
Oracle® Endeca Information Discovery

Integrator Server Guide

Version 2.3.0 • April 2012

Copyright and disclaimer
Copyright © 2003, 2012, Oracle and/or its affiliates. All rights reserved.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners. UNIX is a registered trademark of The Open Group.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No
other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It
is not developed or intended for use in any inherently dangerous applications, including applications that may
create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall
be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe
use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software
or hardware in dangerous applications.

This software or hardware and documentation may provide access to or information on content, products and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim
all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and
its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services.

Rosette® Linguistics Platform Copyright © 2000-2011 Basis Technology Corp. All rights reserved.

Teragram Language Identification Software Copyright © 1997-2005 Teragram Corporation. All rights reserved.

Oracle® Endeca Information Discovery: Integrator Server GuideOracle® Endeca Information Discovery: Integrator Server Guide Version 2.3.0 • April 2012

iii

Table of Contents
1. What is CloverETL Server .. 1
2. Installation ... 2

Apache Tomcat .. 2
Jetty ... 4
IBM Websphere ... 6
Glassfish / Sun Java System Application Server ... 8
JBoss .. 9
Possible issues during installation .. 11

3. Graphs on Server Side - Sandboxes .. 15
Referencing files from the graph .. 16
Sandbox Security and Permissions ... 17
Sandbox Content ... 17
Graph config properties .. 21

4. Users and Groups .. 24
LDAP authentication .. 24
Web GUI section Users .. 26
Web GUI section Groups ... 28

5. Scheduling ... 31
Timetable Setting .. 31
Tasks .. 34

6. Graph Event Listeners .. 40
Graph Events .. 40
Listener ... 41
Tasks .. 41
Use cases ... 45

7. JMS messages listeners ... 48
Optional Groovy code .. 49
Message data available for further processing ... 50

8. Universal event listeners ... 52
Groovy code ... 52

9. Manual task execution .. 53
10. File event listeners ... 54

Observed file .. 54
File Events ... 55
Check interval, Task and Use cases .. 56

11. WebDAV ... 57
WebDAV clients ... 57
WebDAV authentication/authorization .. 57

12. Simple HTTP API ... 59
Operation help .. 59
Operation graph_run .. 59
Operation graph_status ... 60
Operation graph_kill .. 61
Operation server_jobs .. 61
Operation sandbox_list ... 61
Operation sandbox_content ... 61
Operation executions_history ... 62
Operation suspend ... 63
Operation resume .. 63

13. JMX mBean .. 65
JMX configuration .. 65
Operations .. 69

14. SOAP WebService API ... 73
SOAP WS Client .. 73
SOAP WS API authentication/authorization ... 73

CloverETL Server

iv

15. Launch Service .. 74
Launch Service Overview ... 74
Deploying Graph in Launch Service ... 75
Designing the Graphs for Launch Service .. 75
Configuring the Graph in CloverETL Server web GUI ... 75
Sending the Data to Launch Service ... 78
Results of the Graph Execution ... 79

16. Configuration .. 81
Config Sources and Their Priorities .. 81
Examples of DB Connection Configuration .. 82

Embedded Apache Derby ... 83
MySQL ... 83
DB2 .. 84
Oracle ... 86
MS SQL .. 86
Postgre SQL ... 87
JNDI DB DataSource ... 87

List of Properties .. 88
17. Graph parameters ... 94

Another sets of parameters according the type of execution ... 94
executed from Web GUI .. 94
executed by Launch Service invocation ... 94
executed by HTTP API run graph operation invocation .. 94
executed by RunGraph component ... 94
executed by WS API method executeGraph invocation .. 95
executed by task "graph execution" by scheduler .. 95
executed by task "graph execution" by graph event listener ... 95
executed by task "graph execution" by file event listener .. 95

How to add another graph parameters ... 96
Additional "Graph Config Parameters" .. 96
Task "execute_graph" parameters ... 96

18. Recommendations for transformations developers .. 97
Add external libraries to app-server classpath ... 97
Another graphs executed by RunGraph component may be executed only in the same JVM instance
... 97

19. Logging .. 98
Main logs .. 98
Graph run logs ... 98

20. Extensibility (Embedded OSGi framework) .. 99
Plugin possibilities .. 99
Deploying an OSGi bundle ... 99

21. Extensibility CloverETL engine plugins ... 100
22. Clustering ... 101

High Availability ... 101
Scalability .. 101

Transformation Requests ... 102
Parallel Data Processing ... 102

Recommendations for Cluster Deployment ... 106
Example of Distributed Execution .. 106

Details of the Example Transformation Design ... 107
Scalability of the Example Transformation ... 109

Cluster configuration .. 111
Mandatory properties .. 111
Optional properties .. 112
Example of 2 node cluster configuration .. 112
Load balancing properties ... 113

1

Chapter 1. What is CloverETL Server
CloverETL Server (CS) is the most recent member of CloverETL products family. It introduces the powerful
Clover tool into the world of enterprise applications. CloverETL Server itself is an enterprise class application,
thus it is shipped as WAR file (WAR stands for Web Archive). CS is tested and works on Apache Tomcat web
container, Sun Glassfish application server or IBM Websphere application server. CloverETL Server is basically
runtime environment for graphs, which brings new possibilities how to integrate Clover with your own software.
Whereas CloverEngine can be integrated only as embedded library, CS implements several interfaces which can be
called by another applications using common protocols like http. In addition, CS implements some optimizations
of threads and memory management.

Table 1.1. CloverETl server and CloverETL engine comparison

 CloverETL Server CloverEngine as executable tool

possibilities of executing
graphs

by calling http (or JMX, etc.) APIs (See
details in Chapter 12, Simple HTTP
API (p. 59).)

by executing external process or by
calling java API

engine initialization during server startup init is called for each graph execution

thread and memory
optimalization

threads recycling, graphs cache, etc. not implemented

scheduling scheduling by timetable, onetime trigger,
logging included

external tools (i.e. Cron) can bes used

statistics each graph execution has its own log file
and result status is stored; each event
triggered by the CS is logged

not implemented

monitoring If graph fails, event listener will be
notified. It may send email, execute
shell command or execute another graph.
See details in Chapter 6, Graph Event
Listeners (p. 40). Additionally server
implements various APIs (HTTP and
JMX) which may be used for monitoring
of server/graphs status.

JMX mBean can be used while graph is
running

storage of graphs and
related files

graphs are stored on server file system in
so called sandboxes

security and authorization
support

CS supports users/groups management,
so each sandbox may have its own
access privileges set. All interfaces
require authentication. See details in
Chapter 3, Graphs on Server Side -
Sandboxes (p. 15).

passwords entered by user may be
encrypted

integration capabilities CS provides APIs which can be called
using common protocols like HTTP. See
details in Chapter 12, Simple HTTP
API (p. 59).

CloverEngine library can be used as
embedded library in client's Java code or it
may be executed as separated OS process
for each graph.

development of graphs CS supports team cooperation above one
project (sandbox). CloverETL Designer
will be integrated with CS in further
versions.

2

Chapter 2. Installation
CloverETL Server is shipped as a Web application archive (WAR file). Use standard methods for deploying a web
application on you application server. Detailed information concerning the installation on a specific application
server can be found in the chapters below.

The default installation (without changes to the configuration) does not need any extra database server. It uses the
embedded Apache Derby DB. What is more, it does not need any subsequent configuration. CloverETL Server
configures itself during the first startup. Database tables and some necessary records are automatically created on
the first startup with an empty database. In the sandboxes section of the web GUI, you can check that there are
sandboxes created with some demo graphs.

After successful installation open you browser and access the following URLs:

CloverETL web GUI - http://[host]:[port]/[contextPath]/gui

CloverETL HTTP API test page - http://[host]:[port]/[contextPath]/index.jsp

List of available installations:

• Apache Tomcat (p. 2)

• Jetty (p. 4)

• IBM Websphere (p. 6)

• Glassfish / Sun Java System Application Server (p. 8)

In case of problems during the installation see Possible issues during installation (p. 11).

Apache Tomcat

Installation of Apache Tomcat

CloverETL Server requires Apache Tomcat version 6.0.x to run.

If you have Apache tomcat already installed, you can move on to the next section.

1. Download the binary distribution from http://tomcat.apache.org/download-60.cgi.

2. After you download the zip file, unpack it.

3. Run Tomcat by [tomcat_home]/bin/startup.sh (or [tomcat_home]/bin/tomcat.exe on
Windows OS).

4. Check whether Tomcat is running on URL: http://localhost:8080/. Apache Tomcat info page should appear.

5. Apache Tomcat is installed.

If in need of detailed installation instructions, go to: http://tomcat.apache.org/tomcat-6.0-doc/setup.html

Installation of CloverETL Server

The installation is by default a very simple task:

http://tomcat.apache.org/download-60.cgi
http://localhost:8080/
http://tomcat.apache.org/tomcat-6.0-doc/setup.html

Chapter 2. Installation

3

1. Download the web archive file (clover.war) containing CloverETL Server for Apache Tomcat.

2. Check if prerequisites are met:

• JDK or JRE version 1.6.x or higher

• JAVA_HOME and JRE_HOME environment variables have to be set.

• Apache Tomcat 6.0.x is installed. CloverETL Server is developed and tested with the Apache Tomcat 6.0.x
container (it may work unpredictable with different versions). See Installation of Apache Tomcat (p. 2)
for details.

• It is strongly recommended to change default limits for the heap and "perm gen" memory spaces.

You can set the minimum and maximum memory heap size by adjusting the "Xms" and "Xmx" JVM
parameters. You can set JVM parameters for Tomcat by setting the environment variable JAVA_OPTS in
the [TOMCAT_HOME]/bin/setenv.sh file (if it does not exist, you may create it). For instance, the
minimum heap size being 128 MB and maximum heap size 1024 MB, type: JAVA_OPTS="-Xms128m
-Xmx1024m". The best limits depend on many conditions, i.e. transformations which CloverETL should
execute. If you have no idea about the memory required for the transformations, a maximum of 1 GB is
recommended.

You can set the maximum limit of "PermGen space" by the JVM parameter "-XX:MaxPermSize=256m". By
default, it is just 64 MB which is not enough for enterprise applications. A suitable memory limit depends
on various criteria, but 256 MB would make a good choice in most cases. If the PermGen space maximum
is too low, "OutOfMemoryError: PermGen space" may occur.

• For performance reasons, it is recommended the application is run in the "server" mode.

Apache Tomcat does not run in the server mode by default. You can set the server mode by setting the "-
server" JVM parameter. You can set the JVM parameter for Tomcat by setting the environment variable
JAVA_OPTS in the [TOMCAT_HOME]/bin/setenv.sh file (if it does not exist, you may create it). That
is: JAVA_OPTS="-server".

3. Copy clover.war (which is built for Tomcat) to [tomcat_home]/webapps directory.

Please note, that copying is not an atomic operation. If Tomcat is running, mind duration of the copying process!
Too long copying might cause failure during deployment as Tomcat tries to deploy incomplete file. Thus move
the file instead, when the Tomcat is running.

4. War file should be detected and deployed automatically without restarting Tomcat.

5. Check whether CloverETL Server is running on URLs:

• Web-app root

http://[host]:[port]/[contextPath]

The default Tomcat port for the http connector is 8080 and the default contextPath for CloverETL Server
is "clover", thus the default URL is:

http://localhost:8080/clover/

• web GUI

http://[host]:[port]/[contextPath]/gui

The default Tomcat port for the http connector is 8080 and the default contextPath for CloverETL Server
is "clover", thus the default URL is:

http://localhost:8080/clover/gui

http://localhost:8080/clover/
http://localhost:8080/clover/gui

Chapter 2. Installation

4

Use default administrator credentials to access the web GUI: user name "clover", password "clover".

Installation of CloverETL Server License

CloverETL Server requires a valid license for executing graphs. You can install CloverETL Server without any
license, but no graph will be executed.

For Tomcat, the license is distributed as a separate web application. It is not necessary to install the license first.
You can first install CloverETL Server and then its license.

1. Download the web archive file clover-license.war

2. Copy clover-license.war to the [tomcat_home]/webapps directory.

3. The war file should be detected and deployed automatically without restarting Tomcat.

4. Check whether the license web-app is in operation on URL:

http://[host]:[port]/clover-license/ (contextPath "clover-license" is mandatory and cannot by changed)

Note

CloverETL license can be changed any time by re-deploying clover-license.war.
Afterwards, you have to let CloverETL Server know the license has changed.

• Go to server web GUI →Monitoring →License

• Click Reload license.

• Alternatively, you can restart the CloverETL Server application.

Warning: Keep in mind that during the WAR file redeployment, directory [tomcat_home]/
webapps/[contextPath] has to be deleted. If the Tomcat is running, it should do it
automatically, but we suggest to check it manually, otherwise changes will not take any effect.

Apache Tomcat on IBM AS/400 (iSeries)

To run CloverETL Server on the iSeries platform, the requirements are:

1. Java 6.0 32-bit

2. Run java with parameter -Djava.awt.headless=true

To configure this you can modify/create a file [tomcat_home]/bin/setenv.sh which contains:

JAVA_HOME=/QOpenSys/QIBM/ProdData/JavaVM/jdk50/32bit

JAVA_OPTS="-Djava.awt.headless=true"

Jetty

Installation of CloverETL Server

1. Download the web archive file (clover.war) containing the CloverETL Server application which is built
for Jetty.

Chapter 2. Installation

5

2. Check if prerequisites are met:

• JDK or JRE version 1.6.x or higher

• Jetty 6.1.x - only this particular version is supported

All jetty-6 releases are available from http://jetty.codehaus.org/jetty/. As of Jetty 7, there have been huge
differences in distribution packages as it is distributed by Eclipse foundation. Jetty 7 is not supported.

3. Copy clover.war to [JETTY_HOME]/webapps.

4. Create a context file clover.xml in [JETTY_HOME]/contexts and fill it with the following lines:

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE Configure PUBLIC "-//Jetty//Configure//EN" "http://www.eclipse.org/jetty/configure.dtd">
<Configure class="org.mortbay.jetty.webapp.WebAppContext">
 <Set name="contextPath">/clover</Set>
 <Set name="war"><SystemProperty name="jetty.home" default="."/>/webapps/clover.war</Set>
</Configure>

clover.xml will be detected by Jetty and the application will be loaded automatically.

5. Run [JETTY_HOME]/bin/jetty.sh start. (or [JETTY_HOME]/bin/Jetty-Service.exe on
windows OS)

You can check if the server is running e.g. on http://localhost:8080/test/.

Installation of CloverETL Server license

In order to execute graphs, CloverETL Server requires a valid license file. Despite that, you can install CloverETL
Server without a license, but no graph will be executed.

1. Get the license.dat file.

2. Set the CloverETL Server license.file parameter to the path to license.dat.

There are more ways how to achieve this. The most direct way is to create an environment or a system
property called clover_license_file (see Chapter 16, Configuration (p. 81) for a description of all
possibilities).

If you are using Linux, follow these instructions:

• Edit [JETTY_HOME]/bin/jetty.sh

• Add a new line:

export clover_license_file=[absolute_path_to_license_file]/license.dat

• Restart Jetty.

Note

CloverETL license can be changed any time by replacing the license.dat file. Afterwards, you
have to let CloverETL Server know the license has changed.

• Go to server web GUI →Monitoring →License

http://jetty.codehaus.org/jetty/
http://localhost:8080/test/

Chapter 2. Installation

6

• Click Reload license.

• Alternatively, you can restart the CloverETL Server application.

IBM Websphere

Installation of CloverETL Server

1. get the web archive file (clover.war) with CloverETL Server application which is built for Websphere

2. check prerequisites

• JDK or JRE version 1.6.x or higher

• IBM Websphere 6.1 or IBM Websphere 7.0 (see http://www.ibm.com/developerworks/downloads/ws/was/)

3. deploy WAR file

• go to Integrated Solutions Console

(http://localhost:9060/ibm/console/)

• go to section Applications →New Application →New Enterprise Application

4. change class loader setting

CloverETL requires different class-loader settings in WebSphere 6 and WebSphere 7. In WebSphere 7, it is
by default Classes loaded with parent class loader first, whereas in WebSphere 6, the default value must be
changed to Classes loaded with application class loader first

• change Applications →Clover →Manage Modules →clover.war →Class loader Order →Classes
loaded with application class loader first

5. configure system property on Websphere 6

Websphere 6 sets system property "javax.xml.transform.TransformerFactory" to the value
"com.ibm.xtq.xslt.jaxp.compiler.TransformerFactoryImpl". This setting overrides default value used by
CloverETL Server which is vital for webservice API. So please set explicitly correct value in the Websphere
admin console.

Note

It is not necessary to set this in Websphere 7. You can skip the workaround below and advance
to the next step.

• go to Integrated Solutions Console

(http://localhost:9060/ibm/console/)

• go to Servers →Application servers →[server1] (or the other server of correct name) →Java and

Process Management →Java Virtual Machine

• In this section add "-
Djavax.xml.transform.TransformerFactory=org.apache.xalan.processor.TransformerFactoryImpl" to the
input labelled "Generic JVM arguments"

• Then submit the form by "OK" button, then commit changes by "save" link. This change needs restart of
Websphere to take effect.

http://www.ibm.com/developerworks/downloads/ws/was/
http://localhost:9060/ibm/console/
http://localhost:9060/ibm/console/

Chapter 2. Installation

7

• You can check whether its properly is set or not in CloverETL Server web GUI, in the section "monitoring",
"System properties" tab. There should be "javax.xml.transform.TransformerFactory" system property with
correct value.

6. configure logging

Websphere loggers do not use log4j by default which may cause CloverETL Server logging to be ill-configured.
As a result, some CloverETL Engine messages are missing in graph execution logs. Thus it is recommended to
configure Websphere properly to use log4j. Add this config file to the Websphere directory: AppServer/
profiles/AppSrv01/properties/commons-logging.properties Content of the file should
be like this:

 priority=1
 org.apache.commons.logging.LogFactory=org.apache.commons.logging.impl.LogFactoryImpl
 org.apache.commons.logging.Log=org.apache.commons.logging.impl.Log4JLogger

Afterwards, copy jar files from the clover.war/WEB-INF/lib archive to the AppServer/lib
directory. Copy all files like commons-logging-*.jar and log4j-*.jar.

7. try if the server is running

Provided you set clover.war as application running with "clover" context path. Notice the port number has
changed:

http://localhost:9080/clover

Installation of CloverETL Server license

CloverETL Server requires a valid license for executing graphs. You can install CloverETL Server without license,
but no graph will be executed.

1. get file license.dat

2. set CloverETL Server parameter license.file to the path to the license.dat file

There are more ways how to do this. The most direct way is to set environment property
clover_license_file. (See Chapter 16, Configuration (p. 81) for description of all possibilities).

• go to Integrated Solutions Console

(http://localhost:9060/ibm/console/)

• go to Servers →Application servers →[server-name] →Java and Process Management →Process

Definition →Environment Entries

• create system property named clover_license_file whose value is the absolute path to
license.dat on the file system

• Then you have to let CloverETL Server know the license has changed. Go to web GUI →Monitoring

→License. Then click the Reload license button. Or you can restart CloverETL Server application.

Note

CloverETL license can be changed any time by replacing file license.dat. Then you have to
let CloverETL Server know the license has changed.

http://localhost:9080/clover
http://localhost:9060/ibm/console/

Chapter 2. Installation

8

• Go to web GUI →monitoring section →license tab

• Then click the button reload license.

• Or you can restart CloverETL Server application.

Glassfish / Sun Java System Application Server

Installation of CloverETL Server

1. get web archive file (clover.war) with CloverETL Server application which is built for Glassfish (Tomcat)

2. check prerequisites

• JDK or JRE version 1.6.x or higher

• Glassfish (CloverETL Server is tested with V2.1, see http://glassfish.java.net/public/
downloadsindex.html#top)

3. deploy WAR file

Fill in attributes Application name and Context Root with value "clover". Fill in path to the WAR file on
the server filesystem.

• Copy WAR file to the server filesystem. CloverETL Server is packed in a WAR file of aproximately 100MB
size, so it cannot be uploaded directly from your local filesystem using the Admin Console.

• go to Glassfish Admin Console

It is accessible on URL http://localhost:4848/ by default; default username/password is
"admin"/"adminadmin"

• go to section Applications > Web Applications →Deploy button

• Submit form

Installation of CloverETL Server License

CloverETL Server requires valid license for executing graphs. You can install CloverETL Server without license,
but no graph will be executed.

Settings of configuration and license is quite similar to WebSphere configuration.

1. get file license.dat

2. set CloverETL Server parameter license.file with path to license.dat file

• There are more ways how to do this. The most direct way is to set environment property
clover_license_file. (See "configuration" section for description of all possibilities).

• go to Glassfish Admin Console

By default accessible on URL http://localhost:4848/ with username/password admin/adminadmin

• go to Configuration →System Properties

• create property named clover_license_file which value is absolute path to license.dat file
on file system

Chapter 2. Installation

9

• This change requires restart of Glassfish.

Note

CloverETL license can be changed any time by replacing file license.dat. Then you have to
let CloverETL Server know, that license is changed.

• Go to web GUI →monitoring section →license tab

• Then click the button reload license.

• Or you can restart CloverETL Server application.

JBoss

Installation of CloverETL Server

1. get web archive file (clover.war) with CloverETL Server application, which is built for JBoss.

2. check prerequisites

• JDK or JRE version 1.6.x or higher

• JBoss 6.0 or JBoss 5.1 - see http://www.jboss.org/jbossas/downloads

• correct memory settings for jboss java process

Set at least 256 MB of PermGen space (512MB is recommended), and at least 1024MB for the heap memory
limit. You can set these java parameters i.e. in [jboss-home]/bin/run.conf (run.conf.bat on
Windows OS):

JAVA_OPTS="$JAVA_OPTS -XX:MaxPermSize=512m -Xms128m -Xmx1024m"

On windows it would be analogous to the settings above.

