Pillar AxiomONE™ Path Manager 3.0

Installation Guide and Release Notes

for Citrix XenServer 5.6
Copyright Notice

© 2010 Pillar Data Systems, Inc. All Rights Reserved.
Pillar Data Systems, Inc., 2840 Junction Avenue, San Jose, CA 95134-1922
Part Number: 4420-00135-0000
APM release 3.0
2010 June

Trademarks

Pillar Data Systems, the Pillar Data Systems logo, the Pillar “|” icon, Pillar Axiom, and Axiom are registered trademarks of Pillar Data Systems. Pillar QoS, Pillar Application Aware Storage, Pillar Efficiency Quotient, Pillar EQ, Pillar Storage Domain, and Pillar Sleepy Drive are trademarks of Pillar Data Systems. Other company and product names may be trademarks of their respective owners.

Important Note to Users

This document contains CONFIDENTIAL INFORMATION of Pillar Data Systems and should not be disclosed or further distributed to third parties without the express prior written consent of Pillar Data Systems.

This document and the use of Pillar Axiom hardware and software to which this document applies are subject to the applicable Pillar Data Systems End User License Agreement and Warranty Statement. A copy of the Pillar Data Systems End User License Agreement and Warranty Statement may be found on the same CD with which this document is provided, if applicable. Documents and software downloaded from a Pillar Data Systems Web site are governed by the End User License Agreement and Warranty Statement in effect between you and Pillar Data Systems at the time of download. If you entered into a signed written agreement with Pillar Data Systems for the purchase or use of this Pillar Axiom Storage System that supersedes the Pillar Data Systems End User License Agreement and Warranty Statement, then such signed written agreement applies.

Pillar Data Systems reserves the right to change the specifications and content in this document at any time.
Table of Contents

Preface

Chapter 1 Introduction to AxiomONE Path Manager
- About AxiomONE Path Manager for Linux.................................. 10
- AxiomONE Path Manager 3.0 Features.................................... 11
- Boot from SAN.. 13
- About AxiomONE Path Manager and Xen Hypervisor.................. 14
- AxiomONE Path Manager Architecture.................................... 15
 - About the AxiomONE Path Manager Control Path....................... 17
 - About the AxiomONE Path Manager Data Path......................... 17
 - About Multipathing and Device Mapper Automation.................... 18
- Supported Citrix XenServer 5.6 Distributions............................. 19
- Operating Limits.. 20

Chapter 2 Install AxiomONE Path Manager
- Prepare to Install the AxiomONE Path Manager.......................... 21
 - Supported SAN Protocols... 21
 - Supported Fibre Channel SAN Hardware Components.................. 22
 - Supported iSCSI Software and Hardware................................ 26
- Pre-Configure the SAN for Pillar Axiom Integration....................... 32
- Verify Installation of the Device Mapper.................................... 33
- Download and Install the AxiomONE Path Manager Software............ 35
 - Download the AxiomONE Path Manager Software........................ 35
 - Install (or Update) the AxiomONE Path Manager Software............. 36
- Configure the Pillar Axiom System for LUN Access....................... 37
- Partition and Format the LUN Disk (Optional)............................... 40
- About Load Balancing Configuration... 42
- About Path Selection... 43
- Remove AxiomONE Path Manager Software (Optional)................... 44
Chapter 3 AxiomONE Path Manager Release Notes

New in this Release. .. 45
Known APM Issues. .. 46
Known Pillar Axiom Issues. .. 47
Known Operating System Issues. ... 51
 Access to LUNs. .. 51
 SAN Dynamic Reconfiguration. ... 51
 Multipath Failed Path Errors. .. 54
 Traffic doesn't shift automatically to optimized paths. 54
 Create Storage Repository Fails. 55
 Delay in I/O Recovery on Windows Server 2008 XenServer Guest. 55
Resolved Issues. .. 56
Additional Notes. ... 57
 Mount iSCSI Filesystems. .. 57

Index. ... 58
List of Figures

Figure 1 APM interaction with a Pillar Axiom server.............................. 16
Figure 2 Example host ports before APM installation............................. 37
Figure 3 Example host ports after APM installation.............................. 37
List of Tables

Table 1 Typography to mark certain content. .. 8
Table 2 Contacts at Pillar Data Systems.. 9
Table 3 APM 3.0 for Citrix XenServer 5.6 features.. 11
Table 4 Line and color key for APM interaction diagram................................ 15
Table 5 APM operating limits. .. 20
Table 6 Emulex HBA settings.. 24
Table 7 QLogic HBA settings... 25
Table 8 Characteristics of SAN connections to host ports............................... 33
Table 9 Known Pillar Axiom issues... 47
Preface

Audience

This guide is intended for system, storage, and network administrators responsible for administering Storage Area Network (SAN) systems that require management of multiple paths between Linux hosts and Pillar Axiom Storage Systems.

Before You Read This Document

Being familiar with certain other Pillar Axiom technical documentation helps you succeed in the use of this guide.

Familiarize yourself with the following related documentation:

- *Pillar Axiom Customer Release Notes*: Includes late-breaking important information about the installation and operation of the Pillar Axiom system.

- *Pillar Axiom Administrator’s Guide*: Provides detailed information on creating and managing storage resources.

- *PillarAxiomONE CLI Guide* or *CLI Reference Guide*: Provides detailed information about functions available in the Pillar Axiom command line interfaces (CLIs).

Access Documentation

Pillar Data Systems technical documentation (including installation, service, cabling, integration, and administration guides) are available from several sources.

Pillar Axiom GUI
After logging in to the AxiomONE Storage Services Manager on the Pilot, navigate to Support > Technical Documentation and click on the document of interest.
Web sites

Technical documents (http://www.pillardata.com/techdocs)
Customer support portal (https://support.pillardata.com/login.do)

After logging in to the web site, click on Documents in the left navigation pane, and then click the appropriate category in the expanded list. Click on the document of interest.

Product CD-ROM

Insert the Technical Documentation CD-ROM that came with your Pillar Axiom Storage System into the CD player in a computer. Open the DocMenu PDF and click on the document of interest.

Tip: To search all technical documents on the CD-ROM, click the Search all PDFs icon in the top right corner. In the Search dialog, enter the word or phrase for which you would like to search.

Typographical Conventions

Table 1 Typography to mark certain content

<table>
<thead>
<tr>
<th>Convention</th>
<th>Meaning</th>
</tr>
</thead>
</table>
| *italics* | Within normal text, words in italics indicate:
| | • A reference to a book title.
| | • New terms and emphasized words.
| | • Command variables. |
| *monospace* | Indicates one of the following, depending on the context:
| | • The name of a file or the path to the file.
| | • Output displayed by the system on the command line. |
| *monospace* (bold) | Input provided by an administrator on the command line. |
| *>* | Indicates a menu item or a navigation path in a graphical user interface (GUI). For example, “Click Storage > Clone LUNs” means to click the Clone LUNs link on the Storage page in the graphical user interface (GUI). |
Pillar Contacts

Table 2 Contacts at Pillar Data Systems

<table>
<thead>
<tr>
<th>For help with...</th>
<th>Contact...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Error messages, usage questions, and other support issues</td>
<td>US and Canada: 877-4PILLAR (1-877-474-5527)</td>
</tr>
<tr>
<td></td>
<td>Europe: +800 PILLAR FS (+800 74 55 27 37)</td>
</tr>
<tr>
<td></td>
<td>Asia Pacific: +1-408-518-4515</td>
</tr>
<tr>
<td></td>
<td>South Africa: +0 800 980 400</td>
</tr>
<tr>
<td></td>
<td>Have your system serial number ready.</td>
</tr>
<tr>
<td></td>
<td>support@pillardata.com</td>
</tr>
<tr>
<td></td>
<td>Customer support portal (https://support.pillardata.com/login.do)</td>
</tr>
<tr>
<td>Training (custom or packaged)</td>
<td>Training and Education (http://www.pillardata.com/support-education/training/)</td>
</tr>
<tr>
<td>Sales and general contact information</td>
<td>Company contacts (http://www.pillardata.com/company/contact)</td>
</tr>
<tr>
<td>Documentation improvements and resources</td>
<td>docs@pillardata.com</td>
</tr>
<tr>
<td></td>
<td>Technical documents (http://www.pillardata.com/techdocs) (Log in with your username and password, and select Documents.)</td>
</tr>
</tbody>
</table>
CHAPTER 1

Introduction to AxiomONE Path Manager

About AxiomONE Path Manager for Linux

The information in this document is for system administrators who want to use the AxiomONE Path Manager (APM) software on a SAN host running the Citrix XenServer 5.6 operating system on x64-based systems.

This document describes how to install and configure the APM 3.0 for Citrix XenServer 5.6 software.

Pillar Axiom Storage Systems presenting LUNs to Citrix XenServer 5.6 hosts using APM release 3.0 must be running release 3.3.15 or higher of the Pillar Axiom software.

Note: If you are updating your Pillar Axiom software, complete that update before installing the APM software on the SAN host.

This release supports both Fibre Channel and iSCSI Slammers. You can connect your host to Fibre Channel or iSCSI ports on Slammers, and you can connect your host through iSCSI-to-FC routers to Fibre Channel ports on Slammers.
AxiomONE Path Manager 3.0 Features

APM is defined as:

Optional software installed on a storage area network (SAN) host to manage multiple paths to the Pillar Axiom system.

APM performs the following primary functions:

- Routes I/O to Pillar Axiom LUNs using only the best available data paths.
- Shares traffic among the available paths and ensures that access to the LUNs is not interrupted if some paths fail.
- Automatically configures the host into the AxiomONE Storage Services Manager and updates the configuration if the host information changes.

