
Version 10.1.1

ATG Endeca Integration Guide

Oracle ATG

One Main Street

Cambridge, MA 02142

USA

ATG Endeca Integration Guide

Product version: 10.1.1

Release date: 07-20-12

Document identifier: EndecaIntegrationGuide1403311801

Copyright © 1997, 2012 Oracle and/or its affiliates. All rights reserved.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are

trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or

registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are

protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy,

reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any

means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please

report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the

following notice is applicable:

U.S. GOVERNMENT END USERS:

Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation,

delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and

agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any

operating system, integrated software, any programs installed on the hardware, and/or documentation, shall be subject to license terms and

license restrictions applicable to the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended

for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or

hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures

to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in

dangerous applications.

This software or hardware and documentation may provide access to or information on content, products, and services from third parties.

Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party

content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to

your access to or use of third-party content, products, or services.

The software is based in part on the work of the Independent JPEG Group.

ATG Endeca Integration Guide iii

Table of Contents

1. Introduction . 1

Installation Requirements . 1

Creating the Endeca Applications . 1

Determining the Number of Endeca Applications To Create . 2

Provisioning the Endeca Applications . 3

Configuring the ATG Server Instances in CIM . 3

Product Selection . 3

ATG Server Instance Creation . 3

Starting the Indexing Process . 4

Increasing the Transaction Timeout and Datasource Connection Pool Values . 4

Indexing As Part of a Deployment . 4

Manually Starting the Indexing Process . 5

Monitoring the Indexing Process . 5

Viewing the Indexed Data . 5

ATG Modules . 5

2. Overview of Indexing . 7

Indexable Classes . 7

EndecaIndexingOutputConfig Class . 8

CategoryTreeService Class . 10

RepositoryTypeHierarchyExporter Class . 12

SchemaExporter Class . 12

Submitting the Records . 13

Managing the Process . 14

3. Configuring the Indexing Components . 15

EndecaIndexingOutputConfig Components . 15

Data Loader Components . 18

Tuning Incremental Loading . 19

CategoryTreeService . 19

RepositoryTypeDimensionExporter . 20

SchemaExporter . 21

Document Submitter Components . 22

Reducing Logging Messages . 23

Directing Output to Files . 25

EndecaScriptService . 26

ProductCatalogSimpleIndexingAdmin . 27

Queueing Indexing Jobs . 28

Content Administration Components . 29

Triggering Indexing on Deployment . 31

Viewing Records in the Component Browser . 32

4. Configuring EndecaIndexingOutputConfig Definition Files . 33

Definition File Format . 33

Specifying Endeca Schema Attributes . 34

Specifying Properties for Indexing . 35

Specifying Multi-Value Properties . 35

Specifying Map Properties . 36

Specifying Properties of Item Subtypes . 37

Specifying a Default Property Value . 38

Specifying Non-Repository Properties . 38

Suppressing Properties . 39

Including the siteIds Property . 39

Renaming an Output Property . 39

iv ATG Endeca Integration Guide

Translating Property Values . 40

Using Monitored Properties . 41

5. Customizing the Output Records . 43

Using Property Accessors . 43

FirstWithLocalePropertyAccessor . 44

LanguageNameAccessor . 44

GenerativePropertyAccessor . 44

PriceListMapPropertyAccessor . 45

Category Dimension Value Accessors . 46

Using Variant Producers . 47

LocaleVariantProducer . 47

CategoryPathVariantProducer . 48

CustomCatalogVariantProducer . 48

UniqueSiteVariantProducer . 49

Using Property Formatters . 50

Using Property Value Filters . 50

UniqueFilter . 51

ConcatFilter . 52

UniqueWordFilter . 53

HtmlFilter . 53

6. Indexing Multiple Languages . 55

Specifying the Locales . 55

Using a Separate MDEX for Each Language . 56

Using a Single MDEX for all Languages . 56

7. Query Integration . 59

ContentItem, ContentInclude, and ContentSlotConfig Classes . 59

Invoking the Assembler in the Request Handling Pipeline . 60

Using a JSP Renderer to Render Content . 60

Rendering XML or JSON Content . 62

When the Assembler Returns an Empty ContentItem . 64

Invoking the Assembler using the InvokeAssembler Servlet Bean . 64

Choosing Between Pipeline Invocation and Servlet Bean Invocation . 66

Components for Invoking the Assembler . 67

AssemblerPipelineServlet . 67

InvokeAssembler . 69

AssemblerTools . 70

Defining Global Assembler Settings . 72

Connecting to Endeca . 72

Connecting to an MDEX . 73

Connecting to the Endeca Workbench Application . 74

Querying the Assembler . 76

Cartridge Handlers and Their Supporting Components . 77

Cartridge Manager Components . 77

Providing Access to the HTTP Request to the Cartridges . 78

Controlling How Cartridges Generate URLs . 78

Sorting the Search Results List . 79

Retrieving Renderers . 79

ContentItemToRendererPath . 80

dsp:renderContentItem . 81

8. Configuring and Using the Sample Query Application . 83

ATG Configuration for the Sample Query Application . 83

Configuration for Environments with One Language per MDEX . 84

Configuration for Non-Default Endeca Hosts, Ports, or Application Names . 85

ATG Endeca Integration Guide v

Configuration for Guided Search Environments . 86

Endeca Configuration for the Sample Query Application . 86

Experience Manager Configuration . 86

Guided Search Configuration . 89

Viewing the Sample Query Application . 90

Viewing the Sample Query Application in Experience Manager Environments . 90

Viewing the Sample Query Application in Guided Search Environments . 90

Index . 93

vi ATG Endeca Integration Guide

1 Introduction 1

1 Introduction

The ATG-Endeca integration enables customers of Oracle ATG Web Commerce and Oracle Endeca Commerce

to index ATG product catalog data in Endeca MDEX engines, where it can then be queried and the results

can be displayed on commerce sites. This document describes how to configure ATG indexing and querying

components to work with Oracle Endeca Commerce.

This chapter tells you how to install and configure an ATG-Endeca integration environment. It also provides a

brief description of the ATG-Endeca integration modules.

Installation Requirements

The ATG-Endeca integration requires that Oracle ATG Web Commerce and Oracle Endeca Commerce software

(including either Oracle Endeca Guided Search or Oracle Endeca Experience Manager), be installed in your

environment. We also suggest that you initially install ATG Oracle Web Commerce Reference Store, so that you

have an ATG application and data to work with as you familiarize yourself with the integration.

For information on installing Oracle ATG Commerce software, see the ATG Installation and Configuration Guide.

For information on installing Commerce Reference Store, see the ATG Commerce Reference Store Installation and

Configuration Guide. For information on installing Oracle Endeca Commerce software, see the Oracle Endeca

Commerce Getting Started Guide and other related Oracle Endeca installation documentation.

Creating the Endeca Applications

To create an Endeca application to integrate with ATG, use the Endeca deployment template designed to work

with product catalog data. (See the Endeca Deployment Template Module for Product Catalog Integration Usage

Guide for details.) This deployment template has a script that creates various Endeca CAS (Content Acquisition

System) record stores that the ATG-Endeca integration writes to. The naming convention for these record stores

is:

application-name_language-code_record-store-type

So for an application named ATGen that indexes ATG product catalog data in English, the record stores are:

• ATGen_en_data-- Holds data records representing SKUs or products.

2 1 Introduction

• ATGen_en_dimvals-- Holds dimension value records generated from the category hierarchy and from the

hierarchy of repository item types.

• ATGen_en_schema-- Holds records representing property and dimension definitions generated from the set

of ATG properties being indexed.

Determining the Number of Endeca Applications To Create

For each ATG Server instance, you must have at least one unique Endeca application and corresponding MDEX.

For example, if you are configuring a publishing server and a production server, you will need a minimum of two

Endeca applications and two MDEX instances. If your product catalog has data in multiple languages, the exact

number of Endeca applications you have per server depends on your approach to indexing these languages, as

described below.

One Language Per MDEX

In this configuration, you have one MDEX for each language for each server. For example, if you have three

languages—English, German, and Spanish—and you have two servers—Content Administration and Production

—you must have six Endeca applications:

Content Administration/English

Content Administration/German

Content Administration/Spanish

Production/English

Production/German

Production/Spanish

You must include the language code in the name to identify each Endeca application. For example, the names

for the Content Administration-related Endeca applications would be ATGCAen, ATGCAde, and ATGCAes, where

en, de, and es represent the language code and ATGCA is the base name shared by all of the applications.

Likewise, the names for the Production-related Endeca applications would be ATGProden, ATGProdde, and

ATGProdes.

As you create the Endeca applications, using the deployment template, be sure to specify the correct language

code for each application. Also, be sure to provide unique ports for the LiveDgraph, AuthoringDgraph, and

LogServer for each application.

All Languages in a Single MDEX

If you plan to have all languages indexed in a single MDEX, you only need to create one Endeca application for

each ATG server instance. For example, if you have Content Administration and Production server instances, you

must create two Endeca applications, one for each server instance. As you create the Endeca applications using

the deployment template, be sure to specify the default language code for each application and provide unique

ports for the LiveDgraph, AuthoringDgraph, and LogServer.

In the single MDEX situation, use the language code of the default language for the record stores in the

Endeca application name. For example, if you have Content Administration and Production servers on the ATG

side and English is the default language for the records stores, create ATGCAen and ATGProden applications

on the Endeca side. Then, specify the default language (in this case, en) in the /atg/endeca/index/

DataDocumentSubmitter component’s defaultLanguageForRecordStores property for each ATG server

instance:

defaultLanguageForRecordStores=en

1 Introduction 3

Provisioning the Endeca Applications

For each Endeca application you create, you must provision it by running the initialize_services.sh|

bat script found in the application’s /control directory. Therefore, if you have six Endeca applications, you

must invoke this script six times. The initialize_services.sh script is found in the following location: /

endeca/Endeca-application-directory/your-application/control/.

Configuring the ATG Server Instances in CIM

You must configure your ATG server instances for an ATG-Endeca integration environment using CIM. The

options you must configure are described below.

Product Selection

To configure your server instances to use the ATG-Endeca integration, select [3] ATG-Endeca Integration and [4]

ATG Commerce in the Product Selection menu:

[3] ATG-Endeca Integration :

Includes ATG Platform. Select this option when Endeca is used. Do not

select this if you are using ATG Search

[4] ATG Commerce :

Includes ATG Platform, Content Administration and, optionally, data

warehouse components, Preview, and Merchandising

Note: If you also intend to install Oracle ATG Commerce Reference Store, its installation option includes Oracle

ATG Web Commerce, so you can select [3] ATG-Endeca Integration and [5] Oracle ATG Commerce Reference

Store instead.

ATG Server Instance Creation

During your ATG server instance configuration, you must provide information about your Endeca environment

so that the ATG server instance can communicate with Endeca. Specifically, you must provide the CAS hostname

and port, the Endeca base application name, and the EAC host and port. The defaults for these settings are

provided in the table below:

Setting Default

CAS hostname localhost

CAS port 8500

Endeca base application name ATG

Note: This is the root of the Endeca application names, without the

language code. For example, if you have ATGProden, ATGProdde, and

ATGPRodes applications to support your ATG production server, the

Endeca base application name is ATGProd.

4 1 Introduction

Setting Default

EAC hostname localhost

EAC port 8888

After your ATG server instances are configured in CIM, start them in preparation for indexing.

Starting the Indexing Process

The indexing process can be started in two ways: automatically as part of running a full deployment through

Content Administration, or manually using the ATG Dynamo Administration UI.

Increasing the Transaction Timeout and Datasource Connection Pool Values

Depending on your application server, you may need to increase the transaction timeout and datasource

connection pool settings in order for indexing to run successfully.

Increasing the Transaction Timeout

If indexing is not successful, it may be related to the transaction timeout setting in your application server.

Oracle ATG recommends setting a transaction timeout of 300 seconds or greater. All supported application

servers time out long running transactions by marking the active transaction as rolled back (essentially, by

calling setRollbackOnly on the transaction), which can result in problems when indexing. If your indexing

process fails, try increasing the transaction timeout setting. For details on changing your transaction timeout,

see Setting the Transaction Timeout on WebLogic, Setting the Transaction Timeout on JBoss, or Setting the

Transaction Timeout on WebSphere in the ATG Installation and Configuration Guide.

Increasing the Data Source Connection Pool

Oracle ATG recommends setting the data source connection pool maximum capacity to 30 or greater for all of

your data sources. For information on setting the data source connection pool maximum capacity, refer to your

application server’s documentation.

Indexing As Part of a Deployment

You can configure your environment so that when you run a deployment in Content Administration, indexing

is automatically started after the deployment is finished. To make this automatic triggering occur, add the

following three components and their configuration to the localconfig layer for your Content Administration

server.

/atg/endeca/index/commerce/CategoryToDimensionOutputConfig

Specify the following property for the CategoryToDimensionOutputConfig component:

targetName=Production

1 Introduction 5

/atg/commerce/search/ProductCatalogOutputConfig

Specify the following property for the ProductCatalogOutputConfig component:

targetName=Production

/atg/search/SynchronizationInvoker

Specify the following properties for the SynchronizationInvoker component:

host=atg-production-server-host

rmi=8860

Manually Starting the Indexing Process

To manually start an indexing job, log in to ATG Dynamo Administration for the appropriate ATG server instance

and navigate to /atg/endeca/index/commerce/ProductCatalogSimpleIndexingAdmin component.

From here, you can click Baseline Index to start a baseline index, or Partial Index to start a partial update.

Monitoring the Indexing Process

Regardless of how an indexing process has been started, you can monitor its progress in ATG Dynamo

Administration by viewing the /atg/endeca/index/commerce/ProductCatalogSimpleIndexingAdmin

component. Each phase of the indexing process is listed in the table under Indexing Job Status. To dynamically

refresh the window, enable the Auto Refresh option below the table.

Viewing the Indexed Data

For the 10.1.1 version of the ATG-Endeca integration, you can view the indexed data residing in your MDEX

engines using Oracle Endeca’s JSP Reference Implementation. To use this reference implementation, do the

following:

1. In a browser, navigate to http://host:port/endeca_jspref, where host:port refers to the name and

port of the server hosting the Endeca Tools and Frameworks installation, for example:

http://localhost:8006/endeca_jspref

2. Click the ENDECA-JSP Reference Implementation link.

3. Enter an MDEX host and port, then click Go.

ATG Modules

The ATG-Endeca integration modules are:

6 1 Introduction

Module Description

DAF.Endeca.Index Includes the necessary classes for exporting data to CAS record

stores and triggering indexing via the EAC, along with associated

configuration.

DAF.Endeca.Index.Versioned Adds configuration for running on an ATG Content Administration

instance. This module adds basic record generation configuration

for ATG Content Administration servers, including a deployment

listener.

DCS.Endeca.Index Configures components for creating CAS data records from

products in the catalog repository and dimension-value records

from the category hierarchy.

DCS.Endeca.Index.SKUIndexing Modifies configuration so that CAS data records are generated

based on SKUs rather than products.

DCS.Endeca.Index.Versioned Adds Commerce-specific configuration for running on an ATG

Content Administration instance, including enabling monitoring for

incremental loading of the product catalog.

DAF.Endeca.Assembler Contains classes and configuration for creating an Assembler

instance that has access to the data in your application’s MDEX

engines. Also provides classes for querying the Assembler for data

and managing the content returned.

Note that when you assemble an application that includes any of the modules listed in the table above, the

DAF.Search.Base and DAF.Search.Index modules are automatically included in the EAR file as well.

These modules contain core ATG Search repository indexing classes that are subclassed in the Endeca-specific

modules. In addition, some of the Endeca-specific modules pull in classes from other ATG Search modules

(without including the modules in their entirety) through the ATG-Class-Path entries in their manifest files.

2 Overview of Indexing 7

2 Overview of Indexing

To make your product catalog available for searching, the Oracle ATG Web Commerce platform must transform

the data into the appropriate format, and then submit this data to Oracle Endeca Commerce for indexing.

The process of indexing ATG product catalog data in Oracle Endeca Commerce works like this:

1. ATG components transform the catalog repository data into Endeca records that represent Endeca properties,

dimensions, and schema:

• Properties of ATG products and SKUs are used to create Endeca properties and non-hierarchical

dimensions.

• The ATG category hierarchy is used to create a hierarchical category dimension in Oracle Endeca

Commerce. The hierarchy of repository item types in the product catalog is used to create another

hierarchical Endeca dimension.

• An Endeca schema is created by examining the set of ATG properties to be indexed.

2. The generated records are submitted to Endeca CAS data, dimension value, and schema record stores.

3. The Endeca EAC is invoked, which creates Forge processes that process the record stores and invoke indexing.

This chapter provides an overview of the classes and components that perform these steps, and the user

interface provided for managing the process. Other chapters of this book provide more detail about configuring

and using these and other classes and components to work with the product catalog in your Oracle ATG Web

Commerce environment.

Indexable Classes

The ATG platform includes an interface, atg.endeca.index.Indexable, that is implemented by the classes

responsible for creating Endeca records. Key classes that implement this interface include:

• atg.endeca.index.EndecaIndexingOutputConfig

• atg.commerce.endeca.index.dimension.CategoryTreeService

• atg.endeca.index.dimension.RepositoryTypeHierarchyExporter

• atg.endeca.index.schema.SchemaExporter

These classes are discussed below.

8 2 Overview of Indexing

EndecaIndexingOutputConfig Class

The main class used to specify how to transform repository items into records is

atg.endeca.index.EndecaIndexingOutputConfig. The ATG-Endeca integration includes two components

of this class:

• /atg/commerce/search/ProductCatalogOutputConfig

• /atg/endeca/index/commerce/CategoryToDimensionOutputConfig

Each EndecaIndexingOutputConfig component has a number of properties, as well as an XML definition file,

for configuring how repository data should be transformed to create Endeca records. The configuration of these

components is discussed in detail in EndecaIndexingOutputConfig Components (page 15).

ProductCatalogOutputConfig Component

The ProductCatalogOutputConfig component specifies how to create Endeca data records that represent

items in the ATG product catalog. Each record represents either one product or one SKU (depending on whether

you use product-based or SKU-based indexing), and contains the values of the ATG properties to be included in

the index.

In addition, each record includes properties of parent and child items. For example, a record that represents a

product includes information about its parent category’s properties, as well as information about the properties

of its child SKUs. This makes it possible to search category and SKU properties as well as product properties

when searching for products in the catalog.

The names of the output properties include information about the item types they are associated with. For

example, a record generated from a product might have a product.description property that holds the

value of the description property of the product item, and a sku.color property that holds the value of the

color properties of the product’s child SKUs.

Multi-value properties are given names without array subscripts. For example, a product repository item might

have multiple child sku items, each with a different value for the color property. In the output record there will

be multiple entries for sku.color.

The following is an XML representation of a record for a product with a single child SKU. Note that this record

contains only a small subset of the properties that are typically output. Also, the actual records submitted to the

CAS data record store are in a binary object format, not XML.

<RECORD>
 <PROP NAME="product.repositoryId">
 <PVAL>xprod1003</PVAL>
 </PROP>
 <PROP NAME="product.description">
 <PVAL>Genuine English leather wallet</PVAL>
 </PROP>
 <PROP NAME="product.displayName">
 <PVAL>Organized Wallet</PVAL>
 </PROP>
 <PROP NAME="record.spec">
 <PVAL>product-xprod1003..masterCatalog.en__US</PVAL>
 </PROP>
 <PROP NAME="product.type">
 <PVAL>product</PVAL>
 </PROP>
 <PROP NAME="product.baseUrl">

2 Overview of Indexing 9

 <PVAL>atgrep:/ProductCatalog/product/xprod1003</PVAL>
 </PROP>
 <PROP NAME="product.siteId">
 <PVAL>storeSiteUS</PVAL>
 </PROP>
 <PROP NAME="product.language">
 <PVAL>English</PVAL>
 </PROP>
 <PROP NAME="product.repositoryName">
 <PVAL>ProductCatalog</PVAL>
 </PROP>
 </PROP>
 <PROP NAME="sku.repositoryId">
 <PVAL>xsku1013</PVAL>
 </PROP>
 <PROP NAME="sku.displayName">
 <PVAL>Organized Wallet</PVAL>
 </PROP>
 <PROP NAME="sku.type">
 <PVAL>clothing-sku</PVAL>
 </PROP>
 <PROP NAME="clothing-sku.color">
 <PVAL>Brown</PVAL>
 </PROP>
 <PROP NAME="clothing-sku.size">
 <PVAL>One Size</PVAL>
 </PROP>
 <PROP NAME="product.parentCategory.id">
 <PVAL>rootCategory.cat50056.cat50067</PVAL>
 </PROP>
 <PROP NAME="product.catalogs.repositoryId">
 <PVAL>masterCatalog</PVAL>
 </PROP>
 <PROP NAME="allAncestors.displayName">
 <PVAL>Gift Shop</PVAL>
 </PROP>
 <PROP NAME="allAncestors.repositoryId">
 <PVAL>cat50056</PVAL>
 </PROP>
</RECORD>

CategoryToDimensionOutputConfig Component

The CategoryToDimensionOutputConfig component specifies how to create Endeca dimension value

records that represent categories from the ATG product catalog. This category dimension makes it possible to

use Oracle Endeca Commerce to navigate the categories of a catalog.

CategoryToDimensionOutputConfig creates dimension values using a special representation of the category

hierarchy that is generated by the/atg/endeca/index/commerce/CategoryTreeService component, as

described in the CategoryTreeService Class (page 10) section.

The following example shows an XML representation of a category dimension value record generated by

CategoryToDimensionOutputConfig:

<RECORD>
 <PROP NAME="dimval.spec">
 <PVAL>rootCategory.cat10016.cat10014.catDeskLamps</PVAL>
 </PROP>

10 2 Overview of Indexing

 <PROP NAME="dimval.qualified_spec">
 <PVAL>product.category:rootCategory.cat10016.cat10014.catDeskLamps</PVAL>
 </PROP>
 <PROP NAME="dimval.prop.category.rootCatalogId">
 <PVAL>masterCatalog</PVAL>
 </PROP>
 <PROP NAME="dimval.prop.category.ancestorCatalogIds">
 <PVAL>masterCatalog</PVAL>
 </PROP>
 <PROP NAME="dimval.dimension_spec">
 <PVAL>product.category</PVAL>
 </PROP>
 <PROP NAME="dimval.parent_spec">
 <PVAL>rootCategory.cat10016.cat10014</PVAL>
 </PROP>
 <PROP NAME="dimval.display_order">
 <PVAL>2</PVAL>
 </PROP>
 <PROP NAME="dimval.prop.category.repositoryId">
 <PVAL>catDeskLamps</PVAL>
 </PROP>
 <PROP NAME="dimval.prop.category.catalogs.repositoryId">
 <PVAL>masterCatalog</PVAL>
 </PROP>
 <PROP NAME="dimval.prop.category.catalogs.repositoryId">
 <PVAL>homeStoreCatalog</PVAL>
 </PROP>
 <PROP NAME="dimval.display_name">
 <PVAL>Desk Lamps</PVAL>
 </PROP>
</RECORD>

CategoryTreeService Class

The ATG-Endeca integration uses the category hierarchy in the ATG product catalog to construct a category

dimension in Oracle Endeca Commerce. In some cases, the hierarchy cannot be translated directly, because

ATG’s catalog hierarchy supports categories with multiple parent categories, while Endeca requires each

dimension value to have a single parent.

