Endeca® MDEX Engine

Analytics Guide

ORACLE
ENDECA

Contents

(@0] ¢)Y/ [] 0 | PSPPI \Y
e €] 2= o] =TSSP PPPPPPPPPRTTRR 7
ADOUL TS GUITEe ettt ettt e e e ekt e e e e e b b et e e e e e a b bt e e e e et be e e e e e aabb e e e e e abbeeeeeennees 7
WHhO SHOUId USE thiS QUILE.......eeeeiiiiiieiii ittt e ettt e e e e e e e e e e s e e nbbbbeeeeeeaaaeeeeaaannns 7
Conventions USEd iN thiS QUITE...........uuiiiiiiiiiiee e e e s e e e e e e e e s e s s rerreeaeeesessnnnnnrnnneees 7
100] g1 r=Tod i1 (o @ T = 1o (ST U] o] oo O PP PRTTPI 8
Chapter 1: Introduction to Endeca AnalytiCs...........cccuviiiiiiiiiiiiiiieeeeennnns 9
WHhat IS ENAECA ANBIYTICS?......eeeeeeiiiee ettt oottt et e e e e e e e e e e be bttt e e eeaaaeaesaaannbebbeeeaeeaaaeeeeaaaannns 9
Where to find MOre INFOrMALION........coouiiiiie e e s e e srn e e e snneean 9
Chapter 2: The ANalytiCS AP 11
What IS the ANGIYEICS API?. ...ttt e e e sttt e e s st bt e e e e aabe e e e e s abbeeeeesanbeeeeeeane 11
BasiCS Of the ANAIYIICS APL.... ..ottt et e e st e e s abbe e e e s annneee s 12
L@ 1011 o VT] 01U 1= To =T 0 41 o T=To [[T o TS 12
The programmatiCc INTEITACE..........oii it e e st e e e s snbaeeeeeane 12
THE TEXE-DASEA SYNMTAX......eeiiiiiitiiii ettt e e e ettt e e e st e e e e e s aa b e e e e e e abbe e e e e s anbneeeeeaaes 13
SEALEIMEINTS. ...ttt et e e e e e e e s e e et et e e e e e e e s e r et e e e e e 13
AJAregation/GROURP BYooiiiiiiiiiiiiiiiie ettt e e ettt e e s sttt e e e s sabe e e e s abbeeeeesanbaeeeeeanes 14
EXPreSSIONS/SELECT AS.... oottt ettt ettt e ekt e ek e e e e s e bbb et e e s sbb et e e s aasbne e e e s annnneeens 15
Using the COUNT and COUNTDISTINCT fUNCLONS........cccoiiiiiiiieeeeeeeeresss s s s e e e e e e e e ae e e e e eeeeananes 18
NeSted QUETIES/FROM........uiiiiiiiiiiii ettt ettt e e sttt e e s aab b bt e e e s nbbe e e e s snbbbeeeesannnneeeas 19
INTEr-StALEMENT FEIEIENCES. ...eii ittt ettt e e e e e e s et e e s aebr e e e e s annnneee s 20
Result orderiNng/ORDER BYcooiiiiiiiiiiiiers sttt s e s e s e e e e e e e aeaaaaeaeeaeaaaaaae 22
Paging and rank filtEriNG/PAGE.oouueiii ettt e e st e e e s annaaeee s 22
FIErS/WHERE, HAVING........oiiitiiiiiiie ittt ettt ettt et be e e e be e e s sbbe e e eabe e e ab b e e e snbeeesnbeeesnaeaans 23
y N Qb 1Y (ot €= SRR 24
S F= T 0] 0] (S0 U LT 1= TSP RPP 25
SIMPIE CrOSS-TADUIALION. ...ttt e et e e e et e e e e b e e e e e e eenes 25
0 S 26
SUDSEE COMPATISON..... .ttt e sttt e e e ettt e e e e st e e e e e bt e e e e e e antbeeeeeenbees 26
NS C=To I To o [=To F=UiTo] o T PP PP PPPPPPRPPPP 26
Inter-aggregate referenCes EXaMPIE..... ... i i a e e e e e e e e 27
Inter-statement refereNCEeS EXAMPIE. i s 27
Text-DaSed SYNTAX FEIEIENCE.eiiie ettt e et e e s e bt e e e et e e e e annes 27
5301t R (=1 o T T P PP P PT PP URRPPPPP 28
Ways of mapping iNPULS t0 OULPULS.......eeiiiiiiiiiie ittt e e e st e e e s sbbe e e e e s snbaeeeeeane 28
(04 gL = Tod 1= £ TP TP PPPPPPPP 31
Chapter 3: Charting APL........oo oo 33
About the ENdeca ChartiNg APL........oo ettt e e e e e e e e e e s st bbb b e e e e aeaeeeaesaannnes 33
L€ T ol F- 1] OO PP R PTRO 33
Rendering an HTML taD1E...........uiiiie e 35
CordaChRAartBUIIAEr ClASS.ciiiiiiiiei it s e s e e e s e b e e e 36
(O o TV ol o3 1 1 {00 o | o OO PPERER 37
Chapter 4: Temporal ANAlYtiCS.......ccooovvviiiiiiiiiiec e 39
I 4 1 SRS 39
=) QI 2 ¥ O O SO P TP OUPPPPPRRRPPRN 40
Chapter 5: Configuring Key Properties........ccccccoevvievviiiiiiiiieeiiiiiee e 41
P 0T 1 LA =) VA o] (0] o L= (=T PSEERRR 41
DEfINING KEY PrOPEITIES. . .eiiiieiittiiee ettt e et ettt e e s bbbt e e s s s bbbt e e e s bbbt e e e s anbba e e e e s nnnnneee s 42

WU (o] o il =) VA o] (0] 0 1= 11T PSSR 43
KEY PIOPEITY AP .ottt ettt et et e e e e e et e e et e e e e e e e st a e e e e e 43

iv Endeca® MDEX Engine

Copyright

Product specifications are subject to change without notice and do not represent a commitment on
the part of Endeca Technologies, Inc. The software described in this document is furnished under a
license agreement. The software may not be reverse engineered, decompiled, or otherwise manipulated
for purposes of obtaining the source code. The software may be used or copied only in accordance
with the terms of the license agreement. It is against the law to copy the software on any medium
except as specifically allowed in the license agreement.

No part of this document may be reproduced or transmitted in any form or by any means, electronic
or mechanical, including photocopying and recording, for any purpose without the express written
permission of Endeca Technologies, Inc.

Copyright © 2003-2010 Endeca Technologies, Inc. All rights reserved. Printed in USA.

Portions of this document and the software are subject to third-party rights, including:

Outside In® Search Export Copyright © 2008 Oracle. All rights reserved.

Rosette® Globalization Platform Copyright © 2003-2005 Basis Technology Corp. All rights reserved.

Trademarks

Endeca, the Endeca logo, Guided Navigation, MDEX Engine, Find/Analyze/Understand, Guided
Summarization, Every Day Discovery, Find Analyze and Understand Information in Ways Never Before
Possible, Endeca Latitude, Endeca Profind, Endeca Navigation Engine, and other Endeca product
names referenced herein are registered trademarks or trademarks of Endeca Technologies, Inc. in
the United States and other jurisdictions. All other product names, company names, marks, logos, and
symbols are trademarks of their respective owners.

The software may be covered by one or more of the following patents: US Patent 7035864, US Patent
7062483, US Patent 7325201, US Patent 7424528, US Patent 7567957, US Patent 7617184, Australian
Standard Patent 2001268095, Republic of Korea Patent 0797232, Chinese Patent for Invention
CN10461159C, European Patent EP1459206B1, and other patents pending.

Endeca Analytics Guide « December 2010
Version 6.1.4

Preface

Oracle Endeca's Web commerce solution enables your company to deliver a personalized, consistent
customer buying experience across all channels — online, in-store, mobile, or social. Whenever and
wherever customers engage with your business, the Oracle Endeca Web commerce solution delivers,
analyzes, and targets just the right content to just the right customer to encourage clicks and drive
business results.

Oracle Endeca Commerce is the most effective way for your customers to dynamically explore your
storefront and find relevant and desired items quickly. An industry-leading faceted search and Guided
Navigation solution, Oracle Endeca Commerce enables businesses to help guide and influence
customers in each step of their search experience. At the core of Oracle Endeca Commerce is the
MDEX Engine,™ a hybrid search-analytical database specifically designed for high-performance
exploration and discovery. The Endeca Content Acquisition System provides a set of extensible
mechanisms to bring both structured data and unstructured content into the MDEX Engine from a
variety of source systems. Endeca Assembler dynamically assembles content from any resource and
seamlessly combines it with results from the MDEX Engine.

Oracle Endeca Experience Manager is a single, flexible solution that enables you to create, deliver,
and manage content-rich, cross-channel customer experiences. It also enables non-technical business
users to deliver targeted, user-centric online experiences in a scalable way — creating always-relevant
customer interactions that increase conversion rates and accelerate cross-channel sales. Non-technical
users can control how, where, when, and what type of content is presented in response to any search,
category selection, or facet refinement.

These components — along with additional modules for SEO, Social, and Mobile channel support —
make up the core of Oracle Endeca Experience Manager, a customer experience management platform
focused on delivering the most relevant, targeted, and optimized experience for every customer, at
every step, across all customer touch points.

About this guide

This guide describes the major tasks involved in developing an Endeca analytics application.

It assumes that you have read the Endeca Getting Started Guide and are familiar with Endeca
terminology and basic concepts.

Who should use this guide

This guide is intended for developers who are building applications using the Endeca Information
Access Platform with Analytics.

Conventions used in this guide

This guide uses the following typographical conventions:

8 | Preface

Code examples, inline references to code elements, file names, and user input are set in monospace
font. In the case of long lines of code, or when inline monospace text occurs at the end of a line, the
following symbol is used to show that the content continues on to the next line: =

When copying and pasting such examples, ensure that any occurrences of the symbol and the
corresponding line break are deleted and any remaining space is closed up.

Contacting Oracle Support

Oracle Support provides registered users with important information regarding Oracle Endeca software,
implementation questions, product and solution help, as well as overall news and updates.

You can contact Oracle Support through Oracle's Support portal, My Oracle Support at
https://support.oracle.com.

Endeca® MDEX Engine Analytics Guide Endeca Confidential

https://support.oracle.com

Chapter 1
Introduction to Endeca Analytics

This section introduces Endeca Analytics, which is based on the Endeca Information Access Platform.

