ORACLE
ATG WEB COMMERCE

Version 10.1.1

ATG Endeca Integration Guide

Oracle ATG

One Main Street
Cambridge, MA 02142
USA

ATG Endeca Integration Guide

Product version: 10.1.1
Release date: 07-20-12
Document identifier: EndecalntegrationGuide 1403311801

Copyright © 1997, 2012 Oracle and/or its affiliates. All rights reserved.
Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are
trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or
registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are
protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy,
reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any
means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please
report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the
following notice is applicable:

U.S. GOVERNMENT END USERS:

Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation,
delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any
operating system, integrated software, any programs installed on the hardware, and/or documentation, shall be subject to license terms and
license restrictions applicable to the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended
for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or
hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures
to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in
dangerous applications.

This software or hardware and documentation may provide access to or information on content, products, and services from third parties.
Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party
content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to
your access to or use of third-party content, products, or services.

The software is based in part on the work of the Independent JPEG Group.

Table of Contents

LI (0] 47T (VT { o] PP TP PPN 1
INSTAllatioN REQUITEMENTS ..ouuutititit ittt ettt e ettt et e e et et e e e e e et et et eanaeneaeeenenanes 1
Creating the Endeca APPlICatioNSuiuiuniniei et 1

Determining the Number of Endeca Applications To Createc.eeveviiiiinininininiiinanannnn. 2
Provisioning the Endeca Applicationsouiieuiirii e e e e 3
Configuring the ATG Server INstances iN CIMv.iinii et e e e e a e 3
oo Yo 18 ot oYY =T o o PPN 3
ATG Server INStance Creation ue. it ettt ettt e e e aene 3
Starting the INAeXiNg PrOCESSttt ittt e et et e e et e e e et e e et e teneeaenenes 4
Increasing the Transaction Timeout and Datasource Connection Pool Values............c.c.ceovennins 4
Indexing As Part of @ DePloyMEeNteuiuinin i 4
Manually Starting the INdeXing PrOCESScuinininiiii e 5
Monitoring the INAEXING PrOCESSuiuitiiiiti ettt e ea e e eee s e eneeaanans 5
Viewing the INAeXed Datao.iuiiitiiiiti et ettt e e e et e e e et e et eaeent et eeneenenes 5
ATG MOAUIES ..ot ettt e e et et et et et et e ae e e e et e et e e enanens 5

2. OVEIVIEW Of INABXING ..ot ene it e e ettt eenenes 7

INAEXADIE CIASSES ...ttt e 7
EndecalndexingOutputConfig Classvuieieieiinititet ettt e e e e e e e aeaaaaans 8
CategoryTre@ServiCe CIaSSc.uuiu ittt ettt et et et et e en et e e e 10
RepositoryTypeHierarchyEXporter Classc.eueuenininini e 12
Yl 1= g P o T =T G - 11 S PPN 12

SUDMITEING ThE RECOIS ...vtititiit ettt ettt et et e e e et e et e e e e enenaenes 13

Managing the PrOCESSc..unieiiei et ettt et e ens 14

3. Configuring the INdexing COMPONENTSc.iuiuinitit it ae e e aans 15
EndecalndexingOutputConfig COMPONENTSuuuitiietiitettetet et eeee et eenteeeenaereeneereenaenas 15
(D) =l e k-Te [o @eT 00T oTe] g 1T oY £ PPN 18

Tuning Incremental Loadingouueuiueninii et 19

(€1 (e T 4 VA H (=TT =1 AV [« PP PPN 19

RepositoryTypeDimenSiONEXPOITEYcuuiriniiie it eeaes 20

Yol =T 0 4T = o T o =T S PPN 21

Document SUbMItter COMPONENTSvuetiiieiet ettt ettt et et et e e et e e e e e enennen 22
Reducing LOGGING IMESSAGES ... enentneninintnen e e ettt et ettt e e e e e aans 23
Directing OULPUL 1O FIlES ..uonieiit i e e e e e e eaaas 25

g Yo LT N el d o] YT AV I PPN 26

ProductCatalogSimplelndexingAdmMIinoouieiiin e 27
Queueing INdexing JODS 28

Content AdMiNistration COMPONENTS ...u.uit ittt e et et e et etereateteneeserenenseneneaeenan 29
Triggering Indexing 0N DePloyMENTiuirieiiit e eeae e enens 31

Viewing Records in the COmMPONeNnt BrOWSENc.uuitiinieiii ettt ee e 32

4. Configuring EndecalndexingOutputConfig Definition Fileso 33
Definition File FOIrMAto e et eenene 33
Specifying Endeca SChema AtIDULESo.iuiriiit et e e et e et et e e e ae e e eenas 34
Specifying Properties for INAeXINgGc.ueuiuiiriii et ee e 35

Specifying Multi-Value Propertiesouuiiiiiiii e 35
SPecifying Map Propertiesuuiii e 36
Specifying Properties of [tem SUBTYPESvuiuinieii e 37
Specifying a Default Property Valuec.oeiuiiiiniiii e 38
Specifying Non-Repository Propertiesc.eu it 38
0T o] o1 1=11 (oo I o (o o 1= o =TS PP 39
InCluding the Sitelds PropPertY .. .o.ieieiiet et e e eanaes 39
Renaming an OULPUE Propertyc.vuiuinininii e 39

ATG Endeca Integration Guide iii

Translating Property ValUSo. it 40

Using Monitored Propertiesue e ettt 41

5. CUStOMIZING the OULPUL RECOIAS ... iuintitiiit ittt ettt ettt et et et et et e et e et et e enaenenensenanans 43
USING PrOPEITY ACCESSOIS .. uuutenttntent ettt ettt e et et et et e e eaeenerateneraeasenneaseneenneneeneeneens 43
FirstWithLOCalEPrOPEItYACCESSON . ..eninii ettt e e 44
LanNgUAgENAMEACCESSON .. .utnttentt ettt ettt ettt ettt ettt e et ettt et e e e e e taaenenenans 44
GENEratiVEPIOPEITYACCESSON .. uiuitieiit ettt ettt ettt ettt e e e e teneeeaenes 44
PriceLiStMapPrOPEItY ACCESSON «.eut ettt ettt et et et e e et e e et e e et et e et eaeneeneeeeneenens 45
Category DImension Value ACCESSOISuuuteei e enenes 46

USING Variant ProOQUCETSo e et 47
LOCaleVariantPrOTUCETc.ouin ittt e eenenes 47
CategoryPathVariantProdUCErc.iuiniiiie e e e eae s 48
CustomCatalogVariantPrOGUCETo.inininiii et e e 48
UNiqUeSTtEVariantPrOAUCETviit ittt e et e e e e e e enaaaas 49

USING Property FOrMAtIrsiuiniitiniiit i et eae e 50
USING Property Value Filtersouu ettt ettt et e e e e e enaenans 50
L0 LT Te [=] T <] G 51
CONCALFIILEL ... ettt ettt e e e 52
UNIQUEWOIARIIEET « o .utitit ettt ettt et et ettt e e e e e et e et e e e eaeenaanans 53
L0011 =T 53

6. INdexing MUItIPIE LANGUAGESeninininiiii ittt ettt e e e ettt e e e e e e e enenes 55
SPeCfying the LOCAIESuiee e 55
Using a Separate MDEX for EaCh LangQUageoviviiiiiieie et e et e ae e e enenenas 56
Using a Single MDEX for all LanGQUAgESiuiuinieititititeteieieie ettt e e e e e eae e et eaeaeaaananans 56
7. QUETY INTEGIATION ..ottt ettt e ettt et ettt enes 59
Contentltem, Contentinclude, and ContentSlotConfig Classesc.vuiuiuiuiiiiiiiiiiiiiiinneenens 59
Invoking the Assembler in the Request Handling Pipelineooiiiiiiiiiiiiiiiiiiiiineiceens 60
Using a JSP Renderer to Render CONENTvuieiniitiiiet ettt eeeaeas 60
Rendering XML or JSON CONTENTuunininii ittt e et e et e et e e e enenenas 62
When the Assembler Returns an Empty Contentltemcoouiuiiiiiiiiiiiiiiiiiiiieeeee, 64
Invoking the Assembler using the InvokeAssembler Serviet Beanccouvviiiiniiiiiiniiiiiiniiieninnenans 64
Choosing Between Pipeline Invocation and Servlet Bean Invocationc.cocveveviiiiiiiiininiiinnn.. 66
Components for Invoking the Assembler 67
AssembIlerPipelineSErvIetouiei i e e 67
INVOKEASSEMDIET .e.enieenee e e e ettt ettt ne s 69
ASSEMDBIEITOOIS .o et ettt 70
Defining Global Assembler SETHNGSouiuitiiii e aens 72
CoNNECtiNg 10 ENAECA .. .iuieeit e 72
ConNecting t0 @N IMDEX ... ittt ettt aeae 73
Connecting to the Endeca Workbench Applicationc..cooeviiiiiiniiiinii e 74
QUENYING the ASSEMDIET ... eee e e ettt 76
Cartridge Handlers and Their SUpporting CompPONENtSc.cueuiuiuiuitinitieeeee e eteeenereeeeenenenn 77
Cartridge Manager COMPONENTSuititerirteteert et etrteteeateteerteteeatereneraeneensenenenaenenes 77
Providing Access to the HTTP Request to the Cartridgesccouvviiiviiiiiniiiiiiiiinieeeenes 78
Controlling How Cartridges Generate URLSouiuiuiuitiiiiiiiiiiiin it eeaeaes 78
Sorting the Search ResuUlts List oo 79
RETIHEVING RENAEIEIS .. nititiiit ettt et e e et e et et et et e et et e e e et e e e eaeenaarens 79
ContentltemToRendererPath e 80

o 1 o =Y g Yo [T (@] o1 =T 0 1 | (=] 'y N 81

8. Configuring and Using the Sample Query Applicationooiiiiiiiiiiiii e 83
ATG Configuration for the Sample Query APPlICationveuiuiiiiiiiii e 83
Configuration for Environments with One Language per MDEXcccovviiiiiiiiiiniiininenns 84
Configuration for Non-Default Endeca Hosts, Ports, or Application Names.................coveuenene 85

ATG Endeca Integration Guide

Configuration for Guided Search ENVIrONMENTSo.iuiiiiiiiiiiiiinirre e 86

Endeca Configuration for the Sample Query Applicationcooiiiiiiiiiiiiiiii e 86
Experience Manager Configurationvuiiiiiiiiii e e e e e e 86

Guided Search ConfigUIAtioNiieieiiii e e e e e e e e aanaans 89

Viewing the Sample Query APPlICAtioNcoiiiii e 90
Viewing the Sample Query Application in Experience Manager Environments....................... 20

Viewing the Sample Query Application in Guided Search Environmentsc.cccoeveveenenen.. 920

T = PPt 93

ATG Endeca Integration Guide v

vi

ATG Endeca Integration Guide

1 Introduction

The ATG-Endeca integration enables customers of Oracle ATG Web Commerce and Oracle Endeca Commerce
to index ATG product catalog data in Endeca MDEX engines, where it can then be queried and the results
can be displayed on commerce sites. This document describes how to configure ATG indexing and querying
components to work with Oracle Endeca Commerce.

This chapter tells you how to install and configure an ATG-Endeca integration environment. It also provides a
brief description of the ATG-Endeca integration modules.

Installation Requirements

The ATG-Endeca integration requires that Oracle ATG Web Commerce and Oracle Endeca Commerce software
(including either Oracle Endeca Guided Search or Oracle Endeca Experience Manager), be installed in your
environment. We also suggest that you initially install ATG Oracle Web Commerce Reference Store, so that you
have an ATG application and data to work with as you familiarize yourself with the integration.

For information on installing Oracle ATG Commerce software, see the ATG Installation and Configuration Guide.
For information on installing Commerce Reference Store, see the ATG Commerce Reference Store Installation and
Configuration Guide. For information on installing Oracle Endeca Commerce software, see the Oracle Endeca
Commerce Getting Started Guide and other related Oracle Endeca installation documentation.

Creating the Endeca Applications

To create an Endeca application to integrate with ATG, use the Endeca deployment template designed to work
with product catalog data. (See the Endeca Deployment Template Module for Product Catalog Integration Usage
Guide for details.) This deployment template has a script that creates various Endeca CAS (Content Acquisition
System) record stores that the ATG-Endeca integration writes to. The naming convention for these record stores
is:

appl i cati on- nanme_| anguage- code_r ecord-store-type

So for an application named ATGen that indexes ATG product catalog data in English, the record stores are:

» ATGen_en_dat a-- Holds data records representing SKUs or products.

1 Introduction

+ ATGen_en_di nval s-- Holds dimension value records generated from the category hierarchy and from the
hierarchy of repository item types.

« ATGen_en_schena-- Holds records representing property and dimension definitions generated from the set
of ATG properties being indexed.

Determining the Number of Endeca Applications To Create

For each ATG Server instance, you must have at least one unique Endeca application and corresponding MDEX.
For example, if you are configuring a publishing server and a production server, you will need a minimum of two
Endeca applications and two MDEX instances. If your product catalog has data in multiple languages, the exact
number of Endeca applications you have per server depends on your approach to indexing these languages, as
described below.

One Language Per MDEX

In this configuration, you have one MDEX for each language for each server. For example, if you have three
languages—English, German, and Spanish—and you have two servers—Content Administration and Production
—you must have six Endeca applications:

Content Administration/English
Content Administration/German
Content Administration/Spanish
Production/English
Production/German
Production/Spanish

You must include the language code in the name to identify each Endeca application. For example, the names
for the Content Administration-related Endeca applications would be ATGCAen, ATGCAde, and ATGCAes, where
en, de, and es represent the language code and ATGCA is the base name shared by all of the applications.
Likewise, the names for the Production-related Endeca applications would be ATGPr oden, ATGPr odde, and
ATGPr odes.

As you create the Endeca applications, using the deployment template, be sure to specify the correct language
code for each application. Also, be sure to provide unique ports for the Li veDgr aph, Aut hor i ngDgr aph, and
LogSer ver for each application.

All Languages in a Single MDEX

If you plan to have all languages indexed in a single MDEX, you only need to create one Endeca application for
each ATG server instance. For example, if you have Content Administration and Production server instances, you
must create two Endeca applications, one for each server instance. As you create the Endeca applications using
the deployment template, be sure to specify the default language code for each application and provide unique
ports for the Li veDgr aph, Aut hor i ngDgr aph, and LogSer ver.

In the single MDEX situation, use the language code of the default language for the record stores in the
Endeca application name. For example, if you have Content Administration and Production servers on the ATG
side and English is the default language for the records stores, create ATGCAen and ATGPr oden applications
on the Endeca side. Then, specify the default language (in this case, en) in the / at g/ endeca/ i ndex/

Dat aDocunment Subni t t er component’s def aul t LanguageFor Recor dSt or es property for each ATG server
instance:

def aul t LanguageFor Recor dSt or es=en

2 1 Introduction

Provisioning the Endeca Applications

For each Endeca application you create, you must provision it by running thei ni ti al i ze_servi ces. sh|
bat script found in the application’s / cont r ol directory. Therefore, if you have six Endeca applications, you
must invoke this script six times. The i ni ti al i ze_ser vi ces. sh script is found in the following location: /
endeca/ Endeca- appl i cati on-directory/your-application/control/.

Configuring the ATG Server Instances in CIM

You must configure your ATG server instances for an ATG-Endeca integration environment using CIM. The
options you must configure are described below.

Product Selection

To configure your server instances to use the ATG-Endeca integration, select [3] ATG-Endeca Integration and [4]
ATG Commerce in the Product Selection menu:

[3] ATG Endeca Integration :

I ncludes ATG Platform Select this option when Endeca is used. Do not
select this if you are using ATG Search

[4] ATG Commerce :

I ncludes ATG Platform Content Admi nistration and, optionally, data
war ehouse conponents, Preview, and Merchandi sing

Note: If you also intend to install Oracle ATG Commerce Reference Store, its installation option includes Oracle
ATG Web Commerce, so you can select [3] ATG-Endeca Integration and [5] Oracle ATG Commerce Reference
Store instead.

ATG Server Instance Creation

During your ATG server instance configuration, you must provide information about your Endeca environment
so that the ATG server instance can communicate with Endeca. Specifically, you must provide the CAS hostname
and port, the Endeca base application name, and the EAC host and port. The defaults for these settings are
provided in the table below:

Setting Default
CAS hostname | ocal host
CAS port 8500
Endeca base application name ATG

Note: This is the root of the Endeca application names, without the
language code. For example, if you have ATGPr oden, ATGPr odde, and
ATGPRodes applications to support your ATG production server, the
Endeca base application name is ATGPr od.

1 Introduction 3

Setting Default

EAC hostname | ocal host

EAC port 8888

After your ATG server instances are configured in CIM, start them in preparation for indexing.

Starting the Indexing Process

The indexing process can be started in two ways: automatically as part of running a full deployment through
Content Administration, or manually using the ATG Dynamo Administration Ul.

Increasing the Transaction Timeout and Datasource Connection Pool Values

Depending on your application server, you may need to increase the transaction timeout and datasource
connection pool settings in order for indexing to run successfully.

Increasing the Transaction Timeout

If indexing is not successful, it may be related to the transaction timeout setting in your application server.
Oracle ATG recommends setting a transaction timeout of 300 seconds or greater. All supported application
servers time out long running transactions by marking the active transaction as rolled back (essentially, by
calling set Rol | backOnl y on the transaction), which can result in problems when indexing. If your indexing
process fails, try increasing the transaction timeout setting. For details on changing your transaction timeout,
see Setting the Transaction Timeout on WebLogic, Setting the Transaction Timeout on JBoss, or Setting the
Transaction Timeout on WebSphere in the ATG Installation and Configuration Guide.

Increasing the Data Source Connection Pool

Oracle ATG recommends setting the data source connection pool maximum capacity to 30 or greater for all of
your data sources. For information on setting the data source connection pool maximum capacity, refer to your
application server’'s documentation.

Indexing As Part of a Deployment

You can configure your environment so that when you run a deployment in Content Administration, indexing

is automatically started after the deployment is finished. To make this automatic triggering occur, add the
following three components and their configuration to the | ocal confi g layer for your Content Administration
server.

/atg/endeca/index/commerce/CategoryToDimensionOutputConfig
Specify the following property for the Cat egor yToDi mensi onQut put Conf i g component:

t ar get Nane=Pr oduct i on

4 1 Introduction

/atg/commerce/search/ProductCatalogOutputConfig
Specify the following property for the Pr oduct Cat al ogQut put Conf i g component:
t ar get Nanme=Pr oduct i on

/atg/search/Synchronizationinvoker
Specify the following properties for the Synchr oni zat i onl nvoker component:

host =at g- pr oducti on- server - host
rm =8860

Manually Starting the Indexing Process

To manually start an indexing job, log in to ATG Dynamo Administration for the appropriate ATG server instance
and navigate to/ at g/ endeca/ i ndex/ commer ce/ Pr oduct Cat al ogSi npl el ndexi ngAdmi n component.
From here, you can click Baseline Index to start a baseline index, or Partial Index to start a partial update.

Monitoring the Indexing Process

Regardless of how an indexing process has been started, you can monitor its progress in ATG Dynamo
Administration by viewing the / at g/ endeca/ i ndex/ commrer ce/ Pr oduct Cat al ogSi npl el ndexi ngAdni n
component. Each phase of the indexing process is listed in the table under Indexing Job Status. To dynamically
refresh the window, enable the Auto Refresh option below the table.

Viewing the Indexed Data

For the 10.1.1 version of the ATG-Endeca integration, you can view the indexed data residing in your MDEX
engines using Oracle Endeca’s JSP Reference Implementation. To use this reference implementation, do the
following:

1. In a browser, navigateto ht t p: / / host : port/ endeca_j spr ef , where host : port refers to the name and
port of the server hosting the Endeca Tools and Frameworks installation, for example:

http://1 ocal host: 8006/ endeca_j spr ef
2. Click the ENDECA-JSP Reference Implementation link.

3. Enter an MDEX host and port, then click Go.

ATG Modules

The ATG-Endeca integration modules are:

1 Introduction

Module Description

DAF. Endeca. | ndex Includes the necessary classes for exporting data to CAS record
stores and triggering indexing via the EAC, along with associated
configuration.

DAF. Endeca. | ndex. Ver si oned Adds configuration for running on an ATG Content Administration
instance. This module adds basic record generation configuration
for ATG Content Administration servers, including a deployment
listener.

DCS. Endeca. | ndex Configures components for creating CAS data records from
products in the catalog repository and dimension-value records
from the category hierarchy.

DCS. Endeca. | ndex. SKUI ndexi ng Modifies configuration so that CAS data records are generated
based on SKUs rather than products.

DCS. Endeca. | ndex. Ver si oned Adds Commerce-specific configuration for running on an ATG
Content Administration instance, including enabling monitoring for
incremental loading of the product catalog.

DAF. Endeca. Assenbl er Contains classes and configuration for creating an Assembler
instance that has access to the data in your application’s MDEX
engines. Also provides classes for querying the Assembler for data
and managing the content returned.

Note that when you assemble an application that includes any of the modules listed in the table above, the
DAF. Sear ch. Base and DAF. Sear ch. | ndex modules are automatically included in the EAR file as well.
These modules contain core ATG Search repository indexing classes that are subclassed in the Endeca-specific
modaules. In addition, some of the Endeca-specific modules pull in classes from other ATG Search modules
(without including the modules in their entirety) through the ATG O ass- Pat h entries in their manifest files.

1 Introduction

2 Overview of Indexing

To make your product catalog available for searching, the Oracle ATG Web Commerce platform must transform
the data into the appropriate format, and then submit this data to Oracle Endeca Commerce for indexing.

The process of indexing ATG product catalog data in Oracle Endeca Commerce works like this:

1. ATG components transform the catalog repository data into Endeca records that represent Endeca properties,
dimensions, and schema:

 Properties of ATG products and SKUs are used to create Endeca properties and non-hierarchical
dimensions.

+ The ATG category hierarchy is used to create a hierarchical category dimension in Oracle Endeca
Commerce. The hierarchy of repository item types in the product catalog is used to create another
hierarchical Endeca dimension.

+ An Endeca schema is created by examining the set of ATG properties to be indexed.
2. The generated records are submitted to Endeca CAS data, dimension value, and schema record stores.
3. The Endeca EAC is invoked, which creates Forge processes that process the record stores and invoke indexing.

This chapter provides an overview of the classes and components that perform these steps, and the user
interface provided for managing the process. Other chapters of this book provide more detail about configuring
and using these and other classes and components to work with the product catalog in your Oracle ATG Web
Commerce environment.

Indexable Classes

The ATG platform includes an interface, at g. endeca. i ndex. | ndexabl e, that is implemented by the classes
responsible for creating Endeca records. Key classes that implement this interface include:

* atg.endeca. i ndex. Endecal ndexi ngQut put Confi g

* atg.comer ce. endeca. i ndex. di mensi on. Cat egoryTreeServi ce

» atg.endeca. i ndex. di mensi on. Reposi t oryTypeHi er ar chyExporter
» atg.endeca.index. schema. SchemaExporter

These classes are discussed below.

2 Overview of Indexing 7

EndecalndexingOutputConfig Class

The main class used to specify how to transform repository items into records is
at g. endeca. i ndex. Endecal ndexi ngQut put Conf i g. The ATG-Endeca integration includes two components
of this class:

» [at g/ commer ce/ sear ch/ Product Cat al ogQut put Confi g
+ /at g/ endecal i ndex/ commer ce/ Cat egor yToDi nensi onQut put Confi g

Each Endecal ndexi ngQut put Conf i g component has a number of properties, as well as an XML definition file,
for configuring how repository data should be transformed to create Endeca records. The configuration of these
components is discussed in detail in EndecalndexingOutputConfig Components (page 15).

ProductCatalogOutputConfig Component

The Pr oduct Cat al ogQut put Conf i g component specifies how to create Endeca data records that represent
items in the ATG product catalog. Each record represents either one product or one SKU (depending on whether
you use product-based or SKU-based indexing), and contains the values of the ATG properties to be included in
the index.

In addition, each record includes properties of parent and child items. For example, a record that represents a
product includes information about its parent category’s properties, as well as information about the properties
of its child SKUs. This makes it possible to search category and SKU properties as well as product properties
when searching for products in the catalog.

The names of the output properties include information about the item types they are associated with. For
example, a record generated from a product might have a pr oduct . descri pt i on property that holds the
value of the descri pti on property of the pr oduct item, and a sku. col or property that holds the value of the
col or properties of the product’s child SKUs.

Multi-value properties are given names without array subscripts. For example, a pr oduct repository item might
have multiple child sku items, each with a different value for the col or property. In the output record there will
be multiple entries for sku. col or.

The following is an XML representation of a record for a product with a single child SKU. Note that this record
contains only a small subset of the properties that are typically output. Also, the actual records submitted to the
CAS data record store are in a binary object format, not XML.

<RECORD>
<PROP NAME="product.repositoryld">
<PVAL>xpr 0d1003</ PVAL>
</ PROP>
<PROP NAME="product . descri ption">
<PVAL>Genui ne English | eather wall et</PVAL>
</ PROP>
<PROP NAME="product . di spl ayNane" >
<PVAL>Or gani zed Wl | et </ PVAL>
</ PROP>
<PROP NAME="record. spec">
<PVAL>pr oduct - xpr od1003. . nast er Cat al og. en__US</ PVAL>
</ PROP>
<PROP NAME="product.type">
<PVAL>pr oduct </ PVAL>
</ PROP>
<PROP NAME="product. baseUr| ">

8 2 Overview of Indexing

<PVAL>at gr ep: / Product Cat al og/ product / xpr od1003</ PVAL>

</ PROP>

<PROP NAME="product.sitel d">
<PVAL>st or eSi t eUS</ PVAL>

</ PROP>

<PROP NAME="product. | anguage" >
<PVAL>Engl i sh</ PVAL>

</ PROP>

<PROP NAME="product. repositoryNane">
<PVAL>Pr oduct Cat al og</ PVAL>

</ PROP>

</ PROP>

<PROP NAME="sku. repositoryld">
<PVAL>xskul1013</ PVAL>

</ PROP>

<PROP NAME="sku. di spl ayNane" >
<PVAL>Or gani zed Wl | et </ PVAL>

</ PROP>

<PROP NAME="sku.type">
<PVAL>cl ot hi ng- sku</ PVAL>

</ PROP>

<PROP NAME="cl ot hi ng- sku. col or">
<PVAL>Br own</ PVAL>

</ PROP>

<PROP NAME="cl ot hi ng- sku. si ze">
<PVAL>One Si ze</ PVAL>

</ PROP>

<PROP NAME="product . parent Cat egory.id">
<PVAL>r oot Cat egor y. cat 50056. cat 50067</ PVAL>

</ PROP>

<PROP NAME="product . cat al ogs. repositoryl d">
<PVAL>mast er Cat al og</ PVAL>

</ PROP>

<PROP NAME="al | Ancest ors. di spl ayNane" >
<PVAL>G ft Shop</ PVAL>

</ PROP>

<PROP NAME="al | Ancestors. repositoryld">
<PVAL>cat 50056</ PVAL>

</ PROP>

</ RECORD>

CategoryToDimensionOutputConfig Component

The Cat egor yToDi mensi onQut put Conf i g component specifies how to create Endeca dimension value
records that represent categories from the ATG product catalog. This category dimension makes it possible to
use Oracle Endeca Commerce to navigate the categories of a catalog.