For example, suppose you have the following category structure in your product catalog:

2 Overview of Indexing 11

To deal with this structure, the ATG-Endeca integration creates two different records for the Men’s Shoes

dimension value, one for each path to this category in the catalog hierarchy. These paths are computed by the

atg.commerce.endeca.index.dimension.CategoryTreeService class.

The ATG-Endeca integration includes a component of this class, /atg/endeca/index/commerce/

CategoryTreeService. This component, which is run prior to indexing, creates data structures in memory that

represent all possible paths to each category in the product catalog. A category can have multiple parents, and

those parents and their ancestors can each have multiple parents, so there can be any number of unique paths

to an individual category.

The CategoryToDimensionOutputConfig component then uses the /atg/endeca/index/commerce/

CategoryPathVariantProducer component to create multiple records for each category, one for each path

computed by CategoryTreeService. For each path, the corresponding record uses the pathname as the value

of its dimval.spec property; this makes it possible to differentiate records that represent different paths to the

same category.

In the example above, two records are created for the Men’s Shoes category. One of the records includes

something like this:

<PROP NAME="dimval.spec">
 <PVAL>rootCategory.catClothing.catMensClothing.catMensShoes</PVAL>
</PROP>

The other record for the category includes something like this:

<PROP NAME="dimval.spec">
 <PVAL>rootCategory.catShoes.catMensShoes</PVAL>
</PROP>

Note that the period (.) is used as a separator in the property values rather the slash (/). This is done so the

value can be passed to Oracle Endeca Commerce through a URL query parameter when issuing a search query.

12 2 Overview of Indexing

RepositoryTypeHierarchyExporter Class

The atg.endeca.index.dimension.RepositoryTypeHierarchyExporter class creates Endeca dimension

value records from the hierarchy of repository item types in the product catalog, and submits those records to

the CAS dimension values record store. This dimension is not typically displayed on a site, but can be used in

determining which other dimensions to display. For example, CRS has a furniture-sku subtype that includes

a woodFinish property that can be used as an Endeca dimension. A site can include logic to detect whether the

items returned from a search are of type furniture-sku, and display the woodFinish dimension if they are.

The ATG-Endeca integration includes a component of class RepositoryTypeHierarchyExporter, /

atg/endeca/index/commerce/RepositoryTypeDimensionExporter, that is configured to work

with the ProductCatalogOutputConfig component. The RepositoryTypeDimensionExporter

component outputs dimension value records for all of the repository item types referred to in the

ProductCatalogOutputConfig definition file, as well as the ancestors and descendants of those item types.

RepositoryTypeDimensionExporter does not create records for any item types that are not part of the

hierarchy mentioned in the definition file.

The following example shows a record produced by the RepositoryTypeHierarchyExporter component for

the product item type:

<RECORD>
 <PROP NAME="dimval.dimension_spec">
 <PVAL>item.type</PVAL>
 </PROP>
 <PROP NAME="dimval.display_name">
 <PVAL>Product</PVAL>
 </PROP>
 <PROP NAME="dimval.qualified_spec">
 <PVAL>item.type:product</PVAL>
 </PROP>
 <PROP NAME="dimval.spec">
 <PVAL>product</PVAL>
 </PROP>
 <PROP NAME="dimval.parent_spec">
 <PVAL>item.type</PVAL>
 </PROP>
</RECORD>

SchemaExporter Class

The atg.endeca.index.schema.SchemaExporter class is responsible for generating schema records and

submitting them to the Endeca schema record store. The /atg/endeca/index/commerce/SchemaExporter

component of this class examines the ProductCatalogOutputConfig definition file and generates a schema

record for each ATG property that is output. The schema record indicates whether the ATG property should be

treated as a property or a dimension by Oracle Endeca Commerce, whether it should be searchable, and the data

type of the property or dimension.

For example, the following is an XML representation of a schema record for the product.description

property, which identifies it as a searchable Endeca property whose data type is string:

<RECORD>
 <PROP NAME="attribute.name">
 <PVAL>product.description</PVAL>

2 Overview of Indexing 13

 </PROP>
 <PROP NAME="attribute.source_name">
 <PVAL>product.description</PVAL>
 </PROP>
 <PROP NAME="attribute.display_name">
 <PVAL>product.description</PVAL>
 </PROP>
 <PROP NAME="attribute.property.data_type">
 <PVAL>string</PVAL>
 </PROP>
 <PROP NAME="attribute.type">
 <PVAL>property</PVAL>
 </PROP>
 <PROP NAME="attribute.search.searchable">
 <PVAL>true</PVAL>
 </PROP>
</RECORD>

Submitting the Records

Once the records have been generated, they are submitted to the appropriate CAS record stores by components

of class atg.endeca.index.RecordStoreDocumentSubmitter. The ATG platform includes three

components of this class, each of which is configured to submit to a different record store:

• /atg/endeca/index/DataDocumentSubmitter -- Submits records to the data record store (by default,

ATGen_en_data).

• /atg/endeca/index/DimensionDocumentSubmitter -- Submits records to the dimension values record

store (by default, ATGen_en_dimvals).

• /atg/endeca/index/SchemaDocumentSubmitter -- Submits records to the schema record store (by

default, ATGen_en_schema).

The EndecaIndexingOutputConfig, RepositoryTypeHierarchyExporter, and SchemaExporter classes

each have a documentSubmitter property that is used to specify a document submitter component to

use to submit records to the appropriate CAS record store. The following table shows default values of the

documentSubmitter property of each component of these classes:

Component Record Submitter

ProductCatalogOutputConfig DataDocumentSubmitter

CategoryToDimensionOutputConfig DimensionDocumentSubmitter

RepositoryTypeDimensionExporter DimensionDocumentSubmitter

SchemaExporter SchemaDocumentSubmitter

14 2 Overview of Indexing

Managing the Process

The atg.endeca.index.admin.SimpleIndexingAdmin class provides a mechanism for

managing the process of generating records, submitting them to Endeca, and invoking indexing.

The ATG-Endeca integration includes a component of this class, /atg/endeca/index/commerce/

ProductCatalogSimpleIndexingAdmin. The page for this component in the Component Browser of the ATG

Dynamo Server Admin presents a simple user interface for controlling and monitoring the process:

After the records are generated and submitted to Oracle Endeca Commerce,

ProductCatalogSimpleIndexingAdmin calls the /atg/endeca/index/commerce/EndecaScriptService

component (of class atg.endeca.eacclient.ScriptIndexable). This component is responsible for invoking

Endeca Application Controller (EAC) scripts that trigger indexing.

The UI provides buttons for initiating an Endeca baseline index or a partial update. Note that even if you click

Partial Index, Endeca may perform a baseline update if the nature of the changes since the last baseline update

necessitates it. See Data Loader Components (page 18) for more information.

3 Configuring the Indexing Components 15

3 Configuring the Indexing

Components

This chapter provides detailed information about the indexing-related Nucleus components in the ATG-Endeca

integration, what they do, how they’re configured, and how you can modify them to alter various aspects of

indexing.

EndecaIndexingOutputConfig Components

The atg.endeca.index.EndecaIndexingOutputConfig class has a number of properties that configure

various aspects of the record creation and submission process:

definitionFile

The full Nucleus pathname of the XML indexing definition file that specifies the repository

item types and properties to include in the Endeca records. For the /atg/commerce/search/

ProductCatalogOutputConfig component, this property is set as follows:

definitionFile=/atg/endeca/index/commerce/product-sku-output-config.xml

For /atg/endeca/index/commerce/CategoryToDimensionOutputConfig:

definitionFile=/atg/endeca/index/commerce/category-dim-output-config.xml

See the Configuring EndecaIndexingOutputConfig Definition Files (page 33) chapter for information about the

definition file’s elements and attributes that configure how ATG repository items are transformed into Endeca

records.

repository

The full Nucleus pathname of the repository that the definition file applies to. For both the

ProductCatalogOutputConfig and CategoryToDimensionOutputConfig, this property is set to the

product catalog repository:

repository=/atg/commerce/catalog/ProductCatalog

16 3 Configuring the Indexing Components

It is also possible to specify the repository in the indexing definition file using the repository-path attribute

of the top-level item element. If the repository is specified in the definition file and also set by the component’s

repository property, the value set by the repository property overrides the value set in the definition file.

Note that in an ATG Content Administration environment, the repository should not be set to a versioned

repository. Instead, it should be set to the corresponding unversioned target repository. For example, an

EndecaIndexingOutputConfig component for a product catalog in an ATG Content Administration

environment could be set to:

repository=/atg/commerce/catalog/ProductCatalog_production

repositoryItemsGroup

A component of a class that implements the atg.repository.RepositoryItemGroup interface. This

interface defines a logical grouping of repository items. Items that are not included in this logical grouping

are excluded from the index. For the CategoryToDimensionOutputConfig component, this property

is set by default to null (so no items are excluded). For the ProductCatalogOutputConfig component,

repositoryItemGroup property is set by default to:

repositoryItemGroup=/atg/commerce/search/IndexedItemsGroup

The IndexedItemsGroup component uses this targeting rule set to select only products that have an ancestor

catalog:

<ruleset>
 <accepts>
 <rule op=isNotNull>
 <valueof target="computedCatalogs">
 </rule>
 </accepts>
</ruleset>

This rule set ensures that the index includes only items that can also be viewed by browsing the catalog

hierarchy.

It is also possible to specify a repository item group in the indexing definition file using the repository-

item-group attribute of the top-level item element. If a repository item group is specified in the definition file

and also by the component’s repositoryItemGroup property, the value set by the repositoryItemGroup

property overrides the value set in the definition file.

Note that the IndexedItemGroup component has a repository property that specifies the repository that

the items are selected from. This value must match the repository that the ProductCatalogOutputConfig is

associated with.

For more information about targeting rule sets, see ATG Personalization Programming Guide.

documentSubmitter

The component (typically of class atg.endeca.index.RecordStoreDocumentSubmitter) to use to submit

records to the appropriate CAS record store. For the ProductCatalogOutputConfig component, this property

is set as follows:

3 Configuring the Indexing Components 17

documentSubmitter=/atg/endeca/index/DataDocumentSubmitter

For the CategoryToDimensionOutputConfig component:

documentSubmitter=/atg/endeca/index/DimensionDocumentSubmitter

See Document Submitter Components (page 22) for more information.

bulkLoader

A Nucleus component of class atg.endeca.index.RecordStoreBulkLoaderImpl. This is typically set to /

atg/search/repository/BulkLoader. Any number of EndecaIndexingOutputConfig components can

use the same bulk loader.

See Data Loader Components (page 18) for more information.

enableIncrementalLoading

If true, incremental loading is enabled.

incrementalLoader

A Nucleus component of class atg.endeca.index.RecordStoreIncrementalLoaderImpl. This is typically

set to /atg/search/repository/IncrementalLoader. Any number of EndecaIndexingOutputConfig

components can use the same incremental loader.

See Data Loader Components (page 18) for more information.

siteIDsToIndex

A list of site IDs of the sites to include in the index. The value of this property is used to automatically set the

value of the sitesToIndex property, which is the actual property used to determine which sites to index. If

siteIDsToIndex is explicitly set to a list of site IDs, sitesToIndex is set to the sites that have those IDs. If the

value of siteIDsToIndex is null (the default), sitesToIndex is set to a list of all enabled sites. So it is only

necessary to set siteIDsToIndex if you want to restrict indexing to only a subset of the enabled sites.

replaceWithTypePrefixes

A list of the property-name prefixes that should be replaced with the item type the property is associated with.

In this list, a period specifies that a type prefix should be added to properties of the top-level item, which is

product for ProductCatalogOutputConfig and category for CategoryToDimensionOutputConfig.

For ProductCatalogOutputConfig, the replaceWithTypePrefixes property is set by default to:

replaceWithTypePrefixes=.,childSKUs

This means, for example, that the brand property of the product item is given the name product.brand

in the output records, and the onSale property of the sku item (which appears in the definition file as the

childSKUs property of the product item) is given the name sku.onSale. Properties that are specific to a sku

subtype are prefixed with the subtype name in the output records. For example, ATG Commerce Reference Store

has a furniture-sku subtype, so the woodFinish property (which is specific to this subtype) is given the

output name furniture-sku.woodFinish, while onSale (which is common to all SKUs) is given the name

sku.onSale.

18 3 Configuring the Indexing Components

Adding these prefixes ensures that there is no duplication of property or dimension names in Oracle Endeca

Commerce, in case different indexed ATG item types (or records from other sources) have identically named

properties.

For CategoryToDimensionOutputConfig, the replaceWithTypePrefixes property is set to:

replaceWithTypePrefixes=.

This means, for example, that the ancestorCatalogIds property of the category item is given the name

category.ancestorCatalogIds in the output records.

prefixReplacementMap

A mapping of property-name prefixes to their replacements. This mapping is applied after any type prefixes are

added by replaceWithTypePrefixes.

For ProductCatalogOutputConfig, prefixReplacementMap is set by default to:

prefixReplacementMap=\
 product.ancestorCategories=allAncestors

So, for example, the ancestorCategories.displayName property is renamed to

product.ancestorCategories.displayName by applying replaceWithTypePrefixes, and then the result

is renamed to allAncestors.displayName by applying prefixReplacementMap.

For CategoryToDimensionOutputConfig, prefixReplacementMap is set to null by default, so no prefix

replacement is performed.

suffixReplacementMap

A mapping of property-name suffixes to their replacements. In addition to any mappings you specify in the

properties file, the following mappings are automatically included:

$repositoryId=repositoryId,
$repository.repositoryName=repositoryName,
$itemDescriptor.itemDescriptorName=type,
$siteId=siteId,
$url=url,
$baseUrl=baseUrl

The suffixReplacementMap property is set to null by default for both ProductCatalogOutputConfig and

CategoryToDimensionOutputConfig, which means only the automatic mappings are used. You can exclude

the automatic mappings by setting the addDefaultOutputNameReplacements property to false.

Data Loader Components

The EndecaIndexingOutputConfig components specify how to generate records from items in the catalog

repository, but the actual generation is performed by data loader components. Depending on your ATG

environment, data loading may be an operation that is performed occasionally (if the content rarely changes) or

3 Configuring the Indexing Components 19

frequently (if the content changes often). To be as flexible as possible, the ATG-Endeca integration provides two

approaches to loading the data:

• Bulk loading generates the complete set of records for the catalog. Bulk loading is performed by the

atg.endeca.index.RecordStoreBulkLoaderImpl class. The ATG-Endeca integration includes a

component of this class, /atg/search/repository/BulkLoader.

• Incremental loading generates only the records that have changed since the last load. The incremental

loader records which repository items have changed since the last incremental or bulk load. It deletes the

records that represent items that have been deleted, and creates records for any items that are new or have

been modified.

Incremental loading is performed by the atg.endeca.index.RecordStoreIncrementalLoaderImpl

class. The ATG-Endeca integration includes a component of this class, /atg/search/repository/

IncrementalLoader.

Bulk loading and incremental loading are not mutually exclusive. For some environments, only bulk loading will

be necessary, especially if content is updated only occasionally. For other environments, incremental loading will

be needed to keep the search content up to date, but even in that case it is a good idea to perform a bulk load

occasionally to ensure the integrity of the indexed data.

Note that Oracle Endeca Commerce always does a baseline update after ATG performs bulk loading, and

typically does a partial update after ATG performs incremental loading. In some cases, however, Oracle Endeca

Commerce may perform a baseline update after incremental loading, because of the nature of the changes. For

example, if incremental loading adds a new dimension value, Oracle Endeca Commerce performs a baseline

update.

The IncrementalLoader component uses an implementation of the PropertiesChangedListener interface

to monitor the repository for add, update, and delete events. It then analyzes these events to determine

which ones necessitate updating records, and creates a queue of the affected repository items. When a new

incremental update is triggered, the IncrementalLoader processes the items in the queue, generating and

loading a new record for each changed repository item.

Tuning Incremental Loading

The number of changed items accumulating in the queue can vary greatly, depending on how frequently

your data changes and how long you specify between incremental updates. Rather than processing all of the

changes at once, the IndexingOutputConfig component groups changes in batches called generations.

The EndecaIndexingOutputConfig class has a maxIncrementalUpdatesPerGeneration property that

specifies the maximum number of changes that can be assigned to a generation. By default, this value is 1000,

but you can change this value if necessary. Larger generations require more ATG platform resources to process,

but reduce the number of Endeca jobs required (and hence the overhead associated with starting up and

completing these jobs). Smaller generations require fewer ATG platform resources, but increase the number of

Endeca jobs.

CategoryTreeService

The following describes key properties of the

atg.commerce.endeca.index.dimension.CategoryTreeService class and the default configuration of

the /atg/endeca/index/commerce/CategoryTreeService component of this class:

20 3 Configuring the Indexing Components

catalogTools

The component of class atg.commerce.catalog.custom.CustomCatalogTools for accessing the catalog

repository. By default, this property is set to:

catalogTools=/atg/commerce/catalog/CatalogTools

sitesForCatalogs

To create a representation of the category hierarchy in which each category dimension value has only one

parent, the CategoryTreeService class creates data structures in memory that represent all possible paths to

each category in the product catalog. In order to do this, it must be provided with a list of the catalogs to use for

computing paths.

The sitesForCatalogs property specifies a list of sites. If this property is set, CategoryTreeService uses the

catalogs associated with the specified sites for computing paths. By default, sitesForCatalogs is set to:

sitesForCatalogs^=\
 /atg/commerce/search/ProductCatalogOutputConfig.sitesToIndex

If sitesForCatalogs is null, CategoryTreeService uses the rootCatalogsRQLString property to

determine the catalogs.

rootCatalogsRQLString

An RQL query that returns a list of catalogs. If sitesForCatalogs is null, the catalogs returned from this query

are used. The query is set by default to:

rootCatalogsRQLString=\
 directParentCatalogs IS NULL AND parentCategories IS NULL

If sitesForCatalogs and rootCatalogsRQLString are both null, CategoryTreeService uses the

rootCatalogIds property to determine the catalogs.

rootCatalogIds

An explicit list of catalog IDs of the catalogs to use. This list is used if sitesForCatalogs and

rootCatalogsRQLString are both null. By default, rootCatalogIds is set to null.

RepositoryTypeDimensionExporter

This section describes key properties of the

atg.endeca.index.dimension.RepositoryTypeHierarchyExporter class and the default configuration

of the /atg/endeca/index/commerce/RepositoryTypeDimensionExporter component of this class.

dimensionName

The name to give the dimension created from the repository item-type hierarchy. Set by default to:

3 Configuring the Indexing Components 21

dimensionName=item.type

indexingOutputConfig

The component of class atg.endeca.index.EndecaIndexingOutputConfig whose definition file should be

used for generating dimension value records from the repository item-type hierarchy. Set by default to:

indexingOutputConfig=/atg/commerce/search/ProductCatalogOutputConfig

documentSubmitter

The component (typically of class atg.endeca.index.RecordStoreDocumentSubmitter) to use to submit

records to the CAS dimension values record store. (See Document Submitter Components (page 22) for more

information.) Set by default to:

documentSubmitter=/atg/endeca/index/DimensionDocumentSubmitter

SchemaExporter

The following are key properties of the atg.endeca.index.schema.SchemaExporter class and the default

configuration of the /atg/endeca/index/commerce/SchemaExporter component of this class:

indexingOutputConfig

The component of class atg.endeca.index.EndecaIndexingOutputConfig whose definition file should be

used for generating schema records. Set by default to:

indexingOutputConfig=/atg/commerce/search/ProductCatalogOutputConfig

documentSubmitter

The component (typically of class atg.endeca.index.RecordStoreDocumentSubmitter) to use to

submit records to the CAS schema record store. (See Document Submitter Components (page 22) for more

information.) Set by default to:

documentSubmitter=/atg/endeca/index/SchemaDocumentSubmitter

dimensionNameProviders

An array of components of a class that implements the

atg.endeca.index.schema.DimensionNameProvider interface. SchemaExporter uses these components

to create references from attribute names to dimension names.

By default, dimensionNameProviders is set to:

22 3 Configuring the Indexing Components

dimensionNameProviders+=RepositoryTypeDimensionExporter

When an indexing job is run, RepositoryTypeDimensionExporter outputs dimension value records

for the item.type dimension from the product.type, sku.type, and other item-type attributes. When

SchemaExporter outputs schema records, it checks with RepositoryTypeDimensionExporter to determine

these associations, and outputs a schema record that creates references from these attribute names to the

dimension name. For example:

<RECORD>
 <PROP NAME="attribute.name">
 <PVAL>item.type</PVAL>
 </PROP>
 <PROP NAME="attribute.source_name">
 <PVAL>product.type</PVAL>
 <PVAL>sku.type</PVAL>
 <PVAL>product.manufacturer.type</PVAL>
 <PVAL>allAncestors.type</PVAL>
 </PROP>
 <PROP NAME="attribute.display_name">
 <PVAL>item.type</PVAL>
 </PROP>
 <PROP NAME="attribute.property.data_type">
 <PVAL>string</PVAL>
 </PROP>
 <PROP NAME="attribute.type">
 <PVAL>dimension</PVAL>
 </PROP>
 </RECORD>

Document Submitter Components

As described above, each component that generates records has a documentSubmitter property that is set

by default to a component of class atg.endeca.index.RecordStoreDocumentSubmitter. The ATG-Endeca

integration includes the following components of this class:

• /atg/endeca/index/DataDocumentSubmitter

• /atg/endeca/index/DimensionDocumentSubmitter

• /atg/endeca/index/SchemaDocumentSubmitter

The following are key properties of this class.