3. configure DB data source

Since JBoss doesn't work with embedded derby DB, there must be always some DB connection configured.

We used MySQL in this case

• create datasource config file [jboss-home]/server/default/deploy/mysql-ds.xml

<datasources>
 <local-tx-datasource>
 <jndi-name>CloverETLServerDS</jndi-name>
 <connection-url>jdbc:mysql://localhost:3306/cloverServerDB</connection-url>
 <driver-class>com.mysql.jdbc.Driver</driver-class>
 <user-name>root</user-name>
 <password></password>
 </local-tx-datasource>
</datasources>

JNDI name must be exactly "CloverETLServerDS". The thing to do here is to set DB connection parameters
(connection-url, driver-class,user-name and password) to the created database which has
to be empty before the first execution. The server creates its tables itself.

Chapter 2. Installation

10

JNDI data source is the only way how to configure CloverETL Server DB connection in JBoss.

• put JDBC driver for your DB to the app server classpath; we copied JDBC driver mysql-connector-
java-5.1.5-bin.jar to the [jboss-home]/server/default/lib

4. configure CloverETL Server

• create cloverServer.properties in some suitable directory

datasource.type=JNDI
datasource.jndiName=java:/CloverETLServerDS
jdbc.dialect=org.hibernate.dialect.MySQLDialect
license.file=/home/clover/config/license.dat

Do not change datasource.type and datasource.jndiName properties, but set a correct JDBC
dialect according to your DB server and Chapter 16, Configuration (p. 81). Also set path to your license
file.

5. Set system property (or environment property) clover_config_file.

It should contain the full path to the cloverServer.properties file created in the previous step.

The simplest way is to set java parameter i.e. in [jboss-home]/bin/run.sh, e.g.:

export JAVA_OPTS="-Dclover_config_file=/home/clover/config/cloverServer.properties"

Please do not override other settings in the JAVA_OPTS property. i.e. memory settings as described above.

On Windows OS, edit [jboss-home]/bin/run.conf.bat and add this line to the section where options
are passed to the JVM:

set "JAVA_OPTS=%JAVA_OPTS% -Dclover_config_file=C:\JBoss6\cloverServer.properties"

6. deploy WAR file

Copy clover.war to the [jboss-home]/server/default/deploy

7. start jboss by [jboss-home]/bin/run.sh (or run.bat on Windows OS)

It may take a couple of minutes until all the applications are started.

8. Check JBoss response and CloverETL Server response

• JBoss administration console is accessible on URL http://localhost:8080/ by default. Default username/
password is "admin"/"admin"

• CloverETL Server is accessible on URL http://localhost:8080/clover by default.

9. If you like, you can move default and example sandboxes (created automatically in the temp directory) to a
more suitable directory on your filesystem.

• These sandboxes are created automatically during the first deployment and are located in the web-app
directory, which is related to the specific deployment. If you redeployed the web application for a reason,

Chapter 2. Installation

11

the directory would be recreated. That is why it is better to move the sandboxes to a location which will
not change.

Installation of CloverETL Server License

CloverETL Server requires valid license for executing graphs. You can install CloverETL Server without license,
but no graph will be executed.

1. get file license.dat

If you have only clover_license.war, extract it as common zip archive and you will find license.dat file
in WEB-INF subdirectory

2. set CloverETL Server parameter license.file with path to license.dat file

The best way how to configure license, is to set config property license.file in the cloverServer.properties file
as described in the biginning of this section.

There are more ways how to do this. (See Chapter 16, Configuration (p. 81) for description of all
possibilities).

3. Change of configuration requires restart of app-server.

Note

CloverETL license can be changed any time by replacing file license.dat. Then you have to
let CloverETL Server know, that license is changed.

• Go to web GUI →monitoring section →license tab

• Then click the button reload license.

• Or you can restart CloverETL Server application.

Possible issues during installation

Since CloverETL Server is considered a universal JEE application running on various application servers,
databases and jvm implementations, problems may occur during the installation. These can be solved by a proper
configuration of the server environment. This section contains tips for the configuration.

JAVA_HOME or JRE_HOME environment variables are not defined

If you are getting this error message during an attempt to start your application server (mostly Tomcat), perform
the following actions.

On Linux:

These two commands will help you set paths to the variables on the server.

• [root@server /] export JAVA_HOME=/usr/local/java

• [root@server /] export JRE_HOME=/usr/local/jdk

As a final step, restart the application server.

On Windows OS:

Set JAVA_HOME to your JDK installation directory, e.g. C:\Program Files\java\jdk1.6.0. Optionally,
set also JRE_HOME to the JRE base directory, e.g. C:\Program Files\java\jre6.

Chapter 2. Installation

12

Timeouts waiting for JVM

If you get the Jetty application server successfully running but cannot start Clover Server, it might be because of
the wrapper waiting for JVM too long (it is considered a low-memory issue). Examine [JETTY_HOME]\logs
\jetty-service.log for a line like this:

Startup failed: Timed out waiting for signal from JVM.

If it is there, edit [JETTY_HOME]\bin\jetty-service.conf and add these lines:

 wrapper.startup.timeout=60
 wrapper.shutdown.timeout=60

If that does not help either, try setting 120 for both values. Default timeouts are 30 both.

clover.war as default context on Websphere (Windows OS)

If you are deploying clover.war on the IBM Websphere server without context path specified, be sure to check
whether it is the only application running in the context root. If you cannot start Clover Server on Websphere,
check the log and look for a message like this:

 com.ibm.ws.webcontainer.exception.WebAppNotLoadedException:
 Failed to load webapp: Failed to load webapp: Context root /* is already bound.
 Cannot start application CloverETL

If you can see it, then this is the case. Getting rid of the issue, the easiest way is to stop all other (sample)
applications and leave only clover.war running on the server. That should guarantee the server will be available
in the context root from now on (e.g. http://localhost:9080/).

Figure 2.1. Clover Server as the only running application on IBM Websphere

http://localhost:9080/

Chapter 2. Installation

13

Derby.system.home cannot be accessed

If the server cannot start and the following message is in the log:

java.sql.SQLException: Failed to start database 'databases/cloverserver'

then see the next exception for details. After that check settings of the derby.system.home system property.
It may point to an unaccessible directory, or files may be locked by another process. We suggest you set a specific
directory as the system property.

System variables and more than one CloverETL Server instances
running on the single machine (Windows OS)

If you are setting system variables like clover_license_file or clover_config_file on Windows
OS, remember you should not be running more than one CloverETL Server. Therefore if you ever needed to
run more instances at once, use other ways of setting parameters (see Chapter 16, Configuration (p. 81) for
description of all possibilities) The reason is the environment variable is shared by all applications in use causing
them to share configurations and fail unexpectedly.

Special characters and slahes in path

When working with servers, you ought to stick to folder naming rules more than ever. Do not use any special
characters in the server path, e.g. spaces, accents, diacritics are all not recommended. It's unfortunatelly common
naming strategy on Windows systems. It can produce issues which are hard to find. If you are experiencing weird
errors and cannot trace the source of them, why not install your application server in a safe destination like:

C:\JBoss6\

Similarly, use slashes but never backslahes in paths inside the *.properties files, e.g. when pointing to the
Clover Server license file. If you incorrectly use backlash, it will be considered an escape character and the server
may not work fine. This is an example of a correct path:

license.file=C:/CoverETL/Server/license.dat

JAXB and early versions of JVM 1.6

CloverETL Server contains jaxb 2.1 libraries since version 1.3. This may cause conflicts on early versions of JVM
1.6 which contain jaxb 2.0. However JDK6 Update 4 release finally contains jaxb 2.1, thus update to this or newer
version of JVM solves possible conflicts.

File system permissions

Application server must be executed by OS user which has proper read/write permissions on file system. Problem
may occur, if app-server is executed by root user for the first time, so log and other temp files are created by root
user. When the same app-server is executed by another user, it will fail because it cannot write to root's files.

JMS API and JMS third-party libraries

Missing JMS libraries do not cause fail of server startup, but it is issue of deployment on application server, thus
it still suits to this chapter.

Chapter 2. Installation

14

clover.war itself does not contain jms.jar, thus it has to be on application server's classpath. Most of the application
servers have jms.jar by default, but i.e. tomcat does not. so if the JMS features are needed, the jms.jar has to be
added explicitly.

If "JMS Task" feature is used, there must be third-party libraries on server's classpath as well. The same approach
is recommended for JMS Reader/Writer components, even if these components allow to specify external libraries.
It is due to common memory leak in these libraries which causes "OutOfMemoryError: PermGen space".

15

Chapter 3. Graphs on Server Side - Sandboxes
Sandbox is a base storage unit for project. Sandbox is actually a server-side analogy to a CloverETL Designer
project. Since CloverETL Designer has a connector to CloverETL Server, a designer project and a server sandbox
may be linked together. This remote CloverETL Designer project looks and works like common local project, but
all files are stored on the server side and all operations are performed on server side. See CloverETL Designer
manual for details on configuring a connection to the server.

Technically speaking, a sandbox is a dedicated directory on the server file system. A sandbox cannot contain
another sandbox. It is recommended to have one directory as sandboxes container and create a subdirectory for
each sandbox. Files and directories in sandboxes are read by JVM of Application Server. Thus, all these directories
must be accessible to the OS user who executes JVM of Application Server. i.e. If Apache Tomcat is executed as
an OS service by "tomcat" user, all sandboxes must be accessible to this user.

In cluster mode, there are three sandbox types: "shared", "local" and "partitioned". See Chapter 22,
Clustering (p. 101) for details.

Figure 3.1. Sandboxes Section in CloverETL Server Web GUI

Each sandbox is defined by following attributes:

Chapter 3. Graphs on
Server Side - Sandboxes

16

Table 3.1. Sandbox attributes

ID Unique "name" of the sandbox. It is used in server APIs to identify sandbox. It must meet
common rules for identifiers. It is specified by user in during sandbox creation and it can be
modified later. Note: modifying is not recommended, because it may be already used by some
CS APIs clients.

Name Sandbox name used just for display. It is specified by user in during sandbox creation and it
can be modified later.

Root path Absolute server side file system path to sandbox root. It is specified by user during sandbox
creation and it can be modified later. This attribute is used only in standalone mode. See Chapter
22, Clustering (p. 101) for details about cluster mode.

Owner It is set automatically during sandbox creation. It may be modified later.

Figure 3.2. Sandbox Detail in CloverETL Server Web GUI

Referencing files from the graph

In some components you can specify file URL attribute as a reference to some resource on the file system. Also
external metadata, lookup or DB connection definition is specified as reference to some file on the filesystem.
With CloverETL Server there are more ways how to specify this relation.

• Relative path

All relative paths in your graphs are considered as relative paths to the root of the same sandbox which contains
graph file.

• SANDBOX_* placeholders

It is possible to use placeholders for paths to another sandboxes. Placeholder is constructed from sandbox ID
with "SANDBOX_" prefix. I.e. placeholder for default sandbox is: SANDBOX_default and you can use it
in graph XML like this: ${SANDBOX_default}. Placeholder is replaced by path to the sandbox's root path
during graph preprocessing. These absolute local filesystem paths won't work in cluster environment! It is
recommended to use sandbox URL instead.

• sandbox:// URLs

Sandbox URL allows user to reference the resource from different sandboxes with standalone CloverETL Server
or the cluster. In cluster environment, CloverETL Server transparently manages remote streaming if the resource
is accessible only on some specific cluster node.

See Using a Sandbox Resource as a Component Data Source (p. 105) for details about the sandbox URLs.

Chapter 3. Graphs on
Server Side - Sandboxes

17

Sandbox Security and Permissions

Each sandbox has its owner which is set during sandbox creation. This user has unlimited privileges to this sandbox
as well as administrators. Another users may have access according to sandbox settings.

Figure 3.3. Sandbox Permissions in CloverETL Server Web GUI

Permissions to sandbox are modifiable in Permissions tab in sandbox detail. In this tab, selected user groups may
be allowed to perform particular operations.

There are 3 types of operations:

Table 3.2. Sandbox permissions

R - read Users can see this sandbox in their sandboxes list.

W - write Users can modify files in the sandbox through CS APIs.

X - execution Users can execute graphs in this sandbox. Note: graph executed by "graph event listener" is
actually executed by the same user as graph which is source of event. See details in "graph
event listener". Graph executed by schedule trigger is actually executed by the schedule
owner. See details in Chapter 5, Scheduling (p. 31).

Sandbox Content

Sandbox should contain graphs, metadata, external connection and all related files. Files especially graph files
are identified by relative path from sandbox root. Thus you need two values to identify specific graph: sandbox
and path in sandbox.

Chapter 3. Graphs on
Server Side - Sandboxes

18

Figure 3.4. Web GUI - section "Sandboxes"

Although web GUI section sandboxes isn't file-manager, it offers some useful features for sandbox management.

Download sandbox in ZIP

Select sandbox in left panel, then web GUI displays button "Download sandbox in ZIP" in the tool bar on the
right side.

Created ZIP contains all readable sandbox files in the same hierarchy as on file system. You can use this ZIP file
for upload files to the same sandbox, or another sandbox on different server instance.

Figure 3.5. Web GUI - download sandbox in ZIP

Chapter 3. Graphs on
Server Side - Sandboxes

19

Upload ZIP to sandbox

Select sandbox in left panel. You must have write permission to the selected sandbox. Then select tab "Upload
ZIP" in the right panel. Upload of ZIP is parametrized by couple of switches, which are described below. Open
common file chooser dialog by button "+ Upload ZIP". When you choose ZIP file, it is immediately uploaded to
the server and result message is displayed. Each row of the result message contains description of one single file
upload. Depending on selected options, file may be skipped, updated, created or deleted.

Figure 3.6. Web GUI - upload ZIP to sandbox

Figure 3.7. Web GUI - upload ZIP results

Chapter 3. Graphs on
Server Side - Sandboxes

20

Table 3.3. ZIP upload parameters

Label Description

Encoding of packed file
names

File names which contain special characters (non ASCII) are encoded. By this select
box, you choose right encoding, so filenames are decoded properly.

Overwrite existing files If this switch is checked, existing file is overwriten by new one, if both of them are
stored in the same path in the sandbox and both of them have the same name.

Replace sandbox content If this option is enabled, all files which are missing in uploaded ZIP file, but they
exist in destination sandbox, will be deleted. This option might cause loose of data, so
user must have special permission "May delete files, which are missing in uploaded
ZIP" to enable it.

Download file in ZIP

Select file in left panel, then web GUI displays button "Download file in ZIP" in the tool bar on the right side.

Created ZIP contains just selected file. This feature is useful for large files (i.e. input or output file) which cannot
be displayed directly in web GUI. So user can download it.

Figure 3.8. Web GUI - download file in ZIP

Download file HTTP API

It is possible to download/view sandbox file accessing "download servlet" by simple HTTP GET request:

http://[host]:[port]/[Clover Context]/downloadFile?[Parameters]

Server requires BASIC HTTP Authentication. Thus with linux command line HTTP client "wget" it would look
like this:

Chapter 3. Graphs on
Server Side - Sandboxes

21

wget --user=clover --password=clover
 http://localhost:8080/clover/downloadFile?sandbox=default\&file=data-out/data.dat

Please note, that ampersand character is escaped by back-slash. Otherwise it would be interpreted as command-
line system operator, which forks processes.

URL Parameters

• sandbox - Sandbox code. Mandatory parameter.

• file - Path to the file relative from sandbox root. Mandatory parameter.

• zip - If set to "true", file is returned as ZIP and response content type is "application/x-zip-compressed". By
default it is false, so response is content of the file.

Graph config properties

Each graph may have set of config properties, which are applied during graph execution. Properties are editable
in web GUI section "sandboxes". Select graph and go to tab "Config properties".

The same config properties are editable even for each sandbox. Values specified for sandbox are applied for each
graph in the sandbox, but with lower priority then config properties specified for graph.

If neither sandbox or graph have config properties specified, defaults from main server configuration are applied.
(See Chapter 16, Configuration (p. 81) for details)

In addition, it is possible to specify additional graph parameters, which can be used as placeholders in graph XML.
Please keep in mind, that these placeholders are resolved during loading and parsing of XML file, thus such graph
couldn't be pooled.

Chapter 3. Graphs on
Server Side - Sandboxes

22

Table 3.4. Graph config parameters

Property name Default value Description

tracking_interval 2000 Interval in ms for sampling nodes status in running
graph.

max_running_concurrently unlimited Max number of concurrently running instances of
this graph.

enqueue_executions false Boolean value. If it is true, executions above
max_running_concurrently are enqueued, if it is
false executions above max_running_concurrently
fail.

log_level INFO Log4j log level for this graph executions. (ALL
| TRACE | DEBUG | INFO | WARN | ERROR
| FATAL) For lower levels (ALL, TRACE or
DEBUG), also root logger level must be set to
lower level. Root logger log level is INFO by
default, thus graph run log does not contain more
detail messages then INFO event if graph config
parameter "log_level" is set properly. See Chapter
19, Logging (p. 98) for details about log4j
configuration.

max_graph_instance_age 0 Time interval in ms which specifies how long
may graph instance last in server's cache. 0 means
that graph is initialized and released for each
execution. Graph cannot be stored in the pool
and reused in some cases (graph uses placeholders
using dynamically specified parameters)

classpath List of paths or jar files which
contain external classes used in the graph
(transformations, generators, JMS processors).
Separator is specified by Engine property
"DEFAULT_PATH_SEPARATOR_REGEX".
Path must always end with slash character "/".
Server automatically adds "trans" subdirectory of
graphs's sandbox.

skip_check_config default value is taken from
engine property

Switch which specifies whether check config must
be performed before graph execution.

password Password for decoding of encoded DB connection
passwords.

verbose_mode true If true, more descriptive logs of graph runs are
generated.

use_jmx true If true, graph executor registers jmx mBean of
running graph.

debug_mode false If true, edges with enabled debug store data
into files in debug directory. See property
"graph.debug_path"

Chapter 3. Graphs on
Server Side - Sandboxes

23

Figure 3.9. Graph config properties

24

Chapter 4. Users and Groups
CloverETL Server implements security module, which manages users and groups. Security module may be
globally switched off (see Chapter 16, Configuration (p. 81) for details), but by default it is on, and all interfaces
require client authentication by username and password. Relation between users and groups is N:M, thus one user
may be assigned in more groups and one group may be assigned in more users.

All relations between users and groups are configurable in web GUI in sections Users and Groups.

Both sections are accessible only for users which have "List users" ("List groups" resp.) permission. To modify
users/groups "create", "edit" and "delete" permissions are necessary.

LDAP authentication

Since 3.2 it's possible to configure CloverETL Server to use LDAP server for users authentication. So the
credentials of users registered in LDAP may be used for authentication to any CloverETL Server interface (API
or GUI).

However authorization (access levels to sandboxes content and privileges for operations) is still handled by Clover
security module. Each user, event though logged-in using LDAP authentication, must have his own "user" record
(with related groups) in CloverETL security module. So there must be the user with the same username and domain
set to "LDAP". If no such user record exists, it's automatically created according to CloverETL configuration.

What does the CloverETL do to authenticate a LDAP user?

1. User specifies the LDAP credentials i.e. in login form to the web GUI

2. CloverETL Server connects to the LDAP and checks whether the user exists (it uses specified search to lookup
in LDAP)

3. If the user exists in LDAP, CloverETL Server performs authentication

4. If succeeded, CloverETL Server searches for LDAP user's groups.

5. CloverETL Server checks whether the user is assigned in LDAP groups which are allowed to login to Clover.

6. Clover user record is created/updated according to current LDAP values.

7. Clover user is assigned to the Clover groups according to his current assignation to the LDAP groups.

8. User is logged-in

Configuration

By default CloverETL Server allows only its own internal mechanism for authentication. To enable authentication
with LDAP, set config property "security.authentication.allowed_domains" properly. It's list of user domains
which are used for authentication.

Currently there are 2 authentication mechanism implemented: "LDAP" and "clover" ("clover" is identifier of
CloverETL internal authentication and may be changed by security.default_domain property, but only for white-
labelling purposes). To enable LDAP authentication, set value to "LDAP" (only LDAP) or "clover,LDAP". Users
from both domain may login. It's recommended to allow both mechanisms together, until the LDAP is properly
configured. So the admin user can still login to web GUI although the LDAP connection isn't properly configured.

