Pillar AxiomONE™ Path Manager 3.3

Installation Guide and Release Notes

for Community Enterprise Operating System 5.5
Copyright Notice

© 2010 Pillar Data Systems, Inc. All Rights Reserved.
Pillar Data Systems, Inc., 2840 Junction Avenue, San Jose, CA 95134-1922

Part Number: 4420-00125-0400
APM 3.3
2010 November

Trademarks

Pillar Data Systems, the Pillar Data Systems logo, the Pillar “|” icon, Pillar Axiom, and Axiom are registered trademarks of Pillar Data Systems. AxiomONE Storage Domains, Pillar QoS, Pillar Application Aware Storage, Pillar Efficiency Quotient, Pillar EQ, and Pillar Sleepy Drives are trademarks of Pillar Data Systems. Other company and product names may be trademarks of their respective owners.

Important Note to Users

This document contains CONFIDENTIAL INFORMATION of Pillar Data Systems and should not be disclosed or further distributed to third parties without the express prior written consent of Pillar Data Systems.

This document and the use of Pillar Axiom hardware and software to which this document applies are subject to the applicable Pillar Data Systems End User License Agreement and Warranty Statement. A copy of the Pillar Data Systems End User License Agreement and Warranty Statement may be found on the same CD with which this document is provided, if applicable. Documents and software downloaded from a Pillar Data Systems Web site are governed by the End User License Agreement and Warranty Statement in effect between you and Pillar Data Systems at the time of download. If you entered into a signed written agreement with Pillar Data Systems for the purchase or use of this Pillar Axiom Storage System that supersedes the Pillar Data Systems End User License Agreement and Warranty Statement, then such signed written agreement applies.

Pillar Data Systems reserves the right to change the specifications and content in this document at any time.
Table of Contents

Preface

Chapter 1 Introduction to AxiomONE Path Manager
 - AxiomONE Path Manager Requirements. .. 11
 - AxiomONE Path Manager 3.3 Features. .. 12
 - About AxiomONE Path Manager and Hypervisors. 14
 - AxiomONE Path Manager Architecture. 15
 - About the AxiomONE Path Manager Control Path. 17
 - About the AxiomONE Path Manager Data Path. 17
 - About Multipathing and Device Mapper Automation. 18
 - Supported CentOS 5.5 Distributions. .. 20
 - Operating Limits. .. 21

Chapter 2 Install AxiomONE Path Manager
 - Prepare to Install the AxiomONE Path Manager. 22
 - Supported SAN Protocols. .. 22
 - Supported Fibre Channel SAN Hardware Components. 23
 - Supported iSCSI Software and Hardware. 26
 - Pre-Configure the SAN for Pillar Axiom Integration. 32
 - Verify Installation of the Device Mapper. 34
 - Download and Install the AxiomONE Path Manager Software. 35
 - Download the AxiomONE Path Manager Software............................ 35
 - Install (or Update) the AxiomONE Path Manager Software. 36
 - Configure the Pillar Axiom System for LUN Access. 38
 - Partition and Format the LUN Disk (Optional). 41
 - About Static and Round-Robin Load Balancing. 43
 - About Path Selection. .. 44
 - Remove AxiomONE Path Manager Software (Optional). 45

Chapter 3 AxiomONE Path Manager Release Notes
 - New in this Release. .. 46
List of Figures

Figure 1 APM interaction with a Pillar Axiom server. 16
Figure 2 Example host ports before APM installation. 38
Figure 3 Example host ports after APM installation. 38
List of Tables

Table 1 Typography to mark certain content. ... 8
Table 2 Contacts at Pillar Data Systems. ... 9
Table 3 APM 3.3 for CentOS 5.5 features. ... 12
Table 4 Line and color key for APM interaction diagram. 15
Table 5 Supported hardware platforms. ... 20
Table 6 APM operating limits. .. 21
Table 7 QLogic HBA settings ... 24
Table 8 Characteristics of SAN connections to host ports. 33
Table 9 Known issues. ... 47
Table 10 Known Pillar Axiom issues. ... 48
Preface

Audience
This document is intended for individuals who install and maintain Pillar AxiomONE Path Manager (APM) software.

Expected experience includes:

- Understanding of storage area networks (SANs) and disk storage systems.
- Understanding of Fibre Channel or iSCSI technology
- Practical knowledge of Pillar Axiom Storage Systems.
- Basic Linux administration skills.
- Experience installing software packages on Community Enterprise Operating System systems.

Before You Read This Document
Being familiar with certain other Pillar Axiom technical documentation helps you succeed in the use of this guide.

Familiarize yourself with the following related documentation:

- Pillar Axiom Customer Release Notes: Includes late-breaking important information about the installation and operation of the Pillar Axiom system.
- Pillar Axiom Administrator’s Guide: Provides detailed information on creating and managing storage resources.
- AxiomONE CLI Reference Guide (for AxiomONE CLI) or CLI Reference Guide (for pdscli): Provides detailed information about functions available in the Pillar Axiom command line interfaces (CLIs).

These documents are available from the Pillar Technical Documents website (http://www.pillardata.com/techdocs).
Access Documentation

Pillar Data Systems technical documentation (including installation, service, cabling, integration, and administration guides) are available from several sources.

Pillar Axiom GUI

After logging in to the AxiomONE Storage Services Manager on the Pilot, navigate to **Support > Technical Documentation** and click on the document of interest.

Web sites

- Technical documents (http://www.pillardata.com/techdocs)
- Customer support portal (https://support.pillardata.com/login.do)

After logging in to the web site, click on **Documents** in the left navigation pane, and then click the appropriate category in the expanded list. Click on the document of interest.

Product CD-ROM

Insert the Technical Documentation CD-ROM that came with your Pillar Axiom Storage System into the CD player in a computer. Open the DocMenu PDF and click on the document of interest.

Tip: To search all technical documents on the CD-ROM, click the **Search all PDFs** icon in the top right corner. In the Search dialog, enter the word or phrase for which you would like to search.

Typographical Conventions

Table 1 Typography to mark certain content

<table>
<thead>
<tr>
<th>Convention</th>
<th>Meaning</th>
</tr>
</thead>
</table>
| *italics* | Within normal text, words in italics indicate:
| | - New terms and emphasized words.
| | - Command variables. |
Table 1 Typography to mark certain content (continued)

<table>
<thead>
<tr>
<th>Convention</th>
<th>Meaning</th>
</tr>
</thead>
</table>
| monospace | Indicates one of the following, depending on the context:
 • The name of a file or the path to the file.
 • *Output* displayed by the system on the command line. |
| monospace (bold) | *Input* provided by an administrator on the command line. |
| > | Indicates a menu item or a navigation path in a graphical user interface (GUI). For example, “Click **Storage > Clone LUNs**” means to click the **Clone LUNs** link on the **Storage** page in the graphical user interface (GUI). |

Pillar Contacts

Table 2 Contacts at Pillar Data Systems

<table>
<thead>
<tr>
<th>For help with...</th>
<th>Contact...</th>
</tr>
</thead>
</table>
| Error messages, usage questions, and other support issues | US and Canada: 877-4PILLAR (1-877-474-5527)
Europe: +800 PILLAR FS (+800 74 55 27 37)
Asia Pacific: +1-408-518-4515
South Africa: +0 800 980 400
Have your system serial number ready.
support@pillardata.com
Customer support portal (https://support.pillardata.com/login.do) |
| Training (custom or packaged) | Training and Education (http://www.pillardata.com/support-education/training/) |
| Professional services and inquiries | globalsolutions@pillardata.com
Global Solutions (http://www.pillardata.com/support/professional-services/) |
<table>
<thead>
<tr>
<th>For help with...</th>
<th>Contact...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sales and general contact information</td>
<td>Company contacts (http://www.pillardata.com/company/contact)</td>
</tr>
<tr>
<td>Documentation improvements and resources</td>
<td>docs@pillardata.com</td>
</tr>
<tr>
<td></td>
<td>Technical documents (http://www.pillardata.com/techdocs) (Log in with your username and password, and select Documents.)</td>
</tr>
</tbody>
</table>
Chapter 1 Introduction to AxiomONE Path Manager

AxiomONE Path Manager Requirements

Pillar Axiom systems presenting LUNs to Community Enterprise Operating System 5.5 (CentOS 5.5) hosts using AxiomONE Path Manager 3.3 must be running release 3.5 or higher of the Pillar Axiom software.
AxiomONE Path Manager 3.3 Features

APM is defined as:

Optional software installed on a storage area network (SAN) host to manage multiple paths to the Pillar Axiom system.

APM performs the following primary functions:

- Routes I/O to Pillar Axiom LUNs using only the best available data paths.
- Shares traffic among the available paths and ensures that access to the LUNs is not interrupted if some paths fail.
- Automatically configures the host into the AxiomONE Storage Services Manager and updates the configuration if the host information changes.

The function described in the last bullet enables the AxiomONE Storage Services Manager to report information about APM running on the host, such as the number of working paths, and, in some environments, to configure features such as load balancing.

Each APM release provides different features, and the features provided for each platform may vary. Refer to the following table for descriptions of the specific features implemented in this release.