CASHostName

The hostname of the machine running CAS. The default setting for all three components is:

CASHostName=localhost

You can override the default when you use CIM to configure your ATG environment.

3 Configuring the Indexing Components 23

CASPort

The port number of the machine running CAS. The default setting for all three components is:

CASPort=8500

You can override the default when you use CIM to configure your ATG environment.

endecaBaseApplicationName

The base string used in constructing the Endeca EAC application name (also known as the deployment template

name). The default setting for all three components is:

endecaBaseApplicationName=ATG

You can override the default when you use CIM to configure your ATG environment.

endecaDataStoreType

The type of the record store to submit to. Can be set to data, dimval, or schema. The following table shows the

default setting for each component:

DataDocumentSubmitter data

DimensionDocumentSubmitter dimval

SchemaDocumentSubmitter schema

flushAfterEveryRecord

A boolean that specifies whether to flush the buffer used by the connection to CAS after each record is

processed. This property is set by default to false. Setting it to true during debugging can be helpful for

determining which records are being rejected by CAS, because the errors will be isolated to specific records.

enabled

A boolean that specifies whether this component is enabled. This property is set by default to true, but it

can be set to false to always report success without submitting records to CAS. (This is useful for debugging

purposes when a CAS instance is not available.)

Reducing Logging Messages

In order to write records to the CAS record stores, the document submitters import classes from the Endeca

com.endeca.itl.record and com.endeca.itl.recordstore packages. These classes make use of the

Apache CXF framework.

Using the default CXF configuration results in a large number of informational logging

messages. The volume of the messages can result in problems, such as locking up of the terminal

window. Therefore, it is a good idea to reduce the number of logging messages by setting

24 3 Configuring the Indexing Components

the logging level of the org.apache.cxf.interceptor.LoggingInInterceptor and

org.apache.cxf.interceptor.LoggingOutInterceptor loggers to WARNING.

The way to set these logging levels differs depending on your application server. Instructions for each supported

application server are provided below.

Oracle WebLogic Server

Create a WebLogic filter in $WL_HOME/../user_projects/domains/base-domain-name/config/

config.xml:

<log-filter>
 <name>CXFFilter</name>
 <filter-expression>
 ((SUBSYSTEM = org.apache.cxf.interceptor.LoggingOutInterceptor') OR
 (SUBSYSTEM = 'org.apache.cxf.interceptor.LoggingInInterceptor')) AND
 (SEVERITY = 'WARNING')
 </filter-expression>
</log-filter>

In the same file, add configuration to apply the filter. The following example applies the filter to the server log

file and to standard output for a server instance named Prod:

<server>
 <name>Prod</name>
 <log>
 <log-file-filter>CXFFilter</log-file-filter>
 <stdout-filter>CXFFilter</stdout-filter>
 <memory-buffer-severity>Debug</memory-buffer-severity>
 </log>
 <listen-port>7103</listen-port>
 <web-server>
 <web-server-log>
 <number-of-files-limited>false</number-of-files-limited>
 </web-server-log>
 </web-server>
 <listen-address></listen-address>
 </server>

JBoss Enterprise Application Platform

Add the following to jboss-as\server\server-name\conf\jboss-log4j.xml:

<category name="org.apache.cxf.interceptor.LoggingInInterceptor">
 <priority value="WARN"/>
</category>
<category name="org.apache.cxf.interceptor.LoggingOutInterceptor">
 <priority value="WARN"/>
</category>

IBM WebSphere Application Server

Edit the server.xml of the WebSphere application server instance ($WAS_HOME/profiles/AppSrv/config/

cells/HostCell/nodes/HostNode/servers/Server/server.xml):

3 Configuring the Indexing Components 25

In the traceservice:TraceService tag, add these strings, separated by colons, to the

startupTraceSpecification property:

org.apache.cxf.interceptor.LoggingInInterceptor=warning
org.apache.cxf.interceptor.LoggingOutInterceptor=warning

For example:

<services xmi:type="traceservice:TraceService"
 xmi:id="TraceService_131/2495363666"
 enable="true" startupTraceSpecification=
 "*=info:org.apache.cxf.interceptor.LoggingInInterceptor=warning:
 org.apache.cxf.interceptor.LoggingOutInterceptor=warning"
 traceOutputType="SPECIFIED_FILE" traceFormat="BASIC">
 <traceLog xmi:id="TraceLog_1312495363666"
 fileName="${SERVER_LOG_ROOT}/trace.log" rolloverSize="20"
 maxNumberOfBackupFiles="5"/>
</services>

Directing Output to Files

To help optimize and debug your output, you can have the generated records sent to files rather than to the

Endeca record stores. Doing this enables you to examine the output without triggering indexing, so you can

determine if you need to make changes to the configuration of the record-generating components.

To direct output to files, create a component of class

atg.repository.search.indexing.submitter.FileDocumentSubmitter, and set

the documentSubmitter property of the record-generating components to point to the

FileDocumentSubmitter component. Note that a separate file is created for each record generated.

The location and names of the files are automatically determined based on the following properties of

FileDocumentSubmitter:

baseDirectory

The pathname of the directory to write the files to.

filePrefix

The string to prepend to the name of each generated file. Default is the empty string.

fileSuffix

The string to append to the name of each generated file. Set this as follows:

fileSuffix=.xml

nameByRepositoryId

If true, each filename will be based on the repository ID of the item the file represents. If false (the default),

files are named 0.xml, 1.xml, etc.

26 3 Configuring the Indexing Components

overwriteExistingFiles

If true, if the generated filename matches an existing file, the existing file will be overwritten by the new file. If

false (the default), the new file will be given a different name to avoid overwriting the existing file.

EndecaScriptService

The /atg/endeca/index/commerce/EndecaScriptService component (of class

atg.endeca.eacclient.ScriptIndexable) is responsible for invoking Endeca Application Controller (EAC)

scripts that trigger indexing.

Configurable properties include:

endecaBaseApplicationName

The base string used in constructing the Endeca EAC application name (also known as the deployment template

name). The default setting is:

endecaBaseApplicationName=ATG

You can override the default when you use CIM to configure your ATG environment.

eacHost

The hostname of the EAC server. The default setting is:

eacHost=localhost

You can override the default when you use CIM to configure your ATG environment.

eacPort

The port used by the EAC server. The default setting is:

eacPort=8888

You can override the default when you use CIM to configure your ATG environment.

eacScriptTimeout

The maximum amount of time (in milliseconds) to wait for an EAC script to complete execution before throwing

an exception. Set by default to 1800000 (1 hour). For large indexing jobs, you may need to increase this value to

ensure EndecaScriptService does not time out before indexing completes.

enabled

A boolean that specifies whether this component is enabled. This property is set by default to true, but it can

be set to false to always report success without invoking a script. (This is useful for debugging purposes when

an EAC instance is not available.)

3 Configuring the Indexing Components 27

ProductCatalogSimpleIndexingAdmin

The /atg/endeca/index/commerce/ProductCatalogSimpleIndexingAdmin component (of class

atg.endeca.index.admin.SimpleIndexingAdmin) manages the process of generating records, submitting

them to Oracle Endeca Commerce, and invoking indexing. The page for this component in the Component

Browser of the ATG Dynamo Server Admin presents a simple user interface for controlling and monitoring the

process.

The SimpleIndexingAdmin class defines indexing in terms of an indexing job, which is made of up indexing

phases, which in turn contain indexing tasks. Each indexing task is responsible for executing an individual

Indexable component. Tasks within a phase may run in sequence or in parallel, but in either case all tasks in a

phase must complete before the next phase can begin.

By default, the ProductCatalogSimpleIndexingAdmin defines three phases:

1. PreIndexing -- Runs /atg/endeca/index/commerce/CategoryTreeService.

2. RepositoryExport -- Runs these components in parallel:

• /atg/endeca/index/commerce/SchemaExporter

• /atg/endeca/index/commerce/CategoryToDimensionOutputConfig

• /atg/endeca/index/commerce/RepositoryTypeDimensionExporter

• /atg/commerce/search/ProductCatalogOutputConfig

3. EndecaIndexing -- Runs /atg/endeca/index/commerce/EndecaScriptService, which invokes Endeca

indexing scripts.

ProductCatalogSimpleIndexingAdmin reports information about an indexing job, such as the start and

finish time of the job, the duration of each phase, the status of each task, and the number of records submitted.

You can invoke indexing jobs manually through the ProductCatalogSimpleIndexingAdmin user interface.

In addition, the SimpleIndexingAdmin class implements the atg.service.scheduler.Schedulable

interface, so it is also possible to configure the ProductCatalogSimpleIndexingAdmin component to invoke

indexing jobs automatically on a specified schedule. (See the ATG Platform Programming Guide for information

about the Schedulable interface and other Scheduler services.)

Key configuration properties of ProductCatalogSimpleIndexingAdmin include:

phaseToPrioritiesAndTasks

This property defines the phases and tasks of an indexing job, and the order in which the phases are executed. It

is a comma-separated list of phases, where the format of each phase definition is:

phaseName=priority:Indexable1;Indexable2;...;IndexableN

Phases are executed in priority order, with lower number priorities executed first.

By default, this is set to:

phaseToPrioritiesAndTasks=\
 PreIndexing=5:CategoryTreeService,\
 RepositoryExport=10:\

28 3 Configuring the Indexing Components

 SchemaExporter;\
 CategoryToDimensionOutputConfig;\
 RepositoryTypeDimensionExporter;\
 /atg/commerce/search/ProductCatalogOutputConfig,\
 EndecaIndexing=15:EndecaScriptService

runTasksWithinPhaseInParallel

A boolean that controls whether to run tasks within a phase in parallel. Set to true by default. If set to false,

the tasks are executed in sequence, in the order specified in the phaseToPrioritiesAndTasks property.

Setting runTasksWithinPhaseInParallel to false can simplify debugging, because when tasks are run in

parallel, logging messages from multiple components may be interspersed, making them difficult to read.

enableScheduledIndexing

A boolean that controls whether to invoke indexing automatically on a specified schedule. Set to false by

default.

baselineSchedule

A String that specifies the schedule for performing baseline updates. Set to null by default. If you set

enableScheduledIndexing to true, set baselineSchedule to a String that conforms to one of the

formats accepted by classes implementing the atg.service.scheduler.Schedule interface, such as

atg.service.scheduler.CalendarSchedule or atg.service.scheduler.PeriodicSchedule. For

example, to schedule a baseline update to run every Sunday at 11:30 pm:

baselineSchedule=calendar * * 7 * 23 30

partialSchedule

A String that specifies the schedule for performing baseline updates. The format for the String is the same as the

format used for baselineSchedule. Set to null by default.

retryInMs

The amount of time (in milliseconds) to wait before retrying a scheduled indexing job if the first attempt

to execute it fails. Set by default to -1, which means no retry. If you change this value, you should set it to a

relatively short amount of time to ensure that the indexing job completes before the next scheduled job begins.

If ProductCatalogSimpleIndexingAdmin estimates that the retried job will not complete before the next

scheduled job, it skips the retry.

jobQueue

Specifies the component that manages queueing of index jobs. Set by default to /atg/endeca/index/

InMemoryJobQueue. See Queueing Indexing Jobs (page 28) for more information.

Queueing Indexing Jobs

In certain cases, an indexing job cannot be executed immediately when it is invoked:

• If there is currently another indexing job running

• If an ATG Content Administration deployment is in progress

3 Configuring the Indexing Components 29

To handle these cases, ProductCatalogSimpleIndexingAdmin invokes the /atg/

endeca/index/InMemoryJobQueue component. This component, which is of class

atg.endeca.index.admin.InMemoryJobQueue, implements a memory-based indexing job queue that

manages these jobs on a first-in, first-out basis.

In addition, the queue handles the case where an indexing job is in progress when an ATG Content

Administration deployment is started. In this situation, the job in progress is stopped, moved to the top of the

queue (ahead of any other pending jobs), and restarted when the deployment is complete.

Queued jobs are listed on the ProductCatalogSimpleIndexingAdmin page in the Component Browser of the

ATG Dynamo Server Admin. In the following example, an indexing job has been stopped due to an ATG Content

Administration deployment, and moved to the queue to be restarted once the deployment completes:

Content Administration Components

If your ATG environment includes ATG Content Administration, be sure to include the

DCS.Endeca.Index.Versioned module when you assemble the EAR file for your ATG Content Administration

server. This module enables indexing jobs to be triggered automatically after a deployment, ensuring that

changes deployed from ATG Content Administration are reflected in the index as quickly as possible. A full

deployment triggers a baseline update, and an incremental deployment triggers a partial update.

Indexing can be configured to trigger either locally (on the ATG Content Administration server itself) or

remotely (on the staging or production server). Note that even when indexing is executed on the ATG Content

Administration server, the catalog repository that is indexed is the unversioned deployment target (/atg/

commerce/catalog/ProductCatalog_production), not the versioned repository.

The ATG-Endeca integration includes the /atg/search/repository/IndexingDeploymentListener

component, which is of class atg.epub.search.indexing.IndexingDeploymentListener. This

30 3 Configuring the Indexing Components

component listens for deployment events and, depending on the repositories involved, triggers one or more

indexing jobs.

The IndexingDeploymentListener component has a remoteSynchronizationInvokerService

property that is set by default to /atg/search/SynchronizationInvoker. The SynchronizationInvoker

component, which is of class atg.search.core.RemoteSynchronizationInvokerService, controls

whether indexing is invoked on the local (ATG Content Administration) server or on a remote system (such as the

production server).

Local Indexing

For local indexing (the default configuration), the SynchronizationInvoker component

invokes the /atg/endeca/index/LocalSynchronizationInvoker component on the

ATG Content Administration server to trigger the indexing job. This component, which is

of class atg.endeca.index.LocalSynchronizationInvoker, is specified through the

localSynchronizationInvoker property of the SynchronizationInvoker component:

localSynchronizationInvoker=/atg/endeca/index/LocalSynchronizationInvoker

The following diagram illustrates the configuration for local indexing:

Remote Indexing

To enable remote indexing, modify the configuration of the SynchronizationInvoker component on the ATG

Content Administration system so that it points to a SynchronizationInvoker component on the remote

system, and configure the remote SynchronizationInvoker to point to a LocalSynchronizationInvoker

on the remote system:

• On the ATG Content Administration system, set the SynchronizationInvoker.host property

to the host name of the remote system, and set the SynchronizationInvoker.port property

to the RMI port number to use for communication between systems. It is also a good idea to set

3 Configuring the Indexing Components 31

the SynchronizationInvoker.localSynchronizationInvoker property on the ATG Content

Administration system to null, to ensure local indexing is not triggered.

• On the remote system, ensure that the SynchronizationInvoker.localSynchronizationInvoker

property is set to /atg/endeca/index/LocalSynchronizationInvoker.

The following diagram illustrates the configuration for remote indexing:

Triggering Indexing on Deployment

The following steps describe how indexing is triggered when a deployment occurs:

1. The IndexingDeploymentListener component detects the event.

2. The IndexingDeploymentListener examines the event to see the list of repositories being deployed.

3. The IndexingDeploymentListener compiles a list of the EndecaIndexingOutputConfig components

that are associated with any of those repositories.

4. The IndexingDeploymentListener invokes the LocalSynchronizationInvoker component.

5. The LocalSynchronizationInvoker looks at the list of EndecaIndexingOutputConfig components

and compiles a list of SimpleIndexingAdmin components that are associated with any of the

EndecaIndexingOutputConfig components.

6. The LocalSynchronizationInvoker triggers an indexing job on each SimpleIndexingAdmin

component in the list.

Note that the lists of EndecaIndexingOutputConfig and SimpleIndexingAdmin components are not

configured explicitly. Instead, the SimpleIndexingAdmin components are automatically registered with the

LocalSynchronizationInvoker, and the EndecaIndexingOutputConfig components are automatically

registered with the LocalSynchronizationInvoker and the IndexingDeploymentListener.

32 3 Configuring the Indexing Components

Viewing Records in the Component Browser

For debugging purposes, you can use the Component Browser of the ATG Dynamo Server Admin to view

records without submitting them to Oracle Endeca Commerce. To do this, access the page for a component that

generates records and follow the instructions below.

ProductCatalogOutputConfig or CategoryToDimensionOutputConfig

The pages for the ProductCatalogOutputConfig and CategoryToDimensionOutputConfig components

include a Test Document Generation section that you can use to view the output for a single repository item:

Fill in the repository ID of a product item (for the ProductCatalogOutputConfig component) or a category

item (for the CategoryToDimensionOutputConfig component), and click Generate. The page will display the

output records.

Click the Show Indexing Output Properties link to see descriptions of how the ATG repository-item properties

are renamed in the Endeca records, based on the values of various EndecaIndexingOutputConfig properties.

(See the EndecaIndexingOutputConfig Components (page 15) section for information about these

properties.)

RepositoryTypeDimensionExporter or SchemaExporter

The pages for the RepositoryTypeDimensionExporter and SchemaExporter components include a Show

XML Output link. Each of these components produces a single output for the entire catalog. Click the link to view

the output from the component.

4 Configuring EndecaIndexingOutputConfig Definition Files 33

4 Configuring

EndecaIndexingOutputConfig

Definition Files

This chapter describes various elements and attributes of EndecaIndexingOutputConfig XML definition files

that you can use to control the content of the output records created from the ATG product catalog.

Definition File Format

An EndecaIndexingOutputConfig indexing definition file begins with a top-level item element that specifies

the item descriptor to create records from, and then lists the properties of that item type to include. The

properties appear as property elements within a properties element.

The top-level item element in the definition file can contain child item elements for properties that refer to

other repository items (or arrays, Collections, or Maps of repository items). Those child item elements in turn can

contain property and item elements themselves.

The following example shows a simple definition file for indexing an ATG product catalog repository:

<item item-descriptor-name="product" is-document="true">
 <properties>
 <property name="creationDate" type="date"/>
 <property name="brand" is-dimension="true" type="string"
 text-searchable="true"/>
 <property name="description" text-searchable="true"/>
 <property name="longDescription" text-searchable="true"/>
 <property name="displayName" text-searchable="true"/>
 </properties>

 <item is-multi="true" property-name="childSKUs">
 <properties>
 <property name="quantity" type="integer"/>
 <property name="description" text-searchable="true"/>
 <property name="displayName" text-searchable="true"/>
 <property name="color" is-dimension="true" type="string"
 text-searchable="true"/>
 </properties>

34 4 Configuring EndecaIndexingOutputConfig Definition Files

 <item is-multi="true" property-name="parentCategories"
 parent-property="childProducts">
 <properties>
 <property name="description" text-searchable="true"/>
 <property name="longDescription" text-searchable="true"/>
 <property name="displayName" text-searchable="true"/>
 </properties>
 </item>
</item>

Note that in this example, the top-level item element has the is-document attribute set to true. This attribute

specifies that a record should be generated for each item of that type (in this case, each product item). This

means that each record indexed by Oracle Endeca Commerce corresponds to a product, so that when a user

searches the catalog, each individual result returned represents a product. The definition file specifies that each

output record should include information about the product’s parent categories and child SKUs (as well as the

product itself), so that users can search category or SKU properties in addition to product properties.

If, instead, you want to generate a separate record per sku item, you set is-document to true for the

childSKUs item element and to false for the product item element. In that case, the product properties

(e.g., brand in the example) are repeated in each record.

When you configure the ATG-Endeca integration in CIM, you select whether to index by product or SKU. Your

selection determines whether certain application modules are included in your EAR files. These modules

configure the is-document attributes and other related settings appropriately for the option you select. See

ATG Modules (page 5) for information about these modules.

In addition to the properties you specify in the definition file, the output records also automatically include a few

special properties. These properties provide information that identifies the repository items represented in the

record: repositoryId, repository.repositoryName, and itemDescriptor.itemDescriptorName.

The output also includes a url property and a baseUrl property, which each contain the URL representing

this repository item. The difference between these properties is that if a VariantProducer is used to generate

multiple records from the same repository item, the url property for each record will include unique query

parameters to distinguish the record from the others. The baseUrl property, which omits the query parameters,

will be the same for each record.

Specifying Endeca Schema Attributes

You use various attributes of the property element to specify the way ATG properties should be treated in the

Endeca MDEX. The SchemaExporter component then uses the values of these attributes in the schema records

it creates.

To specify the data type of a property, you use the type attribute. The value of this attribute can be date,

string, boolean, integer, or float. For example:

<property name="quantity" type="integer"/>

If a type value is not specified, it defaults to string.

4 Configuring EndecaIndexingOutputConfig Definition Files 35

You can designate a property as searchable, as a dimension, or both. To make a property searchable, set the

text-searchable attribute to true. To make a property an Endeca dimension, set the is-dimension

attribute to true. In the following example, the color property is both a dimension and searchable:

<property name="color" is-dimension="true" text-searchable="true"/>

If is-dimension is true, you can use the multiselect-type attribute to specify whether the customer can

select multiple values of the dimension at the same time. The value of this attribute can be multi-or (combine

using Boolean OR), multi-and (combine using Boolean AND), or none (the default, meaning multiselect is not

supported for this dimension). For example:

<property name="brand" is-dimension="true" multiselect-type="multi-or"/>

Multiselect logic works as follows:

• Combining with Boolean OR returns results that match any of the selected values. For example, for a color

dimension, if the user selects yellow and orange, a given item is returned if its color value is yellow or if it

is orange.

• Combining with Boolean AND returns results that match all of the selected values. For example, suppose

a product representing a laser printer has a paperSizes property that is an array of the paper sizes the

printer accepts, and you have a dimension based on this property. If the user selects A4 and letter for this

dimension, a given item is returned only if its paperSizes property includes both letter and A4.

Specifying Properties for Indexing

This section discusses how to specify various properties of catalog items for inclusion in the Endeca MDEX, and

options for how these properties should be handled.

Specifying Multi-Value Properties

In most cases, you specify a multi-value property, such as an array or Collection, using the property element,

just as you specify a single-value property. In the following example, the features property stores an array of

Strings:

<properties>
 <property name="creationDate" type="date"/>
 <property name="brand" is-dimension="true" type="string"
 text-searchable="true"/>
 <property name="displayName" type="string" text-searchable="true"/>
 <property name="features" type="string" text-searchable="true"/>
</properties>

Notice that features is specified in the same way as creationDate, brand, and displayName, which are all

single-value properties. The output will include a separate entry for each value in the features array.