Chapter 4. Users and Groups

25

Basic LDAP connection properties

Implementation of context factory
security.ldap.ctx_factory=com.sun.jndi.ldap.LdapCtxFactory
timeout for all queries sent to LDAP server
security.ldap.timeout=5000
limit for number of records returned from LDAP
security.ldap.records_limit=50

URL of LDAP server
security.ldap.url=ldap://hostname:port
Some generic UserDN which allows lookup for the user and groups.
security.ldap.userDN=
Password for the user specified above
security.ldap.password=

Configuration of user lookup

Specified values work for this specific LDAP tree:

• dc=company,dc=com

• ou=groups

• cn=admins
(objectClass=groupOfNames,member=(uid=smith,dc=company,dc=com),member=(uid=jones,dc=company,dc=com))

• cn=developers (objectClass=groupOfNames,member=(uid=smith,dc=company,dc=com))

• cn=consultants (objectClass=groupOfNames,member=(uid=jones,dc=company,dc=com))

• ou=people

• uid=smith (fn=John,sn=Smith,mail=smith@company.com)

• uid=jones (fn=Bob,sn=Jones,mail=jones@company.com)

Following properties are necessary for lookup for the LDAP user by his username. (step [2] in the login process
above)

Base specifies the node of LDAP tree where the search starts
security.ldap.user_search.base=dc=company,dc=eu
Filter expression for searching the user by his username.
Please note, that this search query must return just one record.
Placeholder ${username} will be replaced by username specified by the logging user.
security.ldap.user_search.filter=(uid=${username})
Scope specifies type of search in "base". There are three possible values: SUBTREE | ONELEVEL | OBJECT
http://download.oracle.com/javase/6/docs/api/javax/naming/directory/SearchControls.html
security.ldap.user_search.scope=SUBTREE

Following properties are names of attributes from the search defined above. They are used for getting basic info
about the LDAP user in case the user record has to be created/updated by Clover security module: (step [6] in
the login process above)

security.ldap.user_search.attribute.firstname=fn
security.ldap.user_search.attribute.lastname=sn
security.ldap.user_search.attribute.email=mail

Chapter 4. Users and Groups

26

Clover user record will be assigned to the clover groups according to the LDAP groups found by following search.
(Groups check is pergormed during each login) So the following properties define search for the groups which the
user is member of. (step [4] in the login process above)

security.ldap.groups_search.base=dc=company,dc=com
Placeholder ${userDN} will be replaced by user DN found by the search above
If the filter is empty, searching will be skipped.
security.ldap.groups_search.filter=(&(objectClass=groupOfNames)(member=${userDN}))
security.ldap.groups_search.scope=SUBTREE
Value of the following attribute will be used for lookup for the Clover group by its code.
So the user will be assigned to the Clover group with the same "code"
security.ldap.groups_search.attribute.group_code=cn

It's also possible to specify LDAP groups which are able to login to Clover. (step [5] in the login process above)

Semicolon separated list of LDAP group DNs (distinguished names).
LDAP user must be assigned to one or more of these groups, otherwise new clover user can't be created.
Special value "_ANY_" disables this check and basically any LDAP user may login.
If the LDAP group DNs are configured, also security.ldap.groups_search.* properties must be configured.
value could be e.g. "cn=developers,dc=company,dc=com;cn=admins,dc=company,dc=com"
security.ldap.allowed_ldap_groups=_ANY_

Web GUI section Users

This section is intended to users management. It offers features in dependence of user's permissions. i.e. User may
enter this section, but cannot modify anything. Or user may modify, but cannot create new users.

All possible features of users section:

• create new user

• modify basic data

• change password

• delete user

• assign user to groups - Assignment to groups gives user proper permissions

Table 4.1. After default installation above empty DB, there are two users created

User name Description

clover Clover user has admin permissions, thus default password "clover"
should be changed after installation.

system System user is used by application instead of common user, when
no other user can be used. i.e. when security is globally switched
off. This user cannot be removed and it is impossible to login as
this user.

Chapter 4. Users and Groups

27

Figure 4.1. Web GUI - section "Users"

Table 4.2. User attributes

Attribute Description

username Common user identifier. Must be unique, cannot contain spaces or
special characters, just letters and numbers.

password Case sensitive password. If user looses his password, the new one
must be set. Password is stored in encrypted form for security
reasons, so it cannot be retrieved from database and must be
changed by the user who has proper permission for such operation.

first name

last name

email Email which may be used by CloverETL administrator or by
CloverETL server for automatic notifications. See Task - Send
Email (p. 41) for details.

Edit user record

User with permission "Create user" or "Edit user" can use this form to set basic user parameters.

Figure 4.2. Web GUI - edit user

Change users Password

If user looses his password, the new one must be set. So user with permission "Change passwords" can use this
form to do it.

Chapter 4. Users and Groups

28

Figure 4.3. Web GUI - change password

Group assignment

Assignment to groups gives user proper permissions. Only logged user with permission "Groups assignment" can
access this form and specify groups which the user is assigned in. See Web GUI section Groups (p. 28) for
details about permissions.

Figure 4.4. Web GUI - groups assignment

Web GUI section Groups

Group is abstract set of users, which gives assigned users some permissions. So it is not necessary to specify
permission for each single user.

There are independent levels of permissions implemented in CloverETL Server

• permissions to Read/Write/eXecute in sandboxes - sandbox owner can specify different permissions for different
groups. See Sandbox Security and Permissions (p. 17) for details.

• permissions to perform some operation - user with operation permission "Permission assignment" may assign
specific permission to existing groups.

• permissions to launch specific service - see Chapter 15, Launch Service (p. 74) for details.

Chapter 4. Users and Groups

29

Table 4.3. Default groups created during installation

Group name Description

admins This group has operation permission "all" assigned, which means,
that it has unlimited permission. Default user "clover" is assigned
to this group, which makes him administrator.

all users Every single CloverETL user is assigned to this group by default.
It is possible to remove user from this group, but it is not a
recommended approach. This group is useful for some permissions
to sandbox or some operation, which you would like to make
accessible for all users without exceptions.

Figure 4.5. Web GUI - section "Groups"

Users Assignment

Relation between users and groups is N:M. Thus in the same way, how groups are assignable to users, users are
assignable to groups.

Figure 4.6. Web GUI - groups assignment

Groups permissions

Groups permissions are structured as tree, where permissions are inherited from root to leafs. Thus if some
permission (tree node) is enabled (blue dot), all permissions in sub tree are automatically enabled (white dot).
Permissions with red cross are disabled.

Thus for "admin" group just "all" permission is assigned, every single permission in sub tree is assigned
automatically.

Chapter 4. Users and Groups

30

Figure 4.7. Tree of permissions

31

Chapter 5. Scheduling
Scheduling allows user to create his own timetable for operations which he does not want to trigger manually. Each
schedule represents separated timetable and basically its specification WHEN to do something and WHAT to do.

In cluster environment, scheduling is processed only on master node, thus tasks are triggered only on master node.

Figure 5.1. Web GUI - section "Scheduling" - create new

Timetable Setting

This section should describe how to specify WHEN schedule should be triggered. Please keep in mind, that exact
trigger times are not guaranteed. There may be couple of seconds delay. Schedule itself can be specified in different
ways.

• Onetime Schedule (p. 31)

• Periodical schedule by Interval (p. 32)

• Periodical schedule by timetable (Cron Expression) (p. 33)

Onetime Schedule

It is obvious, that this schedule is triggered just once.

Table 5.1. Onetime schedule attributes

Type "onetime"

Start date/time Date and time, specified with minutes precision.

Chapter 5. Scheduling

32

Figure 5.2. Web GUI - onetime schedule form

Figure 5.3. Web GUI - schedule form - calendar

Periodical schedule by Interval

This type of schedule is the simplest periodical type. Trigger times are specified by these attributes:

Chapter 5. Scheduling

33

Table 5.2. Periodical schedule attributes

Type "periodic"

Periodicity "interval"

Start date/time Date and time, specified with minutes precision.

End date/time Date and time, specified with minutes precision.

Interval in minutes Specifies interval between two trigger times. Next task is triggered even if
previous task is still running.

Fire misfired ASAP switch If checked and trigger time is missed because of any reason (i.e. server
restart), it will be triggered immediately, when it is possible. Otherwise it
is ignored and it will be triggered at next scheduled time.

Figure 5.4. Web GUI - periodical schedule form

Periodical schedule by timetable (Cron Expression)

Timetable is specified by powerful (but a little bit tricky) cron expression.

Table 5.3. Cron periodical schedule attributes

Type "periodic"

Periodicity "interval"

Start date/time Date and time, specified with minutes precision.

End date/time Date and time, specified with minutes precision.

Cron expression Cron is powerful tool, which uses its own format for scheduling. This
format is well known among UNIX administrators. i.e. "0 0/2 4-23 * * ?"
means "every 2 minutes between 4:00am and 11:59pm".

Fire misfired ASAP switch If checked and trigger time is missed because of any reason (i.e. server
restart), it will be triggered immediately when it is possible. Otherwise it is
ignored and it will be triggered at next scheduled time.

Chapter 5. Scheduling

34

Figure 5.5. Cron periodical schedule form

Tasks

Task basically specifies WHAT to do at trigger time. There are several tasks implemented for schedule and for
graph event listener as follows:

• Task - Execution of Graph (p. 35)

• Task - Kill Graph (p. 35)

• Task - Execution of Shell Command (p. 36)

• Task - Send Email (p. 37)

• Task - Execute Groovy Code (p. 37)

• Task - Archive Records (p. 38)

We expect, that some more task implementation will be needed, i.e. task type "Execution of java code", etc.

Chapter 5. Scheduling

35

Task - Execution of Graph

Table 5.4. Attributes of "Graph execution" task

Task type "execute graph"

Sandbox This select box contains sandboxes which are readable for logger user.
Select sandbox which contains graph to execute.

Graph This select box is filled by all graphs accessible in selected sandbox.

Parameters Key-value pairs which are passed to the executed graph as parameters.
Besides, if this task is triggered by "graph event", you can specify
parameters from the graph which is "graph event" source. These
parameters are passed to executed graph. i.e. event source graph has
these parameters: paramName2 with value "val2", paramName3 with value
"val3", paramNameX. Task "graph execution" has "Parameters" attribute
set like this:

 paramName1=paramValue1
 paramName2=
 paramName3
 paramName4

So executed graph gets these parameters and values: paramName1
with value "paramValue1" (specified by task) paramName2 with value
"" (empty string specified by task overrides event source parameters)
paramName3 with value "val3" (value is taken from event source graph)
These parameters aren't passed: paramName4 isn't passed, since it does not
have any value in event source graph. paramNameX isn't passed, since it is
not specified among the parameters to pass in the task

Event parameters like "event_run_result", "event_run_id" etc. are passed
to the graph without limitations.

Figure 5.6. Web GUI - Graph execution task

Task - Kill Graph

This task, when activated kills/aborts specified graph, if it is currently running.

Chapter 5. Scheduling

36

Table 5.5. Attributes of "Kill graph" task

Task type "kill graph"

Kill source of event If this switch is on, task will kill graph which is source of the event, which
activated this task. Attributes Sandbox and graph are ignored.

Sandbox Select sandbox which contains graph to kill. This attribute takes place only
when "Kill source of event" switch is off.

Graph This select box is filled by all graphs accessible in selected sandbox. All
instances of selected graph, whose are currently running will be killed. This
attribute takes place only when "Kill source of event" switch is off.

Figure 5.7. Web GUI - "Kill graph"

Task - Execution of Shell Command

Table 5.6. Attributes of "Shell command" task

Task type "shell command"

Command line Command line for execution of external process.

Working directory Working directory for process. If not set, working directory of application
server process is used.

Timeout Timeout in milliseconds. After period of time specified by this number,
external process is terminated and all results are logged.

Figure 5.8. Web GUI - shell command

Chapter 5. Scheduling

37

Task - Send Email

This task is very useful, but for now only as response for graph events. This feature is very powerful for monitoring.
(see Chapter 6, Graph Event Listeners (p. 40) for description of this task type).

Note: It seems useless to send emails periodically, but it may send current server status or daily summary. These
features will be implemented in further versions.

Task - Execute Groovy Code

This type of task allows execute code written in script language Groovy. It is possible to use some variables. Only
parameter of this task is source code of written in Groovy.

Table 5.7. List of variables available in Groovy code

variable class description availability

event com.cloveretl.server.events.AbstractServerEvent every time

task com.cloveretl.server.persistent.Task every time

now java.util.Date current time every time

parametersjava.util.Properties Properties of task every time

user com.cloveretl.server.persistent.UserSame as event.getUser() every time

run com.cloveretl.server.persistent.RunRecord When the event is instance of
GraphServerEvent

tracking com.cloveretl.server.persistent.TrackingGraphsame as run.getTrackingGraph() When the event is instance of
GraphServerEvent

sandbox com.cloveretl.server.persistent.Sandboxsame as run.getSandbox() When the event is instance of
GraphServerEvent

schedulecom.cloveretl.server.persistent.Schedulesame as
((ScheduleServerEvent)event).getSchedule()

When the event is instance of
ScheduleServerEvent

servletContextjavax.servlet.ServletContext every time

cloverConfigurationcom.cloveretl.server.spring.CloverConfigurationConfiguration values for
CloverETL Server

every time

serverFacadecom.cloveretl.server.facade.api.ServerFacadeReference to the facade
interface. Useful for calling
CloverETL Server core.

WAR file contains JavaDoc of
facade API and it is accessible
on URL: http://host:port/clover/
javadoc/index.html

every time

sessionTokenString Valid session token of the user
who owns the event. It is useful
for authorisation to the facade
interface.

every time

Variables run, tracking and sandbox are available only if event is instance of GraphServerEvent class. Variable
schedule is available only for ScheduleServerEvent as event variable class.

Example of use Groovy script

This example shows script which writes text file describing finished graph. It shows use of 'run' variable.

../javadoc/index.html
../javadoc/index.html

Chapter 5. Scheduling

38

import com.cloveretl.server.persistent.RunRecord;
String dir = "/tmp/";
RunRecord rr = (RunRecord)run;

String fileName = "report"+rr.getId()+"_finished.txt";

FileWriter fw = new FileWriter(new File(dir+fileName));
fw.write("Run ID :"+rr.getId()+"\n");
fw.write("Graph ID :"+rr.getGraphId()+"\n");
fw.write("Sandbox :"+rr.getSandbox().getName()+"\n");
fw.write("\n");
fw.write("Start time :"+rr.getStartTime()+"\n");
fw.write("Stop time :"+rr.getStopTime()+"\n");
fw.write("Duration :"+rr.getDurationString()+"\n");
fw.write("Final status :"+rr.getFinalStatus()+"\n");
fw.close();

Task - Archive Records

As name suggests, this task can archive (or delete) obsolete records from DB.

Table 5.8. Attributes of "archive records" task

Task type "archivator"

Older then Time period (in minutes) - it specifies which records are evaluated as
obsolete. Records older then the specified interval are stored in archives.

Archivator type There are two possible values: "archive" or "delete". Delete removes
records without any possibility of UNDO operation. Archive removes
records from DB, but creates ZIP package with CSV files containing
deleted data.

Output path for archives This attribute makes sense only for "archive" type.

Include executions history

Run record with status If status is selected, only run records with specified status will be archived.
It is useful i.e. If you want to delete records for successfully finished graphs,
but you are interested in failed graphs.

Include tasks history If checked, archivator will include run records. Log files of graph runs are
included as well.

Task types If this task type is selected, only logs for selected task type are archived.

Task result mask Mask applied to task log result attribute. Only records whose result meets
this mask are archived. Specify string without any wildcards. Each task
log which contains specified string in the "result" attribute will be deleted/
archived. Case sensitivity depends on database collation.

Include debug files If checked, archivator removes all graph debug files older then given
timestamp defined in "Older than" attribute.

Include dictionary files If checked, archivator removes all dictionary temporary files older then
given timestamp defined in "Older than" attribute.

Chapter 5. Scheduling

39

Figure 5.9. Web GUI - archive records

40

Chapter 6. Graph Event Listeners
Graph event listener is powerful feature, which allows user to monitor success of failure of graph executions. It
is also possible to create relations between executions, or execute backup script in dependence of graph success
or failure.

In cluster environment, event exists only on cluster node, which runs graph thus task is triggered on the same node.

Graph Events

Each event carries properties of graph, which is source of event. If there is a event listener specified, task may
use these properties. i.e. next graphs in the chain may use "event_file_name" placeholder which activated first
graph in the chain. Graph properties, which are set specifically for each graph run (i.e. RUN_ID), are overridden
by last graph.

For now, there are these types of graph events:

• graph started (p. 40)

• graph finished OK (p. 40)

• graph error (p. 40)

• graph aborted (p. 40)

• graph timeout (p. 40)

• graph status unknown (p. 41)

graph started

Event of this type is created, when graph is successfully executed. It means, that threads of graph nodes and
watchdog are running.

graph finished OK

Event of this type is created, when all phases and nodes of graph are finished with status FINISHED_OK.

graph error

Event of this type is created, when graph cannot be executed from any reason, or when any node of graph fails.

graph aborted

Since 1.2.1

Event of this type is created, when graph is explicitly aborted.

graph timeout

Event of this type is created, when graph runs longer then specified interval. Thus you have to specify "Graph
timeout interval" attribute for each listener of graph timeout event. You can specify this interval in seconds or
in minutes or in hours.

Chapter 6. Graph Event Listeners

41

Figure 6.1. Web GUI - graph timeout event

graph status unknown

Since 1.3.

Event of this type is created, when server starts and there is graph with undefined status in the executions history.
Undefined status means, that server has been killed during graph run. Server automatically changes state of graph
to "Not Available" and sends 'graph status unknown' event. Please note, that this works just for executions, which
have persistent record in executions history. It is possible to execute transformation without persistent record in
executions history, typically for better performance of fast running transformations (i.e. using Launch Services).

Listener

User may create listener for specified event type and graph (or all graphs in sandbox). Listener is actually
connection between graph event and task, where graph event specifies WHEN and task specifies WHAT to do.

So progress is like this:

• event is created

• listeners for this event are notified

• each listener performs related task

Tasks

Task types "execute shell command", "execute graph" and "archivator" are described in section "scheduling" see
this section for details about these task types. There is one more task type, which is useful especially with graph
event listeners, thus it is described here. It is task type "send email".

Note: You can use task of any type for both scheduling and graph event listener. Description of task types is divided
into two sections just to show the most obvious use cases.

• Task - Send Email (p. 41)

• Task - JMS Message (p. 44)

Task - Send Email

This type of task is useful for notifications about result of graph execution. I.e. you can create listener with this
task type to be notified about each failure in specified sandbox or failure of particular graph.

Chapter 6. Graph Event Listeners

42

Table 6.1. Attributes of "Send email" task

Task type "email"

Email pattern This select box contains all predefined email patterns. If user chooses any
of them, all fields below are automatically filled by values from pattern.

To Recipient's email address. It is possible to specify more addresses
separated by comma. It is also possible to use placeholders. See
Placeholders (p. 43) for details.

Cc Cc stands for 'carbon copy'. Copy of email will be delivered to these
addresses. It is possible to specify more addresses separated by comma. It
is also possible to use placeholders. See Placeholders (p. 43) for details.

BCc Bcc: stands for 'Blind carbon copy'. It is the same as Cc, but the others
recipients aren't aware, that these recipients get copy of email.

Reply-to (Sender) Email address of sender. It must be valid address according to SMTP server.
It is also possible to use placeholders. See Placeholders (p. 43) for
details.

Subject Email subject. It is also possible to use placeholders. See
Placeholders (p. 43) for details.

Plain text Body of email in plain text. Email is created as multipart, so HTML
body should have a precedence. Plain text body is only for email clients
which do not display HTML. It is also possible to use placeholders. See
Placeholders (p. 43) for details.

HTML Body of email in HTML. Email is created as multipart, so HTML body
should have a precedence. Plain text body is only for email clients
which do not display HTML. It is also possible to use placeholders. See
Placeholders (p. 43) for details.

Log file as attachment If this switch is checked, email will have an attachment with packed log
file of related graph execution.

Chapter 6. Graph Event Listeners

43

Figure 6.2. Web GUI - send email

Note: Do not forget to configure connection to SMTP server (See Chapter 16, Configuration (p. 81) for details).

Placeholders

Place holder may be used in some fields of tasks. They are especially useful for email tasks, where you can generate
content of email according to context variables.

Note: In most cases, you can avoid this by using email patterns (See Email task for details)

These fields are preprocessed by Apache Velocity templating engine. See Velocity project URL for syntax
description http://velocity.apache.org/

There are several context variables, which you can use in place holders and even for creating loops and conditions.

• event

• now

• user

• run

• sandbox

Some of them may be empty in dependence of occasion which field is processed in. I.e. If task is processed because
of graph event, then run and sandbox variables contain related data, otherwise they are empty,

http://velocity.apache.org/

Chapter 6. Graph Event Listeners

44

Table 6.2. Placeholders useful in email templates

Variable name Contains

now Current date-time

user User, who caused this event. It may be owner of schedule, or someone who
executed graph. Contains sub-properties, which are accessible using dot notation (i.e.
${user.email}) email, username, firstName, lastName, groups (list of values)

run Data structure describing one single graph execution. Contains sub-properties,
which are accessible using dot notation (i.e. ${run.graphId}) graphId, finalStatus,
startTime, stopTime, errNode, errMessage, errException, logLocation

tracking Data structure describing status of components in graph execution. Contains sub-
properties, which are accessible using Velocity syntax for loops and conditions.

#if (${tracking})
<table border="1" cellpadding="2" cellspacing="0">
#foreach ($phase in $tracking.trackingPhases)
<tr><td>phase: ${phase.phaseNumber}</td>
 <td>${phase.execTime} ms</td>
 <td></td><td></td><td></td></tr>
 #foreach ($node in $phase.trackingNodes)
 <tr><td>${node.nodeName}</td>
 <td>${node.result}</td>
 <td></td><td></td><td></td></tr>
 #foreach ($port in $node.trackingPorts)
 <tr><td></td><td></td>
 <td>${port.portType}:${port.index}</td>
 <td>${port.totalBytes} B</td>
 <td>${port.totalRows} rows</td></tr>
 #end
 #end
#end
</table>
#end
}

sandbox Data structure describing sandbox containing executed graph. Contains sub-
properties, which are accessible using dot notation (i.e. ${sandbox.name}) name,
code, rootPath

schedule Data structure describing schedule which triggered this task. Contains sub-
properties, which are accessible using dot notation (i.e. ${schedule.description})
description, startTime, endTime, lastEvent, nextEvent, fireMisfired

Task - JMS Message

This type of task is useful for notifications about result of graph execution. I.e. you can create graph event listener
with this task type to be notified about each failure in specified sandbox or failure of particular graph.

JMS messaging requires JMS API (jms.jar) and third-party libraries. All these libraries must be available on
application server classpath. Some application servers contain these libraries by default, some do not, thus the
libraries must be added explicitly.

Chapter 6. Graph Event Listeners

45

Table 6.3. Attributes of JMS message task

Task type "JMS message"

Initial context class name Full class name of javax.naming.InitialContext implementation. Each
JMS provider has own implementation. i.e. for Apache MQ it is
"org.apache.activemq.jndi.ActiveMQInitialContextFactory". If it is empty,
server uses default initial context

Connection factory JNDI name JNDI name of connection factory. Depends on JMS provider.

