User's Guide for Oracle Business Intelligence Data Warehouse Administration Console
11g Release 1 (11.1.1)
E14849-06
November 2012
Explains how to use the Data Warehouse Administration Console to create, configure, execute, and monitor modular data warehouse applications. Includes instructions for using the console to load, administer, and monitor the Oracle Business Analytics Warehouse.
Oracle Fusion Middleware User's Guide for Oracle Business Intelligence Data Warehouse Administration Console, 11g Release 1 (11.1.1)
E14849-06
Copyright © 2010, 2012, Oracle and/or its affiliates. All rights reserved.
Primary Author: Jill Arehart
Contributors: Oracle Business Intelligence development, product management, and quality assurance teams.
This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.
The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.
If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable:
U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.
This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.
Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.
Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.
This software or hardware and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.
The Oracle Fusion Middleware User's Guide for Oracle Business Intelligence Data Warehouse Administration Console contains information about using the Data Warehouse Administration Console (DAC), a centralized console for management, configuration, administration, loading, and monitoring of the Oracle Business Analytics Warehouse.
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
.
Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.
This document is intended for data warehouse administrators and ETL developers and operators.
For more information, see the following Oracle Business Intelligence Applications 11g Release 1 (11.1.1) documents:
http://docs.oracle.com/cd/E23943_01/relnotes.htm
Also see the following documents in the Oracle Business Intelligence Enterprise Edition 11g Release 1 (11.1.1) documentation set:
The following text conventions are used in this document:
Convention	Meaning
boldface	Boldface type indicates graphical user interface elements associated with an action, or terms defined in text or the glossary.
italic	Italic type indicates book titles, emphasis, or placeholder variables for which you supply particular values.
Monospace type indicates commands within a paragraph, URLs, code in examples, text that appears on the screen, or text that you enter.	
This chapter lists the new features in the current release of Oracle Business Intelligence Data Warehouse Administration Console (DAC). It also provides information about hardware and software requirements, platforms, and databases.
The chapter contains the following topics:
New DAC features include the following:
Functional Setup for Task Level Parameters
The functional setup of task level parameters is an operation that you now perform using the Oracle Business Intelligence Applications Configuration Manager. For more information, see Oracle Fusion Middleware Configuration Guide for Oracle Business Intelligence Applications.
DAC Security
See Chapter 1, "About DAC Security," for information about the new DAC security model. For information about the differences between standalone mode and Fusion Middleware mode, see "DAC Authentication in Oracle Fusion Middleware (WebLogic Server) Mode" and "DAC Authentication in Standalone Mode".
Enhancement for Index Creation
DAC now supports the creation of query indexes in parallel immediately following the creation of ETL-related indexes. DAC notifies the successor tasks as soon as the ETL indexes have been created, allowing query indexes and additional unique indexes to be created sooner. See "Managing Indexes" for more information.
Creation of Indexes in Parallel for a Specific Table
DAC now enables you to specify how many indexes can be created in parallel for a specific table or how many indexes can be created in parallel for all tables associated with a specific physical data source connection. See "Specifying How Many Indexes Can Be Created in Parallel" for more information.
Testing an Individual Workflow
You can test an individual workflow before running a full execution plan. See "Unit Testing Execution Plan Tasks" for more information.
Enhancement for Prune Time Property
See "Execution Plans Tab: Connectivity Parameters Subtab" for more information.
Running Execution Plans Concurrently
You can configure DAC to run multiple execution plans concurrently if the execution plans are independent of one another, that is, as long as the execution plans do not load data into the same table on the same physical data source. See "Running Execution Plans Concurrently" for more information.
Looping of Workflows
You can configure the full and incremental load commands for tasks to repeat (or loop) multiple times during the execution of an ETL process. See "Looping of Workflows" for more information.
Event Delays
You can set up event delays to configure the extracts for different data sources to occur independently. See "Setting Up Extract Delays, Event Delays and Data Source Notifications" for more information.
Using Heuristics to Manage Tasks, Tables and Indexes
The DAC heuristics feature enables you to gather intelligence about the amount of incremental data that will be processed during an ETL execution. To optimize performance, you can use this intelligence to decide how to manage the behavior of tasks, tables, and indexes. See "Using Heuristics to Manage Tasks, Tables and Indexes" for more information.
Integrating DAC With Other ETL Tools
The external executor framework enables you to integrate DAC with ETL engines other than Informatica. See "Integrating DAC With Other ETL Tools" for more information.
Working With DAC Metadata Patch Sets
The DAC metadata patch feature enables you to import and export subsets of DAC metadata at a fine grain. See "Working With DAC Metadata Patches" for more information.
Creating and Upgrading the Data Warehouse Schema
DAC provides new functionality to create or upgrade data warehouse schemas. See Chapter 10, "Managing Data Warehouse Schemas," for more information.
EM Beans Implementation
Fusion Middleware Control MBean Browser is an Oracle Web application (based on JMX MBean containers) that you can use to view information about running, failed and queued execution plans and the status of the DAC Server. See "Viewing DAC Metrics Using Fusion Middleware Control MBean Browser" for more information.
Moving a DAC Environment
Oracle Fusion Middleware provides movement scripts that enable you to move components and configurations from a development or test environment to a production environment. When DAC is installed in an Oracle Fusion Middleware environment and you run the movement scripts, DAC components and configurations are moved along with the other Oracle Fusion Middleware components. The section "Moving a DAC Environment Using Oracle Fusion Middleware Movement Scripts" provides information about this process.
Revision 1 of Oracle Fusion Middleware User's Guide for Oracle Business Intelligence Data Warehouse Administration Console (11.1.1) contains the following updates:
Revision 2 of Oracle Fusion Middleware User's Guide for Oracle Business Intelligence Data Warehouse Administration Console (11.1.1) contains the following updates:
Revision 3 of Oracle Fusion Middleware User's Guide for Oracle Business Intelligence Data Warehouse Administration Console (11.1.1) contains the following updates:
Revision 4 of Oracle Fusion Middleware User's Guide for Oracle Business Intelligence Data Warehouse Administration Console (11.1.1) contains the following updates:
Refer to the system requirements and certification documentation for information about hardware and software requirements, platforms, databases, and other information. Both of these documents are available on Oracle Technology Network (OTN).
The system requirements document covers information such as hardware and software requirements, minimum disk space and memory requirements, and required system libraries, packages, or patches:
http://www.oracle.com/technetwork/middleware/ias/downloads/fusion-requirements-100147.html
The certification document covers supported installation types, platforms, operating systems, databases, JDKs, and third-party products:
http://www.oracle.com/technetwork/middleware/ias/downloads/fusion-certification-100350.html
This chapter provides information about the DAC security model, including an explanation about authentication and the recommended DAC security setup.
This chapter contains the following topics:
Oracle Business Intelligence Data Warehouse Administration Console (DAC) comprises the following components:
When DAC runs in Fusion Middleware mode, users are defined in the WebLogic Server identity store (LDAP) and authenticated against a BI domain. The Fusion Middleware tier authenticates the users for access to the DAC repository. The LDAP credentials indicate: 1) whether the user is valid, and 2) the user's role. The DAC Client also accesses database credentials stored in an encrypted cwallet.sso file in the file system to access the DAC repository database. The database credentials are used to manipulate objects in the repository through direct JDBC access.
When DAC runs in DAC standalone authentication mode, the DAC Client authenticates users and gets user permissions against user credentials stored in the DAC repository.
For production environments, in both Fusion Middleware and DAC standalone authentication deployment modes, the DAC Client has access to highly sensitive password information that allows connectivity to the DAC repository, to all of the data sources accessed by the BI Server (including the transactional data source), and to the data warehouse.
Therefore, for production environments, in both Fusion Middleware and DAC standalone authentication deployment modes, you must install the DAC Client according to the following requirements:
Figure 1-1 illustrates the process of securing DAC when the DAC Server is running as a service on WebLogic Server.
This process is as follows:
Note: The automation utilities are not interactive
Figure 1-2 illustrates the process of securing DAC when the DAC Server is running as a standalone JVM process.
This process is as follows:
The recommended DAC security setup includes the following points:
Because of the sensitive nature of schema level operations, DAC should also be secured by the operating system level security.
This chapter provides an overview of DAC and explains fundamental concepts that you need to know before you begin using DAC.
This chapter contains the following topics:
DAC has a distributed client-server architecture in which the DAC Client issues service requests of the DAC Server. However, because of security considerations, the DAC Client must be physically located in the server tier with the other server-tier components. For more information about DAC Client security, see "DAC Client Installation Requirements".
DAC runs either as an enterprise application on WebLogic Server (Web mode), or as a standalone Java application (standalone mode). For topology diagrams of these two modes, see Figure 1-1 in "DAC Authentication in Oracle Fusion Middleware (WebLogic Server) Mode" and Figure 1-2 in "DAC Authentication in Standalone Mode".
As shown in Figure 1-1 and Figure 1-2:
DAC provides a framework for the entire life cycle of data warehouse implementations, including the setup, configuration, administration, and loading of data warehouses. DAC enables you to create, configure, execute, and monitor modular data warehouse applications in a parallel, high-performing environment.
DAC is a metadata-driven ETL orchestration tool that complements ETL platforms, such as Informatica. It provides application-specific capabilities that are not prebuilt into ETL platforms. For example, ETL platforms are not aware of the semantics of the subject areas being populated in the data warehouse nor the method in which they are populated.
DAC provides application capabilities at a layer of abstraction above the ETL execution platform that enable you to do the following:
DAC manages the task execution queue based on metadata driven priorities and scores computed at runtime. This combination allows for flexible and optimized execution. Tasks are dynamically assigned a priority based on their number of dependents, number of sources, and average duration.
Figure 2-1 illustrates how tasks are assigned a position in the execution queue. When a task becomes eligible to run, DAC assesses first its phase priority and then the task execution priority. Next, DAC assigns an order of execution based on the number of task dependents, the number of sources, and the estimated duration of the task.
Figure 2-2 and Figure 2-3 show a comparison between poor utilization of resources and optimum utilization of resources. Figure 2-2 illustrates a queue with no task management, in which wait periods can be extensive because resources are not optimized. Figure 2-3 illustrates the strategy used by DAC, in which the queue is managed dynamically based on information gathered about each task, as illustrated in Figure 2-2.
Figure 2-3 DAC's Optimum Resource Utilization
DAC is used by different user groups to design, execute, monitor, and diagnose execution plans. These phases together make up the DAC process life cycle, as shown in Figure 2-4.
The phases of the process and the actions associated with them are as follows:
Source system containers hold repository objects that correspond to a specific source system. You cannot modify objects in the predefined source system containers. You can make a copy of a predefined container and then modify the metadata to create your own custom source system container. This enables the DAC Client to track customizations you make in the copy of the source system container, such as newly created objects and modified objects. DAC is also able to compare the modified objects with the predefined object definitions in the predefined container. This feature enables DAC to rollback changes to the objects if necessary. For more information, see "About Object Ownership in DAC".
Caution: You cannot modify objects in the predefined source system containers either through the DAC Client or directly through SQL statements to the DAC repository. You must make a copy of a predefined container in order to make any changes to it. |
For instructions on creating a new source system container or copying an existing container, see "Creating or Copying a Source System Container".
All DAC repository objects are associated with a source system container. The DAC repository stores objects in a hierarchical framework that defines a data warehouse application. DAC enables you to view the repository application objects based on specific source system containers. The source system container holds the metadata that corresponds to the source system with which you are working.
A data warehouse application includes but is not limited to the following repository objects:
Task properties are critical in ETL design and execution. DAC automatically assembles tasks into subject areas based on task properties, such as source and target tables. Tasks in the ETL queue are prioritized by the DAC Server, based on task properties, such as phase, source and target connections, and truncate properties.
Figure 2-5 illustrates the hierarchy among the DAC repository objects.
Figure 2-5 DAC Repository Object Hierarchy
For best practice tips about the DAC repository objects, see"Considerations When Defining Repository Objects".
The source system container in which an object originates is known as the owner container. The tabs in the DAC Design view display the owner of the various repository objects.
You can reuse an object among different source system containers by referencing the object. A reference works like a symbolic link or shortcut. You can use the referenced object just as you would an original object; the object's ownership remains unchanged.
For example, W_INVOICE_F is a fact table whose owner is the data warehouse source system container. You can reuse W_INVOICE_F in any other container by referencing it, but the owner is always the data warehouse.
You can reference an object from its owner container, and you can also reference an object that has already been referenced by another source system container.
If you modify a referenced object, the modified object becomes a clone and the ownership changes to the source system container in which you performed the modification.
When you make changes to an original object that has been referenced by other containers, any updates to the original object are immediately reflected in the referenced object. If you delete the original object, all referenced objects are also deleted.
Changes to an original object's child objects are not automatically reflected in the referenced object's child objects. You need to push the changes to the referenced object's child objects by using the Push to References right-click command. And, conversely, you can import into a referenced object the changes made to an original object. This function is referred to as a re-reference.
For a description of the ownership functionality available in the Design view right-click menu, see "Ownership Right-Click Commands".
This section describes the main elements of the DAC user interface. It contains the following topics:
Figure 2-6 shows the main elements of the DAC window.
Key to figure:
a. File menus
b. Views button and container drop-down list
c. Top pane tabs
d. Top pane toolbar
e. DAC Server monitor icon
f. Editable lists
g. Bottom pane tabs
The menu bar provides access to the File, Views, Tools, and Help menu commands. For a detailed description of these commands, see the following sections in Chapter 16, "DAC Functional Reference":
The View buttons are located directly under the menu bar and provide access to the Design, Setup, and Execute views. For detailed information about the functionality provided in the DAC views, see the following sections in Chapter 16, "DAC Functional Reference":
For a detailed description of the commands available in the top pane toolbar, see the section titled "Top Pane Toolbar Commands" in Chapter 16, "DAC Functional Reference."
For a detailed description of the commands available in right-click menus, see the section titled "Right-Click Menu Commands" in Chapter 16, "DAC Functional Reference."
The Server Monitor is located in the upper-right corner of the DAC Client. Its color and shape change based on the DAC Server status. When the DAC Client cannot establish a connection to the DAC Server, the Server Monitor icon resembles a red electrical plug, as shown in Figure 2-7. When Accessibility Mode is enabled, the text "Not connected to DAC Server" is displayed.
When the client is connected to the server and the server is idle, the icon resembles an orange electrical plug in a socket, as shown in Figure 2-8. When Accessibility Mode is enabled, the text "Connected to idle DAC Server" is displayed.
If the client is connected to a server that is running an ETL process, the icon resembles a green electrical plug with a lightning sign superimposed on it, as shown in Figure 2-9. When Accessibility Mode is enabled, the text "Connected to active DAC Server" is displayed. In addition, in standalone mode, clicking on the icon when there is a connection to the server opens a text box that displays data related to the ETL process.
The navigation tree appears on the left side of the DAC window, as shown in Figure 2-10. It displays the top-level tabs of the selected view.
The top and bottom panes of the DAC window display records in a list format. Some of the columns in the list are editable, and others are read-only. The toolbar at the top of each pane enables you to perform various tasks associated with a selected record in the list. For a description of the toolbar commands, see "Top Pane Toolbar".
A right-click menu is also accessible from the lists in both the top and bottom panes. For a description of these commands, see "Right-Click Menus".
The list format enables you to do the following:
The different categories of objects are represented in the DAC with differing fonts. For a description of the object types, see "About Object Ownership in DAC".
Querying is a way to locate one or more records that meet your specified criteria. Query functionality is available in every DAC screen. When you enter query mode, the Edit and Description subtabs in the bottom pane are not available.
This section contains the following topics:
Table 2-2 describes the query commands and operators you can use to define your query criteria.
Table 2-2 DAC Query Commands and Operators
Operator | Description |
---|---|
= | Placed before a value, returns records containing a value equal to the query value. |
< | Placed before a value, returns records containing a value less than the query value. |
> | Placed before a value, returns records containing a value greater than the query value. |
<> | Placed before a value, returns records containing a value that is not equal to the query value. |
<= | Placed before a value, returns records containing a value less than or equal to the query value. |
>= | Placed before a value, returns records containing a value greater than or equal to the query value. |
* | Wildcard that can be placed in the middle, or at the beginning or end of a text string. |
! | Used for negation. |
"" | Surrounds a string that, unless modified by a wildcard, must be matched exactly. |
\ | Escape symbol is used when double quotes should not be processed as a special symbol. For example, |
() | Surrounds the values and operators that will be processed first. |
NULL | Returns records for which the query field is blank. |
AND | Placed between values, returns only records for which all the given conditions are true. (Not case sensitive.) |
OR | Placed between values, returns records for which at least one condition is true. (Not case sensitive.) |
The following examples show different ways you can query on the Name column of the Tasks tab.
Extract*
lists all tasks whose name starts with Extract. *Extract*
lists all tasks whose name contains the word Extract
. !Extract*
lists all tasks whose name does not start with the word Extract
. !null
lists all tasks whose name is not null. Extract*
or Aggregate*
lists all tasks whose name starts with Extract
or Aggregate
. Load*
and *Aggregate*
lists all tasks whose name starts with Load
and also contains the word Aggregate
. "Extract for Wave Dimension"
or "Load into Wave Dimension"
lists tasks whose name is either Extract for Wave Dimension or Load into Wave Dimension. Note: When using spaces within strings, you need to enclose the string with quotes (""). |
This section includes instructions for common query procedures.
To create and execute a query in the DAC:
A blank row in a list is displayed.
The query is executed and the records appear.
To enter a query value in a date field:
The Date dialog is displayed.
You can use the Flat Views query feature to query for various objects, modify data, and do mass updates. This feature is available in the right-click menu in the Tables, Indices, and Tasks tabs of the Design view. The Flat Views right-click command is context-sensitive and enables you to query only on certain columns.
You can modify individual records in the query results window, or you can use the Update Records right-click command to update multiple records.
To update multiple records using the Flat Views query feature:
If you select this check box, referenced objects as well as original and cloned objects will be updated. The referenced objects will become clones, and the ownership column for these records will be updated to reflect the new ownership.
If you do not select this check box, only the columns in records that are original or cloned objects (objects owned by the source system container) will be modified.
A message dialog tells you which records were updated.
Some DAC tabs and dialogs open in Query mode, which displays an empty record in which you can enter query criteria. DAC tabs that open in Query mode do not display the list of records contained in the tab. You need to exit Query mode in order to see the list of records. To exit Query mode, click Go in the toolbar.
Table 2-3 describes the DAC accessibility keyboard options.
Table 2-3 DAC Accessibility Keyboard Options
To Do This | Press |
---|---|
Expand the Views menu to the first level. | ALT+V. |
Move between menu options. | Arrow keys. |
In a tabular form, move one cell to the right. | Tab or right arrow key. |
Select a menu option. | Enter. |
In a tabular form, move one cell to the left. | Shift+Tab or left arrow key. |
In a tabular form, move one row up. | Up arrow key. |
In a tabular form, move one row down. | Down arrow key. |
Activate a cell. | Spacebar. |
Activate a cell with a drop-down list. | F2. |
Move between options in an open drop-down list. | Arrow keys. |
Select an option from a drop-down list. | Enter. |
To escape from a cell in edit mode. | Esc. |
Add a new value to a cell with a drop-down list. | F2 to enter edit mode, then enter text. |
Select a check box. | F2 to activate the check box, spacebar to toggle between selecting and clearing the check box. |
To activate a multi-value group (MVG) cell. | Spacebar to activate the cell, F2 to enter edit mode, Ctrl+E to display the dialog (such as a date dialog). |
Move to the next focusable object. | Tab |
Move to the previous focusable object. | Shift+Tab. |
Move between tabs. | Arrow keys. |
Move between panels of a dialog. | F6. |
Select a button on a dialog. | Alt+the letter underlined on the button. |
To display the context menu for a dialog. | Shift+F10. |
To activate the menu bar on a dialog. | F10. |
To display the default Windows menu in a dialog. | Alt+spacebar. |
You can install the DAC Client and Server in various ways, as described below.
Table 2-4 lists the DAC installation directory paths.
Table 2-4 DAC Installation Directory Paths
ORACLE_HOME (read only) | $DOMAIN_HOME/dac | DAC_CONFIG_LOCATION (shared network location) | Client Config |
---|---|---|---|
DACSystem.jar | /*.bat, *.sh | /conf-shared/*.* | /conf-client/login.xml |
/lib/*.* | /utilities/*.* | /conf-shared/connection_template.xml | /conf-client/deleteTriggers.list |
/documentation/*.* | /conf/numeric.precision.override.conf | /conf-shared/extralibs.properties | /conf-client/ws/ |
unix_script_bkp/*.* | /conf/sqlgen/*.* | /conf-shared/infa_command.xml | /conf-client/connections/*.* |
version.txt | /export/*.* | /conf-shared/security/mail | /conf-client/security |
/Informatica/*.* | /conf-shared/security/repository | ||
/log/*.* | /conf-shared/server.properties | ||
/conf-shared/task_restartability.xml | |||
/conf-shared/upgrade/*.* | |||
/CustomSQLs/*.* |
About the /conf-client/ws Directory
Note the following points about the /conf-client/ws directory:
oracle/wss_username_token_over_ssl_client_policy
. oracle/wsmtom_policy
supports log file transfers. This chapter provides instructions for upgrading the DAC Client and Server to version 11g Release 1 and the DAC repository from the 10g format to the 11g format.
This chapter contains the following topics:
Note: f you are using DAC version 7.8, you cannot upgrade directly to DAC 11g. You must first upgrade to DAC 10g and then to DAC 11g. For instructions on upgrading to DAC 10g, see Oracle Business Intelligence Applications Upgrade Guide for Informatica PowerCenter Users. |
Before you upgrade to DAC 11g, you should have a thorough understanding of the upgrade process and know the key differences between DAC 10g and DAC 11g.
Upgrade Overview
The process of upgrading to DAC 11g involves upgrading the DAC platform and repository, and then performing post upgrade tasks. If you are upgrading to DAC 11g but you are not upgrading your Oracle BI Applications content, then you should follow the instructions in this chapter.
If you are upgrading to DAC 11g and you are upgrading your Oracle BI Applications content, then you should follow the instructions in Oracle Business Intelligence Applications Upgrade Guide for Informatica PowerCenter Users.
Key Differences Between DAC 10g and DAC 11g
Before you upgrade to DAC 11g from DAC 10g, note the following key differences between the two releases:
In DAC 11g, all passwords in the DAC repository are encrypted in an encryption key, which is stored in a cwallet.sso file on the file system. Each DAC Client and Server in the environment needs to share a copy of the same cwallet.sso file. For detailed information about the DAC security model, see:
If the encryption key is lost or damaged, you must clear the encrypted data from the DAC repository and create a new cwallet.sso file with a new encryption key. See "Recovering From a Lost Encryption Key" for instructions.
In DAC 11g, the DAC command line utilities that are exposed in the AutomationUtils.bat file have been enhanced with the following functionality:
For a complete list of DAC command line utilities and information about how to use these utilities, see "DAC Repository Command Line Utilities".
For Windows environments, you install DAC 11g by running the Oracle BI Applications Client Installer. This installer installs both the DAC Client and Server. For instructions on running the installer, see "Installing DAC on Windows in Standalone Mode".
Note: The Oracle BI Applications Client Installer executable is named biapps_client_install.exe. It installs all the necessary files for the DAC Client and Server. |
There is no DAC 11g installer for UNIX environments. To install DAC 11g in a UNIX environment, you must first run the Oracle BI Applications Client installer in a Windows environment and then copy the folder containing the DAC Client and Server into the UNIX environment. For instructions on installing DAC 11g in a UNIX environment, see "Installing DAC on UNIX in Standalone Mode".
To upgrade an existing DAC repository in the DAC 10g format to the DAC 11g format, you must first install the DAC 11g Client and Server. You then use the DAC 11g Client to connect to the existing repository. This connection process will convert the existing DAC 10g repository to the DAC 11g format.
Note: If you are also upgrading Oracle BI Applications metadata content, you need to upgrade the repository from the 10g format to the 11g format, and then upgrade the Oracle BI Applications metadata content. For instructions, see the section titled "Upgrading and Configuring DAC" in Oracle Business Intelligence Applications Upgrade Guide for Informatica PowerCenter Users. |
To upgrade an existing DAC repository from the 10g format to 11g format:
For instructions, see "Logging Into DAC for the First Time as an Administrator".
This process will take several minutes. When the process is complete, the DAC Client will open.
Perform the following post upgrade tasks:
For instructions, see "Configuring the DAC Repository to Allow DAC Server Connections"
For instructions, see "Configuring the Connection Between the DAC Server and DAC Repository"
Note: If you are installing the DAC Server in a UNIX environment, complete the installation before you perform this task. For instruction on installing the DAC Server on UNIX, see "Installing DAC on UNIX in Standalone Mode".
If you customized paramOLTP.txt and paramOLAP.txt, move these files to the relevant directory in the new installation environment.
If you customized customsql.xml or infa_command.xml, move the customizations to the appropriate files in the new installation environment.
This chapter provides information about the administrative tasks that must be performed in order for a DAC environment to be operable. It also includes various concepts related to DAC operations that a DAC administrator should be aware of.
Note: If you installed and configured DAC using the Oracle BI Applications installation process and by following the post-installation instructions in Oracle Fusion Middleware Configuration Guide for Oracle Business Intelligence Applications, you do not need to repeat the same tasks that appear in this chapter.
This chapter contains the following topics:
When the DAC Client, automation utilities, or command line utilities connect to the DAC Server or DAC repository, they use either Fusion Middleware mode (the option appears in the DAC Client as "FMW") or DAC standalone authentication mode (the option appears in the DAC Client as "DAC"). See "DAC Authentication in Oracle Fusion Middleware (WebLogic Server) Mode" and "DAC Authentication in Standalone Mode" for topology diagrams that illustrate these two authentication modes.
Fusion Middleware Mode
The Fusion Middleware mode uses the Fusion Middleware security model. This model requires the DAC repository to be configured for Web mode and a valid DAC Server URL to be present in the DAC repository. Authentication occurs through Web service calls to the DAC enterprise application deployed in WebLogic Server. The DAC enterprise application that the URL points to must be running for the authentication to occur.
DAC Standalone Authentication Mode
DAC standalone authentication mode uses the DAC user account security model. DAC user account information is stored in the DAC repository. A DAC user with the Administrator role creates user accounts with the appropriate user names, passwords, and roles. The DAC administrator needs to distribute the user account information (name and password) to the users to enable them to log into the DAC Client and repository. In standalone mode, the DAC Server does not participate in user authentication.
Using the DAC standalone authentication mode, a user can connect to a DAC repository that is configured for either Fusion Middleware or standalone mode. However, when the DAC repository is in Fusion Middleware (Web) mode and the user is authenticated through standalone mode, the user cannot run ETLs, because the user cannot connect to the DAC Server. When standalone mode is used for both the user and DAC repository, connecting to the DAC Server is possible, and, therefore, ETLs can be run.
The DAC authentication file is a cwallet.sso file and is used by the DAC Client and automation utilities to connect to the DAC repository. It contains the repository database schema owner and password and a DAC encryption key. An authentication file and a DAC repository have a one-to-one relationship.
The authentication file is automatically generated when the Oracle BI Applications Installer is run or when the BI domain is extended by running the install_dwtools.py installation script. When automatically generated, the authentication file is saved by default in <DAC_Config_Location>\conf-shared\security\repository.
The authentication file can also be created by a DAC user at the time of the first connection to the DAC repository. The first time users connect to a DAC repository, they must either specify an authentication file that was previously created or create a new authentication file. When creating a new authentication file, the user must specify the database schema owner and password.
A DAC administrator needs to distribute the authentication file to users who need access to the repository.
When you log into DAC for the first time, you must configure a connection to the DAC repository. DAC stores this connection information for subsequent logins.
The initial login process for an administrator varies depending on the authentication mode being used and whether an authentication file was already created.
If you are using Fusion Middleware authentication, the authentication file was created during the Oracle BI Applications set up and configuration process. You will need to know the location of this file when you log into DAC for the first time.
If you are using DAC standalone authentication, you will create an authentication file while logging into DAC for the first time. To do so, you will need to know the database schema owner and password.
Regardless of the authentication mode, an administrator must distribute the authentication file to all user accounts (those authenticated through DAC as well as through WebLogic Server) that need to access the specified DAC repository. For more information about the authentication file, see "About the DAC Authentication File".
To log in to DAC for the first time:
The Login... dialog is displayed.
Field | Required Value |
---|---|
Name | Enter a unique name for the connection to the DAC repository. |
Connection type | Select the type of database in which the DAC repository will be stored. |
Connection String, or Database name, or TNS Name, or Service Name | Select the database name or database account name of the DAC repository. If you are using:
|
Database Host | Enter the name of the machine where the DAC repository will reside. |
Database Port | Enter the port number on which the database listens. For example, for an Oracle database the default port is 1521, or for a SQL Server database the default port is 1433. |
DB URL (Optional) | Can be used to override the standard URL for this connection. |
DB Driver (Optional) | Can be used to override the standard driver for this connection. |
Authentication File | Click in this field to do one of the following:
|
SSL Trust Store File | (Optional) For deployments in Web mode, location of the SSL Trust Store file. |
SSL JKS Password File | (Optional) For deployments in Web mode, location of the SSL JKS password file. |
Log Level | Specifies a client log level for the client session. The logs are saved in <Domain_Home>\dac\log\client <client's logical connection name>. |
Note: A DAC administrator must distribute this authentication file to all user accounts that need to access this DAC repository. Do not rename this file. |
Alternatively, you can enter a key in the Key field. The key must be at least 24 characters long.
Note: You must distribute this authentication file to all user accounts that need to access this DAC repository. |
This must match the user name and password stored in the WebLogic Server identity store.
The DAC Client is displayed.
A user account will be created with the user name and password you enter in this step. This user account is automatically assigned the Administrator role.
This process creates DAC repository tables.
Depending on your database type, you may have the option to specify a tablespace.
The Unicode check box is available for a repository on SQL Server or DB2 databases. Check the Unicode check box if your deployment requires a Unicode schema to be created.
This section contains the following topics:
You use the DAC Server to manage data warehouse ETL processes. The DAC Server can run in standalone mode or Web mode.
You can access the DAC Server using the following methods:
See "Monitoring the DAC Server Using WebLogic Server" for information about accessing the DAC Server through the WebLogic Server Administration Console.
where the name of the DAC Server enterprise application is DACServer.
The DAC Server can be configured for high-availability. This process involves scaling out the Oracle BI Applications installation. For more information about scaling out Oracle BI Applications, see Oracle Fusion Applications Enterprise Deployment Guide.
The DAC Server uses an active-passive high-availability configuration. There can be only one active DAC Server and one or more passive servers. Once you have scaled out Oracle BI Applications, the DAC Server failover process occurs automatically. The scale out process uses the server migration approach, which is explained in "DAC Server Migration Approach to Failover". For more information about configuring DAC for high-availability, see the section titled "Configuring Data Warehouse Administration Console for High-Availability," in Oracle Fusion Applications Enterprise Deployment Guide.
Note: If DAC was installed using the Simple Install option in the Oracle BI Applications Installer, you will not be able to scale out DAC. |
Figure 4-1 shows the architecture of how DAC can be deployed to achieve high availability and failover capability.
In the BI cluster, when one of the managed servers fails unexpectedly, the second managed server will automatically continue an ETL execution from the point at which it stopped. To enable this operation, the DAC system property "Auto Restart ETL" must be set to True (in the DAC System Properties tab in the Setup view). When the second managed server is automatically started, the execution graph status is reconstructed from the run history tables.
The following scenarios are possible for individual workflows that were started but not completed by the first managed server:
The second managed server is also capable of authenticating any DAC user defined in a common credential store.
The Informatica binaries and domains file need to be on a shared network location that is highly available. DAC will be configured to use them at the time the first managed server is created by the installer.
DAC uses the Informatica pmrep and pmcmd command line programs to communicate with the Informatica Integration Service and the Repository Service.
In addition, Oracle recommends that the DAC Server and Informatica Integration Service are on a shared network drive, because DAC produces parameters files that are consumed by Informatica.
For information about setting up Informatica for high availability, see the Informatica documentation.
In this procedure you specify which DAC Server will be allowed to connect to the DAC repository. Only one DAC Server at a time should connect to a DAC repository. However, you can specify alternative DAC Server hosts that will be allowed to connect to the DAC repository if the main DAC Server host fails. In standalone mode, you must manually start an alternative DAC Server. In Web mode, if high availability is configured, the alternative DAC Server will start automatically.
To configure the DAC repository to allow DAC Server connections
Field | Description |
---|---|
Mode | Select the DAC Server mode. Possible values are Web and Standalone. |
Web Mode Configuration: URL | If you are using Web mode, enter the URL for the DAC enterprise application that is deployed on WebLogic Server. |
Standalone Mode Configuration: | If you are using standalone mode, enter the following information:
|
On Windows, you can use the DAC Client to configure the connection between the DAC Server and the DAC repository if the DAC Client and DAC Server are running in the same \dac folder.
Optionally, or to configure a DAC Server installed in another folder or on another Windows machine, use the serverSetupPrompt.bat file to configure the repository connection from the additional machine or folder
On UNIX or Linux, use the serverSetupPrompt.sh script to configure the connection between the DAC Server and the DAC repository.
Note the following points:
To use the DAC Client to configure the connection between the DAC Server and the DAC repository:
To use the serverSetupPrompt files to configure the connection between the DAC Server and the DAC repository:
This section explains how to start and stop the DAC Server when the DAC Server is running in standalone mode.
To start or stop the DAC Server in standalone mode:
Note: When you execute ./stopserver.csh or ./stopserver.sh, the server will issue a warning about the shutdown request. When the server receives the request, it will shut down even if there is an ETL in progress. The statuses for the ETL run will not be set correctly. The next time the DAC Server starts, it will set the status to Failed for any uncompleted run.
Tip: When you start the DAC Server, look at the DAC Server status icon in the DAC console to make sure that the DAC Server has started. The DAC Server status icon should either be orange (idle) or green (active). If Accessibility mode is enabled, the icon for an idle DAC Server is replaced with the text "Connected to idle DAC Server," and the icon for an active DAC Server is replaced with the text "Connected to active DAC Server." Note: In Web mode, the process for the DAC Server to move from idle status to active can take a number of minutes. |
To run the DAC Server in the background:
The nohup command allows the DAC Server to run in the background on UNIX.
Note: To stop the DAC Server running as a background process, use stopserver.sh or stopserver.csh.
Note: When you execute ./stopserver.csh or ./stopserver.sh, the server will issue a warning about the shutdown request. When the server receives the request, it will shut down even if there is an ETL in progress. The statuses for the ETL run will not be set correctly. The next time the DAC Server starts, it will set the status to Failed for any uncompleted run.
Tip: When you start the DAC Server, look at the DAC Server status icon in the DAC console to make sure that the DAC Server has started. The DAC Server status icon should either be orange (idle) or green (active). If Accessibility mode is enabled, the icon for an idle DAC Server is replaced with the text "Connected to idle DAC Server," and the icon for an active DAC Server is replaced with the text "Connected to active DAC Server." Note: In Web mode, the process for the DAC Server to move from idle status to active can take a number of minutes. |
When the DAC Server is running in Web mode, you can start and stop it using the following methods:
This section provides instructions for setting up users to receive email notifications about ETL statuses, task statuses, and data source usage. To set up email notifications, you need to complete the steps in both of the following procedures:
For data source usage notifications, you need to complete additional configuration steps, as described in "Setting Up Extract Delays, Event Delays and Data Source Notifications".
Follow this procedure to configure email recipients in the DAC Client.
To configure email recipients in the DAC Client:
Field | Description |
---|---|
Name | Logical name of the user to be notified. |
Email Address | Email address where the notification will be sent. |
Notification Level | The notification levels are as follows:
|
Inactive | Indicates whether the email notification for this recipient is active or inactive. |
Follow this procedure to configure the email administrator account in the DAC Server to enable recipients to receive email notifications.
The DAC Server has a built-in login-authentication based email (SMTP) client, which connects to any SMTP login-authenticating server.
Note the following points:
To configure the email administrator account in the DAC Server:
The Server Configuration dialog appears.
Field | Description |
---|---|
User Name | User name for the email account. |
Password | User password on the email server. (Only required if you select Needs Authentication.) |
Email Server | Host name of the email server. |
Email Server Port | Port where the email server listens. |
Email Address | Email address of the user. |
Needs Authentication | Specifies whether the corporate email server requires authentication. |
Needs SSL | Specifies whether an SSL connection is required. |
This section provides instructions for specifying the connection pool information for the transactional and data warehouse databases.
To specify transactional and data warehouse data source connections:
The Physical Data Sources tab displays a precreated record for the data warehouse with the name DataWarehouse, and one or more records for the transactional sources.
Field | Description |
---|---|
Name | Logical name for the data warehouse or transactional database connection pool. You should not change the names of the precreated records. Note: When you create an execution plan to perform an ETL, you need to use the data warehouse and transactional data source names that you specify here as the Parameter values for the execution plan parameters DBConnection_OLTP and DBConnection_OLAP. |
Type |
|
Connection Type | Database type. |
Service Name, TNS Name, Connection String, or Database Name (Note: Field name changes based on the Connection Type selection.) | Enter the value appropriate for your database. For an Oracle TNS Name, enter the TNS name that is specified in the tnsnames.ora file in \network\admin\. |
Table Owner | Valid database user. |
Password | Password for the database user. |
Num Connections per EP | Number of connections the DAC Server will open to this physical data source during the ETL process. Note: Typically, DAC needs more connections for data warehouse databases on which it truncates and analyzes tables, and drops and creates indexes. DAC also requires more connections for source systems, such as Siebel, for which it performs change capture operations. In such cases, the value of the Num Connections per EP property determines how many change capture processes can run concurrently. If you have a powerful transactional database server and are going to run ETL processes during off-peak times, you can increase the Num Connections per EP value to 15 or 20 (10 is the default). If you have a less powerful transactional database server, you should not overload the system with ETL processes. Therefore, you should set the value below 10. Source systems for which DAC does not perform transactions usually do not require as many connections. For data warehouse databases, when the DAC Server is analyzing and truncating tables and dropping and creating indexes, the Num Connections per EP value can be higher than the Num Parallel Workflows per EP parameter value (set in the Informatica Servers tab) because when DAC creates indexes for a table in parallel, it needs additional relational connections. For example, if you are running 10 workflows, and you want to create two indexes per table in parallel, you will need 20 connections. This is true even though not all 10 tasks will be doing database-related activities (such as dropping and creating indexes, analyzing tables, and so on) at the same time. |
Host | Machine name or instance where the database resides. |
Port | Port number where the database listens (for example, 1521 is the default for an Oracle database). |
Source Priority | Priority of the physical data source connection. Used for multi-source execution plans to resolve conflicts when data is extracted into common data warehouse tables. The DAC dependency algorithm ensures that no more than one task writes to a target table at a time (unless overridden in task groups), and that the reads and writes are staggered. For example, if you have multi-source scenario in which you want to extract data from Oracle EBS and Siebel transactional sources, and you want to extract data for the common data warehouse entities from Oracle EBS first and then from Siebel, the source priority for Oracle EBS should be 1 and Siebel should be 2. |
Data Source Number | Unique number assigned to the data source category so that the data can be identified in the data warehouse. If you are editing a data source template for a data source type, Oracle recommends that you do not change the default value. If you are specifying a data source without using a pre-defined template, you must use the correct value for that data source category. This value is passed as a parameter to the Informatica workflows. If you are using multiple sources, each data source has a unique number. Typically, all source dependent extracts will use this parameter to populate the DATASOURCE_NUM_ID column, and the source independent workflows will carry these values to the final dimension and fact tables. |
Default Index Space | (Oracle specific) Specifies the table space in which DAC creates indexes on the database. To use the default table space, leave this field blank. |
Num Parallel Indexes per Table | Specifies how many indexes are to be created in parallel for each table associated with the physical data source connection. For example, if you give this property a value of 2, then two indexes will be created in parallel per table during the ETL process. Note: The number of indexes that can be created in parallel is limited by the value you set in the Num Connections per EP property and the Max Num Workflows per EP property on the Informatica Servers tab. Each task that is creating an index on a table requires a connection. Therefore, if you have two tables and each table has three indexes, and you have set the Num Parallel Indexes per Table property to 3, the Num Connections per EP property should have a value of at least 6 in order for all the indexes to be created in parallel. Note: Use caution when setting this property. Setting this number too high as a default for every table that participates in the ETL process can put stress on the database. You may want to consider setting the Number of Parallel Indexes property (in the Parallel Indexes subtab) for individual tables after you identify tasks that are creating bottlenecks or blockages. |
JDBC Driver (Optional) | A JDBC driver for the data source connection. The value in this field must conform to the database specifications. Use this option to specify a unique driver for a particular physical data source. |
URL (Optional) | A JDBC URL for the data source connection. The value in this field must conform to the database specifications. Use this option to specify a unique URL for a particular data source. For example, this option can be useful if this physical data source uses Oracle RAC and other data sources use a different database type. |
You must install and configure the appropriate database connectivity software on the machines that host the Informatica PowerCenter Services, DAC Server, and DAC Client.
