
Version 10.2

Platform Programming Guide

Oracle ATG

One Main Street

Cambridge, MA 02142

USA

ATG Platform Programming Guide

Product version: 10.2

Release date: 04-30-13

Document identifier: AtgProgrammingGuide1403311801

Copyright © 1997, 2013 Oracle and/or its affiliates. All rights reserved.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are

protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy,

reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any

means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please

report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government,

the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed on the

hardware, and/or documentation, delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable

Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and

adaptation of the programs, including any operating system, integrated software, any programs installed on the hardware, and/or

documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S.

Government.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended

for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or

hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures

to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in

dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are

trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or

registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.

Portions of this product may contain the following: EditLive Authoring Software Copyright © 2004 Ephox Corporation. All rights reserved.

Some code licensed from RSA Security, Inc. Some portions licensed from IBM, which are available at http://oss.software.ibm.com/icu4j/.

This product may include software developed by the Apache Software Foundation (http://www.apache.org/). Spell checking software from

Wintertree Software Inc. The Sentry Spell Checker Engine © 2000 Wintertree Software Inc. This product also includes software developed

by the following: Free Software Foundation, GNU Operating System, Incanto, JSON.org, JODA.org, The Dojo Foundation, Adobe Systems

Incorporated, Eclipse Foundation and Singular Systems.

The software is based in part on the work of the Independent JPEG Group.

This software or hardware and documentation may provide access to or information on content, products, and services from third parties.

Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party

content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to

your access to or use of third-party content, products, or services.

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website at http://www.oracle.com/pls/

topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support: Oracle customers have access to electronic support through My Oracle Support. For information, visit http://

www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing

impaired.

The MIT License

Copyright (c) 2007 FlexLib Contributors. See: http://code.google.com/p/flexlib/wiki/ProjectContributors