What is Endeca Analytics?

Endeca Analytics builds on the core capabilities of the Endeca MDEX Engine to enable applications
that examine aggregate information such as trends, statistics, analytical visualizations, comparisons,
and so on, all within the Guided Navigation interface.

This guide describes the key extensions to the Endeca MDEX Engine associated with Analytics:

< Analytics API A cornerstone feature of Analytics, the Analytics API extends the Endeca
Presentation API to enable interactive applications that allow users to explore aggregate and
statistical views of large databases using a Guided Navigation interface. It is also possible to access
Analytics functionality through XQuery for Endeca. For details, see theWeb Services and XQuery
Developer's Guide.

« Charting API These extensions to the Endeca Presentation APl support graphical visualizations
of Endeca Analytics results. This library of modules seamlessly integrates Endeca applications
with Corda PopCharts and Corda Builder charting and visualization components, included with
Analytics.

« Date and time data Additional data types now supported by the Endeca MDEX Engine allow
applications to work with temporal data, performing time-based sorting, filtering, and analysis.

» Key properties Support for property- and dimension-level metadata allows customized application
behavior such as automatic presentation of analytic measures and Ul-level presentation of
meta-information such as units, definitions, and data sources.

Where to find more information

This guide assumes familiarity with the core Endeca MDEX Engine platform, especially the Endeca
Presentation API, Endeca Developer Studio, and the Endeca Information Transformation Layer.

Additional extensions to the core Endeca IAP associated with Analytics are discussed elsewhere. In
particular, support for normalized data is covered in the Endeca Forge Guide.

Chapter 2
The Analytics API

This section describes the Analytics API, which extends the Endeca Presentation API to enable
applications that allow users to explore aggregate and statistical information.

What is the Analytics API?

To the base Presentation API provided by the core Endeca MDEX Engine, Endeca Analytics adds a
powerful integrated Analytics API, which can be used to construct interactive analytics applications.

Some of the important features of the Endeca Analytics API are:

Tight integration with search and navigation The Endeca Analytics API allows analytical
visualizations that update dynamically as the user refines the current search and navigation query,
allowing Endeca Analytics to be controlled using the Endeca Guided Navigation interface. Further,
analytics results support click-through to underlying record details, enabling end users to refine their
navigation state directly from a view of their analytics sub-query results, exploring the details behind
any statistic using the Guided Navigation interface.

Rich analytical functionality The Endeca Analytics API supports the computation of a rich set of
analytics on records in an Endeca MDEX Engine, and in particular on the results of navigation, search,
and other analytics operations. The API includes support for the following:

» Aggregation functions.

* Numeric functions.

« Composite expressions to construct complex derived functions.

» Grouped aggregations such as cross-tabulated totals over one or more dimensions.
« Top-k according to an arbitrary function.

« Cross-grouping comparisons such as time period comparisons.

* Intra-aggregate comparisons such as computation of the percentage contribution of one region of
the data to a broader subtotal.

* Rich compositions of these features.

Efficiency Although the Endeca Analytics API allows the expression of a rich set of analytics, its
functionality is constrained to allow efficient internal implementation, avoiding multiple table scans,
complex joins, and so on. Good performance for analytics operations is essential for enabling the
interactive response time associated with the Guided Navigation interface.

Familiarity The Endeca Analytics API uses concepts, structure, and terminology that are familiar to
developers with a knowledge of SQL. API terminology, operators, and behavior match SQL for the
majority of the Analytics API. Also, the Analytics API reuses familiar Endeca Presentation API classes

12 The Analytics API | Basics of the Analytics API

and concepts, allowing developers to seamlessly move between working on navigation, search, and
analytics functionality.

Basics of the Analytics API

The rest of this section covers the important features of the Analytics API, looks at sample analytics
gueries, and provides a detailed syntax reference.

A full reference of the Analytics API is not presented here, but is available in the Endeca API javadoc
for Java (see the com.endeca.navigation.analytics package), and in the .NET API Guide for
C# (see the Endeca.Navigation.Analytics package).

Query input and embedding

The Endeca Analytics API provides the ability to request an arbitrary number of analytics operations
based on the results of a single Endeca Navigation query. In other words, Endeca Analytics queries
are embedded as sub-queries within a containing Endeca Navigation query.

This capability builds upon the Endeca API principle of “one page = one query,” allowing applications
to avoid costly round-trip requests to the MDEX Engine, and reduce overall page rendering time.

This embedding approach also supports the tight integration of Endeca search, navigation, and
analytics: each analytics sub-query operates on the result records produced by the containing navigation
guery, allowing the corresponding analytics sub-query to update dynamically as the user refines the
current search and navigation state.

The Endeca Analytics API provides two interfaces:

< An object-based programmatic interface
A text-based syntax

The programmatic interface

As an extension of the Endeca API, the Endeca Analytics API provides a full, structured object-based
programmatic interface (currently supported for Java and .NET/C# APIs).

This standard object-level interface to Analytics queries is expected to be used in most production
application settings. Like the ENEQuery interface, the Analytics API provides convenient methods for
programmatic manipulation of the query, allowing the application to expose a broad set of GUl-level
manipulators for analytical sub-queries.

/ 4 Note: Code examples are provided in Java, but are easily transliterated into C# equivalents.
All class names are equivalent. Accessor methods, method casing, and container/iterator
(enumerator) syntax differ as appropriate for C# conventions. See the C# API Guide for full
syntactic detalils.

Endeca® MDEX Engine Analytics Guide Endeca Confidential

The Analytics API | Statements 13

Simple Analytics example

As a simple example, the following code snippet creates an empty Analytics query, and embeds it in
a containing ENEQuery object:

ENEQuery query = new ENEQuery();
AnalyticsQuery analytics = new AnalyticsQuery();
query.setAnalyticsQuery(analytics);

The text-based syntax

The full programmatic interface may be inconvenient for ad-hoc query entry during debugging or for

advanced application users. To satisfy these use cases, the Analytics API also provides a text-based
syntax.

The majority of this syntax is based on a subset of the SQL language, providing familiarity for developers
used to working with relational database systems. To create Analytics query objects based on the
text-based syntax, a factory parser method is provided by the AnalyticsQuery class.

For example:
String str = .. // Initialized to valid query
AnalyticsQuery analytics = AnalyticsQuery.parseQuery(str);

The competing desires of familiarity and efficiency are balanced by using a subset of SQL with additional
enhancements that can be efficiently implemented.

Statements

Although Endeca Navigation requests can contain just a single AnalyticsQuery object, the
AnalyticsQuery object can consist of an arbitrary number of Analytics statements, each of which
represents a request to compute a set of Analytics result records.

An Analytics query can consist of any number of statements, each of which might compute related or
independent analytics results.

Each Analytics statement in a query must be given a unique name, as these names are later used to
retrieve Analytics results from the Navigation object returned by the Endeca MDEX Engine.

Examples

The following code example creates two Analytics statements and inserts them into a containing
AnalyticsQuery object:

AnalyticsQuery analytics = ...
Statement sl = new Statement();
sl.setName('Statement One');

// .populate sl with analytics operations
analytics.add(sl);
Statement s2 = new Statement();
s2.setName('Statement Two');

// .populate s2 with analytics operations
analytics.add(s2);

The same example using the text-based syntax is:

RETURN "'Statement One'™ AS ...
RETURN "'Statement Two"™ AS ...

Endeca Confidential Endeca® MDEX Engine Analytics Guide

14 The Analytics API | Statements

The names assigned to Analytics statements are used to retrieve results from the Navigation object

returned for the containing ENEQuery, as in the following example:

ENEQueryResults results = __.

AnalyticsStatementResult slResults;

slResults = results.getNavigation().
getAnalyticsStatementResult(*'Statement One');

By default, the result of each statement in an Analytics query is returned to the calling application.
But in some cases, an Analytics statement is only intended as input for other Analytics statements
in the same query, not for presentation to the end user. In such cases, it is valuable to inform the
system that the statement results are not needed, but are only defined as an intermediate step. Using
the programmatic API, a Statement method is provided to accomplish this:

sl.setShown(false);

In the text-based syntax, this is accomplished using the DEFINE keyword in place of the RETURN
keyword, for example:

DEFINE "Statement One"™ AS ...
The concept of query layering and inter-query references is described in later sections of this guide.

So far, we have discussed statements in the abstract as parts of queries that compute analytics
results, but have not described their capabilities or contents.

Aggregation/GROUP BY

The most basic type of statement provided by the Endeca Analytics APl is the aggregation operation
with GROUP BY, which buckets a set of Endeca records into a resulting set of aggregated Endeca
records.

In most Analytics applications, all Analytics statements are aggregation operations.

To define the set of resulting buckets for an aggregation operation, the operation must specify a set
of GROUP BY dimensions and/or properties. The cross product of all values in these grouping
dimensions and/or properties defines the set of candidate buckets. After associating input records with
buckets, the results are automatically pruned to include only non-empty buckets. Aggregation operations
correspond closely to the SQL GROUP BY concept, and the text-based Analytics syntax re-uses SQL
keywords.

Examples of GROUP BY
For example, suppose we have sales transaction data with records consisting of the following fields
(properties or dimensions):

{ Transld, ProductType, Amount, Year, Quarter, Region,
SalesRep, Customer }

such as:
{ Transld = 1, ProductType = "Widget"™, Amount = 100.00,
Year = 2009, Quarter = "09Q1", Region = "East",

SalesRep = "J. Smith", Customer = "Customerl" }

If an Analytics statement uses “Region” and “Year” as GROUP BY dimensions, the statement results
contain an aggregated Endeca record for each valid, non-empty “Region” and “Year” combination.
In the text-based syntax, this example would be expressed as:

DEFINE RegionsByYear AS
GROUP BY Region, Year

Endeca® MDEX Engine Analytics Guide Endeca Confidential

The Analytics API | Statements 15

resulting in the aggregates of the form { Region, Year }, for example:

{ "EaSt", "2008" }
{ "West'™, "2009" }
{ "East', '2009" }

The following Java code represents the equivalent operation using the programmatic API:

Statement stmnt = new Statement();
stmnt.setName("'RegionsByYear");
GroupByList g = new GroupByList();
g-add(new GroupBy(*‘Region'"));
g-add(new GroupBy("'Year'));
stmnt._setGroupByList(Q);

The above example performs simple leaf-level group-by operations. It is also possible to group by a
specified depth of each dimension. For example, if the “Region” dimension in the above example
contained hierarchy such as Country, State, City, and the grouping was desired at the State level
(one level below the root of the dimension hierarchy), the following Java syntax would be used:

g-add(new GroupBy(*'Region™,1)); // Depth 1 is State

or in text form:
GROUP BY "Region':1

GROUP BY as a result of a computation

A GROUP BY key can be the result of a computation (the output of a SELECT expression), as long
as that expression itself does not contain an aggregation function.