Cat egor yToDi mensi onQut put Conf i g creates dimension values using a special representation of the category
hierarchy that is generated by the/ at g/ endeca/ i ndex/ comrer ce/ Cat egor yTr eeSer vi ce component, as
described in the CategoryTreeService Class (page 10) section.

The following example shows an XML representation of a category dimension value record generated by
Cat egor yToDi nensi onCut put Confi g:

<RECORD>
<PROP NAME="di nval . spec" >
<PVAL>r oot Cat egory. cat 10016. cat 10014. cat DeskLanps</ PVAL>
</ PROP>

2 Overview of Indexing 9

<PROP NAME="di nval . qual i fi ed_spec">
<PVAL>pr oduct . cat egory: r oot Cat egory. cat 10016. cat 10014. cat DeskLanps</ PVAL>

</ PROP>

<PROP NAME="di nval . prop. cat egory. r oot Cat al ogl d" >
<PVAL>mast er Cat al og</ PVAL>

</ PROP>

<PROP NAME="di nval . prop. cat egory. ancest or Cat al ogl ds" >
<PVAL>mast er Cat al og</ PVAL>

</ PROP>

<PROP NAME="di nval . di mensi on_spec" >
<PVAL>pr oduct . cat egor y</ PVAL>

</ PROP>

<PROP NAME="di nval . parent _spec">
<PVAL>r oot Cat egory. cat 10016. cat 10014</ PVAL>

</ PROP>

<PROP NAME="di nval . di spl ay_order">
<PVAL>2</ PVAL>

</ PROP>

<PROP NAME="di nval . prop. category. repositoryld">
<PVAL>cat DeskLanps</ PVAL>

</ PROP>

<PROP NAME="di nval . prop. cat egory. cat al ogs. reposi toryl d">
<PVAL>mast er Cat al og</ PVAL>

</ PROP>

<PROP NAME="di nval . prop. cat egory. cat al ogs. repositoryld">
<PVAL>honeSt or eCat al og</ PVAL>

</ PROP>

<PROP NAME="di nval . di spl ay_nane" >
<PVAL>Desk Lanps</ PVAL>

</ PROP>

</ RECORD>

CategoryTreeService Class

The ATG-Endeca integration uses the category hierarchy in the ATG product catalog to construct a category
dimension in Oracle Endeca Commerce. In some cases, the hierarchy cannot be translated directly, because
ATG's catalog hierarchy supports categories with multiple parent categories, while Endeca requires each
dimension value to have a single parent.

For example, suppose you have the following category structure in your product catalog:

10 2 Overview of Indexing

Shos Clothd ng

4 4
Men's Clothing Women's Clathing
Y y ¥ L
Wamen's Shoas Mlan's Shoas Men's Pants

To deal with this structure, the ATG-Endeca integration creates two different records for the Men'’s Shoes
dimension value, one for each path to this category in the catalog hierarchy. These paths are computed by the
at g. conmer ce. endeca. i ndex. di mensi on. Cat egor yTr eeSer vi ce class.

The ATG-Endeca integration includes a component of this class, / at g/ endeca/ i ndex/ comver ce/

Cat egor yTr eeSer vi ce. This component, which is run prior to indexing, creates data structures in memory that
represent all possible paths to each category in the product catalog. A category can have multiple parents, and
those parents and their ancestors can each have multiple parents, so there can be any number of unique paths
to an individual category.

The Cat egor yToDi mensi onQut put Conf i g component then uses the / at g/ endeca/ i ndex/ conmer ce/

Cat egor yPat hVar i ant Producer component to create multiple records for each category, one for each path
computed by Cat egor yTr eeSer vi ce. For each path, the corresponding record uses the pathname as the value
of its di nval . spec property; this makes it possible to differentiate records that represent different paths to the
same category.

In the example above, two records are created for the Men’s Shoes category. One of the records includes
something like this:

<PROP NAME="di nval . spec" >
<PVAL>r oot Cat egory. cat d ot hi ng. cat MensC ot hi ng. cat MensShoes</ PVAL>
</ PROP>

The other record for the category includes something like this:

<PROP NAME="di nval . spec">
<PVAL>r oot Cat egory. cat Shoes. cat MensShoes</ PVAL>
</ PROP>

Note that the period (.) is used as a separator in the property values rather the slash (/) . This is done so the
value can be passed to Oracle Endeca Commerce through a URL query parameter when issuing a search query.

2 Overview of Indexing 11

RepositoryTypeHierarchyExporter Class

The at g. endeca. i ndex. di mensi on. Reposi t or yTypeHi er ar chyExport er class creates Endeca dimension
value records from the hierarchy of repository item types in the product catalog, and submits those records to
the CAS dimension values record store. This dimension is not typically displayed on a site, but can be used in
determining which other dimensions to display. For example, CRS has a f ur ni t ur e- sku subtype that includes
awoodFi ni sh property that can be used as an Endeca dimension. A site can include logic to detect whether the
items returned from a search are of type f ur ni t ur e- sku, and display the woodFi ni sh dimension if they are.

The ATG-Endeca integration includes a component of class Reposi t or yTypeHi er ar chyExporter,/

at g/ endeca/ i ndex/ commer ce/ Reposi t or yTypeDi mensi onExpor t er, that is configured to work

with the Pr oduct Cat al ogQut put Conf i g component. The Reposi t or yTypeDi mensi onExport er
component outputs dimension value records for all of the repository item types referred to in the

Pr oduct Cat al ogQut put Conf i g definition file, as well as the ancestors and descendants of those item types.
Reposi t or yTypeDi nensi onExport er does not create records for any item types that are not part of the
hierarchy mentioned in the definition file.

The following example shows a record produced by the Reposi t or yTypeHi er ar chyExport er component for
the pr oduct item type:

<RECORD>
<PROP NAME="di nval . di mensi on_spec" >
<PVAL>i t em t ype</ PVAL>
</ PROP>
<PROP NAME="di nval . di spl ay_nane" >
<PVAL>Pr oduct </ PVAL>
</ PROP>
<PROP NAME="di nval . qual i fi ed_spec">
<PVAL>i t em t ype: product </ PVAL>
</ PROP>
<PROP NAME="di nval . spec">
<PVAL>pr oduct </ PVAL>
</ PROP>
<PROP NAME="di nval . parent _spec">
<PVAL>i t em t ype</ PVAL>
</ PROP>
</ RECORD>

SchemaExporter Class

The at g. endeca. i ndex. schema. SchemaExport er class is responsible for generating schema records and
submitting them to the Endeca schema record store. The / at g/ endeca/ i ndex/ conmer ce/ SchemaExport er
component of this class examines the Pr oduct Cat al ogQut put Conf i g definition file and generates a schema
record for each ATG property that is output. The schema record indicates whether the ATG property should be
treated as a property or a dimension by Oracle Endeca Commerce, whether it should be searchable, and the data
type of the property or dimension.

For example, the following is an XML representation of a schema record for the pr oduct . descri pti on
property, which identifies it as a searchable Endeca property whose data type is st ri ng:

<RECORD>
<PROP NAME="attri bute. nane">
<PVAL>pr oduct . descri pti on</ PVAL>

12

2 Overview of Indexing

</ PROP>

<PROP NAME="attri bute. source_nane">
<PVAL>pr oduct . descri pti on</ PVAL>

</ PROP>

<PROP NAME="attri bute. di spl ay_nane" >
<PVAL>pr oduct . descri pti on</ PVAL>

</ PROP>

<PROP NAME="attribute. property.data_type">
<PVAL>st ri ng</ PVAL>

</ PROP>

<PROP NAME="attribute.type">
<PVAL>pr opert y</ PVAL>

</ PROP>

<PROP NAME="attri bute. search. searchabl e">
<PVAL>t r ue</ PVAL>

</ PROP>

</ RECORD>

Submitting the Records

Once the records have been generated, they are submitted to the appropriate CAS record stores by components
of class at g. endeca. i ndex. Recor dSt or eDocunent Subni t t er. The ATG platform includes three
components of this class, each of which is configured to submit to a different record store:

+ /at g/ endecal i ndex/ Dat aDocument Submi t t er -- Submits records to the data record store (by default,
ATGen_en_dat a).

+ [at g/ endeca/ i ndex/ Di mensi onDocunent Subni t t er -- Submits records to the dimension values record
store (by default, ATGen_en_di nval s).

« /at g/ endeca/ i ndex/ SchemaDocunent Subni t t er -- Submits records to the schema record store (by
default, ATGen_en_schem).

The Endecal ndexi ngQut put Conf i g, Reposi t or yTypeHi er ar chyExport er, and SchenmaExport er classes
each have a docunent Subni tt er property that is used to specify a document submitter component to

use to submit records to the appropriate CAS record store. The following table shows default values of the
docunent Subni tt er property of each component of these classes:

Component Record Submitter

Pr oduct Cat al ogQut put Confi g Dat aDocunent Submi tter

Cat egor yToDi nensi onCut put Confi g Di mensi onDocunent Submi tter
Reposi t or yTypeDi nensi onExporter Di nensi onDocunent Submi tter
SchemaExport er SchemaDocumnent Subni tter

2 Overview of Indexing 13

Managing the Process

The at g. endeca. i ndex. adni n. Si npl el ndexi ngAdni n class provides a mechanism for

managing the process of generating records, submitting them to Endeca, and invoking indexing.

The ATG-Endeca integration includes a component of this class, / at g/ endeca/ i ndex/ comer ce/

Pr oduct Cat al ogSi npl el ndexi ngAdni n. The page for this component in the Component Browser of the ATG
Dynamo Server Admin presents a simple user interface for controlling and monitoring the process:

Indexing Job Status

Phase Component Records Sent Records Falled Status
Pralndexng
latgfendecaindexicommerceCategony/TrasSenice PEMNDING
ReepositoryExport
latgiendecaindesicomment e/Schamabsportar 0 0 FPENDIMG
latgfendacaindexicommerce/Catagony TaDimensionOulpatConfig 0 1] PEMNDING
fatgfendecalindexicommerceRepositonTypaDimensionExponsr 0 1] FEMDIMG
latgfcommercedsearchiProductCatalogOuipatConfig 0 0 PENDING
Endacalndexing
latglendecaindexicommerceEndacaSonplSanice PEMNDING

Actions: [Basaling Index ” Pretial Index .

After the records are generated and submitted to Oracle Endeca Commerce,

Pr oduct Cat al ogSi npl el ndexi ngAdni n calls the / at g/ endeca/ i ndex/ comrer ce/ EndecaScri pt Servi ce
component (of class at g. endeca. eaccl i ent. Scri pt | ndexabl e). This component is responsible for invoking
Endeca Application Controller (EAC) scripts that trigger indexing.

The Ul provides buttons for initiating an Endeca baseline index or a partial update. Note that even if you click
Partial Index, Endeca may perform a baseline update if the nature of the changes since the last baseline update
necessitates it. See Data Loader Components (page 18) for more information.

14

2 Overview of Indexing

3 Configuring the Indexing
Components

This chapter provides detailed information about the indexing-related Nucleus components in the ATG-Endeca
integration, what they do, how they’re configured, and how you can modify them to alter various aspects of
indexing.

EndecalndexingOutputConfig Components

The at g. endeca. i ndex. Endecal ndexi ngQut put Conf i g class has a number of properties that configure
various aspects of the record creation and submission process:

definitionFile

The full Nucleus pathname of the XML indexing definition file that specifies the repository
item types and properties to include in the Endeca records. For the / at g/ commer ce/ sear ch/
Pr oduct Cat al ogQut put Conf i g component, this property is set as follows:

definitionFile=/atg/endecalindex/ conmer ce/ product - sku- out put - confi g. xm

For/ at g/ endeca/ i ndex/ conmer ce/ Cat egor yToDi mensi onQut put Confi g:

definitionFile=/atg/endecal/index/ comrerce/ category-di mout put-config.xm

See the Configuring EndecalndexingOutputConfig Definition Files (page 33) chapter for information about the
definition file's elements and attributes that configure how ATG repository items are transformed into Endeca
records.

repository

The full Nucleus pathname of the repository that the definition file applies to. For both the
Pr oduct Cat al ogQut put Conf i g and Cat egor yToDi mensi onCQut put Conf i g, this property is set to the
product catalog repository:

reposi tory=/ at g/ conmer ce/ cat al og/ Pr oduct Cat al og

3 Configuring the Indexing Components 15

It is also possible to specify the repository in the indexing definition file using the r eposi t or y- pat h attribute
of the top-level i t emelement. If the repository is specified in the definition file and also set by the component’s
reposi t ory property, the value set by the r eposi t or y property overrides the value set in the definition file.

Note that in an ATG Content Administration environment, the repository should not be set to a versioned
repository. Instead, it should be set to the corresponding unversioned target repository. For example, an
Endecal ndexi ngQut put Conf i g component for a product catalog in an ATG Content Administration
environment could be set to:

reposi tory=/ at g/ conmer ce/ cat al og/ Pr oduct Cat al og_pr oducti on

repositoryltemsGroup

A component of a class that implements the at g. r eposi t ory. Reposi t oryl t ena oup interface. This
interface defines a logical grouping of repository items. Items that are not included in this logical grouping
are excluded from the index. For the Cat egor yToDi nensi onQut put Conf i g component, this property

is set by default to null (so no items are excluded). For the Pr oduct Cat al ogQut put Conf i g component,
reposi t oryl t ena oup property is set by default to:

reposi toryltenG oup=/ at g/ comrer ce/ sear ch/ | ndexedl t ems G oup

The I ndexedI t ems G oup component uses this targeting rule set to select only products that have an ancestor
catalog:

<rul eset >
<accept s>
<rul e op=i sNot Nul | >
<val ueof target="conputedCatal ogs">
</rul e>
</ accept s>
</rul eset >

This rule set ensures that the index includes only items that can also be viewed by browsing the catalog
hierarchy.

It is also possible to specify a repository item group in the indexing definition file using the r eposi t or y-

i t em gr oup attribute of the top-level i t emelement. If a repository item group is specified in the definition file
and also by the component’s r eposi t or yl t enGr oup property, the value set by the r eposi t or yl t enGr oup
property overrides the value set in the definition file.

Note that the | ndexedl t emar oup component has a r eposi t or y property that specifies the repository that
the items are selected from. This value must match the repository that the Pr oduct Cat al ogQut put Confi g is

associated with.

For more information about targeting rule sets, see ATG Personalization Programming Guide.

documentSubmitter

The component (typically of class at g. endeca. i ndex. Recor dSt or eDocunent Subni t t er) to use to submit
records to the appropriate CAS record store. For the Pr oduct Cat al ogQut put Conf i g component, this property
is set as follows:

16

3 Configuring the Indexing Components

docunent Subni tt er =/ at g/ endeca/ i ndex/ Dat aDocunent Submi tter

For the Cat egor yToDi mensi onQut put Conf i g component:

docunent Submi tt er =/ at g/ endeca/ i ndex/ Di mensi onDocunent Submi tter

See Document Submitter Components (page 22) for more information.
bulkLoader

A Nucleus component of class at g. endeca. i ndex. Recor dSt or eBul kLoader I npl . This is typically set to /
at g/ sear ch/ r eposi t or y/ Bul kLoader . Any number of Endecal ndexi ngQut put Conf i g components can
use the same bulk loader.

See Data Loader Components (page 18) for more information.
enablelncrementalLoading

If t r ue, incremental loading is enabled.
incrementalLoader

A Nucleus component of class at g. endeca. i ndex. Recor dSt or el ncr enent al Loader | npl . This is typically
setto/ at g/ search/ reposi tory/ I ncrement al Loader . Any number of Endecal ndexi ngQut put Confi g
components can use the same incremental loader.

See Data Loader Components (page 18) for more information.
sitelDsTolndex

A list of site IDs of the sites to include in the index. The value of this property is used to automatically set the
value of the si t esTol ndex property, which is the actual property used to determine which sites to index. If

si t el DsTol ndex is explicitly set to a list of site IDs, si t esTol ndex is set to the sites that have those IDs. If the
value of si t el DsTol ndex is null (the default), si t esTol ndex is set to a list of all enabled sites. So it is only
necessary to set si t el DsTol ndex if you want to restrict indexing to only a subset of the enabled sites.

replaceWithTypePrefixes

A list of the property-name prefixes that should be replaced with the item type the property is associated with.
In this list, a period specifies that a type prefix should be added to properties of the top-level item, which is
pr oduct for Product Cat al ogQut put Confi g and cat egory for Cat egor yToDi mensi onQut put Confi g.

For Pr oduct Cat al ogQut put Confi g, therepl aceW t hTypePr ef i xes property is set by default to:

repl aceWt hTypePrefi xes=., chi | dSKUs

This means, for example, that the br and property of the pr oduct item is given the name pr oduct . br and

in the output records, and the onSal e property of the sku item (which appears in the definition file as the

chi | dSKUs property of the pr oduct item) is given the name sku. onSal e. Properties that are specific to a sku
subtype are prefixed with the subtype name in the output records. For example, ATG Commerce Reference Store
has a f ur ni t ur e- sku subtype, so the woodFi ni sh property (which is specific to this subtype) is given the
output name f ur ni t ur e- sku. woodFi ni sh, while onSal e (which is common to all SKUs) is given the name
sku. onSal e.

3 Configuring the Indexing Components 17

Adding these prefixes ensures that there is no duplication of property or dimension names in Oracle Endeca
Commerce, in case different indexed ATG item types (or records from other sources) have identically named
properties.

For Cat egor yToDi mensi onCQut put Confi g, ther epl aceW t hTypePr ef i xes property is set to:

repl aceWt hTypePrefi xes=.

This means, for example, that the ancest or Cat al ogl ds property of the cat egor y item is given the name
cat egory. ancest or Cat al ogl ds in the output records.

prefixReplacementMap

A mapping of property-name prefixes to their replacements. This mapping is applied after any type prefixes are
added by r epl aceW t hTypePr ef i xes.

For Pr oduct Cat al ogQut put Confi g, pr ef i xRepl acement Map is set by default to:

pr ef i xRepl acenment Map=\
product . ancest or Cat egori es=al | Ancestors

So, for example, the ancest or Cat egori es. di spl ayNane property is renamed to
product . ancest or Cat egori es. di spl ayNane by applying r epl aceW t hTypePr ef i xes, and then the result
is renamed to al | Ancest or s. di spl ayNane by applying pr ef i xRepl acement Map.

For Cat egor yToDi mensi onCQut put Confi g, pr ef i xRepl acenment Map is set to null by default, so no prefix
replacement is performed.

suffixReplacementMap

A mapping of property-name suffixes to their replacements. In addition to any mappings you specify in the
properties file, the following mappings are automatically included:

$repositoryl d=repositoryld,

$reposi tory. repositoryNanme=r eposi t or yNare,
$i tenDescriptor.itenDescriptorName=type,
$siteld=siteld,

$url =url,

$baseUr | =baselr |

The suf fi xRepl acenent Map property is set to null by default for both Pr oduct Cat al ogQut put Conf i g and
Cat egor yToDi nensi onQut put Conf i g, which means only the automatic mappings are used. You can exclude
the automatic mappings by setting the addDef aul t Qut put NaneRepl acenent s property to f al se.

Data Loader Components

The Endecal ndexi ngQut put Conf i g components specify how to generate records from items in the catalog
repository, but the actual generation is performed by data loader components. Depending on your ATG
environment, data loading may be an operation that is performed occasionally (if the content rarely changes) or

18 3 Configuring the Indexing Components

frequently (if the content changes often). To be as flexible as possible, the ATG-Endeca integration provides two
approaches to loading the data:

+ Bulk loading generates the complete set of records for the catalog. Bulk loading is performed by the
at g. endeca. i ndex. Recor dSt or eBul kLoader | npl class. The ATG-Endeca integration includes a
component of this class, / at g/ sear ch/ r eposi t or y/ Bul kLoader .

+ Incremental loading generates only the records that have changed since the last load. The incremental
loader records which repository items have changed since the last incremental or bulk load. It deletes the
records that represent items that have been deleted, and creates records for any items that are new or have
been modified.

Incremental loading is performed by the at g. endeca. i ndex. Recor dSt or el ncr enent al Loader | npl
class. The ATG-Endeca integration includes a component of this class, / at g/ sear ch/ r eposi t ory/
I ncrement al Loader .

Bulk loading and incremental loading are not mutually exclusive. For some environments, only bulk loading will
be necessary, especially if content is updated only occasionally. For other environments, incremental loading will
be needed to keep the search content up to date, but even in that case it is a good idea to perform a bulk load
occasionally to ensure the integrity of the indexed data.

Note that Oracle Endeca Commerce always does a baseline update after ATG performs bulk loading, and
typically does a partial update after ATG performs incremental loading. In some cases, however, Oracle Endeca
Commerce may perform a baseline update after incremental loading, because of the nature of the changes. For
example, if incremental loading adds a new dimension value, Oracle Endeca Commerce performs a baseline
update.

The | ncr enent al Loader component uses an implementation of the Pr oper ti esChangedLi st ener interface
to monitor the repository for add, update, and delete events. It then analyzes these events to determine

which ones necessitate updating records, and creates a queue of the affected repository items. When a new
incremental update is triggered, the | ncr ement al Loader processes the items in the queue, generating and
loading a new record for each changed repository item.

Tuning Incremental Loading

The number of changed items accumulating in the queue can vary greatly, depending on how frequently
your data changes and how long you specify between incremental updates. Rather than processing all of the
changes at once, the | ndexi ngQut put Conf i g component groups changes in batches called generations.

The Endecal ndexi ngQut put Conf i g class has a max| ncr enent al Updat esPer Gener at i on property that
specifies the maximum number of changes that can be assigned to a generation. By default, this value is 1000,
but you can change this value if necessary. Larger generations require more ATG platform resources to process,
but reduce the number of Endeca jobs required (and hence the overhead associated with starting up and
completing these jobs). Smaller generations require fewer ATG platform resources, but increase the number of
Endeca jobs.

CategoryTreeService

The following describes key properties of the
at g. conmer ce. endeca. i ndex. di mensi on. Cat egor yTr eeSer vi ce class and the default configuration of
the/ at g/ endeca/ i ndex/ conmer ce/ Cat egor yTr eeSer vi ce component of this class:

3 Configuring the Indexing Components 19

catalogTools

The component of class at g. conmer ce. cat al og. cust om Cust ontCat al ogTool s for accessing the catalog
repository. By default, this property is set to:

cat al ogTool s=/ at g/ cormer ce/ cat al og/ Cat al ogTool s

sitesForCatalogs

To create a representation of the category hierarchy in which each category dimension value has only one
parent, the Cat egor yTr eeSer vi ce class creates data structures in memory that represent all possible paths to
each category in the product catalog. In order to do this, it must be provided with a list of the catalogs to use for
computing paths.

The si t esFor Cat al ogs property specifies a list of sites. If this property is set, Cat egor yTr eeSer vi ce uses the
catalogs associated with the specified sites for computing paths. By default, si t esFor Cat al ogs is set to:

si t esFor Cat al ogs”=\
/ at g/ conmer ce/ sear ch/ Product Cat al ogQut put Confi g. si t esTol ndex

If si t esFor Cat al ogs is null, Cat egor yTr eeSer vi ce uses ther oot Cat al ogsRQLSt ri ng property to
determine the catalogs.

rootCatalogsRQLString

An RQL query that returns a list of catalogs. If si t esFor Cat al ogs is null, the catalogs returned from this query
are used. The query is set by default to:

r oot Cat al ogsRQLSt ri ng=\
directParent Catal ogs |'S NULL AND parent Categories |'S NULL

If si t esFor Cat al ogs and r oot Cat al ogsRQLSt ri ng are both null, Cat egor yTr eeSer vi ce uses the
r oot Cat al ogl ds property to determine the catalogs.

rootCataloglds

An explicit list of catalog IDs of the catalogs to use. This list is used if si t esFor Cat al ogs and
r oot Cat al ogsRQLSt ri ng are both null. By default, r oot Cat al ogl ds is set to null.

RepositoryTypeDimensionExporter

This section describes key properties of the
at g. endeca. i ndex. di mensi on. Reposi t or yTypeHi er ar chyExpor t er class and the default configuration
of the/ at g/ endeca/ i ndex/ conmer ce/ Reposi t or yTypeDi mensi onExport er component of this class.

dimensionName

The name to give the dimension created from the repository item-type hierarchy. Set by default to:

20 3 Configuring the Indexing Components

di nensi onNanme=i tem type

indexingOutputConfig

The component of class at g. endeca. i ndex. Endecal ndexi ngQut put Conf i g whose definition file should be
used for generating dimension value records from the repository item-type hierarchy. Set by default to:

i ndexi ngQut put Confi g=/ at g/ conmer ce/ sear ch/ Pr oduct Cat al ogQut put Confi g

documentSubmitter

The component (typically of class at g. endeca. i ndex. Recor dSt or eDocument Subnmi t t er) to use to submit
records to the CAS dimension values record store. (See Document Submitter Components (page 22) for more
information.) Set by default to:

document Submi tt er =/ at g/ endeca/ i ndex/ Di mensi onDocunent Submi tter

SchemaExporter

The following are key properties of the at g. endeca. i ndex. schema. SchemaExport er class and the default
configuration of the / at g/ endeca/ i ndex/ comer ce/ SchemaExpor t er component of this class:

indexingOutputConfig

The component of class at g. endeca. i ndex. Endecal ndexi ngQut put Conf i g whose definition file should be
used for generating schema records. Set by default to:

i ndexi ngQut put Conf i g=/ at g/ comrer ce/ sear ch/ Product Cat al ogQut put Confi g

documentSubmitter

The component (typically of class at g. endeca. i ndex. Recor dSt or eDocunent Subni t t er) to use to
submit records to the CAS schema record store. (See Document Submitter Components (page 22) for more
information.) Set by default to:

docunent Submi tt er =/ at g/ endeca/ i ndex/ SchemaDocurent Submi tter

dimensionNameProviders

An array of components of a class that implements the
at g. endeca. i ndex. schena. Di mensi onNanmePr ovi der interface. SchemaExport er uses these components
to create references from attribute names to dimension names.

