Pillar AxiomONE™ Path Manager 3.1

Installation Guide and Release Notes

for Oracle VM Server 2.2
Copyright Notice

© 2010 Pillar Data Systems, Inc. All Rights Reserved.

Pillar Data Systems, Inc.
2840 Junction Avenue
San Jose, CA 95134-1922

Part Number: 4420-00134-0000
APM release 3.1
2010 April

Trademarks

Pillar Data Systems, Pillar Axiom, and the “green icon” logo are registered trademarks of Pillar Data Systems, Inc. All other trademarks are trademarks of their respective owners.

Important Note to Users

This guide contains CONFIDENTIAL INFORMATION of Pillar Data Systems and should not be disclosed or further distributed to third parties without the express prior written consent of Pillar Data Systems.

This guide and the use of Pillar Axiom hardware and software to which this guide applies are subject to the applicable Pillar Data Systems End User License Agreement and Warranty Statement. A copy of the Pillar Data Systems End User License Agreement and Warranty Statement may be found on the same CD with which this guide is provided, if applicable. Guides and software downloaded from a Pillar Data Systems web site are governed by the End User License Agreement and Warranty Statement in effect between you and Pillar Data Systems at the time of download. If you entered into a signed written agreement with Pillar Data Systems for the purchase or use of this Pillar Axiom system that supersedes the Pillar Data Systems End User License Agreement and Warranty Statement, then such signed written agreement will apply.

Pillar Data Systems reserves the right to change the specifications and content in this guide at any time.
Table of Contents

Chapter 1 Introduction to AxiomONE Path Manager
- AxiomONE Path Manager 3.1 Features ... 7
- Boot from SAN ... 9
- About AxiomONE Path Manager and Xen Hypervisor 10
- AxiomONE Path Manager Architecture 11
 - About the AxiomONE Path Manager Control Path 13
 - About the AxiomONE Path Manager Data Path 13
 - About Multipathing and Device Mapper Automation 14
- Supported Oracle VM Server 2.2 Distributions 15
- Operating Limits ... 16
- Contact Information .. 17
- Related Documentation ... 18

Chapter 2 Install AxiomONE Path Manager
- Prepare to Install the AxiomONE Path Manager 19
 - Supported SAN Protocols ... 19
 - Supported Fibre Channel SAN Hardware Components 20
 - Supported iSCSI Software and Hardware 22
 - Pre-Configure the SAN for Pillar Axiom Integration 28
 - Verify Installation of the Device Mapper 29
- Download and Install the AxiomONE Path Manager Software 31
 - Download the AxiomONE Path Manager Software 31
 - Install (or Update) the AxiomONE Path Manager Software 32
- Configure the Pillar Axiom System for LUN Access 34
- Partition and Format the LUN Disk (Optional) 37
- About Load Balancing Configuration ... 39
- About Path Selection .. 40
- Remove AxiomONE Path Manager Software (Optional) 41
Chapter 3 AxiomONE Path Manager Release Notes

Known APM Issues. ... 42
Known Pillar Axiom Issues... 43
Operating System Issues... 46
 Access to LUNs. ... 46
 SAN Dynamic Reconfiguration... 46
 Restore Paths After Path Failure.. 49
 Recover iSCSI Paths After Path Failure on Virtual Machines........... 49
 Multipath Failed Path Errors... 51
 Power Off May Cause Windows Guest OS to Hang....................... 52
 CU Failure May Cause Windows Guest OS Reboot....................... 52
Resolved Issues... 53
Additional Notes.. 54
 Mount iSCSI Filesystems.. 54
 APM Installed on Guest OS Unable to Discover Axiom System....... 55

Index... 56
List of Figures

Figure 1 APM interaction with a Pillar Axiom server.............................. 12
Figure 2 Example host ports before APM installation............................. 34
Figure 3 Example host ports after APM installation.............................. 34
List of Tables

Table 1 APM 3.1 for Oracle VM Server 2.2 features. ... 7
Table 2 Line and color key for APM interaction diagram. .. 11
Table 3 Supported hardware platforms. .. 15
Table 4 APM operating limits. ... 16
Table 5 Contacts at Pillar Data Systems. ... 17
Table 6 Related documentation. ... 18
Table 7 Supported QLogic HBAs. .. 20
Table 8 QLogic HBA settings ... 21
Table 9 Characteristics of SAN connections to host ports. 29
Table 10 Known Pillar Axiom issues. ... 43
Introduction to AxiomONE Path Manager

AxiomONE Path Manager 3.1 Features

AxiomONE Path Manager (APM) 3.1 has many features to facilitate LUN access from a storage area network (SAN) host.

Important! Pillar Axiom storage systems presenting LUNs to Oracle VM Server 2.2 hosts using APM 3.1 must be running release 3.3.15 or higher of the Pillar Axiom software.

APM is defined as:

Optional software installed on a storage area network (SAN) host to manage multiple paths to the Pillar Axiom storage system.

APM performs the following primary functions:

- Routes I/O to Pillar Axiom LUNs using only the best available data paths.
- Shares traffic among the available paths and ensures that access to the LUNs is not interrupted if some paths fail.
- Automatically configures the host into the AxiomONE Storage Services Manager and updates the configuration if the host information changes.

The function described in the last bullet enables the AxiomONE Storage Services Manager to report information about APM running on the host, such as the number of working paths, and, in some environments, to configure features such as load balancing.

Each APM release provides different features, and the features provided for each platform may vary. Refer to the following table for descriptions of the specific features implemented in this release.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Benefit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Virtual machine support</td>
<td>Supports the Xen hypervisor included in the Oracle VM Server 2.2 distribution.</td>
</tr>
</tbody>
</table>
Table 1 APM 3.1 for Oracle VM Server 2.2 features (continued)

<table>
<thead>
<tr>
<th>Feature</th>
<th>Benefit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Automatic data path failover</td>
<td>Automatically switches to the highest priority optimized path available after a path failure or fail back.</td>
</tr>
<tr>
<td>Automatic recognition of storage attached network (SAN) hosts by the AxiomONE Storage Services Manager</td>
<td>Sends a description of the host to each Pilot management controller on connected Pillar Axiom systems, allowing the AxiomONE Storage Services Manager and command line interface (CLI) tools to create a definition for the host. This definition includes such information as the World Wide Names (WWNs) for each of the host's Fibre Channel ports, the Internet protocol (IP) addresses for any Internet Small Computer System Interface (iSCSI) ports, and the version of APM running on the host.</td>
</tr>
</tbody>
</table>
| Call-Home log collection | When a Pillar Axiom administrator uses the AxiomONE Storage Services Manager to collect system information (see the Pillar Axiom Administrator’s Guide for details), the Pillar Axiom storage system sends a request to each connected APM host. The APM hosts collect useful diagnostic information and send it to the Pillar Axiom system, where it is bundled with any other requested information. The Pillar Axiom system can then transmit this information to the Pillar World Wide Customer Support Center. The information collected from each APM host includes:
| | ● Logs from the APM components. |
| | ● Configuration and status information from the operating system. |
| | ● System and error logs from the operating system. |
| | No customer data is transmitted. |
| Support for Fibre Channel (FC) connections to FC Slammer storage controllers | Makes connections to Pillar Axiom storage arrays over high-speed FC network infrastructure. |
| Support for iSCSI connections to both FC and iSCSI Slammers | Makes connections to Pillar Axiom storage arrays over long distances using IP network infrastructure. |
| | **Note:** iSCSI connections to FC Slammers require iSCSI-to-FC routers. |
Boot from SAN

This release of AxiomONE Path Manager does not support booting from a Fibre Channel-attached disk.
AxiomONE Path Manager (APM) supports the Xen hypervisor, an open source virtual machine monitor included with the Oracle VM Server 2.2 distribution, on both x86-32 and x86-64 platforms.

You can install APM on an Oracle VM Server 2.2 host configured as a Xen hypervisor host (dom0). Guest operating systems can access multi-pathed Pillar Axiom LUNs that are mapped to the dom0 host in the same way that these systems access other disks. For example, these LUNs can be used to hold file-based containers, which can then be exposed to the guest operating systems, or the guest operating systems can access the LUNs as persistent storage disks.

Guest operating systems can also use iSCSI software initiators to connect to Pillar Axiom systems and to access LUNs. In this case, APM maps the LUNs directly to the guest operating system. If a version of APM that supports iSCSI is available for the guest operating system, this version of APM can be installed on the guest and used to manage multiple iSCSI paths to the Pillar Axiom LUNs in the same way as APM would be used on a physical host.

Refer to the Oracle VM page (http://www.oracle.com/us/technologies/virtualization/oraclevm/024974.htm) for information on Oracle VM.
AxiomONE Path Manager Architecture

AxiomONE Path Manager (APM) manages the Linux multipath framework and communicates with Pillar Axiom servers on a control path, which is separate from the data path. The Linux multipath framework manages the LUN data access paths themselves.