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the

"Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute,

sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following

conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE

WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS

OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR

OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

ATG Platform Programming Guide v

Table of Contents

1. Introduction . 1

2. Nucleus: Organizing JavaBean Components . 3

Building Applications from JavaBeans . 4

Using Properties to Connect Components . 4

Using Events to Connect Components . 5

Basic Nucleus Operation . 5

Using Nucleus . 7

Creating a Nucleus Component . 8

Starting a Nucleus Component . 9

Public Constructor . 10

Property Names . 10

Property Types . 11

Properties File Format . 13

Class versus Component Names . 14

Specifying Components as Properties . 14

ServiceMap Properties . 17

Component Names in Properties Files . 17

Aliases for Nucleus Components . 18

Pre-Parsed Component and Parameter Names . 19

File Names in Properties Files . 20

IP Addresses in Properties Files . 21

ATG server References . 21

dynamosystemresource . 21

Starting Multiple Components . 21

Linking Property Values . 23

Linking Map Properties . 23

Debugging Nucleus Configuration . 24

Enabling Deadlock Detection . 24

Component Scopes . 24

Global Scope . 25

Session Tracking . 25

Multiple Scopes in the Same Namespace . 25

Request Scope . 26

Setting Properties of Session and Request-Scoped Components . 26

Prototype Scope . 27

Managing Properties Files . 27

Setting the Configuration Path . 27

Reading the Configuration Path . 30

Configuration Directories . 30

Setting Properties from Multiple Configuration Directories . 32

Global Properties Files . 33

Site-Specific Component Properties . 34

Tracing Component Property Settings . 35

Setting Properties to Null . 35

Decoding Encrypted Properties in Nucleus Components . 35

Loading Serialized Beans . 36

Checking File Name Case on Windows . 36

XML File Combination . 37

XML Encoding Declaration . 37

DOCTYPE Declaration . 37

Combining Two Tags . 38

vi ATG Platform Programming Guide

Controlling Tag Combination . 38

Recursive Combination . 41

Root Tag . 43

id Attribute . 44

Viewing the Combined File . 44

Testing XML File Combination . 45

Writing Nucleus Components . 45

Public Constructor with No Arguments . 46

Parameterized Constructors . 46

ParameterConstructorInstanceFactory . 46

MethodInstanceFactory . 47

Properties . 49

Special $ Properties . 50

Event Sources . 50

NameContextBindingListener . 51

NameContextElement . 51

NameContext . 52

NameContextBindingEventSource . 53

Naming and Nucleus . 54

ServiceListener . 54

Service . 55

ApplicationLogging . 55

AdminableService . 56

GenericService . 56

GenericContext . 57

Validateable . 58

Basing a Component on another Component . 58

Nucleus API . 58

Dynamic Beans . 59

Registering Dynamic Beans . 60

DynamicBeanInfo . 62

Using DynamicPropertyMappers . 62

Displaying Information from BeanInfos . 63

Dynamic Types . 65

Registered DynamicBeans and Dynamic Types . 65

Customizing the ATG Dynamo Server Admin Interface . 66

Creating Administration Servlets . 66

Formatting Object Values . 67

ValueFormatter . 67

Spring Integration . 68

NucleusResolverUtil . 68

NucleusPublisher . 68

3. Developing and Assembling Nucleus-Based Applications . 71

Developing Applications . 71

Development Mode and Standalone Mode . 72

Nucleus-Based Application Structures . 73

Assembling Applications . 73

Command Options . 74

Specifying Configuration Layers on Server Startup . 77

Including an Existing EAR File . 77

Including Web Services . 78

Using a Non-Default ATG Server . 78

Specifying a Server for a Development-Mode EAR File . 78

ATG Platform Programming Guide vii

Specifying a Server for a Standalone EAR File . 78

Including ATG Dynamo Server Admin . 79

Changing the ATG Dynamo Server Admin Login . 80

Logging Attempts to Access the Administration Server . 80

Invoking the Application Assembler Through an Ant Task . 80

CreateUnpackedEarTask . 81

PackEarFileTask . 83

4. Working with Application Modules . 85

Using ATG Modules . 85

Creating an Application Module . 86

Application Module Directory Structure . 86

Application Module Manifest File . 87

Including ATG-Web-Module . 89

Accessing Module File Resources . 89

Creating an Application Module JAR File . 90

Adding Modules to the ATG Control Center . 90

CONFIG.properties File . 90

Module Component . 91

ModuleManager Entry . 91

Launching a Client Application Against Remote Modules . 91

Synchronization of Client and Server . 92

5. Creating and Using ATG Servlet Beans . 93

Creating Custom Servlet Beans . 93

Simple ATG Servlet Bean Example . 94

ATG Servlet Beans and Servlets . 95

Passing Parameters to ATG Servlet Beans . 96

Displaying Open Parameters in ATG Servlet Beans . 97

Setting Parameters in ATG Servlet Beans . 98

Local Parameters . 99

Separating JSP Code and Java Code . 99

Object Parameter Values . 101

Property Parameter Values . 102

Processing Servlet Beans . 103

Limitations in Custom Servlet Beans . 104

Using Custom Servlet Beans with the ATG Control Center . 105

Parameter Descriptors . 106

Defining the Component Category . 106

BeanInfo Example . 107

Resolving Component Names . 107

6. Working with Forms and Form Handlers . 111

Form Handlers and Handler Methods . 111

Subclassing ATG Form Handlers . 112

Handler Methods . 112

Submit Handler Methods . 114

Transactions in Repository Form Handlers . 114

Transaction-Aware Methods . 116

Handler Methods and dsp:setvalue . 117

Form Handler Scope . 118

Tag Converters . 119

Creating Custom Tag Converters . 119

Attribute Definition Constraints . 121

Using Custom Tag Converters . 121

Sample Tag Converter . 122

viii ATG Platform Programming Guide

File Uploading . 123

File Upload Component Example . 124

7. Accessing Nucleus in a Web Application . 127

Request Processing in a Nucleus-Based Application . 127

Resources in web.xml . 130

Running Nucleus . 130

Starting the Request-Handling Pipeline . 130

Optional Resources . 131

Adding Request-Handling Resources to web.xml . 132

Creating Filters and Servlets . 133

Filter Example . 133

8. Request Handling with Servlet Pipelines . 135

Request Processing . 136

Servlet Interface . 136

HttpServletRequest . 137

HttpServletResponse . 139

DynamoHttpServletRequest and Response . 141

DynamoHttpServletRequest . 141

DynamoHttpServletResponse . 144

Accessing DynamoHttpServletRequest and DynamoHttpServletResponse . 145

Filters and PageFilter . 145

Request-Handling Pipeline Servlets . 145

Customizing a Request-Handling Pipeline . 148

Inserting Servlets in the Pipeline . 148

Using J2EE Servlets and Filters . 150

Exceptions in Pipeline Servlets . 150

Authentication . 151

BrowserTyper . 151

PageFilterUtil . 154

Improving Page Compilation Performance . 154

Servlet Pipeline Examples . 155

9. Multisite Request Processing . 159

Site Identification . 160

Installed Rule Filters . 161

Custom Rule Filters . 163

Site Accessibility . 164

Redirecting Requests . 164

Redirect Constraints . 165

Site Accessibility Processing . 165

Preview Request Handling . 167

Site Context Management . 167

Site Session Management . 167

SiteRequestProcessor Components . 168

SiteSessionStartProcessor Components . 168

Session Expiration . 168

Multisite URL Management . 169

Site URL Collection . 169

URL Transformation Rules . 170

Production Site URL Conventions . 172

Sharing a Session Across Multiple Domains . 173

Configuring Virtual Context Root Request Handling . 184

Absolute URL Generation . 191

Multisite Data Sharing . 194

ATG Platform Programming Guide ix

Sharing Nucleus Components . 194

Sharing non-Nucleus Resources . 195

Shared Component Proxying . 199

Profile Realm Context Management . 202

Profile Realm Context Push and Pop Methods . 202

Profile Realm pushRealm URL Parameter . 202

Default Profile Realm Identifier Constant . 203

10. Core ATG Services . 205

TCP Request Server . 206

Defining a RequestServer . 206

Configuring a RequestServer . 207

RequestServer Statistics . 208

RMI Services . 208

Writing an RMI Service . 208

RMI Socket Factories . 210

RMI Over SSL . 211

Alternative RMI Implementations . 212

Port Registry . 212

Scheduler Services . 213

Scheduling a Task . 213

Writing a Schedulable Component . 214

ScheduledJob Thread Methods . 215

Configuring a Schedulable Component . 216

Schedule Settings . 216

Monitoring the Scheduler . 219

Running the Same Schedulable Service on Multiple Servers . 219

ShutdownService . 222

Sampler Services . 222

Sample Class . 223

Sampler Class . 223

Configuring the Sampler . 224

SampleListeners . 225

Secure Random Number Generator . 225

ID Generators . 226

IdGenerators and IdSpaces . 226