This section includes information about the requirements needed for DAC and Informatica PowerCenter to communicate.
Note: If you installed and configured DAC using the Oracle BI Applications installation process and by following the post-installation instructions in Oracle Fusion Middleware Configuration Guide for Oracle Business Intelligence Applications, you do not need to repeat the same tasks that appear in this section.
This section contains the following topics:
DAC orchestrates ETL routines written in Informatica and uses the Informatica pmcmd and pmrep command line interface tools to run workflows. At runtime, DAC consolidates all parameters—including runtime, database specific, SQL, and application level—into a parameter file while invoking the workflows. DAC also sets the session log file name, and, at the end of the routine execution, collects valid statistics, such as workflow status, number of row processed, and read/write throughputs.
DAC provides a log file name for each Informatica session it executes. If a workflow does not run concurrently, and, therefore, does not have multiple instances, DAC uses the following naming convention for the log file:
If a workflow runs concurrently because it is configured to loop (see "Looping of Workflows"), DAC uses the following naming convention for the log file
If a workflow runs concurrently because a DAC_EP_PREFIX execution plan level parameter has been defined (see "Execution Plans That Are Eligible to Run Concurrently"), DAC uses the following naming convention for the log file:
The source database name is appended to allow for multi-source ETL processes in which the same task may be run as many times as there are sources, and the log files must be distinguishable.
DAC will shorten the name of the session log file if the naming convention produces files names greater than 100 characters.
If the length of the absolute file name (fully qualified with directory names) is more than 250 characters, Informatica may fail and return a "File name too long" error when it tries to create the workflow/session log files. To help avoid this error, Oracle recommends that the variables $PMSessLogDir and $PMWorkflowDir have values that are short, such as C:\infalogs, rather than the typical value C:\Informatica\PowerCenter<version number>\server\infa_shared\SessLogs.
However, even if you use short values for the variables $PMSessLogDir and $PMWorkflowDir, DAC may still shorten the length of the log file names. To enable DAC to use longer file names (over 100 characters, which is the default), edit the variable informatica.max.sesslogfile.length in the infa-config.properties file, which is located in the <DAC_Config_Location>\conf-shared directory.
The naming conventions for Informatica log files is different depending on whether the DAC_EP_PREFIX execution plan level parameter has been defined. Table 4-1 lists the naming conventions for the Informatica log files.
Table 4-1 Informatica Log File Naming Conventions
Command That Generates Log | Log File Name Without DAC_EP_PREFIX Defined | Log File Name With DAC_EP_PREFIX Defined |
---|---|---|
Pmcmd: startworkflow | WF.log | <PREFIX>_WF.log |
Pmcmd: getSessionDetails | WF_DETAIL.log | <PREFIX>_WF_DETAIL.log |
Pmrep: getSessionSet | WF_SESSIONS.log | <PREFIX>_WF_SESSIONS.log |
You should be familiar with the following connectivity requirements for DAC and Informatica.
The DAC Server requires access to the following Informatica command line programs:
To ensure DAC has access to pmrep and pmcmd, do one of the following:
The DAC Client requires access to pmrep in order to synchronize tasks with Informatica workflows and to keep the DAC task source and target tables information up to date. You can either co-locate the Informatica client tools and the DAC Client on the same machine, or you can install the Informatica client tools as a shared network resource.
The procedure DAC follows when interacting with Informatica is as follows.
Any non-zero return codes indicate an error occurred when connecting to the Informatica Integration Services, resulting in failure of the ETL process. The outputs are captured in pmrepCommand.log and ping.log in the appropriate log directory for the run.
For ENU environments, the exit code for the pmcmd command to start the workflow indicates whether the request to start the workflow succeeded. The output of this command is captured in <WFNAME>.log. Once the workflow starts to execute, DAC tries to poll the status of the workflow every 30 seconds using pmcmd "getworkflowdetails" command (GET_WORKFLOW_DETAILS section). As long as the status is "Running," DAC waits. If the workflow return code is 0 and the status is "Succeeded," then the workflow is considered to have completed without errors. DAC looks for both workflow return code and also the status to make a decision. The output of the command is also written to WF_NAME.log file.
For non-ENU environments, the exit code of the pmcmd command to start the workflow indicates whether the workflow completed successfully. Also, some of the strings that DAC looks for in the output files are localized. In such cases, you need to find the equivalent strings from the respective outputs and populate them in the infa_commands.xml file under "Informatica Internationalization" section. This step is essential for DAC to interpret the output provided by the pmcmd and pmrep utilities. For example, DAC interprets a workflow to be successful if the workflow status is listed by the pmcmd command "getworkflowdetails," with the tag "Workflow Run Status," and a value of "Succeeded." These strings in a non-ENU environment could appear in localized strings. For DAC to be able to understand and interpret this, you need to fill in the equivalent localized strings in the body.
In order for the DAC Client and Server to be able to use the pmrep and pmcmd programs, the path of the Informatica Domains file 'domains.infa' must be defined in the dac_env.cmd or dac_env.sh file on both the DAC Client machine and the DAC Server machine.
The Informatica Integration Service requires database connection information for the source and target databases. You use Informatica Workflow Manager to configure the database connections. The connections you configure in Informatica map to physical data source definitions in DAC, as specified in the Physical Data Sources tab of the Setup view. DAC also specifies the name of the Informatica database connection in the parameter file that is generated for the workflow when an ETL process is executed.
Note: The name for the connection specified in Informatica must match the name of the physical data source in DAC to which it maps.
To configure relational connections in Informatica Workflow Manager:
The Relational Connection Browser is displayed.
The Connection Object Definition dialog displays options appropriate to the specified database type.
Name: Enter a name for the database connection exactly as it appears in the Physical Data Sources tab in the DAC Setup View.
User Name: Database user name with the appropriate read and write database permissions to access the database.
Password: Password for the user name.
Connect string: Connect string used to communicate with the database (refer to the Informatica online help for information about specifying this value).
Code Page: Code page compatible with the code page of the database client. If NLS_LANG (for Oracle database) or DB2CODPAGE (for DB2 database) has been set, then the Code Page value should be a code page compatible with the language set by these variables.
This section explains how to register the Informatica Integration Service and the Informatica Repository Service in DAC.
When you register Informatica Services in DAC, note the following:
Tip: To locate Informatica services properties that you may need to complete this procedure, log into the Informatica Administrator and select the appropriate service. |
To register Informatica Services in DAC:
Field | Description |
---|---|
Name | Enter a logical name for the Integration Service. |
Type | Select Informatica. |
Service | Enter the name of the Integration Service as specified in the Informatica domain (as seen in Informatica Administrator). |
Domain | Enter the Informatica domain name (as seen in Informatica Administrator). |
Login | Informatica repository user name who has Administrator privileges for the Informatica repository. Note: DAC must log in to Informatica as an Informatica repository Administrator user that is configured in the native security domain. |
Password | Password for the user specified in the Login field. |
Num Parallel Workflows per EP | Maximum number of workflows that can be executed in parallel on the Informatica Integration Service. If the number of sessions is zero or is not specified, the DAC Server assigns the default value of 10. For more information about setting this property, see "Determining the Num Parallel Workflows per EP Parameter Setting". |
Repository Name | Name of the Informatica Repository Service that manages the Informatica repository for Oracle BI Applications. |
Inactive | Indicates whether the Integration Service will participate in the ETL process. |
Note: The Integration Service must be running.
Field | Description |
---|---|
Name | Enter a logical name for the Repository Service. |
Type | Select Repository. |
Hostname | Enter the name of the Informatica Gateway Host machine. |
Server Port | Enter the Gateway port (as specified during the installation of Informatica PowerCenter Services). |
Login | Informatica repository user name who has Administrator privileges for the Informatica repository. |
Password | Password for the user specified in the Login field. |
Num Parallel Workflows per EP | Maximum number of workflows that can be executed in parallel on the Informatica Integration Service. If the number of sessions is zero or is not specified, the DAC Server assigns the default value of 10. For more information about setting this property, see "Determining the Num Parallel Workflows per EP Parameter Setting". |
Repository Name | Name of the Informatica Repository Service that manages the Informatica repository for Oracle BI Applications. |
Inactive | Indicates whether the Repository Service will participate in the ETL process. |
Note: The Repository Service must be running.
You set the Num Parallel Workflows per EP parameter value when you register the Informatica Integration Service in the Informatica Servers tab of the DAC Client. This parameter specifies the maximum number of workflows that can be executed in parallel on the Integration Service. If the number of sessions is zero or is not specified, the DAC Server assigns the default value of 10.
You should consider the following factors when determining the Num Parallel Workflows per EP parameter value:
For an optimal run, the runnable queue should be at zero or should reach zero in a short time. For example, Figure 4-2 shows an ideal performance run when 15 sessions were run in parallel. There were many runnable tasks before the process began, but the queue soon reached zero.
You can generate a run analysis such as Figure 4-2 from the right-click menu (select Get Run Information, then select Get Graph) on the DAC Current Runs and Run History tabs. If you find that the runnable curve does not reach zero in a short time, you should increase the Num Parallel Workflows per EP parameter value to make more Informatica slots available.
The Informatica Integration Service must be configured for relaxed code page validation. For more information, refer to the Informatica documentation.
To configure the Informatica Integration Service for relaxed code page validation:
Follow this procedure to set custom properties for the Informatica Integration Service.
To set custom properties for the Informatica Integration Service:
Table 4-2 Custom Properties for Informatica Integration Service
Custom Properties Name | Custom Properties Value | Notes |
---|---|---|
ServerPort | <Server Port Number> | For <Server port number>, enter the number of an available port. For example, 4006. This custom property configures the Integration Service to listen on <Server port number>. DAC communicates with the Integration Service using this port. |
overrideMpltVarWithMapVar | Yes | Enables Informatica to evaluate parameters within mapplets. |
DisableDB2BulkMode | Yes | Add this custom property and set value to Yes if your Oracle Business Analytics Warehouse is on a DB2/390 or a DB2 UDB database. |
For DAC to be able to access Informatica and perform tasks in pmcmd and pmrep command line programs, DAC must log in to Informatica as an Informatica Repository Administrator user. This user must be configured in the native security domain.
You need to create such a Repository Administrator user, or, if your security policies allow, you can use the default Administrator user (whose privileges include Repository administration) for DAC connectivity to Informatica.
For more information on creating users and Informatica security domains, see the Informatica documentation.
To use the default Administrator user in the native security domain:
Note: Do not select an existing user from an LDAP domain.
To create a new Repository Administrator defined in the native security domain:
Note: Do not create this user in an LDAP domain.
You must set the data movement mode appropriately in the Informatica Integration Service.
To configure the data movement mode:
DAC sends the Informatica Integration Service and Repository Service passwords un-encrypted when communicating with Informatica through pmcmd
and pmrep
commands. This section includes instructions for forcing password encryption.
To force password encryption:
In the examples included in the following procedure, the Informatica Integration Service and Informatica Repository Service use the password Administrator.
pmcmd
and pmrep
pmpasswd Administrator -e CRYPT_SYSTEM
This step will produce something similar to the following text:
Name– INFA_PASSWORD
(Or any name that you choose.)
Value– dMGpMvpsuQwXD5UvRmq0OZxhppTWK0Y7fzBtxHL04Gg=
Note: The value should be exactly as shown in the encrypted message in the Command window (the value between --> and <--).
pmcmd
command. If you are using an Oracle Fusion Applications source system, you need to configure the Oracle BI Server as a physical data source. DAC communicates with the BI Server for the following reasons:
DAC adjusts the ETL start time for each data source. This information is retrieved using one of the BI Server connection pools that access the transactional database. For information about how DAC handles refresh dates, see "About Refresh Dates and DAC's Incremental Load Strategy".
The Actions feature allows you to do the following:
For more information about the DAC Actions feature, see "Using Actions to Optimize Indexes and Collect Statistics on Tables".
To configure the BI Server as a physical data source:
Note: For Oracle Fusion Applications source systems, after performing this step, you might receive an error in the log files for the run stating the connection pool does not have privileges to run a script for obtaining the timestamp of the data source database. You can ignore this error. However, if physical data source and DAC Server are in different time zones, make sure you define the Time Difference Override property as described in the following step. |
This value can be a positive or negative number. It needs to specify the minutes that must be added to or subtracted from the DAC Server time to match the physical data source database time. For example, if the DAC Server is in Pacific Standard Time and the physical data source database is in Eastern Standard Time, the value should be 180. And, conversely, if the DAC Server is in Eastern Standard Time and the physical data source database is in Pacific Standard Time, the value should be -180.
This value is static and is not automatically updated for Daylight Savings Time differences throughout the year. You will need to update this value for any such time changes.
For more information about the Time Difference Override extended property, see "Physical Data Sources Tab: Extended Properties Subtab".
You set DAC system properties in the DAC System Properties tab in the Setup view. The Description subtab provides a description of each property. Also see "DAC System Properties Tab" for more information about system properties.
DAC provides functionality for creating and upgrading data warehouse schemas. For information about this functionality, see Chapter 10, "Managing Data Warehouse Schemas."
Typically, you may have multiple environments, such as development, test, QA, production, and so on. The DAC Import/Export feature enables you to make changes in one environment, then export the whole environment as XML files, and then import the XML files into another environment.
For instructions on exporting DAC metadata, see "Exporting DAC Metadata".
For instructions on importing DAC metadata, see "Importing DAC Metadata".
The DAC's Import/Export feature enables you to export source system-specific DAC metadata out of the DAC repository. You can use this feature to migrate DAC metadata from one environment to another, such as from a development environment to test or production environments.
Caution: When you export metadata, all files in the target folder are deleted. |
DAC behavior relating to the target folder is as follows:
To export DAC metadata:
The DAC's Import/Export feature enables you to import source system-specific DAC metadata into the DAC repository. You can also use this feature to migrate DAC metadata from one environment to another, such as from a development environment to test or production environments.
To import DAC metadata:
Note: When importing DAC metadata into a container, if you select the Update Existing Records option (and not the Truncate Repository Tables option), you also need to import the metadata into any child containers. Otherwise, the child containers will be inconsistent with the parent container.
This action increases the speed of the import process.
The DAC metadata patch feature enables you to do the following:
For more information about the DAC metadata patch feature, see Chapter 12, "Working With DAC Metadata Patches."
The DAC external executor framework provides interfaces that enable you to integrate it with ETL tools other than Informatica. The interfaces are described in Javadocs, which are located in the <Oracle_Home>\dac\documentation\External_Executors\Javadocs directory.
For more information about the DAC external executor framework, see Chapter 14, "Integrating DAC With Other ETL Tools."
This section contains the following topics:
Oracle Business Intelligence Applications includes preconfigured security roles that map to the preconfigured DAC permissions. Table 4-3 shows the mapping between the Oracle BI Applications role and the DAC permissions.
For more information about Oracle BI Applications roles, see the chapter titled "Oracle BI Applications Security" in Oracle Fusion Middleware Reference Guide for Oracle Business Intelligence Applications.
Table 4-3 Oracle BI Applications Roles Mapped to DAC Permissions
Oracle BI Applications Role | DAC Permission |
---|---|
BI Administrator | Administrator |
BI Author | Developer, Operator |
BI Consumer | Guest |
BIA_ADMINISTRATOR_DUTY | Administrator |
BIA_FUNCTIONAL_DEVELOPER_DUTY | Developer |
BIA_IMPLRMENTATION_MANAGER_DUTY | Operator |
As shown in Table 4-4, each DAC permission has a set of privileges that determines what DAC functionality the permission can access.
Table 4-4 User Account Permissions and Privileges
Permission | Privileges |
---|---|
Administrator | Read and write privileges on all DAC tabs and dialogs, including all administrative tasks. |
Developer | Read and write privileges on the following:
|
Operator | Read and write privileges on all Execute view tabs |
Guest | Read privileges in all views. |
In DAC standalone authentication mode, the User Management dialog enables a user with the Administrator permission to manage user accounts. A user account includes a unique identifier, password, and one or more permissions. The Administrator account is created during the initial login to a new DAC installation. See "Logging Into DAC for the First Time as an Administrator" for more information about creating the Administrator account.
After a user account is created, the Administrator must distribute the DAC repository authentication file to users in order for the users to be able to log into the DAC Client (and access the DAC repository) using their own user name and password.
To create a user account:
To delete a user account:
To inactivate a user account
You can create multiple DAC user accounts by importing the user account information from a text file.
To import DAC user account information from a text file:
The default role is Developer, and the default password is the same as the user name.
The default role is Developer.
You can use different formats on different lines in the text file.
The new user account information will appear in the DAC User Management dialog.
When you change the DAC repository encryption key, the following changes occur:
To change the DAC encryption key:
A DAC administrator can change the DAC repository schema owner and password in an existing authentication file.
To modify an existing authentication file:
Oracle Fusion Middleware provides movement scripts that enable you to move components and configurations from a development or test environment to a production environment.
When DAC is installed in an Oracle Fusion Middleware environment and you run the movement scripts, DAC components and configurations are moved along with the other Oracle Fusion Middleware components.
Detailed information about moving an Oracle Fusion Middleware environment is provided in the Oracle Fusion Middleware Administrator's Guide. You should thoroughly review and follow the instructions in the Oracle Fusion Middleware Administrator's Guide when moving an Oracle Fusion Middleware environment (including DAC).
This section describes only the movement of the DAC components and configurations when you use the movement scripts provided by Oracle Fusion Middleware.
This section contains the following topics:
The following preconditions must be met before a DAC environment is moved:
For instructions on installing Informatica, use the Informatica PowerCenter installation documentation in conjunction with information about Oracle BI Applications requirements that appears in the section titled "Setting Up Oracle BI Applications," in the Oracle Fusion Middleware Configuration Guide for Oracle Business Intelligence Applications.
For instructions on restoring an Informatica Repository, see the section titled, "Restoring the Prebuilt Informatica Repository, in the Oracle Fusion Middleware Configuration Guide for Oracle Business Intelligence Applications.
For information about the tasks required to configure the Informatica Repository, see "Setting Up Communication Between DAC and Informatica".
This section describes the process for how DAC components are moved when the Oracle Fusion Middleware movement scripts are used to move an Oracle Fusion Middleware environment.
Detailed instructions for moving an Oracle Fusion Middleware environment are provided in the Oracle Fusion Middleware Administrator's Guide.
Figure 4-3 illustrates the sequence of steps of the DAC movement process. These steps are further described below. The movement scripts described in this section are located in the ORACLE_COMMON_HOME/bin directory.
Table 4-5 describes the move plan properties related to DAC that appear in the moveplan.xml file.
Note: You should only modify properties in the moveplan.xml file that have a READ_WRITE scope. Do not modify properties that have a READ_ONLY scope. |
Table 4-5 DAC-Related Properties in moveplan.xml
Property | Description | Example |
---|---|---|
DAC Server Configuration | The following properties appear under the DAC-Server-Configuration config group. | |
jdbc.url | URL to connect to the DAC repository. | jdbc:oracle:thin:@example.abc.com:1521/abc.com |
jdbc.driver | Name of the JDBC driver. | oracle.jdbc.driver.OracleDriver |
Username | User name used to connect to the DAC repository. | |
Password File | Absolute path of a secure file containing the password for the user to connect to the DAC repository. You must provide a password file, even if you are not changing the configuration. | /scratch/biplatform/cloning/password_.txt |
Email Configuration | The following properties are in the Email-Configuration config group. | |
email_host | Host name of the email server. | examplehost |
email_protocol | Protocol for the email server. | smtp |
email_address | Email address of the user. | example@example.com |
needs_authentication | The flag indicating whether the corporate email server requires authentication. Valid values are | |
needs_ssl | The flag indicating whether an SSL connection is required. Valid values are | |
email_host_port | Port where the email server listens. | |
email_user | User name for the email account. | |
email_password | Absolute path of a secure file containing the password for the user of the email server. (Only required if the needs_authentication property is set to | /scratch/biplatform/cloning/password_.txt |
Data Warehouse Configuration | The following properties are in the Datawarehouse-Configuration config group. | |
jdbc.url | URL to connect to the data warehouse. | jdbc:oracle:thin:@example.com:1521/example.com |
jdbc.driver | Name of the JDBC driver. | oracle.jdbc.driver.OracleDriver |
Username | User name used to connect to the data warehouse. | |
Password File | Absolute path of a secure file containing the password for the user to connect to the data warehouse. You must provide a password file, even if you are not changing the configuration. | /scratch/biplatform/cloning/password_DW.txt |
Informatica Configuration | The following properties are in the Informatica-Configuration config group. | |
Informatica server home | Informatica server home. | scratch/infahome/ |
Domains infa file location | Location of the domains.infa file. | /scratch/infahome/domains.infa |
InformaticaParameterFileLocation | Directory where the Informatica parameter files are stored (or | DEFAULT |
Data Source Configuration | The following properties are in the Datasources-Connection-Details config group. | |
Type | The physical data source type. Possible values are: | |
Connection Type | The type of database connection. Possible values are | N/A |
Connection String | The data source connection string. If you are using:
| orcl.example.com |
Table Owner | Name of the table owner. | DB_User |
Host | Host name of the server where the database resides. | example.com |
Port | Port where the database receives requests. | 1521 |
JDBC Driver (Optional) | JDBC driver for the data source connection. The value in this field must conform to the database specifications. | oracle.jdbc.driver.OracleDriver |
URL (Optional) | The JDBC URL for the data source connection. The value in this field must conform to the database specifications. | jdbc:oracle:thin:@example.com:1521/orcl.example.com |
Password File | /scratch/biplatform/cloning/password_ds.txt | |
Connection Pool Name (BIPool) | Connection pool name. | FSCM_OLTP."Connection Pool" |
Database Type (BIPool) | Database type of the transactional data source. | Oracle |
External Executors Configuration | The following properties are in the External_Executors config group. | N/A |
Execution type | Execution type for the tasks that will be executed by the external executor. | N/A |
Name | Name of the property that must be configured to integrate DAC with other ETL tools. There are multiple properties for the external executors. |
|
The steps below should be followed after moving a DAC environment:
Note: If you log into the DAC Client and receive an error message stating, "Can't authenticate user" and if the log file states, "INFO: Authentication failed. Cause: Couldn't connect to DAC application," this problem may be caused by an incorrect migration of the DAC Server URL. To correct this issue, you can execute the following SQL statement against the DAC repository: UPDATE W_ETL_REPOS SET VALUE = 'http://example.abc.com:10217/DACServer' WHERE NAME = 'DACServerURL'; COMMIT; Alternatively, if the schema owner and password are unknown but you have the authentication file for the DAC repository, you can manually update the DAC Server URL by logging into the DAC Client using DAC standalone authentication mode. You will then need to restart the DAC Server. |
The Oracle BI Applications Client Installer executable is named biapps_client_install.exe. It installs all the necessary files for the DAC Client and Server.
The DAC Client must be co-located on the same machine as the Informatica PowerCenter Client Tools, or it must have access to the Informatica PowerCenter binaries and the domains.infa file on a shared network location.
Note: If you are running Oracle Fusion Applications, DAC may have already been installed during the provisioning process. In such cases, you do not need to repeat this procedure.
To install DAC using the Oracle BI Applications Client Installer:
Click Next to continue.
Click Next to continue.
The installation directory path can contain alphanumeric, underscore (_), hyphen (-) or dot (.) characters and must begin with an alphanumeric character.
The installer installs the DAC Client and Server files in a subfolder named \client in the folder you specify.
Click Next to continue.
Click Next to continue.
To continue with the installation, click Install.
You can optionally install the DAC Server in a UNIX environment in standalone mode. Make sure Java 1.6 or higher is installed on the UNIX platform.
Note: If you are running Oracle Fusion Applications, DAC may have already been installed during the provisioning process. In such cases, you do not need to repeat this procedure.
To install the DAC Server on UNIX in standalone mode:
This installer will provide all the necessary files for the DAC Client and Server. For instructions on running the Oracle BI Applications Client Installer, see the "Installing DAC on Windows in Standalone Mode".
The installer installs the DAC Client and Server files in a subfolder of the installation folder you specify named \client.
Note: If you installed DAC using an installer earlier than version 11g, the folder containing the DAC files will be named \dac.
Note: If you use FTP to copy the zip file, use binary mode.
Note: DAC uses JDBC drivers for connectivity to source, target and repository databases. The JDBC drivers that are used should be for the databases supported. Since JDBC drivers show variations with different database versions, only drivers that are shipped with the database, or downloaded from the database vendor site and known to be certified for the given database version should be used.
This chapter provides the essential information you need to get started using DAC to run ETL processes.
Note: Before you can perform the operations in this chapter, you need to have completed certain administrative setup tasks. If you installed and set up Oracle BI Applications by following the steps in Oracle Fusion Middleware Configuration Guide for Oracle Business Intelligence Applications, you have already completed the necessary tasks, and you are ready to begin running ETL processes, as described in this chapter. In this guide, Chapter 4, "Setup Tasks and Concepts for DAC Administrators," also provides the administrative tasks that must be performed in order for a DAC environment to be operable. The key configurations that you must perform before running an ETL process are the following:
Before running ETL processes, you should also be familiar with the concepts discussed in "About Source System Containers". |
This chapter contains the following topics:
To perform this procedure you must have a DAC user account and you must know the location of the authentication file that you will use to connect to the DAC repository.
If you are a DAC administrator and are logging into DAC for the first time, see "Logging Into DAC for the First Time as an Administrator".
When you log into DAC for the first time as a DAC user, you configure a connection to connect to the DAC repository. DAC stores this connection information for subsequent logins.
To log into DAC for the first time as a DAC user:
The Login... dialog is displayed.
Field | Required Value |
---|---|
Name | Enter a unique name for the connection to the DAC repository. |
Connection type | Select the type of database in which the DAC repository will be stored. |
Connection String, or Database name, or TNS Name, or Service Name | Select the database name or database account name of the DAC repository. If you are using:
|
Database Host | Enter the name of the machine where the DAC repository resides. |
Database Port | Enter the port number on which the database listens. The default port for an Oracle database is 1521. The default port for a SQL Server database is 1433. |
DB URL (Optional) | Use this option to specify a unique URL for this connection. |
DB Driver (Optional) | Use this option to specify a unique driver for this particular connection. |
Authentication File | Click in this field to select an existing authentication file. Proceed to step 5 for detailed instructions. |
SSL Trust Store File | (Optional) For deployments in Web mode, location of the SSL Trust Store file. |
SSL JKS Password File | (Optional) For deployments in Web mode, location of the SSL JKS password file. |
Log Level | Specifies a client log level for the client session. The logs are saved in <Domain_Home>\dac\log\client <client's logical connection name>. |
Note: A DAC administrator must distribute this authentication file to all user accounts that need to access this DAC repository. |
This must match the user name and password stored in the WebLogic Server identity store.
The DAC Client is displayed.
An execution plan is an ETL process that comprises one or more subject areas, connectivity parameters for the physical source and target data sources, and pre- and post-ETL tasks. Before an execution plan runs, DAC checks the connections to the data sources and establishes connections to the ETL tool.
Predefined execution plans are available with an Oracle BI Applications installation. You can run predefined execution plans from the predefined container if you do not make any changes to the predefined source system container.
Predefined execution plans should be run mainly for proof-of-concept purposes. After running a predefined execution plan, you can then review the predefined dashboards and reports in order to perform a gap analysis that will help you understand what customizations are required for your organization. With this knowledge, you can then create a copy of the source system container and modify the predefined execution plan or create a new one by selecting the appropriate subject areas for your ongoing ETL requirements.
Note: You cannot change any of the metadata in a predefined container. You must first make a copy of the container, and then modify objects within the custom container. See "Creating or Copying a Source System Container" for instructions.
For more detailed information about execution plans, see "Building and Running Execution Plans".
To run a predefined execution plan:
Note: The Honor Time Delays property determines whether the Delay property in the Connectivity Parameters subtab will be active. The Delay property indicates how many minutes an extract of a data source will be delayed after the first extract of a multiple source extract process has started. For information about the Delay property, see "Setting Up Extract Delays".
Once the execution plan starts running you can monitor its progress in the Current Runs tab. See "Monitoring Execution Plan Processes" for instructions.
To run a customized execution plan:
You can repeat this process to associate multiple subject areas from any available source system container with an execution plan.
The Generating Parameters... dialog lists the containers that are involved in this execution plan.
DAC automatically generates the parameters required for the source system container.
Note: For the data source type of FlatFileConnection, make sure you have copied all files into the directory specified in the DAC system property InformaticaParameterFileLocation. |
For a description of all the fields in this subtab, see "Execution Plans Tab: Connectivity Parameters Subtab".
For instructions on unit testing a task, see "Unit Testing Execution Plan Tasks".
Once the execution plan starts running you can monitor its progress in the Current Runs tab. For instructions, "Monitoring Execution Plan Processes".
For information about how refresh dates are tracked, see "About Refresh Dates and DAC's Incremental Load Strategy".
To schedule an execution plan, see "Scheduling an Execution Plan".
In DAC, the metadata for a source system is held in a container. Included with Oracle BI Applications are predefined containers that hold metadata specific for the supported source systems. An important feature of DAC is that the metadata for predefined containers cannot be changed. To customize the metadata in a predefined container, you must first make a copy of the container. DAC keeps track of all customizations in the copied container, so that at any time you can find the newly created objects and modified objects, as well as the original objects. DAC is also able to compare the modified objects with the predefined object definitions in the predefined container. This feature enables you to selectively rollback changes to the objects if necessary.
For information about managing object ownership, see "Ownership Right-Click Commands".
You can also create a new, empty container if you want to build your own container with customized metadata.
To create a new container or copy an existing container:
The ID and Name fields are alphanumeric. The Name can contain spaces but the ID cannot. The Name field must be at least five characters long. It is strongly recommended that you use a descriptive Name and ID. For example:
Note: All records in the base container will be referenced to the newly created custom container, and parent-child relationships between the containers will be established.
The Current Runs tab in the Execute view lists all execution plans that are currently running or that have not yet completed. It provides a number of predefined reports that enable you to monitor execution plan processes and diagnose errors and performance issues.
The Tasks and Task Details subtabs of the Current Runs tab provide detailed information about the status of tasks associated with the execution plan.
This section contains the following topics:
Follow this procedure to generate reports for execution plans that are running or have not yet completed.
To generate run reports:
Once an execution plan is started, the life span of a task consists of the following statuses. You can view the status and other detailed information about the task in the Task and Task Details subtabs of the Current Runs tab. The list of tasks in these subtabs is color coded based on the status.
In general, when an execution plan starts, the first tasks to run are those with no dependencies (or predecessors). A task becomes "Runnable" if all of its predecessor tasks are completed. When all of the tasks of an execution plan are completed, the status of the execution plan becomes "Completed."
When a task fails, DAC provides detailed information about the cause of failure.
To identify why a task failed:
The failed tasks are displayed.
Information about the task details is displayed. (Task details are the building blocks of the task.) The Status Description field provides extensive information about the cause of failure of a task detail. After you have understood and fixed the problem, you can restart the execution plan. DAC will attempt to re-execute the failed task.
If you fixed the problem and executed the task outside of DAC (for example, by running the task in Informatica), within DAC you can set the task details status to Completed. Then, when you re-run the execution plan, this task will be ignored.
See the following topics for more information:
When an execution plan runs, if a task fails, the status of the tasks that are dependent on the failed task is changed to Stopped. While tasks are still running, the status of the execution plan is Running. Even though there may be failed tasks, the tasks unrelated to the failure will run to completion. After all the tasks have run, if one or more tasks failed, the execution plan's status is changed to Failed.
When restarting an execution plan, you can restart from the point of failure, or you can manually run a task detail using an ETL tool, and then in DAC mark the task detail as Completed, so that DAC skips the task when the execution plan restarts.
To restart an execution plan from the point of failure:
DAC automatically starts the execution plan from the point of failure. No further action is necessary.
To restart an execution plan after manually running a task detail:
For instructions, see "Identifying Why a Task Failed".
The failed tasks are displayed.
DAC will rerun all the tasks with a status other than Completed.
Caution: The DAC Server does not validate tasks that have been run manually. |
When an execution plan is running and a task fails, you can fix the issue that caused the task to fail and then re-run the task, without having to wait for the entire execution plan to stop. You re-run the task by requeuing it in DAC.
When one or more tasks in an execution plan fails, DAC continues to run all the tasks that are possible to run. Therefore, the failure of one or more tasks does not cause the execution plan to stop. The status of the execution plan is changed to Failed when the status of all tasks has changed to Stopped, Failed, or Completed.
When a task fails, the status of the dependent tasks changes as follows:
When all the tasks in the task group fail, the task group status is changed from Paused to Failed.
Note: To requeue a task that belongs to a task group, you must wait until the task group has completed and then requeue the task group, not the individual task.
A task comprises a main task detail and additional secondary task details. For example, a typical load task has a main task detail that loads data into the target table and secondary task details that drop and create indexes and analyze the table.
When a task detail fails during the running of an execution plan, the status of the task is changed to Failed, and the status of the dependent tasks is changed to Stopped. After you fix the issue that caused the task detail to fail, you can requeue the task in DAC by manually changing the task detail status to Queued. When DAC consumes the requeued task for execution, it changes the task status to Runnable. At this point, DAC also changes the status of the dependent tasks to Queued for all dependent tasks that have no failed predecessors.
You can also choose to re-execute the task detail outside of DAC, using an ETL tool (such as Informatica). You then need to change the task detail status in DAC to Completed. This manual update will trigger DAC to consume the task back into execution, which, in turn, will update the status of the dependent tasks to Queued for all dependent tasks that have no failed predecessors. During execution of the task, DAC will skip the task details that have a Completed status.
To requeue a failed task in DAC:
The failed tasks are displayed.
You should be familiar with the following points before you use the Hotfix capability:
As an example, an error in an ETL mapping would cause a main task detail to fail. After fixing the error, you would requeue the main task detail by manually setting the status to Queued. When DAC is ready to run the main task detail, it would change the status to Runnable. At this time, DAC would also change the status of all dependent task details, such as a truncate table statement, to Queued.
For example, suppose the main task detail loaded a target table and completed successfully, but it loaded duplicate records, which caused a dependent task detail for creating a unique index to fail. In this case, you would clean up the duplicate records, and then manually change the status of the task detail for creating the unique index to Queued. This will trigger DAC to re-consume the task and run the dependent task details that have a status other than Completed.
Follow this procedure to schedule an execution plan.
To schedule an execution plan:
The current list of schedules is displayed in the top pane.
The Edit tab in the bottom pane becomes active.
You can test how DAC will execute an individual task (and its details) without running a fully functional execution plan. You can test any task regardless of its position in the dependency graph. For example, you can test a task at depth 10, without running the execution plan. You can also test tasks that belong to single-source or multi-source execution plans. From the Unit Test dialog, you can execute the task after reviewing the task details. The unit test occurs within the DAC Client; the command is not sent to the DAC Server.
Note: When you test a task, DAC generates the required parameter files and issues the proper pmcmd command to execute the appropriate workflow. You cannot re-run the corresponding workflow in Informatica because DAC generates parameter files and log files using variable names.
To unit test an execution plan task:
The Unit Test dialog displays the steps that DAC will carry out if the task is executed.
Note: The DAC system property Dryrun must be set to False for the task to run.
In DAC, refresh dates refer to the timestamp on the source and target tables that are associated with an execution plan. DAC uses refresh dates (indicated in the Refresh Dates subtab of the Physical Data Sources tab) to determine whether to issue full or incremental load commands. DAC automatically populates and updates refresh dates for all tables involved in the ETL process. DAC stores refresh dates for the appropriate tables by data source.
DAC tracks refresh dates for primary source and auxiliary tables and primary target tables on tasks in a successful, completed run of an execution plan. Note that DAC updates refresh dates only when the ETL process completed successfully.
DAC runs the full load command for tasks if the refresh date against the table is null. When there are multiple primary source or auxiliary tables, the earliest of the refresh dates will trigger a full load or an incremental load. If any one of the primary source or auxiliary tables has no refresh date, then DAC will run the full load command. A source refresh date is the minimum of both the source and target tables. A target refresh date is the minimum of the refresh dates for only the target tables.
At the successful end of the ETL process, DAC updates the refresh dates for all the source (primary and auxiliary) and target tables with the actual ETL start time as the refresh date. Even if the ETL process fails multiple times, the timestamp of the first attempt of the ETL process is used as the last refresh timestamp.
For example, suppose an ETL process started on January 1, 2011 at 10:00 PM Central time and ran for one hour before some tasks failed, thus causing the ETL process to fail. The ETL process was then restarted at 8:00 AM on January 2, 2011, and completed successfully. At the end of the ETL process, DAC updates the refresh dates for all primary/auxiliary source and target tables that participated in the ETL process as January 1, 2011, 10:00 PM, adjusted to the time zone of the transaction system. This means that if the transactional system from which the data is sourced is in the Pacific time zone (-2 hours), the tables for the source database will have a refresh timestamp as January 1, 2011, 9:00 PM. And, if the data warehouse is in the Eastern time zone (+1), the data warehouse tables will have a refresh timestamp as January 1, 2011, 11:00 PM.
Note: If an extract task fails and is restarted any number of times, the last_extract_timestamp value provided by DAC will always be the same as the last ETL process start time. The last_extract_timestamp is not the last time the task was attempted. This behavior is an intentional design feature in DAC. If a task fails N number of times, the value of this variable should not fluctuate, because there could be a potential for data loss.
Table 5-1 shows the possible scenarios regarding refresh dates and load and truncate commands.
Table 5-1 Refresh Date Scenarios
Scenario | Source Refresh Date (Primary and Auxiliary only) | Target Refresh Date | Command DAC Will Use | Truncate Target Table? |
---|---|---|---|---|
1 | Null | Null | Full Load | Yes |
2 | Null | Not Null | Full Load | No |
3 | Not Null | Null | Full Load | Yes |
4 | Not Null | Not Null | Incremental Load | No |
Note: Refresh dates for micro ETL execution plans are kept separate from the refresh dates for regular execution plans. DAC saves refresh dates for micro ETL execution plans in the Micro ETL Refresh Dates subtab of the Execution Plans tab (Execute view) and refresh dates for regular execution plans in the Refresh Dates subtab of the Physical Data Sources tab (Setup view).
You can manually add refresh dates to tables in the DAC repository or reset refresh dates before running an execution plan. The Add Refresh Dates command in the Execution Plans tab right-click menu prepopulates records with the appropriate table name in the Refresh Dates subtab of the Physical Data Sources tab. After you execute the Add Refresh Dates right-click command, you can manually add refresh dates to the prepopulated records.
The baseline timestamp for a refresh date is the ETL process start time of the DAC Server host machine. DAC computes and uses timestamps in the following ways:
For example, an ETL process is started on 1/1/2011 at 10 PM Central standard time. It runs for an hour and some tasks fail, and, therefore, the ETL process fails. The ETL process is restarted on 1/2/2011 at 8:00 AM. This time the ETL process successfully completes. At the end of the ETL process, DAC updates the refresh dates for all the primary and auxiliary source tables and the target tables that participated in the ETL process as 1/1/2011 10:00 PM Central standard time but adjusts the times based on the time zone of the transactional system and the data warehouse. In this example, the data is sourced in Pacific standard time (-2 hours), so the timestamp of the source tables is 1/1/2011 8:00 PM. The data warehouse is in the Eastern standard time (+1 hour), so the timestamp of the target tables is 1/1/2011 11:00 PM.
This chapter provides information about building and running execution plans.
This chapter contains the following topics:
An execution plan is the unit of work you use to organize, schedule, execute, and monitor ETL processes. To generate an execution plan, you specify one or more subject areas, connectivity parameters, and, optionally, pre- and post-ETL tasks. DAC then generates an ordered set of tasks, with dependencies, that will carry out the ETL process.
When you run an execution plan, data is extracted from one or more tables in the source system database, loaded into staging tables, and then transformed and loaded into tables in the data warehouse. The ETL process is carried out in either full or incremental mode, depending on the refresh dates for the tables associated with the execution plan.
If the source or target table refresh dates for a task are null, then DAC invokes a full load workflow command. If both the source and target tables have refresh dates, then DAC invokes the incremental workflow command. For a detailed description of refresh dates, see "About Refresh Dates and DAC's Incremental Load Strategy".
DAC supports the following extract and load combinations:
This extract and load combination is used for the very first extract and load. All data is extracted from one or more source systems and loaded into the data warehouse in the following manner: Target tables are truncated; the bulk insert mode is used; and indexes are dropped and created.
This extract and load combination supports modular execution plan deployments, enabling you to deploy a new source system or new subject area that will write to data warehouse tables that already contain data. When you deploy a new source system or subject area, you should use the same staging tables for the conforming data that are in use for the original source. These staging tables will already have refresh dates, because they will have been populated with data from the original source. However, when a new source is added, the source tables will not have refresh dates. This will cause DAC to perform a full extract and incremental load. On the original source, DAC will perform an incremental extract and an incremental load. The Mode attribute in the Tasks subtab of the Current Runs tab indicates the source and load type.
