp:UsernameToken/>
 </wsp:Policy>
 </sp:SupportingTokens>
</wsp:Policy>

An example of a message that conforms to the above stated policy is shown below.

Example A-5 Example of Message Conforming to WS-SecurityPolicy

<?xml version="1.0" encoding="utf-8" ?>
<soap:Envelope xmlns:soap="...">
 <soap:Header>
 <wsse:Security soap:mustUnderstand="1" xmlns:wsse="...">
 <wsse:UsernameToken>
 <wsse:Username>Marc</wsse:Username>
 <wsse:Password Type="http://docs.oasis open.org...>
 XYZ
 </wsse:Password>
 <wsse:Nonce EncodingType="...#Base64Binary">qB...</wsse:Nonce>
 <wsu:Created>2008-01-02T00:01:03Z</wsu:Created>
 </wsse:UsernameToken>
 </wsse:Security>
 </soap:Header>
 <soap:Body>
 <Oracle xmlns=http://xmlsoap.org/Oracle>
 <text>EchoString</text>
 </Oracle>
 </soap:Body>
</soap:Envelope>

The example above contains a <Nonce> element and a <Created> timestamp, which, while optional, are recommended to improve security of requests against replay and other attacks. A nonce is a randomly generated (unique) number. The timestamp can be used to define the amount of time the security token is valid.

Web Services Addressing (WS-Addressing)

SOAP does not provide a standard way to specify where a message is going or how responses or faults are returned. WS-Addressing provides an XML framework for identifying web services endpoints and for securing end-to-end endpoint identification in messages.

A Web service endpoint is a resource (such as an application or a processor) to which web services messages are sent.

The following is an example using WS-Addressing (wsa is the namespace for WSAddressing):

Example A-6 Example of WS-Addressing

<S:Envelope xmlns:S="http://www.w3.org/2003/05/soap-envelope"
 xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/08/addressing">
 <S:Header>
 <wsa:MessageID>http://example.com/xyz-abcd-123</wsa:MessageID>
 <wsa:ReplyTo>
 <wsa:Address>http://example.myClient1</wsa:Address>
 </wsa:ReplyTo>

WS-Addressing is transport-independent; that is, the request may be over JMS and the response over HTTP. WS-Addressing is used with other WS-* specifications, such as WS-Policy.

WS-Trust

The WS-Trust 1.3 specification (http://docs.oasis-open.org/ws-sx/ws-trust/v1.3/ws-trust.html) defines extensions to WS-Security that provide a framework for requesting and issuing security tokens, and to broker trust relationships. WS-Trust extensions provide methods for issuing, renewing, and validating security tokens.

To secure communication between a Web service client and a Web service, the two parties must exchange security credentials. As defined in the WS-Trust specification, these credentials can be obtained from a trusted SecurityTokenService (STS), which acts as trust broker. That is, the STS must be trusted by both the Web service client and the Web service in order to provide interoperable security tokens.

WS-ReliableMessaging

WS-ReliableMessaging (WS-RM) defines a framework for identifying and managing the reliable delivery of messages between Web services endpoints. WS-RM is predicated on the SOAP messaging structure (SOAP binding) and relies on WS-Security, WS-Policy, and WS-Addressing to provide reliable messaging.

WS-RM defines a reliable messaging (RM) source (the party that sends the message) and an RM destination (the party that receives the message). WS-RM mandates prerequisites, for example, trust between endpoints must be established, and the message and endpoints must be formally identified (this is achieved through the use of the complementary WS-* specifications mentioned earlier).

WS-RM Policy defines a policy assertion that leverages the WS-Policy framework in order to enable an RM destination and an RM source to describe their requirements for a given sequence.

B Predefined Policies

This appendix summarizes the predefined policies and contains the following sections:

	
Security Policies

	
WS-Addressing Policies

	
MTOM Attachment Policies

	
Reliable Messaging Policies

	
Management Policies

	
No Behavior Policies

Oracle has been instrumental in contributing to emerging standards, in particular the specifications hosted by the OASIS Web Services Secure Exchange technical committee. Oracle has contributed to the OASIS WS-SX technical committee several practical security scenarios, a subset of which are implemented in the predefined policies.

	
Note:

For information about WebLogic Web service policies, see Securing WebLogic Web Services for Oracle WebLogic Server.

Security Policies

The following sections describe the security policies.

	
Authentication Only Policies

	
Message Protection Only Policies

	
Message Protection and Authentication Policies

	
WS-Trust Policies

	
Authorization Only Policies

Authentication Only Policies

Table B-1 summarizes the security policies that enforce authentication only, and indicates whether the token is inserted at the transport layer or SOAP header.

Table B-1 Authentication Only Policies

	Client Policy	Service Policy	Authentication Transport	Authentication SOAP	Message Protection Transport	Message Protection SOAP
	
oracle/wss_http_token_client_policy

	
oracle/wss_http_token_service_policy

	
Yes

	
No

	
No

	
No

	
oracle/wss_username_token_client_policy

	
oracle/wss_username_token_service_policy

	
No

	
Yes

	
No

	
No

	
oracle/wss10_saml_token_client_policy

	
oracle/wss10_saml_token_service_policy

	
No

	
Yes

	
No

	
No

	
oracle/wss10_saml20_token_client_policy

	
oracle/wss10_saml20_token_service_policy

	
No

	
Yes

	
No

	
No

	
oracle/wss11_kerberos_token_client_policy

	
oracle/wss11_kerberos_token_service_policy

	
No

	
Yes

	
No

	
No

oracle/wss_http_token_client_policy

The wss_http_token_client_policy includes credentials in the HTTP header for outbound client requests. This policy can be enforced on any HTTP-based client.

	
Note:

Currently only HTTP basic authentication is supported.

This policy contains the following policy assertion: oracle/wss_http_token_client_template. See "oracle/wss_http_token_client_template" for more information about the assertion.

For more information about configuring the policy, see "oracle/wss_http_token_client_policy".

oracle/wss_http_token_service_policy

The wss_http_token_service_policy uses the credentials in the HTTP header to authenticate users against the Oracle Platform Security Services identity store. This policy can be enforced on any HTTP-based endpoint.

	
Note:

Currently only HTTP basic authentication is supported.

This policy contains the following policy assertion: oracle/wss_http_token_service_template. See "oracle/wss_http_token_service_template" for more information about the assertion.

For information about configuring the policy, see "oracle/wss_http_token_service_policy".

oracle/wss_username_token_client_policy

This policy includes credentials in the WS-Security UsernameToken SOAP header for all outbound SOAP request messages. Both plain text and digest mechanisms are supported. This policy can be attached to any SOAP-based client.

	
Notes:

Digest passwords are not supported in this release.
This policy is not secure; it transmits the password in clear text. You should use this policy in low security situations only, or when you know that the transport is protected using some other mechanism. Alternatively, consider using the SSL version of this policy, oracle/wss_username_token_over_ssl_client_policy.

This policy contains the following policy assertion: oracle/wss_username_token_client_template. See "oracle/wss_username_token_client_template" for more information about the assertion.

For information about configuring the policy, see "oracle/wss_username_token_client_policy".

oracle/wss_username_token_service_policy

This policy uses the credentials in the WS-Security UsernameToken SOAP header to authenticate users. Both plain text and digest mechanisms are supported. This policy can be attached to any SOAP-based endpoint.

	
Note:

Digest passwords are not supported in this release.
This policy is not secure; it transmits the password in clear text. You should use this policy in low security situations only, or when you know that the transport is protected using some other mechanism. Alternatively, consider using the SSL version of this policy, oracle/wss_username_token_over_ssl_service_policy.

This policy contains the following policy assertion: oracle/wss_username_token_service_template. See "oracle/wss_username_token_service_template" for more information about the assertion.

For information about configuring the policy, see "oracle/wss_username_token_service_policy".

oracle/wss10_saml_token_client_policy

This policy includes SAML tokens in outbound SOAP request messages. The policy can be enforced on any SOAP-based client.

This policy contains the following policy assertion: oracle/wss10_saml_token_client_template. See "oracle/wss10_saml_token_client_template" for more information about the assertion.

For information about configuring the policy, see "oracle/wss10_saml_token_client_policy".

oracle/wss10_saml_token_service_policy

This policy authenticates users using credentials provided in SAML tokens in the WS-Security SOAP header. The credentials in the SAML token are authenticated against a SAML login module. This policy can be enforced on any SOAP-based endpoint.

This policy contains the following policy assertion: oracle/wss10_saml_token_service_template. See "oracle/wss10_saml_token_service_template" for more information about the assertion.

For information about configuring the policy, see "oracle/wss10_saml_token_service_policy".

oracle/wss10_saml20_token_client_policy

This policy includes SAML tokens in outbound SOAP request messages. The policy can be enforced on any SOAP-based client.

This policy contains the following policy assertion: oracle/wss10_saml20_token_client_template. See "oracle/wss10_saml20_token_client_template" for more information about the assertion.

For information about configuring the policy, see "oracle/wss10_saml20_token_client_policy".

oracle/wss10_saml20_token_service_policy

This policy authenticates users using credentials provided in SAML tokens in the WS-Security SOAP header. The credentials in the SAML token are authenticated against a SAML login module. This policy can be enforced on any SOAP-based endpoint.

This policy contains the following policy assertion: oracle/wss10_saml20_token_service_template. See "oracle/wss10_saml20_token_service_template" for more information about the assertion.

For information about configuring the policy, see "oracle/wss10_saml20_token_service_policy".

oracle/wss11_kerberos_token_client_policy

This policy includes a Kerberos token in the WS-Security header in accordance with the WS-Security Kerberos Token Profile v1.1 standard. This policy is compatible with MIT and Active Directory KDCs. This policy can be enforced on any SOAP-based client.

This policy contains the following policy assertion: oracle/wss11_kerberos_token_client_template. See "oracle/wss11_kerberos_token_with_message_protection_client_template" for more information about the assertion.

For information about configuring the policy, see "oracle/wss11_kerberos_token_client_policy".

oracle/wss11_kerberos_token_service_policy

This policy is enforced in accordance with the WS-Security Kerberos Token Profile v1.1 standard. This policy extracts the Kerberos token from the SOAP header and authenticates the user. The container must have the Kerberos infrastructure configured through Oracle Platform Security Services. This policy is compatible with MIT and Active Directory KDCs. This policy can be attached to any SOAP-based endpoint.

This policy contains the following policy assertion: oracle/wss11_kerberos_token_service_template. See "oracle/wss11_kerberos_token_with_message_protection_service_template" for more information about the assertion.

For information about configuring the policy, see "oracle/wss10_saml_token_service_policy".

Message Protection Only Policies

Table B-2 summarizes the policies that enforce message protection only, and indicates whether the policy is enforced at the transport layer or SOAP header.

Table B-2 Message-Protection Only Policies

	Client Policy	Service Policy	Authentication Transport	Authentication SOAP	Message Protection Transport	Message Protection SOAP
	
oracle/wss10_message_protection_client_policy

	
oracle/wss10_message_protection_service_policy

	
No

	
No

	
No

	
Yes

	
oracle/wss11_message_protection_client_policy

	
oracle/wss11_message_protection_service_policy

	
No

	
No

	
No

	
Yes

oracle/wss10_message_protection_client_policy

This policy provides message protection (integrity and confidentiality) for outbound SOAP requests in accordance with the WS-Security 1.0 standard.

This policy uses the WS-Security's Basic 128 suite of asymmetric key technologies, specifically RSA key mechanism for message confidentiality, SHA-1 hashing algorithm for message integrity, and AES-128 bit encryption. For more information about the available algorithms for message protection, see "Supported Algorithm Suites".

This policy contains the following policy assertion: oracle/wss10_message_protection_client_template. See "oracle/wss10_message_protection_client_template" for more information about the assertion.

For information about configuring the policy, see "oracle/wss10_message_protection_client_policy".

oracle/wss10_message_protection_service_policy

This policy enforces message protection (integrity and confidentiality) for inbound SOAP requests in accordance with the WS-Security 1.0 standard.

The messages are protected using WS-Security's Basic 128 suite of asymmetric key technologies, specifically RSA key mechanism for message confidentiality, SHA-1 hashing algorithm for message integrity, and AES-128 bit encryption. For more information about the available algorithms for message protection, see "Supported Algorithm Suites".

This policy contains the following policy assertion: oracle/wss10_message_protection_service_template. See "oracle/wss10_message_protection_service_template" for more information about the assertion.

For information about configuring the policy, see "oracle/wss10_message_protection_service_policy".

oracle/wss11_message_protection_client_policy

This policy provides message protection (integrity and confidentiality) for outbound SOAP requests in accordance with the WS-Security 1.1 standard.

This policy uses the symmetric key technology for signing and encryption, and the WS-Security's Basic 128 suite of asymmetric key technology for endorsing signatures. For more information about the available asymmetric algorithms for message protection, see "Supported Algorithm Suites".

This policy contains the following policy assertion: oracle/wss11_message_protection_client_template. See "oracle/wss11_message_protection_client_template" for more information about the assertion.

For information about configuring the policy, see "oracle/wss11_message_protection_client_policy".

oracle/wss11_message_protection_service_policy

This policy enforces message protection (integrity and confidentiality) for inbound SOAP requests in accordance with the WS-Security 1.1 standard.

This policy uses the symmetric key technology for signing and encryption, and the WS-Security's Basic 128 suite of asymmetric key technology for endorsing signatures. For more information about the available asymmetric algorithms for message protection, see "Supported Algorithm Suites".

This policy contains the following policy assertion: oracle/wss11_message_protection_service_template. See "oracle/wss11_message_protection_service_template" for more information about the assertion.

For information about configuring the policy, see "oracle/wss11_message_protection_service_policy".

Message Protection and Authentication Policies

Table B-3 summarizes the policies that enforce both message protection and authentication but do not conform to the WS-Security 1.0 or 1.1 standard. The table indicates whether the policy is enforced at the transport layer or SOAP header.

Table B-3 Message Protection and Authentication Policies

	Client Policy	Service Policy	Authentication Transport	Authentication SOAP	Message Protection Transport	Message Protection SOAP
	
oracle/wss_http_token_over_ssl_client_policy

	
oracle/wss_http_token_over_ssl_service_policy

	
Yes

	
No

	
Yes

	
No

	
Attach one of the following:

	
oracle/wss_saml_token_over_ssl_client_policy

	
oracle/wss_username_token_over_ssl_client_policy

	
oracle/wss_saml_or_username_token_over_ssl_service_policy

	
No

	
Yes

	
Yes

	
No

	
oracle/wss_saml_token_bearer_over_ssl_client_policy

	
oracle/wss_saml_token_bearer_over_ssl_service_policy

	
No

	
Yes

	
Yes

	
No

	
oracle/wss_saml_token_over_ssl_client_policy

	
oracle/wss_saml_token_over_ssl_service_policy

	
No

	
Yes

	
Yes

	
No

	
oracle/wss_saml20_token_over_ssl_client_policy

	
oracle/wss_saml20_token_over_ssl_service_policy

	
No

	
Yes

	
Yes

	
No

	
oracle/wss_username_token_over_ssl_client_policy

	
oracle/wss_username_token_over_ssl_service_policy

	
No

	
Yes

	
Yes

	
No

	
oracle/wss10_saml_hok_with_message_protection_client_policy

	
oracle/wss10_saml_hok_token_with_message_protection_service_policy

	
No

	
Yes

	
No

	
Yes

	
oracle/wss10_saml_token_with_message_integrity_client_policy

	
oracle/wss10_saml_token_with_message_integrity_service_policy

	
No

	
Yes

	
No

	
Yes

	
oracle/wss10_saml_token_with_message_protection_client_policy

	
oracle/wss10_saml_token_with_message_protection_service_policy

	
No

	
Yes

	
No

	
Yes

	
oracle/wss10_saml20_token_with_message_protection_client_policy

	
oracle/wss10_saml20_token_with_message_protection_service_policy

	
No

	
Yes

	
No

	
Yes

	
oracle/wss10_saml_token_with_message_protection_ski_basic256_client_policy

	
oracle/wss10_saml_token_with_message_protection_ski_basic256_service_policy

	
No

	
Yes

	
No

	
Yes

	
oracle/wss10_username_id_propagation_with_msg_protection_client_policy

	
oracle/wss10_username_id_propagation_with_msg_protection_service_policy

	
No

	
Yes

	
No

	
Yes

	
oracle/wss10_username_token_with_message_protection_client_policy

	
oracle/wss10_username_token_with_message_protection_service_policy

	
No

	
Yes

	
No

	
Yes

	
oracle/wss10_username_token_with_message_protection_ski_basic256_client_policy

	
oracle/wss10_username_token_with_message_protection_ski_basic256_service_policy

	
No

	
Yes

	
No

	
Yes

	
oracle/wss10_x509_token_with_message_protection_client_policy

	
oracle/wss10_x509_token_with_message_protection_service_policy

	
No

	
Yes

	
No

	
Yes

	
oracle/wss11_kerberos_token_with_message_protection_client_policy

	
oracle/wss11_kerberos_token_with_message_protection_service_policy

	
No

	
Yes

	
No

	
Yes

	
oracle/wss11_kerberos_token_with_message_protection_basic128_client_policy

	
oracle/wss11_kerberos_token_with_message_protection_basic128__service_policy

	
No

	
Yes

	
No

	
Yes

	
Attach one of the following:

	
oracle/wss11_saml_token_with_message_protection_client_policy

	
oracle/wss11_username_token_with_message_protection_client_policy

	
oracle/wss11_saml_or_username_token_with_message_protection_service_policy

	
No

	
Yes

	
No

	
Yes

	
oracle/wss11_saml_token_with_message_protection_client_policy

	
oracle/wss11_saml_token_with_message_protection_service_policy

	
No

	
Yes

	
No

	
Yes

	
oracle/wss11_saml20_token_with_message_protection_client_policy

	
oracle/wss11_saml20_token_with_message_protection_service_policy

	
No

	
Yes

	
No

	
Yes

	
oracle/wss11_saml_token_with_identity_switch_message_protection_client_policy

	
oracle/wss11_saml_token_with_message_protection_service_policy

	
No

	
Yes

	
No

	
Yes

	
oracle/wss11_username_token_with_message_protection_client_policy

	
oracle/wss11_username_token_with_message_protection_service_policy

	
No

	
Yes

	
No

	
Yes

	
oracle/wss11_x509_token_with_message_protection_client_policy

	
oracle/wss11_x509_token_with_message_protection_service_policy

	
No

	
Yes

	
No

	
Yes

oracle/wss_http_token_over_ssl_client_policy

This policy includes credentials in the HTTP header for outbound client requests and authenticates users against the Oracle Platform Security Services identity store. This policy also verifies that the transport protocol is HTTPS. Requests over a non-HTTPS transport protocol are refused. This policy can be enforced on any HTTP-based client.

	
Note:

Currently only HTTP basic authentication is supported.

This policy contains the following policy assertion: oracle/wss_http_token_over_ssl_client_template. See "oracle/wss_http_token_over_ssl_client_template" for more information about the assertion.

For information about configuring the policy, see "oracle/wss_http_token_over_ssl_client_policy".

oracle/wss_http_token_over_ssl_service_policy

This policy extracts the credentials in the HTTP header and authenticates users against the Oracle Platform Security Services identity store. This policy verifies that the transport protocol is HTTPS. Requests over a non-HTTPS transport protocol are refused. This policy can be enforced on any HTTP-based endpoint.

	
Note:

Currently only HTTP basic authentication is supported.

This policy contains the following policy assertion: oracle/wss_http_token_over_ssl_service_template. See "oracle/wss_http_token_over_ssl_service_template" for more information about the assertion.

For information about configuring the policy, see "oracle/wss_http_token_over_ssl_service_policy".

oracle/wss_saml_or_username_token_service_policy

This policy enforces one of the following authentication policies, based on whether the client uses a SAML or username token, respectively:

	
SAML token within WS-Security SOAP header using the sender-vouches confirmation type.

	
WS-Security UsernameToken SOAP header to authenticate users against the configured identity store.

This policy contains the following assertions, as an OR group—meaning either type of policy can be enforced by a client:

	
oracle/wss_saml_token_service_template. See "oracle/wss10_saml_token_service_template" for more information about the assertion.

	
oracle/wss_username_token_service_template. See "oracle/wss_username_token_service_template" for more information about the assertion.

For information about configuring the policy, see "oracle/wss10_saml_token_service_policy" and "oracle/wss_username_token_service_policy".

oracle/wss_saml_or_username_token_over_ssl_service_policy

This policy enforces message protection (integrity and confidentiality) and one of the following authentication policies, based on whether the client uses a SAML or username token, respectively:

	
SAML token within WS-Security SOAP header using the sender-vouches confirmation type.

	
WS-Security UsernameToken SOAP header to authenticate users against the configured identity store.

This policy contains the following assertions, as an OR group—meaning either type of policy can be enforced by a client:

	
oracle/wss_saml_token_over_ssl_service_template. See "oracle/wss_saml_token_over_ssl_service_template" for more information about the assertion.

	
oracle/wss_username_token_over_ssl_service_template. See "oracle/wss_username_token_over_ssl_service_template" for more information about the assertion.

For information about configuring the policy, see "oracle/wss_saml_token_over_ssl_service_policy" and "oracle/wss_username_token_over_ssl_service_policy".

oracle/wss_saml_token_bearer_over_ssl_client_policy

This policy includes SAML tokens in outbound SOAP request messages. The SAML token with confirmation method Bearer is created automatically. The policy also verifies that the transport protocol provides SSL message protection. This policy can be attached to any SOAP-based client.

This policy contains the following policy assertion: oracle/wss_saml_token_bearer_over_ssl_client_template. See "oracle/wss_saml_token_bearer_over_ssl_client_template" for more information about the assertion.

For information about configuring the policy, see "oracle/wss_saml_token_bearer_over_ssl_client_policy".

oracle/wss_saml_token_bearer_over_ssl_service_policy

This policy authenticates users using credentials provided in SAML tokens with confirmation method 'Bearer' in the WS-Security SOAP header. The credentials in the SAML token are authenticated against a SAML login module. The policy verifies that the transport protocol provides SSL message protection. This policy can be enforced on any SOAP-based endpoint.

This policy contains the following policy assertion: oracle/wss_saml_token_bearer_over_ssl_service_template. See "oracle/wss_saml_token_bearer_over_ssl_service_template" for more information about the assertion.

For information about configuring the policy, see "oracle/wss_saml_token_bearer_over_ssl_service_policy".

oracle/wss_saml20_token_bearer_over_ssl_client_policy

This policy includes SAML tokens in outbound SOAP request messages. The SAML token with confirmation method Bearer is created automatically. The policy also verifies that the transport protocol provides SSL message protection. This policy can be attached to any SOAP-based client.

This policy contains the following policy assertion: oracle/wss_saml20_token_bearer_over_ssl_client_template. See "oracle/wss_saml20_token_bearer_over_ssl_client_template" for more information about the assertion.

For information about configuring the policy, see "oracle/wss_saml20_token_bearer_over_ssl_client_policy".

oracle/wss_saml20_token_bearer_over_ssl_service_policy

This policy authenticates users using credentials provided in SAML tokens with confirmation method 'Bearer' in the WS-Security SOAP header. The credentials in the SAML token are authenticated against a SAML login module. The policy verifies that the transport protocol provides SSL message protection. This policy can be enforced on any SOAP-based endpoint.

This policy contains the following policy assertion: oracle/wss_saml20_token_bearer_over_ssl_service_template. See "oracle/wss_saml20_token_bearer_over_ssl_service_template" for more information about the assertion.

For information about configuring the policy, see "oracle/wss_saml20_token_bearer_over_ssl_service_policy".

oracle/wss_saml_token_over_ssl_client_policy

This policy includes SAML tokens in outbound WS-Security SOAP headers using the sender-vouches confirmation type. The policy verifies that the transport protocol provides SSL message protection. This policy can be enforced on any SOAP-based client.

This policy contains the following policy assertion: oracle/wss_saml_token_over_ssl_client_template. See "oracle/wss_saml_token_over_ssl_client_template" for more information about the assertion.

For information about configuring the policy, see "oracle/wss_saml_token_over_ssl_client_policy".

oracle/wss_saml_token_over_ssl_service_policy

This policy enforces the authentication of credentials provided via a SAML token within WS-Security SOAP header using the sender-vouches confirmation type. The SAML token is mapped to a user in the configured identity store. The policy verifies that the transport protocol provides SSL message protection. This policy can be enforced on any SOAP-based endpoint.

This policy contains the following policy assertion: oracle/wss_saml_token_over_ssl_service_template. See "oracle/wss_saml_token_over_ssl_service_template" for more information about the assertion.

For information about configuring the policy, see "oracle/wss_saml_token_over_ssl_service_policy".

oracle/wss_saml20_token_over_ssl_client_policy

This policy includes SAML tokens in outbound WS-Security SOAP headers using the sender-vouches confirmation type. The policy verifies that the transport protocol provides SSL message protection. This policy can be enforced on any SOAP-based client.

This policy contains the following policy assertion: oracle/wss_saml20_token_over_ssl_client_template. See "oracle/wss_saml20_token_over_ssl_client_template" for more information about the assertion.

For information about configuring the policy, see "oracle/wss_saml20_token_over_ssl_client_policy".

oracle/wss_saml20_token_over_ssl_service_policy

This policy enforces the authentication of credentials provided via a SAML token within WS-Security SOAP header using the sender-vouches confirmation type. The SAML token is mapped to a user in the configured identity store. The policy verifies that the transport protocol provides SSL message protection. This policy can be enforced on any SOAP-based endpoint.

This policy contains the following policy assertion: oracle/wss_saml20_token_over_ssl_service_template. See "oracle/wss_saml20_token_over_ssl_service_template" for more information about the assertion.

For information about configuring the policy, see "oracle/wss_saml20_token_over_ssl_service_policy".

oracle/wss_username_token_over_ssl_client_policy

This policy includes credentials in the WS-Security UsernameToken header in outbound SOAP request messages. The policy verifies that the transport protocol provides SSL message protection. Both plain text and digest mechanisms are supported. This policy can be attached to any SOAP-based client.

	
Note:

Digest passwords are not supported in this release.

This policy contains the following policy assertion: oracle/wss_username_token_over_ssl_client_template. See "oracle/wss_username_token_over_ssl_client_template" for more information about the assertion.

For information about configuring the policy, see "oracle/wss_username_token_over_ssl_client_policy".

oracle/wss_username_token_over_ssl_service_policy

This policy uses the credentials in the WS-Security UsernameToken SOAP header to authenticate users against the Oracle Platform Security Services configured identity store. The policy verifies that the transport protocol provides SSL message protection. Both plain text and digest mechanisms are supported. This policy can be attached to any SOAP-based endpoint.

	
Note:

Digest passwords are not supported in this release.

This policy contains the following policy assertion: oracle/wss_username_token_over_ssl_service_template. See "oracle/wss_username_token_over_ssl_service_template" for more information about the assertion.

For information about configuring the policy, see "oracle/wss_username_token_over_ssl_service_policy".

oracle/wss10_saml_hok_with_message_protection_client_policy

This policy provides message protection (integrity and confidentiality) and SAML holder of key based authentication for outbound SOAP messages in accordance with the WS-Security 1.0 standard. A SAML token, included in the SOAP message, is used in SAML-based authentication with holder of key confirmation.

The policy uses WS-Security's Basic 128 suite of asymmetric key technologies, specifically RSA key mechanisms for message confidentiality, SHA-1 hashing algorithm for message integrity, and AES-128 bit encryption. For more information about the available algorithms for message protection, see "Supported Algorithm Suites".

This policy contains the following policy assertion: oracle/wss10_saml_hok_with_message_protection_client_template. See "oracle/wss10_saml_hok_token_with_message_protection_client_template" for more information about the assertion.

For information about configuring the policy, see "oracle/wss10_saml_hok_token_with_message_protection_client_policy".

oracle/wss10_saml_hok_token_with_message_protection_service_policy

This policy enforces message protection (integrity and confidentiality) and SAML holder of key based authentication for inbound SOAP requests in accordance with the WS-Security 1.0 standard.

This policy uses WS-Security's Basic 128 suite of asymmetric key technologies, specifically RSA key mechanisms for message confidentiality, SHA-1 hashing algorithm for message integrity, and AES-128 bit encryption. For more information about the available algorithms for message protection, see "Supported Algorithm Suites".

This policy contains the following policy assertion: oracle/wss10_saml_hok_with_message_protection_service_template. See "oracle/wss10_saml_hok_token_with_message_protection_service_template" for more information about the assertion.

For information about configuring the policy, see "oracle/wss10_saml_hok_token_with_message_protection_service_policy".

oracle/wss10_saml_token_with_message_integrity_client_policy

This policy provides message-level integrity and SAML-based authentication for outbound SOAP messages in accordance with the WS-Security 1.0 standard. A SAML token, included in the SOAP message, is used in SAML-based authentication with sender vouches confirmation.

This policy uses WS-Security's Basic 128 suite of asymmetric key technologies and SHA-1 hashing algorithm for message integrity. For more information about the available algorithms for message protection, see "Supported Algorithm Suites".

This policy contains the following policy assertion: oracle/wss10_saml_token_with_message_protection_client_template. See "oracle/wss10_saml_token_with_message_protection_client_template" for more information about the assertion.

For information about configuring the policy, see "oracle/wss10_saml_token_with_message_integrity_client_policy".

oracle/wss10_saml_token_with_message_integrity_service_policy

This policy enforces message-level integrity protection and SAML-based authentication for inbound SOAP requests in accordance with the WS-Security 1.0 standard. It extracts the SAML token from the WS-Security binary security token or the current Java Authentication and Authorization Service (JAAS) subject, and uses those credentials to validate users against the Oracle Platform Security Services identity store.

This policy uses WS-Security's Basic 128 suite of asymmetric key technologies and SHA-1 hashing algorithm for message integrity. For more information about the available algorithms for message protection, see "Supported Algorithm Suites".

This policy contains the following policy assertion: oracle/wss10_saml_token_with_message_protection_service_template. See "oracle/wss10_saml_token_with_message_protection_service_template" for more information about the assertion.

For information about configuring the policy, see "oracle/wss10_saml_token_with_message_integrity_service_policy".

oracle/wss10_saml_token_with_message_protection_client_policy

This policy provides message-level protection and SAML-based authentication for outbound SOAP messages in accordance with the WS-Security 1.0 standard. The Web service consumer includes a SAML token in the SOAP header and the confirmation type is sender-vouches.

To prevent replay attacks, the assertion provides the option to include time stamps, SAML token limits, and their verification by the Web service provider.

This policy uses WS-Security's Basic 128 suite of asymmetric key technologies, specifically RSA key mechanisms for message confidentiality, SHA-1 hashing algorithm for message integrity, and AES-128 bit encryption. For more information about the available algorithms for message protection, see "Supported Algorithm Suites".

This policy contains the following policy assertion: oracle/wss10_saml_token_with_message_protection_client_template. See "oracle/wss10_saml_token_with_message_protection_client_template" for more information about the assertion.

For information about configuring the policy, see "oracle/wss10_saml_token_with_message_protection_client_policy".

oracle/wss10_saml_token_with_message_protection_service_policy

This policy enforces message protection (integrity and confidentiality) and SAML-based authentication for inbound SOAP requests in accordance with the WS-Security 1.0 standard. The Web service consumer includes a SAML token in the SOAP header and the confirmation type is sender-vouches. The SOAP message is signed and encrypted. The Web service provider decrypts the message, and verifies and authenticates the signature. It extracts the SAML token from the WS-Security binary security token, and uses those credentials to validate users against the Oracle Platform Security Services identity store.

To prevent replay attacks, the assertion provides the option to include time stamps, SAML token limits, and their verification by the Web service provider.

This policy uses WS-Security's Basic 128 suite of asymmetric key technologies, specifically RSA key mechanisms for message confidentiality, SHA-1 hashing algorithm for message integrity, and AES-128 bit encryption. For more information about the available algorithms for message protection, see "Supported Algorithm Suites".

This policy contains the following policy assertion: oracle/wss10_saml_token_with_message_protection_service_template. See "oracle/wss10_saml_token_with_message_protection_service_template" for more information about the assertion.

For information about configuring the policy, see "oracle/wss10_saml_token_with_message_protection_service_policy".

oracle/wss10_saml20_token_with_message_protection_client_policy

This policy provides message-level protection and SAML-based authentication for outbound SOAP messages in accordance with the WS-Security 1.0 standard. The Web service consumer includes a SAML token in the SOAP header and the confirmation type is sender-vouches.

To prevent replay attacks, the assertion provides the option to include time stamps, SAML token limits, and their verification by the Web service provider.

This policy uses WS-Security's Basic 128 suite of asymmetric key technologies, specifically RSA key mechanisms for message confidentiality, SHA-1 hashing algorithm for message integrity, and AES-128 bit encryption. For more information about the available algorithms for message protection, see "Supported Algorithm Suites".

This policy contains the following policy assertion: oracle/wss10_saml20_token_with_message_protection_client_template. See "oracle/wss10_saml20_token_with_message_protection_client_template" for more information about the assertion.

For information about configuring the policy, see "oracle/wss10_saml20_token_with_message_protection_client_policy".

oracle/wss10_saml20_token_with_message_protection_service_policy

This policy enforces message protection (integrity and confidentiality) and SAML-based authentication for inbound SOAP requests in accordance with the WS-Security 1.0 standard. The Web service consumer includes a SAML token in the SOAP header and the confirmation type is sender-vouches. The SOAP message is signed and encrypted. The Web service provider decrypts the message, and verifies and authenticates the signature. It extracts the SAML token from the WS-Security binary security token, and uses those credentials to validate users against the Oracle Platform Security Services identity store.

To prevent replay attacks, the assertion provides the option to include time stamps, SAML token limits, and their verification by the Web service provider.

This policy uses WS-Security's Basic 128 suite of asymmetric key technologies, specifically RSA key mechanisms for message confidentiality, SHA-1 hashing algorithm for message integrity, and AES-128 bit encryption. For more information about the available algorithms for message protection, see "Supported Algorithm Suites".

This policy contains the following policy assertion: oracle/wss10_saml20_token_with_message_protection_service_template. See "oracle/wss10_saml20_token_with_message_protection_service_template" for more information about the assertion.

For information about configuring the policy, see "oracle/wss10_saml20_token_with_message_protection_service_policy".

oracle/wss10_saml_token_with_message_protection_ski_basic256_client_policy

This policy provides message-level protection and SAML-based authentication for outbound SOAP messages in accordance with the WS-Security 1.0 standard. The Web service consumer includes a SAML token in the SOAP header and the confirmation type is sender-vouches.

To prevent replay attacks, the assertion provides the option to include time stamps, SAML token limits, and their verification by the Web service provider.

The policy uses WS-Security's Basic 256 suite of asymmetric key technologies, specifically RSA key mechanisms for message confidentiality, SHA-1 hashing algorithm for message integrity, and AES-256 bit encryption. This policy uses Subject Key Identifier (ski) reference mechanism for encryption key in the request and for both signature and encryption keys in the response. For more information about the available algorithms for message protection, see "Supported Algorithm Suites"

This policy contains the following policy assertion: oracle/wss10_saml_token_with_message_protection_client_template. See "oracle/wss10_saml_token_with_message_protection_client_template" for more information about the assertion.

For information about configuring the policy, see "oracle/wss10_saml_token_with_message_protection_client_policy".

oracle/wss10_saml_token_with_message_protection_ski_basic256_service_policy

This policy enforces message protection (integrity and confidentiality) and SAML-based authentication for inbound SOAP requests in accordance with the WS-Security 1.0 standard. The Web service consumer includes a SAML token in the SOAP header and the confirmation type is sender-vouches. The SOAP message is signed and encrypted. The Web service provider decrypts the message, and verifies and authenticates the signature. It extracts the SAML token from the WS-Security binary security token, and uses those credentials to validate users against the Oracle Platform Security Services identity store.

To prevent replay attacks, the assertion provides the option to include time stamps, SAML token limits, and their verification by the Web service provider.

The policy uses WS-Security's Basic 256 suite of asymmetric key technologies, specifically RSA key mechanisms for message confidentiality, SHA-1 hashing algorithm for message integrity, and AES-256 bit encryption. This policy uses Subject Key Identifier (ski) reference mechanism for encryption key in the request and for both signature and encryption keys in the response. For more information about the available algorithms for message protection, see "Supported Algorithm Suites"

This policy contains the following policy assertion: oracle/wss10_saml_token_with_message_protection_service_template. See "oracle/wss10_saml_token_with_message_protection_service_template" for more information about the assertion.

For information about configuring the policy, see "oracle/wss10_saml_token_with_message_protection_service_policy".

oracle/wss10_username_id_propagation_with_msg_protection_client_policy

This policy provides message protection (integrity and confidentiality) and identity propagation for outbound SOAP requests in accordance with the WS-Security 1.0 standard. Credentials (only username) are included in outbound SOAP request messages via a WS-Security UsernameToken header. No password is included.This policy can be enforced on any SOAP-based client.

Message protection is provided using WS-Security's Basic128 suite of asymmetric key technologies. Specifically RSA key mechanisms for confidentiality, SHA-1 hashing algorithm for integrity and AES-128 bit encryption. For more information about the available algorithms for message protection, see "Supported Algorithm Suites".

This policy contains the following policy assertion: oracle/wss10_username_token_with_message_protection_client_template. See "oracle/wss10_username_token_with_message_protection_client_template" for more information about the assertion.

For information about configuring the policy, see "oracle/wss10_username_id_propagation_with_msg_protection_client_policy".

oracle/wss10_username_id_propagation_with_msg_protection_service_policy

This policy enforces message level protection (i.e., integrity and confidentiality) and identity propagation for inbound SOAP requests using mechanisms described in WS-Security 1.0. This policy can be enforced on any SOAP-based endpoint.

Message protection is provided using WS-Security 1.0's Basic128 suite of asymmetric key technologies. Specifically RSA key mechanisms for confidentiality, SHA-1 hashing algorithm for integrity and AES-128 bit encryption. For more information about the available algorithms for message protection, see "Supported Algorithm Suites".

This policy contains the following policy assertion: oracle/wss10_username_id_propagation_with_msg_protection_service_template. See "oracle/wss10_username_token_with_message_protection_service_template" for more information about the assertion.

For information about configuring the policy, see "oracle/wss10_username_id_propagation_with_msg_protection_service_policy".

oracle/wss10_username_token_with_message_protection_client_policy

This policy provides message protection (integrity and confidentiality) and authentication for outbound SOAP requests in accordance with the WS-Security 1.0 standard. Both plain text and digest mechanisms are supported. This policy can be attached to any SOAP-based client.

	
Note:

Digest passwords are not supported in this release.

To protect against replay attacks, the assertion provides the option to require nonce or creation time in the username token. The SOAP message is signed and encrypted. The Web service provider decrypts the message, and verifies and authenticates the signature.

This policy uses WS-Security's Basic 128 suite of asymmetric key technologies, specifically RSA key mechanism for message confidentiality, SHA-1 hashing algorithm for message integrity, and AES-128 bit encryption. For more information about the available algorithms for message protection, see "Supported Algorithm Suites".

This policy contains the following policy assertion: oracle/wss10_username_token_with_message_protection_client_template. See "oracle/wss10_username_token_with_message_protection_client_template" for more information about the assertion.

For information about configuring the policy, see "oracle/wss10_username_token_with_message_protection_client_policy".

oracle/wss10_username_token_with_message_protection_service_policy

This policy enforces message protection (message integrity and confidentiality) and authentication for inbound SOAP requests in accordance with the WS-Security 1.0 standard. Both plain text and digest mechanisms are supported. This policy can be attached to any SOAP-based endpoint.

	
Note:

Digest passwords are not supported in this release.

To protect against replay attacks, the assertion provides the option to require nonce or creation time in the username token. The SOAP message is signed and encrypted. The Web service provider decrypts the message, and verifies and authenticates the signature.

This policy uses WS-Security's Basic 128 suite of asymmetric key technologies, specifically RSA key mechanism for message confidentiality, SHA-1 hashing algorithm for message integrity, and AES-128 bit encryption. For more information about the available algorithms for message protection, see "Supported Algorithm Suites".

This policy contains the following policy assertion: oracle/wss10_username_token_with_message_protection_service_template. See "oracle/wss10_username_token_with_message_protection_service_template" for more information about the assertion.

For information about configuring the policy, see "oracle/wss10_username_token_with_message_protection_service_policy".

oracle/wss10_username_token_with_message_protection_ski_basic256_client_policy

This policy provides message protection (integrity and confidentiality) and authentication for outbound SOAP requests in accordance with the WS-Security 1.0 standard. Both plain text and digest mechanisms are supported. This policy can be attached to any SOAP-based client.

	
Note:

Digest passwords are not supported in this release.

To protect against replay attacks, the assertion provides the option to require nonce or creation time in the username token. The SOAP message is signed and encrypted. The Web service provider decrypts the message, and verifies and authenticates the signature.

This policy uses WS-Security's Basic 256 suite of asymmetric key technologies, specifically RSA key mechanism for message confidentiality, SHA-1 hashing algorithm for message integrity, and AES-256 bit encryption. This policy uses Subject Key Identifier (ski) reference mechanism for encryption key in the request and for both signature and encryption keys in the response. For more information about the available algorithms for message protection, see "Supported Algorithm Suites".

This policy contains the following policy assertion: oracle/wss10_username_token_with_message_protection_client_template. See "oracle/wss10_username_token_with_message_protection_client_template" for more information about the assertion.

For information about configuring the policy, see "oracle/wss10_username_token_with_message_protection_client_policy".

oracle/wss10_username_token_with_message_protection_ski_basic256_service_policy

This policy enforces message protection (message integrity and confidentiality) and authentication for inbound SOAP requests in accordance with the WS-Security 1.0 standard. Both plain text and digest mechanisms are supported. This policy can be attached to any SOAP-based endpoint.

	
Note:

Digest passwords are not supported in this release.

To protect against replay attacks, the assertion provides the option to require nonce or creation time in the username token. The SOAP message is signed and encrypted. The Web service provider decrypts the message, and verifies and authenticates the signature.

This policy uses WS-Security's Basic 256 suite of asymmetric key technologies, specifically RSA key mechanism for message confidentiality, SHA-1 hashing algorithm for message integrity, and AES-256 bit encryption. This policy uses Subject Key Identifier (ski) reference mechanism for encryption key in the request and for both signature and encryption keys in the response. For more information about the available algorithms for message protection, see "Supported Algorithm Suites".

This policy contains the following policy assertion: oracle/wss10_username_token_with_message_protection_service_template. See "oracle/wss10_username_token_with_message_protection_service_template" for more information about the assertion.

For information about configuring the policy, see "oracle/wss10_username_token_with_message_protection_service_policy".

oracle/wss10_x509_token_with_message_protection_client_policy

This policy provides message protection (integrity and confidentiality) and certificate credential population for outbound SOAP requests in accordance with the WS-Security 1.0 standard.

This policy uses WS-Security's Basic 128 suite of asymmetric key technologies, specifically RSA key mechanisms for message confidentiality, SHA-1 hashing algorithm for message integrity, and AES-128 bit encryption. For more information about the available algorithms for message protection, see "Supported Algorithm Suites".

This policy contains the following policy assertion: oracle/wss10_x509_token_with_message_protection_client_template. See "oracle/wss10_x509_token_with_message_protection_client_template" for more information about the assertion.

For information about configuring the policy, see "oracle/wss10_x509_token_with_message_protection_client_policy".

oracle/wss10_x509_token_with_message_protection_service_policy

This policy enforces message protection (integrity and confidentiality) and certificate-based authentication for inbound SOAP requests in accordance with the WS-Security 1.0 standard.

This policy uses WS-Security's Basic 128 suite of asymmetric key technologies, specifically RSA key mechanisms for message confidentiality, SHA-1 hashing algorithm for message integrity, and AES-128 bit encryption. For more information about the available algorithms for message protection, see "Supported Algorithm Suites".

This policy contains the following policy assertion: oracle/wss10_x509_token_with_message_protection_service_template. See "oracle/wss10_x509_token_with_message_protection_service_template" for more information about the assertion.

For information about configuring the policy, see "oracle/wss10_x509_token_with_message_protection_service_policy".

oracle/wss11_kerberos_token_with_message_protection_client_policy

This policy includes a Kerberos token in the WS-Security header, and uses Kerberos keys to guarantee message integrity and confidentiality, in accordance with the WS-Security Kerberos Token Profile v1.1 standard. This policy is compatible with MIT and Active Directory KDCs. This policy can be enforced on any SOAP-based client.

This policy contains the following policy assertion: oracle/wss11_kerberos_token_with_message_protection_client_template. See "oracle/wss11_kerberos_token_with_message_protection_client_template" for more information about the assertion.

For information about configuring the policy, see "oracle/wss11_kerberos_token_with_message_protection_client_policy".

oracle/wss11_kerberos_token_with_message_protection_service_policy

This policy is enforced in accordance with the WS-Security Kerberos Token Profile v1.1 standard. This policy is compatible with MIT and Active Directory KDCs. This policy can be attached to any SOAP-based endpoint.

This policy extracts the Kerberos token from the SOAP header and authenticates the user, and it enforces message integrity and confidentiality using Kerberos keys. The container must have the Kerberos infrastructure configured through Oracle Platform Security Services.

This policy contains the following policy assertion: oracle/wss11_kerberos_token_with_message_protection_service_template. See "oracle/wss11_kerberos_token_with_message_protection_service_template" for more information about the assertion.

For information about configuring the policy, see "oracle/wss11_kerberos_token_with_message_protection_service_policy".

oracle/wss11_kerberos_token_with_message_protection_basic128_client_policy

This policy includes a Kerberos token in the WS-Security header, and uses Kerberos keys to guarantee message integrity and confidentiality, in accordance with the WS-Security Kerberos Token Profile v1.1 standard. This policy is compatible with Active Directory KDCs. This policy can be enforced on any SOAP-based client.

This policy uses the WS-Security's Basic 128 suite of asymmetric key technologies, specifically RSA key mechanism for message confidentiality, SHA-1 hashing algorithm for message integrity, and AES-128 bit encryption. For more information about the available algorithms for message protection, see "Supported Algorithm Suites".

This policy contains the following policy assertion: oracle/wss11_kerberos_token_with_message_protection_client_template. See "oracle/wss11_kerberos_token_with_message_protection_client_template" for more information about the assertion.

For information about configuring the policy, see "oracle/wss11_kerberos_token_with_message_protection_basic128_client_policy".

oracle/wss11_kerberos_token_with_message_protection_basic128__service_policy

This policy is enforced in accordance with the WS-Security Kerberos Token Profile v1.1 standard. This policy is compatible with Active Directory KDCs. This policy can be attached to any SOAP-based endpoint.

This policy uses the WS-Security's Basic 128 suite of asymmetric key technologies, specifically RSA key mechanism for message confidentiality, SHA-1 hashing algorithm for message integrity, and AES-128 bit encryption. For more information about the available algorithms for message protection, see "Supported Algorithm Suites".

This policy extracts the Kerberos token from the SOAP header and authenticates the user, and it enforces message integrity and confidentiality using Kerberos keys. The container must have the Kerberos infrastructure configured through Oracle Platform Security Services.

This policy contains the following policy assertion: oracle/wss11_kerberos_token_with_message_protection_service_template. See "oracle/wss11_kerberos_token_with_message_protection_service_template" for more information about the assertion.

For information about configuring the policy, see "oracle/wss11_kerberos_token_with_message_protection_basic128_service_policy".

oracle/wss11_saml_token_with_message_protection_client_policy

This policy enables message protection (integrity and confidentiality) and SAML token population for outbound SOAP requests using mechanisms described in WS-Security 1.1. A SAML token is included in the SOAP message for use in SAML based authentication with sender vouches confirmation.

This policy uses the symmetric key technology for signing and encryption, and the WS-Security's Basic 128 suite of asymmetric key technology for endorsing signatures. For more information about the available asymmetric algorithms for message protection, see "Supported Algorithm Suites".

This policy contains the following policy assertion: oracle/wss11_saml_token_with_message_protection_client_template. See "oracle/wss11_saml_token_with_message_protection_client_template" for more information about the assertion.

For information about configuring the policy, see "oracle/wss11_saml_token_with_message_protection_client_policy".

oracle/wss11_saml20_token_with_message_protection_client_policy

This policy enables message protection (integrity and confidentiality) and SAML token population for outbound SOAP requests using mechanisms described in WS-Security 1.1. A SAML token is included in the SOAP message for use in SAML based authentication with sender vouches confirmation.

This policy uses the symmetric key technology for signing and encryption, and the WS-Security's Basic 128 suite of asymmetric key technology for endorsing signatures. For more information about the available asymmetric algorithms for message protection, see "Supported Algorithm Suites".

This policy contains the following policy assertion: oracle/wss11_saml20_token_with_message_protection_client_template. See "oracle/wss11_saml20_token_with_message_protection_client_template" for more information about the assertion.

For information about configuring the policy, see "oracle/wss11_saml20_token_with_message_protection_client_policy".

oracle/wss11_saml_token_with_identity_switch_message_protection_client_policy

This policy performs dynamic identity switching by propagating a different identity than the one based on the authenticated subject. This policy can be attached to any SOAP-based client.

This policy enables message protection (integrity and confidentiality) and SAML token population for outbound SOAP requests using mechanisms described in WS-Security 1.1. A SAML token is included in the SOAP message for use in SAML based authentication with sender vouches confirmation.

This policy uses the symmetric key technology for signing and encryption, and the WS-Security's Basic 128 suite of asymmetric key technology for endorsing signatures. For more information about the available asymmetric algorithms for message protection, see "Supported Algorithm Suites".

This policy contains the following policy assertion: oracle/wss11_saml_token_with_message_protection_client_template. See "oracle/wss11_saml_token_with_message_protection_client_template" for more information about the assertion.

For information about configuring the policy, see "oracle/wss11_saml_token_identity_switch_with_message_protection_client_policy".

oracle/wss11_saml_token_with_message_protection_service_policy

This policy enforces message protection (integrity and confidentiality) and SAML-based authentication for inbound SOAP requests in accordance with the WS-Security 1.1 standard. It extracts the SAML token from the WS-Security binary security token, and uses those credentials to validate users against the Oracle Platform Security Services identity store.

This policy uses the symmetric key technology for signing and encryption, and the WS-Security's Basic 128 suite of asymmetric key technology for endorsing signatures. For more information about the available asymmetric algorithms for message protection, see "Supported Algorithm Suites".

This policy contains the following policy assertion: oracle/wss11_saml_token_with_message_protection_service_template. See "oracle/wss11_saml_token_with_message_protection_service_template" for more information about the assertion.

For information about configuring the policy, see "oracle/wss11_saml_token_with_message_protection_service_policy".

oracle/wss11_saml20_token_with_message_protection_service_policy

This policy enforces message protection (integrity and confidentiality) and SAML-based authentication for inbound SOAP requests in accordance with the WS-Security 1.1 standard. It extracts the SAML token from the WS-Security binary security token, and uses those credentials to validate users against the Oracle Platform Security Services identity store.

This policy uses the symmetric key technology for signing and encryption, and the WS-Security's Basic 128 suite of asymmetric key technology for endorsing signatures. For more information about the available asymmetric algorithms for message protection, see "Supported Algorithm Suites".

This policy contains the following policy assertion: oracle/wss11_saml20_token_with_message_protection_service_template. See "oracle/wss11_saml20_token_with_message_protection_service_template" for more information about the assertion.

For information about configuring the policy, see "oracle/wss11_saml20_token_with_message_protection_service_policy".

oracle/wss11_saml_or_username_token_with_message_protection_service_policy

This policy enforces message protection (integrity and confidentiality) and one of the following authentication policies, based on whether the client uses a SAML, username, or HTTP token, respectively:

	
SAML-based authentication for inbound SOAP requests in accordance with the WS-Security 1.1 standard.

	
Username token authentication for inbound SOAP requests in accordance with the WS-Security 1.1 standard.

	
SAML-based authentication using credentials provided in SAML tokens with confirmation method 'Bearer' in the WS-Security SOAP header. Verifies that the transport protocol provides SSL message protection.

	
Username token authentication using the credentials in the UsernameToken WS-Security SOAP header to authenticate users against the configured identity store. Verifies that the transport protocol provides SSL message protection.

	
HTTP authentication using credentials extracted from the HTTP header to authenticate users against the configured identity store. Verifies that the transport protocol is HTTPS.

This policy uses the symmetric key technology for signing and encryption, and the WS-Security's Basic 128 suite of asymmetric key technology for endorsing signatures. For more information about the available algorithms for message protection, see "Supported Algorithm Suites".

This policy contains the following assertions, as an OR group—meaning either type of policy can be enforced by a client:

	
oracle/wss11_saml_token_with_message_protection_service_template. For more information about the assertion, see "oracle/wss11_saml_token_with_message_protection_service_template".

	
oracle/wss11_username_token_with_message_protection_service_template. For more information about the assertion, see "oracle/wss11_username_token_with_message_protection_service_template".

	
oracle/wss_saml_token_bearer_over_ssl_service_template. For more information about the assertion, see "oracle/wss_saml_token_bearer_over_ssl_service_template".

	
oracle/wss_username_token_over_ssl_service_template. For more information about the assertion, see "oracle/wss_username_token_over_ssl_service_template".

	
oracle/wss_http_token_over_ssl_service_template. For more information about the assertion, see "oracle/wss_http_token_over_ssl_service_template".

For information about configuring the policy, see the following:

	
"oracle/wss11_saml_token_with_message_protection_service_policy"

	
"oracle/wss11_username_token_with_message_protection_service_policy"

	
"oracle/wss_saml_token_bearer_over_ssl_service_policy"

	
"oracle/wss_username_token_over_ssl_service_policy"

	
"oracle/wss_http_token_over_ssl_service_policy".

oracle/wss11_username_token_with_message_protection_client_policy

This policy provides message protection (integrity and confidentiality) and authentication for outbound SOAP requests in accordance with the WS-Security 1.1 standard. Both plain text and digest mechanisms are supported. This policy can be attached to any SOAP-based client.

	
Note:

Digest passwords are not supported in this release.

The Web service consumer inserts username and password credentials, and signs and encrypts the outgoing SOAP message. The Web service provider decrypts and verifies the message and the signature.

To prevent replay attacks, the assertion provides the option to include time stamps and verification by the Web service provider. The message can be protected with ciphers of different strengths.

This policy uses the symmetric key technology for signing and encryption, and the WS-Security's Basic 128 suite of asymmetric key technology for endorsing signatures. For more information about the available asymmetric algorithms for message protection, see "Supported Algorithm Suites".

This policy contains the following policy assertion: oracle/wss11_username_token_with_message_protection_client_template. See "oracle/wss11_username_token_with_message_protection_client_template" for more information about the assertion.

For information about configuring the policy, see "oracle/wss11_username_token_with_message_protection_client_policy".

oracle/wss11_username_token_with_message_protection_service_policy

This policy enforces message protection (integrity and confidentiality) and authentication for inbound SOAP requests in accordance with the WS-Security 1.1 standard. Both plain text and digest mechanisms are supported.

	
Note:

Digest passwords are not supported in this release.

The Web service consumer inserts username and password credentials, and signs and encrypts the outgoing SOAP message. The Web service provider decrypts and verifies the message and the signature. This policy can be attached to any SOAP-based endpoint.

To prevent replay attacks, the assertion provides the option to include time stamps and verification by the Web service provider. The message can be protected with ciphers of different strengths.

	
Note:

Digest passwords are not supported in this release.

This policy uses the symmetric key technology for signing and encryption, and the WS-Security's Basic 128 suite of asymmetric key technology for endorsing signatures. For more information about the available asymmetric algorithms for message protection, see "Supported Algorithm Suites".

This policy contains the following policy assertion: oracle/wss11_username_token_with_message_protection_service_template. See "oracle/wss11_username_token_with_message_protection_service_template" for more information about the assertion.

For information about configuring the policy, see "oracle/wss11_username_token_with_message_protection_service_policy".

oracle/wss11_x509_token_with_message_protection_client_policy

This policy provides message protection (integrity and confidentiality) and certificate-based authentication for outbound SOAP requests in accordance with the WS-Security 1.1 standard.

This policy uses the symmetric key technology for signing and encryption, and the WS-Security's Basic 128 suite of asymmetric key technology for endorsing signatures. For more information about the available asymmetric algorithms for message protection, see "Supported Algorithm Suites".

This policy contains the following policy assertion: oracle/wss11_x509_token_with_message_protection_client_template. See "oracle/wss11_x509_token_with_message_protection_client_template" for more information about the assertion.

For information about configuring the policy, see "oracle/wss11_x509_token_with_message_protection_client_policy".

oracle/wss11_x509_token_with_message_protection_service_policy

This policy enforces message-level protection and certificate-based authentication for inbound SOAP requests in accordance with the WS-Security 1.1 standard.

This policy uses the symmetric key technology for signing and encryption, and the WS-Security's Basic 128 suite of asymmetric key technology for endorsing signatures. For more information about the available asymmetric algorithms for message protection, see "Supported Algorithm Suites".

This policy contains the following policy assertion: oracle/wss11_x509_token_with_message_protection_service_template. See "oracle/wss11_x509_token_with_message_protection_service_template" for more information about the assertion.

For information about configuring the policy, see "oracle/wss11_x509_token_with_message_protection_service_policy".

WS-Trust Policies

Table B-4 summarizes the WS-Trust policies.

Table B-4 WS-Trust Policies

	Client Policy	Service Policy	Authentication Transport	Authentication SOAP	Message Protection Transport	Message Protection SOAP
	
oracle/sts_trust_config_client_policy

	
oracle/sts_trust_config_service_policy

	
No

	
No

	
No

	
No

	
oracle/wss_sts_issued_saml_bearer_token_over_ssl_client_policy

	
oracle/wss_sts_issued_saml_bearer_token_over_ssl_service_policy

	
Yes

	
No

	
Yes

	
No

	
oracle/wss11_sts_issued_saml_hok_with_message_protection_client_policy

	
oracle/wss11_sts_issued_saml_hok_with_message_protection_service_policy

	
No

	
Yes

	
No

	
Yes

	
oracle/wss11_sts_issued_saml_with_message_protection_client_policy

	
	
No

	
Yes

	
No

	
Yes

oracle/sts_trust_config_service_policy

This policy provides STS configuration information that is used to invoke an STS for token exchange.

This policy contains the following policy assertion: oracle/sts_trust_config_template. See "oracle/sts_trust_config_client_template" for more information about the assertion.

For information about configuring the policy, see "oracle/sts_trust_config_service_policy".

oracle/sts_trust_config_client_policy

This policy provides STS configuration information that is used to invoke an STS for token exchange.

This policy contains the following policy assertion: oracle/sts_trust_config_template. See "oracle/sts_trust_config_client_template" for more information about the assertion.

For information about configuring the policy, see "oracle/sts_trust_config_client_policy".

oracle/wss_sts_issued_saml_bearer_token_over_ssl_client_policy

This policy inserts the SAML Bearer assertion issued by a trusted STS (Security Token Service). Messages are protected using SSL.