For example, the following syntax represents a correct usage of GROUP BY:

SELECT COALESCE(Person, "Unknown Person®)

as Person2, ... GROUP BY Person2

The following syntax is incorrect and results in an error (because Sales2 contains an aggregation
function):

SELECT SUM(Sales) as Sales2, ... GROUP
BY Sales2

Specifying only Group
You can also use a GROUP statement to aggregate results into a single bucket.

For example, if you would like to use the SUM statement to return a single sum across a set of records,
write the following query:

RETURN "ReviewCount'" AS SELECT
SUM(number_of reviews) AS "NumReviews"
GROUP

This query returns one record for the property ""NumReviews'" where the value is the sum over the
property "number_of_reviews".

Expressions/SELECT AS

This topic describes SELECT AS operations, contains lists of Analytics functions (aggregation, numeric
and time/date), and describes the COALESCE expression.

Endeca Confidential Endeca® MDEX Engine Analytics Guide

16 The Analytics API | Statements

Having created a set of aggregates using a GROUP BY operation, it is typical for Analytics queries to
compute one or more derived analytics in each resulting bucket. This is accomplished using SELECT
AS operations and Analytics expressions.

Each aggregation operation can declare an arbitrary set of named expressions, sometimes referred
to as derived properties, using SELECT AS syntax. These expressions represent aggregate analytic
functions that are computed for each aggregated Endeca record in the statement result. Expressions
can make use of a broad array of operators, which are described in the following section.

List of aggregation functions

Analytics supports the following aggregation functions:

Function Description

AVG Computes the arithmetic mean value for a field.

COUNT Counts the number of records with valid non-null values in a field for each GROUP
BY result.

COUNTDISTINCT | Counts the number of unique, valid non-null values in a field for each GROUP
BY result.

MAX Finds the maximum value for a field.

MIN Finds the minimum value for a field.

MEDIAN Finds the median value for a field.

STDDEV Computes the standard deviation for a field.

ARB Selects an arbitrary but consistent value from the set of values in a field.

SUM Computes the sum of field values.

VARIANCE Computes the variance (that is, the square of the standard deviation) for a field.

List of numeric functions

Analytics supports the following numeric functions:

Function Description

addition The addition operator (+).

subtraction The subtraction operator (-).

multiplication The multiplication operator (*).

division The division operator (/).

ABS Returns the absolute value of n. If nis 0 or a positive integer, returns n; otherwise,
n is multiplied by -1.

CEIL Returns the smallest integer value not less than n.

EXP Exponentiation, where the base is e. Returns the value of e (the base of natural
logarithms) raised to the power of n.

FLOOR Returns the largest integer value not greater than n.

LN Natural logarithm. Computes the logarithm of its single argument, the base of
which is e.

Endeca® MDEX Engine Analytics Guide Endeca Confidential

Function
LOG

MOD

ROUND

SIGN

SQRT
TRUNC

SIN

COS

TAN

POWER
TO_DURATION

Time/date functions

The Analytics API | Statements 17

Description

Logarithm. log(n, m) takes two arguments, where n is the base, and m is the
value you are taking the logarithm of.

Modulo. Returns the remainder of n divided by m. Analytics uses the fmod floating
point remainder, as defined in the C/POSIX standard.

Returns a number rounded to the specified decimal place.
The unary version drops the decimal (non-integral) portion of the input.

The binary version allows you to set the number of spaces at which the number
is rounded:

« Positive second arguments specified to this function correspond to the number
of places that must be returned after the decimal point. For example,
ROUND(123.4567, 3) = 123.457

» Negative second arguments correspond to the number of places that must
be returned before the decimal point. For example, ROUND(123.4567, -
3) = 100.0

Returns the sign of the argument as -1, 0, or 1, depending on whether n is
negative, zero, or positive.
Returns the nonnegative square root of n.

Returns the number n, truncated to m decimals. If m is O, the result has no
decimal point or fractional part. The unary version drops the decimal (non-integral)
portion of the input, while the binary version allows you to set the number of
spaces at which the number is truncated.

The sine of n, where the angle of n is in radians.
The cosine of n, where the angle of nis in radians.
The tangent of n, where the angle of n is in radians.
Returns the value of n raised to the power of m.

Casts an integer into a number of milliseconds so that it can be used as a
duration. When the unary version of TO_DURATION is given a value of type
double, it removes the decimal portion and converts the integer portion to a
duration.

Time/date functions such as EXTRACT and TRUNC are discussed in the section about temporal
properties. These operators may be composed to construct arbitrary, complex derived expressions.
As a simple example using the text-based syntax, we could compute the total number of deals executed
by each sales representative as follows:

RETURN DealsPerRep AS

SELECT COUNT(Transld) AS NumDeals
GROUP BY SalesRep

Endeca Confidential

Endeca® MDEX Engine Analytics Guide

18

The Analytics API | Statements

Continuing the example from the topic “Aggregation/GROUP BY”, if we wanted each result aggregate
to be assigned the ratio of the average “Amount” value to the maximum “Amount” value as the property
“AvgOverMax,” we would use the following Java API syntax:
ExprBinary e = new ExprBinary(ExprBinary.DIVIDE,
new ExprAggregate(ExprAggregate.AVG,
new ExprKey("'Amount'™)),
new ExprAggregate(ExprAggregate .MAX,
new ExprKey('Amount'™)));
SelectList s = new SelectList();
s.add(new Select("'AvgOverMax',e));
stmnt.setSelectList(s);

The same example in the text-based syntax is:
SELECT AVG(Amount) / MAX(Amount) AS AvgOverMax

COALESCE expression

The COALESCE expression allows for user-specified null-handling. You can use COALESCE to
evaluate records for multiple values and return the first non-null value encountered, in the order
specified. The following requirements apply:

* You can specify two or more arguments to COALESCE
< Arguments that you specify to COALESCE should all be of the same type
» The types of arguments that COALESCE takes are: integer, integer64, double and string.

* COALESCE supports alphanumeric values, but for typing reasons it does not support mixing
numeric values and alphanumeric ones.

 You cannot specify dimensions as arguments to COALESCE. However, if you have a dimension
mapped to a property, you can then specify this property to COALESCE and this will result in a
valid query.

» The COALESCE expression can only be used in a SELECT clause, and not in other clauses (such
as WHERE)

In the following example, all records without a specified price are treated as zero in the computation:
AVG(COALESCE(price, 0))

COALESCE can also be used on its own, for example:
SELECT COALESCE(price, 0) WHERE ..

Using the COUNT and COUNTDISTINCT functions

Review these examples before implementing the COUNT and COUNTDISTINCT functions.

The COUNT function counts the number of records with valid non-null values in a field for each GROUP
BY result. For example, suppose there are four records with the value "small" in the Size field, and
some of them have values in the Color field:

Record 1: Size=small, Color=red, Color=white

Record 2: Size=small, Color=blue, Color=green

Record 3: Size=small, Color=black
Record 4: Size=small

The query "RETURN result AS SELECT COUNT(Color) as Total GROUP BY Size" will return the
result:

Record 1: Size=small, Total=3

The query returns "3", because in the "small" result group, three records had valid Color assignments.

Endeca® MDEX Engine Analytics Guide Endeca Confidential

The Analytics API | Statements 19

Note: The COUNT function is counting records with valid assignments (three in this example),
not the number of different values that appear in the field (five in this example: red, white, blue,
green and black).

For single-assigned properties, the COUNTDISTINCT function returns the number of unique, valid
non-null values in a field for each GROUP BY result. For example, suppose there are four records
with the value "small” in the Size field and different single values in the Color field:

Record 1: Size=small, Color=red

Record 2: Size=small, Color=blue

Record 3: Size=small, Color=red
Record 4: Size=small

The query "RETURN result AS SELECT COUNTDISTINCT (Color) as Total GROUP BY Size" would
return:

Record 1: Size=small, Total=2

The total is "2" because across all of the records in this group, there are two unique, valid, non-null
values in the Color field: "red" and "blue."

&
7~ Note: COUNTDISTINCT should never be used with multi-assigned properties. The results of
the query may be misleading if records can have multiple values for one property (for example:
Record 1: Size=small, Color=red, Color=white, Color=blue).

Nested queries/[FROM

But using FROM syntax, an aggregation operation can specify that its input be obtained from the
output of any previously declared statement.

The results of an Analytics statement consist of a set of aggregated records that can be used like any
other Endeca records. Because of this, aggregation operations can be layered upon one another. By
default, the source of records for an Analytics statement is the result of the containing search and
navigation query. But using FROM syntax, an aggregation operation can specify that its input be
obtained from the output of any previously declared statement.

Example of using FROM syntax

For example, one aggregation query might compute the total number of transactions grouped by
“Quarter” and “Sales Rep.” Then, a subsequent aggregation can group these results by “Quarter,”
computing the average number of transactions per “Sales Rep.” This example can be expressed in
the text-based syntax as:

DEFINE RepQuarters AS
SELECT COUNT(Transld) AS NumTrans
GROUP BY SalesRep, Quarter ;

RETURN Quarters AS

SELECT AVG(NumTrans) AS AvgTransPerRep
FROM RepQuarters

GROUP BY Quarter

RepQuarters produces aggregates of the form { SalesRep, Quarter, NumTrans }, such as:
{ J. Smith, 09Q1, 10 }

{ J. Smith, 09Q2, 3 }

{ F. Jackson, 08Q4, 10 }

Endeca Confidential Endeca® MDEX Engine Analytics Guide

20

The Analytics API | Statements

and Quarters returns aggregates of the form { Quarter, AvgTransPerRep }, such as:

{ 08304, 10 }
{ 0901, 4.5 }
{ 0902, 6 }

The same example using the programmatic API is:

// First, define "SalesRep" "Quarter' buckets with
// "Transld" counts.