The function described in the last bullet enables the AxiomONE Storage Services Manager to report information about APM running on the host, such as the number of working paths, and, in some environments, to configure features such as load balancing.

Each APM release provides different features, and the features provided for each platform may vary. Refer to the following table for descriptions of the specific features implemented in this release.

Table 3 APM 3.0 for Citrix XenServer 5.6 features

<table>
<thead>
<tr>
<th>Feature</th>
<th>Benefit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Virtual machine support</td>
<td>Supports the Xen hypervisor included in the Citrix XenServer 5.6 distribution.</td>
</tr>
<tr>
<td>Automatic data path failover</td>
<td>Automatically switches to the highest priority optimized path available after a path failure or fail back.</td>
</tr>
<tr>
<td>Automatic recognition of SAN hosts by the AxiomONE Storage Services Manager</td>
<td>Sends a description of the host to each Pilot management controller on connected Pillar Axiom systems, allowing the AxiomONE Storage Services Manager GUI and CLI tools to create a definition for the host. This definition includes such information as the WWNs for each of the host's Fibre Channel ports, the IP addresses for any iSCSI ports, and the version of APM running on the host.</td>
</tr>
<tr>
<td>Call-Home log collection</td>
<td>When a Pillar Axiom administrator uses the AxiomONE Storage Services Manager to collect system information</td>
</tr>
</tbody>
</table>
Table 3 APM 3.0 for Citrix XenServer 5.6 features (continued)

<table>
<thead>
<tr>
<th>Feature</th>
<th>Benefit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(refer to the Pillar Axiom Administrator’s Guide for details), the Pillar Axiom Storage System sends a request to each connected APM host. The APM hosts collect useful diagnostic information and send it to the Pillar Axiom system, where it is bundled with any other requested information. The Pillar Axiom system can then transmit this information to the Pillar World Wide Customer Support Center. The information collected from each APM host includes:</td>
</tr>
<tr>
<td></td>
<td>• Logs from the APM components.</td>
</tr>
<tr>
<td></td>
<td>• Configuration and status information from the operating system.</td>
</tr>
<tr>
<td></td>
<td>• System and error logs from the operating system.</td>
</tr>
<tr>
<td></td>
<td>No customer data is transmitted.</td>
</tr>
<tr>
<td>Support for FC connections to FC Slammer storage controllers</td>
<td>Makes connections to Pillar Axiom storage arrays over high-speed FC network infrastructure.</td>
</tr>
<tr>
<td>Support for iSCSI connections to both FC and iSCSI Slammers</td>
<td>Makes connections to Pillar Axiom storage arrays over long distances using IP network infrastructure.</td>
</tr>
<tr>
<td></td>
<td>Note: iSCSI connections to FC Slammers require iSCSI-to-FC routers.</td>
</tr>
</tbody>
</table>
Boot from SAN

This release of AxiomONE Path Manager does not support booting from a Fibre Channel-attached disk.
About AxiomONE Path Manager and Xen Hypervisor

AxiomONE Path Manager (APM) supports the Xen hypervisor, an open source virtual machine monitor included with the Citrix XenServer 5.6 distribution, on x86-64 platforms.

You can install APM on a Citrix XenServer 5.6 host configured as a Xen hypervisor host (dom0). Guest operating systems can access multi-pathed Pillar Axiom LUNs that are mapped to the dom0 host in the same way that these systems access other disks. For example, these LUNs can be used to hold file-based containers, which can then be exposed to the guest operating systems, or the guest operating systems can access the LUNs as persistent storage disks.

Guest operating systems can also use iSCSI software initiators to connect to Pillar Axiom systems and to access LUNs. In this case, APM maps the LUNs directly to the guest operating system. If a version of APM that supports iSCSI is available for the guest operating system, this version of APM can be installed on the guest and used to manage multiple iSCSI paths to the Pillar Axiom LUNs in the same way as APM would be used on a physical host.

Refer to the Citrix XenServer 5.6 documentation (https://www.citrix.com/English/SS/downloads/details.asp?dID=1349740&downloadID=1863359&pID=683148) for information on using disks with the Xen hypervisor, and for information on installing, configuring, and using XenServer.
AxiomONE Path Manager Architecture

AxiomONE Path Manager (APM) manages the Linux multipath framework and communicates with Pillar Axiom servers on a control path, which is separate from the data path. The Linux multipath framework manages the LUN data access paths themselves.

Figure 1: APM interaction with a Pillar Axiom server illustrates how the APM software installed on a storage area network (SAN) host interacts with a Pillar Axiom Storage System. Refer to the table below to determine the significance of the lines and colors in the figure.

Table 4 Line and color key for APM interaction diagram

<table>
<thead>
<tr>
<th>Graphic element</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>______</td>
<td>Data path</td>
</tr>
<tr>
<td>______</td>
<td>Control path</td>
</tr>
<tr>
<td>Pillar-supplied hardware and software</td>
<td></td>
</tr>
<tr>
<td>Non-Pillar hardware and software</td>
<td></td>
</tr>
<tr>
<td>SAN host kernel space</td>
<td></td>
</tr>
<tr>
<td>SAN host user space</td>
<td></td>
</tr>
</tbody>
</table>
Figure 1 APM interaction with a Pillar Axiom server

Legend

<table>
<thead>
<tr>
<th>Number</th>
<th>Component</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>User</td>
</tr>
<tr>
<td>2</td>
<td>User application</td>
</tr>
<tr>
<td>3</td>
<td>SAN host</td>
</tr>
<tr>
<td>4</td>
<td>APM daemon</td>
</tr>
<tr>
<td>5</td>
<td>Control paths (all dashed lines)</td>
</tr>
<tr>
<td>6</td>
<td>Pillar Axiom administrator</td>
</tr>
<tr>
<td>7</td>
<td>Pillar Axiom command line interface (CLI) or graphical user interface (GUI)</td>
</tr>
<tr>
<td>8</td>
<td>Encrypted XML over TCP/IP</td>
</tr>
<tr>
<td>9</td>
<td>Network card</td>
</tr>
<tr>
<td>10</td>
<td>Linux multipath framework</td>
</tr>
<tr>
<td>11</td>
<td>iSCSI software initiator (iSCSI)</td>
</tr>
<tr>
<td>12</td>
<td>TCP/IP driver (iSCSI)</td>
</tr>
<tr>
<td>13</td>
<td>HBA driver (FC) or NIC driver (iSCSI)</td>
</tr>
<tr>
<td>14</td>
<td>HBA (FC) or NIC (iSCSI)</td>
</tr>
<tr>
<td>15</td>
<td>SCSI over Fibre Channel (FC) or iSCSI over IP (iSCSI)</td>
</tr>
<tr>
<td>16</td>
<td>Data path (all solid lines)</td>
</tr>
<tr>
<td>17</td>
<td>Pillar Axiom server</td>
</tr>
<tr>
<td>18</td>
<td>Brick storage enclosure pool</td>
</tr>
</tbody>
</table>
About the AxiomONE Path Manager Control Path

The AxiomONE Path Manager (APM) control path provides a path separate from the data path to manage multipathing and communication.

The APM software uses a daemon running in the background to control multipathing and communication. The APM daemon uses the control path to:

- Get path information from the HBA drivers.
- Configure the Linux multipath framework.
- Send information such as host attributes and statistics to the Pilot management controller, and collect logs from the host on request.

The APM daemon sends a description of the host to the Pilot on each connected Pillar Axiom Storage System. This description creates a definition for the host in the AxiomONE Storage Services Manager. The definition includes any Fibre Channel (FC) ports in the host. The graphical user interface (GUI) and command line interface (CLI) list the port World Wide Names (WWNs) of the FC ports that are used to make connections to the Pillar Axiom system.

About the AxiomONE Path Manager Data Path

AxiomONE Path Manager (APM) uses the Linux `device-mapper` to provide paths for reading and writing data to LUNs on the Pillar Axiom Storage System.

See Figure 1: APM interaction with a Pillar Axiom server for an illustration of how data flows from the host to the Pillar Axiom Storage System.

The Linux multipath framework:

- Controls and manages all data paths to Pillar Axiom LUNs.
- Groups multiple data paths to a Pillar Axiom LUN and presents this group to the operating system as a single LUN or drive.
- Identifies and uses optimized data paths when possible. An optimized path provides the best performance and is the preferred path for data transfer.
- Determines which data paths to use.
- Handles data path failover.
• Manages data path errors.

About Multipathing and Device Mapper Automation

AxiomONE Path Manager (APM) uses the standard Linux 2.6 device-mapper functionality to provide multipathing services. APM consists of a daemon that monitors the state of the device-mapper and communicates with the Pillar Axiom software. APM presents the multipathed LUNs as virtual block devices in the Linux 2.6 device-mapper framework.

Note: You can use device-mapper and multipath-tools for many purposes other than managing multipathing for Pillar Axiom Storage Systems.

In addition, APM provides installation and start up scripts that automate several of the manual integration and configuration tasks usually required by device-mapper. The automation includes:

• Correcting functional deficiencies in the HBA driver installers.
• Bringing partitions on multipath devices online automatically.
• Reordering startup scripts for optimum operation.

Note: To determine how the Linux startup scripts have been altered, refer to the comments in the /etc/init.d/axiompmd file.
Supported Citrix XenServer 5.6 Distributions

AxiomONE Path Manager (APM) is supported on Citrix XenServer 5.6 platforms. APM supports Citrix XenServer distributions for the x86-64 (64-bit AMD and Intel platforms) architecture.