This policy contains the following policy assertion: oracle/wss_sts_issued_saml_bearer_token_over_ssl_client_template. See "oracle/wss_sts_issued_saml_bearer_token_over_ssl_client_template" for more information about the assertion.

For information about configuring the policy, see "oracle/wss_sts_issued_saml_bearer_token_over_ssl_client_policy".

oracle/wss_sts_issued_saml_bearer_token_over_ssl_service_policy

This policy authenticates a SAML Bearer assertion issued by a trusted STS (Security Token Service). Messages are protected using SSL.

This policy contains the following policy assertion: oracle/wss_sts_issued_saml_bearer_token_over_ssl_service_template. See "oracle/wss_sts_issued_saml_bearer_token_over_ssl_service_template" for more information about the assertion.

For information about configuring the policy, see "oracle/wss_sts_issued_saml_bearer_token_over_ssl_service_policy".

oracle/wss11_sts_issued_saml_hok_with_message_protection_client_policy

This policy inserts a SAML HOK assertion issued by a trusted STS (Security Token Service). Messages are protected using proof key material provided by STS.

This policy contains the following policy assertion: oracle/wss11_sts_issued_saml_hok_with_message_protection_client_template. See "oracle/wss11_sts_issued_saml_hok_with_message_protection_client_template" for more information about the assertion.

For information about configuring the policy, see "oracle/wss11_sts_issued_saml_hok_with_message_protection_client_policy".

oracle/wss11_sts_issued_saml_hok_with_message_protection_service_policy

This policy inserts a SAML HOK assertion issued by a trusted STS (Security Token Service). Messages are protected using proof key material provided by STS.

This policy contains the following policy assertion: oracle/wss11_sts_issued_saml_hok_with_message_protection_service_template. See "oracle/wss11_sts_issued_saml_hok_with_message_protection_service_template" for more information about the assertion.

For information about configuring the policy, see "oracle/wss11_sts_issued_saml_hok_with_message_protection_service_policy".

oracle/wss11_sts_issued_saml_with_message_protection_client_policy

This policy inserts a SAML sender vouches assertion issued by a trusted STS (Security Token Service). Messages are protected using the client's private key.

This policy contains the following policy assertion: oracle/wss11_sts_issued_saml_with_message_protection_client_template. See "oracle/wss11_sts_issued_saml_with_message_protection_client_template" for more information about the assertion.

For information about configuring the policy, see "oracle/wss11_sts_issued_saml_with_message_protection_client_policy".

Authorization Only Policies

Table B-5 summarizes the security policies that enforce authorization, and indicates whether the policy is enforced at the transport layer or SOAP header.

	
Note:

The authorization polices can follow any authentication policy where the Subject is established.
You cannot attach both a permitall and denyall policy to the same Web service.

Table B-5 Authorization Only Policies

	Client Policy	Authentication Transport	Authentication SOAP	Message Protection Transport	Message Protection SOAP
	
oracle/binding_authorization_denyall_policy

	
No

	
Yes

	
No

	
No

	
oracle/binding_authorization_permitall_policy

	
No

	
Yes

	
No

	
No

	
oracle/binding_permission_authorization_policy

	
No

	
Yes

	
No

	
No

	
oracle/component_authorization_denyall_policy

	
No

	
Yes

	
No

	
No

	
oracle/component_authorization_permitall_policy

	
No

	
Yes

	
No

	
No

	
oracle/component_permission_authorization_policy

	
No

	
Yes

	
No

	
No

	
oracle/whitelist_authorization_policy

	
No

	
Yes

	
No

	
No

oracle/binding_authorization_denyall_policy

This policy provides simple role-based authorization for the request based on the authenticated Subject at the SOAP binding level. This policy denies all users with any roles. It should follow an authentication policy where the Subject is established and can be attached to any SOAP-based endpoint.

This policy contains the following policy assertion: oracle/binding_authorization_template. See "oracle/binding_authorization_template" for more information about the assertion.

For information about configuring the policy, see "oracle/binding_authorization_denyall_policy".

oracle/binding_authorization_permitall_policy

This policy provides a simple role-based authorization for the request based on the authenticated Subject at the SOAP binding level. This policy permits all users with any roles. It should follow an authentication policy where the Subject is established and can be attached to any SOAP-based endpoint.

This policy contains the following policy assertion: oracle/binding_authorization_template. See "oracle/binding_authorization_template" for more information about the assertion.

For information about configuring the policy, see "oracle/binding_authorization_permitall_policy".

oracle/binding_permission_authorization_policy

This policy provides simple permission-based authorization for the request based on the authenticated Subject at the SOAP binding level. This policy ensures that the Subject has permission to perform the operation. This policy should follow an authentication policy where the Subject is established and can be attached to any SOAP-based endpoint.

This policy contains the following policy assertion: oracle/binding_permission_authorization_template. See "oracle/component_permission_authorization_template" for more information about the assertion.

For information about configuring the policy, see "oracle/binding_permission_authorization_policy".

oracle/component_authorization_denyall_policy

This policy provides simple role-based authorization for the request based on the authenticated Subject at the SOAP binding level. This policy denies all users with any roles. It should follow an authentication policy where the Subject is established and can be attached to any SCA-based endpoint.

This policy contains the following policy assertion: oracle/component_authorization_template. See "oracle/component_authorization_template" for more information about the assertion.

For information about configuring the policy, see "oracle/component_authorization_denyall_policy".

oracle/component_authorization_permitall_policy

This policy provides a simple role-based authorization policy based on the authenticated Subject. This policy permits all users with any roles. It should follow an authentication policy where the Subject is established and can be attached to any SCA-based endpoint.

This policy contains the following policy assertion: oracle/component_authorization_template. See "oracle/component_authorization_template" for more information about the assertion.

For information about configuring the policy, see "oracle/binding_authorization_permitall_policy".

oracle/component_permission_authorization_policy

This policy provides a permission-based authorization policy based on the authenticated Subject. This policy ensures that the Subject has permission to perform the operation. This policy should follow an authentication policy where the Subject is established and can be attached to any SCA-based endpoint.

This policy contains the following policy assertion: oracle/component_permission_authorization_template. See "oracle/component_permission_authorization_template" for more information about the assertion.

For information about configuring the policy, see "oracle/component_permission_authorization_policy".

oracle/whitelist_authorization_policy

This policy is a special case of role based authorization policy. This policy will let requests in only if authenticated token is SAML Sender-Vouches or if the user is in a particular role 'trustedEnterpriseRole' that established the user as a trusted entity or if the request is coming from within the private network. This policy can be attached to any SOAP-based endpoint.

This policy contains the following policy assertion: oracle/binding_authorization_template. See "oracle/binding_authorization_template" for more information about the assertion.

For information about configuring this policy, see "oracle/whitelist_authorization_policy".

WS-Addressing Policies

This section describes the predefined WS-Addressing policies.

	
Note:

WS-Addressing policies are not supported for WebLogic Web services.

oracle/wsaddr_policy

This policy causes the platform to check inbound messages for the presence of WS-Addressing headers conforming to the W3C 2005 Final WS-Addressing Policy standard. In addition, it causes the platform to include a WS-Addressing header in outbound SOAP messages. For information about configuring the policy, see "oracle/wsaddr_policy".

MTOM Attachment Policies

This section describes the predefined MTOM policies.

	
Note:

MTOM policies are not supported for WebLogic Web services.

oracle/wsmtom_policy

This Message Transmission Optimization Mechanism (MTOM) policy rejects inbound messages that are not in MTOM format and verifies that outbound messages are in MTOM format. MTOM refers to specifications http://www.w3.org/TR/2005/REC-soap12-mtom-20050125 and http://www.w3.org/Submission/2006/SUBM-soap11mtom10-20060405 for SOAP 1.2 and SOAP 1.1 bindings, respectively. For information about configuring the policy, see "oracle/wsmtom_policy".

Reliable Messaging Policies

This section describes the predefined Reliable Messaging policies.

	
Note:

Reliable messaging policies are not supported for WebLogic Web services.

oracle/wsrm10_policy

This policy provides support for version 1.0 of the Web Services Reliable Messaging protocol. This policy can be attached to any SOAP-based client or endpoint. Full support for this feature may require additional programming. For information about configuring the policy, see "oracle/wsrm10_policy".

oracle/wsrm11_policy

This policy provides support for version 1.1 of the Web Services Reliable Messaging protocol. This policy can be attached to any SOAP-based client or endpoint. Full support for this feature may require additional programming. For information about configuring the policy, see "oracle/wsrm11_policy".

Management Policies

This section describes the predefined Management policies.

	
Note:

Management policies are not supported for WebLogic Web services.

oracle/log_policy

This policy causes the request, response, and fault messages to be sent to a message log. For information about configuring the policy, see "oracle/log_policy".

This policy contains the following policy assertion: oracle/security_log_template. See "oracle/security_log_template" for more information about the assertion.

No Behavior Policies

This section describes the predefined no behavior policies. These policies provide the ability to effectively disable a policy attached globally in a policy set. Details for using these policies are provided in "Disabling a Globally Attached Policy". There are no configuration properties available for these policies.

All of these policies use the same no behavior assertion.

	
Note:

The no behavior policies are not supported for WebLogic Web services.

oracle/no_authentication_service_policy

This policy, when directly attached to a service endpoint or globally attached at a lower scope, effectively disables a globally attached authentication policy at a higher scope. If the globally attached policy contains any other assertions, in addition to the authentication assertion, those assertions are disabled also.

oracle/no_authentication_client_policy

This policy, when directly attached to a client endpoint or globally attached at a lower scope, effectively disables a globally attached authentication policy at a higher scope. If the globally attached policy contains any other assertions, in addition to the authentication assertion, those assertions are disabled also.

oracle/no_messageprotection_service_policy

This policy, when directly attached to a service endpoint or globally attached at a lower scope, effectively disables a globally attached message protection policy at a higher scope. If the globally attached policy contains any other assertions, in addition to the message protection assertion, those assertions are disabled also.

oracle/no_messageprotection_client_policy

This policy, when directly attached to a client endpoint or globally attached at a lower scope, effectively disables a globally attached message protection policy at a higher scope. If the globally attached policy contains any other assertions, in addition to the message protection assertion, those assertions are disabled also.

oracle/no_authorization_service_policy

This policy, when directly attached to a service endpoint or globally attached at a lower scope, effectively disables a globally attached authorization policy at a higher scope. If the globally attached policy contains any other assertions, in addition to the authorization assertion, those assertions are disabled also.

oracle/no_authorization_component_policy

This policy, when directly attached to a SOA component or globally attached at a lower scope, effectively disables a globally attached authorization policy at a higher scope. If the globally attached policy contains any other assertions, in addition to the authorization assertion, those assertions are disabled also.

oracle/no_addressing_policy

This policy, when directly attached to an endpoint or globally attached at a lower scope, effectively disables a globally attached WS Addressing policy at a higher scope.

oracle/no_mtom_policy

This policy, when directly attached to an endpoint or globally attached at a lower scope, effectively disables a globally attached WS MTOM policy at a higher scope.

oracle/no_wsrm_policy

This policy, when directly attached to an endpoint or globally attached at a lower scope, effectively disables a globally attached Web Services Reliable Messaging policy at a higher scope.

C Predefined Assertion Templates

This appendix describes the predefined assertion templates that you can use to construct your policies or copy to create new policies.

	
Note:

Oracle recommends that you do not edit the predefined assertion templates so that you will always have a known set of valid templates. You can, however, create a new assertion template from a predefined assertion template, or configure the attributes in an assertion after you have added it to a policy. For information about managing the assertion templates and adding them to policies, see "Managing Policy Assertion Templates".

This chapter contains the following sections:

	
Security Assertion Templates

	
Management Assertion Templates

	
No Behavior Assertion Templates

Security Assertion Templates

The following sections describe the security assertion templates in more detail.

	
Authentication Only Assertion Templates

	
Message-Protection Only Assertion Templates

	
Message Protection and Authentication Assertion Templates

	
WS-Trust Assertion Templates

	
Authorization Assertion Templates

	
Supported Algorithm Suites

	
Message Signing and Encryption Settings for Request, Response, and Fault Messages

You can jump to a specific assertion template description using the following links (listed alphabetically):

	
oracle/binding_authorization_template

	
oracle/binding_permission_authorization_template

	
oracle/component_authorization_template

	
oracle/component_permission_authorization_template

	
oracle/security_log_template

	
oracle/sts_trust_config_client_template

	
oracle/wss_http_token_over_ssl_client_template or oracle/wss_http_token_over_ssl_service_template

	
oracle/wss_http_token_client_template or oracle/wss_http_token_service_template

	
oracle/wss_saml_token_bearer_over_ssl_client_template or oracle/wss_saml_token_bearer_over_ssl_service_template

	
oracle/wss_saml20_token_bearer_over_ssl_client_template or oracle/wss_saml20_token_bearer_over_ssl_service_template

	
oracle/wss_saml_token_over_ssl_client_template or oracle/wss_saml_token_over_ssl_service_template

	
oracle/wss_saml20_token_over_ssl_client_template or oracle/wss_saml20_token_over_ssl_service_template

	
oracle/wss_sts_issued_saml_bearer_token_over_ssl_client_template or oracle/wss_sts_issued_saml_bearer_token_over_ssl_service_template

	
oracle/wss_username_token_over_ssl_client_template or oracle/wss_username_token_over_ssl_service_template

	
oracle/wss_username_token_client_template or oracle/wss_username_token_service_template

	
oracle/wss_username_token_over_ssl_client_template or oracle/wss_username_token_over_ssl_service_template

	
oracle/wss10_message_protection_client_template or oracle/wss10_message_protection_service_template

	
oracle/wss10_saml_token_client_template or oracle/wss10_saml_token_service_template

	
oracle/wss10_saml20_token_client_template or oracle/wss10_saml20_token_service_template

	
oracle/wss10_saml_token_with_message_protection_client_template or oracle/wss10_saml_token_with_message_protection_service_template

	
oracle/wss10_saml20_token_with_message_protection_client_template or oracle/wss10_saml20_token_with_message_protection_service_template

	
oracle/wss10_username_token_with_message_protection_client_template or oracle/wss10_username_token_with_message_protection_service_template

	
oracle/wss10_x509_token_with_message_protection_client_template or oracle/wss10_x509_token_with_message_protection_service_template

	
oracle/wss11_kerberos_token_client_template or oracle/wss11_kerberos_token_service_template

	
oracle/wss11_kerberos_token_with_message_protection_client_template or oracle/wss11_kerberos_token_with_message_protection_service_template

	
oracle/wss11_saml_token_with_message_protection_client_template or oracle/wss11_saml_token_with_message_protection_service_template

	
oracle/wss11_saml20_token_with_message_protection_client_template or oracle/wss11_saml20_token_with_message_protection_service_template

	
oracle/wss11_sts_issued_saml_hok_with_message_protection_client_template or oracle/wss11_sts_issued_saml_hok_with_message_protection_service_template

	
oracle/wss11_sts_issued_saml_with_message_protection_client_template

	
oracle/wss11_username_token_with_message_protection_client_template or oracle/wss11_username_token_with_message_protection_service_template

	
oracle/wss11_x509_token_with_message_protection_client_template or oracle/wss11_x509_token_with_message_protection_service_template

Authentication Only Assertion Templates

Table C-1 summarizes the assertion templates that enforce authentication only, and indicates whether the token is inserted at the transport layer or SOAP header.

Table C-1 Authentication Only Assertion Templates

	Client Template	Service Template	Authentication Transport	Authentication SOAP	Message Protection Transport	Message Protection SOAP
	
oracle/wss_http_token_client_template

	
oracle/wss_http_token_service_template

	
Yes

	
No

	
No

	
No

	
oracle/wss_username_token_client_template

	
oracle/wss_username_token_service_template

	
No

	
Yes

	
No

	
No

	
oracle/wss10_saml_token_client_template

	
oracle/wss10_saml_token_service_template

	
No

	
Yes

	
No

	
No

	
oracle/wss10_saml20_token_client_template

	
oracle/wss10_saml20_token_service_template

	
No

	
Yes

	
No

	
No

	
oracle/wss11_kerberos_token_client_template

	
oracle/wss11_kerberos_token_service_template

	
No

	
Yes

	
No

	
No

oracle/wss_http_token_client_template

The wss_http_token_client_template assertion template includes username and password credentials in the HTTP header. You can control whether one-way or two-way authentication is required.

Settings

Table C-2 lists the settings for the wss_http_token_client_template assertion template.

Table C-2 wss_http_token_client_template Settings

	Name	Description	Default Value
	
Authentication Header—Mechanism

	
Authentication mechanism.

Valid values include:

	
basic—Client authenticates itself by transmitting the username and password.

Note: It is recommended that you configure SSL when using basic authentication. For more information, see "Configuring Keystores for SSL".

	
digest—Not supported in this release. Client authenticates itself by transmitting an encrypted password through the use of an MD5 digest.

	
cert—Not supported in this release. Client authenticates itself by transmitting a certificate.

	
custom—Not supported in this release. Custom authentication mechanism.

	
basic

	
Authentication Header—Header Name

	
Name of the authentication header.

	
None

	
Transport Security—Mutual Authentication Required

	
Flag that specifies whether two-way authentication is required.

Valid values include:

	
Enabled—The service must authenticate itself to the client, and the client must authenticate itself to the service.

	
Disabled—One-way authentication is required. The service must authenticate itself to the client, but the client is not required to authenticate itself to the service.

	
Disabled

	
Transport Security—Include Timestamp

	
Flag that specifies whether to include a timestamp. A timestamp can be used to prevent replay attacks by identifying an expiration time after which the message is no longer valid.

	
Disabled

Configurations

Table C-3 lists the configuration properties and the default settings for the wss_http_token_client_template assertion template. For details about the configuration property settings, see "Editing the Configuration Properties".

For information about overriding policies, see "Attaching Client Policies Permitting Overrides".

Table C-3 wss_http_token_client_template Configurations

	Name	Description
	
csf-key

	
Credential Store Key that maps to a username and password in the Oracle Platform Security Services identity store.

Default settings:

	
Value—Not set

	
Default—basic.credentials

	
ContentType—Required

	
Description—Not set

	
role

	
SOAP role.

Default settings:

	
Value—Not set

	
Default—ultimateReceiver

	
ContentType—Constant

	
Description—Not set

	
reference.priority

	
Optional property that specifies the priority of the policy attachment. When specified for an attached policy, the effective set of policies algorithm allows the policy with the highest integer value priority to take precedence over a conflicting policy attachment, irrespective of its scope.

Default settings:

	
Value—Not set

	
Default—Not set

	
ContentType—Optional

	
Description—Not set

The value of reference.priority can be any number between(-231) and (231 - 1). The higher the number, the higher the priority assigned during effective policy calculation. Any policy that does not have a value or a non-numeric value is treated as having a value of 0. If the value is set to any of the words "yes", "true", or "on", the value is set to 1.

For more information, see "Specifying the Priority of a Policy Attachment".

oracle/wss_http_token_service_template

The wss_http_token_service_template assertion template uses the credentials in the HTTP header to authenticate users against the Oracle Platform Security Services identity store. You can control whether one-way or two-way authentication is required.

Settings

The settings for the wss_http_token_service_template are identical to those for the client version of the assertion template. See Table C-2 for information on the settings.

Configurations

Table C-4 lists the configuration properties and the default settings for the wss_http_token_service_template assertion template. For details about the configuration property settings, see "Editing the Configuration Properties".

For information about overriding policies, see "Attaching Web Service Policies Permitting Overrides".

Table C-4 wss_http_token_service_template Configurations

	Name	Description
	
realm

	
HTTP Realm.

Default settings:

	
Value—Not set

	
Default—owsm

	
ContentType—Constant

	
Description—Not set

	
role

	
SOAP role.

Default settings:

	
Value—Not set

	
Default—ultimateReceiver

	
ContentType—Constant

	
Description—Not set

	
reference.priority

	
Optional property that specifies the priority of the policy attachment. When specified for an attached policy, the effective set of policies algorithm allows the policy with the highest integer value priority to take precedence over a conflicting policy attachment, irrespective of its scope.

Default settings:

	
Value—Not set

	
Default—Not set

	
ContentType—Optional

	
Description—Not set

The value of reference.priority can be any number between(-231) and (231 - 1). The higher the number, the higher the priority assigned during effective policy calculation. Any policy that does not have a value or a non-numeric value is treated as having a value of 0. If the value is set to any of the words "yes", "true", or "on", the value is set to 1.

For more information, see "Specifying the Priority of a Policy Attachment".

oracle/wss_username_token_client_template

The wss_username_token_client_template assertion template includes authentication with username and password credentials in the WS-Security UsernameToken header. The assertion supports three types of password credentials: plain text, digest, and no password.

	
Note:

Digest passwords are not supported in this release.
Policies created using this template are not secure; it transmits the password in clear text. You should use this assertion in low security situations only, or when you know that the transport is protected using some other mechanism. Alternatively, consider using the SSL version of this assertion, oracle/wss_username_token_over_ssl_client_template.

To protect against replay attacks, the assertion provides the option to require nonce or creation time in the username token.

Settings

Table C-5 lists the settings for the wss_username_token_client_template assertion template.

Table C-5 wss_username_token_client_template Settings

	Name	Description	Default Value
	
Password Type

	
Type of password required.

Valid values are:

	
none—No password.

	
plaintext—Password in clear text.

	
digest—Not supported in this release. Client authenticates itself by transmitting an encrypted password through the use of an MD5 digest.

Note: The plaintext type is not recommended when the token propagation occurs on an unsecure channel. However, if SSL is being used as the transport channel to secure a point-to-point connection between client and server, the plaintext type can be used as the channel takes care of protecting the password.

	
plaintext

	
Nonce Required

	
Flag that specifies whether a nonce must be included with the username to prevent replay attacks.

Note: If Password Type is set to digest, then this attribute must be set to true. Otherwise, the policy to which it is attached will not validate.

	
False

	
Creation Time Required

	
Flag that specifies whether a time stamp for the creation of the username token is required.

Note: If Password Type is set to digest, then this attribute must be set to true. Otherwise, the policy to which it is attached will not validate.

	
False

Configurations

Table C-6 lists the configuration properties and the default settings for the wss_username_token_client_template assertion template. For details about the configuration property settings, see "Editing the Configuration Properties".

For information about overriding policies, see "Attaching Client Policies Permitting Overrides".

Table C-6 wss_username_token_client_template Configurations

	Name	Description
	
csf-key

	
Credential Store Key that maps to a username and password in the Oracle Platform Security Services identity store.

Default settings:

	
Value—Not set

	
Default—basic.credentials

	
ContentType—Required

	
Description—Not set

	
role

	
SOAP role.

Default settings:

	
Value—Not set

	
Default—ultimateReceiver

	
ContentType—Constant

	
Description—Not set

	
reference.priority

	
Optional property that specifies the priority of the policy attachment. When specified for an attached policy, the effective set of policies algorithm allows the policy with the highest integer value priority to take precedence over a conflicting policy attachment, irrespective of its scope.

Default settings:

	
Value—Not set

	
Default—Not set

	
ContentType—Optional

	
Description—Not set

The value of reference.priority can be any number between(-231) and (231 - 1). The higher the number, the higher the priority assigned during effective policy calculation. Any policy that does not have a value or a non-numeric value is treated as having a value of 0. If the value is set to any of the words "yes", "true", or "on", the value is set to 1.

For more information, see "Specifying the Priority of a Policy Attachment".

oracle/wss_username_token_service_template

The wss_username_token_service_template assertion template enforces authentication with username and password credentials in the WS-Security UsernameToken SOAP header. The assertion supports three types of password credentials: plain text, digest, and no password.

	
Note:

Digest passwords are not supported in this release.
Policies created using this template are not secure; it transmits the password in clear text. You should use this assertion in low security situations only, or when you know that the transport is protected using some other mechanism. Alternatively, consider using the SSL version of this assertion, oracle/wss_username_token_over_ssl_service_template.

To protect against replay attacks, the assertion provides the option to require nonce or creation time in the username token.

Settings

The settings for the wss_username_token_service_template are identical to the client version of the assertion template. See Table C-5 for information on the settings.

Configurations

Table C-7 lists the configuration properties and the default settings for the wss_username_token_service_template assertion template. For details about the configuration property settings, see "Editing the Configuration Properties".

For information about overriding policies, see "Attaching Web Service Policies Permitting Overrides".

Table C-7 wss_username_token_service_template Configurations

	Name	Description
	
role

	
SOAP role.

Default settings:

	
Value—Not set

	
Default—ultimateReceiver

	
ContentType—Constant

	
Description—Not set

	
reference.priority

	
Optional property that specifies the priority of the policy attachment. When specified for an attached policy, the effective set of policies algorithm allows the policy with the highest integer value priority to take precedence over a conflicting policy attachment, irrespective of its scope.

Default settings:

	
Value—Not set

	
Default—Not set

	
ContentType—Optional

	
Description—Not set

The value of reference.priority can be any number between(-231) and (231 - 1). The higher the number, the higher the priority assigned during effective policy calculation. Any policy that does not have a value or a non-numeric value is treated as having a value of 0. If the value is set to any of the words "yes", "true", or "on", the value is set to 1.

For more information, see "Specifying the Priority of a Policy Attachment".

oracle/wss10_saml_token_client_template

The wss10_saml_token_client_template assertion template includes SAML tokens in outbound SOAP request messages. The SAML token is created automatically.

Settings

Table C-8 lists the settings for the wss10_saml_token_client_template assertion template.

Table C-8 wss10_saml_token_client_template Settings

	Name	Description	Default Value
	
Version

	
SAML version. The only valid value is 1.1.

	
1.1

	
Confirmation Type

	
Confirmation type. The only valid value is:

	
sender-vouches—Uses the Sender Vouches SAML token for authentication.

	
sender-vouches

	
Name Identifier Format

	
Specifies the type of format to be used for the name identifier.

Name Identifier Format is applicable only when subject.precedence is set to false. If subject.precedence is false, the user name to create the SAML assertion is obtained from the csf-key property or the username property (see "Configure the Username for the SAML Assertion"). The format of the user name must be the same as the format set in Name Identifier Format.

If subject.precedence is true, the user name to create the SAML assertion is obtained from the Subject. In this case, the Name Identifier Format is always "unspecified” and this cannot be changed by setting Name Identifier Format.

Specify one of the following values:

	
unspecified

	
emailAddress

	
X509SubjectName

	
WindowsDomainQualifiedName

	
unspecified

Configurations

Table C-9 lists the configuration properties and the default settings for the wss10_saml_token_client_template assertion template. For details about the configuration property settings, see "Editing the Configuration Properties".

For information about overriding policies, see "Attaching Client Policies Permitting Overrides".

Table C-9 wss10_saml_token_client_template Configurations

	Name	Description
	
user.attributes

	
User attributes related to the principal of the SAML token.

Specify the attributes to be included as a comma-separated list. For example, attrib1,attrib2. The attribute names you specify must exactly match valid attributes in the configured identity store. The Oracle WSM run time reads the values for these attributes from the configured identity store, and then includes the attributes and their values in the SAML assertion.

Requires that the Subject is available and subject.precedence is set to true.

Default settings:

	
Value—Not set

	
Default—Not set. Attribute names should be comma separated.

	
ContentType—Optional

	
Description—Not set

A client policy reads the values of the attributes specified using user.attributes from the configured identity store. All valid attribute names and values are used to create the SAML attribute statement.

The user.attributes property is supported for a single identity store, and only the first identity store in the list is used. The user must therefore exist and be valid in the identity store used by the configured WebLogic Server Authentication provider. Authentication providers are described in "Configuring an Authentication Provider in WebLogic Server".

If the identity store you require is not the first identity store, you can specify that additional identity stores be searched. See "Including User Attributes in the Assertion" for more information.

	
user.roles.include

	
User roles to be included.

Default settings:

	
Value—Not set

	
Default—false

	
ContentType—Optional

	
Description—Not set

	
saml.issuer.name

	
Issuer URI.

Default settings:

	
Value—Not set

	
Default—www.oracle.com

	
ContentType—Optional

	
Description—Not set

	
csf-key

	
Credential Store Key that maps to a username and password in the Oracle Platform Security Services identity store.

Default settings:

	
Value—basic.credentials

	
Default—Not set

	
ContentType—Optional

	
Description—Not set

	
subject.precedence

	
Set subject.precedence to false to allow for the use of a client-specified username rather than the authenticated subject.

If subject.precedence is true, the user name to create the SAML assertion is obtained only from the Subject. Similarly, if subject.precedence is false, the user name to create the SAML assertion is obtained only from the csf-key username property.

Default settings:

	
Value—true

	
Default—Not set

	
ContentType—Optional

	
Description—Not set

	
saml.audience.uri

	
Represents the relying party, as a comma-separated URI. This field accepts wildcards.

Default settings:

	
Value—Not set

	
Default—null

	
ContentType—Optional

	
Description—Not set

	
reference.priority

	
Optional property that specifies the priority of the policy attachment. When specified for an attached policy, the effective set of policies algorithm allows the policy with the highest integer value priority to take precedence over a conflicting policy attachment, irrespective of its scope.

Default settings:

	
Value—Not set

	
Default—Not set

	
ContentType—Optional

	
Description—Not set

The value of reference.priority can be any number between(-231) and (231 - 1). The higher the number, the higher the priority assigned during effective policy calculation. Any policy that does not have a value or a non-numeric value is treated as having a value of 0. If the value is set to any of the words "yes", "true", or "on", the value is set to 1.

For more information, see "Specifying the Priority of a Policy Attachment".

	
propagate.identity.context

	
Reserved for future use.

oracle/wss10_saml_token_service_template

The wss10_saml_token_service_template assertion template authenticates users using credentials provided in SAML tokens in the WS-Security SOAP header.

Settings

The settings for the wss10_saml_token_service_template are identical to the client version of the assertion, with the exception that Name Identifier Format is not present. See Table C-8 for information on the settings.

Configurations

Table C-10 lists the configuration properties and the default settings for the wss10_saml_token_service_template assertion template. For details about the configuration property settings, see "Editing the Configuration Properties".

For information about overriding policies, see "Attaching Web Service Policies Permitting Overrides".

Table C-10 wss10_saml_token_service_template Configurations

	Name	Description
	
role

	
SOAP role.

Default settings:

	
Value—Not set

	
Default—ultimateReceiver

	
ContentType—Constant

	
Description—Not set

	
saml.trusted.issuers

	
A comma-separated list of SAML token trusted issuers for an application that will override trusted issuers at domain level.

Default settings:

	
Value—Not set

	
Default—null

	
ContentType—Optional

	
Description—Not set

	
reference.priority

	
Optional property that specifies the priority of the policy attachment. When specified for an attached policy, the effective set of policies algorithm allows the policy with the highest integer value priority to take precedence over a conflicting policy attachment, irrespective of its scope.

Default settings:

	
Value—Not set

	
Default—Not set

	
ContentType—Optional

	
Description—Not set

The value of reference.priority can be any number between(-231) and (231 - 1). The higher the number, the higher the priority assigned during effective policy calculation. Any policy that does not have a value or a non-numeric value is treated as having a value of 0. If the value is set to any of the words "yes", "true", or "on", the value is set to 1.

For more information, see "Specifying the Priority of a Policy Attachment".

	
propagate.identity.context

	
Reserved for future use.

oracle/wss10_saml20_token_client_template

The wss10_saml20_token_client_template assertion template includes SAML tokens in outbound SOAP request messages. The SAML token is created automatically.

Settings

Table C-11 lists the settings for the wss10_saml20_token_client_template assertion template.

Table C-11 wss10_saml20_token_client_template Settings

	Name	Description	Default Value
	
Version

	
SAML version. The only valid value is 2.0.

	
2.0

	
Confirmation Type

	
Confirmation type. The only valid value is:

	
sender-vouches—Uses the Sender Vouches SAML token for authentication.

	
sender-vouches

	
Name Identifier Format

	
Specifies the type of format to be used for the name identifier.

Name Identifier Format is applicable only when subject.precedence is set to false. If subject.precedence is false, the user name to create the SAML assertion is obtained from the csf-key property or the username property (see "Configure the Username for the SAML Assertion"). The format of the user name must be the same as the format set in Name Identifier Format.

If subject.precedence is true, the user name to create the SAML assertion is obtained from the Subject. In this case, the Name Identifier Format is always "unspecified” and this cannot be changed by setting Name Identifier Format.

Specify one of the following values:

	
unspecified

	
emailAddress

	
X509SubjectName

	
WindowsDomainQualifiedName

	
kerberos

	
unspecified

Configurations

Table C-12 lists the configuration properties and the default settings for the wss10_saml20_token_client_template assertion template. For details about the configuration property settings, see "Editing the Configuration Properties".

For information about overriding policies, see "Attaching Client Policies Permitting Overrides".

Table C-12 wss10_saml20_token_client_template Configurations

	Name	Description
	
user.attributes

	
User attributes related to the principal of the SAML token.

Specify the attributes to be included as a comma-separated list. For example, attrib1,attrib2. The attribute names you specify must exactly match valid attributes in the configured identity store. The Oracle WSM run time reads the values for these attributes from the configured identity store, and then includes the attributes and their values in the SAML assertion.

Requires that the Subject is available and subject.precedence is set to true.

Default settings:

	
Value—Not set

	
Default—Not set. Attribute names should be comma separated.

	
ContentType—Optional

	
Description—Not set

A client policy reads the values of the attributes specified using user.attributes from the configured identity store. All valid attribute names and values are used to create the SAML attribute statement.

The user.attributes property is supported for a single identity store, and only the first identity store in the list is used. The user must therefore exist and be valid in the identity store used by the configured WebLogic Server Authentication provider. Authentication providers are described in "Configuring an Authentication Provider in WebLogic Server".

If the identity store you require is not the first identity store, you can specify that additional identity stores be searched. See "Including User Attributes in the Assertion" for more information.

	
user.roles.include

	
User roles to be included.

Default settings:

	
Value—Not set

	
Default—false

	
ContentType—Optional

	
Description—Not set

	
saml.issuer.name

	
Issuer URI.

Default settings:

	
Value—Not set

	
Default—www.oracle.com

	
ContentType—Optional

	
Description—Not set

	
csf-key

	
Credential Store Key that maps to a username and password in the Oracle Platform Security Services identity store.

Default settings:

	
Value—basic.credentials

	
Default—Not set

	
ContentType—Optional

	
Description—Not set

	
subject.precedence

	
Set subject.precedence to false to allow for the use of a client-specified username rather than the authenticated subject.

If subject.precedence is true, the user name to create the SAML assertion is obtained only from the Subject. Similarly, if subject.precedence is false, the user name to create the SAML assertion is obtained only from the csf-key username property.

Default settings:

	
Value—true

	
Default—Not set

	
ContentType—Optional

	
Description—Not set

	
saml.audience.uri

	
Represents the relying party, as a comma-separated URI. This field accepts wildcards.

Default settings:

	
Value—Not set

	
Default—null

	
ContentType—Optional

	
Description—Not set

	
reference.priority

	
Optional property that specifies the priority of the policy attachment. When specified for an attached policy, the effective set of policies algorithm allows the policy with the highest integer value priority to take precedence over a conflicting policy attachment, irrespective of its scope.

Default settings:

	
Value—Not set

	
Default—Not set

	
ContentType—Optional

	
Description—Not set

The value of reference.priority can be any number between(-231) and (231 - 1). The higher the number, the higher the priority assigned during effective policy calculation. Any policy that does not have a value or a non-numeric value is treated as having a value of 0. If the value is set to any of the words "yes", "true", or "on", the value is set to 1.

For more information, see "Specifying the Priority of a Policy Attachment".

	
propagate.identity.context

	
Reserved for future use.

oracle/wss10_saml20_token_service_template

The wss10_saml20_token_service_template assertion template authenticates users using credentials provided in SAML tokens in the WS-Security SOAP header.

Settings

The settings for the wss10_saml20_token_service_template are similar to the client version of the assertion template, with the exception that Name Identifier Format is not present. See Table C-11 for information on the settings.

Configurations

Table C-13 lists the configuration properties and the default settings for the wss10_saml20_token_service_template assertion template. For details about the configuration property settings, see "Editing the Configuration Properties".

For information about overriding policies, see "Attaching Web Service Policies Permitting Overrides".

Table C-13 wss10_saml20_token_service_template Configurations

	Name	Description
	
role

	
SOAP role.

Default settings:

	
Value—Not set

	
Default—ultimateReceiver

	
ContentType—Constant

	
Description—Not set

	
saml.trusted.issuers

	
A comma-separated list of SAML token trusted issuers for an application that will override trusted issuers at domain level.

Default settings:

	
Value—Not set

	
Default—null

	
ContentType—Optional

	
Description—Not set

	
reference.priority

	
Optional property that specifies the priority of the policy attachment. When specified for an attached policy, the effective set of policies algorithm allows the policy with the highest integer value priority to take precedence over a conflicting policy attachment, irrespective of its scope.

Default settings:

	
Value—Not set

	
Default—Not set

	
ContentType—Optional

	
Description—Not set

The value of reference.priority can be any number between(-231) and (231 - 1). The higher the number, the higher the priority assigned during effective policy calculation. Any policy that does not have a value or a non-numeric value is treated as having a value of 0. If the value is set to any of the words "yes", "true", or "on", the value is set to 1.

For more information, see "Specifying the Priority of a Policy Attachment".

	
propagate.identity.context

	
Reserved for future use.

oracle/wss11_kerberos_token_client_template

The wss11_kerberos_token_client_template assertion template includes a Kerberos token in the WS-Security header in accordance with the WS-Security Kerberos Token Profile v1.1 standard.

Settings

Table C-14 lists the settings for the wss11_kerberos_token_client_template assertion template.

Table C-14 wss11_kerberos_token_client_template Settings

	Name	Description	Default Value
	
Kerberos Token Type

	
Type of Kerberos token. The only valid value is: gss-apreq-v5 (Kerberos Version 5 GSS-API).

	
gss-apreq-v5

Configurations

Table C-15 lists the configuration properties and the default settings for the wss11_kerberos_token_client_template assertion template. For details about the configuration property settings, see "Editing the Configuration Properties".

For information about overriding policies, see "Attaching Client Policies Permitting Overrides".

Table C-15 wss11_kerberos_token_client_template Configurations

	Name	Description
	
service.principal.name

	
Kerberos principal name that identifies the service.

Default settings:

	
Value—Not set

	
Default—HOST/localhost@EXAMPLE.COM

	
ContentType—Required

	
Description—Not set

	
keytab.location

	
Location of the client's keytab file.

Default settings:

	
Value—Not set

	
Default—Not set

	
ContentType—Optional

	
Description—Not set

	
caller.principal.name

	
Client's principal name as generated using the ktpass command and mapped to the username for which the kerberos token should be generated. Use the following format: <username>@<REALM NAME>.

Default settings:

	
Value—Not set

	
Default—Not set

	
ContentType—Optional

	
Description—Not set

Note: keytab.location and caller.principal.name are required for propagating client identity for Java EE applications.

	
reference.priority

	
Optional property that specifies the priority of the policy attachment. When specified for an attached policy, the effective set of policies algorithm allows the policy with the highest integer value priority to take precedence over a conflicting policy attachment, irrespective of its scope.

Default settings:

	
Value—Not set

	
Default—Not set

	
ContentType—Optional

	
Description—Not set

The value of reference.priority can be any number between(-231) and (231 - 1). The higher the number, the higher the priority assigned during effective policy calculation. Any policy that does not have a value or a non-numeric value is treated as having a value of 0. If the value is set to any of the words "yes", "true", or "on", the value is set to 1.

For more information, see "Specifying the Priority of a Policy Attachment".

oracle/wss11_kerberos_token_service_template

The wss11_kerberos_token_service_template assertion template enforces in accordance with the WS-Security Kerberos Token Profile v1.1 standard. It extracts the Kerberos token from the SOAP header and authenticates the user. The container must have the Kerberos infrastructure configured through Oracle Platform Security Services.

Settings

The settings for the wss11_keberos_token_service_template are identical to the client version of the assertion template. See Table C-14 for information on the settings.

Configurations

Table C-16 lists the configuration properties and the default settings for the wss11_kerberos_token_service_template assertion template. For details about the configuration property settings, see "Editing the Configuration Properties".

For information about overriding policies, see "Attaching Web Service Policies Permitting Overrides".

Table C-16 wss11_kerberos_token_service_template Configurations

	Name	Description
	
role

	
SOAP role.

Default settings:

	
Value—Not set

	
Default—ultimateReceiver

	
ContentType—Constant

	
Description—Not set

	
reference.priority

	
Optional property that specifies the priority of the policy attachment. When specified for an attached policy, the effective set of policies algorithm allows the policy with the highest integer value priority to take precedence over a conflicting policy attachment, irrespective of its scope.

Default settings:

	
Value—Not set

	
Default—Not set

	
ContentType—Optional

	
Description—Not set

The value of reference.priority can be any number between(-231) and (231 - 1). The higher the number, the higher the priority assigned during effective policy calculation. Any policy that does not have a value or a non-numeric value is treated as having a value of 0. If the value is set to any of the words "yes", "true", or "on", the value is set to 1.

For more information, see "Specifying the Priority of a Policy Attachment".

Message-Protection Only Assertion Templates

Table C-17 summarizes the assertion templates that enforce message protection only, and indicates whether the token is inserted at the transport layer or SOAP header.

Table C-17 Message-Protection Only Assertion Templates

	Client Template	Service Template	Authentication Transport	Authentication SOAP	Message Protection Transport	Message Protection SOAP
	
oracle/wss10_message_protection_client_template

	
oracle/wss10_message_protection_service_template

	
No

	
No

	
No

	
Yes

	
oracle/wss11_message_protection_client_template

	
oracle/wss11_message_protection_service_template

	
No

	
No

	
No

	
Yes

oracle/wss10_message_protection_client_template

The wss10_message_protection_client_template assertion template provides message protection (integrity and confidentiality) for outbound SOAP requests in accordance with the WS-Security 1.0 standard.

Settings

Table C-18 lists the settings for the wss10_message_protection_client_template assertion template.

Table C-18 wss10_message_protection_client_template Settings

	Name	Description	Default Value
	
X509 Token

	
	

	
Sign Key Reference Mechanism

	
Mechanism used when signing the request.

Valid values include:

	
direct—X.509 Token is included in the request.

	
ski—Subject Key Identifier (SKI) extension value of the X.509 certificate used to reference the certificate. (Some certificates may not have this extension.) The recipient of the message looks up its keystore for a certificate corresponding to the SKI and validates the signature against it.

	
issuerserial—Composite key of issuer name and serial number attributes used to reference the X.509 certificate. The recipient of the message looks up its keystore for a certificate corresponding to Issuer name and Serial Number and validates the signature using it.

	
direct

	
Encryption Key Reference Mechanism

	
Mechanism used when encrypting the request. Valid values are the same as for Sign Key Reference Mechanism above.

	
direct

	
Recipient Sign Key Reference Mechanism

	
Mechanism used when signing the receipt. Valid values are the same as for Sign Key Reference Mechanism above.

	
direct

	
Recipient Encryption Key Reference Mechanism

	
Mechanism used when encrypting the receipt. Valid values are the same as for Sign Key Reference Mechanism above.

	
direct

	
Message Security

	
	

	
Algorithm Suite

	
Algorithm suite used for message protection. See "Supported Algorithm Suites".

	
Basic128

	
Include Timestamp

	
Flag that specifies whether to include a timestamp. A timestamp can be used to prevent replay attacks by identifying an expiration time after which the message is no longer valid.

	
Enabled

	
Encrypt Signature

	
Flag that specifies whether to encrypt the signature.

	
Disabled

	
Request Message Settings

	
See Table C-92.

	
N/A

	
Response Message Settings

	
See Table C-92.

	
N/A

	
Fault Message Settings

	
See Table C-92.

	
N/A

Configurations

Table C-19 lists the configuration properties and the default settings for the wss10_message_protection_client_template assertion template. For details about the configuration property settings, see "Editing the Configuration Properties".

For information about overriding policies, see "Attaching Client Policies Permitting Overrides".

Table C-19 wss10_message_protection_client_template Configurations

	Name	Description
	
keystore.recipient.alias

	
Keystore alias associated with the peer certificate. The security run time uses this alias to extract the peer certificate from the configured keystore and to encrypt messages to the peer.

Default settings:

	
Value—Not set

	
Default—orakey

	
ContentType—Required

	
Description—Not set

	
role

	
SOAP role.

Default settings:

	
Value—Not set

	
Default—ultimateReceiver

	
ContentType—Constant

	
Description—Not set

	
reference.priority

	
Optional property that specifies the priority of the policy attachment. When specified for an attached policy, the effective set of policies algorithm allows the policy with the highest integer value priority to take precedence over a conflicting policy attachment, irrespective of its scope.

Default settings:

	
Value—Not set

	
Default—Not set

	
ContentType—Optional

	
Description—Not set

The value of reference.priority can be any number between(-231) and (231 - 1). The higher the number, the higher the priority assigned during effective policy calculation. Any policy that does not have a value or a non-numeric value is treated as having a value of 0. If the value is set to any of the words "yes", "true", or "on", the value is set to 1.

For more information, see "Specifying the Priority of a Policy Attachment".

	
ignore.timestamp.in.response

	
Property used by the client to ignore the timestamp in the SOAP security header when it receives the response from the service. The default behavior is to NOT ignore the timestamp (the default value of this property is false). If set to true, then the timestamp is not required in the response message; if the timestamp is present, it is ignored.

The timestamp is required to prevent replay attacks, so in general, Oracle does not recommend setting this property to true except to address interoperability issues.

Note: This property is not shown in Fusion Middleware Control. Details for adding the property are described in "Configuring User-Defined Client- or Server-Side Override Properties".

oracle/wss10_message_protection_service_template

The wss10_message_protection_service_template assertion template provides message protection (integrity and confidentiality) for inbound SOAP requests in accordance with the WS-Security 1.0 standard.

Settings

The settings for the wss10_message_protection_service_template are identical to the client version of the assertion template. See Table C-18 for information on the settings.

Configurations

Table C-20 lists the configuration properties and the default settings for the wss10_message_protection_service_template assertion template. For details about the configuration property settings, see "Editing the Configuration Properties".

For information about overriding policies, see "Attaching Web Service Policies Permitting Overrides".

Table C-20 wss10_message_protection_service_template Configurations

	Name	Description
	
role

	
SOAP role.

Default settings:

	
Value—Not set

	
Default—ultimateReceiver

	
ContentType—Constant

	
Description—Not set

	
reference.priority

	
Optional property that specifies the priority of the policy attachment. When specified for an attached policy, the effective set of policies algorithm allows the policy with the highest integer value priority to take precedence over a conflicting policy attachment, irrespective of its scope.

Default settings:

	
Value—Not set

	
Default—Not set

	
ContentType—Optional

	
Description—Not set

The value of reference.priority can be any number between(-231) and (231 - 1). The higher the number, the higher the priority assigned during effective policy calculation. Any policy that does not have a value or a non-numeric value is treated as having a value of 0. If the value is set to any of the words "yes", "true", or "on", the value is set to 1.

For more information, see "Specifying the Priority of a Policy Attachment".

oracle/wss11_message_protection_client_template

The wss11_message_protection_client_template assertion template provides message protection (integrity and confidentiality) for outbound SOAP requests in accordance with the WS-Security 1.1 standard.

Settings

Table C-21 lists the settings for the wss11_message_protection_client_template assertion template.

Table C-21 wss11_message_protection_client_template Settings

	Name	Description	Default Value
	
X509 Token

	
	

	
Encryption Key Reference Mechanism

	
Mechanism used when encrypting the request. Valid values include:

	
direct—X.509 Token is included in the request.

	
ski—Subject Key Identifier (SKI) extension value of the X.509 certificate used to reference the certificate. (Some certificates may not have this extension.) The recipient of the message looks up its keystore for a certificate corresponding to the SKI and validates the signature against it.

	
issuerserial—Composite key of issuer name and serial number attributes used to reference the X.509 certificate. The recipient of the message looks up its keystore for a certificate corresponding to Issuer name and Serial Number and validates the signature using it.

	
thumbprint—Fingerprint (SHA1 hash) of the contents of the certificate. Provides a method to store certificates that is low overhead.

	
thumbprint

	
Message Security

	
	

	
Algorithm Suite

	
Algorithm suite used for message protection. See "Supported Algorithm Suites".

	
Basic128

	
Include Timestamp

	
Flag that specifies whether to include a timestamp. A timestamp can be used to prevent replay attacks by identifying an expiration time after which the message is no longer valid.

	
Enabled

	
Encrypt Signature

	
Flag that specifies whether to encrypt the signature.

	
Disabled

	
Confirm Signature

	
Flag that specifies whether to send a signature confirmation back to the client.

	
Enabled

	
Derived Keys

	
Flag that specifies whether derived keys should be used.

	
Disabled

	
Request Message Settings

	
See Table C-92.

	
N/A

	
Response Message Settings

	
See Table C-92.

	
N/A

	
Fault Message Settings

	
See Table C-92.

	
N/A

Configurations

Table C-22 lists the configuration properties and the default settings for the wss11_message_protection_client_template assertion template. For details about the configuration property settings, see "Editing the Configuration Properties".

For information about overriding policies, see "Attaching Client Policies Permitting Overrides".

Table C-22 wss11_message_protection_client_template Configurations

	Name	Description
	
keystore.recipient.alias

	
Keystore alias associated with the peer certificate. The security run time uses this alias to extract the peer certificate from the configured keystore and to encrypt messages to the peer.

Default settings:

	
Value—Not set

	
Default—orakey

	
ContentType—Required

	
Description—Not set

	
role

	
SOAP role.

Default settings:

	
Value—Not set

	
Default—ultimateReceiver

	
ContentType—Constant

	
Description—Not set

	
reference.priority

	
Optional property that specifies the priority of the policy attachment. When specified for an attached policy, the effective set of policies algorithm allows the policy with the highest integer value priority to take precedence over a conflicting policy attachment, irrespective of its scope.

Default settings:

	
Value—Not set

	
Default—Not set

	
ContentType—Optional

	
Description—Not set

The value of reference.priority can be any number between(-231) and (231 - 1). The higher the number, the higher the priority assigned during effective policy calculation. Any policy that does not have a value or a non-numeric value is treated as having a value of 0. If the value is set to any of the words "yes", "true", or "on", the value is set to 1.

For more information, see "Specifying the Priority of a Policy Attachment".

	
ignore.timestamp.in.response

	
Property used by the client to ignore the timestamp in the SOAP security header when it receives the response from the service. The default behavior is to NOT ignore the timestamp (the default value of this property is false). If set to true, then the timestamp is not required in the response message; if the timestamp is present, it is ignored.

The timestamp is required to prevent replay attacks, so in general, Oracle does not recommend setting this property to true except to address interoperability issues.

Note: This property is not shown in Fusion Middleware Control. Details for adding the property are described in "Configuring User-Defined Client- or Server-Side Override Properties".

oracle/wss11_message_protection_service_template

The wss11_message_protection_service_template assertion template enforces message protection (integrity and confidentiality) for inbound SOAP requests in accordance with the WS-Security 1.1 standard.

Settings

The settings for the wss11_message_protection_service_template are identical to the client version of the assertion template. See Table C-21 for information on the settings.

Configurations

Table C-23 lists the configuration properties and the default settings for the wss11_message_protection_service_template assertion template. For details about the configuration property settings, see "Editing the Configuration Properties".

For information about overriding policies, see "Attaching Web Service Policies Permitting Overrides".

Table C-23 wss11_message_protection_service_template Configurations

	Name	Description
	
role

	
SOAP role.

Default settings:

	
Value—Not set

	
Default—ultimateReceiver

	
ContentType—Constant

	
Description—Not set

	
reference.priority

	
Optional property that specifies the priority of the policy attachment. When specified for an attached policy, the effective set of policies algorithm allows the policy with the highest integer value priority to take precedence over a conflicting policy attachment, irrespective of its scope.

Default settings:

	
Value—Not set

	
Default—Not set

	
ContentType—Optional

	
Description—Not set

The value of reference.priority can be any number between(-231) and (231 - 1). The higher the number, the higher the priority assigned during effective policy calculation. Any policy that does not have a value or a non-numeric value is treated as having a value of 0. If the value is set to any of the words "yes", "true", or "on", the value is set to 1.

For more information, see "Specifying the Priority of a Policy Attachment".

Message Protection and Authentication Assertion Templates

Table C-24 summarizes the assertion templates that enforce both message protection and authentication, and indicates whether the token is inserted at the transport layer or SOAP header.

Table C-24 Message Protection and Authentication Assertion Templates

	Client Template	Service Template	Authentication Transport	Authentication SOAP	Message Protection Transport	Message Protection SOAP
	
oracle/wss_http_token_over_ssl_client_template

	
oracle/wss_http_token_over_ssl_service_template

	
Yes

	
No

	
Yes

	
No

	
oracle/wss_saml_token_bearer_over_ssl_client_template

	
oracle/wss_saml_token_bearer_over_ssl_service_template

	
No

	
Yes

	
Yes

	
No

	
oracle/wss_saml20_token_bearer_over_ssl_client_template

	
oracle/wss_saml20_token_bearer_over_ssl_service_template

	
No

	
Yes

	
Yes

	
No

	
oracle/wss_saml_token_over_ssl_client_template

	
oracle/wss_saml_token_over_ssl_service_template

	
No

	
Yes

	
Yes

	
No

	
oracle/wss_saml20_token_over_ssl_client_template

	
oracle/wss_saml20_token_over_ssl_service_template

	
No

	
Yes

	
Yes

	
No

	
oracle/wss_username_token_over_ssl_client_template

	
oracle/wss_username_token_over_ssl_service_template

	
No

	
Yes

	
Yes

	
No

	
oracle/wss10_saml_hok_token_with_message_protection_client_template

	
oracle/wss10_saml_hok_token_with_message_protection_service_template

	
No

	
Yes

	
No

	
Yes

	
oracle/wss10_saml_token_with_message_protection_client_template

	
oracle/wss10_saml_token_with_message_protection_service_template

	
No

	
Yes

	
No

	
Yes

	
oracle/wss10_saml20_token_with_message_protection_client_template

	
oracle/wss10_saml20_token_with_message_protection_service_template

	
No

	
Yes

	
No

	
Yes

	
oracle/wss10_username_token_with_message_protection_client_template

	
oracle/wss10_username_token_with_message_protection_service_template

	
No

	
Yes

	
No

	
Yes

	
oracle/wss10_x509_token_with_message_protection_client_template

	
oracle/wss10_x509_token_with_message_protection_service_template

	
No

	
Yes

	
No

	
Yes

	
oracle/wss11_kerberos_token_with_message_protection_client_template

	
oracle/wss11_kerberos_token_with_message_protection_service_template

	
No

	
Yes

	
No

	
Yes

	
oracle/wss11_saml_token_with_message_protection_client_template

	
oracle/wss11_saml_token_with_message_protection_service_template

	
No

	
Yes

	
No

	
Yes

	
oracle/wss11_saml20_token_with_message_protection_client_template

	
oracle/wss11_saml20_token_with_message_protection_service_template

	
No

	
Yes

	
No

	
Yes

	
oracle/wss11_username_token_with_message_protection_client_template

	
oracle/wss11_username_token_with_message_protection_service_template

	
No

	
Yes

	
No

	
Yes

	
oracle/wss11_x509_token_with_message_protection_client_template

	
oracle/wss11_x509_token_with_message_protection_service_template

	
No

	
Yes

	
No

	
Yes

oracle/wss_http_token_over_ssl_client_template

The wss_http_token_over_ssl_client_template assertion template includes credentials in the HTTP header for outbound client requests and authenticates users against the Oracle Platform Security Services identity store.

Settings

Table C-25 lists the settings for the wss_http_token_over_ssl_client_template assertion template.

Table C-25 wss_http_token_over_ssl_client_template Settings

	Name	Description	Default Value
	
Authentication Header—Mechanism

	
Authentication mechanism.

Valid values include:

	
basic—Client authenticates itself by transmitting the username and password.

Note: It is recommended that you configure SSL when using basic authentication. For more information, see "Configuring Keystores for SSL".

	
digest—Not supported in this release. Client authenticates itself by transmitting an encrypted password through the use of an MD5 digest.

	
cert—Not supported in this release. Client authenticates itself by transmitting a certificate.

	
custom—Not supported in this release. Custom authentication mechanism.

	
basic

	
Authentication Header—Header Name

	
Name of the authentication header.

	
None

	
Transport Security—Mutual Authentication Required

	
Flag that specifies whether two-way authentication is required.

Valid values include:

	
Enabled—The service must authenticate itself to the client, and the client must authenticate itself to the service.

	
Disabled—One-way authentication is required. The service must authenticate itself to the client, but the client is not required to authenticate itself to the service.

	
Disabled

	
Transport Security—Include Timestamp

	
Flag that specifies whether to include a timestamp. A timestamp can be used to prevent replay attacks by identifying an expiration time after which the message is no longer valid.

	
Disabled

Configurations

Table C-26 lists the configuration properties and the default settings for the wss_http_token_over_ssl_client_template assertion template. For details about the configuration property settings, see "Editing the Configuration Properties".

For information about overriding policies, see "Attaching Client Policies Permitting Overrides".

Table C-26 wss_http_token_over_ssl_client_template Configurations

	Name	Description
	
csf-key

	
Credential Store Key that maps to a username and password in the Oracle Platform Security Services identity store.

Default settings:

	
Value—Not set

	
Default—basic.credentials

	
ContentType—Required

	
Description—Not set

	
role

	
SOAP role.

Default settings:

	
Value—Not set

	
Default—ultimateReceiver

	
ContentType—Constant

	
Description—Not set

	
reference.priority

	
Optional property that specifies the priority of the policy attachment. When specified for an attached policy, the effective set of policies algorithm allows the policy with the highest integer value priority to take precedence over a conflicting policy attachment, irrespective of its scope.

Default settings:

	
Value—Not set

	
Default—Not set

	
ContentType—Optional

	
Description—Not set

The value of reference.priority can be any number between(-231) and (231 - 1). The higher the number, the higher the priority assigned during effective policy calculation. Any policy that does not have a value or a non-numeric value is treated as having a value of 0. If the value is set to any of the words "yes", "true", or "on", the value is set to 1.

For more information, see "Specifying the Priority of a Policy Attachment".

oracle/wss_http_token_over_ssl_service_template

The wss_http_token_over_ssl_service_template assertion template extracts the credentials in the HTTP header and authenticates users against the Oracle Platform Security Services identity store.

Settings

The settings for the wss_http_token_over_ssl_service_template assertion template are identical to the client version of the assertion template. See Table C-25 for information on the settings.

Configurations

Table C-27 lists the configuration properties and the default settings for the wss_http_token_service_template assertion template. For details about the configuration property settings, see "Editing the Configuration Properties".

For information about overriding policies, see "Attaching Web Service Policies Permitting Overrides".

Table C-27 wss_http_token_over_ssl_service_template Configurations

	Name	Description
	
realm

	
HTTP Realm.

Default settings:

	
Value—Not set

	
Default—owsm

	
ContentType—Constant

	
Description—Not set

	
role

	
SOAP role.