The task level properties Truncate Always and Truncate for Full Load determine whether tables are truncated during the ETL process. For any given task, if the Truncate Always property is set to True, then both full and incremental loads will truncate the target tables. If the Truncate for Full load property is set to True, then only full loads will truncate the target tables.
When data is loaded into a staging table that has the Truncate Always property set to True, the bulk loader option can be used for both full and incremental commands. When data is written directly to a dimension or fact table that has the Truncate for Full Load property set to True, DAC will use the command for full load to extract all data from the source system but will not truncate the target tables, and, therefore, will not drop indexes. Therefore, the command should be able to write to a table that already has data and indexes. This also means that such a full command does not use bulk loaders, and may need an update strategy. Typically, such logic for using bulk loaders and update strategies are implemented in Informatica (or another external ETL tool).
The incremental load process requires additional logic to determine whether a record should be inserted or updated. Therefore, if you add a new source connection to populate an existing data warehouse, you should expect the incremental load to be slower than when running a full load.
This extract and load combination is used for regular nightly or weekly ETL processes. New or changed records are extracted from one or more source systems and loaded into the data warehouse.
A single-source execution plan extracts data from a single instance of a single, source system container. As illustrated in Figure 6-1, in this scenario data is extracted from a single source, loaded into staging tables, and then loaded into the data warehouse.
Truncate Table Behavior in a Single Extract Scenario
When DAC truncates a table, it also drops and recreates indexes (if the table has indexes) and analyzes the table after loading the data. In a single-extract scenario, the extract tasks truncation process for a table is as follows:
For instructions on building a single-source execution plan, see "Building and Running Execution Plans".
When you have a multi-source environment, you can use a single execution plan to extract data for a given subject area for all the sources. When you build the execution plan, DAC creates as many instances of the extract tasks as there are sources, without having the need to duplicate the workflows or DAC metadata.
There are two types of multi-source execution plans:
For instructions on building a multi-source execution plan, see "Building and Running Execution Plans".
This section describes properties and behaviors you should consider when setting up multi-source execution plans.
Source Priority
The order in which DAC loads data from the different sources that are participating in the ETL process is determined by the priority of the physical data source connection, as set in the Source Priority field in the Physical Data Sources tab of the Setup view. This property ensures that tasks attempting to write to the same target table will not be in conflict. If two sources are given the same priority, DAC will randomly stagger the tasks.
Truncate Table Behavior
If a target table is shared across different sources, it will be truncated only once. The priority of the data source (specified by the Source Priority property) determines which of the extracts truncates the tables. For more information about how tables are truncated, see "Execution Plan Build Process Rules".
Note that truncate properties should be the same across all source system containers associated with a multi-source execution plan.
In a multiple extract scenario, the truncation process for a table is as follows:
Enabling Failure Restarts When Extracting From Multiple Sources
Typically, extract tasks truncate the target tables, and, therefore, will not have update strategies. To enable failure restarts when extracting from multiple sources, you can create an action that will predelete all the records that are loaded from the source. See "Using a Task Action to Enable Failure Restarts When Extracting From Multiple Sources" for instructions.
Task Groups
Tasks should belong to the same task groups across all source system containers associated with the multi-source execution plan. For example, if a task belongs to a task group in one container but is not associated with a task group in a different container, then an exception will be thrown. Also, if a task with the same name belongs to two different task groups, an exception will be thrown.
Full and Incremental Workflow Commands
Full and incremental workflow commands need to match for tasks across all source system containers.
Configuring Extracts and Notifications
You can delay extracts for a particular source system by using the Delay property in the Connectivity Parameters subtab of the Execution Plans tab. You can also use the Event Delay feature to configure the extracts for different source systems to occur independently.
The Notifications feature enables you to initiate email notifications and the execution of custom SQL based on the first or last read or write operations on a particular data source. See "Setting Up Extract Delays, Event Delays and Data Source Notifications" for more information.
Task Physical Folder Instance Priority
DAC deduplicates tasks from multiple source containers or multiple instances of the same container based on the task name, the primary physical source, and the primary physical target. DAC executes only a single instance of the task. If multiple containers contain the same task, with the same source and target databases but different task physical folders, then DAC will pick one folder. If folders have different priorities, the folder with the lowest priority will be picked. If folders have the same priority, DAC randomly selects a folder.
In Oracle BI Applications, the Instance Priority for task physical folders is predefined. In certain situations, such as if you are using a vertical application, you may want to execute a task from a different folder. You can specify the preference of task physical folders by modifying the Instance Priority. To do so, on the Tools menu, select Seed Data, and then select Task Physical Folders.
DATASOURCE_NUM_ID
Multi-source execution plans support two load scenarios:
Micro ETL execution plans are ETL processes that you schedule at very frequent intervals, such as hourly or half-hourly. They usually handle small subject areas or subsets of larger subject areas.
For instructions on building a micro ETL execution plan, see "Building and Running Execution Plans".
This section contains the following topics:
A regular execution plan includes one or more fact tables and all content associated with the fact tables, such as dimension tables and related tables, and so on. The more associated content that is added to an execution plan, the longer the ETL process runs. If a subject area is small, for example, with one fact table and two dimension tables, there is no need to create a micro ETL execution plan. Instead, you can schedule an execution plan with a single, small subject area to run at frequent intervals.
Micro ETL execution plans, on the other hand, accommodate a business need for specific users to access updated subsets of data at frequent intervals. For example, some users may find their reports are stale if data is only refreshed once nightly. In such cases, a micro ETL execution plan can refresh the results of a small subject area or a subset of a star schema hourly or half-hourly. If you have a fact table with 50 dimension tables as well as other multiple related stars, an execution plan containing this fact table would run for a long period of time and could not be scheduled to run at frequent intervals. You could create a micro ETL execution plan by removing the unnecessary tables and tasks, leaving only the fact and dimension tables required for a specific report. See "Designing a Micro ETL Execution Plan" for instructions.
You should be aware that inconsistencies can occur when running micro ETL execution plans, such as dimension keys pointing to "Unspecified" records and discrepancies between facts and aggregates. However, the subset of data extracted for a micro ETL execution plan will be updated and patched during a regularly scheduled nightly ETL process. See "Important Considerations When Using Micro ETL Execution Plans" for other points to consider.
Note: All tasks that need to participate in the micro ETL execution plan should have update strategies that can update the data even though it has already been loaded into the data warehouse.
DAC tracks refresh dates for tables in micro ETL execution plans separately from other execution plans and uses these refresh dates in the change capture process. After a micro ETL execution plan runs, DAC populates refresh date values in the Micro ETL Refresh Dates subtab of the Execution Plans tab. If a subject area is used in a regular execution plan (an execution plan with the Micro ETL option in the Execution Plans tab not selected) as well as a micro ETL execution plan, DAC maintains refresh dates for the tables in the regular execution plan in the Refresh Dates subtab of the Physical Data Sources tab (Setup view).
In cases where a subject area is used in both a regular and micro ETL execution plan and the micro ETL execution plan is suspended for a few days but the regular execution plan runs nightly, DAC automatically detects the last refresh date for the tables common to both execution plans and intelligently extracts only the most recent records for the micro ETL execution plan. Micro ETL refresh dates do not affect the refresh dates of regular execution plans.
As an example, suppose a micro ETL execution plan runs every hour and the complete (regular) execution plan runs once a day at 1:00 PM. When the micro ETL execution plan runs at 10:00 PM, it will get the refresh timestamp as 9:00 PM. When the complete execution plan runs at 1:00 PM, it will get the refresh timestamp as the previous day at 1:00 PM, even though the micro ETL execution plan ran at 12:00 PM. This will cause all the records to be re-extracted that were already loaded into the data warehouse using the micro ETL execution plan. As long as all tasks have proper update strategies, DAC will re-update the records that were loaded during the day.
Note: The image sync for Siebel sources does not occur during micro ETL execution plans. This means that the records from the I image tables do not get moved into the R image tables. Therefore, the records are re-extracted during the complete (regular) execution plan. |
Micro ETL processes can cause issues with data inconsistencies, data availability, and additional load on the transactional database. Therefore, you should consider the following factors before implementing a micro ETL process:
Follow this procedure to design a micro ETL execution plan.
To design a micro ETL execution plan:
The Choose Tables dialog is displayed. The left-hand window lists all the tables held in the selected container.
The tree view on the left side of the Subject Area Assembly dialog displays the fact tables that belong to the subject area. You can expand the fact table node to view its related tables.
A list of tasks is displayed in the Task List tab on the right side of the window. Also, the Table List tab displays the tables included in the subject area.
Note: You can also create a micro ETL execution plan by creating a new subject area and then using the Tasks subtab to associate specific tasks with it. |
DAC builds an execution plan (generates a task dependency graph) based on the following rules for the metadata in the Design and Setup views.
A task with a target table that is not a source table in any other task will be a leaf node.
An example of a typical order in which phases are executed is as follows:
DAC randomly organizes tasks that have the same property values, because it does not allow parallel reads and writes on any table. If you want to force tasks to be executed in a particular order, or in parallel, you can create a task group that allows you to specify an execution order. For instructions on creating a task group, see "Creating a Task Group"
Follow this procedure to run a single-source, multi-source, or micro ETL execution plan.
Before you attempt to run an execution plan, make sure you have completed the following:
Before you attempt to run a multi-source execution plan, you must first define the priority for each source. The priority specifies the order in which DAC will load the data from the different sources.
To define a source priority for multi-source execution plans:
The lower the numerical value, the higher the priority. For example, if you enter a value of 1, data from this source will be loaded first.
To build and run an execution plan:
Field | Description |
---|---|
Name | Enter a name for the execution plan. |
Full Load Always | (Optional) Select to indicate the execution plan will always execute a full load. Note: DAC does not store refresh dates when this option is selected. |
Micro ETL | (Optional) Select to indicate the execution plan is a micro ETL execution plan. See "About Micro ETL Execution Plans" for more information. |
Analyze | (Optional) Select to indicate the tables associated with this execution plan will be analyzed. |
Analyze Truncated Tables Only | (Optional) Select to indicate only truncated tables will be analyzed. |
Drop/Create Indices | (Optional) Select to indicate indexes on the tables associated with this execution plan will be dropped and created. |
Inactive | (Optional) Select to inactivate the execution plan. |
Assemble the subject area by clicking Assemble in the top pane toolbar. See "Creating a Subject Area" for more information.
You can repeat this process to associate multiple subject areas from any available source system container with an execution plan.
The Generating Parameters... dialog lists the containers that are involved in this execution plan.
DAC automatically generates the parameters required for each copy of the source system container. Note that not all copies require all of the possible parameters.
Note: For the data source type of FlatFileConnection, make sure you have copied all files into the directory specified in the DAC system property InformaticaParameterFileLocation. |
Note: The Honor Time Delays property determines whether the Delay property in the Connectivity Parameters subtab will be active.
Once the execution plan starts running you can monitor its progress in the Current Runs tab. For instructions, "Monitoring Execution Plan Processes".
For information about how refresh dates are tracked, see "About Refresh Dates and DAC's Incremental Load Strategy".
To schedule an execution plan, see "Scheduling an Execution Plan".
This section contains the following topics:
You can configure DAC to run multiple execution plans concurrently if the execution plans are not dependent on one another. To avoid data inconsistency, execution plans that have dependencies with other execution plans cannot run concurrently (unless you override the default behavior).
Execution plans are considered dependent if 1) they load data into tables that have the same name on the same physical data source; and 2) one execution plan writes to a table and the other execution plans reads from the same table on the same physical data source. Execution plans that have dependencies with other execution plans are not be eligible to run concurrently if any of the following scenarios are true:
DAC allows execution plans to run concurrently as long as they write to unique tables. Tables are considered to be unique in relation to other tables if the table names are unique or if tables have the same name but reside in different physical data sources.
DAC does not distinguish whether the same Informatica workflows are used by multiple execution plans. Therefore, as long as execution plans write to unique tables, if they share the same Informatica workflows, they can still run concurrently.
For example, consider a scenario in which you have development and QA environments that each have a different OLTP and data warehouse but share the same DAC and Informatica repositories, and, therefore, use the same Informatica workflows. Execution plans for these two environments that share Informatica workflows can run concurrently.
DAC provides two options for enabling Informatica workflows to be shared by multiple execution plans:
You can define a prefix for each execution plan using the DAC_EP_PREFIX execution plan level parameter. When you use this option you are able to use single instances of the DAC Server, Informatica Integration Service, and DAC and Informatica repositories to run execution plans from multiple sources. That is, you can run multiple execution plans at the same time using the same metadata.
This solution is useful if you have multiple sources with execution plans that have the same subject area. It can also be useful if the sources are in the same time zone and the execution plans need to run simultaneously or the sources are in different time zones but have overlapping execution plan schedules.
The workflows that are common to different execution plans must be enabled in Informatica Workflow Manager to run concurrently. DAC will invoke the workflows with an instance name that is in the format <prefix>_workflowname. DAC captures the Informatica pmcmd and pmrep outputs and stores them as log files for each ETL process run. For more information about log file naming conventions, see "DAC Session Log File Naming Conventions" and "Informatica Log File Naming Conventions".
For instructions on defining an execution plan prefix, see "Defining an Execution Plan Prefix".
You can make copies of the Informatica workflow folders so that there is one extract and load folder combination for each execution plan, and then create new mappings in DAC for the physical to logical folders. For instructions, see "Copying Informatica Workflow Folders and Creating New Folder Mappings".
When you run execution plans concurrently, the following resource configurations apply to each ETL process. You should consider these properties when deciding how many execution plans you will configure to run concurrently.
This property is located on the Informatica Servers tab in the Setup view. It specifies the maximum number of workflows that can be executed in parallel on the Informatica Server for each ETL run. For example, if this value is set to 10 and three execution plans are running concurrently, 30 Informatica workflows may be running at any given time.
This property is located on the Physical Data Sources tab in the Setup view. It specifies the number of database connections that each ETL will open to the data source.
This system property is located on the DAC System Properties tab in the Setup view. It specifies for each execution plan the number of tasks with an Execution Type other than Informatica that can run concurrently.
Note: When execution plans run concurrently, they do not share resources. Keep in mind that the values you set for these properties apply to each ETL process. For example, if you configure DAC to run two execution plans concurrently, your environment must have the resources for twice the value you set for the Num Parallel Workflows per EP, Num Connections per EP, and Generic Task Concurrently Limit properties. Make sure you have reviewed the system requirements and certification documentation for information about hardware and software requirements, platforms, and databases available on Oracle Technology Network as well as the Oracle BI Applications configuration information in Oracle Fusion Middleware Configuration Guide for Oracle Business Intelligence Applications. |
In considering whether to run execution plans concurrently, you should have an understanding of the concurrent dependencies (common target tables) between the execution plans.
To view execution plan concurrent dependencies:
The common target tables between the two execution plans are displayed as well as the tables that one execution plan writes to and the tables that the other execution plan reads from.
To configure DAC to run execution plans concurrently, you need to do the following:
When the value of the Concurrency Level system property is more than one, each execution plan starts in a separate Java process. An identifier for each process is stored in the OS Process Name column on the Current Runs tab in the Execute view.
To set the Concurrency Level system property:
DAC provides two options for enabling Informatica workflows to be shared by multiple execution plans:
For information about the requirements for running execution plans concurrently, see "Execution Plans That Are Eligible to Run Concurrently".
Follow the procedure below to define an execution plan prefix, which enables multiple execution plans to use the same Informatica workflows.
To define an execution plan prefix:
Note: This value is case sensitive. You must enter the value exactly as it appears, using upper-case characters.
This value will be appended as a prefix to the execution plan name. For example, if you define the parameter value as AMER
, and the execution plan name is Extract_Forecast
. When the execution plan runs, its name will appear in the Current Runs tab and the log files as AMER_Extract_Forecast
.
Follow this procedure to copy Informatica workflow folders and create new folder mappings in order to configure Informatica workflows so that they can be shared by multiple execution plans.
To make copies of the Informatica workflow folders and create new folder mappings:
For information about the instance priority property, see "Task Physical Folder Instance Priority".
Repeat this step for each copy of the physical folder you made in Informatica Workflow Manager.
Repeat this step for each copy of the logical folder you made in Informatica Workflow Manager.
Repeat this step for each new combination of physical and logical folders.
You can override the DAC execution engine to define dependent execution plans as independent and independent execution plans as dependent.
Defining Execution Plans as Independent
You should exercise caution when overriding the DAC execution engine to define two dependent execution plans as independent of each other. You should perform this procedure only if: 1) you have an advanced understanding of the DAC ETL process; and 2) you know the load mappings handle mutually exclusive sets of data across execution plans, and the execution plans do not truncate tables; or 3) you have two execution plans that use time-based dimensions and are only loaded during full loads and not incremental loads.
Caution: If your incremental ETL process involves dropping and recreating indexes, you should not declare dependent execution plans as independent. |
Defining Execution Plans as Dependent
You may want to define independent execution plans as dependent if you have resource issues. For information about potential resource issues when running execution plans concurrently, see "About Resource Usage".
To define execution plans as independent or dependent:
For example, if you want to define the execution plan Oracle 11.5.10 Enterprise Sales as independent from the execution plan Procurement and Spend: Oracle 11.5.10, select Procurement and Spend: Oracle 11.5.10 in this step.
Defines the execution plan selected in the Concurrent Dependency subtab as independent of the execution plan selected in the top window.
Defines the execution plan selected in the Concurrent Dependency subtab as dependent on the execution plan selected in the top window
You can create multiple instances (or copies) of an execution plan and then run the parent execution plan and the additional child instances concurrently.
The following examples illustrate when you might find it useful to run multiple instances of an execution plan:
Note: You must enable the Informatica workflow property Configure Concurrent Execution in Informatica Workflow Manager for each workflow. For instructions, see step one in the procedure "Defining an Execution Plan Prefix".
When you create a new instance of an execution plan, you have the option to override the following properties:
Note: The behavior of execution plans and child instances is the same, including behavior related to running execution plans concurrently. The information about running execution plans concurrently in the section "Running Execution Plans Concurrently" also applies to child instances. |
Important Points About Execution Plan Child Instances
For example, suppose you have an execution plan that has two execution plan level parameters defined: one for currency, with the value USD; and one for region, with the value California. Then, you create a child instance of the execution plan, in which you want the currency parameter to remain as USD, but you want the value of region to become Nevada. The value of the currency parameter will be propagated to the child instance, so you do not need to modify this parameter. For the region parameter, you would need to define an execution plan level parameter for the child instance. To do so, you would use the same name for the parameter as that of the parent execution plan (in this case, "region"), and you would give the region parameter the value Nevada.
You can also create execution plan level parameters specifically for a child instance.
To create, configure and run multiple instances of an execution plan:
The Execution Instance Configuration dialog opens.
This code is used as the prefix for the Informatica run instance name and enables DAC and Informatica to distinguish between workflow run instances that are running concurrently.
A message dialog indicates whether the process was successful.
- Override one or more of the execution plan level parameters defined in the parent execution plan by creating new execution plan level parameters in the instance and using the same name for the parameter as that of the parent and giving it a different value.
- Create new execution plan level parameters.
You can monitor execution plan instances the same way you monitor execution plans, using the Current Run and Run History tabs of the Execute view. See "Monitoring Execution Plan Processes" for more information.
This section contains the following topics. These topics apply to multi-source execution plans.
Use the Extract Delay feature to stagger the timing of data extraction from different source systems.
Use the Event Delay feature to configure the extracts for different source systems to occur independently.
Use the Data Source Notification feature to initiate email notifications about data source usage and to define custom SQL to be executed based on the usage.
You can delay the extract of a source system in a multi-source environment by setting the Delay property in the Connectivity Parameters subtab of the Execution Plans tab. See "Building and Running Execution Plans" for instructions on setting the Delay property.
The Event Delay feature applies to multi-source environments. It enables you to configure the extracts for the different data sources to occur independently.
The following are examples of how you might use the Event Delay feature:
For example, suppose an ETL process extracts CRM data from one source system and financial data from another source system. Nightly maintenance of the CRM system is scheduled for 11:00 PM, and the system is expected to be back up at 11:30 PM. The ETL process is scheduled to begin at 12:00 AM. If the CRM system is still down at the ETL start time, the ETL process will fail immediately because the connection pool to the CRM source will not be created.
In such situations, you can define an event delay that would allow the tasks that read and write to the financial data source to be executed while the tasks for the CRM source wait until a connection pool can be created. You define the event delay using the Lazy Initialization property, which prevents a connection pool from being created until the connection itself is available. The properties you need to define along with the Lazy Initialization property are described in Table 6-1.
In this example, the Lazy Initialization property is enabled on the CRM source. The Polling Frequency property is set at one minute, and the Timeout period is set to 120 minutes. Therefore, DAC will poll the CRM source every minute for 120 minutes.
If the connection becomes available within 120 minutes, DAC will create the connection pool and the ETL will proceed. If the Timeout period elapses, and Fail is selected for the Upon Timeout property, the tasks that read and write to the unavailable source will fail. If the Timeout period elapses, and Skip is selected, the tasks will be skipped, and the extract from the financial source will proceed.
You can write custom SQL to define a condition that must occur before the ETL process starts. This condition would indicate whether the data source is ready to participate in the ETL process.
For example, suppose an automated process inserts and updates contact information into a CRM source. If the ETL process starts before the insert and update process has completed, only some of the data will be available for extraction, which will result in incomplete data loading into the data warehouse, and, consequently, inaccurate reports. In such cases, you could write custom SQL to define the condition that the insert and update process must complete successfully before the ETL process starts.
The properties for defining an event delay are described in Table 6-1.
Table 6-1 Event Delay Properties
Property | Description |
---|---|
Lazy Initialization | When this check box is selected, DAC prevents a connection pool from being created until the connection itself is available. When you select Lazy Initialization, you then need to set the Timeout, Upon Timeout, and Polling Frequency properties. |
Condition SQL | Click in the field to open a text box where you can enter a SQL statement that defines a condition that DAC will execute against the data source to verify if the data source is ready. This SQL should return a value in the form of a number. A result of 0 indicates the data source is not ready. A non-zero result means the event has happened. |
Polling Frequency (min) | Specifies in minutes how often DAC will try to create the connection or poll for the readiness of the data source. |
Maximum Polling (min) | The period of time (specified in minutes) indicating how long DAC will continue to poll to see if the connection is available or the data source is ready. |
Upon Timeout | The possible action DAC will take if the Maximum Polling period elapses without a connection being available or the data source being ready. The options are:
|
Cleanup SQL | A SQL that can be executed upon the successful occurrence of the event defined in the Condition SQL. This property applies only if a Condition SQL is defined. |
To set up an event delay:
The Data Source Usage Notification feature enables you to initiate email notifications about data source usage and to define custom SQL to be executed based on the usage.
The data source usage categories about which DAC will send notifications are the following:
The email notification contains the execution plan name, the ETL run name and timestamp, the data source name, and the data source usage category. The recipients of the email are the email accounts set up in the procedure "Setting Up Email Notifications in the DAC Client and Server".
When you define the data source usage notification properties, you can also define custom SQL that will be executed upon the occurrence of the specified data source usage category. In the custom SQL, you can use the DAC variable @DAC_NOTIFICATION_RECORD in a parameter.
To set up a notification:
Field | Description |
---|---|
Send Email | Select this check box to indicate an email should be sent when the selected operation occurs. Email recipients with a Notification Level of 5 or higher will receive the email The DAC email administrator account and email recipients must be set up before DAC can send data source usage notifications. For instructions, see "Setting Up Email Notifications in the DAC Client and Server". |
Execute SQL | Click in the field to open a text box where you can enter a SQL statement that DAC will execute against the data source when the selected operation occurs. |
Is Stored Procedure | Select this check box if the custom SQL is a stored procedure. |
Starting an Execution Plan
When the DAC Server receives a request to start an execution plan, it performs a series of checks to verify that the execution plan can be started. It first checks that an execution plan with the requested name exists and that the execution plan is active.
Next, it checks the status of the execution plan that last ran. If an execution plan is still running and the DAC Server receives a request to start the same execution plan, the request will be rejected. If an execution plan failed, a request to run the same execution plan again will be executed to restart the failed execution plan.
However, a request to run a different execution plan will be put on hold if the execution plan has dependencies on the failed execution plan (dependencies such as having the same source and target tables). If the execution plans are mutually exclusive, the new request will result in a new execution plan run.
When the DAC Server receives a request to start an execution plan, it will issue a warning if any of the following conditions are true. (A warning is for informational purposes and does not mean the execution plan will not start.)
Stopping an Execution Plan
When the DAC Server receives a request to stop the operation of a running execution plan, the request will fail in the following cases:
The volume of data in the source system that loads certain fact table extracts, such as payroll or GL, can be huge. Loading all of the source system data into the data warehouse can be very time consuming and can delay the move to production. Using a deferred ETL approach can help to alleviate the problems associated with loading large fact tables at one time. Deferred ETL processes enable you to load a subset of data initially and then incrementally add historical data. A deferred ETL uses the Initial Extract Date parameter (present in all preconfigured mappings) to limit the data that comes into the data warehouse by setting the parameter for a short period of time. For example, you could use the Initial Extract Date parameter to limit the initial extract to the most recent five years' worth of data, and then continue to extract several months' worth of data in increments.
Because the deferred ETL time window is based on a parameter, deferred ETLs are easy to maintain. And, you can stop the deferred extraction after you have reached the end of the extraction period, when all of the required data has been loaded into the data warehouse.
This section contains the following topics:
Follow this procedure to set up a deferred ETL process.
Note: The SQL used in this procedure appears in the Oracle format and needs to be modified for other platforms.
To set up a deferred ETL process:
See "Defining Parameters" for instructions on creating a runtime parameter.
NAME, with data type as varchar and length 50
VALUE, with data type as timestamp
Property | Value |
---|---|
Name | DEFERRED_EXTRACT_START |
Type | Timestamp |
SQL Value |
|
Function | SQL Syntax Note: This value will be used in the select clause of the SQL override in Informatica. |
Connection Type | @DAC_SOURCEDB_TYPE |
Property | Value |
---|---|
Name | DEFERRED_EXTRACT_END |
Type | Timestamp |
SQL Value |
|
Function | SQL Syntax Note: This value will be used in the select clause of the SQL override in Informatica. |
Connection Type | @DAC_SOURCEDB_TYPE |
Property | Value |
---|---|
Name | Enter a name so as to identify it as a deferred task. |
Command for Incremental Load | Enter a name so as to identify it as a deferred workflow. |
Command for Full Load | Leave this field blank. |
Note: In this step you are setting the $$INITIAL_EXTRACT_DATE parameter at the task level for extract tasks associated with the deferred load. It is important to set this parameter at the task level so that it affects only the extract tasks associated with the deferred load.
For example, if you set the value to 3, each run of the deferred ETL will extract an additional three months' worth of data.
Note: Because the value for the months of data to be extracted is a parameter, you can modify the number of months based on the performance of the sever runs. For example, if you set the value to three months and the data volume is too much, you can reduce it. However, if three months' worth of data is not impacting performance, you can increase the number of months.
For detailed instructions on creating task actions, see "Using Actions to Manage Indexes, Tables and Tasks".
When defining the task action, enter the following two SQL statements.
To set the deferred ETL start date:
To set the deferred ETL end date:
When defining the task action, enter the following SQL statement:
Property | Value |
---|---|
Task Phase | Post ETL Process |
Execution Type | Container Specific Task Action |
Command for Full Load | Assign the task action "Create First Window for Deferred ETL." |
Command for Incremental Load | Assign the task action "Update Window for Deferred ETL." |
Primary Logical Source | DBConnection_OLAP |
Primary Logical Target | DBConnection_OLAP |
By selecting Truncate for Full Load, you ensure that the deferred ETL process will also execute during the next full load.
Next, proceed to the section "Running Deferred ETL Processes".
There are two options for running a deferred ETL process:
See "Running Deferred Extract Tasks With a Nightly Execution Plan" for instructions.
See "Creating and Running a Separate Deferred Execution Plan" for instructions.
Note: The SQL used in this procedure appears in the Oracle format and needs to be modified for other platforms.
Follow this procedure to run deferred extract tasks along with a nightly execution plan.
This step adds the SDDE tasks to the collection of tasks required to populate the schema.
Note: Only tasks that have the task phase Post ETL Process will appear in this list.
When the execution plan is rebuilt, the deferred extract tasks will be ordered among the other tasks alongside their regular counterparts. For every regular-deferred task pair, there is no guarantee which one will be executed first. However, DAC ensures that the task that runs first truncates the table and drops indexes (if any are present) and the last task creates indexes and analyzes the table. If a second extract task fails and is restarted, the truncate command will not be issued. You should design the extract processes to load data without update strategies, but, preferably, with the bulk loader enabled.
You can also create a "Preceding action" and "Upon Failure Restart action" to perform clean up before the tasks run. For more information, see "Using a Task Action to Enable Failure Restarts When Extracting From Multiple Sources".
If you choose to run the deferred extract tasks in parallel, you can optionally create a task group for the tasks and enable the group level Truncate Always property. This will truncate the staging table before either of the deferred extract tasks starts.
Use a heuristics rule to stop DAC from running the deferred extract tasks after a specified period of time has elapsed. For detailed information about DAC heuristics, see "Using Heuristics to Manage Tasks, Tables and Indexes".
Note: The SQL used in this procedure appears in the Oracle format and needs to be modified for other platforms.
Name - Deferred ETL Heuristic
Heuristics - Count
Metric - Sum
Source Tables - All Types - With Overrides
This heuristics rule tells DAC to run the task only if the result of a heuristic SQL associated with the source tables yields a result of greater than zero.
- Select Static.
- Select SQL Syntax as the Function.
- Select @DAC_SOURCE_DBTYPE as the Connection Type.
- Enter the appropriate date and time to specify the period after which DAC should stop running the deferred extract tasks.
For example, if you enter Jan 1, 1960 12:00:00 AM, DAC will stop running the deferred extract task after historical data with the timestamp Jan 1, 1960 12:00:00 AM has been loaded.
Enter the following SQL statement:
The Choose SQL Override dialog is displayed.
Follow this procedure to create an execution plan specifically for the deferred extract tasks and run this execution plan separately.
You can also include the following:
For instructions on creating a subject area, see "Creating a Subject Area".
You must enable the Micro ETL property to track refresh dates separately for the deferred ETL execution plan. Because the deferred ETL execution plan shares the same source and target tables for the data sources, normal refresh dates would be impacted if the Micro ETL property is not enabled.
For instructions on creating and building a micro ETL execution plan, see "Building and Running Execution Plans".
This chapter provides information about customizing DAC objects for inclusion in ETL processes.
This chapter contains the following topics:
This chapter contains the following topics:
Note: You should be familiar with the information in "About Source System Containers" before considering best practices. |
The following behavior and best practices apply to containers:
The following behavior and best practices apply to tasks:
The commands can be the same. If the Command for Incremental Load field is left blank, no action occurs for this task while in incremental mode. If the Command for Full Load field is left blank, no action occurs for this task while in full mode.
You can use the task synchronize functionality to import data from Informatica. You can also manually assign the source or target tables.
The following best practices apply to task groups:
The following best practices apply to tables:
The following best practices apply to indexes:
The following best practices apply to columns:
The following best practices apply to configuration tags:
The following best practices apply to source system parameters:
The following best practices apply to subject areas:
The following best practices apply to execution plans:
Note: You cannot change the metadata for predefined containers. In order to customize the metadata in a predefined container, you must first make a copy of the container. For instructions, see "Creating or Copying a Source System Container". |
You can add tables, columns, and indexes to the data warehouse, and you can modify the existing objects. Customizing the data warehouse in this way requires using DAC and Informatica client tools.
Figure 7-1 shows the major steps required for adding a new object to the data warehouse or modifying existing objects. As shown in Figure 7-1, you can begin the customization process by adding or modifying the new data warehouse object in DAC and then using the DAC's schema creation and upgrade functionality to propagate the changes to the data warehouse. Alternatively, you can add or modify the object directly in the data warehouse database and then use the DAC's Import from Database command to add the new object in DAC.
As shown in Figure 7-1, there are two alternative process flows for adding a new object to the data warehouse. You can enter the table and column definitions in DAC and then use the DAC's schema creation and upgrade functionality to propagate the changes to the data warehouse database. For this method, follow the procedure, "To add new tables and columns to DAC and propagate changes to the data warehouse:".
Alternatively, you can add the new table and column definitions directly in the data warehouse database and then use the DAC's Import from Database command to add the new table and columns in DAC. For this method, follow the procedure, "To add a new table and columns using the DAC's Import command:".
To add new tables and columns to DAC and propagate changes to the data warehouse:
For a description of the fields in this tab, see "Tables Tab".
Note: For performance purposes, it is recommended that you do not enter more than 254 columns to a dimension or fact table. |
DAC provides several ways to create and upgrade data warehouse schemas. Carefully review Chapter 10, "Managing Data Warehouse Schemas," and select the method that best suits your requirements.
To add a new table and columns using the DAC's Import command:
Import the new table definition.
See "DAC Query Commands and Operators" for available filter commands and operators.
A message dialog indicates whether the process was successful.
The Changes column displays a description of column changes, which are explained below:
Change | Explanation |
---|---|
The object was added to the database. | The column is in the database but not the DAC repository. Importing it will add the column to the DAC repository. |
The object was added to the repository. | The column is in the DAC repository but not in the database. Importing it will delete it from the DAC repository. |
The object was modified. | The column definition in the database does not match the definition in the DAC repository. |
A message dialog indicates whether the process was successful.
Follow this procedure to add a new index to the data warehouse.
To add a new index to the data warehouse:
A message dialog indicates whether the process was successful.
This step requires using Informatica client tools to import new data warehouse objects into the Informatica repository. For instructions on this step of customizing the data warehouse, see the Informatica documentation.
The process of creating Informatica mappings and workflows for the data warehouse objects that you imported into the Informatica repository requires using Informatica client tools. For instructions on this process, see the Informatica documentation.
You need to perform this step for all new workflows you create in Informatica and for all workflows that you modify.
To create a task in the DAC for new or modified Informatica workflows:
Create a custom logical folder for the custom folder you created in the Informatica repository.
See "Task Physical Folder Instance Priority" for information about this property.
This command imports the source and target table definitions for a task from Informatica into the DAC repository.
For a description of the fields in this tab, see "Tasks Tab".
The new table is now ready to be associated with a subject area. For information about creating a subject area, see "Creating a Subject Area".
A task phase dependency enables you to dictate additional dependency hints for tasks that are completely unrelated to each other through source/target table relationships.
To set a task phase dependency:
Property | Description |
---|---|
Action | Possible values:
|
Grain | Possible values:
|
Scope | Specifies how the Block action of the phase dependency behaves in relation to multi-source execution plans. Possible values:
|
The task phase dependency is displayed in the Phase Dependency subtab.
The Generating Parameters... dialog lists the containers that are involved in this execution plan.
DAC automatically generates the parameters required for each copy of the source system container. Note that not all copies require all of the possible parameters.
Note: For the data source type of FlatFileConnection, make sure you have copied all files into the directory specified in the DAC system property InformaticaParameterFileLocation. |
DAC automatically organizes tasks into a dependency structure based on dependency rules. For information about the DAC's dependency rules, see "Execution Plan Build Process Rules".
DAC does not allow parallel reads and writes on the same table; therefore, DAC randomly assigns priorities to tasks that have the same properties. You can group tasks by using the Task Group feature to enforce a particular behavior.
The task group feature can be useful in the following situations:
To create a task group:
See "DAC Heuristics and Task Groups" for more information.
A configuration tag is an object that controls the inclusion of tasks in subject areas. When a task is tagged, it is not eligible to be included in the collection of tasks for a subject area. You can override this behavior by using the "Include Task" property in the subject area definition.
A configuration tag can function in one of the following ways:
If you assign a task to a configuration tag, the task will not be eligible to participate in any subject area. For instructions, see "To remove tasks from all subject areas:".
An autogenerated task is a task that the DAC automatically assigns to a subject area when the subject area is assembled.
For autogenerated tasks that were removed from participating in a subject area, you can set up the configuration tag to reassign a task to participate in specific subject areas. You do this by associating the configuration tag with the desired subject area. This method only applies to tasks that are autogenerated tasks of a subject area. For instructions, see "To reassign autogenerated tasks to a subject area:".
You can set up a configuration tag to add non-autogenerated tasks to a subject area. The non-autogenerated tasks will participate in the subject area along with the subject area's autogenerated tasks. For instructions, see "To add non-autogenerated tasks to a subject area:".
You can also set up a configuration tag so that only tasks that were assigned to the configuration tag participate in a specific subject area. In this case, the subject area's autogenerated tasks do not participate. For instructions, see "To assign only configuration tag tasks to a subject area (excludes the subject area's autogenerated tasks):"
To remove tasks from all subject areas:
The tasks appear in the right-hand window.
These tasks will not be eligible to participate in any subject area.
To reassign autogenerated tasks to a subject area:
Note: Only a subject area's autogenerated tasks will be reassigned. If non-autogenerated tasks appear in the list, the DAC will ignore them. |
To add non-autogenerated tasks to a subject area:
To assign only configuration tag tasks to a subject area (excludes the subject area's autogenerated tasks):
Note: The autogenerated tasks for this subject area will be excluded. |
The Actions feature enables you to define and run SQL scripts to carry out various actions in relation to indexes, tables, and tasks.
For example, you can define an index action to create indexes for tasks with the commands defined for full loads, or incremental loads, or both types, or you can define an action to drop indexes at a certain time on specific tables. Index actions override all other index properties.
For example, you can define a table action to truncate tables with the commands defined for full loads, or incremental loads, or both. Table actions override all other table properties.
You can also use the Actions Template feature to:
This chapter contains the following topics:
The first step in the process of creating an action is to define the SQL script for the action. After completing this procedure, proceed to "Assigning an Action to a Repository Object".
To define a SQL statement for an action:
The Actions dialog is displayed.
The Value dialog is displayed.
You can reorder the entries in the tree by dragging and dropping them.
Field | Description |
---|---|
Name | Logical name for the SQL block. |
Type | SQL or Stored procedure |
Database Connection Type | Should be used only for SQL types (not stored procedures). Defines which database the SQL statement will run against. Possible values are: Source - SQL runs against the source connection defined for the task. Target - SQL runs against the source connection defined for the task. Both - SQL runs against both the source and target connection. Table Connection - SQL runs against the table-specific connection if a separate table connection is available. |
Table Type | Specifies the table type against which the SQL will run. Possible values are: All Source - SQL runs against all source tables defined for the task. All Target - SQL runs against all target tables defined for the task. Source Lookup - SQL runs against all the source lookup tables defined for the task. Source Primary - SQL runs against all the source primary tables defined for the task. Source Auxiliary - SQL runs against all the source auxiliary tables defined for the task. |
Continue on Fail | Specifies whether an execution should proceed if a given SQL block fails. |
Retries | Specifies how many retries are allowed. If the number is not positive, a default number of one (1) will be used. |
Valid Database Platforms | Specifies the valid database platforms against which the SQL will run. If this field is left empty, the SQL can be run against any database. |
The SQL Statement tab to the left of the text box lists all the supported SQL functions and DAC source system parameters that you can use in constructing custom SQLs. Double-click a function or source system parameter to move it into the text box.
For a description of the available functions, see "Functions for Use with Actions".
The source systems parameters list contains the names of all source system parameters defined in the DAC repository, with the prefix @DAC_. During runtime, the DAC Server resolves the source system parameter and replaces its name with the runtime value.
For an example of how to use a source system parameter in a SQL statement, see "Using a DAC Source System Parameter in an Action".
Note: You can add multiple SQL statements and stored procedures to a single action. |
Follow this procedure to assign an action to a DAC repository object. Before you do this procedure, you must have defined a SQL script for an action. For instructions, see "Defining a SQL Script for an Action".
To assign an action to a repository object:
For a description of the available Action Types, see the following: "Indices Tab: Actions Subtab", "Tables Tab: Actions Subtab", and "Tasks Tab: Actions Subtab".
Full - To assign the action to a full load command.
Incremental - To assign the action to an incremental load command.
Both - To assign the action to both full and incremental load commands.
This section includes a list of functions that are available for Index, Table and Task actions.