36 4 Configuring EndecaIndexingOutputConfig Definition Files

If a property is an array or Collection of repository items, you specify it using the item element, and set the is-

multi attribute to true. For example, in a product catalog, a product item will typically have a multi-valued

childSKUs property whose values are the various SKUs for the product. You might specify the property like this:

<item property-name="childSKUs" is-multi="true">
 <properties>
 <property name="color" is-dimension="true" type="string"
 text-searchable="true"/>
 <property name="description" type="string" text-searchable="true"/>
 </properties>
</item>

If you index by product, the output records will include the color and description value for each of the

product’s SKUs.

Specifying Map Properties

To specify a Map property, you use the item element, set the is-multi attribute to true, and use the map-

iteration-type attribute to specify how to output the Map entries. If the Map values are primitives or Strings,

set map-iteration-type to wildcard, as in this example:

<item property-name="personalData" is-multi="true" map-iteration-type="wildcard">
 <properties>
 <property name="*" type="string"/>
 </properties>
</item>

In the output, the Map keys are treated as subproperties of the Map property, and the Map values are treated as

the values of these subproperties. All of the Map entries are included in the output. So, for example, the output

from the definition file entry shown above might look like this:

<PROP NAME="personalData.firstName">
 <PVAL>Fred</PVAL>
</PROP>
<PROP NAME="personalData.age">
 <PVAL>37</PVAL>
</PROP>
<PROP NAME="personalData.height">
 <PVAL>68</PVAL>
</PROP>

If you want to output only a subset of the Map entries, explicitly specify the keys to include, rather than using

the wildcard character (*). For example:

<item property-name="personalData" is-multi="true" map-iteration-type="wildcard">
 <properties>
 <property name="firstName" type="string" text-searchable="true"/>
 <property name="height" type="string"/>
 </properties>
</item>

4 Configuring EndecaIndexingOutputConfig Definition Files 37

Maps of Repository Items

If the Map values are repository items, set map-iteration-type to values, and specify the properties of

the repository item that you want to output. For example, suppose you want to index a productInfos Map

property whose keys are product IDs and whose values are productInfo items:

<item property-name="productInfos" is-multi="true" map-iteration-type="values">
 <properties>
 <property name="displayName" type="string" text-searchable="true"/>
 <property name="size" type="integer" is-dimension="true"/>
 </properties>
</item>

The output will include displayName and size tags for each productInfo item in the Map. In this case, the

Map keys are ignored, the properties of the repository items are treated as subproperties of the Map property,

and the values of the items are treated as the values of the subproperties. The output looks like this:

<PROP NAME="productInfos.displayName">
 <PVAL>Funny Hat</PVAL>
</PROP>
<PROP NAME="productInfos.size">
 <PVAL>8</PVAL>
</PROP>
<PROP NAME="productInfos.displayName">
 <PVAL>Clown Shoes</PVAL>
</PROP>
<PROP NAME="productInfos.size">
 <PVAL>14</PVAL>
</PROP>

Specifying Properties of Item Subtypes

A repository item type can have subtypes that include additional properties that are not part of the base item

type. This feature is commonly used in the Oracle ATG Web Commerce catalog for the SKU item type. A SKU

subtype might add properties that are specific to certain SKUs but which are not relevant for other SKUs.

When you list properties to index, you can use the subtype attribute of the property element to specify

properties that are unique to a specific item subtype. For example, suppose you have a furniture-sku subtype

that adds properties specific to furniture SKUs. You might specify your SKU properties like this:

<item property-name="childSKUs">
 <properties>
 <property name="description" type="string" text-searchable="true"/>
 <property name="color" type="string" text-searchable="true"
 is-dimension="true"/>
 <property name="woodFinish" subtype="furniture-sku" type="string"
 text-searchable="true"/>
 </properties>
</item>

This specifies that the description and color properties should be included in the output for all SKUs, but for

SKUs whose subtype is furniture-sku, the woodFinish property should also be included.

38 4 Configuring EndecaIndexingOutputConfig Definition Files

The item element also has a subtype attribute for specifying a subtype-specific property whose value is a

repository item. If woodFinish is a repository item, the example above would look something like this:

<item property-name="childSKUs">
 <properties>
 <property name="description" type="string" text-searchable="true"/>
 <property name="color" type="string" text-searchable="true"
 is-dimension="true"/>
 </properties>
 <item property-name="woodFinish" subtype="furniture-sku"/>
 <properties>
 <property name="texture" type="string" text-searchable="true"/>
 <property name="stainType" type="string" text-searchable="true"/>
 </properties>
 </item>
</item>

Specifying a Default Property Value

You may find it useful to specify a default value for certain indexed properties. For example, suppose you are

indexing address data, and for some addresses no value appears in the repository for the city property. In

these cases, you could set the property value in the index to be “city unknown.” A user could then search for this

phrase and return the addresses whose city property is null.

To set a default value, you use the default-value attribute of the property element. For example:

<property name="city" type="string" text-searchable="true"
 default-value="city unknown"/>

Specifying Non-Repository Properties

When you index a repository, you can include in the index additional properties that are not part of the

repository itself. For example, you might want to include a creationDate property to record the current time

when a record is created. The value for this property could be generated by a custom property accessor that

invokes the Java Date class.

To specify a property like this, use the is-non-repository-property attribute of the property element. This

attribute indicates that the property is not actually stored in the repository, and prevents warnings from being

thrown when the IndexingOutputConfig component starts up. Note that you must also specify a custom

property accessor that is responsible for obtaining the property values:

<property name="creationDate" is-non-repository-property="true"
 type="date" property-accessor="dateAccessor"/>

If no actual property accessor is needed, set the property-accessor attribute to null. For example, you might

do this if you have a default value that you always want to use for the property:

<property name="creationDate" is-non-repository-property="true"
 type="date" default-value="Mon Mar 15 16:07:15 EDT 2010"

4 Configuring EndecaIndexingOutputConfig Definition Files 39

 property-accessor="null"/>

See Using Property Accessors (page 43) for more information about custom property accessors.

Suppressing Properties

The output record automatically includes certain standard JavaBean properties of the RepositoryItem object.

These properties provide information that identifies the repository items represented in the record, and they

are indicated in the definition file by a dollar-sign ($) prefix: $repositoryId, $repository.repositoryName,

and $itemDescriptor.itemDescriptorName. (The dollar-signs are removed by default in the output records,

because Endeca property names cannot include them.)

You may want to return these properties in search results, to enable accessing the indexed repository and

repository items in page code. Typically you would do this for the document-level item type. For other item

types, you may not need these properties. If you don’t, it is a good idea to suppress them from the index, as they

may significantly increase the size of the index.

To suppress one of these properties, specify the property in the indexing definition file with the suppress

attribute. For example:

<item property-name="parentCategories" is-document="false">
 <properties>
 <property name="$repositoryId" suppress="true"/>
 <property name="$repository.repositoryName" suppress="true"/>
 <property name="$itemDescriptor.itemDescriptorName" suppress="true"/>
 </properties>
</item>

Including the siteIds Property

If you are using Oracle ATG Web Commerce multisite support, many of the item types in the catalog repository

have a siteIds property whose value is a comma-separated list of the sites an item appears on. For example, if

you have three sites, A, B, and C, and a certain product is available on sites A and C (but not B), the value of the

product’s siteIds property would be siteA,siteC (assuming those are the site IDs).

The siteIds properties in the catalog repository are defined as context membership properties. For the

document-level item type, the record output includes a special siteId property representing the repository

item’s context membership property. (The output property is always named siteId, regardless of the actual

name of the context membership property.) The records include a separate entry for each site listed in the

context membership property.

Note that the output records include entries only for sites that are listed in the sitesToIndex property of the

EndecaIndexingOutputConfig component. For example, if the value of a product’s siteIds property is

siteA,siteC,siteD, but sitesToIndex list only sites C and D, the record will not include an entry for site A.

If an item’s siteIds property is null, or if it lists only sites that are not listed in the sitesToIndex property, no

record is generated for the item.

Renaming an Output Property

By default, the name of a property in an output record is based on its name in the repository, with

modifications applied based on the values of the replaceWithTypePrefixes, prefixReplacementMap,

40 4 Configuring EndecaIndexingOutputConfig Definition Files

and suffixReplacementMap properties of the EndecaIndexingOutputConfig component. (See the

EndecaIndexingOutputConfig Components (page 15) section for information about these properties.)

You can instead specify the output property name by using the output-name attribute of the property

element. For example:

<property name="material" output-name="product.fabric"
 text-searchable="true" is-dimension="true"/>

Note that the exact output-name value you specify is used with no modifications. So in this example, the item-

type prefix is explicitly included.

Translating Property Values

In some cases, the property values that you want to include in the index (and therefore in the generated records)

may not be the actual values used in the repository. For example, you may want to normalize values (e.g., index

the color values Rose, Vermilion, Crimson, and Ruby all as Red, so they are all treated as the same dimension

value). Or you may want to translate values into another language (e.g., index the color value Green as Vert, so

when a customer searches for Vert, green items are returned).

To translate property values for indexing, you use the translate child element of the property element. The

translate element has an input attribute for specifying a property value found in the repository, and an

output attribute for specifying the value to translate this to in the output records. For example:

<property name="color" text-searchable="true" is-dimension="true">
 <translate input="Rose" output="Red"/>
 <translate input="Vermilion" output="Red"/>
 <translate input="Crimson" output="Red"/>
 <translate input="Ruby" output="Red"/>
</property>

The property element also has prefix and suffix child elements that you can use to append a text string

before or after the output property values. For example, you can use the suffix element to add units to the

property values:

<property name="length">
 <suffix value=" cm"/>
</property>

Note that the prefix and suffix values are concatenated to the property values exactly as specified, with no

additional spaces. If you want spaces before the suffix string or after the prefix string, include the spaces in

the value attribute, as in the example above.

You can use the prefix, suffix, and translate elements individually or in combination. The following

example translates the size values S, M, and L, to “size small,” “size medium,” and “size large,” to make it easier for

customers to search for specific sizes:

<property name="size" text-searchable="true" is-dimension="true">
 <prefix value="size "/>
 <translate input="S" output="small"/>
 <translate input="M" output="medium"/>

4 Configuring EndecaIndexingOutputConfig Definition Files 41

 <translate input="L" output="large"/>
</property>

Translating Based on Locale

The prefix, suffix, and translate elements all have optional locale attributes that allow you to specify

different values for different locales. For example:

<property name="onSale" is-dimension="true">
 <translate locale="en_US" input="true" output="on sale"/>
 <translate locale="fr_FR" input="true" output="à la vente"/>
</property>
<property name="weight">
 <suffix locale="en_US" output=" grams"/>
 <suffix locale="fr_FR" output=" grammes"/>
</property>

When the records are generated, the IndexingOutputConfig component determines which tags to use based

on the current locale. So if the locale is en_US, only the tags that specify that locale are applied.

Multilingual environments typically use the LocaleVariantProducer, which generates multiple records

for each indexed item, one record for each locale specified in its locales array property. (See Using Variant

Producers (page 47) for more information.) If the value of the locales array is en_US,fr_FR, two sets of

records are generated, one using the translate, prefix, and suffix tags whose locale is en_US, and one

using the tags whose locale is fr_FR.

If a tag does not specify a locale, that tag is used as the default when the current locale does not match any of

the other tags. In the following example, Rose is translated to Rouge if the locale is fr_FR, but is translated to

Red for any other locale:

<property name="color" text-searchable="true" is-dimension="true">
 <translate input="Rose" output="Red"/>
 <translate locale="fr_FR" input="Rose" output="Rouge"/>
</property>

Using Monitored Properties

By default, the IncrementalLoader determines which changes necessitate updates by monitoring the

properties specified in the XML definition file. In some cases, however, the properties you want to monitor

are not necessarily the ones that you want to output. This is especially the case if you are outputting derived

properties, because these properties do not have values of their own.

For example, suppose you are indexing a user item type that has firstName and lastName properties, plus a

fullName derived property whose value is formed by concatenating the values of firstName and lastName.

You might want to output the fullName property, but to detect when the value of this property changes, you

need to monitor (but not necessarily output) firstName and lastName.

You can do this by including a monitor element in your definition file to specify properties that should be

monitored but not output. For example:

<properties>

42 4 Configuring EndecaIndexingOutputConfig Definition Files

 <property name="fullName" text-searchable="true"/>
</properties>
<monitor>
 <property name="firstName"/>
 <property name="lastName"/>
</monitor>

For information about derived properties, see the ATG Repository Guide.

5 Customizing the Output Records 43

5 Customizing the Output Records

This chapter describes interfaces and classes that can be used to customize the records created by the ATG-

Endeca integration. It discusses the following topics:

Using Property Accessors (page 43)

Using Variant Producers (page 47)

Using Property Formatters (page 50)

Using Property Value Filters (page 50)

For additional information about the classes and interfaces described in this chapter, see the ATG Platform API

Reference.

Using Property Accessors

Property values are read from the product catalog through an implementation of the

atg.repository.search.indexing.PropertyAccessor interface. For most properties, the default

is to use the atg.repository.search.indexing.PropertyAccessorImpl class, which just invokes

the RepositoryItem.getPropertyValue() method. You can write your own implementations of

PropertyAccessor that use custom logic for determining the values of properties that you specify. The

simplest way to do this is to subclass PropertyAccessorImpl.

In an EndecaIndexingOutputConfig definition file, you can specify a custom property accessor for a property

by using the property-accessor attribute. For example, suppose you have a Nucleus component named /

mystuff/MyPropertyAccessor, of a custom class that implements the PropertyAccessor interface. You can

specify it in the definition file like this:

<property name="price" property-accessor="/mystuff/MyPropertyAccessor"/>

The value of the property-accessor attribute is the absolute path of the Nucleus component. To simplify

coding of the definition file, you can map PropertyAccessor Nucleus components to simple names, and

use those names as the values of property-accessor attributes. For example, if you map the /mystuff/

MyPropertyAccessor component to the name myAccessor, the above tag becomes:

<property name="price" property-accessor="myAccessor"/>

44 5 Customizing the Output Records

You can perform this mapping by setting the propertyAccessorMap property of the IndexingOutputConfig

component. This property is a Map in which the keys are the names and the values are PropertyAccessor

Nucleus components that the names represent. For example:

propertyAccessorMap+=\
 myAccessor=/mystuff/MyPropertyAccessor

FirstWithLocalePropertyAccessor

The atg.repository.search.indexing.accessor package includes a subclass of

PropertyAccessorImpl named FirstWithLocalePropertyAccessor. This property accessor

works only with derived properties that are defined using the firstWithLocale derivation method.

FirstWithLocalePropertyAccessor determines the value of the derived property by looking up

the currentDocumentLocale property of the Context object. Typically, this property is set by the

LocaleVariantProducer, as described in Accessing the Context Object (page 47).

You can specify this property accessor in your definition file using the attribute value firstWithLocale. (Note

that you do not need to map this name to the property accessor in the propertyAccessorMap.) For example:

<property name="displayName" property-accessor="firstWithLocale"/>

For information about the firstWithLocale derivation method, and about derived properties in general, see

the ATG Repository Guide.

LanguageNameAccessor

The atg.endeca.index.accessor.LanguageNameAccessor class, which is a subclass of

atg.repository.search.indexing.PropertyAccessorImpl, returns the name of the language that a

record is in. The ATG-Endeca integration includes a component of this class, /atg/endeca/index/accessor/

LanguageNameAccessor, which the ProductCatalogOutputConfig uses to obtain the value of the

product.language property:

<property name="language" type="string"
 property-accessor="/atg/endeca/index/accessor/LanguageNameAccessor"
 output-name="product.language" is-non-repository-property="true"/>

GenerativePropertyAccessor

The atg.repository.search.indexing.accessor package includes a subclass of

PropertyAccessorImpl named GenerativePropertyAccessor. This is an abstract class that adds the ability

to generate multiple property names and associated values for a single property tag in the indexing definition

file. For example, the PriceListMapPropertyAccessor subclass of GenerativePropertyAccessor

generates, for a single price property in the definition file, a separate price value for each price list.

You can write your own subclass of GenerativePropertyAccessor. Your subclass must implement the

getPropertyNamesAndValues method. This method returns a Map in which each key is a property name, and

the corresponding Map value contains the value to be associated with the property name.

5 Customizing the Output Records 45

PriceListMapPropertyAccessor

If your Oracle ATG Web Commerce catalog uses price lists, a single item may have multiple prices, with the actual

price applied depending on who is purchasing the item. Different customers may be assigned different price

lists, and when a customer accesses a product or SKU, the price he or she sees may be different from the price

another customer sees.

When a customer searches the product catalog using Oracle Endeca Commerce, the results may depend on

the correct prices for that customer being present in the index. For example, the set of products returned by

selecting a facet range of $5.00 to $10.00 may depend on the price lists the customer is assigned.

When you index your catalog, the item prices are read from the price lists and used in output records.

A separate prop tag is created for each price list, and the property name in the tag identifies the price

list the tag is associated with. To read the prices from the price lists, you use a property accessor of class

atg.commerce.search.producer.PriceListMapPropertyAccessor. (This class is a subclass of

atg.repository.search.indexing.accessor.GenerativePropertyAccessor, which is described in the

GenerativePropertyAccessor (page 44) section.)

Oracle ATG Web Commerce provides a component of this class, /atg/commerce/

search/PriceListMapPropertyAccessor. You can specify this property accessor in an

EndecaIndexingOutputConfig definition file like this:

<property name="price" type="float"
 property-accessor="pricePropertyAccessor"
 is-non-repository-property="true"/>

The property-accessor attribute is set to pricePropertyAccessor, which is mapped to /atg/commerce/

search/PriceListMapPropertyAccessor in the ProductCatalogOutputConfig component. The

is-non-repository-property attribute indicates that the property is not actually stored in the catalog

repository; this attribute prevents warnings from being thrown when the IndexingOutputConfig component

starts up.

When the PriceListMapPropertyAccessor is invoked for an item, it iterates through all available price

lists and outputs a separate prop tag for each one. Each tag contains the item price from one price list. The

format of the names of the output properties is set through the pricePropertyPrefix property of the

PriceListMapPropertyAccessor component. By default, the value of this property is:

sku.price_

The price list ID is appended to this prefix in the tag associated with a given price list. For example, if there are

four possible price lists, the output might include:

<PROP NAME="sku.price_plist90001">
 <PVAL>9.99</PVAL>
</PROP>
<PROP NAME="sku.price_plist90002">
 <PVAL>7.99/PVAL>
</PROP>
<PROP NAME="sku.price_plist90003">
 <PVAL>5.99</PVAL>
</PROP>
<PROP NAME="sku.price_plist90004">
 <PVAL>4.99</PVAL>

46 5 Customizing the Output Records

</PROP>

So, for example, the price for this item in price list pl90003 is 5.99.

If a price list does not have a price for the item, the property accessor determines if the price list inherits a price

for the item from another price list. If so, the accessor outputs the inherited price. If the price list does not inherit

a price, no entry is output for that price list.

Category Dimension Value Accessors

Several property accessors are used by the CategoryToDimensionOutputConfig component to extract the

values of various dimension value attributes from the data structures created by the CategoryTreeService

component.

A component of class atg.endeca.index.accessor.ConstantValueAccessor, /atg/endeca/

index/commerce/accessor/DimensionSpecPropertyAccessor, obtains the value of the

dimval.dimension_spec attribute, which is a unique identifier for the dimension (typically

product.category).

Several components of class

atg.commerce.endeca.index.dimension.CategoryNodePropertyAccessor, also in the /atg/endeca/

index/commerce/accessor/ Nucleus folder, obtain the values of various dimension value attributes. The

following table lists these property accessors and describes the attributes they obtain values for:

Property Accessor Property

RootCatalogPropertyAccessor dimval.prop.category.rootCatalogId -- The repository ID of the

root catalog the category belongs to (e.g., masterCatalog).

SpecPropertyAccessor dimval.spec -- A unique identifier for the dimension

value that includes the path information to distinguish it

from other dimension values for the same category (e.g.,

rootCategory.cat10016.cat10014).

QualifiedSpecPropertyAccessordimval.qualified_spec -- A qualified identifier

for the dimension value consisting of the

dimval.dimension_spec value and the dimval.spec value (e.g.,

product.category:rootCategory.cat10016.cat10014).

ParentSpecPropertyAccessor dimval.parent_spec -- A reference to the category’s parent

category (e.g., rootCategory.cat10016).

DisplayOrderPropertyAccessor dimval.display_order -- An integer specifying the order the

category is displayed in, relative to its sibling categories.

5 Customizing the Output Records 47

Using Variant Producers

By default, for the repository item type designated by the is-document attribute, the IndexingOutputConfig

component generates one record per item. In some cases, though, you may want to generate more than one

record for each repository item. For example, suppose you have a repository whose text properties are stored in

both French and English, and the language displayed is determined by the user’s locale setting. In this case you

will typically want to create two records from each repository item, one with the text content in French, and the

other one in English.

To handle situations like this, the Oracle ATG Web Commerce platform provides an interface named

atg.repository.search.indexing.VariantProducer. You can write your own implementations of the

VariantProducer interface, or you can use implementations included with the ATG platform. This interface

defines a single method, prepareNextVariant(), for determining the number and type of variants to

produce. Depending on how your repository is organized, implementations of this method can use a variety of

approaches for determining how to generate variant records.

LocaleVariantProducer

The ATG-Endeca integration includes an implementation of the VariantProducer interface,

atg.repository.search.indexing.producer.LocaleVariantProducer, for generating variant

records for different locales. It also includes a component of this class, /atg/commerce/search/

LocaleVariantProducer.

The LocaleVariantProducer class has a locales property where you specify the list of locales to generate

variants for. For example:

locales=en_US,fr_FR

You specify the VariantProducer components to use by setting the variantProducers property of the

EndecaIndexingOutputConfig component. Note that this property is an array; you can specify any number of

VariantProducer components. For example:

variantProducers=/atg/commerce/search/LocaleVariantProducer,
 /mystuff/MyVariantProducer

If you specify multiple variant producers, the EndecaIndexingOutputConfig generates a separate variant

for each possible combination of values of the variant criteria. For example, suppose you use the configuration

shown above, and MyVariantProducer creates three variants (1, 2, and 3). The total number of variants

generated for each repository item is six (French 1, English 1, French 2, English 2, French 3, and English 3).

Accessing the Context Object

Classes that implement the PropertyAccessor or VariantProducer interface must be stateless, because

they can be accessed by multiple threads at the same time. Rather than maintaining state themselves,

these classes instead use an object of class atg.repository.search.indexing.Context to store state

information and to pass data to each other. The Context object contains the current list of parent repository

items that were navigated to reach the current item, the current URL (if any), the current collected output values

(if any), and status information.