Using IdGenerators . 227

SQLIdGenerator . 229

TransientIdGenerator . 231

ObfuscatedSQLIdGenerator . 231

Extending the IdGenerator . 231

Resource Pools . 232

Subclassing ResourcePool . 232

Configuring a Resource Pool . 232

Using a Resource Pool . 234

Avoiding Resource Leaks . 235

Checking the Health of a Resource Pool . 236

ResourceClassName . 236

MonitoredDataSource . 237

Events and Event Listeners . 237

Event Objects . 237

Event Listener and Event Source Requirements . 238

Event Listener Example . 238

Event Source Example . 238

x ATG Platform Programming Guide

Testing the Event System . 239

Queues . 240

Candidates for Queuing . 241

Creating a Queue Class . 241

Using a Queue Component . 242

Configuring a Queue Component . 243

E-mail Senders and Listeners . 243

EmailEvent . 244

Creating JavaMail Messages . 244

Registering Content Types . 245

Sending E-mail . 246

Configuring SMTPEmail . 247

Using BatchEmailListener . 247

Using EmailListenerQueue . 248

11. Logging and Data Collection . 249

ATG Logging . 250

LogEvents . 250

LogListeners . 250

Logging Levels . 251

Broadcasting LogEvents . 252

Using ApplicationLogging . 253

Improving Log Readability . 253

Using Terse Logging . 254

Implementing Logging . 255

LogEvent Sinks . 255

DispatchLogger . 258

LogListenerQueue . 260

Logging Configuration . 260

Designing Logging Systems . 261

Logging for Non-GenericService Components . 262

Logging with Nucleus-instantiated Non-GenericService . 262

Logging with Non-Nucleus-instantiated Classes . 263

Introduction to Data Collection . 264

Data Collection Sources and Events . 265

Data Listeners . 265

Compatibility with Logging . 266

Formatting File Loggers . 266

Configuring Fields . 266

Configuring Log File Names . 268

Formatting Logger Example: the RequestLogger . 269

Database Loggers . 270

Data Flushing . 273

Configuring Transaction Size . 273

Configuring the Buffer Size . 273

Using Blocking with a Data Collector Queue . 273

SQL Data-types . 274

Data Collector Queues . 274

Summarizers . 274

Summarizer Method and Timestamps . 274

Matching and the groupBy Property . 275

SummaryItems . 275

Summarizer Example . 275

Flushing Data from the Summarizer . 275

ATG Platform Programming Guide xi

Logging SummaryItems . 276

Summary Variables . 277

DBWriteMethod in an SQL Table Summary Logger . 277

Summarizer Flush Methods . 278

12. ATG Message System . 279

Overview of JMS . 279

JMS Message Producers and Consumers . 280

JMS Destinations . 280

JMS Message Formats . 281

ATG and JMS . 282

ATG Message Conventions . 283

Using Local JMS . 283

Creating Local JMS Destinations . 284

Using SQL JMS . 284

Creating and Accessing SQL JMS Destinations . 285

Administering SQL JMS . 286

Configuring Databases and Data Sources . 286

Adjusting the SQL JMS Polling Interval . 287

Removing SQL JMS Destinations and Subscriptions . 288

Monitoring Message Buildup . 290

Using the SQL-JMS Administration Interface . 290

Overview of Patch Bay . 293

Patch Bay Manager . 293

Messaging Components . 294

Patch Bay Initialization . 294

Patch Bay API . 295

Creating Message Sources . 295

Creating Message Sinks . 296

Creating Message Filters . 297

Configuring Patch Bay . 298

Declaring JMS Providers . 299

Declaring Message Sources, Sinks, and Filters . 300

Connecting to Destinations . 301

Using Messaging Ports . 304

Using the Message Registry . 307

Delaying the Delivery of Messages . 310

Configuring Failed Message Redelivery . 311

Using Patch Bay with Other JMS Providers . 313

13. Transaction Management . 317

Transaction Overview . 317

Transaction Manager . 318

Accessing the UserTransaction Interface . 319

Working with Transactions . 319

Resource Access and Enlistment . 320

Transaction Completion . 321

Transaction Synchronization . 322

Marking Rollback Only . 322

Transaction Suspension . 322

Transaction Demarcation . 323

Transaction Modes . 324

Declarative Demarcation . 324

Demarcation in Pages . 325

Programmatic Demarcation . 326

xii ATG Platform Programming Guide

14. Managing Access Control . 329

Security Services Classes and Interfaces . 329

User Authority Object . 330

User Object . 331

Persona Object . 331

Access Privileges . 332

Access Control Lists . 332

Security Policy Object . 332

Extending the Security Model . 332

Extending the Standard Security Policy . 333

Authenticating a User . 333

Configuring Access Privileges . 338

Configuring the Default Login Accounts . 338

Managing User Accounts . 339

Managing User Groups and Privileges . 340

Configuring LDAP Repository Security . 341

Configure Users and Groups on an LDAP Server . 342

Configure Base Common Names . 346

Configure a Password Hasher . 346

Configure the InitialContextEnvironment Component . 347

Create an XML Definition File . 348

Test the LDAP Server Connection . 348

Configure the DYNAMO_MODULES Variable . 349

Enable Security Information Caching . 350

15. Search Engine Optimization . 353

URL Recoding . 353

Using URL Templates . 354

Configuring the ItemLink Servlet Bean . 359

Configuring the SEO Jump Servlet . 360

URL Recoding for Multisite Applications . 361

Canonical URLs . 361

Creating Canonical URLs . 361

Sitemaps . 362

Overview of Sitemaps . 363

Sitemap Generation Tools . 364

Configuring Sitemap Generation . 364

Additional Configuration for Multisite Applications . 370

Configuring Sitemap Writing . 371

Invoking Sitemap Generation and Writing . 371

SEO Tagging . 373

Creating SEO Tags . 373

Rendering SEO Tags on Pages . 374

16. DAF Deployment . 377

DAF Deployment Architecture . 378

DeploymentManager . 379

Deployment Phases . 382

DAF Deployment API . 384

atg.deployment.DeploymentManager . 385

atg.deployment.DeploymentData . 385

atg.deployment.DeploymentOptions . 385

atg.deployment.DeploymentProgress . 386

atg.deployment.DeploymentReporter . 386

atg.deployment.DeploymentFailure . 387

ATG Platform Programming Guide xiii

Deployment Repository . 388

deployment . 388

deploymentProgress . 389

deploymentData . 389

marker . 390

repositoryMarker . 391

fileMarker . 391

failureInfo . 391

Setting Up DAF Deployment . 392

Setting Up DAF Deployment for Repository Items . 392

Setting Up DAF Deployment for Files . 393

Setting Up DAF Deployment for Multiple ATG Servers . 393

Using DAF Deployment to Deploy to Multiple Sites . 394

Performing a Deployment . 394

Performing Switch Deployments . 396

Configuring DAF Deployment for Performance . 396

17. Content Distribution . 397

Content Distribution Operation . 397

Distributor Commands . 398

Using Content Distribution with an SQL Content Repository . 399

Setting Up a Content Distributor System . 399

DistributorSender . 400

Running the DistributorSender from a Command Line . 401

DistributorPool . 402

Generating a File Name . 402

RemoteServerCache . 403

DistributorServer . 403

18. Internationalizing an ATG Web Site . 407

Overview . 408

ResourceBundles . 408

Locales . 409

Character Encodings . 409

EncodingTyper Component . 410

RequestLocale Component . 410

Java Internationalization Objects . 410

Setting Up a Multi-Locale ATG Web Site . 411

Using ResourceBundles for Internationalization . 411

Introduction to ResourceBundles . 412

ResourceBundle Objects . 412

ResourceBundle Inheritance . 413

Internationalizing ResourceBundles . 414

ResourceBundle Translation Instructions . 415

Setting Character Encoding in JSPs . 416

Converting Posted Data with a Hidden Dyncharset Tag . 417

Using the EncodingTyper to Set the Character Encoding . 417

Introduction to the EncodingTyper . 417

DefaultEncoding Property . 418

EncodingMappings Property . 418

PathPatternPrefixes Property . 420

Converting Posted Data with the EncodingTyper . 421

Customizing the EncodingTyper . 421

Configuring the Request Locale . 422

RequestLocale Hierarchy . 422

xiv ATG Platform Programming Guide

Configuring RequestLocale Properties . 423

Additional RequestLocale Properties . 424

Request Locale in Personalization Module Web Sites . 424

Allowing Users to Choose a Locale . 425

Using RequestLocale in an ATG Servlet Bean . 425

Adding the RequestLocale Property . 427

HTTPServletRequest Component . 427

Character Encoding and Locale Configuration Examples . 427

Setting the Java Virtual Machine Locale . 429

Configuring the Database Encoding . 429

Setting the E-mail Encoding . 430

Internationalizing Content Repositories . 430

Multiple Repositories . 430

Single Repository . 431

Using the EncodingTyper Component with Content Repositories . 431

Localizing an SQL Content Repository Definition File . 431

Localizing User Messages . 431

Creating Locale-Specific Content Pages . 432

HTML . 432

oparam . 432

param . 433

input . 433

Content Page Directories . 434

Designing a Multi-Locale Entry Page . 434

Converting Properties Files to Escaped Unicode . 435

Localizing the Profile Repository Definition . 436