Destination JNDI name of message queue/topic on the server

Username Username for connection to JMS message broker

Password Password for connection to JMS message broker

URL URL of JMS message broker

JMS pattern This select box contains all predefined JMS message patterns. If user
chooses any of them, text field below is automatically filled by value from
pattern.

Text Body of JMS message. It is also possible to use placeholders. See
Placeholders (p. 43) of send email task for details.

Figure 6.3. Web GUI - Task JMS message editor

Use cases

Possible use cases are the following:

• Execute graphs in chain (p. 46)

• Email notification about graph failure (p. 46)

• Email notification about graph success (p. 47)

• Backup of data processed by graph (p. 47)

Chapter 6. Graph Event Listeners

46

Execute graphs in chain

Let's say, that we have to execute graph B, only if another graph A finished without any error. So there is some
kind of relation between these graphs. We can achieve this behaviour by creating graph event listener. We create
listener for event graph finished OK of graph A and choose task type execute graph with graph B
specified for execution. And that is it. If we create another listener for graph B with task execute graph with
graph C specified, it will work as chain of graphs.

Figure 6.4. Event source graph isn't specified, thus listener works for all graphs in specified sandbox

Email notification about graph failure

Figure 6.5. Web GUI - email notification about graph failure

Chapter 6. Graph Event Listeners

47

Email notification about graph success

Figure 6.6. Web GUI - email notification about graph success

Backup of data processed by graph

Figure 6.7. Web GUI - backup of data processed by graph

48

Chapter 7. JMS messages listeners
Since 2.10

This feature allows you to specify listener for incoming JMS messages. Such listener can then process one of
predefined tasks as usual for all event listeners. So for each listener user specifies source of JMS messages (JMS
Topic or JMS Queue) and task which will be processed as a result of each incoming JMS message.

JMS messaging requires JMS API (jms.jar) and third-party libraries. All these libraries must be available on
application server classpath. Some application servers contain these libraries by default, some do not, thus the
libraries must be added explicitly.

JMS itself is quite complex topic beyond of scope of this document. Detail information about it can be found on
Sun web site: http://java.sun.com/j2ee/1.4/docs/tutorial/doc/JMS6.html

http://java.sun.com/j2ee/1.4/docs/tutorial/doc/JMS6.html

Chapter 7. JMS messages listeners

49

Table 7.1. Attributes of JMS message task

Attribute Description

Node ID to handle the
event

This attribute makes sense only in cluster environment. It is node ID where the
listener should be initialized. If it is not set, listener is initialized on all nodes in the
cluster.

Initial context class name Full class name of javax.naming.InitialContext implementation. Each
JMS provider has own implementation. i.e. for Apache MQ it is
"org.apache.activemq.jndi.ActiveMQInitialContextFactory". If it is empty, server
uses default initial context. Specified class must be on web-app classpath or
application-server classpath. It is usually included in one library with JMS API
implementation for each specific JMS broker provider.

Connection factory JNDI
name

JNDI name of connection factory. Depends on JMS provider.

Destination JNDI name JNDI name of message queue/topic on the server

Username Username for connection to JMS message broker

Password Password for connection to JMS message broker

URL URL of JMS message broker

Durable subscriber (only
for Topics)

If it is false, message consumer is connected to the broker as "non-durable", so it
receives only messages which are sent while the connection is active. Other messages
are lost. If it is true, consumer is subscribed as "durable" so it receives even messages
which are sent while the connection is inactive. The broker stores such messages
until they can be delivered or until the expiration is reached. This switch makes sense
only for Topics destinations, because Queue destinations always store messages until
they can be delivered or the expiration is reached. Please note, that consumer is
inactive i.e. during server restart and during short moment when user updates the
"JMS message listener" ant it must be re-initialized. So during these intervals the
message in the Topic may get lost if the consumer does not have durable subscription.

If the subscription is durable, client must have "ClientId" specified. This attribute
can be set in different ways in dependence of JMS provider. I.e. for ActiveMQ, it is
set as URL parameter tcp://localhost:1244?jms.clientID=TestClientID

Message selector This "query string" can be used as specification of conditions for filtering incoming
messages. Syntax is well described on Java EE API web site: http://java.sun.com/
j2ee/1.4/docs/api/javax/jms/Message.html It has different behaviour depending on
type of consumer (queue/topic) Queue: If a its a queue the messages that are filtered
out remain on the queue. Topic: Messages filtered out by a Topic subscriber's
message selector will never be delivered to the subscriber. From the subscriber's
perspective, they do not exist.

Groovy code Groovy code may be used for additional message processing and/or for refusing
message. Both features are described below.

Optional Groovy code

Groovy code may be used for additional message processing or for refusing message.

• Additional message processing Groovy code may modify/add/remove values stored in containers "properties"
and "data".

• Refuse/acknowledge the message if Groovy code returns Boolean.FALSE, message is refused. Otherwise,
message is acknowledged. Refused message may be redelivered, however JMS broker should have configured
some limit for redelivering messages. If groovy code throws an exception, it is considered as coding error and

http://java.sun.com/j2ee/1.4/docs/api/javax/jms/Message.html
http://java.sun.com/j2ee/1.4/docs/api/javax/jms/Message.html

Chapter 7. JMS messages listeners

50

JMS message is NOT refused because of it. So if the message refusal is directed by some exception, it must
be handled in groovy.

Table 7.2. Variables accessible in groovy code

type key description

javax.jms.Message msg instance of JMS message

java.util.Properties properties See below for details. Contains values (String
or converted to String) read from message and
it is passed to the task which may use them
somehow. I.e. task "execute graph" passes these
parameters to the executed graph.

java.util.Map<String, Object> data See below for details. Contains values (Object,
Stream, ..) read or proxied from the message
instance and it is passed to the task which may
use them somehow. I.e. task "execute graph"
passes it to the executed graph as "dictionary
entries".

javax.servlet.ServletContext servletContext instance of ServletContext

javax.jms.Message msg instance of JMS message

com.cloveretl.server.api.ServerFacade serverFacade instance of serverFacade usable for calling
CloverETL Server core features.

String sessionToken sessionToken, needed for calling serverFacade
methods

Message data available for further processing

JMS message is processed and data it contains is stored basically in two data structures. "properties" and "data"

Chapter 7. JMS messages listeners

51

Table 7.3. "properties" elements

key description

jms_prop_[property key] For each message property is created one entry, where "key" is made of prefix
"jms_prop_" and property key.

jms_map_[map entry key] If the message is instance of MapMessage, for each map entry is created one entry,
where "key" is made of prefix "jms_map_" and map entry key. Values are converted
to String.

jms_text If the message is instanceof TextMessage, this property contains content of the
message.

jms_msg_class Class name of message implementation

jms_msg_correlationId Correlation ID is either provider-specific message ID or application-specific String
value

jms_msg_destionation The JMSDestination header field contains the destination to which the message is
being sent.

jms_msg_messageId A JMSMessageID is a String value that should function as a unique key for
identifying messages in a historical repository. The exact scope of uniqueness is
provider-defined. It should at least cover all messages for a specific installation of a
provider, where an installation is some connected set of message routers.

jms_msg_replyTo Destination to which a reply to this message should be sent.

jms_msg_type Message type identifier supplied by the client when the message was sent.

jms_msg_deliveryMode The DeliveryMode value specified for this message.

jms_msg_expiration The time the message expires, which is the sum of the time-to-live value specified
by the client and the GMT at the time of the send.

jms_msg_priority The JMS API defines ten levels of priority value, with 0 as the lowest priority and
9 as the highest. In addition, clients should consider priorities 0-4 as gradations of
normal priority and priorities 5-9 as gradations of expedited priority.

jms_msg_redelivered "true" if this message is being redelivered.

jms_msg_timestamp The time a message was handed off to a provider to be sent. It is not the time the
message was actually transmitted, because the actual send may occur later due to
transactions or other client-side queueing of messages.

Please note, that all values in "properties" structure are of String type, nevertheless it is number or text.

Table 7.4. "data" elements

key description

msg instance of javax.jms.Message

jms_data_stream Instance of java.io.InputStream. Accessible only for TextMessage, BytesMessage,
StreamMessage, ObjectMessage(only if payload object is instance of String). Strings
are encoded in UTF-8.

jms_data_text Instance of String. Only for TextMessage and ObjectMessage, where payload object
is instance of String.

jms_data_object Instance of java.lang.Object - message payload. Only for ObjectMessage.

"data" container is passed to the task which may use them somehow according to its implementation. I.e. task
"execute graph" passes it to the executed graph as "dictionary entries". Please note that it is not serializable, thus
if the task is relying on it, it can be processed properly only on the same cluster node.

Dictionary entries can be used in some of graph component attributes. I.e. in fileURL attribute like this:
"dict:jms_data_stream:discrete". So the reader reads data directly from incoming JMS message using this proxy
stream.

52

Chapter 8. Universal event listeners
Since 2.10

This feature allows you to specify Groovy code, which decides when the event is created. Subsequently specified
task is processed. So for each listener user specifies Groovy source code and task which will be processed if groovy
code decides to.

Table 8.1. Attributes of Universal message task

Attribute Description

Node ID to handle the
event

This attribute makes sense only in cluster environment. It is node ID where the
listener should be initialized. If it is not set, listener is initialized on all nodes in the
cluster.

Interval of check in
seconds

Periodicity of Groovy code execution.

Groovy code Groovy code is used for deciding whether the event should be created or not. See
below for details about groovy code.

Groovy code

Groovy code is used for deciding whether the event should be created or not.

i.e. it may do some checks of data sources, which are vital for execution of graph. Or it may do some complex
checks of running graph and make decision to kill it. It may call CloverETL Server core functions using
ServerFacade interface, which is described in its own chapter.

Creating "event" is simple. If Groovy code returns Boolean.TRUE, event is created and specified task is processed.
Otherwise, nothing happens. If groovy code throws an exception, it is considered as coding error and event is NOT
created because of it. So if it is necessary, the exceptions must be handled in groovy code.

Table 8.2. Variables accessible in groovy code

type key description

java.util.Properties properties Empty container which may be filled by String-
String key-value pairs in your Groovy code.
It is passed to the task which may use them
somehow. I.e. task "execute graph" passes these
parameters to the executed graph.

java.util.Map<String, Object> data Empty container which may be filled by String-
Object key-value pairs in your Groovy code.
It is passed to the task which may use them
somehow according to its implementation. I.e.
task "execute graph" passes it to the executed
graph as "dictionary entries". Please note that it
is not serializable, thus if the task is relying on
it, it can be processed properly only on the same
cluster node.

javax.servlet.ServletContext servletContext instance of ServletContext

com.cloveretl.server.api.ServerFacade serverFacade instance of serverFacade usable for calling
CloverETL Server core features.

String sessionToken sessionToken, needed for calling serverFacade
methods

53

Chapter 9. Manual task execution
Since 3.1

Manual task execution allows user to invoke task processing. Task is entity which describes how to react to some
source event. So normally task is processed only as a response to some source event. Since 3.1 user can manually
invoke task processing.

In addition user can specify some parameters to simulate source event which would normally trigger task
processing. Following figure displays how could be simulated "file event". Parameters for various event sources
are listed in section "Graph parameters"

Figure 9.1. Web GUI - "Manual task execution" section

54

Chapter 10. File event listeners
Since 1.3

File event listener allows system to monitor changes on server filesystem. User may define, which filesystem
resource should be observed as a source of file event. User also specifies task, which should be processed as
reaction to change on filesystem.

There is process which performs checks for changes on file system. This process works with preconfigured
periodicity, thus there is minimal interval which for checks. You can set this minimal interval by clover property
"clover.event.fileCheckMinInterval".

In cluster environment, each event listener has attribute "node ID" which specifies cluster node, which checks its
local filesystem. In "standalone" environment, "node ID" attribute is ignored.

Figure 10.1. Web GUI - "File event listeners" section

Observed file
Observed file is specified by directory path and file name pattern.

User may specify just one exact file name or file name pattern for observing more matching files in specified
directory. If there are more changed files matching the pattern, separated event is triggered for each of these files.

There are three ways how to specify file name pattern of observed file(s)

• Exact match (p. 54)

• Wildcards (p. 54)

• Regullar expression (p. 55)

Exact match

You specify exact name of the observed file.

Wildcards

You can use wildcards common in most operating systems (*, ?, etc.)

Chapter 10. File event listeners

55

• * - Matches zero or more instances of any character

• ? - Matches one instance of any character

• [...] - Matches any of characters enclosed by the brackets

• \ - Escape character

Examples

• *.csv - Matches all CSV files

• input_*.csv - Matches i.e. input_001.csv, input_9.csv

• input_???.csv - Matches i.e. input_001.csv, but does not match input_9.csv

Regullar expression

Examples

• (.*?)\.(jpg|jpeg|png|gif)$ - Matches image files

Notes

• It is strongly recommended to use absolute paths. It is possible to use relative path, but working directory
depends on application server.

• Use forward slashes as file separators, even on MS Windows OS. Backslashes might be evaluated as escape
sequences.

File Events

For each listener you have to specify event type, which you are interested in.

There are four types of file events:

• file APPEARANCE (p. 55)

• file DISAPPEARANCE (p. 55)

• file SIZE (p. 56)

• file CHANGE_TIME (p. 56)

file APPEARANCE

Event of this type occurs, when the observed file is created or copied from another location between two checks.
Please keep in mind, that event of this type occurs immediately when new file is detected, regardless it is complete
or not. Thus task which may need complete file is executed when file is still incomplete. Recommended approach is
to save file to the different location and when it is complete, move/rename to observed location where CloverETL
Server may detect it. File moving/renaming should be atomic operation.

Event of this type does not occur when the file has been updated (change of timestamp or size) between two
checks. Appearance means that the file didn't exist during previous check and it exists now, during current check.

file DISAPPEARANCE

Event of this type occurs, when observed file is deleted or moved to another location between two checks.

Chapter 10. File event listeners

56

file SIZE

Event of this type occurs when the size of the observed file has changed between two checks. Event of this type
is never produced when file is created or removed. File must exist during both checks.

file CHANGE_TIME

Event of this type occurs, when change time of observed file has changed between two checks. Event of this type
is never produced when file is created or removed. File must exist during both checks.

Check interval, Task and Use cases

• User may specify minimal time interval between two checks. It is specified in seconds.

• Each listener defines task, which will be processed as the reaction for file event. All task types and theirs
attributes are described in section Scheduling and GraphEventListeners

• • Graph Execution, when file with input data is accessible

• Graph Execution, when file with input data is updated

• Graph Execution, when file with generated data is removed and must be recreated

How to use source of event during task processing

File, which caused event (considered as source of event) may be used during task processing. i.e. reader/writer
components in graph transformations may refer to this file by special placeholders: ${event_file_path} -
path to directory which contains event source ${event_file_name} - name of event source.

i.e. if event source is: /home/clover/data/customers.csv, placeholders will contain: event_file_path -
/home/clover/data, event_file_name - customers.csv

For "graph execution" task this works only if the graph is not pooled. Thus "keep in pool interval" must be set
to 0 (default value).

57

Chapter 11. WebDAV
Since 3.1

WebDAV API allows user to use standard WebDAV clients for managing sandboxes content.

It allows specifically:

• browsing directory structure

• editing files

• removing files/folders

• renaming files/folders

• creating files/folders

• copying files

• moving files

It is accessible on URL "http://[host]:[port]/clover/webdav".

Although common www browsers can open this URL, most of them are not rich WebDAV clients, thus you can
just see list of items, but you cannot browse the directory structure with common www browsers.

WebDAV clients

There are many WebDAV clients for various operating systems, some OS support WebDAV natively.

Linux like OS

Great WebDAV client working on linux systems is Konqueror. Please use different protocol in the URL: webdav://
[host]:[port]/clover/webdav

MS windows

Last distributions of MS Windows (Win XP and later) have native support for WebDAV. Unfortunatelly, it is
more or less unreliable, so it is recommended to use some free or commercial WebDAV client. The best WebDAV
client we've tested is BitKinex: http://www.bitkinex.com/webdavclient

Mac OS

Mac OS supports WebDAV natively and in this case it should be without any problems. You can use "finder"
application, select "Connect to the server ..." menu item and use URL with HTTP protocol: "http://[host]:[port]/
clover/webdav".

WebDAV authentication/authorization

Whereas most of WebDAV clients can work with HTTP Digest Authentication, some of them cannot use HTTP
Basic Authentication. So the CloverETL Server WebDAV API uses the Digest Authentication by default. However
it may be reconfigured to use HTTP Basic Authentication. Please see the Configuration section for details.

HTTP Digest Authentication is feature added to the version 3.1. If you upgraded your older CloverETL Server
distribution, users created before the upgrade cannot use the HTTP Digest Authentication until they reset their

Chapter 11. WebDAV

58

passwords. So when they reset their passwords (or the admin does it for them), they can use Digest Authentication
as well as new users.

59

Chapter 12. Simple HTTP API
This API is intended for all HTTP clients (even for the simplest ones - like wget tool). All operations are accessible
using http GET method and return plain text. Thus response can be parsed by simple tools. If global security is on
(default setting), BASIC HTTP authentication is required. Use CloverETL Server user with proper permissions.

URL has this pattern:

http://[domain]:[port]/[context]/[servlet]/[operation]?[param1]=[value1]&[param2]=[value2]...

• Operation help (p. 59)

• Operation graph_run (p. 59)

• Operation graph_status (p. 60)

• Operation graph_kill (p. 61)

• Operation server_jobs (p. 61)

• Operation sandbox_list (p. 61)

• Operation sandbox_content (p. 61)

• Operation executions_history (p. 62)

• Operation suspend (p. 63)

• Operation resume (p. 63)

Operation help

parameters

no

returns

list of possible operations and parameters

example

http://localhost:8080/clover/request_processor/help

Operation graph_run

parameters

Chapter 12. Simple HTTP API

60

Table 12.1. Parameters of graph_run

parameter name mandatory default description

graphID yes - Text Id, which is unique in specified sandbox. May be file
path relative to sandbox root

sandbox yes - Text ID of sandbox

runtime config no default Text ID of runtime config for this execution. If not specified,
default will be used.

additional graph
parameters

no Any URL parameter with "param_" prefix is passed
to executed graph and may be used in graph XML
as placeholder, but without "param_" prefix. i.e.
"param_file_name" specified in URL may be used in the
graph as ${file_name}. These parameters are resolved only
during loading of graph XML, so graph cannot be pooled.

returns

run ID: incremental number, which identifies each execution request

example

http://localhost:8080/clover/request_processor/graph_run?graphID=graphDBExecute&sandbox=mva

Operation graph_status

parameters

Table 12.2. Parameters of graph_status

parameter name mandatory default description

runID yes - Id of each graph execution

returnType no STATUS STATUS | STATUS_TEXT | DESCRIPTION |
DESCRIPTION_XML

waitForStatus no - Status code which we want to wait for. If it is specified, this
operation will wait until graph is in required status.

waitTimeout no 0 If waitForStatus is specified, it will wait only specified
amount of milliseconds. Default 0 means forever, but it
depends on application server configuration. When the
specified timeout expires and graph run still isn't in required
status, server returns code 408 (Request Timeout). 408 code
may be also returned by application server if its HTTP
request timeout expires before.

returns

Status of specified graph. It may be number code, text code or complex description in dependence of optional
parameter returnType. Description is returned as plain text with pipe as separator, or as XML. Schema describing
XML format of the XML response is accessible on CloverETL Server URL: http://[host]:[port]/clover/schemas/
executions.xsd In dependence on waitForStatus parameter may return result immediately or wait for specified
status.

example

http://localhost:8080/clover/request_processor/graph_status ->

Chapter 12. Simple HTTP API

61

 -> ?runID=123456&returnType=DESCRIPTION&waitForStatus=FINISHED&waitTimeout=60000

Operation graph_kill

parameters

Table 12.3. Parameters of graph_kill

parameter name mandatory default description

runID yes - Id of each graph execution

returnType no STATUS STATUS | STATUS_TEXT | DESCRIPTION

returns

Status of specified graph after attempt to kill it. It may be number code, text code or complex description in
dependence of optional parameter.

example

http://localhost:8080/clover/request_processor/graph_kill?runID=123456&returnType=DESCRIPTION

Operation server_jobs

parameters

no

returns

List of runID which are currently running.

example

http://localhost:8080/clover/request_processor/server_jobs

Operation sandbox_list

parameters

no

returns

List of all sandbox text IDs. In next versions will return only accessible ones.

example

http://localhost:8080/clover/request_processor/sandbox_list

Operation sandbox_content

parameters

Chapter 12. Simple HTTP API

62

Table 12.4. Parameters of sandbox_content

parameter name mandatory default description

sandbox yes - text ID of sandbox

returns

List of all elements in specified sandbox. Each element may be specified as file path relative to sandbox root.

example

http://localhost:8080/clover/request_processor/sandbox_content?sandbox=mva

Operation executions_history

parameters

Table 12.5. Parameters of executions_history

parameter name mandatory default description

sandbox yes - text ID of sandbox

from no Lower datetime limit. Operation will return only records
after(and equal) this datetime. Format: "yyyy-MM-dd
HH:mm" (must be URL encoded)

to no Lower datetime limit. Operation will return only records
after(and equal) this datetime. Format: "yyyy-MM-dd
HH:mm" (must be URL encoded) status

status no Current execution status. Operation will return only records
with specified STATUS. Meaningful values are RUNNING
| ABORTED | FINISHED_OK | ERROR

sandbox no Sandbox code. Operation will return only records for graphs
from specified sandbox.

graphId no Text Id, which is unique in specified sandbox. File path
relative to sandbox root

orderBy no Attribute for list ordering. Possible values: id | graphId |
finalStatus | startTime | stopTime. There is no ordering by
default.

orderDescend no true Switch which specifies ascending or descending ordering. If
it is true (which is default), ordering is descending.

returnType no IDs Possible values are: IDs | DESCRIPTION |
DESCRIPTION_XML

index no 0 Index of the first returned records in whole record set.
(starting from

records no infinite Max amount of returned records.

returns

List of executions according to filter criteria.