Statement repQuarters = new Statement();
repQuarters.setName("'RepQuarters™);
repQuarters.setShown(false);

GroupByList rqGroupBys = new GroupByList();
rgGroupBys.add(new GroupBy(*'SalesRep'™));
rgGroupBys.add(new GroupBy(*'Quarter''));
repQuarters.setGroupByList(rgGroupBys);

Expr e = new ExprAggregate(ExprAggregate.COUNT,

new ExprKey("'Transld™));
SelectList rgSelects = new SelectList();
rgSelects.add(new Select("NumTrans'™,e));
repQuarters.setSelectList(rgSelects);

// Now, feed these results into "Quarter' buckets
// computing averages

Statement quarters = new Statement();
quarters.setName("'Quarters™);
quarters.setFromStatementName("'RepQuarters'™);
GroupByList gGroupBys = new GroupByList();
qGroupBys.add(new GroupBy(''Quarter'™));
quarters.setGroupByList(qGroupBys);

e = new ExprAggregate(ExprAggregate_AVG,

new ExprKey(*'NumProducts'));
SelectList gSelects = new SelectList();
gSelects.add(new Select("'AvgTransPerRep', €));
quarters.setSelectList(gSelects);

Inter-statement references

Multiple analytics sub-queries can be specified within the context of a single Endeca navigation query,
each corresponding to a different analytical view, or to a sub-total at a different granularity level.

Statements can be nested within one another to compute layered Analytics.

Additionally, using a special cross-table referencing facility provided by the SELECT expression syntax,
expressions can make use of values from other computed statements. This is often useful for when
coarser subtotals are required for computing analytics within a finer-grained bucket.

For example, if computing the percent contribution for each sales representative last year, the overall
year total is needed to compute the value for each individual rep. Queries such as this can be composed
using inter-statement references.

Endeca® MDEX Engine Analytics Guide Endeca Confidential

The Analytics API | Statements 21

Examples of inter-statement references

As an example, suppose we want to compute the percentage of sales per “ProductType” per “Region.”
One aggregation computes totals grouped by “Region,” and a subsequent aggregation computes
totals grouped by “Region” and “ProductType.” This second aggregation would use expressions that
referred to the results from the “Region” aggregation. That is, it would allow each “Region” and
“ProductType” pair to compute the percentage of the full “Region” subtotal represented by the
“ProductType” in this “Region.”

The first statement computes the total product sales for each region:

DEFINE RegionTotals AS
SELECT SUM(Amount) AS Total
GROUP BY Region

Then, a statement uses the “RegionTotals” results defined above to determine the percentage for
each region, making use of the inter-statement reference syntax (square brackets for addressing and
dot operator for field selection).

RETURN ProductPcts AS
SELECT

100 * SUM(Amount) / RegionTotals[Region].Total AS PctTotal
GROUP BY Region, ProductType

The bracket operator specifies that we are referencing the result of RegionTotals statement whose
group-by value is equal to the local ProductPcts bucket's value for the Region dimension. The dot
operator indicates that we are referencing the Total field in the specified RegionTotals bucket.

The above example makes use of referencing values in a separate statement, but the reference
operator can also be used to reference values within the current statement. This is useful for computing
trends that change over time, such as year-on-year sales change, which could be expressed as:

RETURN YearOnYearChange AS
SELECT SUM(Amount) AS TotalSales,

SUM(Amount) - YearOnYearChange[Year-1].TotalSales AS Change
GROUP BY Year

This same example expressed using the programmatic APl is:

Statement stmnt = new Statement();
stmnt._setName("'YearOnYearChange');
GroupByList groupBys = new GroupByList();
groupBys.add(new GroupBy(''Year'));
stmnt.setGroupByList(groupBys);
SelectList selects = new SelectList();

Expr totalSales = new ExprAggregate(ExprAggregate.SUM,
new ExprKey('Amount'™));
selects.add(new Select("TotalSales",totalSales));

LookupList lookup = new LookupList();
lookup.add(new ExprBinary(ExprBinary.MINUS,
new ExprKey('Year'), new ExprConstant('1')));
Expr change = new ExprBinary(ExprBinary.MINUS, totalSales,
new ExprLookup(''YearOnYearChange', "TotalSales'", lookup));
selects.add(new Select(''Change',change));
stmnt.setSelectList(selects);

Endeca Confidential Endeca® MDEX Engine Analytics Guide

22 The Analytics API | Statements

Result ordering/ORDER BY

The order of result records returned by an aggregation operation can be controlled using ORDER BY
operators.

Records can be ordered by any of their property, dimension, or derived values, ascending or descending,
in any combination.

Examples with ORDER BY operators

For example, to order “SaleRep” aggregates by their total “Amount” values, the following Java API
calls would be used:

Statement reps = new Statement();

reps.setName("'Reps™);

GroupByList groupBys = new GroupByList();

groupBys.add(new GroupBy("'SalesRep'));

reps.setGroupByList(groupBys);

Expr e = new ExprAggregate(ExprAggregate.SUM,
new ExprKey("'Amount'™));

SelectList selects = new SelectList();

selects.add(new Select("Total,e));

reps.setSelectList(selects);

OrderByList o = new OrderByList();

o.add(new OrderBy("'Total", false));

reps.setOrderByList(0);

The same example in the text-based syntax is:

DEFINE Reps AS

SELECT SUM(Amount) AS Total
GROUP BY SalesRep

ORDER BY Total DESC

Paging and rank filtering/PAGE

By default, any statement that returns results to the application returns all results. In some cases, it is
useful to request results in smaller increments for presentation to the user (such as presenting the
sales reps ten at a time, with links to page forward and backward).

For example, the following query groups the records by SalesRep, returning the 10th through 19th
resulting buckets (order in this case is arbitrary but consistent between queries):
DEFINE Reps AS

GROUP BY SalesRep
PAGE(10,19)

Paging can also be used in combination with ORDER BY to achieve “top-k” type queries. For example,
the following query returns the top 10 sales reps by total sales:

DEFINE Reps AS

SELECT SUM(Amount) AS Total
GROUP BY SalesRep

ORDER BY Total DESC
PAGE(0,10)

This same example using the programmatic API is:

Statement reps = new Statement();
reps.setName(*'Reps'™);
GroupByList groupBys = new GroupByList();

Endeca® MDEX Engine Analytics Guide Endeca Confidential

The Analytics API | Statements 23

groupBys.add(new GroupBy("'SalesRep™));

reps.setGroupByList(groupBys);

Expr e = new ExprAggregate(ExprAggregate.SUM,
new ExprKey(*'Amount'™));

SelectList selects = new SelectList();

selects.add(new Select("Total",e));

reps.setSelectList(selects);

OrderByList o = new OrderByList();

o.add(new OrderBy("Total', false));

reps.setOrderByList(0);

reps.setReturnRows(0,10); // start at Oth and return 10 records

Filters/WHERE, HAVING

The Analytics API supports a general set of filtering operations. As in SQL, these can be used to filter
the input records considered by a given statement (WHERE) and the output records returned by that
statement (HAVING).

You can also filter input records for each expression to compute analytic expressions for a subset of
the result buckets.

A variety of filter operations are supported, such as numeric and string value comparison functions
(such as equality, inequality, greater than, less than, between, and so on), and Boolean operators
(AND, OR, or NOT) for creating complex filter constraints.

For example, we could limit the sales reps to those who generated at least $10,000:

RETURN Reps AS

SELECT SUM(Amount) AS SalesTotal
GROUP BY SalesRep

HAVING SalesTotal > 10000

You could further restrict this analytics sub-query to only the sales in the Western region:

RETURN Reps AS

SELECT SUM(Amount) AS SalesTotal
WHERE Region = “West"

GROUP BY SalesRep

HAVING SalesTotal > 10000

Alternatively, you could use the WHERE filter with an ID of the dimension value based on which we are
restricting the results. For example, if the ID of the “West” dimension is ““1234”, the WHERE filter
looks like this:

RETURN Reps AS

SELECT SUM(Amount) AS SalesTotal
WHERE Dval (1234)

GROUP BY SalesRep

HAVING SalesTotal > 10000

Note: Ensure that you specify a valid attribute to the WHERE filter (or to any other filter clause).

The example with the name of the dimension “West”, as expressed using the programmatic API, is:

Statement reps = new Statement();
reps.setName(*'Reps'™);
reps.setWhereFilter(

new FilterCompare(''Region™, FilterCompare.EQ, "West'™));
reps.setHavingFilter(

new FilterCompare(*'SalesTotal™, FilterCompare.GT, *10000));
GroupByList groupBys = new GroupByList();

Endeca Confidential Endeca® MDEX Engine Analytics Guide

24 The Analytics API | Statements

groupBys.add(new GroupBy("'SalesRep™));

reps.setGroupByList(groupBys);

Expr e = new ExprAggregate(ExprAggregate.SUM,
new ExprKey(*'Amount'™));

SelectList selects = new SelectList();

selects.add(new Select("SalesTotal",e));

reps.setSelectList(selects);

As mentioned above, filters can be specified for each expression. For example, a single query can
include two expressions, where one expression computes the total for the entire aggregate while
another expression computes the total for a particular sales representative:
RETURN QuarterTotals AS SELECT

SUM(Amount) AS SalesTotal,

SUM(Amount) WHERE SalesRep = "John Smith" AS JohnTotal
GROUP BY Quarter

This would give us both the total overall sales and the total sales for John Smith in each quarter. The
same example in the Java API is:

Statement stmnt = new Statement();

stmnt.setName("'QuarterTotals');

GroupByList groupBys = new GroupByList();

groupBys.add(new GroupBy("'Quarter'));

stmnt.setGroupByList(groupBys);

SelectList selects = new SelectList();

ExprAggregate e = new ExprAggregate(ExprAggregate.SUM,
new ExprKey('Amount'™));

selects.add(new Select("SalesTotal",e));

e = new ExprAggregate(ExprAggregate.SUM, new ExprKey(''Amount'));
e.setFilter(

new FilterCompare('SalesRep™, FilterCompare.EQ,

John Smith'™));
selects.add(new Select("'JohnTotal",e));

stmnt.setSelectList(selects);

When the HAVING clause is applied

In a query such as:
SELECT a AS b GROUP BY c HAVING d>7

the HAVING clause applies after the "a AS b" clause, so that it filters out the records returned by the
SELECT, not the records on which the SELECT operates. If we were to write the query as a set of
function calls, it would look like this:

HAVING(d>7,SELECT(a AS b,GROUP(BY c)))

That is, the SELECT gets data from the GROUP BY, does its calculations, and passes its results on
to the HAVING to be filtered. If you are familiar with SQL, this may be a surprise, because, in SQL,
HAVING has the opposite effect: it filters the results of the GROUP BY, not the results of the SELECT.