Localizing Profile Group Names, Scenario Names, and Similar Items . 436

Changing Date and Currency Formats . 437

Changing Currency Formats . 437

Using Third-Party Software on an Internationalized Site . 438

A. Disposable Class Loader . 439

B. DAF Database Schema . 441

Security Tables . 441

das_gsa_subscriber . 441

das_id_generator . 442

das_secure_id_gen . 442

das_account . 443

das_group_assoc . 443

das_sds . 443

DMS Tables . 444

dms_client . 444

dms_queue . 445

dms_queue_recv . 445

dms_queue_entry . 446

dms_topic . 446

dms_topic_sub . 447

dms_topic_entry . 447

dms_msg . 448

dms_msg_properties . 449

dms_limbo . 450

dms_limbo_msg . 450

dms_limbo_replyto . 451

dms_limbo_body . 451

ATG Platform Programming Guide xv

dms_limbo_props . 451

dms_limbo_ptypes . 452

dms_limbo_delay . 452

C. DMS Configuration File Tags . 453

D. ATG Modules . 465

E. Request Handling Pipeline Servlets Reference . 471

AccessControlServlet . 471

CachePreventionServlet . 472

CheckSessionExpiration . 472

CommerceCommandServlet . 472

CookieBufferServlet . 473

DAFDropletEventServlet . 474

DAFPassportServlet . 474

DynamoHandler . 475

DynamoServlet . 475

ExpiredPasswordServlet . 476

FileFinderServlet . 476

LocaleServlet . 478

MimeTypeDispatcher . 478

MimeTyperServlet . 478

PageViewServletTrigger . 479

PathAuthenticationServlet . 480

ProfilePropertyServlet . 481

ProfileRequestServlet . 481

ProjectServlet . 482

PromotionServlet . 482

ProtocolSwitchServlet . 483

PublishingActionServlet . 483

PublishingSecurityServlet . 483

SessionEventTrigger . 484

SessionSaverServlet . 484

SiteSessionEventTrigger . 484

SetCurrentLocation . 485

SiteContextPipelineServlet . 485

TailPipelineServlet . 486

ThreadNamingPipelineServlet . 486

ThreadUserBinderServlet . 487

TransactionServlet . 487

URLArgumentServlet . 488

ValidateURLServlet . 488

VersioningLayerServlet . 489

F. Integration Framework . 491

Using the Integration Repository . 492

Architecture . 493

Integration Approaches . 493

Setting Up an Integration Repository . 495

Integration Repository APIs . 497

Command Operations . 502

Mapping . 505

Persistent Caching . 505

Configuration Examples . 506

Integration Repository Definition File . 509

Remote Procedure Calls . 516

xvi ATG Platform Programming Guide

RPC API Architecture . 517

Implementing the RPC API . 518

Executing Commands in Pages . 519

Index . 523

1 Introduction 1

1 Introduction

Oracle ATG Web Commerce provides an open, server-side environment for building and deploying dynamic,

personalized applications for the web and other communication channels, such as email and wireless devices.

Oracle ATG Web Commerce applications implement a component development model based on JavaBeans and

JSPs. Developers assemble applications out of component beans (based on standard Oracle ATG Web Commerce

classes or custom Java classes) by linking them together through configuration files in Nucleus, Oracle ATG Web

Commerce’s open object framework. Page designers build the front-end interface for the application out of JSPs

that use Oracle ATG Web Commerce’s DSP tag library. The DSP tag library makes it possible to embed Nucleus

components in JSPs, and use those components for rendering dynamic content.

Each chapter in this manual focuses on a fundamental aspect of Oracle ATG Web Commerce application

architecture. For specific information about Oracle ATG Web Commerce applications such as Oracle ATG Web

Commerce or Oracle ATG Web Commerce Merchandising, see their online product documentation.

http://www.atg.com/en/support_services/support/product_resources/manuals.jhtml

2 1 Introduction

2 Nucleus: Organizing JavaBean Components 3

2 Nucleus: Organizing JavaBean

Components

Nucleus is Oracle ATG Web Commerce’s component model for building applications from JavaBeans. Nucleus

lets you assemble applications through simple configuration files that specify what components are used by the

application, what parameters are used to initialize those components, and how those components hook up to

each other.

Nucleus by itself provides no application-specific functions. The JavaBean components implement all of an

application’s functionality. Nucleus is the mechanism that gives those components a place to live, and a way for

those components to find each other.

Nucleus organizes application components into a hierarchy, and assigns a name to each component, based on

its position in the hierarchy. For example, a component named /services/logs/FileLogger represents a

component called FileLogger, contained by the container component called logs, which is itself contained

by the container component called services. The services component is contained by the root component

of the hierarchy, which is Nucleus. Components in the hierarchy can refer to each other by name. This includes

both absolute names, such as /services/logs/FileLogger, and relative names such as ../servers/

HttpServer.

Nucleus also takes on the task of creating and initializing components. An application does not need to contain

the code that creates a component and adds it to the Nucleus namespace. Instead, you can write a configuration

file that specifies the class of the component and the initial values of the component’s properties. The first

time that component is referenced by name, Nucleus finds the component’s configuration file, creates the

component based on the values in that configuration file, and adds the component to the Nucleus namespace.

Nucleus provides a simple path for writing new components. Any Java object with an empty constructor

can act as a component in Nucleus, so writing a new Nucleus component is as easy as writing a Java class. By

adhering to JavaBeans standards for defining properties and events, a Java class can take advantage of Nucleus’s

automatic creation and configuration mechanism. By implementing various interfaces, a Nucleus component

can also take advantage of Nucleus services and notifications.

In this chapter

The sections of this chapter help you understand and use Nucleus as a framework for application components:

• Building Applications from JavaBeans (page 4)

• Basic Nucleus Operation (page 5)

• Using Nucleus (page 7)

• Component Scopes (page 24)

• Managing Properties Files (page 27)

4 2 Nucleus: Organizing JavaBean Components

• XML File Combination (page 37)

• Writing Nucleus Components (page 45)

• Nucleus API (page 58)

• Dynamic Beans (page 59)

• Customizing the ATG Dynamo Server Admin Interface (page 66)

• Spring Integration (page 68)

Building Applications from JavaBeans

A typical Internet application usually begins with an architectural diagram. For example, a database connection

component might be connected to a data cache, which is accessed by a search engine that is attached to some

UI component. When you build an architectural plan, you typically follow several rules:

• Use existing components where appropriate. If no component exists to do the job, try subclassing an existing

component.

• Break down large components into smaller components. Smaller components are easier to test, reuse, and

inspect at runtime. This might result in a larger number of components, but Nucleus is designed to handle

large numbers of components. Large monolithic components are sometimes difficult to spot, so always be on

the lookout. It is generally good practice to design each component to perform a single function that can be

described in a short paragraph.

• Centralize functions that are shared by multiple components. For example, one component might spin off a

thread that causes email to be sent every hour, while another component might spin off another thread that

archives a log file each day. Both timing threads can be eliminated if the components take advantage of a

centralized Scheduler component.

• If a component is not completely self-contained—usually the result of following the previous point—be sure

that its dependencies on other components are clearly enumerated. These dependencies are usually listed as

properties of the component (see below). For example, a component might require a pointer to a Scheduler

component and a DatabaseConnection component, so the component has properties of those types. A

component should never need to know about its position in the grand scheme of the architecture—it only

needs to know its most immediate dependencies.

When the architectural plan is complete, you can implement it with Nucleus and JavaBeans. If you design each

component as a JavaBean, you can rely on Nucleus to create, initialize, and establish the relationship between

Beans. You can build the components without regard for their initialization values or how their dependencies on

other components are satisfied. These application-specific concerns are contained in configuration files that are

read and interpreted by Nucleus.