By default, di mensi onNanePr ovi der s is set to:

3 Configuring the Indexing Components 21

di nensi onNanmePr ovi der s+=Reposi t or yTypeDi nensi onExporter

When an indexing job is run, Reposi t or yTypeDi mensi onExpor t er outputs dimension value records

forthei t em t ype dimension from the pr oduct . t ype, sku. t ype, and other item-type attributes. When
SchemaExpor t er outputs schema records, it checks with Reposi t or yTypeDi nensi onExport er to determine
these associations, and outputs a schema record that creates references from these attribute names to the
dimension name. For example:

<RECORD>

<PROP NAME="attri bute. name">
<PVAL>i t em t ype</ PVAL>

</ PROP>

<PROP NAME="attri bute. source_nane">
<PVAL>pr oduct . t ype</ PVAL>
<PVAL>sku. t ype</ PVAL>
<PVAL>pr oduct . manuf act ur er . t ype</ PVAL>
<PVAL>al | Ancest ors. t ype</ PVAL>

</ PROP>

<PROP NAME="attri bute. di spl ay_nane">
<PVAL>i t em t ype</ PVAL>

</ PROP>

<PROP NAME="attri bute. property.data_type">
<PVAL>st ri ng</ PVAL>

</ PROP>

<PROP NAME="attribute.type">
<PVAL>di mensi on</ PVAL>

</ PROP>

</ RECORD>

Document Submitter Components

As described above, each component that generates records has a docunment Subni t t er property that is set
by default to a component of class at g. endeca. i ndex. Recor dSt or eDocunent Subni t t er. The ATG-Endeca
integration includes the following components of this class:

* [atg/endecal i ndex/ Dat aDocunent Subm tter

* [at g/ endecal i ndex/ Di nensi onDocumnent Submi tter
» /at g/ endeca/ i ndex/ SchemaDocunent Submi t ter
The following are key properties of this class.

CASHostName

The hostname of the machine running CAS. The default setting for all three components is:

CASHost Nanme=| ocal host

You can override the default when you use CIM to configure your ATG environment.

22 3 Configuring the Indexing Components

CASPort

The port number of the machine running CAS. The default setting for all three components is:

CASPor t =8500

You can override the default when you use CIM to configure your ATG environment.

endecaBaseApplicationName

The base string used in constructing the Endeca EAC application name (also known as the deployment template
name). The default setting for all three components is:

endecaBaseAppl i cati onName=ATG

You can override the default when you use CIM to configure your ATG environment.
endecaDataStoreType

The type of the record store to submit to. Can be set to dat a, di nval , or schema. The following table shows the
default setting for each component:

Dat aDocunent Submi tter data
Di nensi onDocunent Submi tter di nval
SchemaDocunent Submi tter schema

flushAfterEveryRecord

A boolean that specifies whether to flush the buffer used by the connection to CAS after each record is
processed. This property is set by default to f al se. Setting it to t r ue during debugging can be helpful for
determining which records are being rejected by CAS, because the errors will be isolated to specific records.

enabled

A boolean that specifies whether this component is enabled. This property is set by default to t r ue, but it
can be set to f al se to always report success without submitting records to CAS. (This is useful for debugging
purposes when a CAS instance is not available.)

Reducing Logging Messages

In order to write records to the CAS record stores, the document submitters import classes from the Endeca
com endeca. itl.recordandcom endeca.itl.recordstore packages. These classes make use of the
Apache CXF framework.

Using the default CXF configuration results in a large number of informational logging
messages. The volume of the messages can result in problems, such as locking up of the terminal
window. Therefore, it is a good idea to reduce the number of logging messages by setting

3 Configuring the Indexing Components 23

the logging level of the or g. apache. cxf . i nt er cept or. Loggi ngl nl nt er cept or and
or g. apache. cxf . i nter cept or. Loggi ngQut | nt er cept or loggers to WARNI NG

The way to set these logging levels differs depending on your application server. Instructions for each supported
application server are provided below.

Oracle WebLogic Server

Create a WebLogic filter in $W._HOVE/ . . / user _pr oj ect s/ domai ns/ base- domai n- name/ confi g/
config.xm:

<log-filter>
<nanme>CXFFi | t er </ name>
<filter-expression>
((SUBSYSTEM = org. apache. cxf.interceptor. Loggi ngQutInterceptor') OR
(SUBSYSTEM = ' or g. apache. cxf.interceptor. Loggi nglnlnterceptor')) AND
(SEVERI TY = ' WARNI NG)
</filter-expression>

</log-filter>

In the same file, add configuration to apply the filter. The following example applies the filter to the server log
file and to standard output for a server instance named Pr od:

<server >
<nane>Pr od</ name>
<l og>
<log-file-filter>CXFFilter</log-file-filter>
<stdout-filter>CXFFilter</stdout-filter>
<menor y- buf f er - severit y>Debug</ nenor y- buf f er-severity>
</l og>
<listen-port>7103</I|isten-port>
<web- server>
<web- server-| og>
<nunber-of-files-limted>fal se</nunber-of-files-limted>
</ web- server-1o0g>
</ web- server >
<l i sten-address></Ii st en-address>
</ server>

JBoss Enterprise Application Platform

Add the following to j boss- as\ ser ver\ server - nane\ conf\ j boss- | og4j . xn :

<cat egory name="org. apache. cxf.interceptor. Loggi nglnlnterceptor">
<priority val ue="WARN'/ >

</ cat egory>

<cat egory nane="org. apache. cxf.interceptor.Loggi ngQutlnterceptor">
<priority val ue="WARN'/ >

</ cat egory>

IBM WebSphere Application Server

Edit the server. xm of the WebSphere application server instance ($WAS_HOVE/ pr of i | es/ AppSr v/ confi g/
cel | s/ Host Cel | / nodes/ Host Node/ server s/ Server/server.xm):

24 3 Configuring the Indexing Components

Inthetraceservice: TraceSer vi ce tag, add these strings, separated by colons, to the
startupTraceSpeci fi cati on property:

org. apache. cxf.interceptor. Loggi ngl nl nterceptor=warni ng
org. apache. cxf.interceptor. Loggi ngQut | nt er cept or =war ni ng

For example:

<services xm :type="traceservice: TraceServi ce"
xm ;i d="TraceServi ce_131/2495363666"
enabl e="true" startupTraceSpecification=
"*=j nf 0: org. apache. cxf.interceptor.Loggi ngl nl nt ercept or =war ni ng:
org. apache. cxf.interceptor.Loggi ngQut| nterceptor=warni ng"
t raceCut put Type="SPECI FI ED_FI LE" traceFor mat ="BASI C' >
<tracelLog xm :id="TracelLog_1312495363666"
fil eName="${ SERVER LOG ROOT}/trace.| og" rolloverSi ze="20"
maxNunber Of BackupFi | es="5"/ >
</ servi ces>

Directing Output to Files

To help optimize and debug your output, you can have the generated records sent to files rather than to the
Endeca record stores. Doing this enables you to examine the output without triggering indexing, so you can
determine if you need to make changes to the configuration of the record-generating components.

To direct output to files, create a component of class

atg.repository. search.indexing.subnmitter. Fi | eDocunent Subnitter,and set

the document Subni t t er property of the record-generating components to point to the

Fi | eDocument Submi t t er component. Note that a separate file is created for each record generated.

The location and names of the files are automatically determined based on the following properties of
Fi | eDocument Submi tter:

baseDirectory
The pathname of the directory to write the files to.
filePrefix
The string to prepend to the name of each generated file. Default is the empty string.

fileSuffix

The string to append to the name of each generated file. Set this as follows:

fileSuffix= xm

nameByRepositoryld

If t r ue, each filename will be based on the repository ID of the item the file represents. If f al se (the default),
files are named 0. xni , 1. xm , etc.

3 Configuring the Indexing Components 25

overwriteExistingFiles

If t r ue, if the generated filename matches an existing file, the existing file will be overwritten by the new file. If
f al se (the default), the new file will be given a different name to avoid overwriting the existing file.

EndecaScriptService

The/ at g/ endeca/ i ndex/ commrer ce/ EndecaScri pt Ser vi ce component (of class
at g. endeca. eaccl i ent. Scri pt | ndexabl e) is responsible for invoking Endeca Application Controller (EAC)
scripts that trigger indexing.

Configurable properties include:

endecaBaseApplicationName

The base string used in constructing the Endeca EAC application name (also known as the deployment template
name). The default setting is:

endecaBaseAppl i cati onName=ATG

eacHost

You can override the default when you use CIM to configure your ATG environment.

The hostname of the EAC server. The default setting is:

eacHost =l ocal host

You can override the default when you use CIM to configure your ATG environment.

eacPort
The port used by the EAC server. The default setting is:
eacPort =8888
You can override the default when you use CIM to configure your ATG environment.

eacScriptTimeout
The maximum amount of time (in milliseconds) to wait for an EAC script to complete execution before throwing
an exception. Set by default to 1800000 (1 hour). For large indexing jobs, you may need to increase this value to
ensure EndecaScri pt Ser vi ce does not time out before indexing completes.

enabled
A boolean that specifies whether this component is enabled. This property is set by default to t r ue, but it can
be set to f al se to always report success without invoking a script. (This is useful for debugging purposes when
an EAC instance is not available.)

26 3 Configuring the Indexing Components

ProductCatalogSimplelndexingAdmin

The/ at g/ endeca/ i ndex/ conmer ce/ Pr oduct Cat al ogSi npl el ndexi ngAdnmi n component (of class

at g. endeca. i ndex. adm n. Si npl el ndexi ngAdni n) manages the process of generating records, submitting
them to Oracle Endeca Commerce, and invoking indexing. The page for this component in the Component
Browser of the ATG Dynamo Server Admin presents a simple user interface for controlling and monitoring the
process.

The Si npl el ndexi ngAdmi n class defines indexing in terms of an indexing job, which is made of up indexing
phases, which in turn contain indexing tasks. Each indexing task is responsible for executing an individual

I ndexabl e component. Tasks within a phase may run in sequence or in parallel, but in either case all tasks in a
phase must complete before the next phase can begin.

By default, the Pr oduct Cat al ogSi npl el ndexi ngAdni n defines three phases:
1. Prelndexing -- Runs/ at g/ endeca/ i ndex/ conmer ce/ Cat egor yTr eeSer vi ce.
2. RepositoryExport -- Runs these components in parallel:

» /at g/ endecal i ndex/ commrer ce/ SchemaExport er

« /at g/ endecal i ndex/ commrer ce/ Cat egor yToDi nensi onQut put Confi g

» /at g/ endecal i ndex/ conmer ce/ Reposi t or yTypeDi nensi onExporter

» [at g/ commer ce/ sear ch/ Product Cat al ogQut put Confi g

3. Endecalndexing -- Runs / at g/ endeca/ i ndex/ conmer ce/ EndecaScr i pt Ser vi ce, which invokes Endeca
indexing scripts.

Pr oduct Cat al ogSi npl el ndexi ngAdni n reports information about an indexing job, such as the start and
finish time of the job, the duration of each phase, the status of each task, and the number of records submitted.

You can invoke indexing jobs manually through the Pr oduct Cat al ogSi npl el ndexi ngAdmi n user interface.
In addition, the Si npl el ndexi ngAdmni n class implements the at g. ser vi ce. schedul er. Schedul abl e
interface, so it is also possible to configure the Pr oduct Cat al ogSi npl el ndexi ngAdni n component to invoke
indexing jobs automatically on a specified schedule. (See the ATG Platform Programming Guide for information
about the Schedul abl e interface and other Scheduler services.)

Key configuration properties of Pr oduct Cat al ogSi npl el ndexi ngAdni n include:
phaseToPrioritiesAndTasks

This property defines the phases and tasks of an indexing job, and the order in which the phases are executed. It
is a comma-separated list of phases, where the format of each phase definition is:

phaseNane=priority: | ndexabl el; | ndexabl e2; ... ;| ndexabl eN

Phases are executed in priority order, with lower number priorities executed first.

By default, this is set to:

phaseToPrioriti esAndTasks=\
Pr el ndexi ng=5: Cat egor yTr eeServi ce, \
Reposi t or yExport =10:\

3 Configuring the Indexing Components 27

SchemaExporter;\

Cat egor yToDi nensi onQut put Confi g; \

Reposi t oryTypeDi mensi onExporter;\

/ at g/ conmer ce/ sear ch/ Product Cat al ogQut put Confi g, \
Endecal ndexi ng=15: EndecaScri pt Servi ce

runTasksWithinPhaselnParallel

A boolean that controls whether to run tasks within a phase in parallel. Set to t r ue by default. If set to f al se,
the tasks are executed in sequence, in the order specified in the phaseToPri ori ti esAndTasks property.
Setting runTasksW t hi nPhasel nPar al | el tof al se can simplify debugging, because when tasks are run in
parallel, logging messages from multiple components may be interspersed, making them difficult to read.

enableScheduledindexing

A boolean that controls whether to invoke indexing automatically on a specified schedule. Set to f al se by
default.

baselineSchedule

A String that specifies the schedule for performing baseline updates. Set to null by default. If you set

enabl eSchedul edl ndexi ng tot r ue, set basel i neSchedul e to a String that conforms to one of the
formats accepted by classes implementing the at g. ser vi ce. schedul er. Schedul e interface, such as
at g. servi ce. schedul er. Cal endar Schedul e or at g. servi ce. schedul er. Peri odi cSchedul e. For
example, to schedule a baseline update to run every Sunday at 11:30 pm:

basel i neSchedul e=cal endar * * 7 * 23 30

partialSchedule

A String that specifies the schedule for performing baseline updates. The format for the String is the same as the
format used for basel i neSchedul e. Set to null by default.

retryInMs

The amount of time (in milliseconds) to wait before retrying a scheduled indexing job if the first attempt

to execute it fails. Set by default to -1, which means no retry. If you change this value, you should set it to a
relatively short amount of time to ensure that the indexing job completes before the next scheduled job begins.
If Pr oduct Cat al ogSi npl el ndexi ngAdni n estimates that the retried job will not complete before the next
scheduled job, it skips the retry.

jobQueue

Specifies the component that manages queueing of index jobs. Set by default to / at g/ endeca/ i ndex/
I nMenor yJobQueue. See Queueing Indexing Jobs (page 28) for more information.

Queueing Indexing Jobs
In certain cases, an indexing job cannot be executed immediately when it is invoked:
« Ifthereis currently another indexing job running

« If an ATG Content Administration deployment is in progress

28 3 Configuring the Indexing Components

To handle these cases, Pr oduct Cat al ogSi npl el ndexi ngAdni n invokes the / at g/

endeca/ i ndex/ | nMenor yJobQueue component. This component, which is of class

at g. endeca. i ndex. admi n. | nMenor yJobQueue, implements a memory-based indexing job queue that
manages these jobs on a first-in, first-out basis.

In addition, the queue handles the case where an indexing job is in progress when an ATG Content
Administration deployment is started. In this situation, the job in progress is stopped, moved to the top of the
queue (ahead of any other pending jobs), and restarted when the deployment is complete.

Queued jobs are listed on the Pr oduct Cat al ogSi npl el ndexi ngAdni n page in the Component Browser of the
ATG Dynamo Server Admin. In the following example, an indexing job has been stopped due to an ATG Content
Administration deployment, and moved to the queue to be restarted once the deployment completes:

Indexing Job Status

Started. Jul 11, 2012 11:30:30 AM

Phase Component Records Sent Records Failed Status
Fréindemang (Duration: 0000000}
fatgfendecai ndadcommerncaiCateqony TrasSamice COMPLETE [Succeadad)
RepositaryExpon (Started: Jul 11, 2012 11:50:50 AM)
{atgfendecalindaicommerce/SchemaExportar 192 0 COMPLETE (Succesded)
fatglendecafindadcommercelC ategon ToDimensionCutputConfig 3 0 CAMCELED
fatglendecaindaxicommearcaRepository TypeDimansionExportar 39 0 COMPLETE [Succeadad)
fatgicommencelsaarchiProductC staloqOutpulcC onfig o] 0 CAMCELING
Endacalndaxdng
{gtgfendacaindedcommercaE ndecaScrptSenice CANCELED

Actions: | Cancel Futfraesh
Indexlng Job Queue Status

i Ownier Baseline Action
1 iatgfendecaindex/commerceProductCatalogSimpleindeangAdrman trus

E Auto Refresh

Requestng updatein 1 seconds

Content Administration Components

If your ATG environment includes ATG Content Administration, be sure to include the

DCS. Endeca. | ndex. Ver si oned module when you assemble the EAR file for your ATG Content Administration
server. This module enables indexing jobs to be triggered automatically after a deployment, ensuring that
changes deployed from ATG Content Administration are reflected in the index as quickly as possible. A full
deployment triggers a baseline update, and an incremental deployment triggers a partial update.

Indexing can be configured to trigger either locally (on the ATG Content Administration server itself) or
remotely (on the staging or production server). Note that even when indexing is executed on the ATG Content
Administration server, the catalog repository that is indexed is the unversioned deployment target (/ at g/
commer ce/ cat al og/ Product Cat al og_pr oduct i on), not the versioned repository.

The ATG-Endeca integration includes the / at g/ sear ch/ r eposi t ory/ | ndexi ngDepl oynent Li st ener
component, which is of class at g. epub. sear ch. i ndexi ng. | ndexi ngDepl oynent Li st ener . This

3 Configuring the Indexing Components 29

component listens for deployment events and, depending on the repositories involved, triggers one or more
indexing jobs.

The | ndexi ngDepl oynent Li st ener component has ar enot eSynchr oni zat i onl nvoker Ser vi ce

property that is set by default to/ at g/ sear ch/ Synchr oni zat i onl nvoker . The Synchr oni zat i onl nvoker
component, which is of class at g. sear ch. cor e. Renot eSynchr oni zat i onl nvoker Ser vi ce, controls
whether indexing is invoked on the local (ATG Content Administration) server or on a remote system (such as the
production server).

Local Indexing

For local indexing (the default configuration), the Synchr oni zat i onl nvoker component
invokes the / at g/ endeca/ i ndex/ Local Synchr oni zati onl nvoker component on the
ATG Content Administration server to trigger the indexing job. This component, which is

of class at g. endeca. i ndex. Local Synchr oni zat i onl nvoker, is specified through the

| ocal Synchroni zat i onl nvoker property of the Synchr oni zat i onl nvoker component:

I ocal Synchroni zati onl nvoker =/ at g/ endeca/ i ndex/ Local Synchroni zat i onl nvoker

The following diagram illustrates the configuration for local indexing:

DeploymentServer

DeploymentListener

Synchronizationlnvoker

LocalSynchronizationlnvoker

ProductCatalog
SimplelndexingAdmin

ProductCatalog
_production

Remote Indexing

To enable remote indexing, modify the configuration of the Synchr oni zat i onl nvoker component on the ATG
Content Administration system so that it points to a Synchr oni zat i onl nvoker component on the remote
system, and configure the remote Synchr oni zat i onl nvoker to pointto a Local Synchr oni zat i onl nvoker
on the remote system:

+ On the ATG Content Administration system, set the Synchr oni zat i onl nvoker . host property
to the host name of the remote system, and set the Synchr oni zat i onl nvoker . port property
to the RMI port number to use for communication between systems. It is also a good idea to set

30

3 Configuring the Indexing Components

the Synchr oni zat i onl nvoker . | ocal Synchr oni zat i onl nvoker property on the ATG Content
Administration system to null, to ensure local indexing is not triggered.

+ On the remote system, ensure that the Synchr oni zat i onl nvoker . | ocal Synchr oni zat i onl nvoker
property is set to/ at g/ endeca/ i ndex/ Local Synchr oni zat i onl nvoker.

The following diagram illustrates the configuration for remote indexing:

DeploymentServer

DeploymentListener

Remote

A ICM BT Synchronizationlnvoker

LocalSynchronizationInvoker

ProductCatalog
SimplelndexingAdmin

ProductCatalog

production ProductCatalog

Triggering Indexing on Deployment
The following steps describe how indexing is triggered when a deployment occurs:
1. The | ndexi ngDepl oynent Li st ener component detects the event.
2. Thel ndexi ngDepl oynent Li st ener examines the event to see the list of repositories being deployed.

3. The I ndexi ngDepl oynent Li st ener compiles a list of the Endecal ndexi ngQut put Conf i g components
that are associated with any of those repositories.

4. The | ndexi ngDepl oynent Li st ener invokes the Local Synchr oni zat i onl nvoker component.

5. The Local Synchr oni zat i onl nvoker looks at the list of Endecal ndexi ngQut put Conf i g components
and compiles a list of Si npl el ndexi ngAdni n components that are associated with any of the
Endecal ndexi ngQut put Conf i g components.

6. The Local Synchroni zati onl nvoker triggers an indexing job on each Si npl el ndexi ngAdmi n
component in the list.

Note that the lists of Endecal ndexi ngQut put Conf i g and Si npl el ndexi ngAdni n components are not
configured explicitly. Instead, the Si npl el ndexi ngAdni n components are automatically registered with the
Local Synchroni zat i onl nvoker, and the Endecal ndexi ngQut put Conf i g components are automatically
registered with the Local Synchr oni zat i onl nvoker and the | ndexi ngDepl oyment Li st ener.

3 Configuring the Indexing Components

31

Viewing Records in the Component Browser

For debugging purposes, you can use the Component Browser of the ATG Dynamo Server Admin to view
records without submitting them to Oracle Endeca Commerce. To do this, access the page for a component that
generates records and follow the instructions below.

ProductCatalogOutputConfig or CategoryToDimensionOutputConfig

The pages for the Pr oduct Cat al ogQut put Conf i g and Cat egor yToDi nensi onQut put Conf i g components
include a Test Document Generation section that you can use to view the output for a single repository item:

Test Document Generation

product 1D Generate |

Show Indexing Output Properties

Fill in the repository ID of a pr oduct item (for the Pr oduct Cat al ogQut put Conf i g component) or a cat egory
item (for the Cat egor yToDi mensi onQut put Conf i g component), and click Generate. The page will display the
output records.

Click the Show Indexing Output Properties link to see descriptions of how the ATG repository-item properties
are renamed in the Endeca records, based on the values of various Endecal ndexi ngQut put Conf i g properties.
(See the EndecalndexingOutputConfig Components (page 15) section for information about these

properties.)

RepositoryTypeDimensionExporter or SchemaExporter

The pages for the Reposi t or yTypeDi mensi onExpor t er and SchenaExport er components include a Show
XML Output link. Each of these components produces a single output for the entire catalog. Click the link to view
the output from the component.

32 3 Configuring the Indexing Components

4 Configuring
EndecalndexingOutputConfig
Definition Files

This chapter describes various elements and attributes of Endecal ndexi ngQut put Conf i g XML definition files

that you can use to control the content of the output records created from the ATG product catalog.

Definition File Format

An Endecal ndexi ngQut put Conf i g indexing definition file begins with a top-level i t emelement that specifies

the item descriptor to create records from, and then lists the properties of that item type to include. The

properties appear as pr oper t y elements within a pr opert i es element.

The top-level i t emelement in the definition file can contain child i t emelements for properties that refer to

other repository items (or arrays, Collections, or Maps of repository items). Those child i t emelements in turn can

contain property and i t emelements themselves.

The following example shows a simple definition file for indexing an ATG product catalog repository:

<itemitemdescriptor-nanme="product" is-docunment="true">

<properties>
<property nanme="creati onDate" type="date"/>
<property nane="brand" is-dinension="true" type="string"

text - searchabl e="true"/>

<property nane="description" text-searchable="true"/>
<property nanme="|ongDescri ption" text-searchable="true"/>
<property nanme="di spl ayNane" text-searchabl e="true"/>

</ properties>

<itemis-multi="true" property-nanme="chil dSKUs" >

<properties>
<property nanme="quantity" type="integer"/>
<property nanme="description" text-searchable="true"/>
<property nane="di spl ayNane" text-searchabl e="true"/>
<property nane="col or" is-dinension="true" type="string"

text - searchabl e="true"/>
</ properties>

4 Configuring EndecalndexingOutputConfig Definition Files

33

<itemis-multi="true" property-nanme="parent Categories"
par ent - property="chi | dProduct s">
<properties>
<property nanme="description" text-searchable="true"/>
<property nane="| ongDescri pti on" text-searchable="true"/>
<property nanme="di spl ayNane" text-searchabl e="true"/>
</ properties>
</itemr
</itenr

Note that in this example, the top-level i t emelement has the i s- docunent attribute set to t r ue. This attribute
specifies that a record should be generated for each item of that type (in this case, each pr oduct item). This
means that each record indexed by Oracle Endeca Commerce corresponds to a product, so that when a user
searches the catalog, each individual result returned represents a product. The definition file specifies that each
output record should include information about the product’s parent categories and child SKUs (as well as the
product itself), so that users can search category or SKU properties in addition to product properties.

If, instead, you want to generate a separate record per sku item, you seti s- document totr ue for the
chi | dSKUs i t emelement and to f al se for the pr oduct i t emelement. In that case, the product properties
(e.g., br and in the example) are repeated in each record.

When you configure the ATG-Endeca integration in CIM, you select whether to index by product or SKU. Your
selection determines whether certain application modules are included in your EAR files. These modules
configure the i s- document attributes and other related settings appropriately for the option you select. See
ATG Modules (page 5) for information about these modules.

In addition to the properties you specify in the definition file, the output records also automatically include a few
special properties. These properties provide information that identifies the repository items represented in the
record: r eposi toryl d,repository. repositoryNane,anditenDescriptor.itenDescriptorNane.

The output also includes aur | property and a baseUr | property, which each contain the URL representing

this repository item. The difference between these properties is that if a Var i ant Pr oducer is used to generate
multiple records from the same repository item, the ur | property for each record will include unique query
parameters to distinguish the record from the others. The baseUr | property, which omits the query parameters,
will be the same for each record.

Specifying Endeca Schema Attributes

You use various attributes of the pr oper t y element to specify the way ATG properties should be treated in the
Endeca MDEX. The SchemaExpor t er component then uses the values of these attributes in the schema records
it creates.

To specify the data type of a property, you use the t ype attribute. The value of this attribute can be dat e,
string,bool ean,int eger,orfl oat.Forexample:

<property nanme="quantity" type="integer"/>

If at ype value is not specified, it defaults to st ri ng.