To determine the hardware platform on which your distribution is running, run the following command:

```
# uname -i
```

Verify that the output of this command is `x86_64`, which corresponds to the AMD64/Intel EM64T architecture.

To determine the Linux kernel installed on your system, run the following command:

```
# uname -r
```

Verify that the kernel identifier in the output of this command begins with the following value:

```
2.6.18-164
```
Operating Limits

AxiomONE Path Manager (APM) provides access over multiple data paths to LUNs defined on a Pillar Axiom Storage System. APM, the device-mapper, Linux, and the Pillar Axiom software limit the following aspects of this access.

Table 5 APM operating limits

<table>
<thead>
<tr>
<th>APM capabilities</th>
<th>Maximum value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target Pillar Axiom systems</td>
<td>Eight for each SAN host</td>
</tr>
<tr>
<td>Connect to SAN Slammer storage controllers</td>
<td>Four for each Pillar Axiom system</td>
</tr>
<tr>
<td>Connect to LUNs</td>
<td>256</td>
</tr>
<tr>
<td>Handle data paths</td>
<td>32 to each LUN</td>
</tr>
<tr>
<td>Handle FC HBA ports</td>
<td>32 for each SAN host</td>
</tr>
</tbody>
</table>

The Linux device-mapper has a limitation of 1024 paths to all devices, including Pillar Axiom LUNs. If you use the maximum of 256 LUNs, you will have a maximum of four paths to each LUN.

Important! The Linux device-mapper does not gracefully handle more than 1024 visible paths and may fail in a variety of ways if that limit is exceeded.

Important! Not all combinations of the limits shown have been tested. Use care when operating a system that has been configured to run at or near these limits. The system may exhibit anomalies when all limits are exercised concurrently.
CHAPTER 2

Install AxiomONE Path Manager

Prepare to Install the AxiomONE Path Manager

To ensure a successful installation of AxiomONE Path Manager (APM), perform the following tasks in sequence:

1. Read AxiomONE Path Manager Release Notes.
2. Ensure that the Pillar Axiom Storage System is running release 3.3.15 or higher of the Pillar Axiom software.
3. If you are using Fibre Channel (FC) connections, verify that your FC storage area network (SAN) components and host bus adapters (HBAs) are supported. See: Supported Fibre Channel SAN Hardware Components.
4. If you are using FC connections, confirm that your HBAs are installed according to our instructions. See one of:
 - Install and Configure Emulex Host Bus Adapters and Drivers.
 - Install and Configure QLogic Host Bus Adapters and Drivers.
5. If you are using Internet Small Computer System Interface (iSCSI) connections, verify that your network is configured for iSCSI multipathing, and that you have configured the iSCSI software initiator correctly. See About Network Configuration for iSCSI Multipathing, Configure the iSCSI Initiator, and Start the iSCSI Software Initiator Service.
6. If you are using iSCSI connections, confirm that any iSCSI-to-FC routers and IP switches you have installed are supported. See Supported iSCSI Routers and Switches.
7. Pre-Configure the SAN for Pillar Axiom Integration.
8. Verify Installation of the Device Mapper.

Supported SAN Protocols
AxiomONE Path Manager (APM) 3.0 supports Fibre Channel and software-based Internet Small Computer System Interface (iSCSI) connections to the Pillar Axiom Storage System.

Supported Fibre Channel SAN Hardware Components

AxiomONE Path Manager (APM) supports a variety of Fibre Channel host bus adapters (HBAs) and storage area network (SAN) routers and switches.

Approved HBAs and switches that are compatible with the Pillar Axiom system are listed in:

- Supported Emulex Host Bus Adapters and Drivers.
- Supported QLogic Host Bus Adapters and Drivers.
- Supported Fibre Channel Switches.

Supported Fibre Channel Topologies

AxiomONE Path Manager (APM) supports the Point-to-Point (FC-P2P) and Switched Fabric (FC-SW) topologies. APM does not support Arbitrated Loop (FC-AL).

Maximum Queue Depth

The recommended maximum queue depth for all SAN hosts attached to a Pillar Axiom system is 64. This value is the maximum number of outstanding I/O requests to the Pillar Axiom system. Exceeding the maximum I/O queue depth may cause errors.

This value is typically set in the BIOS or similar firmware configuration of the HBA on the SAN host. Consult your HBA documentation for the setting that controls the maximum I/O queue depth for your HBA and for configuration instructions.

Supported Emulex Host Bus Adapters and Drivers

AxiomONE Path Manager (APM) supports the following Emulex host bus adapters (HBAs) and HBA drivers:
• LP10000
• LP10000DC
• LP10000ExDC-E
• LP11000
• LP11002

The above HBAs require the Emulex 0:8.2.8.14 driver included in the Citrix XenServer 5.6 distribution.

Install and Configure Emulex Host Bus Adapters and Drivers

To ensure compatibility between AxiomONE Path Manager (APM) and your Emulex host bus adapters (HBAs), be sure to follow the instructions in this section for installing the supported Emulex HBAs and drivers.

1. Install Emulex HBAs according to the instructions at the Emulex products download page (currently http://www.emulex.com/products/host-bus-adapters/emulex-branded.html).

2. Verify that you have the Emulex version 0:8.2.8.14 HBA driver installed.

 To determine your driver version, run the following command:

   ```bash
   modprobe lpfc
   ```

 If the driver version returned does not match the supported version, install the driver from the Citrix XenServer distribution.

4. Use the HBAnyware utility to set the following HBA settings to the recommended values:
Table 6 Emulex HBA settings

<table>
<thead>
<tr>
<th>HBA settings</th>
<th>Recommended value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max Queue Depth (lpfc_lun_queue_depth)</td>
<td>64</td>
</tr>
<tr>
<td>lpfc_nodev_tmo</td>
<td>60</td>
</tr>
<tr>
<td>lpfc_discovery_threads</td>
<td>32</td>
</tr>
</tbody>
</table>

5 If you have replaced the driver, or made any modifications to the driver configuration file, rebuild the kernel to ensure that any changes to the driver are picked up.

Use the following command:

```
# /sbin/new-kernel-pkg --mknitrd --depmod --install `uname -r`
```

Supported QLogic Host Bus Adapters and Drivers

The AxiomONE Path Manager (APM) software supports the following QLogic Fibre Channel host bus adapters (HBAs) on x86-32 and x86-64 platforms:

- QLA2310F, QLA2310FL
- QLA2340, QLA2340L
- QLA2342, QLA2342L
- QLA2344
- QLA2460
- QLA2462
- QLE2460
- QLE2462
- QLE2464
- QLE2560
- QLE2562
- QLE2564

The above HBAs require QLogic driver version 8.02.01.03.11.0-k9 and the HBA API libraries for this driver. Both the driver and the API libraries are included in the Citrix XenServer distribution.

Install and Configure QLogic Host Bus Adapters and Drivers

To ensure compatibility between AxiomONE Path Manager (APM) and your QLogic host bus adapters (HBAs), be sure to follow the instructions in this section for installing the supported QLogic HBAs and drivers.
1. Install QLogic HBAs according to the QLogic instructions.

2. Verify that you have the QLogic version 8.02.01.03.11.0-k9 HBA driver installed.

 To determine your driver version, run the following command:

   ```bash
   modprobe qla2xxx
   ```

 If the driver version returned does not match the supported version, install it from the Citrix XenServer distribution.

3. Use the SANSurfer CLI included in the Citrix XenServer distribution to set the following HBA settings in the `/etc/modprobe.conf.local` configuration file to the recommended values:

 Table 7 QLogic HBA settings

<table>
<thead>
<tr>
<th>HBA setting</th>
<th>Recommended value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Link Down Timeout</td>
<td>30</td>
</tr>
<tr>
<td>Execution Throttle</td>
<td>64</td>
</tr>
<tr>
<td>LUNs per Target</td>
<td>256</td>
</tr>
<tr>
<td>Port Down Retry Count</td>
<td>30</td>
</tr>
<tr>
<td>Max Queue Depth (ql2xmaxqdepth)</td>
<td>64</td>
</tr>
</tbody>
</table>

4. Disable QLogic's multipathing to ensure recovery from path failures.

 Ensure that the `/etc/modprobe.conf.local` file has the following settings:

   ```bash
   options qla2xxx ql2xfailover=0 ConfigRequired=0
   MaxRetriesPerPath=15
   ql2xloginretrycount=30 ql2xlogintimeout=60
   ql2xretrycount=90 qlport_down_retry=45
   ```

5. If you have replaced the driver, rebuild the kernel to ensure that any changes to the driver are picked up.

 Use the following command:

   ```bash
   # /sbin/new-kernel-pkg --mkinitrd --depmod --install `uname -r`
   ```
Supported Fibre Channel Switches

For a list of supported Fibre Channel switches, choose one of:

- Call the Pillar World Wide Customer Support Center at the number listed in Pillar Contacts.

- Refer to the Pillar Axiom Support and Interoperability Guide, which can be found on the Documents Web page (http://www.pillardata.com/techdocs).

Note: Refer to the switch vendor’s Web site for the most recent installation instructions, patches, and firmware.

Supported iSCSI Software and Hardware

AxiomONE Path Manager (APM) for Citrix XenServer 5.6 supports the following Internet Small Computer System Interface (iSCSI) software and hardware:

- The iSCSI software initiator included in the Citrix XenServer 5.6 distribution.
- The iSCSI-to-Fibre Channel routing features of the Cisco MDS 9000 family of routers and switches.

Note: APM for Citrix XenServer 5.6 does not support iSCSI host bus adapters (HBAs).

