Endeca® Platform Services

Relationship Discovery Guide
Version 6.0.3 « June 2012

ORACLE
ENDECA

Contents

[(=] = To TP PP TTRTRPPPO 7
ADOUL ThiS QUILE....ceiiiieiee ittt ettt et e e e oo e o e oo b h bbb et e et e e e e e e e saaaannbbbbeaeeeeaaaeeeeaaannn 7
WHhO ShOUId USE thiS QUIAE.uueeiieiiie et e e e e e e s e s s r e e e e aee e e s e s s sberaeaeeeeaaeeeeesannnnns 7
Conventions USEd N thiS QUIE.........oi it e st e e s e e e s aanneees 8
(0fe] gl =T 1] o I @ = Yol (TS U] o] oo | AT TP PP TR TR OPRPP 8
Chapter 1: Introduction to Term DiSCOVElIY........ccccoeeevviiiiiiiieeiiiiiieeeeeeeannns 9
Overview Of RelatioNShiP DISCOVETY......uuuuiiiiieeeiiii ittt e e e e e e e s e s se e e e e e aaee e s e s sassae e aeeereeaaeeessssansnnrnnneees 9
OVEIVIEW OF TEIM DISCOVETY......utieiii ettt ettt et e e ek ettt e e s bbbt e e e s eabb b e e e e s abae e e e s annnaeeeas 9
OVEIVIEW OF CIUSTEE DISCOVEIYieiiiiiieeeee e e e e e ettt e e e e e e e e e e e bbb e et et e e aa e e e s e e e ababbebeeeeeaaaaeesaaaannbnbbenneeas 11
Chapter 2: Configuration Guidelines for Term Extraction..................... 13
Term extraCtion WOIKFIOW.ooiiiii ittt e st e e sa e e e sbe e e snre e e snreean
Configuration for the main term extraction module
Record specifier property NAME.............ooiiiiiii i a e
TEIrmMS OULPUL PrOPEITY . ceuteiieiieiiie ettt e et e e e eab s
(@] oL =102 0 To o L= PP RPRPPPP
Maximum NUMDEr Of INPUL FECOIUS.......ueeiiiiii et e e e e e e e e e e e e e e e e aannnes
Configuration for candidate term identifiCation..............uueeiiiiee oo
SOUICE INPUL TEXE PrOPEITY . .eeeueiiee ittt eiiee et e et e e et e et e e st e e e ssteeasteeeessteeessaeeeanteeeanaeeesnteeesnneeesnraeeenneees
All-terms deStiNAtION PrOPEITY e ettt e e e et e e e e e e e e e e et e e anbbebeeeeeaaaeeesaaaannenneneneeas
[T o U A =T g T o] (0] 1= o PSPPSR
Language specification Of INPUL FECOITS.uuiiii it
Configuration for cOrpus-1evel filEING.oa e e e
Minimum and maximum OCCUITENCES IN FECOTAS.vuiiiirireiireeriieeiteee et et e et e e e snnee s 19
Minimum and Maximum COVEragE SELHNTS.uuiiiiiiiiiee ittt e et a e s sbba e e e e s saaaeee s 19
Threshold for the global informativeness Of tErMS. ... 20
@S g To I g=To (U] = V=V o L= (o P EEPPRRRN 20
Enabling debugging information for corpus-level filtering...........covvviriiiiiii i 21
Configuration for record-1eVel filLErING...........ooa e e e e 21
Specifying a sCoring threShOId............oooi i ra e e 21
Limiting the number of tErMS PEF FECOIU..........uiiiiiiiiiii e 22
Best practices for term filtErING.ot e e e e e e e e e eeeeeaaa e as 24
Minimal term extraction CONfIQUIALION............ccuuiiiiiiiiee e e e e e e e e s e e r e e e e aeaeaeas 25
FOrmMat Of the SOUICE QALA.........ueeieii ittt s sttt e e sttt e e s s bbb e e e s nanbneee s 26
Chapter 3: Configuration Guidelines for Clustering............ccccccoevveeees 29
ConfiIgUration Ul fOr CIUSTEIS.........eiiiiiiiiiie ettt et e et e e e bt e e s et b e e e e e annes 29
Clustering parameter eSCIPLONS.uuuu et iiee et e e e e e e e e e e e a s s e s e e e aaeaaaaaaateeeeeaeaersrenrnrannnnnanns 29
TUNING STrAtEQY fOr CIUSTEIS....eiii ittt e e ettt e e e e s bt e e e e snbb e e e e anees 31
Chapter 4: Creating a Term Discovery Application.............cccccceeeeeeeennens 33
Term Discovery application WOIKIIOW...........coiiiiiiiiiii e 33
Configuring the required dimension and PrOPEITIES.cuuiii ittt 33
Designating the record SPeCIfier PrOPEITY.......cciiii it e e e e e e r e e e e e e e e e s e nnnnes 33
Configuring the Term DiSCOVErY diMENSION.uiiiiiiiiiiee ittt 34
Configuring the all-tErMS PrOPEITY......coii ittt e e e e e e e e e bbb eeeeeaaaae e s 35
Creating a partial-match Search INTEIfaCE.uiiiiii i e e 36
Creating the Term DiSCOVEIY PIPEINE.......oii e 37
Creating the record adapter fOr SOUICE FECONUS.coii ittt ea e e e 38
Creating the record adapter for the exclude liSt............oooiiiiiiiiiiiie e 39
Adding pre-proCeSSING COMPONEINES.ciiiittiieeeiiteieee ettt ee e s ate e e e e et et e e s abreeeeesaebereeesaabbeeeeesabaeeeeeaaes 40
Configuring the Java ManiPUIALOL...........oo v a e e e eeeeeaaaeeeas 41
Configuring Other COMPONENTS..........coiiiiicii e e e e e e e e s e e e e e aae e e e s e ansrnaarereaeaeaeees 44
Running the Term DiSCOVErY PIPEINE......cooi i 44

Chapter 5: Building the Front End of the Term Discovery Application. 45

FIles t0 D8 ChANQEA.........coo i e e e e e s e e e e e e e e e e s s s s ennretanreraeaaaeanas

AddING GIODAI CONSTANTS.ci ittt e e st e e e s sab b e e e e s abb e e e e e s sabbeeeeeanes
Setting refinements in the controller file
Displaying reflnements............ccccovvveeeeeie e,
Displaying clusters..........cccccevvvveeernnne
(O[S 1] gl o] (o] o1=] o 1= 2SS PP TP PTPPPPPT
JSP code for diSPlaying CIUSTEIS.uiiiiiiee et s e e e e e e e e s e e e e e e aaeeeseesnenrrneeeees
ClUSELENNG OVEIIAP PrOPEITIES. .. cii ettt ettt e e e et e e e s e bt et e e e e anbbe e e e e anenes
Displaying records and dimension refiNemMENTS.coui e
Chapter 6: Term Discovery Advanced TOPICS.........ccceevvviieeriviiiineeenennnns 51
Partial updates for term EXITACHON.ccii i e e e e e e e e e e e e e e e e e s s e s s b aranreraeaaaeaeas 51
Term extraction prerequisites for partial UPAAteS.ocuviiii it 51
Record adapters for partial UPAAteS.oou e e e e e e 52
Java manipulator for partial UPAAteS............ooi i e e e e e e e e e aee s 52
Term filtering With pre-tagged FECONAS.coii it et e e 53
Creating the iNnStance iMpPIEMENTALION............uu it eeeeaaaeeeas 53
Filtering only pre-eXiStiNg tEIMIS.uuiiiiiieeie e e e e e e e e e s e e e e e e e e e s e s s s s anrbraaeereaeaeeesesannnnnns 54
Filtering both sets of terms UNIFOrMIY........cooiiiiiiii e 55
Filtering only the NEW TEIMS.ottt e e e e e e e e s s aab e ae e e e e e e e e e e e e s aannnes 55
Tuning aids for the filtering PAramMEErS.........ueiiiiie e e e e e r e e e e e e e s e s sanaaes 56
Using STATEFUL MOde fOr tUNING.ueiiiiiiiiiiiee ettt e e 56
Using corpus-filtering 10gging StatiSHCS.ouiiiiiiiiiiiii e e e e e e 56
EXamining the term eXtraCtor 100S.uuiii it e e e e e e e e e e e e e e e e e s s e e snnbatanaereeaaaeaeas 57
LRI = Lo (o g 0T L O PP PPPRPPPPPPPNS 57
INcreasing the JVM NEaP SIZE.... ...ttt e e e e e e e e e e e e e nnnes 58
Location of term extraction State filleS..........cuiiiiiiiiiie e 59
Appendix A: Term Discovery Sample Files........cccccoovviiiiiiiiiiciiiieee, 61
Modified Nav_CONLIOIS.JSP FlE.......eei et 61
NEW NAV_CIUSTEIS.JSP TIlB. ..ttt e e e e e e e e e bbb e e eeeaaaeeaeas 65
Sample record manipulator for HTML dOCUMENLS.uuuiiiiiieeeiie i er e e e e e e e e e e s s araeeeeees 67

iv Endeca® Platform Services

Copyright and disclaimer

Copyright © 2003, 2012, Oracle and/or its affiliates. All rights reserved.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners. UNIX is a registered trademark of The Open Group.

This software and related documentation are provided under a license agreement containing restrictions
on use and disclosure and are protected by intellectual property laws. Except as expressly permitted
in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast,
modify, license, transmit, distribute, exhibit, perform, publish or display any part, in any form, or by
any means. Reverse engineering, disassembly, or decompilation of this software, unless required by
law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be
error-free. If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing
it on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated
software, any programs installed on the hardware, and/or documentation, delivered to U.S. Government
end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation
and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the programs, including any operating system, integrated software, any programs installed
on the hardware, and/or documentation, shall be subject to license terms and license restrictions
applicable to the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and
other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for
any damages caused by use of this software or hardware in dangerous applications.

This software or hardware and documentation may provide access to or information on content,
products and services from third parties. Oracle Corporation and its affiliates are not responsible for
and expressly disclaim all warranties of any kind with respect to third-party content, products, and
services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages
incurred due to your access to or use of third-party content, products, or services.

Rosette® Linguistics Platform Copyright © 2000-2011 Basis Technology Corp. All rights reserved.

Preface

Oracle Endeca's Web commerce solution enables your company to deliver a personalized, consistent
customer buying experience across all channels — online, in-store, mobile, or social. Whenever and
wherever customers engage with your business, the Oracle Endeca Web commerce solution delivers,
analyzes, and targets just the right content to just the right customer to encourage clicks and drive
business results.

Oracle Endeca Commerce is the most effective way for your customers to dynamically explore your
storefront and find relevant and desired items quickly. An industry-leading faceted search and Guided
Navigation solution, Oracle Endeca Commerce enables businesses to help guide and influence
customers in each step of their search experience. At the core of Oracle Endeca Commerce is the
MDEX Engine,™ a hybrid search-analytical database specifically designed for high-performance
exploration and discovery. The Endeca Content Acquisition System provides a set of extensible
mechanisms to bring both structured data and unstructured content into the MDEX Engine from a
variety of source systems. Endeca Assembler dynamically assembles content from any resource and
seamlessly combines it with results from the MDEX Engine.

Oracle Endeca Experience Manager is a single, flexible solution that enables you to create, deliver,
and manage content-rich, cross-channel customer experiences. It also enables non-technical business
users to deliver targeted, user-centric online experiences in a scalable way — creating always-relevant
customer interactions that increase conversion rates and accelerate cross-channel sales. Non-technical
users can control how, where, when, and what type of content is presented in response to any search,
category selection, or facet refinement.

These components — along with additional modules for SEO, Social, and Mobile channel support —
make up the core of Oracle Endeca Experience Manager, a customer experience management platform
focused on delivering the most relevant, targeted, and optimized experience for every customer, at
every step, across all customer touch points.

About this guide

This guide describes the tasks involved in creating an Endeca Relationship Discovery application.
The guide contains the following sections:

« Introduction to Term Discovery

» Configuration Guidelines for Term Extraction
 Configuration Guidelines for Clustering

* Creating a Term Discovery Application
Building the Front End

» Term Discovery Advanced Topics

Who should use this guide

This guide is intended for developers responsible for creating an Endeca Relationship Discovery
implementation.

8 | Preface

Conventions used in this guide

This guide uses the following typographical conventions:

Code examples, inline references to code elements, file names, and user input are set in monospace
font. In the case of long lines of code, or when inline monospace text occurs at the end of a line, the
following symbol is used to show that the content continues on to the next line: =

When copying and pasting such examples, ensure that any occurrences of the symbol and the
corresponding line break are deleted and any remaining space is closed up.

Contacting Oracle Support

Oracle Support provides registered users with important information regarding Oracle Endeca software,
implementation questions, product and solution help, as well as overall news and updates.

You can contact Oracle Support through Oracle's Support portal, My Oracle Support at
https://support.oracle.com.

Endeca® Platform Services Relationship Discovery Guide Endeca Confidential

https://support.oracle.com

Chapter 1
Introduction to Term Discovery

This section provides overviews of the Endeca Term Discovery and Endeca Cluster Discovery features.

Overview of Relationship Discovery

The Endeca Relationship Discovery feature provides you with the ability to identify and extract key
relationships in documents, including documents consisting of unstructured text.

This guide describes how to implement the Endeca Term Discovery and Endeca Cluster Discovery
features, which are two major components of the Relationship Discovery solution. The third major
component, Endeca Entity Discovery, is not documented in this guide; for information on this feature,
contact your Endeca representative.

P Note: The implementation of Term Discovery and Cluster Discovery requires that you must
have purchased a license for Relationship Discovery. The license package includes documentation
that describes how to enable the feature. Contact your Endeca representative if you are not
certain whether you have a Relationship Discovery license.

The Term Discovery and Cluster Discovery components of Relationship Discovery have the capability
to:

 Extract salient terms (noun phrases) from documents.

« Provide a scoring mechanism for the extracted terms, which determines whether a given term is
retained. Note that term scores are for internal use by the Endeca software and therefore not
exposed.

» Generate relevant terms on queries.

« Generate clusters of relevant terms.

Note that Term Discovery is currently supported only for English and French. All documentation in this
guide applies to both versions, unless otherwise noted.

Overview of Term Discovery

Term Discovery is the feature that extracts salient terms from source documents.

Term Discovery can be thought of as a two-part process:

10

Introduction to Term Discovery | Overview of Term Discovery

1. Extracting terms from source documents (unstructured or structured) and scoring them according
to their relevancy. The scored terms are mapped to an Endeca dimension, called a Term Discovery
dimension in this guide.

2. Presenting terms relevant to the current navigation state.

Extracting terms from documents

Term extraction is the process of tagging an Endeca record with a list of its relevant terms. A term
represents a concept mentioned in the record’s source document, and is typically a noun phrase. The
noun phrase consists of one or more nouns, potentially with adjoining words. A relevant term is a term
that bears information for a document relative to the rest of the corpus.

During the term extraction process, term variants found in documents are stemmed for comparison
and aggregation, but the final representation of the term uses the dominant form (most frequent variant).
Using the dominant form allows the recovery of the preferred representation (singular/plural case,
capitalization) of proper nouns and brand names.

Term extraction is performed by the Data Foundry via a Java manipulator pipeline component that
uses the Endeca TermExtractor class. The terms are extracted into a user-specified property on the
Endeca record. The property is then mapped (via a property mapper) to a dimension. Such a dimension
is called a Term Discovery dimension in this guide.

Configuration information on term extraction is given in Chapter 2 (“Configuration Guidelines for Term
Extraction”).

Maximum size of extracted terms

A noun phrase consists of a noun (or a sequence of nouns) with any associated modifiers. The modifiers
are limited to adjectives, adjective phrases, or nouns used as adjectives.

Programmatically, each word in a noun phrase is called a token. An extracted noun phrase can have
a maximum of 5 tokens; each token is limited to 200 characters. Therefore, a valid noun phrase has
a maximum size of 1,000 characters.

The maximum size of a sentence in a document is 1,000 tokens (words). If the term extractor cannot
determine the sentence boundaries of text in the document, it splits the text into blocks of 1,000 tokens
and then performs text extraction on the blocks. In addition, the following WARN message will be
entered in the term extraction log:

Sentence boundaries could not be found for text beginning
with tokens tl1 t2 t3 t4 t5

where t1 through t5 are the first 5 tokens of the problematic text.
The term extractor treats invalid noun phrases as follows:

« If a noun phrase has more than 5 tokens, only the last 5 tokens are retained. For example, with a
7-token noun phrase, the first 2 tokens are completely ignored by the term extractor and the last
5 tokens are retained.

» Tokens that are over 200 characters are ignored.

« If a noun phrase includes an overly-long token, that token is ignored, and the precedent and
antecedent tokens are treated as separate noun phrases. For example, assume a 5-token noun
phrase. Token 3 is an overly-long token and the others are valid. In this case, Token 3 will be
ignored and the term extractor will return 2 noun phrases: the first noun phrase will consist of
Tokens 1 and 2, and the second will consist of Tokens 4 and 5.

Endeca® Platform Services Relationship Discovery Guide Endeca Confidential

Introduction to Term Discovery | Overview of Cluster Discovery 11

Presenting relevant terms

Relevant terms are the most frequent terms available in the Term Discovery dimension. These terms
are returned from the documents in the current result set. All of the terms in the set belong to the same
Term Discovery dimension.