Table 3 APM 3.3 for CentOS 5.5 features

<table>
<thead>
<tr>
<th>Feature</th>
<th>Benefit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Automatic data path failover</td>
<td>Automatically switches to the highest priority optimized path available after a path failure or fail back.</td>
</tr>
<tr>
<td>Automatic recognition of SAN hosts by the AxiomONE Storage Services Manager</td>
<td>Sends a description of the host to each Pilot management controller on connected Pillar Axiom systems, allowing the AxiomONE Storage Services Manager GUI and CLI tools to create a definition for the host. This definition includes such information as the WWNs for each of the host's Fibre Channel ports, the IP addresses for any iSCSI ports, and the version of APM running on the host.</td>
</tr>
<tr>
<td>Call-Home log collection</td>
<td>When a Pillar Axiom administrator uses the AxiomONE Storage Services Manager to collect system information (refer to the Pillar Axiom Administrator's Guide for details), the Pillar Axiom system sends a request to each connected APM host. The APM hosts collect useful</td>
</tr>
</tbody>
</table>
Table 3 APM 3.3 for CentOS 5.5 features (continued)

<table>
<thead>
<tr>
<th>Feature</th>
<th>Benefit</th>
</tr>
</thead>
</table>
| diagnostic information and send it to the Pillar Axiom system, where it is bundled with any other requested information. The Pillar Axiom system can then transmit this information to the Pillar World Wide Customer Support Center. The information collected from each APM host includes:
 - Logs from the APM components.
 - Configuration and status information from the operating system.
 - System and error logs from the operating system.
 No customer data is transmitted. | |
| Support for FC connections to FC Slammers | Makes connections to Pillar Axiom storage arrays over high-speed FC network infrastructure. |
| Support for iSCSI connections to both FC and iSCSI Slammers | Makes connections to Pillar Axiom storage arrays over long distances using IP network infrastructure.
 Note: iSCSI connections to FC Slammers require iSCSI-to-FC routers. |
| Support for Boot from SAN | Boot from SAN is supported on QLogic Fibre Channel host bus adapters (HBAs). See this installation guide for a list of supported QLogic HBAs. |
| Fibre Channel over Ethernet (FCoE) Converged Network Adapters (CNAs) | FCoE CNAs on the host are supported. |
| Support for virtualization | APM supports the Xen or KVM hypervisor included in the CentOS 5.5 distribution. |
| Support for static load balancing | Both static and round-robin load balancing options are supported. |
About AxiomONE Path Manager and Hypervisors

AxiomONE Path Manager (APM) supports the Xen or KVM hypervisor, open source virtual machine monitors included with the Community Enterprise Operating System 5.5 (CentOS 5.5) distribution, on both x86-32 and x86-64 platforms.

You can install APM on a CentOS 5.5 host configured as a Xen or KVM hypervisor host. Guest operating systems can access multi-pathed Pillar Axiom LUNs that are mapped to the hypervisor host in the same way that these systems access other disks. For example, these LUNs can be used to hold file-based containers, which can then be exposed to the guest operating systems, or the guest operating systems can access the LUNs as persistent storage disks.

Guest operating systems can also use iSCSI software initiators to connect to Pillar Axiom systems and to access LUNs. In this case, APM maps the LUNs directly to the guest operating system. If the guest operating system has a version of APM that supports iSCSI, this version of APM can be installed on the guest and used to manage multiple iSCSI paths to the Pillar Axiom LUNs in the same way as APM would be used on a physical host.

AxiomONE Path Manager Architecture

AxiomONE Path Manager (APM) manages the Linux multipath framework and communicates with Pillar Axiom servers on a control path, which is separate from the data path. The Linux multipath framework manages the LUN data access paths themselves.

Figure 1: APM interaction with a Pillar Axiom server illustrates how the APM software installed on a storage area network (SAN) host interacts with a Pillar Axiom system. Refer to the table below to determine the significance of the lines and colors in the figure.

Table 4 Line and color key for APM interaction diagram

<table>
<thead>
<tr>
<th>Graphic element</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>________________</td>
<td>Data path</td>
</tr>
<tr>
<td>________________</td>
<td>Control path</td>
</tr>
</tbody>
</table>
| Pillar-supplied hardware and software
| Non-Pillar hardware and software
| SAN host kernel space
| SAN host user space |
Figure 1 APM interaction with a Pillar Axiom server

Legend

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>User</td>
</tr>
<tr>
<td>2</td>
<td>User application</td>
</tr>
<tr>
<td>3</td>
<td>SAN host</td>
</tr>
<tr>
<td>4</td>
<td>APM daemon</td>
</tr>
<tr>
<td>5</td>
<td>Control paths (all dashed lines)</td>
</tr>
<tr>
<td>6</td>
<td>Pillar Axiom administrator</td>
</tr>
<tr>
<td>7</td>
<td>Pillar Axiom command line interface (CLI) or graphical user interface (GUI)</td>
</tr>
<tr>
<td>8</td>
<td>Encrypted XML over TCP/IP</td>
</tr>
<tr>
<td>9</td>
<td>Network card</td>
</tr>
<tr>
<td>10</td>
<td>Linux multipath framework</td>
</tr>
<tr>
<td>11</td>
<td>iSCSI software initiator (iSCSI)</td>
</tr>
<tr>
<td>12</td>
<td>TCP/IP driver (iSCSI)</td>
</tr>
<tr>
<td>13</td>
<td>HBA driver (FC) or NIC driver (iSCSI)</td>
</tr>
<tr>
<td>14</td>
<td>HBA (FC) or NIC (iSCSI)</td>
</tr>
<tr>
<td>15</td>
<td>SCSI over Fibre Channel (FC) or iSCSI over IP (iSCSI)</td>
</tr>
<tr>
<td>16</td>
<td>Data path (all solid lines)</td>
</tr>
<tr>
<td>17</td>
<td>Pillar Axiom server</td>
</tr>
<tr>
<td>18</td>
<td>Brick storage enclosure pool</td>
</tr>
</tbody>
</table>
About the AxiomONE Path Manager Control Path

The AxiomONE Path Manager (APM) control path provides a path separate from the data path to manage multipathing and communication.

The APM software uses a daemon running in the background to control multipathing and communication. The APM daemon uses the control path to:

- Get path information from the HBA drivers.
- Configure the Linux multipath framework.
- Send information such as host attributes and statistics to the Pilot management controller, and collect logs from the host on request.

The APM daemon sends a description of the host to the Pilot on each connected Pillar Axiom system. This description creates a definition for the host in the AxiomONE Storage Services Manager. The definition includes any Fibre Channel (FC) ports in the host, and the name of the host's iSCSI initiator, if Internet Small Computer System Interface (iSCSI) is configured. The graphical user interface (GUI) and command line interface (CLI) list the port World Wide Names (WWNs) of the FC ports in the host and the Internet Protocol (IP) addresses that are used to make iSCSI connections to the Pillar Axiom system.

To establish the control path to a Pillar Axiom host, that host must be able to connect to the Pillar Axiom system over the data path. The Slammer returns the IP address of its Pilot to the APM host over the data path as part of the connection sequence.

If you use iSCSI on the host to connect to a FC Slammer storage controller through an iSCSI-to-FC router, these connections are described as FC. The connections will appear to originate from the FC ports that are assigned on the switch to the host's iSCSI initiator. The WWNs of these ports are displayed as Fibre Channel HBA ports on the host. The HBA model associated with these ports is reported as iSCSI-FC router.

About the AxiomONE Path Manager Data Path

AxiomONE Path Manager (APM) uses the Linux device-mapper to provide paths for reading and writing data to LUNs on the Pillar Axiom system.

See Figure 1: APM interaction with a Pillar Axiom server for an illustration of how data flows from the host to the Pillar Axiom system.
The Linux multipath framework:

- Controls and manages all data paths to Pillar Axiom LUNs.
- Groups multiple data paths to a Pillar Axiom LUN and presents this group to the operating system as a single LUN or drive.
- Identifies and uses optimized data paths when possible. An optimized path provides the best performance and is the preferred path for data transfer.
- Determines which data paths to use.
- Handles data path failover.
- Manages data path errors.

About Multipathing and Device Mapper Automation

AxiomONE Path Manager (APM) uses the standard Linux 2.6 device-mapper functionality to provide multipathing services. APM consists of a daemon that monitors the state of the device-mapper and communicates with the Pillar Axiom software. APM presents the multipathed LUNs as virtual block devices in the Linux 2.6 device-mapper framework.

Note: You can use device-mapper and multipath-tools for many purposes other than managing multipathing for Pillar Axiom systems.

Pillar Data Systems provides a package containing an updated version of the multipath-tools component of device-mapper, along with additional bug fixes, as part of APM.

Important! You must use this Pillar Data Systems version of multipath-tools instead of the one supplied as part of the operating system in order to use APM. See Install (or Update) the AxiomONE Path Manager Software.

In addition, APM provides installation and start up scripts that automate several of the manual integration and configuration tasks usually required by device-mapper. The automation includes:

- Correcting functional deficiencies in the HBA driver installers.
- Bringing partitions on multipath devices online automatically.
- Reordering startup scripts for optimum operation.
Note: To determine how the Linux startup scripts have been altered, refer to the comments in the following Pillar-provided files:

- /etc/init.d/multipathd
- /etc/init.d/axiompmd
Supported CentOS 5.5 Distributions

AxiomONE Path Manager (APM) is supported on Community Enterprise Operating System 5.5 (CentOS 5.5) platforms.

APM supports CentOS 5.5 distributions for the following architectures:

- x86-32 (32-bit x86 platforms)
- x86-64 (64-bit AMD and Intel platforms)

To determine the hardware platform on which your distribution is running, run the following command:

```
# uname -i
```

Compare the output of this command with the information in the following table:

<table>
<thead>
<tr>
<th>Hardware platform</th>
<th>Output from <code>uname -i</code></th>
</tr>
</thead>
<tbody>
<tr>
<td>x86</td>
<td>i386</td>
</tr>
<tr>
<td>AMD64/Intel EM64T</td>
<td>x86_64</td>
</tr>
</tbody>
</table>

To determine the Linux kernel installed on your system, run the following command:

```
# uname -r
```

Verify that the kernel identifier in the output of this command begins with the following value:

```
2.6.18-194
```
AxiomONE Path Manager (APM) provides access over multiple data paths to LUNs defined on a Pillar Axiom system. APM, the device-mapper, Linux, and the Pillar Axiom software limit the following aspects of this access.