Table 7-1 Functions for Index Actions
Function | Description |
---|---|
getAdditionalColumns() | Returns a comma separated list of included index columns. This function is related to the #Unique Columns index property. For DB2 and DB2-390 databases, the list may include a combination of unique and included columns. |
getAnalyzeStatement() | Returns the default DAC index analyze statement (for this particular index). |
getAnalyzeTableStatement() | Returns the default DAC table analyze statement (for the parent table). |
getBitMapString | Resolves to the string |
getClusteredString | Resolves to the string |
getCreateIndexStatement() | Returns the default DAC index creation statement. |
getDBType() | Returns the physical data source connection type (Oracle OCI8, Oracle Thin, DB2, DB2-390, MSSQL, Teradata, or BI Server). |
getDropIndexStatement() | Returns the default DAC index drop statement. |
getHashString() | Resolves to the string |
getImageSuffix() | Resolves to the table image suffix if one is specified. Otherwise, the string is empty. |
getIndexColumns() | Returns a comma separated list of index columns. |
getIndexName() | Returns the index name. |
getIndexTableSpace() | Resolves to the index space name if one exists. Otherwise, the string is empty. |
getNamedSource() | Returns the DAC physical connection name. |
getRvrsScanString() | Resolves to the string |
getTableName() | Returns the table name. |
getTableOwner() | Returns the table owner name. |
getTableSpace() | Returns the table space name if one exists. Otherwise, the string is empty. |
getTruncateTableStatement() | Returns the default DAC table truncate statement. |
getUniqueColumns() | Returns a comma separated list of unique index columns. This function is a counterpart of the getAdditionalColumns() function. |
getUniqueString() | Resolves to the string |
Table 7-2 Functions for Table Actions
Function | Description |
---|---|
getAnalyzeTableStatement() | Returns the default DAC table Analyze statement. |
getDBType() | Returns the physical data source connection type (Oracle OCI8, Oracle Thin, DB2, DB2-390, MSSQL, Teradata or BI Server). |
getImageSuffix() | Returns the table image suffix if one exists. Otherwise, the string is empty. |
getCreateIndexStatement() | Returns the default DAC index creation statement. |
getNamedSource() | Returns the DAC physical connection name. |
getDropIndexStatement() | Returns the default DAC index drop statement. |
getTableName() | Returns the table name. |
getTableOwnerName() | Returns the table owner. |
getTableSpace() | Returns the table space name if one exists. Otherwise, the string is empty. |
getTruncateTableStatement() | Returns the default DAC table truncate statement. |
Table 7-3 Functions for Task Actions
Function | Description |
---|---|
getAnalyzeTableStatement() | Returns the default DAC analyze table statement. |
getDBType() | Returns the physical data source connection type (Oracle OCI8, Oracle Thin, DB2, DB2-390, MSSQL, Teradata, or BI Server). |
getImageSuffix() | Returns the table image suffix if one exists. Otherwise, the string is empty. |
getNamedSource() | Returns the physical connection name in DAC. |
getTableName() | Returns the table name. |
getTableOwner() | Returns the table owner. |
getTableSpace() | Returns the table space name if one exists. Otherwise, the string is empty. |
getTruncateTableStatement() | Returns the default DAC truncate table statement. |
Note: Table-related task action functions should be used only for SQL blocks with a specified table type. For these blocks, DAC will loop through the tables of the type you specify and execute custom SQL for each table. Functions will be substituted with table-specific values for each iteration. For example, if you wanted to gather statistics in a particular way after creating specific indexes, you would need to create index actions with two SQL blocks: getCreateIndexStatement() begin DBMS_STATS.GATHER_INDEX_STATS(ownname => '@TABLEOWNER', indname => 'getIndexName()', estimate_percent => 50); end; |
The following example illustrates how to use a source system parameter in defining an action.
Assume there is a source system parameter called COUNTRY (note that source system parameter names are case sensitive). And, you use this parameter in an action using the following SQL statement:
DELETE FROM TABLE1 WHERE COUNRY_NAME='@DAC_COUNTRY'
Assume that during the ETL process, COUNTRY
gets resolved to Canada. The resulting SQL that is executed by the DAC Server would be the following:
DELETE FROM TABLE1 WHERE COUNTRY_NAME='Canada'
Typically, the extract tasks truncate the table, and, therefore, will not have update strategies. To enable failure restarts when extracting from multiple sources, create an action that will predelete all the records that are loaded from the source. For example, you can create a task action for predeleting records called "Predelete Staging Data" using the following SQL in the action definition. This example assumes the data from that source is always loaded with a certain data source number and is defined as a parameter in DAC called $$DATASOURCE_NUM_ID.
Associate this action for all the extract tasks from all the sources using the action types "Preceding Action" and "Upon Failure Restart Action." This will ensure that the task will, if restarted from failure, always predelete the records pertinent to that data source before running the command. You can also mass associate such actions to all extract tasks using the right-click command Add Actions.
You can map multiple, database-specific Informatica workflows to the same DAC task by parameterizing the Informatica workflow command. At runtime, DAC determines which workflow to run based on the parameterization.
This procedure uses SIL_PersonDimension_Full as an example of a full command and SIL_PersonDimension as an example of an incremental command on an Oracle database and SIL_PersonDimension_Full_TD and SIL_PersonDimension_TD as full and incremental commands, respectively, on a Teradata database.
To map multiple database-specific Informatica workflows to the same DAC task:
For example, enter SIL_PersonDimension_Full in the Oracle field and SIL_PersonDimension_Full_TD in the Teradata field.
For example, enter SIL_PersonDimension in the Oracle field and SIL_PersonDimension_TD in the Teradata field.
This chapter explains how parameters are used in DAC as well as instructions for defining and managing parameters.
This chapter contains the following topics:
This section contains the following topics:
In an ETL process, a parameter represents an attribute that is not hard coded or sourced from the transactional system. Parameters provide flexibility so that you can adapt ETL processes to fit your business requirements.
The following examples illustrate a few of the ways you can use parameters in ETL processes:
You can define static or runtime parameters in the DAC repository (using the DAC Client) to apply to source systems, tasks, or execution plans. You can also define parameters whose values come from outside of DAC, such as from external relational sources that DAC accesses through SQL interfaces, or from external technology stacks that DAC accesses through a Java API interface.
In addition, some parameters used by Oracle BI Applications are defined by the user in the Oracle BI Applications Configuration Manager. See Oracle Fusion Middleware Configuration Guide for Oracle Business Intelligence Applications for information about the parameters that are defined in the Configuration Manager. Also, depending on your environment, some predefined parameters used by Oracle BI Applications may be held in flat files named parameterfileDW.txt and parameterfileOLTP.txt, which are stored in the directory <Domain_Home>\dac\Informatica\parameters\input. Oracle recommends that you do not modify these parameter flat files. Instead, if you need to customize the value of the parameters, you can define new parameters in the DAC repository.
During an ETL execution, DAC reads and evaluates all parameters associated with that ETL run, including static and runtime parameters defined in DAC, parameters held in flat files, and parameters defined externally to DAC. DAC consolidates all the parameters for the ETL run, deduplicates any redundant parameters, and then creates an individual parameter file for each Informatica session. This file contains the evaluated name-value pairs for all parameters, both static and runtime, for each workflow that DAC executes. The parameter file contains a section for each session under a workflow. DAC determines the sessions under a workflow during runtime by using the Informatica pmrep function ListObjectDependencies.
The naming convention for the parameter file is
<Informatica foldername>.<workflow instance name>.<primary source name>.<primary target name>.txt
DAC writes this file to a location specified in the DAC system property InformaticaParameterFileLocation. The location specified by the property InformaticaParameterFileLocation must be the same as the location specified by the Informatica parameter property $PMSourcefileDir.
Note: Informatica Services must be configured to read parameter files from the location specified in the DAC system property InformaticaParameterFileLocation. You must set the Informatica parameter $PMSourceFileDir (accessible from Informatica Administrator) to match the location specified in InformaticaParameterFileLocation. |
DAC supports the following types of parameters:
Global external parameters are defined in an external technology stack outside of DAC, such as a relational database that has a thin client implementation. This type of parameter enables non-DAC users to define parameters for use in ETL processes. DAC consumes global external parameters through either a SQL interface or an external Java implementation.
You can define global external parameters that apply to 1) all tasks in all source system containers; 2) all tasks reading from a data source; or 3) specific tasks reading from a data source.
Global external parameters return name-value pairs of Text or Timestamp data types from source or target databases.
You can view existing global external parameters and define new ones in the Global External Parameters dialog, which is accessible on the Tools menu, by selecting Seed Data and then External Parameters. For instructions on defining global external parameters, see "Defining a Global External Parameter".
Java interfaces related to global external parameters are defined in dac-external-parameters.jar, which is stored in the Oracle_Home\dac\lib directory. Javadocs provide information about the interfaces and methods, and are located in the <Oracle_Home>\dac\documentation\External_Parameters\Javadocs directory.
Source system parameters apply to all tasks in a source system container. You can view existing source system parameters and define new ones in the Source System Parameters tab in the Design view.
Task parameters apply to one particular task in a source system container. You can view existing task parameters and define new ones in the Parameters subtab of the Task tab in the Design view.
Execution plan parameters apply to all tasks associated with a particular execution plan. You can view existing execution plan parameters and define new ones in the Execution Parameters subtab of the Execution Plans tab in the Execute view.
DAC evaluates the hierarchy of precedence for parameters as follows:
For example, if the same parameter is registered as a source system parameter and as a task parameter, DAC will evaluate the value of the task parameter. Similarly, if the same parameter is registered as a source system parameter and as a global external parameter, DAC will evaluate the value of the source system parameter.
Parameters can have one of the following data types:
Text
Applies to source system and task parameters. The value for the parameter is defined as text. You can use the Text data type for both static and runtime parameters.
For instructions on defining a parameter using the Text data type, see "Defining a Text Type Parameter".
DB Specific Text
Applies to source system and task parameters. The value for the parameter is defined as database-specific text. This parameter should be used only if you have a heterogeneous database environment and the parameter value needs to be different for the different database types. DAC evaluates the text string based on the source or target database type. If you do not specify database-specific text, DAC returns the default value.
For instructions on defining a parameter using the DB Specific Text data type, see "Defining a Database-Specific Text Type Parameter".
Timestamp
Applies to source system and task parameters. The value for the parameter is defined as a timestamp. You can use the Timestamp data type for both static and runtime parameters. A static timestamp can be any time that is constant. A runtime timestamp parameter is a variable for which the value is supplied by DAC at runtime. You can define the timestamp in one of multiple formats or define a custom format. You can also use SQL to fetch any value that can be fired against the specified logical database connection. DAC executes the SQL against a data source that maps to the specified logical connection and then formats the resulting value in the specified format. A SQL statement specified for a given timestamp parameter can include nested DAC parameters. For information about nested parameters, see "Nesting Parameters within Other Parameters".
For instructions on defining a parameter using the Timestamp data type, see "Defining a Timestamp Type Parameter".
SQL
Applies to source system and task parameters. DAC retrieves the value for the parameter from a database using user-defined SQL.
For instructions on defining a parameter using the SQL data type, see "Defining a SQL Type Parameter".
JavaScript
Applies to source system and task parameters. DAC fetches the value for the parameter using user-defined JavaScript.
For instructions on defining a parameter using the JavaScript data type, see "Defining a JavaScript Type Parameter".
Multi-Parameter Text
Applies to source system and task parameters. The value for the parameter is defined as name-value pair strings using user-defined SQL.
For instructions on defining a parameter using the Multi-Parameter Text data type, see "Defining a Multi-Parameter Type Parameter".
Multi-Parameter Timestamp
Applies to source system and task parameters. The value for the parameter is defined as timestamps in name-value pairs using user-defined SQL.
For instructions on defining a parameter using the Multi-Parameter Timestamp data type, see "Defining a Multi-Parameter Type Parameter".
External-Parameter Text
Applies to source system parameters only. The value for the parameter is defined using a parameter producer Java API. The External-Parameter Text data type enables you to create a library and classes to implement the DACTextParameterProducer interface.
For instructions on defining a parameter using the External-Parameter Text data type, see "Defining an External Type Parameter".
External-Parameter Timestamp
Applies to source system parameters only. The value for the parameter is defined using a parameter producer Java interface. The External-Parameter Timestamp data type enables you to create a library and classes to implement the DACTimestampParameterProducer interface.
For instructions on defining a parameter using the External-Parameter Timestamp data type, see "Defining an External Type Parameter".
Global Multi-Parameter Text or Timestamp
Applies to global parameters only. The value for the parameter is defined as name-value pairs using user-defined SQL.
For instructions on defining a global parameter, see "Defining a Global External Parameter".
Source system and task parameters that have either a Text or Timestamp data type can be specified as either static or runtime. The values of static parameters are user defined and are not necessarily constant for all ETL processes. For example, static parameter values can be the result of a SQL query or the evaluation of a JavaScript. The values for runtime parameters are provided by DAC and pertain to runtime data. Such values are used in the ETL logic but cannot be predicted, such as process ID, last refresh timestamp, ETL start timestamp, and so on.
Oracle BI Applications uses predefined parameters for Informatica tasks. The parameters are specific to Informatica sessions. Some of the predefined parameters are held in text files named parameterfileDW.txt and parameterfileOLTP.txt, which are stored in the directory <Domain_Home>\dac\Informatica\parameters\input. Other predefined parameters are held in DAC. The parameters held in DAC are specific to the different source system containers.
Oracle recommends that you do not modify the parameter text files. Instead, if you need to customize the value of the parameters, you can define parameters in the DAC repository at either the source system level or the task level.
You can nest any parameter definition within another parameter definition. For example, you could nest a runtime text parameter that returns the current run ID within a where clause of a SQL parameter, or you could use database specific text inside another parameter of the text or SQL data types. Parameters that are nested within other parameters must use the prefix @DAC_.
Below is an example of a text parameter that returns the current run ID placed in a where clause of a SQL parameter.
SELECT VALUE FROM PARAM_TEST
WHERE ROW_ID=`@DAC_p1'
Note: Avoid circular nesting, such as parameter A nested within parameter B, which is nested within parameter A. In such situations, DAC randomly picks one of the parameters in the circle and evaluates it as an empty string. |
The Load Type property enables you to define parameter values that are specific to the type of load the ETL process is carrying out, that is, a full load or an incremental load. This property can be useful for performance tuning. Note that this property does not apply to global external parameters.
DAC contains predefined variables that act as a mechanism to allow parameters to access various ETL-specific and task-specific information. These variables are available when you define a runtime parameter of the Text and Timestamp data types. When you define a runtime parameter and select a DAC variable, the variable gets wrapped inside the parameter and returns the information specified by the variable.
DAC Variables for the Text Data Type
The following variables are available when you define a runtime parameter of the Text data type.
DAC Variables for the Timestamp Data Type
The following variables are available when you define a runtime parameter of the Timestamp data type.
This section provides instructions for defining parameters based on the data type.
Follow this procedure to define a parameter using the Text data type. This procedure applies to parameters defined at both the source system and task levels.
To define a Text data type parameter:
Note: You can inactivate the parameter by selecting the Inactive check box.
Follow this procedure to define a parameter using the DB Specific Text data type. This procedure applies to parameters defined at both the source system and task levels.
To define a database-specific text data type parameter:
Note: You can inactivate the parameter by selecting the Inactive check box.
Follow this procedure to define a parameter using the Timestamp data type. This procedure applies to parameters defined at both the source system and task levels.
To define a Timestamp data type parameter:
If you select SQL Syntax or SQL Syntax (Date Only), select a Connection Type.
Note: You can inactivate the parameter by selecting the Inactive check box.
Follow this procedure to define a parameter using the SQL data type. This procedure applies to parameters defined at both the source system and task levels.
To define a SQL data type parameter:
Note: You can inactivate the parameter by selecting the Inactive check box.
The External parameter data types enable you to define parameters using Java APIs to retrieve text or timestamp values from a source or target database. You implement the parameter producer interfaces by creating libraries and classes. During an ETL process, parameters received from the API are added to the DAC metadata.
Note: Producer code examples are available in the DAC\documentation\public directory.
The External-Parameter Text data type uses the DACTextParameterProducer interface to return string values. The interface maps data source number IDs, database types, JDBC connections, and initialization parameters.
The DACTextParameterProducer interface is as follows:
Note: DAC forces DACTextParameterProducer to implement the finalize method.
Follow this procedure to define an External-Parameter Text data type parameter.
Note: Producer code examples are available in the DAC\documentation\public directory.
To define an External-Parameter Text data type parameter:
In this procedure, "abc.paramproducer.jar" is used as an example for the archive name.
For example, the set DACLIB entry would look similar to the following after adding the archive named abc.paramproducer.jar:
For example, the export DACLIB entry would look similar to the following after adding the archive named abc.paramproducer.jar:
- Full indicates the parameter will apply to tasks that are mapped to full load workflows.
- Incremental indicates the parameter will apply to tasks that are mapped to incremental load workflows.
- Both indicates the parameter will apply to tasks that are mapped to both full and incremental load workflows.
Note: You can inactivate the parameter by selecting the Inactive check box.
The External-Parameter Timestamp data type uses the DACTimestampParameterProducer interface to return timestamp values. DAC formats the timestamp during the ETL process according to your specifications.
The DACTimestampParameterProducer interface is as follows:
Note: DAC forces DACTimestampParameterProducer to implement the finalize method.
Follow this procedure to define an External-Parameter Timestamp type parameter.
Note: Producer code examples are available in the DAC\documentation\public directory.
To define an External-Parameter Timestamp data type parameter:
In this procedure, "abc.paramproducer.jar" is used as an example for the archive name.
For example, the set DACLIB entry would look similar to the following after adding the archive named abc.paramproducer.jar:
For example, the export DACLIB entry would look similar to the following after adding the archive named abc.paramproducer.jar:
- Full indicates the parameter will apply to tasks that are mapped to full load workflows.
- Incremental indicates the parameter will apply to tasks that are mapped to incremental load workflows.
- Both indicates the parameter will apply to tasks that are mapped to both full and incremental load workflows.
Note: You can inactivate the parameter by selecting the Inactive check box.
The Multi-Parameter data types enable you to define parameters that return string or timestamp values as name-value pairs.
This procedure applies to parameters defined at both the source system and task levels.
To define a Multi-Parameter Text or Timestamp data type parameter:
Note: You can inactivate the parameter by selecting the Inactive check box.
Follow this procedure to define a parameter using the JavaScript data type. This procedure applies to parameters defined at both the source system and task levels.
To define a JavaScript data type parameter:
Note: You can inactivate the parameter by selecting the Inactive check box.
The Global External Multi-Parameter data types enable you to define parameters that return string or timestamp values as name-value pairs.
To define a parameter using the Global Multi-Parameter Text data type:
The Global External Parameters dialog is displayed.
This chapter provides information about working with subject areas.
A subject area is a logical grouping of tables related to a particular subject or application context. A subject area includes the tasks that are associated with the tables, as well as the tasks required to load the tables.
Oracle BI Applications provides predefined subject areas. You can change these predefined subject areas or create new subject areas to correspond to your particular business processes.
Note: To change a predefined subject area or to create a new subject area, you must first make a copy of an existing source system container or create a new container. For instructions, see "Creating or Copying a Source System Container". |
This chapter contains the following topics:
In designing a subject area, you should consider the following questions:
Previewing Subject Areas
You can preview a subject area to determine whether it contains the appropriate tables and tasks to suit your business needs. When you assign a fact table to a subject area, the fact table's related tables are automatically assigned to the subject area. If you determine you do not need one or more of the related tables, you can remove the tables during the subject area Assembly process. You can also add individual tables and tasks.
To preview a subject area, follow the procedure "Creating a Subject Area" through the assembly and review stages, but do not complete the process (by clicking Accept in the Subject Area Assembly dialog) unless the subject area is suitable for your needs.
You define a subject area by specifying a fact table or set of fact tables to be the central table or tables in the subject area. When a subject area is defined, DAC performs the following process to determine the relevant tasks:
Tasks that DAC automatically assigns to a subject area are indicated with the Autogenerated flag (in the Tasks subtab of the Subject Areas tab).
You can inactivate a task from participating in a subject area by selecting the Inactive check box (in the Tasks subtab of the Subject Areas tab). When the Inactive check box is selected, the task remains inactive even if you reassemble the subject area.
You can also remove a task from a subject area using the Add/Remove command in the Tasks subtab of the subject Areas tab, but when you remove a task it is only removed from the subject area until you reassemble the subject area.
DAC performs this process recursively until all necessary tasks have been added to the subject area. A task is added to the subject area only once, even if it is associated with several tables in the subject area. DAC then expands or trims the total number of tasks based on the configuration rules, which are defined as configuration tags. This process can be resource intensive because DAC loads all of the objects in the source system container into memory before parsing.
When you create a new subject area, you assign one or more fact tables to the subject area. DAC then determines which dimension and other related tables are required as well as the tasks and their order of execution.
To create a new subject area:
The Choose Tables dialog is displayed. The left-hand window lists all the tables held in the selected container.
The tables are added to the right-hand window, which represents the subject area.
If you select the option All Records in the List, DAC will assemble all the subject areas listed in the top pane.
DAC assembles the selected subject area by determining what dimensions and other related tables are required.
The Subject Area Assembly dialog is displayed. The tree view on the left side shows the fact tables that belong to the subject area. You can expand the fact table node to view its related tables.
If configuration tags have been assigned to any of the tasks, an information message will appear.
A list of tasks is displayed in the Task List tab on the right side of the window. Also, the Table List tab displays the tables included in the subject area.
The Task List tab displays the new set of tasks required to load the pruned subject area.
The Task Difference Report tab displays the tasks that were added and the tasks that were deleted during the last assembly process.
The Table List tab displays the tables that are included in the pruned subject area as well as the tables that were excluded during the pruning process.
Tasks that are automatically assigned to the subject area by DAC are indicated with the Autogenerated check mark.
You can inactivate a task from participating in the subject area by selecting the Inactive check box. When the Inactive check box is selected, the task remains inactive even if you reassemble the subject area.
You can also remove a task from the subject area using the Add/Remove command, but when you remove a task it is only removed from the subject area until you reassemble the subject area.
You can modify an existing subject area by doing any of the of the following steps:
After you modify an existing subject area, you need to reassemble it (by selecting it and clicking Assemble in the Subject Areas tab). This action opens the Subject Area Assembly dialog, where you can calculate the new task list and view the tasks that were added and removed in the Task Difference Report tab.
After the first assembly of a subject area, you will need to reassemble the subject area in the following situations:
Note: You do not need to reassemble a subject area if an attribute of a task changes but the task is already associated with a subject area.
This chapter provides information about managing data warehouse schemas. DAC enables you to manage data warehouse schemas by creating, upgrading, and dropping data warehouse tables.
This chapter contains the following topics:
This section contains instructions for creating, upgrading, or dropping data warehouse tables when the Oracle Business Analytics Warehouse is on a database type of Oracle, Oracle TimesTen, SQL Server, DB2, or Teradata.
This section contains instructions for creating, upgrading, or dropping data warehouse tables when the Oracle Business Analytics Warehouse is on a DB2-390 database.
Caution: Before you make any changes to the data warehouse schema in a production environment, you should first test the changes in a non-production environment. |
DAC provides several methods for managing data warehouse schemas.
Note: You can only upgrade tables if the Warehouse check box in the Tables tab of the Design view is selected. |
You can also parameterize default values for table columns before you create or upgrade the schema. For more information, see "Parameterizing Default Values for Table Columns".
In addition, customizing the schema creation and upgrade process is possible for advanced DAC users. See "Advanced Usage of the Schema Creation and Upgrade Process" for more information about customization options.
Note: Before you perform the procedures in this section, make sure you have done the following:
This procedure uses the Data Warehouse Configuration Wizard to create, upgrade, or drop all tables in the schema. You can also follow this procedure to create delete triggers on a transactional database for Siebel sources.
Note: This procedure applies to all database types except DB2-390. For instructions on managing schemas for DB2-390 databases, see "Managing Data Warehouse Schemas for DB2-390 Databases".
To create, upgrade or drop the data warehouse schema:
Note: If the target database type is TimesTen, the tables must have the In Memory check box selected in the Tables tab to create, upgrade or drop the tables in the data warehouse.
Note: If you select the option to upgrade the data warehouse schema, the SQL scripts that DAC generates depend on what data warehouse objects need to be upgraded. See "About the Upgrade Schema SQL Scripts" for more information.
The Data Warehouse tab is active.
Field | Description |
---|---|
Container | The name of the source system containers for which you want to create, upgrade or drop the data warehouse tables. Separate multiple names with commas. If you leave this field blank, DAC performs the action specified for all source system containers. If there are tables that are common to multiple containers, then only one table will be created. If columns are different for the same table across containers, DAC will create a table that has all the columns in the same table. When you specify a container name, you must enter the name exactly as it appears in the container drop-down list. |
Is Unicode | Select this check box if you need a Unicode data warehouse. Note: The database must be set to support the creation of a Unicode schema. |
Execute | Select this option of you want DAC to execute the SQL script automatically after it is generated. If you do not select this option, you can manually execute the script at a later time. DAC stores the SQL scripts in <Domain_Home>\dac\conf\sqlgen\sql\<database type>. Note: If you are upgrading the data warehouse schema, depending on what objects need to be updated, DAC may generate a SQL script named upgrade-questionable.sql. DAC will not automatically execute this script. You must execute it manually after you have reviewed and corrected it as necessary. For more information about the upgrade scripts, see "About the Upgrade Schema SQL Scripts". |
Physical Data Source | Select the appropriate target data source. |
Change default parameter file | The default location for the default_parameter.properties file is displayed. This file stores parameter names and values for the parameterization of default values for not null table columns. You can select a different properties file by clicking Change default parameter file, and navigating to the appropriate file. See "Parameterizing Default Values for Table Columns" for more information. |
The Run Status tab displays information about the process, as follows:
<Domain_Home>\dac\log\config\generate_ctl.log - A log of the schema definition process, including details of any conflicts between containers.
<Domain_Home>\dac\log\config\createtables.log - A log of the DDL Import Utility process.
Note: This procedure applies to all database types except DB2-390. For instructions on managing schemas for DB2-390 databases, see "Managing Data Warehouse Schemas for DB2-390 Databases".
To create, upgrade or drop subsets of tables, you use the Generate DW Table Scripts right-click menu command to generate SQL scripts.
Note: You can only upgrade tables if the Warehouse check box in the Tables tab of the Design view is selected. |
You can access the right-click menu command from the tabs described in Table 10-1, depending on the context for the schema update:
Table 10-1 How to Access the Generate DW Table Scripts Right-Click Menu Command
Tab | Purpose |
---|---|
Tables tab (Design view) | Use when you have one or several tables to update in the schema. |
Task Source Tables (RO) and Task Target Tables (RO) subtabs of Subject Areas tab (Design view) | Use when you are working with a subject area and need to update a subset of tables. |
Applied Patches tab (Setup view) | Use when you have applied a patch to the DAC repository and need to update the data warehouse schema. |
To create, upgrade or drop subsets of tables:
Note: If the target database type is TimesTen, the tables must have the In Memory check box selected in the Tables tab to create, upgrade or drop the tables in the data warehouse.
Field | Description |
---|---|
Create New | Select this option to generate a SQL script to create new data warehouse tables. |
Upgrade Existing | Select this option to generate a SQL script to upgrade existing data warehouse tables. Note: Depending on what objects need to be updated, DAC may generate a SQL script named upgrade-questionable.sql. DAC will not automatically execute this script. You must execute it manually after you have reviewed and corrected it as necessary. For more information about the upgrade scripts, see "About the Upgrade Schema SQL Scripts". |
Drop Tables | Select this option to generate a SQL script to drop tables from the data warehouse schema. |
Unicode | Select this check box if you need a Unicode data warehouse. Note: The database must be set to support the creation of a Unicode schema. |
Execute | Select this option of you want DAC to execute the SQL script automatically after it is generated. If you do not select this option, you can manually execute the script at a later time. DAC stores the SQL scripts in <Domain_Home>\dac\conf\sqlgen\sql\<database type>. |
Physical Data Source | Select the appropriate target data source. Note: If you are creating new data warehouse tables, and you did not select the Execute check box, you do not have to specify a physical data source. |
Change default parameter file | The default location for the default_parameter.properties file is displayed. This file stores parameter names and values for the parameterization of default values for not null table columns. You can select a different properties file by clicking Change default parameter file, and navigating to the appropriate file. See "Parameterizing Default Values for Table Columns" for more information. |
The Run Status tab displays information about the process, as follows:
<Domain_Home>\dac\log\config\generate_ctl.log - A log of the schema definition process, including details of any conflicts between containers.
<Domain_Home>\dac\log\config\createtables.log - A log of the DDL Import Utility process.
If you are an advanced DAC user, you can customize the schema creation and upgrade process. This section provides information you need to know before customizing the SQL scripts.
This section contains the following topics:
When you use DAC to create a new data warehouse schema, DAC generates the create.sql file. This file contains SQL syntax for creating a schema for the source system container you are working with.
After the create.sql file is generated, DAC saves it in the <Domain_Home>\dac\conf\sqlgen\sql\<database type> directory. During the schema creation process, you can choose whether to execute this script upon generation or save the script to execute at a later time.
When you use DAC to upgrade the data warehouse schema, DAC generates one or both of the following SQL scripts, depending on what data warehouse objects need to be upgraded.
DAC generates the upgrade-regular.sql file when it determines the following data warehouse schema modifications are needed:
DAC saves the upgrade-regular.sql script in the <Domain_Home>\dac\conf\sqlgen\sql\<database type> directory. During the schema upgrade process, you can choose whether to execute this script upon generation, or save the script to execute at a later time.
DAC generates the upgrade-questionable.sql file when it determines the following data warehouse modifications are needed.
Because of the nature of these changes, the SQL scripts may fail when executed. Therefore, a DBA must review the upgrade-questionable.sql file before it is executed, and make any necessary corrections to the SQL statements. DAC saves this file in the directory <Domain_Home>\dac\conf\sqlgen\sql\<database type> directory. You cannot choose to have this script executed upon generation. You must execute it manually after it has been reviewed and corrected as necessary.
This section provides information about the most important schema characteristics specific to DAC that you need to consider.
Data types are specified as part of the column definition. The following data types are supported:
For additional information about data types specific to TimesTen databases, see "TimesTen Data Types".
A column can have a NULL value if, in DAC, the Nullable check box is selected in the Columns subtab of the Tables tab. If the Nullable check box is not selected, the column is declared NOT NULL. NOT NULL columns must contain a value. If a NOT NULL column does not have an explicit value, it will get the default value if one is specified in the Default Value field in the Columns subtab. If a NOT NULL column does not have an explicit value and a default value is not specified, then it will get the value specified in the defaults.properties file only when this column is an existing column that is being upgraded.
For the upgrade process, the defaults.properties file enables you to specify missing default values for data warehouse tables with NOT NULL columns for which default values are not specified in DAC. This file also specifies the equivalents of CURRENT TIMESTAMP based on database type. This file is located in the <DAC_Config_Location>\CustomSQLs\Schema_Templates directory.
In the defaults.properties file, the default values specified are grouped by database type. The entries for the Oracle database type look similar to the following:
For the default values you enter in DAC, you need to enclose in single quotes the values for CHAR, VARCHAR, DATE, and TIMESTAMP data types.
In DAC, the column order is specified in the Position field of the Columns subtab in the Tables tab. Each column must have a unique position, and the column position specified in DAC must match the column position specified in the Informatica repository.
When generating SQL scripts to create or upgrade the schema, you can indicate in DAC whether the schema should be created as Unicode. When you create a schema as Unicode, you can still define specific table columns as non-Unicode in DAC by going to the Columns subtab in the Tables tab.
Indexes are not created during the schema creation process. Indexes are created at runtime during the first full load.
Errors should be handled using an iterative process. Figure 10-1 illustrates the general process for handling errors during the schema creation and upgrade processes. The first step is to generate the SQL scripts for creating or upgrading the data warehouse schema. Next, you can review the SQL scripts before executing and also review the SQL generation log file, which is located in the directory <Domain_Home>\dac\log\config. You then execute the scripts, and check the SQL execution log file for errors. This file is located in the directory <Domain_Home>\dac\log\config.
If errors occurred during the script execution, you need to interpret the error messages and determine the best way to alter the metadata in DAC. Once you have made the necessary changes to the metadata, you can then re-execute the scripts, check the log files, and make any additional changes to the metadata. You need to repeat this process until no errors appear in the execution log file.
If your environment uses multiple source system containers, when you upgrade the schema, the upgrade-questionable.sql file will log discrepancies among the containers, such as discrepancies with data types. The process of finding errors will be iterative. You can execute the scripts, review them to find errors, and fix the errors before executing the scripts.
For the upgrade scripts to execute successfully, the containers must be synchronized. If you have made changes in one container, you need to replicate the changes in the other containers. You can do so by referencing the new or changed object or by recreating the new or changed object across all containers. For information about how to reference repository objects, see "About Object Ownership in DAC".
The schema creation and upgrade processes are controlled by XML templates, which contain database-dependent SQL syntax that specifies how data warehouse objects are created or upgraded.
This section includes the following topics:
There are two XML templates that control the schema creation process: createschema_template_designation.xml and createschema_<database type>.xml.
When you create the data warehouse schema, you can use the default settings in these XML templates or you can customize them to suit your needs. If you use the default settings, you do not need to change any information in the files before following the procedure "Creating, Upgrading or Dropping Subsets of Tables in the Schema".
The XML templates are located in the directory <DAC_Config_Location>\CustomSQLs\Schema_Templates directory.
The createschema_template_designation.xml file designates which schema creation template or templates will be used to create the data warehouse schema. By default, the preconfigured createschema_<database type>.xml file is designated as the template for creating all data warehouse tables. If necessary, you can modify the createschema_<database type>.xml file or you can create your own schema creation templates in XML format.
The createschema_template_designation.xml file enables you to specify schema creation templates to do the following:
The XML example below shows the structure of the createschema_template_designation.xml file. The tag <ORACLE>
indicates this block of XML applies to the Oracle database type. The XML elements available for customizing are TABLE_NAMES
, TABLE_TYPES
, and ALL_OTHER_TABLES
. Templates specified in the TABLE_NAMES
and TABLE_TYPES
tags will override the template specified in the ALL_OTHER_TABLES
tag.
As an example, if you wanted to specify a particular, custom schema creation template for creating fact and dimension tables, called createschema_dimension.xml, and use the default template (createschema_oracle.xml) for creating all other tables, the XML block would look like the following:
The createschema_<database type>.xml file contains the database-dependent SQL syntax used to create the schema. It also specifies the tablsespace. You can customize this file to specify tablespaces for specific tables by table name and table type. You can also add additional SQL at the end of the file.
However, you should not change the SQL syntax in the file.
The code example below shows the XML elements available for customizing the tablespace. The tablespace specified in the TABLE_NAMES and TABLE_TYPES tags will override the tablespace specified in the ALL_OTHER_TABLES tag.
Follow this procedure to customize the createschema_template_designation.xml file.
Note: Templates specified for tables by name or type override the template specified by the ALL_OTHER_TABLES XML element.
To customize the createschema_template_designation.xml file:
TABLE_NAMES
XML element. For example:
TEMPLATE NAME
attribute. The value must be enclosed within quotes. TABLE_NAMES
element. For example:
TEMPLATE NAME
attribute. The value must be enclosed within quotes. TABLE_TYPES
element. For example:
TEMPLATE NAME
attribute. The value must be enclosed within quotes. Customization Example
As an example, if you wanted to designate custom templates for the following:
The XML block would look similar to the following:
You can customize the createschema_<database type>.xml file by specifying tablespaces for tables by table name and table type. You can also add additional SQL statements to the end of the file. You should not change any of the SQL syntax in the file.
To customize the createschema_<database type>.xml file:
For example:
TABLESPACE NAME
attribute. The value must be enclosed within quotes. TABLE_NAMES
element. For example:
TABLESPACE NAME
attribute. The value must be enclosed within quotes. TABLE_TYPES
element. For example:
TABLESPACE NAME
attribute. The value must be enclosed within quotes. The upgradeschema_oracle.xml file contains the database-dependent SQL syntax used to upgrade the data warehouse schema with changes that were made to tables in DAC. This file is located in the <DAC_Config_Location>\CustomSQLs\Schema_Templates directory. You should not change any of the SQL syntax in this file.
This section contains instructions for creating, upgrading, and dropping data warehouse tables when the Oracle Business Analytics Warehouse is on a DB2-390 database.
Note: Before you perform the procedure in this section, make sure you have done the following:
To create, upgrade or drop the data warehouse schema:
The Data Warehouse tab is active.
Field | Description |
---|---|
Container | The name of the source system containers for which you want to create, upgrade or drop the data warehouse tables. Separate multiple names with commas. If you leave this field blank, DAC performs the action specified for all source system containers. If there are tables that are common to multiple containers, then only one table will be created. If columns are different for the same table across containers, DAC will create a table that has all the columns in the same table. If you only want to deploy a subset of the source business applications for which you imported seed data earlier, then use this field to specify a container name. When you specify a container name, you must enter the name exactly as it appears in the container drop-down list. |
Table Owner | Valid database owner, username, or account that you set up to hold the data warehouse. |
Password | Valid database user password for the database owner, username, or account that you specified in the Table Owner field. |
ODBC Data Source | Data Source Name (DSN) for the Oracle Business Analytics Warehouse. You must specify the name of the ODBC connection that you created for the data warehouse. |
Tablespace | (Optional) Tablespace where data warehouse tables are created. |
Is Unicode | Specifies whether the data warehouse database is Unicode. The database must be set to support the creation of a Unicode schema. |
Change default parameter file | (For Teradata databases only.) The default location for the default_parameter.properties file is displayed. This file stores parameter names and values for the parameterization of default values for not null table columns. You can select a different properties file by clicking Change default parameter file, and navigating to the appropriate file. See "Parameterizing Default Values for Table Columns" for more information. |
The Run Status tab displays information about the process, as follows:
<Domain_Home>\dac\log\config\generate_ctl.log - A log of the schema definition process, including details of any conflicts between containers.
<Domain_Home>\dac\log\config\createtables.log - A log of the DDL Import Utility process.
Before creating or upgrading a data warehouse schema, you can parameterize values for not null table columns. This feature can be useful for defining default values for table columns that are shared across multiple tables, such as DATASOURCE_NUM_ID.
Note: When you upgrade a schema and use a parameter to define a table column default value, the actual value of the parameter will be used to compare with the default value in the target data warehouse.
Follow these instructions to define a parameter and value before you create or upgrade the data warehouse schema.
To parameterize a default value for table columns:
The file that is installed with Oracle BI Applications will be empty.
Note: Alternatively, you can create your own properties file and save it in a directory of your choosing.
@DAC_<parameter_name>=<parameter_value>
Note the following conditions:
For example:
@DAC_param1='mydefault'
@DAC_param2=''
Otherwise, the value will be considered null and will throw an error.
This chapter provides information about various performance tuning capabilities in DAC related to indexes, tables, tasks, and workflows.
This chapter contains the following topics:
In general, during the ETL process, before a table is truncated, all the indexes, as defined in the repository, will be dropped before the data is loaded and recreated automatically after the data is loaded. The dropping of indexes before the data load and recreating them after the data load improves ETL performance.
If you create an index on the database and it is not registered in the DAC repository, the index will not be dropped and the load will fail.
For Teradata databases, only secondary indexes should be registered in DAC. You should not register primary indexes or the more complex indexes, such as single- and multi-table indexes, because they cannot be dropped and recreated.
In the DAC Design view, the Indices tab lists all the indexes associated with the selected source system container. It is recommended that you have a clear understanding of when and where an index will be used at the time you register it in DAC. It is also recommended that you do not register in DAC any indexes for source tables.
This section contains the following topics:
The general sequence of actions related to indexes when a task runs is as follows:
Note: Successor tasks can start before query-related and unique indexes are created.
You can specify index spaces for indexes by table type. If you do not specify an index space by table type, then DAC will create indexes in the index space specified by the Default Index Space property in the Physical Data Sources tab of the Setup view. If you do not specify a value for the Default Index Space property, then DAC will create indexes in the default tablespace for the table owner of the database.
Note: You must create the index space in the database before you can specify index spaces for indexes in DAC. |
To specify an index space for indexes by table type:
A list of available table types is displayed in the Table Type list.
You can specify how many indexes can be created in parallel for a specific table or how many indexes can be created in parallel for all tables associated with a specific physical data source connection.
To specify how many indexes can be created in parallel for a specific table:
To specify how many indexes can be created in parallel for all tables associated with a physical data source:
You can override the point at which an index is created during an ETL process by defining an index with the During ETL usage type. You assign the During ETL index to the task that populates the table for which the index was defined. The During ETL index will then be created after the task to which you assign it runs. In this manner, using During ETL indexes enables you to control when the index is created during the ETL process.
Note: If you define a During ETL index, you need to make sure that the index is assigned to a task, or else the index will not be created. You should only assign a During ETL index to one task per execution plan. Only advanced DAC users with a thorough understanding of their data warehouse and ETL processes should define During ETL indexes.
To define a During ETL Index:
Make sure you select During ETL as the Index Usage type.
The index appears in the list on the right side of the window.
The During ETL index will be created on the table associated with the task after the task runs.
Note: You can also modify an existing index to change the usage type to During ETL. |
This section provides instructions for defining indexes on a Teradata database.
To define a join index on a Teradata database:
For instructions on defining a task action, see "Defining a SQL Script for an Action".
For instructions on creating tasks in DAC, see "Creating Tasks in DAC for New or Modified Informatica Workflows".
This section applies to incremental loads only.
When an index is marked in DAC as Drop & Create Always or Drop & Create Bitmap Always (for Oracle databases), DAC drops the indexes before the data load and creates them after the data load. Performance can be improved by customizing and tuning how indexes are dropped and created during incremental loads.