The Term Discovery dimension must have these two attributes:

« It must be a flat dimension (that is, a dimension that does not contain hierarchies).
« It must not be a hidden dimension. (Configuring it as a hidden dimension will disable the Cluster
Discovery feature.)

Relevant terms are returned by the Endeca MDEX Engine as dimension value refinements.
Programmatically, relevant terms are DimVal objects. Therefore, application developers can use the
same Endeca Presentation APl methods on relevant terms that can be used on normal dimension
value refinements. For example, they can be returned sorted using any ranking behavior supported
for dimension value refinements.

For more information on displaying relevant terms, see the “Displaying refinements” topic.

Overview of Cluster Discovery

A cluster is a collection of relevant terms, providing a grouping of Endeca records that share these
common terms.

All of the terms (which are dimension values) must come from the same dimension, which must be a
Term Discovery dimension. Clusters can be generated only if the Term Discovery dimension is available
for refinements. So not only can this dimension not be hidden, it must also be available from the
navigation states for which clusters are desired. Your application must therefore have this dimension
globally available (rather than having it available only when triggered by precedence rules).

The following features apply to the clusters:

« The Endeca MDEX Engine performs dynamic clustering. That is, when a user navigates the
clustering tree, it is reclustered at any selection, allowing users to zoom into their data to practically
any level.

* There is no limit in the number of records that can be clustered.

» Each cluster is represented by a list of terms, which provide to the user what is known as information
scent: the user is instantly aware of what each cluster contains (that is, the user can quickly
understand the implied content of the clustered records).

« All clusters are designed to maximize two metrics: coherence (each cluster has only closely related
records) and distinctiveness (two different clusters will have different records).

« Each cluster has high recall. A match partial technique is typically used on cluster selection,
maximizing the number of semantically related records that are returned.

Multiple clusters can be generated from the same dimension. You can configure the maximum number
of clusters that can be generated by using the Clusters tab on the Dimensions editor. This tab also
allows you to set several parameters for cluster generation. For details, see Chapter 3 (“Configuration
Guidelines for Clustering”).

Programmatically, a cluster is a Supp lementobject that accompanies the result of a navigation query.
For details on the object’s properties and how to display them, see the “Displaying clusters” topic in
Chapter 5.

Endeca Confidential Endeca® Platform Services Relationship Discovery Guide

Chapter 2

Configuration Guidelines for Term
Extraction

This topic describes some guidelines for configuring term extraction.

Term extraction workflow

This topics gives an overview of the workflow of the term extractor.
Term extraction consists of three steps, each of which is optional:

1. Candidate Term Identification — Identify all terms that are candidates for a given document and
then extract those terms. This step is omitted if terms are being extracted from pre-tagged records
(see the “Term filtering with pre-tagged records” topic in Chapter 6).

2. Corpus-level Filtering — Globally filter the extracted terms to determine a controlled vocabulary for
the corpus. This involves identifying terms that should be removed corpus-wide (and in step 3 are
removed from the set of tags on each record).

3. Record-level Filtering — Determine, for each record, what are the most relevant terms for it from
the controlled vocabulary. This involves identifying terms that should be removed from an individual
record (independent of terms that should be removed from the entire corpus, but possibly using
corpus-level information) and subsequently removing these terms from the tags on the record.

Note that steps 2 and 3 remove the terms that are judged (by their score or by their presence on the
exclude list) to be of low information value. The tagged terms on each record are a result of step 3.

This section provides configuration requirements for the term extraction modules. You supply the
configuration parameters as pass-through name/value pairs to the Java manipulator.

Configuration for the main term extraction module

The com.endeca.edf.termextractor. TermExtractor class is the main module for the term extraction
framework.

You supply this class name in the CLASS_NAME attribute of the Java manipulator. This module also
requires configuration parameters that are supplied with PASS THROUGH elements in the Java
manipulator. These parameters are listed in the following table, with details in later sections.

14 Configuration Guidelines for Term Extraction | Configuration for the main term extraction module

PASS THROUGH Element Configuration Value

RECORD_SPEC_PROP_NAME The source property that is mapped to the Endeca record
specifier property. Mandatory. No default.

OUTPUT_PROP_NAME The source property to use as the destination for tagged terms.
Mandatory. No default.
UPDATE_MODE The type of data update to perform: STATELESS (the default),

STATEFUL, or PARTIAL. Optional.

MAX_INPUT_RECORDS Integer that sets the maximum number of records to be
processed. Optional. Defaults to all records processed.

Record specifier property name

The RECORD_SPEC_PROP_NAME pass-through specifies a source record property that is mapped
to the Endeca record specifier property in the implementation.

The RECORD_SPEC_PROP_NAME pass-through is mandatory.
To find out the name of the record specifier source property:

1. In Developer Studio, use the Properties view to find out the record specifier property for the
implementation. The Record Spec column shows this information.

2. In the Property Mapper editor, use the Mappings dialog box to find out which source property is
mapped to the Endeca record specifier property.

Use the name from step 2 for the RECORD_SPEC_PROP_NAME pass-through.

Terms output property

The OUTPUT_PROP_NAME pass-through specifies the property that will hold the tagged terms (if
any) for each Endeca record.

The OUTPUT_PROP_NAME pass-through is mandatory. If the property does not already exist in the
implementation, then the term extractor will create it. After term extraction, this property is typically
mapped to an Endeca dimension via the property mapper.

Update mode

The UPDATE_MODE pass-through specifies which type of data update is being performed by the
pipeline.

The UPDATE_MODE pass-through is optional. The three values for this pass-through are STATELESS,
STATEFUL, and PARTIAL. Note that if this pass-through is omitted, the term extractor performs a
STATELESS update.

STATELESS mode

STATELESS is analogous to a baseline update and performs the following actions:

1. Extracts terms from all records.
2. Performs corpus-level and record-level filtering on all records.
3. Emits all records.

Endeca® Platform Services Relationship Discovery Guide Endeca Confidential

Configuration Guidelines for Term Extraction | Configuration for the main term extraction module 15

4. Does not create state files.

STATEFUL mode
STATEFUL performs the following actions:

1. Extracts terms from new records only.

2. Performs corpus-level and record-level filtering on all records (i.e., both previously processed
records and new records).

3. Emits all records (i.e., both previous and new records).
4. Creates term state files.

For information on the STATEFUL mode, see the "Using STATEFUL mode for tuning" topic in Chapter
6.

PARTIAL mode
PARTIAL is analogous to a partial update and performs the following actions:

1. Extracts terms from new records only.

2. Performs record-level filtering on new records only. Corpus-level filtering is not performed at all,
so the previous corpus information is left as-is.

3. Emits new records only.
4. Does not create state files (i.e., previous term state files are left as-is).

For details on performing PART 1AL updates with a Term Discovery pipeline, see the "Partial updates
for term extraction" topic in Chapter 6.

Notes on update modes
Keep the following notes in mind when using the update modes:

» STATELESS mode is recommended for sites that perform baseline updates exclusively.

e STATEFUL mode is recommended for sites that implement partial updates. That is, the baseline
update pipeline will use STATEFUL mode while the partial update pipeline will use PART IAL mode.

* The STATELESS and STATEFUL modes do not need pre-existing state files in order to run.

» The PARTIAL mode does require the existence of the term state files. Therefore, a STATEFUL
update must be performed before a PARTIAL update.

Maximum number of input records

The MAX_INPUT_RECORDS pass-through specifies the maximum number of input records to be
processed by Forge.

The MAX_INPUT_RECORDS pass-through is optional. This pass-through is intended for development
purposes and should be omitted in a production environment so that all records are processed.

Note that the Java manipulator will respect the Forge -n flag. The difference is that
MAX_INPUT_RECORDS affects the input of records while -n affects the output (emission) of records.
That is, with the -n flag, all source records are read in, but only —n records are emitted; with the
MAX_INPUT_RECORDS pass-through, only the specified number of records are read in (and emitted).

Endeca Confidential Endeca® Platform Services Relationship Discovery Guide

16 Configuration Guidelines for Term Extraction | Configuration for candidate term identification

Configuration for candidate term identification

A set of pass-throughs is available to configure which terms are candidates for term extraction.

The following configuration parameters are used when performing candidate term identification for

terms:
PASS_THROUGH Element Configuration Value
TEXT_PROP_NAME Source property to use as the source text for term extraction.

Mandatory. No default.

ALL TERMS_OUTPUT_PROP_NAME | Source property to use as the destination for all terms on a
record. Mandatory. No default.

INPUT_TERM_PROP_NAME Source property to use as the source text for pre-tagged
records. Optional. No default.

LANG_PROP_NAME Source property containing the language ID. Optional. No
default.

LANG Language ID that determines whether the English (en) or French

(fr) version of the term extractor will be used. Optional, but its
use is recommended. Default is the first language in the product
configuration file.

Source input text property

The TEXT_PROP_NAME pass-through specifies which pre-existing property on the input data record
will be used as the source for term extraction.

The TEXT_PROP_NAME pass-through is mandatory. Note that the value for this pass-through specifies
a source property, not an Endeca property. This property will then be mapped to an Endeca dimension.

If you want to extract terms from multiple properties, a pipeline component must combine the text from
the multiple properties into one text property. The name of that text property is then used for the
TEXT_PROP_NAME pass-through.

All-terms destination property

The ALL_TERMS_OUTPUT_PROP_NAME pass-through specifies the property which gets all terms
on a record that pass corpus-level filtering.

The ALL_TERMS_OUTPUT_PROP_NAME pass-through is mandatory. The property gets all terms
on a record that pass corpus-level filtering regardless of whether they pass record-level filtering.

If the property does not already exist in the implementation, the term extractor will create it. When
mapped to an Endeca property, record searches can be performed on this all-terms property (assuming
it is configured to be searchable).

The all-terms property is used for search purposes. For each record, the term extractor finds all of the
terms in the corpus-wide vocabulary that occur in that document (regardless of their relevance for that
document) and puts them in the all-terms property. By using this property for searches, stemming of
the terms can be performed.

For example, if the terms "search engine" and "search engines" appear in the corpus, they will be
normalized to the dominant form (e.g., as "search engine"). But if you want to find all records that

Endeca® Platform Services Relationship Discovery Guide Endeca Confidential

Configuration Guidelines for Term Extraction | Configuration for candidate term identification 17

contain either variant, you cannot use Phrase search against the body text, because Phrase search
does not locate stemmed variants. Instead, Term Discovery ensures that both the dimension value
name and the term stored in the all-terms property is the dominant form.

The terms in the all-terms property are separated by using sep as the delimiter. The term extractor
makes the separator by doing (sep)+ until the separator is not a substring of any term in the corpus.
Therefore, the separator may be sep, sepsep, sepsepsep, and so on. For example, an article on
Aldera, Spain might produce the following all-terms property (named P_AllTerms) on the record (in
the example, sepsep is the separator for the property):
P_AllTerms: district sepsep Spain sepsep south coast sepsep

coast sepsep town sepsep Aldera sepsep province sepsep

Romans sepsep decline sepsep station sepsep hills sepsep
Heracles sepsep temple sepsep colonies sepsep Tiberius

Because of the widespread use of this separator, you should add it to the stop word list. (Note that
this is the application’s stop word list, not the term exclude list.) Before doing so, first determine which
form is the separator. Run the corpus at least once to find what the separator is and then set that
separator as a stop word. For example, if "sep" is a valid term in the corpus, then it is likely that sepsep
will the separator. Thus, you would add "sepsep"” (but not "sep") to the stop word list. Then, periodically
monitor the corpus to make sure the separator has not changed.

Input term property
The INPUT_TERM_PROP_NAME pass-through is used for a corpus that contains pre-tagged records.

Pre-tagged records are source records with pre-existing terms that were generated by non-Endeca
software. In this scenario, you do not want to extract new terms from the documents but do want to
perform corpus-level and/or record-level filtering on the pre-tagged terms.

This pass-through can be used in conjunction with the TEXT_PROP_NAME pass-through to combine
the pre-existing terms with the new extracted terms. For details on working with pre-tagged records,
see the "Term filtering with pre-tagged records" topic in the Advanced Term Discovery Topics section.

Language specification of input records
Two pass-throughs set the language ID of input records on a global and per-record basis.

You can use the LANG and LANG_PROP_NAME pass-throughs to specify the global language ID
and the per-record language ID of the input records. The language ID is case insensitive for both
pass-throughs (for example, you can specify either EN or en for English).

Note that the LANG_PROP_NAME value takes precedence, and if not present, the value of LANG is
used as the language of the record.

Both pass-throughs are optional and both can be specified in a Java manipulator.

LANG pass-through

The LANG pass-through specifies the language ID to use on a global basis. Currently, you can specify
either EN (or en) to run the English version of the text extractor or FR (or fr) to run the French version.

If you do not specify this pass-through, the global language ID defaults to the first language specified
in the product configuration file (named ProductConfig.xml). Although this pass-through is optional, it
is recommended that you use it to explicitly set the global language ID.

Endeca Confidential Endeca® Platform Services Relationship Discovery Guide

18

Configuration Guidelines for Term Extraction | Configuration for corpus-level filtering

LANG_PROP_NAME pass-through

The LANG_PROP_NAME pass-through specifies the name of the record property that contains the
language ID for that record. If you do not specify this pass-through, the language ID for each record
will default to the value of the LANG pass-through. For example, if the value for LANG is EN, then the
term extractor will assume that all the records are in English.

If you do specify the LANG_PROP_NAME pass-through, the term extractor will evaluate each record
as follows:

« If the value of the LANG_PROP_NAME property matches the LANG setting, then terms are
extracted from the record in that language.

« If the value of the LANG_PROP_NAME property does not match the LANG setting, then terms
are not extracted from the record. That is, the record is ignored for purposes of term extraction,
but the record is otherwise processed by Forge. For example, if the value of LANG is FR and the
value of the LANG_PROP_NAME property is EN for a given record, the terms extractor will ignore
that record.

« If the value of the LANG_PROP_NAME property is null or the record does not contain the
LANG_PROP_NAME property, the term extractor will assume that the language 1D of the record
is the same as the LANG setting and therefore will attempt to extract terms from the record in that
language.

If you have documents in multiple languages, the LANG_PROP_NAME pass-through is useful to
ensure that only records in the desired language (the LANG setting) are processed by the term extractor.

If the records do not already contain a language ID property, you can use the ID_LANGUAGE
expression in a record manipulator that runs before the term extractor’'s Java manipulator. For example,
if the ID_LANGUAGE sets the record’s language ID in the record’s Endeca.Document . Text property,
you would use the Endeca.Document.Language name as the value for the LANG_PROP_NAME
pass-through. For details on this expression, see the "ldentifying the language of the documents" topic
in Chapter 4.

Configuration for corpus-level filtering

A set of pass-throughs is available to configure how corpus-level filtering is done.

The following configuration parameters are used for performing corpus-level filtering:

PASS THROUGH Element | Configuration Value

CORPUS_MIN_RECS Integer specifying the minimum number of records in which a term
must appear in order to be considered. Default is O; minimum
recommended value is 2.

CORPUS_MAX_RECS Integer specifying the maximum number of records in which a term
must appear in order to be considered. Default is unlimited.

CORPUS_MIN_COVERAGE | Double specifying the minimum fraction of the corpus that must contain
the term. Default is Double.NEGATIVE_INFINITY; useful range is 0-1;
recommended value is 0.00005.

CORPUS_MAX_COVERAGE | Double specifying the maximum fraction of the corpus that must contain
the term. Default is Double.POSITIVE_INFINITY; useful range is 0-1;
recommended value is 0. 2.

Endeca® Platform Services Relationship Discovery Guide Endeca Confidential

Configuration Guidelines for Term Extraction | Configuration for corpus-level filtering 19

PASS THROUGH Element |Configuration Value

CORPUS_MIN_INFO_GAIN | Minimum global informativeness score a term must have to be
considered. Default is Double. NEGATIVE_INFINITY.

CORPUS_MAX_INFO_GAIN | Maximum global informativeness score a term must have to be
considered. Default is Double.POSITIVE_INFINITY.

CORPUS_REGEX_KEEP String that is a regular expression for terms that should be kept. No
default.

CORPUS_REGEX_SKIP String that is a regular expression for terms that should be discarded.
No default.

CORPUS_DEBUG If set to true, detailed information about corpus-level scoring is written
to the logs. Default is false.

Minimum and maximum occurrences in records

Two pass-throughs set the minimum and maximum number of records in a term can appear before it
is discarded.

The CORPUS_MIN_RECS parameter determines the minimum number of records in which a term
can appear before it can be considered. If a term appears in fewer records than the
CORPUS_MIN_RECS setting, then the term is discarded.

Setting a value less than 2 is not recommended, as it useless for clustering. In addition, a value of 2
or higher means that singlets are eliminated.

Singlets are terms that appear in only one record. Singlets typically occur very frequently in a corpus,
but cannot be used for clustering, which uses cross-record statistics. Therefore, eliminating singlets
reduces memory use and computation time. Minimum occurrences should be set to at least 2 to remove
singlets; higher values will require a term to appear on more records. Note that large document sets
have more term redundancy and can have this parameter set to higher values, such as 3 or higher.