Default settings:

	
Value—Not set

	
Default—ultimateReceiver

	
ContentType—Constant

	
Description—Not set

	
reference.priority

	
Optional property that specifies the priority of the policy attachment. When specified for an attached policy, the effective set of policies algorithm allows the policy with the highest integer value priority to take precedence over a conflicting policy attachment, irrespective of its scope.

Default settings:

	
Value—Not set

	
Default—Not set

	
ContentType—Optional

	
Description—Not set

The value of reference.priority can be any number between(-231) and (231 - 1). The higher the number, the higher the priority assigned during effective policy calculation. Any policy that does not have a value or a non-numeric value is treated as having a value of 0. If the value is set to any of the words "yes", "true", or "on", the value is set to 1.

For more information, see "Specifying the Priority of a Policy Attachment".

oracle/wss_saml_token_bearer_over_ssl_client_template

The wss_saml_token_bearer_over_ssl_client template assertion template includes SAML tokens in outbound SOAP request messages. The SAML token with confirmation method [Bearer] is created automatically.

Settings

Table C-28 lists the settings for the wss_saml_token_bearer_over_ssl_client_template assertion template.

Table C-28 wss_saml_token_bearer_over_ssl_client_template Settings

	Name	Description	Default Value
	
Version

	
SAML version. The only valid value is: 1.1.

	
1.1

	
Confirmation Type

	
Confirmation type. The only valid value is: bearer.

	
bearer

	
Is Signed

	
Flag that specifies whether the SAML token is signed.

	
False

	
Is Encrypted

	
Flag that specifies whether the SAML token is encrypted.

	
False

	
Name Identifier Format

	
Specifies the type of format to be used for the name identifier.

Name Identifier Format is applicable only when subject.precedence is set to false. If subject.precedence is false, the user name to create the SAML assertion is obtained from the csf-key property or the username property (see "Configure the Username for the SAML Assertion"). The format of the user name must be the same as the format set in Name Identifier Format.

If subject.precedence is true, the user name to create the SAML assertion is obtained from the Subject. In this case, the Name Identifier Format is always "unspecified” and this cannot be changed by setting Name Identifier Format.

Specify one of the following values:

	
unspecified

	
emailAddress

	
X509SubjectName

	
WindowsDomainQualifiedName

	
unspecified

	
Transport Security—Mutual Authentication Required

	
Flag that specifies whether two-way authentication is required.

Valid values include:

	
Enabled—The service must authenticate itself to the client, and the client must authenticate itself to the service.

	
Disabled—One-way authentication is required. The service must authenticate itself to the client, but the client is not required to authenticate itself to the service.

	
Disabled

	
Transport Security—Include Timestamp

	
Flag that specifies whether to include a timestamp. A timestamp can be used to prevent replay attacks by identifying an expiration time after which the message is no longer valid.

	
Disabled

Configurations

Table C-29 lists the configuration properties and the default settings for the wss_saml_token_bearer_over_ssl_client_template assertion template. For details about the configuration property settings, see "Editing the Configuration Properties".

For information about overriding policies, see "Attaching Client Policies Permitting Overrides".

Table C-29 wss_saml_token_bearer_over_ssl_client_template Configurations

	Name	Description
	
user.attributes

	
User attributes related to the principal of the SAML token.

Specify the attributes to be included as a comma-separated list. For example, attrib1,attrib2. The attribute names you specify must exactly match valid attributes in the configured identity store. The Oracle WSM run time reads the values for these attributes from the configured identity store, and then includes the attributes and their values in the SAML assertion.

Requires that the Subject is available and subject.precedence is set to true.

Default settings:

	
Value—Not set

	
Default—Null. Attribute names should be comma separated.

	
ContentType—Optional

	
Description—Not set

A client policy reads the values of the attributes specified using user.attributes from the configured identity store. All valid attribute names and values are used to create the SAML attribute statement.

The user.attributes property is supported for a single identity store, and only the first identity store in the list is used. The user must therefore exist and be valid in the identity store used by the configured WebLogic Server Authentication provider. Authentication providers are described in "Configuring an Authentication Provider in WebLogic Server".

If the identity store you require is not the first identity store, you can specify that additional identity stores be searched. See "Including User Attributes in the Assertion" for more information.

	
user.roles.include

	
User roles to be included.

Default settings:

	
Value—Not set

	
Default—false

	
ContentType—Optional

	
Description—Not set

	
saml.issuer.name

	
Issuer URI.

Default settings:

	
Value—Not set

	
Default—www.oracle.com

	
ContentType—Optional

	
Description—Not set

	
csf-key

	
Credential Store Key that maps to a username and password in the Oracle Platform Security Services identity store.

Default settings:

	
Value—basic.credentials

	
Default—Not set

	
ContentType—Optional

	
Description—Not set

	
subject.precedence

	
Set subject.precedence to false to allow for the use of a client-specified username rather than the authenticated subject.

If subject.precedence is true, the user name to create the SAML assertion is obtained only from the Subject. Similarly, if subject.precedence is false, the user name to create the SAML assertion is obtained only from the csf-key username property.

Default settings:

	
Value—true

	
Default—true

	
ContentType—Optional

	
Description—Not set

	
saml.audience.uri

	
Represents the relying party, as a comma-separated URI. This field accepts wildcards.

Default settings:

	
Value—Not set

	
Default—null

	
ContentType—Optional

	
Description—Not set

	
reference.priority

	
Optional property that specifies the priority of the policy attachment. When specified for an attached policy, the effective set of policies algorithm allows the policy with the highest integer value priority to take precedence over a conflicting policy attachment, irrespective of its scope.

Default settings:

	
Value—Not set

	
Default—Not set

	
ContentType—Optional

	
Description—Not set

The value of reference.priority can be any number between(-231) and (231 - 1). The higher the number, the higher the priority assigned during effective policy calculation. Any policy that does not have a value or a non-numeric value is treated as having a value of 0. If the value is set to any of the words "yes", "true", or "on", the value is set to 1.

For more information, see "Specifying the Priority of a Policy Attachment".

	
propagate.identity.context

	
Reserved for future use.

oracle/wss_saml_token_bearer_over_ssl_service_template

The wss_saml_token_bearer_over_ssl_service_template assertion template authenticates users using credentials provided in SAML tokens with confirmation method 'Bearer' in the WS-Security SOAP header.

Settings

The settings for the wss_saml_token_bearer_over_ssl_service_template assertion template are identical to the client version of the assertion template, with the exception that Name Identifier Format is not present. See Table C-28 for information on the settings.

Configurations

Table C-30 lists the configuration properties and the default settings for the wss_saml_token_bearer_over_ssl_service_template assertion template. For details about the configuration property settings, see "Editing the Configuration Properties".

For information about overriding policies, see "Attaching Web Service Policies Permitting Overrides".

Table C-30 wss_saml_token_bearer_over_ssl_service_template Configurations

	Name	Description
	
role

	
SOAP role.

Default settings:

	
Value—Not set

	
Default—ultimateReceiver

	
ContentType—Constant

	
Description—Not set

	
saml.trusted.issuers

	
A comma-separated list of SAML token trusted issuers for an application that will override trusted issuers at domain level.

Default settings:

	
Value—Not set

	
Default—Not set

	
ContentType—Optional

	
Description—Not set

	
reference.priority

	
Optional property that specifies the priority of the policy attachment. When specified for an attached policy, the effective set of policies algorithm allows the policy with the highest integer value priority to take precedence over a conflicting policy attachment, irrespective of its scope.

Default settings:

	
Value—Not set

	
Default—Not set

	
ContentType—Optional

	
Description—Not set

The value of reference.priority can be any number between(-231) and (231 - 1). The higher the number, the higher the priority assigned during effective policy calculation. Any policy that does not have a value or a non-numeric value is treated as having a value of 0. If the value is set to any of the words "yes", "true", or "on", the value is set to 1.

For more information, see "Specifying the Priority of a Policy Attachment".

	
propagate.identity.context

	
Reserved for future use.

oracle/wss_saml20_token_bearer_over_ssl_client_template

The wss_saml20_token_bearer_over_ssl_client template assertion template includes SAML tokens in outbound SOAP request messages. The SAML token with confirmation method [Bearer] is created automatically.

Settings

Table C-31 lists the settings for the wss_saml20_token_bearer_over_ssl_client_template assertion template.

Table C-31 wss_saml20_token_bearer_over_ssl_client_template Settings

	Name	Description	Default Value
	
Version

	
SAML version. The only valid value is: 2.0.

	
2.0

	
Confirmation Type

	
Confirmation type. The only valid value is: bearer.

	
bearer

	
Is Signed

	
Flag that specifies whether the SAML token is signed.

	
False

	
Is Encrypted

	
Flag that specifies whether the SAML token is encrypted.

	
False

	
Name Identifier Format

	
Specifies the type of format to be used for the name identifier.

Name Identifier Format is applicable only when subject.precedence is set to false. If subject.precedence is false, the user name to create the SAML assertion is obtained from the csf-key property or the username property (see "Configure the Username for the SAML Assertion"). The format of the user name must be the same as the format set in Name Identifier Format.

If subject.precedence is true, the user name to create the SAML assertion is obtained from the Subject. In this case, the Name Identifier Format is always "unspecified” and this cannot be changed by setting Name Identifier Format.

Specify one of the following values:

	
unspecified

	
emailAddress

	
X509SubjectName

	
WindowsDomainQualifiedName

	
kerberos

	
unspecified

	
Transport Security—Mutual Authentication Required

	
Flag that specifies whether two-way authentication is required.

Valid values include:

	
Enabled—The service must authenticate itself to the client, and the client must authenticate itself to the service.

	
Disabled—One-way authentication is required. The service must authenticate itself to the client, but the client is not required to authenticate itself to the service.

	
Disabled

	
Transport Security—Include Timestamp

	
Flag that specifies whether to include a timestamp. A timestamp can be used to prevent replay attacks by identifying an expiration time after which the message is no longer valid.

	
Disabled

Configurations

Table C-32 lists the configuration properties and the default settings for the wss_saml20_token_bearer_over_ssl_client_template assertion template. For details about the configuration property settings, see "Editing the Configuration Properties".

For information about overriding policies, see "Attaching Client Policies Permitting Overrides".

Table C-32 wss_saml20_token_bearer_over_ssl_client_template Configurations

	Name	Description
	
user.attributes

	
User attributes related to the principal of the SAML token.

Specify the attributes to be included as a comma-separated list. For example, attrib1,attrib2. The attribute names you specify must exactly match valid attributes in the configured identity store. The Oracle WSM run time reads the values for these attributes from the configured identity store, and then includes the attributes and their values in the SAML assertion.

Requires that the Subject is available and subject.precedence is set to true.

Default settings:

	
Value—Not set

	
Default—Not set. Attribute names should be comma separated.

	
ContentType—Optional

	
Description—Not set

A client policy reads the values of the attributes specified using user.attributes from the configured identity store. All valid attribute names and values are used to create the SAML attribute statement.

The user.attributes property is supported for a single identity store, and only the first identity store in the list is used. The user must therefore exist and be valid in the identity store used by the configured WebLogic Server Authentication provider. Authentication providers are described in "Configuring an Authentication Provider in WebLogic Server".

If the identity store you require is not the first identity store, you can specify that additional identity stores be searched. See "Including User Attributes in the Assertion" for more information.

	
user.roles.include

	
User roles to be included.

Default settings:

	
Value—Not set

	
Default—false

	
ContentType—Optional

	
Description—Not set

	
saml.issuer.name

	
Issuer URI.

Default settings:

	
Value—Not set

	
Default—www.oracle.com

	
ContentType—Optional

	
Description—Not set

	
csf-key

	
Credential Store Key that maps to a username and password in the Oracle Platform Security Services identity store.

Default settings:

	
Value—basic.credentials

	
Default—Not set

	
ContentType—Optional

	
Description—Not set

	
subject.precedence

	
Set subject.precedence to false to allow for the use of a client-specified username rather than the authenticated subject.

If subject.precedence is true, the user name to create the SAML assertion is obtained only from the Subject. Similarly, if subject.precedence is false, the user name to create the SAML assertion is obtained only from the csf-key username property.

Default settings:

	
Value—true

	
Default—Not set

	
ContentType—Optional

	
Description—Not set

	
saml.audience.uri

	
Represents the relying party, as a comma-separated URI. This field accepts wildcards.

Default settings:

	
Value—Not set

	
Default—null

	
ContentType—Optional

	
Description—Not set

	
reference.priority

	
Optional property that specifies the priority of the policy attachment. When specified for an attached policy, the effective set of policies algorithm allows the policy with the highest integer value priority to take precedence over a conflicting policy attachment, irrespective of its scope.

Default settings:

	
Value—Not set

	
Default—Not set

	
ContentType—Optional

	
Description—Not set

The value of reference.priority can be any number between(-231) and (231 - 1). The higher the number, the higher the priority assigned during effective policy calculation. Any policy that does not have a value or a non-numeric value is treated as having a value of 0. If the value is set to any of the words "yes", "true", or "on", the value is set to 1.

For more information, see "Specifying the Priority of a Policy Attachment".

	
propagate.identity.context

	
Reserved for future use.

oracle/wss_saml20_token_bearer_over_ssl_service_template

The wss_saml20_token_bearer_over_ssl_service_template assertion template authenticates users using credentials provided in SAML tokens with confirmation method 'Bearer' in the WS-Security SOAP header.

Settings

The settings for the wss_saml20_token_bearer_over_ssl_service_template assertion template are identical to the client version of the assertion template, with the exception that Name Identifier Format is not present. See Table C-31 for information on the settings.

Configurations

Table C-33 lists the configuration properties and the default settings for the wss_saml20_token_bearer_over_ssl_service_template assertion template. For details about the configuration property settings, see "Editing the Configuration Properties".

For information about overriding policies, see "Attaching Web Service Policies Permitting Overrides".

Table C-33 wss_saml20_token_bearer_over_ssl_service_template Configurations

	Name	Description
	
role

	
SOAP role.

Default settings:

	
Value—Not set

	
Default—ultimateReceiver

	
ContentType—Constant

	
Description—Not set

	
saml.trusted.issuers

	
A comma-separated list of SAML token trusted issuers for an application that will override trusted issuers at domain level.

Default settings:

	
Value—Not set

	
Default—null

	
ContentType—Optional

	
Description—Not set

	
reference.priority

	
Optional property that specifies the priority of the policy attachment. When specified for an attached policy, the effective set of policies algorithm allows the policy with the highest integer value priority to take precedence over a conflicting policy attachment, irrespective of its scope.

Default settings:

	
Value—Not set

	
Default—Not set

	
ContentType—Optional

	
Description—Not set

The value of reference.priority can be any number between(-231) and (231 - 1). The higher the number, the higher the priority assigned during effective policy calculation. Any policy that does not have a value or a non-numeric value is treated as having a value of 0. If the value is set to any of the words "yes", "true", or "on", the value is set to 1.

For more information, see "Specifying the Priority of a Policy Attachment".

	
propagate.identity.context

	
Reserved for future use.

oracle/wss_saml_token_over_ssl_client_template

The wss_saml_token_over_ssl_client_template assertion template enables the authentication of credentials provided via a SAML token within WS-Security SOAP header using the sender-vouches confirmation type.

Settings

Table C-34 lists the settings for the wss_saml_token_over_ssl_client_template assertion template.

Table C-34 wss_saml_token_over_ssl_client_template Settings

	Name	Description	Default Value
	
Version

	
SAML version. The only valid value is: 1.1.

	
1.1

	
Confirmation Type

	
Confirmation type. The only valid value is:

	
sender-vouches—Uses the Sender Vouches SAML token for authentication.

	
sender-vouches

	
Is Signed

	
Flag that specifies whether the SAML token is signed. The only valid value for this policy is True.

	
True

	
Is Encrypted

	
Flag that specifies whether the SAML token is encrypted.

	
False

	
Name Identifier Format

	
Specifies the type of format to be used for the name identifier.

Name Identifier Format is applicable only when subject.precedence is set to false. If subject.precedence is false, the user name to create the SAML assertion is obtained from the csf-key property or the username property (see "Configure the Username for the SAML Assertion"). The format of the user name must be the same as the format set in Name Identifier Format.

If subject.precedence is true, the user name to create the SAML assertion is obtained from the Subject. In this case, the Name Identifier Format is always "unspecified” and this cannot be changed by setting Name Identifier Format.

Specify one of the following values:

	
unspecified

	
emailAddress

	
X509SubjectName

	
WindowsDomainQualifiedName

	
unspecified

	
Transport Security—Mutual Authentication Required

	
Flag that specifies whether two-way authentication is required.

Valid values include:

	
Enabled—The service must authenticate itself to the client, and the client must authenticate itself to the service.

	
Disabled—One-way authentication is required. The service must authenticate itself to the client, but the client is not required to authenticate itself to the service.

	
Enabled

	
Transport Security—Include Timestamp

	
Flag that specifies whether to include a timestamp. A timestamp can be used to prevent replay attacks by identifying an expiration time after which the message is no longer valid.

	
Disabled

Configurations

Table C-35 lists the configuration properties and the default settings for the wss_saml_token_over_ssl_client_template assertion template. For details about the configuration property settings, see "Editing the Configuration Properties".

For information about overriding policies, see "Attaching Client Policies Permitting Overrides".

Table C-35 wss_saml_token_over_ssl_client_template Configurations

	Name	Description
	
user.attributes

	
User attributes related to the principal of the SAML token.

Specify the attributes to be included as a comma-separated list. For example, attrib1,attrib2. The attribute names you specify must exactly match valid attributes in the configured identity store. The Oracle WSM run time reads the values for these attributes from the configured identity store, and then includes the attributes and their values in the SAML assertion.

Requires that the Subject is available and subject.precedence is set to true.

Default settings:

	
Value—Not set

	
Default—Not set. Attribute names should be comma separated.

	
ContentType—Optional

	
Description—Not set

A client policy reads the values of the attributes specified using user.attributes from the configured identity store. All valid attribute names and values are used to create the SAML attribute statement.

The user.attributes property is supported for a single identity store, and only the first identity store in the list is used. The user must therefore exist and be valid in the identity store used by the configured WebLogic Server Authentication provider. Authentication providers are described in "Configuring an Authentication Provider in WebLogic Server".

If the identity store you require is not the first identity store, you can specify that additional identity stores be searched. See "Including User Attributes in the Assertion" for more information.

	
user.roles.include

	
User roles to be included.

Default settings:

	
Value—Not set

	
Default—false

	
ContentType—Optional

	
Description—Not set

	
saml.issuer.name

	
Issuer URI.

Default settings:

	
Value—Not set

	
Default—www.oracle.com

	
ContentType—Optional

	
Description—Not set

	
csf-key

	
Credential Store Key that maps to a username and password in the Oracle Platform Security Services identity store.

Default settings:

	
Value—basic.credentials

	
Default—Not set

	
ContentType—Optional

	
Description—Not set

	
subject.precedence

	
Set subject.precedence to false to allow for the use of a client-specified username rather than the authenticated subject.

If subject.precedence is true, the user name to create the SAML assertion is obtained only from the Subject. Similarly, if subject.precedence is false, the user name to create the SAML assertion is obtained only from the csf-key username property.

Default settings:

	
Value—true

	
Default—Not set

	
ContentType—Optional

	
Description—Not set

	
saml.audience.uri

	
Represents the relying party, as a comma-separated URI. This field accepts wildcards.

Default settings:

	
Value—Not set

	
Default—Not set

	
ContentType—Optional

	
Description—Not set

	
reference.priority

	
Optional property that specifies the priority of the policy attachment. When specified for an attached policy, the effective set of policies algorithm allows the policy with the highest integer value priority to take precedence over a conflicting policy attachment, irrespective of its scope.

Default settings:

	
Value—Not set

	
Default—Not set

	
ContentType—Optional

	
Description—Not set

The value of reference.priority can be any number between(-231) and (231 - 1). The higher the number, the higher the priority assigned during effective policy calculation. Any policy that does not have a value or a non-numeric value is treated as having a value of 0. If the value is set to any of the words "yes", "true", or "on", the value is set to 1.

For more information, see "Specifying the Priority of a Policy Attachment".

	
propagate.identity.context

	
Reserved for future use.

oracle/wss_saml_token_over_ssl_service_template

The wss_saml_token_over_ssl_service_template enforces the authentication of credentials provided via a SAML token within WS-Security SOAP header using the sender-vouches confirmation type.

Settings

The settings for the wss_saml_token_over_ssl_service_template assertion template are identical to the client version of the assertion template, with the exception that Name Identifier Format is not present. See Table C-34 for information on the settings.

Configurations

Table C-36 lists the configuration properties and the default settings for the wss_saml_token_over_ssl_service_template assertion template. For details about the configuration property settings, see "Editing the Configuration Properties".

For information about overriding policies, see "Attaching Web Service Policies Permitting Overrides".

Table C-36 wss_saml_token_over_ssl_service_template Configurations

	Name	Description
	
role

	
SOAP role.

Default settings:

	
Value—Not set

	
Default—ultimateReceiver

	
ContentType—Constant

	
Description—Not set

	
saml.trusted.issuers

	
A comma-separated list of SAML token trusted issuers for an application that will override trusted issuers at domain level.

Default settings:

	
Value—Not set

	
Default—null

	
ContentType—Optional

	
Description—Not set

	
reference.priority

	
Optional property that specifies the priority of the policy attachment. When specified for an attached policy, the effective set of policies algorithm allows the policy with the highest integer value priority to take precedence over a conflicting policy attachment, irrespective of its scope.

Default settings:

	
Value—Not set

	
Default—Not set

	
ContentType—Optional

	
Description—Not set

The value of reference.priority can be any number between(-231) and (231 - 1). The higher the number, the higher the priority assigned during effective policy calculation. Any policy that does not have a value or a non-numeric value is treated as having a value of 0. If the value is set to any of the words "yes", "true", or "on", the value is set to 1.

For more information, see "Specifying the Priority of a Policy Attachment".

	
propagate.identity.context

	
Reserved for future use.

oracle/wss_saml20_token_over_ssl_client_template

The wss_saml20_token_over_ssl_client_template assertion template enables the authentication of credentials provided via a SAML token within WS-Security SOAP header using the sender-vouches confirmation type.

Settings

Table C-37 lists the settings for the wss_saml20_token_over_ssl_client_template assertion template.

Table C-37 wss_saml20_token_over_ssl_client_template Settings

	Name	Description	Default Value
	
Version

	
SAML version. The only valid value is: 2.0.

	
2.0

	
Confirmation Type

	
Confirmation type. The only valid value is:

	
sender-vouches—Uses the Sender Vouches SAML token for authentication.

	
sender-vouches

	
Is Signed

	
Flag that specifies whether the SAML token is signed. The only valid value for this policy is True.

	
True

	
Is Encrypted

	
Flag that specifies whether the SAML token is encrypted.

	
False

	
Name Identifier Format

	
Specifies the type of format to be used for the name identifier.

Name Identifier Format is applicable only when subject.precedence is set to false. If subject.precedence is false, the user name to create the SAML assertion is obtained from the csf-key property or the username property (see "Configure the Username for the SAML Assertion"). The format of the user name must be the same as the format set in Name Identifier Format.

If subject.precedence is true, the user name to create the SAML assertion is obtained from the Subject. In this case, the Name Identifier Format is always "unspecified” and this cannot be changed by setting Name Identifier Format.

Specify one of the following values:

	
unspecified

	
emailAddress

	
X509SubjectName

	
WindowsDomainQualifiedName

	
kerberos

	
unspecified

	
Transport Security—Mutual Authentication Required

	
Flag that specifies whether two-way authentication is required.

Valid values include:

	
Enabled—The service must authenticate itself to the client, and the client must authenticate itself to the service.

	
Disabled—One-way authentication is required. The service must authenticate itself to the client, but the client is not required to authenticate itself to the service.

	
Enabled

	
Transport Security—Include Timestamp

	
Flag that specifies whether to include a timestamp. A timestamp can be used to prevent replay attacks by identifying an expiration time after which the message is no longer valid.

	
Disabled

Configurations

Table C-38 lists the configuration properties and the default settings for the wss_saml20_token_over_ssl_client_template assertion template. For details about the configuration property settings, see "Editing the Configuration Properties".

For information about overriding policies, see "Attaching Client Policies Permitting Overrides".

Table C-38 wss_saml20_token_over_ssl_client_template Configurations

	Name	Description
	
user.attributes

	
User attributes related to the principal of the SAML token.

Specify the attributes to be included as a comma-separated list. For example, attrib1,attrib2. The attribute names you specify must exactly match valid attributes in the configured identity store. The Oracle WSM run time reads the values for these attributes from the configured identity store, and then includes the attributes and their values in the SAML assertion.

Requires that the Subject is available and subject.precedence is set to true.

Default settings:

	
Value—Not set

	
Default—Not set. Attribute names should be comma separated.

	
ContentType—Optional

	
Description—Not set

A client policy reads the values of the attributes specified using user.attributes from the configured identity store. All valid attribute names and values are used to create the SAML attribute statement.

The user.attributes property is supported for a single identity store, and only the first identity store in the list is used. The user must therefore exist and be valid in the identity store used by the configured WebLogic Server Authentication provider. Authentication providers are described in "Configuring an Authentication Provider in WebLogic Server".

If the identity store you require is not the first identity store, you can specify that additional identity stores be searched. See "Including User Attributes in the Assertion" for more information.

	
user.roles.include

	
User roles to be included.

Default settings:

	
Value—Not set

	
Default—false

	
ContentType—Optional

	
Description—Not set

	
saml.issuer.name

	
Issuer URI.

Default settings:

	
Value—Not set

	
Default—www.oracle.com

	
ContentType—Optional

	
Description—Not set

	
csf-key

	
Credential Store Key that maps to a username and password in the Oracle Platform Security Services identity store.

Default settings:

	
Value—basic.credentials

	
Default—Not set

	
ContentType—Optional

	
Description—Not set

	
subject.precedence

	
Set subject.precedence to false to allow for the use of a client-specified username rather than the authenticated subject.

If subject.precedence is true, the user name to create the SAML assertion is obtained only from the Subject. Similarly, if subject.precedence is false, the user name to create the SAML assertion is obtained only from the csf-key username property.

Default settings:

	
Value—Not set

	
Default—true

	
ContentType—Optional

	
Description—Not set

	
saml.audience.uri

	
Represents the relying party, as a comma-separated URI. This field accepts wildcards.

Default settings:

	
Value—Not set

	
Default—Not set

	
ContentType—Optional

	
Description—Not set

	
reference.priority

	
Optional property that specifies the priority of the policy attachment. When specified for an attached policy, the effective set of policies algorithm allows the policy with the highest integer value priority to take precedence over a conflicting policy attachment, irrespective of its scope.

Default settings:

	
Value—Not set

	
Default—Not set

	
ContentType—Optional

	
Description—Not set

The value of reference.priority can be any number between(-231) and (231 - 1). The higher the number, the higher the priority assigned during effective policy calculation. Any policy that does not have a value or a non-numeric value is treated as having a value of 0. If the value is set to any of the words "yes", "true", or "on", the value is set to 1.

For more information, see "Specifying the Priority of a Policy Attachment".

	
propagate.identity.context

	
Reserved for future use.

oracle/wss_saml20_token_over_ssl_service_template

The wss_saml20_token_over_ssl_service_template enforces the authentication of credentials provided via a SAML token within WS-Security SOAP header using the sender-vouches confirmation type.

Settings

The settings for the wss_saml20_token_over_ssl_service_template assertion template are identical to the client version of the assertion template, with the exception that Name Identifier Format is not present. See Table C-37 for information on the settings.

Configurations

Table C-39 lists the configuration properties and the default settings for the wss_saml20_token_over_ssl_service_template assertion template. For details about the configuration property settings, see "Editing the Configuration Properties".

For information about overriding policies, see "Attaching Web Service Policies Permitting Overrides".

Table C-39 wss_saml20_token_over_ssl_service_template Configurations

	Name	Description
	
role

	
SOAP role.

Default settings:

	
Value—Not set

	
Default—ultimateReceiver

	
ContentType—Constant

	
Description—Not set

	
saml.trusted.issuers

	
A comma-separated list of SAML token trusted issuers for an application that will override trusted issuers at domain level.

Default settings:

	
Value—Not set

	
Default—Not set

	
ContentType—Optional

	
Description—Not set

	
reference.priority

	
Optional property that specifies the priority of the policy attachment. When specified for an attached policy, the effective set of policies algorithm allows the policy with the highest integer value priority to take precedence over a conflicting policy attachment, irrespective of its scope.

Default settings:

	
Value—Not set

	
Default—Not set

	
ContentType—Optional

	
Description—Not set

The value of reference.priority can be any number between(-231) and (231 - 1). The higher the number, the higher the priority assigned during effective policy calculation. Any policy that does not have a value or a non-numeric value is treated as having a value of 0. If the value is set to any of the words "yes", "true", or "on", the value is set to 1.

For more information, see "Specifying the Priority of a Policy Attachment".

	
propagate.identity.context

	
Reserved for future use.

oracle/wss_username_token_over_ssl_client_template

The wss_username_token_over_ssl_client_template assertion template includes credentials in the WS-Security UsernameToken header in outbound SOAP request messages. The assertion supports three types of password credentials: plain text, digest, and no password.

	
Note:

Digest passwords are not supported in this release.

To protect against replay attacks, the assertion provides the option to require nonce or creation time in the username token.

Settings

Table C-40 lists the settings for the wss_username_token_over_ssl_client_template assertion template.

Table C-40 wss_username_token_over_ssl_client_template Settings

	Name	Description	Default Value
	
Password Type

	
Type of password required.

Valid values are:

	
none—No password.

	
plaintext—Password in clear text.

	
digest—Not supported in this release. Client authenticates itself by transmitting an encrypted password through the use of an MD5 digest.

Note: The plaintext type is not recommended when the token propagation occurs on an unsecure channel. However, if SSL is being used as the transport channel to secure a point-to-point connection between client and server, the plaintext type can be used as the channel takes care of protecting the password.

	
plaintext

	
Creation Time Required

	
Flag that specifies whether a time stamp for the creation of the username token is required.

Note: If Password Type is set to digest, then this attribute must be set to true. Otherwise, the policy to which it is attached will not validate.

	
False

	
Nonce Required

	
Flag that specifies whether a nonce must be included with the username to prevent replay attacks.

Note: If Password Type is set to digest, then this attribute must be set to true. Otherwise, the policy to which it is attached will not validate.

	
False

	
Transport Security—Mutual Authentication Required

	
Flag that specifies whether two-way authentication is required.

Valid values include:

	
Enabled—Two-way authentication. The service must authenticate itself to the client, and the client must authenticate itself to the service.

	
Disabled—One-way authentication. The service must authenticate itself to the client, but the client is not required to authenticate itself to the service.

	
Disabled

	
Transport Security—Include Timestamp

	
Flag that specifies whether to include a timestamp. A timestamp can be used to prevent replay attacks by identifying an expiration time after which the message is no longer valid.

	
Disabled

Configurations

Table C-41 lists the configuration properties and the default settings for the wss_username_token_over_ssl_client_template assertion template. For details about the configuration property settings, see "Editing the Configuration Properties".

For information about overriding policies, see "Attaching Client Policies Permitting Overrides".

Table C-41 wss_username_token_over_ssl_client_template Configurations

	Name	Description
	
role

	
SOAP role.

Default settings:

	
Value—Not set

	
Default—ultimateReceiver

	
ContentType—Constant

	
Description—Not set

	
csf-key

	
Credential Store Key that maps to a username and password in the Oracle Platform Security Services (OPSS) identity store.

Default settings:

	
Value—Not set

	
Default—basic.credentials

	
ContentType—Required

	
Description—Not set

	
reference.priority

	
Optional property that specifies the priority of the policy attachment. When specified for an attached policy, the effective set of policies algorithm allows the policy with the highest integer value priority to take precedence over a conflicting policy attachment, irrespective of its scope.

Default settings:

	
Value—Not set

	
Default—Not set

	
ContentType—Optional

	
Description—Not set

The value of reference.priority can be any number between(-231) and (231 - 1). The higher the number, the higher the priority assigned during effective policy calculation. Any policy that does not have a value or a non-numeric value is treated as having a value of 0. If the value is set to any of the words "yes", "true", or "on", the value is set to 1.

For more information, see "Specifying the Priority of a Policy Attachment".

oracle/wss_username_token_over_ssl_service_template

The wss_username_token_over_ssl_service_template assertion template uses the credentials in the UsernameToken WS-Security SOAP header to authenticate users against the Oracle Platform Security Services configured identity store. The assertion supports three types of password credentials: plain text, digest, and no password.

	
Note:

Digest passwords are not supported in this release.

To protect against replay attacks, the assertion provides the option to require nonce or creation time in the username token.

Settings

The settings for the wss_username_token_over_ssl_service_template assertion template are identical to the client version of the assertion template. See Table C-40 for information on the settings.

Configurations

Table C-42 lists the configuration properties and the default settings for the wss_username_token_over_ssl­_service_template assertion template. For details about the configuration property settings, see "Editing the Configuration Properties".

For information about overriding policies, see "Attaching Web Service Policies Permitting Overrides".

Table C-42 wss_username_token_over_ssl_service_template Configurations

	Name	Description
	
role

	
SOAP role.

Default settings:

	
Value—Not set

	
Default—Default value. This value is used if Value field is not set. Defaults to ultimateReceiver.

	
ContentType—Constant

	
Description—Not set

	
reference.priority

	
Optional property that specifies the priority of the policy attachment. When specified for an attached policy, the effective set of policies algorithm allows the policy with the highest integer value priority to take precedence over a conflicting policy attachment, irrespective of its scope.

Default settings:

	
Value—Not set

	
Default—Not set

	
ContentType—Optional

	
Description—Not set

The value of reference.priority can be any number between(-231) and (231 - 1). The higher the number, the higher the priority assigned during effective policy calculation. Any policy that does not have a value or a non-numeric value is treated as having a value of 0. If the value is set to any of the words "yes", "true", or "on", the value is set to 1.

For more information, see "Specifying the Priority of a Policy Attachment".

oracle/wss10_saml_hok_token_with_message_protection_client_template

The wss10_saml_hok_token_with_message_protection_client_template assertion template provides message protection (integrity and confidentiality) and SAML holder of key based authentication for outbound SOAP messages in accordance with the WS-Security 1.0 standard.

Settings

Table C-43 lists the settings for the wss10_saml_hok_token_with_message_protection_client_template assertion template.

Table C-43 wss10_saml_hok_token_with_message_protection_client_template Settings

	Name	Description	Default Value
	
SAML Token Type

	
	

	
Version

	
SAML version. The only valid value is: 1.1.

	
1.1

	
Confirmation Type

	
Confirmation type. The only valid value is: holder-of-key.

	
holder-of-key

	
Is Signed

	
Flag that specifies whether the SAML token is signed. The only valid value is: True.

	
True

	
Is Encrypted

	
Flag that specifies whether the SAML token is encrypted.

	
False

	
Name Identifier Format

	
Name Identifier Format is applicable only when subject.precedence is set to false. If subject.precedence is false, the user name to create the SAML assertion is obtained from the csf-key property or the username property (see "Configure the Username for the SAML Assertion"). The format of the user name must be the same as the format set in Name Identifier Format.

If subject.precedence is true, the user name to create the SAML assertion is obtained from the Subject. In this case, the Name Identifier Format is always "unspecified” and this cannot be changed by setting Name Identifier Format.

Specifies the type of format to be used for the name identifier.

Specify one of the following values:

	
unspecified

	
emailAddress

	
X509SubjectName

	
WindowsDomainQualifiedName

	
unspecified

	
X509 Token

	
	

	
Sign Key Reference Mechanism

	
Mechanism used when signing the request.

Valid values include:

	
direct—X.509 Token is included in the request.

	
ski—Subject Key Identifier (SKI) extension value of the X.509 certificate used to reference the certificate. (Some certificates may not have this extension.) The recipient of the message looks up its keystore for a certificate corresponding to the SKI and validates the signature against it.

	
issuerserial—Composite key of issuer name and serial number attributes used to reference the X.509 certificate. The recipient of the message looks up its keystore for a certificate corresponding to Issuer name and Serial Number and validates the signature using it.

	
ski

	
Encryption Key Reference Mechanism

	
Mechanism used when encrypting the request. Valid values include:

	
direct—X.509 Token is included in the request.

	
ski—Subject Key Identifier (SKI) extension value of the X.509 certificate used to reference the certificate. (Some certificates may not have this extension.) The recipient of the message looks up its keystore for a certificate corresponding to the SKI and validates the signature against it.

	
issuerserial—Composite key of issuer name and serial number attributes used to reference the X.509 certificate. The recipient of the message looks up its keystore for a certificate corresponding to Issuer name and Serial Number and validates the signature using it.

	
direct

	
Recipient Sign Key Reference Mechanism

	
Mechanism used when signing the receipt. Valid values are the same as for Sign Key Reference Mechanism above.

	
direct

	
Recipient Encryption Key Reference Mechanism

	
Mechanism used when encrypting the receipt. Valid values are the same as for Sign Key Reference Mechanism above.

	
direct

	
Message Security

	
	

	
Algorithm Suite

	
Algorithm suite used for message protection. See "Supported Algorithm Suites".

	
Basic128

	
Include Timestamp

	
Flag that specifies whether to include a timestamp. A timestamp can be used to prevent replay attacks by identifying an expiration time after which the message is no longer valid.

	
Enabled

	
Encrypt Signature

	
Flag that specifies whether to encrypt the signature.

	
Disabled

	
Request Message Settings

	
See Table C-92.

	
N/A

	
Response Message Settings

	
See Table C-92.

	
N/A

	
Fault Message Settings

	
See Table C-92.

	
N/A

Configurations

Table C-44 lists the configuration properties and the default settings for the wss10_saml_hok_token_with_message_protection_client_template assertion template. For details about the configuration property settings, see "Editing the Configuration Properties".

For information about overriding policies, see "Attaching Client Policies Permitting Overrides".

Table C-44 wss10_saml_hok_token_with_message_protection_client_template Configurations

	Name	Description
	
user.attributes

	
User attributes related to the principal of the SAML token.

Specify the attributes to be included as a comma-separated list. For example, attrib1,attrib2. The attribute names you specify must exactly match valid attributes in the configured identity store. The Oracle WSM run time reads the values for these attributes from the configured identity store, and then includes the attributes and their values in the SAML assertion.

Requires that the Subject is available and subject.precedence is set to true.

Default settings:

	
Value—Not set

	
Default—Not set. Attribute names should be comma separated.

	
ContentType—Optional

	
Description—Not set

A client policy reads the values of the attributes specified using user.attributes from the configured identity store. All valid attribute names and values are used to create the SAML attribute statement.

The user.attributes property is supported for a single identity store, and only the first identity store in the list is used. The user must therefore exist and be valid in the identity store used by the configured WebLogic Server Authentication provider. Authentication providers are described in "Configuring an Authentication Provider in WebLogic Server".

If the identity store you require is not the first identity store, you can specify that additional identity stores be searched. See "Including User Attributes in the Assertion" for more information.

	
keystore.recipient.alias

	
Keystore alias associated with the peer certificate. The security run time uses this alias to extract the peer certificate from the configured keystore and to encrypt messages to the peer.

Default settings:

	
Value—orakey

	
Default—Not set

	
ContentType—Required

	
Description—Not set

	
saml.issuer.name

	
Issuer URI.

Default settings:

	
Value—www.oracle.com

	
Default—Not set

	
ContentType—Optional

	
Description—Not set

	
user.roles.include

	
User roles to be included.

Default settings:

	
Value—false

	
Default—Not set

	
ContentType—Optional

	
Description—Not set

	
saml.assertion.filename

	
Name of the of the SAML token file.

Default settings:

	
Value—temp

	
Default—Not set

	
ContentType—Optional

	
Description—Not set

	
reference.priority

	
Optional property that specifies the priority of the policy attachment. When specified for an attached policy, the effective set of policies algorithm allows the policy with the highest integer value priority to take precedence over a conflicting policy attachment, irrespective of its scope.

Default settings:

	
Value—Not set

	
Default—Not set

	
ContentType—Optional

	
Description—Not set

The value of reference.priority can be any number between(-231) and (231 - 1). The higher the number, the higher the priority assigned during effective policy calculation. Any policy that does not have a value or a non-numeric value is treated as having a value of 0. If the value is set to any of the words "yes", "true", or "on", the value is set to 1.

For more information, see "Specifying the Priority of a Policy Attachment".

	
ignore.timestamp.in.response

	
Property used by the client to ignore the timestamp in the SOAP security header when it receives the response from the service. The default behavior is to NOT ignore the timestamp (the default value of this property is false). If set to true, then the timestamp is not required in the response message; if the timestamp is present, it is ignored.

The timestamp is required to prevent replay attacks, so in general, Oracle does not recommend setting this property to true except to address interoperability issues.

Note: This property is not shown in Fusion Middleware Control. Details for adding the property are described in "Configuring User-Defined Client- or Server-Side Override Properties".

oracle/wss10_saml_hok_token_with_message_protection_service_template

The wss10_saml_hok_token_with_message_protection_service_template assertion template enforces message-level protection and SAML holder of key based authentication for inbound SOAP requests in accordance with the WS-Security 1.0 standard.

Settings

The settings for the wss10_saml_hok_token_with_message_protection_service_template are identical to those for the client version of the assertion template, with the exception that Name Identifier Format is not present. See Table C-43 for information on the settings.

Configurations

Table C-45 lists the configuration properties and the default settings for the wss10_saml_hok_token_with_message_protection_service_template assertion template. For details about the configuration property settings, see "Editing the Configuration Properties".

For information about overriding policies, see "Attaching Web Service Policies Permitting Overrides".

Table C-45 wss10_saml_hok_token_with_message_protection_service_template Configurations

	Name	Description
	
role

	
SOAP role.

Default settings:

	
Value—Not set

	
Default—ultimateReceiver

	
ContentType—Constant

	
Description—Not set

	
saml.trusted.issuers

	
A comma-separated list of SAML token trusted issuers for an application that will override trusted issuers at domain level.

Default settings:

	
Value—Not set

	
Default—Not set

	
ContentType—Optional

	
Description—Not set

	
reference.priority

	
Optional property that specifies the priority of the policy attachment. When specified for an attached policy, the effective set of policies algorithm allows the policy with the highest integer value priority to take precedence over a conflicting policy attachment, irrespective of its scope.

Default settings:

	
Value—Not set

	
Default—Not set

	
ContentType—Optional

	
Description—Not set

The value of reference.priority can be any number between(-231) and (231 - 1). The higher the number, the higher the priority assigned during effective policy calculation. Any policy that does not have a value or a non-numeric value is treated as having a value of 0. If the value is set to any of the words "yes", "true", or "on", the value is set to 1.

For more information, see "Specifying the Priority of a Policy Attachment".

oracle/wss10_saml_token_with_message_protection_client_template

The wss10_saml_token_with_message_protection_client_template assertion template provides message-level protection and SAML-based authentication for outbound SOAP messages in accordance with the WS-Security 1.0 standard.

The Web service consumer includes a SAML token in the SOAP header, and the confirmation type is sender-vouches. The SOAP message is signed and encrypted. The Web service provider decrypts the message, and verifies and authenticates the signature.

To prevent replay attacks, the assertion provides the option to include time stamps, SAML token limits, and their verification by the Web service provider.

Settings

Table C-46 lists the settings for the wss10_saml_token_with_message_protection_client_template assertion template.

Table C-46 wss10_saml_token_with_message_protection_client_template Settings

	Name	Description	Default Value
	
SAML Token Type

	
	

	
Version

	
SAML version. The only valid value is: 1.1.

	
1.1

	
Confirmation Type

	
Confirmation type. The only valid value is: sender-vouches.

	
sender-vouches

	
Is Signed

	
Flag that specifies whether the SAML token is signed. The only valid value for this policy is: True.

	
True

	
Is Encrypted

	
Flag that specifies whether the SAML token is encrypted.

	
False

	
Name Identifier Format

	
Specifies the type of format to be used for the name identifier.

Name Identifier Format is applicable only when subject.precedence is set to false. If subject.precedence is false, the user name to create the SAML assertion is obtained from the csf-key property or the username property (see "Configure the Username for the SAML Assertion"). The format of the user name must be the same as the format set in Name Identifier Format.

If subject.precedence is true, the user name to create the SAML assertion is obtained from the Subject. In this case, the Name Identifier Format is always "unspecified” and this cannot be changed by setting Name Identifier Format.

Specify one of the following values:

	
unspecified

	
emailAddress

	
X509SubjectName

	
WindowsDomainQualifiedName

	
unspecified

	
X509 Token

	
	

	
Sign Key Reference Mechanism

	
Mechanism used when signing the request.

Valid values include:

	
direct—X.509 Token is included in the request.

	
ski—Subject Key Identifier (SKI) extension value of the X.509 certificate used to reference the certificate. (Some certificates may not have this extension.) The recipient of the message looks up its keystore for a certificate corresponding to the SKI and validates the signature against it.

	
issuerserial—Composite key of issuer name and serial number attributes used to reference the X.509 certificate. The recipient of the message looks up its keystore for a certificate corresponding to Issuer name and Serial Number and validates the signature using it.

	
direct

	
Encryption Key Reference Mechanism

	
Mechanism used when encrypting the request. Valid values are the same as for Sign Key Reference Mechanism above.

	
direct

	
Recipient Sign Key Reference Mechanism

	
Mechanism used when signing the receipt. Valid values are the same as for Sign Key Reference Mechanism above.

	
direct

	
Recipient Encryption Key Reference Mechanism

	
Mechanism used when encrypting the receipt. Valid values are the same as for Sign Key Reference Mechanism above.

	
direct

	
Message Security

	
	

	
Algorithm Suite

	
Algorithm suite used for message protection. See "Supported Algorithm Suites".

	
Basic128

	
Include Timestamp

	
Flag that specifies whether to include a timestamp. A timestamp can be used to prevent replay attacks by identifying an expiration time after which the message is no longer valid.

	
Enabled

	
Encrypt Signature

	
Flag that specifies whether to encrypt the signature.

	
Disabled

	
Request Message Settings

	
See Table C-92.

	
N/A

	
Response Message Settings

	
See Table C-92.

	
N/A

	
Fault Message Settings

	
See Table C-92.

	
N/A

Configurations

Table C-47 lists the configuration properties and the default settings for the wss10_saml_token_with_message_protection_client_template assertion template. For details about the configuration property settings, see "Editing the Configuration Properties".

For information about overriding policies, see "Attaching Client Policies Permitting Overrides".

Table C-47 wss10_saml_token_with_message_protection_client_template Configurations

	Name	Description
	
user.attributes

	
User attributes related to the principal of the SAML token.

Specify the attributes to be included as a comma-separated list. For example, attrib1,attrib2. The attribute names you specify must exactly match valid attributes in the configured identity store. The Oracle WSM run time reads the values for these attributes from the configured identity store, and then includes the attributes and their values in the SAML assertion.

Requires that the Subject is available and subject.precedence is set to true.

Default settings:

	
Value—Not set

	
Default—Not set. Attribute names should be comma separated.

	
ContentType—Optional

	
Description—Not set

A client policy reads the values of the attributes specified using user.attributes from the configured identity store. All valid attribute names and values are used to create the SAML attribute statement.

The user.attributes property is supported for a single identity store, and only the first identity store in the list is used. The user must therefore exist and be valid in the identity store used by the configured WebLogic Server Authentication provider. Authentication providers are described in "Configuring an Authentication Provider in WebLogic Server".

If the identity store you require is not the first identity store, you can specify that additional identity stores be searched. See "Including User Attributes in the Assertion" for more information.

	
keystore.recipient.alias

	
Keystore alias associated with the peer certificate. The security run time uses this alias to extract the peer certificate from the configured keystore and to encrypt messages to the peer.

Default settings:

	
Value—Not set

	
Default—orakey

	
ContentType—Required

	
Description—Not set

	
user.roles.include

	
User roles to be included.

Default settings:

	
Value—Not set

	
Default—false

	
ContentType—Optional

	
Description—Not set

	
saml.issuer.name

	
Issuer URI.

Default settings:

	
Value—Not set

	
Default—www.oracle.com

	
ContentType—Optional

	
Description—Not set

	
csf-key

	
Credential Store Key that maps to a username and password in the Oracle Platform Security Services identity store.

Default settings:

	
Value—basic.credentials

	
Default—Not set

	
ContentType—Optional

	
Description—Not set

	
subject.precedence

	
Set subject.precedence to false to allow for the use of a client-specified username rather than the authenticated subject.

If subject.precedence is true, the user name to create the SAML assertion is obtained only from the Subject. Similarly, if subject.precedence is false, the user name to create the SAML assertion is obtained only from the csf-key username property.

Default settings:

	
Value—true

	
Default—Not set

	
ContentType—Optional

	
Description—Not set

	
saml.audience.uri

	
Represents the relying party, as a comma-separated URI. This field accepts wildcards.

Default settings:

	
Value—Not set

	
Default—null

	
ContentType—Optional

	
Description—Not set

	
reference.priority

	
Optional property that specifies the priority of the policy attachment. When specified for an attached policy, the effective set of policies algorithm allows the policy with the highest integer value priority to take precedence over a conflicting policy attachment, irrespective of its scope.

Default settings:

	
Value—Not set

	
Default—Not set

	
ContentType—Optional

	
Description—Not set

The value of reference.priority can be any number between(-231) and (231 - 1). The higher the number, the higher the priority assigned during effective policy calculation. Any policy that does not have a value or a non-numeric value is treated as having a value of 0. If the value is set to any of the words "yes", "true", or "on", the value is set to 1.

For more information, see "Specifying the Priority of a Policy Attachment".

	
ignore.timestamp.in.response

	
Property used by the client to ignore the timestamp in the SOAP security header when it receives the response from the service. The default behavior is to NOT ignore the timestamp (the default value of this property is false). If set to true, then the timestamp is not required in the response message; if the timestamp is present, it is ignored.

The timestamp is required to prevent replay attacks, so in general, Oracle does not recommend setting this property to true except to address interoperability issues.

Note: This property is not shown in Fusion Middleware Control. Details for adding the property are described in "Configuring User-Defined Client- or Server-Side Override Properties".

	
propagate.identity.context

	
Reserved for future use.

oracle/wss10_saml_token_with_message_protection_service_template

The wss10_saml_token_with_message_protection_service_template assertion template enforces message protection (integrity and confidentiality) and SAML-based authentication for inbound SOAP requests in accordance with the WS-Security 1.0 standard.

The Web service consumer includes a SAML token in the SOAP header, and the confirmation type is sender-vouches. The SOAP message is signed and encrypted. The Web service provider decrypts the message, and verifies and authenticates the signature.

To prevent replay attacks, the assertion provides the option to include time stamps, SAML token limits, and their verification by the Web service provider.

Settings

The settings for the wss10_saml_token_with_message_protection_service_template are identical to those for client version of the assertion template, with the exception that Name Identifier Format is not present. See Table C-46 for information on the settings.

Configurations

Table C-48 lists the configuration properties and the default settings for the wss10_saml_token_with_message_protection_service_template assertion template. For details about the configuration property settings, see "Editing the Configuration Properties".

For information about overriding policies, see "Attaching Web Service Policies Permitting Overrides".

Table C-48 wss10_saml_token_with_message_protection_service_template Configurations

	Name	Description
	
role

	
SOAP role.

Default settings:

	
Value—Not set

	
Default—ultimateReceiver

	
ContentType—Constant

	
Description—Not set

	
saml.trusted.issuers

	
A comma-separated list of SAML token trusted issuers for an application that will override trusted issuers at domain level.

Default settings:

	
Value—Not set

	
Default—Not set

	
ContentType—Optional

	
Description—Not set

	
reference.priority

	
Optional property that specifies the priority of the policy attachment. When specified for an attached policy, the effective set of policies algorithm allows the policy with the highest integer value priority to take precedence over a conflicting policy attachment, irrespective of its scope.

Default settings:

	
Value—Not set

	
Default—Not set

	
ContentType—Optional

	
Description—Not set

The value of reference.priority can be any number between(-231) and (231 - 1). The higher the number, the higher the priority assigned during effective policy calculation. Any policy that does not have a value or a non-numeric value is treated as having a value of 0. If the value is set to any of the words "yes", "true", or "on", the value is set to 1.

For more information, see "Specifying the Priority of a Policy Attachment".

	
propagate.identity.context

	
Reserved for future use.

oracle/wss10_saml20_token_with_message_protection_client_template

The wss10_saml20_token_with_message_protection_client_template assertion template provides message-level protection and SAML-based authentication for outbound SOAP messages in accordance with the WS-Security 1.0 standard.

The Web service consumer includes a SAML token in the SOAP header, and the confirmation type is sender-vouches. The SOAP message is signed and encrypted. The Web service provider decrypts the message, and verifies and authenticates the signature.

To prevent replay attacks, the assertion provides the option to include time stamps, SAML token limits, and their verification by the Web service provider.

Settings

Table C-49 lists the settings for the wss10_saml20_token_with_message_protection_client_template assertion template.

Table C-49 wss10_saml20_token_with_message_protection_client_template Settings

	Name	Description	Default Value
	
SAML Token Type

	
	

	
Version

	
SAML version. The only valid value is: 2.0.

	
2.0

	
Confirmation Type

	
Confirmation type. The only valid value is: sender-vouches.

	
sender-vouches

	
Is Signed

	
Flag that specifies whether the SAML token is signed. The only valid value for this policy is: True.

	
True

	
Is Encrypted

	
Flag that specifies whether the SAML token is encrypted.

	
False

	
Name Identifier Format

	
Specifies the type of format to be used for the name identifier.

Name Identifier Format is applicable only when subject.precedence is set to false. If subject.precedence is false, the user name to create the SAML assertion is obtained from the csf-key property or the username property (see "Configure the Username for the SAML Assertion"). The format of the user name must be the same as the format set in Name Identifier Format.

If subject.precedence is true, the user name to create the SAML assertion is obtained from the Subject. In this case, the Name Identifier Format is always "unspecified” and this cannot be changed by setting Name Identifier Format.

Specify one of the following values:

	
unspecified

	
emailAddress

	
X509SubjectName

	
WindowsDomainQualifiedName

	
kerberos

	
unspecified

	
X509 Token

	
	

	
Sign Key Reference Mechanism

	
Mechanism used when signing the request.

Valid values include:

	
direct—X.509 Token is included in the request.

	
ski—Subject Key Identifier (SKI) extension value of the X.509 certificate used to reference the certificate. (Some certificates may not have this extension.) The recipient of the message looks up its keystore for a certificate corresponding to the SKI and validates the signature against it.

	
issuerserial—Composite key of issuer name and serial number attributes used to reference the X.509 certificate. The recipient of the message looks up its keystore for a certificate corresponding to Issuer name and Serial Number and validates the signature using it.

	
direct

	
Encryption Key Reference Mechanism

	
Mechanism used when encrypting the request. Valid values are the same as for Sign Key Reference Mechanism above.

	
direct

	
Recipient Sign Key Reference Mechanism

	
Mechanism used when signing the receipt. Valid values are the same as for Sign Key Reference Mechanism above.

	
direct

	
Recipient Encryption Key Reference Mechanism

	
Mechanism used when encrypting the receipt. Valid values are the same as for Sign Key Reference Mechanism above.

	
direct

	
Message Security

	
	

	
Algorithm Suite

	
Algorithm suite used for message protection. See "Supported Algorithm Suites".

	
Basic128

	
Include Timestamp

	
Flag that specifies whether to include a timestamp. A timestamp can be used to prevent replay attacks by identifying an expiration time after which the message is no longer valid.

	
Enabled

	
Encrypt Signature

	
Flag that specifies whether to encrypt the signature.

	
Disabled

	
Request Message Settings

	
See Table C-92.

	
N/A

	
Response Message Settings

	
See Table C-92.

	
N/A

	
Fault Message Settings

	
See Table C-92.

	
N/A

Configurations

Table C-50 lists the configuration properties and the default settings for the wss10_saml20_token_with_message_protection_client_template assertion template. For details about the configuration property settings, see "Editing the Configuration Properties".

For information about overriding policies, see "Attaching Client Policies Permitting Overrides".

Table C-50 wss10_saml20_token_with_message_protection_client_template Configurations

	Name	Description
	
user.attributes

	
User attributes related to the principal of the SAML token.

Specify the attributes to be included as a comma-separated list. For example, attrib1,attrib2. The attribute names you specify must exactly match valid attributes in the configured identity store. The Oracle WSM run time reads the values for these attributes from the configured identity store, and then includes the attributes and their values in the SAML assertion.

Requires that the Subject is available and subject.precedence is set to true.

Default settings:

	
Value—Not set

	
Default—Not set. Attribute names should be comma separated.

	
ContentType—Optional

	
Description—Not set

A client policy reads the values of the attributes specified using user.attributes from the configured identity store. All valid attribute names and values are used to create the SAML attribute statement.

The user.attributes property is supported for a single identity store, and only the first identity store in the list is used. The user must therefore exist and be valid in the identity store used by the configured WebLogic Server Authentication provider. Authentication providers are described in "Configuring an Authentication Provider in WebLogic Server".

If the identity store you require is not the first identity store, you can specify that additional identity stores be searched. See "Including User Attributes in the Assertion" for more information.

	
keystore.recipient.alias

	
Keystore alias associated with the peer certificate. The security run time uses this alias to extract the peer certificate from the configured keystore and to encrypt messages to the peer.

Default settings:

	
Value—Not set

	
Default—orakey

	
ContentType—Required

	
Description—Not set

	
user.roles.include

	
User roles to be included.

Default settings:

	
Value—Not set

	
Default—false

	
ContentType—Optional

	
Description—Not set

	
saml.issuer.name

	
Issuer URI.

Default settings:

	
Value—Not set

	
Default—www.oracle.com

	
ContentType—Optional

	
Description—Not set

	
csf-key

	
Credential Store Key that maps to a username and password in the Oracle Platform Security Services identity store.

Default settings:

	
Value—basic.credentials

	
Default—Not set

	
ContentType—Optional

	
Description—Not set

	
subject.precedence

	
Set subject.precedence to false to allow for the use of a client-specified username rather than the authenticated subject.

If subject.precedence is true, the user name to create the SAML assertion is obtained only from the Subject. Similarly, if subject.precedence is false, the user name to create the SAML assertion is obtained only from the csf-key username property.

Default settings:

	
Value—true

	
Default—Not set

	
ContentType—Optional

	
Description—Not set

	
attesting.mapping.attribute

	
The mapping attribute used to represent the attesting entity. Only the DN is currently supported. This attribute is applicable only to sender vouches and then only to message protection use cases. It is not applicable to SAML over SSL policies.

Default settings:

	
Value—DN

	
Default—Not set

	
ContentType—Optional

	
Description—Not set

	
saml.audience.uri

	
Represents the relying party, as a comma-separated URI. This field accepts wildcards.

Default settings:

	
Value—Not set

	
Default—Not set

	
ContentType—Optional

	
Description—Not set

	
reference.priority

	
Optional property that specifies the priority of the policy attachment. When specified for an attached policy, the effective set of policies algorithm allows the policy with the highest integer value priority to take precedence over a conflicting policy attachment, irrespective of its scope.