Using Properties to Connect Components

To be interpreted by Nucleus, a bean’s initialization parameters must be exposed as properties. For example, a

server component might wish to expose its TCP port as a configurable parameter. To do so, it implements the

following methods:

2 Nucleus: Organizing JavaBean Components 5

public int getPort();
public void setPort(int port);

Defining these two methods allows Nucleus to treat port as a property that can be initialized by a configuration

file. The implementation of these methods is unimportant; most implementations use a member variable to

store the value of port, but this is not required by the JavaBeans specification.

Nucleus can also display the values of properties to an administrator at runtime, so it is often a good idea to

expose instrumented values as read-only properties—that is, properties that do not have a write method:

public int getHandledRequestCount();

As mentioned earlier, properties can also satisfy interdependencies among components. For example, if a

component needs a pointer to a Scheduler component to operate, it simply exposes that dependency as a

property:

public Scheduler getScheduler();
public void setScheduler (Scheduler scheduler);

The configuration file can specify which Scheduler to be used by the component, and Nucleus automatically

sets the scheduler property accordingly. In this way, properties can express the strong dependencies between

components—that is, dependencies where one component must have a pointer to another kind of component

in order to operate.

Using Events to Connect Components

In addition to dependencies, applications often use a weak relationship to describe notifications and messages.

These are encapsulated by JavaBean events. An event is designed into a source bean when one or more listener

Beans wish to be notified of some event that takes place on the source bean. This is described as a weak

relationship because neither bean needs to know about the other in order to run. While the application might

require the connection in order to work properly, the components themselves do not require it. Logging, for

instance, uses JavaBean events: individual components do not require listeners for their log events, but the

application as a whole usually requires certain logging connections to be in place. For more information, see

Events and Event Listeners (page 237) in the Core ATG Services (page 205) chapter.

Nucleus configuration files can establish event source/listener relationships. The event source configuration file

specifies which components act as event listeners, and Nucleus automatically makes the connections.

After establishing the architecture, components, dependencies, and configuration of the application, the

developer can then hand the whole application over to Nucleus and watch it run.

Basic Nucleus Operation

Nucleus performs one basic operation: resolving component names. Given the name of a component, Nucleus

does its best to find or create that component and return it.

6 2 Nucleus: Organizing JavaBean Components

Within Nucleus, certain components can contain other components, forming a component hierarchy. For

example, given the name /services/logs/FileLogger, Nucleus resolves it by looking for components in the

following locations:

1. Looks in the root container for the services component.

2. Looks in the services container for the logs component.

3. Looks in the logs container for the FileLogger component.

Nucleus recognizes any component that implements atg.naming.NameContext as a container of other

components, thereby allowing that component to participate in the naming hierarchy.

Nucleus can also resolve names relative to some NameContext. For example, Nucleus can resolve the name

../db/Connections relative to the logs NameContext, which in the end translates to /services/db/

Connections.

Name resolution is not a difficult task. Nucleus shows its real power by creating components and hooking

them up to other components automatically. This function is invoked when Nucleus is asked to resolve a name

of a component that does not yet exist. In this case, Nucleus looks for the appropriate configuration file that

describes how to create that component and any other components that it requires.

 On startup, Nucleus is given a configuration path—a list of configuration directories that contain the

configuration files of various components. Within the configuration directories, Nucleus expects to find a

configuration file that uses the component name.

For example, to create the component /services/logs/FileLogger, where the configuration root directory

is <ATG10dir>/DAS/config, Nucleus looks for FileLogger’s configuration in:

<ATG10dir>/DAS/config/services/logs/FileLogger.properties

Configuration File Format

The configuration file is a properties file that follows the key=value format expected by the class

java.util.Properties. For example:

$class=somepackage.FileLogger
fileName=/work/logs/log1
maximumFileSize=20000

The properties file lists the property values used to initialize the new component. For example, when this

component is created, its fileName property is set to /work/logs/log1, and its maximumFileSize property

is set to 20000.

The properties file also includes special properties that are read only by Nucleus. These special properties

begin with a $ character. In the previous example, the $class property is required by Nucleus to determine

what class of object to create for the component. So when Nucleus is asked to resolve the name /services/

logs/FileLogger, it creates an object of class somepackage.FileLogger, binds that object into the naming

hierarchy, and sets its fileName and maximumFileSize properties. The new component remains in the

namespace, so the next time Nucleus resolves that same name it retrieves the same component without having

to create it again.

The previous example shows how Nucleus sets simple property values such as Strings and integers. Nucleus can

also set properties to other Nucleus components. For example, the FileLogger component might require a

2 Nucleus: Organizing JavaBean Components 7

pointer to a Scheduler component; in this case, it sets a scheduler property to a Scheduler component, as

follows:

$class=somepackage.FileLogger
fileName=/work/logs/log1
maximumFileSize=20000
scheduler=/services/Scheduler

In order to initialize this FileLogger, Nucleus must resolve the component name /services/Scheduler. This

might require Nucleus to create a Scheduler component, which might further require initialization of other

components. After all components are resolved and created, the scheduler property is set and the initialization

of the FileLogger component is complete.

For more information about how Nucleus sets component properties, see Managing Properties Files (page

27).

Using Nucleus

This section explains the various ways you can assemble an application with Nucleus. In this section, you work

through a series of exercises that demonstrate Nucleus capabilities.

Before you begin

1. Make sure that the Oracle ATG Web Commerce platform is properly installed. See the ATG Installation and

Configuration Guide.

2. Make sure that the Java Software Development Kit binaries are in your path. The JSDK binaries are usually

found in the JSDK distribution under the JSDK’s bin directory.

3. Start up an Oracle ATG Web Commerce application that has been assembled in development mode.

4. Create a directory to hold your Java class files. Add this directory to your CLASSPATH environment variable by

editing your Oracle ATG Web Commerce environment file:

• Windows: <ATG10dir>\home\localconfig\environment.bat:

set CLASSPATH=%CLASSPATH%;class-directory-path

• UNIX: <ATG10dir>/home/localconfig/environment.sh:

CLASSPATH=${CLASSPATH}: class-directory-path

Alternatively, put the class directory in <ATG10dir>/home/locallib, which is already part of the default

CLASSPATH when you run the Oracle ATG Web Commerce platform.

5. Create a tutorial directory <ATG10dir>/home/localconfig/test where you can run the tutorial exercises.

6. Change directories to the tutorial directory so the tutorial directory becomes the current directory.

7. Set the DYNAMO_HOME environment variable to <ATG10dir>/home.

8 2 Nucleus: Organizing JavaBean Components

8. Set your environment variables in the command line console by running <ATG10dir>/home/bin/

dynamoEnv. On UNIX platforms, you can do this by starting an instance of sh (if you are using any other shell)

and then executing dynamoEnv.sh directly into that shell:

. bin/dynamoEnv.sh

Creating a Nucleus Component

In this section, you define a class that is used as a Nucleus component, then configure the component.