One of the main uses of the Context object is to store information used to determine what variant to generate

next. For example, each time a new record is generated, the LocaleVariantProducer uses the next value in

48 5 Customizing the Output Records

its locale array to set the currentDocumentLocale property of the Context object. A PropertyAccessor

instance might read the currentDocumentLocale property and use its current value to determine the locale to

use for the property.

Note that classes that implement the PropertyFormatter or PropertyValuesFilter interface (described

below) are applied after all of the output properties have been gathered, so these classes do not have access to

the Context object.

For more information about the Context object, see the ATG Platform API Reference.

CategoryPathVariantProducer

The /atg/endeca/index/commerce/CategoryPathVariantProducer component is used by the

CategoryToDimensionOutputConfig component to produce multiple records per category (one record for each

unique path computed by CategoryTreeService). The CategoryPathVariantProducer component is

of class atg.commerce.endeca.index.dimension.CategoryPathVariantProducer, which implements

the atg.repository.search.indexing.VariantProducer interface. In each record this variant producer

creates, the value of the record’s dimval.spec property is the unique pathname that the record represents. For

example:

The CategoryPathVariantProducer component is added to the CategoryToDimensionOutputConfig

component’s variantProducers property by default:

variantProducers+=\
 CategoryPathVariantProducer

See the CategoryTreeService Class (page 10) section for more information about how category path variants are

computed.

CustomCatalogVariantProducer

In addition to the category, product, and sku items, the catalog repository includes catalog items that

represent different hierarchies of categories and products. Each user is assigned one catalog, and sees the

navigational structure, products and SKUs, and property values associated with that catalog. A given product

may appear in multiple catalogs. The product repository item type includes a catalogs property whose value

is a Set of the catalogs the product is included in.

Depending on how your catalog repository is configured, the property values of individual categories, products,

or SKUs may vary depending on the catalog. If so, when you index the catalog, you may need to generate

multiple records for each product or SKU (one for each catalog the item is included in).

To support creation of multiple records per product or SKU, the ATG-Endeca integration uses the /

atg/commerce/search/CustomCatalogVariantProducer component. This component is of class

atg.commerce.search.producer.CustomCatalogVariantProducer, which implements the

atg.repository.search.indexing.VariantProducer interface. The variant producer iterates through

each catalog individually, so that each record contains only the property values associated with a single catalog.

The CustomCatalogVariantProducer component is added to the ProductCatalogOutputConfig component’s

variantProducers property by default:

variantProducers+=\

5 Customizing the Output Records 49

 CustomCatalogVariantProducer

The mechanism used for retrieving catalog-specific property values differs depending on the property. For

category, product, or sku item properties that use the atg.commerce.dp.CatalogMapDerivation class to

derive catalog-specific values, the correct values are automatically obtained by that class.

To get the value of the catalogs property of the product item, the ProductCatalogOutputConfig

component is configured by default to use the /atg/commerce/search/

CustomCatalogPropertyAccessor component. This component is of class

atg.commerce.search.producer.CustomCatalogPropertyAccessor, which implements the

atg.repository.search.indexing.PropertyAccessor interface. This accessor returns, for each

record, only the specific catalog the record applies to. The accessor is specified in the /atg/endeca/index/

commerce/product-sku-output-config.xml definition file:

<item is-multi="true" property-name="catalogs"
 property-accessor="customCatalog">

The CustomCatalogPropertyAccessor component is mapped to the name customCatalog by the

ProductCatalogOutputConfig component’s propertyAccessorMap property:

propertyAccessorMap+=\
 customCatalog=CustomCatalogPropertyAccessor

UniqueSiteVariantProducer

If you want to create a separate record for each site, you can do so by using the /atg/search/

repository/UniqueSiteVariantProducer component. This component is of class

atg.commerce.search.producer.UniqueSiteVariantProducer, which implements the

atg.repository.search.indexing.VariantProducer interface.

UniqueSiteVariantProducer creates a separate record for each site that meets both of these criteria:

• The ID of the site is included in the siteIds property of the item being indexed.

• The site is listed in the sitesToIndex property of the EndecaIndexingOutputConfig component that

invokes the variant producer.

For example, if you are indexing by product and the value of a product’s siteIds property

is siteE,siteF,siteG, and the sitesToIndex property is set to sites B, E, and F,

UniqueSiteVariantProducer creates two records, one for site E and one for site F. The records are virtually

identical, except that each one has a different value for the siteId property.

To use the UniqueSiteVariantProducer, add it to the ProductCatalogOutputConfig component’s

variantProducers property:

variantProducers+=\
 /atg/search/repository/UniqueSiteVariantProducer

50 5 Customizing the Output Records

Using Property Formatters

If a property takes an object as its value, the data loader must convert that object to a string to include it in an

output record. The PropertyFormatter interface defines methods for performing this conversion.

By default, the data loaders use the implementation class

atg.endeca.index.formatter.EndecaPropertyFormatter. This class invokes the object’s getLong()

method for numbers or getTime() method for dates; for booleans, it converts the value to the String

“0” (false) or “1” (true). For other objects, it calls the object’s toString() method.

You can write your own implementations of PropertyFormatter that use custom logic for performing the

conversion. The simplest way to do this is to subclass EndecaPropertyFormatter.

In an EndecaIndexingOutputConfig definition file, you can specify a custom property formatter by

using the formatter attribute. For example, suppose you have a Nucleus component named /mystuff/

MyPropertyFormatter, of a custom class that implements the PropertyFormatter interface. You can specify

it in the definition file like this:

<property name="price" formatter="/MyStuff/MyPropertyFormatter"/>

The value of the formatter attribute is the absolute path of the Nucleus component. To simplify coding of

the definition file, you can map PropertyFormatter Nucleus components to simple names, and use those

names as the values of formatter attributes. For example, if you map the /mystuff/MyPropertyFormatter

component to the name myFormatter, the above tag becomes:

<property name="price" formatter="myFormatter"/>

You can perform this mapping by setting the formatterMap property of the IndexingOutputConfig

component. This property is a Map in which the keys are the names and the values are PropertyFormatter

Nucleus components that the names represent.

Using Property Value Filters

In some cases, it is useful to filter a set of property values before outputting a record. For example, suppose

each record represents a product whose SKUs all have the same display name. Rather than outputting the

displayName property value of each SKU, you could include displayName in the record just once, by using a

filter that removes duplicate property values.

The PropertyValuesFilter interface defines a method for filtering property values. The

atg.repository.search.indexing.filter package includes several implementations of this interface:

• UniqueFilter removes duplicate property values, returning only the unique values.

• ConcatFilter concatenates all of the property values into a single string.

• UniqueWordFilter removes any duplicate words in the property values, and then concatenates the results

into a single string.

5 Customizing the Output Records 51

• HtmlFilter removes any HTML markup from the property values.

This section provides information about what these filters do and when they’re appropriate.

In an EndecaIndexingOutputConfig definition file, you can specify property filters by using the filter

attribute. Note that you can use multiple filters on the same property. The value of the filter attribute is a

comma-separated list of Nucleus components. The component names must be absolute pathnames.

To simplify coding of the definition file, you can map PropertyValuesFilter Nucleus components to simple

names, and use those names as the values of filter attributes. You can perform this mapping by setting the

filterMap property of the IndexingOutputConfig component. This property is a Map in which the keys are

the names and the values are PropertyFilter Nucleus components that the names represent.

Note, however, that you do not need to perform this mapping to use the UniqueFilter, ConcatFilter,

UniqueWordFilter, or HtmlFilter class. These classes are mapped by default to the following names:

Filter Class Name

UniqueFilter unique

ConcatFilter concat

UniqueWordFilter uniqueword

HtmlFilter html

So, for example, you can specify UniqueFilter like this:

<property name="color" filter="unique"/>

UniqueFilter

You may be able to reduce the size of your index by filtering the property values to remove redundant entries.

For example, suppose a record represents a product whose SKUs have a size property, with values of small,

medium, and large; multiple SKUs have the same size value, and are differentiated by other properties (e.g.,

color). The entries for size in a record might be:

<PROP NAME="sku.size">
 <PVAL>medium</PVAL>
 <PVAL>large</PVAL>
 <PVAL>medium</PVAL>
 <PVAL>small</PVAL>
 <PVAL>medium</PVAL>
 <PVAL>small</PVAL>
</PROP>

By filtering out redundant entries, you can reduce this to:

<PROP NAME="sku.size">

52 5 Customizing the Output Records

 <PVAL>medium</PVAL>
 <PVAL>large</PVAL>
 <PVAL>small</PVAL>
</PROP>

To automatically perform this filtering, specify the UniqueFilter class in the XML definition file:

<property name="salePrice" filter="unique"/>

As a general rule, it is a good idea to specify the unique filter for a property if multiple items in a record may

have identical values for that property. If you specify this filter for a property and every value of that property

in a record is unique (or if only one item with that property appears in the record), the unique filter will have

no effect on the record (either negative or positive). However, executing this filter increases processing time to

create the record, so it is a good idea to specify it only for properties that will benefit from it.

ConcatFilter

You may also be able to reduce the size of your index by concatenating the values of text properties. For

example, suppose each record represents a product whose SKUs have a color property, with values of red,

green, blue, and yellow. The entries for color in a record might be:

<PROP NAME="sku.color">
 <PVAL>red</PVAL>
 <PVAL>green</PVAL>
 <PVAL>blue</PVAL>
 <PVAL>yellow</PVAL>
</PROP>

By concatenating the values, you can reduce this to:

<PROP NAME="sku.color">
 <PVAL>red green blue yellow</PVAL>
</PROP>

To combine these values into a single tag, specify the ConcatFilter class in the XML definition file:

<property name="color" filter="concat"/>

This setting invokes an instance of the atg.repository.search.indexing.filter.ConcatFilter class.

Note that you do not need to create a Nucleus component to use this filter.

You can use both the unique and concat filters on the same property, by setting the value of the filter

attribute to a comma-separated list. The filters are invoked in the order that they are listed, so it is important to

put the unique filter first for it to have an effect. For example:

<property name="color" filter="unique,concat"/>

5 Customizing the Output Records 53

UniqueWordFilter

The atg.repository.search.indexing.filter.UniqueWordFilter class removes any duplicate words

in the property values, and then concatenates the results into a single string. For example, suppose a product’s

SKUs have a size property, and the resulting entries in a record are:

<PROP NAME="sku.size">
 <PVAL>medium</PVAL>
 <PVAL>large</PVAL>
 <PVAL>x large</PVAL>
 <PVAL>xx large</PVAL>
</PROP>

By applying UniqueWordFilter, you can reduce this to:

<PROP NAME="sku.size">
 <PVAL>medium large x xx</PVAL>
</PROP>

Note that UniqueWordFilter converts all Strings to lowercase, so that redundant words are eliminated even if

they don’t have identical case.

You can specify UniqueWordFilter in the XML definition file like this:

<property name="size" filter="uniqueword"/>

You do not need to create a Nucleus component to use this filter.

Although UniqueWordFilter removes redundancies and concatenates values, it is not equivalent to using

a combination of UniqueFilter and ConcatFilter. UniqueFilter considers the entire string when

it eliminates redundant values, not individual words. In this example, each complete string is unique, so

UniqueFilter would not actually eliminate any values, and the result would be:

<PROP NAME="sku.size">
 <PVAL>medium large x large xx large</PVAL>
</PROP>

Note: You should use UniqueWordFilter carefully, as under certain circumstances it can have undesirable

effects. If you use a dictionary that includes multi-word terms, searches for those terms may not return the

expected results, because the filter may rearrange the order of the words in the index.

HtmlFilter

The atg.repository.search.indexing.filter.HtmlFilter class removes any HTML markup from a

property value. This is useful, for example, if text properties include tags for bolding or italicizing certain words,

as in this longDescription property of a product:

You'll love this Italian <i>leather</i> sofa!

54 5 Customizing the Output Records

Because the HTML markup is included in the index, searches may return unexpected results. In this example,

searching for “leather sofa” might not return the product, because that string does not actually appear in the

longDescription property.

Using HtmlFilter, this value appears in the index as:

<PROP NAME="product.longDescription">
 <PVAL>You'll love this Italian leather sofa!</PVAL>
</PROP>

Now a search for “leather sofa” will find the value in this property, and return this product.

6 Indexing Multiple Languages 55

6 Indexing Multiple Languages

If your ATG sites include data in more than one language, there are two options for how to index this data in

Oracle Endeca Commerce:

• Index each language in a separate MDEX

• Index all of the languages in a single MDEX

This chapter discusses how to configure the ATG indexing components to support each option. It includes these

sections:

Specifying the Locales (page 55)

Using a Separate MDEX for Each Language (page 56)

Using a Single MDEX for all Languages (page 56)

There are also differences in how querying works, depending on which indexing option you choose. See the

Query Integration (page 59) chapter for information.

Specifying the Locales

To generate records in multiple languages, you specify the locales by setting the locales property of the /atg/

commerce/search/LocaleVariantProducer component. For example:

locales=en_US,fr_FR

Several other components have a locales property whose value is linked to this property. These include:

• /atg/endeca/index/commerce/EndecaScriptService

• /atg/endeca/index/commerce/RepositoryTypeDimensionExporter

• /atg/endeca/index/commerce/SchemaExporter

56 6 Indexing Multiple Languages

Using a Separate MDEX for Each Language

If you use a separate MDEX for each language, you must create a separate EAC application and a corresponding

set of record stores for each MDEX. Each application name should consist of a base name that is common to

all of the applications, plus a two-letter language code that is unique to each one. The base name is used to

associate the applications, and must match the value of the endecaBaseApplicationName property of the

EndecaScriptService component and the document submitter components. (This is handled automatically

when you configure your ATG environment using CIM.) The language code is used to distinguish the individual

applications by language.

So, for example, if the endecaBaseApplicationName properties are set to ATG (the default), and catalog data is

in English, German, and Spanish, the three applications would be named ATGen, ATGde, and ATGes.

The record stores for an EAC application use the following naming convention:

application-name_language-code_record-store-type

So for the ATGes application, the record stores are named ATGes_es_data, ATGes_es_dimvals, and

ATGes_es_schema.

Using a Single MDEX for all Languages

If you use the same MDEX for all languages, you must create a single EAC application and a single set of record

stores. In this case the language code is the code for the default language of the record stores. So if your catalog

data is in English, German, and Spanish, and you want to index all languages in a single MDEX with English as

the default language, your application name would be ATGen (assuming the endecaBaseApplicationName

properties are set to ATG), and the record stores would be named ATGen_en_data, ATGen_en_dimvals, and

ATGen_en_schema.

You specify the default language for the record stores by setting the defaultLanguageForRecordStores

property of the /atg/endeca/index/DataDocumentSubmitter component to the two-letter code for the

language. For example:

defaultLanguageForRecordStores=en

Several other components have a defaultLanguageForRecordStores property that links to this value. For

example, the properties file for the /atg/endeca/index/commerce/EndecaScriptService component

includes the following:

defaultLanguageForRecordStores^=\
 /atg/endeca/index/DataDocumentSubmitter.defaultLanguageForRecordStores

The schema records generated in this case are the same records that would be generated in the multiple-MDEX

case for the first locale listed in the /atg/endeca/index/commerce/SchemaExporter component’s locales

property. The data records generated include the records for all of the listed locales, and each data record

includes a product.language property that identifies the language of the record. The language name is given

in its own language. For example, the value for the German language is Deutsch.

6 Indexing Multiple Languages 57

The dimension value records consist of the same set of records that would be generated for each

language in the multiple-MDEX case, but the records generated by the /atg/endeca/index/commerce/

RepositoryTypeDimensionExporter component contain additional properties for the translated display

names of the repository item types. These properties are named dimval.prop.displayName_language-

code, where language-code is the two-letter language code associated with one of the specified locales. For

example:

<PROP NAME="dimval.prop.displayName_en">
 <PVAL>Category</PVAL>
</PROP>
<PROP NAME="dimval.prop.displayName_es">
 <PVAL>Categoría</PVAL>
</PROP>
<PROP NAME="dimval.prop.displayName_de">
 <PVAL>Kategorie</PVAL>
</PROP>

If the multiLanguageSynonyms property of the RepositoryTypeDimensionExporter component is set

to true, then additional Endeca record properties are generated to indicate that all translations of the same

repository type are synonyms for searching. For example:

<PROP NAME="dimval.search_synonym">
 <PVAL>Category</PVAL>
</PROP>
<PROP NAME="dimval.search_synonym">
 <PVAL>Categoría</PVAL>
</PROP>
<PROP NAME="dimval.search_synonym">
 <PVAL>Kategorie</PVAL>
</PROP>

58 6 Indexing Multiple Languages

7 Query Integration 59

7 Query Integration

The Oracle ATG Platform provides two options for querying the Oracle Endeca Assembler and MDEX engine:

• Invoking the Assembler via a servlet as part of Oracle ATG’s request handling pipeline. This option allows the

call to the Assembler to happen early in the page’s life cycle, which is desirable when the bulk of the page’s

content is served by the Assembler.

• Invoking the Assembler from within a page, using a servlet bean. This option allows the call to the Assembler

to occur on a just-in-time basis for the portion of the page that requires Assembler-served content. This

approach is desirable when only a small portion of the page requires Assembler content.

The remainder of this chapter provides more detail on both configurations and the components that facilitate

them.

ContentItem, ContentInclude, and ContentSlotConfig

Classes

Similar to HTTP requests, requests that are made to the Assembler use the paradigm

of a request object and a response object. Both of these objects are of type

com.endeca.infront.assembler.ContentItem. There are two subclasses of ContentItem, depending

on the type of content being requested: com.endeca.infront.cartridge.ContentInclude and

com.endeca.infront.cartridge.ContentSlotConfig.

ContentInclude is used to request pages defined in the Pages section of Experience Manager. Invoking the

Assembler for a page request is also referred to as “invoking the Assembler with a ContentInclude.” The URI

for a page request must begin with a /pages prefix, for example, /pages/browse. Endeca uses the /pages

prefix to distinguish page requests from content collection requests.

The handler for the ContentInclude component first tries to retrieve the content at the exact URI specified in

the ContentInclude. If there is no content at that location, the handler attempts to find the deepest matching

path. To return to our original example, assume a browse page exists in the Experience Manager Pages

definitions. Passing in a /pages/browse path will match this browse page. Passing in a /pages/browse/

seo/url path will also match this page because the deepest matching path the handler can find for /pages/

browse/seo/url is /pages/browse (this example assumes that a browse/seo/url page does not exist in

Experience Manager).

ContentSlotConfig is used to request content collections defined in the Content section of Experience

Manager. Invoking the Assembler for a content collection request is also referred to as “invoking the Assembler

60 7 Query Integration

with a ContentSlot item.” A content collection request must specify the name of the content collection

and the number of items to retrieve from that collection. The handler for ContentSlotConfig, uses these

parameters to form a content trigger request that fetches the top item (or items) from the collection by priority.

The Assembler then processes the content items from the collection and returns them as part of the response

for rendering.

The remainder of this chapter makes a distinction between ContentInclude and ContentSlotConfig when

necessary. When the distinction is not required, the more general ContentItem is used.

Note: For more information on the ContentInclude and ContentSlotConfig components and their

handlers, refer to the Assembler Application Developer’s Guide in the Oracle Endeca Commerce documentation.

Invoking the Assembler in the Request Handling Pipeline

In this option, the Assembler is invoked early in the page rendering process as part of the ATG request handling

pipeline. This option is appropriate when the bulk of a page’s content is served by the Assembler and this guide

refers to these pages as “Assembler-driven pages.”

Assembler-driven pages are generally those pages that benefit greatly from increased merchandiser control. For

example, a home page is a good candidate to be Assembler-driven because merchandisers want to customize

their site’s home page based on the season, a current sale, or a customer’s profile. A search results page is

also a good candidate because merchandisers may want to control the order of search results, specify special

brand landing pages for particular searches, and so on. Endeca’s Experience Manager tool, which works hand

in hand with the Assembler API, is designed to facilitate increased merchandiser control, therefore pages that

need a high level of merchandiser control are best served through the Assembler API/Experience Manager

combination.

Using a JSP Renderer to Render Content

The content returned to the client browser can take several forms: JSP, XML, or JSON. The request-handling

architecture for an Assembler-driven JSP page looks like this:

7 Query Integration 61

In this diagram, the following happens:

1. The application server receives a request.

2. The application server passes the request to the ATG request handling pipeline.

3. The ATG request handling pipeline does some preliminary work, such as setting up the profile and

determining which site the request is for. At the appropriate point, the pipeline invokes the /atg/endeca/

assembler/AssemblerPipelineServlet.

4. The AssemblerPipelineServlet determines if the request is for a page or a content collection in

Experience Manager and creates an appropriate request ContentItem. Then, AssemblerPipelineServlet

calls the invokeAssembler() method on the /atg/endeca/assembler/AssemblerTools component

and passes it the request ContentItem.

5. The AssemblerTools component invokes the createAssembler() method on the /atg/endeca/

assembler/NucleusAssemblerFactory component.

6. The NucleusAssemblerFactory component returns an atg.endeca.assembler.NucleusAssembler

instance.

7. The AssemblerTools component invokes the assemble() method on the NucleusAssembler instance

and passes it the request ContentItem.

62 7 Query Integration

8. The NucleusAssembler instance assembles the correct content for the request. Content, in Endeca terms,

corresponds to a set of cartridges and their associated data. The NucleusAssembler instance starts with

the data in the Endeca Experience Manager cartridge configuration files and then modifies that data with

information stored in the Endeca Content Repository (that is, changes made and saved via the Experience

Manager UI). The assembled content takes the form of a response ContentItem that consists of a root

ContentItem which may have sub-ContentItem objects as attributes. This ContentItem hierarchy

corresponds to the root cartridge and any sub-cartridges that were used to create the returned content.

9. The NucleusAssembler instance recursively calls the NucleusAssembler.getCartridgehandler()

method, passing in the ContentItem type, to retrieve the correct cartridge handlers for the root

ContentItem and any of its sub-items.

10.The cartridge handlers get resolved and executed for the root ContentItem and its sub-items. The resulting

root ContentItem is passed back to the NucleusAssembler Instance.

Note: If a cartridge handler doesn’t exist for a ContentItem, the initial version of the item, created in step 8,

is returned.

11.The NucleusAssembler instance returns the root ContentItem to AssemblerTools.

12.The AssemblerTools component returns the root ContentItem to AssemblerPipelineServlet.