Table 6 APM operating limits

<table>
<thead>
<tr>
<th>APM capabilities</th>
<th>Maximum value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target Pillar Axiom systems</td>
<td>Eight for each SAN host</td>
</tr>
<tr>
<td>Connect to SAN Slammer storage controllers</td>
<td>Four for each Pillar Axiom system</td>
</tr>
<tr>
<td>Connect to LUNs</td>
<td>256</td>
</tr>
<tr>
<td>Handle data paths</td>
<td>32 to each LUN</td>
</tr>
<tr>
<td>Handle FC HBA ports</td>
<td>32 for each SAN host</td>
</tr>
</tbody>
</table>

The Linux device-mapper has a limitation of 1024 paths to all devices, including Pillar Axiom LUNs. If you use the maximum of 256 LUNs, you will have a maximum of four paths to each LUN.

Important! The Linux device-mapper does not gracefully handle more than 1024 visible paths and may fail in a variety of ways if that limit is exceeded.

Important! Not all combinations of the limits shown have been tested. Use care when operating a system that has been configured to run at or near these limits. The system may exhibit anomalies when all limits are exercised concurrently.
Prepare to Install the AxiomONE Path Manager

To ensure a successful installation of AxiomONE Path Manager (APM), perform the following tasks in sequence:

1. Read AxiomONE Path Manager Release Notes.
2. Ensure that the Pillar Axiom system is running release 3.5 or higher of the Pillar Axiom software.
3. If you are using Fibre Channel (FC) connections, verify that your FC storage area network (SAN) components and host bus adapters (HBAs) are supported. See: Supported Fibre Channel SAN Hardware Components.
4. If you are using FC connections, confirm that your HBAs are installed according to our instructions. See Install QLogic Host Bus Adapters and Drivers
5. If you are using Internet Small Computer System Interface (iSCSI) connections, verify that your network is configured for iSCSI multipathing, and that you have configured the iSCSI software initiator correctly. See About Network Configuration for iSCSI Multipathing, Configure the iSCSI Initiator, and Start the iSCSI Software Initiator Service.
6. If you are using iSCSI connections, confirm that any iSCSI-to-FC routers and IP switches you have installed are supported. See Supported iSCSI Routers and Switches.
7. Pre-Configure the SAN for Pillar Axiom Integration.
8. Verify Installation of the Device Mapper.

Supported SAN Protocols
AxiomONE Path Manager (APM) 3.3 supports Fibre Channel and software-based Internet Small Computer System Interface (iSCSI) connections to the Pillar Axiom system.

Supported Fibre Channel SAN Hardware Components

AxiomONE Path Manager (APM) supports a variety of Fibre Channel host bus adapters (HBAs) and storage area network (SAN) routers and switches.

Approved HBAs and switches that are compatible with the Pillar Axiom system are listed in:

- Supported QLogic Host Bus Adapters and Drivers
- Supported Fibre Channel and Fibre Channel over Ethernet Switches

Supported Fibre Channel Topologies

AxiomONE Path Manager (APM) supports the Point-to-Point (FC-P2P) and Switched Fabric (FC-SW) topologies. APM does not support Arbitrated Loop (FC-AL).

Maximum Queue Depth

The recommended maximum queue depth for all SAN hosts attached to a Pillar Axiom system is 64. This value is the maximum number of outstanding I/O requests to the Pillar Axiom system. Exceeding the maximum I/O queue depth may cause errors.

This value is typically set in the BIOS or similar firmware configuration of the HBA on the SAN host. Consult your HBA documentation for the setting that controls the maximum I/O queue depth for your HBA and for configuration instructions.

Supported QLogic Host Bus Adapters and Drivers

The AxiomONE Path Manager (APM) software supports the following QLogic Fibre Channel host bus adapters (HBAs) on x86-32 and x86-64 platforms:
The above HBAs require QLogic driver version 8.03.01.04.05.05-k (comes with the Linux distribution) or later. In addition, the HBA API libraries for this driver are required. Download the SNIA API for Linux Drivers libraries from the QLogic Driver Downloads/Documentation page (http://driverdownloads.qlogic.com/QLogicDriverDownloads_UI) for your hardware platform.

Recommended Settings for QLogic Host Bus Adapters

We recommend the following settings for QLogic host bus adapters (HBAs):

Table 7 QLogic HBA settings

<table>
<thead>
<tr>
<th>HBA setting</th>
<th>Recommended value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Link Down Timeout</td>
<td>30</td>
</tr>
<tr>
<td>Execution Throttle</td>
<td>64</td>
</tr>
<tr>
<td>LUNs per Target</td>
<td>256</td>
</tr>
<tr>
<td>Port Down Retry Count</td>
<td>30</td>
</tr>
<tr>
<td>Max Queue Depth</td>
<td>64</td>
</tr>
</tbody>
</table>

Install QLogic Host Bus Adapters and Drivers

To ensure compatibility between AxiomONE Path Manager (APM) and your QLogic host bus adapters (HBAs), be sure to follow the instructions in this section for installing the supported QLogic HBAs and drivers.
1 Install QLogic HBAs according to the instructions at the QLogic support download page (currently http://support.qlogic.com/support).

2 Verify that you have the QLogic version 8.03.01.04.05.05-k or later driver installed.

 (This driver comes with the Linux distribution.) To determine your driver version, run the following command:

 modprobe qla2xxx

 If the driver version returned does not match the supported version, download the SANSurfer Linux Driver Installer from the QLogic Driver Downloads/Documentation page (http://driverdownloads.qlogic.com/QLogicDriverDownloads_UI) for your hardware platform, and follow the QLogic instructions for installing the driver.

3 Download the QLogic HBA API libraries appropriate for your hardware platform, and follow the QLogic instructions for installing the libraries.

 The required HBA drivers are supplied as part of the Community Enterprise Operating System 5.5 (CentOS 5.4) operating system, but you must download the SNIA API for Linux Drivers libraries from the QLogic Driver Downloads/Documentation page (http://driverdownloads.qlogic.com/QLogicDriverDownloads_UI) for your hardware platform. The HBA API libraries are required for the APM daemon to communicate with the Pillar Axiom system.

4 Download and install the SANSurfer CLI (optional).

 If you have not already installed the SANSurfer CLI as part of the SANSurfer Linux Driver Installer package, download version 1.7.3 build 20 of the QLogic SANSurfer FC HBA CLI from the QLogic Driver Downloads/Documentation page (http://driverdownloads.qlogic.com/QLogicDriverDownloads_UI), and follow the QLogic installation instructions.

 Note: If you use the SANSurfer CLI to change the settings in Steps 5 and 6, you will not need to rebuild the kernel for the changes to go into effect.

5 Set the HBA settings in the `/etc/modprobe.conf.local` configuration file to the recommended values:

 Ensure that the `/etc/modprobe.conf.local` file has the following settings:

   ```
   options qla2xxx ql2xfailover=0 ConfigRequired=0
   MaxRetriesPerPath=15
   ql1xloginretrycount=30 ql1xlogintimeout=60
   ql2xretrycount=90 qlport_down_retry=45
   ```

6 Disable QLogic’s multipathing to ensure recovery from path failures.
Be sure to rebuild the kernel after resetting any of these options. If you use the SANSurfer CLI to change these settings, it is not necessary to rebuild the kernel.

7 If you have replaced the driver, or if you did not use the SANSurfer CLI to make modifications to the driver configuration file, rebuild the kernel to ensure that any changes to the driver are picked up.

Use the following command:

```
# /sbin/new-kernel-pkg --mknitrd --depmod --install `uname -r`
```

Supported Fibre Channel and Fibre Channel over Ethernet Switches

For a list of supported Fibre Channel and Fibre Channel over Ethernet switches, choose one of:

- Call the Pillar World Wide Customer Support Center at the number listed in Pillar Contacts.
- Refer to the Pillar Axiom Support and Interoperability Guide, which can be found on the Technical Documents website (http://www.pillardata.com/techdocs).

Note: Refer to the switch vendor’s Web site for the most recent installation instructions, patches, and firmware.

Supported iSCSI Software and Hardware

AxiomONE Path Manager (APM) for Community Enterprise Operating System 5.5 (CentOS 5.5) supports the following Internet Small Computer System Interface (iSCSI) software and hardware:

- The iSCSI software initiator included in the CentOS 5.5 distribution.
- The iSCSI-to-Fibre Channel routing features of the Cisco MDS 9000 family of routers and switches.

Note: APM for CentOS 5 does not support iSCSI host bus adapters (HBAs).
About Network Configuration for iSCSI Multipathing

You can reduce the impact of failures in your Internet Small Computer System Interface (iSCSI) network by ensuring that iSCSI connections are made through several network interface cards (NICs) on the host.

We recommend using the normal IP configuration facilities to route connections to different Slammer storage controller ports through different host NICs. For example, if the host has two NICs available for iSCSI connections to a Slammer, you can set up routing to send all traffic to one port on each Slammer control unit (CU) through one NIC, and traffic to the other port on each Slammer CU through the other NIC.

The best way to ensure that your iSCSI paths use different physical connections depends on factors such as the number of available NICs in the host and the existing configuration of your IP network. We recommend using normal IP routing configuration techniques such as subnet configuration and explicit route configuration to distribute connections over multiple NICs. You can also use NIC bonding to provide redundancy on Ethernet connections between the host and the switch.

About Subnet Configuration

Groups of host network interface cards (NICs) and Slammer ports can be configured into different subnets. Whenever the iSCSI initiator opens a connection to a Slammer port, that connection will automatically be routed through the host NIC in the same subnet as the Slammer port. For example, if a host has two NIC ports on the Internet Small Computer Systems Interface (iSCSI) network, one of the host NIC ports connected to one of the Slammer control unit (CU) ports could be placed in one subnet, and another host NIC port connected to the other Slammer CU port could be placed in a different subnet.