When large fact tables are involved in an incremental load, dropping and creating indexes on the whole table can impact performance. Table partitioning can be a performance enhancing alternative to dropping and creating indexes. For example, if the data being loaded is mostly based on updates to recent data, you can partition the table based on time. If the incremental data affects the current year, it may be more beneficial to disable the current year partition than to drop the index on the whole table; and, similarly, it may be more beneficial to rebuild the indexes for the partition rather than create the indexes on the whole table. This can be achieved by using different syntaxes for full and incremental loads, as described in the following example.
This example illustrates, for incremental runs, how to create a parameter that can be used to override the drop and create index syntaxes. It also describes how to override the analyze table behavior so that only the current year partition is analyzed rather than the whole table.
This example assumes the table in the underlying schema has already been partitioned, with the partitioned names as PART_2001, PART_2002, and so on.
For instructions on creating a source system parameter, see "Defining a Timestamp Type Parameter".
For instructions on defining an index action, see "Defining a SQL Script for an Action".
For a more detailed example of using partitions, see "Oracle Business Intelligence Applications Version 7.9.6.x Performance Recommendations [ID 870314.1]" on My Oracle Support.
The DAC heuristics functionality enables you to gather intelligence about the amount of incremental data that will be processed during an ETL execution. To optimize performance, you can use this intelligence to decide whether a task will run, whether tables are analyzed, and whether indexes are dropped and created.
This chapter contains the following topics:
Note: DAC heuristics applies only to incremental data loads and not full loads. |
Typically, during an incremental ETL process, DAC drops indexes on target tables before a data load, recreates the indexes after the data load, and then analyzes the tables. These processes can impact overall ETL process times. DAC heuristics enables you to optimize performance by deciding whether tasks will run, tables are analyzed, and indexes dropped and created.
There are three parts to defining heuristics:
You can determine whether or not you want a task to run as part of an ETL process. DAC heuristics looks at the primary source tables (or other tables you specify by writing custom SQL) before a data load to see if there are any incremental data records. The decision about whether a task will run is based on a threshold value you set. If the incremental record count is equal or less than the threshold value, DAC will not execute the task.
For example, assume you use DAC heuristics to count the records in a primary staging table for a dimension load task, and you set a threshold value of zero. If DAC heuristics finds no records, DAC will not execute this task when the ETL process runs. If DAC heuristics finds one or more records, the task will be executed.
You can determine whether indexes are dropped and created during an ETL process. For this action, you configure a heuristics rule that either counts the number of incremental records in the primary staging table (or other tables you specify by writing custom SQL) or that provides a ratio of the incremental records in the primary source table and the total records in the target table. This value is then compared to the threshold value you set. If the count or ratio is equal or less than the threshold value, DAC will not drop and create indexes.
To determine an appropriate threshold value, you need to have an understanding of the impact that dropping and recreating indexes has on your database.
You can determine whether or not you want tables to be analyzed after the ETL process runs. For this action, you configure a heuristics rule that either counts the number of incremental records in the primary staging table (or other tables you specify by writing custom SQL) or that provides a ratio of the incremental records in the primary source table and the total records in the target table. This value is then compared to the threshold value you set. If the count or ratio is equal or less than the threshold value, DAC will not analyze tables.
To determine an appropriate threshold value, you need to have an understanding of the impact that analyzing tables has on your database.
The count and ratio options work the same way for the action of analyzing tables as for dropping and creating indexes. For examples of these two options as they relate to dropping and creating indexes, see "Using Heuristics to Determine Whether Indexes Are Dropped and Created".
Note: This DAC heuristics setting overrides the Analyze Frequency (in Days) system property.
If a child task of a task group has heuristics defined, the task can optionally be specified as a heuristics driver. Any number of child tasks within a task group can be specified as a heuristics driver. Before a task group is executed, DAC computes the task heuristics of each of the child tasks. If the computation of any of the heuristics driver tasks falls under the threshold value, none of the child tasks are executed. The status of these tasks in the Current Run tab of the Execute view is "Not Executed." The Status Description is updated with the cumulative summary of all the driver children as to why the task was not executed.
A heuristics rule defines how the DAC heuristics functionality will manage the behavior of tasks, tables and indexes. Heuristics rules can apply to any DAC heuristics action; that is, you can use the same rule to indicate whether a task should run, whether tables should be analyzed, or indexes dropped and recreated. Heuristics rules apply to all containers. However, if you write custom SQL ("Writing Custom SQL for a Heuristics Rule") to specify tables other than the primary tables, the SQL is specific to the container in which you write it.
You use the Heuristics dialog to define heuristics rules. The Heuristics dialog contains the following fields:
The possible values are Count and Ratio. These options provide flexibility in how you gather intelligence. The Count option provides a count of the number of incremental records in the primary staging table that will be included in the ETL process. The Ratio option provides the number of incremental records in the primary source table and the total number of records in the target table. This value is expressed in the threshold field as a percentage.
The Count option can be useful if you are deciding whether or not to run a task. For example, if you only want a task to run if there is one or more records in a staging table, you would select the Count option and set the Threshold value at 1. DAC heuristics counts the number of records in the staging table. If it finds one or more records, the task will run. If it finds no records, the task will not run.
The Ratio option can be useful if you are deciding whether to drop and create indexes or analyze tables. For examples of using the count and ratio options, see "Using Heuristics to Determine Whether Indexes Are Dropped and Created".
Provides options for how multiple primary source tables are handled (that is, when more than one primary source table is associated with the same task). If you are defining a heuristics rule that involves a single primary source table, the Metric field does not apply.
The possible values are the following:
Aggregates the total of new or changed records in all of the primary source tables.
Returns an average of the new or changed records in all of the primary source tables. That is, it will divide the sum of all the new or changed records in all of the primary tables by the number of primary tables.
Returns the largest count of new or changed records of all of the primary source tables.
Returns the smallest count of new or changed records of all of the primary source tables.
The possible values are the following:
Specifies that intelligence will be gathered on one or more primary tables associated with the task that this heuristics rule is assigned to.
Specifies that you will write custom SQL to include source tables other than the default primary source tables.
The numerical value above which DAC heuristics will allow a particular action to take place.
For example, if you are doing a count of a primary staging table to determine whether a task should run, and if you want the task to run if one or more records appears in the table, you would set the Threshold value at 1.
If you use the Ratio option, the threshold value is a percentage. For example, suppose you were defining a heuristics rule for determining whether tables should be analyzed after an ETL process, and you knew you wanted to analyze tables if the incoming rows were more than 5% of the total target rows. In this case, you would set the threshold value at 5.
Follow this procedure to create a heuristics rule. After you create the rule, you need to assign it to a task. For instructions, see "Associating a Heuristics Rule With a Task".
For an overview of DAC heuristics, see "Using Heuristics to Manage Tasks, Tables and Indexes". For detailed information about the Heuristics dialog, see "About Heuristics Rules and the Heuristics Dialog".
To create a heuristics rule:
The Heuristics dialog is displayed.
Provides a count of the number of records in the primary source table that will be included in the ETL process (based on the task to which you assign the heuristics rule).
Provides a count of the number of records in the primary source table and the total number of records in the target table. If you select the Ratio option, the value of the Threshold field is a percentage.
For instructions on writing custom SQL to create a heuristics rule, see "Writing Custom SQL for a Heuristics Rule".
For examples, see "About Heuristics Rules and the Heuristics Dialog".
After you create the heuristics rule, you need to assign the rule to a task. For instructions, see "Associating a Heuristics Rule With a Task".
Before you perform this procedure, you need to have created a heuristics rule by following the instructions in "Creating a Heuristics Rule".
For an overview of DAC heuristics, see "Using Heuristics to Manage Tasks, Tables and Indexes". For detailed information about the Heuristics dialog, see "About Heuristics Rules and the Heuristics Dialog".
In this procedure, you will associate a heuristics rule with a task.
To assign a heuristics rule to a task:
A new, empty record is created.
The Property Value dialog enables you to select a heuristics rule that you created in the procedure "Creating a Heuristics Rule".
The heuristics rule is now assigned to a task and will be processed when the task to which it is assigned is called by an execution plan.
Heuristics rules are reflected in the Status Description field in the Task Details tab of the Details dialog, which is accessible by going to the Tasks subtab in the Current Runs or Run History tabs and clicking the Details button on subtab toolbar. The Status Description will indicate whether a step was skipped because of a heuristics rule, and the task status will be Not Executed.
When you create a heuristics rule, you have the option of gathering intelligence on primary source tables, which is the default option, or writing custom SQL to gather intelligence on tables other than primary source tables.
Note: When you write custom SQL for a heuristics rule, it applies only to the source system container you select before you write the SQL.
For an overview of DAC heuristics, see "Using Heuristics to Manage Tasks, Tables and Indexes". For detailed information about the Heuristics dialog, see "About Heuristics Rules and the Heuristics Dialog".
Note: Before you perform this procedure, you must have already created a heuristics rule, by following the procedure "Creating a Heuristics Rule", and selected the option With SQL Overrides in the Source Tables field. |
To write custom SQL to create a heuristics rule:
A new, empty record is created.
You can reorder the entries in the tree by dragging and dropping them.
A new, empty record is created in the top pane.
Field | Description |
---|---|
Name | Enter a logical name for the SQL block. |
Type | Select one of the following:
|
Continue on Fail | Specifies whether an execution should proceed if a given SQL block fails. |
Retries | Specifies how many retries are allowed. If the number is not positive, a default number of one (1) will be used. |
Valid Database Platform | Specifies the valid database platforms against which the SQL will run. If this field is left empty, the SQL can be run against any database. |
The SQL Statement tab to the left of the text box lists the supported SQL functions and DAC source system parameters that you can use in constructing custom SQL statements. Double-click a function or source system parameter to move it into the text box.
The source systems parameters list contains the applicable source system parameters defined in the DAC repository, with the prefix @DAC_. During runtime, the DAC Server resolves the source system parameter and replaces its name with the runtime value.
See Table 11-1 for a list of supported SQL functions.
Table 11-1 Functions for Heuristics SQL
Function | Description |
---|---|
getAnalyzeTableStatement() | Returns the default DAC analyze table statement. |
getDBType() | Returns the physical data source connection type (Oracle OCI8, Oracle Thin, DB2, DB2-390, MSSQL, Teradata, or BI Server). |
getImageSuffix() | Returns the table image suffix if one exists. Otherwise, the string is empty. |
getNamedSource() | Returns the physical connection name in DAC. |
getTableName() | Returns the table name. |
getTableOwner() | Returns the table owner. |
getTableSpace() | Returns the table space name if one exists. Otherwise, the string is empty. |
getTruncateTableStatement() | Returns the default DAC truncate table statement. |
toString() | Returns a string value. |
The Choose SQL Override dialog is displayed.
The Choose SQL Override dialog is displayed.
The heuristics SQL is now assigned to a task and will be processed when the task to which it is assigned is called by an execution plan.
You can configure the full and incremental load commands for tasks to repeat (or loop) multiple times during the execution of an ETL process. This feature can be useful to enhance performance in the following ways:
The process for setting up workflows for looping involves two steps: First you define the looping properties, and then you create parameters to access the looping properties you defined.
This section includes the following topics:
Follow this procedure to define the properties for looping a workflow.
To define a workflow for looping:
A new record is created with the name Loops. You cannot change the name of this record.
The Property Value dialog is displayed.
The number of loops that you specify is applicable to all task execution types, that is, Informatica, SQL File, Stored Procedure, and External Program.
Note:
If you do not select the Restart All check box, the execution of the task will resume from the point of failure. If any runtime instances of the workflow fails, the task itself is marked as Failed. If you enable the Restart All property, the truncate command (if it exists as a task detail) is reissued, and all the task details pertaining to the run instances are marked as Queued and get re-executed. If you do not enable the Restart All property, the execution resumes from the point of failure
When the task executes, DAC assigns an instance number to each instance of the workflow. You can view the instance number in the Task Details subtab of the Current Runs tab.
The instance number is accessible as a predefined DAC variable named @DAC_TASK_RUN_INSTANCE_NUMBER. You can use this DAC variable as a runtime value for parameters that you create. The DAC variable @DAC_TASK_RUN_INSTANCE_NUMBER is available for use with parameters at the source system and task level.
To access the information defined in the looping properties, you need to create parameters in DAC that will be consumed by Informatica at runtime. You can create static or runtime parameters at either the task or source system level. The parameter values can be any of the following:
For example, if the loop number is one, provide value x, or else provide the value y.
For more information about how parameters are used in DAC, see "Defining and Managing Parameters".
To create a parameter with a static value:
You must save the record before proceeding.
To parameterize the Loops property as a runtime value
You must save the record before proceeding.
Typically, a long running task is constrained by single reader and writer threads on Informatica. The looping of workflows parallelizes the reads and writes such that mutually exclusive records can be read from and written to without having overlaps.
For example, if a fact table load takes a long time to run because the volume of incremental data is high, then you can parallelize the load process by doing the following:
When DAC runs the load process, it will spawn off five processes in parallel, and will send a specific value for the CURRENT_LOOP_NUMBER parameter to Informatica. Because DAC is reading and writing in parallel, the data load time can be reduced.
Slow performance can be caused by a small number of tasks holding up many other tasks, which is often due to single reader and writer threads on Informatica. You can performance tune long running tasks that hold up other tasks by creating logical partitions on the task itself. The procedure below provides a typical way to achieve logical partitioning of the task.
To create logical partitions on load tasks:
For example, mod(rownum, 4) +1
creates four buckets with the numbers 1, 2, 3, and 4.
Now, the load mapping will run once in parallel for each logical partition. This can help improve slow performance caused by single reader and writer threads, and, thus, reduce the time taken by a mapping having huge incremental data.
For example:
See "Defining a Looping Property" for instructions. Note that enabling the Informatica Workflow property "Configure Concurrent Execution" is a step in the procedure Defining a Looping Property, and you must complete this step.
When DAC runs this task, it will run four instances of it in parallel. Each instance invocation will be called with the following convention:
The customsql.xml file, located in the <DAC_Config_Location>\CustomSQLs directory, contains the default syntax DAC uses for dropping and creating indexes and analyzing tables. You can edit the customsql.xml file to change the behavior of these operations.
Note: Modifying the customsql.xml file affects the syntax on a global level, for all execution plans. If you want to do customizations at the table or index level, you should consider using the Action functionality. See "Using Actions to Optimize Indexes and Collect Statistics on Tables" for more information.
To edit the Analyze Table syntax:
For example, the syntax for an Oracle database is as follows:
For example, to gather statistics for only the indexed columns, edit the syntax as follows:
Note: The variables @TABLEOWNER, %1, %2, and so on, will be substituted appropriately by the DAC when the statement is executed. |
To edit the Create Index syntax
DAC performs the change capture process for Siebel source systems. This process has two components:
See "SQL for Change Capture and Change Capture Sync Processes" for the SQL blocks used for both of these processes.
Supporting Source Tables
The source tables that support the change capture process are as follows:
Full and Incremental Change Capture Processes
The full change capture process (for a first full load) does the following:
The incremental change capture process (for subsequent incremental loads) does the following:
This section contains the following performance tips:
Reducing the prune time period (in the Connectivity Parameters subtab of the Execution Plans tab) can improve performance, because with a lower prune time period, the S_ETL_R_IMG table will contain a fewer number of rows. The default prune time period is 2 days. You can reduce it to a minimum of 1 day.
Note: If your organization has mobile users, when setting the prune time period, you must consider the lag time that may exist between the timestamp of the transactional system and the mobile users' local timestamp. You should interview your business users to determine the potential lag time, and then set the prune time period accordingly.
If your Siebel implementation does not have any mobile users (which can cause inaccuracies in the values of the "LAST_UPD" attribute), you can simplify the change capture process by doing the following:
To override the default DAC behavior, add the following SQL to the customsql.xml file before the last line in the file, which reads as </SQL_Queries>. The customsql.xml file is located in the dac\CustomSQLs directory.
When the Siebel change capture process runs on live transactional systems, it can run into deadlock issues when DAC queries for the records that changed since the last ETL process. To alleviate this problem, you need to enable "dirty reads" on the machine where the ETL is run. If the transactional system is on a database that requires "dirty reads" for change capture, such as MSSQL, DB2, or DB2-390, it is possible that the record identifiers columns (ROW_WID) inserted in the S_ETL_I_IMG table may have duplicates. Before starting the ETL process, DAC eliminates such duplicate records so that only the record with the smallest MODIFICATION_NUM is kept. The SQL used by DAC is as follows:
However, for situations where deadlocks and "dirty reads" are not an issue, you can omit the process that detects the duplicate records by using the following SQL block. Copy the SQL block into the customsql.xml file before the last line in the file, which reads as </SQL_Queries>. The customsql.xml file is located in the dac\CustomSQLs directory.
DAC drops and creates the incremental views for every ETL process. This is done because DAC anticipates that the transactional system may add new columns on tables to track new attributes in the data warehouse. If you do not anticipate such changes in the production environment, you can set the DAC system property "Drop and Create Change Capture Views Always" to "false" so that DAC will not drop and create incremental views. On DB2 and DB2-390 databases, dropping and creating views can cause deadlock issues on the system catalog tables. Therefore, if your transactional database type is DB2 or DB2-390, you may want to consider setting the DAC system property "Drop and Create Change Capture Views Always" to "false." For other database types, this action may not enhance performance.
Note: If new columns are added to the transactional system and the ETL process is modified to extract data from those columns, and if views are not dropped and created, you will not see the new column definitions in the view, and the ETL process will fail.
DAC populates the S_ETL_I_IMG tables by querying only for data that changed since the last ETL process. This may cause all of the records that were created or updated since the last refresh time to be extracted. However, the extract processes in Informatica may be filtering on additional attributes. Therefore, for long-running change capture tasks, you should inspect the Informatica mapping to see if it has additional WHERE clauses not present in the DAC change capture process. You can modify the DAC change capture process by adding a filter clause for a <named source>.<table name> combination in the ChangeCaptureFilter.xml file, which is located in the dac\CustomSQLs directory.
The SQL blocks used for the change capture and change capture sync processes are as follows:
The Tasks by Depth right-click command is available in the Execution Plans tab of the Execute view. This command provides a data representation of the execution graph by showing how many tasks in an execution plan are at each depth level. The depth specifies the level of dependency.
For example, a task at depth 4 depends on one or more tasks at the level of depth 3, and a task at depth 3 depends one or more tasks at the level of depth 2, and so on. When an execution plan runs, DAC moves any task whose predecessors have completed into the execution queue. Therefore, tasks at a higher depth can execute at the same time as tasks with a lower depth.
Knowing how many tasks are at each depth level can help with performance tuning. A smaller number of tasks at any given depth can signify slow performance. For example, in Figure 11-1 task D is the only task at depth 1. This means that all of the tasks in depth 2 depend on task D. Situations such as this in which there is a small number of tasks at a depth level can cause slow performance and elongate the ETL process. You may want to tune the tasks at depths that have a small number of tasks.
The DAC metadata patch feature enables you to import and export subsets of DAC metadata at a fine grain. This allows you to move subsets of data from one environment to another. For example, when issues are fixed in a development environment, you can move the updated metadata to QA or production environments.
You can also add identifiers for deleted objects to a patch; DAC will attempt to find these objects and remove them from the target repository when the patch is applied.
The DAC metadata patch feature can be used with custom source system containers only and not with predefined ("out-of-the-box") containers.
This chapter contains the following topics:
Figure 12-1 shows the process of distributing metadata to other environments. The steps in the process are as follows:
For instructions on creating a patch, see "Creating a Patch".
For instructions on adding contents to a patch, see "Adding Contents to a Patch".
For instructions on closing a patch, see "Changing the Status of a Patch".
For instructions on exporting a patch, see "Exporting a DAC Metadata Patch".
After the patch process, the patch status will be one of the following:
For information about why objects are not applied to the DAC repository, see "When Does a Patch Fail to be Applied to the DAC Repository?" Applied patches are listed in the Applied Patches tab in the Setup view.
For instructions on applying a patch, see "Applying a DAC Metadata Patch to the DAC Repository".
For instructions on upgrading the data warehouse schema, see Chapter 10, "Managing Data Warehouse Schemas."
The process for creating a DAC metadata patch comprises the following steps:
For a description of the complete DAC metadata patching life cycle, see "DAC Metadata Patching Life Cycle".
You can create a patch in the following ways:
After you create the patch, you then add contents to it. See "About Patch Contents" for information about which objects can be added to a patch, and "Adding Contents to a Patch" for instructions on adding patch contents.
To create a new patch in the Working Patches tab:
DAC automatically sets the status as Open and the Patch Version as 1.
To create a new patch at the time you add the first contents
- Selected record only. To add only the selected record to the patch.
- All records in the list. To add all the records in the list of query results to the patch.
The new patch will appear in the Working Patches tab. DAC automatically sets the status as Open and the Patch Version as 1.
The objects listed below are eligible to be included as contents in a patch. You can manually select any of these objects to be included in a patch. Alternatively, if you choose to add contents based on a timestamp range, the objects from the list below that are new or changed in the timestamp range will be included in the patch.
When you add a parent object to a patch, you can choose whether to have only the the immediate child objects added or the children of the child objects as well. Table 12-1 lists the parent objects you can add to a patch and the immediate child objects that will be added. Also, when you add a child object to a patch, the parent object is automatically included.
When you add a container-dependent object to a patch, you have the option to define a timestamp range that acts as a filter so that only the child objects that are new or changed during the time period you specify will be added to the patch.
You can also add to the patch unique identifiers for deleted objects, which will then delete the objects from the target repository when the patch is applied. You add identifiers for deleted objects to the patch by specifying a time range in the Edit subtab of the Working Patches tab in the Setup view.
Table 12-1 Objects and Immediate Child Objects Added to Patches
Parent Object Added to Patch | Immediate Child Objects Also Added to Patch |
---|---|
Subject area |
Note: You need to reassemble the subject area after the patch has been applied to the target repository. |
Tables |
|
Indexes |
|
Tasks |
|
Task groups | Child tasks |
Configuration tags |
|
Source system folders |
|
Source system parameters | None |
Source system actions | None |
When you add an execution plan to a patch, only the execution plan parent object is listed in the Contents subtab of the Working Patches and Applied Patches tabs. However, the following child objects will be exported to the patch XML file even though they do not appear in the Contents subtab:
Note: The data under the All Dependencies subtab is not exported to the patch XML file. The data under the All Dependencies subtab can be computed in the target repository by selecting the All Dependencies subtab, and then clicking Go in the subtab toolbar. After the query results appear, click Generate.
Note the following points:
For example, if an execution plan has subject areas and tasks from container 1 and container 2 but the target DAC repository only contains metadata for container 3, the execution plan will not be applied to the target DAC repository.
From the Working Patches tab in the Setup view, you can:
You can select any of the objects listed in the section "About Patch Contents" to be included in a patch.
Follow one of the procedures below to add to an object to a patch:
After you have added contents to a patch, you can verify the results by following the steps in "To view the contents of a patch".
To add container-specific contents to a patch
- Selected record only. To add only the selected record to the patch.
- All records in the list. To add all the records in the list of query results to the patch.
- Add the object to an existing patch by selecting Select a patch, and then clicking in the field below to open a dialog from which you can select the appropriate patch.
- Create a new patch to which the object will be added by selecting Create a new patch, and entering a descriptive name for the patch in the text field.
- Selected parent object(s) and immediate child object(s)
An immediate child object is the object represented by the object subtab in the DAC user interface. For example, if you select a subject area, its immediate child objects are task links, table links, and configuration tag links.
- Selected parent object(s) and all child object(s)
When you select to have all child objects added to a patch, then the children of the child objects are also added. For example, a subject area is a parent object. The tasks, tables and configuration tag links are its immediate child objects. Actual tasks, tables and configuration tags are pulled into the patch because of the links. The child objects have child objects of their own. For example, a table child object has columns as its child objects.
Note: If you added a subject area to a patch, you need to reassemble the subject area after the patch has been applied to the target repository. In general, you need to reassemble subject areas if there are changes to the applicable tasks.
- Click in the From Timestamp field to open the Date dialog, and configure the beginning timestamp.
- Click in the To Timestamp field to open the Date dialog, and configure the ending timestamp.
To add an execution plan to a patch
- Selected record only. To add only the selected record to the patch.
- All records in the list. To add all the records in the list of query results to the patch.
- Add the object to an existing patch by selecting Select a patch, and then clicking in the field below to open a dialog from which you can select the appropriate patch.
- Create a new patch to which the object will be added by selecting Create a new patch, and entering a descriptive name for the patch in the text field.
Note: If the execution plan contains one or more execution instances, you must manually add the instances to the patch. The execution instances are not automatically included in the patch when you add the parent execution plan. If you do not manually add the execution instances, they will not be present in the target repository. |
To add a seed data object to a patch
- Selected record only. To add only the selected record to the patch.
- All records in the list. To add all the records in the list of query results to the patch.
- Add the object to an existing patch by selecting Select a patch, and then clicking in the field below to open a dialog from which you can select the appropriate patch.
- Create a new patch to which the object will be added by selecting Create a new patch, and entering a descriptive name for the patch in the text field.
To add a patch as a child patch to another patch
To add contents to a patch based on a timestamp range and distinct containers
Follow this procedure to add objects to a patch based on a timestamp range and a distinct set of containers. Only objects that are new or changed during a timestamp range you specify and that reside within one or more containers that you specify will be added to the patch.
The Patching... dialog opens.
To view the contents of a patch
After you have added contents to a patch, you need to change the patch status to Closed in order to export it. You can re-open a Closed patch if you need to add or remove objects. Each time you change the status from Closed to Open, the Patch Version value is incremented by one.
To change the status of a patch:
The new patch status is displayed on the Status column of the Working Patches tab.
When you export a patch, the patch and its contents are exported from the DAC repository and saved in an XML file in a directory you specify. The XML file contains identifying information about the patch and the patch contents, including the repository object name, the object's source system container, and the parent object of child objects.
Note: If you inactivate a patch content entry, the object will not be exported to the XML file. |
To export a patch:
When you apply a patch, the patch contents are applied to the DAC repository. You can re-apply a patch as many times as needed. The patch history is tracked by the patch version and timestamps for when the patch was closed, exported, and applied to the repository. This information appears in the Audit Trails subtab of the Working Patches tab.
To apply a patch to the DAC repository:
The applied patches are listed in the Applied Patches tab. The status of an applied patch can be one of the following:
Note: You can only update the data warehouse schema with the tables included in a patch if you are using an Oracle database for the data warehouse.
For instructions on assembling a subject area, see "Creating a Subject Area".
For instructions on rebuilding execution plans, see "Building and Running Execution Plans".
Patches can fail to be applied to the DAC repository for the following reasons:
Objects included as patch contents will maintain their ownership state. For example, original objects will be applied to the target repository as originals, clones as clones, and references as references. However, if objects in a customized source system container are updated by a patch, they become cloned objects. If the objects do not already exist, they will be applied to the repository as original objects. The properties of objects in the XML file will take precedence over those in the target repository. That is, if objects on the repository have changed, their properties will be overwritten by those in the XML file.
For more information about object ownership, see "About Object Ownership in DAC".
You can use a command line to export patches and apply patches to the DAC repository. The command line utilities are exposed in the AutomationUtils.bat file, which is located in the <Domain_Home>\dac directory. For information about how to use the parameters, see "DAC Repository Command Line Utilities".
This chapter provides instructions for performing common DAC tasks.
This chapter contains the following topics:
You can access the DAC Server through a command line to start and stop execution plans and to get status information for servers, databases, and execution plans. This feature enables you to access the DAC Server using third-party administration or management tools, without using the DAC Client. Refer to the file dacCmdLine.bat/.sh for usage.
This section includes the following topics:
The Command Line utility enables you to invoke commands on a DAC Server running on a remote or local machine.
To set up command line access to the DAC Server:
Make sure there are no spaces in the path reference.
Parameter | Value |
---|---|
ServerHost= | Host name of the DAC Server. |
ServerPort= | Port of the DAC Server. The default is 3141. |
RepositoryStampVal= | Repository stamp that appears in the DAC Client Login Details screen. To find this value, in the DAC Client navigate to Help, then select Login Details. |
The dac.properties file should look similar to the following:
Follow this procedure to use the command line to access the DAC Server.
To use the command line to access the DAC Server:
where method name
is one of the following:
Method Name | Description |
---|---|
StartServer | Starts the DAC Server (Web mode only). |
StopServer | Stops the DAC Server (Web mode only). |
StartETL | Starts an execution plan. You must specify an execution plan name. -wait option lets you start the execution plan in synchronous mode. |
StopETL | Stops the operation of an execution plan. You must specify an execution plan name. |
ETLStatus | If you do not specify an execution plan name, the status of the execution plan that last ran is returned. If you specify an execution plan name, the status of the specified execution plan is returned. |
DatabaseStatus | Verifies whether the DAC Server can connect to all active database connections. You do not need to specify an execution plan name. |
InformaticaStatus | Verifies whether the DAC Server is able to ping all active Informatica PowerCenter Services machines. |
Note: The method names are case insensitive. Execution plan names are case sensitive. Also, if the execution plan name contains spaces, place beginning and ending double quotes around the name. |
For example:
Command Line | Description |
---|---|
dacCmdLine EtlStatus | Returns the status of the execution plan that last ran. |
dacCmdLine EtlStatus Forecast | Returns the status of the last instance of the Forecast execution plan. |
dacCmdLine StopEtl Forecast | If the execution plan currently running is Forecast, the operation will be terminated. Otherwise, the request is ignored. |
dacCmdLine databasestatus | Returns the health status of all the database connections as defined in the DAC repository from the DAC Server. |
dacCmdLine InformaticaStatus | Returns the health status of all the Informatica PowerCenter Services connections as defined in the DAC Client on the Informatica Services tab. |
The command line feature enables you to get the following status information:
This section describes the DAC repository command line utilities that are exposed in the AutomationUtils.bat file, which is located in the <Domain_Home>\dac directory.
Note: Before you can use the command line utilities, you must first configure DAC repository database and authentication properties in the automationUtils.properties file, which is located in the <Domain_Home>\dac directory. Alternatively, you can create your own connection file that contains the repository database and authentication properties. Many command line utilities discussed in this section require the path to the connection file (either automationUtils.properties or a user-defined connection file). The path to the connection file must include the file name.
The following DAC repository command line utilities are available in the AutomationUtils.bat file:
The analyzeDACSchema property analyzes the DAC repository tables.
Syntax:
The applyDistributedDevPatch property applies a patch to the DAC repository.
Syntax:
where:
Parameter | Description |
---|---|
| Name of the XML file. |
The assembleSubjectArea property assembles a subject areas.
Syntax:
The buildExecutionPlan property builds an execution plan.
Syntax:
The changeEncryptionKey property changes the encryption key in the credentials file and re-encrypts all encrypted information in the DAC repository.
Syntax to change encryption key with a randomly generated key:
Syntax to change encryption key by explicitly specifying the key from command line input:
The clearEncryptedData property removes all encrypted data from the DAC repository.
Syntax:
Note: An authentication file is not required for this operation. The repository password will be taken from command line input.
Caution: This operation will clear all database, Informatica, and external executor passwords as well as all DAC user data. Use this command only when the authentication file with the encryption key was lost and cannot be recovered. After removing the encrypted data from the DAc repository, generate the authentication file with a new encryption key, and log into the DAC repository using the DAC Client. When prompted to add the encryption key, update all passwords in the DAC repository and distribute the new authentication file to all required DAC users. |
The cmdCredentials parameter stores credentials for the DAC command line utility for both the Fusion Middleware and DAC standalone authentication modes.
Syntax:
Note: The password will be taken from command line input. Also, make sure to include the cwallet.sso file name in the path.
The createDACSchema property creates the schema of a new DAC repository.
Syntax:
where:
Parameter | Description |
---|---|
| Specifies whether the schema is created as unicode. Possible values are |
| The name of the default tablespace in which the schema is created. Surround the name with double quotation marks. Note: If the value for the AuthenticationType property in the connection file is |
The createDACUser property creates a DAC schema user.
Syntax for FMW authentication:
Syntax for database authentication:
Note: The user password will be taken from command line input.
The createDWSchema property creates the data warehouse schema using the schema definition file.
Syntax:
createDWSchema
<dwSchemaDefinitionFileName> <unicode> <tablespace>where:
Parameter | Description |
---|---|
| Specifies the data warehouse schema definition file location and name. This file is generated by the generateDWSchemaDefinitionFile command line parameter. |
| The name of the default tablespace in which the schema is created. Surround the name with double quotation marks. |
unicode | Specifies whether the schema is created as unicode. Possible values are |
Note: The file create.sql is generated and stored in the <Domain_Home>/dac/conf/sqlgen/sql/oracle directory of an enterprise installation, and the dac/conf/sqlgen/sql/oracle directory in a standalone or client installation. User authentication is not required for this command.
The createPatchOfObjectsBetweenTimeStamps property creates a DAC repository metadata patch containing all eligible objects that are new or changed between two timestamps.
Syntax:
createPatchOfObjectsBetweenTimeStamps
<patch name> <from timestamp> <to timestamp>where:
Parameter | Description |
---|---|
| The beginning timestamp for the timestamp range in format yyyymmdd-hh:mm:ss:ss. The hh value must be between 00-23. |
| The ending timestamp for the timestamp range. The format is the same as that of the "from timestamp." |
-now | A special string to specify the current timestamp. |
The dbCredentials property generates an authentication file (cwallet.sso) with the DAC repository credentials and encryption key.
Syntax for explicit key and credentials:
Syntax for randomly generated encryption key and credentials:
Syntax to update credentials in existing file without modifying the encryption key:
Note: The user password will be taken from command line input.
The deleteObjects ExecutionPlan property deletes executions plan from the DAC repository.
Syntax:
The deleteObjects SubjectArea property deletes subject areas from the DAC repository.
Syntax:
The dropDACSchema property drops the schema of the DAC repository.
Syntax:
The dropDWSchemaFromSchemaDefinitionFile property drops the data warehouse schema using the schema definition file.
Syntax:
dropDWSchemaFromSchemaDefinitionFile
<dwSchemaDefinitionFileName> <execute>where:
Parameter | Description |
---|---|
| Specifies the data warehouse schema definition file location and name. This file is generated by the generateDWSchemaDefinitionFile command line parameter. |
execute | Possible values are |
Note: The file drop.sql is generated and stored in the <Domain_Home>/dac/conf/sqlgen/sql/oracle directory of an enterprise installation, and the dac/conf/sqlgen/sql/oracle directory in a standalone or client installation. User authentication is not required for this command.
The Export property exports DAC metadata from the DAC repository for specified source system containers.
Syntax:
where:
Parameter | Description |
---|---|
| Full path to the location of the export file structure. |
| (Optional) Name of the source system container for which you want to export DAC metadata. If no container is named, all containers that are found in the file structure will be exported. |
The exportCategory property exports DAC metadata from the DAC repository based on the Logical, Run Time, or System categories.
Syntax:
where:
Parameter | Description |
---|---|
| Full path to the root of the export file structure. |
| Possible values are the following:
|
The exportPatch property exports a DAC metadata repository patch in XML format.
Syntax:
where:
Parameter | Description |
---|---|
| Name of the XML file. |
The jksPassword parameter stores the password for the Java key store.
Syntax:
Note: The password will be taken from command line input. Also, make sure to include the cwallet.sso file name in the path.
The generateDWSchemaDefinitionFile generates a data warehouse schema definition file.
Syntax:
Note: The definition file will be generated for the specified containers. If you do not specify a container, the file will be generated for all containers.
The Import property imports DAC metadata into the DAC repository for specified source system containers.
Syntax:
where:
Parameter | Description |
---|---|
| Full path to the root of the import file structure. |
| (Optional) Name of the source system container for which you want to import DAC metadata. If no container is named, all containers that are found in the file structure will be imported. |
| By default the repository will be truncated upon import. Use the -noTruncate option for incremental import. |
| By default existing records will be updated during incremental import. Use the -noUpdate option if you only want to insert new records. |
The importCategory property imports DAC metadata from the DAC repository based on the Logical, Run Time, or System categories.
Syntax:
where:
Parameter | Description |
---|---|
| Full path to the root of the import file structure. |
| Possible values are the following:
|
| By default the repository will be truncated upon import. Use the -noTruncate option for incremental import. |
| By default existing records will be updated during incremental import. Use the -noUpdate option if you only want to insert new records. |
The repositoryXMLSnapshot property exports a snapshot of the DAC repository in XML format.
Syntax:
where:
Parameter | Description |
---|---|
| Name of the XML file. |
The serverSetup property sets up the DAC Server connection to the DAC repository.
Syntax:
Note: If Fusion Middleware authentication is specified in the connection file, the DAC Server URL should be specified in the properties file and the DAC Server will be set to where the URL points (location can be a remote server). If DAC standalone authentication is specified in the connection file, you must configure the repository connection properties in the properties file. The DAC Server will be set up in the local installation. The user name, password, and encryption key will be taken from the database credentials (cwallet.sso) file.
The setPassword parameter sets the password for the Informatica Integration Service, Informatica Repository Service, and physical data sources in the DAC repository.
Syntax:
where:
Parameter | Description |
---|---|
| Possible values are the following:
|
| Logical name of the server or physical data source record in DAC. |
Note: The password will be taken from command line input. If the logical name or password contains spaces, surround the entry in double quotes.
The upgradeDACSchema parameter upgrades the DAC repository.
Syntax:
The upgradeDWSchemaFromSchemaDefinitionFile property upgrades the data warehouse schema using the schema definition file.
Syntax:
upgradeDWSchemaFromSchemaDefinitionFile
<dwSchemaDefinitionFileName> <unicode> <execute>where:
Parameter | Description |
---|---|
| Specifies the data warehouse schema definition file location and name. This file is generated by the generateDWSchemaDefinitionFile command line parameter. |
unicode | Specifies whether the schema is created as unicode. Possible values are |
execute | Possible values are |
Note: User authentication is not required for this command.
Follow this procedure to set up the DAC Server to be run automatically when your machine reboots.
Note: This procedure applies to the DAC Server in standalone mode only.
To set up the DAC Server to run automatically upon rebooting the machine:
The startserver task is displayed in the Scheduled Task window.
To start the DAC Server as a scheduled task
To stop the DAC Server as a scheduled task
To check if the DAC Server is running
In the DAC standalone mode, you can run two DAC Servers on the same machine as long as they are listening on different ports and pointing to two different repositories.
Note: This procedure does not apply when the DAC Server is running as a service of the DACServer application on WebLogic Server.
To run two DAC Servers on the same machine:
For example, you might copy the C:\<Domain_Home>\dac directory to C:\<Domain_Home>\DAC_SERVER2\dac.
For example if you copy the C:\<Domain_Home>\dac directory to C:\<Domain_Home>\DAC_SERVER2\dac, make sure that the C:\<Domain_Home>\DAC_SERVER2\dac config.bat file is configured correctly.
A message dialog states this operation should be performed on the machine running the DAC Server. It asks whether you want to continue.
Field | Description |
---|---|
Mode | Select Standalone. |
Standalone Mode Configuration: | If you are using standalone mode configuration, enter the following information: |
Host | Name of the host machine where the DAC Server resides. |
Alternative Hosts | (Optional) Names of additional machines hosting DAC Servers that can be used to connect to the DAC repository if the main DAC Server host machine fails. Separate multiple hosts with commas. |
Port | DAC Server port. |
You can use one DAC Client to access multiple DAC Servers. The DAC Servers can reside on the same machine, or they can each reside on a different machine. Each DAC Server must listen on its own port and point to a single DAC repository.
You can install multiple Informatica Integration Services and point them to a single Informatica repository. You need to register each instance of the Integration Service in DAC and specify a unique machine name and service name. For instructions on registering Integration Services, see "Registering Informatica Services in DAC".
When you reset a data warehouse all tables are truncated and refresh dates are deleted. This allows you to perform a full load of data into the data warehouse.
To reset the data warehouse:
The Reset Data Warehouse dialog is displayed and requests you to confirm you want to reset the data warehouse.
Fusion Middleware Control MBean Browser is an Oracle Web application (based on JMX MBean containers) that you can use to view information about running, failed and queued execution plans and the status of the DAC Server.
Information about execution plans is available through the MBean Browser only if the DAC Server is running.
To display DAC metrics using Fusion Middleware Control MBean Browser:
The attributes and operations that are available to be invoked are displayed.
The DAC Server runs as a service of the DACServer application on WebLogic Server. The WebLogic Server Administration Console enables you to monitor the status of the DAC Server.
Note: The DAC Server can also run in standalone mode. For information about the differences between the standalone and WebLogic Server modes, see "About DAC Authentication Modes".
To monitor the DAC Server using the WebLogic Server Administration Console:
where host is the DNS name or IP address of the DAC Server and port is the listen port on which the WebLogic Server is listening for requests. The default port is 7001.
This system wide administration user name and password was specified during the installation process, and you can use it to log in to WebLogic Server Administration Console and Fusion Middleware Control. Alternatively, enter a user name that belongs to one of the following security groups:
The DAC Server status is displayed.
Follow this procedure to export the logical data model in a text or CSV format.
To export the logical data model in text or CSV formats:
A list of tables and columns in the data warehouse is displayed.