Figure 1: APM interaction with a Pillar Axiom server illustrates how the APM software installed on a storage area network (SAN) host interacts with a Pillar Axiom storage system. Refer to the table below to determine the significance of the lines and colors in the figure.

Table 2 Line and color key for APM interaction diagram

<table>
<thead>
<tr>
<th>Graphic element</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>________________</td>
<td>Data path</td>
</tr>
<tr>
<td>________________</td>
<td>Control path</td>
</tr>
<tr>
<td></td>
<td>Pillar-supplied hardware and software</td>
</tr>
<tr>
<td></td>
<td>Non-Pillar hardware and software</td>
</tr>
<tr>
<td></td>
<td>SAN host kernel space</td>
</tr>
<tr>
<td></td>
<td>SAN host user space</td>
</tr>
</tbody>
</table>
Legend

1. User
2. User application
3. SAN host
4. APM daemon
5. Control paths (all dashed lines)
6. Pillar Axiom administrator
7. Pillar Axiom command line interface (CLI) or graphical user interface (GUI)
8. Encrypted XML over TCP/IP
9. Network card
10. Linux multipath framework
11. iSCSI software initiator (iSCSI)
12. TCP/IP driver (iSCSI)
13. HBA driver (FC) or NIC driver (iSCSI)
14. HBA (FC) or NIC (iSCSI)
15. SCSI over Fibre Channel (FC) or iSCSI over IP (iSCSI)
16. Data path (all solid lines)
17. Pillar Axiom server
18. Brick storage enclosure pool
About the AxiomONE Path Manager Control Path

The AxiomONE Path Manager (APM) control path provides a path separate from the data path to manage multipathing and communication.

The APM software uses a daemon running in the background to control multipathing and communication. The APM daemon uses the control path to:

- Get path information from the HBA drivers.
- Configure the Linux multipath framework.
- Send information such as host attributes and statistics to the Pilot management controller, and collect logs from the host on request.

The APM daemon sends a description of the host to the Pilot on each connected Pillar Axiom storage system. This description creates a definition for the host in the AxiomONE Storage Services Manager. The definition includes any Fibre Channel (FC) ports in the host, and the name of the host's iSCSI initiator, if Internet Small Computer System Interface (iSCSI) is configured. The graphical user interface (GUI) and command line interface (CLI) list the port World Wide Names (WWNs) of the FC ports in the host and the Internet Protocol (IP) addresses that are used to make iSCSI connections to the Pillar Axiom system.

If you use iSCSI on the host to connect to an FCSlammer storage controller through an iSCSI-to-FC router, these connections are described as FC. The connections will appear to originate from the FC ports that are assigned on the switch to the host’s iSCSI initiator. The WWNs of these ports are displayed as FC HBA ports on the host. The HBA model associated with these ports is reported as iSCSI-FC-router.

About the AxiomONE Path Manager Data Path

AxiomONE Path Manager (APM) uses the Linux device-mapper to provide paths for reading and writing data to LUNs on the Pillar Axiom storage system.

See Figure 1: APM interaction with a Pillar Axiom server for an illustration of how data flows from the host to the Pillar Axiom storage system.

The Linux multipath framework:

- Groups multiple data paths to a Pillar Axiom LUN and presents this group to the operating system as a single LUN or disk drive.
• Identifies and uses optimized data paths when possible. An optimized path provides the best performance and is the preferred path for data transfer.
• Determines which data paths to use.
• Handles data path failover.
• Manages data path errors.

About Multipathing and Device Mapper Automation

AxiomONE Path Manager (APM) uses the standard Linux 2.6 device-mapper functionality to provide multipathing services. APM consists of a daemon that monitors the state of the device-mapper and communicates with the Pillar Axiom software. APM presents the multipathed LUNs as virtual block devices in the Linux 2.6 device-mapper framework.

Note: You can use device-mapper and multipath-tools for many purposes other than managing multipathing for Pillar Axiom storage systems.

Pillar Data Systems provides a package containing an updated version of the multipath-tools component of device-mapper, along with additional bug fixes, as part of APM.

Important! You must use this Pillar Data Systems version of multipath-tools instead of the one supplied as part of the operating system in order to use APM. See Install (or Update) the AxiomONE Path Manager Software.

In addition, APM provides installation and start up scripts that automate several of the manual integration and configuration tasks usually required by device-mapper. The automation includes:

• Correcting functional deficiencies in the HBA driver installers.
• Bringing partitions on multipath devices online automatically.
• Reordering startup scripts for optimum operation.

Note: To determine how the Linux startup scripts have been altered, refer to the comments in the following Pillar-provided files:

• /etc/init.d/multipathd
• /etc/init.d/axiompmd
Supported Oracle VM Server 2.2 Distributions

AxiomONE Path Manager (APM) 3.1 is supported on Oracle VM Server 2.2 platforms.

APM 3.1 supports Oracle VM Server 2.2 distributions for the following architectures:

- x86-32 (32-bit x86 platforms)
- x86-64 (64-bit AMD and Intel platforms)

To determine the hardware platform on which your distribution is running, run the following command:

```bash
# uname -i
```

Compare the output of this command with the information in the following table:

Table 3 Supported hardware platforms

<table>
<thead>
<tr>
<th>Hardware platform</th>
<th>Output from <code>uname -i</code></th>
</tr>
</thead>
<tbody>
<tr>
<td>x86</td>
<td>i386</td>
</tr>
<tr>
<td>AMD64/Intel EM64T</td>
<td>x86_64</td>
</tr>
</tbody>
</table>

To determine the Linux kernel installed on your system, run the following command:

```bash
# uname -r
```

Verify that the kernel identifier in the output of this command begins with the following value:

```
2.6.18-128
```
Operating Limits

AxiomONE Path Manager (APM) provides access over multiple data paths to LUNs defined on a Pillar Axiom storage system. APM, the device-mapper, Linux, and the Pillar Axiom software limit the following aspects of this access.

Table 4 APM operating limits

<table>
<thead>
<tr>
<th>APM capabilities</th>
<th>Maximum value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target Pillar Axiom systems</td>
<td>Eight for each SAN host</td>
</tr>
<tr>
<td>Connect to SAN Slammer storage controllers</td>
<td>Four for each Pillar Axiom system</td>
</tr>
<tr>
<td>Connect to LUNs</td>
<td>256</td>
</tr>
<tr>
<td>Handle data paths</td>
<td>32 to each LUN</td>
</tr>
<tr>
<td>Handle FC HBA ports</td>
<td>32 for each SAN host</td>
</tr>
</tbody>
</table>

The Linux device-mapper has a limitation of 1024 paths to all devices, including Pillar Axiom LUNs. If you use the maximum of 256 LUNs, you will have a maximum of four paths to each LUN.

Important! The Linux device-mapper does not gracefully handle more than 1024 visible paths and may fail in a variety of ways if that limit is exceeded.

Important! Not all combinations of the limits shown have been tested. Use care when operating a system that has been configured to run at or near these limits. The system may exhibit anomalies when all limits are exercised concurrently.
Contact Information

Table 5 Contacts at Pillar Data Systems

<table>
<thead>
<tr>
<th>For help with...</th>
<th>Contact...</th>
</tr>
</thead>
</table>
| Error messages, usage questions, and other support issues | US and Canada: 877-4PILLAR (1-877-474-5527)
Europe: +800 PILLAR FS (+800 74 44 27 37)
Asia Pacific: +1-408-518-4515
South Africa: +0 800 980 400
Have your system serial number ready.
support@pillardata.com
Customer support portal (https://support.pillardata.com/login.do) |
| Sales and general contact information | Company contacts (http://www.pillardata.com/company/contact) |
| Documentation improvements and resources | docs@pillardata.com
Technical documents (http://www.pillardata.com/techdocs) (Log in with your username and password, and select Documents.) |
Related Documentation

Use the following resources to understand the Pillar Axiom storage system features and functions.

Table 6 Related documentation

<table>
<thead>
<tr>
<th>For information about…</th>
<th>Refer to…</th>
</tr>
</thead>
<tbody>
<tr>
<td>Functions available in the AxiomONE Storage Services Manager graphical user interface (GUI)</td>
<td>Pillar Axiom Administrator’s Guide</td>
</tr>
<tr>
<td>The internal hardware and software architecture of Pillar Axiom systems</td>
<td>Pillar Axiom System Architecture Overview</td>
</tr>
<tr>
<td>Items related to a particular release of the Pillar Axiom storage system, such as:</td>
<td>Pillar Axiom Release Notes for your Pillar Axiom storage system</td>
</tr>
<tr>
<td>● New features</td>
<td></td>
</tr>
<tr>
<td>● Capacities</td>
<td></td>
</tr>
<tr>
<td>● Configuration requirements</td>
<td></td>
</tr>
<tr>
<td>● Operating constraints</td>
<td></td>
</tr>
<tr>
<td>● Known issues and their workarounds</td>
<td></td>
</tr>
</tbody>
</table>
Chapter 2 Install AxiomONE Path Manager

Prepare to Install the AxiomONE Path Manager

To ensure a successful installation of AxiomONE Path Manager (APM), perform the following tasks in sequence:

1. Read AxiomONE Path Manager Release Notes.
2. Ensure that the Pillar Axiom storage system is running release 3.3.15 or higher of the Pillar Axiom software.
3. If you are using Fibre Channel connections, verify that your Fibre Channel storage area network (SAN) components and host bus adapters (HBAs) are supported.
 - Supported Fibre Channel SAN Hardware Components.
 - Supported QLogic Host Bus Adapters and Drivers.
4. If you are using Internet Small Computer System Interface (iSCSI) connections, confirm that any iSCSI-to-FC routers and IP switches you have installed are supported.
 See Supported iSCSI Routers and Switches.
5. If you are using iSCSI connections, verify that you have configured the iSCSI software initiator correctly.
 See Configure the iSCSI Software Initiator.
6. Pre-Configure the SAN for Pillar Axiom Integration.