Analytics results

Each Analytics statement produces a set of virtual Endeca records that can be used in application
code like any other Endeca records (ERec objects).

Endeca® MDEX Engine Analytics Guide Endeca Confidential

The Analytics API | Sample queries 25

Results for a statement can be retrieved using the name for that statement. For example, if we used
a query like:
RETURN "Product Totals"™ AS ...

Then we could retrieve the results as follows:

ENEQueryResults results = ...

AnalyticsStatementResult analyticsResults;

analyticsResults = results.getNavigation() .-
getAnalyticsStatementResult(*'Product Totals™);

The AnalyticsStatementResult object provides access to an iterator over the result records, for example:
Iterator recordlter = analyticsResults.getEReclter();

The AnalyticsStatementResult object also provides access to the total number of result records
associated with the statement (which may be greater than the number returned if a PAGE operator
was used).

The AnalyticsStatementResult object also provides access to an error message for the analytics
statement. The error message, if not null, provides information about why the query could not be
evaluated.

The MDEX Engine may evaluate some of the statements in an analytics request but not others if errors
in the statements (for example, use of a non-existent group-by key) are independent.

In addition to per-statement error messages, the Navigation object provides access to a global error
message for the complete analytics query. This can be non-null in cases where statement evaluation
was not possible because of query-level problems, for example not all statements being assigned
unigue names.

Sample queries

This section presents sample queries for a number of representative use cases.

Queries are presented in the text-based syntax for clarity. For the purposes of these examples, we
assume that we have sales transaction data with records consisting of the following fields (properties
or dimensions):

{ Transld, ProductType, Amount, Year, Quarter, Region,
SalesRep, Customer }

such as:
{ Transld = 1, ProductType = "Widget"™, Amount = 100.00,
Year = 2009, Quarter = "09Q1", Region = "East",

SalesRep = "J. Smith", Customer = "Customerl" }

Simple cross-tabulation
Compute total, average, and medial sales amounts, grouped by Quarter and Region.

This query represents a simple cross-tabulation of the raw data.

RETURN Results AS

SELECT
SUM(Amount) AS Total,
AVG(Amount) AS AvgDeal,

Endeca Confidential Endeca® MDEX Engine Analytics Guide

26

The Analytics API | Sample queries

MEDIAN(Amount) AS MedianDeal
GROUP BY Quarter, Region

This could also be expressed using multiple statements:

RETURN Totals AS
SELECT SUM(Amount) AS Total
GROUP BY Quarter, Region ;

RETURN Avgs AS
SELECT AVG(Amount) AS AvgDeal
GROUP BY Quarter, Region ;

RETURN Medians AS
SELECT MEDIAN(Amount) AS MedianDeal
GROUP BY Quarter, Region

These queries produce the same information in different structures. For example, the first is more
useful if the application is generating a single table with the total, average, and median presented in
each cell. The second is more convenient if the application is generating three tables, one each for
total, average, and median.

In terms of efficiency, the queries are not significantly different (the second is optimized to avoid multiple
table scans). But the second returns more data (the Quarter and Region groupings must be repeated
for each result), and thus is marginally less efficient.

Top-k

Compute the best 10 SalesReps based on total sales from the first quarter of this year:

RETURN BestReps AS

SELECT SUM(Amount) AS Total
WHERE Quarter = "09Q1"
GROUP BY SalesRep

ORDER BY Total DESC
PAGE(0,10)

Subset comparison

Compute the percent of sales where ProductType="Widgets”, grouped by Quarter and Region. This
guery combines totals on all elements of a grouping (total sales) with totals on a filtered set of elements
(sales for “Widgets” only).

RETURN Results AS

SELECT
(SUM(Amount) WHERE ProductType="Widgets") /
SUM(Amount) AS PctWidgets

GROUP BY Quarter, Region

Nested aggregation

Compute the average number of transactions per sales representative grouped by Quarter and Region.

Endeca® MDEX Engine Analytics Guide Endeca Confidential

The Analytics API | Text-based syntax reference 27

This query represents a multi-level aggregation. First, transactions must be grouped into sales reps
to get per-rep transaction counts. Then, these rep counts must be aggregated into averages by quarter
and region.

DEFINE DealCount AS

SELECT COUNT(Transld) AS NumDeals
GROUP BY SalesRep, Quarter, Region ;

RETURN AvgDeals AS

SELECT AVG(NumDeals) AS AvgDealsPerRep
FROM DealCount

GROUP BY Quarter, Region

Inter-aggregate references example

Compute year-to-year change in sales, grouped by Year and ProductType.

This query requires inter-aggregate use of information. To compute the change in sales for a given
guarter, the total from the prior quarter and the current quarter must be referenced.
RETURN YearOnYearChange AS
SELECT SUM(Amount) AS TotalSales,
SUM(Amount) -
YearOnYearChange[Year-1,ProductType].-TotalSales AS Change
GROUP BY Year, ProductType

Inter-statement references example

For each quarter, compute the percentage of sales due to each product type.

This query requires inter-statement use of information. To compute the sales of a given product as a
percentage of total sales for a given quarter, the quarterly totals must be computed and stored so that
calculations for quarter/product pairs can retrieve the corresponding quarterly total.

DEFINE QuarterTotals AS

SELECT SUM(Amount) AS Total
GROUP BY Quarter ;

RETURN ProductPcts AS
SELECT

100 * SUM(Amount) / QuarterTotals[Quarter].Total AS PctTotal
GROUP BY Quarter, ProductType

Text-based syntax reference

The examples and discussion of the query syntax provided in previous sections give an overview of
the API and its intended use. This section is a full reference for the text-based query syntax.

>
77 Note: A full reference for the programmatic API is available in the Endeca API javadoc for Java

developers (see the com.endeca.navigation.analytics package), and in the .NET API Guide for
C# (see the Endeca.Navigation.Analytics package).

Endeca Confidential Endeca® MDEX Engine Analytics Guide

28 The Analytics API | Text-based syntax reference

Syntax (BNF)

The basic structure of a query is an ordered list of statements. The result of a query is a set of named
record sets (one per statement).

<Statements>

<Query> i:
I: <Statement> [; <Statements>]

<Statements>

A statement defines a record set by specifying:

1. A name for the resulting record set.

2. What properties (or derived properties) its records should contain (SELECTS).
3. The input record set (FROM).
4. Afilter to apply to that input (WHERE).
5. A way to group input records (a mapping from input records to output records, GROUP BY).
6. A filter to apply to output records (HAVING).
7. A way to order the output records (ORDER BY).
8. A way to page through the output records (return only a subset of the output, PAGE).
<Statement> ::= (DEFINE | RETURN) <Key> AS <Select>
[<From>]
[<Where>]
[<GroupBy>]
[<Having>]
[<OrderBy>]
[<Page>]

A statement includes a list of assignments that compute the derived properties populated into the
resulting records:

<Select> ::= SELECT <Assigns>
<Assigns> 1= <Assign> [, <Assigns>]
<Assign> := <Expr> AS <Key>

A statement’s input record set is either the result of a previous statement, the navigation state’s records
(NavStateRecords), or the Dgraph’s base records (AllIBaseRecords). The omission of the FROM clause
implies FROM NavStateRecords.

<From> ::= FROM <Key>
::= FROM NavStateRecords
::= FROM AllBaseRecords

As in SQL, an optional WHERE clause represents a pre-filter on inbound records, and an optional
HAVING clause represents a post-filter on the output records:

<Where> I WHERE <Filter>
<Having> ol HAVING <Filter>

Input records need to be mapped to output records for the purposes of populating derived values in
the output records. The input records provide the values used in expressions and Where filters.

Ways of mapping inputs to outputs
There are three ways to map input records to output (or aggregated) records.

« If a list of properties and/or dimensions is given, all input records containing identical values for
those properties map to (group to) the same output record.
« If only GROUP is specified, all input records are mapped to a single output record.

Endeca® MDEX Engine Analytics Guide Endeca Confidential

The Analytics API | Text-based syntax reference 29

» The absence of a GROUP BY clause is taken to mean that each input record is mapped to a unique
output record.

<GroupBy> = GROUP

::= GROUP BY <Groupings>
<Groupings> ::= <Grouping> [, <Groupings>]
<Grouping> 1= <Key>

<Key>:<int>
Note: Colon operator requests grouping by dimension values at a specified depth.

If an input record contains multiple values corresponding to the same grouping key, the default behavior
is that the record maps to all possible output records. An optional ORDER BY clause can be used to
order the records in the resulting record set. An element in the ORDER BY clause specifies a property
or dimension to sort (or break ties) by and in what direction: (growing values = ASCending; shrinking
values = DESCending). The default order is ascending.

<OrderBy> ::= ORDER BY <OrderList>

<OrderList> T <Order> [, <OrderList>]

<Order> ol <Key> [ASC | DESC]

The PAGE(i,n) operator allows the returned record set to be limited to n records starting with the record
at index i. The 'Page’ clause can be used with or without a preceding ORDER BY clause. If the ORDER
BY clause is omitted, records are returned in arbitrary but consistent order.

<Page> 1:= PAGE(<int>,<int>)
Expressions define the derived values that can be computed for result records:

<Expr> <AggrExpr>

<Expr>[+|-1*|/]1<Expr>

UnaryFunc(<Expr>)

BinaryFunc(<Expr>, <Expr>)
COALESCE(<Expr>, <Expr>,...)
<SimpleExpr>

<AggrFunc>(<SimpleExpr>) [<Where>]

<Key>

<Literal>

<SimpleExpr> [+]-]*1/] <SimpleExpr>
<UnaryFunc>(<SimpleExpr>)
<BinaryFunc>(<SimpleExpr>, <SimpleExpr>)
<TimeDateFunc>(<SimpleExpr>,<DateTimeUnit>)
<LookupExpr>

ARB | AVG | COUNT | COUNTDISTINCT | MAX |
MEDIAN | MIN | STDDEV | SUM | VARIANCE

= ABS | CEIL | COS | EXP | FLOOR | LN |
ROUND | SIGN | SIN | SQRT |

TAN | TO_DURATION | TRUNC

DIVIDE | LOG | MINUS | MOD | MULTIPLY |
PLUS | POWER | ROUND | TRUNC

EXTRACT | TRUNC

SECOND | MINUTE | HOUR | DAY_OF_MONTH |
DAY_OF WEEK | DAY_OF YEAR | DATE | WEEK |
MONTH | QUARTER | YEAR

<AggrExpr>

<SimpleExpr>

<AggrFunc>

<UnaryFunc>

<BinaryFunc> T

<TimeDateFunc> ::
<DateTimeUnit> ::

Optionally, a WHERE clause may be specified after an aggregation function. As in SQL, the Analytics
API WHERE clause expresses record filtering. But in addition to per-statement WHERE clauses, the
Analytics API allows WHERE clauses to be specified at the expression level, allowing filtering of
aggregate members for the computation of derived values on member subsets. SQL requires join

Endeca Confidential Endeca® MDEX Engine Analytics Guide

30

The Analytics API | Text-based syntax reference

operations to achieve a similar effect, with additional generality, but at the cost of efficiency and overall
query execution complexity.