Configure Explicit Routing

If two or more NICs on the host are configured into the same subnet, you should explicitly configure Internet Protocol (IP) routing to route connections to different destination ports through different host NICs.

1. Create or edit the routing configuration file for each NIC, and add entries for each destination IP address that you want to route through this NIC.

 The name of the routing configuration file is `/etc/sysconfig/network-scripts/route-NIC`, where `NIC` is the name used by the OS for the NIC.
Add a line for each Slammer port for which access is to be routed through this NIC. The format of the line should be:

```
Slammer_port_IP_address via NIC_IP_address src NIC_IP_address
```

Example:
If the NIC `eth0` has been configured with IP address 192.168.2.39, and you want to use this NIC to access Slammer ports 192.168.2.10 and 192.168.2.12, then you would create or edit the file `/etc/sysconfig/network-scripts/route-eth0` and add the following lines:

```
192.168.2.10 via 192.168.2.39 src 192.168.2.39
192.168.2.12 via 192.168.2.39 src 192.168.2.39
```

You can also use the `ip route add` command to temporarily set up routes from the command line by using lines of the form described above as parameters.

Example:
The following command sets up a route for the first Slammer port described above:

```
# ip route add 192.168.2.10 via 192.168.2.39 src 192.168.2.39
```

If the host has more than one NIC in a broadcast domain, you must modify the configuration to prevent a condition known as address resolution protocol (ARP) flux, which can prevent routing from operating correctly.

To prevent ARP flux, edit the file `/etc/sysctl.conf`, and modify or add entries for the following parameters:

```
net.ipv4.conf.all.arp_ignore=1
net.ipv4.conf.all.arp_announce=2
```

You can also temporarily prevent ARP flux by using lines of this form as parameters to `sysctl -w` commands.

Example:
The following commands temporarily prevent ARP flux:

```
# sysctl -w net.ipv4.conf.all.arp_ignore=1
# sysctl -w net.ipv4.conf.all.arp_announce=2
```

Changes to the configuration files will take effect after you reboot the host.

About NIC Bonding

Network interface card (NIC) bonding is another way to add redundancy to Ethernet networks.
With *NIC bonding*, also known as *channel bonding*, two or more NICs and their physical connections to the switches are logically bonded together and presented to the Internet Protocol (IP) as a single virtual NIC. If one of the physical connections fails, the traffic is transferred to another NIC without the IP layer or the layers above it knowing about the transfer.

This approach protects against low-level Ethernet failures, such as a faulty NIC or cable, between the host and its local IP switch. Because the redundancy is at a very low level in the protocol stack, the higher layers such as Transmission Control Protocol/Internet Protocol (TCP/IP), Internet Small Computer System Interface (iSCSI), and device-mapper are not aware that a transfer to a different NIC has taken place. To the IP protocol, the virtual bonded NIC appears as a single physical connection. To iSCSI, it appears as a single connection to each target port.

In short, the iSCSI, device-mapper, and APM layers are not aware of the physical path redundancy provided at the NIC bonding level and do not treat this redundancy as providing multiple paths to the Slammer storage controller. Multiple paths created by NIC bonding will not be reported as multiple paths by device-mapper or in the AxiomONE Storage Services Manager.

Configure the iSCSI Initiator

To support iSCSI connections, AxiomONE Path Manager (APM) for Community Enterprise Operating System 5.5 (CentOS 5.5) requires the 6.2.0.871-0.16.el5 version of the iSCSI software initiator included in the CentOS 5.5 distribution.

For complete installation and configuration instructions, refer to: /usr/share/doc/iscsi-initiator-utils-*/README. The following procedure is an overview of the instructions in the README file.

Important! You must ensure that each iSCSI initiator on the iSCSI SAN has a unique name, and set this host's initiator name in the /etc/iscsi/initiatorname.iscsi file.

1. Set up IP addresses and network parameters on Slammer iSCSI ports.
 This may include setting up Challenge Handshake Authentication Protocol (CHAP) on your system.

2. Configure iSCSI accordingly.
 Example:
 If you are using CHAP to communicate with the Slammer iSCSI ports, you may need to modify the /etc/iscsi/iscsid.conf file accordingly.
3 Start the iSCSI initiator.

```
# service iscsi start
```

4 Discover the Slammer iSCSI target ports.

One of:

- ```
 # iscsiadm --m discovery --t sendtargets --p 172.20.191.11:3260
```
- ```
  iscsi_discovery 10.0.0.22
```

Example:

5 Discover the other ports, depending on the desired design (optional).

6 Restart the `iscsi` service to log in to the discovered target ports:

```
# service iscsi restart
```

7 Use `chkconfig` to configure the `iscsi` service to start up at various run levels.

See Start the iSCSI Software Initiator Service.

Start the iSCSI Software Initiator Service

After you have configured the iSCSI software initiator, set the iSCSI initiator to start at startup time and confirm that your Internet Small Computer System Interface (iSCSI) devices are visible.

1 Start the `iscsi` service.

Run the following command:

```
# service iscsi start
```

2 Configure the `iscsi` service to start at boot time.

Run the following commands:

```
# chkconfig --add iscsi
# chkconfig iscsi on
```

The first command checks that the scripts necessary to start and stop the service are available. The second command sets the service to start at the appropriate run levels.

3 Verify that the `iscsi` service is configured to start at boot time.
Run the following command:

```
# chkconfig --list iscsi
```

Result:
The following is a sample of the output of this command when the service is not configured to start at boot time:

```
iscsi 0:off 1:off 2:off 3:off 4:off 5:off 6:off
```

The following is a sample of the output of this command when the service is configured to start at boot time:

```
iscsi 0:off 1:off 2:on 3:on 4:on 5:on 6:off
```

Supported iSCSI Routers and Switches

AxiomONE Path Manager (APM) supports the iSCSI-to-Fibre Channel routing features of the Cisco MDS 9000 family of multi-layer directors and fabric switches.

The iSCSI-to-Fibre Channel routing features enable a host to use Internet Small Computer System Interface (iSCSI) to access LUNs on Pillar Axiom Fibre Channel Slammer storage controllers. Pillar Data Systems tested this APM release on Cisco MDS SAN-OS Release 3.0 (2a). Refer to the [Cisco documentation](http://www.cisco.com/univercd/cc/td/doc/product/sn5000/mds9000/3_0/fmcfg/index.htm) for more information on these features.

In this release, Pillar Data Systems supports only the iSCSI-to-Fibre Channel routing capabilities provided by this Cisco switch.

The switch requires certain configuration steps to work with APM and the Pillar Axiom system as an iSCSI-to-Fibre Channel router. See [Configure the iSCSI-to-Fibre Channel Router](#) for configuration information.

Configure the iSCSI-to-Fibre Channel Router

The iSCSI-to-Fibre Channel routing features of the Cisco MDS 9000 family of multi-layer directors and fabric switches require configuration to work with the AxiomONE Path Manager (APM) and the Pillar Axiom system.

For more information on these features, refer to the [Cisco documentation](http://www.cisco.com/univercd/cc/td/doc/product/sn5000/mds9000/3_0/fmcfg/index.htm).

1. Present the Pillar Axiom Slammer storage controller ports as Internet Small Computer System Interface (iSCSI) targets.
Choose **Dynamic Mapping** or **Static Mapping**. However, we recommend that you use dynamic mapping because the main Cisco features for static mapping requirements are supplied by APM and the AxiomONE Storage Services Manager.

2 Present the iSCSI hosts as virtual Fibre Channel hosts.

The hosts must be presented in transparent initiator mode (not in proxy-initiator mode). When you assign World Wide Names (WWNs) for the iSCSI initiators, use the static mapping mechanism.

After you configure the switch, APM on the iSCSI hosts interacts with the Pillar Axiom systems in exactly the same way as when both hosts and Slammers use the same SAN protocol.

Pre-Configure the SAN for Pillar Axiom Integration

Before you install the AxiomONE Path Manager (APM) software, you need to prepare your storage area network (SAN) host connections with the Pillar Axiom system.

Prerequisites:

Verify that your system has:

- LUNs configured on your Pillar Axiom system.
- At least one SAN Slammer storage controller that has Fibre Channel (FC) or Internet Small Computer System Interface (iSCSI) ports.
- An FC or iSCSI protocol license.
- Supported host bus adapter (HBA) drivers and API libraries.
- Ethernet connections to the management ports on the Pilot management controller.
- A network configuration that allows an application on the SAN host to connect to TCP port 26004 on the Pilot.

Tip: To check network connectivity, issue a simple `pdscli` or `axiomcli` request from the host to the Pillar Axiom system. Both `pdscli` and `axiomcli` use the same port and protocols as those used by APM. Refer to the *Pillar Axiom CLI Reference Guide* or *Pillar AxiomONE CLI Reference Guide* for details.
1 Verify that all FC and iSCSI components and software are installed on the
SAN host according to the instructions in this guide.

2 Set up the physical connectivity and any required switch zoning for the SAN.
Proper setup is needed so all required host ports can access the Slammer
ports on the Pillar Axiom server.

3 If you are using iSCSI connections, choose one or more of the following:
 - About Network Configuration for iSCSI Multipathing.
 - Configure the iSCSI Initiator.
 - Configure the iSCSI-to-Fibre Channel Router.