The CORPUS_MAX_ RECS parameter sets the maximum number of records in which a term can
appear. If it appears in more records than the set value, then the term is discarded.

You can use both pass-throughs to create a window. For example, assume you have set these values:

CORPUS_MIN_RECS=5
CORPUS_MAX_RECS=20

The result would be that a term would be retained only if it appeared in at least 5 records but no more
than 20 records.

Minimum and maximum coverage settings
Two pass-throughs set the minimum and maximum percentage of records that must contain a term.

The coverage pass-throughs correspond to the fraction of the records in the corpus which contain at
least one occurrence of the given term:

* CORPUS_MIN_COVERAGE sets the minimum fraction of the corpus that must contain the term.
*« CORPUS_MAX_COVERAGE sets the maximum fraction of the corpus that must contain the term.

Endeca Confidential Endeca® Platform Services Relationship Discovery Guide

20

Configuration Guidelines for Term Extraction | Configuration for corpus-level filtering

For example, if you want to keep only those terms that appear in between 5% and 25% of the corpus,
you would use these settings:

CORPUS_MIN_COVERAGE=0.05
CORPUS_MAX_COVERAGE=0. 25

The useful range for both pass-throughs is 0-1, in which 1 is 100% of the corpus.

Threshold for the global informativeness of terms

Two pass-throughs set the scoring threshold for the global informativeness of a term.

The CORPUS_MIN_INFO_GAIN parameter sets the minimum scoring threshold when measuring the
global informativeness (info_gain) of a term. The useful range for CORPUS_MIN_INFO_GAIN is minus
infinity to plus infinity, although most terms tend to fall in the -5.0...+5.0 range. The terms with negative
information gain are likelier to contribute more noise than signal. Eliminating these globally uninformative
terms saves considerable memory and query compute time. The minimum info_gain setting can be
increased to require higher global informativeness—or, conversely, decreased to allow more terms to
be retained. Setting CORPUS_MIN_INFO_GAIN to 0 is usually adequate. Setting this parameter to
values higher than 1.0-2.0 can dramatically reduce the number of terms.

The CORPUS_MAX_INFO_GAIN parameter sets the maximum scoring threshold for the global
informativeness of a term. If the scoring for a term exceeds this threshold, the term is discarded.

Using regular expressions

Two pass-throughs allow you to use regular expressions to retain or discard terms.

The term extractor supports two pass-throughs that are used for matching character sequences against
patterns specified by regular expressions:

« CORPUS_REGEX_KEEP specifies a regular expression that a term must match in order to be
retained.

* CORPUS_REGEX_SKIP specifies a regular expression that a term must not match in order to be
retained.

You can use either or both pass-throughs. If both are used, then a term must pass both tests in order
to be retained (that is, if the term satisfies one pass-through but not the other, the term is discarded).

The term extractor implements Sun’s java.util . regex package to parse and match the pattern of
the regular expression. Therefore, the supported regular-expression constructs are the same as those
in the documentation page for the java.util _regex.Pattern class at this URL:

http://java.sun.com/j2se/1.5.0/docs/api/java/util/regex/Pattern.html
This means that among the valid constructs you can use are:

« Escaped characters, such \t for the tab character.

¢ Character classes (simple, negation, range, intersection, subtraction). For example, [*abc] means
match any character except a, b, or ¢, while [a-zA-Z] means match any upper- or lower-case letter.

» Predefined character classes, such as \d for a digit or \s for a whitespace character.

« POSIX character classes (US-ASCII only), such as \p{Alpha} for an alphabetic character, \p{Alnum}
for an alphanumeric character, and \p{Punct} for punctuation.

» Boundary matchers, such as for the beginning of a line, $ for the end of a line, and \b for a word
boundary.

 Logical operators, such as X|Y for either X or Y.

Endeca® Platform Services Relationship Discovery Guide Endeca Confidential

http://java.sun.com/j2se/1.5.0/docs/api/java/util/regex/Pattern.html

Configuration Guidelines for Term Extraction | Configuration for record-level filtering 21

For a full list of valid constructs, see the Pattern class documentation page at the URL listed above.
The following is an example of a useful regular expression that uses the POSIX \p{Alnum} construct:
MNp{AInum}N\p{AInumI\.\-"]+$

When used with the CORPUS_REGEX_KEEP pass-through, this regular expression will retain only
terms that have at least two characters, starts with an alphanumeric character, and contains only
alphanumeric, period, dash, apostrophe, and space characters. (The apostrophe is to retain terms
such as O"Mal ley).

The following is a another example that is fairly restrictive:
[MA-Za-z0-9\-\.]

When used with the CORPUS_REGEX_SKIP pass-through, this regular expression will retain only
terms that consist of alphanumeric, dash, period, and space characters.

Enabling debugging information for corpus-level filtering
The CORPUS_DEBUG pass-through enables the logging of debugging information.

The CORPUS_DEBUG pass-through enables the term extractor to write detailed information about
the corpus-level filtering scores it assigns to terms. Temporarily setting this pass-through to true will
help you to tune corpus-level filtering. For details, see the "Using corpus-filtering logging statistics"
topic in Chapter 6.

Configuration for record-level filtering

Two pass-throughs are available to configure record-level filtering for term extraction.

This table lists the configuration parameters that are used for performing record-level filtering. Note
that both pass-throughs are optional.

PASS THROUGH Element Configuration Value

RECORD_FRACT_OF_MEDIAN | Double that sets the minimum scoring fraction of the median to use.
1.1 is the recommended value; 0.0 is the default.

RECORD_NTERMS Sets a limit on the maximum number of terms that are tagged on
a record. Default is to have no limit.

Specifying a scoring threshold
The RECORD_FRACT_OF_MEDIAN sets a scoring threshold for record-level filtering.

When the Term Discovery software decides which terms will be tagged on a record, it uses a scoring
method in which terms that are more frequent in this document than across the corpus are considered
to be more relevant and thus are retained. Filtering occurs on the document-by-document basis; in
other words, each term is considered for inclusion or exclusion separately for each document in which
it occurs.

The distribution of scores for terms on a single record typically has very few high-scoring terms, followed
by a long, gently-sloped plateau of marginally informative terms, with a sudden drop-off of few
uninformative terms.

Endeca Confidential Endeca® Platform Services Relationship Discovery Guide

22

Configuration Guidelines for Term Extraction | Configuration for record-level filtering

The RECORD_FRACT_OF_MEDIAN value lets you set a scoring threshold for the plateau; only terms
that score above this threshold are kept. RECORD_FRACT_OF_MEDIAN should be set to a value
that expresses the threshold as a fraction of the median score for terms on the document.

The recommended threshold is 1.1 (i.e., 10% higher than the median), which will keep only the
highly-informative terms. Higher values will tend to increase precision (the terms that are kept are
more likely to be relevant) but decrease recall (more likely to lose relevant terms). The default value
of this threshold is 0.0, which allows all terms through.

Limiting the number of terms per record

The RECORD_NTERMS pass-through sets a limit on the maximum number of terms that are tagged
on a record.

You can use the RECORD_NTERMS pass-through to implement one of two strategies to limit the
number of terms that are tagged on records:

» Set an absolute upper limit.
« Establish a cut-off window.

You cannot mix both strategies. In both strategies, the Term Discovery software determines which
terms have the highest relevance for that record. Note that this pass-through is recommended mainly
for collections that have large documents.

Setting a hard limit

To set an absolute upper limit, use the RECORD_NTERMS pass-through with only one integer value.
Use this version of the pass-through when you are certain about the number of terms you want per
record and can therefore set a hard limit. In this example, RECORD_NTERMS is set to a value of 8:

Java Manipulator : TermEztracto il

Marne:

I TermExtractor

Zeneral | Sources Pass Throughs | Cornrment |

RECORD_SPEC_PROP_NAME = P_WinelD
TEXT_PROP_MNAME = P_Description
OUTPUT_PROP_NAME = P_Terms
ALL_TERMS_OUTPUT_PROP_MNAME = P_AlITearms
URDATE MODE = STATEFLL

RECORD MTERMS = 8

Marne: Yalue:
| RECORD_MTERMS | g2

Add | Moclify | Remove |
® Help | oK I Cancel |

Using this setting, Term Discovery will determine which are the eight most relevant terms for this record
and tag the record with them.

Endeca® Platform Services Relationship Discovery Guide Endeca Confidential

Configuration Guidelines for Term Extraction | Configuration for record-level filtering 23

Establishing a cut-off window

To establish a cut-off window, use the RECORD_NTERMS pass-through with a range of two integers,
which sets the lower and upper limits of a cut-off window. This windowing strategy establishes a window
that will be scanned for an optimal cut-off. This cut-off is where term informativeness drops off most
precipitously. Use this strategy when you want Term Discovery to be sensitive to actual term
informativeness rather than just using a hard limit.

In the following example, the value for RECORD_NTERMS is the range of 24-36 terms:

Java Manipulator : TermEztracto \' il

Marne:

I TermExtractor

Zeneral | Sources Pass Throughs | Cornrment |

RECORD_SPEC_PROP_NAME = P_WinelD
TEXT_PROP_MNAME = P_Description
OUTPUT_PROP_NAME = P_Terms
ALL_TERMS_OUTPUT_PROP_MNAME = P_AlITearms
URDATE MODE = STATEFLL

RECORD MTERMS = 24-36

Marne: Yalue:
| RECORD_MTERMS | 24-36

Add | Moclify | Remove |

® Help | oK I Cancel |

You can think of the term range as providing a fuzzy neighborhood to be used instead of a hard limit.
For example, instead of RECORD_NTERMS having a hard limit of 32, you can set it to a range of
24-36. This range establishes a window where a record can have a minimum of 24 terms and a
maximum of 36 terms. The Term Discovery algorithm will determine the optimal cut-off within that
window for each record.

For example, assume the above settings and also assume that 40 terms were extracted from Record
A and also from Record B:

» For Record A, the optimal cut-off for the terms might be after term 26 (because of a sharp drop-off
in relevancy for terms 27-40). Therefore, Record A will have 26 terms tagged onto it.

« For Record B, the optimal cut-off for its set of terms might be after term 30. In this case, Record
B will have 30 tagged terms.

When using the range version of this pass-through, keep the following in mind:

» The lowest recommended value for the lower limit is around 10. The reason is that the scores of
the top terms scores usually differ noticeably, and the largest score drop-off is likely to be found
at the setting for the lower limit. Thus, if the lower is less than 10, you should expect it to behave
like the hard-limit version of RECORD_NTERMS, which is misleading.

» The value for the upper limit should not be much larger than the value for the lower limit. If the
difference is too much, the number of terms assigned to each particular record will be essentially
random (within the cut-off window). The only way to have this number of terms relatively consistent
is to use a lower- and upper-limit pair that are not too far from each other.

Endeca Confidential Endeca® Platform Services Relationship Discovery Guide

24 Configuration Guidelines for Term Extraction | Best practices for term filtering

Best practices for term filtering

This topic presents a best practices list for term extraction.

The best practices lists include the pass-through name and a recommended (best practices) value. If
a recommended value is not given, then the default value is also the recommended one.

The two important things to keep in mind are:

« When tuning corpus-level filtering, the number of documents is the main consideration.
* When tuning record-level filtering, the size of the text property is the main consideration.

Two tuning aids that may helpful are described in the "Tuning aids for the filtering parameters" topic
in Chapter 6.

Corpus-level filtering best practices
CORPUS_MIN_RECS

Recommendation: Values of less than 2 are not recommended in general, since they allow terms that
are seen only once in the entire corpus. If clustering is used, this value MUST be set to at least 2. Note
that this parameter works similarly to CORPUS_MIN_COVERAGE: terms that are seen less frequently
than in CORPUS_MIN_RECS are discarded, as are terms that are seen in less than
CORPUS_MIN_COVERAGE * (number of documents in the corpus).

CORPUS_MAX_RECS

Recommendation: As a general rule of thumb, this pass-through does not have to be used. If your
number of records can change (say, via partial updates), Endeca recommends that you not use
CORPUS_MAX_RECS, because the statistics will change with the changed number of records. In
this case, you may want to use the CORPUS_MAX_ COVERAGE pass-through instead.

CORPUS_MIN_COVERAGE

Recommendation: The useful range is 0-1. A value of 0.00005 is a good compromise, because the
term extractor will retain a term if it has been seen in at least one document out of 20,000.

This value will change with the nature of the data set. For example, a site with a data set with a lot of
topical diversity (such as news) can reduce this value and allow terms with lower coverage (however,
one out of any hundred thousand is probably the smallest reasonable value). If memory use is an
issue, you should increase this value.

CORPUS_MAX_COVERAGE

Recommendation: The useful range is 0-1. A value of 0.2 (which is 20% of the documents) is a good
compromise. If a term is seen in more than one out of five documents (i.e., 20%), it is probably too
broad to be useful. If terms that are tagged onto documents seem too generic, this number should be
turned down. As with CORPUS_MIN_COVERAGE, turning this number down, even slightly, should
free memory.

CORPUS_REGEX_KEEP

Recommendation: A useful regular expression for terms to keep is:
Mp{AInum}\p{AlInum}.\-"]+$

This retains terms that start with alphanumerics, and includes only alphanumerics, spaces, periods,
dashes and single quotes.

&
77" Note: Each term must both match CORPUS_REGEXP_KEEP and not match
CORPUS_REGEXP_SKIP to be retained.

Endeca® Platform Services Relationship Discovery Guide Endeca Confidential

Configuration Guidelines for Term Extraction | Minimal term extraction configuration 25

CORPUS_REGEX_SKIP

Recommendation: Use this pass-through only if you are certain of the format of the terms you want
to discard.

CORPUS_MIN_INFO_GAIN and CORPUS_MAX_INFO_GAIN

Recommendation: Begin by setting CORPUS_MIN_INFO_GAIN to 0. Do not set
CORPUS_MAX_INFO_GAIN initially. Tune the other term extraction pass-throughs. Then, run a data
set (or a subset) with CORPUS_DEBUG set to true, which will print the list of terms that passed all
the selection criteria. You can use this information to adjust the selection criteria, which may include
adjusting the CORPUS_MIN_INFO_GAIN and using the CORPUS_MAX_INFO_GAIN pass-throughs.

If fewer generic terms are desired, increase the value of CORPUS_MIN_INFO_GAIN in small increments
(0.5 or 1.0). If more generic terms are desired, decrease this value. CORPUS_DEBUG can be used
to select a particular value of CORPUS_MIN_INFO_GAIN.

CORPUS_DEBUG

Recommendation: Set this pass-through to true only when you are tuning the filtering parameters;
otherwise, do not use it. For details on the logging entries it produces, see the "Using corpus-filtering
logging statistics" topic in Chapter 6.

Record-level filtering best practices
RECORD_NTERMS and RECORD_FRACT_OF_MEDIAN

Recommendation: The use of these pass-throughs depends on the length of text in the text property
that contains candidate terms. The two scenarios considered here are properties with either short text
or long text.

For short text (such the P_Description property in the wine data set shipped with the sample reference
implementation), the recommendation is to not use these pass-throughs, which will keep all the terms.

For long text (such as news sites or sites with long articles), use the range version of
RECORD_NTERMS to set however many terms per record you want, say a range of 16-24 or, if more
is wanted, a range of 24-30. (Keep in mind that the lower limit should be greater than 10 and the upper
limit should not be much large than the lower limit.) Set RECORD_FRACT_OF_MEDIAN to 1.1 for
relatively small documents, 1.2 for larger documents, and 1.5 for very large documents.

Minimal term extraction configuration

The minimal term extraction configuration consists of four pass-throughs.
The four pass-throughs for a minimal term extraction configuration are the following:

« RECORD_SPEC_PROP_NAME

« TEXT_PROP_NAME

« OUTPUT_PROP_NAME

« ALL_TERMS_OUTPUT_PROP_NAME

This configuration will run as follows:

* A baseline update (STATELESS mode) will be performed.

« No corpus- or record-level filtering will be performed, but the exclude list (if it exists) will be
processed. As a result, all terms in the corpus will be extracted and all of them (with the exception
of the terms on the exclude list) will be tagged onto records.

Endeca Confidential Endeca® Platform Services Relationship Discovery Guide

26 Configuration Guidelines for Term Extraction | Format of the source data

» The expected language of the documents will be the first language specified in the product
configuration file.

This configuration is the most permissive for term extraction. Although most sites will prefer to perform
some level of corpus and record filtering, this minimal configuration may be useful with small data sets
that have a closely-related set of noun phrases in their documents.

Format of the source data

Terms can be extracted from either structured and unstructured source data.

In general, data and content acquisition will typically be used to retrieve the records used by the term
extractor. In particular, crawling (via the Endeca Web Crawler or the Endeca CAS Server) is a viable
source of content for term extraction.

The term extractor utilizes Natural Language Parsing (NLP). In order to maximize the accuracy of NLP
output, the input must be as clean as possible and as similar to natural language as the original data
allows. The following list provides some recommendations about how to pre-process unstructured text
that is fed to the term extractor:

« Remove anything from the property that is sent to the term extractor that is not the main contents
of the document. For example, when dealing with news articles, it is a good idea to remove bylines,
copyright disclaimers, and so forth. When dealing with Web pages, the task is noticeably harder,
because the navigational elements, page headers and footers, guestbook links, ads, etc., all have
to be removed. In such extreme cases, one suggestion is to retain long sequences of sentences
with correct sentence-terminating punctuation that does not have many major HTML tags (H1, P,
HR, DIV, SPAN, etc.) embedded: meaningful text is likely to satisfy this requirement, and items
such as menus, ads, and page elements are likely to fail it.