Lookup expressions provide the ability to refer to values in record sets that have been previously
computed (possibly different from the current and FROM record set). Lookups can only refer to record
sets that were grouped (non-empty GROUP BY clause) and the LookupList must match the GROUP
BY fields of the lookup record set.

<LookupExpr> ::= <Key>[<LookupList>].<Key>
<LookupList> Ii= <empty>
::= <SimpleExpr> [,<LookupList>]

%
Note: For a specific example of a lookup expression in action, see the topic "Inter-statement
references".

Filters provide basic comparison, range, membership and Boolean filtering capabilities, for use in
WHERE and HAVING clauses.

<Filter> DVAL (Dval ID)

<Key> <Compare> <Literal>

<Key> IS [NOT] NULL

<Filter> AND <Filter>

<Filter> OR <Filter> | NOT <Filter>
[<KeyList>] IN <Key>

=]l <> <|]>]<=] >=

<Key> [, <KeyList>]

<int>

<Compare>
<KeyList>
<Dval ID>

The IN filter can be used to filter data based on membership in a group or based on membership in
another statement. It can only refer to previously computed record sets based on a non-empty GROUP
BY. The number and type of keys in the KeyList must match the number and type of keys used in the
statement referenced by the IN clause.

This query shows how the IN filter can be used to populate a pie chart showing sales divided into six
segments: one segment for each of the five largest customers, and one segment showing the aggregate
sales for all other customers. The first statement gathers the sales for the top five customers, and the
second statement aggregates the sales for all customers not in the top five.

RETURN Top5 AS SELECT
SUM(Sale) AS Sales
GROUP BY Customer
ORDER BY Sales DESC
PAGE(0,5);

RETURN Others AS SELECT
SUM(Sale) AS Sales

WHERE NOT [Customer] IN Top5
GROUP

The WHERE IN clause does not respect multi-assign properties. In particular, the WHERE clause
considers only a single value from a set of values in the multi-assign property. Therefore, if you want
to filter on a property that is multi-assign, consider using the HAVING clause with the IN filter, instead
of the WHERE IN clause. The following examples illustrates this case.

The following query uses the WHERE IN clause:

The original quDEFINE Topl00Terms AS SELECT
COUNT(1) AS Total

GROUP BY Terms

ORDER BY Total DESC PAGE(0,100);

Endeca® MDEX Engine Analytics Guide Endeca Confidential

The Analytics API | Text-based syntax reference 31

RETURN DateTerms AS SELECT
COUNT(1) AS Total

WHERE [Terms] IN ToplOOTerms
GROUP BY Terms, Month

This query (above) considers only a single value from a set of values in the multi-assign property.
Therefore, if you want to filter on a property that is multi-assign, consider using the following query,
as a workaround (this workaround has a performance impact since the MDEX Engine will filters
calculated results rather than performing filtering before computation):

DEFINE Topl00Terms AS SELECT

COUNT(1) AS Total

GROUP BY Terms

ORDER BY Total DESC PAGE(0,100);

RETURN DateTerms AS SELECT
COUNT(1) AS Total

GROUP BY Terms, Month

HAVING [Terms] IN ToplOOTerms

Related Links

Inter-statement references on page 20
Multiple analytics sub-queries can be specified within the context of a single Endeca navigation
query, each corresponding to a different analytical view, or to a sub-total at a different
granularity level.

Characters

All Unicode characters are accepted.
<Literal> ::= <StringLiteral> | <NumericLiteral>

String literals must be surrounded by single-quotes. Embedded single-quotes and backslashes must
be escaped by backslashes. Numeric literals can be integers or floating point numbers. However, they
do not support exponential notation, and they cannot have trailing f|F|d|D to indicate float or double.
Some example literals:

34 .34 "jim- "aléx\"s house*

Identifiers can either be quoted (using double-quote characters) or unquoted.

<Key> ::= <ldentifier>

Unquoted identifiers can contain only letters, digits, and underscores, and cannot start with a digit.

Quoted identifiers can contain any character, but double-quotes and backslashes must be escaped
using a backslash.

To make some text be interpreted as an identifier instead of as a keyword, simply place it within
guotation marks. For example if you have a property named WHERE or GROUP, you can reference
it as “WHERE” or “"GROUP” (Omitting the quotation marks would lead to a syntax error.)

Some example identifiers:

aléx4

"4th street"

"some ,*#\" funny \\;% characters"

Endeca Confidential Endeca® MDEX Engine Analytics Guide

Chapter 3
Charting API

This section describes the Endeca Analytics Charting API.

About the Endeca Charting API

The Endeca API extensions for Analytics provide several components that support rendering Analytics
query results: Corda PopChart and Corda Builder, Grid class, and CordaChartBuilder class.

The Analytics API provides functions for computing a rich set of analytics, the results of which are
returned as collections of Endeca records. In most analytical applications, these result records are
primarily intended for visual display in a chart, graph, or table. The Endeca API extensions for Analytics
provide the following components that support rendering analytics query results:

Corda PopChart and Corda Builder Corda PopChart is a server-based chart generation system,
and Corda Builder is an integrated graphical design tool for use with Corda PopChart. These chart
generation tools are included as part of Endeca Analytics. Details on these components are available
in the Corda documentation (in Windows, Start > Programs > Corda 6.0 > Documentation).

Grid class A class to translate analytics records into a basic multi-dimensional array, included as part
of the Endeca Charting API.

CordaChartBuilder class A class to convert a Grid object to input suitable for use with Corda PopChart.
This class, included as part of the Endeca Charting API, seamlessly integrates Endeca Analytics with
Corda charting, allowing Analytics analytics results to be visualized in Corda charts with minimal custom
application code. In this section, we discuss the Grid and CordaChartBuilder classes.

Further details about the methods associated with these classes can be found in API documentation
(javadoc for Java and .NET API Guide for C#). See the Corda documentation for information on
installing and using Corda PopChart and Corda Builder.

Grid class

The Grid class provided by the Endeca Charting API presents a multi-dimensional array facade to a
set of analytics result records. It can be used for application layer rendering (such as building tabular
displays).

Typically, analytics statements return a list of records. Each result record contains property and/or
dimension values representing the GROUP BY values for the bucket along with dynamically computed
properties representing the results of Analytics expressions.

34

Charting API | Grid class

For example, an analytics query such as:

RETURN Results AS
SELECT COUNT(Transld) AS TransCount
GROUP BY Region

returns records of the form { Region, TransCount }:

{ Region="NorthEast", TransCount=20 }
{ Region="SouthEast", TransCount=35 }
{ Region="Central", TransCount=25 }

Results such as these, which are grouped by a single dimension, are convenient for rendering a tabular
view. But multidimensional groupings are less convenient. For example, consider a query such as:

RETURN Results AS
SELECT COUNT(Transld) AS TransCount
GROUP BY Region, Year

which returns records of the form { Region, Year, TransCount }, for example:

{ Region="NorthEast", Year='"2009", TransCount=8 }
{ Region="NorthEast", Year='"2010", TransCount=12 }
{ Region=""SouthEast", Year="2010", TransCount=35 }
{ Region=""Central", Year="2009", TransCount=25 }

This data complicates table or chart rendering. It is not necessarily organized in an order convenient
for the rendering code. Furthermore, the sparseness of the results (for example, because there were
no 2009 sales in the SouthEast, no result record is returned for that grouping) must be handled.

The Grid class presents a multi-dimensional array facade to a set of analytics result records, providing
an interface that is significantly more convenient for application layer rendering (such as building
tabular displays).

The Grid constructor requires three parameters:

* lterator—An iterator over ERec objects providing access to the records that are used to populate
the Grid, typically obtained from a analytics result (such as the
AnalyticsStatementResult.getEReclter method)

 String—Specifies which property in the input records should be used to populate the cell values
in the grid, typically the SELECT AS key for the associated analytics query (such as TransCount)
— in other words, the computed property that is being rendered

* List—A list of strings specifying the properties and/or dimensions in the input records that should
be used as the grid axes, typically the GROUP BY keys for the associated analytics query (such
as Region and Year)

For example, to create a Grid over the results of the above example, use the following code:

List axes = new List();

axes.add('Region™);

axes.add("'Year™);

Grid grid = new Grid(analyticsStatementResult.getEReclter(),
"TransCount' ,axes);

Convenience constructors are provided for one- and two-dimensional grids, so this example could
also have been written:

Grid grid = new Grid(analyticsStatementResult.getEReclter(),
"TransCount™,"Region", " Year™);

Endeca® MDEX Engine Analytics Guide Endeca Confidential

Charting API | Grid class 35

An initialized Grid provides a multidimensional array interface. It provides access to “label” values (that
is, the set of values found in any of the axes specified in the constructor). For example:

List regions = grid.getLabels(0);
List years = grid.getLabels(l);

The returned Lists contain Label objects, each of which contains a property value (String) or a dimension
value (DimVal). Given a list representing an array index (that is, a list of values, one from each axis),
the Grid returns a Cell object representing the value at that location. For example:

List location = new List();
location.add(regions.get(0));
location.add(years.get(0));

Cell cell = grid.getValue(location);

Convenience accessors are provided for one- and two-dimensional grids, so this example could also
have been written simply as:

Cell cell = grid.getValue(regions.get(0),years.get(0));

Cells contain the value for the grid at the specified location (a String), and also allow reverse lookups.
Therefore, from a cell, one can get the list of labels for the location of the cell in its containing grid with
the call cell _getLabels().

Rendering an HTML table

One common use of the Grid class is for rendering HTML tables containing analytics results.

The following JSP code snippet provides an example of this usage for our example two-dimensional
grid.