Default settings:

	
Value—Not set

	
Default—Not set

	
ContentType—Optional

	
Description—Not set

The value of reference.priority can be any number between(-231) and (231 - 1). The higher the number, the higher the priority assigned during effective policy calculation. Any policy that does not have a value or a non-numeric value is treated as having a value of 0. If the value is set to any of the words "yes", "true", or "on", the value is set to 1.

For more information, see "Specifying the Priority of a Policy Attachment".

	
ignore.timestamp.in.response

	
Property used by the client to ignore the timestamp in the SOAP security header when it receives the response from the service. The default behavior is to NOT ignore the timestamp (the default value of this property is false). If set to true, then the timestamp is not required in the response message; if the timestamp is present, it is ignored.

The timestamp is required to prevent replay attacks, so in general, Oracle does not recommend setting this property to true except to address interoperability issues.

Note: This property is not shown in Fusion Middleware Control. Details for adding the property are described in "Configuring User-Defined Client- or Server-Side Override Properties".

	
propagate.identity.context

	
Reserved for future use.

oracle/wss10_saml20_token_with_message_protection_service_template

The wss10_saml20_token_with_message_protection_service_template assertion template enforces message protection (integrity and confidentiality) and SAML-based authentication for inbound SOAP requests in accordance with the WS-Security 1.0 standard.

The Web service consumer includes a SAML token in the SOAP header, and the confirmation type is sender-vouches. The SOAP message is signed and encrypted. The Web service provider decrypts the message, and verifies and authenticates the signature.

To prevent replay attacks, the assertion provides the option to include time stamps, SAML token limits, and their verification by the Web service provider.

Settings

The settings for the wss10_saml20_token_with_message_protection_service_template are similar to those of the client version of the assertion template, with the exception that Name Identifier Format is not present. See Table C-49 for information on the settings.

Configurations

Table C-51 lists the configuration properties and the default settings for the wss10_saml20_token_with_message_protection_service_template assertion template. For details about the configuration property settings, see "Editing the Configuration Properties".

For information about overriding policies, see "Attaching Web Service Policies Permitting Overrides".

Table C-51 wss10_saml20_token_with_message_protection_service_template Configurations

	Name	Description
	
role

	
SOAP role.

Default settings:

	
Value—Not set

	
Default—ultimateReceiver

	
ContentType—Constant

	
Description—Not set

	
saml.trusted.issuers

	
A comma-separated list of SAML token trusted issuers for an application that will override trusted issuers at domain level.

Default settings:

	
Value—Not set

	
Default—Not set

	
ContentType—Optional

	
Description—Not set

	
reference.priority

	
Optional property that specifies the priority of the policy attachment. When specified for an attached policy, the effective set of policies algorithm allows the policy with the highest integer value priority to take precedence over a conflicting policy attachment, irrespective of its scope.

Default settings:

	
Value—Not set

	
Default—Not set

	
ContentType—Optional

	
Description—Not set

The value of reference.priority can be any number between(-231) and (231 - 1). The higher the number, the higher the priority assigned during effective policy calculation. Any policy that does not have a value or a non-numeric value is treated as having a value of 0. If the value is set to any of the words "yes", "true", or "on", the value is set to 1.

For more information, see "Specifying the Priority of a Policy Attachment".

	
propagate.identity.context

	
Reserved for future use.

oracle/wss10_username_token_with_message_protection_client_template

The wss10_username_token_with_message_protection_client_template assertion template provides message protection (integrity and confidentiality) and authentication for outbound SOAP requests in accordance with the WS-Security 1.0 standard. Credentials are included in the WS-Security UsernameToken header in the outbound SOAP message.

The assertion supports three types of password credentials: plain text, digest, and no password.

	
Note:

Digest passwords are not supported in this release.

To protect against replay attacks, the assertion provides the option to require nonce or creation time in the username token. The SOAP message is signed and encrypted. The Web service provider decrypts the message, and verifies and authenticates the signature.

Settings

Table C-52 lists the settings for the wss10_username_token_with_message_protection_client_template assertion template.

Table C-52 wss10_username_token_with_message_protection_client_template Settings

	Name	Description	Default Value
	
Username Token

	
	

	
Password Type

	
Type of password required.

Valid values are:

	
none—No password.

	
plaintext—Password in clear text.

	
digest—Not supported in this release. Client authenticates itself by transmitting an encrypted password through the use of an MD5 digest.

	
plaintext

	
Creation Time Required

	
Flag that specifies whether a time stamp for the creation of the username token is required.

Note: If Password Type is set to digest, then this attribute must be set to true. Otherwise, the policy to which it is attached will not validate.

	
False

	
Nonce Required

	
Flag that specifies whether a nonce must be included with the username to prevent replay attacks.

Note: If Password Type is set to digest, then this attribute must be set to true. Otherwise, the policy to which it is attached will not validate.

	
False

	
Is Signed

	
Flag that specifies whether the username is signed.

	
True

	
Is Encrypted

	
Flag that specifies whether the username is encrypted.

	
True

	
X509 Token

	
	

	
Sign Key Reference Mechanism

	
Mechanism used when signing the request.

Valid values include:

	
direct—X.509 Token is included in the request.

	
ski—Subject Key Identifier (SKI) extension value of the X.509 certificate used to reference the certificate. (Some certificates may not have this extension.) The recipient of the message looks up its keystore for a certificate corresponding to the SKI and validates the signature against it.

	
issuerserial—Composite key of issuer name and serial number attributes used to reference the X.509 certificate. The recipient of the message looks up its keystore for a certificate corresponding to Issuer name and Serial Number and validates the signature using it.

	
direct

	
Encryption Key Reference Mechanism

	
Mechanism used when encrypting the request. Valid values are the same as for Sign Key Reference Mechanism above.

	
direct

	
Recipient Sign Key Reference Mechanism

	
Mechanism used when signing the receipt. Valid values are the same as for Sign Key Reference Mechanism above.

	
direct

	
Recipient Encryption Key Reference Mechanism

	
Mechanism used when encrypting the receipt. Valid values are the same as for Sign Key Reference Mechanism above.

	
direct

	
Message Security

	
	

	
Algorithm Suite

	
Algorithm suite used for message protection. See "Supported Algorithm Suites".

	
Basic128

	
Include Timestamp

	
Flag that specifies whether to include a timestamp. A timestamp can be used to prevent replay attacks by identifying an expiration time after which the message is no longer valid.

	
Enabled

	
Encrypt Signature

	
Flag that specifies whether to encrypt the signature.

	
Disabled

	
Request Message Settings

	
See Table C-92.

	
N/A

	
Response Message Settings

	
See Table C-92.

	
N/A

	
Fault Message Settings

	
See Table C-92.

	
N/A

Configurations

Table C-53 lists the configuration properties and the default settings for the wss10_username_token_with_message_protection_client_template assertion template. For details about the configuration property settings, see "Editing the Configuration Properties".

For information about overriding policies, see "Attaching Client Policies Permitting Overrides".

Table C-53 wss10_username_token_with_message_protection_client_template Configurations

	Name	Description
	
csf-key

	
Credential Store Key that maps to a username and password in the Oracle Platform Security Services identity store.

Default settings:

	
Value—Not set

	
Default—basic.credentials

	
ContentType—Required

	
Description—Not set

	
role

	
SOAP role.

Default settings:

	
Value—Not set

	
Default—ultimateReceiver

	
ContentType—Constant

	
Description—Not set

	
keystore.recipient.alias

	
Keystore alias associated with the peer certificate. The security run time uses this alias to extract the peer certificate from the configured keystore and to encrypt messages to the peer.

Default settings:

	
Value—Not set

	
Default—orakey

	
ContentType—Required

	
Description—Not set

	
reference.priority

	
Optional property that specifies the priority of the policy attachment. When specified for an attached policy, the effective set of policies algorithm allows the policy with the highest integer value priority to take precedence over a conflicting policy attachment, irrespective of its scope.

Default settings:

	
Value—Not set

	
Default—Not set

	
ContentType—Optional

	
Description—Not set

The value of reference.priority can be any number between(-231) and (231 - 1). The higher the number, the higher the priority assigned during effective policy calculation. Any policy that does not have a value or a non-numeric value is treated as having a value of 0. If the value is set to any of the words "yes", "true", or "on", the value is set to 1.

For more information, see "Specifying the Priority of a Policy Attachment".

	
ignore.timestamp.in.response

	
Property used by the client to ignore the timestamp in the SOAP security header when it receives the response from the service. The default behavior is to NOT ignore the timestamp (the default value of this property is false). If set to true, then the timestamp is not required in the response message; if the timestamp is present, it is ignored.

The timestamp is required to prevent replay attacks, so in general, Oracle does not recommend setting this property to true except to address interoperability issues.

Note: This property is not shown in Fusion Middleware Control. Details for adding the property are described in "Configuring User-Defined Client- or Server-Side Override Properties".

oracle/wss10_username_token_with_message_protection_service_template

The wss10_username_token_with_message_protection_service_template assertion template enforces message protection (integrity and confidentiality) and authentication for inbound SOAP requests in accordance with the WS-Security 1.0 standard.

The assertion supports three types of password credentials: plain text, digest, and no password.

	
Note:

Digest passwords are not supported in this release.

To protect against replay attacks, the assertion provides the option to require nonce or creation time in the username token. The SOAP message is signed and encrypted. The Web service provider decrypts the message, and verifies and authenticates the signature.

Settings

The settings for the wss10_username_token_with_message_protection_service_template assertion template are identical to the client version of the assertion template. See Table C-52 for information on the settings.

Configurations

Table C-54 lists the configuration properties and the default settings for the wss10_username_token_with_message_protection_service_template assertion template. For details about the configuration property settings, see "Editing the Configuration Properties".

For information about overriding policies, see "Attaching Web Service Policies Permitting Overrides".

Table C-54 wss10_username_token_with_message_protection_service_template Configurations

	Name	Description
	
role

	
SOAP role.

Default settings:

	
Value—Not set

	
Default—ultimateReceiver

	
ContentType—Constant

	
Description—Not set

	
reference.priority

	
Optional property that specifies the priority of the policy attachment. When specified for an attached policy, the effective set of policies algorithm allows the policy with the highest integer value priority to take precedence over a conflicting policy attachment, irrespective of its scope.

Default settings:

	
Value—Not set

	
Default—Not set

	
ContentType—Optional

	
Description—Not set

The value of reference.priority can be any number between(-231) and (231 - 1). The higher the number, the higher the priority assigned during effective policy calculation. Any policy that does not have a value or a non-numeric value is treated as having a value of 0. If the value is set to any of the words "yes", "true", or "on", the value is set to 1.

For more information, see "Specifying the Priority of a Policy Attachment".

oracle/wss10_x509_token_with_message_protection_client_template

The wss10_x509_token_with_message_protection_client template assertion template provides message protection (integrity and confidentiality) and certificate credential population for outbound SOAP requests in accordance with the WS-Security 1.0 standard.

Settings

Table C-55 lists the settings for the wss10_x509_token_with_message_protection_client template assertion template.

Table C-55 wss10_x509_token_with_message_protection_client_template Settings

	Name	Description	Default Value
	
X509 Token

	
	

	
Sign Key Reference Mechanism

	
Mechanism used when signing the request.

Valid values include:

	
direct—X.509 Token is included in the request.

	
ski—Subject Key Identifier (SKI) extension value of the X.509 certificate used to reference the certificate. (Some certificates may not have this extension.) The recipient of the message looks up its keystore for a certificate corresponding to the SKI and validates the signature against it.

	
issuerserial—Composite key of issuer name and serial number attributes used to reference the X.509 certificate. The recipient of the message looks up its keystore for a certificate corresponding to Issuer name and Serial Number and validates the signature using it.

	
direct

	
Encryption Key Reference Mechanism

	
Mechanism used when encrypting the request. Valid values are the same as for Sign Key Reference Mechanism above.

	
direct

	
Recipient Sign Key Reference Mechanism

	
Mechanism used when signing the receipt. Valid values are the same as for Sign Key Reference Mechanism above.

	
direct

	
Recipient Encryption Key Reference Mechanism

	
Mechanism used when encrypting the receipt. Valid values are the same as for Sign Key Reference Mechanism above.

	
direct

	
Message Security

	
	

	
Algorithm Suite

	
Algorithm suite used for message protection. See "Supported Algorithm Suites".

	
Basic128

	
Include Timestamp

	
Flag that specifies whether to include a timestamp. A timestamp can be used to prevent replay attacks by identifying an expiration time after which the message is no longer valid.

	
Enabled

	
Encrypt Signature

	
Flag that specifies whether to encrypt the signature.

	
Disabled

	
Request Message Settings

	
See Table C-92.

	
N/A

	
Response Message Settings

	
See Table C-92.

	
N/A

	
Fault Message Settings

	
See Table C-92.

	
N/A

Configurations

Table C-56 lists the configuration properties and the default settings for the wss10_x509_token_with_message_protection_client_template assertion template. For details about the configuration property settings, see "Editing the Configuration Properties".

For information about overriding policies, see "Attaching Client Policies Permitting Overrides".

Table C-56 wss10_x509_token_with_message_protection_client_template Configurations

	Name	Description
	
role

	
SOAP role.

Default settings:

	
Value—Not set

	
Default—ultimateReceiver

	
ContentType—Constant

	
Description—Not set

	
keystore.recipient.alias

	
Keystore alias associated with the peer certificate. The security run time uses this alias to extract the peer certificate from the configured keystore and to encrypt messages to the peer.

Default settings:

	
Value—Not set

	
Default—orakey

	
ContentType—Required

	
Description—Not set

	
reference.priority

	
Optional property that specifies the priority of the policy attachment. When specified for an attached policy, the effective set of policies algorithm allows the policy with the highest integer value priority to take precedence over a conflicting policy attachment, irrespective of its scope.

Default settings:

	
Value—Not set

	
Default—Not set

	
ContentType—Optional

	
Description—Not set

The value of reference.priority can be any number between(-231) and (231 - 1). The higher the number, the higher the priority assigned during effective policy calculation. Any policy that does not have a value or a non-numeric value is treated as having a value of 0. If the value is set to any of the words "yes", "true", or "on", the value is set to 1.

For more information, see "Specifying the Priority of a Policy Attachment".

	
ignore.timestamp.in.response

	
Property used by the client to ignore the timestamp in the SOAP security header when it receives the response from the service. The default behavior is to NOT ignore the timestamp (the default value of this property is false). If set to true, then the timestamp is not required in the response message; if the timestamp is present, it is ignored.

The timestamp is required to prevent replay attacks, so in general, Oracle does not recommend setting this property to true except to address interoperability issues.

Note: This property is not shown in Fusion Middleware Control. Details for adding the property are described in "Configuring User-Defined Client- or Server-Side Override Properties".

oracle/wss10_x509_token_with_message_protection_service_template

The wss10_x509_token_with_message_protection_service_template assertion template enforces message protection (integrity and confidentiality) and certificate-based authentication for inbound SOAP requests in accordance with the WS-Security 1.0 standard.

Settings

The settings for the wss10_x509_token_with_message_protection_service_template assertion template are identical to the client version of the assertion template. See Table C-55 for information on the settings.

Configurations

Table C-57 lists the configuration properties and the default settings for the wss10_x509_token_with_message_protection_service_template assertion template. For details about the configuration property settings, see "Editing the Configuration Properties".

For information about overriding policies, see "Attaching Web Service Policies Permitting Overrides".

Table C-57 wss10_x509_token_with_message_protection_service_template Configurations

	Name	Description
	
role

	
SOAP role.

Default settings:

	
Value—Not set

	
Default—ultimateReceiver

	
ContentType—Constant

	
Description—Not set

	
reference.priority

	
Optional property that specifies the priority of the policy attachment. When specified for an attached policy, the effective set of policies algorithm allows the policy with the highest integer value priority to take precedence over a conflicting policy attachment, irrespective of its scope.

Default settings:

	
Value—Not set

	
Default—Not set

	
ContentType—Optional

	
Description—Not set

The value of reference.priority can be any number between(-231) and (231 - 1). The higher the number, the higher the priority assigned during effective policy calculation. Any policy that does not have a value or a non-numeric value is treated as having a value of 0. If the value is set to any of the words "yes", "true", or "on", the value is set to 1.

For more information, see "Specifying the Priority of a Policy Attachment".

oracle/wss11_kerberos_token_with_message_protection_client_template

The wss11_kerberos_token_with_message_protection_client_template assertion template includes a Kerberos token in the WS-Security header in accordance with the WS-Security Kerberos Token Profile v1.1 standard.

Settings

Table C-58 lists the settings for the wss11_kerberos_token_with_message_protection_client_template assertion template.

Table C-58 wss11_kerberos_token_with_message_protection_client_template Settings

	Name	Description	Default Value
	
Kerberos Token Type

	
Type of Kerberos token. The only valid value is: gss-apreq-v5 (Kerberos Version 5 GSS-API).

	
gss-apreq-v5

	
X509 Token

	
	

	
Sign Key Reference Mechanism

	
Mechanism used when signing the request.

Valid values include:

	
direct—X.509 Token is included in the request.

	
ski—Subject Key Identifier (SKI) extension value of the X.509 certificate used to reference the certificate. (Some certificates may not have this extension.) The recipient of the message looks up its keystore for a certificate corresponding to the SKI and validates the signature against it.

	
issuerserial—Composite key of issuer name and serial number attributes used to reference the X.509 certificate. The recipient of the message looks up its keystore for a certificate corresponding to Issuer name and Serial Number and validates the signature using it.

	
direct

	
Encryption Key Reference Mechanism

	
Mechanism used when encrypting the request. Valid values are the same as for Sign Key Reference Mechanism above.

	
direct

	
Message Security

	
	

	
Algorithm Suite

	
Algorithm suite used for message protection. See "Supported Algorithm Suites".

	
TripleDes

	
Include Timestamp

	
Flag that specifies whether to include a timestamp. A timestamp can be used to prevent replay attacks by identifying an expiration time after which the message is no longer valid.

	
Enabled

	
Encrypt Signature

	
Flag that specifies whether to encrypt the signature.

	
Disabled

	
Confirm Signature

	
Flag that specifies whether to send a signature confirmation back to the client.

	
Enabled

	
Request Message Settings

	
See Table C-92.

	
N/A

	
Response Message Settings

	
See Table C-92.

	
N/A

	
Fault Message Settings

	
See Table C-92.

	
N/A

Configurations

Table C-59 lists the configuration properties and the default settings for the wss11_kerberos_token_with_message_protection_client_template assertion template. For details about the configuration property settings, see "Editing the Configuration Properties".

For information about overriding policies, see "Attaching Client Policies Permitting Overrides".

Table C-59 wss11_kerberos_token_with_message_protection_client_template Configurations

	Name	Description
	
service.principal.name

	
Kerberos principal name that identifies the service.

Default settings:

	
Value—HOST/localhost@EXAMPLE.COM

	
Default—Not set

	
ContentType—Required

	
Description—Not set

	
keytab.location

	
Location of the client's keytab file.

Default settings:

	
Value—Not set

	
Default—Not set

	
ContentType—Optional

	
Description—Not set

	
caller.principal.name

	
Client's principal name as generated using the ktpass command and mapped to the username for which the kerberos token should be generated. Use the following format: <username>@<REALM NAME>.

Default settings:

	
Value—Not set

	
Default—Not set

	
ContentType—Optional

	
Description—Not set

Note: keytab.location and caller.principal.name are required for propagating client identity for Java EE applications.

	
reference.priority

	
Optional property that specifies the priority of the policy attachment. When specified for an attached policy, the effective set of policies algorithm allows the policy with the highest integer value priority to take precedence over a conflicting policy attachment, irrespective of its scope.

Default settings:

	
Value—Not set

	
Default—Not set

	
ContentType—Optional

	
Description—Not set

The value of reference.priority can be any number between(-231) and (231 - 1). The higher the number, the higher the priority assigned during effective policy calculation. Any policy that does not have a value or a non-numeric value is treated as having a value of 0. If the value is set to any of the words "yes", "true", or "on", the value is set to 1.

For more information, see "Specifying the Priority of a Policy Attachment".

	
ignore.timestamp.in.response

	
Property used by the client to ignore the timestamp in the SOAP security header when it receives the response from the service. The default behavior is to NOT ignore the timestamp (the default value of this property is false). If set to true, then the timestamp is not required in the response message; if the timestamp is present, it is ignored.

The timestamp is required to prevent replay attacks, so in general, Oracle does not recommend setting this property to true except to address interoperability issues.

Note: This property is not shown in Fusion Middleware Control. Details for adding the property are described in "Configuring User-Defined Client- or Server-Side Override Properties".

oracle/wss11_kerberos_token_with_message_protection_service_template

The wss11_kerberos_token_with_message_protection_service_template assertion template enforces in accordance with the WS-Security Kerberos Token Profile v1.1 standard. It extracts the Kerberos token from the SOAP header and authenticates the user. The container must have the Kerberos infrastructure configured through Oracle Platform Security Services.

Settings

The settings for the wss11_keberos_token_with_message_protection_service_template are identical to the client version of the assertion template. See Table C-58 for information on the settings.

Configurations

None required.

oracle/wss11_saml_token_with_message_protection_client_template

The wss11_saml_token_with_message_protection_client_template assertion template enables message protection (integrity and confidentiality) and SAML token population for outbound SOAP requests in accordance with WS-Security 1.1. A SAML token is included in the SOAP message for use in SAML based authentication with sender vouches confirmation.

Settings

Table C-60 lists the settings for the wss11_saml_token_with_message_protection_client_template assertion template.

Table C-60 wss11_saml_token_with_message_protection_client_template Settings

	Name	Description	Default Value
	
SAML Token Type

	
	

	
Version

	
SAML version. The only valid value is: 1.1.

	
None

	
Confirmation Type

	
Confirmation type. Valid values include: sender-vouches.

	
sender-vouches.

	
Is Signed

	
Flag that specifies whether the SAML token is signed. The only valid value for SAML policies is: True.

	
True

	
Is Encrypted

	
Flag that specifies whether the SAML token is encrypted.

	
False

	
Name Identifier Format

	
Specifies the type of format to be used for the name identifier.

Name Identifier Format is applicable only when subject.precedence is set to false. If subject.precedence is false, the user name to create the SAML assertion is obtained from the csf-key property or the username property (see "Configure the Username for the SAML Assertion"). The format of the user name must be the same as the format set in Name Identifier Format.

If subject.precedence is true, the user name to create the SAML assertion is obtained from the Subject. In this case, the Name Identifier Format is always "unspecified” and this cannot be changed by setting Name Identifier Format.

Specify one of the following values:

	
unspecified

	
emailAddress

	
X509SubjectName

	
WindowsDomainQualifiedName

	
unspecified

	
X509 Token

	
	

	
Sign Key Reference Mechanism

	
Mechanism used when signing the request.

Valid values include:

	
direct—X.509 Token is included in the request.

	
ski—Subject Key Identifier (SKI) extension value of the X.509 certificate used to reference the certificate. (Some certificates may not have this extension.) The recipient of the message looks up its keystore for a certificate corresponding to the SKI and validates the signature against it.

	
issuerserial—Composite key of issuer name and serial number attributes used to reference the X.509 certificate. The recipient of the message looks up its keystore for a certificate corresponding to Issuer name and Serial Number and validates the signature using it.

	
thumbprint—Fingerprint (SHA1 hash) of the contents of the certificate. Provides a method to store certificates that is low overhead. This value is valid for Encryption Key Reference Mechanism only (described below.)

	
direct

	
Encryption Key Reference Mechanism

	
Mechanism used when encrypting the request. Valid values are the same as for Sign Key Reference Mechanism above.

	
thumbprint

	
Message Security

	
	

	
Algorithm Suite

	
Algorithm suite used for message protection. See "Supported Algorithm Suites".

	
Basic128

	
Include Timestamp

	
Flag that specifies whether to include a timestamp. A timestamp can be used to prevent replay attacks by identifying an expiration time after which the message is no longer valid.

	
Enabled

	
Encrypt Signature

	
Flag that specifies whether to encrypt the signature.

	
Disabled

	
Confirm Signature

	
Flag that specifies whether to send a signature confirmation back to the client.

	
Enabled

	
Derived Keys

	
Flag that specifies whether derived keys should be used.

	
Disabled

	
Request Message Settings

	
See Table C-92.

	
N/A

	
Response Message Settings

	
See Table C-92.

	
N/A

	
Fault Message Settings

	
See Table C-92.

	
N/A

Configurations

Table C-61 lists the configuration properties and the default settings for the wss11_saml_token_with_message_protection_client_template assertion template. For details about the configuration property settings, see "Editing the Configuration Properties".

For information about overriding policies, see "Attaching Client Policies Permitting Overrides".

Table C-61 wss11_saml_token_with_message_protection_client_template Configurations

	Name	Description
	
user.attributes

	
User attributes related to the principal of the SAML token.

Specify the attributes to be included as a comma-separated list. For example, attrib1,attrib2. The attribute names you specify must exactly match valid attributes in the configured identity store. The Oracle WSM run time reads the values for these attributes from the configured identity store, and then includes the attributes and their values in the SAML assertion.

Requires that the Subject is available and subject.precedence is set to true.

Default settings:

	
Value—Not set

	
Default—Not set. Attribute names should be comma separated.

	
ContentType—Optional

	
Description—Not set

A client policy reads the values of the attributes specified using user.attributes from the configured identity store. All valid attribute names and values are used to create the SAML attribute statement.

The user.attributes property is supported for a single identity store, and only the first identity store in the list is used. The user must therefore exist and be valid in the identity store used by the configured WebLogic Server Authentication provider. Authentication providers are described in "Configuring an Authentication Provider in WebLogic Server".

If the identity store you require is not the first identity store, you can specify that additional identity stores be searched. See "Including User Attributes in the Assertion" for more information.

	
saml.issuer.name

	
Issuer URI.

Default settings:

	
Value—Not set

	
Default—www.oracle.com

	
ContentType—Optional

	
Description—Not set

	
role

	
SOAP role.

Default settings:

	
Value—Not set

	
Default—ultimateReceiver

	
ContentType—Constant

	
Description—Not set

	
keystore.recipient.alias

	
Keystore alias associated with the peer certificate. The security run time uses this alias to extract the peer certificate from the configured keystore and to encrypt messages to the peer.

Default settings:

	
Value—Not set

	
Default—orakey

	
ContentType—Required

	
Description—Not set

	
csf-key

	
Credential Store Key that maps to a username and password in the Oracle Platform Security Services identity store.

Default settings:

	
Value—basic.credentials

	
Default—Not set

	
ContentType—Optional

	
Description—Not set

	
subject.precedence

	
Set subject.precedence to false to allow for the use of a client-specified username rather than the authenticated subject.

If subject.precedence is true, the user name to create the SAML assertion is obtained only from the Subject. Similarly, if subject.precedence is false, the user name to create the SAML assertion is obtained only from the csf-key username property.

Default settings:

	
Value—true

	
Default—Not set

	
ContentType—Optional

	
Description—Not set

	
saml.audience.uri

	
Represents the relying party, as a comma-separated URI. This field accepts wildcards.

Default settings:

	
Value—Not set

	
Default—Not set

	
ContentType—Optional

	
Description—Not set

	
reference.priority

	
Optional property that specifies the priority of the policy attachment. When specified for an attached policy, the effective set of policies algorithm allows the policy with the highest integer value priority to take precedence over a conflicting policy attachment, irrespective of its scope.

Default settings:

	
Value—Not set

	
Default—Not set

	
ContentType—Optional

	
Description—Not set

The value of reference.priority can be any number between(-231) and (231 - 1). The higher the number, the higher the priority assigned during effective policy calculation. Any policy that does not have a value or a non-numeric value is treated as having a value of 0. If the value is set to any of the words "yes", "true", or "on", the value is set to 1.

For more information, see "Specifying the Priority of a Policy Attachment".

	
ignore.timestamp.in.response

	
Property used by the client to ignore the timestamp in the SOAP security header when it receives the response from the service. The default behavior is to NOT ignore the timestamp (the default value of this property is false). If set to true, then the timestamp is not required in the response message; if the timestamp is present, it is ignored.

The timestamp is required to prevent replay attacks, so in general, Oracle does not recommend setting this property to true except to address interoperability issues.

Note: This property is not shown in Fusion Middleware Control. Details for adding the property are described in "Configuring User-Defined Client- or Server-Side Override Properties".

	
propagate.identity.context

	
Reserved for future use.

oracle/wss11_saml_token_with_message_protection_service_template

The wss11_saml_token_with_message_protection_service_template assertion template enforces message-level integrity protection and SAML-based authentication for inbound SOAP requests in accordance with the WS-Security 1.1 standard. It extracts the SAML token from the WS-Security binary security token, and uses those credentials to validate users against the Oracle Platform Security Services identity store.

Settings

The settings for the wss11_saml_token_with_message_protection_service_template are identical to the client version of the assertion template, with the exception that Name Identifier Format is not present. See Table C-60 for information on the settings.

Configurations

Table C-62 lists the configuration properties and the default settings for the wss11_saml_token__with_message_protection_service_template assertion template. For details about the configuration property settings, see "Editing the Configuration Properties".

For information about overriding policies, see "Attaching Web Service Policies Permitting Overrides".

Table C-62 wss11_saml_token_with_message_protection_service_template Configurations

	Name	Description
	
role

	
SOAP role.

Default settings:

	
Value—Not set

	
Default—ultimateReceiver

	
ContentType—Constant

	
Description—Not set

	
saml.trusted.issuers

	
A comma-separated list of SAML token trusted issuers for an application that will override trusted issuers at domain level.

Default settings:

	
Value—Not set

	
Default—Not set

	
ContentType—Optional

	
Description—Not set

	
reference.priority

	
Optional property that specifies the priority of the policy attachment. When specified for an attached policy, the effective set of policies algorithm allows the policy with the highest integer value priority to take precedence over a conflicting policy attachment, irrespective of its scope.

Default settings:

	
Value—Not set

	
Default—Not set

	
ContentType—Optional

	
Description—Not set

The value of reference.priority can be any number between(-231) and (231 - 1). The higher the number, the higher the priority assigned during effective policy calculation. Any policy that does not have a value or a non-numeric value is treated as having a value of 0. If the value is set to any of the words "yes", "true", or "on", the value is set to 1.

For more information, see "Specifying the Priority of a Policy Attachment".

	
propagate.identity.context

	
Reserved for future use.

oracle/wss11_saml20_token_with_message_protection_client_template

The wss11_saml20_token_with_message_protection_client_template assertion template enables message protection (integrity and confidentiality) and SAML token population for outbound SOAP requests in accordance with WS-Security 1.1. A SAML token is included in the SOAP message for use in SAML based authentication with sender vouches confirmation.

Settings

Table C-63 lists the settings for the wss11_saml20_token_with_message_protection_client_template assertion template.

Table C-63 wss11_saml20_token_with_message_protection_client_template Settings

	Name	Description	Default Value
	
SAML Token Type

	
	

	
Version

	
SAML version. The only valid value is: 2.0.

	
2.0

	
Confirmation Type

	
Confirmation type. Valid values include: sender-vouches.

	
sender-vouches.

	
Is Signed

	
Flag that specifies whether the SAML token is signed. The only valid value for SAML policies is: True.

	
True

	
Is Encrypted

	
Flag that specifies whether the SAML token is encrypted.

	
False

	
Name Identifier Format

	
Specifies the type of format to be used for the name identifier.

Name Identifier Format is applicable only when subject.precedence is set to false. If subject.precedence is false, the user name to create the SAML assertion is obtained from the csf-key property or the username property (see "Configure the Username for the SAML Assertion"). The format of the user name must be the same as the format set in Name Identifier Format.

If subject.precedence is true, the user name to create the SAML assertion is obtained from the Subject. In this case, the Name Identifier Format is always "unspecified” and this cannot be changed by setting Name Identifier Format.

Specify one of the following values:

	
unspecified

	
emailAddress

	
X509SubjectName

	
WindowsDomainQualifiedName

	
kerberos

	
unspecified

	
X509 Token

	
	

	
Sign Key Reference Mechanism

	
Mechanism used when signing the request.

Valid values include:

	
direct—X.509 Token is included in the request.

	
ski—Subject Key Identifier (SKI) extension value of the X.509 certificate used to reference the certificate. (Some certificates may not have this extension.) The recipient of the message looks up its keystore for a certificate corresponding to the SKI and validates the signature against it.

	
issuerserial—Composite key of issuer name and serial number attributes used to reference the X.509 certificate. The recipient of the message looks up its keystore for a certificate corresponding to Issuer name and Serial Number and validates the signature using it.

	
thumbprint—Fingerprint (SHA1 hash) of the contents of the certificate. Provides a method to store certificates that is low overhead. This value is valid for Encryption Key Reference Mechanism only (described below.)

	
direct

	
Encryption Key Reference Mechanism

	
Mechanism used when encrypting the request. Valid values are the same as for Sign Key Reference Mechanism above.

	
thumbprint

	
Message Security

	
	

	
Algorithm Suite

	
Algorithm suite used for message protection. See "Supported Algorithm Suites".

	
Basic128

	
Include Timestamp

	
Flag that specifies whether to include a timestamp. A timestamp can be used to prevent replay attacks by identifying an expiration time after which the message is no longer valid.

	
Enabled

	
Encrypt Signature

	
Flag that specifies whether to encrypt the signature.

	
Disabled

	
Confirm Signature

	
Flag that specifies whether to send a signature confirmation back to the client.

	
Enabled

	
Derived Keys

	
Flag that specifies whether derived keys should be used.

	
Disabled

	
Request Message Settings

	
See Table C-92.

	
N/A

	
Response Message Settings

	
See Table C-92.

	
N/A

	
Fault Message Settings

	
See Table C-92.

	
N/A

Configurations

Table C-64 lists the configuration properties and the default settings for the wss11_saml20_token_with_message_protection_client_template assertion template. For details about the configuration property settings, see "Editing the Configuration Properties".

For information about overriding policies, see "Attaching Client Policies Permitting Overrides".

Table C-64 wss11_saml20_token_with_message_protection_client_template Configurations

	Name	Description
	
user.attributes

	
User attributes related to the principal of the SAML token.

Specify the attributes to be included as a comma-separated list. For example, attrib1,attrib2. The attribute names you specify must exactly match valid attributes in the configured identity store. The Oracle WSM run time reads the values for these attributes from the configured identity store, and then includes the attributes and their values in the SAML assertion.

Requires that the Subject is available and subject.precedence is set to true.

Default settings:

	
Value—Not set

	
Default—Not set. Attribute names should be comma separated.

	
ContentType—Optional

	
Description—Not set

A client policy reads the values of the attributes specified using user.attributes from the configured identity store. All valid attribute names and values are used to create the SAML attribute statement.

The user.attributes property is supported for a single identity store, and only the first identity store in the list is used. The user must therefore exist and be valid in the identity store used by the configured WebLogic Server Authentication provider. Authentication providers are described in "Configuring an Authentication Provider in WebLogic Server".

If the identity store you require is not the first identity store, you can specify that additional identity stores be searched. See "Including User Attributes in the Assertion" for more information.

	
saml.issuer.name

	
Issuer URI.

Default settings:

	
Value—Not set

	
Default—www.oracle.com

	
ContentType—Optional

	
Description—Not set

	
role

	
SOAP role.

Default settings:

	
Value—Not set

	
Default—ultimateReceiver

	
ContentType—Constant

	
Description—Not set

	
keystore.recipient.alias

	
Keystore alias associated with the peer certificate. The security run time uses this alias to extract the peer certificate from the configured keystore and to encrypt messages to the peer.

Default settings:

	
Value—Not set

	
Default—orakey

	
ContentType—Required

	
Description—Not set

	
csf-key

	
Credential Store Key that maps to a username and password in the Oracle Platform Security Services identity store.

Default settings:

	
Value—basic.credentials

	
Default—Not set

	
ContentType—Optional

	
Description—Not set

	
subject.precedence

	
Set subject.precedence to false to allow for the use of a client-specified username rather than the authenticated subject.

If subject.precedence is true, the user name to create the SAML assertion is obtained only from the Subject. Similarly, if subject.precedence is false, the user name to create the SAML assertion is obtained only from the csf-key username property.

Default settings:

	
Value—true

	
Default—Not set

	
ContentType—Optional

	
Description—Not set

	
attesting.mapping.attribute

	
The mapping attribute used to represent the attesting entity. Only the DN is currently supported. This attribute is applicable only to sender vouches and then only to message protection use cases. It is not applicable to SAML over SSL policies.

Default settings:

	
Value—DN

	
Default—Not set

	
ContentType—Optional

	
Description—Not set

	
saml.audience.uri

	
Represents the relying party, as a comma-separated URI. This field accepts wildcards.

Default settings:

	
Value—Not set

	
Default—Not set

	
ContentType—Optional

	
Description—Not set

	
reference.priority

	
Optional property that specifies the priority of the policy attachment. When specified for an attached policy, the effective set of policies algorithm allows the policy with the highest integer value priority to take precedence over a conflicting policy attachment, irrespective of its scope.

Default settings:

	
Value—Not set

	
Default—Not set

	
ContentType—Optional

	
Description—Not set

The value of reference.priority can be any number between(-231) and (231 - 1). The higher the number, the higher the priority assigned during effective policy calculation. Any policy that does not have a value or a non-numeric value is treated as having a value of 0. If the value is set to any of the words "yes", "true", or "on", the value is set to 1.

For more information, see "Specifying the Priority of a Policy Attachment".

	
ignore.timestamp.in.response

	
Property used by the client to ignore the timestamp in the SOAP security header when it receives the response from the service. The default behavior is to NOT ignore the timestamp (the default value of this property is false). If set to true, then the timestamp is not required in the response message; if the timestamp is present, it is ignored.

The timestamp is required to prevent replay attacks, so in general, Oracle does not recommend setting this property to true except to address interoperability issues.

Note: This property is not shown in Fusion Middleware Control. Details for adding the property are described in "Configuring User-Defined Client- or Server-Side Override Properties".

	
propagate.identity.context

	
Reserved for future use.

oracle/wss11_saml20_token_with_message_protection_service_template

The wss11_saml20_token_with_message_protection_service_template assertion template enforces message-level integrity protection and SAML-based authentication for inbound SOAP requests in accordance with the WS-Security 1.1 standard. It extracts the SAML token from the WS-Security binary security token, and uses those credentials to validate users against the Oracle Platform Security Services identity store.

Settings

The settings for the wss11_saml_token_with_message_protection_service_template are similar to the client version of the assertion template, with the exception that Name Identifier Format is not present. See Table C-62 for information on the settings.

Configurations

Table C-65 lists the configuration properties and the default settings for the wss11_saml20_token__with_message_protection_service_template assertion template. For details about the configuration property settings, see "Editing the Configuration Properties".

For information about overriding policies, see "Attaching Web Service Policies Permitting Overrides".

Table C-65 wss11_saml20_token_with_message_protection_service_template Configurations

	Name	Description
	
role

	
SOAP role.

Default settings:

	
Value—Not set

	
Default—ultimateReceiver

	
ContentType—Constant

	
Description—Not set

	
saml.trusted.issuers

	
A comma-separated list of SAML token trusted issuers for an application that will override trusted issuers at domain level.

Default settings:

	
Value—Not set

	
Default—Not set

	
ContentType—Optional

	
Description—Not set

	
reference.priority

	
Optional property that specifies the priority of the policy attachment. When specified for an attached policy, the effective set of policies algorithm allows the policy with the highest integer value priority to take precedence over a conflicting policy attachment, irrespective of its scope.

Default settings:

	
Value—Not set

	
Default—Not set

	
ContentType—Optional

	
Description—Not set

The value of reference.priority can be any number between(-231) and (231 - 1). The higher the number, the higher the priority assigned during effective policy calculation. Any policy that does not have a value or a non-numeric value is treated as having a value of 0. If the value is set to any of the words "yes", "true", or "on", the value is set to 1.

For more information, see "Specifying the Priority of a Policy Attachment".

	
propagate.identity.context

	
Reserved for future use.

oracle/wss11_username_token_with_message_protection_client_template

The ws11_username_token_with_message_protection_client_template assertion template includes authentication and message protection in accordance with the WS-Security v1.1 standard.

The Web service consumer inserts username and password credentials, and signs and encrypts the outgoing SOAP message. The Web service provider decrypts and verifies the message and the signature.

To prevent replay attacks, the assertion provides the option to include time stamps and verification by the Web service provider. The message can be protected with ciphers of different strengths.

Settings

Table C-66 lists the settings for the wss11_username_token_with_message_protection_client_template assertion template.

Table C-66 wss11_username_token_with_message_protection_client_template Settings

	Name	Description	Default Value
	
Username Token

	
	

	
Password Type

	
Type of password required.

Valid values are:

	
none—No password.

	
plaintext—Password in clear text.

	
digest—Not supported in this release. Client authenticates itself by transmitting an encrypted password through the use of an MD5 digest.

	
plaintext

	
Creation Time Required

	
Flag that specifies whether a time stamp for the creation of the username token is required.

Note: If Password Type is set to digest, then this attribute must be set to true. Otherwise, the policy to which it is attached will not validate.

	
False

	
Nonce Required

	
Flag that specifies whether a nonce must be included with the username to prevent replay attacks.

Note: If Password Type is set to digest, then this attribute must be set to true. Otherwise, the policy to which it is attached will not validate.

	
False

	
Is Signed

	
Flag that specifies whether the username is signed.

	
True

	
Is Encrypted

	
Flag that specifies whether the username is encrypted.

	
True

	
X509 Token

	
	

	
Encryption Key Reference Mechanism

	
Mechanism used when encrypting the request.

Valid values include:

	
direct—X.509 Token is included in the request.

	
ski—Subject Key Identifier (SKI) extension value of the X.509 certificate used to reference the certificate. (Some certificates may not have this extension.) The recipient of the message looks up its keystore for a certificate corresponding to the SKI and validates the signature against it.

	
issuerserial—Composite key of issuer name and serial number attributes used to reference the X.509 certificate. The recipient of the message looks up its keystore for a certificate corresponding to Issuer name and Serial Number and validates the signature using it.

	
thumbprint—Fingerprint (SHA1 hash) of the contents of the certificate. Provides a method to store certificates that is low overhead.

	
thumbprint

	
Message Security

	
	

	
Algorithm Suite

	
Algorithm suite used for message protection. See "Supported Algorithm Suites".

	
Basic128

	
Include Timestamp

	
Flag that specifies whether to include a timestamp. A timestamp can be used to prevent replay attacks by identifying an expiration time after which the message is no longer valid.

	
Enabled

	
Encrypt Signature

	
Flag that specifies whether to encrypt the signature.

	
Disabled

	
Confirm Signature

	
Flag that specifies whether to send a signature confirmation back to the client.

	
Enabled

	
Derived Keys

	
Flag that specifies whether derived keys should be used.

	
Disabled

	
Request Message Settings

	
See Table C-92.

	
N/A

	
Response Message Settings

	
See Table C-92.

	
N/A

	
Fault Message Settings

	
See Table C-92.

	
N/A

Configurations

Table C-67 lists the configuration properties and the default settings for the wss11_username_token_with_message_protection_client_template assertion template. For details about the configuration property settings, see "Editing the Configuration Properties".

For information about overriding policies, see "Attaching Client Policies Permitting Overrides".

Table C-67 wss11_username_token_with_message_protection_client_template Configurations

	Name	Description
	
csf-key

	
Credential Store Key that maps to a username and password in the Oracle Platform Security Services identity store.

Default settings:

	
Value—Not set

	
Default—basic.credentials

	
ContentType—Required

	
Description—Not set

	
role

	
SOAP role.

Default settings:

	
Value—Not set

	
Default—ultimateReceiver

	
ContentType—Constant

	
Description—Not set

	
keystore.recipient.alias

	
Keystore alias associated with the peer certificate. The security run time uses this alias to extract the peer certificate from the configured keystore and to encrypt messages to the peer.

Default settings:

	
Value—Not set

	
Default—orakey

	
ContentType—Required

	
Description—Not set

	
reference.priority

	
Optional property that specifies the priority of the policy attachment. When specified for an attached policy, the effective set of policies algorithm allows the policy with the highest integer value priority to take precedence over a conflicting policy attachment, irrespective of its scope.

Default settings:

	
Value—Not set

	
Default—Not set

	
ContentType—Optional

	
Description—Not set

The value of reference.priority can be any number between(-231) and (231 - 1). The higher the number, the higher the priority assigned during effective policy calculation. Any policy that does not have a value or a non-numeric value is treated as having a value of 0. If the value is set to any of the words "yes", "true", or "on", the value is set to 1.

For more information, see "Specifying the Priority of a Policy Attachment".

	
ignore.timestamp.in.response

	
Property used by the client to ignore the timestamp in the SOAP security header when it receives the response from the service. The default behavior is to NOT ignore the timestamp (the default value of this property is false). If set to true, then the timestamp is not required in the response message; if the timestamp is present, it is ignored.

The timestamp is required to prevent replay attacks, so in general, Oracle does not recommend setting this property to true except to address interoperability issues.

Note: This property is not shown in Fusion Middleware Control. Details for adding the property are described in "Configuring User-Defined Client- or Server-Side Override Properties".

oracle/wss11_username_token_with_message_protection_service_template

The ws11_username_token_with_message_protection_service_template assertion template enforces authentication and message protection in accordance with the WS-Security v1.1 standard.

The Web service consumer inserts username and password credentials, and signs and encrypts the outgoing SOAP message. The Web service provider decrypts and verifies the message and the signature. To prevent replay attacks, the assertion provides the option to include time stamps and verification by the Web service provider. The message can be protected with ciphers of different strengths.

Settings

The settings for the wss11_username_token_with_message_protection_service_template are identical to the client version of the assertion template. See Table C-66 for information on the settings.

Configurations

Table C-68 lists the configuration properties and the default settings for the wss11_username_token_with_message_protection_service_template assertion template. For details about the configuration property settings, see "Editing the Configuration Properties".

For information about overriding policies, see "Attaching Web Service Policies Permitting Overrides".

Table C-68 wss11_username_token_with_message_protection_service_template Configurations

	Name	Description
	
role

	
SOAP role.

Default settings:

	
Value—Not set

	
Default—ultimateReceiver

	
ContentType—Constant

	
Description—Not set

	
reference.priority

	
Optional property that specifies the priority of the policy attachment. When specified for an attached policy, the effective set of policies algorithm allows the policy with the highest integer value priority to take precedence over a conflicting policy attachment, irrespective of its scope.

Default settings:

	
Value—Not set

	
Default—Not set

	
ContentType—Optional

	
Description—Not set

The value of reference.priority can be any number between(-231) and (231 - 1). The higher the number, the higher the priority assigned during effective policy calculation. Any policy that does not have a value or a non-numeric value is treated as having a value of 0. If the value is set to any of the words "yes", "true", or "on", the value is set to 1.

For more information, see "Specifying the Priority of a Policy Attachment".

oracle/wss11_x509_token_with_message_protection_client_template

The wss11_x509_token_with_message_protection_client_template assertion template provides message protection (integrity and confidentiality) and certificate-based authentication for outbound SOAP requests in accordance with the WS-Security 1.1 standard. Credentials are included in the WS-Security binary security token of the SOAP message.]

Settings

Table C-69 lists the settings for the wss11_x509_token_with_message_protection_client_template assertion template.

Table C-69 wss11_x509_token_with_message_protection_client_template Settings

	Name	Description	Default Value
	
X509 Token

	
	

	
Sign Key Reference Mechanism

	
Mechanism used when signing the request.

Valid values include:

	
direct—X.509 Token is included in the request.

	
ski—Subject Key Identifier (SKI) extension value of the X.509 certificate used to reference the certificate. (Some certificates may not have this extension.) The recipient of the message looks up its keystore for a certificate corresponding to the SKI and validates the signature against it.

	
issuerserial—Composite key of issuer name and serial number attributes used to reference the X.509 certificate. The recipient of the message looks up its keystore for a certificate corresponding to Issuer name and Serial Number and validates the signature using it.

	
thumbprint—Fingerprint (SHA1 hash) of the contents of the certificate. Provides a method to store certificates that is low overhead. This value is valid for Encryption Key Reference Mechanism only (described below.)

	
direct

	
Encryption Key Reference Mechanism

	
Mechanism used when encrypting the request. Valid values are the same as for Sign Key Reference Mechanism above.

	
thumbprint

	
Message Security

	
	

	
Algorithm Suite

	
Algorithm suite used for message protection. See "Supported Algorithm Suites".

	
Basic128

	
Include Timestamp

	
Flag that specifies whether to include a timestamp. A timestamp can be used to prevent replay attacks by identifying an expiration time after which the message is no longer valid.

	
Enabled

	
Encrypt Signature

	
Flag that specifies whether to encrypt the signature.

	
Disabled

	
Confirm Signature

	
Flag that specifies whether to send a signature confirmation back to the client.

	
Enabled

	
Derived Keys

	
Flag that specifies whether derived keys should be used.

	
Disabled

	
Request Message Settings

	
See Table C-92.

	
N/A

	
Response Message Settings

	
See Table C-92.

	
N/A

	
Fault Message Settings

	
See Table C-92.

	
N/A

Configurations

Table C-70 lists the configuration properties and the default settings for the wss11_x509_token_with_message_protection_client_template assertion template. For details about the configuration property settings, see "Editing the Configuration Properties".

For information about overriding policies, see "Attaching Client Policies Permitting Overrides".

Table C-70 wss11_x509_token_with_message_protection_client_template Configurations

	Name	Description
	
role

	
SOAP role.

Default settings:

	
Value—Not set

	
Default—ultimateReceiver

	
ContentType—Constant

	
Description—Not set

	
keystore.recipient.alias

	
Keystore alias associated with the peer certificate. The security run time uses this alias to extract the peer certificate from the configured keystore and to encrypt messages to the peer.

Default settings:

	
Value—Not set

	
Default—orakey

	
ContentType—Required

	
Description—Not set

	
reference.priority

	
Optional property that specifies the priority of the policy attachment. When specified for an attached policy, the effective set of policies algorithm allows the policy with the highest integer value priority to take precedence over a conflicting policy attachment, irrespective of its scope.

Default settings:

	
Value—Not set

	
Default—Not set

	
ContentType—Optional

	
Description—Not set

The value of reference.priority can be any number between(-231) and (231 - 1). The higher the number, the higher the priority assigned during effective policy calculation. Any policy that does not have a value or a non-numeric value is treated as having a value of 0. If the value is set to any of the words "yes", "true", or "on", the value is set to 1.

For more information, see "Specifying the Priority of a Policy Attachment".

	
ignore.timestamp.in.response

	
Property used by the client to ignore the timestamp in the SOAP security header when it receives the response from the service. The default behavior is to NOT ignore the timestamp (the default value of this property is false). If set to true, then the timestamp is not required in the response message; if the timestamp is present, it is ignored.

The timestamp is required to prevent replay attacks, so in general, Oracle does not recommend setting this property to true except to address interoperability issues.

Note: This property is not shown in Fusion Middleware Control. Details for adding the property are described in "Configuring User-Defined Client- or Server-Side Override Properties".

oracle/wss11_x509_token_with_message_protection_service_template

The wss11_x509_token_with_message_protection_service_template assertion template enforces message-level protection and certificate-based authentication for inbound SOAP requests in accordance with the WS-Security 1.1 standard. The certificate is extracted from the WS-Security binary security token header, and the credentials in the certificate are validated against the Oracle Platform Security Services identity store.

Settings

The settings for the wss11_x509_token_with_message_protection_service_template are identical to the client version of the assertion template. See Table C-69 for information on the settings.

Configurations

Table C-71 lists the configuration properties and the default settings for the wss11_x509_token_with_message_protection_service_template assertion template. For details about the configuration property settings, see "Editing the Configuration Properties".

For information about overriding policies, see "Attaching Web Service Policies Permitting Overrides".

Table C-71 wss11_x509_token_with_message_protection_service_template Configurations

	Name	Description
	
role

	
SOAP role.

Default settings:

	
Value—Not set

	
Default—ultimateReceiver

	
ContentType—Constant

	
Description—Not set

	
reference.priority

	
Optional property that specifies the priority of the policy attachment. When specified for an attached policy, the effective set of policies algorithm allows the policy with the highest integer value priority to take precedence over a conflicting policy attachment, irrespective of its scope.

Default settings:

	
Value—Not set

	
Default—Not set

	
ContentType—Optional

	
Description—Not set

The value of reference.priority can be any number between(-231) and (231 - 1). The higher the number, the higher the priority assigned during effective policy calculation. Any policy that does not have a value or a non-numeric value is treated as having a value of 0. If the value is set to any of the words "yes", "true", or "on", the value is set to 1.

For more information, see "Specifying the Priority of a Policy Attachment".

WS-Trust Assertion Templates

Table C-72 summarizes the WS-Trust assertion templates.

In this release, you can use Fusion Middleware Control to directly edit the assertion template text, but the Settings and Configurations pages are not available.

Table C-72 WS-Trust Assertion Templates

	Name	Description
	
oracle/sts_trust_config_client_template

	
STS configuration information assertion template that is used to invoke STS for token exchange.

	
oracle/sts_trust_config_service_template

	
STS configuration information assertion template that is used to invoke STS for token exchange.

	
oracle/wss_sts_issued_saml_bearer_token_over_ssl_client_template

	
SOAP binding-level client assertion template for issued token SAML authentication (confirmation method bearer), with SSL message protection.

	
oracle/wss_sts_issued_saml_bearer_token_over_ssl_service_template

	
SOAP binding-level service assertion template for issued token SAML authentication (confirmation method bearer), with SSL message protection.

	
oracle/wss11_sts_issued_saml_hok_with_message_protection_client_template

	
WS-Security 1.1 issued token SAML HOK token with certificates client assertion template. Provides authentication and message protection using Basic128.

	
oracle/wss11_sts_issued_saml_hok_with_message_protection_service_template

	
WS-Security 1.1 issued token SAML HOK token with certificates service assertion template. Provides authentication and message protection using Basic128.

	
oracle/wss11_sts_issued_saml_with_message_protection_client_template

	
WS-Security 1.1 issued token SAML sender voucher with certificates. Provides authentication and message protection using Basic128.

oracle/sts_trust_config_client_template

The oracle/sts_trust_config_client_template invokes the STS for token exchange.

Settings

Table C-73 lists the settings for the oracle/sts_trust_config_client_template assertion template.

Table C-73 oracle/sts_trust_config_client_template Settings

	Name	Description	Default Value
	
policy-reference-uri

	
The client policy URI that will be used by the client to communicate with the STS. The policy you choose depends on the authentication requirements of the STS, as identified in its WSDL.

	
oracle/wss10_username_token_with_message_protection_client_policy

	
port-endpoint

	
The endpoint of the STS Web service.

For a WSDL 2.0 STS, the format is specified as target-namespace#wsdl.endpoint(service-name/port-name). For example, http://samples.otn.com.LoanFlow#wsdl.endpoint(LoanFlowService/LoanFlowPort

For a WSDL 1.1 STS, the format is specified as targetnamespace#wsdl11.endpoint(servicename/portname). For example, http://samples.otn.com.LoanFlow#wsdl11.endpoint(LoanFlowService/LoanFlowPort).

	
None

	
port-uri

	
The actual endpoint URI of the STS port. For example. http://host:port/context-root/service1.

	
None

	
sts-keystore-recipient-alias

	
The alias of the STS certificate you added to the keystore. The default alias name is sts-csf-key.

	
sts-csf-key

	
wsdl-uri

	
The actual endpoint URI of the WSDL.

	
None

Configurations

Table C-74 lists the configuration properties and the default settings for the oracle/sts_trust_config_client_template assertion template. For details about the configuration property settings, see "Editing the Configuration Properties".

For information about overriding policies, see "Attaching Client Policies Permitting Overrides".

Table C-74 oracle/sts_trust_config_client_template Properties

	Name	Description
	
role

	
SOAP role.

Default settings:

	
Value—ultimateReceiver

	
Default—Not set

	
ContentType—Constant

	
Description—Not set

	
reference.priority

	
Optional property that specifies the priority of the policy attachment. When specified for an attached policy, the effective set of policies algorithm allows the policy with the highest integer value priority to take precedence over a conflicting policy attachment, irrespective of its scope.

Default settings:

	
Value—Not set

	
Default—Not set

	
ContentType—Optional

	
Description—Not set

The value of reference.priority can be any number between(-231) and (231 - 1). The higher the number, the higher the priority assigned during effective policy calculation. Any policy that does not have a value or a non-numeric value is treated as having a value of 0. If the value is set to any of the words "yes", "true", or "on", the value is set to 1.

For more information, see "Specifying the Priority of a Policy Attachment".

oracle/sts_trust_config_service_template

The oracle/sts_trust_config_service_template invokes the STS for token exchange.

Settings

Table C-73 lists the settings for the oracle/sts_trust_config_service_template assertion template.

Table C-75 oracle/sts_trust_config_service_template Settings

	Name	Description	Default Value
	
port-uri

	
The actual endpoint URI of the STS port. For example. http://host:port/context-root/service1.

	
None

	
wsdl-uri

	
The actual endpoint URI of the WSDL.

	
None

Configurations

Table C-74 lists the configuration properties and the default settings for the oracle/sts_trust_config_service_template assertion template. For details about the configuration property settings, see "Editing the Configuration Properties".

For information about overriding policies, see "Attaching Web Service Policies Permitting Overrides".

Table C-76 oracle/sts_trust_config_service_template Properties

	Name	Description
	
role

	
SOAP role.

Default settings:

	
Value—Not set

	
Default—ultimateReceiver

	
ContentType—Constant

	
Description—Not set

	
reference.priority

	
Optional property that specifies the priority of the policy attachment. When specified for an attached policy, the effective set of policies algorithm allows the policy with the highest integer value priority to take precedence over a conflicting policy attachment, irrespective of its scope.

Default settings:

	
Value—Not set

	
Default—Not set

	
ContentType—Optional

	
Description—Not set

The value of reference.priority can be any number between(-231) and (231 - 1). The higher the number, the higher the priority assigned during effective policy calculation. Any policy that does not have a value or a non-numeric value is treated as having a value of 0. If the value is set to any of the words "yes", "true", or "on", the value is set to 1.

For more information, see "Specifying the Priority of a Policy Attachment".

oracle/wss_sts_issued_saml_bearer_token_over_ssl_client_template

This template inserts a SAML bearer assertion issued by a trusted STS. Messages are protected using SSL.

Settings

Table C-77 lists the settings for the oracle/wss_sts_issued_saml_bearer_token_over_ssl_client_template assertion template.

Table C-77 oracle/wss_sts_issued_saml_bearer_token_over_ssl_client_template Settings

	Name	Description	Default Value
	
require-applies-to

	
Optional element in the RST. If present, Oracle WSM sends the endpoint address of the Web service for which the token is being requested. The default behavior is to always send the appliesTo element in the message from the client to the STS.

	
True

	
require-client-entropy

	
If a symmetric proof key is required by the Web service's security policy, the requestor can pass some key material (entropy) that can be included in the calculation of the proof key. The Web service policy can indicate whether client entropy, STS entropy, or both are required.