Supported SAN Protocols

AxiomONE Path Manager (APM) 3.1 supports Fibre Channel and software-based Internet Small Computer System Interface (iSCSI) connections to the Pillar Axiom storage system.
Supported Fibre Channel SAN Hardware Components

AxiomONE Path Manager (APM) supports a variety of Fibre Channel host bus adapters (HBAs) and storage area network (SAN) routers and switches.

Approved HBAs and switches that are compatible with the Pillar Axiom system are listed in these sections:

- Supported QLogic Host Bus Adapters and Drivers (supported on x86-32 and x86-64 platforms)
- Supported Fibre Channel Switches

Supported Fibre Channel Topologies

AxiomONE Path Manager (APM) supports the Point-to-Point (FC-P2P) and Switched Fabric (FC-SW) topologies. APM does not support Arbitrated Loop (FC-AL).

Maximum Queue Depth

The recommended maximum queue depth for all SAN hosts attached to a Pillar Axiom system is 64. This value is the maximum number of outstanding I/O requests to the Pillar Axiom system. Exceeding the maximum I/O queue depth may cause errors.

This value is typically set in the BIOS or similar firmware configuration of the HBA on the SAN host. Consult your HBA documentation for the setting that controls the maximum I/O queue depth for your HBA and for configuration instructions.

Supported QLogic Host Bus Adapters and Drivers

The AxiomONE Path Manager (APM) 3.1 software supports the following QLogic Fibre Channel host bus adapters (HBAs) on x86-32 and x86-64 platforms:

<table>
<thead>
<tr>
<th>Table 7 Supported QLogic HBAs</th>
</tr>
</thead>
<tbody>
<tr>
<td>QLA2310F, QLA2310FL</td>
</tr>
</tbody>
</table>
Table 7 Supported QLogic HBAs (continued)

<table>
<thead>
<tr>
<th>HBA configuration</th>
<th>Recommended value</th>
</tr>
</thead>
<tbody>
<tr>
<td>QLA2340, QLA2340L</td>
<td>QLE2462</td>
</tr>
<tr>
<td>QLA2342, QLA2342L</td>
<td>QLE2464</td>
</tr>
<tr>
<td>QLA2344</td>
<td>QLE2560</td>
</tr>
<tr>
<td>QLA2460</td>
<td>QLE2562</td>
</tr>
<tr>
<td>QLA2462</td>
<td>QLE2564</td>
</tr>
</tbody>
</table>

Recommended Settings for QLogic Host Bus Adapters

We recommend the following settings for QLogic host bus adapters (HBAs):

Table 8 QLogic HBA settings

<table>
<thead>
<tr>
<th>HBA setting</th>
<th>Recommended value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Link Down Timeout</td>
<td>30</td>
</tr>
<tr>
<td>Execution Throttle</td>
<td>64</td>
</tr>
<tr>
<td>LUNs per Target</td>
<td>256</td>
</tr>
<tr>
<td>Port Down Retry Count</td>
<td>30</td>
</tr>
<tr>
<td>Max Queue Depth (ql2xmaxqdepth)</td>
<td>64</td>
</tr>
</tbody>
</table>

Install QLogic Host Bus Adapters and Drivers

To ensure compatibility between APM and your QLogic HBAs, be sure to follow the instructions in this section for installing the supported QLogic HBAs and drivers.

1. Install QLogic HBAs according to the instructions at the QLogic support download page (currently http://support.qlogic.com/support).

2. Use the driver that ships with the Oracle VM Server 2.2 operating system (version 8.03.00.10.02.02-k).
3 Download and install the SNIA API for Linux Drivers (qlapi-v5.00build6–rel) from the QLogic driver download page (currently http://driverdownloads.qlogic.com).

Supported Fibre Channel Switches

For a list of supported Fibre Channel switches, choose one of:

- Call the Pillar World Wide Customer Support Center at the number listed in Contact Information.
- Refer to the Pillar Axiom Support and Interoperability Guide, which can be found on the Documents web page (http://www.pillardata.com/techdocs).

Note: Refer to the switch vendor’s web site for the most recent installation instructions, patches, and firmware.

Supported iSCSI Software and Hardware

AxiomONE Path Manager (APM) 3.1 for Oracle VM Server 2.2 supports the following Internet Small Computer System Interface (iSCSI) software and hardware:

- The iSCSI software initiator included in the Oracle VM Server 2.2 distribution.
- The iSCSI-to-Fibre Channel routing features of the Cisco MDS 9000 family of routers and switches.

Note: APM for Oracle VM Server 2.2 does not support iSCSI host bus adapters (HBAs).

About Network Configuration for iSCSI Multipathing

You can reduce the impact of failures in your Internet Small Computer System Interface (iSCSI) network by ensuring that iSCSI connections are made through several network interface cards (NICs) on the host.

We recommend using the normal IP configuration facilities to route connections to different Slammer storage controller ports through different host NICs. For example, if the host has two NICs available for iSCSI connections to a Slammer, you can set up routing to send all traffic to one port on each Slammer control unit.
(CU) through one NIC, and traffic to the other port on each Slammer CU through the other NIC.

How you add redundancy to Ethernet networks depends on factors such as the number of available NICs in the host and the existing configuration of your IP network. One method to add redundancy is the use of subnets or explicit route configuration. Another method to add redundancy is NIC bonding.

About Subnet Configuration

Groups of host network interface cards (NICs) and Slammer ports can be configured into different subnets. Whenever the Internet Small Computer System Interface (iSCSI) software initiator opens a connection to a Slammer port, that connection will automatically be routed through the host NIC in the same subnet as the Slammer port. For example, if a host has two NIC ports on the iSCSI network, one of the host NIC ports connected to one of the Slammer control unit (CU) ports could be placed in one subnet, and another host NIC port connected to the other Slammer CU port could be placed in a different subnet.

Configure Explicit Routing for iSCSI Multipathing

If two or more network interface cards (NICs) on the host are configured into the same subnet, you should explicitly configure Internet protocol (IP) routing to route connections to different destination ports through different host NICs.

1. Create or edit the routing configuration file for each NIC, and add entries for each destination IP address that you want to route through this NIC.

 The name of the routing configuration file is `/etc/sysconfig/network-scripts/route-NIC`, where `NIC` is the name used by the OS for the NIC. Add a line for each Slammer port for which access is to be routed through this NIC. The format of the line should be:

 `Slammer_port_IP_address via NIC_IP_address src NIC_IP_address`

 Example:
 If the NIC `eth0` has been configured with IP address 192.168.2.39, and you want to use this NIC to access Slammer ports 192.168.2.10 and 192.168.2.12, then you would create or edit the file `/etc/sysconfig/network-scripts/route-eth0` and add the following lines:

   ```
   192.168.2.10 via 192.168.2.39 src 192.168.2.39
   192.168.2.12 via 192.168.2.39 src 192.168.2.39
   ```
You can also use the `ip route add` command to temporarily set up routes from the command line by using lines of the form described above as parameters.

Example:
The following command sets up a route for the first Slammer port described above:

```
# ip route add 192.168.2.10 via 192.168.2.39 src 192.168.2.39
```

2 If the host has more than one NIC in a broadcast domain, you must modify the configuration to prevent a condition known as address resolution protocol (ARP) flux, which can prevent routing from operating correctly.

To prevent ARP flux, edit the file `/etc/sysctl.conf`, and modify or add entries for the following parameters:

```
net.ipv4.conf.all.arp_ignore=1
net.ipv4.conf.all.arp_announce=2
```

You can also temporarily prevent ARP flux by using lines of this form as parameters to `sysctl -w` commands.

Example:
The following commands temporarily prevent ARP flux:

```
# sysctl -w net.ipv4.conf.all.arp_ignore=1
# sysctl -w net.ipv4.conf.all.arp_announce=2
```

Changes to the configuration files will take effect after you reboot the host.

About NIC Bonding

Besides the subnet or explicit routing approach, another method to add redundancy to Ethernet networks is **NIC bonding**.