34

4 Configuring EndecalndexingOutputConfig Definition Files

You can designate a property as searchable, as a dimension, or both. To make a property searchable, set the
t ext - sear chabl e attribute to t r ue. To make a property an Endeca dimension, set the i s- di mensi on
attribute to t r ue. In the following example, the col or property is both a dimension and searchable:

<property nanme="col or" is-di mensi on="true" text-searchable="true"/>

Ifi s-di mensi onistrue, youcan usetheml tisel ect -t ype attribute to specify whether the customer can
select multiple values of the dimension at the same time. The value of this attribute can be nul ti - or (combine
using Boolean OR), nul ti - and (combine using Boolean AND), or none (the default, meaning multiselect is not
supported for this dimension). For example:

<property nane="brand" is-di mension="true" nultiselect-type="multi-or"/>

Multiselect logic works as follows:

+ Combining with Boolean OR returns results that match any of the selected values. For example, for a col or
dimension, if the user selects yel | owand or ange, a given item is returned if its col or valueisyel | owor if it
is or ange.

+ Combining with Boolean AND returns results that match all of the selected values. For example, suppose
a product representing a laser printer has a paper Si zes property that is an array of the paper sizes the
printer accepts, and you have a dimension based on this property. If the user selects A4 and | et t er for this
dimension, a given item is returned only if its paper Si zes property includes both | et t er and A4.

Specifying Properties for Indexing

This section discusses how to specify various properties of catalog items for inclusion in the Endeca MDEX, and
options for how these properties should be handled.

Specifying Multi-Value Properties

In most cases, you specify a multi-value property, such as an array or Collection, using the pr oper t y element,
just as you specify a single-value property. In the following example, the f eat ur es property stores an array of
Strings:

<properties>
<property nanme="creati onDate" type="date"/>
<property nane="brand" is-di mension="true" type="string"
t ext - sear chabl e="true"/>
<property name="di spl ayNanme" type="string" text-searchable="true"/>
<property nane="features" type="string" text-searchable="true"/>
</ properties>

Notice that f eat ur es is specified in the same way as cr eat i onDat €, br and, and di spl ayNane, which are all
single-value properties. The output will include a separate entry for each value in the f eat ur es array.

4 Configuring EndecalndexingOutputConfig Definition Files 35

If a property is an array or Collection of repository items, you specify it using the i t emelement, and set the i s-
mul ti attribute tot r ue. For example, in a product catalog, a pr oduct item will typically have a multi-valued
chi | dSKUs property whose values are the various SKUs for the product. You might specify the property like this:

<item property-nanme="chi | dSKUs" is-multi="true">
<properties>
<property nanme="col or" is-dimension="true" type="string"
text-searchabl e="true"/>
<property nane="description" type="string" text-searchable="true"/>
</ properties>
</litemr

If you index by product, the output records will include the col or and descri pti on value for each of the
product’s SKUs.

Specifying Map Properties

To specify a Map property, you use the i t emelement, set thei s-nul ti attribute to t r ue, and use the map-
i teration-type attribute to specify how to output the Map entries. If the Map values are primitives or Strings,
setmap-iteration-typetow | dcard,asin this example:

<item property-nane="personal Data" is-nulti="true" map-iteration-type="w | dcard">
<properties>
<property name="*" type="string"/>
</ properties>
</itenpr

In the output, the Map keys are treated as subproperties of the Map property, and the Map values are treated as
the values of these subproperties. All of the Map entries are included in the output. So, for example, the output
from the definition file entry shown above might look like this:

<PROP NAME="personal Data. first Nane" >
<PVAL>Fr ed</ PVAL>

</ PROP>

<PROP NAME="per sonal Dat a. age" >
<PVAL>37</ PVAL>

</ PROP>

<PROP NAME="per sonal Dat a. hei ght ">
<PVAL>68</ PVAL>

</ PROP>

If you want to output only a subset of the Map entries, explicitly specify the keys to include, rather than using
the wildcard character (*). For example:

<i tem property-nane="personal Data" is-nulti="true" map-iteration-type="w | dcard">
<properties>
<property nanme="firstNane" type="string" text-searchable="true"/>
<property name="hei ght" type="string"/>
</ properties>
</itenr

36

4 Configuring EndecalndexingOutputConfig Definition Files

Maps of Repository Items

If the Map values are repository items, set map-i t er at i on-t ype to val ues, and specify the properties of
the repository item that you want to output. For example, suppose you want to index a pr oduct | nf os Map
property whose keys are product IDs and whose values are pr oduct | nf o items:

<item property-nanme="productlnfos" is-multi="true" map-iteration-type="val ues">
<properties>
<property nane="di spl ayNane" type="string" text-searchable="true"/>
<property nanme="si ze" type="integer" is-dinmension="true"/>
</ properties>
</itenpr

The output will include di spl ayName and si ze tags for each pr oduct | nf o item in the Map. In this case, the
Map keys are ignored, the properties of the repository items are treated as subproperties of the Map property,
and the values of the items are treated as the values of the subproperties. The output looks like this:

<PROP NAME="product | nf os. di spl ayNanme" >
<PVAL>Funny Hat </ PVAL>

</ PROP>

<PROP NAME="product | nf os. si ze">
<PVAL>8</ PVAL>

</ PROP>

<PROP NAME="product | nf os. di spl ayNanme" >
<PVAL>Cl own Shoes</ PVAL>

</ PROP>

<PROP NAME="product | nf os. si ze">
<PVAL>14</ PVAL>

</ PROP>

Specifying Properties of Item Subtypes

A repository item type can have subtypes that include additional properties that are not part of the base item
type. This feature is commonly used in the Oracle ATG Web Commerce catalog for the SKU item type. A SKU
subtype might add properties that are specific to certain SKUs but which are not relevant for other SKUs.

When you list properties to index, you can use the subtype attribute of the property element to specify
properties that are unique to a specific item subtype. For example, suppose you have a furniture-sku subtype
that adds properties specific to furniture SKUs. You might specify your SKU properties like this:

<item property-nane="chi | dSKUs" >
<properties>
<property nanme="description" type="string" text-searchable="true"/>
<property nanme="col or" type="string" text-searchable="true"
i s-di mension="true"/>
<property nane="woodFi ni sh" subtype="furniture-sku" type="string"
text - searchabl e="true"/>
</ properties>
<litenr

This specifies that the descri pti on and col or properties should be included in the output for all SKUs, but for
SKUs whose subtypeis f ur ni t ur e- sku, the woodFi ni sh property should also be included.

4 Configuring EndecalndexingOutputConfig Definition Files 37

Thei t emelement also has a subt ype attribute for specifying a subtype-specific property whose value is a
repository item. If woodFi ni sh is a repository item, the example above would look something like this:

<item property-nanme="chi | dSKUs" >
<properties>
<property name="description" type="string" text-searchable="true"/>
<property nane="col or" type="string" text-searchabl e="true"
i s-di mensi on="true"/>
</ properties>
<i tem property-nanme="woodFi ni sh" subtype="furniture-sku"/>
<properties>
<property nanme="texture" type="string" text-searchable="true"/>
<property nane="stai nType" type="string" text-searchable="true"/>
</ properties>
</litemp
</itemr

Specifying a Default Property Value

You may find it useful to specify a default value for certain indexed properties. For example, suppose you are
indexing address data, and for some addresses no value appears in the repository for the ci t y property. In
these cases, you could set the property value in the index to be “city unknown.” A user could then search for this
phrase and return the addresses whose ci t y property is null.

To set a default value, you use the def aul t - val ue attribute of the pr oper t y element. For example:

<property nane="city" type="string" text-searchabl e="true"
def aul t -val ue="city unknown"/>

Specifying Non-Repository Properties

When you index a repository, you can include in the index additional properties that are not part of the
repository itself. For example, you might want to include a cr eat i onDat e property to record the current time
when a record is created. The value for this property could be generated by a custom property accessor that
invokes the Java Dat e class.

To specify a property like this, use the i s- non-r eposi t ory- pr operty attribute of the pr oper t y element. This
attribute indicates that the property is not actually stored in the repository, and prevents warnings from being
thrown when the | ndexi ngQut put Conf i g component starts up. Note that you must also specify a custom
property accessor that is responsible for obtaining the property values:

<property nane="creationDate" is-non-repository-property="true"
type="date" property-accessor="dat eAccessor"/>

If no actual property accessor is needed, set the pr oper t y- accessor attribute to nul | . For example, you might
do this if you have a default value that you always want to use for the property:

<property nanme="creati onDate" is-non-repository-property="true"
type="date" default-val ue="Mn Mar 15 16:07: 15 EDT 2010"

38

4 Configuring EndecalndexingOutputConfig Definition Files

property-accessor="null"/>

See Using Property Accessors (page 43) for more information about custom property accessors.

Suppressing Properties

The output record automatically includes certain standard JavaBean properties of the Reposi t or yI t emobject.

These properties provide information that identifies the repository items represented in the record, and they

are indicated in the definition file by a dollar-sign ($) prefix: $r eposi t oryl d, $r eposi t ory. r eposi t or yNang,

and $i t enDescri ptor.itenmDescri pt or Nane. (The dollar-signs are removed by default in the output records,
because Endeca property names cannot include them.)

You may want to return these properties in search results, to enable accessing the indexed repository and
repository items in page code. Typically you would do this for the document-level item type. For other item
types, you may not need these properties. If you don't, it is a good idea to suppress them from the index, as they
may significantly increase the size of the index.

To suppress one of these properties, specify the property in the indexing definition file with the suppr ess
attribute. For example:

<i tem property-nane="parent Cat egori es" is-docunent="fal se">
<properties>
<property nanme="$repositoryld" suppress="true"/>
<property nane="$repository.repositoryNanme" suppress="true"/>
<property name="$itenDescriptor.itenDescriptorNane" suppress="true"/>
</ properties>
</itemr

Including the sitelds Property

If you are using Oracle ATG Web Commerce multisite support, many of the item types in the catalog repository
have a si t el ds property whose value is a comma-separated list of the sites an item appears on. For example, if
you have three sites, A, B, and C, and a certain product is available on sites A and C (but not B), the value of the
product’s si t el ds property would be si t eA, si t eC(assuming those are the site IDs).

The si t el ds properties in the catalog repository are defined as context membership properties. For the
document-level item type, the record output includes a special si t el d property representing the repository
item'’s context membership property. (The output property is always named si t el d, regardless of the actual
name of the context membership property.) The records include a separate entry for each site listed in the
context membership property.

Note that the output records include entries only for sites that are listed in the si t esTol ndex property of the
Endecal ndexi ngQut put Conf i g component. For example, if the value of a product’s si t el ds property is
siteA siteC, siteD, butsitesTol ndex list only sites C and D, the record will not include an entry for site A.
If an item’s si t el ds property is null, or if it lists only sites that are not listed in the si t esTol ndex property, no
record is generated for the item.

Renaming an Output Property

By default, the name of a property in an output record is based on its name in the repository, with
modifications applied based on the values of the r epl aceW t hTypePr ef i xes, pr ef i xRepl acenent Map,

4 Configuring EndecalndexingOutputConfig Definition Files 39

and suf f i xRepl acenment Map properties of the Endecal ndexi ngQut put Conf i g component. (See the
EndecalndexingOutputConfig Components (page 15) section for information about these properties.)

You can instead specify the output property name by using the out put - nane attribute of the property
element. For example:

<property nanme="material" output-name="product.fabric"
text-searchabl e="true" is-dinmension="true"/>

Note that the exact out put - nane value you specify is used with no modifications. So in this example, the item-
type prefix is explicitly included.

Translating Property Values

In some cases, the property values that you want to include in the index (and therefore in the generated records)
may not be the actual values used in the repository. For example, you may want to normalize values (e.g., index
the color values Rose, Vermilion, Crimson, and Ruby all as Red, so they are all treated as the same dimension
value). Or you may want to translate values into another language (e.g., index the color value Green as Vert, so
when a customer searches for Vert, green items are returned).

To translate property values for indexing, you use the t r ansl at e child element of the pr oper t y element. The
transl at e element has ani nput attribute for specifying a property value found in the repository, and an
out put attribute for specifying the value to translate this to in the output records. For example:

<property nanme="col or" text-searchable="true" is-dinmension="true">
<transl ate input="Rose" output="Red"/>
<transl ate input="Vermlion" output="Red"/>
<transl ate input="Cri nmson" output="Red"/>
<transl ate input="Ruby" output="Red"/>
</ property>

The proper ty element also has pr ef i x and suf fi x child elements that you can use to append a text string
before or after the output property values. For example, you can use the suf f i x element to add units to the
property values:

<property nanme="| ength">
<suffix val ue=" cni'/>
</ property>

Note that the pr ef i x and suf fi x values are concatenated to the property values exactly as specified, with no
additional spaces. If you want spaces before the suf f i x string or after the pr ef i x string, include the spaces in
the val ue attribute, as in the example above.

You can use the pref i x, suf fi x,and t r ansl at e elements individually or in combination. The following
example translates the size values S, M, and L, to “size small,” “size medium,” and “size large,” to make it easier for
customers to search for specific sizes:

<property nane="size" text-searchable="true" is-dinension="true">
<prefix value="size "/>
<translate input="S" output="small"/>
<translate input="M output="medi un'/>

40 4 Configuring EndecalndexingOutputConfig Definition Files

<translate input="L" output="large"/>
</ property>

Translating Based on Locale

Theprefix,suffix,andtransl at e elements all have optional | ocal e attributes that allow you to specify
different values for different locales. For example:

<property nanme="onSal e" is-di nensi on="true">
<transl ate | ocal e="en_US" input="true" output="on sale"/>
<transl ate | ocale="fr_FR' input="true" output="a la vente"/>
</ property>
<property nanme="wei ght">
<suffix | ocal e="en_US" out put ="
<suffix locale="fr_FR' output='
</ property>

granms"/ >
grammes"/ >

When the records are generated, the | ndexi ngQut put Conf i g component determines which tags to use based
on the current locale. So if the locale is en_US, only the tags that specify that locale are applied.

Multilingual environments typically use the Local eVari ant Pr oducer, which generates multiple records
for each indexed item, one record for each locale specified in its | ocal es array property. (See Using Variant
Producers (page 47) for more information.) If the value of the | ocal es array is en_US, f r _FR two sets of
records are generated, one using the t r ansl at e, pr ef i x, and suf f i x tags whose locale is en_US, and one
using the tags whose localeis fr _FR.

If a tag does not specify a locale, that tag is used as the default when the current locale does not match any of
the other tags. In the following example, Rose is translated to Rouge if the locale is f r _FR but is translated to
Red for any other locale:

<property nanme="col or" text-searchabl e="true" is-dinension="true">
<transl ate input="Rose" output="Red"/>
<transl ate |l ocal e="fr_FR"' i nput="Rose" out put="Rouge"/>

</ property>

Using Monitored Properties

By default, the | ncr enent al Loader determines which changes necessitate updates by monitoring the
properties specified in the XML definition file. In some cases, however, the properties you want to monitor
are not necessarily the ones that you want to output. This is especially the case if you are outputting derived
properties, because these properties do not have values of their own.

For example, suppose you are indexing a user item type that has f i r st Name and | ast Nane properties, plus a
f ul | Name derived property whose value is formed by concatenating the values of f i r st Name and | ast Nane.
You might want to output the f ul | Nane property, but to detect when the value of this property changes, you
need to monitor (but not necessarily output) f i r st Nane and | ast Nane.

You can do this by including a noni t or element in your definition file to specify properties that should be
monitored but not output. For example:

<properties>

4 Configuring EndecalndexingOutputConfig Definition Files 41

<property nanme="ful | Name" text-searchabl e="true"/>
</ properties>
<noni t or >

<property nanme="firstName"/>

<property nanme="| ast Name"/>
</ moni t or >

For information about derived properties, see the ATG Repository Guide.

42

4 Configuring EndecalndexingOutputConfig Definition Files

5 Customizing the Output Records

This chapter describes interfaces and classes that can be used to customize the records created by the ATG-
Endeca integration. It discusses the following topics:

Using Property Accessors (page 43)
Using Variant Producers (page 47)
Using Property Formatters (page 50)
Using Property Value Filters (page 50)

For additional information about the classes and interfaces described in this chapter, see the ATG Platform API
Reference.

Using Property Accessors

Property values are read from the product catalog through an implementation of the

atg.repository. search. i ndexi ng. PropertyAccessor interface. For most properties, the default
istousethe at g. reposi t ory. search. i ndexi ng. PropertyAccessor | npl class, which just invokes
the Reposi t oryl t em get Proper t yVal ue() method. You can write your own implementations of
Propert yAccessor that use custom logic for determining the values of properties that you specify. The
simplest way to do this is to subclass Pr opert yAccessor | npl .

In an Endecal ndexi ngQut put Conf i g definition file, you can specify a custom property accessor for a property
by using the pr oper t y- accessor attribute. For example, suppose you have a Nucleus component named /
nyst uf f/ MyPr oper t yAccessor, of a custom class that implements the Pr oper t yAccessor interface. You can
specify it in the definition file like this:

<property nanme="price" property-accessor="/nystuff/MPropertyAccessor"/>

The value of the proper t y- accessor attribute is the absolute path of the Nucleus component. To simplify
coding of the definition file, you can map Pr opert yAccessor Nucleus components to simple names, and
use those names as the values of pr opert y- accessor attributes. For example, if you map the / myst uf f /
My Pr opert yAccessor component to the name nyAccessor, the above tag becomes:

<property nane="price" property-accessor="nyAccessor"/>

5 Customizing the Output Records 43

You can perform this mapping by setting the pr oper t yAccessor Map property of the | ndexi ngQut put Confi g
component. This property is a Map in which the keys are the names and the values are Pr oper t yAccessor
Nucleus components that the names represent. For example:

propertyAccessor Map+=\
myAccessor =/ nyst uf f/ MyPr opert yAccessor

FirstWithLocalePropertyAccessor

The at g. reposi tory. sear ch. i ndexi ng. accessor package includes a subclass of
PropertyAccessor | mpl named Fi r st Wt hLocal ePr oper t yAccessor . This property accessor
works only with derived properties that are defined using the fi r st W t hLocal e derivation method.
Fi rst WthLocal ePropertyAccessor determines the value of the derived property by looking up
the cur r ent Docunent Local e property of the Cont ext object. Typically, this property is set by the
Local eVari ant Producer, as described in Accessing the Context Object (page 47).

You can specify this property accessor in your definition file using the attribute value fi r st Wt hLocal e. (Note
that you do not need to map this name to the property accessor in the pr opert yAccessor Map.) For example:

<property nane="di spl ayNane" property-accessor="firstWthLocal e"/>

For information about the fi r st Wt hLocal e derivation method, and about derived properties in general, see
the ATG Repository Guide.

LanguageNameAccessor

The at g. endeca. i ndex. accessor. LanguageNameAccessor class, which is a subclass of

at g. reposi tory. search. i ndexi ng. PropertyAccessor | npl, returns the name of the language that a
record is in. The ATG-Endeca integration includes a component of this class, / at g/ endeca/ i ndex/ accessor/
LanguageNameAccessor, which the Pr oduct Cat al ogQut put Conf i g uses to obtain the value of the
product . | anguage property:

<property nanme="| anguage" type="string"
property-accessor="/at g/ endecal/ i ndex/ accessor/ LanguageNaneAccessor"
out put - nane="pr oduct . | anguage" i s-non-repository-property="true"/>

GenerativePropertyAccessor

The at g. reposi tory. sear ch. i ndexi ng. accessor package includes a subclass of

PropertyAccessor | npl named Gener at i vePr opert yAccessor . This is an abstract class that adds the ability
to generate multiple property names and associated values for a single property tag in the indexing definition
file. For example, the Pri ceLi st MapPr oper t yAccessor subclass of Gener at i vePr opert yAccessor
generates, for a single price property in the definition file, a separate price value for each price list.

You can write your own subclass of Gener at i vePr oper t yAccessor . Your subclass must implement the
get Proper t yNamesAndVal ues method. This method returns a Map in which each key is a property name, and
the corresponding Map value contains the value to be associated with the property name.

44

5 Customizing the Output Records

PriceListMapPropertyAccessor

If your Oracle ATG Web Commerce catalog uses price lists, a single item may have multiple prices, with the actual
price applied depending on who is purchasing the item. Different customers may be assigned different price
lists, and when a customer accesses a product or SKU, the price he or she sees may be different from the price
another customer sees.

When a customer searches the product catalog using Oracle Endeca Commerce, the results may depend on
the correct prices for that customer being present in the index. For example, the set of products returned by
selecting a facet range of $5.00 to $10.00 may depend on the price lists the customer is assigned.

When you index your catalog, the item prices are read from the price lists and used in output records.

A separate pr op tag is created for each price list, and the property name in the tag identifies the price

list the tag is associated with. To read the prices from the price lists, you use a property accessor of class

at g. conmer ce. sear ch. producer. Pri celLi st MapPr oper t yAccessor . (This class is a subclass of
atg.repository. search. i ndexi ng. accessor. Gener ati vePr opert yAccessor, which is described in the
GenerativePropertyAccessor (page 44) section.)

Oracle ATG Web Commerce provides a component of this class, / at g/ conmer ce/
sear ch/ Pri ceLi st MapPr oper t yAccessor . You can specify this property accessor in an
Endecal ndexi ngQut put Conf i g definition file like this:

<property nanme="price" type="float"
property-accessor="pri cePropertyAccessor"
i s-non-repository-property="true"/>

The property-accessor attribute is set to pri cePr opertyAccessor, which is mapped to/ at g/ commer ce/
sear ch/ Pri ceLi st MapPr opert yAccessor inthe Product Cat al ogQut put Confi g component. The

i s-non-reposi tory-property attribute indicates that the property is not actually stored in the catalog
repository; this attribute prevents warnings from being thrown when the | ndexi ngQut put Conf i g component
starts up.

When the Pri ceLi st MapPr oper t yAccessor is invoked for an item, it iterates through all available price
lists and outputs a separate pr op tag for each one. Each tag contains the item price from one price list. The
format of the names of the output properties is set through the pri cePr oper t yPr ef i x property of the
Pri ceLi st MapPr opert yAccessor component. By default, the value of this property is:

sku. price_

The price list ID is appended to this prefix in the tag associated with a given price list. For example, if there are
four possible price lists, the output might include:

<PROP NAME="sku. price_plist90001">
<PVAL>9. 99</ PVAL>

</ PROP>

<PROP NAME="sku. price_plist90002">
<PVAL>7. 99/ PVAL>

</ PROP>

<PROP NAME="sku. price_plist90003">
<PVAL>5. 99</ PVAL>

</ PROP>

<PROP NAME="sku. price_plist90004">

<PVAL>4. 99</ PVAL>

5 Customizing the Output Records 45

</ PROP>

So, for example, the price for this item in price list pl 90003 is 5.99.

If a price list does not have a price for the item, the property accessor determines if the price list inherits a price
for the item from another price list. If so, the accessor outputs the inherited price. If the price list does not inherit
a price, no entry is output for that price list.

Category Dimension Value Accessors

Several property accessors are used by the Cat egor yToDi nensi onQut put Conf i g component to extract the
values of various dimension value attributes from the data structures created by the Cat egor yTr eeSer vi ce
component.

A component of class at g. endeca. i ndex. accessor. Const ant Val ueAccessor,/ at g/ endeca/
i ndex/ conmer ce/ accessor/ Di mensi onSpecPr opert yAccessor, obtains the value of the

di mval . di nensi on_spec attribute, which is a unique identifier for the dimension (typically

pr oduct . cat egory).

Several components of class

at g. conmmer ce. endeca. i ndex. di mensi on. Cat egor yNodePr oper t yAccessor, also in the / at g/ endeca/
i ndex/ conmer ce/ accessor/ Nucleus folder, obtain the values of various dimension value attributes. The
following table lists these property accessors and describes the attributes they obtain values for:

Property Accessor Property

Root Cat al ogPr opertyAccessor | di mval . prop. cat egory. r oot Cat al ogl d -- The repository ID of the
root catalog the category belongs to (e.g., mast er Cat al og).

SpecPropert yAccessor di nval . spec -- A unique identifier for the dimension
value that includes the path information to distinguish it
from other dimension values for the same category (e.g.,
root Cat egory. cat 10016. cat 10014).

Qual i fi edSpecPropertyAccessordi nval . qual i fi ed_spec -- A qualified identifier

for the dimension value consisting of the

di mval . di nensi on_spec value and the di nval . spec value (e.g.,
product . cat egory: r oot Cat egory. cat 10016. cat 10014).

Par ent SpecPr opert yAccessor | di mval . par ent _spec -- A reference to the category’s parent
category (e.g., r oot Cat egory. cat 10016).

Di spl ayOr der Proper t yAccesson di mval . di spl ay_or der -- An integer specifying the order the
category is displayed in, relative to its sibling categories.

46 5 Customizing the Output Records

Using Variant Producers

By default, for the repository item type designated by the i s- docunent attribute, the | ndexi ngQut put Confi g
component generates one record per item. In some cases, though, you may want to generate more than one
record for each repository item. For example, suppose you have a repository whose text properties are stored in
both French and English, and the language displayed is determined by the user’s locale setting. In this case you
will typically want to create two records from each repository item, one with the text content in French, and the
other one in English.

To handle situations like this, the Oracle ATG Web Commerce platform provides an interface named

at g. reposi tory. search. i ndexi ng. Vari ant Pr oducer . You can write your own implementations of the
Var i ant Producer interface, or you can use implementations included with the ATG platform. This interface
defines a single method, pr epar eNext Vari ant (), for determining the number and type of variants to
produce. Depending on how your repository is organized, implementations of this method can use a variety of
approaches for determining how to generate variant records.

LocaleVariantProducer

The ATG-Endeca integration includes an implementation of the Var i ant Pr oducer interface,

at g. reposi tory. search. i ndexi ng. producer. Local eVari ant Pr oducer, for generating variant
records for different locales. It also includes a component of this class, / at g/ commer ce/ sear ch/
Local eVari ant Producer.

The Local eVari ant Producer class has al ocal es property where you specify the list of locales to generate
variants for. For example:

| ocal es=en_US, fr_FR

You specify the Var i ant Pr oducer components to use by setting the var i ant Pr oducer s property of the
Endecal ndexi ngQut put Conf i g component. Note that this property is an array; you can specify any number of
Var i ant Producer components. For example:

vari ant Producer s=/ at g/ comer ce/ sear ch/ Local eVari ant Producer,
/ mystuf f/ MyVari ant Producer

If you specify multiple variant producers, the Endecal ndexi ngQut put Conf i g generates a separate variant
for each possible combination of values of the variant criteria. For example, suppose you use the configuration
shown above, and MyVar i ant Pr oducer creates three variants (1, 2, and 3). The total number of variants
generated for each repository item is six (French 1, English 1, French 2, English 2, French 3, and English 3).