Follow this procedure to add foreign key table names and column names into DAC.
To add foreign key metadata into DAC:
When you are using an in-memory database, such as Oracle TimesTen, for analytical reporting, a scenario to consider is to maintain a full-size warehouse, with staging and temporary tables, in a regular database and run ETL processes against this warehouse. Then, you would copy into the TimesTen database only the tables you need for reporting; or you could copy a subset of these tables. Note that this is a bulk copy functionality and not a trickle feed load strategy.
The DAC Data Copy Framework enables you to copy data from a regular database into an in-memory database by configuring an external executor and DAC parameters and creating data copy tasks.
This section contains the following topics:
For additional information about using a TimesTen database, see "Oracle TimesTen Database Guidelines".
The first step in copying data from a regular warehouse into an in-memory database is to create a external executor with the type of Data Copy.
To create an external executor of type Data Copy:
For example, if the read throughput is 3000 records per second and the write throughput is 1000 records per second, it makes sense to have three writers per table. However, if the read throughput is 20000 to a write throughput of 1000, it does not necessarily mean that 20 writers will give the best performance. You might need 10 or 15 writers; to determine the correct number, you will need to compare the throughput and the overall time. As the number of writers increases, the performance might start dropping at some point, because the writers might delay each other.
After you create an external executor with the type Data Copy, the next step is to create data copy tasks.
To create data copy tasks:
Note: All tables you wish to copy must have the In Memory check box selected.
- Selected record only. To generate tasks only for the selected record.
- All records in the list. To generate tasks for all records in the list of query results.
If you want to always run data copies in full mode (pre-deleting and inserting all records), deselect this check box. If you want to use incremental mode after the initial population, to insert missing records and update existing records, select this check box. This should be decided based on the expected rate of modifications compared to the table size. When modifications are light, incremental mode is preferable. When a significant portion of the records in a data warehouse table are updated or new, it will be faster to use full mode, which will truncate the target table and insert all records, without checking which ones already exist.
Note: You can also create tasks manually by doing the following:
|
To run a data copy process, you need to configure the parameters listed below. For instructions on configuring parameters, see "Defining and Managing Parameters".
It is assumed that the warehouse table has the ETL_PROC_ID column, which stores the ID of the ETL that inserts or updates a given record. The LAST_ETL_PPROC_ID is a suggested parameter of type Text, which uses the runtime DAC variable @DAC_LAST_PROCESS_ID. If this parameter is configured correctly, every data copy task will read the new and modified records since the previous invocation of this task, regardless of how many regular ETLs occurred in between.
Note: Values that are common for all or most of the tables can be specified in the Source System Parameters tab of the Design view. Values specific to a particular table should be set in the Parameters subtab of the Tasks tab. |
After you have completed the procedures "Creating an External Executor of Type Data Copy", "Creating Data Copy Tasks", and "Configuring DAC Parameters for Data Copy", you can run a data copy process by doing one of the following:
For instructions, see:
Points to Consider
The following points explain how DAC handles the data copy process:
This chapter provides information about how to integrate DAC with ETL tools other than Informatica.
The external executor framework enables you to integrate DAC with ETL engines other than Informatica. The general process for integrating DAC and an ETL engine is as follows:
The required interfaces are defined in dac-external-executors.jar, which is stored in the Oracle_Home\dac\lib directory. Javadocs provide information about the interfaces and methods, and are located in the Oracle_Home\dac\documentation\External_Executors\Javadocs directory.
In addition, a code sample is provided that demonstrates how to integrate DAC with an ETL engine. The sample code files are stored in Oracle_Home\dac\documentation\External_Executors\SampleSQLExecutor.
This chapter contains the following topics:
To integrate DAC with an ETL engine, you need to create classes to implement the following interfaces. Information about the methods used in these interfaces is included in the Javadocs, which are located in Oracle_Home\dac\documentation\External_Executors\Javadocs directory.
In addition, the interface DACExecutorProperty is provided, which defines the properties of the DACExecutor interface. You can use the default class for this interface or create your own. The default package for DACExecutorProperty is com.oracle.dac.thirdparty.executor.DACExecutorProperty
.
The DACExecutorDescriptor interface is a starting point for integrating an ETL engine with DAC. It describes what the ETL engine does and the properties it requires. An instance of DACExecutorDescriptor is used by the DAC code to generate the required executors during an ETL process.
The properties for this interface need to implement com.oracle.dac.thirdparty.executor.DACExecutorProperty
. You can customize the implementation by using com.oracle.dac.thirdparty.executor.DACExecutorPropertyImpl.
In the sample SQL Executor code (located in Oracle_Home\dac\documentation\External_Executors\SampleSQLExecutor), DACExecutorDescriptor is implemented by com.oracle.dac.thirdparty.executor.samplesqlexecutor.SampleSQLExecutorDescriptor
. This interface produces the corresponding executor DACExecutor and requires the following properties:
Note: This property also controls the number of tasks that can run in parallel.
The DACExecutor interface is an instance of an external executor. The DACExecutor object is instantiated during the ETL process and is used to communicate with the ETL engine. Multiple instances of DACExecutor can be created during an ETL process to communicate with multiple ETL engines of a specific type. DACExecutor is initialized with a set of properties (as defined in the DAC metadata) and is used to create DACExecutorJobs, one for each DAC task. A map of DAC parameters relevant for the task and DAC task definitions is provided. Task definition information includes the following:
For more information, see com.oracle.dac.thirdparty.executor.arguments.DACTaskDefinition
in the Javadocs (located in Oracle_Home\dac\documentation\External_Executors\Javadocs).
In the sample SQL Executor code, DACExecutor is implemented by com.oracle.dac.thirdparty.executor.samplesqlexecutor.SampleSQLExecutor
. At the start of an ETL process, each instance of SampleSQLExecutor used in the ETL will create a connection pool to the specified database and will create the table SAMPLE_SQL_TBL if it has not already been created. During the ETL process, SampleSQLExecutor instances create the corresponding jobs (see "DACExecutorJob").
DACExecutorJob runs actual tasks on the external ETL engine. Jobs are created by executors during the ETL process. One job is responsible to run one task. Jobs are also initialized in the executor using task parameters. DACExecutorJob should implement a synchronous call to the ETL engine and report back the execution status.
In the sample SQL Executor code, DACExecutorJob is implemented by com.oracle.dac.thirdparty.executor.samplesqlexecutor.SampleSQLExecutorJob. For each task of the execution type that corresponds to SampleSQLExecutorDescriptor, one job is run and makes an entry with the task command (for full or incremental mode, depending what load type is appropriate) and the current timestamp in the table SAMPLE_SQL_TBL.
You can use the external executor utility classes to simplify database operations and logging. The utility classes are included in the package com.oracle.dac.thirdparty.executor.utils. This package is not included in the dac-external-executors.jar library. It is part of DAWSystem.jar. If you want to use any class from this package, you must add DAWSystem.jar to your build path.
The following classes are provided to assist with implementing an external executor:
You can use the DACExecutorConnectionHelper utility to create and manage database connection pools and to execute SQL statements with or without bind parameters.
When using this utility, make sure to call the cleanUp() method at the end of the ETL process (when the method is called on the executor that owns an instance of DACExcecutorConnectionHelper).
You can use the DACExecutorLoggingUtils class to have messages and exceptions added to DAC Server and ETL log files. The ETL logs are saved in the <Domain_Home>\dac\log\<subdirectory specific to ETL run> directory.
Follow this procedure to register an external executor in DAC.
For information about the interfaces that need to be implemented, see "Interfaces That Need to Be Implemented for the External Executor Framework".
For example, in the config.bat file, enter %BI_ORACLE_HOME%\dac\lib\<file name>.
The DACLIB entry should look similar to:
In the config.sh file, the DACLIB entry should look similar to:
The Execution Types dialog is displayed.
For example: com.oracle.dac.thirdparty.executor.samplesqlexecutor.SampleSQLExecutorDescriptor
A new, blank record is displayed
The list of properties defined in DACExecutorDescriptor is displayed in the Properties subtab.
A new, blank record is displayed.
This chapter provides instructions for using the DAC Upgrade/Merge Wizard to upgrade and merge the content of DAC repositories.
This chapter contains the following topics:
The Upgrade/Merge Wizard enables you to upgrade and merge the content of DAC repositories. It contains dialogs that guide you through the stages of an upgrade or merge, as shown in Figure 15-1.
Note: Figure 15-1 does not apply to the Simplified Refresh From Base upgrade option. For more information about this option, see "About the Simplified Refresh From Base Option". |
The Upgrade/Merge Wizard enables you to suspend an upgrade or merge process before it is complete and return to it at a later time. You can also repeat a stage that you just completed or reset the process to start from the beginning.
Table 15-1 summarizes the possible actions you can take at each stage of the upgrade or merge process.
Table 15-1 Possible Upgrade and Merge Actions
Stage | Possible Actions |
---|---|
After you have completed Stage 1: Import repository data | You can perform one of the following actions:
|
After you have completed Stage 2: Create Difference Report | You can perform one of the following actions:
|
After you have completed Stage 3: View Difference Report | You can perform one of the following actions:
|
The Upgrade/Merge Wizard enables you to reset an upgrade or merge process at any stage you are in until the final stage in which you merge the repositories. For a description of the stages of the Upgrade/Merge Wizard, see "Major Stages of the Upgrade/Merge Wizard".
When you reset an upgrade or merge process, the Upgrade/Merge Wizard reverts all the actions you have already taken in the upgrade or merge process.
To reset an upgrade or merge process:
The Upgrade/Merge Wizard dialog displays the type of upgrade or merge process you previously started.
A message dialog tells you the reset process was successful.
The Upgrade/Merge Wizard includes the following options for upgrading and merging DAC repositories:
Use this option to upgrade a DAC repository in the release 7.8.4 format, which has a non-partitioned DAC repository structure, to the new release, which has a partitioned DAC repository structure. For more information, see "About the Repository Upgrade (DAC 784) Option".
Use this option to upgrade the DAC repository when you are upgrading from an older release of Oracle BI Applications to a new release. For more information, see "About the Refresh Base Option".
This option is similar to the Refresh Base option. It allows you to upgrade the DAC repository from an older release of Oracle BI Applications to a new release without comparing repositories and creating a Difference Report. For more information, see "About the Simplified Refresh From Base Option".
Use this option to upgrade the DAC repository when you are phasing out an older release of a transactional application and moving to a newer release, for example, phasing out Siebel 7.5.3 and moving to Siebel 7.8. For more information, see "About the Replace Base Option".
Use this option to merge DAC repositories of different instances of the same release. For example, in a development environment you may have two instances of a DAC repository used with Oracle BI Applications release 7.9.5 that you want to merge. For more information see, "About the Peer to Peer Merge Option".
This section includes the following topics:
DAC versions before Oracle BI Applications 7.9 had a non-partitioned DAC repository structure and held metadata for a single application. DAC versions released with Oracle BI Applications 7.9 and higher and with the DAC 10.1.3.4 release and higher have partitioned DAC repository structures. The partitioned structure, also known as a container, can hold metadata for multiple applications.
The Repository Upgrade (DAC 784) option enables you to upgrade from the DAC repository release 7.8.4 (non-partitioned) to the new partitioned structure.
Note: If you want to upgrade a pre-7.8.4 release of a DAC repository, you must first upgrade the repository to the 7.8.4 release before you can use the Repository Upgrade (DAC 784) option to upgrade to the new release. |
Figure 15-2 shows a high-level process flow for using the Repository Upgrade (DAC 784) option to upgrade an existing release 7.8.4 DAC repository to the new release.
The term base is used to refer to a source or target container that you have not changed or customized in any way.
In Step 1 of the high-level process flow, you import the existing 7.8.4 DAC repository into the repository temporary tables. The existing 7.8.4 repository is referred to as the source in the Upgrade/Merge Wizard.
In Step 2, you create a Difference Report that compares the existing repository with the new base container, which is referred to as the target. (The new base container is the version to which you are upgrading and is the version you imported from the file system.)
In Step 3, you accept or reject the objects that the Difference Report shows as being either present or changed in the source but not the target. See Resolving Object Differences in the View Difference Report for a description of how objects are merged based on the action you take.
In Step 4, after you have resolved the differences, you then execute the merge. In Step 5, the Upgrade/Merge Wizard references the customizations in the newly merged custom container with the new base container.
Follow this procedure to upgrade a DAC repository in the release 7.8.4 format to the new release.
Note: You cannot use the Repository Upgrade (784) option with pre-7.8.4 releases of the DAC. To confirm the existing repository is in the release 7.8.4 format, open the 7.8.4 DAC Client and in the toolbar, select Help, and then select About DAC. The About DAC dialog displays the version of DAC you are running. |
Before you begin this procedure, you need to have already installed the new release of Oracle BI Applications and imported the metadata that is the same version as the metadata in the existing 7.8.4 DAC repository. For example, if the existing 7.8.4 repository contains Siebel 6.3 metadata, you need to have imported the Siebel 6.3 source system container metadata from the new Oracle BI Applications release. If you are using Oracle BI Applications 7.9.x with the DAC 7.9.x, then you should have the correct Siebel source system container in the 7.9.x DAC repository.
You should also review the section "Resolving Object Differences in the View Difference Report" to gain an understanding of the options for resolving object differences.
To upgrade a DAC repository in the release 7.8.4 format to the new release:
Note: The value for the Type field must be set to DAC repository. |
The Import 7.8.4 Repository dialog is displayed.
Note: In order for a repository to appear in the drop-down list, it must be configured in the Physical Data Sources tab of the Setup view. |
Caution: Make sure you select the appropriate container. If you select a container different from that contained in the existing release 7.8.4 DAC repository, the Difference Report will compare dissimilar source system containers and will be inaccurate. |
Categories Options | Description |
---|---|
Logical | Imports all information contained in the DAC Design view and the execution plan information for the DAC Execute view. |
Run Time | Imports ETL Run History and the last refresh date information. |
System | Imports all information contained in the DAC Setup view, except passwords for servers and database connections. |
The release 7.8.4 DAC repository tables are imported into the temporary tables.
The Create Difference dialog is displayed.
The ID and Name fields are alphanumeric. The Name field can contain spaces and must be at least five characters long. The ID field cannot contain spaces.
When the Difference Report is complete, the Creating Difference Report dialog tells you how long the process took.
The View Difference Report dialog displays the differences between the existing and new DAC repositories.
For detailed information about the View Difference Report, see "Resolving Object Differences in the View Difference Report".
If the object selected in the navigation tree is a hierarchical object, the subtabs for the child objects appear in the bottom pane of the Object Difference window.
For detailed information about these options and the merge outcome, see "Possible Repository Merge Outcomes Based on Your Decisions"
Note: If a child object has been changed but not the parent object, the parent object will still appear in the Object Difference window even though it has not been changed. |
The Merge dialog is displayed and lists the details of the merge.
This section includes the following topics:
The Refresh Base option enables you to upgrade an existing customized DAC repository. You should use this option if you are upgrading from a DAC release higher than 7.8.4. If you are upgrading a DAC repository in the release 7.8.4 format or lower-numbered releases, see "About the Repository Upgrade (DAC 784) Option".
The Refresh Base option enables you to compare a new base container with the existing customized repository and to create a Difference Report. If you want to upgrade an existing customized DAC repository without comparing repositories and creating a Difference Report, you can use the Simplified Refresh From Base option. See "About the Simplified Refresh From Base Option" for more information.
Figure 15-3 shows a high-level process flow for using the Refresh Base option to upgrade existing customized repositories from DAC releases higher than 7.8.4, such as Oracle BI Applications 7.9 and higher.
The term base is used to refer to a source or target container that you have not changed or customized in any way.
In Step 1 of the high-level process flow, you import the repository data for the new base container from the file system into the repository temporary tables. This repository is referred to as the source in the Upgrade/Merge Wizard.
In Step 2, you create a Difference Report that compares the new base container with the existing repository (including customizations). The existing customized repository is referred to as the target.
In Step 3, you accept or reject the objects that the Difference Report shows as being present or changed in the source but not the target. See "Possible Repository Merge Outcomes Based on Your Decisions" for a description of how objects are merged based on the action you take.
In Step 4, after you have resolved the differences, you then execute the merge. In Step 5, the DAC references the customizations in the newly merged repository with the new base container.
Note: The repository data is imported from a file system and should be in the format of DAC 10.1.3.4 or higher. If it is in the 7.9.x format, you should do the following:
|
Follow this procedure to use the Refresh Base option to upgrade an existing customized repository from DAC releases higher than 7.8.4.
Before you begin this procedure you should review the section "Resolving Object Differences in the View Difference Report" to gain an understanding of the options for resolving object differences.
Note: If you are also upgrading your source system to a new version, after upgrading your existing repository, follow the steps in "To set up folder mappings and the physical data source connection:".
To upgrade an existing repository using the Refresh Base option:
The Import Source System Container dialog is displayed.
When the import process is complete, the Importing Tables dialog tells you how long the process took.
The Create Difference Report dialog is displayed.
When the Difference Report is complete, the Creating Difference Report dialog tells you how long the process took.
The View Difference Report dialog displays the differences between the new and existing DAC repositories.
To resolve the differences, you either accept or reject the objects that are listed as new or changed in the new repository (the version to which you are upgrading).
If the object selected in the navigation tree is a hierarchical object, the subtabs for the child objects appear in the bottom pane of the Object Difference window.
For detailed information about these options and the merge outcome, see "Possible Repository Merge Outcomes Based on Your Decisions".
Note: If a child object has been changed but not the parent object, the parent object will still appear in the Object Difference window even though it has not been changed. |
The Merge dialog is displayed and lists the details of the merge.
If you are also upgrading your source system to a new version, after upgrading the existing repository, follow the steps below.
To set up folder mappings and the physical data source connection:
The Adding… dialog lists the mappings that were added to the custom container.
For example, if you are upgrading from Oracle EBS R11 to R12, and the source connection name was Ora_R11, you would change it to Ora_R12. Do not change any other value in this record.
The Simplified Refresh From Base option is similar to the Refresh Base option. It allows you to upgrade from a DAC repository from an older release of Oracle BI Applications to a new release, but you cannot compare repositories and create a Difference Report.
If you want to upgrade a DAC repository from an older release of Oracle BI Applications to a new release and you want to compare repositories and create a Difference Report before merging the repositories, you must use the Refresh Base option. See "About the Refresh Base Option" for more information.
Before you begin this procedure, do the following:
To upgrade the DAC metadata repository:
For instructions on importing DAC metadata, see "Importing DAC Metadata".
This will append all the custom data to the repository, thus bringing in the customizations, which include the following:
This section includes the following topics:
The Replace Base option enables you to upgrade the DAC repository when you are phasing out an older release of a transactional application and moving to a newer release, for example, phasing out Siebel 7.5.3 and moving to Siebel 7.8.
Figure 15-4 shows a high-level process flow for using the Replace Base option to upgrade the DAC repository when you are phasing out an older release of a transactional application and moving to a newer release.
The term base is used to refer to a source or target container that you have not changed or customized in any way.
In Step 1 of the high-level process flow, you import the repository data for the new base container into the repository temporary tables. This repository is referred to as the source in the Upgrade/Merge Wizard
In Step 2, you create a Difference Report that compares the new base container (source repository) with the existing base container (including customizations). The existing base container is referred to as the target
In Step 3, you accept or reject the objects that the Difference Report shows as being present in the source but not the target or changed in the source but not the target. See Possible Repository Merge Outcomes Based on Your Decisions for a description of how objects are merged based on the action you take.
In Step 4, after you have resolved the differences, you then execute the merge. In Step 5, the DAC references the customizations in the newly merged repository with the new base container.
Note: The repository data is imported from a file system and should be in the format of DAC 10.1.3.4 or higher. If it is in the 7.9.x format, you should do the following:
|
Follow this procedure to use the Replace Base option to upgrade the DAC repository when you are phasing out an older release of a transactional application and moving to a newer release.
Before you begin this procedure you should review the section "Resolving Object Differences in the View Difference Report" to gain an understanding of the options for resolving object differences.
To upgrade an existing DAC repository:
The Import Source System Container dialog is displayed.
When the import process is complete, the Importing Tables dialog tells you how long the process took.
The Create Difference Report dialog is displayed.
When the Difference Report is complete, the Creating Difference Report dialog tells you how long the process took.
The View Difference Report dialog displays the differences between the new and existing DAC repositories.
To resolve the differences, you either accept or reject the objects that are listed as new or changed in the new repository (the version to which you are upgrading).
If the object selected in the navigation tree is a hierarchical object, the subtabs for the child objects appear in the bottom pane of the Object Difference window.
For detailed information about these options and the merge outcome, see "Possible Repository Merge Outcomes Based on Your Decisions".
Note: If a child object has been changed but not the parent object, the parent object will still appear in the Object Difference window even though it has not been changed. |
The Merge dialog is displayed and lists the details of the merge.
This section includes the following topics:
The Peer to Peer Merge option enables you to merge DAC repositories of different instances of the same release. For example, in a development environment you may have two instances of a DAC repository used with Oracle BI Applications release 7.9.5 that you want to merge.
Figure 15-5 shows a high-level process flow for using the Peer to Peer Merge option to merge DAC repositories of different instances of the same release.
The term base is used to refer to a source or target container that you have not changed or customized in any way.
In Step 1 of the high-level process flow, you export one instance of the existing customized source system container to the file system and then import this container into the repository temporary tables. This repository is referred to as the source in the Upgrade/Merge Wizard.
In Step 2, you create a Difference Report that compares the instance 1 container (including customizations) with the instance 2 container (including customizations). The instance 2 container is referred to as the target.
In Step 3, you accept or reject the objects that the Difference Report shows as being present or changed in the source but not the target. See Possible Repository Merge Outcomes Based on Your Decisions for a description of how objects are merged based on the action you take.
In Step 4, after you have resolved the differences, you then execute the merge. In Step 5, the Upgrade/Merge Wizard references the customizations in the newly merged container with the instance 1 base container.
Follow this procedure to use the Peer to Peer Merge option to merge DAC repositories of different instances of the same release.
Before you begin this procedure you should review the section "Resolving Object Differences in the View Difference Report" to gain an understanding of the options for resolving object differences.
To merge two DAC repositories of different instances of the same release:
The Import Source System Container dialog is displayed.
When the import process is complete, the Importing Tables dialog tells you how long the process took.
The Create Difference Report dialog is displayed.
When the Difference Report is complete, the Creating Difference Report dialog tells you how long the process took.
The View Difference Report dialog displays the differences between the instance 1 and instance 2 containers.
To resolve the differences, you either accept or reject the objects that appear as new or changed in the instance 1 container but do not appear in the instance 2 container.
If the object selected in the navigation tree is a hierarchical object, the subtabs for the child objects appear in the bottom pane of the Object Difference window.
For detailed information about these options and the merge outcome, see "Possible Repository Merge Outcomes Based on Your Decisions".
Note: If a child object has been changed but not the parent object, the parent object will still appear in the Object Difference window even though it has not been changed. |
The Merge dialog is displayed and lists the details of the merge.
This section includes the following topics:
The Upgrade/Merge Wizard generates a View Difference Report for the following upgrade and merge options:
A View Difference Report is not available if you select to upgrade using the Simplified Refresh From Base option. For more information about the upgrade and merge options, see "Overview of Upgrade and Merge Options".
The View Difference Report dialog enables you to resolve the differences between the existing and new DAC repositories. To resolve the differences, you either accept or reject the objects that appear in the existing repository but do not appear in the new repository.
Objects in a source system container have an ownership property. The categories of ownership are original, reference, and clone. The ownership property is maintained when an object from the existing repository is merged with the new repository. For example, if an object in the existing source system container is a reference and you want to merge it into the new repository, it will be moved into the new container as a reference. For more information about object ownership properties, see "About Object Ownership in DAC".
Table 15-2 shows the merge outcomes based on object type.
This section describes the main features of the View Difference Report.
The navigation tree displays the repository object types that are compared in the existing and new repositories. When you select a repository object in the navigation tree, the differences are listed in the object difference window.
The Object Difference window lists the differences found between the existing and new containers for the object type selected in the navigation tree. If the object selected in the navigation tree is a hierarchical object, the subtabs for the child objects appear below the Object Difference window. The following columns appear in the Object Difference window and in the subtabs:
Unique identifier for the object.
Indicates the type of difference that exists between the containers.
The new or target container.
Selecting the Accept Source check box indicates you want to accept the change that appears in the source container. For detailed information about the possible merge outcomes, see "Possible Repository Merge Outcomes Based on Your Decisions".
Optional field that indicates the object difference has been resolved. Note: This field is for user reference only. It does not have an affect on the merge process.
If the object selected in the navigation tree is a hierarchical object, the subtabs for the related child objects appear in the bottom pane of the Object Difference window.
The text fields in at the bottom of the dialog, labeled "New Source System Container "and "Existing Source System Container," display a textual and hierarchical representation of the object difference selected in the Object Difference window.
You can query for objects in the Object Difference window and in the subtabs. For more information about the DAC query functionality, see "Using the DAC Query Functionality".
The drop-down list in the Object Difference window toolbar enables you to filter the list of differences based on the Change Description. The following filter options are available:
The View Difference Report shows the changes between two containers based on object type.
For more information about object types and their ownership properties, see "About Object Ownership in DAC".
Tip: Use the right-click command Record Info to view the lineage of an object. |
The following tables list the merge outcomes based on the decision you make about the object differences listed in the View Difference Report.
Table 15-2 Merge Outcomes for Repository Upgrade (DAC 784) Option
Change | Object Ownership Type | Description | Merge Action with User Choice: Accept Source | Merge Action with User Choice: Reject Source |
---|---|---|---|---|
Added-Source | Original | An original object has been added in the source container. | Object will be merged into the custom container as an original object. | Object will be deleted from the custom container. |
Added-Source | Clone | A cloned object has been added in the source container. | Not applicable | Not applicable |
Added-Source | Reference | A referenced object has been added in the source container. | Not applicable | Not applicable |
Added-Target | Original | An original object has been added in the target container. | Object will be deleted from the custom container. | Object will be merged into the custom container as a referenced object to the base container. |
Added-Target | Clone | A cloned object has been added in the target container. | Object will be deleted from the custom container. | Object will be merged into the custom container as a referenced object to the base container. |
Added-Target | Reference | A referenced object has been added in the target container. | Object will be deleted from the custom container. | Object will be merged into the custom container as a referenced object to the base container. |
Deleted-Source | Original | An original object has been deleted from the source container. | Object will be deleted from the custom container. | Object will be retained in the custom container as a reference to the base container. |
Deleted-Source | Clone | A cloned object has been deleted from the source container. | Object will be deleted from the custom container. | Object will be retained in the custom container as a reference to the base container. |
Deleted-Source | Reference | A referenced object has been deleted from the source container. | Object will be deleted from the custom container. | Object will be retained in the custom container as a reference to the base container. |
Deleted-Target | Original | An original object has been deleted from the target container. | Object will be merged into the custom container as an original object. | Object will be deleted from the custom container. |
Deleted-Target | Clone | A cloned object has been deleted from the target container. | Object will be merged into the custom container as an original object. | Object will be deleted from the custom container. |
Deleted-Target | Reference | A referenced object has been deleted from the target container. | Object will be merged into the custom container as an original object. | Object will be deleted from the custom container. |
Modified | Not applicable | An object has been modified differently in the source and target containers. | Object will be merged into the custom container as a cloned object. | Object will be merged into the custom container as a referenced object to the base container. |
Modified-Cloned | Clone | The parent of a cloned object has been modified in the source container. | Not applicable | Not applicable |
Modified-Referenced | Reference | The parent of a referenced object has been modified in the source container. | Not applicable | Not applicable |
Cloned-Source | Not applicable | A referenced object has been cloned in the source container. | Not applicable | Not applicable |
Cloned-Target | Not applicable | A referenced object has been cloned in the target container. | Not applicable | Not applicable |
Table 15-3 Merge Outcomes for Replace Base and Refresh Base Options
Change | Object Ownership Type | Description | Merge Action with User Choice: Accept Source | Merge Action with User Choice: Reject Source |
---|---|---|---|---|
Added-Source | Original | An original object has been added in the source container. | Object will be added to the target custom container as an original object. | Not applicable |
Added-Source | Clone | A cloned object has been added in the source container. | Object will be added to the target custom container as a cloned object. Automatically adjusts the lineage for objects in child containers if the object was referenced in them. | Not applicable |
Added-Source | Reference | A referenced object has been added in the source container. | Object will be added to the target container as a referenced object. | Not applicable |
Added-Target | Original | An original object has been added in the target container. | Object will be deleted from the target custom container. Automatically adjusts the lineage for objects in child containers. | Object will be retained in the target custom container. |
Added-Target | Clone | A cloned object has been added in the target container. | Object will be deleted from the target custom container. Automatically adjusts the lineage for objects in child containers. | Object will be retained in the target custom container. |
Added-Target | Reference | A referenced object has been added in the target container. | Object will be deleted from the target custom container. Automatically adjusts the lineage for objects in child containers. | Object will be retained in the target custom container. |
Deleted-Source | Original | An original object has been deleted from the source container. | Object will be deleted from the target custom container. Automatically adjusts the lineage for objects in child containers if the object was referenced in them. | Object will be retained in the target custom container. |
Deleted-Source | Clone | A cloned object has been deleted from the source container. | Object will be deleted from the target custom container. Automatically adjusts the lineage for objects in child containers if the object was referenced in them. | Object will be retained in the target custom container. |
Deleted-Source | Reference | A referenced object has been deleted from the source container. | Object will be deleted from the target custom container. Automatically adjusts the lineage for objects in child containers if the object was referenced in them. | Object will be retained in the target custom container. |
Deleted-Target | Original | An original object has been deleted from the target container. | Object will be added as an original object to the target custom container. | Not applicable |
Deleted-Target | Clone | A cloned object has been deleted from the target container. | Object will be added as a cloned object to the target custom container. | Not applicable |
Deleted-Target | Reference | A referenced object has been deleted from the target container. | Object will be added as a referenced object to the target custom container. | Not applicable |
Modified | Not applicable | An object has been modified differently in the source and target containers. The right-click command Record Info shows the object's lineage. | Not applicable | Not applicable |
Modified-Cloned | Clone | The parent of a cloned object has been modified in the source container. | De-clone the object and re-reference it. Automatically adjusts the lineage for objects in child containers if the object was referenced in them. | Not applicable |
Modified-Referenced | Reference | The parent of a referenced object has been modified in the source container. | Re-reference the object. Automatically adjusts the lineage for objects in child containers if the object was referenced in them. | Not applicable |
Cloned-Source | Not applicable | A referenced object has been cloned in the source container. | Not applicable | Not applicable |
Cloned-Target | Not applicable | A referenced object has been cloned in the target container. | Not applicable | Not applicable |
Table 15-4 Merge Outcomes for Peer to Peer Option
Change | Object Ownership Type | Description | Merge Action with User Choice: Accept Source | Merge Action with User Choice: Reject Source |
---|---|---|---|---|
Added-Source | Original | An original object has been added in the source container. | Object will be added to the target custom container as an original object. | Not applicable |
Added-Source | Clone | A cloned object has been added in the source container. | Object will be added to the target custom container as a cloned object. Automatically adjusts the lineage for objects in child containers. | Not applicable |
Added-Source | Reference | A referenced object has been added in the source container. | Object will be added to the target custom container as a referenced object. | Not applicable |
Added-Target | Original | An original object has been added in the target container. | Object will be deleted from the target custom container. Automatically adjusts the lineage for objects in child containers. | Object will be retained in the target custom container. |
Added-Target | Clone | A cloned object has been added in the target container. | Object will be deleted from the target custom container. Automatically adjusts the lineage for objects in child containers. | Object will be retained in the target custom container. |
Added-Target | Reference | A referenced object has been added in the target container. | Object will be deleted from the target custom container. Automatically adjusts the lineage for objects in child containers. | Object will be retained in the target custom container. |
Deleted-Source | Original | An original object has been deleted from the source container. | Object will be deleted from the target custom container. Automatically adjusts the lineage for objects in child containers if the objects were referenced in them. | Object will be retained in the target custom container. |
Deleted-Source | Clone | A cloned object has been deleted from the source container. | Object will be deleted from the target custom container. Automatically adjusts the lineage for objects in child containers if the objects were referenced in them. | Object will be retained in the target custom container. |
Deleted-Source | Reference | A referenced object has been deleted from the source container. | Object will be deleted from the target custom container. Automatically adjusts the lineage for objects in child containers if the objects were referenced in them. | Object will be retained in the target custom container. |
Deleted-Target | Original | An original object has been deleted from the target container. | Object will be added to the target custom container as an original object. | Not applicable |
Deleted-Target | Clone | A cloned object has been deleted from the target container. | Object will be added to the target custom container as a cloned object. | Not applicable |
Deleted-Target | Reference | A referenced object has been deleted from the target container. | Object will be added to the target custom container as a referenced object. | Not applicable |
Modified | Not applicable | An object has been modified differently in the source and target containers. The right-click command Record Info shows the object's lineage. | Not applicable | Not applicable |
Modified-Cloned | Clone | The parent of a cloned object has been modified in the source container. | De-clone the object and re-reference it. Automatically adjusts the lineage for objects in child containers if the objects were referenced in them. | Not applicable |
Modified-Referenced | Reference | The parent of a referenced object has been modified in the source container. | Re-reference the object. Automatically adjusts the lineage for objects in child containers if the objects were referenced in them. | Not applicable |
Cloned-Source | Not applicable | A referenced object has been cloned in the source container. | Clone object in target custom container. Automatically adjusts the lineage for objects in child containers. | Not applicable |
Cloned-Target | Not applicable | A referenced object has been cloned in the target container. | De-clone object in target custom container. Automatically adjusts the lineage for objects in child containers. | Not applicable |
This chapter describes the functionality available in the DAC tabs, menu commands, and right-click commands.
This chapter contains the following main topics:
This section provides a description of the DAC menu bar commands. It includes the following topics:
Table 16-1 provides a description of the File menu commands.
Table 16-1 File Menu Commands
Command | Description |
---|---|
DAC User Management | Enables users with the Administrator role to create, delete, and inactivate user accounts. For more information, see "Managing DAC User Accounts" and "Creating, Deleting, Inactivating User Accounts". |
Change DAC User Password | Enables users who are currently logged into DAC to change their password. |
New Source System Container | Enables you to create a new, empty source system container or to make a copy of an existing container. Note: You cannot make any changes to a predefined source system container. You must make a copy of an existing container in order to make changes to it. For more information about managing source system containers, see "About Source System Containers". For instructions on creating or copying a container, see "Creating or Copying a Source System Container". |
Rename Source System Container | Enables you to rename a source system container. |
Delete Source System Container | Enables you to delete an existing source system container. |
Close | Closes the DAC Client. |
Table 16-2 provides a description of the Views menu commands.
Table 16-2 Views Menu Commands
Command | Description |
---|---|
Design | The Design view provides access to functionality related to creating and managing subject areas. For more information, see "Design View Tabs". When the Design view is active, the Source System Container drop-down list appears to the right of the View buttons. It enables you to select the source system container that holds the metadata corresponding to a source system. |
Setup | The Setup View provides access to functionality related to setting up DAC system properties, Informatica services, database connections, email notification, external executors, and patches. For more information, see "Setup View Tabs". |
Execute | The Execute view provides access to functionality related to setting up, running, monitoring, and scheduling execution plans. For more information, see "Execute View Tabs". |
This section provides a description of the Tools menu commands. It includes the following topics:
This section provides a description of the DAC Repository Management menu commands on the Tools menu.
Enables you to export the DAC metadata, in XML format, based on the source system container, in order to back up the metadata or to reproduce the environment elsewhere. In the Export dialog, you can specify a directory in which to store the XML file or accept the default directory, which is dac\export.
In the Export dialog, you can select the following category options:
Note: You can move small sets of data, without exporting the entire DAC repository, by using the DAC patching functionality. For more information, see Chapter 12, "Working With DAC Metadata Patches."
Enables you to import the DAC metadata for the source system containers you specify. In the Import dialog, you can specify the following:
In the Import dialog, you can select the following category options:
Enables you to generate a DAC repository report based on the following criteria:
The Clean Up command removes unused referenced objects.
The Upgrade/Merge Wizard enables you to upgrade and merge the content of DAC repositories. For more information, see "Upgrading, Comparing and Merging DAC Repositories".
Enables you to apply a DAC metadata patch to the DAC repository. For more information, see "Working With DAC Metadata Patches".
Enables you to purge completed runs from the run history. The last run cannot be purged.
In the Purging Run History... dialog, the following options are available:
Enables you to run analyze table commands for all the DAC repository tables.
Enables you to specify which databases will be associated with newly created indexes.
Enables you to access the Repository Audit Trail, which stores information about actions performed on the repository, users, machine IP addresses, and repository timestamps. You can also add user-defined audit trail records.
Enables you to drop all the DAC repository tables. This action deletes all data in the repository.
Enables you to change the DAC repository encryption key. See "Changing the DAC Repository Encryption Key" for instructions.
Table 16-3 provides a description of the DAC Server Management menu commands on the Tools menu.
Table 16-3 DAC Server Management Menu Commands
Command | Description |
---|---|
DAC Server Setup | Enables you to configure the DAC Server connections and server email settings. This action should be performed on the machine where the DAC Server is running. |
Start DAC Server | When running the DAC Server in Web mode, allows you to start the DAC Server. |
Restart DAC Server | When running the DAC Server in Web mode, allows you to restart the DAC Server. |
Stop DAC Server | When running the DAC Server in Web mode, allows you to stop the DAC Server. |
Table 16-4 provides a description of the ETL Management menu commands on the Tools menu.
Table 16-4 ETL Management Menu Commands
Command | Description |
---|---|
Configure | Opens the Data Warehouse Configuration wizard, which enables you to create, upgrade and drop data warehouse tables and to create delete triggers. See Chapter 10, "Managing Data Warehouse Schemas," for more information. |
Reset Data Sources | Clears the refresh dates for all source and target tables. This action forces a full load to occur during the next ETL process. |
This section provides a description of the Seed Data menu commands on the Tools menu.
Actions, Index Actions
Enables you to set up index actions in order to trigger SQL scripts to create or drop indexes. See "Using Actions to Optimize Indexes and Collect Statistics on Tables" for more information.
Actions, Table Actions
Enables you to set up table actions in order to trigger SQL scripts to analyze and truncate tables. See "Using Actions to Optimize Indexes and Collect Statistics on Tables"
Actions, Task Actions
Enables you to set up task actions in order to trigger SQL scripts to perform various actions related to task behavior. See "Using Actions to Optimize Indexes and Collect Statistics on Tables" for more information.
Global External Parameters
Enables you to define a global external parameter. See "Overview of Parameters" and "Defining a Global External Parameter" for more information.
Heuristics
Enables you to define a heuristics rule. See "Using Heuristics to Manage Tasks, Tables and Indexes" for more information.
Logical Data Sources
Enables you to add, edit, or delete logical data sources.
Task Logical Folders
Enables you to add, edit, or delete task logical folders, which are used in the task definition (in the Tasks tab) so that task definitions do not have to be cloned
Task Phases
Enables you to add, edit, or delete task phases, and to assign a priority to the task phase. A task phase is the phase of the ETL process with which a task is associated. DAC uses the task phase primarily for task dependency generation. The DAC Server uses the task phase to prioritize tasks and to generate a summary of the time taken for each of the phases.
Task Physical Folders
Enables you to add, edit, or delete task physical folders, which correspond to the actual folder in the Informatica repository. The task physical folder name is used in the Ordered Tasks subtab of the Execution Plans tab.
Table 16-5 provides a description of the UI Styles menu commands on the tools menu.
Table 16-5 UI Styles Menu Commands
Command | Description |
---|---|
Windows (MFS) | Changes the user interface to the Windows style. |
UNIX (MOTIF) | Changes the user interface to the UNIX style. |
Java (METAL) | Changes the user interface to the Java style. |
The UI Preferences menu command displays the UI Preferences dialog, which contains the following options:
Table 16-6 provides a description of the Help menu commands.
Table 16-6 Help Menu Commands
Command | Description |
---|---|
Login Details | Provides login and connectivity information for the current session. |
System Information | Provides system information for the DAC installation. |
DAC Help | Opens the DAC online help. |
About DAC | Provides DAC build, schema version, and repository version information. |
Table 16-7 describes the commands available in the top pane toolbar that are common to all views.
Table 16-7 Tools in the Top Pane Toolbar Common to All Views
Tool | Description |
---|---|
New | Creates a placeholder for a new record in the selected list. |
Save | Saves the current record. |
Undo | Undoes changes made to the current record after the last save. |
Delete | Deletes the selected record. If you delete a parent record, the child records are also deleted. When you delete a column from a table, the column is not automatically deleted from the index. The DAC does not display deleted objects. You must look at the database to figure out what objects were deleted. |
Query | Opens a blank query field where you can enter query criteria. |
Refresh | Retrieves the data from the repository with the last used query. |
Help | Opens the context-sensitive online help system. |
Table 16-8 describes the commands available in the top pane toolbar when the Design view is active.