	
Applies only to HOK.

	
require-server-entropy

	
If a symmetric proof key is required by the Web service's security policy, the requestor can pass some key material (entropy) that can be included in the calculation of the proof key. The Web service policy can indicate whether client entropy, STS entropy, or both are required.

	
Applies only to HOK.

	
trust -version

	
WS-Trust version.

	
1.3

	
require-external-reference

	
Indicates whether external reference to the token is required.

	
True

	
require-internal-reference

	
Indicates whether internal reference to the token is required.

	
True

	
use-derived-keys

	
Indicates whether derived keys are required.

	
False

	
token-type

	
SAML token type. The only valid value is: 1.1.

	
SAML11

	
key-type

	
Key type. The only valid value is: bearer.

	
bearer

	
mutual-auth

	
Flag that specifies whether two-way authentication is required.

Valid values include:

	
Enabled—The service must authenticate itself to the client, and the client must authenticate itself to the service.

	
Disabled—One-way authentication is required. The service must authenticate itself to the client, but the client is not required to authenticate itself to the service.

	
False

	
include-timestamp

	
Flag that specifies whether to include a timestamp. A timestamp can be used to prevent replay attacks by identifying an expiration time after which the message is no longer valid.

	
True

Configurations

Table C-78 lists the configuration properties and the default settings for the oracle/wss_sts_issued_saml_bearer_token_over_ssl_client_template assertion template. For details about the configuration property settings, see "Editing the Configuration Properties".

For information about overriding policies, see "Attaching Client Policies Permitting Overrides".

Table C-78 oracle/wss_sts_issued_saml_bearer_token_over_ssl_client_template Properties

	Name	Description
	
sts.auth.user.csf.key

	
You can override this property.

Use to configure username/password to authenticate to the STS.

If policy-reference-uri in the client "oracle/sts_trust_config_client_template" points to a username-based policy, then you configure the sts.auth.user.csf.key property to specify a username/password to authenticate to the STS.

Default settings:

	
Value—Not set

	
ContentType—Optional

	
sts.auth.x509.csf.key

	
You can override this property.

Use to configure X509 certificate for authenticating to the STS.

If policy-reference-uri in the client "oracle/sts_trust_config_client_template" points to an x509-based policy, then you configure the sts.auth.x509.csf.key property to specify the X509 certificate for authenticating to the STS.

Default settings:

	
Value—Not set

	
ContentType—Optional

	
on.behalf.of

	
You can override this property.

Optional property. Override this property to indicate whether the request is on behalf of an another entity. The default value for this flag is false.

When set to true and sts.auth.on.behalf.of.csf.key is configured, then it will be given preference and the identity established using that CSF key will be send in the on behalf of.

Otherwise, if the subject is already established, then the username from the subject will be sent as onBehalfOf token.

If sts.auth.on.behalf.of.csf.key is not set and the subject does not exist, on.behalf.of is treated as a token exchange for the requestor and not for another entity. It is not included in an onBehalfOf element in the request.

Default settings:

	
Value—false

	
ContentType—Optional

	
sts.auth.on.behalf.of.csf.key

	
You can override this property.

Optional property. Use to configure on behalf of entity. If present, it will be given preference over Subject (if it exists).

Default settings:

	
Value—Not set

	
ContentType—Optional

	
sts.auth.service.principal.name

	
Principal name for the Web service that needs to be protected. It is of the format <host>/<machine name>@<REALM NAME>. For example, HTTP/mymachine@MYREALM.COM.

Default settings:

	
Value—HOST/localhost@EXAMPLE.COM

	
ContentType—Optional

	
sts.auth.keytab.location

	
Location of the client's keytab file.

Default settings:

	
Value—Not set

	
ContentType—Optional

	
sts.keystore.recipient.alias

	
The alias of the STS certificate you added to the keystore. The default alias name is sts-csf-key.

Default settings:

	
Value—Not set

	
ContentType—Optional

	
sts.auth.caller.principal.name

	
Client's principal name as generated using the ktpass command and mapped to the username for which the kerberos token should be generated. It is of the format <username>@<REALM NAME>.

Default settings:

	
Value—Not set

	
ContentType—Optional

	
reference.priority

	
Optional property that specifies the priority of the policy attachment. When specified for an attached policy, the effective set of policies algorithm allows the policy with the highest integer value priority to take precedence over a conflicting policy attachment, irrespective of its scope.

Default settings:

	
Value—Not set

	
Default—Not set

	
ContentType—Optional

	
Description—Not set

The value of reference.priority can be any number between(-231) and (231 - 1). The higher the number, the higher the priority assigned during effective policy calculation. Any policy that does not have a value or a non-numeric value is treated as having a value of 0. If the value is set to any of the words "yes", "true", or "on", the value is set to 1.

For more information, see "Specifying the Priority of a Policy Attachment".

oracle/wss_sts_issued_saml_bearer_token_over_ssl_service_template

This template authenticates a SAML bearer assertion issued by a trusted STS. Messages are protected using SSL

Settings

Table C-77 lists the settings for the oracle/wss_sts_issued_saml_bearer_token_over_ssl_service_template assertion template.

Configurations

Table C-79 lists the configuration properties and the default settings for the oracle/wss_sts_issued_saml_bearer_token_over_ssl_service_template assertion template. For details about the configuration property settings, see "Editing the Configuration Properties".

For information about overriding policies, see "Attaching Web Service Policies Permitting Overrides".

Table C-79 oracle/wss_sts_issued_saml_bearer_token_over_ssl_service_template Properties

	Name	Description
	
role

	
SOAP role.

Default settings:

	
Value—ultimateReceiver

	
Default—Not set

	
ContentType—Constant

	
Description—Not set

	
reference.priority

	
Optional property that specifies the priority of the policy attachment. When specified for an attached policy, the effective set of policies algorithm allows the policy with the highest integer value priority to take precedence over a conflicting policy attachment, irrespective of its scope.

Default settings:

	
Value—Not set

	
Default—Not set

	
ContentType—Optional

	
Description—Not set

The value of reference.priority can be any number between(-231) and (231 - 1). The higher the number, the higher the priority assigned during effective policy calculation. Any policy that does not have a value or a non-numeric value is treated as having a value of 0. If the value is set to any of the words "yes", "true", or "on", the value is set to 1.

For more information, see "Specifying the Priority of a Policy Attachment".

oracle/wss11_sts_issued_saml_hok_with_message_protection_client_template

This template inserts a SAML HOK assertion issued by a trusted STS (Security Token Service). Messages are protected using proof key material provided by the STS.

Settings

Table C-80 lists the settings for the wss11_sts_issued_saml_hok_with_message_protection_client_template assertion template.

Table C-80 oracle/wss11_sts_issued_saml_hok_with_message_protection_client_template Settings

	Name	Description	Default Value
	
require-applies-to

	
Optional element in the RST. If present, Oracle WSM sends the endpoint address of the Web service for which the token is being requested. The default behavior is to always send the appliesTo element in the message from the client to the STS.

	
True

	
require-client-entropy

	
If a symmetric proof key is required by the Web service's security policy, the requestor can pass some key material (entropy) that can be included in the calculation of the proof key. The Web service policy can indicate whether client entropy, STS entropy, or both are required.

	
True

	
require-server-entropy

	
If a symmetric proof key is required by the Web service's security policy, the requestor can pass some key material (entropy) that can be included in the calculation of the proof key. The Web service policy can indicate whether client entropy, STS entropy, or both are required.

	
True

	
trust -version

	
WS-Trust version.

	
1.3

	
require-external-reference

	
Indicates whether external reference to the token is required.

	
True

	
require-internal-reference

	
Indicates whether internal reference to the token is required.

	
True

	
use-derived-keys

	
Indicates whether derived keys are required.

	
False

	
token-type

	
SAML token type. The only valid values are: 1.1 and 2.0.

	
SAML11 and SAML20

	
key-type

	
Key type.

	
symmetric

	
is-signed

	
Flag that specifies whether the SAML token is signed. The only valid value for SAML policies is: True.

	
True

	
is-encrypted

	
Flag that specifies whether the SAML token is encrypted.

	
False

	
confirm-signature

	
Flag that specifies whether to send a signature confirmation back to the client.

	
True

	
sign-key-ref-mech

	
Mechanism used when signing the request.

Valid values include:

	
direct—X.509 Token is included in the request.

	
ski—Subject Key Identifier (SKI) extension value of the X.509 certificate used to reference the certificate. (Some certificates may not have this extension.) The recipient of the message looks up its keystore for a certificate corresponding to the SKI and validates the signature against it.

	
issuerserial—Composite key of issuer name and serial number attributes used to reference the X.509 certificate. The recipient of the message looks up its keystore for a certificate corresponding to Issuer name and Serial Number and validates the signature using it.

	
thumbprint—Fingerprint (SHA1 hash) of the contents of the certificate. Provides a method to store certificates that is low overhead. This value is valid for Encryption Key Reference Mechanism only (described below.)

	
Thumbprint

	
enc-key-ref-mech

	
Mechanism used when encrypting the request. Valid values are the same as for Sign Key Reference Mechanism above.

	
Thumbprint

	
encrypt-signature

	
Flag that specifies whether the signature is encrypted.

	
False

	
sign-then-encrypt

	
Flag that specifies whether the request is signed and then encrypted.

	
True

	
algorithm-suite

	
Algorithm suite used for message protection. See "Supported Algorithm Suites".

	
Basic128

	
include-timestamp

	
Flag that specifies whether to include a timestamp. A timestamp can be used to prevent replay attacks by identifying an expiration time after which the message is no longer valid.

	
True

Configurations

Table C-81 lists the configuration properties and the default settings for the wss11_sts_issued_saml_hok_with_message_protection_client_template assertion template. For details about the configuration property settings, see "Editing the Configuration Properties".

For information about overriding policies, see "Attaching Client Policies Permitting Overrides".

Table C-81 oracle/wss11_sts_issued_saml_hok_with_message_protection_client_template Properties

	Name	Description
	
sts.auth.user.csf.key

	
You can override this property.

Use to configure username/password to authenticate to the STS.

If policy-reference-uri in the client "oracle/sts_trust_config_client_template" points to a username-based policy, then you configure the sts.auth.user.csf.key property to specify a username/password to authenticate to the STS.

Default settings:

	
Value—Not set

	
ContentType—Optional

	
sts.auth.x509.csf.key

	
You can override this property.

Use to configure X509 certificate for authenticating to the STS.

If policy-reference-uri in the client "oracle/sts_trust_config_client_template" points to an x509-based policy, then you configure the sts.auth.x509.csf.key property to specify the X509 certificate for authenticating to the STS.

Default settings:

	
Value—Not set

	
ContentType—Optional

	
on.behalf.of

	
You can override this property.

Optional property. Override this property to indicate whether the request is on behalf of an another entity. The default value for this flag is false.

When set to true and sts.auth.on.behalf.of.csf.key is configured, then it will be given preference and the identity established using that CSF key will be send in the on behalf of.

Otherwise, if the subject is already established, then the username from the subject will be sent as onBehalfOf token.

If sts.auth.on.behalf.of.csf.key is not set and the subject does not exist, on.behalf.of is treated as a token exchange for the requestor and not for another entity. It is not included in an onBehalfOf element in the request.

	
sts.auth.on.behalf.of.csf.key

	
You can override this property.

Optional property. Use to configure on behalf of entity. If present, it will be given preference over Subject (if it exists).

Default settings:

	
Value—Not set

	
ContentType—Optional

	
sts.keystore.recipient.alias

	
The alias of the STS certificate you added to the keystore. The default alias name is sts-csf-key.

Default settings:

	
Value—Not set

	
ContentType—Optional

	
keystore.recipient.alias

	
Keystore alias associated with the peer certificate. The security run time uses this alias to extract the peer certificate from the configured keystore and to encrypt messages to the peer.

Default settings:

	
Value—orakey

	
ContentType—Required.

For information about overriding policies, see "Attaching Client Policies Permitting Overrides".

	
keystore.enc.csf.key

	
If you set this value you then can override keystore.enc.csf.key, as described in "Attaching Web Service Policies Permitting Overrides".

If you do override this value, the key for the new value must be in the keystore. That is, overriding the value does not free you from the requirement of configuring the key in the keystores.

Default settings:

	
Value—Not set

	
ContentType—Optional

	
sts.auth.service.principal.name

	
Principal name for the Web service that needs to be protected. It is of the format <host>/<machine name>@<REALM NAME>. For example, HTTP/mymachine@MYREALM.COM.

Default settings:

	
Value—Not set

	
ContentType—Optional

	
sts.auth.keytab.location

	
Location of the client's keytab file.

Default settings:

	
Value—Not set

	
ContentType—Optional

	
sts.auth.caller.principal.name

	
Client's principal name as generated using the ktpass command and mapped to the username for which the kerberos token should be generated. It is of the format <username>@<REALM NAME>.

Default settings:

	
Value—Not set

	
ContentType—Optional

	
reference.priority

	
Optional property that specifies the priority of the policy attachment. When specified for an attached policy, the effective set of policies algorithm allows the policy with the highest integer value priority to take precedence over a conflicting policy attachment, irrespective of its scope.

Default settings:

	
Value—Not set

	
Default—Not set

	
ContentType—Optional

	
Description—Not set

The value of reference.priority can be any number between(-231) and (231 - 1). The higher the number, the higher the priority assigned during effective policy calculation. Any policy that does not have a value or a non-numeric value is treated as having a value of 0. If the value is set to any of the words "yes", "true", or "on", the value is set to 1.

For more information, see "Specifying the Priority of a Policy Attachment".

oracle/wss11_sts_issued_saml_hok_with_message_protection_service_template

This template authenticates a SAML HOK assertion issued by a trusted STS (Security Token Service). Messages are protected using WS-Security's Basic 128 suite of symmetric key technologies.

Settings

Table C-80 lists the settings for the wss11_sts_issued_saml_hok_with_message_protection_service_template assertion template.

Configurations

Table C-82 lists the configuration properties and the default settings for the wss11_sts_issued_saml_hok_with_message_protection_service_template assertion template. For details about the configuration property settings, see "Editing the Configuration Properties".

For information about overriding policies, see "Attaching Web Service Policies Permitting Overrides".

Table C-82 oracle/wss11_sts_issued_saml_hok_with_message_protection_service_template Properties

	Name	Description
	
role

	
SOAP role.

Default settings:

	
Value—ultimateReceiver

	
Default—Not set

	
ContentType—Constant

	
Description—Not set

	
keystore.enc.csf.key

	
If you set this value you then can override keystore.enc.csf.key, as described in "Attaching Web Service Policies Permitting Overrides".

If you do override this value, the key for the new value must be in the keystore. That is, overriding the value does not free you from the requirement of configuring the key in the keystores.

Default settings:

	
Value—Not set

	
Default—Not set

	
ContentType—Optional

	
Description—Not set

	
reference.priority

	
Optional property that specifies the priority of the policy attachment. When specified for an attached policy, the effective set of policies algorithm allows the policy with the highest integer value priority to take precedence over a conflicting policy attachment, irrespective of its scope.

Default settings:

	
Value—Not set

	
Default—Not set

	
ContentType—Optional

	
Description—Not set

The value of reference.priority can be any number between(-231) and (231 - 1). The higher the number, the higher the priority assigned during effective policy calculation. Any policy that does not have a value or a non-numeric value is treated as having a value of 0. If the value is set to any of the words "yes", "true", or "on", the value is set to 1.

For more information, see "Specifying the Priority of a Policy Attachment".

oracle/wss11_sts_issued_saml_with_message_protection_client_template

This template inserts a SAML sender vouches assertion issued by a trusted STS (Security Token Service). Messages are protected using the client's private key.

Settings

Table C-83 lists the settings for the wss11_sts_issued_saml_with_message_protection_client_template assertion template.

Table C-83 wss11_sts_issued_saml_with_message_protection_client_template Settings

	Name	Description	Default Value
	
require-applies-to

	
Optional element in the RST. If present, Oracle WSM sends the endpoint address of the Web service for which the token is being requested. The default behavior is to always send the appliesTo element in the message from the client to the STS.

	
True

	
require-client-entropy

	
If a symmetric proof key is required by the Web service's security policy, the requestor can pass some key material (entropy) that can be included in the calculation of the proof key. The Web service policy can indicate whether client entropy, STS entropy, or both are required.

	
Applies to HOK only.

	
require-server-entropy

	
If a symmetric proof key is required by the Web service's security policy, the requestor can pass some key material (entropy) that can be included in the calculation of the proof key. The Web service policy can indicate whether client entropy, STS entropy, or both are required.

	
Applies to HOK only.

	
trust-version

	
WS-Trust version.

	
1.3

	
require-external-reference

	
Indicates whether external reference to the token is required.

	
True

	
require-internal-reference

	
Indicates whether internal reference to the token is required.

	
True

	
use-derived-keys

	
Indicates whether derived keys are required.

	
False

	
token-type

	
SAML token type. The only valid value is: 1.1.

	
SAML11

	
is-signed

	
Flag that specifies whether the SAML token is signed. The only valid value for SAML policies is: True.

	
True

	
is-encrypted

	
Flag that specifies whether the SAML token is encrypted.

	
False

	
confirm-signature

	
Flag that specifies whether to send a signature confirmation back to the client.

	
True

	
sign-key-ref-mech

	
Mechanism used when signing the request.

Valid values include:

	
direct—X.509 Token is included in the request.

	
ski—Subject Key Identifier (SKI) extension value of the X.509 certificate used to reference the certificate. (Some certificates may not have this extension.) The recipient of the message looks up its keystore for a certificate corresponding to the SKI and validates the signature against it.

	
issuerserial—Composite key of issuer name and serial number attributes used to reference the X.509 certificate. The recipient of the message looks up its keystore for a certificate corresponding to Issuer name and Serial Number and validates the signature using it.

	
thumbprint—Fingerprint (SHA1 hash) of the contents of the certificate. Provides a method to store certificates that is low overhead. This value is valid for Encryption Key Reference Mechanism only (described below.)

	
Direct

	
enc-key-ref-mech

	
Mechanism used when encrypting the request. Valid values are the same as for Sign Key Reference Mechanism above.

	
Thumbprint

	
encrypt-signature

	
Flag that specifies whether the signature is encrypted

	
False

	
sign-then-encrypt

	
Flag that specifies whether the request is signed and then encrypted.

	
True

	
algorithm-suite

	
Algorithm suite used for message protection. See "Supported Algorithm Suites".

	
Basic128

	
include-timestamp

	
Flag that specifies whether to include a timestamp. A timestamp can be used to prevent replay attacks by identifying an expiration time after which the message is no longer valid.

	
True

Configurations

Table C-84 lists the configuration properties and the default settings for the wss11_sts_issued_saml_with_message_protection_client_template assertion template. For details about the configuration property settings, see "Editing the Configuration Properties".

For information about overriding policies, see "Attaching Client Policies Permitting Overrides".

Table C-84 oracle/wss11_sts_issued_saml_with_message_protection_client_template Properties

	Name	Description
	
sts.auth.user.csf.key

	
You can override this property.

Use to configure username/password to authenticate to the STS.

If policy-reference-uri in the client "oracle/sts_trust_config_client_template" points to a username-based policy, then you configure the sts.auth.user.csf.key property to specify a username/password to authenticate to the STS.

Default settings:

	
Value—Not set

	
ContentType—Optional

	
sts.auth.x509.csf.key

	
You can override this property.

Use to configure X509 certificate for authenticating to the STS.

If policy-reference-uri in the client "oracle/sts_trust_config_client_template" points to an x509-based policy, then you configure the sts.auth.x509.csf.key property to specify the X509 certificate for authenticating to the STS.

Default settings:

	
Value—Not set

	
ContentType—Optional

	
on.behalf.of

	
You can override this property.

Optional property. Override this property to indicate whether the request is on behalf of an another entity. The default value for this flag is true.

When set to true and sts.auth.on.behalf.of.csf.key is configured, then it will be given preference and the identity established using that CSF key will be send in the on behalf of.

Otherwise, if the subject is already established, then the username from the subject will be sent as onBehalfOf token.

If sts.auth.on.behalf.of.csf.key is not set and the subject does not exist, on.behalf.of is treated as a token exchange for the requestor and not for another entity. It is not included in an onBehalfOf element in the request.

	
sts.auth.on.behalf.of.csf.key

	
You can override this property.

Optional property. Use to configure on behalf of entity. If present, it will be given preference over Subject (if it exists).

Default settings:

	
Value—Not set

	
ContentType—Optional

	
sts.keystore.recipient.alias

	
The alias of the STS certificate you added to the keystore. The default alias name is sts-csf-key.

Default settings:

	
Value—Not set

	
ContentType—Optional

	
keystore.recipient.alias

	
Keystore alias associated with the peer certificate. The security run time uses this alias to extract the peer certificate from the configured keystore and to encrypt messages to the peer.

Default settings:

	
Value—orakey

	
ContentType—Optional

	
keystore.enc.csf.key

	
If you set this value you then can override keystore.enc.csf.key, as described in "Attaching Web Service Policies Permitting Overrides".

If you do override this value, the key for the new value must be in the keystore. That is, overriding the value does not free you from the requirement of configuring the key in the keystores.

Default settings:

	
Value—Not set

	
ContentType—Optional

	
reference.priority

	
Optional property that specifies the priority of the policy attachment. When specified for an attached policy, the effective set of policies algorithm allows the policy with the highest integer value priority to take precedence over a conflicting policy attachment, irrespective of its scope.

Default settings:

	
Value—Not set

	
Default—Not set

	
ContentType—Optional

	
Description—Not set

The value of reference.priority can be any number between(-231) and (231 - 1). The higher the number, the higher the priority assigned during effective policy calculation. Any policy that does not have a value or a non-numeric value is treated as having a value of 0. If the value is set to any of the words "yes", "true", or "on", the value is set to 1.

For more information, see "Specifying the Priority of a Policy Attachment".

Authorization Assertion Templates

Table C-85 summarizes assertion templates that are used for authorization. Each authorization assertion template must follow an authentication assertion template.

Table C-85 Authorization Assertion Templates

	Service Template	Description
	
oracle/binding_authorization_template

	
Provides simple role-based authorization for the request based on the authenticated subject at the SOAP binding level.

	
oracle/binding_permission_authorization_template

	
Provides simple permission-based authorization for the request based on the authenticated subject at the SOAP binding level.

	
oracle/component_authorization_template

	
Provides simple role-based authorization for the request based on the authenticated subject at the SOA component level.

	
oracle/component_permission_authorization_template

	
Provides simple permission-based authorization for the request based on the authenticated subject at the SOA component level.

oracle/binding_authorization_template

The binding_authorization_template assertion template provides simple role-based authorization for the request based on the authenticated subject at the SOAP binding level. It should follow an authentication assertion template.

Settings

Table C-86 lists the settings for the binding_authorization_template assertion template.

Table C-86 binding_authorization_template Settings

	Name	Description	Default Value
	
Constraint Pattern

	
Expression that represents the constraints against which authorization checks are performed. The constraints expression is specified using the following two messageContext properties:

	
messageContext.authenticationMethod—Determines the authentication method used to authenticate the user. Valid value is SAML_SV.

	
messageContext.requestOrigin—Determines whether the request originated from an internal or external network. This property is valid only when using Oracle HTTP Server and the Oracle HTTP server administrator has added a custom VIRTUAL_HOST_TYPE header to the request.

The constraint pattern properties and their values are case sensitive.

The constraint expression uses the following standard supported operators: ==, !=, &&, || and !.

	

	
Action Pattern

	
Action or Web service operation for which authorization checks are performed. This value can be a comma-separated list of values. This field accepts wildcards.

For example, validate,amountAvailable.

	
actionMatchPattern

	
Resource Pattern

	
Name of the resource for which authorization checks are performed. This field accepts wildcards.

For example, if the namespace of the Web service is http://project11 and the service name is CreditValidation, the resource name is http://project11/CreditValidation.

	
resourceMatchPattern

	
Authorization Setting

	
Specifies the roles that are authorized.

The valid values are:

	
Permit All—Permit users with any roles.

	
Deny All—Deny all users with roles.

	
Selected Roles—Permit selected roles.

To add roles:

	
Click Add.

	
To add roles, click the checkbox next to each role you want to add in the Roles Available column and click Move. To add all roles, click Move All.

To remove roles, click the checkbox next to each role you want to remove in the Roles Selected to Add column, and click Remove. To remove all roles, click Remove All.

To search for roles, enter a search string in the Role Name search box and click the go arrow. The Roles Available column is updated to include only those roles that match the search string.

	
Click OK.

To delete roles:

	
Select the role that you want to delete in the Selected Roles list.

	
Click Delete.

	
Selected Roles

Configurations

None defined.

oracle/binding_permission_authorization_template

The binding_permission_authorization_template assertion provides simple permission-based authorization for the request based on the authenticated subject at the SOAP binding level. It should follow an authentication assertion.

Settings

Table C-87 lists the settings for the binding_permission_authorization_template assertion template.

Table C-87 binding_permission_authorization_template Settings

	Name	Description	Default Value
	
Constraint Pattern

	
Reserved for future use.

	
N/A

	
Action Pattern

	
Action or Web service operation for which permission-based checks are performed. This value can be a comma-separated list of values. This field accepts wildcards.

For example, validate,amountAvailable.

	
*

	
Resource Pattern

	
Name of the resource for which permission-based checks are performed. This field accepts wildcards.

For example, if the namespace of the Web service is http://project11 and the service name is CreditValidation, the resource name is http://project11/CreditValidation.

	
*

	
Permission Check Class

	
Class used for the permission-based checking. For example, oracle.wsm.security.WSFuncPermission.

	
N/A

Configurations

Table C-88 lists the configuration properties for the binding_permission_authorization_template assertion template.

Table C-88 binding_permission_authorization_template Properties

	Name	Description
	
reference.priority

	
Optional property that specifies the priority of the policy attachment. When specified for an attached policy, the effective set of policies algorithm allows the policy with the highest integer value priority to take precedence over a conflicting policy attachment, irrespective of its scope.

Default settings:

	
Value—Not set

	
Default—Not set

	
ContentType—Optional

	
Description—Not set

The value of reference.priority can be any number between(-231) and (231 - 1). The higher the number, the higher the priority assigned during effective policy calculation. Any policy that does not have a value or a non-numeric value is treated as having a value of 0. If the value is set to any of the words "yes", "true", or "on", the value is set to 1.

For more information, see "Specifying the Priority of a Policy Attachment".

oracle/component_authorization_template

The component_authorization_template assertion provides simple role-based authorization for the request based on the authenticated subject at the SOA component level. It should follow an authentication assertion.

Settings

Table C-89 lists the settings for the component_authorization_template assertion template.

Table C-89 component_authorization_template Settings

	Name	Description	Default Value
	
Authorization Setting

	
Specifies the roles that are authorized.

The valid values are:

	
Permit All—Permit users with any roles.

	
Deny All—Deny all users with roles.

	
Selected Roles—Permit selected roles.

To add roles:

	
Click Add.

	
To add roles, click the checkbox next to each role you want to add in the Roles Available column and click Move. To add all roles, click Move All.

To remove roles, click the checkbox next to each role you want to remove in the Roles Selected to Add column, and click Remove. To remove all roles, click Remove All.

To search for roles, enter a search string in the Role Name search box and click the go arrow. The Roles Available column is updated to include only those roles that match the search string.

	
Click OK.

To delete roles:

	
Select the role that you want to delete in the Selected Roles list.

	
Click Delete.

	
Selected Roles

Configurations

None defined.

oracle/component_permission_authorization_template

The component_permission_authorization_template assertion template provides simple permission-based authorization for the request based on the authenticated subject at the SOA component level. It should follow an authentication assertion.

	
Note:

You should be careful when using permission-based policies with EJBs as the security permissions specified in system-jazn-data.xml will be relaxed beyond a single invocation of the service operation.

Settings

Table C-90 lists the settings for the component_permission_authorization_template assertion template.

Table C-90 component_permission_authorization_template Settings

	Name	Description	Default Value
	
Constraint Pattern

	
Reserved for future use.

	
N/A

	
Action Pattern

	
Action or Web service operation for which permission-based checks are performed. This value can be a comma-separated list of values. This field accepts wildcards.

For example, validate,amountAvailable.

	
*

	
Resource Pattern

	
Name of the resource for which permission-based checks are performed. This field accepts wildcards.

For example, if the composite name of the Web service is HelloWorld and the service name is Hello, the resource name is HelloWorld/Hello.

	
*

	
Permission Check Class

	
Class used for the permission-based checking. For example, oracle.wsm.security.WSFunctionPermission.

	
N/A

Configurations

None defined.

Supported Algorithm Suites

Table C-91 lists the algorithm suites that are supported for message protection. The algorithm suites enable you to control the cryptographic characteristics of the algorithms that are used when securing messages.

Table C-91 Supported Algorithm Suites

	Algorithm Suite	Digest	Encryption	Symmetric Key Wrap	Asymmetric Key Wrap	Encrypted Key Derivation	Signature Key Derivation	Minimum Signature Key Length
	
Basic256

	
Sha1

	
Aes256

	
KwAes256

	
KwRsaOaep

	
PSha1L256

	
PSha1L192

	
256

	
Basic192

	
Sha1

	
Aes192

	
KwAes192

	
KwRsaOaep

	
PSha1L192

	
PSha1L192

	
192

	
Basic128

	
Sha1

	
Aes128

	
KwAes128

	
KwRsaOaep

	
PSha1L128

	
PSha1L128

	
128

	
TripleDes

	
Sha1

	
TripleDes

	
KwTripleDes

	
KwRsaOaep

	
PSha1L192

	
PSha1L192

	
192

	
Basic256Rsa15

	
Sha1

	
Aes256

	
KwAes256

	
KwRsa15

	
PSha1L256

	
PSha1L192

	
256

	
Basic192Rsa15

	
Sha1

	
Aes192

	
KwAes192

	
KwRsa15

	
PSha1L192

	
PSha1L192

	
192

	
Basic128Rsa15

	
Sha1

	
Aes128

	
KwAes128

	
KwRsa15

	
PSha1L128

	
PSha1L128

	
128

	
TripleDesRsa15

	
Sha1

	
TripleDes

	
KwTripleDes

	
KwRsa15

	
PSha1L192

	
PSha1L192

	
192

Message Signing and Encryption Settings for Request, Response, and Fault Messages

Table C-92 lists the settings for the Request, Response, and Fault messages. You configure these settings for message signing and encryption.

Table C-92 Request, Response, and Fault Message Signing and Encryption Settings

	Name	Description	Default Value
	
Include Entire Body

	
Sign or encrypt the entire body of the SOAP message.

If false, you can add specific body elements using the Body Elements section.

	
True for Request and Response messages

False for Fault messages

	
Include SwA Attachment

	
Sign or encrypt SOAP messages with attachments.

Note: This field is not applicable to MTOM attachments.

	
False

	
Include MIME Headers

	
Sign or encrypt SOAP attachments with MIME headers.

Note: This field is enabled and applicable if Include SwA Attachment is enabled. It is not applicable to MTOM attachments.

	
False

	
Header Elements

	
Sign or encrypt the specified SOAP header elements.

To add a header element:

	
Click Add.

	
Enter the namespace URI.

	
Enter the local name for the header element.

	
Click OK.

To edit a header element:

	
Select the header element that you want to edit in the Header Elements list.

	
Click Edit.

	
Modify the values, as required.

	
Click OK.

To delete a header element:

	
Select the header element that you want to delete in the Header Elements list.

	
Click Delete.

	
When prompted to confirm, click OK.

	
None

	
Body Elements

	
Note: This field is available if Include Entire Body is disabled.

Sign or encrypt the specified body elements. This field is applicable if the Include Body field is disabled.

To add a body element:

	
Click Add.

	
Enter the namespace URI.

	
Enter the local name for the body element.

	
Click OK.

To edit a body element:

	
Select the bpdu element that you want to edit in the Body Elements list.

	
Click Edit.

	
Modify the values, as required.

	
Click OK.

To delete a body element:

	
Select the body element that you want to delete in the Body Elements list.

	
Click Delete.

	
When prompted to confirm, click OK.

	
None

Management Assertion Templates

Table C-93 summarizes the management assertion templates.

Table C-93 Management Assertion Templates

	Name	Description
	
oracle/security_log_template

	
Provides a logging assertion template that can be attached to any binding or component.

oracle/security_log_template

The security_log_template assertion template provides a logging assertion template that can be attached to any binding or component.

	
Note:

It is recommended that the logging assertion be used for debugging and auditing purposes only.

Settings

Table C-94 lists the settings for the security_log_template assertion template.

Table C-94 security_log_template Settings

	Name	Description	Default Value
	
Request

	
Requirements for logging request messages.

The valid values are:

	
all—Log the entire SOAP message.

	
header—Log SOAP header information only.

	
soap_body—Log SOAP body information only.

	
soap_envelope—Log SOAP envelope information only.

	
all

	
Response

	
Requirements for logging response messages. The valid values are the same as for Request above.

	
soap_body

Configurations

None defined.

No Behavior Assertion Templates

Each of the predefined no behavior policies, described in "No Behavior Policies", use the same assertion that essentially does not enforce the behavior for that category.

An assertion template is not provided for this assertion. For that reason, it is important that you do not delete the no behavior policies. If you do so, you cannot recreate them and you will need to restore the repository with the original policies. For information about restoring the repository, see "Rebuilding the Oracle WSM Repository".

D Schema Reference for Predefined Assertions

This appendix provides the XML schema for reference when creating a WS-Policy file that contains Web service assertions. Sections include:

	
Graphical Representation

	
Element Descriptions

Graphical Representation

The following graphic describes the element hierarchy of the assertions in the WS-Policy file.

Figure D-1 Element Hierarchy of an Assertion

[image: Description of Figure D-1 follows]

Description of "Figure D-1 Element Hierarchy of an Assertion"

The following sections describe each element and their subelements in detail:

	
wsp:Policy

	
wsp:ExactlyOne

	
orasp:Assertion

	
orawsp:bindings

	
orawsp:Config

	
orawsp:PropertySet

	
orawsp:Property

	
orawsp:Description

	
orawsp:Value

	
orawsp:guard

	
orawsp:resource-match

	
orawsp:action-match

	
orawsp:constraint-match

Element Descriptions

The following sections describe the elements in the assertion in more detail. The main elements are described up front. The subelements are described following the main elements and are organized in alphabetical order.

wsp:Policy

Groups nested policy assertions.

Attributes

The following table summarizes the WS-Policy attributes, including the Oracle extensions.

Table D-1 Oracle Extensions to WS-Policy Attributes

	Attribute	Description
	
Name

	
Name of the policy.

	
attachTo

	
Policy subjects to which the policy can be attached. Valid values include:binding.client, binding.server, binding.any.

	
category

	
Category of the policy. Valid values include: security, mtom, wsrm, addressing, and management.

	
description

	
Description of the policy.

	
displayName

	
Name displayed in the user interface.

	
localOptimization

	
Flag that specifies whether local optimization is enabled. Oracle WSM supports a SOA local optimization feature for composite-to-composite invocations in which the reference of one composite specifies a Web service binding to a second composite. Valid values include:

	
On—Local optimization is enabled

	
Off—Local optimization is turned off. The request goes through the usual WS/SOAP/HTTP process

	
Check Identity—Optimize only if a JAAS subject already exists in the current thread, indicating that authentication has already succeeded. Otherwise, go through the usual WS/SOAP/HTTP process.

	
status

	
Status of the policy reference. Valid values include: enabled and disabled.

	
smartDigest

	
Smart Digest.

	
oraSmartDigest

	
Smart Digest.

	
subjectCount

	
Number of subjects to which the policy is attached currently.

	
versionCreator

	
Author of the current version.

	
versionNumber

	
Number of the current version.

	
versionTime

	
Time the current version was creatd.

	
id

	
Policy ID.

Example

<wsp:Policy
 xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
 xmlns="http://schemas.xmlsoap.org/ws/2004/09/policy"
 xmlns:oralgp="http://schemas.oracle.com/ws/2006/01/loggingpolicy"
 xmlns:orasp="http://schemas.oracle.com/ws/2006/01/securitypolicy"
 xmlns:orawsp="http://schemas.oracle.com/ws/2006/01/policy"
xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd"
 Name="oracle/wss11_x509_token_with_message_protection_client_policy"
 orawsp:attachTo="binding.client"
 orawsp:category="security"
orawsp:description="i18n:oracle.wsm.resources.policydescription.PolicyDescription
Bundle_oracle/wss11_x509_token_with_message_protection_client_policy_PolyDescKey"
orawsp:displayName="i18n:oracle.wsm.resources.policydescription.PolicyDescription
Bundle_oracle/wss11_x509_token_with_message_protection_client_policy_PolyDispNameKey"
 orawsp:local-optimization="check-identity"
 orawsp:oraSmartDigest="935231872"
 orawsp:smartDigest="201244603"
 orawsp:status="enabled"
 orawsp:versionCreator="mdsInternal"
 orawsp:versionNumber="1"
 orawsp:versionTime="1238006529607"
 wsu:Id="wss11_x509_token_with_message_protection_client_policy">
...
</wsp:Policy>

wsp:ExactlyOne

Optional element that defines an OR group. For more information about OR groups, see "Defining Multiple Policy Alternatives (OR Groups)".

Attributes

The following table summarizes the attribute of the <wsp:ExactlyOne> element.

Table D-2 Attribute of <wsp:ExactlyOne> Element

	Attribute	Description
	
Name

	
Set to OR to indicate that this is an OR group.

Example

<wsp:ExactlyOne orawsp:name="Or">
<orasp:wss11-saml-with-certificates orawsp:Enforced="true" orawsp:Silent="false"
 orawsp:category="security/msg-protection, security/authentication"
 orawsp:name="WS-Security 1.1 Saml with certificates">
<orasp:saml-token orasp:confirmation-type="sender-vouches"
 orasp:is-encrypted="false" orasp:is-signed="true" orasp:version="1.1"/>
<orasp:x509-token orasp:enc-key-ref-mech="thumbprint" orasp:is-encrypted="false"
 orasp:is-signed="true" orasp:sign-key-ref-mech="direct"/>
<orasp:msg-security orasp:algorithm-suite="Basic128"
 orasp:confirm-signature="true" orasp:encrypt-signature="false"
 orasp:include-timestamp="true" orasp:sign-then-encrypt="true"
 orasp:use-derived-keys="false">
...
<orasp:wss11-username-with-certificates orawsp:Enforced="true"
 orawsp:Silent="false" orawsp:category="security/authentication,
 security/msg-protection"
 orawsp:name="WS-Security 1.1 username with certificates">
<orasp:username-token orasp:add-created="false" orasp:add-nonce="false"
 orasp:is-encrypted="true" orasp:is-signed="true"
 orasp:password-type="plaintext"/>
<orasp:x509-token orasp:enc-key-ref-mech="thumbprint"
 orasp:is-encrypted="false" orasp:is-signed="true"
 orasp:sign-key-ref-mech="thumbprint"/>
<orasp:msg-security orasp:algorithm-suite="Basic128"
 orasp:confirm-signature="true" orasp:encrypt-signature="false"
 orasp:include-timestamp="true" orasp:sign-then-encrypt="true"
 orasp:use-derived-keys="false">
...
</wsp:ExactlyOne>

orasp:Assertion

Main element of the assertion. Valid assertion elements include:

	
oralgp:Logging

	
orasp:binding-authorization

	
orasp:binding-permission-authorization

	
orasp:coreid-security

	
orasp:http-security

	
orasp:kerberos-security

	
orasp:sca-component-authorization

	
orasp:sca-component-permission-authorization

	
orasp:sts-trust-config

	
orasp:wss10-anonymous-with-certificates

	
orasp:wss10-mutual-auth-with-certificates

	
orasp:wss10-saml-hok-with-certificates

	
orasp:wss10-saml-token

	
orasp:wss10-saml-with-certificates

	
orasp:wss10-username-with-certificates

	
orasp:wss11-anonymous-with-certificates

	
orasp:wss11-mutual-auth-with-certificates

	
orasp:wss11-saml-with-certificates

	
orasp:wss11-sts-issued-token-with-certificates

	
orasp:wss11-username-with-certificates

	
orasp:wss-saml-token-bearer-over-ssl

	
orasp:wss-saml-token-over-ssl

	
orasp:wss-sts-issued-token-over-ssl

	
orasp:wss-username-token

	
orasp:wss-username-token-over-ssl

	
rm:RMAssertion

	
wsaw:UsingAddressing

	
wsoma:OptimizedMimeSerialization

Attributes

The following table summarizes the attributes of the <orasp:Assertion> element.

Table D-3 Attributes of <orasp:Assertion> Element

	Attribute	Description
	
Optional

	
Flag that specifies whether the assertion is optional or required.

	
Silent

	
Flag that specifies whether the assertion is advertised. If set to true, the assertion is not advertised.

	
Enforced

	
Flag that specifies whether the assertion is currently enabled. Valid values are true or false.

	
name

	
Name of the assertion.

	
description

	
Description of the assertion.

	
category

	
Category to which the assertion applies. Valid values include: security/authentication, security/msg-protection, security/authorization, security/logging, mtom, wsrm, addressing, and management.

Example

<orasp:wss11-mutual-auth-with-certificates orawsp:Enforced="true"
 orawsp:Silent="false" orawsp:category="security/authentication,
 security/msg-protection"
 orawsp:name="WS-Security 1.1 Mutual Auth with certificates">
...
</orasp:wss11-mutual-auth-with-certificates>

orawsp:bindings

The <oraswsp:bindings> element defines the bindings in the assertion. This element contains the following subelement:

	
orawsp:Config

Example

<orawsp:bindings>
 <orawsp:Config orawsp:configType="declarative"
 orawsp:name="Wss11SamlWithCertsConfig">
 <orawsp:PropertySet orawsp:name="standard-security-properties">
 <orawsp:Property orawsp:contentType="constant" orawsp:name="role"
 orawsp:type="string">
 <orawsp:Value>ultimateReceiver</orawsp:Value>
 </orawsp:Property>
 </orawsp:PropertySet>
 </orawsp:Config>
 </orawsp:bindings>

orawsp:Config

The <oraswsp:Config> element defines the configuration for the assertion. This element can contain the following subelement:

	
orawsp:PropertySet

Attributes

The following table summarizes the attributes of the <orawsp:Config> element.

Table D-4 Attributes of <orawsp:Config> Element

	Attribute	Description
	
name

	
Name of the configuration.

	
type

	
Category to which the configuration applies.

	
configType

	
Configuration type. Valid values include: declarative and programmatic.

	
declarative—Use deployment descriptors and configuration files to describe authentication and authorization requirements.

	
programmatic—Embed security enforcement within the application.

Example

<orawsp:Config orawsp:configType="declarative"
 orawsp:name="Wss11SamlWithCertsConfig">
 <orawsp:PropertySet orawsp:name="standard-security-properties">
 <orawsp:Property orawsp:contentType="constant" orawsp:name="role"
 orawsp:type="string">
 <orawsp:Value>ultimateReceiver</orawsp:Value>
 </orawsp:Property>
 </orawsp:PropertySet>
</orawsp:Config>

orawsp:PropertySet

The <oraswsp:PropertySet> element groups nested properties. This element contains the following subelement:

	
orawsp:Property

Attributes

The following table summarizes the attributes of the <orawsp:PropertySet> element.

Table D-5 Attributes of <orawsp:PropertySet> Element

	Attribute	Description
	
name

	
Name of the property set.

Example

 <orawsp:PropertySet orawsp:name="standard-security-properties">
 <orawsp:Property orawsp:contentType="constant" orawsp:name="role"
 orawsp:type="string">
 <orawsp:Value>ultimateReceiver</orawsp:Value>
 </orawsp:Property>
 </orawsp:PropertySet>

orawsp:Property

The <oraswsp:Property> element defines a single property. The following summarize valid properties used by the predefined assertions.

The <orawsp:Property> element can contain the following subelements:

	
orawsp:Value

Attributes

The following table summarizes the attributes of the <orawsp:Property> element.

Table D-6 Attributes of <orawsp:Property> Element

	Attribute	Description
	
name

	
Name of the property. See Table D-7 for a list of property values used by the predefined assertions.

	
type

	
Type of the property. For example, string.

	
contentType

	
Specifies whether the property is required and can be overridden. Valid values include:

	
constant—Property is a constant value and cannot be overridden.

	
required—Property is required and can be overridden.

	
optional—Property is optional and can be overridden.

For information about overriding policies, see "Attaching Client Policies Permitting Overrides".

The following table summarizes the properties used by the predefined assertions.

Table D-7 Properties Used by the Predefined Assertions

	Property	Description
	
action

	
Action or Web service operation for which authorization checks are performed. This value can be a comma-separated list of values. This field accepts wildcards. For example, validate,amountAvailable.

	
attesting.mapping.attribute

	
The mapping attribute used to represent the attesting entity. Only the DN is currently supported. This attribute is applicable only to sender vouches and then only to message protection use cases. It is not applicable to SAML over SSL policies.

	
BaseRetransmissionInterval

	
Interval, in milliseconds, that the source endpoint waits after transmitting a message and before it retransmits the message.

If the source endpoint does not receive an acknowledgement for a given message within the interval specified by this element, the source endpoint retransmits the message. The source endpoint can modify this retransmission interval at any point during the lifetime of the sequence of messages. This assertion does not alter the formulation of messages as transmitted, only the timing of their transmission.

This value defaults to 3000.

	
csf-key

	
Credential Store Key that maps to a username and password in the Oracle Platform Security Services identity store. The default value is basic.credentials.

	
DeliveryAssurance

	
Delivery assurance. Valid values include:

	
InOrder—Messages are delivered in the order they were sent. This is the default.

	
AtLeastOnce—Every message is delivered at least once. It is possible that some messages are delivered more than once.

	
AtLeastOnceInOrder—Every message is delivered at least once and in the order they were sent. It is possible that some messages are delivered more than once.

	
ExactlyOnce—Every message is delivered exactly once, without duplication.

	
ExactlyOnceInOrder—Every message is delivered exactly once, without duplication, and in the order they were sent.

	
AtMostOnce—Messages are delivered at most once, without duplication. It is possible that some messages may not be delivered at all.

	
AtMostOnceInOrder—Messages are delivered at most once, without duplication and in the order received. It is possible that some messages may not be delivered at all.

	
jdbc-connection-name

	
JNDI reference to a JDBC data store. Valid when the StoreType is set to JDBC. This value defaults to jdbc/MessagesStore.

	
InactivityTimeout

	
Period of inactivity (in milliseconds) for a sequence of messages. A sequence of messages is defined as a set of messages, identified by a unique sequence number, for which a particular delivery assurance applies; typically a sequence originates from a single source endpoint. If, during the duration specified by this element, a destination endpoint has received no messages from the source endpoint, the destination endpoint may consider the sequence to have been terminated due to inactivity. The same applies to the source endpoint.

This value defaults to 600000.

	
keystore.enc.csf.key

	
If you set this value you then can override keystore.enc.csf.key, as described in "Attaching Web Service Policies Permitting Overrides".

	
keystore.recipient.alias

	
Keystore alias associated with the peer certificate. The security run time uses this alias to extract the peer certificate from the configured keystore and to encrypt messages to the peer. Can be superseded by "Using Service Identity Certification Extension".

	
on.behalf.of

	
Override this property to indicate whether the request is on behalf of an another entity. The default value for this flag is false.

	
permission-class

	
Class used for the permission-based checking. For example, oracle.wsm.security.WSFuncPermission.

	
realm

	
HTTP realm. This value defaults to owsm.

	
resource

	
Name of the resource for which authorization checks are performed. This field accepts wildcards. For example, if the namespace of the Web service is http://project11 and the service name is CreditValidation, the resource name is http://project11/CreditValidation.

	
role

	
SOAP role. This value defaults to ultimateReceiver.

	
saml.assertion.filename

	
File containing SAML assertions. This value defaults to temp.

	
saml.audience.uri

	
Represents the relying party, as a comma-separated URI. This field accepts wildcards.

	
saml.issuer.name

	
Name of the issuer of the SAML token. This value defaults to www.oracle.com.

	
saml.trusted.issuers

	
A comma-separated list of SAML token trusted issuers for an application that will override trusted issuers at domain level.

	
service.principal.name

	
Kerberos principal name that identifies the service.

	
StoreName

	
Name of the message store. This value defaults to oracle.

	
StoreType

	
Type of message store. Valid values include:

	
InMemory—Messages are stored in memory. This is the default.

	
JDBC—Messages are stored using JDBC.

	
sts.auth.caller.principal.name

	
Client's principal name as generated using the ktpass command and mapped to the username for which the kerberos token should be generated. It is of the format <username>@<REALM NAME>.

	
sts.auth.keytab.location

	
Location of the client's keytab file.

	
sts.auth.on.behalf.of.csf.key

	
Use to configure "on behalf of" entity. If present, it will be given preference over Subject (if it exists).

	
sts.auth.service.principal.name

	
Principal name for the Web service that needs to be protected. It is of the format <host>/<machine name>@<REALM NAME>. For example, HTTP/mymachine@MYREALM.COM.

	
sts.auth.user.csf.key

	
Use to configure username/password to authenticate to the STS.

If policy-reference-uri in the client "oracle/sts_trust_config_client_template" points to a username-based policy, then you configure the sts.auth.user.csf.key property to specify a username/password to authenticate to the STS.

	
sts.auth.x509.csf.key

	
Use to configure X509 certificate for authenticating to the STS.

If policy-reference-uri in the client "oracle/sts_trust_config_client_template" points to an x509-based policy, then you configure the sts.auth.x509.csf.key property to specify the X509 certificate for authenticating to the STS.

	
sts.keystore.recipient.alias

	
The alias of the STS certificate you added to the keystore. The default alias name is sts-csf-key.

	
subject.precedence

	
Set subject.precedence to false to allow for the use of a client-specified username rather than the authenticated subject.

If subject.precedence is true, the user name to create the SAML assertion is obtained only from the Subject. Similarly, if subject.precedence is false, the user name to create the SAML assertion is obtained only from the csf-key username property.

	
user.attributes

	
Specify the attributes to be included as a comma-separated list. For example, attrib1,attrib2. The attribute names you specify must exactly match valid attributes in the configured identity store. The Oracle WSM run time reads the values for these attributes from the configured identity store, and then includes the attributes and their values in the SAML assertion.

	
user.roles.include

	
SOAP roles to be included. This value defaults to false.

Example

<orawsp:PropertySet orawsp:name="standard-security-properties">
 <orawsp:Property orawsp:contentType="constant" orawsp:name="role"
 orawsp:type="string">
 <orawsp:Value>ultimateReceiver</orawsp:Value>
 </orawsp:Property>
</orawsp:PropertySet>

orawsp:Description

The <oraswsp:Description> element provides a description of the property.

Example

<orawsp:Description>My description.</orawsp:Description>

orawsp:Value

The <oraswsp:Value> element provides a list of valid values for the property.

Example

<orawsp:Value>ultimateReceiver</orawsp:Value>

orawsp:guard

The <orawsp:guard> element defines the resource, action, and constraint match values.

Examples

<orawsp:guard>
 <orawsp:resource-match>
 http://project11/CreditValidation
 </orawsp:resource-match>
 <orawsp:action-match>validate,amountAvailable</orawsp:action-match>
</orawsp:guard>

<orawsp:guard>
 <orawsp:resource-match>*</orawsp:resource-match>
 <orawsp:action-match>validate,amountAvailable</orawsp:action-match>
</orawsp:guard>

<orawsp:guard>
 <orawsp:constraint-match>${!(messageContext.authenticationMethod =='SAML_SV'
 || messageContext.requestOrigin == 'internal')}
 </orawsp:constraint-match>
</orawsp:guard>

orawsp:resource-match

The <orawsp:resource-match> element specifies the name of the resource for which authorization checks are performed. This field accepts wildcards.

For example, if the namespace of the Web service is http://project11 and the service name is CreditValidation, the resource name is http://project11/CreditValidation.

Examples

<orawsp:guard>
 <orawsp:resource-match>
 http://project11/CreditValidation
 </orawsp:resource-match>
 <orawsp:action-match>validate,amountAvailable</orawsp:action-match>
</orawsp:guard>

<orawsp:guard>
 <orawsp:resource-match>*</orawsp:resource-match>
 <orawsp:action-match>validate,amountAvailable</orawsp:action-match>
</orawsp:guard>

orawsp:action-match

The <orawsp:resource-match> element specifies the action or Web service operation for which authorization checks are performed. This value can be a comma-separated list of values. This field accepts wildcards.

Examples

<orawsp:guard>
 <orawsp:resource-match>
 http://project11/CreditValidation
 </orawsp:resource-match>
 <orawsp:action-match>validate,amountAvailable</orawsp:action-match>
</orawsp:guard>

<orawsp:guard>
 <orawsp:resource-match>*</orawsp:resource-match>
 <orawsp:action-match>validate,amountAvailable</orawsp:action-match>
</orawsp:guard>

orawsp:constraint-match

The <orawsp:constraint-match> element specifies the constraints against which authorization checks are performed. The value is an expression specified using the following two messageContext properties:

	
messageContext.authenticationMethod—Determines the authentication method used to authenticate the user. Valid value is SAML_SV.

	
messageContext.requestOrigin—Determines whether the request originated from an internal or external network. This property is valid only when using Oracle HTTP Server and the Oracle HTTP server administrator has added a custom VIRTUAL_HOST_TYPE header to the request.

The properties and their values are case sensitive. The constraint expression uses the following standard supported operators: ==, !=, &&, || and !.

	
Note:

This element is supported with the binding-authorization element only. For other authorization assertion elements, this field is reserved for future use.

Example

<orawsp:guard>
<orawsp:constraint-match>${!(messageContext.authenticationMethod =='SAML_SV' ||
 messageContext.requestOrigin == 'internal')}
 </orawsp:constraint-match>
</orawsp:guard>

oralgp:Logging

The <orasp:Logging> element defines the logging policy.

The <orasp:Logging> element contains the following subelements:

	
oralgp:msg-log

	
orawsp:bindings

Example

<oralgp:Logging orawsp:Enforced="false" orawsp:Silent="true"
 orawsp:category="security/logging" orawsp:name="Log Message1">
 <oralgp:msg-log>
 <oralgp:request>all</oralgp:request>
 <oralgp:response>all</oralgp:response>
 <oralgp:fault>all</oralgp:fault>
 </oralgp:msg-log>
 <orawsp:bindings>
 <orawsp:Config orawsp:name="added-from-em"/>
 </orawsp:bindings>
</oralgp:Logging>

orasp:binding-authorization

The <orasp:binding-authorization> element defines a simple role-based authorization for the request based on the authenticated subject at the SOAP binding level.

The <orasp:binding-authorization> element contains the following subelements:

	
orawsp:bindings

	
orawsp:guard

It also contains one of the following subelements:

	
orasp:denyAll

	
orasp:permitAll

	
orasp:role

Example

<orasp:binding-authorization orawsp:Enforced="true" orawsp:Silent="true"
 orawsp:category="security/authorization"
 orawsp:name="J2EE services Authorization">
 <orasp:denyAll/>
 <orawsp:bindings>
 <orawsp:Config orawsp:configType="declarative" orawsp:name="AuthzConfig"/>
 </orawsp:bindings>
 <orawsp:guard/>
</orasp:binding-authorization>

orasp:binding-permission-authorization

The <orasp:binding-permission-authorization> element defines simple permission-based authorization for the request based on the authenticated subject at the SOAP binding level.

The <orasp:binding-permission-authorization> element contains the following subelements:

	
orasp:check-permission

	
orawsp:bindings

	
orawsp:guard

Example

<orasp:binding-permission-authorization orawsp:Enforced="true"
 orawsp:Silent="true" orawsp:category="security/authorization"
 orawsp:name="J2EE Permission Based Authorization">
 <orasp:check-permission/>
 <orawsp:bindings>
 <orawsp:Config orawsp:configType="declarative"
 orawsp:name="BindingPermissionAuthzConfig">
 <orawsp:PropertySet orawsp:name="perms-authz-properties">
 <orawsp:Property orawsp:contentType="optional" orawsp:name="resource"
 orawsp:type="string">
 <orawsp:DefaultValue>*</orawsp:DefaultValue>
 </orawsp:Property>
 <orawsp:Property orawsp:contentType="optional" orawsp:name="action"
 orawsp:type="string">
 <orawsp:DefaultValue>*</orawsp:DefaultValue>
 </orawsp:Property>
 <orawsp:Property orawsp:contentType="optional"
 orawsp:name="permission-class" orawsp:type="string">
 <orawsp:DefaultValue>oracle.wsm.security.WSFunctionPermission
 </orawsp:DefaultValue>
 </orawsp:Property>
 </orawsp:PropertySet>
 </orawsp:Config>
 </orawsp:bindings>
 <orawsp:guard>
 <orawsp:resource-match>*</orawsp:resource-match>
 <orawsp:action-match>*</orawsp:action-match>
 </orawsp:guard>
 </orasp:binding-permission-authorization>

orasp:coreid-security

The <orasp:coreid-security> element uses the credentials in the WS-Security header's binary security token to authenticate users against the Oracle Access Manager identity store.

It contains the following subelements:

	
orasp:coreid-token

	
orawsp:bindings

Example

<orasp:coreid-security orawsp:Enforced="true" orawsp:Silent="true"
 orawsp:category="security/authentication, security/authorization"
 orawsp:name="OAM Security">
 <orasp:coreid-token orasp:is-encrypted="false" orasp:is-signed="false"/>
 <orawsp:bindings>
 <orawsp:Config orawsp:configType="declarative" orawsp:name="CoreIdConfig">
 <orawsp:PropertySet orawsp:name="standard-security-properties">
 <orawsp:Property orawsp:contentType="constant" orawsp:name="role"
 orawsp:type="string">
 <orawsp:Value>ultimateReceiver</orawsp:Value>
 </orawsp:Property>
 </orawsp:PropertySet>
 </orawsp:Config>
 </orawsp:bindings>
</orasp:coreid-security>

orasp:http-security

The <orasp:http-security> element uses the credentials in the HTTP header to authenticate users against the Oracle Platform Security Services identity store.

It contains the following subelements:

	
orasp:auth-header

	
orasp:require-tls

	
orawsp:bindings

Example

<orasp:http-security orawsp:Enforced="true" orawsp:Silent="true"
 orawsp:category="security/authentication, security/msg-protection"
 orawsp:name="Http over SSL Security">
 <orasp:auth-header orasp:mechanism="basic"/>
 <orasp:require-tls orasp:include-timestamp="true" orasp:mutual-auth="false"/>
 <orawsp:bindings>
 <orawsp:Config orawsp:configType="declarative" orawsp:name="HttpConfig">
 <orawsp:PropertySet orawsp:name="standard-security-properties">
 <orawsp:Property orawsp:contentType="constant" orawsp:name="realm"
 orawsp:type="string">
 <orawsp:Value>owsm</orawsp:Value>
 </orawsp:Property>
 <orawsp:Property orawsp:contentType="constant" orawsp:name="role"
 orawsp:type="string">
 <orawsp:Value>ultimateReceiver</orawsp:Value>
 </orawsp:Property>
 </orawsp:PropertySet>
 </orawsp:Config>
 </orawsp:bindings>
</orasp:http-security>

orasp:kerberos-security

The <orasp:kerberos-security> element enforces in accordance with the WS-Security Kerberos Token Profile v1.1 standard.