* Remove anything that is not natural language text. This includes HTML tags, other markup, and
long sequences of non-alpha characters (e.g., long sequences of dashes used as delimiters). Links
to images, URLs (that might be used in plain text, outside of HTML tags), and anything that is not
in grammatically correct language should be stripped. The same caveat applies to sequence of
characters that are too long to be meaningful terms. The term extractor will report and skip those
overlong noun phrases. However, it is useful to detect these upstream of the term extractor because
their presence might indicate sections of the documents that should be removed.

» Punctuation should be correctly spaced, especially when stripping HTML or adding
sentence-terminating punctuation. A sentence terminator is correctly interpreted only if it is followed
by a space. For example:

Look at this.0r this.

should not be converted to:
Look at this.Or this.

but instead to:
Look at this. Or this.

« Convert non-sentence text into sentences. If, for example, a useful section of the document is
written as a list or a table (that is, separated with or <TD> tags), it is recommended to terminate
such entries with periods (or semicolons, depending on context), if they are not so terminated to
begin with.

« Merge text fields, if needed. For example, if the document title is a separate property, it is useful
to append it to the main text property (terminating it with punctuation, if possible).

Endeca® Platform Services Relationship Discovery Guide Endeca Confidential

Configuration Guidelines for Term Extraction | Format of the source data 27

» Use the correct case for capitalized and non-capitalized text. NLP relies on capitalization to make
correct part-of-speech judgments. If capitalization is not available, it makes a best guess and this
guess is better when dealing with lower-case text than with all upper-case text. If the document
text is in all upper case, it is advisable to convert it to all lower-case (or, possibly, all lower case
with initial capitalization for the first word in every sentence). This will improve NLP quality.

» Use correct spelling in Web pages, especially blogs. For documents written in informal language,
it is recommended that simple pattern replacement be done on most frequent terms (for example,
"u" should be replaced with "you").

As mentioned in the second item above, the term extractor will discard overly-long noun phrases and
issue warning messages, such as this example from the Forge log:

While processing Record "42710°: Overlong noun phrase ending

in "sturdy white featuring simple pear flavor-

The example shows a problem with text in Record 42710.

Whenever possible, the text should be cleansed in the source data. However, you can add record
manipulators to the pipeline to perform pre-processing cleanup.

You can also use the CORPUS_REGEX_KEEP and CORPUS_REGEX_SKIP pass-throughs in the
Java manipulator to control which extracted terms are kept or discarded. For details on how to construct
regular expressions with these pass-throughs, see the "Using regular expressions" topic of this chapter.

Endeca Confidential Endeca® Platform Services Relationship Discovery Guide

Chapter 3

Configuration Guidelines for Clustering

This section describes some guidelines for configuring term extraction.

Configuration Ul for clusters

You use the Dimension editor in Developer Studio to configure clustering for a Term Discovery

dimension.

In the Dimension editor, the Cluster Discovery tab is where you set the configuration parameters:

Dimension: Terms il
Marne: jing
ITerms IEID4EI
Member of this dimension group: Refinernents sort order:
I [Mone] LI I &lpha ;I

General | Search | Advanced | Dynamic Ranking Cluster Discovery |
[v Enable Clustering
Sample size

500 Maximurm precision 0.25

Maxirnurn clusters IE, Maxirnumm cluster size Ig
|5 Maximurm cluster overlap |5

Coherence

® Help | (o]'4 |

Cancel

The next two topics provide descriptions of the parameters and guidelines for tuning them.

Clustering parameter descriptions

This topic describes the meanings of the parameters on the Cluster Discovery tab.

The list below describes the clustering parameters on the Cluster Discovery tab, including their range
of values (with defaults) and recommended values. The next topic in this section explains the reasoning
behind the recommended values and provides an order in which these parameters should be adjusted.

30

Configuration Guidelines for Clustering | Clustering parameter descriptions

Sample size

Description: Clustering is done by examining term distribution across a sample of the result set. This
parameters governs how many records are sampled from the navigation state. Clustering processing
time and memory consumption are both roughly linear with this number; thus, lowering the value results
in smaller memory consumption and faster turnaround. However, statistical errors are likely to occur
when the sample size is small. Setting this value higher will overcome statistical errors for data sets
where fewer terms are tagged onto each record.

Range: Integer, 50-2000 (default: 500)

Recommended value: 500

Maximum clusters
Description: This parameter limits the number of clusters that will be generated by the MDEX Engine.
Range: Integer, 2-10 (default: 10)

Recommended value: 6

Coherence

Description: This parameter governs the decision of whether a set of terms is coherent enough to form
a cluster (that is, each cluster should have only closely related records). Low values are permissive
(i.e., not demanding much coherence) and will result in fewer larger clusters. High values are strict
and will result in more smaller clusters. The average value is recommended.

Range: Integer, 0-10 (default: 5)

Recommended value: 5

Maximum precision

Description: Terms that are extracted from sampled records are filtered by their precision p (where p
= number of sampled records that this term is tagged onto divided by the number of all sampled
records). Terms that have too high a value of p are likely to be the search term (or be synonymous
with it) or be too general to make for a good clustering term. If you use the recommended tuning values
of the term extractor, each term is tagged to only roughly 1/3 of the records that contain this term in
the text, which means that the search term, if present, will have p of roughly 0.33 (more or less stringent
tuning of the term extractor will change this value). There usually is a gap in the values of p between
the search term and the more useful terms, which start at approximately p = 0.25 and less.

Range: Float, 0.0 - 1.0 (default: 1.0)

Recommended value: 0.25

Maximum cluster size

Description: This parameter sets the maximum number of terms in a cluster. Each cluster will have at
least 2 terms. Because of the match-partial cluster selection mechanism, the more terms there are in
the cluster, the (potentially) higher its coverage will be. On the other hand, the clusters that are too
large take up too much space to display and take too long for users to read.

Range: Integer, 2 - 10 (default: 10)

Recommended value: 8

Endeca® Platform Services Relationship Discovery Guide Endeca Confidential

Configuration Guidelines for Clustering | Tuning strategy for clusters 31

Maximum cluster overlap

Description: If two clusters overlap (that is, if the record sets that each cluster maps to overlap), then
the smaller one (as measured by the estimated size of the record set it maps to) can be removed,
depending on how big this overlap is. This parameter dictates the overlap above which the smaller
cluster is removed.

Clusters which overlap by more than this value will be removed. Thus, the default setting of 10 means
that clusters that overlap by more than 10 out of 10 records will be removed. Since this is impossible,
this means that setting of 10 will disable cluster overlap filtering, which is most extreme level of
coarseness for this filter. Tuning this parameter down will make the cluster overlap more and more
fine-grained. Thus, a value of 9 will remove only the clusters that greatly overlap; setting it to the
recommended value of 5 will remove only clusters overlapping half-way or so (remember that the
overlap is merely estimated). Setting this parameter to lower values (less than 5) will make overlap
filtering quite sensitive and will remove clusters which overlap even by a small amount. Note that
clusters that do not overlap at all will never be filtered.

Range: Integer, 0-10 (default: 10)

Recommended value: 5

Tuning strategy for clusters

This topic provides guidelines for tuning the clustering parameters.

The guidelines for the clusters tuning strategy include initial values (to be used for the first trial clustering
run) and recommended values. The tuning process will involve changing the parameters from their
initial values toward their recommended values, with certain variation dependent on the properties of
the particular data set and the application needs.

In general, the tuning strategy involves starting with the parameters at a permissive setting and then
gradually decreasing the value. You tune the parameters by observing their impact simultaneously on
the results for several different queries (no query or node 0; broad queries; narrow queries; single-term
query; multi-term query). In other words, you should avoid tuning the parameters based on a specific

query.

The following procedure is intended as a tool for gradual tuning, as it allows you to observe the effect
of changing the parameters on several different queries at once. Use the suggested order, as it maps
to the order in which these parameters impact the clustering algorithm, from upstream to downstream.

1: Number of records sampled from the navigation state
Recommended value: 500
Initial value: 500

Strategy: Start with the parameter set to 500, and increase it if you see that the terms at the bottom
of your related terms list (terms 100-120 or so) are seen in fewer than 3 records.

Note that the recommended value of 500 is for data sets with 20 or more terms tagged onto each
record. Use a higher value for data sets with fewer terms per record. If an average record has only 2
to 3 terms per record, set this value to 2000. A good rule of thumb for this value is: when the 120 most
frequent terms are sampled for clustering, the 120th term should be present in at least 3 records. If it
is present in fewer, this setting should be increased.

Endeca Confidential Endeca® Platform Services Relationship Discovery Guide

32

Configuration Guidelines for Clustering | Tuning strategy for clusters

2: Maximum refinement precision
Recommended value: 0.25
Initial value: 1.0

Strategy: Start with this value set to 1.0 (no precision filtering). Try several different queries and pick
a level of top useful precision that separates useful terms from the frequent but uninformative ones.
Note that, typically, only the values between 0.05 and 0.5 will be useful.

3: Maximum number of terms per cluster
Recommended value: 6 - 8
Initial value: 10

Strategy: Start with a value of 10 to see all the terms that are getting into clusters. Reduce the value
until the clusters are small enough to fit into whatever real estate your Ul provides. Using a value of
2 is not recommended. Note that the cluster coverage (and recall) are reduced when the number of
terms is reduced.

4: Cluster Coherence
Recommended value: 5
Initial value: 5

Strategy: Start with the default value of 5. If you see undesirable cluster splintering (several clusters
that seem to map to the same semantic areas), this value should be decreased; on the other hand, if
the cluster set is missing some semantic areas, this value should be increased. Note that it is acceptable
to have several overlapping clusters remaining after tuning this value, because they will be removed
in the next step.

5: Maximum cluster overlap
Recommended value: 5
Initial value: 10

Strategy: Start with a value of 10, then decrease this parameter until the desired number of overlapping
clusters remains (i.e., in some cases, depending on customer needs, some cluster overlap can be
retained, particularly if the smaller cluster is an especially coherent one).

6: Maximum number of clusters
Recommended value: 6
Initial value: 10

Strategy: Start with a value of 10 to see all the available clusters after all the other settings had been
applied. Reduce this number if you still see more clusters than permitted by the available Ul space.

Endeca® Platform Services Relationship Discovery Guide Endeca Confidential

Chapter 4
Creating a Term Discovery Application

This section describes how to create and configure a Relationship Discovery application.

Term Discovery application workflow

This section gives an overview of the major tasks in building a Term Discovery application.
The general steps in building the application are:

1. Create and configure the appropriate Endeca properties and dimensions for term extraction and
clustering, such as the record specifier property, the all-terms property, and the Term Discovery
dimension.

Create the record adapters for the term extraction pipeline.
Create the Java manipulator that performs the term extraction.
Add other pipeline components.

Run the pipeline.

akrown

Note that this section does not describe how to modify the front-end of the application. That information
is in Chapter 5, "Building the Front End of the Term Discovery Application.”

Configuring the required dimension and properties

The Endeca dimension and properties needed by the Relationship Discovery components must be
created and configured.

The tasks are:

» Designate an Endeca property to be the record specifier property for the application.
» Configure the Term Discovery dimension.

 Configure the all-terms property.

« Create a partial-match search interface.

These tasks are described in the following topics.

Designating the record specifier property

One of the Endeca properties must be designated as the record specifier property.

34

Creating a Term Discovery Application | Configuring the required dimension and properties

This task assumes that an Endeca property already exists that can qualify to be the record specifier
property. The property must meet the following requirements:

< Each record must have this property.
» Each record should be assigned exactly one value for this property.
» The value for this property on each record must be unique.

Keep in mind that only one property in the project may be designated as the record specifier property.

You must designate a record specifier property because the RECORD_SPEC_PROP_NAME
pass-through (for the term extraction Java manipulator) needs to use this property for record
identification purposes.

To designate a record specifier property:

In the Project tab of Developer Studio, double-click Properties.

From the Properties view, select a property and click Edit. The Property editor is displayed.
In the General tab, check Use for Record Spec.

Click OK. The Properties view is redisplayed.

From the File menu, choose Save.

a s wbd ke

Configuring the Term Discovery dimension

An Endeca dimension must be configured as the Term Discovery dimension.

The extracted terms are mapped to an Endeca dimension, called a Term Discovery dimension. The
Term Discovery dimension must have these two attributes:

* It must be a flat dimension (that is, a dimension that does not contain hierarchies).
* It must not be a hidden dimension.

To configure the Term Discovery dimension:

1.
2.
3.

Endeca® Platform Services

In the Project tab of Developer Studio, double-click Dimensions.
Create a dimension to be the Term Discovery dimension.
In the Dimensions editor, configure the Term Discovery dimension, using the following recommended

values (DR refers to the Dynamic Ranking tab):
Tab/Field

none/Name

none/ID

none/Member of this dimension group
none/Refinements sort order

General/Prepare sort offline

General/Hidden

General/Show with record list
General/Language

Search/Search hierarchy for dimension search
Search/Enable record search

Search/Search hierarchy for record search

Relationship Discovery Guide

Recommended Value

any valid dimension name
system generated

None

Alpha

Checked

Unchecked

as required by the application
Either Default, English, or French
Checked

Checked

Unchecked

Endeca Confidential

Creating a Term Discovery Application | Configuring the required dimension and properties 35

Tab/Field

Search/Enable wildcard search
Advanced/Primary

Advanced/Enable for rollup
Advanced/Compute refinement statistics
Advanced/Collapsible dimension threshold
Advanced/Multiselect

DR/Enable dynamic ranking
DR/Maximum dimension values to return
DR/Sort dimension values

DR/Generate "More..." dimension value

Cluster Discovery/all fields

4. When finished, click OK.
5. From the File menu, choose Save.

Recommended Value

as required by the application
Unchecked

Unchecked

as required by the application
leave text field empty

Either None or And (do not select Or)
Checked

10

Alphabetically

Unchecked

See Chapter 3 ("Configuration Guidelines
for Clustering").

The resulting Dimension editor should look similar to this example:

Dimension: Terms

Marne: jing

I Terms I 2

Member of this dimension group:

I [Mone]

Refinements sort arder:

[

I Alpha

General | Search | Advanced | Dynamic Ranking | Cluster Discovery |

[Shaow with record list
[v Showe with record

[¥ Prepare sort offine
[Hidden

Language:
I English

[

[

? Heb |

[o |

Cancel

Configuring the all-terms property

The purpose of the all-terms property is for users to perform record searches against the extracted
terms, in order to increase recall.

The ALL_TERMS_OUTPUT_PROP_NAME pass-through is used to create the property value. The
property should then be mapped to an Endeca property, with a name of your choosing.

To configure the all-terms property:

1.

In the Project tab of Developer Studio, double-click Properties.

Endeca Confidential

Endeca® Platform Services Relationship Discovery Guide

36 Creating a Term Discovery Application | Configuring the required dimension and properties

2. Create a property to be the all-terms property.
3. Configure the property, using the following recommended configuration values:

Option Description

none/Name any valid property name
none/Type Alpha

General/Prepare sort offline Checked

General/Rollup Unchecked

General/Enable for record filters as required by the application
General/Use for record spec Unchecked

General/Show with record list as required by the application
General/Show with record as required by the application
General/Language Either Default, English, or French
Search/Enable record search Checked

Search/Enable positional indexing Checked

Search/Enable wildcard search as required by the application

4. When finished, click OK.
5. From the File menu, choose Save.

Keep in mind that the all-terms property uses a form of the string sep as a separator between the
terms. For example, the string sepsep may be the separator. It is recommended that you add this
separator to the stop word list. (Note that this is the application’s stop word list, not the term exclude
list.)

Creating a partial-match search interface
You can create a search interface for the all-terms property.

Although not required, it is a good idea that you create a search interface for the all-terms property.
The MatchPartial search mode should be configured for the interface, thus allowing matches on subsets
of queries.

To create a partial-match search interface:

1. In the Project tab of Developer Studio, double-click Search Interfaces.

2. To begin creating the search interface, click New.

3. In the main dialog of the New Search Interface editor, enter a name for the interface.

4. In the Allow Cross-field drop-down, select Always.

5. From the All (searchable) members panel, select the all-terms property and add it to the Selected
members box.

6. Click the Relevance Ranking Modules button and add the NTerms (Number of Terms) module.

7. Click the Options button to open the Search Interface Options editor. In the editor, configure the
following recommended values:
Field Recommended Value
Customize partial match settings Checked

Endeca® Platform Services Relationship Discovery Guide Endeca Confidential

Creating a Term Discovery Application | Creating the Term Discovery pipeline 37

Field Recommended Value
Match at least ... words 2
Omit at most ... words 0

8. Save the configured interface.

The following is an example of a partial-match search interface named clustersPartial that was created
for the all-terms property named P_AllITerms.