13.The AssemblerPipelineServlet component calls the /atg/endeca/assembler/cartridge/

renderer/ContentItemToRendererPath component to get the path to the renderer (in this case, a JSP

file) for the root ContentItem. The ContentItemToRendererPath component uses pattern matching to

match the ContentItem type to a JSP file; for example, in Commerce Reference Store, if the ContentItem

type is Breadcrumbs, the JSP file is /cartridges/Breadcrumbs/Breadcrumbs.jsp.

Note: See ContentItemToRendererPath (page 80) for more details on how the renderer path is calculated.

14.The AssemblerPipelineServlet component sets the assembled ContentItem as a contentItem

parameter on the HttpServletRequest, then forwards the request to the JSP determined by the

ContentItemToRendererPath component

15.The JSP for the root ContentItem may also have to render sub-ContentItems. In this case, the JSP must

include dsp:renderContentItem tags for the sub-ContentItems.

16.dsp:renderContentItem invokes ContentItemToRendererPath to retrieve the JSP renderer for the

specified ContentItem. This process happens recursively until all sub-ContentItems are rendered.

The dsp:renderContentItem tag also sets the contentItem attribute on the HttpServletRequest,

thereby making the current ContentItem available to the renderers; however, this value lasts only for the

duration of the include so that after the include is done, the contentItem attribute’s value returns to the

root ContentItem.

17.The JSPs returned by the ContentItemToRendererPath component are included in the response.

18.The response is returned to the browser.

Rendering XML or JSON Content

The process for handling XML or JSON output is very similar to that for JSPs, with some minor modifications. The

architecture diagram for an XML or JSON response looks like the following (note that this diagram is identical to

the JSP diagram except for steps 13 and 14):

7 Query Integration 63

Serializing the content to XML or JSON is controlled by the AssemblerPipelineServlet.formatParamName

property. This property specifies the name of the request parameter that must be passed in order to serialize the

content. This property defaults to format, meaning that, in order to serialize output, the request must include

a format parameter with an acceptable value. Acceptable values are xml and json. For example, the following

URL returns json for a content collection request:

http://localhost:8080/assembler/assembler?assemblerContentCollection=/content/
BrowsePageCollection&format=json

This example returns json for a page request:

http://localhost:8080/assembler/browse?format=json

If the request specifies a valid format parameter and value, then after the AssemblerPipelineServlet

component receives the response ContentItem from AssemblerTools, it calls the appropriate Endeca

serializer to reformat the response into XML or JSON. The AssemblerPipelineServlet component then

returns the reformatted content to the client browser.

64 7 Query Integration

When the Assembler Returns an Empty ContentItem

In the case where the NucleusAssembler instance returns a null response or the response

ContentItem contains an @error key (in other words, the request is not an Assembler request), the

AssemblerPipelineServlet component simply passes the request back to the ATG request handling pipeline

for further processing. This scenario is shown in the diagram below:

Note that you can configure an application to bypass the AssemblerPipelineServlet and avoid this scenario.

For more information, see the AssemblerPipelineServlet (page 67) section.

Invoking the Assembler using the InvokeAssembler

Servlet Bean

Invoking the Assembler from within a page, using a servlet bean, allows the call to the Assembler to occur on a

just-in-time basis for the portion of the page that requires Assembler-served content. This approach is desirable

when only a small portion of the page requires Assembler content. This guide refers to these pages as “ATG-

driven pages.”

The request-handling architecture for an ATG-driven JSP page looks like this:

7 Query Integration 65

In this diagram, the following happens:

1. The JSP page code calls the InvokeAssembler servlet bean and passes it either the includePage

parameter, for a page request, or the contentCollection parameter, for a content collection request.

2. The InvokeAssembler servlet bean parses the includePath or contentCollection parameter

into an Assembler content request, in the form of a ContentItem. InvokeAssembler then calls the

AssemblerTools.invokeAssembler() method, passing in the ContentItem.

3. The AssemblerTools component invokes the createAssembler() method on the /atg/endeca/

assembler/NucleusAssemblerFactory component.

4. The NucleusAssemblerFactory component returns an atg.endeca.assembler.NucleusAssembler

instance.

5. The AssemblerTools component invokes the assemble() method on the NucleusAssembler instance

and passes it the ContentItem.

66 7 Query Integration

6. The NucleusAssembler instance assembles the correct content for the request. Content, in Endeca terms,

corresponds to a set of cartridges and their associated data. The NucleusAssembler instance starts with

the data in the Endeca Experience Manager cartridge configuration files and then modifies that data with

information stored in the Endeca Content Repository (that is, changes made and saved via the Experience

Manager UI). The assembled content takes the form of a response ContentItem that consists of a root

ContentItem which may have sub-ContentItem objects as attributes. This ContentItem hierarchy

corresponds to the root cartridge and any sub-cartridges that were used to create the returned content.

7. The NucleusAssembler instance recursively calls the NucleusAssembler.getCartridgehandler()

method, passing in the ContentItem type, to retrieve the correct cartridge handlers for the root

ContentItem and any of its sub-items.

8. The cartridge handlers get resolved and executed for the root ContentItem and its sub-items. The resulting

root ContentItem is passed back to the NucleusAssembler instance.

Note: If a cartridge handler doesn’t exist for a ContentItem, the initial version of the item, created in step 8,

is returned.

9. The NucleusAssembler instance returns the root ContentItem to the AssemblerTools component.

10.The AssemblerTools component returns the root ContentItem to the InvokeAssembler servlet bean.

11.When the ContentItem is not empty, the InvokeAssembler servlet bean’s output oparam is rendered.

In this example, we assume that the output oparam uses a dsp:renderContentItem tag to call the

/atg/endeca/assembler/cartridge/renderer/ContentItemToRendererPath component to

get the path to the JSP renderer for the root ContentItem. However, choosing when and how many

times to invoke dsp:renderContentItem depends on what the application needs to do. It may make

sense to invoke dsp:renderContentItem for the root ContentItem, and then recursively invoke

dsp:renderContentItem for all the sub-ContentItems via additional dsp:renderContentItem tags.

Alternatively, you could take a more targeted approach where you invoke dsp:renderContentItem for

individual sub-ContentItems as needed.

Note that the dsp:renderContentItem tag also sets the contentItem attribute on the

HttpServletRequest, thereby making the ContentItem available to the renderers. This value lasts for the

duration of the include only.

12.The ContentItemToRendererPath component returns the correct renderer for the ContentItem.

13.The JSP returned by ContentItemToRendererPath is included in the response.

14.The response is returned to the browser.

Choosing Between Pipeline Invocation and Servlet Bean

Invocation

As you write your pages, you can choose to make a page Assembler-driven via pipeline invocation versus

making it ATG-driven via servlet bean invocation is based on:

• The amount of the page’s content that must be configurable by a merchandiser. Pages that must be heavily

configurable by a merchandiser are good candidates for being Assembler-driven.

7 Query Integration 67

• The number of URLs on the resulting page that should be constructed as Endeca URLs. Pages that contain

many URLs that will result in calls to the MDEX should be constructed by the Assembler, so that those URLs

are properly formed. For example, the category page includes a facets rail on the left side that consists of links

backed by Endeca URLs. These URLs should be constructed by the Assembler API.

Components for Invoking the Assembler

This section provides more details on the components that invoke the Assembler.

AssemblerPipelineServlet

The /atg/endeca/assembler/AssemblerPipelineServlet component is part of Oracle ATG’s

request handling pipeline and it is of class atg.endeca.assembler.AssemblerPipelineServlet.

AssemblerPipelineServlet’s primary task is to invoke the Assembler, passing in a ContentInclude (for

a page request) or a ContentSlotConfig (for a content collection request). AssemblerPipelineServlet

is started when the ATG server is started. The /Initial.properties file under DAF.Endeca.Assembler

configures this behavior by adding AssemblerPipelineServlet to its initial services.

initialServices+=\
 /atg/endeca/assembler/AssemblerPipelineServlet

On invocation of the AssemblerPipelineServlet.service() method, several items are checked to

determine whether or not the servlet should execute:

• The AssemblerPipelineServlet.enable property: If this property is set to false, the servlet is disabled

and the request will be passed. This property defaults to true.

• The atg.assembler context parameter: A web application must explicitly set the atg.assembler context

parameter to true in its web.xml file, otherwise the AssemblerPipelineServlet will pass the request. To

set the atg.assembler context parameter to true, add the following to the application’s web.xml file:

<context-param>

<param-name>atg.assembler</param-name>

<param-value>true</param-value>

</context-param>

Applications that never have a need to invoke the Assembler, should set atg.assembler to false to bypass

the servlet and avoid making requests to the Assembler.

• The MIME type of the request: AssemblerPipelineServlet uses the request URI to determine the MIME

type of the request. If AssemblerPipelineServlet is not allowed to process the specified MIME type, it

passes the request. By default, the AssemblerPipelineServlet component passes all known MIME types

and only executes for a null MIME type. See Bypassing or Invoking the Assembler Based On MIME Type (page

69) for more information on customizing the MIME types that the AssemblerPipelineServlet is

allowed to execute.

• The AssemblerPipelineServlet.ignoreRequestURIPattern property: This optional property contains

a regular expression that defines a pattern for URIs that should be disallowed. When this property is set, the

request URI is compared against the specified regular expression and, if the current URI matches the regular

expression, the request is passed. Out of the box, this property is not set.

68 7 Query Integration

If all of the above checks pass, AssemblerPipelineServlet executes. Its first task is to determine whether

the request is a page request or a content collection request. AssemblerPipelineServlet makes this

determination based on the URL, as described in the following sections.

Content Collection Request Identification and Handling

The URL for a content collection request has some additional requirements that the URL for a page request

does not have. Specifically, the URL for a content collection must have an /assembler sub-path and an

assemblerContentCollection request parameter, for example:

/crs/storeus/assembler/?assemblerContentCollection=Search Box Auto Suggest Content

The /assembler sub-path can take any of these forms:

• /assembler

• <context-root>/assembler (for example, crs/assembler)

• <site.productionURL>/assembler (for example, /crs/storeus/assembler)

The assemblerContentCollection request parameter must specify the name of a content collection. If these

content collection URL conditions are met, AssemblerPipelineServlet creates a ContentSlotConfig

object and passes it to the Assembler:

contentItem = new ContentSlotConfig(content, ruleLimit);

A content collection URL may also include the optional assemblerRuleLimit request parameter. This is an

integer value that is used as an argument to the ContentSlotConfig constructor. It determines the number

of items to return from the content collection. If assemblerRuleLimit is not set or is an invalid value, then the

default value of 1 is used.

/crs/storeus/assembler/?assemblerContentCollection=Search Box Auto Suggest
 Content&assemblerRuleLimit=3

If the content collection does not exist, the Assembler returns a content item whose contents value is empty.

For example, this URL:

http://localhost:8080/assembler/assembler?assemblerContentCollection=/content/
BrowsePageCollection&format=json

Results in this data:

{"@type":"ContentSlot","contents":[],"ruleLimit":1,"contentCollection":"\/content\/
BrowsePageCollection"}

Page Request Identification and Handling

If the URL does not fit the requirements for a content collection request, the AssemblerPipelineServlet

component assumes that this is a page request. A page request must be transformed into a form that the

NucleusAssembler class can accept. To do this, the AssemblerPipelineServlet component calls the

7 Query Integration 69

AssemblerTools.getContentPath() method to transform the page request URL into a URI and store it in

a ContentInclude that can be passed to the NucleusAssembler class. The NucleusAssembler class can

then match this URI to the URIs of the pages defined Experience Manager. See the AssemblerTools (page 70)

section for specific details on how the URL transformation is done.

Bypassing or Invoking the Assembler Based On MIME Type

By default, the AssemblerPipelineServlet limits its Assembler invocation to request paths that do not

match a known MIME type. It does this via a reference to the /atg/dynamo/servlet/pipeline/MimeTyper

component, which is part of the ATG Platform system that routes and executes requests based on matching

MIME types. This configuration prevents the AssemblerPipelineServlet from intercepting requests for JSP,

CSS, HTML, and JavaScript files, among others.

You can add allowed MIME types or disable Assembler invocation for unknown MIME types using the following

AssemblerPipelineServlet configurable properties:

Whether to invoke the Assembler for a potential match on a request
that doesn't match a known MIME type (typically a directory).
#
assembleUnknownMimeTypes=true

A String array of allowed MIME types. Defaults to null, but
can be set to a MIME type if you want to pass certain extensions to
the Assembler (for example, ".asm" or ".endeca").
#
allowedMimeTypes=

See the ATG Platform Programming Guide for more information on the MimeTyper component.

InvokeAssembler

The /atg/endeca/assembler/droplet/InvokeAssembler servlet bean, which is of class

atg.endeca.assembler.droplet.InvokeAssembler, provides a means of invoking the Assembler via a

servlet bean on a page. It is useful on pages that contain mostly ATG content, with a section of Assembler-based

content. Note that, for pages that have multiple sections of Assembler content, you should consider combining

the requests for that content into a single InvokeAssembler call for performance reasons.

Input Parameters

The InvokeAssembler servlet bean has two input parameters, includePath and contentCollection,

described below. Note that you must provide one of these parameters but they are mutually exclusive.

includePath

Use the includePath parameter for a page request. The path you specify must correspond to the name of

a page in Experience Manager, with the addition of a /pages prefix. For example, to assemble content for a

browse page, specify /pages/browse for the includePath (passing in a /browse path will not match because

it is missing the /pages prefix).

InvokeAssembler parses the includePath into a ContentInclude component. This component contains a

set of parameters, including the request URI, that is used to form a content request for the Assembler.

The includePath and contentCollection parameters are mutually exclusive but one of them must be

passed when using the InvokeAssembler servlet bean.

contentCollection

70 7 Query Integration

Use the contentCollection parameter for a content collection request. The value you provide for

contentCollection must correspond to the name of a content collection in Experience Manager, for

example, Search Box Auto Suggest Content. InvokeAssembler parses the contentCollection

into a ContentSlotConfig component. This component specifies a content collection and the number

of content items to return from that collection (note, the number of items to return is specified using the

InvokeAssembler.ruleLimit parameter, described next).

The includePath and contentCollection parameters are mutually exclusive but one of them must be

passed when using the InvokeAssembler servlet bean.

ruleLimit

This optional parameter is used in conjunction with the contentCollection parameter to specify the number

of items that should be returned from the specified content collection.

Output Parameters

The InvokeAssembler servlet bean has one output parameter, contentItem. This parameter contains the

root ContentItem returned by the Assembler. If this content item is empty, the request was not an Assembler

request.

Open Parameters

The InvokeAssembler has three open parameters.

output

Rendered when the Assembler returns a ContentItem.

error

Rendered if the Assembler returns a ContentItem with an @error key. The presence of this key indicates that

the ContentItem does not contain any content because the Assembler threw an exception or returned an error.

Example

This code snippet shows how to use the InvokeAssembler servlet bean on a page:

<dsp:importbean bean="/atg/endeca/assembler/droplet/InvokeAssembler"/>
<dsp:droplet name="InvokeAssembler">
 <dsp:param name="includePath" value="/pages/browse"/>
 <dsp:oparam name="output">
 <dsp:getvalueof var="contentItem"
 vartype="com.endeca.infront.assembler.ContentItem"
 param="contentItem" />
 </dsp:oparam>
</dsp:droplet>

AssemblerTools

The /atg/endeca/assembler/AssemblerTools component provides commonly used functionality to other

ATG-Endeca query integration components. This component’s functionality includes:

• Making the actual content request to the Assembler by invoking the assemble() method on the

NucleusAssembler instance and passing it the request ContentItem.

• Assisting the AssemblerPipelineServlet component by transforming the page request URL into a request

ContentItem.

7 Query Integration 71

• Identifying the renderer mapping component to use for the request.

The AssemblerTools component is of class atg.endeca.assember.AssemblerTools and it has the

following core method:

public ContentItem invokeAssembler(ContentItem pContentItem)

Creating the Assembler Instance and Starting Content Assembly

The AssemblerTools component has a configurable property, assemblerFactory, that out of the box

is set to /atg/endeca/assembler/NucleusAssemblerFactory. The NucleusAssemblerFactory

component is responsible for creating the Assembler instance that collects and organizes

content. The AssemblerTools.invokeAssembler() method calls createAssembler() on the

NucleusAssemblerFactory component to create an Assembler instance and then it calls assemble() on that

instance to begin the content collection process. More details on the NucleusAssemblerFactory component

can be found in the Querying the Assembler (page 76) section.

Transforming a Page Request URL for the AssemblerPipelineServlet

Note: This section describes transforming the URL for a page request into a request ContentItem when using

the AssemblerPipelineServlet component only. Other mechanisms exist for creating the ContentItem

when requesting a content collection or when using the InvokeAssembler servlet bean. See the Content

Collection Request Identification and Handling (page 68) and InvokeAssembler (page 69) sections,

respectively, for more information on how those mechanisms work.

For page requests, the AssemblerTools.getContentPath() method transforms the request URL into a

ContentItem URI. This URI tells the Assembler the path it should use to determine what content to assemble.

getContentPath() takes into account several configurable properties when it calculates the URI. For example,

if a request is made to http://localhost:8080/crs/storeus/browse/, getContentPath() does the

following:

1. Gets the request URI using the atg.servlet.ServletUtil class. In this case, the request URI is:

/crs/storeus/browse/

2. If the AssemblerTools.isRemoveSiteBaseURL() property is true, getContentPath() removes the site

base URL (also known as the productionURL). In this example, the site base URL is /crs/storeus, so the

modified URI is:

/browse/

3. If AssemblerTools.isRemoveContextRoot() property is true and the site base URL has not been

removed, getContentPath() removes the context root. In this case, getContentPath() has already

removed the site base URL, so the URL remains as is:

/browse/

4. Finally, getContentPathPrefix() inserts the content path prefix. This prefix can be passed

in on the request, using the contentPrefix parameter. When getContentPathPrefix()

executes, it first checks for the existence of the contentPrefix request parameter. If this

parameter exists, its value is inserted at the beginning of the URI. If contentPrefix does not exist,

getContentPathPrefix() invokes the AssemblerTools.isExperienceManager() method to

determine if Experience Manager is in use. If Experience Manager is in use, isExperienceManger()

returns AssemblerTools.assemblerSettings.defaultExperienceManagerPrefix,

which defaults to /pages. If not, isExperienceManager() returns

AssemblerTools.assemblerSettings.defaultGuidedSearchPrefix, which defaults to /services.

72 7 Query Integration

In this example, we assume that Experience Manager is in use, so the final content path URI is:

/pages/browse/

The resulting content path URI is used to construct a content item.

Identifying the Renderer Mapping Component to Use for the Request

The AssemblerTools.defaultContentItemToRendererPath property specifies the default component that

should be used to map a response ContentItem to its correct renderer. Having this default ensures that the

same mapping component is used across all web sites:

Our default service for mapping from a ContentItem to the path of
its corresponding JSP rendering page
defaultContentItemToRendererPath=cartridge/renderer/ContentItemToRendererPath

You can override this setting on a web application-specific basis by specifying a context-param in your

application’s web.xml file. The name of the parameter must be contentItemToRendererPath and the value

must specify the Nucleus path of the mapping component you want to use:

 <context-param>
 <param-name>contentItemToRendererPath</param-name>
 <param-value>Nucleus-path-to-mapper</param-value>
 </context-param>

Defining Global Assembler Settings

The /atg/endeca/assembler/cartridge/manager/AssemblerSettings component defines global

Assembler settings and is referenced by various components. The NucleusAssemblerSettings component

is of class atg.endeca.assembler.NucleusAssemblerSettings, which is an extension of the class

com.endeca.infront.assembler.AssemblerSettings. It has the following properties:

• defaultExperienceManagerPrefix: Defaults to /pages. Used by the AssemblerTools component when

creating the content path prefix.

• defaultGuidedSearchPrefix: Defaults to /service. Used by the AssemblerTools component when

creating the content path prefix.

• experienceManager: Defaults to true. Used by the AssemblerTools.isExperienceManager() method

to determine if Experience Manager is available.

Connecting to Endeca

Some cartridges need to communicate with the Endeca Workbench while others need to communicate directly

with the MDEX instances to do their work. The ATG-Endeca integration includes a number of components to

facilitate both types of communication.

7 Query Integration 73

Connecting to an MDEX

The /atg/endeca/assembler/cartridge/manager/MdexResource component is a request-scoped

component that represents a connection to a single MDEX. The NucleusAssembler uses this component to

connect to the correct MDEX for content.

The MdexResource component typically uses a $basedOn property to reference either a

DefaultMdexResource component or some other component that can resolve which MDEX to connect to

when an application is supported by multiple MDEX instances. For example, a multi-language application may

use a single MDEX for all of its languages or it may have a separate MDEX for each language. For the single

MDEX case, the MdexResource component references the DefaultMdexResource component, which is

configured to connect to that single MDEX. For the multiple MDEX case, Oracle ATG Web Commerce ships with

a PerLanguageMdexResourceResolver component that can determine which MDEX to connect to based on

the locale of the current request.

The following sections provide some additional details on the DefaultMdexResource and

PerLanguageMdexResourceResolver components themselves.

Note: For more details on using $basedOn properties, see the ATG Platform Programming Guide.

DefaultMdexResource

Out of the box, the MdexResource component references the /atg/endeca/assembler/cartridge/

manager/DefaultMdexResource component. The DefaultMdexResource component is an instance of

com.endeca.infront.navigation.model.MdexResource class and is request-scoped. It has host and port

properties that determine which MDEX to connect to.

PerLanguageMdexResourceResolver

The /atg/endeca/assembler/cartridge/manager/PerLanguageMdexResourceResolver component is

a request-scoped instance of the atg.endeca.assembler.navigation.PerLanguageGenericReference

class. The PerLanguageGenericReference class attempts to resolve a component using a base component

path with an additional language-specific suffix. If the PerLanguageGenericReference class cannot resolve

the component, it tries to resolve the component using a defaultComponentPath property instead.

Because it is intended to resolve the path to an MdexResource component, the

PerLanguageMdexResourceResolver component specifies the following for its defaultComponentPath

and componentBasePath properties:

The default MdexResource to use if a language-specific MdexResource
cannot be found.
defaultComponentPath=/atg/endeca/assembler/cartridge/manager/DefaultMdexResource

The base path for language specific MdexResource components. This
will have suffixes like "_en" and "_es" tacked on.
componentBasePath=/atg/endeca/assembler/cartridge/manager/MdexResource

Additional Multi-Language Configuration Requirements

For each language-specific MdexResource component, you should create a properties file in the /atg/

endeca/assembler/cartridge/manager Nucleus path that specifies the host and port for the MDEX that

supports that language. For example:

$basedOn=DefaultMdexResource

74 7 Query Integration

Mdex host
host=hostname

Mdex port
port=port_number

Connecting to the Endeca Workbench Application

Oracle ATG Web Commerce has several components for creating a connection to an Endeca Workbench

application. Similar to the MDEX connection components, the Workbench connection components vary

depending on whether your environment has a single Workbench application or multiple applications (for

example, to support multiple languages).