With this mechanism, two or more network interface cards (NICs) and their physical connections to the switches are logically bonded together and presented to the Internet protocol (IP) as a single virtual NIC. If one of the physical connections fails, the traffic is transferred to another NIC without the IP layer or the layers above it knowing about the transfer.

This approach protects against low-level Ethernet failures, such as a faulty NIC or cable, between the host and its local IP switch. Because the redundancy is at a very low level in the protocol stack, the higher layers such as transmission control protocol/Internet protocol (TCP/IP), Internet Small Computer System Interface (iSCSI), and device-mapper are not aware that a transfer to a different NIC has taken place. To the IP protocol, the virtual bonded NIC appears...
as a single physical connection. To iSCSI, it appears as a single connection to each target port.

In short, the iSCSI, device-mapper, and APM layers are not aware of the physical path redundancy provided at the NIC bonding level and do not treat this redundancy as providing multiple paths to the Slammer storage controller. Multiple paths created by NIC bonding will not be reported as multiple paths by device-mapper or in the AxiomONE Storage Services Manager.

Configure the iSCSI Software Initiator

To support iSCSI connections, AxiomONE Path Manager (APM) 3.1 for Oracle VM Server 2.2 requires the 6.2.0.871-0.7.el5 version of the iSCSI software initiator included in the Oracle VM Server 2.2 distribution.

For complete installation and configuration instructions, refer to:

```
/usr/share/doc/iscsi-initiator-utils-*/README
```

The following procedure is an overview of the instructions in the README file.

Important! You must ensure that each iSCSI software initiator on the iSCSI SAN has a unique name, and set this host's software initiator name in the `/etc/iscsi/initiatorname.iscsi` file.

1. Set up IP addresses and network parameters on Slammer iSCSI ports.

 This may include setting up Challenge Handshake Authentication Protocol (CHAP) on your system.

2. Configure iSCSI accordingly.

 Example:

 If you are using CHAP to communicate the the Slammer iSCSI ports, you may need to modify the `/etc/iscsi/iscsid.conf` file accordingly.

3. Start the iSCSI software initiator.

   ```
   # service iscsi start
   ```

4. Discover the Slammer iSCSI target ports.

 Example:

   ```
   # iscsiadm -m discovery -t sendtargets -p 172.20.191.11:3260
   ```

5. Discover the other ports, depending on the desired design (optional).
6 Restart the `iscsi` service to log in to the discovered target ports:

```
# service iscsi restart
```

7 Use `chkconfig` to configure the `iscsi` service to start up at various run levels.

See Start the iSCSI Software Initiator Service.

Start the iSCSI Software Initiator Service

After you have configured the Internet Small Computer System Interface (iSCSI) software initiator, set the iSCSI software initiator to start at startup time and confirm that your iSCSI devices are visible.

1 Start the `iscsi` service.

Run the following command:

```
# service iscsi start
```

2 Configure the `iscsi` service to start at boot time.

Run the following commands:

```
# chkconfig --add iscsi
# chkconfig iscsi on
```

The first command checks that the scripts necessary to start and stop the service are available. The second command sets the service to start at the appropriate run levels.

3 Verify that the `iscsi` service is configured to start at boot time.

Run the following command:

```
# chkconfig --list iscsi
```

Result:
The following is a sample of the output of this command when the service is not configured to start at boot time:

```
iscsi 0:off 1:off 2:off 3:off 4:off 5:off 6:off
```

The following is a sample of the output of this command when the service is configured to start at boot time:

```
iscsi 0:off 1:on 2:on 3:on 4:on 5:on 6:off
```
Supported iSCSI Routers and Switches

Pillar AxiomONE Path Manager (APM) supports the iSCSI-to-Fibre Channel routing features of the Cisco MDS 9000 family of multi-layer directors and fabric switches.

The iSCSI-to-Fibre Channel routing features enable a host to use Internet Small Computer System Interface (iSCSI) to access LUNs on Pillar Axiom Fibre Channel Slammer storage controllers. Pillar Data Systems tested this APM release on Cisco MDS SAN-OS Release 3.0 (2a). Refer to the Cisco documentation (http://www.cisco.com/univercd/cc/td/doc/product/sn5000/mds9000/3_0/fmcfg/index.htm) for more information on these features.

In this release, Pillar Data Systems supports only the iSCSI-to-Fibre Channel routing capabilities provided by this Cisco switch.

The switch requires certain configuration steps to work with APM and the Pillar Axiom system as an iSCSI-to-Fibre Channel router. See Configure the Cisco MDS Switch for configuration information.

Configure the Cisco MDS Switch

This release supports the iSCSI-to-Fibre Channel routing features of the Cisco MDS 9000 family of multi-layer directors and fabric switches. These features require configuration to work with the AxiomONE Path Manager (APM) and the Pillar Axiom system.

For more information on these features, refer to the Cisco documentation (http://www.cisco.com/univercd/cc/td/doc/product/sn5000/mds9000/3_0/fmcfg/index.htm).

1. Present the Pillar Axiom Slammer storage controller ports as Internet Small Computer System Interface (iSCSI) targets.

 Choose Dynamic Mapping or Static Mapping. However, we recommend that you use dynamic mapping because the main Cisco features for static mapping requirements are supplied by APM and the AxiomONE Storage Services Manager.

2. Present the iSCSI hosts as virtual Fibre Channel hosts.

 The hosts must be presented in transparent initiator mode (not in proxy-initiator mode). When you assign World Wide Names (WWNs) for the iSCSI initiators, use the static mapping mechanism.
After you configure the switch, APM on the iSCSI hosts interacts with the Pillar Axiom systems in exactly the same way as when both hosts and Slammers use the same SAN protocol.

Pre-Configure the SAN for Pillar Axiom Integration

Before you install the AxiomONE Path Manager (APM) software, you need to prepare your storage area network (SAN) host connections with the Pillar Axiom storage system.

Prerequisites:

Verify that your system has:

- LUNs configured on your Pillar Axiom storage system.
- At least one SAN Slammer storage controller that has Fibre Channel or Internet Small Computer System Interface (iSCSI) ports.
- A Fibre Channel or iSCSI protocol license.
- Supported host bus adapter (HBA) drivers and API libraries.
- Ethernet connections to the management ports on the Pilot management controller.
- A network configuration that allows an application on the SAN host to connect to TCP port 26004 on the Pilot.

Tip: To check network connectivity, issue a simple `pdscli` or `axiomcli` request from the host to the Pillar Axiom storage system. Both `pdscli` and `axiomcli` use the same port and protocols as those used by APM. See the Pillar Axiom CLI Reference Guide or Pillar AxiomONE CLI Guide for details.

1. Verify that all Fibre Channel and iSCSI components and software are installed on the SAN host according to the instructions in this Installation Guide.

2. Set up the physical connectivity and any required switch zoning for the SAN. Proper setup is needed so all required host HBA ports can access the Slammer ports on the Pillar Axiom server.

3. If you are using iSCSI connections, choose one or more of the following:
 - About Network Configuration for iSCSI Multipathing.
 - Configure the iSCSI Software Initiator.
• Configure the Cisco MDS Switch.

4 Launch the AxiomONE Storage Services Manager and navigate to the **Storage > SAN > Hosts** page.

5 Verify the SAN connections.

Each host port should display individually as follows:

<table>
<thead>
<tr>
<th>Column label</th>
<th>Port type</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FC</td>
</tr>
<tr>
<td></td>
<td>iSCSI</td>
</tr>
<tr>
<td>Host Name</td>
<td>Hostname Unknown</td>
</tr>
<tr>
<td>Host Port</td>
<td>WWN</td>
</tr>
</tbody>
</table>

See **Figure 2: Example host ports before APM installation** for an illustration.

6 If the host is using only iSCSI to connect to Slammers, choose one of:

- Install the **sg3-utils** packages.
- Ensure that at least one LUN on the Pillar Axiom storage system is visible to the host.

The **sg3-utils-libs-* and sg3-utils-*** packages are required for automatic discovery of the Pillar Axiom storage system over iSCSI when no iSCSI LUNs are visible to the host. An alternative is to make a LUN visible to the host by either creating a global LUN or mapping one to the host iSCSI software initiator IQN.

Note: If you mapped a LUN to the iSCSI software initiator IQN, it will automatically be remapped to the host name after APM is installed. If the LUN is temporary, delete it after you install the software.

Verify Installation of the Device Mapper

The Linux 2.6 **device-mapper**, among other uses, maps a logical block device on the SAN host into a Pillar Axiom LUN. The AxiomONE Path Manager (APM) daemon monitors the **device-mapper** and uses it to provide multipathing.

APM requires **device-mapper** version 1.02.28–2.el5 or later.
1 Verify that device-mapper is installed.

Run the following command at a command prompt:

```
# rpm -qa | grep device-mapper | grep -v multipath
```

Result:
If device-mapper is installed, this command returns the version of device-mapper and your operating system.

2 If device-mapper version 1.02.28 or later is not installed, install this version.

Install device-mapper from your Linux installation CDs or operating system vendor web site.
Download and Install the AxiomONE Path Manager Software

The AxiomONE Path Manager (APM) installation for Oracle VM Server 2.2 requires that you download both the APM package and the Multipath Tools package from the Pillar Support web site. Then you need to install both packages on your system.