It contains the following subelements:

	
orasp:kerberos-token

	
orawsp:bindings

	
orasp:msg-security

Example

<orasp:kerberos-security orawsp:Enforced="true" orawsp:Silent="false"
 orawsp:category="security/authentication" orawsp:name="WSS Kerberos Token">
 <orasp:kerberos-token orasp:is-encrypted="false" orasp:is-signed="false"
 orasp:type="gss-apreq-v5"/>
 <orawsp:bindings>
 <orawsp:Config orawsp:configType="declarative"
 orawsp:name="KerberosSecurityConfig"/>
 </orawsp:bindings>
</orasp:kerberos-security>

orasp:sca-component-authorization

The <orasp:sca-component-authorization> element defines simple role-based authorization for the request based on the authenticated subject at the SOA component level.

The <orasp:sca-component-authorization> element contains the following subelement:

	
orawsp:bindings

It also contains one of the following subelements:

	
orasp:denyAll

	
orasp:permitAll

	
orasp:role

Example

<orasp:sca-component-authorization orawsp:Enforced="true" orawsp:Silent="true"
 orawsp:category="security/authorization" orawsp:name="Fabric Component
 Authorization">
 <orasp:denyAll/>
 <orawsp:bindings>
 <orawsp:Config orawsp:configType="declarative"
 orawsp:name="FabricAuthzConfig"/>
 </orawsp:bindings>
 </orasp:sca-component-authorization>

orasp:sca-component-permission-authorization

The <orasp:sca-component-permission-authorization> element provides simple permission-based authorization for the request based on the authenticated subject at the SOA component level.

The <orasp:binding-permission-authorization> element contains the following subelements:

	
orasp:check-permission

	
orawsp:bindings

	
orawsp:guard

Example

<orasp:sca-component-permission-authorization orawsp:Enforced="true"
 orawsp:Silent="true" orawsp:category="security/authorization"
 orawsp:name="Fabric Component Authorization">
 <orasp:check-permission/>
 <orawsp:bindings>
 <orawsp:Config orawsp:configType="declarative"
 orawsp:name="FabricAuthzConfig">
 <orawsp:PropertySet orawsp:name="perms-authz-properties">
 <orawsp:Property orawsp:contentType="optional" orawsp:name="resource"
 orawsp:type="string">
 <orawsp:DefaultValue>*</orawsp:DefaultValue>
 </orawsp:Property>
 <orawsp:Property orawsp:contentType="optional" orawsp:name="action"
 orawsp:type="string">
 <orawsp:DefaultValue>*</orawsp:DefaultValue>
 </orawsp:Property>
 <orawsp:Property orawsp:contentType="optional"
 orawsp:name="permission-class" orawsp:type="string">
 <orawsp:DefaultValue>
 oracle.wsm.security.WSFunctionPermission</orawsp:DefaultValue>
 </orawsp:Property>
 </orawsp:PropertySet>
 </orawsp:Config>
 </orawsp:bindings>
 <orawsp:guard>
 <orawsp:resource-match>*</orawsp:resource-match>
 <orawsp:action-match>*</orawsp:action-match>
 </orawsp:guard>
</orasp:sca-component-permission-authorization>

orasp:sts-trust-config

The <orasp:sts-trust-config> element provides a mechanism to invoke the STS for token exchange.

It contains the following subelements:

	
orawsp:bindings

Attributes

The following table summarizes the attributes of the <orasp:sts-trust-config> element.

Table D-8 Attributes of <orasp:sts-trust-config> Element

	Attribute	Description
	
wsdl-uri

	
The actual endpoint URI of the WSDL.

	
port-uri

	
The actual endpoint URI of the STS port. For example. http://host:port/context-root/service1.

	
port-endpoint

	
The endpoint of the STS Web service.

For a WSDL 2.0 STS, the format is specified as target-namespace#wsdl.endpoint(service-name/port-name). For example, http://samples.otn.com.LoanFlow#wsdl.endpoint(LoanFlowService/LoanFlowPort)

For a WSDL 1.1 STS, the format is specified as targetnamespace#wsdl11.endpoint(servicename/portname). For example, http://samples.otn.com.LoanFlow#wsdl11.endpoint(LoanFlowService/LoanFlowPort).

	
policy-reference-uri

	
The client policy URI that will be used by the client to communicate with the STS. The policy you choose depends on the authentication requirements of the STS, as identified in its WSDL.

	
soap-version

	
SOAP version.

	
sts-keystore-recipient-alias

	
The alias of the STS certificate you added to the keystore. The default alias name is sts-csf-key.

Example

<orasp:sts-trust-config
 xmlns:orasp="http://schemas.oracle.com/ws/2006/01/securitypolicy"
 xmlns:orawsp="http://schemas.oracle.com/ws/2006/01/policy"
 orasp:policy-reference-uri="oracle/wss10_username_token_with_message_protection_
client_policy"
 orasp:port-endpoint="target-namespace#wsdl.endpoint(service-name/port-name)"
 orasp:port-uri="http://host:port/sts-service" orasp:soap-version="12"
 orasp:sts-keystore-recipient-alias="sts-csf-key"
 orasp:wsdl-uri="http://host:port/sts?wsdl" orawsp:Enforced="true"
 orawsp:Silent="true" orawsp:category="security/sts-config" orawsp:name="STS
 Trust Configuration">
<orawsp:bindings>
<orawsp:Config orawsp:configType="declarative" orawsp:name="StsTrustConfig">
<orawsp:PropertySet orawsp:name="standard-security-properties">
<orawsp:Property orawsp:contentType="constant" orawsp:name="role" orawsp:type="string">
<orawsp:Value>ultimateReceiver</orawsp:Value>
</orawsp:Property>
</orawsp:PropertySet>
</orawsp:Config>
</orawsp:bindings>
</orasp:sts-trust-config>

orasp:wss10-anonymous-with-certificates

The <orasp:wss10-anonymous-with-certificates> element provides message protection (integrity and confidentiality) for outbound SOAP requests in accordance with the WS-Security 1.0 standard.

It contains the following subelements:

	
orasp:x509-token

	
orasp:msg-security

	
orawsp:bindings

Example

<orasp:wss10-anonymous-with-certificates orawsp:Enforced="true"
 orawsp:Silent="false" orawsp:category="security/msg-protection"
orawsp:name="WS-Security 1.0 Anonymous with certificates">
 <orasp:x509-token orasp:enc-key-ref-mech="direct" orasp:is-encrypted="false"
 orasp:is-signed="true" orasp:rcpt-enc-key-ref-mech="direct"
 orasp:rcpt-sign-key-ref-mech="direct" orasp:sign-key-ref-mech="direct"/>
 <orasp:msg-security orasp:algorithm-suite="Basic128"
 orasp:encrypt-signature="false" orasp:include-timestamp="true"
 orasp:sign-then-encrypt="true">
 <orasp:request>
 <orasp:signed-parts>
 <orasp:body/>
 </orasp:signed-parts>
 <orasp:encrypted-parts>
 <orasp:body/>
 </orasp:encrypted-parts>
 </orasp:request>
 <orasp:response>
 <orasp:signed-parts>
 <orasp:body/>
 </orasp:signed-parts>
 <orasp:encrypted-parts>
 <orasp:body/>
 </orasp:encrypted-parts>
 </orasp:response>
 <orasp:fault/>
 </orasp:msg-security>
 <orawsp:bindings>
 <orawsp:Config orawsp:configType="declarative"
 orawsp:name="Wss10AnonWithCertsConfig">
 <orawsp:PropertySet orawsp:name="standard-security-properties">
 <orawsp:Property orawsp:contentType="constant" orawsp:name="role"
 orawsp:type="string">
 <orawsp:Value>ultimateReceiver</orawsp:Value>
 </orawsp:Property>
 </orawsp:PropertySet>
 </orawsp:Config>
 </orawsp:bindings>
</orasp:wss10-anonymous-with-certificates>

orasp:wss10-mutual-auth-with-certificates

The <orasp:wss10-mutual-auth-with-certificates> element enforces message-level protection and certificate-based authentication for inbound SOAP requests in accordance with the WS-Security 1.1 standard.

It contains the following subelements:

	
orasp:x509-token

	
orasp:msg-security

	
orawsp:bindings

Example

<orasp:wss10-mutual-auth-with-certificates orawsp:Enforced="true"
 orawsp:Silent="false" orawsp:category="security/authentication,
 security/msg-protection" orawsp:name="WS-Security 1.0 Mutual Auth with
 certificates">
 <orasp:x509-token orasp:enc-key-ref-mech="direct" orasp:is-encrypted="false"
 orasp:is-signed="true" orasp:rcpt-enc-key-ref-mech="direct"
 orasp:rcpt-sign-key-ref-mech="direct" orasp:sign-key-ref-mech="direct"/>
 <orasp:msg-security orasp:algorithm-suite="Basic128"
 orasp:encrypt-signature="false" orasp:include-timestamp="true"
 orasp:sign-then-encrypt="true">
 <orasp:request>
 <orasp:signed-parts>
 <orasp:body/>
 </orasp:signed-parts>
 <orasp:encrypted-parts>
 <orasp:body/>
 </orasp:encrypted-parts>
 </orasp:request>
 <orasp:response>
 <orasp:signed-parts>
 <orasp:body/>
 </orasp:signed-parts>
 <orasp:encrypted-parts>
 <orasp:body/>
 </orasp:encrypted-parts>
 </orasp:response>
 <orasp:fault/>
 </orasp:msg-security>
 <orawsp:bindings>
 <orawsp:Config orawsp:configType="declarative"
 orawsp:name="Wss10AnonWithCertsConfig">
 <orawsp:PropertySet orawsp:name="standard-security-properties">
 <orawsp:Property orawsp:contentType="constant" orawsp:name="role"
 orawsp:type="string">
 <orawsp:Value>ultimateReceiver</orawsp:Value>
 </orawsp:Property>
 </orawsp:PropertySet>
 </orawsp:Config>
 </orawsp:bindings>
</orasp:wss10-mutual-auth-with-certificates>

orasp:wss10-saml-hok-with-certificates

The <orasp:wss1-saml-hok-with-certificates> element provides message protection (integrity and confidentiality) and SAML holder of key based authentication for outbound SOAP messages in accordance with the WS-Security 1.0 standard.

It contains the following subelements:

	
orasp:saml-token

	
orasp:x509-token

	
orasp:msg-security

	
orawsp:bindings

Example

<orasp:wss10-saml-hok-with-certificates orawsp:Enforced="true"
 orawsp:Silent="false" orawsp:category="security/authentication,
 security/msg-protection" orawsp:name="WS-Security 1.0 SAML Holder Of Key
 with certificates">
 <orasp:saml-token orasp:confirmation-type="holder-of-key"
 orasp:is-encrypted="false" orasp:is-signed="true" orasp:version="1.1"/>
 <orasp:x509-token orasp:enc-key-ref-mech="direct"
 orasp:is-encrypted="false" orasp:is-signed="true"
 orasp:rcpt-enc-key-ref-mech="direct" orasp:rcpt-sign-key-ref-mech="direct"
 orasp:sign-key-ref-mech="ski"/>
 <orasp:msg-security orasp:algorithm-suite="Basic128"
 orasp:encrypt-signature="false" orasp:include-timestamp="true"
 orasp:sign-then-encrypt="true">
 <orasp:request>
 <orasp:signed-parts>
 <orasp:body/>
 </orasp:signed-parts>
 <orasp:encrypted-parts>
 <orasp:body/>
 </orasp:encrypted-parts>
 </orasp:request>
 <orasp:response>
 <orasp:signed-parts>
 <orasp:body/>
 </orasp:signed-parts>
 <orasp:encrypted-parts>
 <orasp:body/>
 </orasp:encrypted-parts>
 </orasp:response>
 <orasp:fault/>
 </orasp:msg-security>
 <orawsp:bindings>
 <orawsp:Config orawsp:configType="declarative"
 orawsp:name="Wss10SamlHOKWithCertsConfig">
 <orawsp:PropertySet orawsp:name="standard-security-properties">
 <orawsp:Property orawsp:name="keystore.recipient.alias"
 orawsp:type="string">
 <orawsp:Value>orakey</orawsp:Value>
 </orawsp:Property>
 <orawsp:Property orawsp:contentType="optional"
 orawsp:name="saml.issuer.name" orawsp:type="string">
 <orawsp:Value>www.oracle.com</orawsp:Value>
 </orawsp:Property>
 <orawsp:Property orawsp:contentType="optional"
 orawsp:name="user.roles.include" orawsp:type="string">
 <orawsp:Value>false</orawsp:Value>
 </orawsp:Property>
 <orawsp:Property orawsp:contentType="optional"
 orawsp:name="saml.assertion.filename" orawsp:type="string">
 <orawsp:Value>temp</orawsp:Value>
 </orawsp:Property>
 </orawsp:PropertySet>
 </orawsp:Config>
 </orawsp:bindings>
</orasp:wss10-saml-hok-with-certificates>

orasp:wss10-saml-token

The <orasp:wss10-saml-token> element authenticates users using credentials provided in SAML tokens in the WS-Security SOAP header.

It contains the following subelements:

	
orasp:saml-token

	
orawsp:bindings

Example

<orasp:wss10-saml-token orawsp:Enforced="true" orawsp:Silent="false"
 orawsp:category="security/authentication" orawsp:name="WSSecurity SAML Token">
 <orasp:saml-token orasp:confirmation-type="sender-vouches"
 orasp:is-encrypted="false" orasp:is-signed="false" orasp:version="1.1"/>
 <orawsp:bindings>
 <orawsp:Config orawsp:configType="declarative"
 orawsp:name="WssSamlTokenConfig">
 <orawsp:PropertySet orawsp:name="standard-security-properties">
 <orawsp:Property orawsp:contentType="constant" orawsp:name="role"
 orawsp:type="string">
 <orawsp:Value>ultimateReceiver</orawsp:Value>
 </orawsp:Property>
 </orawsp:PropertySet>
 </orawsp:Config>
 </orawsp:bindings>
</orasp:wss10-saml-token>

orasp:wss10-saml-with-certificates

The <orasp:wss10-saml-with-certificates> element enforces message protection (integrity and confidentiality) and SAML-based authentication for inbound SOAP requests in accordance with the WS-Security 1.0 standard.

It contains the following subelements:

	
orasp:saml-token

	
orasp:x509-token

	
orasp:msg-security

	
orawsp:bindings

Example

<orasp:wss10-saml-with-certificates orawsp:Enforced="true"
 orawsp:Silent="false" orawsp:category="security/authentication,
 security/msg-protection" orawsp:name="WS-Security 1.0 SAML with certificates">
 <orasp:saml-token orasp:confirmation-type="sender-vouches"
 orasp:is-encrypted="false" orasp:is-signed="true" orasp:version="1.1"/>
 <orasp:x509-token orasp:enc-key-ref-mech="direct" orasp:is-encrypted="false"
 orasp:is-signed="true" orasp:rcpt-enc-key-ref-mech="direct"
 orasp:rcpt-sign-key-ref-mech="direct" orasp:sign-key-ref-mech="direct"/>
 <orasp:msg-security orasp:algorithm-suite="Basic128"
 orasp:encrypt-signature="false" orasp:include-timestamp="true"
 orasp:sign-then-encrypt="true">
 <orasp:request>
 <orasp:signed-parts>
 <orasp:body/>
 </orasp:signed-parts>
 <orasp:encrypted-parts>
 <orasp:body/>
 </orasp:encrypted-parts>
 </orasp:request>
 <orasp:response>
 <orasp:signed-parts>
 <orasp:body/>
 </orasp:signed-parts>
 <orasp:encrypted-parts>
 <orasp:body/>
 </orasp:encrypted-parts>
 </orasp:response>
 <orasp:fault/>
 </orasp:msg-security>
 <orawsp:bindings>
 <orawsp:Config orawsp:configType="declarative"
 orawsp:name="Wss10SamlWithCertsConfig">
 <orawsp:PropertySet orawsp:name="standard-security-properties">
 <orawsp:Property orawsp:contentType="constant" orawsp:name="role"
 orawsp:type="string">
 <orawsp:Value>ultimateReceiver</orawsp:Value>
 </orawsp:Property>
 </orawsp:PropertySet>
 </orawsp:Config>
 </orawsp:bindings>
</orasp:wss10-saml-with-certificates>

orasp:wss10-username-with-certificates

The <orasp:wss10-username-with-certificates> element enforces message protection (integrity and confidentiality) and authentication for inbound SOAP requests in accordance with the WS-Security 1.0 standard.

It contains the following subelements:

	
orasp:username-token

	
orasp:x509-token

	
orasp:msg-security

	
orawsp:bindings

Example

<orasp:wss10-username-with-certificates orawsp:Enforced="true"
 orawsp:Silent="false"
 orawsp:category="security/authentication, security/msg-protection"
 orawsp:name="WS-Security 1.0 username with certificates">
 <orasp:username-token orasp:add-created="false" orasp:add-nonce="false"
 orasp:is-encrypted="true" orasp:is-signed="true"
 orasp:password-type="plaintext"/>
 <orasp:x509-token orasp:enc-key-ref-mech="direct" orasp:is-encrypted="false"
 orasp:is-signed="true" orasp:rcpt-enc-key-ref-mech="direct"
 orasp:rcpt-sign-key-ref-mech="direct" orasp:sign-key-ref-mech="direct"/>
 <orasp:msg-security orasp:algorithm-suite="Basic128"
 orasp:encrypt-signature="false" orasp:include-timestamp="true"
 orasp:sign-then-encrypt="true">
 <orasp:request>
 <orasp:signed-parts>
 <orasp:body/>
 </orasp:signed-parts>
 <orasp:encrypted-parts>
 <orasp:body/>
 </orasp:encrypted-parts>
 </orasp:request>
 <orasp:response>
 <orasp:signed-parts>
 <orasp:body/>
 </orasp:signed-parts>
 <orasp:encrypted-parts>
 <orasp:body/>
 </orasp:encrypted-parts>
 </orasp:response>
 <orasp:fault/>
 </orasp:msg-security>
 <orawsp:bindings>
 <orawsp:Config orawsp:configType="declarative"
 orawsp:name="Wss10UsernameWithCertsConfig">
 <orawsp:PropertySet orawsp:name="standard-security-properties">
 <orawsp:Property orawsp:contentType="constant" orawsp:name="role"
 orawsp:type="string">
 <orawsp:Value>ultimateReceiver</orawsp:Value>
 </orawsp:Property>
 </orawsp:PropertySet>
 </orawsp:Config>
 </orawsp:bindings>
</orasp:wss10-username-with-certificates>

orasp:wss11-anonymous-with-certificates

The <orasp:wss11-anonymous-with-certificates> element provides message protection (integrity and confidentiality) for outbound SOAP requests in accordance with the WS-Security 1.1 standard.

It contains the following subelements:

	
orasp:x509-token

	
orasp:msg-security

	
orawsp:bindings

Example

<orasp:wss11-anonymous-with-certificates orawsp:Enforced="true"
 orawsp:Silent="false" orawsp:category="security/msg-protection"
 orawsp:name="WS-Security 1.0 Anonymous with certificates">
 <orasp:x509-token orasp:enc-key-ref-mech="direct" orasp:is-encrypted="false"
 orasp:is-signed="true" orasp:rcpt-enc-key-ref-mech="direct"
 orasp:rcpt-sign-key-ref-mech="direct" orasp:sign-key-ref-mech="direct"/>
 <orasp:msg-security orasp:algorithm-suite="Basic128"
 orasp:encrypt-signature="false" orasp:include-timestamp="true"
 orasp:sign-then-encrypt="true">
 <orasp:request>
 <orasp:signed-parts>
 <orasp:body/>
 </orasp:signed-parts>
 <orasp:encrypted-parts>
 <orasp:body/>
 </orasp:encrypted-parts>
 </orasp:request>
 <orasp:response>
 <orasp:signed-parts>
 <orasp:body/>
 </orasp:signed-parts>
 <orasp:encrypted-parts>
 <orasp:body/>
 </orasp:encrypted-parts>
 </orasp:response>
 <orasp:fault/>
 </orasp:msg-security>
 <orawsp:bindings>
 <orawsp:Config orawsp:configType="declarative"
 orawsp:name="Wss11AnonWithCertsConfig">
 <orawsp:PropertySet orawsp:name="standard-security-properties">
 <orawsp:Property orawsp:contentType="constant" orawsp:name="role"
 orawsp:type="string">
 <orawsp:Value>ultimateReceiver</orawsp:Value>
 </orawsp:Property>
 </orawsp:PropertySet>
 </orawsp:Config>
 </orawsp:bindings>
</orasp:wss11-anonymous-with-certificates>

orasp:wss11-mutual-auth-with-certificates

The <orasp:wss11-mutual-auth-with-certificates> element enforces message-level protection and certificate-based authentication for inbound SOAP requests in accordance with the WS-Security 1.1 standard.

It contains the following subelements:

	
orasp:x509-token

	
orasp:msg-security

	
orawsp:bindings

Example

<orasp:wss11-mutual-auth-with-certificates orawsp:Enforced="true"
 orawsp:Silent="false" orawsp:category="security/authentication,
 security/msg-protection"
 orawsp:name="WS-Security 1.1 Mutual Auth with certificates">
 <orasp:x509-token orasp:enc-key-ref-mech="thumbprint"
 orasp:is-encrypted="false" orasp:is-signed="true"
 orasp:sign-key-ref-mech="direct"/>
 <orasp:msg-security orasp:algorithm-suite="Basic128"
 orasp:confirm-signature="false" orasp:encrypt-signature="false"
 orasp:include-timestamp="true" orasp:sign-then-encrypt="true"
 orasp:use-derived-keys="false">
 <orasp:request>
 <orasp:signed-parts>
 <orasp:body/>
 </orasp:signed-parts>
 <orasp:encrypted-parts>
 <orasp:body/>
 </orasp:encrypted-parts>
 </orasp:request>
 <orasp:response>
 <orasp:signed-parts>
 <orasp:body/>
 </orasp:signed-parts>
 <orasp:encrypted-parts>
 <orasp:body/>
 </orasp:encrypted-parts>
 </orasp:response>
 <orasp:fault/>
 </orasp:msg-security>
 <orawsp:bindings>
 <orawsp:Config orawsp:configType="declarative"
 orawsp:name="Wss10AnonWithCertsConfig">
 <orawsp:PropertySet orawsp:name="standard-security-properties">
 <orawsp:Property orawsp:name="keystore.recipient.alias"
 orawsp:type="string">
 <orawsp:Value>orakey</orawsp:Value>
 </orawsp:Property>
 </orawsp:PropertySet>
 </orawsp:Config>
 </orawsp:bindings>
</orasp:wss11-mutual-auth-with-certificates>

orasp:wss11-saml-with-certificates

The <orasp:wss11-saml-with-certificates> element enforces message protection (integrity and confidentiality) and SAML-based authentication for inbound SOAP requests in accordance with the WS-Security 1.1 standard.

It contains the following subelements:

	
orasp:saml-token

	
orasp:x509-token

	
orasp:msg-security

	
orawsp:bindings

Example

<orasp:wss11-saml-with-certificates orawsp:Enforced="true"
 orawsp:Silent="false" orawsp:category="security/authentication,
 security/msg-protection" orawsp:name="WS-Security 1.1 SAML with certificates">
 <orasp:saml-token orasp:confirmation-type="sender-vouches"
 orasp:is-encrypted="false" orasp:is-signed="true" orasp:version="1.1"/>
 <orasp:x509-token orasp:enc-key-ref-mech="direct" orasp:is-encrypted="false"
 orasp:is-signed="true" orasp:rcpt-enc-key-ref-mech="direct"
 orasp:rcpt-sign-key-ref-mech="direct" orasp:sign-key-ref-mech="direct"/>
 <orasp:msg-security orasp:algorithm-suite="Basic128"
 orasp:encrypt-signature="false" orasp:include-timestamp="true"
 orasp:sign-then-encrypt="true">
 <orasp:request>
 <orasp:signed-parts>
 <orasp:body/>
 </orasp:signed-parts>
 <orasp:encrypted-parts>
 <orasp:body/>
 </orasp:encrypted-parts>
 </orasp:request>
 <orasp:response>
 <orasp:signed-parts>
 <orasp:body/>
 </orasp:signed-parts>
 <orasp:encrypted-parts>
 <orasp:body/>
 </orasp:encrypted-parts>
 </orasp:response>
 <orasp:fault/>
 </orasp:msg-security>
 <orawsp:bindings>
 <orawsp:Config orawsp:configType="declarative"
 orawsp:name="Wss11SamlWithCertsConfig">
 <orawsp:PropertySet orawsp:name="standard-security-properties">
 <orawsp:Property orawsp:contentType="constant" orawsp:name="role"
 orawsp:type="string">
 <orawsp:Value>ultimateReceiver</orawsp:Value>
 </orawsp:Property>
 </orawsp:PropertySet>
 </orawsp:Config>
 </orawsp:bindings>
</orasp:wss11-saml-with-certificates>

orasp:wss11-sts-issued-token-with-certificates

The <orasp:wss11-sts-issued-token-with-certificates> element enforces insertion of an assertion issued by a trusted STS. Messages are protected using proof key material provided by the STS, the client, or both.

It contains the following subelements:

	
orasp:issued-token

	
orasp:x509-token

	
orasp:msg-security

	
orawsp:bindings

Attributes

The following table summarizes the attributes of the <orasp:wss11-sts-issued-token-with-certificates> element.

Table D-9 Attributes of <orasp:wss11-sts-issued-token-with-certificates> Element

	Attribute	Description
	
trust-version

	
WS-Trust version.

	
require-client-entropy

	
If a symmetric proof key is required by the Web service's security policy, this flag specifies whether the requestor can pass some key material (entropy) that can be included in the calculation of the proof key. The Web service policy can indicate whether client entropy, STS entropy, or both are required.

	
require-server-entropy

	
If a symmetric proof key is required by the Web service's security policy, this flag specifies whether the requestor can pass some key material (entropy) that can be included in the calculation of the proof key. The Web service policy can indicate whether client entropy, STS entropy, or both are required.

	
require-applies-to

	
Optional element in the RST. Flag that specifies whether Oracle WSM sends the endpoint address of the Web service for which the token is being requested. The default behavior is to always send the appliesTo element in the message from the client to the STS.

Example

<orasp:wss11-sts-issued-token-with-certificates
xmlns:orasp="http://schemas.oracle.com/ws/2006/01/securitypolicy"
xmlns:orawsp="http://schemas.oracle.com/ws/2006/01/policy"
orasp:require-applies-to="true" orasp:require-client-entropy="true"
orasp:require-server-entropy="true" orasp:trust-version="13"
orawsp:Enforced="true" orawsp:Silent="false"
orawsp:category="security/authentication, security/msg-protection"
orawsp:name="WS-Security 1.1, issued token">
<orasp:issued-token orasp:require-external-reference="true"
orasp:require-internal-reference="true" orasp:use-derived-keys="false">
<orasp:request-security-token-template orasp:algorithm-suite="Basic128"
orasp:key-type="Symmetric" orasp:token-type="SAML11"/>
</orasp:issued-token>
<orasp:x509-token orasp:enc-key-ref-mech="thumbprint" orasp:is-encrypted="false"
orasp:is-signed="true" orasp:sign-key-ref-mech="thumbprint"/>
<orasp:msg-security orasp:algorithm-suite="Basic128"
orasp:confirm-signature="true" orasp:encrypt-signature="false"
orasp:include-timestamp="true" orasp:sign-then-encrypt="true"
orasp:use-derived-keys="false">
<orasp:request>
<orasp:signed-parts>
<orasp:body/>
<orasp:header orasp:namespace="http://www.w3.org/2005/08/addressing"/>
<orasp:header orasp:namespace="http://schemas.xmlsoap.org/ws/2004/08/addressing"/>
<orasp:header orasp:name="fmw-context" orasp:namespace="http://xmlns.oracle.com/fmw/context/1.0"/>
</orasp:signed-parts>
<orasp:encrypted-parts>
<orasp:body/>
<orasp:header orasp:name="fmw-context" orasp:namespace="http://xmlns.oracle.com/fmw/context/1.0"/>
</orasp:encrypted-parts>
</orasp:request>
<orasp:response>
<orasp:signed-parts>
<orasp:body/>
</orasp:signed-parts>
<orasp:encrypted-parts>
<orasp:body/>
</orasp:encrypted-parts>
</orasp:response>
<orasp:fault/>
</orasp:msg-security>
<orawsp:bindings>
<orawsp:Config orawsp:configType="declarative"
 orawsp:name="Wss11StsIssuedTokenWithCertsConfig">
<orawsp:PropertySet orawsp:name="standard-security-properties">
<orawsp:Property orawsp:contentType="optional"
 orawsp:name="sts.auth.user.csf.key" orawsp:type="string">
<orawsp:Value/>
</orawsp:Property>
<orawsp:Property orawsp:contentType="optional"
 orawsp:name="sts.auth.x509.csf.key" orawsp:type="string">
<orawsp:Value>enc-csf-key</orawsp:Value>
</orawsp:Property>
<orawsp:Property orawsp:name="on.behalf.of" orawsp:type="boolean">
<orawsp:Value>false</orawsp:Value>
</orawsp:Property>
<orawsp:Property orawsp:contentType="optional"
 orawsp:name="sts.auth.on.behalf.of.csf.key" orawsp:type="string">
<orawsp:Value/>
</orawsp:Property>
<orawsp:Property orawsp:name="keystore.recipient.alias" orawsp:type="string">
<orawsp:Value>orakey</orawsp:Value>
</orawsp:Property>
<orawsp:Property orawsp:contentType="optional" orawsp:name="keystore.enc.csf.key"
 orawsp:type="string">
<orawsp:Value/>
</orawsp:Property>
<orawsp:Property orawsp:contentType="optional"
 orawsp:name="sts.auth.service.principal.name" orawsp:type="string">
<orawsp:Value>HOST/localhost@EXAMPLE.COM</orawsp:Value>
</orawsp:Property>
<orawsp:Property orawsp:contentType="optional"
 orawsp:name="sts.auth.keytab.location" orawsp:type="string">
<orawsp:Value/>
</orawsp:Property>
<orawsp:Property orawsp:contentType="optional" orawsp:name="sts.auth.caller.principal.name" orawsp:type="string">
<orawsp:Value/>
</orawsp:Property>
</orawsp:PropertySet>
</orawsp:Config>
</orawsp:bindings>
</orasp:wss11-sts-issued-token-with-certificates>

orasp:wss11-username-with-certificates

The <orasp:wss11-username-with-certificates> element enforces message protection (integrity and confidentiality) and authentication for inbound SOAP requests in accordance with the WS-Security 1.1 standard.

It contains the following subelements:

	
orasp:username-token

	
orasp:x509-token

	
orasp:msg-security

	
orawsp:bindings

Example

<orasp:wss11-username-with-certificates orawsp:Enforced="true"
 orawsp:Silent="false"
 orawsp:category="security/authentication, security/msg-protection"
 orawsp:name="WS-Security 1.1 username with certificates">
 <orasp:username-token orasp:add-created="false" orasp:add-nonce="false"
 orasp:is-encrypted="true" orasp:is-signed="true"
 orasp:password-type="plaintext"/>
 <orasp:x509-token orasp:enc-key-ref-mech="direct" orasp:is-encrypted="false"
 orasp:is-signed="true" orasp:rcpt-enc-key-ref-mech="direct"
 orasp:rcpt-sign-key-ref-mech="direct" orasp:sign-key-ref-mech="direct"/>
 <orasp:msg-security orasp:algorithm-suite="Basic128"
 orasp:encrypt-signature="false" orasp:include-timestamp="true"
 orasp:sign-then-encrypt="true">
 <orasp:request>
 <orasp:signed-parts>
 <orasp:body/>
 </orasp:signed-parts>
 <orasp:encrypted-parts>
 <orasp:body/>
 </orasp:encrypted-parts>
 </orasp:request>
 <orasp:response>
 <orasp:signed-parts>
 <orasp:body/>
 </orasp:signed-parts>
 <orasp:encrypted-parts>
 <orasp:body/>
 </orasp:encrypted-parts>
 </orasp:response>
 <orasp:fault/>
 </orasp:msg-security>
 <orawsp:bindings>
 <orawsp:Config orawsp:configType="declarative"
 orawsp:name="Wss11UsernameWithCertsConfig">
 <orawsp:PropertySet orawsp:name="standard-security-properties">
 <orawsp:Property orawsp:contentType="constant" orawsp:name="role"
 orawsp:type="string">
 <orawsp:Value>ultimateReceiver</orawsp:Value>
 </orawsp:Property>
 </orawsp:PropertySet>
 </orawsp:Config>
 </orawsp:bindings>
</orasp:wss11-username-with-certificates>

orasp:wss-saml-token-bearer-over-ssl

The <orasp:wss-saml-token-bearer-over-ssl> element authenticates users using credentials provided in SAML tokens with confirmation method 'Bearer' in the WS-Security SOAP header.

It contains the following subelements:

	
orasp:saml-token

	
orasp:require-tls

	
orawsp:bindings

Example

<orasp:wss-saml-token-bearer-over-ssl orawsp:Enforced="true"
 orawsp:Silent="false"
 orawsp:category="security/authentication, security/msg-protection"
 orawsp:name="WSSecurity Saml Token With Confirmation method Bearer Over SSL ">
 <orasp:saml-token orasp:confirmation-type="bearer" orasp:is-encrypted="false"
 orasp:is-signed="false" orasp:version="1.1"/>
 <orasp:require-tls orasp:include-timestamp="true" orasp:mutual-auth="false"/>
 <orawsp:bindings>
 <orawsp:Config orawsp:configType="declarative"
 orawsp:name="WssSamlTokenBearerOverSSLConfig">
 <orawsp:PropertySet orawsp:name="standard-security-properties">
 <orawsp:Property orawsp:contentType="optional"
 orawsp:name="saml.issuer.name" orawsp:type="string">
 <orawsp:Value>www.oracle.com</orawsp:Value>
 </orawsp:Property>
 <orawsp:Property orawsp:contentType="optional"
 orawsp:name="user.roles.include" orawsp:type="string">
 <orawsp:Value>false</orawsp:Value>
 </orawsp:Property>
 </orawsp:PropertySet>
 </orawsp:Config>
 </orawsp:bindings>
</orasp:wss-saml-token-bearer-over-ssl>

orasp:wss-saml-token-over-ssl

The <orasp:wss-saml-token-over-ssl> element enforces the authentication of credentials provided via a SAML token within WS-Security SOAP header using the sender-vouches confirmation type.

It contains the following subelements:

	
orasp:saml-token

	
orasp:require-tls

	
orawsp:bindings

Example

<orasp:wss-saml-token-over-ssl orawsp:Enforced="true" orawsp:Silent="false"
 orawsp:category="security/authentication, security/msg-protection"
 orawsp:name="WSSecurity SAML Token Over SSL">
 <orasp:saml-token orasp:confirmation-type="sender-vouches"
 orasp:is-encrypted="false" orasp:is-signed="true" orasp:version="1.1"/>
 <orasp:require-tls orasp:include-timestamp="true" orasp:mutual-auth="true"/>
 <orawsp:bindings>
 <orawsp:Config orawsp:configType="declarative"
 orawsp:name="WssSamlTokenOverSSLConfig">
 <orawsp:PropertySet orawsp:name="standard-security-properties">
 <orawsp:Property orawsp:contentType="optional"
 orawsp:name="saml.issuer.name" orawsp:type="string">
 <orawsp:Value>www.oracle.com</orawsp:Value>
 </orawsp:Property>
 <orawsp:Property orawsp:contentType="optional"
 orawsp:name="user.roles.include" orawsp:type="string">
 <orawsp:Value>false</orawsp:Value>
 </orawsp:Property>
 </orawsp:PropertySet>
 </orawsp:Config>
 </orawsp:bindings>
</orasp:wss-saml-token-over-ssl>

orasp:wss-sts-issued-token-over-ssl

The <orasp:wss-sts-issued-token-over-ssl> element enforces authentication of a SAML assertion issued by a trusted STS. Messages are protected using SSL

It contains the following subelements:

	
orasp:issued-token

	
orasp:require-tls

	
orawsp:bindings

Attributes

The following table summarizes the attributes of the <orasp:wss-sts-issued-token-over-ssl> element.

Table D-10 Attributes of <orasp:wss-sts-issued-token-over-ssl> Element

	Attribute	Description
	
trust-version

	
WS-Trust version.

	
require-client-entropy

	
If a symmetric proof key is required by the Web service's security policy, this flag specifies whether the requestor can pass some key material (entropy) that can be included in the calculation of the proof key. The Web service policy can indicate whether client entropy, STS entropy, or both are required.

	
require-server-entropy

	
If a symmetric proof key is required by the Web service's security policy, this flag specifies whether the requestor can pass some key material (entropy) that can be included in the calculation of the proof key. The Web service policy can indicate whether client entropy, STS entropy, or both are required.

	
require-applies-to

	
Optional element in the RST. Flag that specifies whether Oracle WSM sends the endpoint address of the Web service for which the token is being requested. The default behavior is to always send the appliesTo element in the message from the client to the STS.

Example

<orasp:wss-sts-issued-token-over-ssl
xmlns:orasp="http://schemas.oracle.com/ws/2006/01/securitypolicy"
xmlns:orawsp="http://schemas.oracle.com/ws/2006/01/policy"
orasp:require-applies-to="true" orasp:require-client-entropy="true"
orasp:require-server-entropy="true" orasp:trust-version="13"
orawsp:Enforced="true" orawsp:Silent="false"
orawsp:category="security/authentication, security/msg-protection"
orawsp:name="WS-Security 1.1, issued token over ssl">
<orasp:issued-token orasp:require-external-reference="true"
orasp:require-internal-reference="true" orasp:use-derived-keys="false">
<orasp:request-security-token-template orasp:key-type="Bearer" orasp:token-type="SAML11"/>
</orasp:issued-token>
<orasp:require-tls orasp:include-timestamp="true" orasp:mutual-auth="false"/>
<orawsp:bindings>
<orawsp:Config orawsp:configType="declarative" orawsp:name="WssStsIssuedTokenOverSSLConfig">
<orawsp:PropertySet orawsp:name="standard-security-properties">
<orawsp:Property orawsp:contentType="constant" orawsp:name="role"
 orawsp:type="string">
<orawsp:Value>ultimateReceiver</orawsp:Value>
</orawsp:Property>
</orawsp:PropertySet>
</orawsp:Config>
</orawsp:bindings>
</orasp:wss-sts-issued-token-over-ssl>

orasp:wss-username-token

The <orasp:wss-username-token> element enforces authentication with username and password credentials in the WS-Security UsernameToken SOAP header.

It contains the following subelements:

	
orasp:username-token

	
orawsp:bindings

Example

<orasp:wss-username-token orawsp:Enforced="true" orawsp:Silent="false"
 orawsp:category="security/authentication"
 orawsp:name="WSSecurity UserName Token">
 <orasp:username-token orasp:add-created="false" orasp:add-nonce="false"
 orasp:is-encrypted="true" orasp:is-signed="true"
 orasp:password-type="plaintext"/>
 <orawsp:bindings>
 <orawsp:Config orawsp:configType="declarative"
 orawsp:name="WssUsernameTokenConfig">
 <orawsp:PropertySet orawsp:name="standard-security-properties">
 <orawsp:Property orawsp:contentType="constant" orawsp:name="role"
 orawsp:type="string">
 <orawsp:Value>ultimateReceiver</orawsp:Value>
 </orawsp:Property>
 </orawsp:PropertySet>
 </orawsp:Config>
 </orawsp:bindings>
</orasp:wss-username-token>

orasp:wss-username-token-over-ssl

The <orasp:wss-username-token-over-ssl> element uses the credentials in the UsernameToken WS-Security SOAP header to authenticate users against the Oracle Platform Security Services configured identity store.

It contains the following subelements:

	
orasp:username-token

	
orasp:require-tls

	
orawsp:bindings

Example

<orasp:wss-username-token-over-ssl orawsp:Enforced="true" orawsp:Silent="false"
 orawsp:category="security/authentication, security/msg-protection"
 orawsp:name="WSSecurity UserName Token Over SSL">
 <orasp:username-token orasp:add-created="true" orasp:add-nonce="true"
 orasp:is-encrypted="true" orasp:is-signed="true"
 orasp:password-type="plaintext"/>
 <orasp:require-tls orasp:include-timestamp="true" orasp:mutual-auth="false"/>
 <orawsp:bindings>
 <orawsp:Config orawsp:configType="declarative"
 orawsp:name="WssUsernameTokenOverSSLConfig">
 <orawsp:PropertySet orawsp:name="standard-security-properties">
 <orawsp:Property orawsp:contentType="constant" orawsp:name="role"
 orawsp:type="string">
 <orawsp:Value>ultimateReceiver</orawsp:Value>
 </orawsp:Property>
 </orawsp:PropertySet>
 </orawsp:Config>
 </orawsp:bindings>
</orasp:wss-username-token-over-ssl>

rm:RMAssertion

The <rm:RMAssertion> element provides support for version 1.0 and version 1.1 of the Web Services Reliable Messaging protocol. The version supported depends on the XML schema namespace value used:

	
WS-ReliableMessaging 1.1: http://docs.oasis-open.org/ws-rx/wsrmp/200702

	
WS-ReliableMessaging 1.0: http://schemas.xmlsoap.org/ws/2005/02/rm/policy

This policy can be attached to any SOAP-based client or endpoint. Full support for this feature may require additional programming.

The <rm:RMAssertion> element contains the following subelement:

	
orawsp:bindings

Example

<rm:RMAssertion xmlns:rm="http://schemas.xmlsoap.org/ws/2005/02/rm/policy"
 orawsp:Enforced="true" orawsp:Silent="false" orawsp:category="wsrm"
orawsp:description="i18n:oracle.wsm.resources.policydescription.PolicyDescriptionBundle_oracle/wsrm10_policy_RMAssertion_AssertionDescKey"
 orawsp:name="RM 1.0">
 <wsp:Policy/>
 <orawsp:bindings>
 <orawsp:Config orawsp:name="RMConfig">
 <orawsp:PropertySet orawsp:name="standard-wsrm-properties">
 <orawsp:Property orawsp:name="DeliveryAssurance" orawsp:type="string">
 <orawsp:Description>Delivery Assurance. Possible values
 (case-insensitive) are InOrder, AtLeastOnce, AtLeastOnceInOrder,
 ExactlyOnce, ExactlyOnceInOrder, AtMostOnce,
 AtMostOnceInOrder.</orawsp:Description>
 <orawsp:Value>inorder</orawsp:Value>
 <orawsp:DefaultValue>inorder</orawsp:DefaultValue>
 </orawsp:Property>
 <orawsp:Property orawsp:name="StoreType" orawsp:type="string">
 <orawsp:Description>The type of message store used. Possible values
 (case-insensitive) areInMemory, JDBC.</orawsp:Description>
 <orawsp:Value>inmemory</orawsp:Value>
 <orawsp:DefaultValue>inmemory</orawsp:DefaultValue>
 </orawsp:Property>
 <orawsp:Property orawsp:name="StoreName" orawsp:type="string">
 <orawsp:Description>The name of the message store.
 </orawsp:Description>
 <orawsp:Value>oracle</orawsp:Value>
 </orawsp:Property>
 <orawsp:Property orawsp:contentType="optional"
 orawsp:name="jdbc-connection-name" orawsp:type="string">
 <orawsp:Description>The JNDI reference to a JDBC data source, when
 the store type is JDBC.</orawsp:Description>
 <orawsp:Value>jdbc/MessagesStore</orawsp:Value>
 </orawsp:Property>
 <orawsp:Property orawsp:name="InactivityTimeout" orawsp:type="int">
 <orawsp:Description>The inactivity timeout duration, specified in
 milliseconds.</orawsp:Description>
 <orawsp:Value>600000</orawsp:Value>
 </orawsp:Property>
 <orawsp:Property orawsp:name="BaseRetransmissionInterval"
 orawsp:type="int">
 <orawsp:Description>The base retransmission interval, specified in
 milliseconds.</orawsp:Description>
 <orawsp:Value>3000</orawsp:Value>
 </orawsp:Property>
 </orawsp:PropertySet>
 </orawsp:Config>
 </orawsp:bindings>
</rm:RMAssertion>

wsaw:UsingAddressing

The <wsaw:UsingAddressing> element causes the platform to check inbound messages for the presence of WS-Addressing headers conforming to the W3C 2005 Final WS-Addressing Policy standard. In addition, it causes the platform to include a WS-Addressing header in outbound SOAP messages.

The <wsaw:UsingAddressing> element contains the following subelement:

	
orawsp:bindings

Example

<wsaw:UsingAddressing xmlns:wsaw="http://www.w3.org/2006/05/addressing/wsdl"
 orawsp:Enforced="true" orawsp:Silent="false" orawsp:category="addressing"
 orawsp:name="WS-Addressing 2005">
 <orawsp:bindings>
 <orawsp:Config orawsp:name="added-from-em"/>
 </orawsp:bindings>
</wsaw:UsingAddressing>

wsoma:OptimizedMimeSerialization

The <wsoma:OptimizedMimeSerialization> element rejects inbound messages that are not in MTOM format and verifies that outbound messages are in MTOM format. MTOM refers to specifications http://www.w3.org/TR/2005/REC-soap12-mtom-20050125 and http://www.w3.org/Submission/2006/SUBM-soap11mtom10-20060405 for SOAP 1.2 and SOAP 1.1 bindings, respectively.

The <wsoma:OptimizedMimeSerialization> element contains the following subelement:

	
orawsp:bindings

Example

<wsoma:OptimizedMimeSerialization
 xmlns:wsoma=
 "http://schemas.xmlsoap.org/ws/2004/09/policy/optimizedmimeserialization"
 orawsp:Enforced="true" orawsp:Silent="false" orawsp:category="mtom"
 orawsp:name="MTOM">
 <orawsp:bindings>
 <orawsp:Config orawsp:name="added-from-em"/>
 </orawsp:bindings>
</wsoma:OptimizedMimeSerialization>

oralgp:fault

The <oralgp:fault> element configures logging for the fault message. Valid values include:

	
all—Log the entire SOAP message.

	
header—Log SOAP header information only.

	
soap_body—Log SOAP body information only.

	
soap_envelope—Log SOAP envelope information only.

Example

<oralgp:msg-log>
 <oralgp:request>all</oralgp:request>
 <oralgp:response>all</oralgp:response>
 <oralgp:fault>all</oralgp:fault>
</oralgp:msg-log>

oralgp:request

The <oralgp:request> element configures logging for the request message. Valid values include:

	
all—Log the entire SOAP message.

	
header—Log SOAP header information only.

	
soap_body—Log SOAP body information only.

	
soap_envelope—Log SOAP envelope information only.

Example

<oralgp:msg-log>
 <oralgp:request>all</oralgp:request>
 <oralgp:response>all</oralgp:response>
 <oralgp:fault>all</oralgp:fault>
</oralgp:msg-log>

oralgp:response

The <oralgp:response> element configures logging for the response message. Valid values include:

	
all—Log the entire SOAP message.

	
header—Log SOAP header information only.

	
soap_body—Log SOAP body information only.

	
soap_envelope—Log SOAP envelope information only.

Example

<oralgp:msg-log>
 <oralgp:request>all</oralgp:request>
 <oralgp:response>all</oralgp:response>
 <oralgp:fault>all</oralgp:fault>
</oralgp:msg-log>

oralgp:msg-log

The <oralgp:msg-log> element configures logging for the request, response, and fault messages. The <oralgp:msg-log> element contains the following subelements:

	
oralgp:request

	
oralgp:response

	
oralgp:fault

Example

<oralgp:msg-log>
 <oralgp:request>all</oralgp:request>
 <oralgp:response>all</oralgp:response>
 <oralgp:fault>all</oralgp:fault>
</oralgp:msg-log>

orasp:attachment

The <orasp:attachment> element defines the attachment information.

Attributes

The following table summarizes the attributes of the <orasp:attachment> element.

Table D-11 Attributes of <orasp:attachment> Element

	Attribute	Description
	
include-mime-headers

	
Flag that specifies whether or include MIME headers. Valid values include true or false.

Example

<orasp:signed-parts>
 <orasp:header orasp:name="From"
 orasp:namespace="http://www.w3.org/2005/08/addressing"/>
 <orasp:attachment orasp:include-mime-headers="false"/>
</orasp:signed-parts>

orasp:auth-header

The <orasp:auth-header> element specifies the name of the authentication header.

Attributes

The following table summarizes the attribute of the <orasp:auth-header> element.

Table D-12 Attributes of <orasp:auth-header> Element

	Attribute	Description
	
mechanism

	
Authentication mechanism.

Valid values include:

	
basic—Client authenticates itself by transmitting the username and password.

	
digest—Not supported in this release. Client authenticates itself by transmitting an encrypted password through the use of an MD5 digest.

	
cert—Client authenticates itself by transmitting a certificate.

	
custom—Custom authentication mechanism.

Examples

<orasp:auth-header orasp:mechanism="basic"/>

orasp:body

The <orasp:body> element defines the message body elements that are signed and encrypted. To include the entire body, specify the body element as follows: <orasp:body/>.

Example

 <orasp:request>
 <orasp:signed-parts>
 <orasp:body/>
 </orasp:signed-parts>
 <orasp:encrypted-parts>
 <orasp:body/>
 </orasp:encrypted-parts>
 </orasp:request>

orasp:check-permission

The <orasp:check-permission> element specifies that permissions are to be checked.

Example

<orasp:binding-permission-authorization orawsp:Enforced="true"
 orawsp:Silent="true" orawsp:category="security/authorization"
 orawsp:name="J2EE Permission Based Authorization">
 <orasp:check-permission/>
 ...
</orasp:binding-permission-authorization>

orasp:coreid-token

The <orasp:coreid-token> element defines the OAM token.

Attributes

The following table summarizes the attributes of the <orasp:coreid-token> element.

Table D-13 Attributes of <orasp:coreid-token> Element

	Attribute	Description
	
is-encrypted

	
Flag that specifies whether the assertion is encrypted. Valid values include true or false.

	
is-signed

	
Flag that specifies whether the assertion is signed. Valid values include true or false.

Example

<orasp:coreid-token orasp:is-encrypted="false" orasp:is-signed="false"/>

orasp:denyAll

The <orasp:denyAll> element denies all users with any roles.

Example

<orasp:binding-authorization orawsp:Enforced="true" orawsp:Silent="true"
 orawsp:category="security/authorization"
 orawsp:name="J2EE services Authorization">
 <orasp:denyAll/>
 <orawsp:bindings>
 <orawsp:Config orawsp:configType="declarative" orawsp:name="AuthzConfig"/>
 </orawsp:bindings>
 <orawsp:guard/>
</orasp:binding-authorization>

orasp:element

The <orasp:element> element defines a header or body element that is signed or encrypted.

Attributes

The following table summarizes the attributes of the <orasp:element> element.

Table D-14 Attributes of <orasp:element> Element

	Attribute	Description
	
name

	
Name of the header or body element.

	
namespace

	
Namespace.

Example

<orasp:signed-elements>
 <orasp:element orasp:name="BodyElement"
 orasp:namespace="http://www.w3.org/2005/08/addressing">n/a</orasp:element>
</orasp:signed-elements>

orasp:encrypted-elements

The <orassp:encrypted-elements> element defines the message body elements that are signed. This element is valid if <orasp:encrypted-parts> is not set to <orasp:body/>

The <orassp:encrypted-parts> element contains the following subelement:

	
orasp:element

Example

<orasp:encrypted-elements>
 <orasp:element orasp:name="Myhead"
 orasp:namespace="http://www.w3.org/2005/08/addressing">n/a</orasp:element>
</orasp:encrypted-elements>

orasp:encrypted-parts

The <orasp:encrypted-parts> element defines the message parts that are encrypted.

The <orasp:encrypted-parts> element contains one or more of the following subelements:

	
orasp:body

	
orasp:header

	
orasp:attachment

Example

 <orasp:request>
 <orasp:signed-parts>
 <orasp:body/>
 </orasp:signed-parts>
 <orasp:encrypted-parts>
 <orasp:body/>
 </orasp:encrypted-parts>
 </orasp:request>

orasp:fault

The <orasp:fault> element defines the message body elements that are signed and encrypted in the fault message. The <orasp:fault> element contains the following subelements:

	
orasp:signed-parts

	
orasp:encrypted-parts

Example

 <orasp:response>
 <orasp:signed-parts>
 <orasp:body/>
 </orasp:signed-parts>
 <orasp:encrypted-parts>
 <orasp:body/>
 </orasp:encrypted-parts>
 </orasp:response>

orasp:header

The <orasp:header> element defines a header element.

Attributes

The following table summarizes the attributes of the <orasp:header> element.

Table D-15 Attributes of <orasp:header> Element

	Attribute	Description
	
name

	
Name of the header element. The default header elements in the predefined namespace include: To, From, FaultTo, ReplyTo, MessageID, RelatesTo, and Action.

	
namespace

	
Namespace. The predefined namespace is as follows: http://www.w3.org/2005/08/addressing.

Example

<orasp:signed-parts>
 <orasp:header orasp:name="From"
 orasp:namespace="http://www.w3.org/2005/08/addressing"/>
 <orasp:attachment orasp:include-mime-headers="false"/>
</orasp:signed-parts>

orasp:issued-token

The <orasp:issued-token> element enforces token characteristics.

Attributes

The following table summarizes the attributes of the <orasp:issued-token> element.

Table D-16 Attributes of <orasp:issued-token> Element

	Attribute	Description
	
use-derived-keys

	
Flag that specifies whether derived keys are required. Possible values are True and False.

	
require-internal-reference

	
Flag that specifies whether internal reference to the token is required. Possible values are True and False.

	
require-external-reference

	
Flag that specifies whether external reference to the token is required. Possible values are True and False.

Example

<orasp:issued-token orasp:require-external-reference="true"
 orasp:require-internal-reference="true" orasp:use-derived-keys="false">

orasp:kerberos-token

The <orasp:kerberos-token> element defines the kerberos token.

Attributes

The following table summarizes the attributes of the <orasp:kerberos-token> element.

Table D-17 Attributes of <orasp:kerberos-token> Element

	Attribute	Description
	
is-encrypted

	
Flag that specifies whether the assertion is encrypted. Valid values include true or false.

	
is-signed

	
Flag that specifies whether the assertion is signed. Valid values include true or false.

	
type

	
Type of Kerberos token. The only valid value is gss-apreq-v5 (Kerberos Version 5 GSS-API).

Example

<orasp:kerberos-token orasp:is-encrypted="false" orasp:is-signed="false"
 orasp:type="gss-apreq-v5"/>

orasp:msg-security

The <orassp:msg-security> element defines message security for the policy. You define the body elements that are signed and encrypted for the request, response, and fault.

The <orasp:msg-security> element contains the following subelements:

	
orasp:request

	
orasp:response

	
orasp:fault

Attributes

The following table summarizes the attributes of the <orasp:msg-security> element.

Table D-18 Attributes of <orasp:msg-security> Element

	Attribute	Description
	
algorithm-suite

	
Defines the algorithm suite that is used for message protection. For example, Basic128. For more information, see "Supported Algorithm Suites".

	
confirm-signature

	
Flag that specifies whether to send a signature confirmation back to the client. Valid values inlcude true or false.

	
encrypt-signature

	
Flag that specifies whether to send a encryption confirmation back to the client. Valid values inlcude true or false.

	
include-timestamp

	
Flag that specifies whether to include a timestamp. A timestamp can be used to prevent replay attacks by identifying an expiration time after which the message is no longer valid.

	
sign-then-encyrpt

	
Flag that specifies whether to sign the message before encrypting the message.

	
use-derived-keys

	
Flag that specifies whether to use derived keys.

Example

<orasp:msg-security orasp:algorithm-suite="Basic128"
orasp:confirm-signature="false" orasp:encrypt-signature="false"
orasp:include-timestamp="true" orasp:sign-then-encrypt="true"
orasp:use-derived-keys="false">
 <orasp:request>
 <orasp:signed-parts>
 <orasp:body/>
 </orasp:signed-parts>
 <orasp:encrypted-parts>
 <orasp:body/>
 </orasp:encrypted-parts>
 </orasp:request>
 <orasp:response>
 <orasp:signed-parts>
 <orasp:body/>
 </orasp:signed-parts>
 <orasp:encrypted-parts>
 <orasp:body/>
 </orasp:encrypted-parts>
 </orasp:response>
 <orasp:fault/>
</orasp:msg-security>

orasp:permitAll

The <orasp:permitAll> element permits all users with any roles.

Example

<orasp:binding-authorization orawsp:Enforced="true" orawsp:Silent="true"
 orawsp:category="security/authorization"
 orawsp:name="J2EE services Authorization">
 <orasp:permitAll/>
 <orawsp:bindings>
 <orawsp:Config orawsp:configType="declarative" orawsp:name="AuthzConfig"/>
 </orawsp:bindings>
</orasp:binding-authorization>

orasp:request

The <orasp:request> element defines the message body elements that are signed and encrypted in the request message. The <orasp:request> element contains the following subelements:

	
orasp:signed-parts

	
orasp:encrypted-parts

Example

 <orasp:request>
 <orasp:signed-parts>
 <orasp:body/>
 </orasp:signed-parts>
 <orasp:encrypted-parts>
 <orasp:body/>
 </orasp:encrypted-parts>
 </orasp:request>

orasp:require-tls

The <orasp:require-tls> element specifies whether two-way authentication is required.

Attributes

The following table summarizes the attributes of the <orasp:require-tls> element.

Table D-19 Attributes of <orawsp:require-tls> Element

	Attribute	Description
	
include-timestamp

	
Flag that specifies whether to include a timestamp. A timestamp can be used to prevent replay attacks by identifying an expiration time after which the message is no longer valid.

	
mutual-auth

	
Flag that specifies whether two-way authentication is required. Valid values include true or false.

Examples

<orasp:require-tls orasp:include-timestamp="true" orasp:mutual-auth="false"/>

orasp:response

The <orassp:response> element defines the message body elements that are signed and encrypted in the response message. The <oraswsp:response> element contains the following subelements:

	
orasp:signed-parts

	
orasp:encrypted-parts

Example

 <orasp:response>
 <orasp:signed-parts>
 <orasp:body/>
 </orasp:signed-parts>
 <orasp:encrypted-parts>
 <orasp:body/>
 </orasp:encrypted-parts>
 </orasp:response>

orasp:role

The <orasp:role> element defines the roles that are permitted access.

Attribute

The following table summarizes the attribute of the <orasp:role> element.

Table D-20 Attributes of <orasp:role> Element

	Attribute	Description
	
name

	
Name of the role. Valid roles include:

	
Monitor

	
AdminChannelUsers

	
Administrators

	
OracleSystemGroup

	
Operators

	
CrossDomainConnectors

	
Deployers

	
AppTesters

Example

<orasp:binding-authorization orawsp:Enforced="true" orawsp:Silent="true"
 orawsp:category="security/authorization" orawsp:description=""
 orawsp:name="J2EE services Authorization">
 <orasp:role orasp:name="Monitors"/>
 <orasp:role orasp:name="AdminChannelUsers"/>
 <orawsp:bindings>
 <orawsp:Config orawsp:configType="declarative" orawsp:name="AuthzConfig"/>
 </orawsp:bindings>
</orasp:binding-authorization>

orasp:saml-token

The <orasp:saml-token> element configures the SAML token.