Define the Class

Define a simple Person class that has two properties: name (a String) and age (an integer):

public class Person {
 String name;
 int age;

 public Person () {}
 public String getName () { return name; }
 public void setName (String name) { this.name = name; }
 public int getAge () { return age; }
 public void setAge (int age) { this.age = age; }
}

Put this class definition in your classes directory with the name Person.java. The Oracle ATG Web Commerce

platform includes an <ATG10dir>/home/locallib directory that you can use for any Java class files you create.

This directory is included in the Oracle ATG Web Commerce CLASSPATH by default, so any classes stored there

are picked up automatically.

Note: The locallib directory is intended for evaluation and development purposes only. For full deployment,

you should package your classes in an application module, as described in Working with Application

Modules (page 85).

Use the javac –d command to compile your Person.java source file and add the resulting .class files to the

locallib directory:

javac -d <ATG10dir>/home/locallib Person.java

Configure a Component

Now create an instance (or component) of a Person class,/test/services/Person:

1. In the test directory, create a services directory.

2. In the services directory create a file called Person.properties with the following contents:

$class=Person

name=Stephen

age=20

You can now view the Person component in the Components window. Select test/services/Person and

click Open Component. The Component Editor should display Person and its two properties.

2 Nucleus: Organizing JavaBean Components 9

Starting a Nucleus Component

When you start up an application, Nucleus reads the configuration path, which is a list of directories to use to

find configuration files. Within one of those directories is a file called Nucleus.properties that contains the

name of the first component to create. In the standard Oracle ATG Web Commerce platform configuration, the

start of the Nucleus.properties file looks like this:

$class=atg.nucleus.Nucleus
initialServiceName=/Initial

The initialServiceName property instructs Nucleus to configure and start up its initial service using

Initial.properties, which in the standard Oracle ATG Web Commerce platform configuration looks like this:

$class=atg.nucleus.InitialService
initialServices=\
 /atg/Initial,\
 VMSystem,\
 /atg/dynamo/StartServers

If you want to add another service to the list of initial services, you can edit the /Initial component in the

Components window:

1. Select the Initial component and click Open Component.

A Component Editor opens, displaying the properties of the Initial component.

2. Select the first property, initialServices. This property displays for its values the services listed in the

Initial.properties file.

3. Click ... to view the complete list of the values for the initialServices property.

4. From that list of values, select the last value, /atg/dynamo/StartServers, and click Insert After. A new

blank value field appears, with an @ button.

5. Click the @ button. A dialog appears, displaying the available components.

6. Select the test/services/Person component and click OK. The new component appears in the list of

values for the initialServices property.

The next time you start your application, the test/services/Person component is run as an initial service.

Most components do not need to be started from the Initial service when an application starts up; they

can be instantiated by Nucleus when they are needed, typically in response to a page request from a user. A

component started through the initialServices property must be globally scoped.

To show that Nucleus really is doing something, change the Person class to print some output:

public class Person {
 String name;
 int age;

 public Person () {
 System.out.println ("constructing Person");
 }

10 2 Nucleus: Organizing JavaBean Components

 public String getName () { return name; }
 public void setName (String name) {
 System.out.println ("setting name to " + name);
 this.name = name;
 }
 public int getAge () { return age; }
 public void setAge (int age) {
 System.out.println ("setting age to " + age);
 this.age = age;
 }
}

Compile this class, reassemble your application, and restart it. On the console you should be able to watch the

class get constructed and initialized.

Note: The forward slash / in /test/services/Person is always used when naming Nucleus components. It is

independent of the file separator character that varies among operating systems.

Public Constructor

When Nucleus creates a component from a properties file, Nucleus calls the component’s constructor, which

takes no arguments. This means that the component must be declared as a public class, and the component

must have a public constructor that takes no arguments. The Person class, for example, defines such a

constructor:

public Person () {}

Even if a component does nothing, this constructor must be defined in order for Nucleus to be able to create the

component from a properties file.

Property Names

In the previous example, the Person class defined properties name and age, of types String and int

respectively. The properties were defined by the fact that the class defined methods getName, setName,

getAge, and setAge.

The JavaBeans specification details how to define properties; however, the basic rules are as follows:

• To define a configurable property, a class defines a getX method that takes no arguments and returns a value,

and a setX method that takes one argument and returns void. The type returned by the getX method must

be the exact same type as the type taken as an argument by the setX method, and can be any Java type. Both

the getX and setX methods must be declared public.

One exception applies: the getX method for a Boolean property can be replaced by isX. For example, the

Boolean property running can be defined by the method getRunning() or isRunning().

• The property name is formed by removing get or set from the method name and changing the first letter

of the remaining string to lower case. For example, the method getFirstName()defines a property called

firstName.

One exception applies: if the first two letters of the remaining string are both capitalized, no letters are

changed to lower case. For example, the method getURL() defines a property called URL.

2 Nucleus: Organizing JavaBean Components 11

Property names are case-sensitive. Thus, the entry Age=20 does not set the property Person.age.

Property Types

In the Person example, Nucleus creates a component of class Person, and sets the values of a String and int

property from the values found in the properties file. Nucleus can parse these values from the properties file

because it is configured to recognize String and int property types. Nucleus can parse any property type for

which a property editor is registered using the java.beans.PropertyEditorManager class.

Simple Property Types

The following is a list of the simple Java data types that Nucleus can parse from properties files:

boolean
byte
char
short
int
long
float
double
java.lang.Boolean
java.lang.Byte
java.lang.Character
java.lang.Short
java.lang.Integer
java.lang.Long
java.lang.Float
java.lang.Double
java.lang.String
java.util.List
java.util.Map
java.util.Locale

Complex Property Types

The following table lists more complex Java data types that Nucleus can parse from properties files, and

describes how Nucleus interprets each value:

Data Type Value

java.io.File Read from the properties file as a String, then converted into

a file. For example, if the value is c:\docs\doc1 then the

File object is equivalent to calling new File ("c:\docs

\doc1").

atg.xml.XMLFile An absolute configuration pathname—for example, /atg/

dynamo/service/template.xml.

java.util.Date Parsed according to the rules of the default

java.text.DateFormatter.

12 2 Nucleus: Organizing JavaBean Components

Data Type Value

java.util.Properties Read as a comma-separated list of key=value pairs. For

example, a=17,b=12,c=somestring.

java.lang.Class Read as a class name, and Class.forName() is called to

convert the name to a Class. If there is no such class, an

exception is thrown.

java.net.InetAddress See IP Addresses in Properties Files (page 21) in this

section for information about setting numeric InetAddress

properties.

atg.repository.rql.RqlStatement A Repository Query Language statement (see the ATG

Repository Guide).

atg.nucleus.ServiceMap Read as a comma-separated list of key=serviceName pairs.

For example, a=/cart,b=../foreach (see ServiceMap

Properties (page 17)).

atg.nucleus.ResolvingMap A map property whose values are linked to a property of

another component (see Linking Map Properties).