1. Download the AxiomONE Path Manager Software.
2. Install (or Update) the AxiomONE Path Manager Software.
3. Configure the Pillar Axiom System for LUN Access.

To remove the AxiomONE Path Manager software from your SAN host, see Remove AxiomONE Path Manager Software (Optional).

Download the AxiomONE Path Manager Software

The AxiomONE Path Manager (APM) 3.1 software consists of two packages: the APM daemon package, and a package containing an updated version of the multipath-tools component of device-mapper. You will need to download both packages.

The Multipath Tools component also contains Pillar bug fixes. When using APM, the Pillar version must be used in place of the one supplied with the Linux operating system.

1. Go to the Pillar Customer Support web site (https://support.pillardata.com/login.do) and log in.
2. In the left navigation pane, click the Software Downloads > AxiomONE Path Manager link.
3. In the content pane, expand the Linux > Oracle VM Server link.
4. Expand the APM 3.1 Oracle VM Server link.
5. For each package (APM or Multipath Tools), click the name of the package for your hardware platform (x86, or AMD64/Intel EM64T) to download.
6. Under Software Download Details, click the green arrow to begin the download.
7. Choose the Save option to download the package to your SAN host.
Install (or Update) the AxiomONE Path Manager Software

After you download the AxiomONE Path Manager (APM) software and Multipath Tools packages, you can install them on your host system.

Before you install the APM software, verify that your system meets the prerequisites outlined in Supported Fibre Channel SAN Hardware Components and Pre-Configure the SAN for Pillar Axiom Integration.

Two steps in the installation process enable you to keep your original multipath configuration file (/etc/multipath.conf) so that you can continue to use your specific configurations for managing devices other than APM-managed Pillar Axiom LUNs:

- Because the configuration file will be deleted, Step 1 asks you to save a copy of that file before you begin the APM installation or update task.
- Step 5 asks you to merge any changes you made to the original configuration file into the new file.

Tip: We strongly recommend that you follow these two steps when you have previously added or modified entries in /etc/multipath.conf.

1. If you previously configured multipath-tools on your system, save a copy of the current /etc/multipath.conf file.

 Saving a copy allows you to merge the changes into the new file that will be created.

2. Uninstall any previously installed versions of multipath-tools.

 The name of the multipath-tools Red Hat Package Manager (RPM) package varies (depending on its source). The name usually begins with one of the following strings:

 - multipath-tools
 - device-mapper-multipath

 Example:

 Use one of the following commands, depending on the name of the multipath-tools RPM package:

   ```bash
   # rpm -e multipath-tools
   or
   # rpm -e --nodep device-mapper-multipath
   ```
Important! Other packages associated with `device-mapper` that begin with the string `device-mapper` may exist on the SAN host. Do not remove these packages. Remove only those packages that begin with the string `multipath-tools` or `device-mapper-multipath`.

3 Remove any previous versions of APM on your system using the following command:

```
# rpm -e axiompm
```

4 Install the Multipath Tools package using the following command:

```
# rpm -ivh multipath-tools-version.rpm
```

Note: In the command above, `version` is the name of the release version you downloaded.

5 After the new `/etc/multipath.conf` is installed, merge in any previous configuration data for `device-mapper` from the copy of the configuration file you saved in Step 1.

Merging those changes allows you to retain previous configuration settings to manage devices other than APM.

6 Install the APM package using the following command:

```
# rpm -ivh axiompm-version.rpm
```

Note: In the command above, `version` is the name of the release version you downloaded.

APM files and scripts are installed in the `/opt/pillar` directory.

7 Restart the host.

After you install the software, follow the instructions in Configure the Pillar Axiom System for LUN Access. You must complete that task for the software to function correctly.
Configure the Pillar Axiom System for LUN Access

The LUN configuration procedure provides the storage area network (SAN) host with access to Pillar Axiom LUNs. Refer to the *Pillar Axiom Administrator’s Guide* for instructions on how to create LUNs.

Prerequisites:

- **Pre-Configure the SAN for Pillar Axiom Integration.**
- **Install (or Update) the AxiomONE Path Manager Software.**

1. In the AxiomONE Storage Services Manager, navigate to the *Storage > SAN > Hosts* page.

2. Verify that the individual entries for the host ports have been replaced with a single entry under the host name.

Example:

Figure 2 Example host ports before APM installation

<table>
<thead>
<tr>
<th>Host Name</th>
<th>Host Port</th>
<th>Type</th>
<th>AxiomONE Path Manager</th>
<th>Number of LUNs</th>
<th>Host Port Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hostname Unknown</td>
<td>10.0.0.0.0:19:36:04:56</td>
<td>FC</td>
<td>Not Registered</td>
<td>0</td>
<td>Connected</td>
</tr>
<tr>
<td>Hostname Unknown</td>
<td>10.0.0.0.0:19:36:04:56</td>
<td>FC</td>
<td>Not Registered</td>
<td>0</td>
<td>Connected</td>
</tr>
<tr>
<td>Hostname Unknown</td>
<td>10.0.0.0.0:19:36:56:20</td>
<td>FC</td>
<td>Not Registered</td>
<td>8</td>
<td>Connected</td>
</tr>
<tr>
<td>Hostname Unknown</td>
<td>10.0.0.0.0:19:41:32:9:3</td>
<td>FC</td>
<td>Not Registered</td>
<td>0</td>
<td>Connected</td>
</tr>
<tr>
<td>Hostname Unknown</td>
<td>10.0.0.0.0:19:41:32:9:4</td>
<td>FC</td>
<td>Not Registered</td>
<td>0</td>
<td>Connected</td>
</tr>
<tr>
<td>que1.193.96.com.cisco31.scalabello.b553</td>
<td>192.168.2.83</td>
<td>FC</td>
<td>Not Registered</td>
<td>0</td>
<td>Connected</td>
</tr>
<tr>
<td>192.168.2.84</td>
<td>ISCSI</td>
<td>Connected</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 3 Example host ports after APM installation

<table>
<thead>
<tr>
<th>Host Name</th>
<th>Host Port</th>
<th>Type</th>
<th>AxiomONE Path Manager</th>
<th>Number of LUNs</th>
<th>Host Port Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Esgry</td>
<td>10.0.0.0.0:19:36:04:56</td>
<td>FC</td>
<td>Communicating</td>
<td>0</td>
<td>Connected</td>
</tr>
<tr>
<td></td>
<td>10.0.0.0.0:19:36:04:56</td>
<td>FC</td>
<td>ISCSI</td>
<td>0</td>
<td>Connected</td>
</tr>
<tr>
<td></td>
<td>192.168.2.93</td>
<td>ISCSI</td>
<td>Connected</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>192.168.2.94</td>
<td>ISCSI</td>
<td>Connected</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hostname Unknown</td>
<td>10.0.0.0.0:19:41:32:9:3</td>
<td>FC</td>
<td>Not Registered</td>
<td>6</td>
<td>Connected</td>
</tr>
<tr>
<td>Hostname Unknown</td>
<td>10.0.0.0.0:19:41:32:9:4</td>
<td>FC</td>
<td>Not Registered</td>
<td>0</td>
<td>Connected</td>
</tr>
<tr>
<td>Hostname Unknown</td>
<td>10.0.0.0.0:19:41:32:9:4</td>
<td>FC</td>
<td>Not Registered</td>
<td>0</td>
<td>Connected</td>
</tr>
</tbody>
</table>
Note: The Hosts page may display differently in your version of AxiomONE Storage Services Manager.

You will see one or more of the following AxiomONE Path Manager Status and Host Port Status messages on the Hosts page:

APM Status
- **Communicating**: The host control path is currently logged into the Pilot.
- **Not Registered**: A control path from an APM host with this name has never logged into the Pilot.
- **Not Communicating**: The APM host control path has previously logged into the Pilot, but it is not currently logged in.

Host Port Status
- **Connected**: The host SAN connection is logged in to the SAN Slammer.
- **Not connected**: The host SAN connection is not logged in to the SAN Slammer.

See the AxiomONE Storage Services Manager Help for information about the remaining fields on the Hosts page.

3. As needed, create new LUNs on the Pillar Axiom server for the SAN hosts.
4. As needed, set up mappings of the LUNs to the new host entries.
5. Follow the recommendations in SAN Dynamic Reconfiguration to make any changes visible to the SAN host.
6. Run the following commands to list the multipath devices (optional).
 The first command (`multipath -v3`) populates the path information, and the second command (`multipath -ll`, lower-case letters L) lists the state of the paths.

   ```
   # /sbin/multipath -v3
   # /sbin/multipath -ll
   ```
7. In the AxiomONE Storage Services Manager, navigate to the Storage > SAN > Hosts page.
8 Click the name of the new host and, on the Host Information page, verify the APM software version.