About Network Configuration for iSCSI Multipathing

You can reduce the impact of failures in your Internet Small Computer System Interface (iSCSI) network by ensuring that iSCSI connections are made through several network interface cards (NICs) on the host.

We recommend using the normal IP configuration facilities to route connections to different Slammer storage controller ports through different host NICs. For example, if the host has two NICs available for iSCSI connections to a Slammer, you can set up routing to send all traffic to one port on each Slammer control unit (CU) through one NIC, and traffic to the other port on each Slammer CU through the other NIC.

The best way to ensure that your iSCSI paths use different physical connections depends on factors such as the number of available NICs in the host and the
existing configuration of your IP network. We recommend using normal IP routing configuration techniques such as subnet configuration and explicit route configuration to distribute connections over multiple NICs. You can also use NIC bonding to provide redundancy on Ethernet connections between the host and the switch.

About Subnet Configuration

Groups of host network interface cards (NICs) and Slammer ports can be configured into different subnets. Whenever the iSCSI initiator opens a connection to a Slammer port, that connection will automatically be routed through the host NIC in the same subnet as the Slammer port. For example, if a host has two NIC ports on the Internet Small Computer Systems Interface (iSCSI) network, one of the host NIC ports connected to one of the Slammer control unit (CU) ports could be placed in one subnet, and another host NIC port connected to the other Slammer CU port could be placed in a different subnet.

Configure Explicit Routing

If two or more NICs on the host are configured into the same subnet, you should explicitly configure Internet Protocol (IP) routing to route connections to different destination ports through different host NICs.

1. Create or edit the routing configuration file for each NIC, and add entries for each destination IP address that you want to route through this NIC.

 The name of the routing configuration file is `/etc/sysconfig/network-scripts/route-NIC`, where `NIC` is the name used by the OS for the NIC. Add a line for each Slammer port for which access is to be routed through this NIC. The format of the line should be:

 `Slammer_port_IP_address via NIC_IP_address src NIC_IP_address`

 Example:
 If the NIC `eth0` has been configured with IP address 192.168.2.39, and you want to use this NIC to access Slammer ports 192.168.2.10 and 192.168.2.12, then you would create or edit the file `/etc/sysconfig/network-scripts/route-eth0` and add the following lines:

   ```
   192.168.2.10 via 192.168.2.39 src 192.168.2.39
   192.168.2.12 via 192.168.2.39 src 192.168.2.39
   ```

 You can also use the `ip route add` command to temporarily set up routes from the command line by using lines of the form described above as parameters.
Example:
The following command sets up a route for the first Slammer port described above:

```
# ip route add 192.168.2.10 via 192.168.2.39 src 192.168.2.39
```

2 If the host has more than one NIC in a broadcast domain, you must modify the configuration to prevent a condition known as address resolution protocol (ARP) flux, which can prevent routing from operating correctly.

To prevent **ARP flux**, edit the file `/etc/sysctl.conf`, and modify or add entries for the following parameters:

```
net.ipv4.conf.all.arp_ignore=1
net.ipv4.conf.all.arp_announce=2
```

You can also temporarily prevent ARP flux by using lines of this form as parameters to `sysctl -w` commands.

Example:
The following commands temporarily prevent ARP flux:

```
# sysctl -w net.ipv4.conf.all.arp_ignore=1
# sysctl -w net.ipv4.conf.all.arp_announce=2
```

Changes to the configuration files will take effect after you reboot the host.

About NIC Bonding

Network interface card (NIC) bonding is another way to add redundancy to Ethernet networks.

With **NIC bonding**, also known as **channel bonding**, two or more NICs and their physical connections to the switches are logically bonded together and presented to the Internet Protocol (IP) as a single virtual NIC. If one of the physical connections fails, the traffic is transferred to another NIC without the IP layer or the layers above it knowing about the transfer.

This approach protects against low-level Ethernet failures, such as a faulty NIC or cable, between the host and its local IP switch. Because the redundancy is at a very low level in the protocol stack, the higher layers such as Transmission Control Protocol/Internet Protocol (TCP/IP), Internet Small Computer System Interface (iSCSI), and device-mapper are not aware that a transfer to a different NIC has taken place. To the IP protocol, the virtual bonded NIC appears as a single physical connection. To iSCSI, it appears as a single connection to each target port.
In short, the iSCSI, device-mapper, and APM layers are not aware of the physical path redundancy provided at the NIC bonding level and do not treat this redundancy as providing multiple paths to the Slammer storage controller. Multiple paths created by NIC bonding will not be reported as multiple paths by device-mapper or in the AxiomONE Storage Services Manager.

Configure the iSCSI Initiator

To support iSCSI connections, AxiomONE Path Manager (APM) for Citrix XenServer 5.6 requires the open-iscsi-2.0.870-26.6.1.xs562 version of the iSCSI software initiator included in the Citrix XenServer 5.6 distribution.

For complete installation and configuration instructions, refer to: /usr/share/doc/iscsi-initiator-utils-*/README. The following procedure is an overview of the instructions in the README file.

Important! You must ensure that each iSCSI initiator on the iSCSI SAN has a unique name, and set this host's initiator name in the /etc/iscsi/initiatorname.iscsi file.

1. Set up IP addresses and network parameters on Slammer iSCSI ports.
 This may include setting up Challenge Handshake Authentication Protocol (CHAP) on your system.

2. Configure iSCSI accordingly.
 Example:
 If you are using CHAP to communicate with the Slammer iSCSI ports, you may need to modify the /etc/iscsi/iscsid.conf file accordingly.

3. Start the iSCSI initiator.
 # service open-iscsi start

4. Discover the Slammer iSCSI target ports.
 One of:
 • # iscsiadm -m discovery -t sendtargets -p 172.20.191.11:3260
 • iscsi_discovery 10.0.0.22
 Example:

5. Discover the other ports, depending on the desired design (optional).
6 Restart the `iscsi` service to log in to the discovered target ports:

```
# service open-iscsi restart
```

7 Use `chkconfig` to configure the `iscsi` service to start up at various run levels.

See Start the iSCSI Software Initiator Service.

Start the iSCSI Software Initiator Service

After you have configured the iSCSI software initiator, set the iSCSI initiator to start at startup time and confirm that your Internet Small Computer System Interface (iSCSI) devices are visible.

1 Start the `iscsi` service.

Run the following command:

```
# service iscsi start
```

2 Configure the `iscsi` service to start at boot time.

Run the following commands:

```
# chkconfig --add iscsi
# chkconfig iscsi on
```

The first command checks that the scripts necessary to start and stop the service are available. The second command sets the service to start at the appropriate run levels.

3 Verify that the `iscsi` service is configured to start at boot time.

Run the following command:

```
# chkconfig --list iscsi
```

Result:
The following is a sample of the output of this command when the service is not configured to start at boot time:

```
iscsi 0:off 1:off 2:off 3:off 4:off 5:off 6:off
```

The following is a sample of the output of this command when the service is configured to start at boot time:

```
iscsi 0:off 1:off 2:on 3:on 4:on 5:on 6:off
```
Supported iSCSI Routers and Switches

AxiomONE Path Manager (APM) supports the iSCSI-to-Fibre Channel routing features of the Cisco MDS 9000 family of multi-layer directors and fabric switches.

The iSCSI-to-Fibre Channel routing features enable a host to use Internet Small Computer System Interface (iSCSI) to access LUNs on Pillar Axiom Fibre Channel Slammer storage controllers. Pillar Data Systems tested this APM release on Cisco MDS SAN-OS Release 3.0 (2a). Refer to the Cisco documentation (http://www.cisco.com/univercd/cc/td/doc/product/sn5000/mds9000/3_0/fmcfg/index.htm) for more information on these features.

In this release, Pillar Data Systems supports only the iSCSI-to-Fibre Channel routing capabilities provided by this Cisco switch.

The switch requires certain configuration steps to work with APM and the Pillar Axiom system as an iSCSI-to-Fibre Channel router. See Configure the iSCSI-to-Fibre Channel Router for configuration information.

Configure the iSCSI-to-Fibre Channel Router

The iSCSI-to-Fibre Channel routing features of the Cisco MDS 9000 family of multi-layer directors and fabric switches require configuration to work with the AxiomONE Path Manager (APM) and the Pillar Axiom system.

For more information on these features, refer to the Cisco documentation (http://www.cisco.com/univercd/cc/td/doc/product/sn5000/mds9000/3_0/fmcfg/index.htm).

1. Present the Pillar Axiom Slammer storage controller ports as Internet Small Computer System Interface (iSCSI) targets.

 Choose Dynamic Mapping or Static Mapping. However, we recommend that you use dynamic mapping because the main Cisco features for static mapping requirements are supplied by APM and the AxiomONE Storage Services Manager.

2. Present the iSCSI hosts as virtual Fibre Channel hosts.

 The hosts must be presented in transparent initiator mode (not in proxy-initiator mode). When you assign World Wide Names (WWNs) for the iSCSI initiators, use the static mapping mechanism.
After you configure the switch, APM on the iSCSI hosts interacts with the Pillar Axiom systems in exactly the same way as when both hosts and Slammers use the same SAN protocol.

Pre-Configure the SAN for Pillar Axiom Integration

Before you install the AxiomONE Path Manager (APM) software, you need to prepare your storage area network (SAN) host connections with the Pillar Axiom Storage System.

Prerequisites:

Verify that your system has:

- LUNs configured on your Pillar Axiom Storage System.
- At least one SAN Slammer storage controller that has Fibre Channel (FC) or Internet Small Computer System Interface (iSCSI) ports.
- An FC or iSCSI protocol license.
- Supported host bus adapter (HBA) drivers and API libraries.
- Ethernet connections to the management ports on the Pilot management controller.
- A network configuration that allows an application on the SAN host to connect to TCP port 26004 on the Pilot.