Accessing the Context Object

Classes that implement the Pr oper t yAccessor or Vari ant Producer interface must be stateless, because
they can be accessed by multiple threads at the same time. Rather than maintaining state themselves,

these classes instead use an object of class at g. r eposi t ory. sear ch. i ndexi ng. Cont ext to store state
information and to pass data to each other. The Cont ext object contains the current list of parent repository
items that were navigated to reach the current item, the current URL (if any), the current collected output values
(if any), and status information.

One of the main uses of the Cont ext object is to store information used to determine what variant to generate
next. For example, each time a new record is generated, the Local eVari ant Producer uses the next value in

5 Customizing the Output Records 47

its | ocal e array to set the curr ent Documrent Local e property of the Cont ext object. A PropertyAccessor
instance might read the cur r ent Docunent Local e property and use its current value to determine the locale to
use for the property.

Note that classes that implement the Pr oper t yFor nat t er or Propert yVal uesFi | t er interface (described
below) are applied after all of the output properties have been gathered, so these classes do not have access to
the Cont ext object.

For more information about the Cont ext object, see the ATG Platform API Reference.

CategoryPathVariantProducer

The/ at g/ endeca/ i ndex/ conmer ce/ Cat egor yPat hVari ant Producer component is used by the
CategoryToDimensionOutputConfig component to produce multiple records per category (one record for each
unique path computed by Cat egor yTr eeSer vi ce). The Cat egor yPat hVar i ant Producer component is

of class at g. conmer ce. endeca. i ndex. di mensi on. Cat egor yPat hVari ant Pr oducer, which implements
the at g. reposi tory. sear ch. i ndexi ng. Vari ant Pr oducer interface. In each record this variant producer
creates, the value of the record’s di nval . spec property is the unique pathname that the record represents. For
example:

The Cat egor yPat hVar i ant Producer component is added to the CategoryToDimensionOutputConfig
component’s variantProducers property by default:

vari ant Producer s+=\
Cat egor yPat hVar i ant Pr oducer

See the CategoryTreeService Class (page 10) section for more information about how category path variants are
computed.

CustomCatalogVariantProducer

In addition to the cat egory, pr oduct , and sku items, the catalog repository includes cat al og items that
represent different hierarchies of categories and products. Each user is assigned one catalog, and sees the
navigational structure, products and SKUs, and property values associated with that catalog. A given product
may appear in multiple catalogs. The pr oduct repository item type includes a cat al ogs property whose value
is a Set of the catalogs the product is included in.

Depending on how your catalog repository is configured, the property values of individual categories, products,
or SKUs may vary depending on the catalog. If so, when you index the catalog, you may need to generate
multiple records for each product or SKU (one for each catalog the item is included in).

To support creation of multiple records per product or SKU, the ATG-Endeca integration uses the /

at g/ conmer ce/ sear ch/ Cust ontCat al ogVari ant Pr oducer component. This component is of class

at g. conmer ce. sear ch. producer. Cust onCat al ogVar i ant Pr oducer, which implements the

at g. reposi tory. search. i ndexi ng. Vari ant Pr oducer interface. The variant producer iterates through
each catalog individually, so that each record contains only the property values associated with a single catalog.

The Cust ontCat al ogVar i ant Pr oducer component is added to the ProductCatalogOutputConfig component’s
variantProducers property by default:

vari ant Producer s+=\

48

5 Customizing the Output Records

Cust ontCat al ogVari ant Pr oducer

The mechanism used for retrieving catalog-specific property values differs depending on the property. For
cat egory, product, or sku item properties that use the at g. conmer ce. dp. Cat al ogMapDeri vati on class to
derive catalog-specific values, the correct values are automatically obtained by that class.

To get the value of the cat al ogs property of the pr oduct item, the Pr oduct Cat al ogQut put Confi g
component is configured by default to use the / at g/ conmrer ce/ sear ch/

Cust ontCat al ogPr opert yAccessor component. This component is of class

at g. conmer ce. sear ch. producer. Cust onCat al ogPr opert yAccessor, which implements the

atg. repository. search. i ndexi ng. PropertyAccessor interface. This accessor returns, for each
record, only the specific catalog the record applies to. The accessor is specified in the / at g/ endeca/ i ndex/
commrer ce/ product - sku- out put - confi g. xm definition file:

<itemis-multi="true" property-name="catal ogs"
property-accessor="cust ontat al og" >

The Cust ontCat al ogPr opert yAccessor component is mapped to the name cust ontCat al og by the
Pr oduct Cat al ogQut put Confi g component’s pr oper t yAccessor Map property:

propertyAccessor Map+=\
cust onCat al og=Cust onCat al ogPr opert yAccessor

UniqueSiteVariantProducer

If you want to create a separate record for each site, you can do so by using the / at g/ sear ch/
reposi t ory/ Uni queSi t eVari ant Producer component. This component is of class

at g. conmer ce. sear ch. producer. Uni queSi t eVari ant Pr oducer , which implements the
atg. reposi tory. sear ch. i ndexi ng. Vari ant Producer interface.

Uni queSi t eVari ant Producer creates a separate record for each site that meets both of these criteria:
« The ID of the site is included in the si t el ds property of the item being indexed.

« Thesiteis listed in the si t esTol ndex property of the Endecal ndexi ngQut put Conf i g component that
invokes the variant producer.

For example, if you are indexing by product and the value of a product’s si t el ds property

issiteE, siteF, siteGandthesitesTol ndex property is set to sites B, E, and F,

Uni queSi t eVari ant Producer creates two records, one for site E and one for site F. The records are virtually
identical, except that each one has a different value for the si t el d property.

To use the Uni queSi t eVari ant Pr oducer, add it to the Pr oduct Cat al ogQut put Conf i g component’s
vari ant Producer s property:

vari ant Producer s+=\
[at g/ sear ch/ reposi t ory/ Uni queSi t eVar i ant Producer

5 Customizing the Output Records 49

Using Property Formatters

If a property takes an object as its value, the data loader must convert that object to a string to include it in an
output record. The Pr oper t yFor nat t er interface defines methods for performing this conversion.

By default, the data loaders use the implementation class

at g. endeca. i ndex. f or mat t er . EndecaPr opert yFor mat t er . This class invokes the object’s get Long()
method for numbers or get Ti me() method for dates; for booleans, it converts the value to the String

“0" (f al se) or “1” (t r ue). For other objects, it calls the object’st oSt ri ng() method.

You can write your own implementations of Pr oper t yFor mat t er that use custom logic for performing the
conversion. The simplest way to do this is to subclass EndecaPr oper t yFor nat t er .

In an Endecal ndexi ngQut put Conf i g definition file, you can specify a custom property formatter by

using the f or mat t er attribute. For example, suppose you have a Nucleus component named / nyst uf f/

My Pr opert yFor nat t er, of a custom class that implements the Pr oper t yFor mat t er interface. You can specify
it in the definition file like this:

<property name="price" formatter="/MStuff/MPropertyFormatter"/>

The value of the f or nat t er attribute is the absolute path of the Nucleus component. To simplify coding of
the definition file, you can map Pr oper t yFor mat t er Nucleus components to simple names, and use those
names as the values of f or mat t er attributes. For example, if you map the / nyst uf f / MyPr oper t yFor mat t er
component to the name nyFor nat t er, the above tag becomes:

<property name="price" formatter="nyFormatter"/>

You can perform this mapping by setting the f or mat t er Map property of the I ndexi ngQut put Confi g
component. This property is a Map in which the keys are the names and the values are Pr oper t yFor mat t er
Nucleus components that the names represent.

Using Property Value Filters

In some cases, it is useful to filter a set of property values before outputting a record. For example, suppose
each record represents a product whose SKUs all have the same display name. Rather than outputting the

di spl ayNane property value of each SKU, you could include di spl ayName in the record just once, by using a
filter that removes duplicate property values.

The Pr opert yVal uesFi | t er interface defines a method for filtering property values. The
at g.repository. search.indexing. filter package includes several implementations of this interface:

+ Uni queFi | t er removes duplicate property values, returning only the unique values.
+ Concat Fi | t er concatenates all of the property values into a single string.

+ Uni queWor dFi | t er removes any duplicate words in the property values, and then concatenates the results
into a single string.

50 5 Customizing the Output Records

« Hnl Fil ter removes any HTML markup from the property values.
This section provides information about what these filters do and when they’re appropriate.

In an Endecal ndexi ngQut put Conf i g definition file, you can specify property filters by using thefi I t er
attribute. Note that you can use multiple filters on the same property. The value of the fi | t er attributeis a
comma-separated list of Nucleus components. The component names must be absolute pathnames.

To simplify coding of the definition file, you can map Pr opert yVal uesFi | t er Nucleus components to simple
names, and use those names as the values of f i | t er attributes. You can perform this mapping by setting the
filterMap property of the | ndexi ngQut put Conf i g component. This property is a Map in which the keys are
the names and the values are Pr oper t yFi | t er Nucleus components that the names represent.

Note, however, that you do not need to perform this mapping to use the Uni queFi I t er, Concat Fi l ter,
Uni queWordFil ter,orH m Fi | ter class. These classes are mapped by default to the following names:

Filter Class Name

Uni queFil ter uni que
Concat Fil ter concat

Uni queWordFil ter uni quewor d
HmFilter ht m

So, for example, you can specify Uni queFi | t er like this:

<property nane="color" filter="uni que"/>

UniqueFilter

You may be able to reduce the size of your index by filtering the property values to remove redundant entries.
For example, suppose a record represents a product whose SKUs have a si ze property, with values of small,
medium, and large; multiple SKUs have the same si ze value, and are differentiated by other properties (e.g.,
col or). The entries for si ze in a record might be:

<PROP NAME="sku. si ze">
<PVAL>nedi unx/ PVAL>
<PVAL>| ar ge</ PVAL>
<PVAL>nedi unx/ PVAL>
<PVAL>snal | </ PVAL>
<PVAL>nedi unx/ PVAL>
<PVAL>smal | </ PVAL>

</ PROP>

By filtering out redundant entries, you can reduce this to:

<PROP NAME="sku. si ze">

5 Customizing the Output Records 51

<PVAL>nedi unx/ PVAL>

<PVAL>| ar ge</ PVAL>

<PVAL>snal | </ PVAL>
</ PROP>

To automatically perform this filtering, specify the Uni queFi | t er class in the XML definition file:

<property nane="sal ePrice" filter="unique"/>

As a general rule, it is a good idea to specify the uni que filter for a property if multiple items in a record may
have identical values for that property. If you specify this filter for a property and every value of that property
in a record is unique (or if only one item with that property appears in the record), the uni que filter will have
no effect on the record (either negative or positive). However, executing this filter increases processing time to
create the record, so it is a good idea to specify it only for properties that will benefit from it.

ConcatFilter

You may also be able to reduce the size of your index by concatenating the values of text properties. For
example, suppose each record represents a product whose SKUs have a col or property, with values of red,
green, blue, and yellow. The entries for col or in a record might be:

<PROP NAME="sku. col or">
<PVAL>r ed</ PVAL>
<PVAL>gr een</ PVAL>
<PVAL>bl ue</ PVAL>
<PVAL>yel | ow</ PVAL>
</ PROP>

By concatenating the values, you can reduce this to:

<PROP NAME="sku. col or" >
<PVAL>red green bl ue yel |l ow</ PVAL>
</ PROP>

To combine these values into a single tag, specify the Concat Fi | t er class in the XML definition file:

<property nane="color" filter="concat"/>

This setting invokes an instance of the at g. r eposi tory. search. i ndexi ng. fil ter. ConcatFil ter class.
Note that you do not need to create a Nucleus component to use this filter.

You can use both the uni que and concat filters on the same property, by setting the value of thefil ter
attribute to a comma-separated list. The filters are invoked in the order that they are listed, so it is important to
put the uni que filter first for it to have an effect. For example:

<property nane="color" filter="uni que, concat"/>

52

5 Customizing the Output Records

UniqueWordFilter

The at g. reposi tory. search. i ndexi ng. filter.Uni queWr dFil t er class removes any duplicate words
in the property values, and then concatenates the results into a single string. For example, suppose a product’s
SKUs have a si ze property, and the resulting entries in a record are:

<PROP NAME="sku. si ze">
<PVAL>nedi unx/ PVAL>
<PVAL>| ar ge</ PVAL>
<PVAL>x | ar ge</ PVAL>
<PVAL>xx | ar ge</ PVAL>
</ PROP>

By applying Uni queWbr dFi | t er, you can reduce this to:

<PROP NAME="sku. si ze">
<PVAL>nmedi um | arge x xx</ PVAL>
</ PROP>

Note that Uni queWr dFi | t er converts all Strings to lowercase, so that redundant words are eliminated even if
they don't have identical case.

You can specify Uni queWor dFi | t er in the XML definition file like this:

<property nanme="si ze" filter="uni queword"/>

You do not need to create a Nucleus component to use this filter.

Although Uni queWor dFi | t er removes redundancies and concatenates values, it is not equivalent to using
a combination of Uni queFi | t er and Concat Fi | t er.Uni queFi | t er considers the entire string when

it eliminates redundant values, not individual words. In this example, each complete string is unique, so

Uni queFi | t er would not actually eliminate any values, and the result would be:

<PROP NAME="sku. si ze">
<PVAL>nedi um | arge x | arge xx |arge</PVAL>
</ PROP>

Note: You should use Uni queWor dFi | t er carefully, as under certain circumstances it can have undesirable
effects. If you use a dictionary that includes multi-word terms, searches for those terms may not return the
expected results, because the filter may rearrange the order of the words in the index.

HtmlFilter

Theat g. repository. search.indexing.filter.Hnl Filter class removes any HTML markup from a
property value. This is useful, for example, if text properties include tags for bolding or italicizing certain words,
asin this| ongDescri pti on property of a product:

You'll love this Italian <i>leather</i> sofal!

5 Customizing the Output Records 53

Because the HTML markup is included in the index, searches may return unexpected results. In this example,
searching for “leather sofa” might not return the product, because that string does not actually appear in the
| ongDescri pti on property.

Using Ht nl Fi | t er, this value appears in the index as:

<PROP NAME="product. | ongDescription">
<PVAL>You'll love this Italian |eather sofa!</PVAL>
</ PROP>

Now a search for “leather sofa” will find the value in this property, and return this product.

54

5 Customizing the Output Records

6 Indexing Multiple Languages

If your ATG sites include data in more than one language, there are two options for how to index this data in
Oracle Endeca Commerce:

+ Index each language in a separate MDEX
+ Index all of the languages in a single MDEX

This chapter discusses how to configure the ATG indexing components to support each option. It includes these
sections:

Specifying the Locales (page 55)
Using a Separate MDEX for Each Language (page 56)
Using a Single MDEX for all Languages (page 56)

There are also differences in how querying works, depending on which indexing option you choose. See the
Query Integration (page 59) chapter for information.

Specifying the Locales

To generate records in multiple languages, you specify the locales by setting the | ocal es property of the / at g/
comer ce/ sear ch/ Local eVari ant Producer component. For example:

| ocal es=en_US, fr_FR

Several other components have al ocal es property whose value is linked to this property. These include:
» /at g/ endecal i ndex/ conmer ce/ EndecaScri pt Servi ce
« /at g/ endecal i ndex/ comrer ce/ Reposi t or yTypeDi nensi onExporter

» /at g/ endecal i ndex/ comrer ce/ SchemaExport er

6 Indexing Multiple Languages 55

Using a Separate MDEX for Each Language

If you use a separate MDEX for each language, you must create a separate EAC application and a corresponding
set of record stores for each MDEX. Each application name should consist of a base name that is common to

all of the applications, plus a two-letter language code that is unique to each one. The base name is used to
associate the applications, and must match the value of the endecaBaseAppl i cat i onName property of the
EndecaScri pt Ser vi ce component and the document submitter components. (This is handled automatically
when you configure your ATG environment using CIM.) The language code is used to distinguish the individual
applications by language.

So, for example, if the endecaBaseAppl i cat i onName properties are set to ATG(the default), and catalog data is
in English, German, and Spanish, the three applications would be named ATGen, ATGde, and ATGes.

The record stores for an EAC application use the following naming convention:

appl i cati on- nane_| anguage- code_r ecord-store-type

So for the ATGes application, the record stores are named ATGes_es_dat a, ATGes_es_di nval s, and
ATGes_es_schena.

Using a Single MDEX for all Languages

If you use the same MDEX for all languages, you must create a single EAC application and a single set of record
stores. In this case the language code is the code for the default language of the record stores. So if your catalog
data is in English, German, and Spanish, and you want to index all languages in a single MDEX with English as
the default language, your application name would be ATGen (assuming the endecaBaseAppl i cat i onNane
properties are set to ATG), and the record stores would be named ATGen_en_dat a, ATGen_en_di nval s, and
ATGen_en_schena.

You specify the default language for the record stores by setting the def aul t LanguageFor Recor dSt or es
property of the / at g/ endeca/ i ndex/ Dat aDocunent Subni t t er component to the two-letter code for the
language. For example:

def aul t LanguageFor Recor dSt or es=en

Several other components have a def aul t LanguageFor Recor dSt or es property that links to this value. For
example, the properties file for the / at g/ endeca/ i ndex/ comrmer ce/ EndecaScr i pt Ser vi ce component
includes the following:

def aul t LanguageFor Recor dSt or es”™=\
/ at g/ endeca/ i ndex/ Dat aDocunent Submi tt er . def aul t LanguageFor Recor dSt or es

The schema records generated in this case are the same records that would be generated in the multiple-MDEX
case for the first locale listed in the / at g/ endeca/ i ndex/ commer ce/ SchemaExport er component’s| ocal es
property. The data records generated include the records for all of the listed locales, and each data record
includes a pr oduct . | anguage property that identifies the language of the record. The language name is given
in its own language. For example, the value for the German language is Deutsch.

56

6 Indexing Multiple Languages

The dimension value records consist of the same set of records that would be generated for each

language in the multiple-MDEX case, but the records generated by the / at g/ endeca/ i ndex/ commer ce/
Reposi t or yTypeDi mensi onExport er component contain additional properties for the translated display
names of the repository item types. These properties are named di nval . prop. di spl ayName_| anguage-
code, where | anguage- code is the two-letter language code associated with one of the specified locales. For
example:

<PROP NAME="di nval . prop. di spl ayNane_en" >
<PVAL>Cat egor y</ PVAL>

</ PROP>

<PROP NAME="di nval . prop. di spl ayNane_es" >
<PVAL>Cat egor i a</ PVAL>

</ PROP>

<PROP NAME="di nval . prop. di spl ayNane_de" >
<PVAL>Kat egor i e</ PVAL>

</ PROP>

If the mul ti LanguageSynonyns property of the Reposi t or yTypeDi nensi onExpor t er component is set
tot r ue, then additional Endeca record properties are generated to indicate that all translations of the same
repository type are synonyms for searching. For example:

<PROP NAME="di nval . sear ch_synonyni >
<PVAL>Cat egor y</ PVAL>

</ PROP>

<PROP NAME="di nval . sear ch_synonyni >
<PVAL>Cat egor i a</ PVAL>

</ PROP>

<PROP NAME="di nval . sear ch_synonyni >
<PVAL>Kat egor i e</ PVAL>

</ PROP>

6 Indexing Multiple Languages

57

58

6 Indexing Multiple Languages

7 Query Integration

The Oracle ATG Platform provides two options for querying the Oracle Endeca Assembler and MDEX engine:

+ Invoking the Assembler via a servlet as part of Oracle ATG's request handling pipeline. This option allows the
call to the Assembler to happen early in the page’s life cycle, which is desirable when the bulk of the page’s
content is served by the Assembler.

+ Invoking the Assembler from within a page, using a servlet bean. This option allows the call to the Assembler
to occur on a just-in-time basis for the portion of the page that requires Assembler-served content. This
approach is desirable when only a small portion of the page requires Assembler content.

The remainder of this chapter provides more detail on both configurations and the components that facilitate
them.

Contentltem, Contentinclude, and ContentSlotConfig
Classes

Similar to HTTP requests, requests that are made to the Assembler use the paradigm

of a request object and a response object. Both of these objects are of type

com endeca. i nfront. assenbl er. Cont ent | t em There are two subclasses of Cont ent | t em depending
on the type of content being requested: com endeca. i nfront . cartri dge. Cont ent | ncl ude and

com endeca. i nfront. cartridge. Cont ent Sl ot Confi g.

Cont ent I ncl ude is used to request pages defined in the Pages section of Experience Manager. Invoking the
Assembler for a page request is also referred to as “invoking the Assembler with a Cont ent | ncl ude.” The URI
for a page request must begin with a/ pages prefix, for example, / pages/ br owse. Endeca uses the / pages
prefix to distinguish page requests from content collection requests.

The handler for the Cont ent I ncl ude component first tries to retrieve the content at the exact URI specified in
the Cont ent I ncl ude. If there is no content at that location, the handler attempts to find the deepest matching
path. To return to our original example, assume a br owse page exists in the Experience Manager Pages
definitions. Passing in a/ pages/ br owse path will match this br owse page. Passing in a/ pages/ br owse/

seo/ ur| path will also match this page because the deepest matching path the handler can find for / pages/
br owse/ seo/ url is/ pages/ br owse (this example assumes that a br owse/ seo/ ur| page does not exist in
Experience Manager).

Cont ent Sl ot Conf i g is used to request content collections defined in the Content section of Experience
Manager. Invoking the Assembler for a content collection request is also referred to as “invoking the Assembler

7 Query Integration 59

with a Cont ent Sl ot item.” A content collection request must specify the name of the content collection

and the number of items to retrieve from that collection. The handler for Cont ent Sl ot Conf i g, uses these
parameters to form a content trigger request that fetches the top item (or items) from the collection by priority.
The Assembler then processes the content items from the collection and returns them as part of the response
for rendering.

The remainder of this chapter makes a distinction between Cont ent | ncl ude and Cont ent S| ot Conf i g when
necessary. When the distinction is not required, the more general Cont ent | t emis used.

Note: For more information on the Cont ent | ncl ude and Cont ent Sl ot Conf i g components and their
handlers, refer to the Assembler Application Developer’s Guide in the Oracle Endeca Commerce documentation.

Invoking the Assembler in the Request Handling Pipeline

In this option, the Assembler is invoked early in the page rendering process as part of the ATG request handling
pipeline. This option is appropriate when the bulk of a page’s content is served by the Assembler and this guide
refers to these pages as “Assembler-driven pages.”

Assembler-driven pages are generally those pages that benefit greatly from increased merchandiser control. For
example, a home page is a good candidate to be Assembler-driven because merchandisers want to customize
their site’s home page based on the season, a current sale, or a customer’s profile. A search results page is

also a good candidate because merchandisers may want to control the order of search results, specify special
brand landing pages for particular searches, and so on. Endeca’s Experience Manager tool, which works hand

in hand with the Assembler API, is designed to facilitate increased merchandiser control, therefore pages that
need a high level of merchandiser control are best served through the Assembler API/Experience Manager
combination.

Using a JSP Renderer to Render Content

The content returned to the client browser can take several forms: JSP, XML, or JSON. The request-handling
architecture for an Assembler-driven JSP page looks like this:

60

7 Query Integration

17. Include to path retumed by
ContentitemToRendererPath dsprrenderGontentltem
HTML output 18 15. Recursively invoke
JSP rendering pages dsperenderCantentitem
to get renderer paths
for sub-Cantantitems |

16. Get renderer path for sub-Contentltem

'y

14, Render the page; set the contentitem
attribute on the HilpSenviatReguest

Request —1—»] Application

13, Get renderer path for

-
L tentln
ATGrequest | 5 | »ccamblerPipelineServet oot Contentitem

» ContentliemToRendererFath
Server 2 handling pipeline

4. Call AssemblerTools.invokeAssembler()
12. Return Contentliem

5. Invoke
e — AssemblerTool
MucleusAssemblerFactony emblertools

MucleusAssemblerFactary

11. Retum Contentltem

T. Call NucleusAssembler assemble()

6. Return a

MucleusAssembler instance Nucleushssembler

8. Create an initial version of 9. Call getCartridgeHandler() 10. Return manipulated (or

the reat Conlentltem and for each Contentltern replaced) Cantentltem
any sub-Contentlitemns ‘

¥

XML Endeca Content

Canfiguration Repasitary CartridgeHandlers
(base (Experience

configuration) Manager changes)

In this diagram, the following happens:

1.

2.

The application server receives a request.

The application server passes the request to the ATG request handling pipeline.

. The ATG request handling pipeline does some preliminary work, such as setting up the profile and

determining which site the request is for. At the appropriate point, the pipeline invokes the / at g/ endeca/
assenbl er/ Assenbl er Pi pel i neServl et.

. The Assenbl er Pi pel i neSer vl et determines if the request is for a page or a content collection in

Experience Manager and creates an appropriate request Cont ent | t em Then, Assenbl er Pi pel i neSer vl et
calls the i nvokeAssenbl er () method on the/ at g/ endeca/ assenbl er /Assenbl er Tool s component
and passes it the request Cont ent | t em

. The Assenbl er Tool s component invokes the cr eat eAssenbl er () method on the / at g/ endeca/

assenbl er /Nucl eusAssenbl er Fact or y component.

. The Nucl eusAssenbl er Fact ory component returns an at g. endeca. assenbl er. Nucl eusAssenbl er

instance.

. The Assenbl er Tool s component invokes the assenbl e() method on the Nucl eusAssenbl er instance

and passes it the request Cont ent I t em

7 Query Integration 61

8. The Nucl eusAssenbl er instance assembles the correct content for the request. Content, in Endeca terms,
corresponds to a set of cartridges and their associated data. The Nucl eusAssenbl er instance starts with
the data in the Endeca Experience Manager cartridge configuration files and then modifies that data with
information stored in the Endeca Content Repository (that is, changes made and saved via the Experience
Manager Ul). The assembled content takes the form of a response Cont ent | t emthat consists of a root
Cont ent | t emwhich may have sub-Cont ent I t emobjects as attributes. This Cont ent | t emhierarchy
corresponds to the root cartridge and any sub-cartridges that were used to create the returned content.

9. The Nucl eusAssenbl er instance recursively calls the Nucl eusAssenbl er. get Cartri dgehandl er ()
method, passing in the Cont ent | t emtype, to retrieve the correct cartridge handlers for the root
Cont ent I t emand any of its sub-items.

10.The cartridge handlers get resolved and executed for the root Cont ent | t emand its sub-items. The resulting
root Cont ent | t emis passed back to the Nucl eusAssenbl er Instance.

Note: If a cartridge handler doesn't exist for a Cont ent | t em the initial version of the item, created in step 8,
is returned.

11.The Nucl eusAssenbl er instance returns the root Cont ent | t emto Assenbl er Tool s.
12.The Assenbl er Tool s component returns the root Cont ent | t emto Assenbl er Pi pel i neServl et .