9 Click the **LUN Connections** tab and verify that the host and LUN connections are as expected.

 The column titled **LUN Name on Host** should show the Linux disk names that APM allocates to each LUN.

 Important! With a few exceptions (such as when you partition and format the LUN on the SAN host), you should use only these Linux disk names to access and configure the LUNs on the host. Linux creates device names for each individual path to a LUN, but almost all configuration and administration tasks should be done using the `/dev/mapper` name shown in the AxiomONE Storage Services Manager.

10 If you plan to partition and format the LUN on the SAN host, see **Partition and Format the LUN Disk (Optional)**.
Partition and Format the LUN Disk (Optional)

Follow these instructions if you plan to use the Linux `fdisk` or `parted` utilities to partition and format the disk on which a LUN resides.

The `fdisk` utility cannot be used with devices listed in the `/dev/mapper` directory. Instead, use `fdisk` on one of the underlying paths, and then run the scripts to restart the `multipath-tools` and APM daemons to notify device-mapper that a `/dev/mapper` device has a new partition.

1. Identify one of the highest priority paths to the LUN using the output of the `multipath -ll` (lower-case letters L) command.

 Example:
 In the output below, you could identify either the `/dev/sdd` or the `/dev/sdh` path:

   ```plaintext
   2000b080002001395
   [size=10 GB][features=1 queue_if_no_path][hwhandler=0]
   ▲ round-robin 0 [prio=61568][active]
   ▲ 0:0:1:3 sdd 8:48  [active][ready]
   ▲ 1:0:1:3 sdh 8:112 [active][ready]
   ▲ round-robin 0 [prio=1986][enabled]
   ▲ 12:0:0:3 sdl 8:176 [active][ready]
   ▲ 13:0:0:3 sdq 65:0  [active][ready]
   ▲ round-robin 0 [prio=64][enabled]
   ▲ 0:0:0:3 sdb 8:16  [active][ready]
   ▲ 1:0:0:3 sdf 8:80  [active][ready]
   ▲ round-robin 0 [prio=2][enabled]
   ▲ 10:0:0:3 sdk 8:160 [active][ready]
   ▲ 11:0:0:3 sdp 8:240 [active][ready]
   ```

2. Use `fdisk` to partition one of the highest priority paths identified in Step 1.

3. Run the following command to restart the `device-mapper`:
   ```bash
   # /etc/init.d/multipathd restart
   ```

4. Run the following command to restart the APM daemon:
   ```bash
   # /etc/init.d/axiompmd restart
   ```

5. Verify that the new partitions are listed as follows:
   ```bash
   # /dev/mapper/LUNpx
   ```

 `LUN` is the LUN identifier, and `x` is the partition number used in Step 2.

 Note: The letter `p` that appears between the LUN identifier and the partition number is required in this command.
Example:
In the example above, if only partition 1 were created with `fdisk`, it would appear as follows:

```
localhost$ ls -l /dev/mapper/2000b080002001395*
brw-rw----  1 root disk 253,  2 Jul  7 12:02
2000b080002001395
brw-rw----  1 root disk 253,  3 Jul  7 15:12
2000b080002001395p1
```

6 Format the new partition.

Example:
To format the partition created in the example above, you might run the following command:

```
# mke2fs -j /dev/mapper/2000b080002001395p1
```

7 Mount the filesystem.

For detailed information, refer to your Linux documentation.
About Load Balancing Configuration

AxiomONE Path Manager (APM) 3.1 for Oracle VM Server 2.2 is pre-configured for round-robin load balancing.

APM 3.1 for Oracle VM Server 2.2 supports only round-robin load balancing. It is pre-configured in the multipath.conf file, where path_grouping_policy is set to group_by_prio. Pillar Data Systems does not support the use of any other value for path_grouping_policy.

In round-robin load balancing, commands are sent in turn over the best available paths. Round-robin load balancing ensures that LUN commands are evenly distributed over any path that is available to access the LUNs.

Load balancing allows the paths to share load in different ways:

- Balances access to a LUN across all optimized Slammer storage controller ports available for that LUN. For more information on path selection, see About Path Selection.

- Balances access from a host across the host HBA channels.

Important! The load balancing options in the AxiomONE Storage Services Manager must always be set to round-robin for all hosts running APM 3.1 for Oracle VM Server 2.2.
About Path Selection

AxiomONE Path Manager (APM) supports access to LUNs using Internet Small Computer System Interface (iSCSI) and Fibre Channel (FC) protocol at the same time, as well as individually.

Note: Multi-protocol (FC and iSCSI) access is not available on Pillar Axiom 300 systems.

Paths to a LUN may have different performance characteristics. Paths to the Slammer control unit where the LUN resides are considered optimized paths; other paths to the LUN are considered non-optimized paths. When both FC and iSCSI access to a LUN are available, FC access generally performs better.

APM divides the paths to each LUN into four groups with different performance characteristics, in this order of precedence:

- First, FC optimized
- Next, iSCSI optimized
- Next, FC non-optimized
- Finally, iSCSI non-optimized

At any given time, the device-mapper framework only uses paths from the most preferred group that has paths available.

Note: When an active path fails, and I/O traffic is transferred to a different path, I/O performance will be reduced for a short time while the operating system recognizes the failure and makes the path transfer. If the failing path was optimized and the new path is non-optimized, I/O performance may remain lower than before since it is now using a lower-performance path. Within a few minutes of traffic being transferred to a non-optimized path, the Pillar Axiom storage system will, if possible, reconfigure the LUNs to make the new path optimized. I/O performance will then return to its previous level.
Remove AxiomONE Path Manager Software (Optional)

When you uninstall AxiomONE Path Manager (APM), support for multiple paths to Pillar Axiom LUNs is removed.

Before you uninstall APM, if you do not want to access Pillar Axiom LUNs, we recommend that you disconnect the storage area network (SAN) host from the Pillar Axiom storage system.

Sometimes, the uninstall process may take longer than expected, and the process may appear to be hanging. Allow the process to run for at least an hour before attempting to restart the process.

1. Run the following commands to stop and remove the APM daemon:

 # /etc/init.d/axiompmd stop
 # rpm -e axiompmd

2. Run the following command to remove the version of multipath-tools supplied by Pillar Data Systems:

 # rpm -e multipath-tools

3. Reinstall the multipath-tools that came with your Linux software (optional).

After the APM software (both axiompmd and multipath-tools) has been removed, the host appears not to be communicating in the AxiomONE Storage Services Manager, and the multipath behavior stops working.

Important! If you want to continue LUN access without multipathing, we recommend that you reconfigure the SAN so that only a single path exists from the host to each Pillar Axiom Slammer storage controller. You may need to reconfigure LUN mapping on the Pillar Axiom storage system to map the LUNs to the host port or iSCSI Qualified Name (IQN), and you may need to reconfigure the host to access the LUNs through new device names.
Chapter 3 AxiomONE Path Manager Release Notes

Known APM Issues

There are no known AxiomONE Path Manager (APM) issues for this release.
Known Pillar Axiom Issues

The following issues might be associated with the version of the Pillar Axiom software you are using.

Table 10 Known Pillar Axiom issues

<table>
<thead>
<tr>
<th>Issue</th>
<th>Workaround or planned fix</th>
</tr>
</thead>
<tbody>
<tr>
<td>If an AxiomONE Path Manager (APM) host uses iSCSI to connect to a Pillar Axiom storage system, and it uses an iSCSI initiator name that is the same as its host name, then the entry for that host in the AxiomONE Storage Services Manager will be continually deleted and recreated, causing the host entry to disappear and reappear intermittently.</td>
<td>Ensure that the iSCSI initiator names configured on hosts that use iSCSI to connect to a Pillar Axiom system are different from all host names used by APM hosts connected to that Pillar Axiom system. The iSCSI standards require that iSCSI names follow particular formats, as specified in RFC 3720 (http://tools.ietf.org/html/rfc3720#section-3.2.6). If hosts are configured to use iSCSI initiator names that conform to these requirements, it is extremely unlikely that they will be the same as any host name. This issue will be fixed in a future release of the Pillar Axiom software.</td>
</tr>
<tr>
<td>If all paths to a LUN's configured Slammer control unit (CU) fail, APM will re-route all traffic through the non-optimized paths to the LUN's alternate CU. In response, the Pillar Axiom system will initially log events indicating non-optimized access, then when this traffic continues it will temporarily move the LUN to the alternate CU. This process leaves the host using optimized paths to the LUN, but the LUN is resident on a CU other than its configured home. Normally, the system will attempt to move the LUN back to its configured CU from time to time, and if the paths to the other CU have recovered the traffic will transfer back and the system returns to its normal configured state.</td>
<td>This issue is fixed in release 3.4 and 4.0 of the Pillar Axiom software.</td>
</tr>
</tbody>
</table>
However, if the Pilot software is restarted while a LUN is in this temporary state, as might happen during a software update that includes the option to update the Pilot software, two problems occur:

1. The graphical user interface (GUI) and command line interface (CLI) wrongly report that the LUN's current CU is its configured CU.
2. Non-optimized access events are no longer logged for the LUN, and the system does not attempt to move the LUN back to its configured CU.