Attributes

The following table summarizes the attributes of the <orasp:saml-token> element.

Table D-21 Attributes of <orasp:saml-token> Element

	Attribute	Description
	
confirmation-type

	
Confirmation type. Valid values include: sender-vouches and holder-of-key.

	
sender-vouches

	
holder-of-key

	
bearer

	
is-encrypted

	
Flag that specifies whether the assertion is encrypted. Valid values include true or false.

	
is-signed

	
Flag that specifies whether the assertion is signed. Valid values include true or false.

	
version

	
SAML version. Valid values include: 1.1 and 2.0.

Example

<orasp:saml-token orasp:confirmation-type="holder-of-key"
 orasp:is-encrypted="false" orasp:is-signed="true" orasp:version="1.1"/>

orasp:signed-elements

The <orassp:signed-elements> element defines the message body elements that are signed. This element is valid if <orasp:signed-parts> is not set to <orasp:body/>

The <orassp:signed-elements> element contains the following subelement:

	
orasp:element

Example

<orasp:signed-elements>
 <orasp:element orasp:name="Myhead"
 orasp:namespace="http://www.w3.org/2005/08/addressing">n/a</orasp:element>
</orasp:signed-elements>

orasp:signed-parts

The <orasp:signed-parts> element defines the message parts that are signed.

The <orasp:signed-parts> element contains one or more of the following subelements:

	
orasp:body

	
orasp:header

	
orasp:attachment

Example

 <orasp:request>
 <orasp:signed-parts>
 <orasp:body/>
 </orasp:signed-parts>
 <orasp:encrypted-parts>
 <orasp:body/>
 </orasp:encrypted-parts>
 </orasp:request>

orasp:username-token

The <orasp:username-token> element configures the SAML token.

Attributes

The following table summarizes the attributes of the <orasp:username-token> element.

Table D-22 Attributes of <orasp:username-token> Element

	Attribute	Description
	
add-created

	
Flag that specifies whether a time stamp for the creation of the username token is required.

Note: If Password Type is set to digest, then this attribute must be set to true. Otherwise, the policy to which it is attached will not validate.

	
add-nonce

	
Flag that specifies whether a nonce must be included with the username to prevent replay attacks.

Note: If Password Type is set to digest, then this attribute must be set to true. Otherwise, the policy to which it is attached will not validate.

	
is-encrypted

	
Flag that specifies whether the username is encrypted. Valid values include true or false.

	
is-signed

	
Flag that specifies whether the username is signed. Valid values include true or false.

	
password-type

	
Type of password required.

Valid values are:

	
none—No password.

	
plaintext—Unencrypted password in clear text.

	
digest—Not supported in this release. Client authenticates itself by transmitting an encrypted password through the use of an MD5 digest.

Example

<orasp:username-token
 orasp:add-created="false"
 orasp:add-nonce="false"
 orasp:is-encrypted="true"
 orasp:is-signed="true"
 orasp:password-type="plaintext"/>

orasp:x509-token

The <orasp:x509-token> element defines the x.509 digital certificate.

Attributes

The following table summarizes the attributes of the <orasp:x509-token> element.

Table D-23 Attributes of <orasp:x509-token> Element

	Attribute	Description
	
sign-key-ref-mech

	
Mechanism used when signing the request.

Valid values include:

	
direct—X.509 Token is included in the request.

	
ski—Subject Key Identifier (SKI) extension value of the X.509 certificate used to reference the certificate. (Some certificates may not have this extension.) The recipient of the message looks up its keystore for a certificate corresponding to the SKI and validates the signature against it.

	
issuerserial—Composite key of issuer name and serial number attributes used to reference the X.509 certificate. The recipient of the message looks up its keystore for a certificate corresponding to Issuer name and Serial Number and validates the signature using it.

	
thumbprint—Fingerprint (SHA1 hash) of the contents of the certificate. Provides a method to store certificates that is low overhead. This value is valid for Encryption Key Reference Mechanism only (described below.)

	
enc-key-ref-mech

	
Mechanism used when encrypting the request. Valid values are the same as for Sign Key Reference Mechanism above.

	
rcpt-sign-key-ref-mech

	
Mechanism used when signing the receipt. Valid values are the same as for Sign Key Reference Mechanism above.

	
rcpt-enc-key-ref-mech

	
Mechanism used when encrypting the receipt. Valid values are the same as for Sign Key Reference Mechanism above.

	
is-encrypted

	
Flag that specifies whether the assertion is encrypted. Valid values include true or false.

	
is-signed

	
Flag that specifies whether the assertion is signed. Valid values include true or false.

Example

<orasp:x509-token orasp:enc-key-ref-mech="thumbprint"
 orasp:is-encrypted="false" orasp:is-signed="true"
 orasp:sign-key-ref-mech="direct"/>

orawsp:Description

The <oraswsp:Description> element provides a description of the property.

Example

<orawsp:Description>Valid IP Values</orawsp:Description>

E Schema Reference for Policy Sets

This appendix provides the XML schema for reference when creating a policy set file. Sections include:

	
Graphical Representation

	
Element Descriptions

Graphical Representation

The following graphic describes the element hierarchy of the policy set document.

Figure E-1 Element Hierarchy of the Policy Set

[image: Description of Figure E-1 follows]

Description of "Figure E-1 Element Hierarchy of the Policy Set"

The following sections describe each element and their attributes in more detail.

Element Descriptions

This section describes the policy set elements.

policySet

A policy set is used to define a set of concrete policies that apply to some binding type or implementation type. Physically, a policy set is expressed as an XML element using the pseudo-schema shown in Example E-1.

Attributes

The following section summarizes the policy set attributes, including the Oracle extensions.

Table E-1 Attributes of Policy Set Element

	Attribute	Description
	
name

	
Name of the policy set.

	
appliesTo

	
Supported expression identifying an element to which the policy set applies. This attribute must contain a value to be considered valid.

	
attachTo

	
Supported expression identifying an element to which the policy set is attached. This attribute must contain a value to be considered valid.

	
description

	
Description for the policy set. This name is used when the policy set is displayed in a user interface.

	
status

	
Indicates if a policy set is available for use. When set to enabled (the default), the policy set is processed normally. When set to disabled, the policy set is ignored during processing.

This attribute is automatically set to disabled if the policy set fails validation when written to the repository.

	
constraint

	
Supported expression identifying the run-time context to which the policy set applies. If this attribute is not specified, the policy set applies to all run-time contexts.

wsp:policyReference

Element used to associate a policy set with one or more policies. This element contains the following subelement:

	
orawsp:OverrideProperty

Attributes

The following table summarizes the attributes of the <wsp:policyReference> element.

Table E-2 Attributes of <wsp:policyReference> Element

	Attribute	Description
	
URI

	
Oracle WSM policy URI to be associated with the policy set.

	
category

	
Category of the policy. Valid values include: security, mtom, wsrm, addressing, and management.

	
status

	
Status of the policy reference. Valid values include: enabled and disabled.

Example

The following example illustrates a sample policy set that attaches a username token policy to all non-SCA web services in an application whose name begins with the text "CRM" in a domain named "base_domain".

Example E-1 Sample policySet Element

<policySet name="non_sca_web_service_policyset"
 appliesTo="WS_Service()"
 attachTo="Domain('base_domain') and Application('CRM*')"
 orawsp:description="Default policy for a non-SCA web service"
 orawsp:status="enabled"
 xmlns="http://docs.oasis-open.org/ns/opensca/sca/200903"
 xmlns:orawsp="http://schemas.oracle.com/ws/2006/01/policy"
 xmlns:wsp="http://www.w3.org/ns/ws-policy">
 <wsp:PolicyReference
 wsp:URI="oracle/wss_username_token_service_policy"
 orawsp:category="security"
 orawsp:status="enabled" />
</policySet>

orawsp:OverrideProperty

The <orawsp:OverrideProperty> element is used to specify a configuration override associated with a policy attachment in a policy set.

Example

<orawsp:OverrideProperty name=”csf-key” value=”orakey” />

This graphic shows adding a permission in OPSS

This graphic shows the Attachment Summary page. The page displays the applications you selected and the policies that will be attached to those applications.

This graphic shows the Register New Source pop-up window.

Policy contains Assertion 1, Assertion 2, and Assertion n. There is an arrow from the Request to Assertion 1, another arrow from Assertion 1 to Assertion 2, another arrow from Assertion 2 to Assertion n, and a final arrow from Assertion n. A second set of arrows flow in the reverse direction, from the Request to Assertion n to Assertion 2, Assertion 2 to Assertion 1, and a final arrow from Assertion 1.

This graphic shows how you can supply a value in the Security Configuration Details section of the OWSM Policies page.

This screen shot shows a sample list of policies attached to an Oracle Infrastructure Web service endpoint. There are four tabs: Operations, OWSM Policies, Charts, and Configuration. There ar two tables: Globally Attached Policies and Directly Attached Policies. Each table includes a sample policy attached to the endpoint.

This graphic shows a screenshot of Web Service Endpoint page, which you can use to show the WSDL. It shows the location of the WSDL Document field on the right-hand side of the screen.

This graphic shows how to disable a Web service policy for all policy subjects by clearing the Enabled control.

Element hierarchy of an assertion. Includes Policy which contains one element, Assertion. Assertion element contains orawsp:bindings, which contains orawsp:Config elements. The orawsp:Config element contains a orawsp:PropertySet, which contains orawsp:Property. orawsp:Property contains orawsp:Description, and orawsp:Value.

This screen shot shows editing the WSIdentityPermission for the codebase.

This figure provides a screen capture of the Service Home page with the Properties tab selected. It provides a list of the configurable options described in these sections. The two properties that you configure for atomic transactions are circled to emphasize their location.

Screen shot of the Add New Configure Property dialog box. You must enter at least three required fields: Property Set, Name, and Value.

Screen shot of message protection signing and encryption page. Use this page to specify which message parts are signed, encrypted, or both.

The Edit Log File page enables you to edit the log file configuration.

There are two policy interceptor pipelines. The first pipeline is depicted as a series of five boxes in the following order: Reliable Messaging, Management, Addressing, Security, and MTOM. An arrow, indicating a Request, points from a client to the policy interceptor pipeline. The arrow continues from the end of the pipeline and points to a Network "cloud." The arrow continues and points to a second policy interceptor pipeline. The second pipeline is depicted as a series of five boxes in the following order: MTOM, Security, Addressing, Management, and Reliable Messaging. The arrow points from the end of the pipeline to a Web service. There is another arrow, indicating a Response, that follows the reverse path. This arrow points from the Web service, to the second policy interceptor pipeline, to the Network cloud, to the first interceptor pipeline, ending at the client.

This figure shows the Publish Service to UDDI pop-up window. The fields are described in the preceding text.

This figure shows a screen capture of the top of the Usage Analysis page. The View Option field, on the right-hand side of the page, is circled.

Screen shot of the Test Web Service page, in collapsed view. The Request tab is selected, and sections that contain the options you can set for the test, such as Security, Quality of Service, and so on, are collapsed. The screen is described in more detail in the surrounding text.

This figure is a screen capture of the WebLogic Server Administration Console Configuration page for the selected MDB. The Run As Principal Name field is circled and the value weblogic is shown in the field.

This graphic provides a screen capture of the Dashboard page for a SOA composite application named CO_SOA_ADFBC[1.0]. It shows the navigation pane on the left-hand side with the application selected. There is a circle around the Component Metrics section of the page, which lists one component, and the Services and References section of the page, which lists one service and one reference.

Screen shot of HTTP Transport Options on the Test Web Service page. The options are described in the surrounding text.

The different parts of the policy named "oracle/wss10_username_token_with_message_protection_service_policy" are identified. "oracle" is the path location. "wss10" is the Web services standard. "username_token" is the authentication token. "with message_protection" signifies that the policy provides message confidentiality and integrity. "service_policy" specifies the policy type.

This screen shot shows a sample algorithm suite.

Screen shot showing error message resulting from data type mismatch

This figure shows a screen capture of the Select Registered Service window.

This screen shot shows how to add a SAML issuer to the login module.

This figure shows a screen capture of the Security Configuration Details page. It contains 3 overridable properties: keystore.enc.csf.key, saml.trusted.issuers, and reference.priority.

Error dialog box that displays when Policy Manager is not available.

Screen shot of the server-specific Web Services Summary page. You can view tabs for Java EE Web services, non-SOA Oracle Web services such as those for ADF and WebCenter, and SOA Web services.

Oracle Fusion Middleware policy pipeline containing two assertions.

This graphic shows a screen shot of the properties on the Web Services Endpoint page Configuration tab.

This graphic shows a screen capture of the Register New Service page that is displayed when you select a WSIL source. The page is described in the following text.

Screenshot of Log Messages page. This page enables you to search messages by date range, message type, or message contents.

This screen shows the trusted issuers list, which is the preferred method of adding SAML trusted issuers.

This figure provides a screen capture of the Enter Resource Scope page in the Create Policy Set wizard. It displays the Name and Type of Resources as read-only values. The scope consists of Domain Name, Server Instance Name, Application Name, and Application Module Name. In this example, the value weblogic_domain is entered in the Name field for the Domain Name.

This graphic is a screen capture of the Publish Service to UDDI dialog box. The fields in the box are described in the previous text.

Screen shot showing the stress testing parameters on the Test Web Service page. The options are described in the surrounding text.

This graphic shows the location of the Generate Client Policies control on the Web Services Policies page.

This figure shows a screen capture of the Java EE Web Service Client Port page. It has two sections: OWSM Policies and Security Configuration Details.

This graphic shows the Create Key Dialog Box.

Screenshot showing the Usage Analysis page for a policy. The Usage Analysis table shows the different policy subjects to which this policy is attached, filtered by subject type. The page is described in more detail in the subsequent text.

This screen capture shows the oracle.wsm.security credential map expanded. In this configuration, there are four keys configured: sign-csf-key, basic.credentials, enc-csf-key, and keystore-csf-key.

This graphic shows which control to click on the Generated Client Policies page to get the Web service and port.

This graphic shows the Edit Deployment page. You use this page to edit the deployment plan for an application.

This graphic shows the Select Policies page. The Select Policies page shows only those policies that you can apply to all of the subjects selected in the previous step.

This screen capture shows the Web services for a given WebLogic Server Instance.

This screen shot shows the Web service-specific statistics section of the Web Services Summary page.

This screen shot shows a WebLogic Java EE Web Service endpoint. There are two tabs on the page: Operations and OWSM Policies. A table lists a sample policy directly attached to the endpoint.

This graphic shows the Search filter criteria section of the Web Services Policies page.

Screenshot of Web Service Endpoint page, from which you disable a policy attachment.

Oracle WSM Policy Manager page that can be used to check the state of the Policy Manager, review the response time and current load, and validate the Policy Manager.

This graphic shows the Web Services home page for an ADF or WebCenter application.

This graphic shows the STS use case message flow.

This figure is a screen capture of the Edit Configure Property window that is displayed when you are editing or creating an assertion template. The Content Type field is displayed.

This figure shows a screen capture of the Enter General Information page of the Create Policy Set wizard with the Enabled field circled.

Request and Response Pipeline

This figure provides a screen capture of the menus that you select to access the Credentials page, as described in the preceding step.

This figure shows the Java EE Web Services summary for a Java EE application.

This graphic shows the Generated Client Policies page.

This graphic shows the Web Services Policy page, which displays a list of the available policies.

This figure provides a screen capture of the Web Services (Java EE) home page with the Java EE Web Service Clients tab and the Configuration subtab selected.

This screen shot shows the Identity Store Configuration page.

This figure provides a screen capture of the Add Policy References page. The top panel provides a list of the policies attached to the policy subjects selected previously. The bottom panel provides a list of the available policies.

Screen shot of version history link on edit policy page. You use this link to return to an earlier version of the policy.

The Log Levels tab on the Log Configuration page shows the current list of diagnostic loggers, the current logging level, and the corresponding log file.

Screen shot of the Credential Store Provider Configuration page.

This figure provides a screen capture of the Enter General Information page in the Create Policy Set wizard. The fields in the page are described in the surrounding text. In addition to the Next button on the top right, there are also Cancel buttons and a Validate button.

This figure is a screen capture of the Edit Configure Property window that is displayed when you are configuring an assertion after you have added it to a policy. The Content Type field is not displayed.

This graphic shows the Create Template page.

This screen shot shows overriding a server-side configuration property in the Security Configuration Details page.

This figure show a screen capture of the Edit Login Module window. It contains 4 sections: Login Module Details, General Properties, SAML Specific Attributes, and Custom Properties. The sections are described in the surrounding text.

Screen capture of the Web Service Endpoint page with globally and directly attached policies. On the top right of the Globally Attached Policies table there are two fields: Valid and Secured.

This graphic shows a screen capture of the Policy Set Summary page. It contains a list of 5 policy sets, with one highlighted. The Override Policy Configuration button is circled to show its location at the top of the list.

This screen shot shows the location of the Local Optimization control. The optimization control is available when you create or edit a policy.

Screen shot of how an assertion can belong to two categories.

This figure is a screen capture of the Java EE Web Service Client page. It contains summary information at the top and two tabs labeled Invocations and WebLogic Policy Violations, respectively.

This graphic is a partial screen capture of the Web Services summary page. It shows the expanded Actions menu, with the Publish to UDDI option selected. The Action menu and Publish to UDDI option are circled to indicate their location in the window.

This figure shows the components of the Oracle WSM architecture, which are described in the following table. The Oracle Enterprise Manager Fusion Middleware Control is shown as being attached to the Policy Interceptors and the Oracle WSM Policy Manager. The Policy Interceptor Pipeline contains individual interceptors that manage reliable messaging, management, addressing, security, and MTOM policies. It connects to the Oracle WSM Policy Manager, which connects to Metadata Store (MDS), which finally connects to the Oracle Fusion Middleware Database.

This screen shot shows how to select the PKCS11 keystore type on the Keystore Configuration page.

This figure shows a screen capture of the fields displayed when you select the Advanced option. It includes a Policy URI field, which is required, and Name/Value pairs which you can Add or Delete.

Screenshot of Audit Policy Settings page which enables you to configure auditing for system components, including Web services.

Screen shot of the Credential Store Provider Configuration page.

Screenshot of Web Services Assertion Templates

This figure shows a screen capture of the Registered Sources and Services page with the uddi_source row selected and the Publish to UDDI button selected. The Publish to UDDI button is circled to indicate its location in the window.

Screen shot showing the results of the stress test on the Test Web Service page. The options are described in the surrounding text.

This figure shows a policySet element with one subelement, wsp:policyReference.

This screen shot shows adding the virtualize property.

This graphic shows the Web Services home page for a WebLogic JEE application.

This figure provides a screen capture of the Register New Service window. It is described in more detail in the subsequent text.

This screen shot shows the Web Services Endpoint page. The message protection policy in the Directly Attached Policies table is selected. The Override Policy Configuration button is circled.

Oracle Fusion Middleware 11g Web services security components, including the Policy Interceptor Pipeline, Fusion Middleware Control, Oracle WSM Policy Manager, and Metadata Services (MDS) Repository.

This graphic shows the Enforced checkbox in teh Assertions section of the Edit Policy page. You can select or deselect the Enforced checkbox to enable or disable the assertion, respectively.

Screen shot of the policy version history on the View Policy Version History page.

Screen shot of the Test Web Service page for a successful test.

This graphic shows how to set the application attributes during a redeploy.

This figure shows a screen capture of the Web Service Endpoint page for a JAX-RPC Web service. The WebLogic Policy Violations tab is selected. It shows 3 lists: Summary, Violations, and Successes. The contents of the lists are described in the preceding text.

This screen shot shows the expanded metadata repository entry in the navigation pane.

Screen capture of the Validate Policy Manager page. It contains one link, Validate Policy Manager, which you click to access the Validator page.

This graphic shows the first screen of the deploy process, the Select Archive Page

This screen shot shows how to set the server-side configuration properties for message-protection policies.

This figure shows a screen capture of the Registered Sources and Services page. The top portion shows the Registered Sources and the bottom portion shows the Registered Services.

This figure shows a screen capture of the fields displayed when you select OWSM Security Policies and the Advanced Options check box. The fields are described in the subsequent text.

Oracle WSM 10g components including Oracle WSM Server Agent, Oracle WSM Gateway, Oracle WSM Client Agent, Oracle WSM Policy manager, Web Services Manager Control, Oracle WSM Monitor, and Oracle WSM Database.

This graphic shows 3 boxes each containing a policy set definition:

Policy Set 1. Name: domainExternal, Scope: Domain, Constraint: HTTPHeader("VIRTUAL_HOST_TYPE","external"), Policy Reference: oracle/wss11_saml_or_username_token_with_message_protection_service_policy

Policy Set 2. Name:domainInternal, Scope: Domain, Constraint: !HTTPHeader("VIRTUAL_HOST_TYPE","external"),Policy Reference: oracle/wss_saml_or_username_token_service_policy

Policy Set 3. Name: domainLog, Scope: Domain, Constraint: None (default), Policy Reference: oracle/log_policy

Beneath the three boxes is another long, thin box labeled Effective Policy Calculation. Policy Set 1 and Policy Set 2 each have arrows feeding into the Effective Policy Calculation box. Policy Set 3 is merged into the arrows for policy sets 1 and 2.

There are two arrows from the Effective Policy Calculation box pointing to two boxes beneath it that show the effective policies for external requests and the effective policies for non-external requests and requests with no constraints, respectively.

The effective policies for external requests are oracle/wss11_saml_or_username_token_with_message_protection_service_policy from Policy Set 1, domainExternal and oracle/log_policy from Policy Set 3, domainLog

The effective policies for non-external requests and requests with no constraint are oracle/wss_saml_or_username_token_service_policy from Policy Set 2, domainInternal and oracle/log_policy from Policy Set 3, domainLog.

Screen shot of the Platform Policy configuration page. The screen contains three tabs: Policy Accessor, Policy Cache, and Policy Interceptors.

This graphic shows the Select Subjects page. Use the Search control to search for a particular policy subject type, a particular application name, or the type of Web service to which you want to attach a policy.

This figure provides a screen capture of the menus that you select to access the Security Provider Configuration page, as described in the preceding step.

This graphic shows a screen shot of setting the size of the request message from the Web Services Endpoint page.

This screen shows how to attach policies to a Web service.

This figure shows a screen capture of the expanded Subject Type menu. Web Service Endpoint is selected (showing an attachment count of 13). The WLS Web Service Endpoint is shows an attachment count of 2.

This figure shows a screen capture of the Policy Set Summary page. It contains a table that lists the policy sets. In this figure, there are two policy sets shown in the table. Above the table the Create button is active. Create Like, View, Edit, and Delete buttons are shown, but are inactive. Usage for these buttons is described in the following sections.

This screen shot shows the metadata repositories screen, where you can register a repository.

This figure includes three boxes, each representing one of the three files. The left-hand box is labeled OPSS Keystore Configuration, the middle box is labeled Credential Store, and the right-hand box is labeled Java Keystore. Within the boxes the key and map aliases are listed, and arrows indicate the relationship between the aliases in the three files. The description below describes the relationship between the entries in the files.

This graphic shows the Application Attributes page. You use this page to enter the attributes for this Web services application.

This figure provides a screen capture of the Security Provider Configuration Page. It shows the Keystore section at the bottom of the page circled to highlight its location.

This figure shows a screen capture of the Policy Set Summary page in the Create Policy Set wizard. It summarizes the information about the policy set that you entered in the previous steps: General Information, Scope of Resources, and Policy References.

This graphic shows the Select Target page. You use this page to select the target to which you want the application to be deployed.

Screen shot of the Keystore Configuration page.

This graphic shows a screen shot of adding a permission to a policy.

Screen capture of the top portion of the Validator page. It shows the status of the Policy Manager, the number of policies in the repository (88), and a description of 4 policies.

This screen shot shows the Web services performance summary page for an application.

Oracle WSM leverages OPSS Login Module and Oracle WebLogic Server Authenticator.

This figure shows the Override Policy Configuration page. It has 3 sections. The first section, General Information provides the name of the policy set, the Enabled check box, type of resources, and description. The middle section lists the Scope of Resources. The bottom section lists the Policy References. In this figure there are two security policies shown. The top one is selected, and two buttons are shown at the top of the table: Disable and Override Policy Configuration.

The Log Files tab on the Log Configuration page shows the current list of log files.

This figure shows a screen capture of the View Policy Set page. It summarizes the information about the policy set that you entered when you created the policy set: General Information, Scope of Resources, and Policy References.

This figure provides a screen capture of the Enter Constraint page. The page has two sections: an informational section and a Constraint Expression Details section. You specify or review the constraint in the Constraint Expression Details section.

Screen shot of Quality of Service parameters on the Test Web Service page. The options are described in the surrounding text.

This graphic shows the Deployment Settings page. You use this page to enter the deployment settings for the application.

This figure shows a screen capture of the pop-up window that displays when you click the View Detail icon. It includes the title of the policy, a description, and an Assertions table that lists the assertions contained in the policy.

This figure shows the Web Service Endpoint page. The JMS System User field on the bottom right-hand side of the page is circled to indicate the location of the field. The value weblogic is shown in the field.

Farm home page showing ws-pm is down.

This figure shows an Oracle Fusion Middleware application that demonstrates some common interactions between Web services and their clients. At the top of the figure, a Web service client accesses a WebLogic Web service. WebLogic Web service policies are in use in this scenario. In the middle scenario, a Web service client access a WebLogic Web service. In this case, Oracle WSM policies are in use as the WebLogic Web service connects to the SOA composite application located in the center of the figure. In the bottom scenario, an ADF application access a SOA composite application. The SOA application acts as a client to access the following: WebLogic Web service, ADF business component, WebCenter service, and an external Web service. How security is managed at each step in the process is explained following the figure.

Screen Shot of Bottom Portion of Test Web Service page, in expanded view. The Request tab is selected, and each of the sections are expanded to show the options that you can set for each section. The screen is described in more detail in the surrounding text.

Oracle Legal Notices

Copyright Notice

Copyright © 1994-2012, Oracle and/or its affiliates. All rights reserved.

Trademark Notice

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.

License Restrictions Warranty/Consequential Damages Disclaimer

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

Warranty Disclaimer

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

Restricted Rights Notice

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software License (December 2007). Oracle America, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

Hazardous Applications Notice

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Third-Party Content, Products, and Services Disclaimer

This software or hardware and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.

Alpha and Beta Draft Documentation Notice

If this document is in prerelease status:

This documentation is in prerelease status and is intended for demonstration and preliminary use only. It may not be specific to the hardware on which you are using the software. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to this documentation and will not be responsible for any loss, costs, or damages incurred due to the use of this documentation.

[image: Oracle Logo]

OEBPS/img/auditpolsettings.gif
] Weblogic Domain v

(i) Information
Al changes made inthis page require a server restart o take effect.
Audit Policy @ ot | Revert.s)

Use this page to view and set the audt polices for the Java EE applications deployed on this domain. To set the poicies for System Companents,
Such as Orade HTTP Server, refer to the component’ home page.

Audittevel [None V] | | selectraires Oty | @Bport.. by mport..

R e
e

e

‘Orade Web Services Manager - Agent

‘Orade Web Services Manager - Policy Manager

‘Oradle Web Services Manager -Policy Attachment

Reports Server

e

e

e

e

Users to Always Audit

Enter a conma-delmited st of user accounts that wil always be audited. This ensures audit of specifed user accounts, regardiess of the poicy
settings.

Users | |

OEBPS/img/screen22.gif
‘eb Services Policies > Edt Polcy.
Edit Policy @ save | [vaidate | [concel

Policy Information
Name oraclejwss10_messags_protection_service_polcy

Cateqary Securty Descripton [Ths polcy enforces messags integrity and confidentiaity for A
Local Optimization_[on] inbound SOAP requests n accordance with the WS-Security v1.0
standard, The messages are protected using WS-Securiy's Basic
Enabled 128 suite of asymmetric key technologies, speciically RS key
mechanism For message carfidentialty, SHA-1 hashing algarithm
For message nteqrity, and AES-12 bt encryption, The keystore —
is configured through the securiy configuration. This poicy doss

I

Attachment Attributes
Apples To. | Service Bindings v

Service Category @ Service Endpoints
O ervice Clients

OEBPS/dcommon/conticon.gif

OEBPS/img/policy_permission.gif
Settings | Configurations

permission
Constraint Pattern
action Pattern[validats
Resaurce Pattert | hetpfprojectL1/Credtvalidation

Permission Check Class | oracle.wam,security. WSFunctionPer

OEBPS/dcommon/booklist.gif

OEBPS/img/javaee_endpoint.gif
Web Services > Wb Service Endpoint
SimplePort (Web Service Endpoint) @

Vieb Service Type JAXWS 2.1
Endpoint LRI /JAXWS_WEB/Smpleservice

Operations | OWSHM Policies

Transport hitp
WISDL Document SimplePort

Wieb Services Test

[Attachpetach

PolcyName
oradebinding_uthorizaton_denyal.

Policy Reference
&L TotalViators

Security!
Authorization

OEBPS/img/loglevel.gif
Logged n 25 weblogi|Host adc2111121.u5.orade.com
i R 21053620 07)

Log Configuration a
Ui poe o cnfure b s areed i ot st

Logtevels Logries

s poge s o o coriur th o o bt et nogers i e i oggers.Prsident ooyrs reogers ht e ssvedina | gy | R
Coaton e oS v wban he conporan s rted. T o el for tese loggrs e s s Conpet s, FrEie

20oes a0 kot crsked 1 i o b St e patkr feste 30 s srrcie. Fo i,

e o e, Gooment Lot 3, GG kDG B e 3 IS 3508 - ey L5 0 o it g e et

Pertiad o comporant 10255

o i Loggrs %

soner s
et i [

= oo T e -
i [T e — 8
Fa L WA (1 s

e — [T T e —

[— L WA (1 s

B ——" [T T e —

e AL WA (1 s

B T N — erscaro:

oot oA () ety i

[peer NOTEICATEN ()t o

o sttt oG ()t o

e OGN () et e
——— e o

Dlperstioglve st cos congenertrstrs

@

OEBPS/img/keystore_config.gif
(@ nformation
Al changes e i i page et asever estr otk ffct

Keystore Configuration ok | | Cancel

Akeystore is key database that contains both public and prvate keys. Keystore needs to be configured orly a the WebLogic
Domin level You wil need to provide the keystore name, path, password and nformation about dsfaul dentity certficates.

Keystore Type | Java Key Store (X5) v

Access Attributes
* Keystore Path | jdefault-keystare ks
*passward

* Canfirm Passward

Identity Certificates

Specify the default identiy certficates (signature and encryption keys) For this keystore, Web Services that are corfigured to
se this keystore vill e these identiy certicates

Signature Key Encryption Key
* Key las * Crypt las
* Signature Password * Crypt Password

* Canfirm Passward * Canfirm Passward

OEBPS/img/wssec036.gif
o

o

Oracle Oracle Oracle
wsm WS wsM
Server Gateway Client
Agent Agent

Oracle
Database

I—|

Oracle
WS Policy|
Manager

L—l

s |

{

o

Oracle

(2]

Web
Services
Manager
Control

wsi
Monitor

OEBPS/dcommon/index.gif

OEBPS/img/override.gif
Operations | OWSM Policies | Charts | Configuration

‘Subject's Overal Policy Configuration Status: vaid v Seared v|
Globally Attached Policies
Policy Name: Category Policy Set. Status. Total Violations e |
‘oradlefiwss_username_token_service_pol Security *fpolicysets/globalfis_1 Enabled 0 0
a I a
Directly Attached Poficies
ity
£
Policy Name: Category Status. Total Violations e]
oradle/sts_trust_config_service_policy Security False. Enabled 0 0

I oradiefwss10_message protecton_servi Seauity. Tue Enabled o

OEBPS/dcommon/oracle-small.JPG
ORACLE

OEBPS/img/policy_set_schema.gif
policySet

wsp:policyReference

orawsp:OverrideProperty

OEBPS/dcommon/O_signature_clr.JPG
ORACLE

OEBPS/img/platform-trusted-issuers.gif
Platform Policy Configuration @
Use Patform Polcy Confiuration to manage properties for Pocy Accassar, Py Cache, Polcy Interceptors and Identity Extension. Ako cor

Polcy Accessor | Poiicy Cache | Polcy Inerceptors | Identity Extension | Trusted SAMIL clients | Trusted STS servers.

For addifional security you can configure st of SAML sender vouches asserfion signing certficates that your web service frusts. A SAML Se
Service dlent, The certficates themselves need to be either mported into the OVISM keystore or provided n the message. You need to g
tficate and add it here. Note that f the certficate is provided i the message, ts ssuer must be imported into the OWSM keystore. For SAl
be mported into the J26E container’s tust store.
Trusted Issuers

Ak pEit 3 Dekte

Tssuer
‘www.oracke.com

OEBPS/img/screen61.gif
ORACLE Enterprise Manager 11g Fusion Middieware Control
O AdminServer(Oracle WebLogic Server) @ : Deploy
o0 »

Select Archive Selct Target_Appcation Atrutes
Select Archive @ | Cancel | step 1o
Specty the arcive o exploded drectory and deployment lanfor the sppcation to b deployed,

Archive or Exploded Directory

Java EE archive, Web Hodules (WAR fils), E38 Modules (£8 J4R fils) and Resource Adspter Modues (RAR fles)
eployed. You can alsa deplay an exploded archive that is resent o the server where Enterprise Manager is runni

(@ Archive is on the machine whers this web browser is running.

Browse.

O Archive or exploded directory is on the server whers Enterpriss Manager is running.

Deployment Plan

The deployment plan s il that contains the deployment settings for an appication. If you do not have a deployme
one wil be created automaticaly during the deployment process. Later in e deployment process, you can optionslh
deployment plan and save I For a uture deployment of thi appicaton.

® Automatically create a new deplayment plan or use the deployment plan from appiication installation dirsctory if
O eployment plan is on the machine where this web browser is runing.
Browse.

(O Deployment plan is on the server where Enterprise Manager is running.

OEBPS/img/create_assert_temp.gif
Trpe w1

anced St © Shom Advrced it O i Advanced P

St Ton i 9] Gt Treearsd 01 et @
sy iy

OEBPS/img/view_ps.gif
Policy Sets > View Polcy Set

View Policy Set®
General Information

Neme _all-domains-default-web-service polices

Type of Resources Wb Service Encpoint
Description Defaut polces for Web Services in any domain

Scope of Resources

Scope. Pattem
‘Domain Name -
Constraint

Constraint Expression HTTPHeader (VIRTUAL_HOST_TYPE' External)

Policy References
Name

‘oradie/wss11_sami_or_userame_token_with_message_protecton_servi...

Category.
Security

Return To Policy Sets

Version Number 5
LastUpdated Aug 29, 2011 2:35:17PM
Updated 8y weblogic

Enabled Description
v This policy authenticates ...

OEBPS/img/stresstest.gif
Test Web Service @ Test Web Service

Use this page to test any WSDL, induing WSDLs that are notn the farm. To test a Web service, enter the WSDL and cick Parse WSDL. When the page refieshes
it the WSDL detals, frst select the Service,then select the Port, and then select the Operaton that you want to test. Speafy any Input parameters, and dick Test
Web Service.

VP [ttp:/140.87. 154.77:800 fws_basic_simpe/SmpleService?wsdl Q| ParsewsnL
HTTP Basic Auth Option for WSDL. Access

Service. SimplelmpiService
Port SmpleSoapPort
Operaton [oo rlo [V

Endpoint URL EditEndpoint URL [T]

Stress Test Status Executed 50 0f 50 tests.
Number of Tests with Errors. 0

Average Response Time (ms) 23

Minimum Response Time (1) 12

Maxinum Response Time (ms) 68

View+

Invocation
Thread Loop Duraton (ms) Start Time: EndTime o

o 1 7 3:40:24PM 3:40:24PM Passed &)
1 1 31 Passed ||
3 1 2 Passed
2 i 34 Passed -
4 1 El Passed
o 2 5 Passed ||
1 2 2 Passed
2 2 2z 3:40:25PM 3:40:25PM Passed
4 2 3 3:40:25PM 3:40:25PM Passed
3 2 34 3:40:25PM 340:25PM Passed
0 3 5 Passed
1 3 e Passed
4 3 2 Passed
2 3 » Passed
3 3 2 Passed
0 4 5 Passed
2 4 52 3:40:28PM 3:40:28PM Passed ¥

OEBPS/img/screen23b.gif
‘e Services Policies > View Policy > Policy Version History
View Policy Version History @) Retum To Palcy Detai v

The Policy Version History table isplays a history of the changes to this polcy. You can make an earler version the active polcy.
Restore keeps a copy of the o version. Activate deletes the old version.

Hsme_oraclefbinding_athorization_denyall_poicy

6aVien 3¢ Delete | Restore || Acivate

Version Version Date. Enabled Description
2 March 25, 2009 3:49:08 PM Ves REMOTE - This policy s a special case of smpl role
1 March 25, 2009 11:42:04 AM Ves This policy s a special case of smple role based aut

OEBPS/img/screen101.gif
Test Web

Service @

Test Web Service

Use this page to test any WSDL, inuing WSDL that are notin the farm. T test a Wieb service, enter the WSDL and cick Parse WSDL. When the

‘page refreshes with the ISDL detals, first select the Service then select the Port, and then select the Operation that you Want to test. Specify any.
Input parameters, and clck Test Web Servie.

wsL

Service
Port
‘Operation

ht://140.87.154.77:8001/ws_basic_simple/SmpleServicezwsd

QL pae oy

HTTP Basic Auth Option for WSDL Access.

‘SimplelmpiService
‘SimplesoapPort

saytielo ¥/

120,67, 15,77:500

EgitEndpont L []

Test Status. Request successfully received.
Response Tine (ns) 15

Tree View v/
Name. Tpe Valve
E parameters parameters
Here s the message: Helo'
retun

OEBPS/img/wsm-pm.gif
ORACLE Enterprise Manager 11g Fusion Middleware Control Setpw Hebw log

& wsm-pm® Logged inas weblogic| Host adc2170553.us.orade.
2 B Form_base.domain @ Appicaton Deployment + Page Refshed Har 14, 2011 208,02 PH P
Appicaton Desloyments
E 23 Interal Applcations E Summary. @@~ E Modules &
@) b2 soa_server) ModueName Modue Type
@, Dvs Appication(11.1.1.1 General 5 To configure and manage this WebLogic Of wsm-pmserver-wisjar EJB Module
@) DS Appicaton(11.1.1.1 state Actve e o wsm-pmweb war Web Applcation
@) em (dminserver) ApplcatonType ear Seruer fdniistaton Coneol:
@) FMW/ VWelcome Page Appl Deployed On Adminserver
i (dminerver & Response and Load -
Qv oy stz = 7
& s pm (AdminSery ‘Actve Sessions 0 Bearsinlse 0 08
@) wompm (soa_server 1) Request Processing Time (ms) 0 Bean Accesses (per minute) 58.56. -
(23 Resource Adapters Requests per minute) 0.00 Bean AccessSuccesses (%) 10000
- ‘Bean Transaction Commits (per minute) 58.56 U |
g C”*‘DFE?C”*‘”FE;(WorkManager __ gean Transacton Rolbacks (oer minute) 0.00 i
e Reguests per minute) 0,00 Bean Transacton Timeouts per minute) 0.00 04
@ DefoultToDoTaskrlon (s02.¢ Pendng Requests 0 Bean Transaction Conmits (%) 100.00 .
@) jaons-sut (AdminServer) "z oiEr 2ot 5205
@ saows-sutno-policy (Admins | s B
& s stnopaicyGoase e < m
s tewrr) Hodules —Reguest Processing Time (ns)
& wiswebservice Projectiol] | Name TestPont —Requesis (per minute)
& vistietsenceopctico. | oM it fadc2170553.usraclecom: 700 fasm-om T
@, workistapp (soa_server1)
oA
WiebLogi Domain Web Services
Metadata Repositores Service Name Port Test
No Vieb Services Found
 Host Requested)
Serviets and J5Ps
Average Clent Requests Ger Total Gient|
o CErr R Processing Time (ms) ‘minute) Processing Time (ms)
JspServiet fwsm-pm 0 0 0.00 o

‘WebServiceServiet S 0 0 0.00 ol

OEBPS/img/wssec032.gif
Policy Interceptor Pipeline

Client

e
Messagi
Fesporse | oooond

Management

Addressing

Security

mToM

Policy Interceptor Pipeline

mToM

Security

Addressing

Management

Reliable
Messaging

Web
service

OEBPS/img/jee_client_port.gif
Vieb Services > Java EE Web Service Client Port

ClientEJB.jar/owsm_mbean.resouce_pattern.ejb.ClientEJB/sei2/ UpperCaseImplPort (Java EE Web Service Client Port)
oWt Policies

[AtachDetach 2 Disable

Name.

Category e
B0 crackwss10_usemame _token with message.protection_ clent polcy. Seaity Encied

Security Configuration Details

Current Value Original Vakue:
reference.priority

keystore.recpient.aias. orakey.
osfaey. basic.credentials
keystore.sig.csfkey.

keystore.enc.csfkey

OEBPS/img/pmerror.gif
@ Error

Cannot locate policy manager queryjupdate service.

(Cannot locate policy manager queryupdate service. Poicy manager service
look up i ot find vald service. iew log il for Further detail

Show Additional Trace Information

View Log Messages || Save || Close

OEBPS/img/virtualize.gif
Add New Property

* property Name [virtuslze

*valve [true

ok || cancel

OEBPS/img/editlogfile.gif
Edit Log File

LogFie awsm-message-handier
Hander Cass orade.core.ojdlogging.ODLHendlerFactory
*Log Path | scratehjskurisefworkifwps3/user_projects/domainsjos3 125 ¢
Log il Format. () Orade Dagnostic Logging - Text O Orade Diagnostis Logging - M.
Loglevel v
Use Defaul Attriutes []
Supplemental Attiutes | 2EE_APP.name, J2EE_MODULE.name, WEBSERVICE.name, WEBSE

Loagers To Associate | oracle.wsm.msg.Jogaing

Rotation Policy

sz st [Sp—
* Maximum Log File Size (ME) | 10,0
Maximum Size OF All Log Files (MB) | 100.0 *Frequency Minutes.
oy
RetentionPeriod Miutes
Doy

Cancel || ok

OEBPS/img/screen53.gif
ElAdditional Test Options
Enable Stress Test

Concurrent Threads.

Loops per Thread

Delay in Miliseconds. 1000

OEBPS/img/act_uddipub.gif
s
AT Exporteraied swtTme OSENE LNSE e mares

“Time (ms)

(=) {htip:/jejb-orade. comtargetNamespace}EchoE JBService.

EchoEXBServicePort Enabled Oct 18, 2011 1:1 0 0 0 0
) {http:/joradie j2ee. tests.cfb.mpl [} JaxwsWithHandeer Chait

JaxwsWithHanderChainBeanPort Enabled Oct 18, 2011 1:1 0 0 0 0
) {http:/soapinterop.org/Doctirapper WTJ}Docltiirapper!

DodittirapperiTaPort Enabled oct 18, 2011 1:2 0 0 0 0
) s e oradie. comfaxus tests/concrete isdConare

VisdCongretePort Enabled oct 18, 2011 1:: 0 0 0 0

) {http:/fwmw.oradie. comjaxns/tests)CalaatorService
Calajatorport Enabled oct 18, 2011 1:2 o o 0 o

OEBPS/img/screen121.gif
Web Services @ Attach Polices:

Attach Poliesink to the rightlets you attach polcies to Oradie Infrastructure Web Services, J Web Services, ADF Data Connections, SOA Components, SOA Services, and SOA
References.

Java EE | Oracke Infrastructure Web Services | SOA

Response Error Average Execution Average Responsel
Web ServiceName Application Name Endpoint Name Invocation Count Response Count " = =
SimplelmpiService webservicesJsS... SmpleSoapPort o o o 0.00 0.00
SimplelmpiService SmpleJAXWS Smpleport o o o 0.00 0.00

SmpleEpService SmpleJAXWS Smpleport o o o 0.00 0.00

OEBPS/img/screen85.gif

OEBPS/img/owsm_cred_keys.gif
Credentials
A credentil store s the repository of security data that certfy the authority of entites used by Java 2, J2€E, and ADF applica
CredentialStore, a single, consoldated service provider o store and manage thei credentals securely.

fiiCredential Store Provider

dp CreateMap o Createkey | 7t

R 0ekte... | Crecentalkey Name
Tipe Descrption
E lorade.wsm.security
 soncsfhey passnord
§ basic.qedentils passuord
§ encasthey passnord

@ keystore-csfey.

Password

OEBPS/img/sec_prov_page.gif
Security Provider Configuration @

Use this page to configure global management domain polcy and credentil store provders, keystore and login modues used by Web Services Manager.
Security Stores

Current polcy and redentl store poviders ar shown belaw. To mgrate the urent polcy and redentie roviders use e Change Stre Type bufion
Crange Store Type | 7 E6t

Name. Store Type. Location
Polcy Store system-jazn-data i
Credentil Store: Fie cnalet.sso
Keystore keystores.xml
Identity Store Provider

Web Services Manager Authentication Providers

ou can configure the login modes and keystore fo Vieb Services Manager authentcation.
Login Modules

“The following table ists ll confgured login modules fo Vieb Services Manager. Use this st to create, configure or delete a login mode,

Roeste.. | pedt. 3 odete
| Name s
Semlloginmodue _ oracksequityjos.internljoasmodesaml. JSSAMLLogio.
semi2logimodie oracksecuity o interal foasmode. saml.JsSAML 2Logrid.
com.sun secuty.suthmodue rbSLogiMode
orade.secrty.jp.ntemsl s mode.dgest DigestLogitod...
ctode sy .o o XI5 XSO oo

Desaription

‘SAML Login Module:
‘SAML2 Login Mode
Kerberos Logi Mode
Digest Authenticator Login Modue
X503 Certficate Login Mocule:
WSS Digest Login Mode

OEBPS/dcommon/feedback.gif

OEBPS/img/screen81b.gif
jé inas ic | N —
1 jaxwsejb30ws @ Loggedin s weklogic]
@) Appication Deployment Page Refrashed Oct 15, 2011 12:51:26 P POT 12

‘Web Services(Oradle Infrastructure Web Services) @
Thispage provides summary informatio for the Web services i tis appicaton. It dispays Web service endpoints as wellas appiaton-fevel metrc.

Summary Charts

Wieb Services
Vieb Service Endpoints

Web Service Endpoints Disabled
Polcy Falts

otal Faults

Invocations Completed

Viclations and Faults | Security Violations

—
Gﬂ; are «mn>
—

Web Service Details
Web Services | Web Service Endpoints

Actons
Average
Name EndpointEnabled Start Time Invocation Polcy Faults Total Fauits
ComPElEd Tine)
5 (o e orade.com argethiamespace)EchoE Benvice
Echoe BServccport Enbied oct 18, 011111 o o 0 0
& {http:/forade.j2ee. tests.ejb.impl/} JaxwsWithHandlerChair
JexnsitrHendrChaingearport Enabied oct18, 2011 12 o o 0 [
5 {httpsfsozpinterop.org/Docitirapper WTJ}Doditvirapper' |
Doditirapperyiport Enbied oct18, 011111 o o o ol
5 ol orack com s ess concrete}WedConcr
WsdConaretePort Enbied oct 18, 011 1:1 o o o oy
< I 1>

OEBPS/img/screen001.gif
\Web Services Policies > Create Policy

Create Policy @

Policy Information
*Hame | pathjPOLICY_NAME

Category Secury Description
Local optimization [off v
Enabled

Attachment Attributes
Apples To. | Service Bindings v

Service Category @ Service Endpoints
O service Clients

Assertions
dpadd Rodkte A lp < Down

Name Category Type

save

valdate

Cancel

Advertis

OEBPS/img/screen117.gif
‘Web Services(Oradle Infrastructure Web Services) @
s page provides summary informaton fo the Web services i thi applcation. It deplays Web service endsonts 3s wel s appicaton-evel metrics.

Summary Charts
Vieb Services 5 Voltons ndFats | SecuntyvViolatons |
eb Servie Endpoints 5
Web Servie Endooints Disabed 0
Policy Faults 10 W iotatons(10)
TotalFauls 0 g Auinorzaton
0 Viitons(0)
Tnvocations Complted o
o
aiearty
Viatons(0)
Otver
= Vilatons 0)
Securty Vilatons.

OEBPS/img/reg_new_src.gif
Register New Source

*Name
*Desaription

*Type @ UDDI v3registry import O WSIL import from URL O WSIL import from File
*Source URL

Publication [] Enable:

ok || concel |

OEBPS/dcommon/feedbck2.gif
<

OEBPS/img/screen96.gif
Assertion Information

Name Cotegory Type
Log Messagel securityfloogng Logging
WS-Secrty 1.1 username with certficate securityfauthenticatian, security/msq-pro wss11-username-with-certficates
Log Messagez securtylogging Logaing

OEBPS/img/ua_1.gif
Subject Type [Web Service Endpoint (13) V]

OEBPS/img/assertion.gif
Policy

Assertion +

orawsp: bindings

0 orawsp: Config
0 orawsp: Propertyset

[orawsprproperty

orawsp: Description

orawsp: Value

orawsp: guard 7

] orawsp: resource-match 2

{{ orawsp: action-match 7

{ orawsp: constraint-match 7

ExactlyOne ?

L ssertions

[orawsp: bindings

0 ‘orawsp: Config

L [crawsprproperyset

L orawspsProperty

‘orawsp: Description

orawsp: Value

 orawsp: guard ?

‘orawsp: resource-match ?

‘orawsp: action-match ?

Key:
2Zeroor One
+Oneor More

Y ‘orawsp: constraint-match 7

OEBPS/img/server-side-override.gif
Settings | Configurations
dpadd PEdt 9 Delete

Praperty et
standarc-securty-properties

Name value
o IrinateReselver

Default

Type
Constant

—staigard securty-properties

standard-securty-properties

keystore.sig.csf key.
keystore.enc.co key

—

Description

OEBPS/img/screen100.gif
| Request | Resporse |

EiSecurity
O owsM Security Polices O HTTP Basic Auth O Advanced @ None

EQuality of Service
WsRM @ wsDL Default ONone O Custom
Policy URT

WS-Addressing (®WSDL Default ONone O Custom
Policy URT
EIHTTP Transport Options
Enable S0AP Acton []

S08P Action

£ Additional Test Options
Enable Stress et []

Conaurent Threads 5
Loops per Thread B

Delay i Millseconds. 00

Elnput Arguments

Tee View V|

Name Tipe

& *parameters echostring

a0 sting

MTOM @ WSDL Default ONone O Custom

Policy URT

= [

OEBPS/img/res_scope_ps.gif
ORACLE Enterprise Manager 11g Fusion Middleware Control Help
/Farm_base_domain/base_domain(weblogic_domain): Create Policy Set Q

e »
Enter General Information. Enter Resource Scope Enter Constraint

Enter Resource Scope Vaidate || Cancel || Back | step 20f 5 | Next

Enter at least one pattern strng to define the scope of resources for the polcy se. Use an astersk (%) s @ widcard character anywhere witin the string to match any number of
characters atts posiion. You can specify multiple widcards within the sting. Provide only a single patiern for a scope. For resource scopes that do not incude 2 pattem string, an
astersk (7 s assumed.

Name all-domains-defauit-web-service poliies
Type of Resaurces Web Service Endpoint

S i
W i -
prssps—;
hopscatoniame
HopcatonodeNane

'SOA Service or Web Service Encpaint Name:
PortName

OEBPS/dcommon/oracle-logo.jpg
ORACLE

Fusion Middleware
Security and
Administrator's
Guide for Web
Services, 119
Release 1 (11.1.1)

OEBPS/dcommon/rarrow.gif

OEBPS/img/identityperm.gif
- Edit Permission

* Permission Class | oracle.wam,security WeldentityPer
Resource Name | resaurce=your-applcation-name
Permission Actions | assert

ok || cancel

OEBPS/img/screen62.gif
ORACLE Enterprise Manager 11g Fusion Middieware Control Help -

O AdminServer(Oracle WebLogic Server) @ : Deploy [
o——— 0o >

Select Archive Select Target Application Attrbutes

Select Target Cancel || Back | Step2of 4 | Next

Select the Weblogic server o cluster that you want this spplicaton to be deployed to

Name Type Deployed Appica
wsilws, DS Application, webservices s
ws-pm, oracle.wam.sesdaolicis, orade.]
o oracle.domain#1 0@11.1.1.0.0,

cf oracle.domain. webapp#1 0@11.1.1.1
#1201 2.0.1, UKEH@ITL1L0, o
OhW-Ui#5S.0

Adrinserver Oradle Weblogic Server

[wmsservero S server

OEBPS/img/policyconfig.gif
base_domain® Loggedin as weblogic
] ebLogicDomain v Page Refrshed ot 19, 2011 21803 P poT 8

Platform Policy Configuration @ spply | | Revert

Use Platform Policy Configuration to manage properties for Polcy Accessor, Pocy Cache, Polcy Interceptors and Identity Extension. Also
‘configure st of SAML sigring cerifcate Dis.

Polcy Accessor | Policy Cache | Policy Interceptors | Identity Extenson | Tusted SAML dients | Tusted STS servers.
Select an Interceptorin the top panel, then add/edit/deete interceptor properties in the detais panel below.

Nome Category

I sidegseaityntrceptor cearty B
Bindnganagenentitarceptor managenent
VireMenagementintrceptor management 4
MIOMnercepor mtom L
VireSeatynrceptor seaty
WSRHCentinerceptor wm
WSRHServeriterceptor wsm

< i

Interceptor Properties: BindingSecurityInterceptor
dradd pEdt 3 Dekte

Nme. Value
‘agent.expire.tme: 00
‘agent.dode.skew %0
agent.alow.al.xpaths fake

‘agent.nonce. i 28500

OEBPS/img/logmodule1.gif
Security Provider Configuration > Edit Login Module:
(i) Information
Al changes made i ths page require 2 server restart to take effect.

Edit Login Module ok | | concel
Select thelogn madule type you would ke to use for your Web Senices. I
Login Modue Type. SAML Login Mocie

Login Module Details
Name_samlloginmode
Descripton [SAML Login Mode

General Properties
Control g [Requred

Debug [true W)

Add AlRoks [rue (W)
Loglevel [FpeTw)

SAML Specific Attributes
The SAML login modue is @ Java Authenticaton and Authorizaton Service (JAAS) login modle that accepts SAML assertons to do 2 ogn.
The SAML login mocile enables the Web Services tobe run using the login context o the pincpal reated from the SAM assertion.
Provide SAML specifc atrbutes to areate a new SAML logn modiie.
TSSUEIS | dupdd 3¢ Dekte
Tssuers
‘. orade.com

« i
Custom Properties
‘Optionally, enter any properties required by this login module

dpadd 3 Dekte. |

Property Name Valve

OEBPS/dcommon/prodicon.gif

OEBPS/img/jee_client_config.gif
‘U owsm_mbean.resouce_pattern_ejb © (HHSEER i es WERIESIE TRt stauen s

@) Appication Deployment Page Refrsshed Sep 28, 2011 3:04:36 P POT 12
Web Services(Java EE) @
Thispage provides summary informatio for the Web services i tis appicaton. It ispays Web service endpoints as wellas appiaton-evel metrcs.
Summary
Server Name Adninserver Java EE ieb Service Clents 3
Web Services 1 Java EE Web Servce Clent Ports 5
Web Service Endpoints 1
Web Service Details
Web Services | Web Service Endpoints | Java EE Web Service Clients.
Monitorng | Configuration
Response Invocation Response,
32va EE Web Service Clent Port/ Java EE Web Service Cent Web ServiceEndpont Error Count RESPnse. "
5 ClentEJ3 jorfows_mbean.resouce_patter ef.ClenteJse2/UpperCaselnpPort
onsm_mbean.resouce_patiern_cjo:ClentEIB/onsm_ mbean.resouce_pattern.cjb.Cliente: UpperCaselmplort o o o
(5 ClentEJ3 jorfowsm_mbean.resouce_patteref.ClentEJ8/sei/Uppe: Caselmport

owsm_mbean.resouce._pattern_ejb:ClenteJ8/owsm_mbean.resouce patierm.ejb.Clente” UpperCaselmpiort o o [
ClentE38 jarfowsm_mbean.resouce_pattern.b.ClentEJB/service2/UpperCaseImplPort

ClentE 8.jar/onsm_mbean.resouce_pattern.eb.Clente 8 service Upper CaselmplPort

ClentE 8.jar/onsm_mbean.resouce_pattern.e}b.ClenteJ8/upperCaselmpiService UpperCasé

OEBPS/img/add_user_config_property.gif
Add New Configure Property

* property Set
* Hame.

Description

*Value
Default
Content Type

Requred v

| ox || conel

OEBPS/img/screen20b.gif
il webLogic Domain v Page Refreshed Apr 8, 2003 12:33:22 PM P

Web Serices Polces > Generated Clent Polcies
Generated Ciient Policies Return To Web Services Polcie
The servicepolcy information n the Orace WSDL Eha s publshed For the Web service i used as the basis Fo generatng ntilclet poles. Edt the
generated plies to (reate equivaent ciet-id polces

*wsDLURL | itps/jmy-hostiportipathitojmy-orawsdl.wsdrorawsdl | @

Generate

Edt g Delete [save

Name Cotegory Description

Ho rows yet,

OEBPS/img/screen99.gif
4 jaxwsejb30ws @

loggesdinas wehingic Host staghS . oracde. ax
@, Appication Deployment

‘Page Refreshed Aug 25, 2010 10:26:47 AM PDT (.

Test Web Service @

Test Web Service

Use this page to test any WSDL, incucing WSDLs that are notin the farm. To test Web service, enter the WSDL and cick Parse WSDL. When the page

refreshes with the WSDL detais, frst select the Service,then select the Port, and then select the Operation that you want to test. Specfy any input
parameters, and cick Test Web Service.

VWSDL [t stack0.us.oradle.com:3001 awselb JaxwsitithHandierChainintfowsd! Q | ParsewisnL
HTTP Basic Auth Option for WSDL Access.
Service. JaxwsWithHandierChainBeanService:
Port JaxwsWithHanderChainBeanPort
Operation

echosting v,

Endpoint URL

EditEndpoint URL []]

Request | Response
ESecurity
Quality of Service

HTTP Transport Options
@ Additional Test Options

EInput Arguments

OEBPS/dcommon/contbig.gif

OEBPS/img/screen35.gif
\Web Services > Web Service Endpoint

DoclitWrapperWTIPort (Web Service Endpoint) @ Web Services Test ~ MessageLog DiagnosticLog
“This page shows detais and metics for the ieb service endpoint. The Polces tab st the poldies attached to tis Web service endpoit, Attach/Detach takes you to
‘page where you attach or detach polcies. The Configuration tab diplays the endpont configuraton.