Search Interface : clustersPartial x|

Marme: Allowe cross-field matches:
Iu:lustersF'artiaI | Alwiays ;I

Al (searchable) members: Selected members:

Ay Cateqory P alTerms
E'P_alTerms
Eo'SearchableText
AyTerms

E5 Title

Add = | Edit... | Remove | Ll Ll

Relevance Ranking Modules... | Options. ..

® Help | oK, I Caricel |

Creating the Term Discovery pipeline

This section describes how to create and configure a Term Discovery pipeline using Developer Studio.

The pipeline is used for baseline updates. For instructions on creating a pipeline for partial updates,
see the "Partial Updates for Term Extraction" topic in Chapter 6.

The goal of this section is to describe the pipeline components that are specific to Term Discovery, in
particular, the Java manipulator. Therefore, components that are common to all pipelines (dimension
server, property mapper, indexer adapter, and so on) are omitted for simplicity.

The pipeline for your specific implementation such as a record manipulator to pre-process records,
and perhaps another one to post-process the records. For example, if you are crawling a Web site,
you will probably include a record manipulator to strip the records of HTML code before the terms are
extracted from the records.

The high-level overview of the procedure to construct a Term Discovery pipeline using Developer
Studio is:

1. Create a record adapter to read the source records.
2. Create a record adapter to read in the exclude list.

3. Optionally, create a record manipulator with an ID_LANGUAGE expression that identifies the
language of the records.

4. Optionally, create other components to pre-process the incoming records.
5. Create a Java manipulator to perform the term extraction process.

Endeca Confidential Endeca® Platform Services Relationship Discovery Guide

38 Creating a Term Discovery Application | Creating the Term Discovery pipeline

6. Create a property mapper to map source properties to Endeca properties and dimensions.

7. Create an indexer adapter. Because there is nothing unique about an indexer adapter for a Term
Discovery pipeline, the process of creating this component is not described in this guide.

Here is how the sample Term Discovery pipeline looks in the Developer Studio Pipeline Diagram.

‘" Pipeline Diagram

Ci Mew _||3 Edilt |IZ| Dalatal B algn _| 4 arrange

s

H : H
LoadExcludelist 8caa LoadA)IviainData

fm
ldentifyLang

& s
TermEutractor - CleanBody

k)

- Dimensions

DimensionSerar

Components: @ SelectediD

Creating the record adapter for source records

The pipeline needs at least one record adapter to read in the source records.

The actual configuration of the record adapter depends on the data format of the source data. However,
the record adapter does not need any special configuration for a Term Discovery pipeline, because
the term extraction process begins after the source records are read in.

The General tab is configured as shown in the illustration below. The other tabs have the default
settings. The Developer Studio on-line help includes detailed information on how to create and configure
the record adapter.

The record adapter for the sample pipeline uses an XML format and looks like this:

Endeca® Platform Services Relationship Discovery Guide Endeca Confidential

Creating a Term Discovery Application | Creating the Term Discovery pipeline 39

Record Adapter : LoadData x|

Marne:

I LoadalmMainData

General | Sources | Record Index | Transformer | Pass 4 | >|

|7Directi0n7 Farmat:
@ Input & Output I

WL =]
URL:

I . fincormning,/product, xml.gz

— Delirmiters
R Calurnn Recard:
— Java properties
Java horne:
Clazs:
Class path:
Encoding: [Require data [Multi file
[Filter empty [Maintain
properties state

’—I_ Custorn compression level

® Help | oK I Cancel |

Creating the record adapter for the exclude list
If you are using an exclude list, the pipeline needs a record adapter to read in the list.

The exclude list contains a set of terms that will be removed from the final list of extracted terms.
Excludes are compared against the canonical and all raw forms of a term; if it matches any, the term
will be excluded. This is equivalent to canonicalizing the exclude term.

The excluded terms can be stored in any source file that can be read by a record adapter. For example,
the terms can reside in a database and be read with a JDBC record adapter. The sample reference
uses a text file that is read in with a Delimited record adapter.

The exclude list should be stored in the Forge input directory (that is, the directory where the source
record data set is stored). If you are using the Endeca Application Controller, the Incoming
Directory (as provisioned in Endeca Workbench for the Forge component) is the mandatory location
for the exclude list.

The format rules for the excluded terms list are as follows:

« One (and only one) header must be used.
* The header name can be any name. The sample reference uses EXCLUDE as the header name.

Endeca Confidential Endeca® Platform Services Relationship Discovery Guide

40 Creating a Term Discovery Application | Creating the Term Discovery pipeline

« If you are using a Delimited record adapter, each excluded term must be delineated by the column
and row delineators that are configured in the record adapter.

» The exclude list is case insensitive.

« Apostrophes can be included as necessary. For example, enter i ”m if you want that term to be
excluded.

The list is processed after all terms have been extracted from the records.

In this brief example, the names of the weekdays will be excluded from the list of extracted terms:

EXCLUDE
Monday
Tuesday
Wednesday
Thursday
Friday
Saturday
Sunday

The excluded terms list is read in by its own record adapter. The record adapter in the sample pipeline
uses a Delimited format, and is identical to the source data record adapter, except for the name and
URL path, as shown in this partial illustration of the adapter:

Record Adapter : LoadExcludel x|

fame:

I LoadExciudelist

General | Sources | Record Index | Transformer | Pass 4 I 'l

Directiotn—— Farmat:
’7(5' Input ¢ Output IDeIimited LI
LRL:

I . Sincorningfesxciudelist. bt

Delirniters
R Colurmin Record:
[\ [t |

Adding pre-processing components
You can add pipeline components that pre-process incoming records.

Although it is not mandatory, you may need to add one or more pipeline components that pre-process
the incoming records before they are passed on to the Java manipulator for term extraction. The
sample pipeline uses a record manipulator, named CleanBody, to remove HTML coding from incoming
HTML documents. This data cleansing is necessary so that the term extractor does not extract HTML
tags.

The CleanBody record manipulator is used as the record source for the Java manipulator described
in the next section. The record manipulator produces a property named body which is used as the
source property for the TEXT_PROP_NAME pass-through in the Java manipulator.

The CleanBody record manipulator is described in Appendix A.

Endeca® Platform Services Relationship Discovery Guide Endeca Confidential

Creating a Term Discovery Application | Creating the Term Discovery pipeline 41

Configuring the Java manipulator

A Java manipulator must be configured for the term extraction class.

A Java manipulator component uses one or more Java modules to manipulate source records as part
of Forge's data processing. You can use multiple Java manipulators in the pipeline.

The Java manipulator in a Term Discovery pipeline typically performs these major term extraction
tasks:

 Extracts terms (noun phrases) from source records.

« Filters out unwanted terms (based on the exclude list).

 Calculates per-record scores for the terms.

» Performs corpus-level filtering, which determines how informative a term is in respect to the other
records in the corpus.

The configuration attributes of a Java manipulator are described below.

Creating the Java manipulator
You use Developer Studio to create and configure a Java manipulator.
To create a Java manipulator:

1. From the Pipeline Diagram in Developer Studio, click New.

2. Select Java Manipulator. The New Java Manipulator editor is displayed.

3. In the Name field, enter a hame. The name must be unique among the pipeline components.

4. Fill in the appropriate fields on the General, Sources, and Pass Throughs tabs. See the following
sections for details on these tabs.

5. Optionally, you can use the Comment tab to enter description or other comment about this
component.
6. Click Ok.

Configuring the General tab
Use the General tab to configure these Java property attributes:

» Java home. Optional. Specifies the location of the Java runtime engine (JRE). If this attribute is
not specified, Forge tries to obtain the location by using the following sequence:

1. The argument to the Forge —-javaHome flag.

2. The ENDECA_ROOT/j2sdk directory, which is installed as part of the Endeca Platform Services
package.
3. The JAVA_HOME environment variable.

» Class. Mandatory. Specifies the name of the Java class that will be used by this Java manipulator.
Use this class for term extraction:

com.endeca.edf.termextractor.TermExtractor

 Class path. Mandatory. Specifies the absolute or relative path to the JAR file that contains the
class specified by the Class attribute. The JAR file must contain the class and all other classes it
depends on. The following example points to the location of the termextractor . jar (which
contains the TermExtractor class):

/endeca/PlatformServices/6.0.3/1ib/java/te/termextractor. jar

The following is an example of the General tab:

Endeca Confidential Endeca® Platform Services Relationship Discovery Guide

42 Creating a Term Discovery Application | Creating the Term Discovery pipeline

Java Manipulator : TermExtractor E|

Mame:
‘ TermExtractor

General | Sources | Pass Throughs | Comment

Java properties

Java home:

Class:

| com.endeca.edf ter mextractor, Ter mExtractor

Class path:
| formServices/5.0.1/lib/javafteftermextractor. jar

% Help (4 | Cancel

Configuring the Sources tab

Use the Sources tab to specify which other component in the pipeline is providing records to this Java
manipulator. You can specify multiple record sources.

A Java manipulator used for term extraction typically uses two record sources: one for the source
records and the other for the exclude list. If two record source inputs are configured, the first input is
used for source records and the second is for the exclude list.

/ Note: Make sure that the record sources are configured in the proper order, with the source

' record source being first. If they are reversed, the TermExtractor class in the Java manipulator
will throw an exception and the Forge process will fail. Developer Studio arranges the sources
in alphabetical order; therefore, you may have to rename them so that they are displayed in the
correct order.

In the following example, the CleanBody record manipulator is considered to be the record data source
while the LoadExcludeList source is the exclude list.

Endeca® Platform Services Relationship Discovery Guide Endeca Confidential

Creating a Term Discovery Application | Creating the Term Discovery pipeline 43

Java Manipulator : TermExtractor E|

Mame:
‘ TermExtractor

General Sources | Pass Throughs | Comment

Record sources:

CIEanBDdY Remove
LoadExcludelist

| CleanBody j add
% Help (4 | Cancel ‘

Configuring the Pass Throughs tab

The Pass Throughs tab is used to send configuration-specific information to the Java classes being
executed by the Java manipulator. Descriptions of the pass-through name/value pairs for the Java
classes are provided in the "Configuration Guidelines for Term Extraction" section.

To add a pass-through name/value pair:

In the Java Manipulator editor, click the Pass Throughs tab
In the Name field, enter the name of the pass-through.

In the Value field, enter the value for the named pass-through.
Click Add.

Repeat steps 2-4 as necessary.

Click Ok.

o gk wNE

The following is an example of a populated Pass Throughs tab:

Endeca Confidential Endeca® Platform Services Relationship Discovery Guide

44

Creating a Term Discovery Application | Creating the Term Discovery pipeline

Java Manipulator : TermExtractor ;%] il

Marne:

I TermExtractor

Zeneral | Sources Pass Throughs | Cornrment |

RECORD SPEC PROP MNAME = Itermn ID
TEXT_PROP_MAME = hody

QUTPUT_PROP_MAME = P_Terms
ALL_TERMS_OUTPUT_PROP_MAME = P_AITerms
CORPUS_MIN_RECS = 4

CORPUS_MIMN_INFO_GAIM = .25
RECORD_FRACZT_OF_MEDIAM = 1.1

UPDATE_MODE = STATEFLIL

CORPUS REGENP KEEP = ~odAlnurmtModanumt,, =

Marme: Yalue:

Add | Moclify | Remove |
® Help | oK I Cancel |

Configuring other components

The Term Discovery pipeline will have other components that are common to all pipelines.

Among these other components are a property mapper. When configuring the property mapper, you
must map the property specified in the OUTPUT_PROP_NAME pass-through to the Term Discovery
dimension and the ALL_ TERMS_OUTPUT_PROP_NAME property to an Endeca property, such as

P_AllTerms.

The configurations of other components, such as an indexer adapter, are not described in this guide
because there are no requirements that are specific to a Term Discovery pipeline. For more information
on pipeline components, see the Platform Services Forge Guide.

Running the Term Discovery pipeline

You can run the pipeline with either the Endeca Application Controller (EAC) or control scripts.

Baseline updates for Term Discovery applications are supported under the Endeca Application
Controller. No special configuration is needed for Term Discovery applications. See the Endeca
Workbench Administrator's Guide for details on provisioning your application to Endeca Workbench
and uploading the instance configuration from Developer Studio to Endeca Workbench (this makes
the application known to the EAC Central Server.)

For information on using control scripts with term extraction pipelines, see the Endeca Control System
Guide.

Endeca® Platform Services Relationship Discovery Guide Endeca Confidential

Chapter 5

Building the Front End of the Term
Discovery Application

This section provides information on how to change your front-end application to display terms and
clusters.

Files to be changed

You can modify existing JSP files and add a new file.

The examples are based on the following JSP files that are shipped with the endeca_ jspref reference
implementation:

e constants. jsp

e controller_jsp

e nav_controls.jsp

In addition, a new nav_clusters. jsp file is provided in Appendix A as an example of rendering
clusters.

Adding global constants

The constants. jsp file sets global variables that can be used in any other page in the application.

It is a good practice to add global variables for handling the displaying of the terms dimension and the
clusters. Doing so will allow you to easily change display characteristics in one central file.

The following Java code is an example of a section that can be added to the constants.jsp file:

// Dimension name of the Term Discovery dimension.
// Make it null if you do NOT want term processing.
private static final String relTermsDimName = ""Terms";

//Display name of the Term Discovery dimension.
private static final String relTermsDisplayString = "Term Discovery";

//The rootld of the Term Discovery dimension.
//Nake it -1 if you do NOT want terms processing.
private static final long relTermsRootld = 2;

46

Building the Front End of the Term Discovery Application | Setting refinements in the controller file

// Handling for the all-terms property.
// lgnored if String is null.
private static final String P_AllTerms = "P_AllTerms";

// if true, a More... link shows after the term"s short list.
// Should be false in production.
private static final boolean showTermsMore = false;

// If true, TD dimension and property show in record display
// Should be false in production.
private static final boolean showTermsinRecord = false;

The code sets up the following variables. These constants will be used in most of the JSP pages listed
above.

Global Variable Purpose

relTermsDimName Sets the name of the Endeca dimension for Term Discovery.

relTermsDisplayString Sets the name that will be displayed in application pages for the Term
Discovery dimension.

relTermsRootld Sets the root ID of the Term Discovery dimension.

P_AllTerms Sets the name of the Endeca property that contains all the terms.

showRelTermsMore Sets whether a More... link is shown for terms.

Setting refinements in the controller file

The controller. jsp module is the entry point into the Endeca application.

The controller file receives the browser request from the application server, formulates the query, and
sends the query to the MDEX Engine.

The following code should be added to the controller . jsp file:

if (relTermsRootld >= 0 && usq.containsNavQuery()
&& request.getParameter('Ne') == null) {
DimvalldList dvl = new DimvValldList();
dvl.addDimValueld(relTermsRootld);
usq.setNaveExposedRefinements(dvl);

}
The code can be added after the ENEQuery object named usq is created.
The code first tests that three conditions are true:

* The relTermsRootld global variable is set to a value greater than 0.

* The ENEQuery .containsNavQuery () method determines that the current query is a navigation
query.

» The request does not include the Ne URL parameter, which determines which dimension navigation
refinements are exposed.

If all three conditions are true, then the code performs three actions:

1. Creates an empty DimVal IdList object.

2. Usesthe DimValldList._addDimValueld() method to add the ID of the Term Discovery
dimension to the list.

Endeca® Platform Services Relationship Discovery Guide Endeca Confidential

Building the Front End of the Term Discovery Application | Displaying refinements a7

3. Uses the ENEQuery.setNavExposedRefinements() method to set the refinements that are
exposed/returned with the navigation query.

In step 3, the dimension ID of the Term Discovery dimension is given as the argument, which means
that this dimension will be the parent of the refinements that should be returned with the query. The
returned refinements will be the terms.

Displaying refinements

The terms in a Term Discovery dimension are returned as dimension value refinements.

These refinements are displayed according to the coding in the nav_controls. jsp file. Because a
number of changes are required to handle the Term Discovery refinements, the modified file is included
in Appendix A.

Displaying clusters

The information for each cluster is returned from the MDEX Engine in a Supplement object that
accompanies the result of a navigation query.

The Supplement objects are encapsulated in a SupplementList object.

Cluster properties
Each cluster (Supplement object) contains a PropertyMap object.

The PropertyMap object in turn contains the following cluster-related properties (as key/value pairs):

Key Name Value

Dgraph.SeeAlsoCluster The name of the Term Discovery dimension from which this cluster
was generated.

ClusterRank The zero-based rank of this cluster (O for the first cluster, 1 for the
second cluster, and so on).

NTerms A number indicating the number of terms in this cluster.

Term_i (where 1is 0, 1 ... The term at rank | within this cluster. Note that there will be as many

NTerms-1) Term_i entries as there are terms in the cluster.

JSP code for displaying clusters
You can add a new nav_clusters. jsp file for rendering clusters.

Appendix A of this guide includes a new nav_clusters. jsp file that can be used as a template for
rendering cluster contents. This file should be included at the end of the nav_controls. jsp file.
Note that it is recommended that you display clusters only if there are two or more.