Tip: To check network connectivity, issue a simple `pdscli` or `axiomcli` request from the host to the Pillar Axiom Storage System. Both `pdscli` and `axiomcli` use the same port and protocols as those used by APM. Refer to the Pillar Axiom CLI Reference Guide or Pillar AxiomONE CLI Guide for details.

1 Verify that all FC and iSCSI components and software are installed on the SAN host according to the instructions in this guide.

2 Set up the physical connectivity and any required switch zoning for the SAN. Proper setup is needed so all required host HBA ports can access the Slammer ports on the Pillar Axiom server.

3 If you are using iSCSI connections, choose one or more of the following:
 - About Network Configuration for iSCSI Multipathing.
 - Configure the iSCSI Initiator.
• Configure the iSCSI-to-Fibre Channel Router.

4 Launch the AxiomONE Storage Services Manager and navigate to the Storage > SAN > Hosts page.

5 Verify the SAN connections.

Each host port should display individually as follows:

Table 8 Characteristics of SAN connections to host ports

<table>
<thead>
<tr>
<th>Column label</th>
<th>Port type</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FC</td>
</tr>
<tr>
<td>Host Name</td>
<td>Hostname Unknown</td>
</tr>
<tr>
<td>Host Port</td>
<td>WWN</td>
</tr>
</tbody>
</table>

See Figure 2: Example host ports before APM installation for an illustration.

6 If the host is using only iSCSI to connect to Slammers, choose one of:

• Install the sg3_utils packages.
• Ensure that at least one LUN on the Pillar Axiom Storage System is visible to the host.

The sg3_utils-libs-* and sg3_utils-* packages are required for automatic discovery of the Pillar Axiom Storage System over iSCSI when no iSCSI LUNs are visible to the host. An alternative is to make a LUN visible to the host by either creating a global LUN or mapping one to the host iSCSI software initiator IQN.

Note: If you mapped a LUN to the initiator IQN, it will automatically be remapped to the host name after APM is installed. If the LUN is temporary, delete it after you install the software.

Verify Installation of the Device Mapper

The Linux 2.6 device-mapper, among other uses, maps a logical block device on the SAN host into a Pillar Axiom LUN. The AxiomONE Path Manager (APM) daemon monitors the device-mapper and uses it to provide multipathing.

APM requires device-mapper version 1.02.32-1.el5 or later.
1 Verify that `device-mapper` is installed.

Run the following command:

```
# rpm -qa | grep device-mapper | grep -v multipath
```

Result:
If `device-mapper` is installed, this command returns the version of `device-mapper` and your operating system.

2 If `device-mapper` version 1.02.32–1.el5 or later is not installed, install this version.

Install `device-mapper` from your Linux installation CDs or operating system vendor Web site.
Download and Install the AxiomONE Path Manager Software

The AxiomONE Path Manager (APM) installation for Citrix XenServer 5.6 requires that you download the APM software package from the Pillar Support Web site, and install the software on your system.

1. Download the AxiomONE Path Manager Software.
2. Install (or Update) the AxiomONE Path Manager Software.
3. Configure the Pillar Axiom System for LUN Access.

To remove the AxiomONE Path Manager software from your SAN host, see Remove AxiomONE Path Manager Software (Optional).

Download the AxiomONE Path Manager Software

The AxiomONE Path Manager (APM) 3.0 software consists of a single package: the APM daemon package. Unlike other APM for Linux releases, this release does not include a package containing an updated version of the multipath-tools component of device-mapper. The version of the multipath-tools component of device-mapper that is included in the Citrix XenServer distribution is required.

2. In the left navigation pane, click the Software Downloads > AxiomONE Path Manager link.
3. In the content pane, expand the Linux > Citrix XenServer link.
4. Expand the APM 3.0 Citrix XenServer link.
5. Click the name of the APM package for your hardware platform (x86, or AMD64/Intel EM64T) to download.
6. Under Software Download Details, click the green arrow to begin the download.
7. Choose the Save option to download the package to your SAN host.
Install (or Update) the AxiomONE Path Manager Software

After you download the AxiomONE Path Manager (APM) software, you can install it on your host system.

Before you install the APM software, verify that your system meets the prerequisites outlined in Supported Fibre Channel SAN Hardware Components and Pre-Configure the SAN for Pillar Axiom Integration.

Important! Do not remove the `multipath-tools` component of `device-mapper` before you install APM. The `multipath-tools` component of `device-mapper` that is included in the Citrix XenServer distribution is required to run APM for Citrix XenServer.

1. Remove any previous versions of APM on your system using the following command:

   ```bash
   # rpm -e axiompm
   ``

2. Install the APM package using the following command:

   ```bash
 # rpm -ivh axiompm-version.rpm
 ``

 Note: In the command above, `version` is the name of the release version you downloaded.

 APM files and scripts are installed in the `/opt/pillar` directory.

3. Restart the host.

After you install the software, follow the instructions in Configure the Pillar Axiom System for LUN Access. You must complete that task for the software to function correctly.
Configure the Pillar Axiom System for LUN Access

The LUN configuration procedure provides the storage area network (SAN) host with access to Pillar Axiom LUNs. Refer to the *Pillar Axiom Administrator’s Guide* for instructions on how to create LUNs.

Prerequisites:

- **Pre-Configure the SAN for Pillar Axiom Integration.**
- **Install (or Update) the AxiomONE Path Manager Software.**

1. In the AxiomONE Storage Services Manager, navigate to the **Storage > SAN > Hosts** page.

2. Verify that the individual entries for the host ports have been replaced with a single entry under the host name.

Example:

Figure 2 Example host ports before APM installation

<table>
<thead>
<tr>
<th>Host Name</th>
<th>Host Port</th>
<th>Type</th>
<th>AxiomONE Path Manager</th>
<th>Number of LUNs</th>
<th>Host Port Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hostname Unknown</td>
<td>10:00:00:00:00:00:00:00</td>
<td>FC</td>
<td>Not Registered</td>
<td>0</td>
<td>Connected</td>
</tr>
<tr>
<td>Hostname Unknown</td>
<td>10:00:00:00:00:00:00:00</td>
<td>FC</td>
<td>Not Registered</td>
<td>0</td>
<td>Connected</td>
</tr>
<tr>
<td>Hostname Unknown</td>
<td>10:00:00:00:00:00:00:00</td>
<td>FC</td>
<td>Not Registered</td>
<td>6</td>
<td>Connected</td>
</tr>
<tr>
<td>Hostname Unknown</td>
<td>10:00:00:00:00:00:00:00</td>
<td>FC</td>
<td>Not Registered</td>
<td>0</td>
<td>Connected</td>
</tr>
<tr>
<td>lan1937-65.com</td>
<td>192.168.2.83</td>
<td>ISCSI</td>
<td>Not Registered</td>
<td>0</td>
<td>Connected</td>
</tr>
<tr>
<td>lan1937-65.com</td>
<td>192.168.2.84</td>
<td>ISCSI</td>
<td>Not Registered</td>
<td>0</td>
<td>Connected</td>
</tr>
</tbody>
</table>

Figure 3 Example host ports after APM installation

<table>
<thead>
<tr>
<th>Host Name</th>
<th>Host Port</th>
<th>Type</th>
<th>AxiomONE Path Manager</th>
<th>Number of LUNs</th>
<th>Host Port Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hostname Unknown</td>
<td>10:00:00:00:00:00:00:00</td>
<td>FC</td>
<td>Communicating</td>
<td>0</td>
<td>Connected</td>
</tr>
<tr>
<td>Hostname Unknown</td>
<td>10:00:00:00:00:00:00:00</td>
<td>FC</td>
<td>Communicating</td>
<td>0</td>
<td>Connected</td>
</tr>
<tr>
<td>Hostname Unknown</td>
<td>10:00:00:00:00:00:00:00</td>
<td>FC</td>
<td>Communicating</td>
<td>0</td>
<td>Connected</td>
</tr>
<tr>
<td>Hostname Unknown</td>
<td>10:00:00:00:00:00:00:00</td>
<td>FC</td>
<td>Communicating</td>
<td>0</td>
<td>Connected</td>
</tr>
</tbody>
</table>
Note: The Hosts page may display differently in your version of AxiomONE Storage Services Manager.

You will see one or more of the following **AxiomONE Path Manager Status** and **Host Port Status** messages on the Hosts page:

<table>
<thead>
<tr>
<th>APM Status</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Communicating</td>
<td>The host control path is currently logged into the Pilot.</td>
</tr>
<tr>
<td>Not Registered</td>
<td>A control path from an APM host with this name has never logged into the Pilot.</td>
</tr>
<tr>
<td>Not Communicating</td>
<td>The APM host control path has previously logged into the Pilot, but it is not currently logged in.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Host Port Status</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connected</td>
<td>The host SAN connection is logged in to the SAN Slammer.</td>
</tr>
<tr>
<td>Not connected</td>
<td>The host SAN connection is not logged in to the SAN Slammer.</td>
</tr>
</tbody>
</table>

See the AxiomONE Storage Services Manager Help for information about the remaining fields on the Hosts page.

3 As needed, create new LUNs on the Pillar Axiom server for the SAN hosts.

4 As needed, set up mappings of the LUNs to the new host entries.

5 Follow the recommendations in **SAN Dynamic Reconfiguration** to make any changes visible to the SAN host.

6 Run the following commands to list the multipath devices (optional):

```
# /sbin/multipath -v3
# /sbin/multipath -ll
```

The first command (**multipath -v3**) populates the path information, and the second command (**multipath -ll**, lower-case letters L) lists the state of the paths.