Arrays as Property Values

Nucleus can parse arrays of any of the types shown earlier. Nucleus parses an array by assuming that the

element values are separated by commas. For example, a property named heights might be defined by the

following methods:

public double [] getHeights ();
public void setHeights (double [] heights);

The heights property might be set by the following properties file entry:

heights=3.2,-12.7,44.6

In this case, Nucleus creates an array of three doubles, and assigns that array to the component by calling

setHeights().

Leading and trailing white spaces are included in element values. For example, given the following property

setting:

name=Mary,Paul, Peter

array elements Paul and Peter embed a trailing space and a leading space, respectively.

Hashtables as Property Values

Hashtable property values are parsed in the same way as java.util.Properties and

atg.nucleus.ServiceMap type properties, as a comma-separated list of key=value pairs.

2 Nucleus: Organizing JavaBean Components 13

Defining Property Types

You can define and register additional property types, using the setAsText method of the JavaBean

PropertyEditor interface. See the JSDK API documentation for java.beans.PropertyEditor.

Properties File Format

The properties files read by Nucleus must conform to a format that is recognized by the class

java.util.Properties, as described in the following sections.

Properties files created by the ATG Control Center automatically use the correct format. The ATG Control Center

also checks whether a property value you enter is valid for the property’s data type. The Components editor

presents array type properties in a table, with a separate row for each property value entry, so you do not need

to continue lines with backslashes .

Note: Nucleus-specific properties are prefixed by the $ character. See Special $ Properties (page 50).

Single-line Property Settings

A property setting must use one of the following formats:

• propertyName=propertyValue

• propertyName:propertyValue

A property value can span multiple lines if each line is terminated by a backslash (\) character. For example:

targetCities=\
 Detroit,\
 Chicago,\
 Los Angeles

This is equivalent to targetCities=Detroit,Chicago,Los Angeles (white space at the beginning of lines

is ignored).

White Space

White space that follows the property value is treated as part of the property value.

White space is ignored in the following cases:

• Beginning of a line

• Between the property name and property value, so the following are equivalent.

name=Stephen

name = Stephen

• Blank lines

Special Characters

Certain characters and strings are given special treatment, as described in the following table.

14 2 Nucleus: Organizing JavaBean Components

Character Description

!

#

If placed at the beginning of a line, comments out the line.

\n Newline character

\r Carriage return

\t Tab

\\ Inserts a backslash character. For example:

path=c:\\docs\\doc1

\u Prefixes a UNICODE character—for example, \u002c.

Class versus Component Names

It is important to differentiate class names from Nucleus component names. Multiple components in Nucleus

cannot have the same absolute name, but they can have the same class. For example, in the previous section

the class Person is instantiated as the component /services/Person. It might also be instantiated as another

component—for example, /services/Employee.

It is especially important to differentiate Java source files from the properties files required to build an

application. For both types of files, the file’s position in the namespace also determines its position in the file

directory. For example:

• A Java file for the class atg.nucleus.Nucleus should live at {SOURCEDIRECTORY}/atg/nucleus/

Nucleus.java

• The properties file for component /services/log/fileLogger should live at {CONFIGDIR}/services/

log/fileLogger.properties.

A component name and class name are sometimes the same—typically, when an application instantiates a

single component from a given class. For example, the class atg.service.scheduler.Scheduler might be

instantiated as the component /services/Scheduler.

Specifying Components as Properties

Previous examples show how Nucleus creates and initializes components from properties files. Nucleus also

allows components to point to each other through configuration file properties.

For example, a Weather component might be defined in Nucleus, and the Person component needs a pointer

to that Weather. The Weather class might look like this:

public class Weather {
 String currentWeather;

 public Weather () {
 System.out.println ("constructing Weather");
 }

2 Nucleus: Organizing JavaBean Components 15

 public String getCurrentWeather () {
 return currentWeather;
 }
 public void setCurrentWeather (String currentWeather) {
 System.out.println ("setting currentWeather to " + currentWeather);
 this.currentWeather = currentWeather;
 }
}

This example requires instantiation of a Nucleus Weather component, /services/Weather. You should

compile the Weather Java class and create a Weather class component with a Weather.properties file in the

same directory as Person.properties. The properties file might look like this:

$class=Weather
currentWeather=sunny

Next, modify the Person class so it defines a property that is set to a Weather component:

public class Person {
 String name;
 int age;
 Weather weather;

 public Person () {
 System.out.println ("constructing Person");
 }
 public String getName () { return name; }
 public void setName (String name) {
 System.out.println ("setting name to " + name);
 this.name = name;
 }
 public int getAge () { return age; }
 public void setAge (int age) {
 System.out.println ("setting age to " + age);
 this.age = age;
 }
 public Weather getWeather () { return weather; }
 public void setWeather (Weather weather) {
 System.out.println ("setting weather to " + weather.getCurrentWeather());
 this.weather = weather;
 }
}

Finally, modify the Person component’s properties file so it has a weather property that points to the weather

component:

$class=Person
name=Stephen
age=20
weather=Weather

If you include the Person component as an initial service (described in the earlier section Starting a Nucleus

Component (page 9)), when you start your application, the Person component is created and initialized.

16 2 Nucleus: Organizing JavaBean Components

Its name and age properties are set from the values found in the properties file. In order to set the weather

property, Nucleus resolves the name Weather by creating and initializing the Weather component before

assigning it to the Person property. The output should look something like this:

constructing Person
setting name to Stephen
setting age to 20
constructing Weather
setting currentWeather to sunny
setting weather to sunny

The first two lines of the output show that Nucleus created the /services/Person component and set the age

property. Then Nucleus attempts to set the weather property. In doing so, it searches for the component named

Weather. This is a relative name, and so it is resolved relative to the current context /services, resulting in /

services/Weather.

Nucleus searches its existing components and, finding that there is no /services/Weather, it tries to create

one from the configuration file services/Weather.properties. This causes Nucleus to construct an instance

of the Weather class and initialize its currentWeather property, thereby resulting in the third and fourth lines

of output.

Now that a /services/Weather component is created and initialized, Nucleus can initialize the rest of the

Person component, by setting its weather and name properties. This results in the last two lines of output.

Nucleus does not limit the number of components that refer to each other through properties. For example,

component 1 can refer to component 2, which refers to component 3, and so on. Nucleus can even resolve

circular references without spiraling into infinite loops. For example, component 1 might have a property that

points to component 2, which has a property that points back to component 1. However, you should try to

avoid circular references as they can result in deadlocks. See Enabling Deadlock Detection (page 24) for

information about avoiding deadlocks.

Application errors can also occur if you reference a property of a component before that component is

completely configured. To diagnose this type of error, set the loggingInfo property of the / Nucleus service to

true, and the Oracle ATG Web Commerce platform prints information messages for this situation.