13.The Assenbl er Pi pel i neSer vl et component calls the / at g/ endeca/ assenbl er/ cartri dge/
render er / Cont ent | t enlToRender er Pat h component to get the path to the renderer (in this case, a JSP
file) for the root Cont ent I t em The Cont ent | t enlToRender er Pat h component uses pattern matching to
match the Cont ent | t emtype to a JSP file; for example, in Commerce Reference Store, if the Cont ent I t em
type is Br eadcr unbs, the JSPfileis / cart ri dges/ Br eadcr unbs/ Br eadcr unbs. j sp.

Note: See ContentltemToRendererPath (page 80) for more details on how the renderer path is calculated.

14.The Assenbl er Pi pel i neSer vl et component sets the assembled Cont ent | t emasacontent | tem
parameter on the Ht t pSer vl et Request , then forwards the request to the JSP determined by the
Cont ent | t eniToRender er Pat h component

15.The JSP for the root Cont ent | t emmay also have to render sub-Cont ent | t ens. In this case, the JSP must
include dsp: r ender Cont ent | t emtags for the sub-Cont ent | t ens.

16.dsp: r ender Cont ent | t eminvokes Cont ent | t enlToRender er Pat h to retrieve the JSP renderer for the
specified Cont ent | t em This process happens recursively until all sub-Cont ent | t ens are rendered.

The dsp: render Cont ent | t emtag also sets the cont ent | t emattribute on the Ht t pSer vl et Request,
thereby making the current Cont ent | t emavailable to the renderers; however, this value lasts only for the
duration of the i ncl ude so that after the i ncl ude is done, the cont ent I t emattribute’s value returns to the
root Content | t em

17.The JSPs returned by the Cont ent | t enlToRender er Pat h component are included in the response.

18.The response is returned to the browser.

Rendering XML or JSON Content

The process for handling XML or JSON output is very similar to that for JSPs, with some minor modifications. The
architecture diagram for an XML or JSON response looks like the following (note that this diagram is identical to
the JSP diagram except for steps 13 and 14):

62

7 Query Integration

Client browser

X
14, Return XML or JSON content

Applicati ATG t 1—End193c;n:eurl,'::"$r 10— Endaca sarializers
Requast 1 phication 2 » EQUESL 3 format= HMLJSOM——»| AssemblerPipelineServlat (XML or J3OM]
Server handling plpeline 1_setlallze Content/tem
4. Call AssemblerTools invokeAssembler()
¥ 12. Return Contentltem
5. Invoke — | AssemblerTools
4_Nuc|eusﬁssernblerFactnry
MucleusAssamblerFactory

11. Return Contentliem

7. Call MucleusAssembler. assembla()

6. Return a

NucleusAssamblar instance hucleusAssembler B

8. Create an initial version of 9. Call getCartridgeHandler{} 10 Raturn manipulated (or

the root Contentitem and for each Contentiiem replaced) Contentlteam
any sub-Contentltems

XML Endeca Content

CartridgeHandlers

Configuration Repository
(base (Experience
configuration) Manager changes)

Serializing the content to XML or JSON is controlled by the Assenbl er Pi pel i neSer vl et . f or mat Par anNane
property. This property specifies the name of the request parameter that must be passed in order to serialize the
content. This property defaults to f or mat , meaning that, in order to serialize output, the request must include
af ormat parameter with an acceptable value. Acceptable values are xm and j son. For example, the following
URL returns j son for a content collection request:

http://1 ocal host: 8080/ assenbl er/ assenbl er ?assenbl er Cont ent Col | ecti on=/ content/
Br owsePageCol | ecti on&f or mat =j son

This example returns j son for a page request:

http://1 ocal host: 8080/ assenbl er/ br owse?f or mat =j son

If the request specifies a valid f or mat parameter and value, then after the Assenbl er Pi pel i neSer vl et
component receives the response Cont ent | t emfrom Assenbl er Tool s, it calls the appropriate Endeca
serializer to reformat the response into XML or JSON. The Assenbl er Pi pel i neSer vl et component then
returns the reformatted content to the client browser.

7 Query Integration 63

When the Assembler Returns an Empty Contentitem

In the case where the Nucl eusAssenbl er instance returns a null response or the response

Cont ent | t emcontains an @r r or key (in other words, the request is not an Assembler request), the

Assenbl er Pi pel i neSer vl et component simply passes the request back to the ATG request handling pipeline
for further processing. This scenario is shown in the diagram below:

10. Pass request back
1o the ATG requast
l handling pipeline

Application ATG request -
Request 1 Server 2—¥ handling pipeline 3+ AssemblerPipelineServiet [+—
4, Call AssemblerTools irvokeAssembler()
v 9. Retumn an empty Contentliem
5. Invoke
— | AssemblarTools
MNucleusAssemblerFactory
NucleusAssemblerFactory

<

4, Returns an empty Contentitem

7. Call NucleusAssembler.assemble])

6. Relurn a

NudeusAssembler instance ™ NucleusAssembler

Note that you can configure an application to bypass the Assenbl er Pi pel i neSer vl et and avoid this scenario.
For more information, see the AssemblerPipelineServlet (page 67) section.

Invoking the Assembler using the InvokeAssembler
Servlet Bean

Invoking the Assembler from within a page, using a servlet bean, allows the call to the Assembler to occuron a
just-in-time basis for the portion of the page that requires Assembler-served content. This approach is desirable

when only a small portion of the page requires Assembler content. This guide refers to these pages as “ATG-
driven pages.”

The request-handling architecture for an ATG-driven JSP page looks like this:

64 7 Query Integration

» HTML output

JSP
15. Render HTML
<droplet name="InvokeAssembler” ., >
<81~ Either the includePage or contentCallection « 14. Include 1o path returned by
paramater is specified hare. —%> ContentltemToRendererPath
=dspzoparam name="output"> 1 2, Invoke dsprerderContentltem to | dsprrenderContentltem

<dgsprrenderContentliem contenthtern="$contentltem}’=—
</dsproparam=
</droplet>

gel renderer path for Contentitern

[

13 Get renderer path for Contentltem
1. Call InvokeAssembler

11. Retum Contentltem ¥

ContentitemToRenderafPath
InvokeAssembler

2. Call AssemblerTools. invokeAssembler(}
10. Return Contentltam

3. Invoke

l—— JR— ¥ blerTooks
MucleusAssemblerFactory sssmbler

MNucleusAssemblerFactory

9. Retum Contentltem

5. Call NucleusAssembler assemble()

4. Retum a
MucleusAssembler instance NucleusAssembler
r Y
6. Create an initial version of 7. Call getCartridgeHandler(} &, Return manmipulated jor
the root Contentitem and far each Contentltam replaced) Contentliem

any sub-Contentitems

XML Endeca Content .
Configuration Repository CarlridgeHandlers
(base (Experiancs
configuration) Manager changes)

In this diagram, the following happens:

1. The JSP page code calls the | nvokeAssenbl er servlet bean and passes it either the i ncl udePage
parameter, for a page request, or the cont ent Col | ect i on parameter, for a content collection request.

2. Thel nvokeAssenbl er servlet bean parses thei ncl udePat h or cont ent Col | ect i on parameter
into an Assembler content request, in the form of a Cont ent | t em | nvokeAssenbl er then calls the
Assenbl er Tool s. i nvokeAssenbl er () method, passing in the Cont ent I t em

3. The Assenbl er Tool s component invokes the cr eat eAssenbl er () method on the/ at g/ endeca/
assenbl er /Nucl eusAssenbl er Fact ory component.

4. The Nucl eusAssenbl er Fact ory component returns an at g. endeca. assenbl er. Nucl eusAssenbl er
instance.

5. The Assenbl er Tool s component invokes the assenbl e() method on the Nucl eusAssenbl er instance
and passes it the Cont ent I t em

7 Query Integration 65

6. The Nucl eusAssenbl er instance assembles the correct content for the request. Content, in Endeca terms,
corresponds to a set of cartridges and their associated data. The Nucl eusAssenbl er instance starts with
the data in the Endeca Experience Manager cartridge configuration files and then modifies that data with
information stored in the Endeca Content Repository (that is, changes made and saved via the Experience
Manager Ul). The assembled content takes the form of a response Cont ent | t emthat consists of a root
Cont ent | t emwhich may have sub-Cont ent I t emobjects as attributes. This Cont ent | t emhierarchy
corresponds to the root cartridge and any sub-cartridges that were used to create the returned content.

7. The Nucl eusAssenbl er instance recursively calls the Nucl eusAssenbl er. get Cart ri dgehandl er ()
method, passing in the Cont ent | t emtype, to retrieve the correct cartridge handlers for the root
Cont ent | t emand any of its sub-items.

8. The cartridge handlers get resolved and executed for the root Cont ent | t emand its sub-items. The resulting
root Cont ent | t emis passed back to the Nucl eusAssenbl er instance.

Note: If a cartridge handler doesn't exist for a Cont ent | t em the initial version of the item, created in step 8,
is returned.

9. The Nucl eusAssenbl er instance returns the root Cont ent | t emto the Assenbl er Tool s component.
10.The Assenbl er Tool s component returns the root Cont ent | t emto the | nvokeAssenbl er servlet bean.

11.When the Cont ent | t emis not empty, the | nvokeAssenbl er servlet bean’s out put oparam is rendered.
In this example, we assume that the out put oparam uses a dsp: r ender Cont ent I t emtag to call the
/ at g/ endeca/ assenbl er/ cartri dge/ renderer/ Cont ent | t eniToRender er Pat h component to
get the path to the JSP renderer for the root Cont ent | t em However, choosing when and how many
times to invoke dsp: r ender Cont ent | t emdepends on what the application needs to do. It may make
sense to invoke dsp: r ender Cont ent | t emfor the root Cont ent | t em and then recursively invoke
dsp: render Cont ent | t emfor all the sub-Cont ent | t ens via additional dsp: r ender Cont ent | t emtags.
Alternatively, you could take a more targeted approach where you invoke dsp: r ender Cont ent | t emfor
individual sub-Cont ent | t ens as needed.

Note that the dsp: r ender Cont ent | t emtag also sets the cont ent | t emattribute on the
Ht t pSer vl et Request , thereby making the Cont ent | t emavailable to the renderers. This value lasts for the
duration of the i ncl ude only.

12.The Cont ent | t enlToRender er Pat h component returns the correct renderer for the Cont ent I t em

13.The JSP returned by Cont ent | t enlToRender er Pat h is included in the response.

14.The response is returned to the browser.

Choosing Between Pipeline Invocation and Serviet Bean
Invocation

As you write your pages, you can choose to make a page Assembler-driven via pipeline invocation versus
making it ATG-driven via servlet bean invocation is based on:

+ The amount of the page’s content that must be configurable by a merchandiser. Pages that must be heavily
configurable by a merchandiser are good candidates for being Assembler-driven.

66 7 Query Integration

+ The number of URLs on the resulting page that should be constructed as Endeca URLs. Pages that contain
many URLs that will result in calls to the MDEX should be constructed by the Assembler, so that those URLs
are properly formed. For example, the category page includes a facets rail on the left side that consists of links
backed by Endeca URLs. These URLs should be constructed by the Assembler API.

Components for Invoking the Assembler

This section provides more details on the components that invoke the Assembler.

AssemblerPipelineServiet

The/ at g/ endeca/ assenbl er/ Assenbl er Pi pel i neSer vl et component is part of Oracle ATG's

request handling pipeline and it is of class at g. endeca. assenbl er. Assenbl er Pi pel i neSer vl et .
Assenbl er Pi pel i neSer vl et s primary task is to invoke the Assembler, passing in a Cont ent | ncl ude (for
a page request) or a Cont ent Sl ot Conf i g (for a content collection request). Assenbl er Pi pel i neSer vl et
is started when the ATG server is started. The/ I ni ti al . properti es file under DAF. Endeca. Assenbl er
configures this behavior by adding Assenbl er Pi pel i neSer vl et to its initial services.

initial Services+=\
/ at g/ endecal assenbl er/ Assenbl er Pi pel i neSer vl et

On invocation of the Assenbl er Pi pel i neSer vl et . servi ce() method, several items are checked to
determine whether or not the servlet should execute:

+ The Assenbl er Pi pel i neSer vl et . enabl e property: If this property is set to f al se, the servlet is disabled
and the request will be passed. This property defaults to t r ue.

+ Theat g. assenbl er context parameter: A web application must explicitly set the at g. assenbl er context
parameter to true in its web. xni file, otherwise the Assenbl er Pi pel i neSer vl et will pass the request. To
set the at g. assenbl er context parameter tot r ue, add the following to the application’s web. xni file:

<cont ext - par an»

<par am nane>at g. assenbl er </ par am nane>
<par am val ue>t r ue</ par am val ue>

</ cont ext - par an

Applications that never have a need to invoke the Assembler, should set at g. assenbl er tof al se to bypass
the servlet and avoid making requests to the Assembler.

+ The MIME type of the request: Assenbl er Pi pel i neSer vl et uses the request URI to determine the MIME
type of the request. If Assenbl er Pi pel i neSer vl et is not allowed to process the specified MIME type, it
passes the request. By default, the Assenbl er Pi pel i neSer vl et component passes all known MIME types
and only executes for a null MIME type. See Bypassing or Invoking the Assembler Based On MIME Type (page
69) for more information on customizing the MIME types that the Assenbl er Pi pel i neSer vl et is
allowed to execute.

+ The Assenbl er Pi pel i neSer vl et . i gnor eRequest URI Pat t er n property: This optional property contains
a regular expression that defines a pattern for URIs that should be disallowed. When this property is set, the
request URI is compared against the specified regular expression and, if the current URI matches the regular
expression, the request is passed. Out of the box, this property is not set.

7 Query Integration 67

If all of the above checks pass, Assenbl er Pi pel i neSer vl et executes. Its first task is to determine whether
the request is a page request or a content collection request. Assenbl er Pi pel i neSer vl et makes this
determination based on the URL, as described in the following sections.

Content Collection Request Identification and Handling

The URL for a content collection request has some additional requirements that the URL for a page request
does not have. Specifically, the URL for a content collection must have an/ assenbl er sub-path and an
assenbl er Cont ent Col | ect i on request parameter, for example:

/ crs/ storeus/assenbl er/ ?assenbl er Cont ent Col | ecti on=Search Box Auto Suggest Content

The/ assenbl er sub-path can take any of these forms:

* /assenbl er

« <cont ext - r oot >/ assenbl er (for example, cr s/ assenbl er)

+ <site.productionURL>/ assenbl er (forexample,/ crs/ storeus/ assenbl er)

The assenbl er Cont ent Col | ect i on request parameter must specify the name of a content collection. If these
content collection URL conditions are met, Assenbl er Pi pel i neSer vl et creates a Cont ent Sl ot Confi g
object and passes it to the Assembler:

contentltem = new Content Sl ot Config(content, ruleLimt);

A content collection URL may also include the optional assenbl er Rul eLi ni t request parameter. This is an
integer value that is used as an argument to the Cont ent Sl ot Conf i g constructor. It determines the number
of items to return from the content collection. If assenbl er Rul eLi ni t is not set or is an invalid value, then the
default value of 1 is used.

/ crs/ storeus/assenbl er/ ?assenbl er Cont ent Col | ecti on=Search Box Auto Suggest
Cont ent &assenbl er Rul eLi m t =3

If the content collection does not exist, the Assembler returns a content item whose cont ent s value is empty.
For example, this URL:

http://1 ocal host: 8080/ assenbl er/ assenbl er ?assenbl er Cont ent Col | ecti on=/ cont ent/
Br owsePageCol | ecti on&f or mat =j son

Results in this data:

{"@ype":"ContentSlot","contents":[],"ruleLimt":1, "contentCollection":"\/content\/
Br owsePageCol | ecti on"}

Page Request Identification and Handling

If the URL does not fit the requirements for a content collection request, the Assenbl er Pi pel i neSer vl et
component assumes that this is a page request. A page request must be transformed into a form that the
Nucl eusAssenbl er class can accept. To do this, the Assenbl er Pi pel i neSer vl et component calls the

68 7 Query Integration

Assenbl er Tool s. get Cont ent Pat h() method to transform the page request URL into a URI and store it in
a Cont ent | ncl ude that can be passed to the Nucl eusAssenbl er class. The Nucl eusAssenbl er class can
then match this URI to the URIs of the pages defined Experience Manager. See the AssemblerTools (page 70)
section for specific details on how the URL transformation is done.

Bypassing or Invoking the Assembler Based On MIME Type

By default, the Assenbl er Pi pel i neSer vl et limits its Assembler invocation to request paths that do not
match a known MIME type. It does this via a reference to the / at g/ dynano/ ser vl et/ pi pel i ne/ M meTyper
component, which is part of the ATG Platform system that routes and executes requests based on matching
MIME types. This configuration prevents the Assenbl er Pi pel i neSer vl et from intercepting requests for JSP,
CSS, HTML, and JavaScript files, among others.

You can add allowed MIME types or disable Assembler invocation for unknown MIME types using the following
Assenbl er Pi pel i neSer vl et configurable properties:

Whet her to invoke the Assenbler for a potential match on a request
that doesn't natch a known M ME type (typically a directory).

H B B H*

assenbl eUnknownM nmeTypes=t rue

A String array of allowed MM types. Defaults to null, but
can be set to a MME type if you want to pass certain extensions to
the Assenbler (for exanple, ".asn' or ".endeca").

H H H O H

al | onedM neTypes=

See the ATG Platform Programming Guide for more information on the M meTyper component.

InvokeAssembler

The/ at g/ endeca/ assenbl er/ dropl et/ | nvokeAssenbl er servlet bean, which is of class

at g. endeca. assenbl er. dropl et . | nvokeAssenbl er, provides a means of invoking the Assembler via a
servlet bean on a page. It is useful on pages that contain mostly ATG content, with a section of Assembler-based
content. Note that, for pages that have multiple sections of Assembler content, you should consider combining
the requests for that content into a single | nvokeAssenbl er call for performance reasons.

Input Parameters

The | nvokeAssenbl er servlet bean has two input parameters, i ncl udePat h and cont ent Col | ecti on,
described below. Note that you must provide one of these parameters but they are mutually exclusive.

includePath

Use the i ncl udePat h parameter for a page request. The path you specify must correspond to the name of

a page in Experience Manager, with the addition of a/ pages prefix. For example, to assemble content for a

br owse page, specify / pages/ br owse for the i ncl udePat h (passing in a/ br owse path will not match because
it is missing the / pages prefix).

I nvokeAssenbl er parses thei ncl udePat h into a Cont ent | ncl ude component. This component contains a
set of parameters, including the request URI, that is used to form a content request for the Assembler.

Thei ncl udePat h and cont ent Col | ect i on parameters are mutually exclusive but one of them must be
passed when using the | nvokeAssenbl er servlet bean.

contentCollection

7 Query Integration 69

Use the cont ent Col | ect i on parameter for a content collection request. The value you provide for
cont ent Col | ecti on must correspond to the name of a content collection in Experience Manager, for
example, Sear ch Box Auto Suggest Content.lnvokeAssenbl er parsesthe cont ent Col | ecti on
into a Cont ent Sl ot Confi g component. This component specifies a content collection and the number
of content items to return from that collection (note, the number of items to return is specified using the
I nvokeAssenbl er. rul eLi mi t parameter, described next).

Thei ncl udePat h and cont ent Col | ect i on parameters are mutually exclusive but one of them must be
passed when using the | nvokeAssenbl er servlet bean.

ruleLimit
This optional parameter is used in conjunction with the cont ent Col | ect i on parameter to specify the number
of items that should be returned from the specified content collection.

Output Parameters

The | nvokeAssenbl er servlet bean has one output parameter, cont ent | t em This parameter contains the
root Cont ent | t emreturned by the Assembler. If this content item is empty, the request was not an Assembler
request.

Open Parameters

Example

The | nvokeAssenbl er has three open parameters.

output
Rendered when the Assembler returns a Cont ent I t em

error
Rendered if the Assembler returns a Cont ent | t emwith an @r r or key. The presence of this key indicates that
the Cont ent | t emdoes not contain any content because the Assembler threw an exception or returned an error.

This code snippet shows how to use the | nvokeAssenbl er servlet bean on a page:

<dsp: i nport bean bean="/at g/ endeca/ assenbl er/ dropl et/ | nvokeAssenbl er"/>
<dsp: dropl et name="| nvokeAssenbl er" >
<dsp: param nanme="i ncl udePat h" val ue="/ pages/ br onse"/ >
<dsp: opar am nane="out put ">
<dsp: get val ueof var="contentltent
vartype="com endeca. i nfront. assenbl er. Content | t enf
paran¥"contentltent />
</ dsp: opar an»
</ dsp: dropl et >

AssemblerTools

The/ at g/ endecal assenbl er/ Assenbl er Tool s component provides commonly used functionality to other
ATG-Endeca query integration components. This component’s functionality includes:

+ Making the actual content request to the Assembler by invoking the assenbl e() method on the
Nucl eusAssenbl er instance and passing it the request Cont ent | t em

+ Assisting the Assenbl er Pi pel i neSer vl et component by transforming the page request URL into a request
Contentltem

70

7 Query Integration

+ Identifying the renderer mapping component to use for the request.

The Assenbl er Tool s component is of class at g. endeca. assenber . Assenbl er Tool s and it has the
following core method:

public Contentltem invokeAssenbl er (Contentltem pContentltemn)

Creating the Assembler Instance and Starting Content Assembly

The Assenbl er Tool s component has a configurable property, assenbl er Fact ory, that out of the box

is setto/ at g/ endecal assenbl er/ Nucl eusAssenbl er Fact ory. The Nucl eusAssenbl er Fact ory
component is responsible for creating the Assembler instance that collects and organizes

content. The Assenbl er Tool s. i nvokeAssenbl er () method calls cr eat eAssenbl er () on the

Nucl eusAssenbl er Fact or y component to create an Assembler instance and then it calls assenbl e() on that
instance to begin the content collection process. More details on the Nucl eusAssenbl er Fact ory component
can be found in the Querying the Assembler (page 76) section.

Transforming a Page Request URL for the AssemblerPipelineServiet

Note: This section describes transforming the URL for a page request into a request Cont ent | t emwhen using
the Assenbl er Pi pel i neSer vl et component only. Other mechanisms exist for creating the Cont ent | t em
when requesting a content collection or when using the | nvokeAssenbl er servlet bean. See the Content
Collection Request Identification and Handling (page 68) and InvokeAssembler (page 69) sections,
respectively, for more information on how those mechanisms work.

For page requests, the Assenbl er Tool s. get Cont ent Pat h() method transforms the request URL into a

Cont ent | t emURI. This URI tells the Assembler the path it should use to determine what content to assemble.
get Cont ent Pat h() takes into account several configurable properties when it calculates the URI. For example,
ifarequestis madetohttp://1 ocal host: 8080/ crs/ storeus/browse/,get Cont ent Pat h() does the
following:

1. Gets the request URI using the at g. servl et. Servl et Uti | class. In this case, the request URI is:
/crs/ storeus/browse/

2. Ifthe Assenbl er Tool s. i sRenpbveSi t eBaseURL() property is true, get Cont ent Pat h() removes the site
base URL (also known as the pr oduct i onURL). In this example, the site base URLis/ cr s/ st or eus, so the
modified URI is:

/ br owse/

3. If Assenbl er Tool s. i sRemoveCont ext Root () property is true and the site base URL has not been
removed, get Cont ent Pat h() removes the context root. In this case, get Cont ent Pat h() has already
removed the site base URL, so the URL remains as is:

/ br owse/

4. Finally, get Cont ent Pat hPr ef i x() inserts the content path prefix. This prefix can be passed
in on the request, using the cont ent Pr ef i x parameter. When get Cont ent Pat hPr ef i x()
executes, it first checks for the existence of the cont ent Pr ef i x request parameter. If this
parameter exists, its value is inserted at the beginning of the URL. If cont ent Pr ef i x does not exist,
get Cont ent Pat hPr ef i x() invokes the Assenbl er Tool s. i sExperi enceManager () method to
determine if Experience Manager is in use. If Experience Manager is in use, i sExper i enceManger ()
returns Assenbl er Tool s. assenbl er Setti ngs. def aul t Experi enceManager Prefi x,
which defaults to / pages. If not, i sExperi enceManager () returns
Assenbl er Tool s. assenbl er Set ti ngs. def aul t Gui dedSear chPr ef i x, which defaults to/ ser vi ces.

7 Query Integration 71

In this example, we assume that Experience Manager is in use, so the final content path URI is:
/ pages/ br owse/

The resulting content path URI is used to construct a content item.
Identifying the Renderer Mapping Component to Use for the Request

The Assenbl er Tool s. def aul t Cont ent | t enlToRender er Pat h property specifies the default component that
should be used to map a response Cont ent | t emto its correct renderer. Having this default ensures that the
same mapping component is used across all web sites:

Qur default service for mapping froma Contentltemto the path of
its correspondi ng JSP rendering page
def aul t Cont ent | t eniToRender er Pat h=cartri dge/ renderer/ Cont ent | t enToRender er Pat h

You can override this setting on a web application-specific basis by specifying a cont ext - par amin your
application’s web. xn file. The name of the parameter must be cont ent | t enToRender er Pat h and the value
must specify the Nucleus path of the mapping component you want to use:

<cont ext - par an>
<par am nane>cont ent | t eniffoRender er Pat h</ par am nane>
<par am val ue>Nucl eus- pat h-t o- mapper </ par am val ue>
</ cont ext - par an>

Defining Global Assembler Settings

The/ at g/ endecal assenbl er/ cartri dge/ manager/ Assenbl er Set t i ngs component defines global
Assembler settings and is referenced by various components. The Nucl eusAssenbl er Set t i ngs component
is of class at g. endeca. assenbl er. Nucl eusAssenbl er Set t i ngs, which is an extension of the class

com endeca. i nfront. assenbl er. Assenbl er Set t i ngs. It has the following properties:

« def aul t Experi enceManager Pr ef i x: Defaults to / pages. Used by the Assenbl er Tool s component when
creating the content path prefix.

+ def aul t Gui dedSear chPr ef i x: Defaults to/ ser vi ce. Used by the Assenbl er Tool s component when
creating the content path prefix.

« experi enceManager : Defaults to t r ue. Used by the Assenbl er Tool s. i sExperi enceManager () method
to determine if Experience Manager is available.

Connecting to Endeca

Some cartridges need to communicate with the Endeca Workbench while others need to communicate directly
with the MDEX instances to do their work. The ATG-Endeca integration includes a number of components to
facilitate both types of communication.

72 7 Query Integration

Connecting to an MDEX

The/ at g/ endeca/ assenbl er/ cartri dge/ manager / MiexResour ce component is a request-scoped
component that represents a connection to a single MDEX. The Nucl eusAssenbl er uses this component to
connect to the correct MDEX for content.