7 In the AxiomONE Storage Services Manager, navigate to the **Storage > SAN > Hosts** page.

8 Click the name of the new host and, on the Host Information page, verify the APM software version.

9 Click the **LUN Connections** tab and verify that the host and LUN connections are as expected.
The column titled **LUN Name on Host** should show the Linux disk names that APM allocates to each LUN.

Important! With a few exceptions (such as when you partition and format the LUN on the SAN host), you should use only these Linux disk names to access and configure the LUNs on the host. Linux creates device names for each individual path to a LUN, but almost all configuration and administration tasks should be done using the `/dev/mapper` name shown in the AxiomONE Storage Services Manager.

10 If you plan to partition and format the LUN on the SAN host, see Partition and Format the LUN Disk (Optional).
Partition and Format the LUN Disk (Optional)

Follow these instructions if you plan to use the Linux fdisk or parted utilities to partition and format the disk on which a LUN resides.

The fdisk utility cannot be used with devices listed in the /dev/mapper directory. Instead, use fdisk on one of the underlying paths, and then run the scripts to restart the multipath-tools and APM daemons to notify device-mapper that a /dev/mapper device has a new partition.

1 Identify one of the highest priority paths to the LUN using the output of the multipath -ll command.

Example:
In the output below, you could identify either the /dev/sdd or the /dev/sdh path:

```
2000b080002001395
[size=10 GB][features=1_queue_if_no_path][hwhandler=0]
  
  __ round-robin 0 [prio=61568][active]
  |  0:0:1:3  sdd 8:48 [active][ready]
  |  1:0:1:3  sdh 8:112 [active][ready]
  __ round-robin 0 [prio=1986][enabled]
  |  12:0:0:3  sdl 8:176 [active][ready]
  |  13:0:0:3  sdq 65:0 [active][ready]
  __ round-robin 0 [prio=64][enabled]
  |  0:0:0:3  sdb 8:16 [active][ready]
  |  1:0:0:3  sdf 8:80 [active][ready]
  __ round-robin 0 [prio=2][enabled]
  |  10:0:0:3  sdx 8:160 [active][ready]
  |  11:0:0:3  sdq 8:240 [active][ready]
```

2 Use fdisk to partition one of the highest priority paths identified in Step 1.

3 Run the following command to restart the device-mapper:

```
# /etc/init.d/multipathd restart
```

4 Run the following command to restart the APM daemon:

```
# /etc/init.d/axiompmd restart
```

5 Verify that the new partitions are listed as follows:

```
# /dev/mapper/LUNpx
```

LUN is the LUN identifier, and x is the partition number used in Step 2.

Note: The letter p that appears between the LUN identifier and the partition number is required in this command.
Example:
In the example above, if only partition 1 were created with `fdisk`, it would appear as follows:

```
localhost$ ls -l /dev/mapper/2000b080002001395*
brw-rw----  1 root disk 253,  2 Jul  7 12:02 2000b080002001395
brw-rw----  1 root disk 253,  3 Jul  7 15:12 2000b080002001395p1
```

6 Format the new partition.

Example:
To format the partition created in the example above, you might run the following command:

```
# mke2fs -j /dev/mapper/2000b080002001395p1
```

7 Mount the filesystem.
For detailed information, refer to your Linux documentation.
About Load Balancing Configuration

AxiomONE Path Manager (APM) 3.0 for Citrix XenServer 5.6 is pre-configured for round-robin load balancing.

This release of APM supports only round-robin load balancing. It is pre-configured in the Citrix XenServer 5.6 multipath.conf file, where path_grouping_policy is set to group_by_prio. Pillar Data Systems does not support the use of any other value for path_grouping_policy.

In round-robin load balancing, commands are sent in turn over the best available paths. Round-robin load balancing ensures that LUN commands are evenly distributed over any path that is available to access the LUNs.

Load balancing allows the paths to share load in different ways:

- Balances access to a LUN across all optimized Slammer storage controller ports available for that LUN. For more information on path selection, see About Path Selection.

- Balances access from a host across the host HBA channels.

Important! The load balancing options in the AxiomONE Storage Services Manager must always be set to round-robin for all hosts running APM 3.0 for Citrix XenServer 5.6. See Known Pillar Axiom Issues for additional load balancing considerations.
About Path Selection

AxiomONE Path Manager (APM) supports access to LUNs using Internet Small Computer System Interface (iSCSI) and Fibre Channel (FC) protocol at the same time, as well as individually.

Paths to a LUN may have different performance characteristics. Paths to the Slammer control unit where the LUN resides are considered optimized paths; other paths to the LUN are considered non-optimized paths. When both FC and iSCSI access to a LUN are available, FC access generally performs better.

APM divides the paths to each LUN into four groups with different performance characteristics, in this order of precedence:

- First, FC optimized
- Next, iSCSI optimized
- Next, FC non-optimized
- Finally, iSCSI non-optimized

At any given time, only uses paths from the most preferred group that has paths available.

Note: When an active path fails, and I/O traffic is transferred to a different path, I/O performance will be reduced for a short time while the operating system recognizes the failure and makes the path transfer. If the failing path was optimized and the new path is non-optimized, I/O performance may remain lower than before since it is now using a lower-performance path. Within a few minutes of traffic being transferred to a non-optimized path, the Pillar Axiom Storage System will, if possible, reconfigure the LUNs to use an optimized path. I/O performance will improve.
Remove AxiomONE Path Manager Software (Optional)

When you uninstall AxiomONE Path Manager (APM), support for multiple paths to Pillar Axiom LUNs is removed.

Before you uninstall APM, if you do not want to access Pillar Axiom LUNs, we recommend that you disconnect the storage area network (SAN) host from the Pillar Axiom Storage System.

Sometimes, the uninstall process may take longer than expected, and the process may appear to be hanging. Allow the process to run for at least an hour before attempting to restart the process.

1. Run the following command to stop the APM daemon:
   ```
   # /etc/init.d/axiompm stop
   ```

2. Run the following command to remove the APM daemon:
   ```
   # rpm -e axiompm
   ```

After the APM software has been removed, the host appears not to be communicating in the AxiomONE Storage Services Manager, and the multipath behavior stops working.

Important! If you want to continue LUN access without multipathing, we recommend that you reconfigure the SAN so that only a single path exists from the host to each Pillar Axiom Slammer storage controller. You may need to reconfigure LUN mapping on the Pillar Axiom Storage System to map the LUNs to the host port or iSCSI Qualified Name (IQN), and you may need to reconfigure the host to access the LUNs through new device names.
AxiomONE Path Manager 3.0 supports the Xen hypervisor included in the Citrix XenServer 5.6 distribution.
Known APM Issues

There are no known AxiomONE Path Manager (APM) issues for this release.
Known Pillar Axiom Issues

The following issues might be associated with the version of the Pillar Axiom software you are using.

Table 9 Known Pillar Axiom issues

<table>
<thead>
<tr>
<th>Issue</th>
<th>Workaround or planned fix</th>
</tr>
</thead>
<tbody>
<tr>
<td>If an AxiomONE Path Manager (APM) host uses iSCSI to connect to a Pillar Axiom Storage System, and it uses an iSCSI initiator name that is the same as its host name, then the entry for that host in the AxiomONE Storage Services Manager will be continually deleted and recreated, causing the host entry to disappear and reappear intermittently.</td>
<td>Ensure that the iSCSI initiator names configured on hosts that use iSCSI to connect to a Pillar Axiom system are different from all host names used by APM hosts, including virtual machine hosts, connected to that Pillar Axiom system. The iSCSI standards require that iSCSI names follow particular formats, as specified in RFC 3720 (http://tools.ietf.org/html/rfc3720#section-3.2.6). If hosts are configured to use iSCSI initiator names that conform to these requirements, it is extremely unlikely that they will be the same as any host name. This issue is fixed in release 4.1 of the Pillar Axiom software.</td>
</tr>
<tr>
<td>If all paths to a LUN's configured Slammer control unit (CU) fail, APM will re-route all traffic through the non-optimized paths to the LUN's alternate CU. In response, the Pillar Axiom system will initially log events indicating non-optimized access, then when this traffic continues it will temporarily move the LUN to the alternate CU. This process leaves the host using optimized paths to the LUN, but the LUN is resident on a CU other than its configured home. Normally, the system will attempt to move the LUN back to its configured CU from time to time, and if the paths to the other CU have recovered the traffic will transfer back and the system</td>
<td>This issue is fixed in release 3.4 and 4.0 of the Pillar Axiom software.</td>
</tr>
</tbody>
</table>
Table 9 Known Pillar Axiom issues (continued)

<table>
<thead>
<tr>
<th>Issue</th>
<th>Workaround or planned fix</th>
</tr>
</thead>
</table>
| returns to its normal configured state. However, if the Pilot software is restarted while a LUN is in this temporary state, as might happen during a software update that includes the option to update the Pilot software, two problems occur:
1 The graphical user interface (GUI) and command line interface (CLI) wrongly report that the LUN's current CU is its configured CU.
2 Non-optimized access events are no longer logged for the LUN, and the system does not attempt to move the LUN back to its configured CU.
If subsequent path failures and recoveries cause traffic to be sent to the CU on which the LUN is not resident, the system will not move the LUN to the CU receiving the traffic. This means that all traffic to the LUN would have non-optimized access, which decreases performance, and this non-optimized access would not be logged. | This issue is fixed in Pillar Axiom software release 4.0. If the Pillar Axiom system is running a release earlier than 4.0, check that the load balancing attribute for the LUN is still set to the desired value after APM on the host has detected the LUN and its **LUN name on Host** has been reported in the Pillar Axiom GUI. If the setting has changed, change it back to the desired value, which can then be correctly saved. |
| When a LUN is created on a Pillar Axiom system, its load balancing attribute is set to round-robin by default. If the LUN is then mapped to a host running APM, the load balancing attribute setting can change to static when APM on the host first communicates with the Pillar Axiom system after detecting the LUN. Instead, this attribute should be set to round-robin when the LUN is first created, and should change only if an administrator changes it using the Pillar Axiom graphical user interface (GUI) or command line interface (CLI). | |
Table 9 Known Pillar Axiom issues (continued)