4 Launch the AxiomONE Storage Services Manager and navigate to the
Storage > SAN > Hosts page.

5 Verify the SAN connections.
Each host port should display individually as follows:

<table>
<thead>
<tr>
<th>Column label</th>
<th>Port type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Host Name:</td>
<td>Hostname Unknown</td>
</tr>
<tr>
<td></td>
<td>IQN (iSCSI Qualified Name)</td>
</tr>
<tr>
<td>Host Port:</td>
<td>WWN</td>
</tr>
<tr>
<td></td>
<td>IP address</td>
</tr>
</tbody>
</table>

See Figure 2: Example host ports before APM installation for an illustration.

6 If the host is using only iSCSI to connect to Slammers, choose one of:
 - Install the sg3-utils packages.
 - Ensure that at least one LUN on the Pillar Axiom system is visible to
 the host.

The sg3-utils-libs-* and sg3-utils-* packages are required for
automatic discovery of the Pillar Axiom system over iSCSI when no iSCSI
LUNs are visible to the host. An alternative is to make a LUN visible to the
host by either creating a global LUN or mapping one to the host iSCSI
software initiator IQN.
Note: If you mapped a LUN to the initiator IQN, it will automatically be remapped to the host name after APM is installed. If the LUN is temporary, delete it after you install the software.

Verify Installation of the Device Mapper

The Linux 2.6 device-mapper, among other uses, maps a logical block device on the SAN host into a Pillar Axiom LUN. The AxiomONE Path Manager (APM) daemon monitors the device-mapper and uses it to provide multipathing.

APM requires device-mapper version 1.02.39-1.el5 or later.

1 Verify that device-mapper is installed.

Run the following command:

```
# rpm -qa | grep device-mapper | grep -v multipath
```

Result:
If device-mapper is installed, this command returns the version of device-mapper and your operating system.

2 If device-mapper version 1.02.39–1.el5 or later is not installed, install this version.

Install device-mapper from your Linux installation CDs or operating system vendor Web site.
Download and Install the AxiomONE Path Manager Software

The AxiomONE Path Manager (APM) installation for Community Enterprise Operating System 5.5 (CentOS 5.5) requires that you download both the APM package and the Multipath Tools package from the Pillar Support Web site. Then you need to install both packages on your system.

1. Download the AxiomONE Path Manager Software.
2. Install (or Update) the AxiomONE Path Manager Software.
3. Configure the Pillar Axiom System for LUN Access.

To remove the AxiomONE Path Manager software from your SAN host, see Remove AxiomONE Path Manager Software (Optional).

Download the AxiomONE Path Manager Software

The AxiomONE Path Manager (APM) 3.3 software consists of two packages: the APM daemon package, and a package containing an updated version of the multipath-tools component of device-mapper. You will need to download both packages.

The Multipath Tools component also contains Pillar bug fixes. When using APM, the Pillar version of multipath-tools must be used in place of the one supplied with the Linux operating system.

2. Click Software Downloads > AxiomONE Path Manager in the left-hand navigation pane.
3. Navigate to the name of the installation package for your hardware platform in the right-hand content pane.
4. For each package (APM or Multipath Tools), click the name of the package to download for your hardware platform (x86, or AMD64/Intel EM64T).
5. Click the green arrow in the Software Download Details pane below, and follow the download prompts.
6. Choose the Save option to download the package to your SAN host.
Install (or Update) the AxiomONE Path Manager Software

After you download the AxiomONE Path Manager (APM) software and Multipath Tools packages, you can install them on your host system.

Before you install the APM software, verify that your system meets the prerequisites outlined in Supported Fibre Channel SAN Hardware Components and Pre-Configure the SAN for Pillar Axiom Integration.

Two steps in the installation process enable you to keep your original multipath configuration file (/etc/multipath.conf) so that you can continue to use your specific configurations for managing devices other than APM-managed Pillar Axiom LUNs:

- Because the configuration file will be deleted, Step 1 asks you to save a copy of that file before you begin the APM installation or update task.
- Step 5 asks you to merge any changes you made to the original configuration file into the new file.

Tip: We strongly recommend that you follow these two steps when you have previously added or modified entries in /etc/multipath.conf.

1. If you previously configured multipath-tools on your system, save a copy of the current /etc/multipath.conf file.

 Saving a copy allows you to merge the changes into the new file that will be created.

2. Uninstall any previously installed versions of multipath-tools.

 The name of the multipath-tools Red Hat Package Manager (RPM) package varies (depending on its source). The name usually begins with one of the following strings:

 multipath-tools

 device-mapper-multipath

 Example:

 Use one of the following commands, depending on the name of the multipath-tools RPM package:

   ```bash
   # rpm -e multipath-tools
   ```

 or

   ```bash
   # rpm -e --nodeps device-mapper-multipath
   ```
Important! Other packages associated with `device-mapper` that begin with the string `device-mapper` may exist on the SAN host. Do not remove these packages. Remove only those packages that begin with the string `multipath-tools` or `device-mapper-multipath`.

3 Remove any previous versions of APM on your system using the following command:

```
# rpm -e axiompm
```

4 Install the Multipath Tools package using the following command:

```
# rpm -ivh multipath-tools-version.rpm
```

Note: In the command above, `version` is the name of the release version you downloaded.

5 After the new `/etc/multipath.conf` is installed, merge in any previous configuration data for `device-mapper` from the copy of the configuration file you saved in Step 1.

Merging those changes allows you to retain previous configuration settings to manage devices other than APM.

6 Install the APM package using the following command:

```
# rpm -ivh axiompm-version.rpm
```

Note: In the command above, `version` is the name of the release version you downloaded.

APM files and scripts are installed in the `/opt/ pillar` directory.

7 Restart the host.

After you install the software, follow the instructions in Configure the Pillar Axiom System for LUN Access. You must complete that task for the software to function correctly.
Configure the Pillar Axiom System for LUN Access

The LUN configuration procedure provides the storage area network (SAN) host with access to Pillar Axiom LUNs. Refer to the *Pillar Axiom Administrator’s Guide* for instructions on how to create LUNs.

Prerequisites:

- Pre-Configure the SAN for Pillar Axiom Integration.
- Install (or Update) the AxiomONE Path Manager Software.

1. In the AxiomONE Storage Services Manager, navigate to the **Storage > SAN > Hosts** page.

2. Verify that the individual entries for the host ports have been replaced with a single entry under the host name.

Example:

Figure 2 Example host ports before APM installation

<table>
<thead>
<tr>
<th>Host Name</th>
<th>Host Port</th>
<th>Type</th>
<th>AxiomONE Path Manager</th>
<th>Number of LUNS</th>
<th>Host Port Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hostname Unknown</td>
<td>10:00:00:00:e0:03:6e:495e</td>
<td>FC</td>
<td>Not Registered</td>
<td>0</td>
<td>Connected</td>
</tr>
<tr>
<td>Hostname Unknown</td>
<td>10:00:00:00:e0:03:6e:495f</td>
<td>FC</td>
<td>Not Registered</td>
<td>0</td>
<td>Connected</td>
</tr>
<tr>
<td>Hostname Unknown</td>
<td>10:00:00:00:e0:03:6e:4952:6f</td>
<td>FC</td>
<td>Not Registered</td>
<td>5</td>
<td>Connected</td>
</tr>
<tr>
<td>Hostname Unknown</td>
<td>10:00:00:00:e0:03:6e:41:32:33</td>
<td>FC</td>
<td>Not Registered</td>
<td>0</td>
<td>Connected</td>
</tr>
<tr>
<td>Hostname Unknown</td>
<td>10:00:00:00:e0:03:6e:41:2d:34</td>
<td>FC</td>
<td>Not Registered</td>
<td>0</td>
<td>Connected</td>
</tr>
<tr>
<td>iain.1587-56.com</td>
<td>192.168.2.93</td>
<td>iSCSI</td>
<td>Not Registered</td>
<td>0</td>
<td>Connected</td>
</tr>
<tr>
<td></td>
<td>192.168.2.94</td>
<td>iSCSI</td>
<td></td>
<td></td>
<td>Connected</td>
</tr>
</tbody>
</table>

Figure 3 Example host ports after APM installation

<table>
<thead>
<tr>
<th>Host Name</th>
<th>Host Port</th>
<th>Type</th>
<th>AxiomONE Path Manager</th>
<th>Number of LUNS</th>
<th>Host Port Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iain</td>
<td>10:00:00:00:e0:03:6e:495e</td>
<td>FC</td>
<td>Communicating</td>
<td>0</td>
<td>Connected</td>
</tr>
<tr>
<td></td>
<td>10:00:00:00:e0:03:6e:495f</td>
<td>FC</td>
<td></td>
<td></td>
<td>Connected</td>
</tr>
<tr>
<td></td>
<td>192.168.2.93</td>
<td>iSCSI</td>
<td></td>
<td></td>
<td>Connected</td>
</tr>
<tr>
<td></td>
<td>192.168.2.94</td>
<td>iSCSI</td>
<td></td>
<td></td>
<td>Connected</td>
</tr>
<tr>
<td>Hostname Unknown</td>
<td>10:00:00:00:e0:03:6e:4952:6f</td>
<td>FC</td>
<td>Not Registered</td>
<td>6</td>
<td>Connected</td>
</tr>
<tr>
<td>Hostname Unknown</td>
<td>10:00:00:00:e0:03:6e:41:32:33</td>
<td>FC</td>
<td>Not Registered</td>
<td>0</td>
<td>Connected</td>
</tr>
<tr>
<td>Hostname Unknown</td>
<td>10:00:00:00:e0:03:6e:41:2d:34</td>
<td>FC</td>
<td>Not Registered</td>
<td>0</td>
<td>Connected</td>
</tr>
</tbody>
</table>
Note: The Hosts page may display differently in your version of AxiomONE Storage Services Manager.