For returnType==IDs returns simple list of runIDs (with new line delimiter).

For returnType==DESCRIPTION returns complex response which describes current status of selected
executions, their phases, nodes and ports.

Chapter 12. Simple HTTP API

63

execution|[runID]|[status]|[username]|[sandbox]|[graphID]|[startedDatetime]|[finishedDatetime]|[clusterNode]|[graphVersion]
phase|[index]|[execTimeInMilis]
node|[nodeID]|[status]|[totalCpuTime]|[totalUserTime]|[cpuUsage]|[peakCpuUsage]|[userUsage]|[peakUserUsage]
port|[portType]|[index]|[avgBytes]|[avgRows]|[peakBytes]|[peakRows]|[totalBytes]|[totalRows]

example of request

http://localhost:8080/clover/request_processor/executions_history ->
 -> ?from=&to=2008-09-16+16%3A40&status=&sandbox=def&graphID=&index=&records=&returnType=DESCRIPTION

example of DESCRIPTION (plain text) response

execution|13108|FINISHED_OK|clover|def|test.grf|2008-09-16 11:11:19|2008-09-16 11:11:58|nodeA|2.4
phase|0|38733
node|DATA_GENERATOR1|FINISHED_OK|0|0|0.0|0.0|0.0|0.0
port|Output|0|0|0|0|0|130|10
node|TRASH0|FINISHED_OK|0|0|0.0|0.0|0.0|0.0
port|Input|0|0|0|5|0|130|10
node|SPEED_LIMITER0|FINISHED_OK|0|0|0.0|0.0|0.0|0.0
port|Input|0|0|0|0|0|130|10
port|Output|0|0|0|5|0|130|10
execution|13107|ABORTED|clover|def|test.grf|2008-09-16 11:11:19|2008-09-16 11:11:30
phase|0|11133
node|DATA_GENERATOR1|FINISHED_OK|0|0|0.0|0.0|0.0|0.0
port|Output|0|0|0|0|0|130|10
node|TRASH0|RUNNING|0|0|0.0|0.0|0.0|0.0
port|Input|0|5|0|5|0|52|4
node|SPEED_LIMITER0|RUNNING|0|0|0.0|0.0|0.0|0.0
port|Input|0|0|0|0|0|130|10
port|Output|0|5|0|5|0|52|4

For returnType==DESCRIPTION_XML returns complex data structure describing one or more selected
executions in XML format. Schema describing XML format of the XML response is accessible on CloverETL
Server URL: http://[host]:[port]/clover/schemas/executions.xsd

Operation suspend

Suspends server or sandbox(if specified). Suspension means, that no graphs may me executed on suspended server/
sandbox.

parameters

Table 12.6. Parameters of suspend

parameter name mandatory default description

sandbox no - Text ID of sandbox to suspend. If not specified, it suspends
whole server.

atonce no If this param is set to true, running graphs from suspended
server(or just from sandbox) are aborted. Otherwise it can
run until it is finished in common way.

returns

Result message

Operation resume

parameters

Chapter 12. Simple HTTP API

64

Table 12.7. Parameters of resume

parameter name mandatory default description

sandbox no - Text Id of sandbox to resume. If not specified, server will
be resumed.

returns

Result message

65

Chapter 13. JMX mBean
CloverETL Server JMX mBean is API, which is useful for monitoring of CloverETL Server's internal status.

MBean is registered with name:

com.cloveretl.server.api.jmx:name=cloverServerJmxMBean

.

JMX configuration

Application's JMX MBeans aren't accessible outside of JVM by default. It needs some changes in application
server configuration to make them accessible.

This section describes how to configure JMX Connector for development and testing. Thus authentication may be
disabled. For production deployment authentication should be enabled. Please refer further documentation to see
how to achieve this. i.e. http://java.sun.com/j2se/1.5.0/docs/guide/management/agent.html#auth

Configurations and possible problems:

• How to configure JMX on Apache Tomcat (p. 65)

• How to configure JMX on Glassfish (p. 66)

• Websphere 7 (p. 67)

• Possible problems (p. 69)

How to configure JMX on Apache Tomcat

Tomcat's JVM must be executed with these self-explanatory parameters:

1. -Dcom.sun.management.jmxremote=true

2. -Dcom.sun.management.jmxremote.port=8686

3. -Dcom.sun.management.jmxremote.ssl=false

4. -Dcom.sun.management.jmxremote.authenticate=false

On UNIX like OS set environment variable CATALINA_OPTS i.e. like this:

export CATALINA_OPTS="-Dcom.sun.management.jmxremote=true
 -Dcom.sun.management.jmxremote.port=8686
 -Dcom.sun.management.jmxremote.ssl=false
 -Dcom.sun.management.jmxremote.authenticate=false"

File TOMCAT_HOME/bin/setenv.sh (if it does not exist, you may create it) or TOMCAT_HOME/bin/catalina.sh

On Windows it might be tricky, that each parameter must be set separately:

set CATALINA_OPTS=-Dcom.sun.management.jmxremote=true
set CATALINA_OPTS=%CATALINA_OPTS% -Dcom.sun.management.jmxremote.port=8686
set CATALINA_OPTS=%CATALINA_OPTS% -Dcom.sun.management.jmxremote.authenticate=false
set CATALINA_OPTS=%CATALINA_OPTS% -Dcom.sun.management.jmxremote.ssl=false

http://java.sun.com/j2se/1.5.0/docs/guide/management/agent.html#auth

Chapter 13. JMX mBean

66

File TOMCAT_HOME/bin/setenv.bat (if it does not exist, you may create it) or TOMCAT_HOME/bin/
catalina.bat

With these values, you can use URL

service:jmx:rmi:///jndi/rmi://localhost:8686/jmxrmi

for connection to JMX server of JVM. No user/password is needed

How to configure JMX on Glassfish

Go to Glasfish admin console (by default accessible on http://localhost:4848 with admin/adminadmin as user/
password)

Go to section "Configuration" > "Admin Service" > "system" and set attributes like this:

Figure 13.1. Glassfish JMX connector

With these values, you can use URL

service:jmx:rmi:///jndi/rmi://localhost:8686/jmxrmi

for connection to JMX server of JVM.

Use admin/adminadmin as user/password. (admin/adminadmin are default glassfish values)

How to configure JMX on Websphere

Websphere does not require any special configuration, but the clover MBean is registered with the name, that
depends on application server configuration:

Chapter 13. JMX mBean

67

com.cloveretl.server.api.jmx:cell=[cellName],name=cloverServerJmxMBean,node=[nodeName],
 process=[instanceName]

Figure 13.2. Websphere configuration

Websphere 6

URL for connecting to JMX server is:

service:jmx:rmi:///jndi/JMXConnector

Following system properties need to be set:

org.omg.CORBA.ORBClass=com.ibm.CORBA.iiop.ORB
java.naming.provider.url=corbaloc:iiop:[host]:[port]/WsnAdminNameService where host is the host name you are
connecting to and port is RMI port number.
If you have a default Websphere installation, the JNDI port number will likely be 2809, 2810,... depending on
how many servers there are installed on one system and the specific one you want to connect to. To be sure, when
starting Websphere, check the logs, as it will dump a line like

0000000a RMIConnectorC A ADMC0026I: The RMI Connector is available at port 2810

You will also need to set on the classpath following jar files from Websphere home directory:

/runtimes/com.ibm.ws.admin.client_6.1.0.jar
/runtimes/runtimes/com.ibm.ws.webservices.thinclient_6.1.0.jar
/java/jre/lib/ibmorb.jar

Websphere 7

URL for connecting to JMX server is:

service:jmx:iiop://[host]:[port]/jndi/JMXConnector

Chapter 13. JMX mBean

68

where host is the host name you are connectiong to and port is RMI port number. If you have a default Websphere
installation, the JNDI port number will likely be 2809, 2810, ... depending on how many servers there are installed
on one system and the specific one you want to connect to. To be sure, when starting Websphere, check the logs,
as it will dump a line like

0000000a RMIConnectorC A ADMC0026I: The RMI Connector is available at port 2810

How to configure JMX on Websphere7

Websphere does not require any special configuration, but the clover MBean is registered with the name, that
depends on application server configuration:

com.cloveretl.server.api.jmx:cell=[cellName],name=cloverServerJmxMBean,node=[nodeName],
 process=[instanceName]

Figure 13.3. Websphere7 configuration

URL for connecting to JMX server is:

service:jmx:iiop://[host]:[port]/jndi/JMXConnector

where host is the host name you are connectiong to and port is RMI port number. If you have a default Websphere
installation, the JNDI port number will likely be 2809, 2810, ... depending on how many servers there are installed
on one system and the specific one you want to connect to. To be sure, when starting Websphere, check the logs,
as it will dump a line like

0000000a RMIConnectorC A ADMC0026I: The RMI Connector is available at port 2810

You will also need to set on the classpath following jar files from Websphere home directory:

/runtimes/com.ibm.ws.admin.client_7.0.0.jar

Chapter 13. JMX mBean

69

/runtimes/com.ibm.ws.ejb.thinclient_7.0.0.jar
/runtimes/com.ibm.ws.orb_7.0.0.jar

Possible problems

• Default JMX mBean server uses RMI as a transport protocol. Sometimes RMI cannot connect
remotely when one of peers uses Java version 1.6. Solution is quite easy, just set these two
system properties: -Djava.rmi.server.hostname=[hostname or IP address] -
Djava.net.preferIPv4Stack=true

Operations

Because JMX is stateless communication, all operations have at least two parameters: user and password.

List of operations is the following:

• Operation getServerJobs (p. 69)

• Operation executeGraph (p. 69)

• Operation killGraph (p. 70)

• Operation graphStatus (p. 70)

• Operation suspendServer (p. 71)

• Operation resumeServer (p. 71)

• Operation suspendServerSandbox (p. 71)

• Operation resumeServerSandbox (p. 72)

• Operation getGraphExecutionMBeanName (p. 72)

Operation getServerJobs

parameters

Table 13.1. Parameters of getServerJobs

parameter name mandatory type description

user yes String

password yes String

returns

IDs of running jobs(graphs). IDs may be used as parameters of another operations.

Operation executeGraph

Since: 1.2.1

Executes specified graph. Only user, which has permission to execute the graph may call operation executeGraph().
Otherwise CloverSecurityException is thrown.

parameters

Chapter 13. JMX mBean

70

Table 13.2. Parameters of executeGraph

parameter name mandatory type description

user yes String

password yes String

sandbox yes String Text ID of sandbox which contains graph to execute.

graphId yes String Text ID of graph. It is path to graph file relative to sandbox
root. Only forward slashes may be used.

returns

Result runID of execution or throws an exception.

Operation killGraph

Kill running graph. Only user, which has permission to execute the graph may call operation killGraph() to kill
it. Otherwise CloverSecurityException is thrown.

parameters

Table 13.3. Parameters of killGraph

parameter name mandatory type description

user yes String

password yes String

runID yes long Run ID, which may be obtained i.e. by getRunningJobs()
operation.

returns

Result status of killed graph. If it is successfully killed, status should be ABORTED.

Operation graphStatus

Since: 1.2.1

Returns current status of specified execution.

parameters

Table 13.4. Parameters of graphStatus

parameter name mandatory type description

user yes String

password yes String

runID yes long Run ID, which is returned by executeGraph method or which
may be obtained i.e. by getRunningJobs() operation.

returns

Result status of specified graph execution. Possible values are: FINISHED_OK | RUNNING | N_A | ERROR |
ABORTED | READY

Chapter 13. JMX mBean

71

Operation suspendServer

Suspends server. Suspended server means that no graph may be executed. All attempts to execute graph will fail.
See resumeServer operation. Only administrator can call this operation. Otherwise CloverSecurityException is
thrown.

parameters

Table 13.5. Parameters of suspendServer

parameter name mandatory type description

user yes String

password yes String

atOnce yes boolean If this param is set to true, running graphs from suspended
server are aborted. Otherwise it can run until it is finished in
common way.

returns

void

Operation resumeServer

Resumes suspended server. Only administrator can call this operation. Otherwise CloverSecurityException is
thrown. See suspendServer() operation.

parameters

Table 13.6. Parameters of resumeServer

parameter name mandatory type description

user yes String

password yes String

returns

void

Operation suspendServerSandbox

Suspends specified sandbox. Suspended sandbox means that no graph from sandbox may be executed. All
attempts to execute graph will fail. See resumeServerSandbox operation. Only administrator can call this operation.
Otherwise CloverSecurityException is thrown.

parameters

Table 13.7. Parameters of suspendServerSandbox

parameter name mandatory type description

user yes String

password yes String

sandbox yes String Text ID of sandbox to suspend

atOnce yes boolean If this param is set to true, running graphs from suspended
sandbox are aborted. Otherwise it can run until it is finished
in common way.

Chapter 13. JMX mBean

72

returns

void

Operation resumeServerSandbox

Resumes suspended sandbox. Only administrator can call this operation. Otherwise CloverSecurityException is
thrown. See suspendServerSandbox() operation.

parameters

Table 13.8. Parameters of resumeServerSandbox

parameter name mandatory type description

user yes String

password yes String

sandbox yes String Text ID of sandbox to suspend

returns

void

Operation getGraphExecutionMBeanName

Returns MBean name of running graph. It may be used for direct monitoring of the transformation. However in
cluster environment, MBean is accessible only on the node, which runs graph.

parameters

Table 13.9. Parameters of getGraphExecutionMBeanName

parameter name mandatory type description

user yes String

password yes String

runID yes long Run ID, which may be obtained i.e. by getRunningJobs()
operation.

returns

MBean name

73

Chapter 14. SOAP WebService API
CloverETL Server SOAP Web Service is API, which allows its clients to manipulate with content of the sandboxes,
to monitor status of executed graphs and more.

Service is accessible on URL:

http://[host]:[port]/clover/webservice

Service descriptor is accessible on URL:

http://[host]:[port]/clover/webservice?wsdl

Protocol HTTP can be changed to secured HTTPS according to web server configuration.

SOAP WS Client

Exposed service is implemented with the most common binding style "document/literal", which is widely
supported by libraries in various programming languages.

To create client for this API, only WSDL document (see the URL above) is needed together with some
development tools according to your programming language and development environments.

JavaDoc of WebService interface with all related classes is accessible in the running CloverETL Server instance
on URL http://[host]:[port]/[contextPath]/javadoc-ws/index.html

If the web server has HTTPS connector configured, also the client must meet the security requirements according
to web server configuration. i.e. client trust + key stores configured properly

SOAP WS API authentication/authorization

Since exposed service is stateless, authentication "sessionToken" has to be passed as parameter to each operation.
Client can obtain authentication sessionToken by calling "login" operation.

../javadoc-ws/index.html

74

Chapter 15. Launch Service
The Launch Service provides users with convenient way of remotely executing the CloverETL graphs via a simple
web-based interface which can be customized to fit the needs of the users.

The Launch Services can be used with any browser and therefore do not require users to install any software.
This allows for convenient control of the graph execution which can be easily tied to external tools if necessary
(requests can be sent from custom applications as well).

Launch Service Overview

The architecture of Launch Service is relatively simple and follows the basic design of multi-tiered applications
utilizing the browser.

Figure 15.1. Launch Service Overview

The basic usage scenario of client form page is simple:

1. User opens the Launch Service web page in his browser

2. User enters the parameters of the graph (if required)

3. The data is submitted to the CloverETL Server. This is the moment the service is actually called.

4. All the results (including error messages or logs) are sent back to the user and displayed in the browser. The
logs are also available for inspection via CloverETL Server GUI.

The Launch Service web pages which are presented to users can be fully replaced by client's web application or by
third party application which calls CloverETL Launch Service by HTTP request. This allows full customization
of the outside appearance of the web - for example, it can be a simple web form which communicates with users
in the terminology they are familiar with.

Chapter 15. Launch Service

75

Deploying Graph in Launch Service

To enable users to access the specific graph via Launch Service, several steps have to be taken:

1. The graph has to be designed to allow its parameters to be passed via dictionary.

2. The graph has to be configured in CloverETL Server in Launch Service section.

3. The form which will submit the data to Launch Service has to be written.

Overall the deployment of the graph to the Launch Service is not much more complex compared to the regular
graph development process. In following chapters all the steps will be described in more detail alongside some
basic examples.

Designing the Graphs for Launch Service

To use the graphs from Launch Service, the Launch Service requires the graph to use dictionary when parameters
have to be passed to the graph. Dictionary is a data storage associated with each run of the graph in CloverETL.
For more details about the dictionary see section "Dictionary" in CloverETL Designer docs.

To use the Dictionary from the Launch Service, the graph author is required to specify the entries of the dictionary
in graph's XML source file. For more details about the Dictionary XML element see section "Dictionary" in
CloverETL Designer docs.

Apart from the use of the dictionary, the Launch Service does not impose any other restriction on the graphs it
should run. The graphs can therefore use all the facilities provided by the CloverETL engine.

Configuring the Graph in CloverETL Server web GUI

To notify the Launch Service about the graphs that will be available via its interface, the Launch Service has to
be properly configured via CloverETL Server GUI.

Launch Service uses launch configurations to store the details about how each graph can be run. Each launch
configuration contains full description of the graph's parameters, how they are mapped to the parameters passed
from the web interface and so on.

Each launch configuration is identified by its name, user and group restriction. Several configurations with the
same name can be created as long as they differ in their user or group restrictions.

Use restrictions can be used to launch different graphs for different users even though they use the same launch
configuration (for example, the developers may want to use debug version of the graph while the end customers
will want to use the production graph). The user restriction can also be used to prohibit certain users from executing
the launch configuration.

Similarly, the group restriction can be used to differentiate graphs based on the group membership of the user
which runs the launch configuration.

When the configuration is launched, the correct configuration is picked based on the configuration name, user
specification and group specification. If multiple configuration match the current user/group and configuration
name, the most specific one is picked (the user name has higher priority than the group name).

Adding New Launch Configuration

New launch configurations can be added by clicking on New launch configuration link on the Launch Services
tab in CloverETL Server GUI:

Chapter 15. Launch Service

76

Figure 15.2. Launch Service section

After the configuration has been created it will appear in the table on the left side among the other existing
configuration. Before using the configuration user will have to add parameter mapping. To add parameter
mappings click on the detail link for the newly created configuration. The details will be displayed on the right
side of the window in a simple table:

Figure 15.3. The Basic Info tab

The Basic Info tab shows the basic details about the launch configuration. These can be modified in the Edit
Configuration tab:

Chapter 15. Launch Service

77

Figure 15.4. Edit Configuration tab

Following fields can be modified:

• Name - is the name under which the configuration will be accessible from web.

• Description - the description of the configuration.

• Group - restricts the configuration to specific group of users.

• User - restricts the configuration to specified user.

• Sandbox - selects the CloverETL Sandbox in which the configuration will be launched.

• Graph - selects the graph to run when the configuration is launched.

• Save run record - if checked, the details about the launch configuration will be visible in Execution History in
the CloverETL Server GUI. If unchecked, the graph executions will not be logged and will not be displayed
in the Execution History.

• Display error message detail - if checked, detailed error messages will be displayed in case the launch fails. If
unchecked, only simpler messages will be displayed to the user.

Finally, the tab Edit Parameters can be used to configure parameter mappings for the launch configuration. The
mappings are required for the Launch Service to be able to correctly assign parameters values based on the values
sent in the launch request.

Figure 15.5. Edit Parameters tab

To add new parameter mapping click on the New property link. Each property required by the graph has to be
created (internal graph properties do not need mappings).

Chapter 15. Launch Service

78

Figure 15.6. Edit Parameters tab

Following fields are available for each property:

• Name - the name of the property in the graph's dictionary.

• Request parameter - the name of the parameter as specified in the launch request generated by the request page.
This name can be different than the name used in graph's dictionary.

• Parameter required - if checked the parameter is mandatory and error will be reported if it is omitted.

• Pass to graph - if checked the parameter will be also passed to graph among the additional parameters as well
as in the dictionary. In such case, the parameter can also be referenced as ${ParameterName} in the graph's
XML file. Since the additional parameters are resolved when the XML file is parsed, the graphs which use this
method cannot be pooled.

• Default value - is the default value which will be applied in case the parameter is omitted in the launch request.

To create the new mapping, click on the Create button after all the fields have been filled. After the mapping
is created, it will be displayed in the list of existing mappings. It can be later edited or deleted by clicking on
appropriate links.

Figure 15.7. Edit Parameters tab

Sending the Data to Launch Service

To launch the graph which has been configured for use with Launch Service, the user has to send a launch request.
The launch request can be sent via HTTP GET or POST methods. A launch request is simply an URL which
contains the values of all parameters that should be passed to the graph. The request URL is composed of several
parts:

[Clover Context]/launch/[Configuration name]?[Parameters]

Chapter 15. Launch Service

79

• [Clover Context] is the URL to the context in which the CloverETL is running. Usually this is
the full URL to CloverETL Server (for example, for CloverETL Demo Server this would be http://server-
demo.cloveretl.com:8080/clover).

• [Configuration name] is the name of the launch configuration which has been specified when the
configuration has been created. In our example, this would be set to NewMountains (distinction between upper-
and lower-case is important).

• [Parameters] is the list of parameters the configuration requires in the format used for example by PHP.
Therefore the parameter list is a list of name-value pairs separated by "&" character. Each name-value pair
is specified as [name]=[value] where value has to be properly encoded according to RFC 1738 to make sure
URL is valid.

Based on the above, the full URL of launch request for our example with mountains may be like this: http://
server-demo.cloveretl.com:8080/clover/launch/NewMountains?heightMin=4000. In the request above, the value
of heightMin property is set to 4000.