<table>
<thead>
<tr>
<th>Issue</th>
<th>Workaround or planned fix</th>
</tr>
</thead>
<tbody>
<tr>
<td>If an iSCSI initiator is added to a SAN host that has authentication enabled, authentication will not be enabled for that initiator. Also, if an iSCSI initiator with authentication enabled on a previous SAN host is moved to another host with or without authentication enabled, the initiator will retain its original configuration.</td>
<td>This issue is fixed in Pillar Axiom software release 4.0. If the Pillar Axiom system is running a release earlier than 4.0, disable then re-enable authentication for the host after iSCSI initiators are added to or moved between SAN hosts.</td>
</tr>
<tr>
<td>When a Pilot restart occurs on a Pillar Axiom system running release 4.0 (4.0.4 or later) or release 4.1 (4.1.0 or later) of the Pillar Axiom software, all LUNs on the system move from their current Slammer control unit (CU) to the other Slammer CU. As a result, the optimization of all paths to the LUNs changes.</td>
<td>If all relevant SAN hosts have paths to both CUs on the Slammers, and those paths are managed by an ALUA-aware path management system such as AxiomONE Path Manager, it should not be necessary to take any action. The LUNs will remain balanced across the CUs, and the path management software will ensure that only optimized paths to the LUNs are used. Be aware that traffic may be moved to alternate paths when a pilot restart occurs. Other hosts may need their path configuration to be changed to ensure that they access each LUN through its new current home CU. Alternatively, all LUNs can be moved back to their default configured CU by restarting the Pillar Axiom system. This issue will be fixed in a future release of the Pillar Axiom software.</td>
</tr>
<tr>
<td>When a Fibre Channel HBA is removed from a host running APM, it remains associated with that host. If the HBA is moved to a host that is either not running APM or on which APM is shown as not communicating with the Pillar Axiom Pilot, any LUNs mapped to the host will continue to be accessible through the HBA ports. The Pillar Axiom GUI and CLI will continue</td>
<td>This issue is fixed in release 4.0 of the Pillar Axiom software.</td>
</tr>
</tbody>
</table>
Table 9 Known Pillar Axiom issues (continued)

<table>
<thead>
<tr>
<th>Issue</th>
<th>Workaround or planned fix</th>
</tr>
</thead>
<tbody>
<tr>
<td>to report the HBA as being present in the original host.</td>
<td></td>
</tr>
<tr>
<td>If the HBA is moved to a host where APM is running and communicating</td>
<td>After you change the default configured Slammer CU for a LUN, be sure to update the LUN</td>
</tr>
<tr>
<td>with the Pilot, its association and mappings for the old host will be</td>
<td>port mask to the required value.</td>
</tr>
<tr>
<td>removed, and the mappings for the new host will be applied.</td>
<td>This issue is fixed in release 4.0.0 of the Pillar Axiom software.</td>
</tr>
<tr>
<td>If you use the Pillar Axiom GUI or CLI to change the default configured</td>
<td>Use the Pillar Axiom GUI or CLI to re-assign the LUNs to the CUs through which access is</td>
</tr>
<tr>
<td>Slammer control unit (CU) of a LUN to the other CU on the Slammer, the</td>
<td>currently taking place. Alternatively, restart the Pillar Axiom system to restore</td>
</tr>
<tr>
<td>Slammer port mask for the LUN will be reversed. For example, if CU0</td>
<td>optimized access.</td>
</tr>
<tr>
<td>Port 0 is enabled and Port 1 is excluded, and the LUN is moved to CU1,</td>
<td>This issue is fixed in release 4.1 of the Pillar Axiom software.</td>
</tr>
<tr>
<td>then CU1 Port 0 will become excluded and CU1 Port 1 will become</td>
<td></td>
</tr>
<tr>
<td>enabled.</td>
<td></td>
</tr>
<tr>
<td>After recovery from a Slammer control unit (CU) failure, the Pillar</td>
<td></td>
</tr>
<tr>
<td>Axiom system may become incapable of automatically moving LUNs between</td>
<td></td>
</tr>
<tr>
<td>the CUs on that Slammer. When the system attempts to move the LUNs</td>
<td></td>
</tr>
<tr>
<td>automatically in response to non-optimized access from a host, the</td>
<td></td>
</tr>
<tr>
<td>attempts fail, and non-optimized access persists.</td>
<td></td>
</tr>
<tr>
<td>When an iSCSI initiator name is changed or removed on an APM host,</td>
<td>1 Stop the APM daemon on the host.</td>
</tr>
<tr>
<td>the Pillar Axiom GUI and CLI may continue to associate the old name</td>
<td>2 When the Pillar Axiom system reports the host as Not Connected, delete the host.</td>
</tr>
<tr>
<td>with the host.</td>
<td>This will preserve LUN mappings to the initiators.</td>
</tr>
<tr>
<td></td>
<td>3 Restart the APM daemon. This issue will be fixed in a future release of the Pillar</td>
</tr>
<tr>
<td></td>
<td>Axiom software.</td>
</tr>
</tbody>
</table>
Known Operating System Issues

The following operating system issues may have an impact on running APM on Linux and Citrix XenServer platforms.

Access to LUNs

In most cases, you should only access LUNs through `device-mapper` or individual partition paths.

The Linux `device-mapper` creates paths of the form `/dev/mapper/2000b08003d001321` to represent multipath Pillar Axiom LUNs. Individual partitions on a LUN have names of the form `/dev/mapper/2000b08003d001321p3`. With the exception of the situation described in Partition and Format the LUN Disk (Optional), you should access multipath LUNs and their partitions exclusively through these paths.

If a multipath partition is configured into `/etc/fstab`, omit the sixth field of its entry (`fs_passno`), or set it to 0 to prevent `fsck` from running automatically on the partition during a system boot. This is because `device-mapper` is not yet configured at the time `fsck` runs during boot, so the multipath devices are not accessible.

Important! Failure to disable `fs_passno` will cause host boot failure.

SAN Dynamic Reconfiguration

Linux does not automatically detect storage LUNs after a dynamic reconfiguration. Dynamic reconfiguration is the addition, deletion, growing, resizing, or cloning of one or more LUNs attached to a host.

Follow the instructions for dynamic reconfiguration in the Online Storage Reconfiguration Guide (http://www.redhat.com/docs/en-US/Red_Hat_Enterprise_Linux/5.2/html/Online_Storage_Reconfiguration_Guide/index.html). If you continue to have problems with dynamic reconfiguration, the following steps will help you handle exceptions.

Linux requires a series of steps, including a potential host reboot, when a LUN is dynamically reconfigured. After Linux detects the new LUNs, you must restart AxiomONE Path Manager (APM) to update the Pillar Axiom system with the new LUN status.
LUNs Added Dynamically

In most systems, a newly added LUN is immediately visible on the host without a rescan. However, due to inconsistent device driver behavior on some hosts, if the added LUN is not visible, a rescan usually makes it visible. A rescan normally involves an I/O reset.

If, after creating a new LUN on the Pillar Axiom system and assigning it to the host, running the rescan script does not bring up the LUNs, this may have happened because Linux incorrectly believes that the LUN number is already in use. To correct this situation, modify the host LUN number in the AxiomONE Storage Services Manager. Give it a new, unique value that falls within the range of permitted values. If necessary, rescan to add the LUN.

Both Emulex and QLogic provide rescan scripts that may help in dynamically configuring LUNs:

- The Emulex HBA driver for Linux enables you to dynamically add or delete LUNs and targets without unloading or reloading the lpfc module and without resetting the adapter. Use the Emulex lun_scan script in /usr/sbin. Refer to the Emulex Driver for Linux User Manual (http://www-dl.emulex.com/support/linux/82022/manual.pdf) for details.

- For QLogic HBAs, use the Dynamic Target and LUN Discovery script ql-dynamic-tgt-LUN-disc.sh, available from the QLogic Downloads page (http://driverdownloads.QLogic.com).

LUNs Deleted Dynamically

Deleting a LUN prevents the LUN from being visible from the host. This includes deleting LUN mapping and LUN masking. In general, LUN deletion disrupts normal function of the Linux multipath framework and must be planned.

If a LUN is deleted, it may appear as either a 2000000000000 entry or as the original LUID with Path down messages. These entries may persist until the host is rebooted.

To avoid disruption, you may blacklist the LUN. Refer to your Linux documentation.

The host usually picks up the deleted LUN, and it is deleted from the /dev/mapper table. However, this may not occur on all platforms consistently. If you want to view the device-mapper LUN mapping table, start the multipathd shell by running the following command:

```
# /sbin/multipathd -k
```

To delete a LUN, we recommend shutting down the host, deleting the LUN or LUN mapping from the Pillar Axiom Storage System, and then restarting the host. If this procedure is not possible, you may want to run the following procedure.
Important! The following procedure will interrupt I/O and may require an immediate reboot of your host. In some cases, this may require a power cycle of the host to recover.