Table 16-8 Tools in the Top Pane Toolbar Specific to the Design View
Command | Description |
---|---|
Reference | (Design view) Opens the Reference dialog, which enables you to copy objects from one container to another. See "About Object Ownership in DAC" for information about referencing objects. |
Assemble | (Design view, Subject Areas tab) Assembles a subject area, with dimension and related tables as well as tasks. See Chapter 9, "Designing Subject Areas," for more information. |
Drop-down list | (Design view) Enables you to filter the source system container objects that appear in the top pane list. |
Table 16-9 describes the commands available in the top pane toolbar when the Setup view is active.
Table 16-9 Tools in the Top Pane Toolbar Specific to the Setup View
Tool | Description |
---|---|
Generate | (External Executors tab) Generates the external executor properties required for configuration. See Chapter 14, "Integrating DAC With Other ETL Tools," for more information. |
Test | (External Executors tab only) Tests the configuration of the external executor properties. |
Table 16-10 describes the commands available in the top pane toolbar when the Execute view is active.
Table 16-10 Tools in the Top Pane Toolbar Specific to the Execute View
Tool | Description |
---|---|
Build | (Execution Plans tab) Builds the execution plan, by assembling subject areas, tasks, indexes, tags, parameters, source system folders, and phases. See "Building and Running Execution Plans" for instructions. |
Run Now | (Execution Plans tab) Starts a new ETL process. |
Stop | (Current Runs and Run History tabs) Stops an ETL in progress. All currently running tasks will complete, and queued tasks will stop. The status of the ETL changes to Stopped. |
Abort | (Current Runs and Run History tabs) Causes an ETL in progress to abort. All currently running tasks will be aborted. The status of queued tasks and the ETL itself will change to Stopped. |
Restart | (Current Runs and Run History tabs) Restarts the selected ETL after the ETL has failed, stopped, or been aborted. |
Auto Refresh(| Current Runs tab). Enables you to turn on and off the automatic screen refresh functionality and set the refresh interval. |
The commands available in the right-click menus depend on the tab that is active. For descriptions of the commands, see the following topics:
Table 16-11 describes right-click menu commands common to all tabs.
Table 16-11 Common Right-Click Menu Commands
Command | Description |
---|---|
Copy String | Copies the contents of a cell (editable and read-only) to the clipboard. |
Paste String | Pastes a string from the clipboard into a selected cell that supports a string data type. |
New | Creates a placeholder for a new record in the selected list. |
Copy Record | Creates a copy of the selected record, with a unique record ID. The new record is committed to the DAC repository when you click the Save button or click outside the cell. In the Design view tabs (except for the Indices tab), Copy Record copies the selected record and the record's child records. When you copy a subject area, the tables are also copied but the tasks are not copied. You need to use the Assemble command to reassemble the subject area and add tasks to it. In the Design view Indices tab and Setup and Execute views, Copy Record copies only the selected record. |
Save | Saves the current record. |
Undo | Undoes the changes made to the current record after the last save. |
Delete | Deletes the selected record. If you delete a parent record, the child records are also deleted. When you delete a column from a table, the column is not automatically deleted from the index. You must manually delete columns from indexes that were deleted from a table or else the ETL process will fail. The DAC does not display deleted objects. You must look at the database to figure out what objects were deleted. |
Query | Opens a blank query. |
Refresh | Retrieves the data from the repository with the last used query. |
UI Preferences | Enables you to configure the active tab to start in query mode. |
Output to File | Outputs to a text file in the DAC root directory the contents of the current tab's record list. |
Record Info | Displays the record's unique ID, object type, current source system, owner source system, and the timestamp for when it was last updated. It also displays the source system lineage and the source systems that reference the object. |
Update Records | For some columns, enables you to update the column value for each row to a single value. |
This section provides descriptions of the Design view right-click menu commands.
Ownership Right-Click Commands
The Ownership right-click menu contains the following commands:
For more information about the ownership of objects, see "About Object Ownership in DAC".
Add Object(s) to Patch
Enables you to add the selected object or all objects in the list to a patch. You specify the patch to which you want to add the object or objects, and then specify whether you want to add to the patch only the parent object or the parent object, child object, and extended properties. For more information about patches, see "Working With DAC Metadata Patches".
Assemble
(Subject Areas tab) Assembles a specified subject area by adding to the subject area the dimension and related tables as well as the associated tasks. For more information, see "Creating a Subject Area".
Generate Index Scripts
(Tables and Indices tabs) Generates drop and create index scripts and analyze tables scripts for all tables that participate in the ETL process. The results are stored in the log\scripts directory.
Generate DW Table Scripts for Oracle
(Tables tab and Target For Tasks (RO) subtabs in the Tables tab) Enables you to generate scripts for creating, upgrading, and dropping data warehouse tables for Oracle database types. For more information, see "Creating, Upgrading or Dropping Subsets of Tables in the Schema".
Related Tasks
(Tables tab) Shows all tasks that directly or indirectly participate in populating the selected table.
Change Capture Scripts
(Tables tab) For Siebel sources only.
Import from Database
(Tables tab)
See "Adding a New Table and Columns to the Data Warehouse" for more information.
Add Actions
(Tables, Indices, and Tasks tabs) Enables you to add previously defined actions to tables, indices, or tasks. For more information about actions, see "Using Actions to Optimize Indexes and Collect Statistics on Tables".
Add Tables
(Tasks tab)
The right-click dialogs contain additional instructions for adding source and target tables to tasks.
Import Foreign Keys
(Tables tab) Enables you to import foreign key columns from the data warehouse and associate the columns with foreign key tables. You can enter the table and column information in the text box or import the information from a file. If you select the Clone Referenced Records check box, DAC will make clones of any records that are referenced objects. If you do not select Clone Referenced Records, DAC will not import foreign keys for any referenced object.
Output Task Description
(Tasks tab) Saves to an HTML file the description for a selected task or for all tasks.
Synchronize Tasks
(Tasks tab) Imports the source and target table definitions for a task from Informatica into the DAC repository. You can also choose to activate tables that had previously been inactive or inactivate tables in DAC that are associated with the task but do not appear in Informatica.
Flat Views
Opens a dialog that enables you to query for various objects, modify data, and do mass updates.
Table 16-12 describes the Setup view right-click menu commands.
Table 16-12 Setup View Right-Click Menu Commands
Command | Description |
---|---|
Test Connection | In Physical Data Sources tab, this command tests the database connection. In the Informatica Servers tab, this command tests the connection to the Repository Service and Integration Service. The DAC Server performs this command if the DAC Client is connected to a server. If the DAC Client is not connected to a DAC Server, then the DAC Client performs the command. |
Patches | (Working Patches tab)
|
Table 16-13 describes the Execute view right-click menu commands.
Table 16-13 Execute View Right-Click Menu Commands
Command | Description |
---|---|
Run Now | (Execution Plans tab) Runs the selected execution plan. |
Add Refresh Dates | (Execution Plans tab) Prepopulates tables associated with the selected execution plan in the Refresh Dates subtab of the Physical Data Sources tab. This feature enables you to set or reset refresh dates manually in the Refresh Dates subtab of the Physical Data Sources tab before running an execution plan. Note: The Micro ETL Refresh Dates subtab of the Execution Plans tab is reserved for micro ETL processes. |
Reset source(s) | (Execution Plans tab) Resets the refresh dates to null for all tables relevant to the execution plan. You can choose to reset refresh dates for tables in one or more source and target data sources. |
Add Object(s) to Patch | (Execution Plans tab) Enables you to add the selected execution plan or all execution plans in the list to a patch. When you add an execution plan to a patch, only the execution plan parent object is listed in the Contents subtab of the Working Patches and Applied Patches tabs. However, the execution plan child objects will be exported to the patch XML file even though they do not appear in the Contents subtab. For information about which child objects are added to the patch XML file, see "About Patch Contents". |
Number of Tasks by Depth | (Execution Plans tab) Shows how many tasks are at each depth level for each task execution graph. For more information, see "Performance Tuning the ETL Process Using Tasks by Depth Command". |
Show Concurrent ETL Dependency | (Execution Plans tab) Shows if two execution plans are sharing any common source or target tables. When there are such instances, DAC will serialize their execution. If there is no commonality, they can be run in parallel. |
Build | (Execution Plans tab) Builds the execution plan, by assembling subject areas, tasks, indexes, tags, parameters, source system folders, and phases. |
Auto Refresh | (Current Runs tab) Enables you to set an automatic refresh frequency for the selected execution plan. |
Restart | (Current Runs and Run History tab) Restarts the selected execution plan. |
Abort | (Current Runs and Run History tab) Stops the execution of the selected execution plan and changes the status to Failed. |
Mark as Completed | (Current Runs and Run History tabs) Changes the status of a stopped or failed ETL to Completed. In the audit trail for this ETL, the status is Marked as Completed. Use this command with caution. It can cause the data warehouse to be inconsistent. |
Get Run Information, Get Log File | (Current Runs and Run History tabs) Fetches the log file for this run from the DAC Server and saves it in the \ServerLog directory. |
Get Run Information, Analyze Run | (Current Runs and Run History tabs) Saves a description of the run as an HTML file in the Log\Statistics directory. |
Get Run Information, Get Chart | (Current Runs and Run History tabs) Displays a chart showing changes in task statuses over time in a separate window. |
Get Run Information, Get Graph | (Current Runs and Run History tabs) Displays a graph showing changes in task statuses over time in a separate window. |
Flat Views | Opens a dialog that enables you to query for various objects, modify data, and do mass updates. |
Some of the DAC interface tabs have common elements, which are displayed as columns or subtabs. Descriptions of the common elements follow.
Name
The Name column in a tab specifies the name of the database object.
Inactive
The Inactive column indicates whether a database object is active or inactive. You can inactivate a repository object by selecting the Inactive check box. Inactive objects do not participate in the ETL process.
Owner
The Owner column specifies the source system container in which the database object was created. For more information about object ownership, see "About Object Ownership in DAC".
Edit
The Edit subtab enables you to enter definition information for a new object or to edit the existing definition of an object that is selected in the top pane.
Description
The Description subtab displays a description of the object selected in the top pane. You can also edit the existing description of an object or add a new description.
The Design view provides access to functionality related to creating and managing subject areas.
This section describes the Design view interface tabs.
A configuration tag is an object that controls the inclusion of tasks in subject areas. When a task is "tagged" with a configuration tag, it is not eligible to be included in the collection of tasks for any subject area, unless the tag is part of the subject area definition "Include Task" property.
For more information, see:
Include Tasks Column
If this check box is selected, the tasks that are assigned to a configuration tag will participate in the ETL process for the subject area to which this configuration tag is assigned.
For example, suppose Configuration Tag 1 is made up of Task 1 and Task 2, and Configuration Tag 1 is assigned to Subject Area 1. Task 1 and Task 2 will be executed when the execution plan for Subject Area 1 is executed, whether or not Task 1 and Task 2 relate to the tables that make up the subject area.
Lists the subject areas that belong to a configuration tag and enables you to add subject areas to a configuration tag.
Configuration Tag Tasks Only Column
This read-only field indicates whether configuration tag tasks are the only tasks associated with this subject area that will participate in the ETL process. If this check box is selected, only the tasks associated with the configuration tag will be chosen by DAC when the subject area is assembled.
See "Working with Configuration Tags" for more information.
Enables you to add or remove tasks from the configuration tag selected in the top pane.
For more information, see:
The Indices tab lists all the indexes associated with the selected source system container.
For more information, see:
Note: It is recommended that you do not register any indexes for source tables. For Teradata databases, only secondary indexes should be registered in DAC. You should not register primary indexes or the more complex indexes, such as single- and multi-table indexes, because they cannot be dropped and recreated. You can use SQL commands to drop and create such tasks in DAC. |
Table Name Column
The table for which an index is created.
Index Usage Column
Specifies the index usage. Possible values are:
If you define a During ETL index, you need to make sure that the index is assigned to a task, or else the index will not be created. You should only assign one During ETL index to one task per execution plan. Only advanced DAC users with a thorough understanding of the execution plans should define During ETL indexes.
For instructions on defining a During ETL Index, see "Defining a During ETL Index".
Databases Column
Lists the databases associated with the selected index.
Unique Columns Column
For unique indexes, the number of columns that will be unique.
Is Unique Column
Indicates whether the index is unique.
Is Clustered Column
Indicates whether the index is clustered. There can be only one clustered index per table.
Is Bitmap Column
Indicates whether the index is of the bitmap type.
Is Hash Column
Indicates whether the index is of the hash type.
Allow Reverse Scan Column
Applicable only for DB2-UDB databases. The index will be created with the Allow Reverse Scan option.
Always Drop & Create Column
Indicates whether the index will be dropped and created regardless of whether the table is being loaded using a full load or incremental load.
Always Drop & Create Bitmap Column
Indicates whether indexes of the bitmap type will be dropped and created regardless of whether the table is being loaded using a full load or incremental load.
Lists the actions that have been set up for the selected index. For a description of index actions, see the following:
Index actions can override the default index behavior for dropping and creating indexes by mode type (full load, incremental load, or both).
Action Type Column
The index action types are the following:
Load Type Column
The load type specifies whether the SQL script is to be called for incremental runs, full runs, or both.
Action Column
The SQL statement or stored procedure that you define. You can define one or more SQL statements or stored procedures for each action.
Displays a list of columns the index is made of.
Position Column
The ordinal position of the column in the index structure.
Sort Order Column
Indicates whether the index sort order is ascending or descending.
The Container Specific SQLs tab lists custom SQL scripts that have been defined for container-specific heuristics rules and task actions.
You also use this tab to define new custom SQL scripts for heuristics rules and task actions.
The drop-down list on the rightmost side of the top pane toolbar enables you to switch between Heuristic custom SQL and Task Action custom SQL.
Heuristic Custom SQL
When you write custom SQL for a heuristics rule, it applies only to the specified source system container. For instructions on defining custom SQL, see "Writing Custom SQL for a Heuristics Rule".
For an overview of DAC heuristics, see "About DAC Heuristics".
Task Action Custom SQL
You define custom SQL for a task action by clicking in the Value field of the Edit subtab. Then, follow steps 4 through 10 in the procedure, "Defining a SQL Script for an Action". After you define a Task Action custom SQL, you assign it to a task using the Edit subtab in the Tasks tab. Select the Execution Type, "Container Specific Task Action," and then click in either the "Command for Incremental Load" or "Command for Full Load" field to display a list of Task Action custom SQLs. Select the appropriate custom SQL, and save the record.
The Source System Folders tab enables you to associate the logical folder in DAC with the physical Informatica folder.
Logical Folder Column
The name of the logical folder in DAC. This name is used in the task definition so that task definitions do not have to be cloned.
Physical Folder Column
The name of the physical Informatica folder. This name represents the actual folder in the Informatica repository. This name is used in the Ordered Tasks subtab of the Execution Plans tab.
The Source Systems Parameters tab holds the source system parameters that apply to all tasks under a source system container. This tab enables you to view and edit existing source system parameters and to define new parameters.
For more information, see:
Data Type Column
The source system parameter data type. For a description of data types, see "Parameter Data Types".
Load Type Column
Specifies whether the parameter applies to full load commands, incremental load commands, or both.
Value Column
The parameter value.
A subject area is a logical grouping of tables related to a particular subject or application context. It also includes the tasks that are associated with the tables, as well as the tasks required to load the tables.
Subject areas are assigned to execution plans, which can be scheduled for full or incremental loads.
The Subject Areas tab lists all the subject areas associated with the selected source system container. It enables you to view and edit existing subjects areas and to create new ones.
For more information, see:
Configuration Tag Tasks Only Column
This column indicates whether configuration tag tasks are the only tasks associated with this subject area that will participate in the ETL process. If this check box is selected, only the tasks associated with the configuration tag will be chosen by DAC when the subject area is assembled.
For more information, see:
Last Designed Column
The timestamp indicates when the subject area was last designed.
The Configuration Tags subtab lists the configuration tags that are associated with this subject area and enables you to add new configuration tags to the subject area.
For more information, see:
Include Tasks Column
This read-only field indicates whether the configuration tag tasks will be executed.
Context Disabled Column
When this read-only check box is selected, the configuration tag is globally disabled.
The Extended Tables (RO) subtab is a read-only tab that lists the extended tables associated with the selected subject area.
Included Column
Indicates whether the extended table is included in the selected subject area. If the check box is selected, the extended table will be included in the subject area assembly process.
Lists the tables that are associated with the selected subject area. It enables you to add tables to subject areas or to remove them.
For more information, see:
Name Column
The name of the table associated with the selected subject area.
Lists the tasks associated with the selected subject area. It enables you to add tasks to and remove tasks from a subject area and to inactivate tasks.
When you inactivate a task, it remains inactive even if you reassemble the subject area. When you remove a task from a subject area, it will be added back to the subject area upon reassembly.
For more information, see:
Parent Group Column
If the task belongs to a task group, this column displays the task group name.
Phase Column
The task phase of the ETL process.
Autogenerated Check Box
Indicates whether the task was automatically generated by the DAC's task generation process.
Is Group Check Box
Indicates whether the task belongs to a task group.
Primary Source Column
Connection for the primary source.
Primary Target Column
Connection for the primary target.
The Task Source Tables (RO) subtab opens in query mode and is read only. It enables you to query by task name, table name, table type or data source for the source tables for the tasks associated with the selected subject area.
The Task Target Tables (RO) subtab opens in query mode and is read only. It enables you to query by task name, table name, table type or data source for the target tables for the tasks associated with the selected subject area.
From this tab, you can access the Generate DW Table Scripts for Oracle right-click command, which enables you to update a subset of tables in the data warehouse schema for Oracle database types. For more information, see "Creating, Upgrading or Dropping Subsets of Tables in the Schema".
The Tables tab lists the physical database tables defined in the database schema that are associated with the selected source system container. It enables you to view and edit existing tables and to create new ones.
For more information, see:
Warehouse Column
Indicates whether the table is a warehouse table. If this option is not selected, the schema creation process will not include this table.
Image Suffix Column
Suffix for image tables. Applicable only to Siebel source tables. For more information about image tables, see the description of the Change Capture Scripts command in the section "Design View Right-Click Menu Commands".
Is MultiSet Column
Indicates whether the table is a MultiSet table. Applicable only to Teradata databases.
Has Unique Primary Index Column
Indicates whether the table has a Unique Primary Index. Applicable only to Teradata databases.
In Memory
Indicates whether the target database type is In Memory. This check box must be selected for tables to be created, updated, or dropped in a TimesTen database. For more information, see Appendix B, "Oracle TimesTen Database Guidelines."
Lists the actions that have been set up for the selected table. For a description of task actions, see the following:
The table action types enable you to trigger SQL scripts to analyze or truncate tables. Table actions for analyzing or truncating tables override all other table properties.
Action Type Column
The default actions on a table during an ETL process are truncating a table and analyzing a table. If you want to override any of these syntaxes, you can define actions by mode (full or incremental). Once an action is defined, it overrides the default behavior.
Note: You can associate an action to multiple objects at the same time. First, identify the objects that you want to associate an action with by using the query functionality. Then, right-click on the results displayed, and select Associate Actions. Next, select an action and the mode you want to associate it with.
The table action types are the following:
Use this type to analyze tables.
Use this type to truncate tables.
Load Type Column
The load type specifies whether the SQL script is to be called for incremental runs, full runs, or both.
Action Column
Actions are the SQL statement or stored procedure that you define. You can define one or more SQL statements or stored procedures for each action.
Displays a read-only list of tasks that have defined the selected table as one of the conditional tables.
Task Phase Column
Task phase of the ETL process. This information is primarily used for dependency generation. Certain phases, such as Change Capture and Query Index Creation, are not available for you to assign to a task. The DAC Server uses the task phase to prioritize tasks and to generate a summary of the time taken for each of the phases.
The Columns subtab displays the columns that belong to the selected table.
Position Column
An integer that represents the ordinal position of the column in the table structure.
Data Type Column
The data type of the column. Possible values are the following:
Length Column
An integer value that indicates how many characters a column can hold.
Precision Column
An integer value that indicates the total number of digits to the left and right of the decimal point.
Nullable Column
Indicates the column can have a NULL value. "NULL" stands for the absence of a known value. If the Nullable check box is not selected, the column is declared NOT NULL, which means the column must contain a value. When inserting a row without providing an explicit value for a column, that column will get the default value if the column has one or NULL if the column is not specified as NOT NULL. Otherwise, an error is generated
Unicode Column
Indicates whether the column is Unicode.
Foreign Key to Table Column
Indicates the table in which the column is a foreign key.
Foreign Key to Column
Specifies the column that is a foreign key.
Default Value Column
The default value must be the same data type as the column. If the value is a CHAR or VARCHAR type, the value must be enclosed within quotes ("<value>"). If the value is a number, it does not need to be enclosed within quotes.
Teradata Length Column
Applicable to Teradata databases only. Specifies the column length.
Teradata Precision Column
Applicable to Teradata databases only. Specifies the column precision.
Teradata Primary Index Order Column
Applicable to Teradata databases only. On Teradata databases, it is important to have a primary index for every table. This column indicates the position that a given column will have in the primary index. If the value is 0 or empty, the column is not part of a primary index.
For Teradata Statistics Column
Applicable to Teradata databases only. If the check box is selected, DAC will collect statistics on the specified column.
In Memory Column
Indicates whether the target database type is In Memory. This check box must be selected for tables to be created, updated, or dropped in a TimesTen database. For more information, see Appendix B, "Oracle TimesTen Database Guidelines."
In Memory Length Column
Specifies the column length for an In Memory (TimesTen database) column. A value in this field overrides the default column length.
In Memory Precision Column
Specifies the column precision for an In Memory (TimesTen database) column. A value in this field overrides the default column precision.
The Indices (RO) subtab displays a read-only list of indexes that belong to the selected table.
Index Usage Column
Specifies the index usage type as ETL, Query, or During ETL. An ETL index is typically used during the ETL process. A Query index is an index used only during the reporting process. It is recommended that you have a clear understanding of when and where the index will be used at the time you register the index. For a description of the possible values see, "Index Usage Column".
Unique Columns Column
For unique indexes, the number of columns that will be unique.
Is Unique Column
Indicates whether the index is unique.
Is Clustered Column
Indicates whether the index is clustered. There can be only one clustered index for each table.
Is Bitmap Column
Indicates whether the index is of the bitmap type.
Allow Reverse Scan Column
Applicable only for DB2-UDB databases. The index will be created with the Allow Reverse Scan option.
Applicable to Teradata databases only. Lists the columns for which multi-column statistics are collected.
The Related Tables subtab lists tables that are related to the selected table. Related tables participate in the ETL process in addition to the tables that are associated with this table.
The Source for Tasks (RO) subtab displays a read-only list of tasks that use the selected table as a source.
Task Phase Column
Task phase of the ETL process. This information is primarily used for dependency generation. Certain phases, such as Change Capture and Query Index Creation, are not available for you to assign to a task. The DAC Server uses the task phase to prioritize tasks and to generate a summary of the time taken for each of the phases.
Build Image Column
Applicable for Siebel transactional sources only. Indicates change capture for the primary/auxiliary source tables will be executed.
Type Column
Table type.
Data Source Column
Data source for the task.
The Target for Tasks (RO) subtab displays a read-only list of tasks that use the selected table as a target.
Task Phase Column
Task phase of the ETL process. This information is primarily used for dependency generation. Certain phases, such as Change Capture and Query Index Creation, are not available for you to assign to a task. The DAC Server uses the task phase to prioritize tasks and to generate a summary of the time taken for each of the phases.
Data Source Column
Data source for the task.
Truncate Always Column
Indicates the target table will be truncated regardless of whether a full or incremental load is occurring.
Truncate for Full Load Column
Indicates the target tables will be truncated only when a full load is occurring.
Analyze Tables Column
Indicates the tables will be analyzed during the ETL process.
The Task Groups tab lists all the task groups associated with the selected source system container. It also enables you create new task groups. Note: A task can belong to only one task group.
For more information, see:
Restart All on Failure Column
Indicates the tasks in this task group will be restarted if one or more tasks fails during an ETL process.
Execute Serially Column
Indicates the tasks in this task group will be executed sequentially. This property overrides the execution order.
Truncate Always Column
Indicates the target tables will be truncated regardless of whether a full or incremental load is occurring. Any indexes registered for the target table are dropped before the command is executed and recreated after the command completes successfully. When indexes are dropped and created, the table is analyzed so that the index statistics are up-to-date. Make sure if you select this option that all the tasks write to the same data source.
Truncate for Full Load Column
Indicates the target tables will be truncated only when a full load is occurring. Any indexes registered for the target table are dropped before the command is executed and recreated after the command completes successfully. When indexes are dropped and created, the table is analyzed so that the index statistics are up-to-date.
The Child Tasks subtab lists the tasks that belong to the selected task group. It also enables you to add child tasks to a task group selected in the top pane.
Task Phase Column
Task phase of the ETL process.
Primary Logical Source Column
Logical database connection for the primary source database.
Primary Logical Target Column
Logical database connection for the primary target database.
Dependency Order Column
Order among the tasks in the task group in which this task will be executed. If two or more tasks have the same execution order and the Execute Serially flag is not checked, DAC will run the tasks in parallel.
Heuristic Driver Column
Indicates this task will specify whether the entire task group is executed. You can specify multiple tasks as heuristic drivers. For more information, see "DAC Heuristics and Task Groups".
The Source Tables (RO) subtab lists the tables used for extracting data by the selected task group.
Table Column
Name of source table.
Task Column
Task that extracts data from the table.
Type Column
Source table type. If a table is marked as Primary or Auxiliary and the Build Image property of the task is selected, the change capture process is invoked. There are special tasks that force the base table data to be extracted when data in auxiliary tables changes. A table can be neither Primary nor Auxiliary but still be used for getting some attributes to populate a dimension or fact table. The changes in these kinds of source tables are not reflected in the dimension or fact table once the data is populated.
The Target Tables (RO) subtab is a read-only tab that lists the tables into which the task group loads data.
Table Column
Name of the target table.
Task Column
Task that loads data into the target table.
The Tasks tab lists all the tasks associated with the selected source system container. For more information, see:
Parent Group Column
If the task is a member of a group, this field lists the task group name.
Group Order Column
The order in which the task is defined to execute in a certain group.
Command for Incremental Load Column
A table can be loaded in full mode or incremental mode. Full mode refers to data loaded for the first time or data that is truncated and then loaded. Incremental mode refers to new or changed data being added to the existing data.
DAC maintains a last refresh timestamp whenever a table is changed during the ETL process. (You can view this timestamp by selecting the Refresh Dates subtab on the Physical Data Sources tab.) If a table has a timestamp, the command appearing in this column is executed. If a table does not have a timestamp, the command for a full load is executed. If the execution type is Informatica, the workflow name is used as the command.
Command for Full Load Column
If a table has no last refresh timestamp, this command is executed.
Logical Folder Column
Only for execution type of Informatica. The folder in which the workflow resides. Note: The name cannot contain spaces.
Primary Source Column
Logical database connection for the primary source database.
Primary Target Column
Logical database connection for the primary target database.
Task Phase Column
Task phase of the ETL process. This information is primarily used for dependency generation. Certain phases, such as Change Capture and Query Index Creation, are not available for you to assign to a task. The DAC Server uses the task phase to prioritize tasks and to generate a summary of the time taken for each of the phases.
Execution Type Column
Tasks are executed based on their execution type. Possible values are the following:
In addition, there are several internal execution types that you will not be able to select when creating new tasks. Tasks of these types are categorized as either internal change capture tasks or internal data warehouse tasks. All of these tasks are color-coded in pink in the Tasks tab.
Used for internal change capture. If you are using multiple Siebel transactional sources, you cannot change the behavior of the change capture process. This task requires change capture tables to be created on the other sources also. When adding additional Siebel sources, on the Tables tab in the Design view, right-click and select Change Capture Tasks. This action generates change capture tasks. Use this same action to disable or delete change capture tasks.
Used for internal change capture. If you are using multiple Siebel transactional sources, you can create this task for the additional tasks for doing similar change capture sync processes. You cannot change the behavior of the change capture sync process. This task requires change capture tables to be created on the other sources also. This task should be used with discretion for Siebel sources only.
Execution Priority Column
Indicates the order in which the task is executed. If two or more similar tasks (tasks having that same phase, similar truncate properties, the same number of successors, and the same number of source tables) have the same priority, the order occurs randomly.
Build Image Column
Applicable for Siebel transactional sources only. Indicates the change capture for the primary/auxiliary source tables will be executed.
Continue on Error Column
When this check box is selected, if the command fails, the dependent tasks are not stopped. However, if any autogenerated tasks fail, the dependent tasks are stopped.
The Actions subtab lists the actions that have been set up for the selected task. For a description of task actions, see the following:
Action Type Column
Action types are predefined categories of task behaviors that trigger the execution of a SQL script. The following types are available:
Load Type Column
The load type specifies whether the SQL script is to be called for incremental runs, full runs, or both.
Action Column
You define the task action in the form of a SQL statement or stored procedure. You can define one or more SQL statements for each action. Double-click in the Action field to open the Choose Action dialog, where you can select the appropriate action.
You define the SQL statement or stored procedure for an action in the Task Actions dialog, which you access by selecting Tools, then Seed Data, then Actions, and then Task Actions. For instructions, see "Defining a SQL Script for an Action".
Lists the tables that, if included in an execution plan, cause the optional task selected in the top pane to be executed.For example, the Order Item fact table is a conditional table associated with the optional task called UpdateRecencyCat in Person Dimension. The UpdateRecencyCat in Person Dimension task is executed only when the Order Item fact table is included in an execution plan.
Lists the configuration tags to which the selected task belongs. It also enables you to associate the selected task with a configuration tag.
For more information, see:
Include Tasks Column
This read-only field indicates whether the configuration tag tasks will be executed.
Context Disabled Column
If this check box is selected, the configuration tag is globally disabled.
Enables you to specify the following extended properties for the task selected in the top pane:
Lists the During ETL index that is assigned to the selected task. Also enables you to assign a During ETL index to the selected task.
Lists the parameters associated with the selected task and enables you to configure task level parameters. This parameter takes precedence over source system parameters when the name is the same. For more information about parameters, see "Defining and Managing Parameters".
Name Column
Name of the parameter.
Data Type Column
Parameter data type. For a description of data types, see "Parameter Data Types".
Load Type Column
Indicate whether the parameter applies to full load commands, incremental load commands, or both.
Value Column
The parameter value.
Comments Column
A text field in which you can add comments.
Lists the task phase dependencies for the selected task. Also enables you to define task phase dependencies. The DAC Server uses the task phase dependency to prioritize tasks. By changing the phase dependency properties of a task, you change the task's execution order. For instructions on setting a task phase dependency, see "Setting a Task Phase Dependency".
Action Column
The action to be taken in relation to the phase dependency. Possible values are the following:
Grain Column
Applicable only for blocks. Enables you to specify whether the action you choose affects all tasks of a specified phase or related tasks. Possible values are the following:
Scope Column
For multi-source execution plans only. Specifies how the Block action of the phase dependency behaves in relation to multi-source execution plans. Possible values are the following:
Indicates the blocking action is active for tasks that have the same source and target physical data source connections.
Indicates the blocking action is active for tasks that have the same source physical data source connection.
Indicates the blocking action is active for tasks that have the same target physical data source connection.
Indicates the blocking action is active for all tasks regardless of the source and target physical data source connections.
Phase Column
The ETL phase that will apply to the Action and Grain properties.
Lists the refresh date tables for the selected task. Also enables you to add or remove refresh date tables.
When DAC executes a task, it determines the read and write mode based on the refresh dates that DAC stores for the database connection and the source and target table name combination of that task. However, if you want to determine the mode of both read and write operations based on a table that is not a source or target table, you can define the table as a refresh date table.
The Refresh Dates (RO) subtab is a read-only tab that lists the refresh dates by table for the selected task. For more information about refresh dates, see "About Refresh Dates and DAC's Incremental Load Strategy".
The Source Tables subtab lists the tables from which the selected task extracts data.
Type Column
Table type. Possible values are the following:
Indicates the table is a primary source of data.
Indicates the table is a secondary source of data.
Indicates the table is a lookup table.
Note: If a table is marked as Primary or Auxiliary and the Build Image property of the task is selected, the change capture process is invoked. There are special tasks that force the base table data to be extracted when data in auxiliary tables change. A table can be neither Primary nor Auxiliary but still be used for getting some attributes to populate a dimension or fact table. The changes in these kinds of source tables are not reflected in the dimension or fact table once the data is populated. |
Data Source Column
Data source for the table. When a data source is not specified, the default is the task's primary source.
Alias Column
An alternative name for a source table.
When multiple tasks from different execution plans read from the same source table and write to the same target table, it is necessary to define an alias for one of the source tables in order for DAC to track refresh dates accurately.
DAC stores refresh dates by the combination of data source and table name. If an alias is not defined in situations in which tasks from two different execution plans read from the same source table and write to the same target table, issues with data inconsistency can arise.
This read only tab lists the subject areas that are associated with the task selected in the top pane.
The Target Tables subtab lists the tables into which the selected task loads data.
Type Column
Table type.
Data Source Column
Data source for the target table. If no data source is specified, this value defaults to the task's primary target.
Truncate Always Column
Indicates the target tables will be truncated regardless of whether a full or incremental load is occurring. Any indexes registered for this table are dropped before the command is executed and recreated after the command completes successfully. When indexes are dropped and created, the table is analyzed so that the index statistics are up-to-date.
Truncate for Full Load Column
Indicates the target tables will be truncated only when a full load is occurring. Any indexes registered for this table are dropped before the command is executed and recreated after the command completes successfully. When indexes are dropped and created, the table is analyzed so that the index statistics are up-to-date. When the Truncate Always option is selected, this option is unnecessary.
Analyze Column
Indicates the tables will be analyzed during the ETL process.
The Setup View provides access to functionality related to setting up DAC system properties, Informatica servers, database connections, and email notification.
This section describes the Setup view interface tabs.
The Applied Patches tab lists patches that have been applied to the repository.
For more information, see:
Status Column
Status of the applied patch. Possible values are the following:
Patch Version Column
Patch version of the patch. The DAC automatically assigns the patch version value as 1 and the status as Open. When you change the status from Closed to Open, the patch version is automatically incremented by 1.
Repository Created Time Column
Local time of the machine that hosts the DAC repository when a patch is created.
Last Closed Column
Timestamp of when the patch was last closed.
Applied Time Column
Timestamp of when the patch was last applied.
Last Exported Column
Timestamp of when the patch was last exported.
Deleted From Column
Starting timestamp of the period for which you want to collect objects deleted from the source.
Deleted To Column
Ending timestamp of the period for which you want to collect objects deleted from the source.
Other Instructions Column
Provides a text box where you can enter information and instructions related to the patch.
Application Details Column
Information about the application of the patch to the target repository.
Lists the child patches of the applied patch that is selected in the top pane.
Added to Patch Version Column
Patch version of the patch to which the child patch was added.
Date Added Column
Timestamp of when the child patch was added to the patch.
Status Column
Status of the child patch. Possible values are:
Comments Column
Provides a text box where you can enter comments related to the patch.
Lists the parent and child objects that make up the contents of the applied patch selected in the top pane.
Type Column
Type of object added as contents to the patch.
Container Column
Parent container of the object added to the patch.
Added to Patch Version Column
Patch version of the patch to which the child patch was added.
Date Added Column
Timestamp of when the object was added to the patch.
Comments Column
Provides a text box where you can enter comments related to the patch.
Source System
Name of the source system the object belongs to.
Lists the objects deleted from the source system that were added to the patch.
Type Column
Type of object deleted from the source system.
Container Column
Parent container of the object deleted from the source system.
Date Deleted
Timestamp of when the object was deleted from the source system.
Status Column
Status of the deleted object. Possible values include:
Comments Column
Provides a text box where you can enter comments related to the patch.
Added to Patch Version Column
Patch version of the patch to which deleted objects were added.
Source System
Name of the source system the object was deleted from.
The DAC System Properties tab enables you to configure various properties that determine the behavior of the DAC Server.
Allow Clients to Remember User Password
When set to True, this property enables the DAC clients to remember the user's password when the user logs into the DAC repository. User passwords are encrypted and stored in the client machine's file system
Analyze Frequency (in days)
For DAC repository tables, this property specifies the frequency (in days) the DAC Client automatically updates the table and index statistics for the DAC repository. The value must be numerical.
The DAC repository tables need to have table and index statistics kept up to date to maintain the health of the repository.
Analyze Table After Query Index Creation
Possible values are True and False.
If this property is set to True, tables will be analyzed after the Query type indexes have been created (even if the Analyze check box for the target table is deselected).
If this property is set to False, the table is not analyzed (as long as the Analyze check box for the target table is deselected).
Auto Restart ETL
Possible values are True and False.
When this property is set to True, an ETL process that is running when the DAC Server abnormally terminates will continue running when the DAC Server is restarted.
When set to False, an ETL process that is running when the DAC Server abnormally terminates will not automatically restart when the DAC Server restarts. The ETL status will be updated to Failed. An administrator will have to manually restart the ETL.
Concurrency Level
The maximum number of ETL processes that can run in parallel. When this property is set to 1 (the default), the ETL process runs in the same process space with the DAC Server. When this property is set to more than 1, the ETL processes run as separate OS processes. DAC interprets invalid values as 1.
Drop and Create Change Capture Views Always
Possible values are True and False.
When set to True (the default value), the DAC Server drops and creates change capture views every time it performs a change capture process, including for both full and incremental loads.
When set to False, the DAC Server will drop and create views selectively, using the following rules:
Dryrun
Possible values are True and False.
Indicates whether tasks are executed without invoking Informatica workflows. The following processes are executed: change capture, truncation of tables, drop and creation of indexes, and analyze statements.
This option should be used for debugging purposes only and not used in a production environment.
Generic SQL Concurrency Limit
When the execution plan includes several tasks with the execution type of SQL or Stored Procedure, this property controls how many of such tasks will be run concurrently at any given time. The value should be numerical. The changes will be effective for the next ETL. Restarting the DAC Server is not required.
Generic Task Concurrency Limit
Determines how many tasks with execution types other than Informatica can be run concurrently. The value must be numerical.
To set this value, you should consider what the external tasks do. For example, if the tasks open connections to a database, you should consider how this would affect the predefined tasks. The value must be numerical.
HeartBeatInterval
The frequency (in seconds) the DAC Server polls all subsystems, including database connections, to check whether they are in a consistent state. If the subsystems are not in a consistent state, recovery and correction mechanisms are triggered. The value must be numerical. For example, a value of 900 (the default value) indicates the system will perform subsystem diagnostics and recovery procedures every 900 seconds.
InformaticaFileParameterLocation
Directory where the Informatica parameter files are stored. This is the directory in which the DAC Server creates the Informatica parameter files and from which Informatica reads the files.
No Run
Possible values are True and False.
When this property is set to True, tasks are generated in the Task Details subtab of the Current Runs tab, but the tasks are not executed and the refresh dates are not updated. Use this property for debugging purposes only.
Output Redirect
Possible values are True and False.
When set to True, logging information and standard output and errors are redirected to files in the log directory. The file containing standard output starts with out_ and ends with the .log extension. The standard error messages are in the file starting with err_ and ending with the .log extension.
If this property is set to False, the logging information is directed to the machine's standard output and error files, which typically defaults to the console from which the DAC Server was launched if the server was launched in a visible console mode. If the server is launched as a Windows service, the logging information is directed to the service log. If the DAC Server was launched with the command shell not visible, all logging information is deleted.
Repository DB Pool Size
Indicates the maximum number of connections to the DAC Repository that the DAC Server will maintain.
The idle DAC Server maintains a small spool of pre-existing database connections to the DAC Repository for efficiency and resource optimization. It increases the pool size to the value specified in this property when running a regular ETL process and reverts to the default on completion of the ETL process.
You should consult with the DBA for the DAC Repository database when setting this property.
Repository Name
Unique name for the DAC Repository. This name is displayed on the title bar.
Repository Upgrade Lockdown
Possible values are True and False.
When set to True, the DAC Repository cannot be upgraded to a newer version.
SQL Trace
Possible values are True and False.
When set to True, a hint is sent to the database connectivity layer of the DAC Server to enable SQL tracing. Thus, every SQL statement that is run by the DAC Server is spooled to the appropriate output log file.
It is recommended that you set this property to False, because enabling SQL tracing causes the log files to grow extremely large in a short period.
Scheduler.Poll.Interval
Frequency (in seconds) the DAC Server polls for changes in the schedule configuration.
Script After Every ETL
The name of the script or executable to be run after every execution plan. The file must be placed in the DAC\scripts directory. For example, after running an execution plan, you might want to run a process or perform certain tasks. These can be contained in a script or executable.
Script Before Every ETL
The name of the script or executable to be run before every execution plan. The file must be placed in the DAC\scripts directory. For example, before running an execution plan, you might want to run a process or perform certain tasks. These can be contained in a script or executable.
The execution plan will run only after the external process has finished. Therefore, it is important that the script or executable does not fail.