If subsequent path failures and recoveries cause traffic to be sent to the CU on which the LUN is not resident, the system will not move the LUN to the CU receiving the traffic. This means that all traffic to the LUN would have non-optimized access, which decreases performance, and this non-optimized access would not be logged.

When a LUN is created on a Pillar Axiom system, its load balancing attribute is set to round-robin by default. If the LUN is then mapped to a host running APM, the load balancing attribute setting can change to static when APM on the host first communicates with the Pillar Axiom system after detecting the LUN. Instead, this attribute should be set to round-robin when the LUN is first created, and should change only if an administrator changes it using the Pillar Axiom graphical user interface (GUI) or command line interface (CLI).

If an iSCSI initiator is added to a SAN host that has authentication enabled, authentication will not be enabled for

This issue is fixed in Pillar Axiom software release 4.0. If the Pillar Axiom system is running a release earlier than 4.0, check that the load balancing attribute for the LUN is still set to the desired value after APM on the host has detected the LUN and its **LUN name on Host** has been reported in the Pillar Axiom GUI. If the setting has changed, change it back to the desired value, which can then be correctly saved.

This issue is fixed in Pillar Axiom software release 4.0. If the Pillar Axiom system is running a release earlier than
Table 10 Known Pillar Axiom issues (continued)

<table>
<thead>
<tr>
<th>Issue</th>
<th>Workaround or planned fix</th>
</tr>
</thead>
<tbody>
<tr>
<td>that initiator. Also, if an iSCSI initiator with authentication enabled on a previous SAN host is moved to another host with or without authentication enabled, the initiator will retain its original configuration.</td>
<td>4.0, disable then re-enable authentication for the host after iSCSI initiators are added to or moved between SAN hosts.</td>
</tr>
</tbody>
</table>
Operating System Issues

The following operating system issues may have an impact on running APM on Linux platforms.

Access to LUNs

In most cases, you should only access LUNs through device-mapper or individual partition paths.

The Linux device-mapper creates paths of the form /dev/mapper/2000b08003d001321 to represent multipath Pillar Axiom LUNs. Individual partitions on a LUN have names of the form /dev/mapper/2000b08003d001321p3. With the exception of the situation described in Partition and Format the LUN Disk (Optional), you should access multipath LUNs and their partitions exclusively through these paths.

If a multipath partition is configured into /etc/fstab, omit the sixth field of its entry (fs_passno), or set it to 0 to prevent fsck from running automatically on the partition during a system boot. This is because device-mapper is not yet configured at the time fsck runs during boot, so the multipath devices are not accessible.

Important! Failure to disable fs_passno will cause host boot failure.

SAN Dynamic Reconfiguration

Linux does not automatically detect storage LUNs after a dynamic reconfiguration. Dynamic reconfiguration is the addition, deletion, growing, resizing, or cloning of one or more LUNs attached to a host.

Follow the instructions for dynamic reconfiguration in the Online Storage Reconfiguration Guide (http://www.redhat.com/docs/en-US/Red_Hat_Enterprise_Linux/5.2/html/Online_Storage_Reconfiguration_Guide/index.html). If you continue to have problems with dynamic reconfiguration, the following steps will help you handle exceptions.

Linux requires a series of steps, including a potential host reboot, when a LUN is dynamically reconfigured. After Linux detects the new LUNs, you must restart AxiomONE Path Manager (APM) to update the Pillar Axiom system with the new LUN status.
LUNs Added Dynamically

In most systems, a newly added LUN is immediately visible on the host without a rescan. However, due to inconsistent device driver behavior on some hosts, if the added LUN is not visible, a rescan usually makes it visible. A rescan normally involves an I/O reset.

If, after creating a new LUN on the Pillar Axiom system and assigning it to the host, running the rescan script does not bring up the LUNs, this may have happened because Linux incorrectly believes that the LUN number is already in use. To correct this situation, modify the host LUN number in the AxiomONE Storage Services Manager. Give it a new unique value that falls within the range of permitted values. If necessary, rescan to add the LUN.

QLogic provides a rescan script that may help in dynamically configuring LUNs:

LUNs Deleted Dynamically

Deleting a LUN prevents the LUN from being visible from the host. This includes deleting LUN mapping and LUN masking. In general, LUN deletion disrupts normal function of the Linux multipath framework and must be planned.

If a LUN is deleted, it may appear as either a `2000000000000` entry or as the original LUID with Path down messages. These entries may persist until the host is rebooted.

To avoid disruption, you may blacklist the LUN. To blacklist a LUN, see your Linux documentation.

The host usually picks up the deleted LUN, and it is deleted from the `/dev/mapper` table. However, this may not occur on all platforms consistently. If you want to view the device-mapper LUN mapping table, start the `multipathd` shell by running the following command:

```
# /sbin/multipathd -k
```

To delete a LUN, we recommend shutting down the host, deleting the LUN or LUN mapping from the Pillar Axiom storage system, and then restarting the host. If this procedure is not possible, you may want to run the following procedure.

Important! The following procedure will interrupt I/O and may require an immediate reboot of your host. In some cases, this may require a power cycle of the host to recover.

1. Copy the following and run it as a script:

   ```bash
   #!/bin/bash
   # Must be run as root
   ```
/etc/init.d/axiompmd stop
/sbin/multipath -F
/etc/init.d/multipathd stop
RESCAN SCRIPT FROM QLOGIC / EMULEX
Please modify the following line based on your rescan
script location
/usr/bin/ql-dynamic-tgt-lun-disc.sh -s -r
/etc/init.d/multipathd start
/etc/init.d/axiompmd start
/sbin/multipath –v3 -ll

Tip: The rescan script might require your interaction.

2 Be prepared to reboot the host as soon as possible after deleting LUNs in
case something goes wrong.

If a LUN that is visible to a Linux 2.6 host is deleted from the Pillar Axiom system,
and the /sbin/multipath -F or /sbin/multipath -f command is run
before rebooting the host, the device-mapper configuration map may become
unusable and all access to LUNs may be lost due to a bug in the Linux device-
mapper code. If this occurs, the only way to recover is to reboot the host.

After LUN deletion, you may see a message similar to the following while the
Pillar Axiom system is restarting the daemon:

error calling out /sbin/scsi_id -g -u -s /block/sd*

This message indicates that entries for the deleted LUNs still exist in the device-
mapper device table. Rebooting the host will flush these deleted path entries
from the device table.

LUNs Resized Dynamically

When you resize a LUN, a host reboot is necessary due to the constraints in the
Linux device-mapper. You must stop the iSCSI services before you reboot the host.

However, if you follow the procedures documented in the Online Storage
Red_Hat_Enterprise_Linux/html/Online_Storage_Reconfiguration_Guide/
index.html) to force your device drivers to recognize the resized LUN, the device-
mapper may recognize the resized LUN without a host reboot. The ability to use
the resized LUN is a function of the host filesystem.

Clone LUNs Added or Deleted Dynamically

The procedures for adding or deleting LUNs described above also apply for
Clone LUNs.
Restore Paths After Path Failure

Due to a Linux limitation, SCSI device paths may be marked offline after path failure.

Pillar Data Systems ships a unified `online_lun_utility` to automatically restore offline SCSI device paths, but this utility may occasionally require manual intervention on the part of the system administrator.

If you notice that you need manual intervention very often, tune the `online_lun_utility` script by commenting out the following lines in the `/opt/pillar/bin/online_lun_utility` file:

```bash
# Start
#NUMBEROFINSTANCES=2
#UTILITYRUNTST=`/bin/ps -aef | /bin/grep /opt/pillar/bin/online_lun_utility | /bin/grep -v grep | /usr/bin/wc -l`
#if [ $UTILITYRUNTST -le $NUMBEROFINSTANCES ] ; then
cd /sys/class/scsi_device
HOST=( `ls -d /sys/bus/pci/drivers/*/host*/ | sed -e "s/.*host//"` )
change_lun_state
#fi
```

In addition, if you are using QLogic HBAs, QLogic recommends that you use the following procedure to set driver parameters for failover:

1. Open the `/etc/modprobe.conf` file in a text editor, and set the options as follows:
   ```
   options qla2xxx ql2xfailover=0 MaxRetriesPerPath=3
   ql2xloginretrycount=30 ql2xlogintimeout=30
   ql2xretrycount=90 qlport_down_retry=45
   ```
2. Run the following command to rebuild the kernel:
   ```
   # /sbin/new-kernel-pkg --mkinitrd --depmod --install `uname -r`
   ```
3. Reboot.