This example assumes that the Region and Year are navigation dimensions, not properties (hence
the use of the getDimVal method on the labels in the axes).

<%

// Get X and Y labels

Grid grid = new Grid(iterator,”TransCount',"Region™, " Year');
List regions = grid.getLabels(0);

List years = grid.getLabels(l);

// Display header row
%><tr><td></td><%
for (int i=0; i<regions.size(); i++) {
Label region = (Label)regions.get(i);
%><td><%= region.getDimVal().getName() %></td><%

N></tr><%

// Display data rows
for (int i=0; i<years.size(); i++) {
Label year = (Label)years.get(i);
%><tr><td><%= year.getDimVal().getName() %></td><%
for (int j=0; j<regions.size(); j++) {
Label region = (Label)regions.get(j);
Cell cell = grid.getValue(region, year);
%><td><%= cell.getValue() %></td><%

%></tr><%

%>

Endeca Confidential Endeca® MDEX Engine Analytics Guide

36 Charting API | CordaChartBuilder class

which, for our example result set above, would render in the form:

Northeast Central Southeast
2009 8 25 20
2010 12 17 35

CordaChartBuilder class

The CordaChartBuilder class provided by the Endeca Charting API supports the rendering of Analytics
analytics results in a wide variety of Corda PopChart visualizations with a minimal amount of custom
application code.

HTML tables are useful for some Analytics applications, generally where the number of data points is
not too large, and trends and comparisons can easily be observed in the raw numeric data. However,
most Analytics applications require the use of graphical data visualizations such as charts and graphs
to effectively present results of complex numeric analyses.

The CordaChartBuilder class supports the rendering of Analytics results in a wide variety of Corda
PopChart visualizations with a minimal amount of custom application code. The CordaChartBuilder
class builds upon the Grid class presented in the topic “Grid class”.

Before using the CordaChartBuilder class, you first need to create a Grid object containing the Analytics
results of interest. Basic usage of the CordaChartBuilder is extremely simple. The application initializes
an instance with a String chart name and a Grid containing the data, then calls the getPCXML method
to get an XML String suitable for input to Corda for rendering as a chart.

Note: In order to include a Corda chart, the CordaEmbedder library must be included in the
application. For Java, it is the CordaEmbedder.jar. See the Corda documentation for details.

The "PCXML" XML object created by the CordaChartBuilder formats Endeca data for presentation in
a Corda chart. Generally, additional presentation configuration (such as the size of the chart) must be
specified using the Corda API.

Example

The following simple example illustrates a typical rendering sequence:

<%@ page Import="com.corda.CordaEmbedder" %><%

Grid g = new Grid(iterator, "TransCount','Region', "Quarter'™);
CordaChartBuilder ccb = new CordaChartBuilder('graph™, g);
CordaEmbedder image = new CordaEmbedder();
image.externalServerAddress = "http://<corda-host>:2001";
image. internalCommPortAddress = "http://<corda-host>:2002";
image.appearanceFile = "apfiles/small_bar.pcxml";
image.userAgent = request.getHeader (""'USER-AGENT"™);
image.-width = 200;

image.height = 100;

image.returnDescriptiveLink = false;

image. language = "EN";

image.outputType = "FLASH";

image .addPCXML(ccb.getPCXML());

%><%= image.getEmbeddingHTML() %>

Endeca® MDEX Engine Analytics Guide Endeca Confidential

Charting API | CordaChartBuilder class 37

Chart click-through

By default, charts created using the CordaChartBuilder do not include click-through links. These can
be enabled using the Drilldown interface.

The Drilldown interface is an abstract interface with methods to get a click-through URL for a given
grid label value or for a given grid cell. Typically, the application creates a concrete implementation of
this class.

The following simple implementation of the Drilldown interface assumes that all associated grids use
only dimensions as their axes, and provides a very simple form of click-through: clicking on a label or
cell links to the top-level navigation state for the dimension values represented by that label or cell:

public class MyDrilldown implements Drilldown {

public String getLabelURL(Label label,
HttpServletRequest request){
return "http://myhost:8080/myapp?N="" +
label .getDimVal () .getld(Q);

}

public String getValueURL(Cell cell,

HttpServletRequest request){
StringBuffer buf =

new StringBuffer("'http://myhost:8080/myapp?N="");
Iterator labels = cell_getLabels().iterator();
Label label = (Label)labels.next();
buf.append(label.getDimVal () .getld());
while(labels.hasNext()) {

label = (Label)labels.next();

buf._append(*'+'");

buf._append(label.getDimVal () -getld());

return buf.toString();

}
X

More commonly, the Drilldown implementation performs more context-specific click-through operations,
such as refining the current navigation state by the label or cell dimension values, or adding the labe
or cell dimension values as filters for the associated analytics statement.

Having created a concrete Drilldown implementation, the application simply connects an instance to
the CordaChartBuilder, which consults the Drilldown instance when generating click-through links in
the chart PCXML. For example:

<%@ page import="com.corda.CordaEmbedder" %><%

Grid g = new Grid(iterator, " TransCount", " Region","Quarter");
CordaChartBuilder ccb = new CordaChartBuilder(*'graph™, g);
ccb.setDrilldown(new MyDrilldown,request);

CordaEmbedder image = new CordaEmbedder();

image .addPCXML(ccb.getPCXML());

%><%= image.getEmbeddingHTML() %>

Endeca Confidential Endeca® MDEX Engine Analytics Guide

Chapter 4
Temporal Analytics

You can use Time, DateTime, and Duration properties for these Analytics operations: TRUNC and
EXTRACT. TRUNC rounds a DateTime down to a coarser granularity bucket. EXTRACT extracts a portion
of a DateTime, such as the day of the week.

TRUNC

The TRUNC function can be used to round a DateTime value down to a coarser granularity.

For example, this is useful when performing a GROUP BY on DateTime data based on coarser time
ranges (such as GROUP BY “Quarter” given DateTime values). The syntax of the function is:
<TruncExpr> TRUNC(<expr>,<DateTimeUnit>)

<DateTimeUnit> - SECOND | MINUTE | HOUR |
DATE | WEEK | MONTH | QUARTER | YEAR

For example, given a DateTime property “TimeStamp” with a value representing 10/13/2009
11:35:12.000, the TRUNC operator could be used to compute the following results (represented in
pretty-printed form for clarity; actual results would use standard Endeca DateT ime format):

TRUNC("'TimeStamp™, SECOND) = 10/13/2009 11:35:12.000
TRUNC(**TimeStamp®, MINUTE) = 10/13/2009 11:35:00.000
TRUNC(**TimeStamp*, HOUR) 10/13/2009 11:00:00.000
TRUNC(**TimeStamp*, DATE) 10/13/2009 00:00:00.000
TRUNC("'TimeStamp*, WEEK) 10/08/2009 00:00:00.000
TRUNC("'TimeStamp*, MONTH) 10/01/2009 00:003:00.000
TRUNC("'TimeStamp™, QUARTER) = 10/01/2009 00:00:00.000
TRUNC(**TimeStamp®, YEAR) 01/01/2009 00:00:00.000

As a simple example of using this functionality, the following query groups transaction records containing
TimeStamp and Amount properties by quarter:

RETURN Quarters AS

SELECT SUM(Amount) AS Total,
TRUNC(TimeStamp, QUARTER) AS Qtr

GROUP BY Qtr

In addition to these special-purpose functions of TRUNC, Date and Time values can support arithmetic
operations if you cast double or integer fields to a Duration using TO_DURAT ION. For example:

» A Duration may be added to a Time or a DateTime to obtain a new Time or DateTime.
< Two Times or two DateTimes may be subtracted to obtain a Duration.
« Two Durations may be added or subtracted to obtain a new Duration.

40 Temporal Analytics | EXTRACT

EXTRACT

The EXTRACT function extracts a portion of a DateTime, such as the day of the week or month of the
year.

This is useful in situations where the data must be filtered or grouped by a slice of its timestamps, for
example computing the total sales that occurred on any Monday.
<ExtractExpr> ::= EXTRACT(<expr>,<DateTimeUnit>)
<DateTimeUnit> ::= SECOND | MINUTE | HOUR | DAY_OF WEEK |
DAY_OF_MONTH | DAY_OF_YEAR | DATE | WEEK |
MONTH | QUARTER | YEAR

For example, given a DateTime property “TimeStamp” with a value representing 10/13/2009
11:35:12.000, the EXTRACT operator could be used to compute the following results:

EXTRACT("'TimeStamp', SECOND) 12
EXTRACT("'TimeStamp', MINUTE) 35
EXTRACT("'TimeStamp', HOUR) 11
EXTRACT("'TimeStamp', DATE) 13

EXTRACT('TimeStamp', WEEK) 40 /* Zero-indexed */

EXTRACT("'TimeStamp™, MONTH)

EXTRACT('TimeStamp', QUARTER) 3 /* Zero-indexed */
EXTRACT("'TimeStamp', YEAR) 2009
EXTRACT("TimeStamp', DAY_OF WEEK) 4 /* Zero-indexed */
EXTRACT('TimeStamp', DAY_OF_MONTH) 13

L1 1 1 I
[
o

EXTRACT('TimeStamp', DAY_OF_YEAR) 286 /* Zero-indexed */

As a simple example of using this functionality, the following query groups transaction records containing
TimeStamp and Amount properties by quarter, and for each quarter computes the total sales that
occurred on a Monday (DAY_OF_WEEK=1):

RETURN Quarters AS

SELECT SUM(Amount) AS Total
TRUNC(TimeStamp, QUARTER) AS Qtr

WHERE EXTRACT(TimeStamp,DAY_OF WEEK) = 1

GROUP BY Qtr

Endeca® MDEX Engine Analytics Guide Endeca Confidential

Chapter 5
Configuring Key Properties

This section describes how to annotate property and dimension keys with metadata using key properties.

About key properties

Endeca analytics applications require the ability to manage and query meta-information about the
properties and dimensions in the data.

On a basic level, applications need the ability to determine the types (dimension, Alpha property,
numeric (floating point or Integer) property, time/date (Time, DateTime, Duration) property, and so on)
of keys in the data set.

For example, knowledge of the set of numeric properties allows the application to present reasonable
end-user choices for analytics measures. Knowledge of the set of date/time properties allows the
application to present the end-user with reasonable GROUP BY selections using date bucketing
operators.