Server Log Level
The output logging level. Possible values are the following:
The values are case sensitive. The values produce varying degrees of output reporting detail, with the Severe value producing minimal log details, and the Finest value producing the most extensive amount of reporting.
The recommended value for production environments is INFO.
Test Run
Possible values are True and False.
When set to True, the execution plan will not stop on errors.
Verify and Create Non-Existing Indices
Possible values are True and False.
When set to True, indexes defined in the DAC Repository will be automatically created in the data warehouse database during an incremental load.
Note: When this system property is set to True, the DAC Server verifies whether indexes defined in the DAC Repository are also defined in the data warehouse database. This verification process can delay the execution of an execution plan.
WebClient.Poll.Interval
Frequency (in seconds) the DAC Client polls the DAC Server for its status when the DAC Server is running in Web mode.
WorkerPoolSize
The number of worker threads available in the worker pool.
The worker threads do operations such as:
The value for this property should correspond to the number of task details that are anticipated to run in parallel.
This tab enables you to set up a list of email addresses that will be notified about the status of the ETL process. For instructions, see "Setting Up Email Notifications in the DAC Client and Server".
Name Column
Logical name of the user to be notified.
Email Address Column
Email address where the notification is sent.
Notification Level Column
The notification levels are as follows:
Notifies recipient of success or failure of each task.
Notifies recipient of success of failure of the entire ETL process.
Notifies recipient that ETL completed successfully.
You can configure DAC to integrate with external executors other than Informatica. This tab enables you to view, edit, and create external executor integrations with DAC. See Chapter 14, "Integrating DAC With Other ETL Tools" for more information.
Name Column
Name of the external executor you are integrating with DAC.
Type Column
Execution type for the tasks that will be executed by the external executor. You define the execution type by going to Tools, Seed Data, Execution Type. See "Registering an External Executor in DAC".
The Properties subtab contains the properties that you must configure to integrate DAC with other ETL tools.
For information about External Executor properties, see Chapter 14, "Integrating DAC With Other ETL Tools" for more information.
For information about External Executor properties specific to data copy processes, see "Creating an External Executor of Type Data Copy".
Property Order Column
Used to sort the records in the subtab. Does not affect the functionality of the external executor.
Name Column
Name of the property.
Value Column
The value that defines the property.
The Informatica Servers tab enables you to register one or more Informatica Integration Service services and one Informatica Repository Service and to specify how many workflows can be executed in parallel on each Integration Service. The DAC Server automatically load balances across the Integration Service services.
Note: You can install multiple Informatica Integration Service services and point them to a single Informatica repository. You need to register each Informatica Service in DAC and specify a unique machine name and service name. For instructions on registering an Informatica Integration Server and Repository Service in DAC, see "Registering Informatica Services in DAC". |
Name Column
Name of the Informatica Integration Service or Repository Service.
Type Column
Type of server.
Specifies the Informatica Integration Service.
Specifies the Informatica Repository Service.
Service Column
The Informatica Integration Service name.
Server Port Column
Port number used by the Informatica Integration Service or Repository Service to listen to requests.
Domain Column
Informatica domain name (as seen in Informatica Administrator.
Login Column
Password Column
Informatica repository user name who has Administrator privileges for the Informatica repository. Note that DAC must log in to Informatica as an Informatica repository Administrator user that is configured in the native security domain.
Password for the user specified in the Login field.
Num Parallel Workflows per EP Column
The maximum number of workflows that can be executed in parallel on the Informatica Integration Service.
Repository Name Column
Name of the Informatica Repository Service that manages the Informatica repository for Oracle BI Applications.
Note: You deploy only one Informatica Repository Service, but you can deploy multiple Informatica Integration Service services.
The Physical Data Sources tab lists the connection pool information for the transactional and data warehouse databases. In this tab, you can view and edit existing physical data source connections and create new ones. For instructions on setting up connection pools, see "Setting Up Physical Data Sources".
Name Column
Logical name for the physical data source.
Type Column
Physical data source type. Possible values are the following:
Connection Type Column
Type of database connection. Possible values are the following:
For Oracle Fusion Applications only. Indicates the BI Server is registered as a data source.
For instructions on registering the BI Server in DAC, see "Integrating DAC and Oracle BI Server".
Connects to an Oracle database using the tnsnames entry.
Connects to an Oracle database using thin driver.
DB2 UDB database.
DB2 390 database.
Microsoft SQL Server database.
Teradata database.
Connection String Column
If you are using:
Table Owner Column
Name of the table owner.
Num Connections per EP Column
Maximum number of database connections this connection pool can contain.
DBHost Column
Host machine where the database resides. This field is mandatory if you are using Oracle (Thin), MSSQL, or Teradata, but is not required if you are using Oracle (OCI8), DB2, or DB2-390.
Port Column
Port where the database receives requests. Required for Oracle (Thin) and MSSQL databases. Not required for Oracle (OCI8), DB2, or DB2-390, or Teradata databases.
Source Priority Column
Indicates the order in which DAC loads data from different sources participating in a multi-source execution plan. This property ensures that tasks attempting to write to the same target table will not be in conflict. If two sources are given the same priority, DAC will randomly stagger the tasks.
Data Source Number Column
User defined number of the data source.
Default Index Space Column
The Default Index Space property specifies the default index space for the physical data source. When indexes are dropped and created, they are created in this index space.
Num Parallel Indexes Per Table Column
Use this field to specify how many indexes are to be created in parallel for each table associated with the specified physical data source connection. For example, if a table with 30 indexes is the only task running in an execution plan at a given time, and you specify that 10 indexes are to be created in parallel, 10 of the 30 indexes will be created in parallel.
The number of indexes that can be created in parallel is limited by the value you set in the Num Connections per EP property.
The NumParallel Indexes Per Table property specifies the number of parallel indexes DAC will create for all tables associated with a specified physical data source connection. In contrast, you can use the Parallel Indexes subtab of the Physical Data Sources tab to specify the number of parallel indexes DAC will create at the table level.
JDBC Driver (Optional)
Specifies a JDBC driver for the data source connection. The value in this field must conform to the database specifications.
URL (Optional)
Specifies a JDBC URL for the data source connection. The value in this field must conform to the database specifications.
Lists the values for the Analyze Frequencies attribute by table type.
Enables you to specify the following extended properties for the physical data source selected in the top pane:
DAC updates refresh dates for all the source (primary and auxiliary) and target tables after an ETL process runs successfully, based on the ETL start time of the transactional system's database. If the DAC Server machine and the transactional system's database are in different time zones (adjusted to the timestamp of the transactional system's database), DAC automatically computes the time difference between the DAC Server machine and the transactional system database, except for Oracle Fusion Applications and other unknown data sources. For a detailed description of refresh dates, see "About Refresh Dates and DAC's Incremental Load Strategy".
For Oracle Fusion Applications and other unknown data sources, if the DAC Server machine and the transactional system's database are in different time zones, you must set the Time Difference Override extended property to specify the time difference between the DAC Server machine and the transactional system's database. Once the override is provided, DAC does not issue a SQL to figure out the current timestamp; instead, DAC uses the value for this override to compute the timestamp for refresh date purposes.
For instructions on setting the override extended property for Oracle Fusion Applications source system, see "Integrating DAC and Oracle BI Server".
For unknown data sources (such as those for which DAC cannot figure out the current timestamp), in the Physical Data Sources tab of the Setup view, set the Connection Type to Flat File, and then define the Time Difference Override extended property in the Extended Properties subtab of the Physical Data Sources tab. Set the value for this property to specify the time difference between the DAC Server machine and the transactional system's database.
Name Column
The name of the DAC extended property.
Value Column
The definition for the extended property.
Enables you to specify index spaces for indexes by table type. For instructions, see "Specifying Index Spaces for Indexes by Table Type".
Table Type Column
Table type for which you want to specify a tablespace.
Index Space Column
Specifies the name of the index space.
Note: You must create the index space on the database before you specify an index space in DAC. |
Enables you to specify how many indexes can be created in parallel for a given table.
Note: Use this property to specify the number of parallel indexes DAC will create for a specific table. Use the Num Parallel Indexes Per Table property in the Physical Data Sources tab to specify the number of parallel indexes DAC will create for all tables associated with a specified physical data source connection.
For more information, see "Specifying How Many Indexes Can Be Created in Parallel".
Name Column
Name of the table on which the indexes will be created.
Number of Parallel Indexes Column
Number of indexes that can be created in parallel for the specified table.
During an ETL process, this date is captured for all target tables and source tables of the type primary and auxiliary. DAC uses this date in the change capture process, during parameter generation, when choosing between full and incremental loads, and when deciding whether to truncate a table. (Does not apply to micro ETL processes.)
For more information about refresh dates, see "About Refresh Dates and DAC's Incremental Load Strategy".
Note: Refresh dates for micro ETL processes are captured in the Micro ETL Refresh Dates subtab of the Execution Plans tab. |
Name Column
Name of source or target table.
Execution Plan Column
The name of the execution plan to which the source or target table belongs.
Refresh Date Column
The refresh date for the source or target table.
Analyze Date Column
Indicates when the table was analyzed.
Number of Rows Column
Valid for target tables only. Indicates the total number of rows in the table after the table has been loaded.
The Working Patches tab lists patches that have the status Open and that have not been applied to the repository. For more information, see "Working With DAC Metadata Patches".
Status Column
Status of the patch listed in the top pane. Possible values are the follow:
Patch Version Column
Patch version of the patch. The DAC automatically assigns the patch version value as 1 and the status as Open. When you change the status from Closed to Open, the patch version is automatically incremented by 1.
Repository Created Time Column
Local time of the machine that hosts the DAC repository when a patch is created.
Last Closed Column
Timestamp of when the patch was last closed.
Last Exported Column
Timestamp of when the patch was last exported.
Other Instructions Column
Provides a text box where you can enter information and instructions related to the patch.
Deleted From
Starting timestamp of the period for which you want to collect objects deleted from the source.
Deleted To
Ending timestamp of the period for which you want to collect objects deleted from the source.
Lists the child patches that have been added to the patch selected in the top pane. For instructions on adding child patches to a patch, see "Creating a DAC Metadata Patch".
Added to Patch Version Column
Patch version of the patch to which the child patch was added.
Date Added Column
Timestamp of when the child patch was added to the patch.
Status Column
Status of the child patch. Possible values are:
Comments Column
Provides a text box where you can enter comments related to the patch.
Lists the parent and child objects that have been added to the patch selected in the top pane. For instructions on adding contents to a patch, see Creating a DAC Metadata Patch.
Type Column
Type of object added as contents to the patch.
Container Column
Parent container of the object added to the patch.
Added to Patch Version Column
The patch version of the patch to which the child patch was added.
Date Added Column
Timestamp of when the object was added to the patch.
Comments Column
Provides a text box where you can enter comments related to the patch.
Source System Column
Name of the source system the object belongs to.
Lists details of the history of the selected patch.
Patch Version Column
The patch version of the patch selected in the top pane.
User Column
The user who performed the action.
Client Start Time Column
Timestamp of the client machine when the action started.
Repository Start Time Column
Timestamp of the DAC repository when the action started.
Repository End Time Column
Timestamp of the DAC repository when the action ended.
Action Column
Action that was performed.
Client Host Column
Name of the client host machine.
Client IP Column
IP address of the client machine.
The Execute View provides access to functionality that enables you to run, schedule, and monitor execution plans.
This section describes the Execute view interface tabs.
The Current Runs tab displays a list of queued, running, and failed current ETL processes. This list includes comprehensive information about each process. Once an ETL process completes, it is accessible from the Run History tab.
Execution Plan Name Column
The execution plan whose runtime instance is this record. This field is read only.
Run Status Column
The status of the run. The possible values are the following.
Value	Description
Completed | All tasks have completed without errors. |
Failed | Tasks were executed but encountered a problem or were killed or aborted. |
Not Executed | Tasks were not able to run before the DAC Server stopped. |
Paused | Task group members are waiting for the other tasks in the group to be executed. |
Queued | Tasks for which the Depends On tasks are not yet completed. |
Requeued | Tasks with a previous Failed status are submitted again. Tasks will start running as soon as an Informatica slot is available. |
Runnable | Tasks for which the Depends On tasks have completed and are ready to be run but are waiting for an Informatica slot to be available. |
Running | Tasks for which the Depends On tasks have been completed, have gotten an Informatica slot, and are being executed. |
Stopped | Tasks for which one or more Depends On tasks have failed. |
Start Timestamp Column
Start time of the ETL process. Reflects the start time of every ETL attempt. For example, if the ETL fails and is run again, it gets a new start timestamp. The history of attempted runs is maintained in the audit trail for the run. This field is read only.
End Timestamp Column
End time of the ETL process. Reflects the end time of every ETL attempt. For example, if the ETL fails and is run again, it gets a new start timestamp. The history of attempted runs is maintained in the audit trail for the run. This field is read only.
Duration Column
A calculated field that shows the difference between start and end time stamps.
Status Description Column
Displays messages generated during run time. You can add notes to this field for Completed runs.
Process ID Column
ID for the process. This value is generated by DAC and is calculated based on the timestamp of the DAC repository database. This field is read-only.
Total Number of Tasks Column
The total number of tasks for this run. This field is read only.
Number of Failed Tasks Column
The sum total of tasks that have failed and that have stopped. This field is read only.
Number of Successful Tasks Column
The number of tasks whose status is Completed. This field is read only.
Number of Tasks Still in Queue Column
The number of tasks whose prerequisite tasks have not completed, and the number of tasks whose prerequisite tasks are completed and are waiting for resources. This field is read only.
Schedule Name Column
The name of the scheduled ETL process.
OS Process Name Column
The system dependent process name for tasks that run as separate processes, such as occurs when execution plans run concurrently.
The Audit Trail (RO) subtab is a read-only tab that provides the history of the selected run.
Last Updated Column
The date the selected run was last updated.
Start Timestamp Column
Start time of the selected run.
End Timestamp Column
End time of the selected run.
Duration Column
The difference between the start timestamp and the end timestamp of the selected run.
Status Column
Status of the selected run.
The Summary (RO) subtab provides a summary (based on dynamic SQL) of the selected ETL run.
Task Phase Column
The task phase of the selected ETL run.
Start Time Column
Start time of the selected phase of the run.
End Time Column
End time of the selected phase of the run.
Duration Column
The difference between the start timestamp and the end timestamp of the selected phase of the run.
Source System Column
The source system associated with the ETL process.
The Run Type Summary (RO) subtab is a read-only tab that indicates the number of task details by the execution type.
The Tasks subtab displays runtime instances of the tasks. As the execution proceeds, the tasks are executed based on the dependency rules and some prioritization.
As tasks complete, the tasks that depend on the completed tasks are notified and once their dependencies are completed, they become eligible to run. If a task fails, the administrator can address the failure and then requeue the task or mark it as Completed. The DAC Server polls for any changes in the failed task's detail status. If a failed task detail is queued, the task itself gets back into the ready-to-run queue and all its dependent tasks get into the queued status.
The rules of the prioritization are as follows:
Depth Column
The level of the task's dependency. Tasks that have no dependencies are depth 0. Tasks that depend on other tasks of depth 0 are depth 1, and so on
Name Column
The task name.
Mode Column
Indicates whether the task will load in full or incremental load.
Group Column
Indicates the name of the task group, if the task belongs to one.
Task Status Column
Possible task statuses are the following:
Start Timestamp Column
Timestamp of when the task started.
End Timestamp Column
Timestamp of when the task ended.
Duration Column
Indicates how long the task ran.
Status Description Column
Description of the status of the task. For example, if the task failed, this field will indicate the cause of the failure.
Source Database Column
Name of the source database.
Target Database Column
Name of the target database.
Folder Name Column
Name of the Informatica folder in which the task resides
Task Phase Column
Task phase of the ETL process. The DAC Server uses the task phase to prioritize tasks and to generate a summary of the time taken for each of the phases
Execution Type Column
Execution type of the task.
Rows Successfully Passed Column
Number of rows that were successfully entered into the data warehouse.
Failed Rows Column
Number of rows that failed.
Source System Column
Source system container from which the task extracts data.
The Task Details subtab opens in query mode. It enables you to query for tasks associated with the selected ETL run in order to view execution details.
The Execution Instances tab enables you to create multiple instances (or copies) of an execution plan. You can then run the parent execution plan and the additional child instances concurrently. For more information about execution instances, see "Running Multiple Instances of an Execution Plan".
Parent Execution Plan Column
Name of the parent execution plan that the execution instance belongs to.
Instance Code Column
An alphanumeric code of one to five characters that is used to identify each child instance. This code is used as the prefix for the Informatica run instance name. This unique identifier enables DAC and Informatica to distinguish between workflow run instances that are running concurrently.
Full Load Always Column
Indicates the specified execution plan will execute a full load regardless of whether the source and target tables have refresh dates.
Micro ETL Column
Indicates an execution plan is a micro ETL execution plan, which is an execution plan that you schedule at very frequent intervals, such as hourly or half-hourly. Refresh dates for micro ETL execution plans are kept separate from the refresh dates for regular execution plans. DAC saves refresh dates for micro ETL execution plans in the Micro ETL Refresh Dates subtab of the Execution Plans tab (Execute view) and refresh dates for regular execution plans in the Refresh Dates subtab of the Physical Data Sources tab (Setup view).
For more information about micro ETL processes, see "About Micro ETL Execution Plans".
Last Designed Column
Indicates the date and time this execution plan was last designed.
Analyze Column
Indicates the tables associated with this execution plan will be analyzed.
Analyze Truncated Tables Only Column
Indicates only truncated tables will be analyzed.
Drop/Create Indices Column
Indicates indexes of the tables associated with this execution plan will be dropped and created.
Overrides Column
Displays the properties that are different between the parent execution plan and the execution instance. The following properties can be customized when creating an execution instance:
The All Dependencies subtab opens in query mode. It enables you to query for tasks that have a dependent relationship. The columns in this tab are the same as those in the Immediate Dependencies subtab.
Note: The All Dependencies information is not subject to export and, therefore, not importable elsewhere. However, if you want to compute all dependencies, you can do so by right-clicking and selecting Compute All Dependencies.
Depth Column
The level of the task's dependency. Tasks that have no dependencies are depth 0. Tasks that depend on other tasks of depth 0 are depth 1, and so on.
Source Column
Source table for the task.
Target Column
Target table for the task.
Successor Depth Column
Depth of the successor task.
Successor Name Column
Name of the successor task.
Successor Source Column
Source table of the successor task.
Successor Target Column
Target table of the successor task.
You can configure DAC to run multiple execution plans concurrently if the execution plans are independent of one another, that is, as long as the execution plans do not load data into the same table on the same physical data source. To avoid data inconsistency, execution plans that have dependencies with other execution plans cannot run concurrently (unless you override the default behavior).
The Concurrent Dependency subtab enables you explicitly to define execution plans as dependent or independent in relation to other execution plans.
For more information, see "Explicitly Defining Execution Plans as Independent or Dependent".
The Connectivity Parameters subtab lists the parameters of the selected execution plan for database connections and Informatica folders.
Copy Number Column
Number of the data source.
Type Column
Possible values are the following:
Indicates an Informatica folder.
Indicates a database connection parameter.
Name Column
Logical name of the folder or database connection.
Value Column
Physical name of the folder or database connection.
Delay Column
Indicates how many minutes an extract of a data source will be delayed after the first extract of a multiple source extract process has started. For more information about multi-source execution plans, see "Setting Up Extract Delays".
Prune Time Column
The Prune Time setting subtracts the number of prune minutes from the LAST_REFRESH_DATE and supplies this value as the value for the $$LAST_EXTRACT_DATE parameter. This property must be set based on experience with processes, such as remote sync, that potentially can cause records to be missed.
Note: Setting the Prune Time period too high can impact performance.
Source System Column
Name of the source system associated with the parameter.
The Execution Parameters subtab enables you to configure parameters at the execution plan level.
For information about how to configure parameters, see Chapter 8, "Defining and Managing Parameters."
Data Type Column
Parameter data type. See "Parameter Data Types" for a description of the different parameter data types.
Load Type Column
Type of load (full, incremental, or both) during which the execution instance will run.
Value Column
User-defined parameter value.
Comments Column
Text field for entering comments.
The Immediate Dependencies subtab opens in query mode. It enables you to query for tasks that have an immediate dependent relationship between tasks that are generated during the automatic task generation process.
Depth Column
The level of the task's dependency. Tasks that have no dependencies are depth 0. Tasks that depend on other tasks of depth 0 are depth 1, and so on.
Task Name Column
Name of immediate dependent task.
Source Column
Source table from which the task extracts data.
Target Column
Target table into which the task loads data.
Successor Depth Column
Depth of the successor task.
Successor Name Column
Name of the successor task.
Successor Source Column
Source table of the successor task.
Successor Target Column
Target table of the successor task.
Displays refresh dates for micro ETL execution plans (indicated by selecting the Micro ETL check box in the Execution Plans tab). For more information about micro ETL execution plans, see "About Micro ETL Execution Plans".
Connection Column
Logical name for the database connection.
Refresh Date Column
Last refresh time of the execution plan. This applies only when separate refresh dates are maintained. Used for micro ETL processing.
The Ordered Tasks subtab lists tasks associated with the selected execution plan and the order in which they can be executed.
Depth Column
The level of the task's dependency. Tasks that have no dependencies are depth 0. Tasks that depend on other tasks of depth 0 are depth 1, and so on.
Group Column
Indicates the name of the task group, if the task belongs to one.
Primary Source Column
Primary source table from which the task extracts data.
Primary Target Column
Primary target table into which data is loaded.
Folder Name Column
Name of the Informatica folder in which the task resides.
Task Phase Column
Task phase of the ETL process. The DAC Server uses the task phase to prioritize tasks and to generate a summary of the time taken for each of the phases.
Execution Type Column
The execution type of the task. For more information about execution types see Execution Type Column.
Command for Full Load
Command for full load that is associated with the task.
Command for Incremental Load Column
Command for incremental load that is associated with the task.
Source System Column
Source system container from which the task extracts data.
The Subject Areas subtab lists the subject areas associated with the selected execution plan. You can also add subject areas to or remove subject areas from the selected execution plan.
For instructions on adding and removing subject areas, see:
Subject Area Column
Name of the subject area associated with the execution plan.
Source System Column
The source system container associated with the subject area.
The Tables (RO) subtab is a read-only tab that lists all the tables that are touched by the selected execution plan.
The Execution Plans tab enables you to view, edit, and create execution plans. For more information, see "Building and Running Execution Plans".
Full Load Always Column
Indicates the specified execution plan will execute a full load regardless of whether the source and target tables have refresh dates.
Micro ETL Column
Indicates an execution plan is a micro ETL execution plan, which is an execution plan that you schedule at very frequent intervals, such as hourly or half-hourly. Refresh dates for micro ETL execution plans are kept separate from the refresh dates for regular execution plans. DAC saves refresh dates for micro ETL execution plans in the Micro ETL Refresh Dates subtab of the Execution Plans tab (Execute view) and refresh dates for regular execution plans in the Refresh Dates subtab of the Physical Data Sources tab (Setup view).
For more information about micro ETL processes, see "About Micro ETL Execution Plans".
Last Designed Column
Indicates the date and time this execution plan was last designed.
Analyze Column
Indicates the tables associated with this execution plan will be analyzed.
Analyze Truncated Tables Only Column
Indicates only truncated tables will be analyzed.
Drop/Create Indices Column
Indicates indexes of the tables associated with this execution plan will be dropped and created.
Run Now Button Column
The Run Now button submits a request to the DAC Server to execute the execution plan.
Build Button
The Build button does the following:
For more information about building an execution plan, see "Building and Running Execution Plans".
The All Dependencies subtab opens in query mode. It enables you to query for tasks that have a dependent relationship. The columns in this tab are the same as those in the Immediate Dependencies subtab.
Note: The All Dependencies information is not subject to export and, therefore, not importable elsewhere. However, if you want to compute all dependencies, you can do so by right-clicking and selecting Compute All Dependencies.
Depth Column
The level of the task's dependency. Tasks that have no dependencies are depth 0. Tasks that depend on other tasks of depth 0 are depth 1, and so on.
Source Column
Source table for the task.
Target Column
Target table for the task.
Successor Depth Column
Depth of the successor task.
Successor Name Column
Name of the successor task.
Successor Source Column
Source table of the successor task.
Successor Target Column
Target table of the successor task.
You can configure DAC to run multiple execution plans concurrently if the execution plans are independent of one another, that is, as long as the execution plans do not load data into the same table on the same physical data source. To avoid data inconsistency, execution plans that have dependencies with other execution plans cannot run concurrently (unless you override the default behavior).
The Concurrent Dependency subtab enables you explicitly to define execution plans as dependent or independent in relation to other execution plans.
For more information, see "Explicitly Defining Execution Plans as Independent or Dependent".
The Connectivity Parameters subtab lists the parameters of the selected execution plan for database connections and Informatica folders.
Copy Number Column
Number of the data source.
Type Column
Possible values are the following:
Indicates an Informatica folder.
Indicates a database connection parameter.
Name Column
Logical name of the folder or database connection.
Value Column
Physical name of the folder or database connection.
Delay Column
Indicates how many minutes an extract of a data source will be delayed after the first extract of a multiple source extract process has started. For more information about multi-source execution plans, see "Setting Up Extract Delays".
Prune Time Column
The Prune Time setting subtracts the number of prune minutes from the LAST_REFRESH_DATE and supplies this value as the value for the $$LAST_EXTRACT_DATE parameter. This property must be set based on experience with processes, such as remote sync, that potentially can cause records to be missed.
Note: Setting the Prune Time period too high can impact performance.
Source System Column
Name of the source system associated with the parameter.
The Execution Instances subtab (RO) is a read only list of the execution plan's child instances.
The Execution Parameters subtab enables you to configure parameters at the execution plan level.
For information about how to configure parameters, see Chapter 8, "Defining and Managing Parameters."
Data Type Column
Parameter data type. See "Parameter Data Types" for a description of the different parameter data types.
Load Type Column
Type of load (full, incremental, or both) during which the execution instance will run.
Value Column
User-defined parameter value.
Comments Column
Text field for entering comments.
Enables you to add tasks that will run after the ordered tasks of an execution plan run. Also lists all the user-specified preceding tasks for an execution plan.
Execution Priority Column
Indicates the order among the following tasks in which this task is executed.
Command for Incremental Load Column
Command associated with the task.
Source System Column
Source system container from which the task extracts data.
The Immediate Dependencies subtab opens in query mode. It enables you to query for tasks that have an immediate dependent relationship between tasks that are generated during the automatic task generation process.
Depth Column
The level of the task's dependency. Tasks that have no dependencies are depth 0. Tasks that depend on other tasks of depth 0 are depth 1, and so on.
Task Name Column
Name of immediate dependent task.
Source Column
Source table from which the task extracts data.
Target Column
Target table into which the task loads data.
Successor Depth Column
Depth of the successor task.
Successor Name Column
Name of the successor task.
Successor Source Column
Source table of the successor task.
Successor Target Column
Target table of the successor task.
The Ordered Tasks subtab lists tasks associated with the selected execution plan and the order in which they can be executed.
Depth Column
The level of the task's dependency. Tasks that have no dependencies are depth 0. Tasks that depend on other tasks of depth 0 are depth 1, and so on.
Group Column
Indicates the name of the task group, if the task belongs to one.
Primary Source Column
Primary source table from which the task extracts data.
Primary Target Column
Primary target table into which data is loaded.
Folder Name Column
Name of the Informatica folder in which the task resides.
Task Phase Column
Task phase of the ETL process. The DAC Server uses the task phase to prioritize tasks and to generate a summary of the time taken for each of the phases.
Execution Type Column
The execution type of the task. For more information about execution types see Execution Type Column.
Source System Column
Source system container from which the task extracts data.
Details Button on Subtab Toolbar
The Details command displays detailed information about the task, including predecessor and successor tasks, and source, target, conditional, and refresh date tables.
Unit Test Button on Subtab Toolbar
The Unit Test command provides a summary of the details of what gets executed when the particular task runs as part of the execution plan. It includes the following:
Enables you to add tasks that will run before the ordered tasks of an execution plan run. Also lists all the user-specified preceding tasks for an execution plan. For instructions on adding preceding tasks to an execution plan, see "Building and Running Execution Plans".
Name Column
Name of task.
Execution Priority Column
Indicates the order in which the task is executed. If two or more tasks have the same priority, DAC will execute them in parallel.
Command for Incremental Load Column
Command for incremental load that is associated with the task.
Source System Column
Source system container from which the task extracts data.
Displays refresh dates for micro ETL execution plans (indicated by selecting the Micro ETL check box in the Execution Plans tab). For more information about micro ETL execution plans, see "About Micro ETL Execution Plans".
Connection Column
Logical name for the database connection.
Refresh Date Column
Last refresh time of the execution plan. This applies only when separate refresh dates are maintained. Used for micro ETL processing.
The Subject Areas subtab lists the subject areas associated with the selected execution plan. You can also add subject areas to or remove subject areas from the selected execution plan.
For instructions on adding and removing subject areas, see:
Subject Area Column
Name of the subject area associated with the execution plan.
Source System Column
The source system container associated with the subject area.
The Tables (RO) subtab is a read-only tab that lists all the tables that are touched by the selected execution plan.
Type Column
Table type.
Connection Column
Database connection.
Table Column
Table name.
The Run History tab displays information about completed ETL processes. The information displayed in the top and bottom windows is the same as that in the Current Runs tab.
For a description of the information in the Run History tab, see "Current Runs Tab".
See "Current Runs Tab: Audit Trail (RO) Subtab".
See "Current Runs Tab: Phase Summary (RO) Subtab".
See "Current Runs Tab: Run Type Summary (RO)".
See "Current Runs Tab: Tasks Subtab".
The Task Details subtab opens in query mode. It enables you to query for tasks associated with the selected ETL run in order to view execution details.
The Scheduler tab enables you to schedule ETL processes to be executed either once or periodically. When you schedule an ETL or make changes to a schedule, the DAC Server picks up the information from the DAC Client. The DAC Server polls the DAC repository for changes periodically at a frequency set in the DAC System Properties tab.
The top pane of the Scheduler tab lists ETL runs that have been scheduled. The bottom window enables you to schedule an ETL run.
For instructions on scheduling ETL processes, see "Scheduling an Execution Plan".
Execution Plan Column
The name of the scheduled execution plan.
Last Schedule Status Column
The last run status of the scheduled ETL process. Possible values are Running, Completed or Stopped.
Next Trigger Column
Time the scheduled ETL run will next be executed.
Status Description Column
Description of the last ETL run. Possible values are Running, Completed, or the reason the process stopped.
Recurrence Column
Indicates how often the schedule will be executed.
This appendix describes common problems and how to resolve them.
This appendix contains the following topics:
The process of recovering from the loss of an encryption key involves clearing the encrypted data from the DAC repository, creating a new cwallet.sso file (with a new encryption key), and stamping the DAC repository with the new encryption key.
This procedure involves steps that use automation utility commands. Before you can use these commands, you need to configure the automation utility property file.
To recover from the loss of an encryption key:
Use this command to generate a cwallet.sso file with a encryption key that you specify.
Use this command to generate a cwallet.sso file with a randomly generated encryption key.
The following message will be displayed:
Encryption key validation value is missing from the DAC repository. Would like to add it now?
A message informs you whether the operation was successful.
If the DAC Server crashes while an execution plan is running, some workflows associated with the execution plan may have been submitted to Informatica. When the DAC Server is restarted and the failed ETL process resumes, the workflows that DAC submitted to Informatica before the crash may have completed or failed or may still be running. You do not have to perform any manual intervention. DAC manages the tasks submitted for execution prior to the crash in the following manner:
Note: If a failed task includes truncate statements, the truncate action will occur again when the task is restarted. This will also trigger the Upon Failure Restart action if one is defined for the task.
You can discard an execution plan that failed by navigating to the Current Run tab, right-clicking on the execution plan and changing its status to Mark as Completed. This will force the run status to be updated as Completed. When you submit a request for another run, the DAC Server creates another instance of it.
Caution: Perform this procedure in a development or test environment only, because it might leave the data in an inconsistent state, causing you to have to reload all of the data. |
Tasks that use Informatica Aggregator Transformation can fail when the Sorted Input option is active. The tasks SDE_DTLFORECASTFACT and SDE_COSTLIST are examples of tasks that can fail in such a situation.
To prevent such tasks from failing, in Informatica PowerCenter Designer, navigate to Mapping Designer, open the corresponding mapping, and in the Aggregator transformation, deselect the Sorted Input check box.
If the DAC Server fails during the execution of an execution plan, the status of the execution plan will remain as Running. When the DAC Server is started again, it will automatically run the execution plan if the Auto Restart ETL system property is set to True. If the same system property is set to False, when the server restarts, it will set the correct status as Failed. In order to execute the execution plan from the point of failure, submit the request to the server again.
The DAC Server will automatically terminate if it looses connection to the DAC repository.
DAC Server uses pmcmd to initiate the workflows on Informatica Server. In the English-based operating systems, DAC issues the commands in the non-blocking mode (asynchronously), and polls Informatica for the status of the workflow. The output of the pmcmd getWorkFlowDetails is spooled to the Domain_Home\dac\log directory, and then gets parsed to determine whether the workflow is still running, completed successfully, or failed.
However, for non-English-based operating systems, DAC issues commands in the waiting mode (synchronously). This means that when the process completes the exit code tells DAC whether or not the workflow succeeded.
The commands used by DAC to communicate with Informatica are externalized in a file called infa_commands.xml. The DAC command template does not have a place holder for specifying the wait mode. Without this wait mode configuration, on a non-English- based operating system, DAC proceeds with the execution even before the workflow completes executing. This might result in errors, such as Informatica's bulk loader failing because of indexes are present or fact tables are being loaded without foreign key references.To fix the problem, go to Domain_Home\dac\conf folder and edit the file called infa_commands.xml. Depending upon the version of informatica you are using, edit either the block called START_WORKFLOW_7 or START_WORKFLOW_8 and verify whether %WAITMODE is in the syntax. If it is not, add it as follows:
With:
With:
When you have a multi-source environment, you can use a single execution plan to extract data for a given subject area for all the sources. When you build the execution plan, DAC creates as many instances of the extract tasks as there are sources, without having the need to duplicate the workflows or DAC metadata.
At runtime, DAC creates an individual parameter file for each session, which contains the evaluated name-value pairs for all parameters. DAC stores the parameter file at the location specified by the DAC system property InformaticaParameterFileLocation. The default location is <Domain_Home>\dac\Informatica\parameters.
If a task in a multi-source environment fails and you want to restart it, you can do so from DAC or from Informatica. See the following instructions.
To restart a failed task in a multi-source environment using DAC:
The Unit Test dialog displays the steps that DAC will carry out if the task is executed.
Note: The DAC system property Dryrun must be set to False for the task to run.
To restart a failed task in a multi-source environment using Informatica
The parameter file is stored in the location specified by the DAC system property InformaticaParameterFileLocation. The default location is <Domain_Home>\dac\Informatica\parameters.
Note: If DAC is configured correctly, the location specified by $PMSourceFileDir and the location specified by the DAC system property InformaticaParameterFileLocation should be the same. If the locations are the same, the parameter file will already be in the correct location.
When the DAC repository resides on a non-Unicode Oracle database, the Informatica workflow names may not fit into the corresponding DAC fields, which causes tasks to fail during ETL processes.
To work properly in multi-byte character environments, the DAC repository should be created with the Unicode option selected.
Perform the following procedure to fix an existing DAC repository with this problem. You can use the DAC Client or DAC command line utilities to perform the procedure.
Informatica workflows initiated by DAC fail with error code 17 and the error message "Parameter file does not exist" when the parameter file has multi-line parameters. See the below text for an example. Note that in the following example, an error occurs because DAC issues pmcmd
with -lpf in the syntax.
To prevent this issue, edit <DAC_Config_Location>\conf-shared\infa_command.xml and replace all instances of <-lpf> with <-paramfile>.
This workaround will ensure that DAC uses -paramfile in the pmcmd
syntax and Informatica can recognize the multi-line parameters.
In DAC, you can reset refresh dates at the task level rather than the table or subject area level by using one of the following options:
Note: With this option, given that the execution plan will run in full mode, there is the risk that source tables populated by this execution plan could also be included in other subject areas, and in such instances, could be populated in error. To work around this issue, you can set the DAC system property "No Run" to True, which will generate tasks but not execute them. You can review the Task Details in the Current Runs tab to verify if the correct tasks are running in full mode.
If you are using the Oracle (OCI8) connection type when defining a physical data source and receive an error such as "no ocijdbc11," consider the following points:
The DAC behavior for truncating tables when more than one DAC task writes to the same target table is as follows:
If you want to override this default behavior, you can create a task action and use the Preceding Action action type to specify in a custom SQL statement that the table should be truncated. For more information about configuring task actions, see "Using Actions to Optimize Indexes and Collect Statistics on Tables".
Discrepancies may exist between the status of a DAC task and the status of an Informatica workflow for the following reasons:
In Windows, you can open the Task Manager and observe the pmcmd executables. If an executable has the same process ID for more than a few minutes, then the process is "hanging."
If the DAC Server is not visible to all DAC Clients, make sure the DAC system property "DAC Server Host" has the correct value and not "localhost." Depending on your environment, you may need to use a fully qualified name. You can also try using the IP address of the DAC Server machine. You should be able to ping the DAC Server machine from the DAC Client machine. Make sure the ping requests do not time out.
You should also inspect the network settings to make sure the port number that is registered for the DAC Server Port system property is open and available.
DAC supports Oracle TimesTen In-Memory Database (TimesTen) as a data warehouse database type. This appendix describes usage guidelines specific to TimesTen databases.
This appendix contains the following topics:
Oracle TimesTen In-Memory Database (TimesTen) operates on databases that fit entirely in physical memory (RAM). Therefore, because memory is limited, you should make sure a data warehouse that resides in a TimesTen database holds only the necessary tables and columns and that the columns are of an optimal size. For example, you could store a full set of data warehouse tables in an Oracle database, and then move a subset of the tables to a TimesTen database.
The In Memory check box in the Tables tab and Columns subtab of the Design view is a flag that controls whether DAC designates the tables and columns as In Memory. Only In Memory tables and columns will be created and upgraded in the TimesTen database. If a table is In Memory, by default all of its columns are also In Memory. You can individually deselect a column's In Memory check box if you do not want the column to be In Memory.
In Memory tables and columns are created, updated, and dropped on a TimesTen database in the same way they are for Oracle, SQL Server, and DB2 databases. For instructions on managing data warehouse schemas, including a schema on a TimesTen database, see Chapter 10, "Managing Data Warehouse Schemas."
DAC communicates with TimesTen databases using an ODBC connection.
If there are tables or columns that you do not need for analytical reporting, you can prune them in DAC so that they are not created in the TimesTen database.
Pruning Tables
To ensure a table is not created in a TimesTen database, do one of the following:
Pruning Columns
You can prune columns for TimesTen databases in the following ways:
If a table is designated as In Memory (by selection of the In Memory check box in the Tables tab), by default all of the table columns are also designated as In Memory, which means the columns will be created in the TimesTen database. If you do not want a column created in the TimesTen database, you can deselect the In Memory check box in the Columns subtab of the Tables tab in the Design view or inactivate the column by selecting the Inactive check box.
You can reduce the column size in a TimesTen database to save memory if you know the data that will populate the data warehouse column will fit in a reduced column size. To reduce the column size, go to the Columns subtab of the Tables tab and enter the appropriate values in the In Memory Length and In Memory Precision fields. The values in the In Memory Length and In Memory Precision fields override the existing Length and Precision values for the data type.
For example, suppose the Number data type has a length of 10, but you know the column will hold data of only five digits, such as a zip code, you could set the In Memory Length to 5, which will avoid allocation of extra memory to the column.
Consider the following points about DAC support for indexes in TimesTen databases:
The customsql.xml file, located in the <DAC_Config_Location>\CustomSQLs directory, contains the default syntax DAC uses for analyzing tables on all database types, including a TimesTen database. You can edit the customsql.xml file to change the default behavior. For instructions, see "Customizing customsql.xml to Drop and Create Indexes and Analyze Tables".
When a DAC table column is converted to a TimesTen table column:
Table B-1 Conversion of Types from DAC to TimesTen for Non-Unicode Databases
DAC Data Type | TimesTen Data Type |
---|---|
CHAR | TT_CHAR |
VARCHAR | TT_VARCHAR |
NUMBER | NUMBER |
TIMESTAMP | TT_TIMESTAMP |
DATE | TT_DATE |
Table B-2 Conversion of Types from DAC to TimesTen for Unicode Databases
DAC Data Type | TimesTen Data Type |
---|---|
CHAR | TT_NCHAR |
VARCHAR | TT_NVARCHAR |
NUMBER | NUMBER |
TIMESTAMP | TT_TIMESTAMP |
DATE | TT_DATE |
About the Number Data Type When Precision Is Zero
To reduce memory usage, when the data type is number and the precision is zero, the following conditions apply:
 Copyright © 2010, 2012, Oracle and/or its affiliates. All rights reserved. |