Results of the Graph Execution

After the graph's run terminates, the results are sent back from the engine to the server and finally to the user. The
output is partially defined in the dictionary which is declared in the graph's XML file. The dictionary can mark
selected parameters as output parameters. All the output parameters are sent to the user after the graph execution
is finished.

Depending on the number of output parameters, the following output is sent to user:

• No output parameters - only summary page is displayed to the user. The format of the summary page cannot be
customized. The page will contain details like when the graph was started, when it finished, user name and so on.

• One output parameter - in this case the output is sent to the user with its content type defined by the property
type in the dictionary.

• Multiple output parameters - in this case each output parameter is sent to user a part of multipart response. The
content type of the response is either multipart/related or multipart/x-mixed-replace depending on the target
browser (the browser detection is of course fully automatic). The multipart/related type is used for browsers
based on Microsoft Internet Explorer, the multipart/x-mixed-replace is sent to browsers based on Gecko or
Webkit.

Launch requests are recorded in the log files in directory specified by launch.log.dir property in CloverETL
Server configuration. For each launch configuration one log file named [Configuration name]#[Launch ID].log is
created. For each launch request this file will contain only one line with following tab-delimited fields:

If the property launch.log.dir is not specified, log files are created in temp directory
[java.io.tmpdir]/cloverlog/launch. Where "java.io.tmpdir" is system property.

• Launch start time

• Launch end time

• Logged-in user name

• Run ID

• Execution status FINISHED_OK, ERROR or ABORTED

• IP Address of the client

• User agent of the HTTP client

• Query string passed to the Launch Service (full list of parameters of the current launch)

Chapter 15. Launch Service

80

In case the configuration is not valid, the same launch details are saved into the _no_launch_config.log file in the
same directory. All unauthenticated requests are saved to the same file as well.

81

Chapter 16. Configuration
Default installation (without any configuration) is recommended only for evaluation purposes. For production, at
least DB connection and SMTP server configuration is recommended.

Config Sources and Their Priorities

There are several sources of configuration properties. If property isn't set, application default is used.

Warning: Do not combine sources specified below. Configuration becomes confusing and maintenance will be
much more difficult.

Context Parameters (Available on Apache Tomcat)

Some application servers allows to set context parameters without modification of WAR file. This way of
configuration is possible and recommended for Tomcat.

Example for Apache Tomcat

On Tomcat it is possible to specify context parameters in context configuration file. [tomcat_home]/conf/
Catalina/localhost/clover.xml which is created automatically just after deployment of CloverETL
Server web application.

You can specify property by adding this element:

<Parameter name="[propertyName]" value="[propertyValue]" override="false" />

Environment Properties

Set system environment property with prefix clover. , i.e. (clover.config.file)

Properties File on default Location

Source is common properties file (text file with key-value pairs):

[property-key]=[property-value]

By default CloverETL tries to find config file [workingDir]/cloverServer.properties.

Properties File on specified Location

The same as above, but properties file is not loaded from default location, because its location is specified by
environment property clover_config_file or clover.config.file. This is recommended way of
configuration if context parameters cannot be set in application server.

Modification of Context Parameters in web.xml

Unzip clover.war and modify file WEB-INF/web.xml, add this code:

Chapter 16. Configuration

82

<context-param>
 <param-name>[property-name]</param-name>
 <param-value>[property-value]</param-value>
</context-param>

This way isn't recommended, but it may take place when none of above ways is possible.

Priorities of config Sources

Configuration sources have these priorities:

1. context parameters (specified in application server or directly in web.xml)

2. external config file CS tries to find it in this order (only one of them is loaded):

• path specified by context parameter config.file

• path specified by environment property clover_config_file or clover.config.file

• default location ([workingDir]/cloverServer.properties)

3. environment properties

4. default values

Examples of DB Connection Configuration

Configuration of DB connection is optional. Embedded Apache Derby DB is used by default and it is sufficient
for evaluation, however configuration of external DB connection is strongly recommended for production
deployment. It is possible to specify common JDBC DB connection attributes (URL, username, password) or
JNDI location of DB DataSource.

Configurations and their changes may be as follows:

• Upgrade of DB schema (p. 82)

• Embedded Apache Derby (p. 83)

• MySQL (p. 83)

• DB2 (p. 84)

• Oracle (p. 86)

• MS SQL (p. 86)

• Postgre SQL (p. 87)

• JNDI DB DataSource (p. 87)

Upgrade of DB schema

If you replace older version of CloverETL Server by new one above the same DB, there may be some changes in
DB schema. Since CloverETL Server version 1.2, DB patches above existing DB schema are done automatically,
during first startup. However If you are upgrading from DB schema of version 1.1. you will have to preset this
feature by these SQL updates:

CREATE TABLE sys_schema_patches (patch varchar(256) unique not null, applied timestamp);

Chapter 16. Configuration

83

INSERT INTO sys_schema_patches (patch,applied) values ('0000_create.sql', null);

Do not execute it above empty DB! It is intended only for upgrading from existing DB schema of 1.1. version.

Embedded Apache Derby

Apache Derby embedded DB is used with default CloverETL Server installation. It uses working directory as
storage directory for data persistence by default. This may be problem on some systems. In case any problems
with connection to Derby DB, we recommend to configure connection to external DB or at least specify Derby
home directory:

Set system property derby.system.home to set path which is accessible for application server. You can
specify this system property by this JVM execution parameter:

-Dderby.system.home=[derby_DB_files_root]

For modification Tomcat context params, add to context config file (and modify according to your credentials):

<Parameter name="jdbc.driverClassName" value="org.apache.derby.jdbc.EmbeddedDriver" override="false" />
<Parameter name="jdbc.url" value="jdbc:derby:databases/cloverDb;create=true" override="false" />
<Parameter name="jdbc.username" value="" override="false" />
<Parameter name="jdbc.password" value="" override="false" />
<Parameter name="jdbc.dialect" value="org.hibernate.dialect.DerbyDialect" override="false" />

Or If you use properties file for configuration:

jdbc.driverClassName=org.apache.derby.jdbc.EmbeddedDriver
jdbc.url=jdbc:derby:databases/cloverDb;create=true
jdbc.username=
jdbc.password=
jdbc.dialect=org.hibernate.dialect.DerbyDialect

Take a closer look at jdbc.url parameter. Part "databases/cloverDb" means subdirectory for DB data. This
subdirectory will be created in directory, which is set as derby.system.home or in working directory if
"derby.system.home" is not set. Value "databases/cloverDb" is default value, which may be changed.

MySQL

CloverETL Server requires MySql 5.x

For modification Tomcat context params, add to context config file (and modify according to your credentials):

<Parameter name="jdbc.driverClassName" value="com.mysql.jdbc.Driver" override="false" />
<Parameter name="jdbc.url" value="jdbc:mysql://127.0.0.1:3306/clover?useUnicode=true&characterEncoding=utf8" override="false" />
<Parameter name="jdbc.username" value="root" override="false" />
<Parameter name="jdbc.password" value="" override="false" />
<Parameter name="jdbc.dialect" value="org.hibernate.dialect.MySQLDialect" override="false" />

Or If you use properties file for configuration:

jdbc.driverClassName=com.mysql.jdbc.Driver
jdbc.url=jdbc:mysql://127.0.0.1:3306/clover?useUnicode=true&characterEncoding=utf8
jdbc.username=root
jdbc.password=
jdbc.dialect=org.hibernate.dialect.MySQLDialect

Since 3.0 JDBC driver isn't included in CloverETL Server web archive, thus it must be added to the application
server classpath.

Chapter 16. Configuration

84

Create DB with proper charset, like this:

CREATE DATABASE IF NOT EXISTS clover DEFAULT CHARACTER SET 'utf8';

DB2

DB2 on Linux/Windows

For modification Tomcat context params, add to context config file (and modify according to your credentials):

<Parameter name="jdbc.driverClassName" value="com.ibm.db2.jcc.DB2Driver" override="false" />
<Parameter name="jdbc.url" value="jdbc:db2://localhost:50000/clover" override="false" />
<Parameter name="jdbc.username" value="usr" override="false" />
<Parameter name="jdbc.password" value="pwd" override="false" />
<Parameter name="jdbc.dialect" value="org.hibernate.dialect.DB2Dialect" override="false" />

Or If you use properties file for configuration:

jdbc.driverClassName=com.ibm.db2.jcc.DB2Driver
jdbc.url= jdbc:db2://localhost:50000/clover
jdbc.username=usr
jdbc.password=pwd
jdbc.dialect=org.hibernate.dialect.DB2Dialect

Possible problems

Wrong pagesize

Database clover has to be created with suitable PAGESIZE. DB2 has several possible values for this property:
4096, 8192, 16384 or 32768.

CloverETL Server should work on DB with PAGESIZE set to 16384 or 32768. If PAGESIZE value is not set
properly, there should be error message in the log file after failed CloverETL Server startup:

ERROR:
DB2 SQL Error: SQLCODE=-286, SQLSTATE=42727, SQLERRMC=16384;
ROOT, DRIVER=3.50.152

SQLERRMC contains suitable value for PAGESIZE.

You can create database with proper PAGESIZE like this:

CREATE DB clover PAGESIZE 32768;

The table is in the reorg pending state

After some ALTER TABLE commands, some tables may be in "reorg pending state". This behaviour is specific for
DB2. ALTER TABLE DDL commands are executed only during the first start of new CloverETL Server version.

Error message for this issue may look like this:

Operation not allowed for reason code "7" on table "DB2INST2.RUN_RECORD".. SQLCODE=-668, SQLSTATE=57016

or like this

Chapter 16. Configuration

85

DB2 SQL Error: SQLCODE=-668, SQLSTATE=57016, SQLERRMC=7;DB2INST2.RUN_RECORD, DRIVER=3.50.152

In this case "RUN_RECORD" is table name which is in "reorg pending state" and "DB2INST2" is DB instance
name.

To solve this, go to DB2 console and execute command (for table run_record):

reorg table run_record

DB2 console output should look like this:

db2 => connect to clover1
Database Connection Information

Database server = DB2/LINUX 9.7.0
SQL authorization ID = DB2INST2
Local database alias = CLOVER1

db2 => reorg table run_record
DB20000I The REORG command completed successfully.
db2 => disconnect clover1
DB20000I The SQL DISCONNECT command completed successfully.

"clover1" is DB name

DB2 does not allow ALTER TABLE which trims DB column length.

This problem depends on DB2 configuration and we've experienced this only on some AS400s so far. CloverETL
Server applies set of DP patches during the first installation after application upgrade. Some of these patches
may apply column modifications which trims length of the text columns. These changes never truncate any data,
however DB2 does not allow this since it "may" truncate some data. DB2 refuses these changes even in DB table
which is empty. Solution is, to disable the DB2 warning for data truncation, restart CloverETL Server which
applies patches, then enable DB2 warning again.

DB2 on AS/400

The connection on AS/400 might be slightly different.

For modification Tomcat context params, add to context config file (and modify according to your credentials):

<Parameter name="jdbc.driverClassName" value="com.ibm.as400.access.AS400JDBCDriver" override="false" />
<Parameter name="jdbc.url" value="jdbc:as400://localhost/cloversrv;date format=iso" override="false" />
<Parameter name="jdbc.username" value="javlin" override="false" />
<Parameter name="jdbc.password" value="clover" override="false" />
<Parameter name="jdbc.dialect" value="org.hibernate.dialect.DB2400Dialect" override="false" />

Or If you use properties file for configuration:

jdbc.driverClassName=com.ibm.as400.access.AS400JDBCDriver
jdbc.username=javlin
jdbc.password=clover
jdbc.url=jdbc:as400://host/cloversrv;libraries=cloversrv;date format=iso
jdbc.dialect=org.hibernate.dialect.DB2400Dialect

Use credentials of your OS user for jdbc.username and jdbc.password.

cloversrv in jdbc.url above is the name of the DB schema.

You can create schema in AS/400 console:

Chapter 16. Configuration

86

• execute command STRSQL (SQL console)

• execute CREATE COLLECTION cloversrv IN ASP 1

• cloversrv is the name of the DB schema and it may be at most 10 characters long

Proper JDBC driver must be in the application server classpath.

I use JDBC driver jt400ntv.jar, which I've found in /QIBM/ProdData/Java400 on the server.

Use jt400ntv.jar JDBC driver.

Do not forget to add jar with JDBC driver to the Tomcat classpath.

Oracle

For modification Tomcat context params, add to context config file (and modify according to your credentials):

<Parameter name="jdbc.driverClassName" value="oracle.jdbc.OracleDriver" override="false" />
<Parameter name="jdbc.url" value="jdbc:oracle:thin:@host:1521:db" override="false" />
<Parameter name="jdbc.username" value="user" override="false" />
<Parameter name="jdbc.password" value="pass" override="false" />
<Parameter name="jdbc.dialect" value="org.hibernate.dialect.Oracle9Dialect" override="false" />

Or If you use properties file for configuration:

jdbc.driverClassName=oracle.jdbc.OracleDriver
jdbc.url=jdbc:oracle:thin:@host:1521:db
jdbc.username=user
jdbc.password=pass
jdbc.dialect=org.hibernate.dialect.Oracle9Dialect

Do not forget to add jar with JDBC driver to the application server classpath.

Since CloverETL Server version 1.2.1, dialect org.hibernate.dialect.Oracle10gDialect is no
longer available. Please use org.hibernate.dialect.Oracle9Dialect instead.

These are privileges which have to be granted to schema used by CloverETL Server:

CONNECT
CREATE SESSION
CREATE/ALTER/DROP TABLE
CREATE/ALTER/DROP SEQUENCE

QUOTA UNLIMITED ON <user_tablespace>;
QUOTA UNLIMITED ON <temp_tablespace>;

MS SQL

Ms SQL requires configuration of DB server.

• Allowing of TCP/IP connection:

• execute tool SQL Server Configuration Manager

• go to Client protocols

• switch on TCP/IP (default port is 1433)

Chapter 16. Configuration

87

• execute tool SQL Server Management Studio

• go to Databases and create DB clover

• go to Security/Logins and create user and assign this user as owner of DB clover

• go to Security and check SQL server and Windows authentication mode

For modification Tomcat context params, add to context config file (and modify according to your credentials):

<Parameter name="jdbc.driverClassName" value="com.microsoft.sqlserver.jdbc.SQLServerDriver" override="false" />
<Parameter name="jdbc.url" value="jdbc:sqlserver://localhost:1433;databaseName=clover" override="false" />
<Parameter name="jdbc.username" value="user" override="false" />
<Parameter name="jdbc.password" value="pass" override="false" />
<Parameter name="jdbc.dialect" value="org.hibernate.dialect.SybaseDialect" override="false" />

Or If you use properties file for configuration:

jdbc.driverClassName=com.microsoft.sqlserver.jdbc.SQLServerDriver
jdbc.url=jdbc:sqlserver://localhost:1433;databaseName=clover
jdbc.username=user
jdbc.password=pass
jdbc.dialect=org.hibernate.dialect.SybaseDialect

Do not forget to add jar with JDBC driver to the Tomcat classpath.

Postgre SQL

For modification Tomcat context params, add to context config file (and modify according to your credentials):

<Parameter name="jdbc.driverClassName" value="org.postgresql.Driver" override="false" />
<Parameter name="jdbc.url" value="jdbc:postgresql://localhost/clover?charSet=UTF-8" override="false" />
<Parameter name="jdbc.username" value="postgres" override="false" />
<Parameter name="jdbc.password" value="" override="false" />
<Parameter name="jdbc.dialect" value="org.hibernate.dialect.PostgreSQLDialect" override="false" />

Or If you use properties file for configuration:

jdbc.driverClassName=com.microsoft.sqlserver.jdbc.SQLServerDriver
jdbc.url=jdbc:postgresql://localhost/clover?charSet=UTF-8
jdbc.username=postgres
jdbc.password=
jdbc.dialect=org.hibernate.dialect.PostgreSQLDialect

Do not forget to add jar with JDBC driver to the Tomcat classpath.

JNDI DB DataSource

Server can connect to JNDI DB DataSource, which is configured in application server or container. However there
are some CloverETL parameters which must be set, otherwise the behaviour may be unpredictable:

datasource.type=JNDI # type of datasource; must be set, because default value is JDBC
datasource.jndiName=# JNDI location of DB DataSource; default value is java:comp/env/jdbc/clover_server #
jdbc.dialect=# Set dialect according to DB which DataSource is connected to. The same dialect as in sections above. #

Above parameters may be set in the same ways as other params (in properties file or Tomcat context file)

Chapter 16. Configuration

88

Example of DataSource configuration in Apache Tomcat. Add following code to context file.

<Resource name="jdbc/clover_server" auth="Container"
 type="javax.sql.DataSource" driverClassName="com.mysql.jdbc.Driver"
 url="jdbc:mysql://192.168.1.100:3306/clover?useUnicode=true&characterEncoding=utf8"
 username="root" password="" maxActive="20" maxIdle="10" maxWait="-1"/>

List of Properties

Table 16.1. General configuration

key description default

config.file location of CloverETL
Server configuration file

[working_dir]/ cloverServer.properties

license.file location of CloverETL
Server licence file
(license.dat)

engine.config.file location of CloverETL
engine configuration
properties file

properties file packed with CloverETL

private.properties List of server properties
which are used only by
CloverETL Server code.
So these properties are
not accessible outside
of the ServerFacade. By
default there are all
properties which may
contain password in the
list. Basically it means, that
their values are not visible
for web GUI users. Values
are replaced by single
star "*". Changes in this
list may cause unexpected
behavior of some server
API.

jdbc.password,executor.password,security.ldap.password,clover.smtp.password

engine.plugins.src This property may contain
absolute path to some
"source" of additional
CloverETL engine plugins.
These plugins are not
a substitute for plugins
packed in WAR. "Source"
may be directory or zip
file. Both directory and zip
must contain subdirectory
for each plugin. Changes in
the directory or the ZIP file
apply only when the server
is restarted. For details
see section "Extensibility -
engine plugins".

empty

Chapter 16. Configuration

89

key description default

datasource.type Set this explicitly to JNDI
if you need CloverETL
Server to connect to DB
using JNDI datasource.
In such case, parameters
"datasource.jndiName"
and "jdbc.dialect" must
be set properly. Possible
values: JNDI | JDBC

JDBC

datasource.jndiName JNDI location of DB
DataSource. It is applied
only if "datasource.type" is
set to "JNDI".

java:comp/env/jdbc/clover_server

jdbc.driverClassName class name for jdbc driver
name

jdbc.url jdbc url used by
CloverETL Server to store
data

jdbc.username jdbc database user name

jdbc.password jdbc database user name

jdbc.dialect hibernate dialect to use in
ORM

quartz.driverDelegateClass SQL dialect for quartz.
Value is automatically
derived from "jdbc.dialect"
property value.

security_enabled true | false If it is
set to false, then no
authentication is required
and anyone has admin
privileges.

true

security.default_domain Domain which all new
users are included in.
Stored in user's record
in the database. Shouldn't
be changed unless the
"clover" must be white-
labelled.

clover

security.basic_authentication.features_listSemi-colon separated list
of features which are
accessible using HTTP
and which should be
protected by Basic
HTTP Authentication.
Each feature is specified by
its servlet path.

/request_processor;/simpleHttpApi;/
launch;/launchIt;/downloadStorage;/
downloadFile;/uploadSandboxFile;/
downloadLog

security.basic_authentication.realm Realm string for HTTP
Basic Authentication.

CloverETL Server

Chapter 16. Configuration

90

key description default

security.digest_authentication.features_listSemi-colon separated list
of features which are
accessible using HTTP
and which should be
protected by HTTP
Digest Authentication.
Each feature is specified
by its servlet path. Please
keep in mind, that HTTP
Digest Authentication is
feature added to the version
3.1. If you upgraded your
older CloverETL Server
distribution, users created
before the upgrade cannot
use the HTTP Digest
Authentication until they
reset their passwords. So
when they reset their
passwords (or the admin
does it for them), they can
use Digest Authentication
as well as new users.

/webdav

security.digest_authentication.realm Realm string for HTTP
Digest Authentication. If
it is changed, all users
have to reset their
passwords, otherwise they
won't be able to access
to the server features
protected by HTTP digest
Authentication.

CloverETL Server

security.digest_authentication.nonce_validityInterval of validity
for HTTP Digest
Authentication specified in
seconds. When the interval
passes, server requires new
authentication from the
client. Most of the HTTP
clients do it automatically.

300

clover.event.fileCheckMinInterval Interval of file checkes
(in milliseconds) See
Chapter 10, File event
listeners (p. 54) for details.

1000

clover.smtp.host SMTP server hostname or
IP address

clover.smtp.port SMTP server port

clover.smtp.authentication true/false If it is false,
username and password are
ignored

clover.smtp.username SMTP server username

clover.smtp.password SMTP server password

Chapter 16. Configuration

91

key description default

logging.project_name used in log messages where
it is neccessary to name the
product name

CloverETL

logging.default_subdir name of default
subdirectory for all server
logs; it is relative to the
path specified by system
property "java.io.tmpdir".
Don't specify absolute
path, use properties which
are intended for absolute
path.

cloverlogs

launch.log.dir Location, where server
should store launch
requests logs. See Launch
Services section for details.

${java.io.tmpdir}/
[logging.default_subdir]/launch where
${java.io.tmpdir} is system property

graph.logs_path Location, where server
should store Graph run
logs. See Logging section
for details.

${java.io.tmpdir}/
[logging.default_subdir]/graph where
${java.io.tmpdir} is system property

temp.default_subdir Name of default
subdirectory for server tmp
files; it is relative to the
path specified by system
property "java.io.tmpdir".

clovertmp

graph.debug_path Location, where server
should store Graph debug
info.

${java.io.tmpdir}/[temp.default_subdir]/
debug where ${java.io.tmpdir} is system
property

graph.dictionary_path Location, where server
should store graph
dictionary temporary files.