Recover iSCSI Paths After Path Failure on Virtual Machines

Due to a Linux limitation, an iSCSI initiator may take from 180 to 300 seconds to recover from a warm start when Oracle VM Server 2.2 is running a Red Hat Enterprise Linux (RHEL) 4.8 virtual machine.
1 Create a script that contains the following:

```bash
#!/bin/bash
# Set Device Timeout and Change LUN State Utility
## Copyright 2010 Pillar Data Systems, Inc.
## This is Modified by Pillar to bring back Offline devices to Online state
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#---------------------------------------------------------
# This script is used to change the state of LUNS.
# The state of LUNS which are disabled can be changed using this script.
# This script is useful to enable the LUNS which were marked offline and are now online. However changing the state from offline to online does not guarantee that the LUN will become online.
#---------------------------------------------------------

SUCCESS=0
FAIL=1
CALL_AGAIN=2
CALL_RETURNED=3
COMMON=0
INVALID=4
all_targets=()
HOST=()
TIMEOUT=300
# change_lun_state ()
# checks for all LUNS which are offline
# and changes their status to running
# or online,
# PARAMETERS : NONE
# RETURNS : $STATUS
#******************************************************************************
```
function change_lun_state ()
{
 for SEL_HOST in ${HOST[@]}
 do
 STATUS=$CALL_AGAIN
 if [`cat $SEL_HOST/state` == "offline"]; then
 echo `cat $SEL_HOST/state`
 echo running > $SEL_HOST/state
 fi
 if [`cat $SEL_HOST/timeout` != $TIMEOUT]; then
 echo $TIMEOUT > $SEL_HOST/timeout
 fi
 done
 return $CALL_RETURNED
}

Start
NUMBEROFINSTANCES=2
UTILITYRUNTST=`/bin/ps -aef | /bin/grep /opt/pillar/bin/online_lun_utility_iscsi | /bin/grep -v grep | /usr/bin/wc -l`
if [$UTILITYRUNTST -le $NUMBEROFINSTANCES] ; then
 HOST=(`ls -d /sys/block/sd*/device`)
 change_lun_state
fi

2 Save the script as /opt/pillar/bin/online_lun_utility_iscsi.

3 Set the following values in the /etc/iscsi.conf file:

 ConnFailTimeout=180
 AbortTimeout=90

4 Run the /opt/pillar/bin/online_lun_utility_iscsi script.

Multipath Failed Path Errors

The multipath command may return errors that indicate only that there are failed paths.

If paths are in a failed state, the `multipath` command returns the following error messages:

```
multipath -ll 2000b08005c001259
9:0:0:3: sg_io failed status 0x8 0x1 0x0 0x0
9:0:0:3: Unable to get INQUIRY vpd 1 page 0x0.
error calling out /sbin/scsi_id -g -u -s /block/sdaf
8:0:0:3: sg_io failed status 0x8 0x1 0x0 0x0
```
These error messages indicate only that there are failed paths in the multipath device map. The multipath device map shows paths that are failed and active, and `sg_io failed` refers to the fact that SCSI generic (`sg`) devices do not exist for iSCSI device paths that are failed. These errors indicate that the system is responding correctly.

You must fix the failed paths or, if these errors occur during failover testing, recognize that this is normal and expected Linux multipath behavior.

Note: The `multipath` command can be invoked automatically by the system at various times, so it is possible for messages like these to be seen whenever paths are in an unusual state, such as during dynamic reconfiguration.

Power Off May Cause Windows Guest OS to Hang

Due to an Oracle VM Server 2.2 defect, powering off a Slammer Control Unit (CU) may cause a Windows guest operating system to hang and produce a memory dump.

Oracle expects to fix this defect in Oracle VM Server release 3.0.

CU Failure May Cause Windows Guest OS Reboot

Due to an Oracle VM Server 2.2 defect, a Slammer Control Unit (CU) failure may cause a Windows guest operating system to reboot and generate a memory dump.

Oracle expects to fix this defect in Oracle VM Server release 3.0.
Resolved Issues

There are no resolved issues for this release.
Additional Notes

Mount iSCSI Filesystems

We recommend that iSCSI filesystems be auto-mounted with the _netdev option. If the iSCSI filesystem is manually mounted, it must be unmounted manually before a reboot to avoid hangs.

Filesystems installed on iSCSI devices cannot be automatically mounted at system reboot because the IP network is not yet configured at mount time. However, the driver provides a method to auto-mount these filesystems as soon as the iSCSI devices become available, after the IP network is configured.

To auto-mount a filesystem installed on an iSCSI device:

1. List the iSCSI partitions to be automatically mounted in /etc/fstab.

2. For each filesystem on each iSCSI device, enter the logical volume on which the filesystem resides.

 The mount points must exist for the filesystems to be mounted. For example, the following /etc/fstab entry will mount the iSCSI devices with partition p1 specified by the LUID 20000121390p1:

   ```
   #device  mount  FS   mount backup  fsck
   #to mount point type options frequency pass
   LABEL=/   /   ext3 defaults 1 1
   LABEL=/boot /boot ext3 defaults 1 2
   /dev/mapper/20000121390p1  ext2  _netdev 0 0
   ```

3. Restart the system.

Result:

The netfs initialization script will mount all filesystems with the _netdev mount option. This initialization script must be run after the networking and iSCSI scripts to ensure that the system is ready to mount these devices.

Due to variable network delays, targets may not always become available in the same order from one boot to the next. Thus, the order in which iSCSI devices are mounted may vary and may not match the order the devices are listed in /etc/fstab. You should not assume mounts of iSCSI devices will occur in any particular order.
APM Installed on Guest OS Unable to Discover Axiom System

When Internet Small Computer System Interface (iSCSI) is used to connect directly to a Pillar Axiom system from a Red Hat Enterprise Linux (RHEL), Oracle Enterprise Linux (OEL), or Community Enterprise Operating System Linux (CentOS) 4.8 guest operating system (OS) running on Oracle VM Server 2.2, APM 3.2 installed on the guest OS may not be able to use the `sg3_utils` packages to discover the Axiom system.

The *AxiomONE Path Manager Installation Guide and Release Notes* gives two options for ensuring that APM will be able to discover the Axiom system:

- Install the `sg3_utils` packages.
- Ensure that at least one LUN on the Axiom system is visible to the host.

To enable APM to discover the Axiom system, before installing APM in the guest OS, ensure that at least one LUN on the Axiom system is visible to the guest OS over iSCSI. See the *AxiomONE Path Manager Installation Guide and Release Notes* for the relevant guest OS for further information.
Index

A
additional notes 54
APM
 control path 13
data path 13
definition 7
features 7
 how to
download software 31
install software 32
update software 32
interaction with Pillar Axiom 11
operating limits 16
pre-installation requirements 19
ARP flux 24

B
boot-from-SAN 9

C
Cisco MDS switch
 configure 27
contact information 17

D
definition
 APM 7
device-mapper
 function 14
 verify installation 29
download
 APM software 31
 multipath-tools 31

E
explicit routing
 iSCSI multipathing 23

F
features
 APM 7
 Fibre Channel
 protocol 19
 supported HBAs 20
 supported topologies 20
 switches 22
 format
 LUN disk 37

H
HBAs
 QLogic 20, 21
help, online 17

I
install
 APM software 32
 multipath-tools 32
iSCSI
 how to
 configure Cisco MDS switch 27
 configure iSCSI initiator 25
 configure network for multipathing 23
 start iSCSI initiator service 26
 NIC bonding 24
 protocol 19
 routers 27
 supported hardware 22
 supported software 22
 switches 27
 iSCSI multipathing
 ARP flux 24
 explicit routing 23
 subnets 23
issues
 Pillar Axiom 43

L
load balancing
 round-robin 39
LUN access
 multi-protocol 40
precedence 40
preferred paths 40
LUN configuration
SAN hosts 34
LUN disk
how to
 format 37
 partition 37
M
multi-protocol access
definition 40
precedence 40
preferred paths 40
multipath-tools
function 14
how to
 download software 31
 install software 32
 remove software 41
 update software 32
pre-installation requirements 19
N
NIC bonding 24
non-optimized path 40
O
online help 17
optimized path 40
P
partition
LUN disk 37
Pillar Axiom
documentation 18
interaction with APM 11
known issues 43
release notes 18
Pillar Data Systems web site 17
pre-configure SAN hosts 28
pre-installation requirements 19
product support 17
Q
QLogic HBAs
install 21
settings 21
supported 20
supported drivers 20
queue depth
 maximum for SAN host HBAs 20
R
release notes
 additional notes 54
 Pillar Axiom issues 43
remove
 APM software 41
 multipath-tools 41
routers
 iSCSI 27
S
sales information 17
SAN hosts
 LUN configuration 34
 maximum HBA queue depth 20
 pre-configure 28
SAN protocols 19
subnets
 iSCSI multipathing 23
supported
 architectures 15
 Fibre Channel topologies 20
 hardware platforms 15
 iSCSI hardware 22
 iSCSI software 22
 Linux kernels 15
 Pillar Axiom models 7
switches
 Cisco MDS 27
 Fibre Channel 22
 iSCSI 27
T
technical support 17
U
uninstall
 APM software 41
 multipath-tools 41
update
 APM software 32
 multipath-tools 32
V
virtualization
 Xen hypervisor 10
X
 Xen hypervisor 10