Dimension-level configuration is also useful at the application layer. Knowledge of the multi-select
settings for a dimension allows the application to present a tailored user interface for selecting
refinements from that dimension (for example, radio buttons for a single select dimension versus check
boxes for a dimension enabled for multi-select OR). Knowledge of the precedence rule configuration
is useful for rendering dimension tree views. Encoding such information as part of the data rather than
hard-coding it into the application enables a cleaner application design that requires less maintenance
over time as the data changes.

In addition to Endeca-level information about properties and dimensions, analytics applications require
support for managing user-level information about properties and dimensions. Examples of this include:

< Rendering text descriptions of properties and dimensions presented in the application. An example
would be mouse-over tool tips that describe the definition of the dimension or property.

« Management of “unit” information for properties. For example, a Price property might be in units
of dollars, euros, and so on. A Weight property might be in units of pounds, tons, kilograms, and
so on. Knowledge of the appropriate units for a property allows the application to render units on
things like charts, while also allowing the application to dynamically conditionalize analytics behavior
(so that it would, for example, multiply the euros property by the current conversion rate before
adding it to the dollars property).

» General per-property and per-dimension application behavior controls. For example, if the data is
stored in a denormalized form, a nested GROUP BY may be required before using a property as
an analytics measure (for example, with denormalized transaction data, you must GROUP BY
“Customerld” before computing average “Age” to avoid double counting).

42

Configuring Key Properties | Defining key properties

The key property feature in the MDEX Engine addresses these needs. The key property feature allows
property and dimension keys to be annotated with metadata key/value pairs called key properties
(since they are properties of a dimension or property key). These key properties are configured as
PROP elements in a new XML file that is part of the application configuration.

In a traditional data warehousing environment, metadata from the warehouse could be exported to an
XML key properties file and propagated onwards to the application and rendered to the end user.

Access to key properties is provided to the application through new APl methods: the application calls
ENEQuery.setNavKeyProperties to request key properties, then calls
Navigation.getKeyProperties to retrieve them.

In addition to developer-specified key properties, Navigation.getKeyProperties also returns

automatically generated key properties populated by the MDEX Engine. These indicate the type of

the key (dimension, Alpha property, Double property, and so on), features enabled for the key (such
as sort or search), and other application configuration settings.

Defining key properties

Key properties are defined in an XML file that is part of the application configuration:
<app_config>_.key props.xml.

A new, empty version of this file is created whenever a new Endeca Developer Studio project is created.
Editing this file and performing a Set Instance Configuration operation in Developer Studio causes
a new set of key properties to be loaded into the system.

The DTD for the <app_config>.key props.xml is located in
$ENDECA_ROOT/conf/dtd/key_props.dtd. The contents of this DTD are:

<?xml version="1.0" encoding="UTF-8"7?>

<I-- Copyright (c) 2001-2004, Endeca Technologies, Inc.
All rights reserved.

-——>

<IENTITY % common.dtd SYSTEM "‘common.dtd'>
%common .dtd;

<I-—- The KEY_PROPS top level element is the container for a set
of KEY_PROP elements, each of which contains the
""key properties™ for a single dimension or property key.
-——>
<IELEMENT KEY_PROPS (COMMENT?, KEY_PROP*)>

<I-—- A KEY_PROP element contains the list of property
values associated with the dimension or property key
specified by the NAME attribute.

-—>

<IELEMENT KEY_PROP (PROP*)>

<IATTLIST KEY_PROP

NAME CDATA #REQUIRED
>

Each KEY_PROPS element in the file corresponds to a single dimension or property and contains the
key properties for that dimension or property. Key properties that do not refer to a valid dimension or
property name are removed by the MDEX Engine at startup or configuration update time and are
logged with error messages.

Endeca® MDEX Engine Analytics Guide Endeca Confidential

Configuring Key Properties | Automatic key properties 43

Here is an example of a key properties XML file:

<?xml version="1.0" encoding="UTF-8" standalone="no" ?>
<IDOCTYPE KEY_PROPS SYSTEM "'key props.dtd'>

<KEY_PROPS>

<KEY_PROP NAME="'Gross'>

<PROP NAME="'Units''><PVAL>$</PVAL></PROP>

<PROP NAME="Description'>

<PVAL>Total sale amount, exclusive of any deductions.

</PVAL>
</PROP>
</KEY_PROP>

<KEY_PROP NAME="‘Margin®'>

<PROP NAME="'Units'"><PVAL>$</PVAL></PROP>

<PROP NAME="‘Description'>

<PVAL>Difference between the Gross of the transaction
and its Cost.</PVAL></PROP>

</KEY_PROP>

</KEY_PROPS>

Automatic key properties

In addition to user-specified key properties, the Endeca MDEX Engine automatically populates the
following properties for each key: Endeca.Type, Endeca.RecordFilterable, Endeca.Dimen-
sionld, Endeca.PrecedenceRule, and EndecaMultiSelect

Property
Endeca.Type

Endeca.RecordFilterable
Endeca.Dimensionld

Endeca.PrecedenceRule

Endeca.MultiSelect

Key property API

Description

The type of the key. Value is one of: Dimension, String,
Double, Int, Geocode, Date, Time, DateTime, or
RecordReference.

Indicates whether this key is enabled for record filters. Value
one of: true or false.

The ID of this dimension (only specified if Endeca . Type=Di-
mension).

Indicates that a precedence rule exists with this dimension
as the target, and the indicated dimension as the source.
Value: Dimension ID of the source dimension.

If Endeca . Type=Dimension and this dimension is enabled
for multi-select, then this key property indicates the type of
multi-select supported. Value one of: OR or AND.

Key properties can be requested as part of an Endeca Navigation query (ENEQuery).

Endeca Confidential

Endeca® MDEX Engine Analytics Guide

44 Configuring Key Properties | Key property API

By default, key properties are not returned by navigation requests to avoid extra communication when
not needed. To request key properties, use the ENEQuery . setNavKeyProperties method:

ENEQuery query = ...
query.setNavKeyProperties(KEY_PROPS ALL);

To retrieve the key properties from the corresponding Navigation result, use the
Navigation.getKeyProperties method:

ENEQueryResults results = ..
Map keyPropMap = results.getNavigation().getKeyProperties();

This method returns a Map from String key names to KeyProperties objects, which implement the
com.endeca.navigation.PropertyContainer interface, providing access to property values
through the same interface as an Endeca record (ERec object).

Example: rendering all key properties

For example, to render all of the key properties returned by the MDEX Engine, one could use the
following code sample:

Map keyProps = nav.getKeyProperties();
Iterator props = keyProps.values().iterator();
while (props.hasNext()) {

KeyProperties prop = (KeyProperties)props.next();

// Each key property has a key and a set of values
String keyPropName = (String)prop.getkey();

// Get the values which are stored as a PropertyMap
PropertyMap propVals = (PropertyMap)prop.getProperties();
%>
<tr><td <%= keyPropName %> </td></tr>
<%
// Display properties
Iterator containedProps = propVals.entrySet().iterator();
// lterate over the properties
while (containedProps.hasNext()) {
// Display property
Property propMap = (Property)containedProps.next();
String propKey (String)propMap.getkey(Q);
String propVal (String)propMap.getValue(Q);
%>
<tr><td><%= propKey %>:</td><td><%= propVal %></td></tr>
<%

}
}

Endeca® MDEX Engine Analytics Guide Endeca Confidential

Index

A

Aggregation statements 14, 15
Analytics
basics 12
finding more information 9
introduced 9
results 25
Analytics API
HAVING 23
COUNT 18
COUNTDISTINCT 18
FROM 19
GROUP BY statements 14
inter-statement references 20
ORDER BY 22
PAGE 22
programmatic interface 12
SELECT AS statements 16
statements 13
text-based syntax 13
what is 11
WHERE 23
Analytics language
GROUP statements 15
automatic key properties 43

C

characters 31

chart click-through 37

Charting API 33
chart click-through 37
CordaChartBuilder class 36
Rendering an HTML table 35

Corda 33

CordaChartBuilder class 36

E

examples
COUNT 18
COUNTDISTINCT 18
inter-aggregate references 27
inter-statement reference 27
nested aggregation 27
simple cross-tabulation 25
subset comparison 26
top-k 26

Expression statements 16

EXTRACT function 40

F

filter statements 23
FROM statements 19

G

grid class 33

GROUP BY statements 14
GROUP statements 15

H

HAVING statements 23

inter-aggregate references example 27
inter-statement references 20
inter-statement references example 27

K

key properties
about 41
APl 44
automatic 43
defining 42
M

mapping inputs to outputs 28

N

nested aggregation example 27
nested query statements 19

O

ORDER BY statements 22

P

PAGE statements 22
paging and rank filtering statements 22

programmatic interface to the Analytics API 12

Q

query input and embedding 12

Index

R

rendering an HTML table in the Charting API 35
result ordering statements 22

S

sample queries for representative use cases 25
SELECT AS statements 16

simple cross-tabulation example 25

statements in the Analytics API 13

subset comparison example 26

46

T

temporal analytics
EXTRACT
TRUNC
text-based syntax
BNF 28
characters 31
mapping inputs to outputs 28
reference 27
text-based syntax, to the Analytics APl 13
top-k example 26
TRUNC function 39

w

WHERE statements 23

Endeca® MDEX Engine

	Contents
	Copyright
	Preface
	About this guide
	Who should use this guide
	Conventions used in this guide
	Contacting Oracle Support

	Introduction to Endeca Analytics
	What is Endeca Analytics?
	Where to find more information

	The Analytics API
	What is the Analytics API?
	Basics of the Analytics API
	Query input and embedding
	The programmatic interface
	The text-based syntax

	Statements
	Aggregation/GROUP BY
	Expressions/SELECT AS
	Using the COUNT and COUNTDISTINCT functions
	Nested queries/FROM
	Inter-statement references
	Result ordering/ORDER BY
	Paging and rank filtering/PAGE
	Filters/WHERE, HAVING
	Analytics results

	Sample queries
	Simple cross-tabulation
	Top-k
	Subset comparison
	Nested aggregation
	Inter-aggregate references example
	Inter-statement references example

	Text-based syntax reference
	Syntax (BNF)
	Ways of mapping inputs to outputs
	Characters

	Charting API
	About the Endeca Charting API
	Grid class
	Rendering an HTML table

	CordaChartBuilder class
	Chart click-through

	Temporal Analytics
	TRUNC
	EXTRACT

	Configuring Key Properties
	About key properties
	Defining key properties
	Automatic key properties
	Key property API

	Index