You will see one or more of the following AxiomONE Path Manager Status and Host Port Status messages on the Hosts page:

<table>
<thead>
<tr>
<th>APM Status</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Communicating</td>
<td>The host control path is currently logged into the Pilot.</td>
</tr>
<tr>
<td>Not Registered</td>
<td>A control path from an APM host with this name has never logged into the Pilot.</td>
</tr>
<tr>
<td>Not Communicating</td>
<td>The APM host control path has previously logged into the Pilot, but it is not currently logged in.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Host Port Status</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connected</td>
<td>The host SAN connection is logged in to the SAN Slammer.</td>
</tr>
<tr>
<td>Not connected</td>
<td>The host SAN connection is not logged in to the SAN Slammer.</td>
</tr>
</tbody>
</table>

See the AxiomONE Storage Services Manager Help for information about the remaining fields on the Hosts page.

3 As needed, create new LUNs on the Pillar Axiom server for the SAN hosts.

4 As needed, set up mappings of the LUNs to the new host entries.

5 Follow the recommendations in SAN Dynamic Reconfiguration to make any changes visible to the SAN host.

6 Run the following commands to list the multipath devices (optional):

```bash
# /sbin/multipath -v3
# /sbin/multipath -ll
```

The first command (multipath -v3) populates the path information, and the second command (multipath -ll, lower-case letters L) lists the state of the paths.

7 In the AxiomONE Storage Services Manager, navigate to the Storage > SAN > Hosts page.

8 Click the name of the new host and, on the Host Information page, verify the APM software version.

9 Click the LUN Connections tab and verify that the host and LUN connections are as expected.
The column titled **LUN Name on Host** should show the Linux disk names that APM allocates to each LUN.

Important! With a few exceptions (such as when you partition and format the LUN on the SAN host), you should use only these Linux disk names to access and configure the LUNs on the host. Linux creates device names for each individual path to a LUN, but almost all configuration and administration tasks should be done using the `/dev/mapper` name shown in the AxiomONE Storage Services Manager.

10 If you plan to partition and format the LUN on the SAN host, see **Partition and Format the LUN Disk (Optional)**.
Partition and Format the LUN Disk (Optional)

Follow these instructions if you plan to use the Linux fdisk or parted utilities to partition and format the disk on which a LUN resides.

The fdisk utility cannot be used with devices listed in the /dev/mapper directory. Instead, use fdisk on one of the underlying paths, and then run the scripts to restart the multipath-tools and APM daemons to notify device-mapper that a /dev/mapper device has a new partition.

1 Identify one of the highest priority paths to the LUN using the output of the multipath -ll command.

 Example:
 In the output below, you could identify either the /dev/sdd or the /dev/sdh path:

   ```
   2000b080120001259 dm-4 Pillar,Axiom 500
   [size=10G][features=0][hwhandler=0][rw]
   __ round-robin 0 [prio=16779330][active]
   ___ 2:0:2:5  sdj  8:144  [active][ready]
   ___ 3:0:1:5  sds  65:32  [active][ready]
   ___ round-robin 0 [prio=524354][enabled]
   ___ 186:0:0:5  sdeb 67:128  [active][ready]
   ___ 190:0:0:5 sdcj 69:128  [active][ready]
   ___ round-robin 0 [prio=16386][enabled]
   ___ 2:0:3:5  sdm  8:192  [active][ready]
   ___ 3:0:3:5  sdy  65:128  [active][ready]
   ___ round-robin 0 [prio=512][enabled]
   ___ 187:0:0:5 sdcb 68:240  [active][ready]
   ___ 189:0:0:5 sdcj 69:112  [active][ready]
   ```

2 Use fdisk to partition one of the highest priority paths identified in Step 1.

3 Run the following command to restart the device-mapper:

   ```
   # /etc/init.d/multipathd restart
   ```

4 Run the following command to restart the APM daemon:

   ```
   # /etc/init.d/axiompmd restart
   ```

5 Verify that the new partitions are listed as:

   ```
   /dev/mapper/LUNpx
   ```

 Where LUN is the LUN identifier, and x is the partition number used in Step 2.
Note: The letter p appears between the LUN identifier and the partition number.

Example:
In the example above, if only partition 1 were created with fdisk, it would appear as follows:

```
localhost$ ls -l /dev/mapper/2000b080002001395*
brw-rw---- 1 root disk 253,  2 Jul  7 12:02
2000b080002001395
brw-rw---- 1 root disk 253,  3 Jul  7 15:12
2000b080002001395p1
```

6 Format the new partition.

Example:
To format the partition created in the example above, you might run the following command:

```
# mke2fs -j /dev/mapper/2000b080002001395p1
```

7 Mount the filesystem.

For detailed information, refer to your Linux documentation.
About Static and Round-Robin Load Balancing

AxiomONE Path Manager (APM) 3.3 supports both static and round-robin load balancing.

You must set load balancing policy in the AxiomONE Storage Services Manager, not on the host. Load balancing is initially set to round-robin.
About Path Selection

AxiomONE Path Manager (APM) supports access to LUNs using Internet Small Computer System Interface (iSCSI) and Fibre Channel (FC) protocol at the same time, as well as individually.

Paths to a LUN may have different performance characteristics. Paths to the Slammer control unit where the LUN resides are considered optimized paths; other paths to the LUN are considered non-optimized paths. When both FC and iSCSI access to a LUN are available, FC access generally performs better.

APM divides the paths to each LUN into four groups with different performance characteristics, in this order of precedence:

- First, FC optimized
- Next, iSCSI optimized
- Next, FC non-optimized
- Finally, iSCSI non-optimized

At any given time, the device-mapper framework only uses paths from the most preferred group that has paths available.

Note: When an active path fails, and I/O traffic is transferred to a different path, I/O performance will be reduced for a short time while the operating system recognizes the failure and makes the path transfer. If the failing path was optimized and the new path is non-optimized, I/O performance may remain lower than before since it is now using a lower-performance path. Within a few minutes of traffic being transferred to a non-optimized path, the Pillar Axiom system will reconfigure the LUNs to use an optimized path, if possible. I/O performance will improve.
Remove AxiomONE Path Manager Software (Optional)

When you uninstall AxiomONE Path Manager (APM), support for multiple paths to Pillar Axiom LUNs is removed.

Before you uninstall APM, if you do not want to access Pillar Axiom LUNs, we recommend that you disconnect the storage area network (SAN) host from the Pillar Axiom system.

Sometimes, the uninstall process may take longer than expected, and the process may appear to be hanging. Allow the process to run for at least an hour before attempting to restart the process.

1. Run the following commands to stop and remove the APM daemon:

   ```
   # /etc/init.d/axiompm stop
   # rpm -e axiompm
   ```

2. Run the following command to remove the version of multipath-tools supplied by Pillar Data Systems:

   ```
   # rpm -e multipath-tools
   ```

3. Reinstall the multipath-tools that came with your Linux software (optional).

 After the APM software (both axiompm and multipath-tools) has been removed, the host appears not to be communicating in the AxiomONE Storage Services Manager, and the multipath behavior stops working.

 Important! If you want to continue LUN access without multipathing, we recommend that you reconfigure the SAN so that only a single path exists from the host to each Pillar Axiom Slammer storage controller. You may need to reconfigure LUN mapping on the Pillar Axiom system to map the LUNs to the host port or iSCSI Qualified Name (IQN), and you may need to reconfigure the host to access the LUNs through new device names.
AxiomONE Path Manager Release Notes

New in this Release

AxiomONE Path Manager (APM) 3.3 supports:

- Community Enterprise Operating System 5.5 (CentOS 5.5)
 The version of multipath-tools included in CentOS 5.5 fixes Red Hat Bugzilla defect 518575: Multipath UID/GID/MODE settings not always taking effect. APM 3.3 contains the first version of the Pillar multipath-tools to support the UID/GID permissions feature.

- Both static and round-robin load balancing
Known APM Issues

The following AxiomONE Path Manager (APM) issues are known in this release.

Table 9 Known issues

<table>
<thead>
<tr>
<th>Issue</th>
<th>Workaround or planned fix</th>
</tr>
</thead>
<tbody>
<tr>
<td>Updates not displayed in GUI. Updates to the host path or optimization state are not displayed in the Pillar Axiom graphical user interface (GUI).</td>
<td>It may be necessary to restart the APM daemon to update the GUI after host path and optimization changes.</td>
</tr>
</tbody>
</table>
Known Pillar Axiom Issues

The following issues might be associated with the version of the Pillar Axiom software you are using.