The highlights of this file are as follows:

Endeca Confidential Endeca® Platform Services Relationship Discovery Guide

48 Building the Front End of the Term Discovery Application | Displaying clusters

1. Get all the Supplement objects from the Navigation object, which will be encapsulated in a
SupplementList object (note that the list can also include non-cluster Supp lement objects):

SupplementList navsups = nav.getSupplements();

2. Within a For loop (labeled supLoop), get a Supp lement object and then get that object’s properties:

Supplement sup = (Supplement)navsups.get(l);
PropertyMap propsMap = sup.getProperties();

3. Get the value of the Dgraph.SeeAlsoCluster property:
String clustersPropName = (String)propsMap.get('DGraph.SeeAlsoCluster™);

4. Test the value returned from the Dgraph.SeeAlsoCluster property. If it is null, then this Sup—
plement object is not a cluster and we should loop back to step 2; if the value is non-null, then
this is a cluster and we continue to step 5:

it (clustersPropName != null)

5. If this is the first discovered cluster, then the clustersOn variable will be set to false. Therefore,
first display the Cluster Discovery header and then set the clustersOn variable to true (so that
the header will not be displayed again):

if (IclustersOn) {
// display title

clustersOn = true;

}

6. Getthe ranking (ClusterRank property) of the cluster and the number of terms (NTerms property)
it contains. The returned string values are then transformed to integers:

String rankString = (String)propsMap.get('ClusterRank™);
String nTermsString = (String)propsMap.-get("'NTerms™);
int rank;
int nTerms;
try {

rank = Integer.parselnt(rankString);

nTerms = Integer.parselnt(nTermsString);

}

7. Within a For loop, retrieve the terms from the NTerms property and format them by separating
them with commas and spaces. The list of terms will then be:

StringBuffer termsSB = new StringBuffer();
StringBuffer termsSBSpace = new StringBuffer();
for (int iTerm 0; iTerm < nTerms; ++iTerm) {
String term (String)propsMap.get("'Term _"+iTerm);
ifT (termsSB.length() !'= 0) {
termsSB.append(**, ');
termsSBSpace.append(** ") ;

termsSB.append(term);

termsSBSpace.append("* ") .append(term) .append(""");

}

8. For a given cluster, begin to create a Ur IENEQuery request (using the current request), in case
the user wants to click on that cluster. Also get the current navigation searches (as an ERecSearch-
List) to determine if the cluster selection is already active in the searches.

UrlENEQuery newqg = new UrlENEQuery(request.getQueryString(), " UTF-8");
ERecSearchList searches = newq.getNavERecSearches();

Endeca® Platform Services Relationship Discovery Guide Endeca Confidential

Building the Front End of the Term Discovery Application | Displaying clusters 49

9. Create a new search (an ERecSearch object), using the clusterPartial search interface as
the search key, the list of related terms (in the clusterSpace variable) as the terms for the search,
and mode matchpartial as the search option (which specifies MatchPartial as the search mode).

ERecSearch newSearch = new ERecSearch(‘'clustersPartial™,
clusterSpace, "mode matchpartial™);

10. Test whether the current navigation searches are null or do not contain the new search (from step
9). If the test is true, then the new search can be added to the Ur IENEQuery request; if it is false,
do not add the new search because the cluster selection is already active.

if (searches == null || !searches.contains(newSearch)) {

searches.add(newSearch);
newq .- setNavERecSearches(searches);

}

11. Loop back to step 2 to get another Supplement object. The loop is done when all the objects in
the SupplementList have been retrieved.

12. Display the clusters, which are stored as a list of strings in the clusterStrings variable. The
clusterUrls variable is a list of the cluster URLS:

for (int I = 0; I < clusterStrings.size(); ++1) {
%><tr><td></td>
<td width="100%">
> <a href="<%= clusterUrls.get(l) %>">

<%= clusterStrings.get(l) %>
</td></tr><%

}

The following is an abbreviated example of the JSP reference implementation showing the clusters
rendered by the nav_clusters. jsp file. Clicking on a cluster link will execute the partial match
query built by steps 8-10.

A ENDECA - 15P Reference Implementation with Term - 10| x|
Fle Edit Wiew Favorites Tools Help | a';' |
Unted States A
United States -
Univerat 1 Adalbert_of Prague
Tithe: Adalbert_of_Prague _I
= powver, king, government, Empire, ©AtE00ry: 356 births
United States century, Battle Categnry: 997 desths
Church Category: Bohemian nobility
= gite, island, water, South, towen Category: Christian martyrs
computer, study, design Category: History of Hungatr
= Endlizh, playver, Emperar, writer Catagory: Hi#?" F'f Pruzzia
actor, fim, director, French Category: religion in Pragus

= zection, software, applications Category: Roman Cathalic bishaps
philozophy . soience, Valley, miles Category: Roman Cathalic missionaries

= Swward, character, wife, novel Category: Saints
= gong, television, radio, code
Pariz, album 2 M

Title: Ahhat

b, o
4 »

Endeca Confidential Endeca® Platform Services Relationship Discovery Guide

50 Building the Front End of the Term Discovery Application | Displaying records and dimension refinements

Clustering overlap properties
Clustering overlap information is also returned by the MDEX Engine.

The PropertyMap object (in the cluster Supplement) also includes the following set of properties
that provide clustering overlap information.

Key Name Value

Dgraph.SeeAlsoClusterOverlaps | The name of the Term Discovery dimension from which this cluster
was generated.

NClusters A number indicating the number of clusters that were returned by
the MDEX Engine.

Cluster_i (where lis 0, 1, ... The cluster overlap numbers for a given cluster. Note that the cluster

NClusters-1) number (the | value) corresponds to the ClusterRank value in the

DGraph.SeeAlsoCluster object.

These properties provide a square matrix that has the cluster overlap numbers. In the matrix, number
(1, J) isthe estimated number of records (from the records sampled from the navigation states)
that are covered by both cluster | and cluster j.

Note that from the definition it follows that diagonal numbers (1, 1) have the estimated number of records
covered by each particular cluster. These diagonal numbers tend to decrease, because of the way
that the Cluster Discovery software sorts clusters (by decreasing estimated coverage).

This information can be used in application-specific ways, for example, by an application page that
presents a graphical depiction of the clusters.

Displaying records and dimension refinements

Records and refinements from a Term Discovery dimension are displayed like other dimensions.

There is no difference in displaying refinement dimension values from a Term Discovery dimension
than from regular dimensions. Information on displaying refinements is found in the Endeca Basic
Development Guide, in the chapter titled “Working with Dimensions.”

Likewise, the process of displaying Endeca records generated from Term Discovery refinements is
the same as with any Endeca record. For details, see the chapter titled “Working with Endeca Records”
in the Endeca Basic Development Guide.

Endeca® Platform Services Relationship Discovery Guide Endeca Confidential

Chapter 6
Term Discovery Advanced Topics

This section discusses advanced topics for Term Discovery applications.

Partial updates for term extraction

Partial updates can be performed in Term Discovery implementations.

As with other types of implementations, performing partial updates in a Term Discovery implementation
requires a second pipeline that includes an update adapter. Full details on constructing partial update
pipelines are in the Endeca Partial Updates Guide. This section will describe in detail only those parts
that are unique to the term extraction pipeline.

Term extraction prerequisites for partial updates

Term Discovery implementations have additional requirements for partial updates.

The Endeca Partial Updates Guide describes the requirements for the baseline and partial update
pipelines. The following additional prerequisites apply to a Term Discovery application performing
partial updates:

In the baseline pipeline, the Java manipulator must have an UPDATE_MODE pass-through with
the STATEFUL setting.

In the partial update pipeline, the Java manipulator must have an UPDATE_MODE pass-through
with the PARTIAL setting.

Both pipelines must use the same name for their Java manipulators. The reason is that the baseline
pipeline (with the STATEFUL setting) produces state files whose names are derived from the name
of the Java manipulator. The partial update Java manipulator, in turn, also uses its name to look
for the term state files produced by the baseline Java manipulator. Thus, both names must be
identical.

The partial update pipeline does not perform corpus-level filtering. Therefore, you do not have to
add corpus filtering pass-throughs to the Java manipulator.

The Java manipulator pass-throughs should be the same in both pipelines (other than the corpus
filtering and UPDATE_MODE pass-throughs).

The sample partial update pipeline, shown below, is used to illustrate the various components:

52

Term Discovery Advanced Topics | Partial updates for term extraction

¥ partial Pipeline Diagram o =] B
Ci Mew ,l & Edit | = Delete | B alion _| & Arrange |
- B |
LoadalUpdateData LogdE:cludelist

B i, Pl

--------------- Dimensions

........ git

R TermExtractor | [0 ————————— .

.............................. DimensionServer

Record adapters for partial updates

The partial update pipeline also has a source record adapter and an exclude record adapter.

The record adapter for the incoming source records is configured the same as the source adapter for
the baseline pipeline. The configuration for this record adapter is described in the topic "Creating the
record adapter for source records", in the section "Creating the Term Discovery pipeline" of Chapter

4.

The record adapter for the exclude list (which is optional) is also identical to the one described in the
topic "Creating the record adapter for the exclude list". Note that the same exclude list is being used
as the one in the baseline pipeline.

Java manipulator for partial updates

A Java manipulator for term extraction is also used in the partial update pipeline.

The Java manipulator in the sample partial update pipeline is identical to the one in the baseline
pipeline, with the exceptions previously noted. In particular, make sure of the following:

« The name of this Java manipulator must be the same as the one in the baseline pipeline.
 This Java manipulator must have an UPDATE_MODE pass-through with the PARTIAL setting.

The Pass Throughs tab of the Java manipulator should look similar to this example:

Endeca® Platform Services Relationship Discovery Guide Endeca Confidential

Term Discovery Advanced Topics | Term filtering with pre-tagged records 53

Java Manipulator : TermExtractor E|

Mame:
‘ TermExtractor

General | Sources Pass Throughs | Comment

RECORD_SPEC_PROP_MAME = P_\WinelD
TEXT_PROFP_MNAME = P_Description
OUTPUT_PROP_MAME = P_Terms
ALL_TERMS_QUTPUT_PROP_MAME = P_allTerms
RECORD_TERM_FILTER_TOP_K = 20
UPDATE_MODE = PARTIAL

Marne: Yalue:

Add ‘ Modify | Remove ‘

% Help (4 | Cancel ‘

Term filtering with pre-tagged records

The Term Discovery software can apply filtering to documents that have already been tagged.

The use case described in this scenario involves a corpus in which the documents are tagged with
pre-existing terms that were generated and maintained by an external process (i.e., not by the Endeca
term extraction software). The goal is to apply corpus-level and record-level filtering to these terms,
just as though they had been identified as candidates by the term extractor itself.

There are three variations of this use case:

* Filtering only of pre-tagged terms: No new terms are extracted from the records, but you want
filtering to be performed on the pre-tagged terms.

« Uniform filtering on both sets of terms: The term extractor extracts new terms and combines them
with the pre-tagged terms. The same filters are applied to both sets of terms equally.

« Filtering only one of the sets of terms: New terms are extracted from the records by the Endeca
term extractor. Only the newly-extracted terms are filtered, but the pre-tagged terms are not. After
filtering, both sets of terms are combined into one output property and tagged on the records.

A . .
9 Important: In all cases, the pre-tagged source property must contain only one term as its value.
Any given record can have multiple instances of this property.

Creating the instance implementation

The back-end implementation for pre-tagged records varies according to the use case.

Endeca Confidential Endeca® Platform Services Relationship Discovery Guide

54

Term Discovery Advanced Topics | Term filtering with pre-tagged records

Creating the instance implementation (pipeline and dimension/property configurations) for these use
cases is very similar to that described in Chapter 4. Only one Java manipulator is needed for each
case and everything should be done in Developer Studio.

To create the instance implementation for pre-tagged records:

1. In Developer Studio, configure the record specifier property. You can also create an all-terms
property if you wish.

2. Configure the related terms dimension, including the clustering parameters.
3. Inthe Pipeline Diagram, create a record adapter for the source data.

4. Optionally, you can use an exclude list to ensure that unwanted terms are excluded. If so, create
a record adapter for the exclude list. (Note that an exclude list can be used with pre-existing terms.)

5. Create and configure the Java manipulator, using the configuration values in the tables in the
following three sections. Note that you can also configure the ALL_ TERMS_OUTPUT_PROP_NAME
and the UPDATE_MODE pass-throughs, according to the application’s needs.

6. Inthe property mapper component, map the OUTPUT_PROP_NAME property to the related terms
dimension that you created in step 2. If you created an all-terms property, map that also.

You then run the instance implementation in an Endeca Application Controller environment, as described
in the "Running the Term Discovery pipeline" topic in Chapter 4.

The next topics describe the configuration settings for the Java manipulator pass-throughs.

Filtering only pre-existing terms

This use case assumes that the source records have already been tagged with terms.

In this use case, you want to perform corpus- and/or record-level filtering on these pre-tagged terms.
However, you do not want the term extractor to extract any more terms from the records.

The Java manipulator that will perform filtering on the pre-tagged terms should have the following
configuration values for the pass-throughs:

PASS THROUGH Element | Configuration Value
RECORD_SPEC PROP_NAME | Set to the name of the record specifier property.

TEXT_PROP_NAME Set to the name of a non-existent property, so that no new terms are
extracted.

INPUT_TERM_PROP_NAME | Set it to the name of the source property containing the pre-tagged
terms.

OUTPUT_PROP_NAME Set it to the name of the property that is the destination for the
pre-existing terms on the Endeca record.

corpus-level pass-throughs As required by the application. For details, see the "Configuration for
corpus-level filtering" topic in Chapter 2.

record-level pass-throughs As required by the application. For details, see the "Configuration for
record-level filtering" topic in Chapter 2.

Endeca® Platform Services Relationship Discovery Guide Endeca Confidential

Term Discovery Advanced Topics | Term filtering with pre-tagged records 55

Filtering both sets of terms uniformly

This use case assumes that you want to perform term extraction on a data set that already has
pre-tagged terms.

In this use case, you want to combine both sets of terms and have the same filtering applied to them.

The Java manipulator that will perform uniform filtering on both sets of terms should have the following
configuration values for the pass-throughs:

PASS THROUGH Element | Configuration Value
RECORD_SPEC_PROP_NAME | Set to the name of the record specifier property.

TEXT_PROP_NAME Set to the name of the source text property from which new terms will
be extracted.

INPUT_TERM_PROP_NAME | Set to the name of the source property containing the pre-tagged
terms.

OUTPUT_PROP_NAME Set to the name of the property that is the destination for both
newly-tagged terms and pre-existing terms.

corpus-level pass-throughs As required by the application. For details, see the "Configuration for
corpus-level filtering" topic in Chapter 2.

record-level pass-throughs As required by the application. For details, see the "Configuration for
record-level filtering" topic in Chapter 2.

When the term extractor runs, both newly-extracted terms and pre-tagged terms are output to the
same OUTPUT_PROP_NAME property. As a result, the same corpus- and record-filtering is applied
to all terms.

Filtering only the new terms

This use case assumes that new terms are extracted from the records by the Endeca term extractor,
but are not immediately combined with the pre-tagged terms.

In this use case, the newly-extracted terms are not combined at first with the pre-tagged terms. Instead,
only the newly-extracted terms are filtered, and the pre-tagged terms are not. After filtering, both sets
of terms are combined into one output property and tagged on the Endeca records.

The Java manipulator that will perform this type of filtering should have the following configuration
values for the pass-throughs:

PASS_THROUGH Element | Configuration Value
RECORD_SPEC _PROP_NAME | Set to the name of the record specifier property.

TEXT_PROP_NAME Set to the name of the source text property from which new terms will
be extracted.

OUTPUT_PROP_NAME Set to the name of the source property containing the pre-tagged
terms. That is, the destination for the new terms will be the same
property as the pre-existing terms.

corpus-level pass-throughs As required by the application. For details, see the "Configuration for
corpus-level filtering" topic in Chapter 2.

Endeca Confidential Endeca® Platform Services Relationship Discovery Guide

56

Term Discovery Advanced Topics | Tuning aids for the filtering parameters

PASS THROUGH Element | Configuration Value

record-level pass-throughs As required by the application. For details, see the "Configuration for
record-level filtering" topic in Chapter 2.

Note that the INPUT_TERM_PROP_NAME pass-through is not used. As a result, the pre-existing
terms are not filtered, but are used as-is.

When the term extractor runs, only the newly-extracted terms are filtered with the corpus- and
record-level pass-throughs. The filtered terms are then output to the OUTPUT_PROP_NAME property,
which is the name of the property with the pre-existing terms. As a result, the same corpus- and
record-filtering is applied to all terms. Note that if duplicate values are created for the
OUTPUT_PROP_NAME property, they are removed by the property mapper.

Tuning aids for the filtering parameters

This section discusses two tuning aids that will help you when you are tuning the parameters for the
corpus- and record-level pass-throughs.

The two tuning aids are:

e STATEFUL update mode
« Corpus-verbose logs

Using STATEFUL mode for tuning

You can use STATEFUL mode to tune the values you set for the corpus-level and record-level
pass-throughs in the Java manipulator.

Before you begin, make sure the baseline pipeline has the UPDATE_MODE pass-through set to
STATEFUL mode.

The general procedure for using STATEFUL mode for tuning is:

Generate a baseline update, index the records, and start the MDEX Engine.

Run searches against the P_AllTerms property and check the quality of the clusters.
Adjust the corpus-level and/or record-level parameters.