The MlexResour ce component typically uses a $basedOn property to reference either a

Def aul t MilexResour ce component or some other component that can resolve which MDEX to connect to
when an application is supported by multiple MDEX instances. For example, a multi-language application may
use a single MDEX for all of its languages or it may have a separate MDEX for each language. For the single
MDEX case, the MlexResour ce component references the Def aul t MiexResour ce component, which is
configured to connect to that single MDEX. For the multiple MDEX case, Oracle ATG Web Commerce ships with
a Per LanguageMiexResour ceResol ver component that can determine which MDEX to connect to based on
the locale of the current request.

The following sections provide some additional details on the Def aul t MlexResour ce and
Per LanguageMlexResour ceResol ver components themselves.

Note: For more details on using $basedOn properties, see the ATG Platform Programming Guide.
DefaultMdexResource

Out of the box, the MiexResour ce component references the / at g/ endeca/ assenbl er/ cartri dge/
manager / Def aul t MlexResour ce component. The Def aul t MlexResour ce component is an instance of

com endeca. i nfront. navi gati on. nodel . MlexResour ce class and is request-scoped. It has host and por t
properties that determine which MDEX to connect to.

PerLanguageMdexResourceResolver

The/ at g/ endeca/ assenbl er/ cartri dge/ manager/ Per LanguageMlexResour ceResol ver component is
a request-scoped instance of the at g. endeca. assenbl er. navi gat i on. Per LanguageGeneri cRef er ence
class. The Per LanguageGener i cRef er ence class attempts to resolve a component using a base component
path with an additional language-specific suffix. If the Per LanguageGener i cRef er ence class cannot resolve
the component, it tries to resolve the component using a def aul t Conponent Pat h property instead.

Because it is intended to resolve the path to an MiexResour ce component, the
Per LanguageMlexResour ceResol ver component specifies the following for its def aul t Conponent Pat h
and conponent BasePat h properties:

The default MlexResource to use if a | anguage-specific MlexResource
cannot be found.
def aul t Conponent Pat h=/ at g/ endeca/ assenbl er/ cartri dge/ manager/ Def aul t MlexResour ce

The base path for | anguage specific MlexResource conponents. This
will have suffixes like "_en" and "_es" tacked on.
conponent BasePat h=/ at g/ endecal/ assenbl er/ cartri dge/ manager/ MlexResour ce

Additional Multi-Language Configuration Requirements

For each language-specific MiexResour ce component, you should create a properties file in the / at g/
endeca/ assenbl er/ cartri dge/ manager Nucleus path that specifies the host and port for the MDEX that
supports that language. For example:

$basedOn=Def aul t MlexResour ce

7 Query Integration 73

Mlex host
host =host nane

Mlex port
port =port_nunber

Connecting to the Endeca Workbench Application

Oracle ATG Web Commerce has several components for creating a connection to an Endeca Workbench
application. Similar to the MDEX connection components, the Workbench connection components vary
depending on whether your environment has a single Workbench application or multiple applications (for
example, to support multiple languages).

WorkbenchContentSource

The/ at g/ endeca/ assenbl er/ cartri dge/ manager/ Wr kbenchCont ent Sour ce component represents a
connection to a single Workbench application. The Nucl eusAssenbl er class uses this component to connect
to the correct application for content.

DefaultWorkbenchContentSource

Out of the box, the Wor kbenchCont ent Sour ce component, which is of class

at g. nucl eus. Generi cRef er ence, references the / at g/ endeca/ assenbl er/ cartri dge/ manager/

Def aul t Wor kbenchCont ent Sour ce component. Def aul t Wor kbenchCont ent Sour ce is a globally-scoped
component that includes a number of properties for connecting to a single Workbench application. The
properties you are most likely to have to configure are:

+ # Arg1 - Workbench app name: This property provides the first constructor argument for
Wor kbenchCont ent Sour ce and it points to the EAC application. The default property setting is:

$constructor. paranf 1] . val ue=ATGen

+ # Arg3 - Workbench host: This property provides the third constructor argument for
Wor kbenchCont ent Sour ce and it points to the host that the Endeca Workbench is installed on. The default
property setting is:

$constructor. parani 3] . val ue=l ocal host

+ # Arg 4 - Workbench port: This property provides the fourth constructor argument for
Wor kbenchCont ent Sour ce and it points to the port that the Endeca Workbench is using. The default
property setting is:

$constructor. paranf 4] . val ue=8006

PerLanguageWorkbenchContentSourceResolver

The Wor kbenchCont ent Sour ce component also includes configuration for referencing the request-scoped
[at g/ endecal/ assenbl er/ cartri dge/ manager/ Per LanguageWr kbenchCont ent Sour ceResol ver
component which has been commented out:

#$scope=r equest

#| oggi ngl nf o=f al se

#useRequest NaneResol ver =t rue

#conponent Pat h=/ at g/ endeca/ assenbl er/ cartri dge/ nanager/\
Per LanguageWor kbenchCont ent Sour ceResol ver

74

7 Query Integration

This configuration exists for environments that have multiple Workbench applications for

multiple languages. The Per LanguageWor kbenchCont ent Sour ceResol ver component works

similarly to and is of the same class as the Per LanguageMiexResour ceResol ver component,

which is the at g. endeca. assenbl er. navi gat i on. Per LanguageGener i cRef er ence class.

The Per LanguageWr kbenchCont ent Sour ceResol ver component resolves the correct

Wor kbenchCont ent Sour ce component to use based on the appropriate language for the current request and
it also defines a default Wor kbenchCont ent Sour ce component to use if a language-specific version cannot be
resolved. To perform these tasks, the Per LanguageWr kbenchCont ent Sour ceResol ver component sets the
following properties:

The default W rkbenchContent Source to use if a | anguage-specific
Wor kbenchCont ent Sour ce cannot be found.
def aul t Conponent Pat h=\
| at g/ endecal assenbl er/ cartri dge/ manager/ Def aul t Wor kbenchCont ent Sour ce

The base path for |anguage specific WrkbenchCont ent Source conponents. This
will have suffixes like "_en" and "_es" tacked on.
conponent BasePat h=/ at g/ endeca/ assenbl er/ cartri dge/ manager/ Wr kbenchCont ent Sour ce

The Per LanguageWsr kbenchCont ent Sour ceResol ver component is request-scoped so that it will resolve a
new language-specific Wor kbenchCont ent Sour ce component for each request.

Additional Multi-Language Configuration Requirements

Itis an Endeca requirement that the Wor kbenchCont ent Sour ce component used to communicate with

any given Workbench application be globally scoped and started up front, before any requests are made.

This situation is fine for the single language/single Workbench application case, where the cartridges only

need to communicate with one application. For the multi-language case, however, a language-specific

Wor kbenchCont ent Sour ce component should be resolved for each request. To accommodate this
requirement, you create . pr oper ti es files for each language-specific Wor kbenchCont ent Sour ce component,
for example, the following shows a language-specific Wr kbenchCont ent Sour ce properties file for German:

$basedOn=Def aul t Wor kbenchCont ent Sour ce

Argl - Workbench app nane
$constructor. paranf 1] . val ue=ATGde

Arg3 - Workbench host
$constructor. parani 3] . val ue=l ocal host

Aut hori ngCont ent Sour ce par ans

Arg 4 - Workbench port
$constructor. paranf 4] . val ue=8006

After creating the language-specific Wor kbenchCont ent Sour ce components, add them to the
i ntial Services property of the/i nitial component so that they are started on application start-up, for
example:

initial Services+=\
/ at g/ endecal assenbl er/ Assenbl er Pi pel i neServl et \
| at g/ endecal assenbl er/ cartri dge/ manager/ Def aul t Wor kbenchCont ent Sour ce
| at g/ endecal assenbl er/ cartri dge/ manager/ Wr kbenchCont ent Sour ce_es

7 Query Integration 75

| at g/ endecal assenbl er/ cartri dge/ manager/ Wr kbenchCont ent Sour ce_de

To understand how the globally-scoped language-specific Wor kbenchCont ent Sour ce components that exist
on application start up are re-resolved on a per-request basis, we return to the Wor kbenchCont ent Sour ce
configuration, which is:

$scope=r equest
| oggi ngl nf o=f al se
useRequest NaneResol ver =t rue
conponent Pat h=\
/ at g/ endecal/ assenbl er/ cartri dge/ manager/\
Per LanguageWr kbenchCont ent Sour ceResol ver

Specifying $scope=r equest in this configuration causes the globally-scoped Wor kbenchCont ent Sour ce
component that is resolved by the Per LanguageWr kbenchCont ent Sour ceResol ver component

to be inserted into the request scope as an alias. This effectively allows the application to resolve the

Wor kbenchCont ent Sour ce_[| anguage] component on a per-request basis.

Querying the Assembler

The at g. endeca. assenbl er. Nucl eusAssenbl er Fact or y class is responsible for creating the

at g. endeca. assenbl er. Nucl eusAssenbl er instance that retrieves and organizes content. The

Nucl eusAssenbl er Fact or y class implements the com endeca. i nf ront . assenbl er. Assenbl er Factory
interface and defines a cr eat eAssenbl er () method that the Assenbl er Tool s component invokes to
getaNucl eusAssenbl er instance. Nucl eusAssenbl er is an inner class of Nucl eusAssenbl er Fact ory.
Itimplements the com endeca. i nfront. assenbl er. Assenbl er interface and defines an assenbl e()
method that the Assenbl er Tool s component invokes to begin a query. The following code excerpt from
Assenbl er Tool s. j ava shows the use of these two methods:

/1l Get the assenbler factory and create an Assenbl er

Assenbl er assenbl er = get Assenbl er Factory().creat eAssenbl er();

assenbl er . addAssenbl er Event Li st ener (new Assenbl er Event Adapter());
/1 Assenbl e the content

Contentltem responseContentltem = assenbl er. assenbl e(pContentlten);

In addition to retrieving the base content from the cartridge XML configuration files, the Nucl eusAssenbl er
class also modifies that content as necessary using Car t ri dgeHand| er components. The

Nucl eusAssenbl er Fact ory component provides the Nucl eusAssenbl er class with the configuration it
needs to find the correct Car t ri dgeHandl er components. Cart ri dgeHandl er s can be found either by using
a default naming strategy (that is, looking for a Nucleus component named after the car t ri dgeType in one of
the Nucl eusAssenbl er Fact ory component’s path properties), or via an explicit mapping. To support these
strategies, the Nucl eusAssenbl er Fact ory component provides the following properties:

« experi enceManager Handl er Pat h: Defaults to the / at g/ endeca/ assenbl er/ cartri dge/ handl er/
exper i encemanager folder.

+ gui dedSear chHandl er Pat h: Defaults to the / at g/ endeca/ assenbl er/ cartri dge/ handl er/
gui dedsear ch folder.

76

7 Query Integration

+ def aul t Handl er Pat h: Defaults to the / at g/ endeca/ assenbl er/ cartri dge/ handl er folder.

+ handl er Mappi ng: AMap<String, String> property that provides a map from the cartri dgeType to the
Nucleus path of the corresponding Car t ri dgeHandl er component. This property can be used to override
the default mapping specified in path properties.

When looking for a cartridge handler, the Nucl eusAssenbl er class first invokes the

Assenbl er Tool s. i sExperi enceManager () method to determine if Experience Manager is present or
not. If i sExperi enceManager () returnstr ue, the Nucl eusAssenbl er class tries to locate the correct
handler in the path specified by the Nucl eusAssenbl er Fact or y.experi enceManager Handl er Pat h
property. For example, for the MyCar t ri dge cartridge, the Nucl eusAssenbl er class would look

for the handler called / at g/ endeca/ assenbl er/ cartri dge/ handl er/ experi encenanager/
MyCartridge.Ifi sExperi enceManager () returnsf al se, the Nucl eusAssenbl er class looks for

the handler in the path specified by the Nucl eusAssenbl er Fact ory. gui dedSear chHandl er Pat h
property. If neither path resolves successfully, the Nucl eusAssenbl er class looks for the handler

in the path specified by the Nucl eusAssenbl er Fact ory. def aul t Handl er Pat h. Finally, if the

Nucl eusAssenbl er class still cannot find the correct handler, it looks at the explicit mappings defined in the
Nucl eusAssenbl er Fact ory. handl er Mappi ng property.

Note that, out of the box, the handl er Mappi ng property provides override mappings to handlers for the default
set of Endeca cartridges:

Explicit cartridge handl er mappings
handl| er Mappi ng=\
Di mensi onSear chAut oSuggest | t e/ at g/ endecal/ assenbl er/ cartri dge/ handl er/\
Di nensi onSear chResul t s, \
Hor i zont al Recor dSpot | i ght =/ at g/ endeca/ assenbl er/ cartri dge/ handl er/\
Recor dSpot | i ght,\
Cont ent Sl ot Header =/ at g/ endeca/ assenbl er/ cartri dge/ handl er/ Content Sl ot , \
Cont ent Sl ot Secondar y=/ at g/ endecal/ assenbl er/ cartri dge/ handl er/ Content Sl ot , \
Cont ent Sl ot Mai n=/ at g/ endecal/ assenbl er/ cartri dge/ handl er/ Cont ent Sl ot , \
PageSl| ot =/ at g/ endeca/ assenbl er/ cartri dge/ handl er/ Cont ent Sl ot

Cartridge Handlers and Their Supporting Components

The default folder that Nucleus will try to resolve cartridge handlersinis/ at g/ endeca/ assenbl er/
cartridge/ handl er.The/ confi g subdirectory in that same location contains configuration components
associated with the Car t ri dgeHand| er components. Similarly,/ at g/ endeca/ assenbl er/ cartri dge/
handl er/ xngr and/ at g/ endeca/ assenbl er/ cartri dge/ handl er/ gui dedsear ch folders contain
cartridge handlers that are specific to Experience Manager and Guided Search, respectively, and they also have
their own / conf i g sub-paths.

Note: Currently, the / at g/ endeca/ assenbl er/ cartri dge/ handl er/ xngr and/ at g/ endecal assenbl er/
cartridge/ handl er/ gui dedsear ch folders are empty and function only as placeholders for future
components.

Cartridge Manager Components

The components in the/ at g/ endeca/ assenbl er/ cartri dge/ manager Nucleus folder provide additional
cartridge support outside of what can be found in the cartridge handlers themselves. For example,

7 Query Integration 77

the Navi gat i onSt at eBui | der and Navi gat i onSt at e components build and represent the current
navigation state, respectively; the Fi | t er St at e component represents the state of any filters; and the
MiexRequest Bui | der component builds MDEX requests.

Providing Access to the HTTP Request to the Cartridges

The/ at g/ endeca/ servl et/ request / Nucl eusHt t pSer vl et Request Provi der component, which is of
class at g. endeca. servl et . request . Nucl eusHt t pSer vl et Request Pr ovi der, provides access to the
current request to various components in both the / at g/ endeca/ assenbl er/ cartri dge/ handl er and/
at g/ endecal assenbl er/ cartri dge/ manager Nucleus folders.

Controlling How Cartridges Generate URLs

If a cartridge provides links to another Endeca navigation or record state, the URL path for each link is
provided as an action string in the response Cont ent | t em Two components, Basi cUr | For mat t er and
Def aul t Act i onPat hPr ovi der, assist the cartridges in forming action strings. This section provides some
details on both.

BasicUrlFormatter

The/ at g/ endeca/ ur | / basi ¢/ Basi cUr | For mat t er component is of class

com endeca. sol eng. url formatter. basi c. Basi cUr | For mat t er. This class is responsible for serializing
action strings from a navigation state, for example, ?N=4294967263. It includes properties such as

def aul t Encodi ng and pr ependQuest i onMar ks that control how the strings are generated. Out of the box
these properties are set to UTF- 8 and t r ue, respectively.

For more information on the Basi cUr | For mat t er class, refer to the Assembler Application Developer’s Guide in
the Oracle Endeca Commerce documentation.

DefaultActionPathProvider

The/ at g/ endeca/ assenbl er/ cartri dge/ manager/ Def aul t Act i onPat hPr ovi der component, of class
at g. endeca. assenbl er. navi gat i on. Def aul t Act i onPat hPr ovi der, creates the first portion of the action
strings that are stored in Cont ent | t ens. For example, in the link below:

/ br owse?N=4294967263
The / br owse portion of the link is generated by Def aul t Act i onPat hPr ovi der .

The at g. endeca. assenbl er. navi gat i on. Def aul t Acti onPat hProvi der class implements the
com endeca. i nfront. navi gation. url . ActionPat hProvi der interface and its four methods:

» get Def aul t Navi gati onActi onSi t eRoot Pat h()

» get Def aul t Navi gati onActi onCont ent Pat h()

» get Def aul t Recor dAct i onSi t eRoot Pat h()

» get Def aul t Recor dAct i onCont ent Pat h()

The Def aul t Act i onPat hPr ovi der class also has the following properties:

« def aul t Experi enceManager Navi gat i onAct i onPat h (defaults to/ br owse)

- def aul t Experi enceManager Recor dAct i onPat h (defaults to/ pr oduct)

78

7 Query Integration

+ def aul t Qui dedSear chNavi gat i onAct i onPat h (defaults to/ gui dedsear ch)
- def aul t Gui dedSear chRecor dAct i onPat h (defaultsto/ recor ddet ai | s)

When get Def aul t Navi gat i onAct i onSi t eRoot Pat h() or get Def aul t Recor dAct i onSi t eRoot Pat h() is
called as part of the assembly process, the Assenbl er Tool s. assenbl er Set ti ngs() method is invoked to
retrieve and return the default prefix. This prefix is dependent on whether or not Experience Manager or Guided
Search is installed and defaults to / pages and / ser vi ce, respectively.

When get Def aul t Navi gat i onAct i onCont ent Pat h() is called as part of the assembly process,

Assenbl er Tool s. i sExperi enceManager () method is invoked to determine if Experience

Manager is in use. If so, the Def aul t Act i onPat hPr ovi der component returns the value of the

def aul t Exper i enceManager Navi gat i onAct i onPat h property, which defaults to / br owse. If not, the
component returns the value of the def aul t Gui dedSear chNavi gat i onAct i onPat h property, which defaults
to/ gui dedsear ch.

Similarly, when get Def aul t Recor dAct i onCont ent Pat h() is called,

Assenbl er Tool s. i sExperi enceManager () method is invoked to determine if Experience

Manager is in use. If so, the Def aul t Act i onPat hPr ovi der component returns the value of the

def aul t Exper i enceManager Recor dAct i onPat h property, which defaults to / pr oduct . If not, the
component returns the value of the def aul t Gui dedSear chRecor dAct i onPat h property, which defaults to /
recorddetails.

Sorting the Search Results List

The ATG-Endeca integration includes the / at g/ endeca/ assenbl er/ cartri dge/ handl er/ Resul t sLi st
component. This component’s class, at g. endeca. assenbl er. cartri dge. handl er. Resul t sLi st Handl er,
overwrites the com endeca. i nfront. cartri dge. Resul t sLi st Handl er class and includes an additional
sort ers property of type at g. Nucl eus. Ser vi ceMap. The keys of this Ser vi ceMap are descriptive names

for the sorting options and the values are the components that perform the actual sorting. Out of the box, the
Resul t sLi st component sets the sor t er s property as follows:

sorters=\
NameDescendi ng=/ at g/ endeca/ assenbl er/ cartri dge/ sort/ NameDescendi ng, \
Rel evance=/ at g/ endecal/ assenbl er/ cartri dge/ sort/ Rel evance, \
NameAscendi ng=/ at g/ endeca/ assenbl er/ cartri dge/ sort/ NaneAscendi ng, \

The at g. endeca. assenbl er. cartri dge. handl er. Resul t sLi st Handl er. set Sort er s()

method transforms the sort er s Ser vi ceMap into a Li st of

com endeca. i nfront. cartridge. nodel . Sort Opti onConfi g components. It then passes that Li st when
it calls the com endeca. i nfront. cartri dge. nodel . Sort Opti onConfi g. set Sort Opti ons() method to
set the sort options. This technique of creating a Ser vi ceMap and then using it to create a Li st of components
is necessary because Nucleus cannot set Li st s of components directly.

Retrieving Renderers

The ATG Platform includes one component, Cont ent | t eniToRender er Pat h, and one dsp tag,
dsp: render Cont ent | t em for retrieving the correct renderer for a content item.

7 Query Integration 79

ContentitemToRendererPath

The/ at g/ endeca/ assenbl er/ cartri dge/ render er/ Cont ent | t eniToRender er Pat h component is
responsible for locating the correct renderer for the Cont ent | t emthat has been return by the Assembler

in response to a request. The Cont ent | t enlToRender er Pat h component is an instance of the class

at g. endeca. assenbl er. cartridge. renderer. Cartri dgeRender i ngPat hMapper I npl , which
implements the at g. endeca. assenbl er. cartridge. renderer. Cartri dgeRenderi ngMapper interface.
The core method of the Cart ri dgeRender i ngMapper interface is:

public String getRendererPat hForContentlten(Contentltem plten);

The get Render er Pat hFor Cont ent | t en{) method returns the web-app relative path of the JSP file used to
render the Cont ent I t em

Creating the Path

The Cont ent | t enTToRender er Pat h component provides some configurable properties that control how a
Cont ent | t emis mapped to a JSP path:

« format String: The string that defines the relative path of the JSP file. Defaults to/ cart ri dges/
{cartridgeType}/{cartridgeType}{sel ectorSuffix}.jsp.{cartridgeType} isreplaced by the
type of the current Cont ent I t em which is determined using the car t ri dgeTypePr oper t yName property,
described below. { sel ect or Suf f i x} is provided by the Sel ect or Repl acenent Val uePr oducer, also
described below.

« cartridgeTypePropertyName: The name of the Cont ent | t emproperty that contains the cart ri dgeType.
Defaultstocartri dgeType.

+ content | tenToRepl acenment Propert yNanes: A map that creates a relationship between a source
Cont ent | t emattribute’s name and a f or mat St ri ng property name. You can use this map to make
Cont ent | t emproperties available for use in the f or mat St ri ng.

+ repl acenent Val uePr oducer s: An array of Repl acenent Val uePr oducer s, described below, that makes
additional values available for use in the f or mat St ri ng.

To create the path, get Render er Pat hFor Cont ent | t en() creates a replacement map that gets populated
with values calculated by other components or retrieved from other contexts. The replacement map values are
then used to replace placeholders in the Cont ent | t eniToRender er Pat h.f or mat St ri ng property, resulting in
a string that defines the relative path of the JSP file.

ReplacementValueProducer and SelectorReplacementValueProducer

The at g. endeca. assenbl er. cartri dge. render er. Repl acenent Val uePr oducer interface can be
implemented by components that need to make new, perhaps dynamically-generated, values available for use
in the replacement map and, by extension, the f or mat St r i ng. It contains one method that adds values to the
replacement map.

/** Add any repl acenent values to pMap. Note that a given

* instance may add a single value, nultiple values, or none.

*

* @aram pMap--The map to add paraneters to.

* @aram pContentltem-The Contentltem (available for reference

* and cal cul ati ng repl acenent val ues based on the content iten)
* Contentltem shoul d not be nodified.

* @aram pRequest--The current request. May be null, if invoked

80 7 Query Integration

* outsi de of a request.
*/
public void addRepl acerment Val ues(Map<String, String> pMap,
Content|tem pContentltem
Ht t pSer vl et Request pRequest);

Out of the box, the ATG Platform includes one replacement value producer, the / at g/ endeca/ assenbl er/
cartridge/ renderer/ Sel ect or Repl acenent Val uePr oducer . This component adds a sel ect or and

sel ect or Suf f i x to the replacement map, if needed. A sel ect or represents the type of device being used to
view the web page, for example, a mobile device. The sel ect or Suf fi x is a corresponding suffix—for example,
“_mobile”"—that gets added to the end of the JSP renderer path, so that the correct JSP is rendered for that type
of device.

The Sel ect or Repl acenent Val uePr oducer component is of class
at g. endeca. assenbl er. cartri dge. render er and its primary configurable properties are:

« browser TypeToSel ect or Name: A map where the key is the browser type and the value is the
corresponding type of device (the “selector”). Out of the box, this property is configured to include the entry
i OSMobi | e=nobi | e, which declares that when the browser type isi OSMbbi | e, the value in the replacement
map for sel ect or is nobi | e. The sel ect or Suf fi x always has the same value as the sel ect or witha
preceding underscore, making the sel ect or Suf f i x in this case _nobi | e. If no matching browser type is
found, sel ect or and sel ect or Suf f i x are not set.

+ sel ect or KeyNane: The name of the key to use when putting the selector value into the replacement map.
Defaults to sel ect or.

+ sel ect or Suf f i xKeyNane: The name of the key to use when putting the selector suffix value into the
replacement map. Defaults to sel ect or Suf fi x.

+ sel ector Overri dePar amet er Nane: The name of a request query parameter that can be used to override
the selector setting in the replacement map. Defaults to ci Sel ect or . This property allows you to force a
selector value of nobi | e by having a ci Sel ect or query parameter value of mobi | e.

dsp:renderContentitem
The dsp: r ender Cont ent | t emJSP tag has two responsibilities:

+ For a JSP response, it locates and dispatches to a rendering JSP page. The dsp: r ender Cont ent | t emtag uses
the Cont ent | t eniToRender er Pat h component to determine the path of the JSP page to include.

+ Itsetsan Ht t pSer vl et Request . cont ent | t emattribute to the specified cont ent | t em This provides a well-
known attribute for rendering pages to pull data from; however, this attribute is set for the duration of the
i ncl ude only.

The dsp: render Cont ent | t emtag supports the following tag attributes:

+ cont ent | t em(required) - The Cont ent | t emto locate a rendering JSP page for. The value of the
cont ent | t emrequest attribute is also set to this Cont ent | t em for the duration of the i ncl ude.

- format (optional) - Specifies whether the response should be serialized into JSON or XML. Acceptable values
arej sonorxm .

+ webApp (optional) - The web application that the i ncl ude is relative to. By default, the current web
application is used, but by passing another value in the webApp attribute, you can specify ani ncl ude that
is relative to a different web application. The value of webApp may either be the content root of the target

7 Query Integration 81

web application (in which case, it must begin with a slash) or the display name of webApp (in which case, it is
located via Oracle ATG's WebAppRegi st ry; see the ATG Platform Programming Guide for more information on
the WebAppRegi stry).

+ var (optional) - The name of the request attribute to set. You can use var to override the default request
attribute name of cont ent I t em

Similar to dsp: i ncl ude, dsp: r ender Cont ent | t emsupports either nested dsp: par amtags or dynamic
attributes for setting additional parameters.