<table>
<thead>
<tr>
<th>Issue</th>
<th>Workaround or planned fix</th>
</tr>
</thead>
<tbody>
<tr>
<td>When a Fibre Channel HBA is removed from a host running APM, it remains associated with that host. If the HBA is moved to a host that is either not running APM or on which APM is shown as not communicating with the Pillar Axiom Pilot, any LUNs mapped to the host will continue to be accessible through the HBA ports. The Pillar Axiom GUI and CLI will continue to report the HBA as being present in the original host. If the HBA is moved to a host where APM is running and communicating with the Pilot, its association and mappings for the old host will be removed, and the mappings for the new host will be applied.</td>
<td>This issue is fixed in release 4.0 of the Pillar Axiom software.</td>
</tr>
<tr>
<td>If you use the Pillar Axiom GUI or CLI to change the default configured Slammer control unit (CU) of a LUN to the other CU on the Slammer, the Slammer port mask for the LUN will be reversed. For example, if CU0 Port 0 is enabled and Port 1 is excluded, and the LUN is moved to CU1, then CU1 Port 0 will become excluded and CU1 Port 1 will become enabled.</td>
<td>After you change the default configured Slammer CU for a LUN, be sure to update the LUN port mask to the required value. This issue is fixed in release 4.0.0 of the Pillar Axiom software.</td>
</tr>
<tr>
<td>If an AxiomONE Path Manager (APM) host uses iSCSI to connect to a Pillar Axiom system, and it uses an iSCSI initiator name that is the same as its host name, then the entry for that host in the AxiomONE Storage Services Entry List</td>
<td>Ensure that the iSCSI initiator names configured on hosts that use iSCSI to connect to a Pillar Axiom system are different from all host names used by APM hosts, including virtual machine hosts, connected to that Pillar Axiom system.</td>
</tr>
</tbody>
</table>
Table 10 Known Pillar Axiom issues (continued)

<table>
<thead>
<tr>
<th>Issue</th>
<th>Workaround or planned fix</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manager will be continually deleted and recreated, causing the host entry to disappear and reappear intermittently.</td>
<td>System. The iSCSI standards require that iSCSI names follow particular formats, as specified in RFC 3720. If hosts are configured to use iSCSI initiator names that conform to these requirements, it is extremely unlikely that they will be the same as any host name. This issue is fixed in release 4.1 of the Pillar Axiom software.</td>
</tr>
<tr>
<td>If all paths to a LUN's configured Slammer control unit (CU) fail, APM will re-route all traffic through the non-optimized paths to the LUN's alternate CU. In response, the Pillar Axiom system will initially log events indicating non-optimized access, then when this traffic continues it will temporarily move the LUN to the alternate CU. This process leaves the host using optimized paths to the LUN, but the LUN is resident on a CU other than its configured home. Normally, the system will attempt to move the LUN back to its configured CU from time to time, and if the paths to the other CU have recovered the traffic will transfer back and the system returns to its normal configured state. However, if the Pilot software is restarted while a LUN is in this temporary state, as might happen during a software update that includes the option to update the Pilot software, two problems occur: 1. The graphical user interface (GUI) and command line interface (CLI) wrongly report that the LUN's current CU is its configured CU.</td>
<td>This issue is fixed in release 4.0 of the Pillar Axiom software.</td>
</tr>
</tbody>
</table>
Table 10 Known Pillar Axiom issues (continued)

<table>
<thead>
<tr>
<th>Issue</th>
<th>Workaround or planned fix</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. Non-optimized access events are no longer logged for the LUN, and the system does not attempt to move the LUN back to its configured CU. If subsequent path failures and recoveries cause traffic to be sent to the CU on which the LUN is not resident, the system will not move the LUN to the CU receiving the traffic. This means that all traffic to the LUN would have non-optimized access, which decreases performance, and this non-optimized access would not be logged.</td>
<td>This issue is fixed in Pillar Axiom software release 4.0. If the Pillar Axiom system is running a release earlier than 4.0, check that the load balancing attribute for the LUN is still set to the desired value after APM on the host has detected the LUN and its LUN name on Host has been reported in the Pillar Axiom GUI. If the setting has changed, change it back to the desired value, which can then be correctly saved.</td>
</tr>
<tr>
<td>When a LUN is created on a Pillar Axiom system, its load balancing attribute is set to round-robin by default. If the LUN is then mapped to a host running APM, the load balancing attribute setting can change to static when APM on the host first communicates with the Pillar Axiom system after detecting the LUN. Instead, this attribute should be set to round-robin when the LUN is first created, and should change only if an administrator changes it using the Pillar Axiom graphical user interface (GUI) or command line interface (CLI).</td>
<td></td>
</tr>
<tr>
<td>If an iSCSI initiator is added to a SAN host that has authentication enabled, authentication will not be enabled for that initiator. Also, if an iSCSI initiator with authentication enabled on a previous SAN host is moved to another host with or without authentication enabled, the initiator will retain its original configuration.</td>
<td>This issue is fixed in Pillar Axiom software release 4.0. If the Pillar Axiom system is running a release earlier than 4.0, disable then re-enable authentication for the host after iSCSI initiators are added to or moved between SAN hosts.</td>
</tr>
<tr>
<td>The Pillar Axiom GUI and CLI may show incorrect link speeds for SAN hosts with 8 Gb/s HBAs.</td>
<td>This issue is fixed in release 4.1 of the Pillar Axiom software.</td>
</tr>
</tbody>
</table>
Table 10 Known Pillar Axiom issues (continued)

<table>
<thead>
<tr>
<th>Issue</th>
<th>Workaround or planned fix</th>
</tr>
</thead>
<tbody>
<tr>
<td>After recovery from a Slammer control unit (CU) failure, the Pillar Axiom system may become incapable of automatically moving LUNs between the CUs on that Slammer. When the system attempts to move the LUNs automatically in response to non-optimized access from a host, the attempts fail, and non-optimized access persists.</td>
<td>Use the Pillar Axiom GUI or CLI to re-assign the LUNs to the CUs through which access is currently taking place. Alternatively, restart the Pillar Axiom system to restore optimized access. This issue is fixed in release 4.1 of the Pillar Axiom software.</td>
</tr>
</tbody>
</table>
| When an iSCSI initiator name is changed or removed on an APM host, the Pillar Axiom GUI and CLI may continue to associate the old name with the host. | 1 Stop the APM daemon on the host.
2 When the Pillar Axiom system reports the host as **Not Connected**, delete the host.
 This will preserve LUN mappings to the initiators.
3 Restart the APM daemon.
This issue is fixed in release 4.2 of the Pillar Axiom software. |
| When a Pilot restart occurs on a Pillar Axiom system running release 4.0 (4.0.4 or later) or release 4.1 (4.1.0 or later) of the Pillar Axiom software, all LUNs on the system move from their current Slammer control unit (CU) to the other Slammer CU. As a result, the optimization of all paths to the LUNs changes. | If all relevant SAN hosts have paths to both CUs on the Slammers, and those paths are managed by an ALUA-aware path management system such as AxiomONE Path Manager, it should not be necessary to take any action. The LUNs will remain balanced across the CUs, and the path management software will ensure that only optimized paths to the LUNs are used. Be aware that traffic may be moved to alternate paths when a Pilot restart occurs. Other hosts may need their path configuration to be changed to ensure that they access each LUN through its new current home CU. Alternatively, all LUNs can be moved back to their default configured CU by restarting the Pillar Axiom system.
This issue is fixed in release 4.1.4 of the Pillar Axiom software. |
Table 10 Known Pillar Axiom issues (continued)

<table>
<thead>
<tr>
<th>Issue</th>
<th>Workaround or planned fix</th>
</tr>
</thead>
<tbody>
<tr>
<td>The load balancing configuration displayed in the Pillar Axiom graphical user interface (GUI) or command line interface (CLI) can be different from the load balancing setting that the Pillar Axiom system sends to APM on the SAN host. This happens because, occasionally in the course of updating its configuration records to describe the new host, the Pillar Axiom system creates duplicate internal records.</td>
<td>This issue is fixed in Release 4.2.3 and later of the Pillar Axiom software.</td>
</tr>
<tr>
<td>A change in the number of reported iSCSI initiator IQNs can cause the loss of all SAN Zonings.</td>
<td>If something causes an APM host to report two or more iSCSI initiator IQNs, and there is a subsequent change that causes that APM host to report one less iSCSI initiator, all zonings in the storage area network (SAN) to all iSCSI initiators for that host will be lost. MCC-core will still show mappings to the host, but these mappings will not be zoned in the SAN and will be unavailable to the host. This issue is fixed in release 4.3 of the Pillar Axiom software.</td>
</tr>
</tbody>
</table>
Known Operating System Issues

The following operating system issues may have an impact on running APM on Linux platforms.

Access to LUNs

In most cases, you should only access LUNs through device-mapper or individual partition paths.

The Linux device-mapper creates paths of the form /dev/mapper/2000b08003d001321 to represent multipath Pillar Axiom LUNs. Individual partitions on a LUN have names of the form /dev/mapper/2000b08003d001321p3. With the exception of the situation described in Partition and Format the LUN Disk (Optional), you should access multipath LUNs and their partitions exclusively through these paths.

If a multipath partition is configured into /etc/fstab, omit the sixth field of its entry (fs_passno), or set it to 0 to prevent fsck from running automatically on the partition during a system boot. This is because device-mapper is not yet configured at the time fsck runs during boot, so the multipath devices are not accessible.

Important! Failure to disable fs_passno will cause host boot failure.

SAN Dynamic Reconfiguration

Linux does not automatically detect storage LUNs after a dynamic reconfiguration. Dynamic reconfiguration is the addition, deletion, growing, resizing, or cloning of one or more LUNs attached to a host.

Follow the instructions for dynamic reconfiguration in the Online Storage Reconfiguration Guide (http://www.redhat.com/docs/en-US/Red_Hat_Enterprise_Linux/5.2/html/Online_Storage_Reconfiguration_Guide/index.html). If you continue to have problems with dynamic reconfiguration, the following steps will help you handle exceptions.

Linux requires a series of steps, including a potential host reboot, when a LUN is dynamically reconfigured. After Linux detects the new LUNs, you must restart AxiomONE Path Manager (APM) to update the Pillar Axiom system with the new LUN status.
LUNs Added Dynamically

In most systems, a newly added LUN is immediately visible on the host without a rescan. However, due to inconsistent device driver behavior on some hosts, if the added LUN is not visible, a rescan usually makes it visible. A rescan normally involves an I/O reset.

If, after creating a new LUN on the Pillar Axiom system and assigning it to the host, running the rescan script does not bring up the LUNs. This may have happened because Linux incorrectly believes that the LUN number is already in use. To correct this situation, modify the host LUN number in the AxiomONE Storage Services Manager. Give it a new, unique value that falls within the range of permitted values. If necessary, rescan to add the LUN.

QLogic provides a rescan script that may help in dynamically configuring LUNs.

LUNs Deleted Dynamically

Deleting a LUN prevents the LUN from being visible from the host. This includes deleting LUN mapping and LUN masking. In general, LUN deletion disrupts normal function of the Linux multipath framework and must be planned.