WorkbenchContentSource

The /atg/endeca/assembler/cartridge/manager/WorkbenchContentSource component represents a

connection to a single Workbench application. The NucleusAssembler class uses this component to connect

to the correct application for content.

DefaultWorkbenchContentSource

Out of the box, the WorkbenchContentSource component, which is of class

atg.nucleus.GenericReference, references the /atg/endeca/assembler/cartridge/manager/

DefaultWorkbenchContentSource component. DefaultWorkbenchContentSource is a globally-scoped

component that includes a number of properties for connecting to a single Workbench application. The

properties you are most likely to have to configure are:

• # Arg1 - Workbench app name: This property provides the first constructor argument for

WorkbenchContentSource and it points to the EAC application. The default property setting is:

$constructor.param[1].value=ATGen

• # Arg3 - Workbench host: This property provides the third constructor argument for

WorkbenchContentSource and it points to the host that the Endeca Workbench is installed on. The default

property setting is:

$constructor.param[3].value=localhost

• # Arg 4 - Workbench port: This property provides the fourth constructor argument for

WorkbenchContentSource and it points to the port that the Endeca Workbench is using. The default

property setting is:

$constructor.param[4].value=8006

PerLanguageWorkbenchContentSourceResolver

The WorkbenchContentSource component also includes configuration for referencing the request-scoped

/atg/endeca/assembler/cartridge/manager/PerLanguageWorkbenchContentSourceResolver

component which has been commented out:

#$scope=request
#loggingInfo=false
#useRequestNameResolver=true
#componentPath=/atg/endeca/assembler/cartridge/manager/\
 PerLanguageWorkbenchContentSourceResolver

7 Query Integration 75

This configuration exists for environments that have multiple Workbench applications for

multiple languages. The PerLanguageWorkbenchContentSourceResolver component works

similarly to and is of the same class as the PerLanguageMdexResourceResolver component,

which is the atg.endeca.assembler.navigation.PerLanguageGenericReference class.

The PerLanguageWorkbenchContentSourceResolver component resolves the correct

WorkbenchContentSource component to use based on the appropriate language for the current request and

it also defines a default WorkbenchContentSource component to use if a language-specific version cannot be

resolved. To perform these tasks, the PerLanguageWorkbenchContentSourceResolver component sets the

following properties:

The default WorkbenchContentSource to use if a language-specific
WorkbenchContentSource cannot be found.
defaultComponentPath=\
 /atg/endeca/assembler/cartridge/manager/DefaultWorkbenchContentSource

The base path for language specific WorkbenchContentSource components. This
will have suffixes like "_en" and "_es" tacked on.
componentBasePath=/atg/endeca/assembler/cartridge/manager/WorkbenchContentSource

The PerLanguageWorkbenchContentSourceResolver component is request-scoped so that it will resolve a

new language-specific WorkbenchContentSource component for each request.

Additional Multi-Language Configuration Requirements

It is an Endeca requirement that the WorkbenchContentSource component used to communicate with

any given Workbench application be globally scoped and started up front, before any requests are made.

This situation is fine for the single language/single Workbench application case, where the cartridges only

need to communicate with one application. For the multi-language case, however, a language-specific

WorkbenchContentSource component should be resolved for each request. To accommodate this

requirement, you create .properties files for each language-specific WorkbenchContentSource component,

for example, the following shows a language-specific WorkbenchContentSource properties file for German:

$basedOn=DefaultWorkbenchContentSource

Arg1 - Workbench app name
$constructor.param[1].value=ATGde

Arg3 - Workbench host
$constructor.param[3].value=localhost

AuthoringContentSource params

Arg 4 - Workbench port
$constructor.param[4].value=8006

After creating the language-specific WorkbenchContentSource components, add them to the

intialServices property of the /initial component so that they are started on application start-up, for

example:

initialServices+=\
 /atg/endeca/assembler/AssemblerPipelineServlet,\
 /atg/endeca/assembler/cartridge/manager/DefaultWorkbenchContentSource
 /atg/endeca/assembler/cartridge/manager/WorkbenchContentSource_es

76 7 Query Integration

 /atg/endeca/assembler/cartridge/manager/WorkbenchContentSource_de

To understand how the globally-scoped language-specific WorkbenchContentSource components that exist

on application start up are re-resolved on a per-request basis, we return to the WorkbenchContentSource

configuration, which is:

$scope=request
loggingInfo=false
useRequestNameResolver=true
componentPath=\
 /atg/endeca/assembler/cartridge/manager/\
 PerLanguageWorkbenchContentSourceResolver

Specifying $scope=request in this configuration causes the globally-scoped WorkbenchContentSource

component that is resolved by the PerLanguageWorkbenchContentSourceResolver component

to be inserted into the request scope as an alias. This effectively allows the application to resolve the

WorkbenchContentSource_[language] component on a per-request basis.

Querying the Assembler

The atg.endeca.assembler.NucleusAssemblerFactory class is responsible for creating the

atg.endeca.assembler.NucleusAssembler instance that retrieves and organizes content. The

NucleusAssemblerFactory class implements the com.endeca.infront.assembler.AssemblerFactory

interface and defines a createAssembler() method that the AssemblerTools component invokes to

get a NucleusAssembler instance. NucleusAssembler is an inner class of NucleusAssemblerFactory.

It implements the com.endeca.infront.assembler.Assembler interface and defines an assemble()

method that the AssemblerTools component invokes to begin a query. The following code excerpt from

AssemblerTools.java shows the use of these two methods:

// Get the assembler factory and create an Assembler
Assembler assembler = getAssemblerFactory().createAssembler();
assembler.addAssemblerEventListener(new AssemblerEventAdapter());
 // Assemble the content
ContentItem responseContentItem = assembler.assemble(pContentItem);

In addition to retrieving the base content from the cartridge XML configuration files, the NucleusAssembler

class also modifies that content as necessary using CartridgeHandler components. The

NucleusAssemblerFactory component provides the NucleusAssembler class with the configuration it

needs to find the correct CartridgeHandler components. CartridgeHandlers can be found either by using

a default naming strategy (that is, looking for a Nucleus component named after the cartridgeType in one of

the NucleusAssemblerFactory component’s path properties), or via an explicit mapping. To support these

strategies, the NucleusAssemblerFactory component provides the following properties:

• experienceManagerHandlerPath: Defaults to the /atg/endeca/assembler/cartridge/handler/

experiencemanager folder.

• guidedSearchHandlerPath: Defaults to the /atg/endeca/assembler/cartridge/handler/

guidedsearch folder.

7 Query Integration 77

• defaultHandlerPath: Defaults to the /atg/endeca/assembler/cartridge/handler folder.

• handlerMapping: A Map<String, String> property that provides a map from the cartridgeType to the

Nucleus path of the corresponding CartridgeHandler component. This property can be used to override

the default mapping specified in path properties.

When looking for a cartridge handler, the NucleusAssembler class first invokes the

AssemblerTools.isExperienceManager() method to determine if Experience Manager is present or

not. If isExperienceManager() returns true, the NucleusAssembler class tries to locate the correct

handler in the path specified by the NucleusAssemblerFactory.experienceManagerHandlerPath

property. For example, for the MyCartridge cartridge, the NucleusAssembler class would look

for the handler called /atg/endeca/assembler/cartridge/handler/experiencemanager/

MyCartridge. If isExperienceManager() returns false, the NucleusAssembler class looks for

the handler in the path specified by the NucleusAssemblerFactory.guidedSearchHandlerPath

property. If neither path resolves successfully, the NucleusAssembler class looks for the handler

in the path specified by the NucleusAssemblerFactory.defaultHandlerPath. Finally, if the

NucleusAssembler class still cannot find the correct handler, it looks at the explicit mappings defined in the

NucleusAssemblerFactory.handlerMapping property.

Note that, out of the box, the handlerMapping property provides override mappings to handlers for the default

set of Endeca cartridges:

Explicit cartridge handler mappings
handlerMapping=\
 DimensionSearchAutoSuggestItem=/atg/endeca/assembler/cartridge/handler/\
 DimensionSearchResults,\
 HorizontalRecordSpotlight=/atg/endeca/assembler/cartridge/handler/\
 RecordSpotlight,\
 ContentSlotHeader=/atg/endeca/assembler/cartridge/handler/ContentSlot,\
 ContentSlotSecondary=/atg/endeca/assembler/cartridge/handler/ContentSlot,\
 ContentSlotMain=/atg/endeca/assembler/cartridge/handler/ContentSlot,\
 PageSlot=/atg/endeca/assembler/cartridge/handler/ContentSlot

Cartridge Handlers and Their Supporting Components

The default folder that Nucleus will try to resolve cartridge handlers in is /atg/endeca/assembler/

cartridge/handler. The /config subdirectory in that same location contains configuration components

associated with the CartridgeHandler components. Similarly, /atg/endeca/assembler/cartridge/

handler/xmgr and /atg/endeca/assembler/cartridge/handler/guidedsearch folders contain

cartridge handlers that are specific to Experience Manager and Guided Search, respectively, and they also have

their own /config sub-paths.

Note: Currently, the /atg/endeca/assembler/cartridge/handler/xmgr and /atg/endeca/assembler/

cartridge/handler/guidedsearch folders are empty and function only as placeholders for future

components.

Cartridge Manager Components

The components in the /atg/endeca/assembler/cartridge/manager Nucleus folder provide additional

cartridge support outside of what can be found in the cartridge handlers themselves. For example,

78 7 Query Integration

the NavigationStateBuilder and NavigationState components build and represent the current

navigation state, respectively; the FilterState component represents the state of any filters; and the

MdexRequestBuilder component builds MDEX requests.

Providing Access to the HTTP Request to the Cartridges

The /atg/endeca/servlet/request/NucleusHttpServletRequestProvider component, which is of

class atg.endeca.servlet.request.NucleusHttpServletRequestProvider, provides access to the

current request to various components in both the /atg/endeca/assembler/cartridge/handler and /

atg/endeca/assembler/cartridge/manager Nucleus folders.

Controlling How Cartridges Generate URLs

If a cartridge provides links to another Endeca navigation or record state, the URL path for each link is

provided as an action string in the response ContentItem. Two components, BasicUrlFormatter and

DefaultActionPathProvider, assist the cartridges in forming action strings. This section provides some

details on both.

BasicUrlFormatter

The /atg/endeca/url/basic/BasicUrlFormatter component is of class

com.endeca.soleng.urlformatter.basic.BasicUrlFormatter. This class is responsible for serializing

action strings from a navigation state, for example, ?N=4294967263. It includes properties such as

defaultEncoding and prependQuestionMarks that control how the strings are generated. Out of the box

these properties are set to UTF-8 and true, respectively.

For more information on the BasicUrlFormatter class, refer to the Assembler Application Developer’s Guide in

the Oracle Endeca Commerce documentation.

DefaultActionPathProvider

The /atg/endeca/assembler/cartridge/manager/DefaultActionPathProvider component, of class

atg.endeca.assembler.navigation.DefaultActionPathProvider, creates the first portion of the action

strings that are stored in ContentItems. For example, in the link below:

/browse?N=4294967263

The /browse portion of the link is generated by DefaultActionPathProvider.

The atg.endeca.assembler.navigation.DefaultActionPathProvider class implements the

com.endeca.infront.navigation.url.ActionPathProvider interface and its four methods:

• getDefaultNavigationActionSiteRootPath()

• getDefaultNavigationActionContentPath()

• getDefaultRecordActionSiteRootPath()

• getDefaultRecordActionContentPath()

The DefaultActionPathProvider class also has the following properties:

• defaultExperienceManagerNavigationActionPath (defaults to /browse)

• defaultExperienceManagerRecordActionPath (defaults to /product)

7 Query Integration 79

• defaultGuidedSearchNavigationActionPath (defaults to /guidedsearch)

• defaultGuidedSearchRecordActionPath (defaults to /recorddetails)

When getDefaultNavigationActionSiteRootPath() or getDefaultRecordActionSiteRootPath() is

called as part of the assembly process, the AssemblerTools.assemblerSettings() method is invoked to

retrieve and return the default prefix. This prefix is dependent on whether or not Experience Manager or Guided

Search is installed and defaults to /pages and /service, respectively.

When getDefaultNavigationActionContentPath() is called as part of the assembly process,

AssemblerTools.isExperienceManager() method is invoked to determine if Experience

Manager is in use. If so, the DefaultActionPathProvider component returns the value of the

defaultExperienceManagerNavigationActionPath property, which defaults to /browse. If not, the

component returns the value of the defaultGuidedSearchNavigationActionPath property, which defaults

to /guidedsearch.

Similarly, when getDefaultRecordActionContentPath() is called,

AssemblerTools.isExperienceManager() method is invoked to determine if Experience

Manager is in use. If so, the DefaultActionPathProvider component returns the value of the

defaultExperienceManagerRecordActionPath property, which defaults to /product. If not, the

component returns the value of the defaultGuidedSearchRecordActionPath property, which defaults to /

recorddetails.

Sorting the Search Results List

The ATG-Endeca integration includes the /atg/endeca/assembler/cartridge/handler/ResultsList

component. This component’s class, atg.endeca.assembler.cartridge.handler.ResultsListHandler,

overwrites the com.endeca.infront.cartridge.ResultsListHandler class and includes an additional

sorters property of type atg.Nucleus.ServiceMap. The keys of this ServiceMap are descriptive names

for the sorting options and the values are the components that perform the actual sorting. Out of the box, the

ResultsList component sets the sorters property as follows:

sorters=\
 NameDescending=/atg/endeca/assembler/cartridge/sort/NameDescending,\
 Relevance=/atg/endeca/assembler/cartridge/sort/Relevance,\
 NameAscending=/atg/endeca/assembler/cartridge/sort/NameAscending,\

The atg.endeca.assembler.cartridge.handler.ResultsListHandler.setSorters()

method transforms the sorters ServiceMap into a List of

com.endeca.infront.cartridge.model.SortOptionConfig components. It then passes that List when

it calls the com.endeca.infront.cartridge.model.SortOptionConfig.setSortOptions() method to

set the sort options. This technique of creating a ServiceMap and then using it to create a List of components

is necessary because Nucleus cannot set Lists of components directly.

Retrieving Renderers

The ATG Platform includes one component, ContentItemToRendererPath, and one dsp tag,

dsp:renderContentItem, for retrieving the correct renderer for a content item.

80 7 Query Integration

ContentItemToRendererPath

The /atg/endeca/assembler/cartridge/renderer/ContentItemToRendererPath component is

responsible for locating the correct renderer for the ContentItem that has been return by the Assembler

in response to a request. The ContentItemToRendererPath component is an instance of the class

atg.endeca.assembler.cartridge.renderer.CartridgeRenderingPathMapperImpl, which

implements the atg.endeca.assembler.cartridge.renderer.CartridgeRenderingMapper interface.

The core method of the CartridgeRenderingMapper interface is:

public String getRendererPathForContentItem(ContentItem pItem);

The getRendererPathForContentItem() method returns the web-app relative path of the JSP file used to

render the ContentItem.

Creating the Path

The ContentItemToRendererPath component provides some configurable properties that control how a

ContentItem is mapped to a JSP path:

• formatString: The string that defines the relative path of the JSP file. Defaults to /cartridges/

{cartridgeType}/{cartridgeType}{selectorSuffix}.jsp. {cartridgeType} is replaced by the

type of the current ContentItem, which is determined using the cartridgeTypePropertyName property,

described below. {selectorSuffix} is provided by the SelectorReplacementValueProducer, also

described below.

• cartridgeTypePropertyName: The name of the ContentItem property that contains the cartridgeType.

Defaults to cartridgeType.

• contentItemToReplacementPropertyNames: A map that creates a relationship between a source

ContentItem attribute’s name and a formatString property name. You can use this map to make

ContentItem properties available for use in the formatString.

• replacementValueProducers: An array of ReplacementValueProducers, described below, that makes

additional values available for use in the formatString.

To create the path, getRendererPathForContentItem() creates a replacement map that gets populated

with values calculated by other components or retrieved from other contexts. The replacement map values are

then used to replace placeholders in the ContentItemToRendererPath.formatString property, resulting in

a string that defines the relative path of the JSP file.

ReplacementValueProducer and SelectorReplacementValueProducer

The atg.endeca.assembler.cartridge.renderer.ReplacementValueProducer interface can be

implemented by components that need to make new, perhaps dynamically-generated, values available for use

in the replacement map and, by extension, the formatString. It contains one method that adds values to the

replacement map.

/** Add any replacement values to pMap. Note that a given
 * instance may add a single value, multiple values, or none.
 *
 * @param pMap--The map to add parameters to.
 * @param pContentItem--The ContentItem (available for reference
 * and calculating replacement values based on the content item)
 * ContentItem should not be modified.
 * @param pRequest--The current request. May be null, if invoked

7 Query Integration 81

 * outside of a request.
 */
public void addReplacementValues(Map<String, String> pMap,
 ContentItem pContentItem,
 HttpServletRequest pRequest);

Out of the box, the ATG Platform includes one replacement value producer, the /atg/endeca/assembler/

cartridge/renderer/SelectorReplacementValueProducer. This component adds a selector and

selectorSuffix to the replacement map, if needed. A selector represents the type of device being used to

view the web page, for example, a mobile device. The selectorSuffix is a corresponding suffix—for example,

“_mobile”—that gets added to the end of the JSP renderer path, so that the correct JSP is rendered for that type

of device.

The SelectorReplacementValueProducer component is of class

atg.endeca.assembler.cartridge.renderer and its primary configurable properties are:

• browserTypeToSelectorName: A map where the key is the browser type and the value is the

corresponding type of device (the “selector”). Out of the box, this property is configured to include the entry

iOSMobile=mobile, which declares that when the browser type is iOSMobile, the value in the replacement

map for selector is mobile. The selectorSuffix always has the same value as the selector with a

preceding underscore, making the selectorSuffix in this case _mobile. If no matching browser type is

found, selector and selectorSuffix are not set.

• selectorKeyName: The name of the key to use when putting the selector value into the replacement map.

Defaults to selector.

• selectorSuffixKeyName: The name of the key to use when putting the selector suffix value into the

replacement map. Defaults to selectorSuffix.

• selectorOverrideParameterName: The name of a request query parameter that can be used to override

the selector setting in the replacement map. Defaults to ciSelector. This property allows you to force a

selector value of mobile by having a ciSelector query parameter value of mobile.

dsp:renderContentItem

The dsp:renderContentItem JSP tag has two responsibilities:

• For a JSP response, it locates and dispatches to a rendering JSP page. The dsp:renderContentItem tag uses

the ContentItemToRendererPath component to determine the path of the JSP page to include.

• It sets an HttpServletRequest.contentItem attribute to the specified contentItem. This provides a well-

known attribute for rendering pages to pull data from; however, this attribute is set for the duration of the

include only.

The dsp:renderContentItem tag supports the following tag attributes:

• contentItem (required) - The ContentItem to locate a rendering JSP page for. The value of the

contentItem request attribute is also set to this ContentItem, for the duration of the include.

• format (optional) – Specifies whether the response should be serialized into JSON or XML. Acceptable values

are json or xml.

• webApp (optional) - The web application that the include is relative to. By default, the current web

application is used, but by passing another value in the webApp attribute, you can specify an include that

is relative to a different web application. The value of webApp may either be the content root of the target

82 7 Query Integration

web application (in which case, it must begin with a slash) or the display name of webApp (in which case, it is

located via Oracle ATG’s WebAppRegistry; see the ATG Platform Programming Guide for more information on

the WebAppRegistry).

• var (optional) – The name of the request attribute to set. You can use var to override the default request

attribute name of contentItem.

Similar to dsp:include, dsp:renderContentItem supports either nested dsp:param tags or dynamic

attributes for setting additional parameters.

8 Configuring and Using the Sample Query Application 83

8 Configuring and Using the Sample

Query Application

The 10.1.1 installation of the CommerceReferenceStore module includes a sample query application that you

can use to query the MDEX engines via an Endeca Assembler instance. This chapter describes how to configure

and use this application.

The sample query application depends on both Nucleus configuration on the ATG production server as well

as Experience Manager or Guided Search configuration in the Endeca environment. The following section

describes the Nucleus configuration requirements, which you may or may not have to change, based on your

environment’s setup. In all cases, the Experience Manager or Guided Search configuration will have to be

updated. Those changes are described in Endeca Configuration for the Sample Query Application (page 86).

Note that, while it is packaged as part of the CommerceReferenceStore module, the sample query application

is a separate application and it is not part of Commerce Reference Store. Commerce Reference Store does not

use the Endeca integration in version 10.1.1.

ATG Configuration for the Sample Query Application

The default ATG configuration supports running the sample query application under the following conditions:

• ATG and Endeca software are installed on the same machine.

• Experience Manager is installed in the Endeca environment.

• You are using a single MDEX for all your languages and it uses the default Live Dgraph port of 15000.

• You are using the default Endeca Workbench host and port values, which are localhost and 8006,

respectively.

• You have a single Endeca application named ATGen.

If your environment satisfies all of these conditions, there is no additional ATG configuration required for

the sample query application. If your environment differs from this set up, refer to the following sections for

information on how to modify the ATG configuration accordingly. These sections cover environments that:

• Have a separate MDEX and Endeca application for each language.

• Use non-default values for Endeca hosts, ports, or application names.

• Use Guided Search only, without Experience Manager.

84 8 Configuring and Using the Sample Query Application

All of the configuration modifications described in this section are made to the ATG production server instance.

After modifying the Nucleus configuration, be sure to restart your ATG production server.

Configuration for Environments with One Language per MDEX

If your environment has one language per MDEX, you need to create language-specific

WorkbenchContentSource and MDEXResource components so that the Assembler can connect to the correct

Workbench and MDEX instances.

Note: This section assumes you have used the naming convention ATGProdlang for the Endeca applications

that support the ATG production server instance.

To modify the ATG configuration for language-specific MDEX and Workbench instances:

1. Create an Initial.properties file in $DYNAMO_HOME/servers/ATG-production-server/

localconfig, where ATG-production-server is the name of your ATG production instance.