Add a MAX_INPUT_RECORDS pass-through set to 0 (zero) to the Java manipulator.

Generate another baseline update. The update will be much faster because no terms will be
extracted. However, a full corpus- and record-level filtering operation will be performed.

6. Repeat the above steps (except step 4) until you are satisfied with the results.

a s wbdpRE

When you finish, be sure to remove the MAX_INPUT_RECORDS pass-through so all your source
records will be processed.

Using corpus-filtering logging statistics

The CORPUS_DEBUG pass-through is helpful for generating debugging information.

The CORPUS_DEBUG pass-through enables the term extractor to log detailed information about the
scores it assigns to terms. Temporarily setting this pass-through will help you to tune corpus-level
filtering.

Endeca® Platform Services Relationship Discovery Guide Endeca Confidential

Term Discovery Advanced Topics | Examining the term extractor logs 57

The log entries contain four fields of information:

Log Entry Information
term The term (noun phrase) that was extracted and filtered.
count The number of documents in which this term occurs at least once. You can use

the RECORD_NTERMS pass-through to set a limit on the number of documents
in which a term can occur.

coverage The coverage score, which is a percentage of all the corpus documents in which
this term was found. You can use the CORPUS_MIN_COVERAGE and
CORPUS_MAX_ COVERAGE pass-throughs to adjust the percentage.

info_gain the info_gain score, which is a measure of the global informativeness of the term.
The CORPUS_MIN_INFO_GAIN and CORPUS_MAX_INFO_GAIN pass-throughs
will affect this score.

An example of a term log entry is:
term: airport count: 60 coverage: 0.04 info_gain: 1.614589

In this example, the term ai rport was found in 60 documents, which is 0.04 (4%) of the
1500-document corpus, and a global informativeness score of 1.614589 was given to the term.

Examining the term extractor logs

This section provides an overview of the term extractor logs.

In addition to the logs, the section also describes how to control the size of the JVM heap (based on
errors in the logs) and information on the state files produced by the term extractor.

Term extractor logs
The term extractor writes its log entries to the Forge log.
The term extractor log entries are of these default types:

* INFO
* WARN
* ERROR

INFO entries are log messages that indicate information that may be of interest to the user; for example,
what the component is doing.

WARN entries are warning messages that indicate that processing will continue, but that problems may
exist with the source data or the instance configuration. For example, if a noun phrase contains more
than five tokens, a warning message similar to this one will warn you that the noun phrase is too long:

While processing Record "52755": Overlong noun phrase ending
in "tannic Shiraz showing spicy oak flavors®

ERROR messages indicate serious problems that prevent successful processing of the source data.
For example, providing an invalid pass-through to the Java manipulator will result in an error like this:
(AdapterRunner): Bad value for option UPDATE MODE: PARTAL

com.endeca.edf.adapter _AdapterException: Bad value for option UPDATE_MODE:
PARTAL

Endeca Confidential Endeca® Platform Services Relationship Discovery Guide

58 Term Discovery Advanced Topics | Examining the term extractor logs

at com.endeca.edf.termextractor.TermExtractor.configure(TermExtractor. ja-
va:1805)

at com.endeca.edf.termextractor.TermExtractor.execute(TermExtractor. ja-
va:1644)

at com.endeca.edf.adapter.AdapterRunner.main(AdapterRunner. java:204)

In this example, the user incorrectly entered "PARTAL" (instead of "PARTIAL") for the UPDATE_MODE
pass-through. As a result, an AdapterException was thrown by the Java manipulator.

If you are using the Endeca Application Controller, you can view the Forge log from the EAC Admin
Console page in Endeca Workbench.

The Java manipulator also creates a log using this naming format:
Edf.Pipeline.RecordPipeline.JavaManipulator. jmname. log

where jmname is the name of the Java manipulator. The contents of this log are essentially the same
as the term extractor entries in the Forge log. This log serves as a backup log in case of a problem
with Forge. Note that this log cannot be viewed from Endeca Workbench.

Increasing the JVM heap size

You can increase the size of the JVM heap to fix out-of-memory errors.

The Java manipulator runs under the control of the JVM (Java virtual machine) on your computer. If
the Java manipulator requires a large amount of memory, it is possible that the JVM will begin to throw
OutOfMemoryError instances when attempting to instantiate objects. The following ERROR log entry
is an example:

Exception in thread "main™ java.lang.Error: Error was thrown at record:
13352
at com.endeca.edf.termextractor.TermExtractor
$ExtractifiedRecordHandlerSource.produceNextEr
(TermExtractor. java:711)

at com.endeca.edf.adapter.AdapterRunner._main
(AdapterRunner . java:221)
Caused by: java.lang.OutOfMemoryError: Java heap space

As the final line of the log entry indicates, the problem was caused because the Java heap space is
too small.

Java has options that help control how much memory it uses:

e —Xmx sets the maximum memory heap size.
e —Xms sets the minimum memory heap size.

The default size for these values is measured in bytes. Append the letter K (or k) to the value to indicate
kilobytes, M (or m) to indicate megabytes, and G (or g) to indicate gigabytes.

You then use the Forge —--javaArgument flag to pass in the JVM heap size setting to Forge, as in
this example that sets the JVM heap size to a maximum of one gigabyte:

—-—javaArgument -Xmx1G

Make sure that the heap size is not larger than the available free RAM on your system.

Note that if you want to pass in multiple Java options, you must use a separate -—javaArgument
flag for each option.

Endeca® Platform Services Relationship Discovery Guide Endeca Confidential

Term Discovery Advanced Topics | Examining the term extractor logs 59

Location of term extraction state files

When run in STATEFUL mode, the term extractor produces several state files that are required to
support partial updates.

The term extractor state files are stored in directories that use this format:

j mane_cs

j mane_ers

where jmname is the name of the Java manipulator that produced the state file.

For example, if MyTermExtractor is the name of the Java manipulator, then one of the resulting state
file will be:

MyTermExtractor_cs

Two other files are also created (one level above the state directories) with the following name format:
j mane_rtss

j mane_ers.count

By using the name of the Java manipulator as part of the state files and directories, multiple term
extraction components can be used in the pipeline without the problem of one state file overwriting
another component’s state files.

All term extraction state files are written to the default state directory of Forge. On the EAC Admin
Console page (in Endeca Workbench), you can specify another location for the state directory of Forge.

Endeca Confidential Endeca® Platform Services Relationship Discovery Guide

Appendix A
Term Discovery Sample Files

This appendix section contains two JSP files for the Ul and a sample record manipulator.

Modified nav_controls.jsp file

This sample nav_controls. jsp file is used for the Relationship Discovery Ul.

The following nav_controls. jsp file has been modified to display refinements from the Terms
Discovery dimension. Added or modified code is highlighted in bold face.

DESCRIPTION:

This module displays basic, standard navigation controls. It

is mainly used for debugging purposes and as a starting point for
no-frills navigation solutions. It only displays refinement dimensions,
so this module should be used in conjunction with nav_breadcrumbs.

Copyright (C) 2008 by Endeca Technologies - COMPANY CONFIDENTIAL

<table border="0" cellspacing="0" cellpadding="0" width="100%"">
<tr><td colspan="2" bgcolor="orange"><font face="arial" size=2 col-
or="white'">
 nav_controls:</td></tr>
<tr><td colspan="2"></td></tr>
<%
// Get refinement dimension groups
DimGroupList refDimensionGroups = nav.getRefinementDimGroups();
// Get descriptor dimensions
DimensionList descDimensionsNC = nav.getDescriptorDimensions();
// Output message if no refinement options left
if (refDimensionGroups.size() == 0) {
%>
<tr><td colspan="2">
<i>No Additional Query
Parameters Available</i></td></tr>
<%

// Output message if no refinement options have been made
else if (descDimensionsNC.size() == 0) {
%>
<tr><td colspan="2">
<i>Query Parameters:</i></td></tr>
<tr><td colspan="2"></td></tr>

62 Term Discovery Sample Files | Modified nav_controls.jsp file

<%

// Header if additional query parameters available
else {
%>
<tr><td colspan="2">
<i>Additional Query Parameters:</i></td></tr>
<tr><td colspan="2"></td></tr>
<%

// Loop over dimension groups
for (int i=0; i<refDimensionGroups.size(); i++) {
// Get dimension group object
DimGroup dg = (DimGroup)refDimensionGroups.get(i);
// 1T group is explicit (nhot default group), display group
if (dg-iskExplicit()) {
%>
<tr><td colspan="2"></td></tr>
<tr><td colspan="2">
<%= dg-getName() %></td></tr>
<%

// Loop over dimensions in group
for (int j=0; j<dg.size(Q; j++) {
// Get dimension object
Dimension dim = (Dimension)dg.get(J);
// Get root for dimension
DimvVal root = dim.getRoot();
// Get id of root
long rootld = root.getld();
// special handling for Term Discovery dimension
final boolean isRelTerms = dim.getName() .equals(relTermsDimName);
// Get refinement list for dimension
DimValList refs = dim.getRefinements();
// Create request to expose dimension values
UrlGen urlg = new UrlGen(request.getQueryString(), "UTF-8");
urlg.removeParam(*'D™");
urlg.removeParam(*'Dx'");
urlg.removeParam(*'sid");
urlg.removeParam(*'in_dym'™);
urlg.removeParam(*'in_dim_search');
urlg.addParam(*'sid", (String)request.getAttribute(''sid™));
// Expand dimension
iT (TisRelTerms && refs.size() == 0) {
urlg.addParam(*'Ne",Long.toString(rootld)+
(relTermsRootld>= 0? " "+Long.toString(relTermsRootld):""""));

// Close dimension
else {
urlg.removeParam(*'Ne'™);

String url = CONTROLLER+"?"+urlg;
// Display dimension (open row here, close later)
it (TisRelTerms) {
%>
<tr><td colspan="2"><a href="<%= url %>">

<%= dim.getName() %>

else {
%>

Endeca® Platform Services Relationship Discovery Guide Endeca Confidential

Term Discovery Sample Files | Modified nav_controls.jsp file 63

<tr><td colspan="2" bgcolor="orange">

 <%=relTermsDisplayString %></td></tr>
<%

}

// Get intermediate list for dimension
DimValList ints = dim.getintermediates();
// Loop over intermediate list
for (int k=0; k < ints.size(); k++) {
// Get intermediate dimension value
Dimval intermediate = ints.getDimValue(k);
// Display intermediate
%><fFont Face="arial" size="2" color="#444444"> >
<%= intermediate.getName() %><%

// Close nav row

Y%></td></tr><%

String refinementsColor = "blue";

Set activeDiscTerms = new HashSet();

if (isRelTerms) {
String ntk = (String)request.getParameter("'Ntk')
String ntx = (String)request.getParameter ("'Ntx')
if (ntk = null && ntk.equals(P_AllTerms) &&

"mode matchall*_equals(ntx))

String discTerm = (String)request.getParameter("'Ntt');
if (discTerm !'= null) {
if (discTerm.length() >= 3 &&
discTerm.charAt(0) == """ &&
discTerm.charAt(discTerm.length()-1) == *"")

// remove quotes
discTerm = discTerm.substring(l, discTerm.length()-1);

activeDiscTerms.add(discTerm);

}
3} 3/ if (isRelTerms)

%><%

// Loop over refinement list

for (int k=0; k < refs.size(); k++) {
// Get refinement dimension value
DimVal ref = refs.getDimvValue(k);
// Get properties for refinement value
PropertyMap pmap = ref.getProperties();
// Get dynamic stats

String dstats = "'';
if (pmap.get('DGraph.Bins™) 1= null) {
dstats = " (“+pmap.get("DGraph.Bins™)+")";

%><%
// Create request to select refinement value
urlg = new UrlGen(request.getQueryString(), "UTF-8");
boolean displayRefinement=true;
ifT (isRelTerms &&
(Tref_getName() .equals(*'More...") || !showRelTermsMore))

iT (ref.getName().equals(*'More...") ||
ENEQueryToolkit.islmplicitRefinement(dim, ref) ||

Endeca Confidential Endeca® Platform Services Relationship Discovery Guide

64 Term Discovery Sample Files | Modified nav_controls.jsp file

activeDiscTerms.contains(ref.getName()))
displayRefinement = false;

else {
urlg.addParam(*'"Ntk",P_AllTerms);
urlg.addParam('Ntt",""\"""+ref_getName () +"\'""");
urlg.addParam(*'Ntx","mode matchall');
urlg.removeParam(*'No™);
urlg.removeParam(*'Nao");
urlg.removeParam(*'Nty'");
urlg.removeParam(‘''D");
urlg.removeParam(*'Dx");
urlg.removeParam(*'sid");
urlg.removeParam(*'in_dym'™);
urlg.removeParam(*'in_dim_search');
urlg.addParam(*'sid", (String)request.getAttribute('sid™));
url = CONTROLLER+"?"+urlg;

%><%
} else {
// 1f refinement is navigable, change the Navigation parameter
if (ref.isNavigable()) {
urlg.addParam(*'N",
(ENEQueryToolkit.selectRefinement(hav,ref)).toString());
urlg.addParam(*'Ne",Long-toString(rootld)+
(relTermsRootld>= 0? " "+Long.toString(relTermsRootld):"""));

// 1T refinement is non-navigable, change only the
// exposed dimension parameter
// (Leave the Navigation parameter as is)
else {
urlg.addParam(*'Ne",Long.toString(ref._.getld())+
(relTermsRootld>= 0? " "+Long.toString(relTermsRootld):""""));

urlg.removeParam(*'No™) ;

urlg.removeParam(*'Nao') ;

urlg.removeParam(*'Nty™);

urlg.removeParam(*'D™");

urlg.removeParam(*'Dx');

urlg.removeParam(*'sid");

urlg.removeParam(*'in_dym™);
urlg.removeParam(*'in_dim_search');

urlg.addParam(*'sid", (String)request.getAttribute('sid™));
url = CONTROLLER+"?"+urlg;

// Display refinement
if (displayRefinement) {
%>
<tr><td></td>
<td width="100%"><a href="<%= url %>">
<font face="arial" size="1" color="<%=refinementsColor%>">
<%= ref.getName() %>
<%= dstats %>
</td></tr>
<%

} /7 end of: Loop over refinement list
} /7 end of: Loop over dimensions in group
// 1T group is explicit (not default group), display spacer
if (dg.isExplicit()) {

Endeca® Platform Services Relationship Discovery Guide Endeca Confidential

Term Discovery Sample Files | New nav_clusters.jsp file 65

%>
<tr><td colspan="2"></td></tr>
<%

}

} /7 end of: Loop over dimension groups

%>

<tr><td colspan="2"></td></tr>
</table>

<%-- Display Clusters Controls --%>
<%@ include Ffile=""nav_clusters.jsp" %>

<%-- Display Range Filter Controls --%>
<%@ include file="nav_range_controls.jsp"™ %>

New nav_clusters.jsp file

This nav_clusters. jsp sample file is used to render clusters that are generated by the Cluster
Discovery feature.

This file should be included in the nav_controls. jsp file.

DESCRIPTION:

This module demonstrates the Cluster Discovery feature.

It displays clusters received as Supplemental Objects, makes them
selectable, and, upon selection, generates a search based on

the selected clusters.

This module is included in the nav_controls.jsp module.
Copyright (C) 2008 by Endeca Technologies - COMPANY CONFIDENTIAL

<%

// Get supplemental list

SupplementList navsups = nav.getSupplements();
boolean clustersOn = false;

// lazily allocated:
List<String> clusterUrls = null;
List<String> clusterStrings = null;

// Loop over cluster supplemental objects
suplLoop:
for (int 1 = 0; 1 < navsups.size(); ++i) {
// Get individual see also object
Supplement sup = (Supplement)navsups.get(i);
// Get property map
PropertyMap propsMap = sup.getProperties();

String clustersPropName = (String)propsMap.get('DGraph.SeeAlsoCluster™);

ifT (clustersPropName != null) {
if (IclustersOn) {
// display title
%>
<table border="0" cellspacing="0" cellpadding="0" width=""100%">

Endeca Confidential Endeca® Platform Services Relationship Discovery Guide

66 Term Discovery Sample Files | New nav_clusters.jsp file

<tr><td colspan="5" bgcolor="orange">

Cluster Discovery</td></tr>
<tr><td colspan="5"></td></tr>
<%
clustersOn = true;
} 7/ end of if IclustersOn
String rankString = (String)propsMap.get('ClusterRank™);
String nTermsString = (String)propsMap.get("'NTerms'™);
int rank;
int nTerms;
try {
rank = Integer.parselnt(rankString);
nTerms = Integer.parselnt(nTermsString);
} catch (NumberFormatException e) {
// add code here to log error
continue suplLoop;
} 7/ end of catch

StringBuffer termsSB = new StringBuffer();
StringBuffer termsSBSpace = new StringBuffer();
for (int iTerm = 0; iTerm < nTerms; ++iTerm) {
String term = (String)propsMap.get("'Term "+iTerm);
it (term == null) {
// add code to log error
continue suplLoop;
} 7/ end of if termsSB.length
termsSB.append(term);
termsSBSpace.append(""") .append(term) .append(""");
} 7/ end of for terms
String clusterX = termsSB.toString();
String clusterSpace = termsSBSpace.toString();
// Create request to follow a cluster selection
// (unless cluster selection already active in the searches)
UrlENEQuery newqg = new UrlENEQuery(request.getQueryString(), "UTF-8");

ERecSearchList searches = newq.getNavERecSearches();
ERecSearch newSearch = new ERecSearch(‘'clustersPartial™,
ERecSearch newSearch = new ERecSearch(‘'clustersPartial™,

if (searches == null || !searches.contains(newSearch)) {
it (searches == null)
searches = new ERecSearchList();
if (clusterUrls == null) {
clusterUrls = new ArrayList<String>(Q);
clusterStrings = new ArrayList<String>();
} 7/ end of if clusterUrls
searches.add(newSearch);
newq - setNavERecSearches(searches);
UrlGen hostportq = new UrlGen(", "UTF-8");
hostportq.addParam(*'eneHost",
(String)request.getAttribute(''eneHost™));
hostportq.addParam(‘'enePort",
(String)request.getAttribute(‘'enePort™));
String url = CONTROLLER + *"?' + hostportq.toString() +
"&" + UrlENEQuery.toQueryString(newq, ""UTF-8');
clusterUrls.add(url);
clusterStrings.add(clusterX);
} 7/ end of if searches
} 7/ end of if clusterPropName != null
} /7 end of if clusterPropName != null

Endeca® Platform Services Relationship Discovery Guide Endeca Confidential

Term Discovery Sample Files | Sample record manipulator for HTML documents 67

ifT (clusterStrings != null && clusterStrings.size() > 1) {
// display clusters only if at least 2.
for (int i1 = 0; 1 < clusterStrings.size(); ++i) {
%>
<tr><td></td>
<td width="100%">
> <a href="<%= clusterUrls.get(i) %>'>

<%= clusterStrings.get(i) %>
</td></tr>
<%
} 7/ end of for clusterStrings
} 7/ end of if clusterStrings

if (clustersoOn) {
// close table
%>
<tr><td colspan="2"></td></tr>
</table>
<%
} /77 end of if clusterOn

Sample record manipulator for HTML documents

This sample record manipulator cleans HTML documents.