If a LUN is deleted, it may appear as either a 2000000000000 entry or as the original LUID with Path down messages. These entries may persist until the host is rebooted.

To avoid disruption, you may blacklist the LUN. Refer to your Linux documentation.

The host usually picks up the deleted LUN, and it is deleted from the /dev/mapper table. However, this may not occur on all platforms consistently. If you want to view the device-mapper LUN mapping table, start the multipathd shell by running the following command:

```
# /sbin/multipathd -k
```

To delete a LUN, we recommend shutting down the host, deleting the LUN or LUN mapping from the Pillar Axiom system, and then restarting the host. If this procedure is not possible, you may want to run the following procedure.

Important! The following procedure will interrupt I/O and may require an immediate reboot of your host. In some cases, this may require a power cycle of the host to recover.

1. Copy the following and run it as a script:

   ```bash
   #!/bin/bash
   # Must be run as root
   /etc/init.d/axiompmd stop
   ```
Tip: The rescan script might require your interaction.

2 Be prepared to reboot the host as soon as possible after deleting LUNs in case something goes wrong.

If a LUN that is visible to a Linux 2.6 host is deleted from the Pillar Axiom system, and the \texttt{/sbin/multipath -F} or \texttt{/sbin/multipath -f} command is run before rebooting the host, the device-mapper configuration map may become unusable and all access to LUNs may be lost due to a bug in the Linux device-mapper code. If this occurs, the only way to recover is to reboot the host.

After LUN deletion, you may see a message similar to the following while the Pillar Axiom system is restarting the daemon:

\texttt{error calling out /sbin/scsi_id -g -u -s /block/sd*}

This message indicates that entries for the deleted LUNs still exist in the device-mapper device table. Rebooting the host will flush these deleted path entries from the device table.

LUNs Resized Dynamically

When you resize a LUN, a host reboot is necessary due to the constraints in the Linux device-mapper. You must stop the iSCSI services before you reboot the host.

However, if you follow the procedures documented in the Online Storage Reconfiguration Guide (http://www.redhat.com/docs/en-US/Red_Hat_Enterprise_Linux/html/Online_Storage_Reconfiguration_Guide/index.html) to force your device drivers to recognize the resized LUN, the device-mapper may recognize the resized LUN without a host reboot. The ability to use the resized LUN is a function of the host filesystem.

Clone LUNs Added or Deleted Dynamically

The procedures for adding or deleting LUNs described above also apply for Clone LUNs.
Restore Paths After Path Failure

Due to a Linux limitation, SCSI device paths may be marked offline after path failure.

If you are using QLogic HBAs, QLogic recommends that you use the following procedure to set driver parameters for failover:

1. Open the `/etc/modprobe.conf` file in a text editor, and set the options as follows:
   ```
options qla2xxx ql2xfailover=0 MaxRetriesPerPath=3
ql2xloginretrycount=30 ql2xlogintimeout=30
ql2xretrycount=90 qlport_down_retry=45
```

2. Run the following command to rebuild the kernel:
   ```
   # /sbin/new-kernel-pkg --mkinitrd --depmod --install `uname -r`
   ```

3. Reboot the host.

Multipath Failed Path Errors

The multipath command may return errors that indicate only that there are failed paths.

If paths are in a failed state, the `multipath` command returns the following error messages:

```
multipath -ll 2000b08005c001259
9:0:0:3: sg_io failed status 0x8 0x1 0x0 0x0
9:0:0:3: Unable to get INQUIRY vpd 1 page 0x0.
error calling out /sbin/scsi_id -g -u -s /block/sdaf
8:0:0:3: sg_io failed status 0x8 0x1 0x0 0x0
```

These error messages indicate only that there are failed paths in the multipath device map. The multipath device map shows paths that are failed and active, and `sg_io failed` refers to the fact that SCSI generic (sg) devices do not exist for iSCSI device paths that are failed. These errors indicate that the system is responding correctly.

You must fix the failed paths or, if these errors occur during failover testing, recognize that this is normal and expected Linux multipath behavior.
Note: The multipath command can be invoked automatically by the system at various times, so it is possible for messages like these to be seen whenever paths are in an unusual state, such as during dynamic reconfiguration.
Resolved Issues

There are no resolved issues for this release.
Additional Notes

Mount iSCSI Filesystems

We recommend that iSCSI filesystems be auto-mounted with the `_netdev` option. If the iSCSI filesystem is manually mounted, it must be unmounted manually before a reboot to avoid hangs.

Filesystems installed on iSCSI devices cannot be automatically mounted at system reboot because the IP network is not yet configured at mount time. However, the driver provides a method to auto-mount these filesystems as soon as the iSCSI devices become available, after the IP network is configured.

To auto-mount a filesystem installed on an iSCSI device:

1. List the iSCSI partitions to be automatically mounted in `/etc/fstab`.

2. For each filesystem on each iSCSI device, enter the logical volume on which the filesystem resides.

 The mount points must exist for the filesystems to be mounted. For example, the following `/etc/fstab` entry will mount the iSCSI devices with partition p1 specified by the LUID 20000121390p1:

   ```
   #device mount FS mount backup fsck
   #to mount point type options frequency pass
   LABEL=/ / ext3 defaults 1 1
   LABEL=/boot /boot ext3 defaults 1 2
   /dev/mapper/20000121390p1 ext2 _netdev 0 0
   ```

3. Restart the system.

 Result:
 The `netfs` initialization script mounts all filesystems with the `_netdev` mount option. Run this initialization script after the networking and iSCSI scripts to ensure that the system is ready to mount these devices.

Due to variable network delays, targets may not always become available in the same order from one boot to the next. Thus, the order in which iSCSI devices are mounted may vary and may not match the order the devices are listed in `/etc/fstab`. You should not assume mounts of iSCSI devices will occur in any particular order.
Incorrect Adapter Speed

The AxiomONE Storage Services Manager may report the adapter speeds of Brocade and QLogic host adapter ports that are connected at speeds of 4 Gb/s or higher as Unknown.

This occurs because of a limitation in the current vendor HBA API implementation.
Index

A
additional notes 59
APM
collection path 17
data path 17
definition 12
features 12
how to
download software 35
install software 36
remove software 45
update software 36
interaction with Pillar Axiom 15
known issues 47
operating limits 21
pre-installation requirements 22
ARP flux 28
audience 7

C
Cisco MDS switch
configure 31
configuration
explicit routing 27
iSCSI multipathing 27
iSCSI-to-FC router 31
load balancing 43
Pillar Axiom LUNs 38
SAN 32
SAN dynamic reconfiguration 53
subnet 27
contact information 9
conventions
typographical 8

D
device-mapper
function 18
verify installation 34
documentation
accessing 8
documentation support 10
download
APM software 35
multipath-tools 35

E
education programs 9
experience
required 7
explicit routing
iSCSI multipathing 27

F
features
APM 12
new in this release 46
Fibre Channel
protocol 22
supported HBAs 23
supported topologies 23
switches 26
format
LUN disk 41

H
HBAs
QLogic 23
help
online 9

I
install
APM software 36
multipath-tools 36
QLogic HBA API libraries 24
QLogic HBA drivers 24
QLogic HBAs 24
iSCSI
how to
configure Cisco MDS switch 31
configure iSCSI initiator 29
configure iSCSI-to-FC router 31
configure network for multipathing 27
start iSCSI initiator service 30
NIC bonding 28
protocol 22
routers 31
supported hardware 26
supported software 26
switches 31
iSCSI initiator
start service 30
iSCSI multipathing
ARP flux 28
explicit routing 27
subnets 27
iSCSI-to-FC router
configure 31
issues
additional notes 59
APM 47
operating system 53
Pillar Axiom 48
K
KVM hypervisor 14
L
load balancing
round-robin 43
static 43
LUN access
multi-protocol 44
precedence 44
preferred paths 44
LUN configuration
SAN hosts 38
LUN disk
how to
format 41
partition 41
M
multi-protocol access
definition 44
precedence 44
preferred paths 44
multipath-tools
function 18
how to
download software 35
install software 36
remove software 45
update software 36
pre-installation requirements 22
N
new features 46
NIC bonding 28
non-optimized path 44
O
online documents 8
online help 9
operating system
known issues 53
optimized path 44
P
partition
LUN disk 41
Pillar Axiom
configure for LUN access 38
interaction with APM 15
known issues 48
software requirements 11
Pillar Data Systems support site 9
pre-configure SAN hosts 32
pre-installation requirements 22
product support 9
professional services 9
Q
QLogic HBAs
install 24
settings 24
supported 23
queue depth
maximum for SAN host HBAs 23
R
release notes
additional notes 59
APM issues 47
operating system issues 53
Pillar Axiom issues 48
remove
APM software 45
multipath-tools 45
requirements
Pillar Axiom software 11
requisite reading 7
routers
iSCSI 31
S
sales information 10
SAN hosts
LUN configuration 38
maximum HBA queue depth 23
pre-configure 32
SAN protocols 22
settings
 explicit routing 27
 load balancing 43
 QLogic HBAs 24
solutions (professional services) 9
subnets
 iSCSI multipathing 27
supported
 architectures 20
 Fibre Channel topologies 23
 hardware platforms 20
 iSCSI hardware 26
 iSCSI software 26
 Linux kernels 20
 QLogic HBAs 23
switches
 Cisco MDS 31
 Fibre Channel 26
 iSCSI 31

T
 technical documents
 accessing 8
 technical support 9
 training programs 9
 typographical conventions 8

U
 uninstall
 APM software 45
 multipath-tools 45
 update
 APM software 36
 multipath-tools 36

V
 virtualization
 KVM hypervisor 14
 Xen hypervisor 14

X
 Xen hypervisor 14