2. Edit the Initial.properties file to add the language-specific versions of the WorkbenchContentSource

component (note, you will create these language-specific components momentarily). For example, if your

application supports English, German, and Spanish, the entry for the initialServices property would look

like this:

initialServices+=\

/atg/endeca/assembler/cartridge/manager/WorkbenchContentSource_en,\

/atg/endeca/assembler/cartridge/manager/WorkbenchContentSource_de,\

/atg/endeca/assembler/cartridge/manager/WorkbenchContentSource_es

3. In $DYNAMO_HOME/servers/ATG-production-server/localconfig, add an /atg/endeca/

assembler/cartridge/manager/WorkbenchContentSource.properties file with the following

contents:

$class=atg.nucleus.GenericReference

$scope=request

loggingInfo=false

useRequestNameResolver=true

componentPath=/atg/endeca/assembler/cartridge/manager/\

PerLanguageWorkbenchContentSourceResolver

4. In $DYNAMO_HOME/servers/ATG-production-server/localconfig, add an /atg/endeca/

assembler/cartridge/manager/WorkbenchContentSource_lang.properties file with the following

contents for each language your application needs to support:

$basedOn=DefaultWorkbenchContentSource

$constructor.param[1].value=ATGProdlang

Where lang is a two-letter language code. For example, for English, create an /atg/endeca/assembler/

cartridge/manager/WorkbenchContentSource_en.properties file with the following contents:

$basedOn=DefaultWorkbenchContentSource

$constructor.param[1].value=ATGProden

5. In $DYNAMO_HOME/servers/ATG-production-server/localconfig, add an /atg/endeca/

assembler/cartridge/manager/DefaultWorkbenchContentSource.properties file with the

following contents:

$constructor.param[1].value=ATGProdlang

8 Configuring and Using the Sample Query Application 85

Where lang is the two-letter language code for your application’s default language. For example,

if English is your default language, create an /atg/endeca/assembler/cartridge/manager/

DefaultWorkbenchContentSource.properties file with the following contents:

$constructor.param[1].value=ATGProden

6. In $DYNAMO_HOME/servers/ATG-production-server/localconfig, add an /atg/endeca/

assembler/cartridge/manager/MdexResource.properties file with the following contents:

$basedOn=PerLanguageMdexResourceResolver

7. In $DYNAMO_HOME/servers/ATG-production-server/localconfig, add an /atg/endeca/

assembler/cartridge/manager/MdexResource_lang.properties file, where lang is a two-letter

language code, for each language your application needs to support. The contents of each file should look

like this:

$basedOn=DefaultMdexResource

host=mdex-host-machine

port=port-number

mdex-host-machine and port-number are the name of the machine and the Live Dgraph port number for

the MDEX instance that supports the associated language.

Configuration for Non-Default Endeca Hosts, Ports, or Application Names

The /atg/endeca/assembler/cartridge/manager/DefaultMdexResource and /atg/endeca/

assembler/cartridge/manager/DefaultWorkbenchContentSource components both have properties

that refer to Endeca hosts, ports, and application names. If you are using non-default Endeca hosts, ports, or

application names, you may have to modify these components.

Out of the box, the DefaultMdexResource.properties file looks like this:

$class=com.endeca.infront.navigation.model.MdexResource
$scope=request

Mdex host
host=localhost

Mdex port
port=15000

Record spec name
recordSpecName=common.id

In environments that have a single production MDEX for all languages, the host and port properties refer

to the host and port of that single MDEX. In environments that have a separate production MDEX for each

language, the host and port properties specify the host and port for the MDEX instance that should be used

when a language-specific MDEX instance is not available. If the default configuration does not match your

environment, make the appropriate changes in your ATG production server’s localconfig directory.

Note: For more information on how DefaultMdexResource is used, see Connecting to an MDEX (page 73).

Out of the box, the DefaultWorkbenchContentSource.properties file includes a number of properties,

however, the ones you may have to change are:

86 8 Configuring and Using the Sample Query Application

Arg1 - Workbench app name
$constructor.param[1].value=ATGen

Arg3 - Workbench host
$constructor.param[3].value=localhost

Arg 4 - Workbench port
$constructor.param[4].value=8006

In environments that have a single production Endeca application for all, the host, port and application name

properties refer to the host, port, and application name of that Endeca application. In environments that have

a separate Endeca application for each language, the host, port, and application name properties refer to the

Endeca application that should be used when a language-specific Endeca application is not available. If the

default configuration does not match your environment, make the appropriate changes in your ATG production

server’s localconfig directory.

Note: If you followed the instructions in the Configuration for Environments with One Language per

MDEX (page 84) section, you will have already changed the DefaultWorkbenchContentSource

component to use the ATGProden Endeca application name.

Note: For more information on how DefaultWorkbenchContentSource is used, see Connecting to the Endeca

Workbench Application (page 74).

Configuration for Guided Search Environments

For environments that are using Guided Search instead of Experience Manager, add an /atg/endeca/

assembler/cartridge/manager/AssemblerSettings.properties file with the following contents to

$DYNAMO_HOME/servers/ProductionServer/localconfig:

experienceManager=false

Endeca Configuration for the Sample Query Application

This section describes configuration changes necessary for both Experience Manager and Guided Search

environments. Follow the instructions that correspond with your environment.

Experience Manager Configuration

Endeca applications accessed by ATG should be created using the product catalog-specific deployment

template. This template creates pages and content collections based on Oracle Endeca’s Discover reference

application. These pages and content collections must be removed and replaced with pages and content

collections that are appropriate for the ATG sample query application. This section provides instructions on how

to do this.

To delete the existing pages and content collections:

8 Configuring and Using the Sample Query Application 87

1. In a browser, go to your Endeca Workbench. If you used the defaults during your Endeca installation, the

Workbench URL is:

http://localhost:8006

2. Enter your Workbench username and password (admin/admin are the defaults) and choose your production

application from the Application menu. If your environment has separate production applications for each

language (for example, ATGProden, ATGProdes, or ATGProdde), choose any one of them. You will have to

repeat these procedures for all of your language-specific production applications.

3. Click Experience Manager.

4. Delete all of the existing pages and content collections. To delete an item, highlight it, click its Actions arrow,

and choose Delete. Click Delete again to confirm the removal.

To create a /browse page:

1. Click the Actions arrow for Pages and choose Add Page.

2. Enter browse for the Name/URL and click Create.

Note: Do not change the name of this page. The Assembler integration API relies on the name browse.

3. Click Select Template. The Select Template window appears.

4. Select PageSlot and click OK.

5. Click Save.

To create the content collections for the /browse page:

1. Click the Actions arrow for Content and choose Add Collection.

2. Enter browseCollection for the name, choose Page from the Content Type Allowed menu, and click Add.

3. Click New Page.

4. Click Select Template, choose TwoColumnPage, and click OK.

5. On the Content Editor tab, click headerContent to specify the cartridges that will appear in the header area

of the two column page.

6. Under Section Settings, click Add. Choose the SearchBox and click OK.

7. Click secondaryContent to add content to the left hand rail of the two column page.

8. Under Section Settings, click Add. Choose Breadcrumbs and click OK.

9. Under Section Settings, click Add again. Choose ContentSlotSecondary and click OK.

10.Click mainContent to add content to the main portion of the two column page.

11.Under Section Settings, click Add again. Choose ContentSlotMain and click OK.

12.Click the Activate link, then click Save Changes.

To configure the /browse page to use the browseCollection:

1. In the Pages listing, click the browse page.

88 8 Configuring and Using the Sample Query Application

2. Click the Content Collection menu and choose /content/browseCollection, then click Save Changes.

To configure the secondary content on the /browse page:

1. Click the Actions arrow for Content and choose Add Collection.

2. Enter secondaryCollection for the name, choose SecondaryContent from the Content Type Allowed

menu, and click Add.

3. Click New SecondaryContent.

4. Click Select Template, choose GuidedNavigation, and click OK.

5. On the Content Editor tab, click Generate Guided Navigation. The Generate Guided Navigation window

appears.

6. Click Select All, then click Generate Cartridges.

7. Click the Activate link, then click Save Changes.

8. Expand the browseCollection item and click New Page.

9. On the Content Editor tab, under secondaryContent, click Secondary Content Slot.

10.Click the Content Collection menu and choose /content/secondaryCollection, then click Save Changes.

To configure the main content on the /browse page:

1. Click the Actions arrow for Content and choose Add Collection.

2. Enter mainCollection for the name, choose MainContent from the Content Type Allowed menu, and click

Add.

3. Click New MainContent.

4. Click Select Template, choose ResultsList, and click OK.

5. Make sure that Relevance Ranking is set to Margin Bias.

6. Set the Default Sort to Default.

7. Click the Activate link, then click Save Changes.

8. Expand the browseCollection item and click New Page.

9. On the Content Editor tab, under mainContent, click Main Content Slot.

10.Click the Content Collection menu and choose /content/mainCollection, then click Save Changes.

To create a /product page:

1. Click the Actions arrow for Pages and choose Add Page.

2. Enter product for the Name/URL and click Create.

Note: Do not change the name of this page. The Assembler integration API relies on the name product for

the product detail pages.

3. Click Select Template. The Select Template window appears.

4. Select PageSlot and click OK.

8 Configuring and Using the Sample Query Application 89

5. Click Save.

To create the content collections for the /product page:

1. Click the Actions arrow for Content and choose Add Collection.

2. Enter productCollection for the name, choose Page from the Content Type Allowed menu, and click Add.

3. Click New Page.

4. Click Select Template, choose OneColumnPage, and click OK.

5. On the Content Editor tab, click headerContent to specify the cartridges that will appear in the header area

of the one column page.

6. Under Section Settings, click Add. Choose the SearchBox and click OK.

7. Click mainContent to add content to the main area of the one column page.

8. Under Section Settings, click Add. Choose ProductDetail and click OK.

9. Click the Activate link, then click Save Changes.

To configure the /product page to use the productCollection:

1. In the Pages listing, click the product page.

2. Click the Content Collection menu and choose /content/productCollection, then click Save Changes.

To promote your changes to the Endeca application:

1. In a command prompt or UNIX window, go to the /control directory for the application you just configured,

for example, usr/local/Endeca/Apps/ATGProden/control or C:\Endeca\Apps\ATGProden\control.

2. Run the promote_content.sh|bat script.

IMPORTANT: For environments that have a separate production application for each language (for example,

ATGProden, ATGProdes, or ATGProdde), repeat these procedures for each application.

Guided Search Configuration

For environments that use Guided Search, you must remove the Rule Manager configuration and promote the

content to the Endeca application.

To remove Rule Manager configuration:

1. In a browser, go to your Endeca Workbench. If you used the defaults during your Endeca installation, the

Workbench URL is:

http://localhost:8006

2. Enter your Workbench username and password (admin/admin is the default) and choose your production

application from the Application menu. If your environment has a separate production applications for each

language (for example, ATGProden, ATGProdes, or ATGProdde), choose any one of them. You will have to

repeat these procedures for all of your language-specific production applications.

3. Click Rule Manager.

90 8 Configuring and Using the Sample Query Application

4. Delete all of the items under Right Column Spotlights, except for the Default Spotlight.

To promote your changes to the Endeca application:

1. In a command prompt or UNIX window, go to the /control directory for the application you just configured,

for example, /usr/local/Endeca/Apps/ATGProden/control or C:\Endeca\Apps\ATGProden

\control.

2. Run the promote_content.sh|bat script.

Viewing the Sample Query Application

After completing the Nucleus and Endeca configurations, you can view the sample query application.

Viewing the Sample Query Application in Experience Manager Environments

There are two URLs you can use to view the sample query application in an Experience Manager environment.

The first URL invokes the AssemblerPipelineServlet component to complete the request:

http://host:port/assembler/browse

Where host and port refer to the ATG production server’s host and HTTP port. For example, assuming you

accepted the default HTTP port for the ATG production server under WebLogic, the URL is:

http://localhost:7003/assembler/browse

The second URL invokes the InvokeAssembler servlet bean to complete the request:

http://host:port/assembler/index.jsp

Again, assuming a default HTTP port, the URL is:

http://localhost:7003/assembler/index.jsp

Viewing the Sample Query Application in Guided Search Environments

The URL you use to view the sample query application in Guided Search environment is:

http://host:port/assembler/guidedsearch

Where host and port refer to the ATG production server’s host and HTTP port. For example, assuming you

accepted the default HTTP port for the ATG production server under WebLogic, the URL is:

8 Configuring and Using the Sample Query Application 91

http://localhost:7003/assembler/guidedsearch

92 8 Configuring and Using the Sample Query Application

Index 93

Index

A
Assembler-driven pages, 60, 66

AssemblerPipelineServlet, 67

AssemblerSettings, 72, 86

AssemblerTools, 70

creating the Assembler instance, 71

identifying the renderer mapping component, 72

starting content assembly, 71

transforming the request URL, 71

ATG server instances

configuring in CIM, 3

ATG-driven pages, 64

B
BasicUrlFormatter, 78

bulk loading, 18

bypassing the Assembler, 69

C
cartridge handlers

generating URLs, 78

locating, 76

providing access to the HTTP request to, 78

sorting the search results list, 79

supporting components, 77, 77

cartridge manager components, 77

category dimension value accessors, 46

CategoryNodePropertyAccessor, 46

CategoryPathVariantProducer, 48

CategoryToDimensionOutputConfig, 4

CategoryTreeService, 10, 19

ConcatFilter, 52

connecting to a Workbench, 74

connecting to an MDEX, 73

ConstantValueAccessor, 46

Content Administration components, 29

content collection requests, 59, 68

ContentInclude, 59

ContentItemToRendererPath, 80

ContentSlotConfig, 59

CustomCatalogPropertyAccessor, 49

CustomCatalogVariantProducer, 48

customizing record output, 43

D
data loading, 18

DataDocumentSubmitter, 2

default property values, 38

DefaultActionPathProvider, 78

DefaultMdexResource, 73, 85

DefaultWorkbenchContentSource, 74, 85

definition file format, 33

locale attribute, 41

prefix element, 40

schema attributes, 34

suffix element, 40

document submitters, 13, 22

E
empty ContentItem, 64

Endeca applications

creating, 1

determining how many to create, 2

provisioning, 3

supporting all languages in a single MDEX, 2

supporting one language per MDEX, 2

Endeca classes

ContentInclude, 59

ContentSlotConfig, 59

endeca_jspref, 5

EndecaIndexingOutputConfig, 8, 15

EndecaScriptService, 26

F
FirstWithLocalePropertyAccessor, 44

G
GenerativePropertyAccessor, 44

global settings for the Assembler, 72

H
HtmlFilter, 53

I
incremental loading, 18

monitored properties, 41

tuning, 19

Indexable classes, 7

indexing, 4

as part of deployment, 4

increasing data source connection pool maximum, 4

94 Index

increasing transaction timeout, 4

manually, 5

monitoring progress, 5

multiple languages, 55

viewing indexed data, 5

installation and configuration

creating Endeca applications, 1

requirements, 1

InvokeAssembler, 69

invoking the Assembler

bypassing based on MIME type, 69

choosing an invocation method, 66

identifying content collection requests, 68

identifying page requests, 68

InvokeAssembler, 69

using AssemblerPipelineServlet, 60, 67

using the InvokeAssembler servlet bean, 64, 69

item subtypes

indexing, 37

L
LanguageNamePropertyAccessor , 44

languages

indexing, 55

loading data, 18

LocaleVariantProducer, 47

logging

configuration, 23

M
Map properties

indexing, 36

MdexResource, 73

MIME type, using to bypass the Assembler, 69

modules that support Endeca integration, 5

monitored properties, 41

multi-language configurations, 73, 74

multi-value properties

indexing, 35

record output, 8

multiple languages

indexing, 55

multisite catalogs

indexing, 39

N
non-repository properties

indexing, 38

normalizing property values, 40

NucleusAssembler, 76

NucleusAssemblerFactory, 71, 76

P
page requests, 59

identifying, 68

transforming a URL into, 71

PerLanguageMdexResourceResolver, 73

PerLanguageWorkbenchContentSourceResolver, 74

price lists

indexing data in, 45

PriceListMapPropertyAccessor, 45

ProductCatalogOutputConfig, 5

ProductCatalogSimpleIndexingAdmin, 5, 5, 27

property accessors, 43

CustomCatalogPropertyAccessor, 49

FirstWithLocalePropertyAccessor, 44

GenerativePropertyAccessor, 44

LanguageNamePropertyAccessor, 44

PriceListMapPropertyAccessor, 45

property values

default for indexing, 38

normalizing, 40

translating, 40

PropertyFormatter, 50

PropertyValuesFilter, 50

Q
querying the Assembler, 76

R
record output

customizing, 43

format, 8

viewing in Component Browser, 32

records

creating, 7

submitting, 13, 22

submitting to files, 25

renaming index properties, 39

renderContentItem tag, 81

renderers

ContentItemToRendererPath, 80

creating the path to, 80

locating the correct renderer, 80, 81

renderContentItem tag, 81

rendering

JSON, 62, 81

JSP, 60

XML, 62, 81

ReplacementValueProducer, 80

repository indexing, 7

ConcatFilter, 52

customizing output, 43

default property values, 38

Index 95

definition file format, 33

HtmlFilter, 53

item subtypes, 37

loading data, 18

Map properties, 36

multi-value properties, 35

multisite catalogs, 39

non-repository properties, 38

property accessors, 43

PropertyFormatter, 50

PropertyValuesFilter, 50

renaming output properties, 39

suppressing properties, 39

translating property values, 40

UniqueFilter, 51

UniqueWordFilter, 53

variant producers, 47

RepositoryTypeDimensionExporter, 20

RepositoryTypeHierarchyExporter, 12, 20

ResultsList, 79

S
sample query application

ATG configuration, 83

default configuration, 83

Endeca configuration, 86

Experience Manager configuration, 86

Guided Search configuration, 86, 89

one language per MDEX configuration, 84

using non-default Endeca host, port or application

names, 85

viewing in Experience Manager environments, 90

viewing in Guided Search environments, 90

schema attributes, 34

SchemaExporter, 12, 21

search results, sorting, 79

SelectorReplacementValueProducer, 80

SimpleIndexingAdmin, 14, 27

submitting records, 13, 22

submitting records to files, 25

subtypes

indexing, 37

suppressing properties from indexes, 39

SynchronizationInvoker, 5

T
translating property values, 40

U
UniqueFilter, 51

UniqueSiteVariantProducer, 49

UniqueWordFilter, 53

V
variant producers, 47

CategoryPathVariantProducer, 48

CustomCatalogVariantProducer, 48

LocaleVariantProducer, 47

UniqueSiteVariantProducer, 49

W
WorkbenchContentSource, 74

96 Index

	ATG Endeca Integration Guide
	Table of Contents
	1 Introduction
	Installation Requirements
	Creating the Endeca Applications
	Determining the Number of Endeca Applications To Create
	Provisioning the Endeca Applications

	Configuring the ATG Server Instances in CIM
	Product Selection
	ATG Server Instance Creation

	Starting the Indexing Process
	Increasing the Transaction Timeout and Datasource Connection Pool Values
	Indexing As Part of a Deployment
	Manually Starting the Indexing Process
	Monitoring the Indexing Process

	Viewing the Indexed Data
	ATG Modules

	2 Overview of Indexing
	Indexable Classes
	EndecaIndexingOutputConfig Class
	CategoryTreeService Class
	RepositoryTypeHierarchyExporter Class
	SchemaExporter Class

	Submitting the Records
	Managing the Process

	3 Configuring the Indexing Components
	EndecaIndexingOutputConfig Components
	Data Loader Components
	Tuning Incremental Loading

	CategoryTreeService
	RepositoryTypeDimensionExporter
	SchemaExporter
	Document Submitter Components
	Reducing Logging Messages
	Directing Output to Files

	EndecaScriptService
	ProductCatalogSimpleIndexingAdmin
	Queueing Indexing Jobs

	Content Administration Components
	Triggering Indexing on Deployment

	Viewing Records in the Component Browser

	4 Configuring EndecaIndexingOutputConfig Definition Files
	Definition File Format
	Specifying Endeca Schema Attributes
	Specifying Properties for Indexing
	Specifying Multi-Value Properties
	Specifying Map Properties
	Specifying Properties of Item Subtypes
	Specifying a Default Property Value
	Specifying Non-Repository Properties
	Suppressing Properties
	Including the siteIds Property
	Renaming an Output Property
	Translating Property Values
	Using Monitored Properties

	5 Customizing the Output Records
	Using Property Accessors
	FirstWithLocalePropertyAccessor
	LanguageNameAccessor
	GenerativePropertyAccessor
	PriceListMapPropertyAccessor
	Category Dimension Value Accessors

	Using Variant Producers
	LocaleVariantProducer
	CategoryPathVariantProducer
	CustomCatalogVariantProducer
	UniqueSiteVariantProducer

	Using Property Formatters
	Using Property Value Filters
	UniqueFilter
	ConcatFilter
	UniqueWordFilter
	HtmlFilter

	6 Indexing Multiple Languages
	Specifying the Locales
	Using a Separate MDEX for Each Language
	Using a Single MDEX for all Languages

	7 Query Integration
	ContentItem, ContentInclude, and ContentSlotConfig Classes
	Invoking the Assembler in the Request Handling Pipeline
	Using a JSP Renderer to Render Content
	Rendering XML or JSON Content
	When the Assembler Returns an Empty ContentItem

	Invoking the Assembler using the InvokeAssembler Servlet Bean
	Choosing Between Pipeline Invocation and Servlet Bean Invocation
	Components for Invoking the Assembler
	AssemblerPipelineServlet
	InvokeAssembler
	AssemblerTools

	Defining Global Assembler Settings
	Connecting to Endeca
	Connecting to an MDEX
	Connecting to the Endeca Workbench Application

	Querying the Assembler
	Cartridge Handlers and Their Supporting Components
	Cartridge Manager Components
	Providing Access to the HTTP Request to the Cartridges
	Controlling How Cartridges Generate URLs
	Sorting the Search Results List

	Retrieving Renderers
	ContentItemToRendererPath
	dsp:renderContentItem

	8 Configuring and Using the Sample Query Application
	ATG Configuration for the Sample Query Application
	Configuration for Environments with One Language per MDEX
	Configuration for Non-Default Endeca Hosts, Ports, or Application Names
	Configuration for Guided Search Environments

	Endeca Configuration for the Sample Query Application
	Experience Manager Configuration
	Guided Search Configuration

	Viewing the Sample Query Application
	Viewing the Sample Query Application in Experience Manager Environments
	Viewing the Sample Query Application in Guided Search Environments

	Index