Endpoint Enabled Enabled Transport HITP
Asynchronous False DataBinding axb20
Style document Legacy Configuration False
08P Version s03p1.1 Implementation Class ~ oradie.j2ee. tests.ejb.impl JaWSEBWithWSDLImp!
Stateful False VISDL Document DocitWrapperWTJPort

Implementation Type JAX-WS

Operations | OWSM Policies | Charts | Configuration

Subject’s Overall Polcy Configuration Status: Vaid v Seured v/
Globally Attached Policies

Polcy Name Category polcy Set Status TotalVlatons
orade/binding_authorization_denyall pol Seaurity *polcysets/gobaljal-domains+_Enabled o o
@ i) a
Directly Attached Poficies
[AttachiDetach @ Disable 2 Override Polcy Configuration
s
Polcy Name Category Effective Status TotalVolatons o

19 orackwss10_sami20_token service_poli Seaurty Toe Enabied il o

OEBPS/img/assertiontemps.gif
'soa_domain@ Loggedn as weblogic
Elwettoocoonsn e 22 sosymest ©
e s Pk > Web S et Troltss

Web Services Assertion Templates ®

rtontandots o o congatses e o e, T g ows Yout et sttt s chors s st e, o s st g, s e cnbe
[ttt A et .

cagay [secuty. ¥ @
Somtete boven J oo | dyestionte % egetiors
e oo
oo it o bsod hertationfor s s gt -
orafion_sstaaen ol sk e acd asbrzstonfor e we-srces nprrt
v prnssnsshuenen Jorise Puison b oreson o cors b ogoont
g asbceson trgsie i b st for e oo
S ogant s afictn St Bomasentrad e e e coreran
radlnasty o engote oo oy oo o b coores
oo fsge et et engts WS St 10 Aot Cohte, rods Mesag rcion g B2
Cris 0 e et s ol WSty 1.0 s i s, oo sson e g a8
s son ke, e Lot 5000 o el gl for S hrtcson
‘el st s, el 5080t vl for S thrtction

ool s ek, s o WSty 1.0 SR i s, Prowdes st s roecion g 8120

OEBPS/img/screen122.gif
\Web Services > Web Service Endpoint
CalculatorPort (Web Service Endpoint) @

Web Services Test Messagelog Disgnostic Log

“This page shows detals and metrics for the Web service endpoint. The Poices tab lists the poiies attached to this Web service endpoint, Attach/Detach takes you to a page where you attach
o detach poies. The Configuration tab displays the endpoint configuration.

Enabled
Fase
document
soap1.1
Fase
xS

Endpoint Enabled
Asynchronous

stie

08P Version
Stateful
Implementation Type:

Operations | OWSM Policies | Charts | Configuration

Tansport
Data Bindng

Legacy Configuration
Implementation Class
WISDL Document

Bl
b2

Fase

orade.j2ze. tests.ejp.impl Calulator
Calaiatorport

<

Subjects Overal Plcy Configuation Status: Vald v Seared v/
Globally Attached Policies
Secuity Violator
Polcy Name Category polcy Set Status oo S
oradejwss_usemame_token_service_pol Seaurity “fpolcysets/giobalfws 1 Enabled o o o
< I]]
Directly Attached Policies
[Atiach/Detach
Searity Vioatons
Poicy Name Category Effective Status awbioe
oradejwss10_sam_hok_token with mes Seaurity False Enabled o 3 3
oradefog_polcy Management True Enabled 3 nia nja
I] >

OEBPS/dcommon/topnav.gif

OEBPS/img/wssec033.gif
Request ——
; [——— i —
Rosponse |+ -—

OEBPS/img/confprop2.gif
Edit Configure Property.

Property Set standard-security-properties
Property. saml.trusted fssuers.
Desaipton

Value
Default

Lok ||_cancel |

OEBPS/img/screen116.gif
Add Issuer

Enter SAML Issuer name. .e. htps/jauthoriy.example.con/
*lssuer

ok || cancel

OEBPS/img/diaglogger.gif
@ AdminServer ®

Logged in as weblogic|Host adc2111121.us.oracle.com
5 webloge server

Page Refashed 0ct 20, 2010 7:15:03 AmpOT 1)

Log Configuration 8
Usethis page to confgure baskc and aanced ogconfguaton setings.
Loglevel: | Eagl

s thi pags o creake and o g cnfuraions. Aol onfiurton paciisthe g e whers te o essages i belogged o th forna of the o
ssages, the rotation poies used, as well s other parameters dzpending onthe g il configuration clss.

@reate.. | [SCreatelhe... 7 Edt Comfiuration... 60 View Configuation

Handerfiame LogPath Log e Fomat: Rotaton Polcy

emioghander [scatchskiuisejworkfimwps3juser_orojctdomaisips3_r Orede Disgrosics Logging-Text i Besed

emtrchender [scotchskiuniselworkfimwps3juser_orojctomasips3_n Orede Disgnosics Logging-Text Sl Besed

odhandier Jcraehishunisefurkffmps3jusr_orojectsidomains(psd_n, Orod Diagnostics Logoing - Text Sies Based 1
owsmmessage-hon scatchjkbuiselworkfimwps3user_orcjectdomaisips3_n Orede Disgnostics Logging - Text iz Besed

<

OEBPS/img/screen84.gif
[ElQuality of Service
WSAM @ WSDLDefaut ONone O Custom

MTOM @ WSDL Default O None O Custom

Polcy URI

Polcy URI
Vis-Addressing @ WSDL Default O None O Custom

Polcy URI

OEBPS/img/enable_ps.gif
Enter General Information Vaidate

Cancel | step 10f5 | Next |

Enter basi polcy setinformation, such as name, descrption, and resource type. Click Next to enter the resource scope.

- domains-defauit-eb-service-polces

Type of Resources.
Description. |Defalt polcies for Web Services in any domain

OEBPS/img/screen46.gif
Select Policies Concel || Back | stepzof 3 |

Select the polces you want to attach to the polcy subjects. Only polces that are relevant to the selected policy subjects are diplayed,
To seect more than one polcy, press the Ctel key and clck the poicies you wart to attach.

Search | Polcy Category .)
Name Cotegory Enabled

oradlefusadr_policy Addressing ves This

oracleflog_policy Management ves This

oradlefwsmtom_policy Message Transmission Optiniz: ves This

oradlefwsimi0_polcy. Relable Messaging ves This

oraclejwsrmt1_poicy. Relable Messaging Yes This

OEBPS/img/screen20.gif
Web Services Policies @ b Services Assertion
This page alows you o create anew polcy, make changes t an eisting polcy, make a copy of apolcy, and delee a plcy. Polciescan be mported nta
sore fram a e, and polcies can be exparted ko i

Cateqory | Security %] Appies To [Service Endpoints ¥ iame @
Rorests [(Jcmstelic oovew Sk KDtz | dyimportFromFie) Export To || Generate Cek Polces)
Nome Deserpton
‘oraclefbinding_authorization_denyall_policy Version 2.This policy s a special case of simple role based authorization policy based up

oradejbinding_authorization_permital_policy Wersion 2. This polcy is a special case of simple role based authorization policy based .

OEBPS/img/add_policy_ps.gif
ORACLE Enterprise Manager 11g Fusion Middieware Control

Helo v
/Farm_base_domain/base_domain(weblogic_domain): Create Policy Set)
« ———o————@——0

Enter Resource Scope Enter Constraint Add Policy References Summary
Add Policy References

Vaicate || Cancel | | Back |step 4of5 | Next
‘Select available /attached policies and dick Attach/Detach to adjust the attached policies group. Click Validate to verify that the combination of policies attached to the policy set is valid.
Attach/Detach Policies(Web Service Endpoint)

Attached Policies
Name Cotegory Enabled. Descrtion Vewbetad
‘oradie/wss11_saml_or_username_token_with_message_protection_service_policy ‘Security. v “This policy authenticates ... &3
‘oradle/binding_authorization_denyall_policy ‘Security v Thispolicy is a spedal c...
& Attach ¥ Detach
Available Policies
Search [Catogory] A1 D)
Nome Cotegory Enabed. Descrton i
‘oracle/wsaddr_policy ‘WS-Addressin v “This policy causes the pla.
‘orade/flog_policy Management
‘oradie/no_mtom_policy

MTOM Attach “This polcy facitates ...
e

pr——— e Meceae Trarermiecin

xxxxg
'

Y SEY

OEBPS/img/applicationlogs.gif
¥ webservicesJwsSimple @ Logged in as weblogic | Host sta00571.us.oracle.com

@ applcaton Deploymen ~ Page Refshed Feb 3, 200 3351 PP (2
Log Messages & Broaden Target Scope. Target Log Files. Marual Refresh v
Esearch
DateRange | Most Recent v 1 [Hours

* Hessage Types

rror [Jwarning [Cnotfication [Trace
Message | contains v

(@ search | | add s

Unknown

View Show | Messages || view Related Messages |+ || Export Messages to Fie |+

A Message
Type
(o messages matched the search criteia.)

Tine Message ID Message

OEBPS/img/pub_uddi.gif
Publish Service to UDDI

Choose 3 UDDI publicaton source, then select @ Business to publish the service.

* Service Name | EchoE JBService

Service Desaription
Service Defrition Location http:/stbczd3.us.orade. com: 7624 sl EchoE TServicewsdl
*UDDI Source [udd_t (W)

* Business Name [B7X77 1 v

[ok || cancel |

OEBPS/img/pol_details.gif
Policy: oracle/wss10_saml_token_service_policy

Category Searity Description This policy authenticates users using credentals provided in SAML.
Local Optinization Check Identity tokens in the ViS-Security SOAP header. The credentials in the

‘SAML token are authentcated against a SAML login module. This
policy can be appled to any SOAP-based endpoint.

OEBPS/dcommon/uarrow.gif

OEBPS/img/screen105.gif
Credentials

A credentil store s the repository of security data that certy the authority of enities used by Java 2, J2€E, and ADF applications. Appiications can use the
CredentalStore, a single, consoidated service provider to store and manage ther credentals securely.

(Credential Store Provider

e CreateMap o CreateKey | /Edit.. 3¢ Delete Credential Key Name. ®
Credentil Tipe Desarption

CEPMCRYPTO

Cdefat

lorade.wsm.searity

OEBPS/img/wstrust-use.gif
Requestor
(Client)

Service

OEBPS/img/ua_2.gif
usage Analysis ® Retum To Web Services Polcies

“This page displays the various poicy subjects that are using this poicy.
Polcy Name oradefiss10_saml_token_service_poiicy
Policy Subject List

Ve Opton @ Enterprise O Local Domain/Cell

Subject Type [WLS Web Service Endpoint (2) ¥
‘Domain/Cell Server ‘Appication Modue Service Port
‘em_domain S0a_serverl ‘SimpleJaxws ‘SimpleEjo.jar SimpleEjbService SimplePort
g Ty SimpleJAXWS e Ry R ey SimplePort

OEBPS/img/reg_serv_wsil.gif
Register New Service
To register new services, follow instructions below; or, ik 0K button to navigate back to the Registered Sources and Services page.

Source Name wsi1
Source Desaripton Wsi1
SourceType WSIL import rom Fie
VISIL File samplewsi

Services Available in WSIL
Toregster services, selectoneor more services and dick Regster.
Vew~ dRegter

Service Name Service Descrpton Servie Location Edt
‘Google Search ‘Google Search hitp:opigoogle com/Googlesearch.wsdl 7
‘Google Search ‘Google Search hitp:opigoogle com/GoogleSearch.wsdl 7
‘Google Search ‘Google Search hitp:opigoogle com/GoogleSearch.wsdl 7
‘Google Search ‘Google Search hitp:opigoogle com/GoogleSearch.wsdl 7

EIReferences Available in WSIL
Use tis table i you want to register services for areferenced WSIL instead of the current WSIL. When you cck the Process icon below, the current
VISIL on this page wil e replaced by the referenced WSIL. You can then register services from the referenced WSIL.

View +
Reference Location
hitp:/fink. comfecommerce.wsi
hitps/ink2.comservices/ecommerce.wsi

ﬁﬁg

OEBPS/img/screen002b.gif
Web Services @

Attach Poldes

Attach Poiciesrk to the right s you attach polces to Orad Infrastructure Vieb Services, JEE Web Services, ADF Data Connections, SOA Companents,

'SOA Services, and SOA References.

JavaEE | Oradle Infrastructure Web Services | SOA

Total
Faut

WisdConaretePort

SmpleRestservi.. 0

JmnsWithHan 0

Calaiatorport 1

EchoEXBServicePort
DoditiirapperyT.

PolcySubjectPr
ProviderPort11.

OEBPS/img/conditionalattachment.gif
Policy Set 1: domainExternal

Constraint: HTTPHeader(“VIRTUAL_HOST_TYPE" "External’)

Scope: Domain(**")

Policy Reference: oracle/wss11_sami_or_usemame_token_
with_message_protection_service_policy

Policy Set

: domaininternal
Constraint: IHTTPHeader(“VIRTUAL_HOST_TYPE""Extemal’)

Scope: Domain(

Policy Referenc
service_policy

raclelwss_saml_or_username_token_

Policy Set 3: domainLog
Constraint: (None)
Scope: Domain(**")
Policy Reference: oracle/log_policy

Effective Policy Calculation

Effective Set of Policies for External Requests.

= oraclefwss11_sam|_or_usemame_token_with_
message_protection_service_policy

= oracleflog_policy

Effective Set of Policies for Non-External Requests and
Requests with No Constraints

= oraclelwss_sam|_or_username_token_service_policy

= oracleflog_policy

OEBPS/img/validate_pm.gif
) Validate Policy Hanager =1

Validate Policy. Mangﬁer

Copyright © 2007, 2011 Oracle and/or its affiates. Al ights reseved.
Oracle is a registered trademark of Oracle Corporation and/or its affliates. O

OEBPS/img/opss.gif
Oracle WSM
Policy Enforcement Point

v

Oracle Platform
Security Services

v

Oracle WebLogic Server
Security Authenticator

OEBPS/img/summ_override.gif
Policy Set Summary @
Use thispage to create, done, edt, view, delete pocy ses.

Type of Resources [Al ¥ Name

oeate [oeateike baven Pt
Name

R Dekte

[e
=
it
otz
e

Type of Resources:
Web Service Endpoint
Web Service Endpoint
Web Service Clent
Web Service Endpoint
Web Service Endpoint

OEBPS/img/screen63.gif
ORACLE Enterprise Manager 11g Fusion Middieware Control
O AdminServer(Oracle WebLogic Server) @ : Deploy
« s———@———a

Select Target._ Application Attributes _ Deployment Settings

Application Attributes Concel | | Back | Step 30 4 | Nevt

archive Typs Java EE Appication (EAR fe)
archive Location homejskiuise/tempjearfes/jaxwseib3ows.ear
Deployment Plan Create a new plan

Deployment Target. Adminserver

* Appliction Nare [jsxmseib3ons-test
Applcatian Version |1

Context Root of Web Modules

The cantext raat s nct configurable from EM i the web madhe aiready has the cantext roat canfigured in applicaton. i,

ieb Mode Context Root
Jmwseib30ms-ebmar Joseib
Distribution
(@ Distribute and start application (servicing all requests)
O Distrbute and start application in admin mod (servicing orly adrin requests)
O istribute orly.
£0ther Options

Source Accessbily @ Use the defaultsdefined by the deployment’s argets. Recommended selection

(© Copy this application onto every target. During deployment, the files will be copied automatically to th

OEBPS/img/screen002.gif
Web Services Policies @ Web Services Assertion Templat

“This page allows you to create 2 new polcy, make changes to an existing poicy, make 2 copy of a poiicy, and delete a polcy. Poides can be mported into the dat
store from 2 fle, and poles can be exported to a fle.

Category [Securty] Applies To [Service Endpoints v Name @

[@oeate [Howmiele soven et RDdete | dyInportFromFle) ExortToFle | Generate ClentPoldes

o i Atdment ViewFul

‘oradle/binding_authorization_denyall_policy This policy is a spedial c.. -
oradepindng_authorizaton_permial pocy “hispolcy s specil .. I
oradepindng_permission_authorizaton pocy “Thispolcy is @ specil .

orade/nss10_message_protection_service_policy
oraciejwss10_sami_hok token_vith_message_protection_service_polcy.
oradiejwss10_sami_token_service_polcy.
oraciejwss10_sami_token_with_message _integrity_service_policy
oradie/wss10_sami_token_with message_protection_service_polcy.
orade/wss10 saml token with message protection ski basic256 service.

8888888885

9t DRCURN RN < [N

OEBPS/img/jee_client_stat.gif
Web Services > Java EE Web Service Client
©owsm_mbean.resouce_pattern_ejb#1!ClientEJB.jariClientEJBService!ClientEJBPort-SystemClient (Java EE Web Ser ...
Applicaton Name owsm_mbean resouce_patter_cib Vieb Service Encpoint ClenteXPort
Modie Name ~ ClentE8.jar Fansport roctocol Type http.

Tnvocations | WebLogic Poicy Violatons.

Errors. Invocation Statistics
Error Count. 0 Invocation Count 0
Response Error Count 0 Dispatch Time Average (ns) 0.0
Dispatch Time Total (ms) 0
Exeaution Time Average (ms) 0.0
Exeauton Time Total (ns) 0

Response Statistics

Response Count 0
Response Time Average (ms) 0.0
Response Time Total (ns) 0

OEBPS/img/screen67.gif
ORACLE Enterprise Manager 11g Fusion Middieware Control Help v

O uddi#1(Application Deployment) ® : Redeploy

< o0

Select Archive Application Attributes Deployment Settings

Cancel || Back | Step3of 4 | Next || Redeploy

Application Attributes

Archive Typs Web Modue (WAR fie)
Archive Location uddiwar
Deployment Plan Create a new plan
Deployment Target. Adminserver

‘Applcation Nams

Beployment Options
The applicaion was previously deployed with version. You can redeploy the application with new version. To redeploy with same velion,
vou need to undeploy and deploy the appication.

* Application Version

Retirement Policy @ Allow the application to finish its current sessions and then retire.
(ORetire the previous version after retire timeout.

e timeout (seconds) [1

Context Root of Web Modules
The cantext raat s nct configurable from EM i the web madhe aiready has the cantext roat canfigured in applicaton. i,

ieh Machle: Context Raot

i war i war

OEBPS/dcommon/rightnav.gif

OEBPS/img/soa_servref.gif
ORACLE Enterprise Manager 11g Fusion Middleware Control
[iFem + 28 s0A Infrastructure | & Topology
{} CO_SOA_ADFBC [1.0]®

[ER4
5 B Farm_em_domain o350 Composite +
Rurring Instances 0 | Total 2 | Actve | Retre .. | | | sutoown... | | Test | | | settngs... v | @ @ |
agagga;n:‘(m,wem Dashboard | Instances | Fauits and Rejcted Messages | UntTests | Poles
efait |
ofg [corsoaAprBer; | @
‘Weblogic Domain [Recent Instances
Metadata Repositories
User Messaging Service
Component Type Tota Instances
speLprocess1 L ;
[EServices and References
Name e Usage
@ boclrocess1_dent e ieb Serice Servce
@partmertnkt ieb senice Referenc

OEBPS/img/screen98.gif
Web Services > Web Service Endpoint
CalculatorPort (Web Service Endpoint) @ Web Services Test Messagelog DiagnosticLog

“This page shows detals and metrics for the Web service endpoint. The Polces tab lists the poices attached to this Web service endpoint. Attach/Detach
takes you to @ page here you attach or detach poices. The Configuration tab dispays the endpoin configuration.

Endpoint Enabled Enabled Transport. HTTP
Asynchvonous False Dota Bindng iab20
Style document Legacy Configuration False
SOAP Version soap1.1 Implementation Class oradej2ee.tests.efb.impl. Calaator
Stateful False WSDL Document. Calauatorport

Inplementaton Type JAX-WS

Operatons | OWSMPoics | Charts | Configuration

Endpaint Enabled [Enabled [¥]
RESTEnabled [Faise Unitof Maximum Request Size

WSDL Enabled [True
Metadata Exchange Enabled [True
Endoint TestEnabled [True
Loogng Level [ULL vl

‘Schema valdation [paise |

RIEIEIES

OEBPS/img/owsm_app2.gif
Company A Company B
(° WebLogic WebLogic WebLogic
B 2 JE2 || webarvice | | web servce
Web Service || web Service || GAxWS) ntemety
axws) || UAReG) || fnranet

Client
(Requester)

SOR Gomposite Appication
(‘j\gAp;?::io" ° Wedator || simness || famen,
AL pemtcaton 320 ooy
Glent
(Requester)

o[- oo

Poicy Management
y Management @ |
orceEnrs Hansgr o
e myerd soness | | webcenter
T Comporent | | "Servee
(B (Web Service)|
= Oracle WSM

Policy Mamager
(I LDAP (0ID)
] ot

Oracle Oracie WS
Developer Policies
08)

Lagend: Web Service Policy Support

[oracie wsm poticy
B viebLogic Web Service Policy

OEBPS/img/jmsuser.gif
Web Services > Web Service Endpoint.

“This page shows detals and metris forthe Web service endpoint. The Polices tab lists the poices attached to this Web service endpoint. Attach/Detach takes you toa |
'page where you attach or detach polces. The Configuration tab displays the endpoint configuraton.

Endpoint Enabled
‘Asyndhvonous

styie

'SORP Version
Stateful
Implementaton Type
Transport

Operations | Polices |

Enabled
True
document
soap1.1
Fase
xS
e

Charts | Configuration

DataBindng jab20
Legacy Configuration False
Implementation Class Com.oradle.webservices, jaxus. test. AsyncE].
WSDL Document. AsyncEbPort
Transaction Enabled For Request Queve True
Using Response Queve True
Transaction Enabled For Response Queve True

Endoint Ensbled [Enabled)
RESTEnabled [False v)

WSDL Ensbled [True (90

Metadata Exchange Enabled [True [v]
EncpointTestEnzbled [Trae.
LoogngLevel [oL v

Schema vaidation [rale 9

Maximum Request Size. [

Unitof Maximum Request Sze [Bytes W)
Asynchronous Web Service

215 Request Queve Connection Factory Name | weblogic jms.XAConnectonFactory.
M5 Request Queve Name[orade.j2ee.ws.server.async.NonDe

3 Response Queue Connecton Factory Name | weblogic jms. XAConnectonFactory.
M Response Queve Name _[orade j2ee ws.server.async.NonDe

300 System User [weblogic > 8§

OEBPS/img/jee_summ.gif
Web Services(Java EE) @

This page provides summary information for the Web services in tis appication. It ispiays Web service endpoints as wel as appication-evel metrics.
Summary

Server Name Adminserver Java EE Web Service Clents 3
Vieb Services 1 Java EE Web Service Clent Ports 5.
Web Service Endpoints 1

OEBPS/img/pcks11-keystore.gif
Keystore Configuration

o] |
‘Akeystore is a key database that contains both public and private keys. Keystore needs to be configured only at the WebLogic Domain ley

will need to provide the keystore name, path, password and nformation about default identity certiicates.

Keystore Type. [RuBicKey G

Shandards
Access Attributes

*Passiord

* Confirm Passiord

Identity Certificates

‘Speafy the default denty certficates (sgnature and encrypton keys) for this keystore. Web Services that are configured to use this
Keystore wil use these identiy certficates.

‘Signature Key

Encryption Key

ey Alas | mykey.

* Signature Passiord

* Confirm Passiord

*Crypt Als
*CryptPassword
* Confirm Passiord

mykey.

OEBPS/img/screen91.gif
Web Services > Web Service Endpoint.

DoclitWrapperWTIPort (Web Service Endpoint) @ Web Services Test Message Log

DiagnosticLog

“This page shows detals and metrics for the Web service endpoint., The Polces tab st the polices attached to this Web service endpaint. Attach/Detach takes youto @
'page where you attach or detach polces. The Configuration tab displays the endpoint configuraton.

Endpoint Enabled
Asynchronous

stie

08P Version
Stateful
Implementation Type:

Enabled Transport HITP

False DataBindng Jaxb20

doaument Legacy Confguration False

soapl1 I gl JXWSETBWWSDLImp
False WSDL Document DoditiWrapper/TPort

s

Operations | OWSM Policies | Charts | Configuration

Subject’ Overall Polcy Configuration Status: Vald v Secured v/

Globally Attached Policies

PolicyNme: Category policySet Status TotlVotons
oradepindng_authorization_denyal pol Seaurity * plcysets/glbal/al-domains+_Enabled o o
] I)
Directly Attached Policies
[AtiachDetoch
s
PolicyNme: Category Effectve Status TowlVoatons e

oradie/wss10_sami20_token_service poli Security True Enabled 0 0

OEBPS/img/wssec038.gif
oracle/wss10_username_token_with_message_protection_service_policy

T T
Pan Authecaton oty
Lhen " o
e
St Jesta
Soees Message

OEBPS/img/reg_serv_uddi.gif
Register New Service

To register new services, follow instructons below; or, cick ‘OK'button to navigate back to the Registered Sources and Services' page.

Source Name uddi_L

Source Desarpton UDDI One
Source Type UDDLv3 registry import
UDDIV3LRLhitps//stbees.us.orade. com: 7001 registry/uddifinury.

Services available in UDDI
To registe services, select one or more services and cick Register.
Service Name [calc

Servecekey

Vew~ o Regiter

Service ame Servie ey

Caaistor_ve o ddiorade,comiem:Calastor_svc_pp.
Coastorserice ddiorade.comem;CalastorService
Coastorservices ddiorade,comem:CalastorService 3
Coastorservie SC_7 ddiorace.comemiCaastorServie_SK_7

View Service Detais

§88¢

AN NN N

OEBPS/dcommon/mix.gif

OEBPS/img/algorithm_suite.gif
Algorithm Suite {Basic256Rsa15 - This aigorithm suite uses SHA-1 digest with AES-256 encryption and RSA-1_5 Asymmetric Key Wrap. ¥+ |

OEBPS/img/screen114.gif
ADF Connections Configuration > Configure Web Service
HelloWorld_pt (Web Service Client)

owst. Configuration
Globally Attached Policies

Name.

Norows yet

oradie/nss10_message_protection_dient_policy
Security Configuration Details

keystore.sig.csfkey.

keystore.enc.csfkey.
©

Current Value
keystore.recpient.aias.

Policy Set

Category.

Category.

Security

‘riginal Vakue:
orakey.

Policy Reference
status.

Policy Reference
status.

OEBPS/img/screen106.gif
seectien [seimemasary” 9]

*Key

Trpe [password]
-

-

* ConfimPassword

| ok || cancel |

OEBPS/dcommon/indxicon.gif

OEBPS/dcommon/toc.gif

OEBPS/img/pub_uddi_srcpage.gif
Registered Sources and Services @
Sources

Use this page to register sources and services. Applications can use these registered sources and services for easy integration with

Use this section toregsterecit/delete source profes, mport services from the registered sources or publsh services to registered
Services, if any, imported from the selected source location.

Vewv dpadd PEdt R Delete Regster web services (| @ Publsh o LoDt
Name Desrpton Source LRL oe
wsifle_1 WSIL Fe One sample.nsi

W wid sorce i o
il 1

WSIL import from File
hitps//stbee08.us.orade.com:7001 ... UDDI v3 regstry import
WSIL URL One:

hitp:/stbcz03.us.orade.com:7624in..

WSIL import from URL

OEBPS/dcommon/leftnav.gif

OEBPS/img/screen36.gif
Web Services > Web Service Endpoint.
CalculatorPort (Web Service Endpoint) @ Web Services Test Messagelog DiagnostiLc

“This page shows detals and metrics for the Web service endpoint. The Poices tab st the poiides attached to this ieb service endpoin
‘Attach Detach takes you to 2 page where you attach or detach polces. The Configuration tab isplays the endpoint configuration.

Endeoint Enabled Enabled Transport. HITP
Asynchvonous False DataBindng X620
Style document Legacy Configuratin False
508 Version s02p1.1 Implementstion Class orade j2ze.tests.ef.inpl.Calcator
Stateful Fakse WSDL Doaument Calaiatorport

Inplementaton Type JAX-WS

Loy | | g

Maximum Request Size

Encbled v/ Maximum Request Sze

Unitof Maximum Request Size

glala|E

OEBPS/img/validator.gif
Policy Manager Status: Operational

Policies (88)

Name

oraclefwss10_sami20_token_with_message_protection_client_policy

oraclefwss_sami20_token_over_ssl_client_policy

oraclelno_mtom_policy

oraclefwss_http_token_service_policy

Version

Description

This policy provides message-level protection and SAML V2.0
based authentication for outbound SOAP messages in
accordance with the WS-Security 1.0 and SAML Token profile 1.1
standards. It uses WS-Security's Basic 128 suite of asymmetric
key technologies, specifically RSA key mechanisms for message
confidentialty, SHA-1 hashing algorithm for message integrity, and
AAES-128 bit encryption. The keystore on the client is configured
either on a per-request basis or through the security configuration.
ASAML V2.0 token, included in the SOAP message, is used in
‘SAML-based authentication with sender vouches confirmation.
These credentials are provided either programmatically or through
the security configuration.

This policy includes SAML V2.0 token in outbound SOAP request
messages. The SAML token is automatically created. The issuer
name and subject name are provided either programmatically or
through the current Java Authentication and Authorization Service
(JAAS) subject_ Optionaly, attesting entity and audience restriction
condition can b specified. The policy also verifies that the
transport protocol provides SSL message protection. This policy
can be attached to any SOAP-based client

This policy faciltates the disabling of a globally attached WS Mtom
policy.

This policy uses the credential in the HTTP header to authenticate
users against the configured identity store. The credentials are

OEBPS/img/ps_sec_conf_details.gif
0 Name.
keystore.enc.csfkey
saml.trusted.issuers

T e

OEBPS/img/keystore_setup.gif
OPSS Keystore Configuration

Credential Store

Java Keystore

servicelnstance:Keystore

keystore-csf-map ->
oracle wsm.security

keystore.pass.csf.key ->
keystore-csi-key

Keystore.sig.csfkey->
sign-csf-key

Keystore.enc.csf.key->
enc-csf-key

[+Map: oracte.wsm.security

keystore-cs-key >

L user: dummy

| o sign-cst-key ->

|~

Pwd: welcome

Keystore password:
| y welcome1

» orakey > cn=orcl...

User: orakey
Pwd: welcome

enc-csf-key->
User: orakey
Pwd: welcome

basic credentials->
User: AppID
Pwd: AppPWord%

I Type: PrivateKeyEntry
Key password: welcome1

OEBPS/img/ps_override_config.gif
‘em_domain ®
5] weblogcboman

Polcy Sets > Override Poicy Configuration
‘Override Policy Configuration @

General Information

Name all-domainsdefault-web-service poliies

Type of Resources Web Service Endpoint
Descripton Default polces for Web Services in any domain

Scope of Resources
Scope. Pattem
‘Domain Name -
Constraint

Constraint Expression HTTPHeader(VIRTUAL_HOST_TYPE' External)

Policy References

R Disable 2 Override Polcy Configuation
Neme

7 oradefwss11_sam_or_username_token_with message_protection_servi...

Category.
Security

Loggedin as weblogi
Page Refreshed Aug 31, 2011 2:37:09 pM pOT

RetnTopolysets | A

Version Number 5
LastUpdated Aug 29, 2011 2:35:17PM
Updated 8y weblogic

Enabled Description View Detal
v This policy authenticates ... =)

OEBPS/img/pub_src_uddi.gif
Publish Service to UDDI

Enter Service information, then select 3 Business to publsh the service.

= Service Name
‘Service Description
= Service Definton Location

UDDI Source
*Business Name:

udd_source

B2xZ 1

OEBPS/img/endpoint_secure.gif
\Web Services > Web Service Endpoint
CalculatorPort (Web Service Endpoint) @

Web Services Test MessageLog Disgnostic Log

“This page shows detals and metrics for the Web service endpoint. The Poices tab lists the poiies attached to this Web service endpoint, Attach/Detach takes you to a page where you attach
o detach polies. The Configuration tab displays the endpoint configuration.

Enabled
Fase
document
soap1.1
Fase
xS

Endpoint Enabled
Asynchronous

St

08P Version
Stateful
Implementation Type:

Operations | OWSM Policies | Charts | Configuration

Globally Attached Policies

Tansport
Data Bindng

Legacy Configuration
Implementation Class
WSDL Document

Bl
b2

Fase

orade.j2ze. tests.ejb.impl Calulator
Calaiatorport

Subject’ Overall Polcy Configuration Status:

Vaid v

<

Polcy Name Category polcy Set Stats
‘oradeiwss_username_token_service_pol Security. “/policysets/globalfws_1 Enabled
Ll i

Directly Attached Policies

[Attach/Detach

Polcy Name Category Effective Stats
oradeiss10_saml_hok_token_with mes Seaurity False Enabled
oradefog_poicy Management True Enabled

Seared V)

OEBPS/img/sec_vio_rpc.gif
Web Services > Web Service Endpoint.
‘SimpleSoapPort (Web Service Endpoint) @

Web Service Type JAXRPC 1.1
Endpoint LRI [jws_basic_simple/SimpleService

Operations | WebLogic Policy Violations

Transport hitp
WSDL Document. SimpleSoapPort

Vieb Services Te

Summary

Total Faults 0

Polcy Faults 0
Total Vilations 0

Authentication Violations
Confidentiaity Violatons
Integrity Violations

Authentication Successes
‘Confidentialty Successes
Integrity Successes

OEBPS/img/screen47.gif
Summary

Policy Subjects
Appication Name
appicationt
Jaxuscioiws
Joxuscioi0ws
Jaxuscios0ws
Joxuscioi0ws
Jarmseibions

Name
Helltiorld_pt

Calculatarport
DocltiirapperTJport
EchoEXBServicePort
JaxwswithHanderChainBeanPort
WsdConcretePort

Concel || Back | step3cf3

Type
ieh Service Connection
ieb Service Endoaint
ieh Service Endpaint
ieb Service Endoaint
ieh Service Endpaint
Web Service Endpoint

OEBPS/img/screen21.gif
iiveb Services Policies > Generated Client Policies
base_domain (orsck WebLoas borei) @
Generated Client Policies

The service polcy information i the Oracle WSDL that is published for the Web service is used as th
generated polces to create equivalent cent-side polces.

*WSDL URL | itp:/{140.84.131.249:7001 fjaxwseiblCalculatorrorawsd | (®)

Service | Caleatorservice v port | Calultorport ¥ | Generate
PEd Rodete | swe

Category Nore
W adihessing dient/Clentpolcy_wsaddt _polcy

securty cient/ClntPolicy_wss_username_token_service_polcy

OEBPS/img/screen123.gif
Web Services > Web Service Endpoint > Attach Polices.

Attach/Detach Policies(CalculatorPort) ok | | vaidate | | Cancel
Globally Attached Policies
Name Category Polcy Set Enabled Desaription Vewd
‘oradiefss_username_token_service_policy Seaurity "fpolicysetsfglobalfws_1 v This policy uses the crede... od

@ I F]
Directly Attached Policies

Name Category
oradefog_polcy Management
‘oradle/wss10_sam_hok_token_with_message_protection_service_policy ‘Security.

a Atach < Detach

Available Policies

Search | Category Al)

Name Category View Detai
oradeoining_sutharizaton_ denyalpolcy Searty A
‘oradle/binding_authorization_permitall_policy ‘Security. &3
‘oradie/binding_permission_authorization_policy ‘Security. &3 B
‘oradle/no_authentication_service_policy ‘Security. &3
‘oradie/no_authorization_service_policy ‘Security. &3
‘oradle/no_messageprotection_service_policy ‘Security. &3

OEBPS/img/screen110.gif
Message Encrypt Setting

Dinclude Entire Body
ElHeader Elements

dpadd PrEdt R Dekte

Nemespace
http: s oracle. comfmwfcontet1.0

< &

ElBody Hlements
dpadd PrEdt R Dekte

Nemespace
hitp:Jasavalidatecred

Request Response | Fault

Name
Fr-cotest

Name
Hasavicardii

OEBPS/img/config-identity-store.gif
‘Security Provider Configuration > Oracle Identity Manager

@ information
Al changes e i i page et asever estr otk ffct

Identity Store Configuration ok || cancel

The User and Role API is automatically corfigured to use the first Oracle WebLagic Server authenticatar and does nat reaure
any speal configuration. To fine-tune the behavior of alltypes of LDAP-based identiy store providers configure properties here
forthe Factory instance and the store instance.

Use WiebLogic Authentication Provider Configuration
CustomPropetes | gy

3 Delete.

Property Name value
‘CONNECTION_POOL_CLASS orade.s

OEBPS/img/wssec034.gif
Request Pipeline

Request =

Extract Credentials

—

LDAP Authenticate

—

LDAP Authorize

Response Pipeline

Response =

XML Encrypt

OEBPS/img/pol_set_summary.gif
ORACLE Enterprise Manager 11g Fusion Middieware Control
Giram | & Topobogy

- em_domain @

= B4 Farm_em_doman 5] WebLogicDomain +

Setpv Hepy LogOut

Loggedin as weblogic
‘Page Refreshed Jul 19, 2011 12:05:27 PM POT 1)

Policy Set Summary @

Use thispage to create, done, edt, view, delete pocy ses.
@) CO_ADFEC new (Admint

@) composer (s0s_server) | Type of Resaurces [Al ¥ tame [C)

Queuromarn®] | dowe (Jowete ooven Jem Ko Oy Conforsion

@ s 2pp (dminserver | Name [View Ful
giﬂ"f:'(ﬂ(dmﬂveﬂ al-Gomains-defauit-neb-servie-poldes 1 v WebService Endpor Defaultpoices for viebs.. 69
wetbs o | [e 0

S i

v ‘Web Service Endpoii All endpoints on AdminServer.. &3
22 soavnfra (s0a_server1)
@ defaut
o |l
1] em_domain.
8 adnierver
B con_servert

OEBPS/dcommon/masterix.gif

OEBPS/img/cred_menu.gif
ORACLE Enterprise Manager 11g Fusion Middleware Control
Giram | & Topobogy

ERg base_domainl @
5 [Farm_base_domaint 5] webLogic Domain v
‘Applcaton Deployments ome
— j
5 E——— 54To confioure and manage th
Logs > ‘WebLogic Domain, use the:
- -
‘Application Deployment H
e y
S— Y i
b oy (—
s — k
s [
o
Application Policies
£ weblogic Server Adninstraton Console pplcation Rokes
. o

OEBPS/dcommon/bookicon.gif

OEBPS/img/enforceassertion.gif
ps3_rc6_domain®
4] Webkooe Doman ~

el ervices Poces > EdR Py
Edit Policy @
Policy Information
e cradeuest1_usermane_token i essage_rotecion_service_polcy
Category Secusky
LocaOptinzation [off v
Enstied @)

Descrtion

Attachment Attributes

sosles To [serveo pndngs .
Serve Category @ Service Endooits

Logged i a5 weblogic
Page Rafshed Oct 13, 201 85223 A T T

sove | [vabdse

Thi poly enforces message-evel protecion (hat 5, messoge A
nkeghty and message confcenkilty) and athentcaton or
rbound S04 requets naccdnce wehthe WS-Secrty 1.1
Coandard, Mectages e ptsceed ueng W Secutys Bk 128

it of symer oy teshociages, oechcsly REA oy

nacharns ormessage confdantaty,SHA1 hashing
‘Saorthnfor message ey, s AES: 128 bt encrypion. The

Osavee s

Assertions

At Rookte alp vOmn | AHORGoD
Hane ooy Tive e
Logtessogel seastylogsng Logong ol o

0 W Secunty 1.1 sermane withcorfctes seastylaspertiation, secstyinsgore wistlsenonwiheaticts £ | B
Logvessanez seastylosgos g0 olo

Hame Ws-Securty 1.1 serame wihcatfctes

Cotegory seauylauherticaon, sectylnsyprotection
Trpe. west1-userame-with certiat

Descrption

OEBPS/img/screen119.gif
Metadata Repositories

You creste most Fusion Middleware component schems reposioriss in dakabase using the Repository Creation Utity, Metadata

Services (MDS) repositories can be created i a databass with the Repostory Creation Utity or created on sk as il-based

reposiories. You must regiter an MDS reposiory before you can deploy appication metadata to the repositry.
Database-Based Repositories

Register... | Deregister
Repository Name. Dotsbass Type Databass Name Schema Name
mds-s0a Orade & shi_mds
mds-ousm Orae &

<h1 DS

OEBPS/img/wls_runas.gif
Change Center & Home Log Out Preferences [22] Record Help Q| Welcome, weblogic | Connected to: wis-domain
S Home>vis-domain>Summary of Deploymens > AsncEh »Summay ofDepoymers >AsyncEjbService_AsyncRequestProcessorHiDB

No pending changes exist. Cick the Release Settings for AsyncEjbService_AsyncRequestProcessorHDB
Configuration button to allow others to edit the -
domain. I

Overview | Configuration | Seauity | Control | Testing | Monitoring |

£

ook B Ed

Release Confuraton
Use s page to view and dit sesion and ansaction informaton for th seleced E%.
Domain Structure
ws-domain BB Configuration Overview
Name: AsyncEjpService_AsyncRequestProcessorMDB The name of this bean. More Info.
Type: mdb The EJB type (session, entity, or message). More
o
1B Class orade.j2ee v server jaxws AynRequestrocessoVDB 25 Class Name. More Info,
Hame:
 Message Driven Bean Configuration
& Provider The URL to beused by the il context. More
R o
Hax a The msimum ruiberof messages that can beina
HowdoL Hessagesin ansacion or on MDS. Mere Info
e R]
System Status
Poling 10 The rumber of seconds beteen each attemt by
Interval: 20 VD toreconnect o either a MS destnat o
Resource Adapter. More Info. 3
it 5 The il number of second to suspend an DS’
Suspend: S connection when & S resourceoutoge &
detected. More Ino,
Hax C— The masimum rumberofseconds to suspend an
Suspend: MDS' S comnecton when a M resorce outage
s detected. Mare Info
 Enterprise Bean Configuration
Hetwork Custom network channel tht the £ uses for
Access netwrk commmcatons. More Info
Point:
Runas s The seaity pridpal f be used s the un-as
Principal 1og! ‘principal for a bean that has security-identity

Name: spedified nits ejp-jar.xm fle. More Info

OEBPS/img/screen003.gif
Cateqory [Securty | Appiies To | Service Endpoints | Name.

OEBPS/img/screen23.gif
Web Services Policies > View Policy
View Policy (@, Retum To Web servces polce

Policy Information
Name _oracljbinding_authorization_denyal_polcy

Category Secury Description. REMOTE - Ths palcy i a specialcase of simple role based
Local Optinization authorization policy based upon the authenticated Subject. This
policy denies allusers with any roles. This polcy should folon an
Enabled authentication policy where the Subject s establshed. This polcy
can be attached to any SOAP-based endpoint.

Attachment Attributes Yersion Info Usage Analysis

Apples To. Service Bindings versien Hunber 2 Attachment Court 1

o oy Sk rpants LU Mchas, 209 3500

OEBPS/img/screen66.gif
ORACLE Enterprise Manager 11g Fusion Middieware Control Help v

O AdminServer(Oracle WebLogic Server) ® : Deploy 5
B s ——
Selct Target Appicsin Atrbures Deployment Settings
Deployment Settings Cancel || Back | step 4 of ¢ | Deploy
Archive Type Java EE Application (EAR file) Application Name - jaxwsejb30ws-test
Archive Location fhome/skkunise/tempfearfiles/jaxwseib30ws. ear Application Version Mot specified
Osployment Flan Create s new plan Context Rost jaxwseh
Deploymert Target. AdminServer Osployment Hode Ditriuts snd stan
applcation
(g
et

Deployment Tasks
The table below lss common tasks that you may wish to do before deploying the spplication. Once you have made
deployment settings chanqes, typically you would save the deployment plan for later use.

Name GoTo Task Des
Configure Wieb Modules 7 Configure the web moces nyour applcaton.
Confgure EXs 7 Configure the Enterprie Java Beans i your aplcation.

Advanced Deployment Plan Editing
ou can optionally s the Ect Deployment Plan opton to set more advanced deployment optons | i Deplayment Flan
‘which the deployment taks above do ot cover. |t Deplayment Pen)

Save Deployment Plan
ou can optianaly save the deployment plan to your lacal dsk, You can redeploy ths application

later using your saved deployment plan and not have to edit the deployment plan. _Save Deployment Plan |

OEBPS/dcommon/bookbig.gif

OEBPS/dcommon/oracle.gif

OEBPS/dcommon/larrow.gif

OEBPS/img/screen120.gif
5 Farm_rc2_s0a_domain
Applcation Deployments
N

Weblogic Domain
Metadata Repostaries
(& imds-owsm

(& mds-soa

User Messaging Service.

OEBPS/dcommon/help.gif

OEBPS/img/screen38.gif
'Usage Analysis @

“Thispage displays the various poicy subjects that are using this poicy.

Polcy Name oradefiwss10_saml_token_service_poicy

Policy Subject List

Subject Type [Web Service Endpoint (13)

‘Domain/Cell Server
‘em_domain S0a_server1
‘em_domain S0a_server1
em_domain S0a_serverl
‘em_domain S0a_serverl
em_domain S0a_serverl
‘em_domain S0a_serverl
em_domain S0a_serverl
‘em_domain S0a_serverl
em_domain S0a_serverl
‘em_domain S0a_serverl
em_domain S0a_serverl
‘em_domain S0a_serverl
‘em_domain S0a_serverl

]
Attachment Count 15

soainfra
soainfra
soainfra
soainfra
soainfra
soainfra
soainfra
soainfra
Joxwselb30ws.
Jmnseins
Joxwselb30ws.
Joxwselb30ws.
Joxwselb3ows.

integration/services|TaskSe.
integraton/services/Taski..
integraton/services/TaskQ..
integraton/services/UserM..
integraton/services Runtm.
integraton/services/Compo.
integraton/services/AGMet..

soxwselp
Jmawselp
soxwselp
Jmonse
Jawsep2

Return To Web Services Polices:

Ve Opton. @ Enterprise O Local Domain/Cell

TaskServicePortSAML
TaskMetadataServicePorSAML
TaskQueryServicePortsAML
UserMetadataServicePortSAM.
RuntimeConfigservicePortSAM.
‘CompositeMetadataPortSAM.
AGMetadataServicePortSAML
AGQueryServicePortSAML
Calaatorport
Doditiirapper T Port
JexnsWithHanderChainBeanPort
WsdCongretePort
EchoEJBServicePort

OEBPS/img/keystore_config_luna.gif
Security Provider Configuration > Corfigure Key Store

@ information
Al changes e i i page et asever estr otk ffct

Keystore Configuration ok | | Cancel

Akeystore is key database that contains both public and prvate keys. Keystore needs to be configured orly a the WebLogic
Domin level You wil need to provide the keystore name, path, password and nformation about dsfaul dentity certficates.

Keystore Type | Hardware Security Modu (HSM) v
* H Provider Type [Luna

Identity Certificates

Specify the default identiy certicates (signature and encryption keys) For this keystore. Web Services that are
canfigured to use this keystore wil use these idertity certficates.

Signature Key Encryption Key

* Key las * Crypt las

OEBPS/img/screen102.gif
Input data validation failed 3 |
The following errors were found in the input request
data
Fieldname var It has rror: nteger expected

oK

OEBPS/img/test_advanced.gif
ESecurity
O 0wsH Seauity Poles OHTTP Basic Auth @ Advanced ONone
*polcy URT
‘Adsfdelete config overide namefvaue pais.
dpadd R Dekete..
Name Vae

Javamlws.secu

- e

OEBPS/img/server-side-override3.gif

OEBPS/img/screen43.gif
Select Policy Subjects

Cancel | Step 10f3 || Next

“This process allows muliple policies to be attached to multiple poicy subjects. Select the policy subjects to which you want o attach polces. To select more than
‘one policy subject, press the Ctrlkey and cick the polcy subjects.

Search [Polcy Subject Type v

A

¥l®
Appication Name Name
appicationt ‘appication1V2.jcient/test 1 HeloWord ot
saxwsebions. CalaiatorService/CaladatorPort
Saxnseb3ows. DocitiirapperWT Jervice DocitiirapperWT Port
Saxwseb3ons. EchoEJBService [EchoE BServicePort
Saxnseb3ows. SaowsWiithHandlerChainBeanService Jaxns\WithHanderChainBeanPort
Jaxwsebions.

‘WsdConcreteService MsdConcretePort

Type av
Web Service Connection
Web Service Encpoint

Web Service Encpoint

Web Service Encpoint

Web Service Encpoint

Web Service Encpoint

OEBPS/img/arch.gif
L

mTOoM

Oracle WSM Agent
Reliable
Mossaging | Management | Addressing | - Security
Policy interceptors
Oracle Enterprise Manager
Fusion Middleware Control Oracle WSM
Policy
Oracle JDeveloper Manager
Oracle Enterprise Pack
for Eclipse (OEPE)
Oracte
WebLogic Scripting Tool wsM
wLsT) Repository
Yy
(~
Gracle
Fusion
Widdleware

OEBPS/img/sec_prov_menu.gif
ORACLE Enterprise Manager 11g Fusion Middieware Control

a- em_domain®
=) [Farm_em_domain il WebLogic Domain v
‘Applicaton Desloyments —
son
Wieblogic Domain
=t Contol
%) = e : Esrn configure and:
ogs. ver bt
Metadata Repositories Orade Webloag Sers
User Messaging Service [PéL.us.orade.com - Admrisiration Consol
PortUsage
‘Applicaton Desloyment >
S0A Deployment >
b Servies >l
Searity S| credentis
[pr——
DBC Data Sources. Secuity rovider Configuration
System MBean Browser
‘Applicaton Poces
£ Wieblogic erver Administraton Consale Applcaton Roes.
General Informaton System polces
8l soa_server & s
Audt Polcy

) Oracle WebLogic Domain Resource Centl 41 cie

OEBPS/img/screen66b.gif
ORACLE Enterprise Manager 11g Fusion Middleware Control
O AdminServer(Oracle WebLogic Server) @ : Deploy

= @ -
Deployment Settinos Edit Deployment Plan Deploymert Seftings

Edit Deployment Plan @

Help v

Cancel | step 1 0f 1 | Aply

E ® | weblogic-application
Tree Path jawselbaOws.ear > weblogic-applcation
B £ appcaton Descrptor Locaton META-INFfweblogic-applcation. xnl
B O jaxwsejb3ows.ear #path - fweblogic-application
El

Web todues A

applcation-adrin-mode-trigger
capacity

cantext request
fair-share-request
max-threads-constraint
minvthread-constraint
response-tine-request
session-descriptor

E38 Modules Edit Proprietary Descriptor

View Propristary Descriptor

value
add

add

add

add

add

add

add

View and Edit

OEBPS/img/screen113.gif
Select Registered Service

Vew s

Service Name. Service Description Service Location Source Location
Google Search Google Search hitp:/fapi.google.com/Googlesearch.wsd Local il upload

OEBPS/img/wssec031.gif
Policy

Request sserton 1 }—» Assertion2 |—> Anb:
Response = =

OEBPS/img/confprop.gif
| Edit Configure Property

Property Set standard-security-properties
Property. saml.trusted fssuers.
Desaipton

Value
Default
Content Type

OEBPS/dcommon/prodbig.gif

OEBPS/img/summ_jee.gif
Web Services(Java EE) @
Thispage provides summary informatio for the Web services i tis appicaton. It dispays Web service endpoints as wellas appiaton-fevel metrcs.

Summary

Server Name Adminserver Java EE Web Service Clents 3
Vieb Services 1 Java EE Web Service Clent Ports. 5.

Web Service Endpoints 1

Web Service Details
Web Services | Web Service Endpoints | Java EE Web Service Clents
Actions
Response Error Average Exeaution
Name. Invocation Count et Response Count =a ‘Average Response Time (ms)
E ClentEBservice
0) 0 000 000

ClentEXBPort

OEBPS/img/soaservwsat.gif
(CO_SOA_SOA [1.0] > Service Home

o4 bpelprocess1_client_ep (Web Service) ®
Doshiboard | Poices | Feuls and Rejeced Messages | Properties

General

Maximum Request Size

Aeply

REST Enabled
WSDL Enabled

Metadata Exchange Enabied
Endpont Test Enabled
Logging Level

Schema vaiidation

qlalalE

Rfomic Transaction Version

Atomic Transaction Flow Option

Maxinum Request Size

Uit of Maximum Request Size

El

Bytes

OEBPS/img/pol_set_wiz_summary.gif
ORACLE Enterprise Manager 11g Fusion Middleware Control

/Farm_base_domain/base_domain(weblogic_domain): Create Policy Set
———o

« —
Enter Resource Scope.Enter Constraint Add Policy References Summary.

Help v
Q

Summary

Review the contents of the polcy set. Cick Back to edit the polcy set o Save to reate the polcy set.

Policy Set Summary
General Information

Name al-domains-defauit-web-service poliies
Enabled

Scope of Resources

Scope. Pattem
‘Domain Name -
Constraint

Constraint Expression HTTPHeader (VIRTUAL_HOST_TYPE' External)

Policy References
Name
oradie/wss11_sami_or_username_token_with_message_protection_service_polcy
oradefbinding_authorization_denyal_poicy

Valdate

Descripton Default poices for Web services in any domain

Category.
Secuity
Secuity

“This policy authentcates .

“This policy is 2 special c.

Cancel || Back |step5ofs | Save

zxg
A

OEBPS/img/constraint.gif
ORACLE Enterprise Manager 11g Fusion Middieware Control Help v
:_domain): Create Policy Set Q

Enter Resource Scope._Enter ConstraintAdd Polcy References Summary.

Enter Constraint Valdate || Cancel || Back | step 30f'5 | Next

‘Optonaly, enter constraint to be applied to polcy set and cick Update Constraint, For example, to apply a constraint o requests containing the HTTP Header named
VIRTUAL_HOST _TYPE with a value of External, enter VIRTUAL_HOST_TYPE as the HITP Header Name and External as the HTTP Header Value. If the constraint s
‘enabled, 2 HTTP header name is reuired. If the 'I(NOT) Operator i selected, the constraint expression i nverted.

Name all-domains-defauit-web-service poliies
Type of Resaurces Web Service Endpoint

Constraint
Constraint Expression HTTPHeader (VIRTUAL_HOST_TYPE| External)
o
Constraint Expression Details Update Constraint
Encbled o
1 (N0 Operator

Constraint Name
*HTTP Header Name

HTTP Header Value:

OEBPS/img/wssec035.gif
Service Policy Interceptor Pipeline

o

Mooaing | Management | Addressing | Security | MTOM

oD 99

Policy Middleware
Managor Control

(5]

Oracle WsM
Ropository.

OEBPS/img/reg_source1.gif
Registered Sources and Services @

Use this page to register sources and services. Appications can use these registered sources and services for easy integraton with internal and external web services.
Sources

Use this section toregsterecit/delete source profes, import services from th registered sources or publsh services to registered UDDI sources. Select a source row to check o
regstered services, if any, imported from the selected source location.

Vewv pAdd PEit Deete (dRegster WiebServces (R Publih ToLDDL
Neme Desarption Source URL Type User
wsi_fle_1 VSIL Fie One sample.nsi WSIL import from File
wsi_ur 1 VSIL RL One hitp:/fstbcz03.us.oradie.com:7624jn... WSIL import fiom URL weblogic
(LR R UDDI One: hitpstbe0s.us.orade.com:7001e.... UDDI V3 regsty import admin
< i
Services

Use this section to ed, deete registered services. Alo, selectregistered services to view WSDL, run tests etc.

Vewy pedt 3 Dekete || ShowWsoL | [Web Services Test
Neme Servie Location
CalcTest

‘Account_SoapService

hitps//dadvmn0771.us.oradle. com:B001 fzxwseib/Calaatorzwsdl
Administrationltis.

hitps//stbee08.us.orade. com: 7001 registy/uddi/doc/wsdaccount.wsdl
hitp://stbee08.us.orade. com: 7001 registry/udifdoc wsdadministrationUtis.wsdl

OEBPS/img/gen_info_create_ps.gif
ORACLE Enterprise Manager 11g Fusion Middleware Control Help v
/Farm_base_domain/base_domain(weblogic_domain): Create Policy Set Q
g——— o »

Enter General Information Enter Resource Scope. Enfer Constrant

Enter General Information Vaidate | | Cancel | Step 10f5 | Next

Enter basi polcy setinformation, such as name, descrption, and resource type. Click Next o enter the resource scope.

*Mame | ll-domains-defauit-web-service-polies

*Type of Resources | Web Service Endpoint =
Descripton | Defaut polces for Web services in any domain

OEBPS/img/test_owsm.gif
Request | Response |
EiSecurity

©owsw secuity Poles OHTTP Basic Auth O Advanced. ONone

‘Compatile Cint Poiies
loracie/wss10_sami20_token_dient_poicy
loradie/nss10_message._protection_cient_policy

Configuration Properties
Username

Password

‘Advanced Optons
Sinature Key Alls

‘Sinature Key Password

Encryption Key Als

Encryption Key Password

Redpient Key Allas

Other Client Polices

oA

[lorade/wss_userame_token_over_ssl_dient polcy.

[Cloradefiwss_http_token_over_ssl_clent_polcy

[Tlorade/iwss10_x503_token_nith_message_protecton_dient_polcy

[Clorade/iwss10_username id_propagation_with_msg_protection_dient_policy
loradefiwss10_sami_token_with_message_protecton_clent_polcy

XK Keystore Location

LoadKeys

K Keystore Password

‘SAML Issuer Name

‘SAML Audience URI

Indude User Roles

Attesting Mapping Atrbute:

OEBPS/img/pmdown.gif
I Deployments

3

a5

Name Status
appicatian Deployments
5 £ ntemal Applcations
@em
@ wsuis
@ wsuis
e

GO

Target

Adrinserver
Adrinserver
saa_serverl
soa_serverl

OEBPS/img/opss_permissions.gif
Custamize resource or actions for selected permision,
Elcustomize
Permission Class | oracle.wsmsecurty WSFunctianPel
Resource Name | httpfproject1 1 CredtValdations.
Permission Actions |invoke

OEBPS/img/screen118.gif
Web Service Details
Web Services | Web Service Endooints

Actons v
SR
Name Encpontenabled StartTime TS nvocaton oy Fauls Totl Fauls
Sompiced, T o)
5 {ttps/jeo-orade.comergetiamespace)EchoE TService
EchoE BSenicePort Enabled oct18, 211 10 o o o o
5 (o orace.s2e.est.mplmwsiitHanderChai
SaxosiiiHanderChainBeanPort Enabied oct18, 2011 10 0 0 o o
5 {https/jsoapitercp.org Dodittrapperi T)Docitrapper'
DodltirapperVTport Enabied oct18, 2011 10 0 0 0 o
5 bt . oracle.com s estsfconareteWsdConae
VisdCongretePort Enabied oct18, 2011 10 0 0 o o

) {http:/fwmw.oradie. comjaxns/tests)CaladatorService
Calajatorport Enabled oct 18, 2011 1:2 o o 0 o

OEBPS/dcommon/doclib.gif