1. Copy the following and run it as a script:

   ```bash
   #!/bin/bash
   # Must be run as root
   /etc/init.d/axiompmd stop
  /sbin/multipath -F
   /etc/init.d/multipathd stop
   # RESCAN SCRIPT FROM QLOGIC / EMULEX
   # Please modify the following line based on your rescan script location
   /usr/bin/ql-dynamic-tgt-lun-disc.sh -s -r
   /etc/init.d/multipathd start
   /etc/init.d/axiompmd start
   /sbin/multipath -v3 -ll
   ```

 Tip: The rescan script might require your interaction.

2. Be prepared to reboot the host as soon as possible after deleting LUNs in case something goes wrong.

 If a LUN that is visible to a Linux 2.6 host is deleted from the Pillar Axiom system, and the `/sbin/multipath -F` or `/sbin/multipath -f` command is run before rebooting the host, the device-mapper configuration map may become unusable and all access to LUNs may be lost due to a bug in the Linux device-mapper code. If this occurs, the only way to recover is to reboot the host.

 After LUN deletion, you may see a message similar to the following while the Pillar Axiom system is restarting the daemon:

   ```bash
   error calling out /sbin/scsi_id -g -u -s /block/sd*
   ```

 This message indicates that entries for the deleted LUNs still exist in the device-mapper device table. Rebooting the host will flush these deleted path entries from the device table.

LUNs Resized Dynamically

When you resize a LUN, a host reboot is necessary due to the constraints in the Linux device-mapper. You must stop the iSCSI services before you reboot the host.

However, if you follow the procedures documented in the [Online Storage Reconfiguration Guide](http://www.redhat.com/docs/en-US/Red_Hat_Enterprise_Linux/html/Online_Storage_Reconfiguration_Guide/index.html) to force your device drivers to recognize the resized LUN, the device-mapper may recognize the resized LUN without a host reboot. The ability to use the resized LUN is a function of the host filesystem.
Clone LUNs Added or Deleted Dynamically

The procedures for adding or deleting LUNs described above also apply for Clone LUNs.

Multipath Failed Path Errors

The multipath command may return errors that indicate only that there are failed paths.

If paths are in a failed state, the `multipath` command returns the following error messages:

```
multipath -ll 2000b08005c001259
9:0:0:3: sg_io failed status 0x8 0x1 0x0 0x0
9:0:0:3: Unable to get INQUIRY vpd 1 page 0x0.
error calling out /sbin/scsi_id -g -u -s /block/sdaf
8:0:0:3: sg_io failed status 0x8 0x1 0x0 0x0
```

These error messages indicate only that there are failed paths in the multipath device map. The multipath device map shows paths that are failed and active, and `sg_io failed` refers to the fact that SCSI generic (`sg`) devices do not exist for iSCSI device paths that are failed. These errors indicate that the system is responding correctly.

You must fix the failed paths or, if these errors occur during failover testing, recognize that this is normal and expected Linux multipath behavior.

Note: The `multipath` command can be invoked automatically by the system at various times, so it is possible for messages like these to be seen whenever paths are in an unusual state, such as during dynamic reconfiguration.

Traffic doesn't shift automatically to optimized paths

Due to defects in the Citrix XenServer 5.6 version of `device-mapper` and `multipath-tools`, traffic does not shift automatically to optimized paths.

If paths are not updated automatically, run `/sbin/multipath -v3` to manually update path status and force traffic to use optimized paths.
Create Storage Repository Fails

Creating a storage repository for a Fibre Channel or iSCSI device fails with one of the following errors:

- Device underlying the SR is in use by the server (Fibre Channel)
- The attempt to create logical volume group failed (iSCSI)

This is a known Citrix XenServer 5.6 issue. To resolve it, remove the scsi_device ID (LUN ID) from mpathutil and recreate the storage repository following the Citrix instructions at http://support.citrix.com/article/CTX122233.

Delay in I/O Recovery on Windows Server 2008 XenServer Guest

On a Windows Server 2008 guest running on Citrix XenServer 5.6, after a Pillar Axiom Slammer control unit (CU) warm start, XenServer system latencies may cause a delay of up to eight minutes before I/O switches back to the original CU.

This is normal Citrix XenServer behavior.
Resolved Issues

There are no resolved issues in the current release.
Mount iSCSI Filesystems

We recommend that iSCSI filesystems be auto-mounted with the _netdev option. If the iSCSI filesystem is manually mounted, it must be unmounted manually before a reboot to avoid hangs.

Filesystems installed on iSCSI devices cannot be automatically mounted at system reboot because the IP network is not yet configured at mount time. However, the driver provides a method to auto-mount these filesystems as soon as the iSCSI devices become available, after the IP network is configured.

To auto-mount a filesystem installed on an iSCSI device:

1. List the iSCSI partitions to be automatically mounted in /etc/fstab.

2. For each filesystem on each iSCSI device, enter the logical volume on which the filesystem resides.

 The mount points must exist for the filesystems to be mounted. For example, the following /etc/fstab entry will mount the iSCSI devices with partition p1 specified by the LUID 20000121390p1:

 `LABEL=/ / ext3 defaults 1 1
 LABEL=/boot /boot ext3 defaults 1 2
 /dev/mapper/20000121390p1 ext2 _netdev 0 0`

3. Restart the system.

 Result:

 The netfs initialization script mounts all filesystems with the _netdev mount option. Run this initialization script after the networking and iSCSI scripts to ensure that the system is ready to mount these devices.

Due to variable network delays, targets may not always become available in the same order from one boot to the next. Thus, the order in which iSCSI devices are mounted may vary and may not match the order the devices are listed in /etc/fstab. You should not assume mounts of iSCSI devices will occur in any particular order.
Index

A
additional notes 57
APM
 control path 17
 data path 17
 definition 11
 features 11
 how to
download software 35
install software 36
remove software 44
update software 36
interaction with Pillar Axiom 15
known issues 46
operating limits 20
pre-installation requirements 21
ARP flux 28
audience 7

B
boot-from-SAN 13

C
Cisco MDS switch
 configure 31
configuration
 explicit routing 27
 iSCSI multipathing 26
 iSCSI-to-FC router 31
 load balancing 42
 Pillar Axiom LUNs 37
 SAN 32
 SAN dynamic reconfiguration 51
 subnet 27
contact information 9
conventions
 typographical 8

D
device-mapper
 function 18
 verify installation 33
documentation
 accessing 7
documentation support 9
download
 APM software 35

E
education programs 9
Emulex HBAs
 install 23
 supported 22
experience, required 7
explicit routing
 iSCSI multipathing 27

F
features
 APM 11
 new in this release 45
Fibre Channel
 protocol 21
 supported HBAs 22
 supported topologies 22
 switches 26
format
 LUN disk 40

H
HBAs
 Emulex 22
 QLogic 24
help
 online 9

I
install
 APM software 36
 Emulex Applications Kit 23
 Emulex HBA drivers 23
 Emulex HBAs 23
 QLogic HBA API libraries 24
 QLogic HBA drivers 24
 QLogic HBAs 24
 iSCSI
how to
 configure Cisco MDS switch 31
 configure iSCSI initiator 29
 configure iSCSI-to-FC router 31
 configure network for multipathing 27
 start iSCSI initiator service 30
NIC bonding 28
 protocol 21
 routers 31
 supported hardware 26
 supported software 26
 switches 31
iSCSI initiator
 start service 30
iSCSI multipathing
 ARP flux 28
 explicit routing 27
 subnets 27
iSCSI-to-FC router
 configure 31
issues
 additional notes 57
 APM 46
 operating system 51
 Pillar Axiom 47
 resolved 56
L
 load balancing
 round-robin 42
 LUN access
 multi-protocol 43
 precedence 43
 preferred paths 43
 LUN configuration
 SAN hosts 37
 LUN disk
 how to
 format 40
 partition 40
M
 multi-protocol access
 definition 43
 precedence 43
 preferred paths 43
 multipath-tools
 function 18
 pre-installation requirements 21
N
 new features 45
 NIC bonding 28
 non-optimized path 43
O
 online documents 7
 online help 9
 operating system
 known issues 51
 optimized path 43
P
 partition
 LUN disk 40
 Pillar Axiom
 configure for LUN access 37
 interaction with APM 15
 known issues 47
 Pillar Data Systems support site 9
 pre-configure SAN hosts 32
 pre-installation requirements 21
 product support 9
Q
 QLogic HBAs
 install 24
 supported 24
 queue depth
 maximum for SAN host HBAs 22
R
 release notes
 additional notes 57
 APM issues 46
 operating system issues 51
 Pillar Axiom issues 47
 resolved issues 56
 remove
 APM software 44
 requisite reading 7
 resolved issues 56
 routers
 iSCSI 31
S
 sales information 9
 SAN hosts
 LUN configuration 37
 maximum HBA queue depth 22
 pre-configure 32
 SAN protocols 21
 settings
 explicit routing 27
 load balancing 42
 subnets
 iSCSI multipathing 27
 supported
architectures 19
Emulex HBAs 22
Fibre Channel topologies 22
hardware platforms 19
iSCSI hardware 26
iSCSI software 26
Linux kernels 19
Pillar Axiom models 10
QLogic HBAs 24
switches
Cisco MDS 31
Fibre Channel 26
iSCSI 31

T
technical documents
accessing 7
technical support 9
training programs 9
typographical conventions 8

U
uninstall
APM software 44
update
APM software 36

V
virtualization
Xen hypervisor 14

X
Xen hypervisor 14