This sample record manipulator, named CleanBody, uses several expressions (including PERL and
PARSE_DOC) to remove HTML coding from incoming HTML documents. This cleansing is necessary
so that the term extractor can extract terms that do not include HTML tags.

The logic behind cleaning the body text is as follows:

Create a property called body_ missing.

If a property named body exists, remove the property named body_missing.
Create a property named body .mimetype with value "text/html".

Create a property named body . encoding with value "utf8".

Run the PARSE_DOC expression from body[- *] to create a property named text.
Remove all the body[- *] properties.

Rename the text property to body.

NoookrowdhrE

The resulting body property is then used as the source property for the TEXT_PROP_NAME
pass-through for the Java manipulator.

Code for the sample record manipulator

<RECORD_MANIPULATOR FRC_PVAL_IDX="TRUE"™ NAME="CleanBody"'>
<COMMENT>Provides expressions to clean HTML body text.</COMMENT>
<RECORD_SOURCE>LoadAl IMainData</RECORD_SOURCE>
<EXPRESSION LABEL=""" NAME="CREATE"™ TYPE='"VOID" URL=""">
<EXPRNODE NAME="'PROP_NAME" VALUE="body.missing"/>
<EXPRESSION LABEL="*"" NAME="CONST' TYPE="'STRING"™ URL="""'>
EXPRNODE NAME="VALUE" VALUE="true"/>
</EXPRESSION>
</EXPRESSION>
<EXPRESSION LABEL=""" NAME="I1F" TYPE="VOID" URL=""">

Endeca Confidential Endeca® Platform Services Relationship Discovery Guide

68 Term Discovery Sample Files | Sample record manipulator for HTML documents

<EXPRESSION LABEL=""" NAME="PROP_EXISTS"™ TYPE="INTEGER" URL=""'>
<EXPRNODE NAME="'PROP_NAME" VALUE="body"/>
</EXPRESSION>
<EXPRESSION LABEL=""" NAME="REMOVE' TYPE="VOID" URL=""'>
<EXPRNODE NAME="'PROP_NAME" VALUE="body.missing"/>
</EXPRESSION>
</EXPRESSION>
<EXPRESSION LABEL=""" NAME="IF" TYPE="VOID" URL=""'>
<EXPRESSION LABEL=""" NAME="'PROP_EXISTS"™ TYPE="INTEGER" URL=""'>
<EXPRNODE NAME="'PROP_NAME" VALUE="body.missing"/>
</EXPRESSION>
<EXPRESSION LABEL=""" NAME="CREATE' TYPE="VOID" URL=""'>
<EXPRNODE NAME="'PROP_NAME" VALUE="body"/>
<EXPRESSION LABEL=""" NAME="IDENTITY" TYPE="PROPERTY" URL=""">
<EXPRNODE NAME="'PROP_NAME" VALUE=""l1p"/>
</EXPRESSION>
</EXPRESSION>
</EXPRESSION>
<EXPRESSION LABEL=""" NAME="CREATE' TYPE="VOID" URL=""'>
<EXPRNODE NAME="'PROP_NAME" VALUE="'body.mimetype"/>
<EXPRESSION LABEL=""" NAME="CONST" TYPE="STRING"™ URL=""">
<EXPRNODE NAME="'VALUE"™ VALUE=""text/html"/>
</EXPRESSION>
</EXPRESSION>
<EXPRESSION LABEL=""" NAME="CREATE' TYPE="VOID" URL=""'>
<EXPRNODE NAME="'PROP_NAME" VALUE="'body.encoding"/>
<EXPRESSION LABEL=""" NAME="CONST" TYPE="STRING"™ URL=""">
<EXPRNODE NAME="'VALUE" VALUE="'utf8"/>
</EXPRESSION>
</EXPRESSION>

<EXPRESSION LABEL=""*" NAME="PERL' TYPE="VOID" URL=""'>
<EXPRBODY>

<I[CDATA[my @bodies = get_props_by name("'body');

foreach my $body (@bodies) {
my $value = $body->value;
Replace HTML block elements with end-of-sentence punctuation.
$value =~
s/<\/?(?:H[123456 D - [OUIL) | (2:LD | ?:DILDTD 1 (?:PRE) | (?:DIV)]
(?:NOSCRIPT) | (?:BLOCKQUOTE) | (?:FORM) | (?:TABLE) | (?:TH) | (2:TD) | (?:HR) |
(?:FIELDSET) | (?:ADDRESS)>/. /g;
$body->value($value);

}
replace_props('body™, @bodies);]]>
</EXPRBODY>
</EXPRESS 10N>
<EXPRESSION LABEL=""" NAME="PARSE_DOC" TYPE="VOID" URL=""'>
<EXPRNODE NAME="FILE_PATH" VALUE="'FALSE"/>
<EXPRNODE NAME="'PARSE_META" VALUE="'FALSE"/>
<EXPRNODE NAME="MIMETYPE_PROP'" VALUE="body.mimetype"'/>
<EXPRNODE NAME="'ENCODING_PROP'" VALUE="body.encoding"/>
<EXPRNODE NAME="'BODY_PROP" VALUE="body"'/>
<EXPRNODE NAME=""TEXT_PROP" VALUE=""text"/>
</EXPRESSION>
<EXPRESSION LABEL=""*" NAME="REMOVE'" TYPE='"VOID" URL=""">
<EXPRNODE NAME="'PROP_NAME" VALUE="body"'/>
<EXPRNODE NAME="'PROP_NAME" VALUE="body.missing"/>
<EXPRNODE NAME="'PROP_NAME' VALUE="'body.mimetype'/>
<EXPRNODE NAME=""PROP_NAME" VALUE="body.encoding"/>
</EXPRESSION>
<EXPRESSION LABEL=""" NAME="RENAME" TYPE="VOID" URL=""">

Endeca® Platform Services Relationship Discovery Guide Endeca Confidential

Term Discovery Sample Files | Sample record manipulator for HTML documents

<EXPRNODE NAME="'OLD_NAME™"™ VALUE=""text'/>
<EXPRNODE NAME="*NEW_NAME" VALUE="body"''/>
</EXPRESSION>

<EXPRESSION LABEL=""" NAME="PERL' TYPE="VOID" URL=""'>
<EXPRBODY>
<I[CDATA[my @bodies = get_props_by name(body");
foreach my $body (@bodies) {
my $value = $body->value;
Move filing date to a separate property
if ($value =~ s/Filed at (.*)//) {
my $Filed = $1;
add_props(new Zinc::PropVal("filed", $filed));

Remove leading newlines
$value =~ s/~(?:\r?\n)+//;
Remove byline
$value =~ s/~([a-zA-Z,. 1+ \([A-Z]+\)) ?-- ?//;
Add sentence endings to things that look like lists
$value =~ s/([*-DC:\r2\n)+([0-9])/%1. \n$2/g;
$body->value($value);
}
replace props(‘'body", @bodies);]]>
</EXPRBODY>
</EXPRESSION>
</RECORD_MANIPULATOR>

69

Endeca Confidential Endeca® Platform Services Relationship Discovery Guide

Index

A

ALL_TERMS_OUTPUT_PROP_NAME pass-through
definition 16
used for all-terms property 35

all-terms property, creating 35

B

baseline updates, mode for 14
best practices for term filtering 24

C

clusters

configuration parameters 29

configuring in Developer Studio 29

JSP code for rendering 47

overlap properties 50

overview 11

properties in Supplement objects 47

tuning strategy 31
constants.jsp file

adding global constants 45

setting refinements 46
CORPUS_DEBUG pass-through

used for tuning 56, 57
CORPUS_MAX_COVERAGE pass-through

recommended setting 24
CORPUS_MAX_INFO_GAIN pass-through

recommended setting 25
CORPUS_MAX_RECS pass-through

recommended setting 24
CORPUS_MIN_COVERAGE pass-through

definition 19

recommended setting 24
CORPUS_MIN_INFO_GAIN pass-through

definition 20

recommended setting 25
CORPUS_MIN_RECS pass-through

definition 19

recommended setting 24
CORPUS_REGEX_KEEP pass-through

definition 20

recommended setting 25
CORPUS_REGEX_SKIP pass-through

definition 20

recommended setting 25
corpus-level filtering

best practices 24

configuration parameters 18

for new terms only 55

for pre-tagged and extracted terms 55

corpus-level filtering (continued)
for pre-tagged terms 54
coverage score for terms 57

D

debugging the term extraction process 57
destination property for tagged terms 14
dimension for Term Discovery, creating 34

E

Endeca Cluster Discovery, overview of 11
Endeca Relationship Discovery, overview of 9
Endeca Term Discovery, overview of 10
exclude list for term extraction 39

F

filtering applied to pre-tagged records 53
format of source data 26

G

global constants for the front-end application 45
global informativeness of terms, threshold for 20
global language ID for documents, setting 17

H

HTML documents, sample record manipulator for 67

info_gain score for terms 20, 57
INPUT_TERM_PROP_NAME pass-through
definition 17
filtering pre-tagged records 54, 55

J

Java manipulator
configuring for baseline pipeline 41
configuring for partial update pipeline 52
increasing JVM heap size 58
logs 58

JSP code for rendering clusters 47

JVM heap size, increasing 58

Index

L

LANG pass-through
definition 17
LANG_PROP_NAME pass-through
definition 18
logs
Java manipulator 58
term extractor 57

M

MAX_INPUT_RECORDS pass-through
definition 15
minimal configuration for term extraction 25

N

nav_clusters.jsp sample file 65
nav_controls.jsp sample file 61
noun phrases, size of 10

O

OUTPUT_PROP_NAME pass-through
definition 14
overlap properties for clusters 50

P

PARSE_DOC expression 67

PARTIAL mode definition 15

partial updates for Term Discovery
Java manipulator 52
mode setting 15
record adapters 52
requirements 51

partial-match search interface, creating 36

pass-throughs for term extraction
ALL_TERMS_OUTPUT_PROP_NAME 16
CORPUS_MAX_COVERAGE 19
CORPUS_MIN_COVERAGE 19
CORPUS_MIN_INFO_GAIN 20
CORPUS_MIN_RECS 19
CORPUS_REGEX_KEEP 20
CORPUS_REGEX_SKIP 20
INPUT_TERM_PROP_NAME 17
LANG 17
LANG_PROP_NAME 18
MAX_INPUT_RECORDS 15
minimal configuration 25
OUTPUT_PROP_NAME 14
RECORD_FRACT_OF_MEDIAN 21
RECORD_NTERMS 22
RECORD_SPEC_PROP_NAME 14
TEXT_PROP_NAME 16
UPDATE_MODE 14

72

pipeline for Term Discovery
baseline updates 37
exclude list record adapter 39
Java manipulator 41
partial updates 51
pre-processing records 40
running 44
source record adapters 38

pre-tagged records for Term Discovery
corpus-level and record-level filtering 54
creating instance implementation 54
filtering for new terms only 55
filtering for pre-tagged and extracted terms 55
use cases 53

R

record adapters

baseline pipeline 38

exclude list 39

partial update pipeline 52
record manipulator for HTML documents, sample 67
record specifier property, specifying 34
RECORD_FRACT_OF_MEDIAN pass-through

definition 21

recommended setting 25
RECORD_NTERMS pass-through

definition 22

recommended setting 25
RECORD_SPEC_PROP_NAME pass-through

setting in Developer Studio 14
record-level filtering

best practices 25

configuration parameters 21

for new terms only 55

for pre-tagged and extracted terms 55

for pre-tagged terms 54

setting scoring threshold 21
refinements

displaying in a Term Discovery dimension 50

displaying in nav_controls.jsp 47

setting in controller file 46
regular expressions for term extraction 20
relevant terms, definition of 11
restricting input records for term extraction 15

S

scoring threshold for record-level filtering, setting 21
search interface for Term Discovery application, creating
36
search property for all extracted terms 16
singlet terms, eliminating 19
source property for term extraction 16
state files, term extraction 59
STATEFUL mode

definition 15

for tuning filtering pass-throughs 56
STATELESS mode for baseline updates 14

Endeca® Platform Services

strategies to limit terms on records 22
Supplement objects for clusters 47

T

Term Discovery application
all-terms property 35
exclude list record adapter 39
global constants for Ul 45
Java manipulator 41
overview 33
partial-match search interface 36
pre-processing records 40
record specifier 34
running the pipeline 44
source record adapter 38
terms dimension 34

Term Discovery dimension
creating 34

Index

Term Discovery dimension (continued)
displaying records 50
displaying refinements 50

term extraction
format of source data 26
minimal configuration 25
overview 10
relevant terms 11
state files 59

terms tagged on records, limiting 22

TEXT_PROP_NAME pass-through
definition 16

tuning strategy for clusters 31

U

Ul for Term Discovery application 45
UPDATE_MODE pass-through
values 14

73

	Contents
	Preface
	About this guide
	Who should use this guide
	Conventions used in this guide
	Contacting Oracle Support

	Introduction to Term Discovery
	Overview of Relationship Discovery
	Overview of Term Discovery
	Overview of Cluster Discovery

	Configuration Guidelines for Term Extraction
	Term extraction workflow
	Configuration for the main term extraction module
	Record specifier property name
	Terms output property
	Update mode
	Maximum number of input records

	Configuration for candidate term identification
	Source input text property
	All-terms destination property
	Input term property
	Language specification of input records

	Configuration for corpus-level filtering
	Minimum and maximum occurrences in records
	Minimum and maximum coverage settings
	Threshold for the global informativeness of terms
	Using regular expressions
	Enabling debugging information for corpus-level filtering

	Configuration for record-level filtering
	Specifying a scoring threshold
	Limiting the number of terms per record

	Best practices for term filtering
	Minimal term extraction configuration
	Format of the source data

	Configuration Guidelines for Clustering
	Configuration UI for clusters
	Clustering parameter descriptions
	Tuning strategy for clusters

	Creating a Term Discovery Application
	Term Discovery application workflow
	Configuring the required dimension and properties
	Designating the record specifier property
	Configuring the Term Discovery dimension
	Configuring the all-terms property
	Creating a partial-match search interface

	Creating the Term Discovery pipeline
	Creating the record adapter for source records
	Creating the record adapter for the exclude list
	Adding pre-processing components
	Configuring the Java manipulator
	Configuring other components
	Running the Term Discovery pipeline

	Building the Front End of the Term Discovery Application
	Files to be changed
	Adding global constants
	Setting refinements in the controller file
	Displaying refinements
	Displaying clusters
	Cluster properties
	JSP code for displaying clusters
	Clustering overlap properties

	Displaying records and dimension refinements

	Term Discovery Advanced Topics
	Partial updates for term extraction
	Term extraction prerequisites for partial updates
	Record adapters for partial updates
	Java manipulator for partial updates

	Term filtering with pre-tagged records
	Creating the instance implementation
	Filtering only pre-existing terms
	Filtering both sets of terms uniformly
	Filtering only the new terms

	Tuning aids for the filtering parameters
	Using STATEFUL mode for tuning
	Using corpus-filtering logging statistics

	Examining the term extractor logs
	Term extractor logs
	Increasing the JVM heap size
	Location of term extraction state files

	Term Discovery Sample Files
	Modified nav_controls.jsp file
	New nav_clusters.jsp file
	Sample record manipulator for HTML documents

	Index