${java.io.tmpdir}/[temp.default_subdir]/
dictionary where ${java.io.tmpdir} is
system property

graph.pass_event_params_to_graph_in_old_styleSince 3.0. It is switch for
backwards compatibility of
passing parameters to the
graph executed by graph
event. In version prior
to 3.0 all params has
been passed to executed
graph. Since 3.0 just
specified parameters are
passed. Please see Task -
Execution of Graph (p. 35)
for details.

false

threadManager.pool.corePoolSize Number of threads which
are always active (running
or idling). Related to thread
pool for processing server
events.

4

Chapter 16. Configuration

92

key description default

threadManager.pool.queueCapacity Max size of the
queue(FIFO) which
contains tasks waiting for
thread. Related to thread
pool for processing server
events. It means, that
there won't be more
then "queueCapacity"
waiting tasks. i.e.
queueCapacity=0 - no
waiting tasks, each
task is immediatelly
executed in available
thread or in new thread.
queueCapacity=1024 - up
to 1024 tasks may be
waiting in the queue
for available thread from
"corePoolSize".

12

threadManager.pool.maxPoolSize Max number of active
threads. If no thread from
core pool is available
and queue capacity is
exceeded, pool creates
new threads up to
"maxPoolSize" threads. If
there are more concurrent
tasks then maxPoolSize,
thread manager refuses
to execute it. Thus
keep queueCapacity or
maxPoolSize big enough.

1024

task.archivator.batch_size Max number of records
deleted in one batch. It
is used for deleting of
archived run records.

50

launch.http_header_prefix Prefix of HTTP headers
added by launch services to
the HTTP response.

X-cloveretl

task.archivator.archive_file_prefix Prefix of archive files
created by archivator.

cloverArchive_

license.context_names Comma separated list of
web-app contexts which
may contain license. Each
of them has to start with
slash! Works only on
Apache Tomcat.

/clover-license,/clover_license

license.display_header Switch which specifies
whether display license
header in server web GUI
or not.

false

Chapter 16. Configuration

93

Table 16.2. Defaults for graph execution configuration - see section Graph config properties for details

key description default

executor.tracking_interval Interval in milliseconds for scanning
current status of running graph. The
shorter interval, the bigger log file.

2000

executor.log_level Log level of graph runs. TRACE |
DEBUG | INFO | WARN | ERROR

INFO

executor.max_running_concurrently Amount of graph instances which may
exist(or run) concurrently. 0 means no
limits

0

executor.max_graph_instance_age Interval in milliseconds. Specifies how
long graph instance can be idling
before it is released from memory. 0
means no limits. This property has been
renamed since 2.8. Original name was
executor.maxGraphInstanceAge

0

executor.classpath Classpath for transformation/processor
classes used in the graph. Directory
[sandbox_root]/trans does not have to
be listed here, since it is automatically
added to graph run classpath.

executor.skip_check_config Disables check of graph configuration.
Increases performance of graph
execution, however may be useful during
graph development.

true

executor.password Password for decoding of encoded DB
connection passwords.

executor.verbose_mode If true, more descriptive logs of graph
runs are generated.

true

executor.use_jmx If true, graph executor registers jmx
mBean of running graph.

true

executor.debug_mode If true, edges with enabled debug store
data into files in debug directory. See
property "graph.debug_path"

false

See "Clustering" section for more properties.

94

Chapter 17. Graph parameters
CloverETL Server passes set of parameters for each graph execution. Please keep in mind, that placeholders
${paramName} are resolved only during loading of graph XML, so if you need placeholders resolving for each
graph execution, graph cannot be pooled. However current parameter values are always accessible by inline java
code like this:

String runId = getGraph().getGraphProperties().getProperty("RUN_ID");

Properties may be added or replaced like this:

getGraph().getGraphProperties().setProperty("new_property", value);

This is set of parameters which are always set by CloverETL Server:

Table 17.1. Defaults for graph execution configuration - see section Graph config properties for details

key description

SANDBOX_CODE Code of sandbox which contains executed graph.

GRAPH_FILE Path to the graph file, relative to sandbox root path. It is
often referred as "graphId".

SANDBOX_ROOT Absolute path sandbox root.

RUN_ID ID of the graph execution. In standalone mode or in
cluster mode, it is always unique. It may be lower then
0 value, if the run record isn't persistent. See "Launch
Services" for details.

Another sets of parameters according the type of execution

There are some more parameters in dependence of way, how the graph is executed.

executed from Web GUI

no more parameters

executed by Launch Service invocation

Service parameters which have attribute Pass to graph enabled are passed to the graph not only as "dictionary"
input data, but also as graph parameter.

executed by HTTP API run graph operation invocation

Any URL parameter with "param_" prefix is passed to executed graph but without "param_" prefix. i.e.
"param_file_name" specified in URL is paased to the graph as property named "file_name".

executed by RunGraph component

Since 3.0 only parameters specified by "paramsToPass" attribute are passed from the "parent" graph to the executed
graph. However common properties (RUN_ID, PROJECT_DIR, etc.) are overwritten by new values.

Chapter 17. Graph parameters

95

executed by WS API method executeGraph invocation

no more parameters

executed by task "graph execution" by scheduler

Table 17.2. passed parameters

key description

event_schedule_event_type Type of schedule SCHEDULE_PERIODIC |
SCHEDULE_ONETIME

event_schedule_last_event Date/time of previous event

event_schedule_description Schedule description, which is displayed in web GUI

event_username User who "owns" the event. For schedule it is the user
who created the schedule

event_schedule_id ID of schedule which triggered the graph

executed by task "graph execution" by graph event listener

Since 3.0 only specified properties from "source" graph are passed to executed graph by default. There is server
config property "graph.pass_event_params_to_graph_in_old_style" which can change this behavior so that ALL
parameters from "source" graph are passed to the executed graph. This switch is implemented for backwards
compatibility. Regarding the default behaviour: You can specified list of parameters to pass in the editor of graph
event listener. Please see the section "Task - Execution of Graph" for details.

However following parameters with current values are always passed to the target graph

Table 17.3. passed parameters

key description

event_run_sandbox Sandbox with graph, which is source of the event

event_graph_event_type GRAPH_STARTED | GRAPH_FINISHED |
GRAPH_ERROR | GRAPH_ABORTED |
GRAPH_TIMEOUT |
GRAPH_STATUS_UNKNOWN

event_run_graph graphId of the graph, which is source of the event

event_run_id ID of the graph execution, which is source of the event.

event_timeout Number of miliseconds which specifies interval of
timeout. Makes sence only for "timeout" graph event.

event_run_result Result (or current status) of the execution, which is
source of the event.

event_username User who "owns" the event. For graph events it is the
user who created the graph event listener

executed by task "graph execution" by file event listener

Table 17.4. passed parameters

key description

event_file_path Path to file, which is source of the event. Does not
contain file name. Does not end with file separator.

Chapter 17. Graph parameters

96

key description

event_file_name Filename of the file which is source of the event.

event_file_event_type SIZE | CHANGE_TIME | APPEARANCE |
DISAPPEARANCE

event_file_pattern Pattern specified in file event listener

event_file_listener_id

event_username User who "owns" the event. For file events it is the user
who created the file event listener

How to add another graph parameters

Additional "Graph Config Parameters"

It is possible to add so-called additional parameters in Web GUI - section Sandboxes for the selected graph or for
all graphs in the selected sandbox. See details in the section called “Graph config properties” (p. 21).

Task "execute_graph" parameters

The "execute graph" task may be triggered by schedule, graph event listener or file event listener. Task editor
allows you to specify key=value pairs which are passed to executed graph.

97

Chapter 18. Recommendations for transformations
developers

Add external libraries to app-server classpath

i.e. connections (JDBC/JMS) may require third party libraries. It is strongly recommended to add these libraries
to app-server classpath.

CloverETL allows you to specify these libraries directly in graph definition so CloverETL may load these
libraries dynamically, but external libraries may cause memory leak resulting with "java.lang.OutOfMemoryError:
PermGen space" in this case.

In addition, app-servers should have the JMS API on their classpath and the third-party libraries often bundle this
API as well. So it may result in classloading conflicts if these libraries are not loaded by the same classloader.

Another graphs executed by RunGraph component may be
executed only in the same JVM instance

In server environment, all graphs are executed in the same VM instance. Attribute "same instance" of RunGraph
component cannot be set to false.

98

Chapter 19. Logging

Main logs

CloverETL Server uses log4j library for logging. WAR file contains default log4j configuration.

By default, log files are produced in directory specified by system property "java.io.tmpdir" in "cloverlogs"
subdirectory.

"java.io.tmpdir" usually contains common system temp dir i.e. "/tmp". On tomcat, it is usually
"[TOMCAT_HOME]/temp"

Default logging configuration may be overridden by system property "log4j.configuration", which should contain
URL to log4j config file.

log4j.configuration=file:/home/clover/config/log4j.xml

Since such configuration overrides default configuration, it may have influence over Graph run logs. So your own
log config has to contain following fragment to preserve Graph run logs

<logger name="Tracking" additivity="false">
 <level value="debug"/>
</logger>

These system properties allow logging of HTTP requests/responses to stdout:

client side:

com.sun.xml.ws.transport.http.client.HttpTransportPipe.dump=true (for more
information consult CloverETL Designer Users's Guide - chapter Integrating CloverETL Designer with
CloverETL Server)

server side:

com.sun.xml.ws.transport.http.HttpAdapter.dump=tru

Graph run logs

Each graph run has it is own log file, which is accessible i.e. in web GUI, section "executions history".

By default these log files are produced in subdirectory cloverLogs/graph in the directory specified by
"java.io.tmpdir" system property.

It is possible to specify different location for these logs by CloverETL property "graph.logs_path". This property
does not have any influence over main server logs.

http://www.cloveretl.com/documentation/UserGuide/topic/com.cloveretl.gui.docs/docs/designer-server-integration.html
http://www.cloveretl.com/documentation/UserGuide/topic/com.cloveretl.gui.docs/docs/designer-server-integration.html

99

Chapter 20. Extensibility (Embedded OSGi
framework)
Since 3.0

CloverETL Server includes embedded OSGi framework which allows implementation of "plugin" (OSGi bundle)
which works as new API (or even GUI) of the server and it is independent of released clover.war.

Plugin possibilities

Basically the plugin may work as new server API similarly as Launch Services, HTTP API, WebServices API.
It may be just simple JSP, HttpServlet or complex SOAP Web Services. So if the plugin contains some HTTP
service, it is registered to listen on specified URL during the startup and incoming HTTP requests are "bridged"
from the web container to the plugin. Plugin itself has access to the internal CloverETL Server interface called
"ServerFacade". ServerFacade offers methods for execution graphs, obtaining of graph status and executions
history, manipulation with scheduling, listeners, configuration and many more. So the API may be customized
according to the needs of specific deployment.

Deploying an OSGi bundle

There are 2 CloverETL Server configuration properties related to the OSGi framework.

• plugins.path - Absolute path to the directory containing all your plugins (jar files).

• plugins.autostart - It is comma separated plugin names list. These plugins will be started during server startup.
Theoretically OSGi framework can start the OSGi bundle on demand, however it is unreliable when the servlet
bridge to the servlet container is used, so it is strongly recommended to name all your plugins.

So do deploy your plugin: set two config properties, copy plugin to the directory specified by "plugins.path" and
restart the server.

100

Chapter 21. Extensibility CloverETL engine plugins
Since 3.1.2

CloverETL Server may use external engine plugins loaded from specified source. Source is specified by config
property "engine.plugins.src"

See details about possibilities of CloverETL configuration in Chapter 16, Configuration (p. 81)

This property must be absolute path to the directory or zip file with additional CloverETL engine plugins. Both
directory and zip must contain subdirectory for each plugin. These plugins are not a substitute for plugins packed
in WAR. Changes in the directory or the ZIP file apply only when the server is restarted.

Each plugin has its own class-loader which uses parent-first strategy by default. Parent of plugins' classloaders
is web-app classloader (content of [WAR]/WEB-INF/lib). If the plugin uses any third-party libraries, there may
be some conflict with libraries on parent-classloaders classpath. These are common exceptions/errors suggesting,
that there is something wrong with classloading:

• java.lang.ClassCastException

• java.lang.ClassNotFoundException

• java.lang.NoClassDefFoundError

• java.lang.LinkageError

There are couple of ways how to ged rid of such conflicts:

• Remove your conflicting third-party libraries and use libraries on parent classloaders (web-app or app-server
classloaders)

• Use different class-loading strategy for your plugin.

• in the plugin descriptor plugin.xml, set attribute greedyClassLoader="true" in the element "plugin"

• it means, that plugin classloader will use self-first strategy

• Set inverse class-loading strategy for selected java packages.

• In the plugin descriptor plugin.xml, set attribute "excludedPackages" in the element "plugin".

• It's comma separated list of package prefixes. E.g. like this:
excludedPackages="some.java.package,some.another.package"

• In previous example all classes from "some.java.package", "some.another.package" and all their sub-
packages would be loaded with the inverse loading strategy then the rest of classes on the plugins classpath.

Of course, the suggestions above may be combined. It's not easy to find the best solution for these conflicts and
it may depend on the libraries on app-server classpath.

For more convinient debugging it is useful to set TRACE log level for related class-loaders.

<logger name="org.jetel.util.classloader.GreedyURLClassLoader">
 <level value="trace"/>
</logger>
<logger name="org.jetel.plugin.PluginClassLoader">
 <level value="trace"/>
</logger>

See "Logging" section for details about overriding server log4j configuration.

101

Chapter 22. Clustering
CloverETL Server only works in the cluster if the user's license allows it.

There are two common cluster features, high availability and scalability. Both of them are implemented by
CloverETL Server on various levels. This section should clarify the basics of CloverETL Clustering.

High Availability

Since version 3.0, CloverETL Server does not recognize any differences between cluster nodes. Thus, there are
no "master" or "slave" nodes meaning all nodes can be virtually equal. There is no single point of failure(SPOF)
in the CloverETL cluster itself, however SPOFs may be in the input data or some other external element.

Clustering offers high availability(HA) for all features accessible through HTTP. This includes sandbox browsing,
modification of services configuration (scheduling, launch services, listeners) and primarily graph executions.
Any cluster node may accept incoming HTTP requests and process them itself or delegate it to another node.

Since all nodes are equal, almost all requests may be processed by any cluster node:

• All graph files, metadata files, etc. are located in shared sandboxes. Thus all nodes have access to them. A
shared filesystem may be a SPOF, thus it is recommended to use a replicated filesystem instead.

• The database is shared by all cluster nodes. Again, a shared DB might be a SPOF, however it may be clustered
as well.

But there is still a possibility, that a node cannot process a request by itself. In such cases, it completely and
transparently delegates the request to a node which can process the request.

These are the requests which are limited to one (or more) node(s):

• a request for the content of a partitioned or local sandbox. These sandboxes aren't shared among all cluster
nodes. Please note that this request may come to any cluster node which then delegates it to a target node,
however, this target node must be up and running.

• A graph is configured to use a partitioned or local sandbox. These graphs need nodes which have a physical
access to the required sandboxes.

Thus an inaccessible partitioned or local sandbox may cause a failure from the request, however...

1. it is still possible to configure redundant sandboxes stored on other cluster nodes.

2. these types of sandboxes are used only for scalability on the data level(described below), which is a different
approach to using a CloverETL cluster.

CloverETL itself implements a load balancer for executing graphs. So a graph which isn't configured for some
specific node(s) may be executed anywhere in the cluster and the CloverETL load balancer decides, according to
the current load, which node will process the graph. All this is done transparently.

To achieve HA, it is recommended to use an independent HTTP load balancer. Independent HTTP load balancers
allow transparent fail-overs for HTTP requests. They send requests to the nodes which are running.

Scalability

There are two independent levels of scalability implemented. Scalability of transformation requests(and any HTTP
requests) and data scalability (parallel data processing).

Both of these "scalability levels" are "horizontal". Horizontal scalability means adding nodes to the cluster, whereas
vertical scalability means adding resources to a single node. Vertical scalability is supported natively by the
CloverETL engine and it is not described here.

Chapter 22. Clustering

102

Transformation Requests

Basically, the more nodes we have in the cluster , the more transformation requests (or HTTP requests in general)
we can process at one time. This type of scalability is the CloverETL server's ability to support a growing number
of clients. This feature is closely related to the use of an HTTP load balancer which is mentioned in the previous
section.

Parallel Data Processing

When a transformation is processed in parallel, the whole graph (or its parts) runs in parallel on multiple cluster
nodes having each node process just a part of the data.

So the more nodes we have in the cluster, the more data can be processed in the specified time.

The data may be split(partitioned) before the graph execution or by the graph itself on the fly. The resulting data
may be stored in partitions or gathered and stored as one group of data.

The curve of scalability may differ according to the type of transformation. It may be almost linear, which is
almost always ideal, except when there is a single data source which cannot be read by multiple readers in parallel
limiting the speed of further data transformation. In such cases it is not beneficial to have parallel data processing
since it would actually wait for input data.

Node Allocation

Node allocation is the specification of which cluster nodes will run the graph and which parts of the graph they
will run. Allocation is basically specified by the partitioned sandboxes used in the graph phase. Each phase may
have its own (just one) allocation. Basically, each partitioned sandbox has a list of locations. When some part of
the graph runs in parallel, there is one worker for each partitioned sandbox location. See "Partitioned sandbox" in
Partitioned and Local Sandboxes (p. 104) for details.

Allocation is specified in the graph either by:

• sandbox resources pointing to a partitioned sandbox, if workers read/write some partitioned data to/from their
own location of this partitioned sandbox, or by

• the node attribute "node allocation", if workers do not read/write their partitioned data, however there must be
an allocation specified.

If there is a conflict, execution fails and an error message appears containing the description of the conflict. A
single conflict may be caused by using two different allocations in a single phase.

Partitioning/gathering Data

As mentioned before, data may be partitioned and gathered in multiple ways. It may be prepared before the graph
is executed or it may be partitioned on the fly.

Partitioning/gathering "on the fly"

There are two special components to consider: ClusterPartitioner and ClusterGather. Both work similarly, but in
the opposite way.

ClusterPartitioner works like a common partitioner, but node allocation is applied simultaneously behind the
ClusterPartitioner component. All components preceding the ClusterPartitioner run on just one node (so called
the primary worker - see below) whereas components behind the ClusterPartitioner run in parallel according to
node allocation. Thus, these nodes work with just part of the data. There are more partitioning types: "round-
robin" (default), "by record key", and "by load".

Chapter 22. Clustering

103

ClusterGather works in the opposite way. Components preceding the gather run in parallel while components
behind the gather run on just one node (primary worker). The cluster gather component gathers records in the
same way as SimpleGather and its attributes are the same. By default it does not sort input records in any way.
It just gathers them in the order they come.

Primary worker node - some parts of the graph designed to run in parallel may run on a single node anyway. i.e. the
part where the graph reads/writes data from/to a single resource. It may be the part preceding ClusterPartitioner
or the part behind ClusterGatherer respectively. It also may be on all components in the phase which do not
have node allocation specified at all. Each phase may have its own primary worker. All graph primary workers
are chosen during graph execution primarily according to the local sandbox datasources used in the phases.
Basically, the node which has direct(local) access to a sandbox datasource(s) used in the phase is selected as the
primary worker. Of course, there may be multiple different local sandbox datasources, or even no local sandbox
datasources used in the phase. In such cases, the server uses some minor parameters to choose the primary worker.

Both components may be combined in a single phase in any way, but there must be just one node allocation and
just one primary worker in each single phase.

This example shows how data would be processed in 2 different node allocations, on 2 different primary workers.

• phase 1 starts

• processing data on primary worker (nodeA)

• cluster partitioner component

• processing data in parallel (nodeA, nodeB, nodeC)

• cluster gatherer component

• processing data on primary worker (nodeA)

• phase 1 ends

• phase 2 starts

• processing data on primary worker (nodeA)

• cluster partitioner component

• processing data in parallel (nodeB, nodeD)

• phase 2 ends

• phase 3 starts

• processing data in parallel (nodeB, nodeD)

• cluster gatherer component

• processing data on primary worker (nodeD)

• phase 3 ends

Results are stored on a different node (nodeD) then the node that read (nodeA) and data is actually repartitioned
(from nodeA, nodeB, nodeC to nodeB, nodeD).

Partitioning/gathering data by external tools

Partitioning data on the fly may in some cases be an unnecessary bottleneck. Splitting data using low-level tools
can be much better for scalability. The optimal case being, that each running worker reads data from an independent

Chapter 22. Clustering

104

data source. Thus there does not have to be a ClusterPartitioner component in the first phase and the graph runs
in parallel from the beginning.

• phase 1 starts

• processing data in parallel (nodeA, nodeB, nodeC)

• cluster gatherer component

• processing data on primary worker (nodeA)

• phase 1 ends

Or the whole graph may run in parallel, however the results would be partitioned.

• phase 1 starts

• processing data in parallel (nodeA, nodeB, nodeC)

• phase 1 ends

Partitioned and Local Sandboxes

Partitioned and local sandboxes were mentioned in previous sections. These new sandbox types were introduced
in version 3.0 and they are vital for parallel data processing.

Together with shared sandboxes, we have three sandbox types in total.

Shared sandbox

This type of sandbox must be used for all data which is supposed to be accessible on all cluster nodes. This includes
all graphs, metadata, connections, classes and input/output data for graphs which should support HA, as described
above.

Figure 22.1. Dialog form for creating new shared sandbox

As you can see in the screenshot above, you cannot specify any root path on the filesystem. Shared sandboxes
are stored in the directory specified by "cluster.shared_sandboxes_path". Each shared sandbox has its own
subdirectory in it, which is named by sandbox ID.