82

7 Query Integration

8 Configuring and Using the Sample
Query Application

The 10.1.1 installation of the Conrmer ceRef er enceSt or e module includes a sample query application that you
can use to query the MDEX engines via an Endeca Assembler instance. This chapter describes how to configure
and use this application.

The sample query application depends on both Nucleus configuration on the ATG production server as well
as Experience Manager or Guided Search configuration in the Endeca environment. The following section
describes the Nucleus configuration requirements, which you may or may not have to change, based on your
environment’s setup. In all cases, the Experience Manager or Guided Search configuration will have to be
updated. Those changes are described in Endeca Configuration for the Sample Query Application (page 86).

Note that, while it is packaged as part of the Conmrer ceRef er enceSt or e module, the sample query application
is a separate application and it is not part of Commerce Reference Store. Commerce Reference Store does not
use the Endeca integration in version 10.1.1.

ATG Configuration for the Sample Query Application

The default ATG configuration supports running the sample query application under the following conditions:
+ ATG and Endeca software are installed on the same machine.

+ Experience Manager is installed in the Endeca environment.

+ You are using a single MDEX for all your languages and it uses the default Live Dgraph port of 15000.

* You are using the default Endeca Workbench host and port values, which are | ocal host and 8006,
respectively.

» You have a single Endeca application named ATGen.

If your environment satisfies all of these conditions, there is no additional ATG configuration required for
the sample query application. If your environment differs from this set up, refer to the following sections for
information on how to modify the ATG configuration accordingly. These sections cover environments that:

+ Have a separate MDEX and Endeca application for each language.
+ Use non-default values for Endeca hosts, ports, or application names.

» Use Guided Search only, without Experience Manager.

8 Configuring and Using the Sample Query Application 83

All of the configuration modifications described in this section are made to the ATG production server instance.
After modifying the Nucleus configuration, be sure to restart your ATG production server.

Configuration for Environments with One Language per MDEX

If your environment has one language per MDEX, you need to create language-specific
Wor kbenchCont ent Sour ce and MDEXResour ce components so that the Assembler can connect to the correct
Workbench and MDEX instances.

Note: This section assumes you have used the naming convention ATGPr odl ang for the Endeca applications
that support the ATG production server instance.

To modify the ATG configuration for language-specific MDEX and Workbench instances:

1. Createan | ni tial . properti es file in SDYNAMO HOME/ ser ver s/ ATG pr oduct i on- server/
| ocal confi g, where ATG pr oduct i on- ser ver is the name of your ATG production instance.

2. Editthelnitial . properti es file to add the language-specific versions of the Wor kbenchCont ent Sour ce
component (note, you will create these language-specific components momentarily). For example, if your
application supports English, German, and Spanish, the entry for thei ni ti al Ser vi ces property would look
like this:

initial Services+=\

/ at g/ endecal/ assenbl er/ cartridge/ manager/ Wr kbenchCont ent Sour ce_en, \
| at g/ endecal assenbl er/ cartri dge/ manager/ Wr kbenchCont ent Sour ce_de, \
/ at g/ endeca/ assenbl er/ cartri dge/ manager/ Wr kbenchCont ent Sour ce_es

3. In $DYNAMD_HOVE/ ser ver s/ ATG producti on-server /| ocal confi g,add an/ at g/ endeca/
assenbl er/ cartri dge/ manager/ Wr kbenchCont ent Sour ce. properti es file with the following
contents:

$cl ass=at g. nucl eus. Generi cRef erence

$scope=r equest

| oggi ngl nf o=f al se

useRequest NaneResol ver =t r ue

conponent Pat h=/ at g/ endeca/ assenbl er/ cartri dge/ manager/\
Per LanguageWr kbenchCont ent Sour ceResol ver

4. In $DYNAMO _HOVE/ ser ver s/ ATG product i on-server/ | ocal confi g,add an/ at g/ endeca/
assenbl er/ cartri dge/ manager/ Wr kbenchCont ent Sour ce_| ang. properti es file with the following
contents for each language your application needs to support:

$basedOn=Def aul t Wor kbenchCont ent Sour ce
$constructor. paranf 1] . val ue=ATGPr odl ang

Where | ang is a two-letter language code. For example, for English, create an/ at g/ endeca/ assenbl er/
cartridge/ manager/ Wr kbenchCont ent Sour ce_en. properti es file with the following contents:

$basedOn=Def aul t Wr kbenchCont ent Sour ce
$constructor. paranf 1] . val ue=ATGPr oden

5. In $DYNAMDO_HOVE/ ser ver s/ ATG producti on-server /| ocal confi g,add an/ at g/ endeca/
assenbl er/ cartri dge/ manager/ Def aul t Wor kbenchCont ent Sour ce. proper ti es file with the
following contents:

$constructor. paranf 1] . val ue=ATGPr odl ang

84

8 Configuring and Using the Sample Query Application

Where | ang is the two-letter language code for your application’s default language. For example,
if English is your default language, create an/ at g/ endeca/ assenbl er/ car t ri dge/ manager/
Def aul t Wor kbenchCont ent Sour ce. proper ti es file with the following contents:

$constructor. paranf 1] . val ue=ATGPr oden

6. In $SDYNAMD_HOME/ ser ver s/ ATG product i on-server/| ocal confi g,add an/ at g/ endeca/
assenbl er/ cartri dge/ manager/ MiexResour ce. properti es file with the following contents:

$basedOn=Per LanguageMiexResour ceResol ver

7. In $DYNAMD_HOVE/ ser ver s/ ATG producti on-server /| ocal confi g,add an/ at g/ endeca/
assenbl er/ cartri dge/ manager/ MlexResour ce_| ang. pr oper ti es file, where | ang is a two-letter

language code, for each language your application needs to support. The contents of each file should look
like this:

$basedOn=Def aul t MlexResour ce
host =ndex- host - machi ne
por t =port - nunber

ndex- host - machi ne and por t - nunber are the name of the machine and the Live Dgraph port number for
the MDEX instance that supports the associated language.

Configuration for Non-Default Endeca Hosts, Ports, or Application Names

The/ at g/ endeca/ assenbl er/ cartri dge/ manager/ Def aul t MlexResour ce and/ at g/ endeca/
assenbl er/ cartri dge/ manager/ Def aul t Wor kbenchCont ent Sour ce components both have properties
that refer to Endeca hosts, ports, and application names. If you are using non-default Endeca hosts, ports, or
application names, you may have to modify these components.

Out of the box, the Def aul t MlexResour ce. properti es file looks like this:

$cl ass=com endeca. i nfront. navi gati on. nodel . MlexResour ce
$scope=r equest

Mlex host
host =l ocal host

Mlex port
port=15000

Record spec nane
recor dSpecNane=common. i d

In environments that have a single production MDEX for all languages, the host and port properties refer

to the host and port of that single MDEX. In environments that have a separate production MDEX for each
language, the host and port properties specify the host and port for the MDEX instance that should be used
when a language-specific MDEX instance is not available. If the default configuration does not match your
environment, make the appropriate changes in your ATG production server’s | ocal confi g directory.

Note: For more information on how Def aul t MlexResour ce is used, see Connecting to an MDEX (page 73).

Out of the box, the Def aul t Wor kbenchCont ent Sour ce. properti es file includes a number of properties,
however, the ones you may have to change are:

8 Configuring and Using the Sample Query Application 85

Argl - Workbench app nane
$constructor. paranf 1] . val ue=ATGen

Arg3 - Workbench host
$constructor. parani 3] . val ue=l ocal host

Arg 4 - Workbench port
$constructor. paranf 4] . val ue=8006

In environments that have a single production Endeca application for all, the host, port and application name
properties refer to the host, port, and application name of that Endeca application. In environments that have

a separate Endeca application for each language, the host, port, and application name properties refer to the
Endeca application that should be used when a language-specific Endeca application is not available. If the
default configuration does not match your environment, make the appropriate changes in your ATG production
server's| ocal confi g directory.

Note: If you followed the instructions in the Configuration for Environments with One Language per
MDEX (page 84) section, you will have already changed the Def aul t Wor kbenchCont ent Sour ce
component to use the ATGPr oden Endeca application name.

Note: For more information on how Def aul t Wor kbenchCont ent Sour ce is used, see Connecting to the Endeca
Workbench Application (page 74).

Configuration for Guided Search Environments

For environments that are using Guided Search instead of Experience Manager, add an/ at g/ endeca/
assenbl er/ cartri dge/ manager/ Assenbl er Set ti ngs. properti es file with the following contents to
$DYNAMO_HOME/ ser ver s/ Producti onServer/| ocal confi g:

experi enceManager =f al se

Endeca Configuration for the Sample Query Application

This section describes configuration changes necessary for both Experience Manager and Guided Search
environments. Follow the instructions that correspond with your environment.

Experience Manager Configuration

Endeca applications accessed by ATG should be created using the product catalog-specific deployment
template. This template creates pages and content collections based on Oracle Endeca’s Discover reference
application. These pages and content collections must be removed and replaced with pages and content
collections that are appropriate for the ATG sample query application. This section provides instructions on how
to do this.

To delete the existing pages and content collections:

86

8 Configuring and Using the Sample Query Application

. In a browser, go to your Endeca Workbench. If you used the defaults during your Endeca installation, the

Workbench URL is:

http://1 ocal host: 8006

. Enter your Workbench username and password (admin/admin are the defaults) and choose your production

application from the Application menu. If your environment has separate production applications for each
language (for example, ATGPr oden, ATGPr odes, or ATGPr odde), choose any one of them. You will have to
repeat these procedures for all of your language-specific production applications.

. Click Experience Manager.

. Delete all of the existing pages and content collections. To delete an item, highlight it, click its Actions arrow,

and choose Delete. Click Delete again to confirm the removal.

To create a/ br owse page:

1

4.

5.

Click the Actions arrow for Pages and choose Add Page.

. Enter br owse for the Name/URL and click Create.

Note: Do not change the name of this page. The Assembler integration API relies on the name br owse.

. Click Select Template. The Select Template window appears.

Select PageSl ot and click OK.

Click Save.

To create the content collections for the / br owse page:

1

8.

9.

Click the Actions arrow for Content and choose Add Collection.

. Enter br owseCol | ect i on for the name, choose Page from the Content Type Allowed menu, and click Add.
. Click New Page.
. Click Select Template, choose TwoCol unmPage, and click OK.

. On the Content Editor tab, click header Cont ent to specify the cartridges that will appear in the header area

of the two column page.

. Under Section Settings, click Add. Choose the Sear chBox and click OK.

. Click secondar yCont ent to add content to the left hand rail of the two column page.

Under Section Settings, click Add. Choose Br eadcr unbs and click OK.

Under Section Settings, click Add again. Choose Cont ent S| ot Secondar y and click OK.

10.Click mai nCont ent to add content to the main portion of the two column page.

11.Under Section Settings, click Add again. Choose Cont ent S| ot Mai n and click OK.

12.Click the Activate link, then click Save Changes.

To configure the / br owse page to use the br owseCol | ect i on:

1.

In the Pages listing, click the br owse page.

8 Configuring and Using the Sample Query Application

87

2.

Click the Content Collection menu and choose / cont ent / br owseCol | ect i on, then click Save Changes.

To configure the secondary content on the / br owse page:

1.

2.

8.

9.

Click the Actions arrow for Content and choose Add Collection.

Enter secondar yCol | ect i on for the name, choose Secondar yCont ent from the Content Type Allowed
menu, and click Add.

. Click New SecondaryContent.
. Click Select Template, choose Gui dedNavi gat i on, and click OK.

. On the Content Editor tab, click Generate Guided Navigation. The Generate Guided Navigation window

appears.

. Click Select All, then click Generate Cartridges.

. Click the Activate link, then click Save Changes.

Expand the br owseCol | ect i on item and click New Page.

On the Content Editor tab, under secondar yCont ent, click Secondary Content Sl ot.

10.Click the Content Collection menu and choose / cont ent / secondar yCol | ect i on, then click Save Changes.

To configure the main content on the / br owse page:

1.

2.

8.

9.

Click the Actions arrow for Content and choose Add Collection.

Enter mai nCol | ect i on for the name, choose Mai nCont ent from the Content Type Allowed menu, and click
Add.

. Click New MainContent.

. Click Select Template, choose Resul t sLi st, and click OK.
. Make sure that Relevance Ranking is set to Margin Bias.

. Set the Default Sort to Default.

. Click the Activate link, then click Save Changes.

Expand the br owseCol | ect i on item and click New Page.

On the Content Editor tab, under mai nCont ent, click Mai n Content Sl ot.

10.Click the Content Collection menu and choose / cont ent / mai nCol | ect i on, then click Save Changes.

To create a/ pr oduct page:

1.

2.

Click the Actions arrow for Pages and choose Add Page.
Enter pr oduct for the Name/URL and click Create.

Note: Do not change the name of this page. The Assembler integration API relies on the name pr oduct for
the product detail pages.

. Click Select Template. The Select Template window appears.

. Select PageS! ot and click OK.

88

8 Configuring and Using the Sample Query Application

5. Click Save.

To create the content collections for the / pr oduct page:

1. Click the Actions arrow for Content and choose Add Collection.

2. Enter pr oduct Col | ect i on for the name, choose Page from the Content Type Allowed menu, and click Add.
3. Click New Page.

4. Click Select Template, choose OneCol utmPage, and click OK.

5. On the Content Editor tab, click header Cont ent to specify the cartridges that will appear in the header area
of the one column page.

6. Under Section Settings, click Add. Choose the Sear chBox and click OK.

7. Click mai nCont ent to add content to the main area of the one column page.

8. Under Section Settings, click Add. Choose Pr oduct Det ai | and click OK.

9. Click the Activate link, then click Save Changes.

To configure the / pr oduct page to use the pr oduct Col | ecti on:

1. In the Pages listing, click the pr oduct page.

2. Click the Content Collection menu and choose / cont ent / pr oduct Col | ect i on, then click Save Changes.
To promote your changes to the Endeca application:

1. In a command prompt or UNIX window, go to the/ cont r ol directory for the application you just configured,
for example, usr/ | ocal / Endeca/ Apps/ ATGPr oden/ cont r ol or C:\ Endeca\ Apps\ ATGPr oden\ control .

2. Runthe pronot e_cont ent . sh| bat script.

IMPORTANT: For environments that have a separate production application for each language (for example,
ATGPr oden, ATGPr odes, or ATGPr odde), repeat these procedures for each application.

Guided Search Configuration

For environments that use Guided Search, you must remove the Rule Manager configuration and promote the
content to the Endeca application.

To remove Rule Manager configuration:

1. In a browser, go to your Endeca Workbench. If you used the defaults during your Endeca installation, the
Workbench URL is:

http://1 ocal host: 8006

2. Enter your Workbench username and password (admin/admin is the default) and choose your production
application from the Application menu. If your environment has a separate production applications for each
language (for example, ATGPr oden, ATGPr odes, or ATGPr odde), choose any one of them. You will have to
repeat these procedures for all of your language-specific production applications.

3. Click Rule Manager.

8 Configuring and Using the Sample Query Application 89

4. Delete all of the items under Right Column Spotlights, except for the Default Spotlight.
To promote your changes to the Endeca application:

1. Ina command prompt or UNIX window, go to the/ cont r ol directory for the application you just configured,
for example, / usr /| ocal / Endeca/ Apps/ ATGPr oden/ contr ol or C:\ Endeca\ Apps\ ATGPr oden
\control.

2. Runthe pronot e_cont ent . sh| bat script.

Viewing the Sample Query Application

After completing the Nucleus and Endeca configurations, you can view the sample query application.

Viewing the Sample Query Application in Experience Manager Environments

There are two URLs you can use to view the sample query application in an Experience Manager environment.
The first URL invokes the Assenbl er Pi pel i neSer vl et component to complete the request:

http://host: port/assenbl er/ browse

Where host and port refer to the ATG production server's host and HTTP port. For example, assuming you
accepted the default HTTP port for the ATG production server under WebLogic, the URL is:

http://1ocal host: 7003/ assenbl er/ br onse

The second URL invokes the | nvokeAssenbl er servlet bean to complete the request:

http://host: port/assenbl er/index.jsp

Again, assuming a default HTTP port, the URL is:

http://1ocal host: 7003/ assenbl er/i ndex. j sp

Viewing the Sample Query Application in Guided Search Environments

The URL you use to view the sample query application in Guided Search environment is:

http://host: port/assenbl er/ gui dedsearch

Where host and port refer to the ATG production server's host and HTTP port. For example, assuming you
accepted the default HTTP port for the ATG production server under WebLogic, the URL is:

20

8 Configuring and Using the Sample Query Application

http://1 ocal host: 7003/ assenbl er/ gui dedsear ch

8 Configuring and Using the Sample Query Application

91

92

8 Configuring and Using the Sample Query Application

Index

A

Assembler-driven pages, 60, 66
AssemblerPipelineServlet, 67
AssemblerSettings, 72, 86
AssemblerTools, 70

creating the Assembler instance, 71

identifying the renderer mapping component, 72

starting content assembly, 71
transforming the request URL, 71
ATG server instances
configuring in CIM, 3
ATG-driven pages, 64

BasicUrlFormatter, 78
bulk loading, 18
bypassing the Assembler, 69

C

cartridge handlers

generating URLs, 78

locating, 76

providing access to the HTTP request to, 78

sorting the search results list, 79

supporting components, 77, 77
cartridge manager components, 77
category dimension value accessors, 46
CategoryNodePropertyAccessor, 46
CategoryPathVariantProducer, 48
CategoryToDimensionOutputConfig, 4
CategoryTreeService, 10, 19
ConcatFilter, 52
connecting to a Workbench, 74
connecting to an MDEX, 73
ConstantValueAccessor, 46
Content Administration components, 29
content collection requests, 59, 68
ContentInclude, 59
ContentltemToRendererPath, 80
ContentSlotConfig, 59

CustomCatalogPropertyAccessor, 49
CustomCatalogVariantProducer, 48
customizing record output, 43

D

data loading, 18
DataDocumentSubmitter, 2
default property values, 38
DefaultActionPathProvider, 78
DefaultMdexResource, 73, 85
DefaultWorkbenchContentSource, 74, 85
definition file format, 33

locale attribute, 41

prefix element, 40

schema attributes, 34

suffix element, 40
document submitters, 13, 22

empty Contentltem, 64
Endeca applications
creating, 1
determining how many to create, 2
provisioning, 3
supporting all languages in a single MDEX, 2
supporting one language per MDEX, 2
Endeca classes
ContentInclude, 59
ContentSlotConfig, 59
endeca_jspref, 5
EndecalndexingOutputConfig, 8, 15
EndecaScriptService, 26

F

FirstWithLocalePropertyAccessor, 44

G

GenerativePropertyAccessor, 44
global settings for the Assembler, 72

H

HtmlFilter, 53

incremental loading, 18
monitored properties, 41
tuning, 19

Indexable classes, 7

indexing, 4
as part of deployment, 4

increasing data source connection pool maximum, 4

Index

93

increasing transaction timeout, 4
manually, 5
monitoring progress, 5
multiple languages, 55
viewing indexed data, 5
installation and configuration
creating Endeca applications, 1
requirements, 1
InvokeAssembler, 69
invoking the Assembler
bypassing based on MIME type, 69
choosing an invocation method, 66
identifying content collection requests, 68
identifying page requests, 68
InvokeAssembler, 69
using AssemblerPipelineServlet, 60, 67
using the InvokeAssembler servlet bean, 64, 69
item subtypes
indexing, 37

L

LanguageNamePropertyAccessor , 44
languages

indexing, 55
loading data, 18
LocaleVariantProducer, 47
logging

configuration, 23

M

Map properties

indexing, 36
MdexResource, 73
MIME type, using to bypass the Assembler, 69
modaules that support Endeca integration, 5
monitored properties, 41
multi-language configurations, 73, 74
multi-value properties

indexing, 35

record output, 8
multiple languages

indexing, 55
multisite catalogs

indexing, 39

N

non-repository properties
indexing, 38

normalizing property values, 40

NucleusAssembler, 76

NucleusAssemblerFactory, 71, 76

P

page requests, 59

identifying, 68

transforming a URL into, 71
PerLanguageMdexResourceResolver, 73

PerLanguageWorkbenchContentSourceResolver, 74

price lists
indexing datain, 45
PriceListMapPropertyAccessor, 45
ProductCatalogOutputConfig, 5
ProductCatalogSimplelndexingAdmin, 5, 5, 27
property accessors, 43
CustomCatalogPropertyAccessor, 49
FirstWithLocalePropertyAccessor, 44
GenerativePropertyAccessor, 44
LanguageNamePropertyAccessor, 44
PriceListMapPropertyAccessor, 45
property values
default for indexing, 38
normalizing, 40
translating, 40
PropertyFormatter, 50
PropertyValuesFilter, 50

Q

querying the Assembler, 76

R

record output

customizing, 43

format, 8

viewing in Component Browser, 32
records

creating, 7

submitting, 13, 22

submitting to files, 25
renaming index properties, 39
renderContentltem tag, 81
renderers

ContentltemToRendererPath, 80

creating the path to, 80

locating the correct renderer, 80, 81

renderContentltem tag, 81
rendering

JSON, 62, 81

JSP, 60

XML, 62, 81
ReplacementValueProducer, 80
repository indexing, 7

ConcatFilter, 52

customizing output, 43

default property values, 38

94

Index

definition file format, 33

HtmlFilter, 53

item subtypes, 37

loading data, 18

Map properties, 36

multi-value properties, 35

multisite catalogs, 39

non-repository properties, 38

property accessors, 43

PropertyFormatter, 50

PropertyValuesFilter, 50

renaming output properties, 39

suppressing properties, 39

translating property values, 40

UniquefFilter, 51

UniqueWordFilter, 53

variant producers, 47
RepositoryTypeDimensionExporter, 20
RepositoryTypeHierarchyExporter, 12, 20
ResultsList, 79

S
sample query application
ATG configuration, 83
default configuration, 83
Endeca configuration, 86
Experience Manager configuration, 86
Guided Search configuration, 86, 89
one language per MDEX configuration, 84
using non-default Endeca host, port or application
names, 85
viewing in Experience Manager environments, 90
viewing in Guided Search environments, 90
schema attributes, 34
SchemaExporter, 12, 21
search results, sorting, 79
SelectorReplacementValueProducer, 80
SimplelndexingAdmin, 14, 27
submitting records, 13, 22
submitting records to files, 25
subtypes
indexing, 37
suppressing properties from indexes, 39
Synchronizationinvoker, 5

T

translating property values, 40

U

UniqueFilter, 51
UniqueSiteVariantProducer, 49
UniqueWordFilter, 53

Vv

variant producers, 47
CategoryPathVariantProducer, 48
CustomCatalogVariantProducer, 48
LocaleVariantProducer, 47
UniqueSiteVariantProducer, 49

w

WorkbenchContentSource, 74

Index

95

926

Index

	ATG Endeca Integration Guide
	Table of Contents
	1 Introduction
	Installation Requirements
	Creating the Endeca Applications
	Determining the Number of Endeca Applications To Create
	Provisioning the Endeca Applications

	Configuring the ATG Server Instances in CIM
	Product Selection
	ATG Server Instance Creation

	Starting the Indexing Process
	Increasing the Transaction Timeout and Datasource Connection Pool Values
	Indexing As Part of a Deployment
	Manually Starting the Indexing Process
	Monitoring the Indexing Process

	Viewing the Indexed Data
	ATG Modules

	2 Overview of Indexing
	Indexable Classes
	EndecaIndexingOutputConfig Class
	CategoryTreeService Class
	RepositoryTypeHierarchyExporter Class
	SchemaExporter Class

	Submitting the Records
	Managing the Process

	3 Configuring the Indexing Components
	EndecaIndexingOutputConfig Components
	Data Loader Components
	Tuning Incremental Loading

	CategoryTreeService
	RepositoryTypeDimensionExporter
	SchemaExporter
	Document Submitter Components
	Reducing Logging Messages
	Directing Output to Files

	EndecaScriptService
	ProductCatalogSimpleIndexingAdmin
	Queueing Indexing Jobs

	Content Administration Components
	Triggering Indexing on Deployment

	Viewing Records in the Component Browser

	4 Configuring EndecaIndexingOutputConfig Definition Files
	Definition File Format
	Specifying Endeca Schema Attributes
	Specifying Properties for Indexing
	Specifying Multi-Value Properties
	Specifying Map Properties
	Specifying Properties of Item Subtypes
	Specifying a Default Property Value
	Specifying Non-Repository Properties
	Suppressing Properties
	Including the siteIds Property
	Renaming an Output Property
	Translating Property Values
	Using Monitored Properties

	5 Customizing the Output Records
	Using Property Accessors
	FirstWithLocalePropertyAccessor
	LanguageNameAccessor
	GenerativePropertyAccessor
	PriceListMapPropertyAccessor
	Category Dimension Value Accessors

	Using Variant Producers
	LocaleVariantProducer
	CategoryPathVariantProducer
	CustomCatalogVariantProducer
	UniqueSiteVariantProducer

	Using Property Formatters
	Using Property Value Filters
	UniqueFilter
	ConcatFilter
	UniqueWordFilter
	HtmlFilter

	6 Indexing Multiple Languages
	Specifying the Locales
	Using a Separate MDEX for Each Language
	Using a Single MDEX for all Languages

	7 Query Integration
	ContentItem, ContentInclude, and ContentSlotConfig Classes
	Invoking the Assembler in the Request Handling Pipeline
	Using a JSP Renderer to Render Content
	Rendering XML or JSON Content
	When the Assembler Returns an Empty ContentItem

	Invoking the Assembler using the InvokeAssembler Servlet Bean
	Choosing Between Pipeline Invocation and Servlet Bean Invocation
	Components for Invoking the Assembler
	AssemblerPipelineServlet
	InvokeAssembler
	AssemblerTools

	Defining Global Assembler Settings
	Connecting to Endeca
	Connecting to an MDEX
	Connecting to the Endeca Workbench Application

	Querying the Assembler
	Cartridge Handlers and Their Supporting Components
	Cartridge Manager Components
	Providing Access to the HTTP Request to the Cartridges
	Controlling How Cartridges Generate URLs
	Sorting the Search Results List

	Retrieving Renderers
	ContentItemToRendererPath
	dsp:renderContentItem

	8 Configuring and Using the Sample Query Application
	ATG Configuration for the Sample Query Application
	Configuration for Environments with One Language per MDEX
	Configuration for Non-Default Endeca Hosts, Ports, or Application Names
	Configuration for Guided Search Environments

	Endeca Configuration for the Sample Query Application
	Experience Manager Configuration
	Guided Search Configuration

	Viewing the Sample Query Application
	Viewing the Sample Query Application in Experience Manager Environments
	Viewing the Sample Query Application in Guided Search Environments

	Index