Local sandbox

This sandbox type is intended for data, which is accessible only by certain cluster nodes. It may include massive
input/output files. The purpose being, that any cluster node may access content of this type of sandbox, but only
one has local(fast) access and this node must be up and running to provide data. The graph may use resources from
multiple sandboxes which are physically stored on different nodes since cluster nodes are able to create network
streams transparently as if the resource was a local file. See Using a Sandbox Resource as a Component Data
Source (p. 105) for details.

Chapter 22. Clustering

105

Do not use local sandbox for common project data (graphs, metadata, connections, lookups, properties files, etc.).
It would cause odd behaviour. Use shared sandboxes instead.

Figure 22.2. Dialog form for creating new local sandbox

Partitioned sandbox

This type of sandbox is actually an abstract wrapper for a couple of physical locations existing typically on different
cluster nodes. However, there may be multiple locations on the same node. A partitioned sandbox has two purposes
which are both closely related to parallel data processing.

1. node allocation specification - locations of a partitioned sandbox define the workers which will run the graph
or its parts. So each physical location will cause a single worker to run. This worker does not have to actually
store any data to "its" location. It is just a way to tell the CloverETL Server: "execute this graph/phase in parallel
on these nodes"

2. storage for part of the data during parallel data processing. Each physical location contains only part of the
data. In a typical use, we have input data split in more input files, so we put each file into a different location
and each worker processes its own file.

As you can see on the screenshot above, for a partitioned sandbox, you can specify one or more physical locations
on different cluster nodes.

Do not use partitioned sandbox for common project data (graphs, metadata, connections, lookups, properties files,
etc.). It would cause odd behavior. Use shared sandboxes instead.

Using a Sandbox Resource as a Component Data Source

A sandbox resource, whether it is a shared, local or partitioned sandbox (or ordinary sandbox on standalone server),
is specified in the graph under the fileURL attributes as a so called sandbox URL like this:

sandbox://data/path/to/file/file.dat

where "data" is a code for sandbox and "path/to/file/file.dat" is the path to the resource from the sandbox root.
URL is evaluated by CloverETL Server during graph execution and a component (reader or writer) obtains the
opened stream from the server. This may be a stream to a local file or to some other remote resource. Thus, a graph
does not have to run on the node which has local access to the resource. There may be more sandbox resources
used in the graph and each of them may be on a different node. In such cases, CloverETL Server would choose
the node with the most local resources to minimalize remote streams.

The sandbox URL has a specific use for parallel data processing. When the sandbox URL with the resource
in a partitioned sandbox is used, that part of the graph/phase runs in parallel, according to the node allocation
specified by the list of partitioned sandbox locations. Thus, each worker has it is own local sandbox resource.
CloverETL Server evaluates the sandbox URL on each worker and provides an open stream to a local resource
to the component.

The sandbox URL may be used on standalone server as well. It is excellent choice when graph references
some resources from different sandboxes. It may be metadata, lookup definition or input/output data. Of course,
referenced sandbox must be accessible for the user who executes the graph.

Chapter 22. Clustering

106

Recommendations for Cluster Deployment

1. All nodes in the cluster should have a synchronized system date-time.

2. All nodes share sandboxes stored on a shared or replicated filesystem. The filesystem shared among all nodes
is single point of failure. Thus, the use of a replicated filesystem is strongly recommended.

3. All nodes share a DB, thus it must support transactions. I.e. The MySQL table engine, MyISAM, may cause
strange behaviour because it is not transactional.

4. All nodes share a DB, which is a single point of failure. Use of a clustered DB is strongly recommended.

5. Configure the license as "license.file" for this property on Tomcat. Do not use clover_license.war.
Tomcat loads web-apps in an unpredictable order and for the cluster, the license must be loaded before
CloverETL Server itself.

Figure 22.3. List of nodes joined to the cluster

Example of Distributed Execution

The following diagram shows a transformation graph used for parsing invoices generated by a few cell phone
network providers in Czech Republic.

Chapter 22. Clustering

107

The size of these input files may be up to a few gigabytes, so it is very beneficial to design the graph to work
in the cluster environment.

Details of the Example Transformation Design

Please note there is only one phase and there are four cluster components in the graph (highlighted by red border).
These components define a point of change "node allocation", so the part of the graph demarcated by these
components is highlighted by the red rectangle. This part of the graph performs data processing in parallel. This
means that the components inside the dotted rectangle run on cluster nodes according to the "node allocation" of
that part of the graph.

The rest of the graph runs just on one node called "primary worker".

Specification of "node allocation"

Since there is only one phase, the whole graph has just one primary worker and only one node allocation.

• node allocation is applied for groups of components running in parallel (demarcated by the four cluster
components)

• the outer part of the graph run on a single node - primary worker.

The primary worker is specified by the sandbox code used in the URLs of input data. The following dialog shows
the File URL value: "sandbox://data/path-to-csv-file", where "data" is the ID of the server sandbox containing the
specified file. And it is the "data" local sandbox which defines the primary worker in the graph.

The part of the graph demarcated by the four cluster components may have specified its allocation by the file
URL attribute as well, but this part does not work with files at all, so there is no file URL. Thus, we will use
the "allocation" attribute. Since all components in this part must have the same allocation, it is sufficient to set
it only for one component.

Again, "dataPartitioned" in the following dialog is the sandbox ID.

Chapter 22. Clustering

108

Let's investigate our sandboxes. This project requires 3 sandboxes: "data", "dataPartitioned" and
"PhoneChargesDistributed".

• data

• contains input and output data

• local sandbox (yellow folder), so it has only one physical location

• accessible only on node "i-4cc9733b" in the specified path

• dataPartitioned

• partitioned sandbox (red folder), so it has a list of physical locations on different nodes

• does not contain any data and since the graph does not read or write to this sandbox, it is used only for the
definition of "nodes allocation"

• on the following figure, allocation is configured for two cluster nodes

• PhoneChargesDistributed

• common sandbox containing the graph file, metadata, and connections

• shared sandbox (blue folder), so all cluster nodes have access to the same files

Chapter 22. Clustering

109

If the graph was executed with the sandbox configuration of the previous figure, the node allocation would be:

• components which run only on primary worker, will run only on the "i-4cc9733b" node according to the "data"
sandbox location.

• components with allocation according to the "dataPartitioned" sandbox will run on nodes "i-4cc9733b" and
"i-52d05425".

Scalability of the Example Transformation

The example transformation has been tested in the Amazon Cloud environment with the following conditions for
all executions:

• the same master node

• the same input data: 1,2 GB of input data, 27 million records

• three executions for each "node allocation"

• "node allocation" changed between every 2 executions

• all nodes has been of "c1.medium" type

We tested "node allocation" from 1 single node, all the way up to 8 nodes.

The following figure shows the functional dependence of run-time on the number of nodes in the cluster:

Chapter 22. Clustering

110

Figure 22.4. Cluster Scalability

The following figure shows the dependency of "speedup factor" on the number of nodes in the cluster. The speedup
factor is the ratio of the average runtime with one cluster node and the average runtime with x cluster nodes. Thus:

speedupFactor = avgRuntime(1 node) / avgRuntime(x nodes)

We can see, that the results are favourable up to 4 nodes. Each additional node still improves cluster performance,
however the effect of the improvement decreases. Nine or more nodes in the cluster may even have a negative
effect because their benefit for performance may be lost in the overhead with the management of these nodes.

These results are specific for each transformation, there may be a transformation with much a better or possibly
worse function curve.

Figure 22.5. Speedup factor

Table of measured runtimes:

nodes runtime 1 [s] runtime 2 [s] runtime 3 [s] average
runtime [s]

speedup factor

1 861 861 861 861 1

2 467 465 466 466 1.85

3 317 319 314 316.67 2.72

4 236 233 233 234 3.68

5 208 204 204 205.33 4.19

6 181 182 182 181.67 4.74

7 168 168 168 168 5.13

8 172 159 162 164.33 5.24

Chapter 22. Clustering

111

Cluster configuration

Cluster can work properly only if each node is properly configured. Clustering must be enabled, nodeID must be
unique on each node, all nodes must have access to shared DB and shared sandboxes, and all properties for inter-
node cooperation must be set according to network environment.

Properties and possible configuration are the following:

• Mandatory properties (p. 111)

• Optional properties (p. 112)

• Example of 2 node cluster configuration (p. 112)

• Load balancing properties (p. 113)

Mandatory properties

Table 22.1. Mandatory properties - these properties must be properly set on each node of the cluster

property type default

cluster.enabled boolean false

description: switch whether server is connected to the cluster or not

cluster.node.id String node01

description: each cluster node must have unique ID

cluster.shared_sandboxes_path String, path

description: Path, where all shared sandboxes are stored on this node. If cluster
is enabled, all sandboxes are shared, thus "rootPath" attribute of the
sandbox is ignored. Path to the root directory of the sandbox is
constructed like this: [shared_sandboxes_path]/[sandboxID]

cluster.jgroups.bind_address String, IP address 127.0.0.1

description: IP address of ethernet interface, which is used for communication with
another cluster nodes. Necessary for inter-node messaging.

cluster.jgroups.start_port int, port 7800

description: Port where jGroups server listens for inter-node messages.

cluster.jgroups.tcpping.initial_hosts String, in format:
"IPaddress1[port1],IPaddress2[port2]"

127.0.0.1[7800]

description: List of IP addresses(with ports) where we expect running
and listening nodes. It is related to another nodes
"bind_address" and "start_port" properties. I.e. like this:
bind_address1[start_port1],bind_address2[start_port2],... It is not
necessary to list all nodes of the cluster, but at least one of listed host:port
must be running. Necessary for inter-node messaging.

cluster.http.url String, URL http://localhost:8080/clover

description: URL to the root of web application of configured node. Necessary for
inter-node cooperation. This value will be sent to all other nodes in the
cluster to let them know how to connect to this node.

Chapter 22. Clustering

112

Optional properties

Table 22.2. Optional properties - these properties aren't vital for cluster configuration - default values
are sufficient

property type default description

cluster.node.sendinfo.interval int 5000 time interval in ms; each
node sends info about itself
to another nodes; this interval
specified how often the info is
sent

cluster.node.remove.interval int 15000 time interval in ms; if no node
info comes in this interval, node
is considered as lost and it is
removed from the cluster

cluster.max_allowed_time_shift_between_nodes int 2000 Max allowed time shift between
nodes. If time shift exceeds this,
node will be selected as invalid.

cluster.group.name String cloverCluster Each cluster has its unique
group name. If you need 2
clusters in the same network
environment, each of them
would have its own group
name.

cluster.max_allowed_time_shift_between_nodes int 2000 How many miliseconds is
maximum allowed time shift
between nodes in the cluster.
All nodes must have system
time synchronized. Otherwise
cluster may not work properly.
So if this threshold is exceeded,
node will be set as invalid.

Example of 2 node cluster configuration

This section contain example of CloverETL cluster nodes configuration. In addition it is necessssary to configure:

• sharing or replication of directory /home/clover/nfs_shared/sandboxes

• connection to the same database from both nodes

• HTTP load balancer

Configuration of node on 192.168.1.131

 jdbc.dialect=org.hibernate.dialect.MySQLDialect
 datasource.type=JNDI
 datasource.jndiName=java:comp/env/jdbc/clover_server

 cluster.enabled=true
 cluster.node.id=node01
 cluster.shared_sandboxes_path=/home/clover/nfs_shared/sandboxes

 license.file=/home/clover/license/license.dat

Chapter 22. Clustering

113

 cluster.group.name=cloverCluster
 cluster.jgroups.bind_address=192.168.1.131
 cluster.jgroups.start_port=7800
 cluster.jgroups.tcpping.initial_hosts=192.168.1.13[7800]

 cluster.http.url=http://192.168.1.131:8080/clover

Configuration of node on 192.168.1.13

 jdbc.dialect=org.hibernate.dialect.MySQLDialect
 datasource.type=JNDI
 datasource.jndiName=java:comp/env/jdbc/clover_server

 cluster.enabled=true
 cluster.node.id=node02
 cluster.shared_sandboxes_path=/home/clover/nfs_shared/sandboxes

 license.file=/home/clover/license/license.dat

 cluster.group.name=cloverCluster
 cluster.jgroups.bind_address=192.168.1.13
 cluster.jgroups.start_port=7800
 cluster.jgroups.tcpping.initial_hosts=192.168.1.131[7800]

 cluster.http.url=http://192.168.1.13:8080/clover

Load balancing properties

Multiplicators of load balancing criteria. Load balancer decides which cluster node executes graph. It means, that
any node may process request for execution, but graph may be executed on the same or on different node according
to current load of the nodes and according to these multiplicators.

The higher number, the higher relevance for decision. All multiplicators must be greater then 0.

Each node of the cluster may have different load balancing properties. Any node may process incomming requests
for transformation execution and each may apply criteria for loadbalancing in a different way according to its
own configuration.

These properties aren't vital for cluster configuration - default values are sufficient

Chapter 22. Clustering

114

Table 22.3. Load balancing properties

property type default description

cluster.lb.balance.running_graphs float 3 Specify importance of running graphs for
load balancing.

cluster.lb.balance.memused float 0.5 Specify importance of used memmory for
load balancing.

cluster.lb.balance.cpus float 1.5 Specify importance of number of CPUs
for load balancing.

cluster.lb.balance.master_bonus float 1 Specify importance of the fact, that the
node is master. Usually it does not
affect anything, thus value 1 says to load
balancer: "consider master node the same
as any other node"

cluster.lb.balance.this_node float 2 Specify importance of the fact, that
the node is the same which processes
request for execution. The same node,
which decides where to execute graph.
If you specify this multiplicator great
enough, it will cause, that graph will be
always executed on the same node, which
processes request for execution.

115

List of Figures
2.1. Clover Server as the only running application on IBM Websphere .. 12
3.1. Sandboxes Section in CloverETL Server Web GUI ... 15
3.2. Sandbox Detail in CloverETL Server Web GUI .. 16
3.3. Sandbox Permissions in CloverETL Server Web GUI .. 17
3.4. Web GUI - section "Sandboxes" .. 18
3.5. Web GUI - download sandbox in ZIP ... 18
3.6. Web GUI - upload ZIP to sandbox ... 19
3.7. Web GUI - upload ZIP results ... 19
3.8. Web GUI - download file in ZIP ... 20
3.9. Graph config properties .. 23
4.1. Web GUI - section "Users" ... 27
4.2. Web GUI - edit user .. 27
4.3. Web GUI - change password .. 28
4.4. Web GUI - groups assignment .. 28
4.5. Web GUI - section "Groups" .. 29
4.6. Web GUI - groups assignment .. 29
4.7. Tree of permissions ... 30
5.1. Web GUI - section "Scheduling" - create new .. 31
5.2. Web GUI - onetime schedule form ... 32
5.3. Web GUI - schedule form - calendar .. 32
5.4. Web GUI - periodical schedule form .. 33
5.5. Cron periodical schedule form ... 34
5.6. Web GUI - Graph execution task ... 35
5.7. Web GUI - "Kill graph" ... 36
5.8. Web GUI - shell command ... 36
5.9. Web GUI - archive records ... 39
6.1. Web GUI - graph timeout event .. 41
6.2. Web GUI - send email ... 43
6.3. Web GUI - Task JMS message editor ... 45
6.4. Event source graph isn't specified, thus listener works for all graphs in specified sandbox 46
6.5. Web GUI - email notification about graph failure ... 46
6.6. Web GUI - email notification about graph success .. 47
6.7. Web GUI - backup of data processed by graph ... 47
9.1. Web GUI - "Manual task execution" section .. 53
10.1. Web GUI - "File event listeners" section ... 54
13.1. Glassfish JMX connector .. 66
13.2. Websphere configuration .. 67
13.3. Websphere7 configuration ... 68
15.1. Launch Service Overview ... 74
15.2. Launch Service section ... 76
15.3. The Basic Info tab ... 76
15.4. Edit Configuration tab .. 77
15.5. Edit Parameters tab .. 77
15.6. Edit Parameters tab .. 78
15.7. Edit Parameters tab .. 78
22.1. Dialog form for creating new shared sandbox ... 104
22.2. Dialog form for creating new local sandbox ... 105
22.3. List of nodes joined to the cluster ... 106
22.4. Cluster Scalability .. 110
22.5. Speedup factor .. 110

116

List of Tables
1.1. CloverETl server and CloverETL engine comparison .. 1
3.1. Sandbox attributes ... 16
3.2. Sandbox permissions ... 17
3.3. ZIP upload parameters ... 20
3.4. Graph config parameters .. 22
4.1. After default installation above empty DB, there are two users created .. 26
4.2. User attributes .. 27
4.3. Default groups created during installation .. 29
5.1. Onetime schedule attributes .. 31
5.2. Periodical schedule attributes .. 33
5.3. Cron periodical schedule attributes ... 33
5.4. Attributes of "Graph execution" task .. 35
5.5. Attributes of "Kill graph" task ... 36
5.6. Attributes of "Shell command" task .. 36
5.7. List of variables available in Groovy code ... 37
5.8. Attributes of "archive records" task .. 38
6.1. Attributes of "Send email" task .. 42
6.2. Placeholders useful in email templates .. 44
6.3. Attributes of JMS message task ... 45
7.1. Attributes of JMS message task ... 49
7.2. Variables accessible in groovy code ... 50
7.3. "properties" elements ... 51
7.4. "data" elements ... 51
8.1. Attributes of Universal message task .. 52
8.2. Variables accessible in groovy code ... 52
12.1. Parameters of graph_run ... 60
12.2. Parameters of graph_status .. 60
12.3. Parameters of graph_kill ... 61
12.4. Parameters of sandbox_content .. 62
12.5. Parameters of executions_history .. 62
12.6. Parameters of suspend .. 63
12.7. Parameters of resume ... 64
13.1. Parameters of getServerJobs .. 69
13.2. Parameters of executeGraph .. 70
13.3. Parameters of killGraph .. 70
13.4. Parameters of graphStatus ... 70
13.5. Parameters of suspendServer ... 71
13.6. Parameters of resumeServer .. 71
13.7. Parameters of suspendServerSandbox .. 71
13.8. Parameters of resumeServerSandbox ... 72
13.9. Parameters of getGraphExecutionMBeanName ... 72
16.1. General configuration ... 88
16.2. Defaults for graph execution configuration - see section Graph config properties for details 93
17.1. Defaults for graph execution configuration - see section Graph config properties for details 94
17.2. passed parameters .. 95
17.3. passed parameters .. 95
17.4. passed parameters .. 95
22.1. Mandatory properties - these properties must be properly set on each node of the cluster 111
22.2. Optional properties - these properties aren't vital for cluster configuration - default values are
sufficient .. 112
22.3. Load balancing properties .. 114

	Copyright and disclaimer
	Table of Contents
	Chapter 1. What is CloverETL Server
	Chapter 2. Installation
	Apache Tomcat
	Jetty
	IBM Websphere
	Glassfish / Sun Java System Application Server
	JBoss
	Possible issues during installation

	Chapter 3. Graphs on Server Side - Sandboxes
	Referencing files from the graph
	Sandbox Security and Permissions
	Sandbox Content
	Graph config properties

	Chapter 4. Users and Groups
	LDAP authentication
	Web GUI section Users
	Web GUI section Groups

	Chapter 5. Scheduling
	Timetable Setting
	Tasks

	Chapter 6. Graph Event Listeners
	Graph Events
	Listener
	Tasks
	Use cases

	Chapter 7. JMS messages listeners
	Optional Groovy code
	Message data available for further processing

	Chapter 8. Universal event listeners
	Groovy code

	Chapter 9. Manual task execution
	Chapter 10. File event listeners
	Observed file
	File Events
	Check interval, Task and Use cases

	Chapter 11. WebDAV
	WebDAV clients
	WebDAV authentication/authorization

	Chapter 12. Simple HTTP API
	Operation help
	Operation graph_run
	Operation graph_status
	Operation graph_kill
	Operation server_jobs
	Operation sandbox_list
	Operation sandbox_content
	Operation executions_history
	Operation suspend
	Operation resume

	Chapter 13. JMX mBean
	JMX configuration
	Operations

	Chapter 14. SOAP WebService API
	SOAP WS Client
	SOAP WS API authentication/authorization

	Chapter 15. Launch Service
	Launch Service Overview
	Deploying Graph in Launch Service
	Designing the Graphs for Launch Service
	Configuring the Graph in CloverETL Server web GUI
	Sending the Data to Launch Service
	Results of the Graph Execution

	Chapter 16. Configuration
	Config Sources and Their Priorities
	Examples of DB Connection Configuration
	Embedded Apache Derby
	MySQL
	DB2
	Oracle
	MS SQL
	Postgre SQL
	JNDI DB DataSource

	List of Properties

	Chapter 17. Graph parameters
	Another sets of parameters according the type of execution
	executed from Web GUI
	executed by Launch Service invocation
	executed by HTTP API run graph operation invocation
	executed by RunGraph component
	executed by WS API method executeGraph invocation
	executed by task "graph execution" by scheduler
	executed by task "graph execution" by graph event listener
	executed by task "graph execution" by file event listener

	How to add another graph parameters
	Additional "Graph Config Parameters"
	Task "execute_graph" parameters

	Chapter 18. Recommendations for transformations developers
	Add external libraries to app-server classpath
	Another graphs executed by RunGraph component may be executed only in the same JVM instance

	Chapter 19. Logging
	Main logs
	Graph run logs

	Chapter 20. Extensibility (Embedded OSGi framework)
	Plugin possibilities
	Deploying an OSGi bundle

	Chapter 21. Extensibility CloverETL engine plugins
	Chapter 22. Clustering
	High Availability
	Scalability
	Transformation Requests
	Parallel Data Processing

	Recommendations for Cluster Deployment
	Example of Distributed Execution
	Details of the Example Transformation Design
	Scalability of the Example Transformation

	Cluster configuration
	Mandatory properties
	Optional properties
	Example of 2 node cluster configuration
	Load balancing properties