Arrays of components can also be specified in the same way that other array values are specified: as a comma-

separated list. For example, the Person component might have a property called cityWeathers that contains

an array of Weather components:

public Weather [] getCityWeathers ();
public void setCityWeathers (Weather [] cityWeathers);

This property might be initialized in the configuration file like this:

cityWeathers=\
 /services/weather/cities/atlanta,\
 /services/weather/cities/boston,\
 /services/weather/cities/tampa,\
 /services/weather/cities/phoenix

Nucleus handles this by finding each of the components in the list, arranging the found components into a 4-

element array, then assigning that array to the cityWeathers property of the Person component.

2 Nucleus: Organizing JavaBean Components 17

ServiceMap Properties

It is often useful to have a property that maps Strings to other components. In Nucleus, properties of type

atg.nucleus.ServiceMap are assumed to perform this mapping. For example, a cities property might map

a city name to the weather component monitoring it:

import atg.nucleus.*;
public ServiceMap getCities ();
public void setCities (ServiceMap cities);

The corresponding properties file might initialize the cities property as follows:

cities=\
 atlanta=/services/weather/cities/atlanta,\
 boston=/services/weather/cities/boston,\
 tampa=/services/weather/cities/tampa,\
 phoenix=/services/weather/cities/phoenix

The ServiceMap class is a subclass of java.util.Hashtable, so you can access it with all the normal

Hashtable methods such as get, keys, size, and so on. In this case, the key atlanta maps to the component

found at /services/weather/cities/atlanta, and so on for the other cities. The following code accesses

the Weather component for a particular city:

Weather w = (Weather) (getCities ().get ("tampa"));

Component Names in Properties Files

When a name is resolved in a properties file, it is resolved one element at a time. In the previous example, a

component was specified as Weather. The name resolution begins at the context where the name was found.

You can think of this as the directory containing the properties file, which in this case was /services. The

name is then resolved one element at a time. Because this name consists of only one element, the result is /

services/Weather.

The name Weather is a relative name, meaning that its resolution starts with the directory where it was found.

Any name that does not begin with a / is considered a relative name. For example, Weather, ../service1,

logger/FileLogger, and .. are all relative names.

On the other hand, any name that begins with a / is considered an absolute name. For example, the following

are all treated as absolute names:

/services/Weather
/services/somedir/../Weather
/

Absolute names are resolved by starting from the root and resolving each element of the name in order.

Dot Names

In both absolute and relative names, dot names have special meanings. These dot names can be used anywhere

in a name, relative and absolute:

18 2 Nucleus: Organizing JavaBean Components

Notation Description

. (single) Refers to the current component, and usually has no effect on the name resolution

process. For example, Person and ./Person are equivalent, as are /services/log/

FileLogger and /services/log/./FileLogger.

.. (double) Refers to the parent of the current component. For example, /services/log/../tests/

BigTest is equivalent to /services/tests/BigTest.

... (triple) Initiates a search up the component hierarchy for the name specified after the triple dot.

For example, the name .../Adder searches the current context for a component called

Adder, then searches the current component’s parent. It continues its search up the

hierarchy until the component is found, or the root is reached—that is, no more parents

can be found.

The triple dot can also be used in more complex names. For example, given this name:

/services/logs/.../files/TestFile

these names are searched in the following order:

/services/logs/files/TestFile

/services/files/TestFile

/files/TestFile

In summary, Nucleus searches for everything after the triple dot by walking up the

hierarchy defined by everything before the triple dot. If Nucleus cannot find the

component and must try to create it, Nucleus uses the same search algorithm to find the

component’s property configuration file.

Aliases for Nucleus Components

Oracle ATG Web Commerce includes a class that lets you use an alias for Nucleus components. This class,

atg.nucleus.GenericReference, lets you use a name of a Nucleus component to reference another

component instance in Nucleus. This is useful if you want systems to have separate names, but be backed by the

same service instance. If necessary, someone can later change the configuration of the referencing service to

have its own instance. All other systems that utilize the original Nucleus name do not need to be reconfigured.

Note that the aliased component must have global scope.

To use the GenericReference class:

1. Create an instance of atg.nucleus.GenericReference.

2. Give the GenericReference the alias name you want to use.

3. Set the GenericReference's componentPath property to the Nucleus address of the globally scoped

component you want to reference.

For example, an application might use a customized pricing model for each customer. The pricing model is not

actually a separate component, but is contained within the profile repository. You can refer to the pricing model

as if it were a separate component with a Nucleus address like /atg/commerce/pricing/PricingModels.

The Nucleus component at /atg/commerce/pricing/PricingModels is a GenericReference whose

componentPath property points to the profile repository as follows:

2 Nucleus: Organizing JavaBean Components 19

componentPath=/atg/userprofiling/ProfileAdapterRepository

If you later decide to move pricing models out of the user repository and set them up as a separate component,

you only need to change the configuration of /atg/commerce/pricing/PricingModels to use the class of

the new separate component instead of atg.nucleus.GenericReference.

Pre-Parsed Component and Parameter Names

The atg.nucleus.naming package includes two classes that can pre-parse often used component names and

parameter names:

• ComponentName (page 19)

• ParameterName (page 19)

You can use these classes to assign a name to a component or parameter and store the name and its

corresponding component or parameter in a hashtable. This typically speeds up name resolution for

components and parameters.

ComponentName

A ComponentName object of class atg.nucleus.naming.ComponentName can represent any Nucleus

component. Use this class to create unique component names that you can reference elsewhere. The

component names are stored in a global hashtable that is keyed by strings. Using this class provides better

performance by pre-parsing the component name.

To get the unique ComponentName for a given String, call the static method getComponentName(). This

method looks up the given string in a hashtable of component names and returns the value or creates one with

the supplied string. For example, you might set a ComponentName value as follows:

public final static ComponentName PEACH =
 ComponentName.getComponentName("/atg/fruits/Peach");

You can pass a component name to the resolveName() method of

atg.servlet.DynamoHttpServletRequest:

public Object resolveName(ComponentName pName);

This technique can help limit the amount of parsing required to resolve the same component name

repeatedly. The Oracle ATG Web Commerce page compiler uses ComponentNames wherever possible to

reduce the memory cost and parsing time to resolve components. GenericService implements the

atg.nucleus.naming.ComponentNameResolver interface, which makes available a resolveName()

method that takes a ComponentName:

public Object resolveName(ComponentName pName);

ParameterName

You can use a ParameterName object of class atg.nucleus.naming.ParameterName to represent any

request parameter name used in the Oracle ATG Web Commerce platform. ParameterNames are used when you

20 2 Nucleus: Organizing JavaBean Components

want to look up a request parameter quickly. Use this class to create unique parameter names when building

your own servlet beans. The parameter names are stored in a global hashtable, keyed by strings. Using this

class makes the parameters of a servlet bean publicly available. You can use this class not only to enhance

performance by pre-parsing the parameter name, but also to enforce good coding standards, by ensuring that

the parameter name string appears once only in your Java code.

To get the unique ParameterName for a given String, call the static method getParameterName(). This

method looks up the given string in the hashtable of parameter names and returns the value or creates one with

the supplied string. For example, you can set a ParameterName value as follows:

public final static ParameterName EMPTY = ParameterName.getParameterName
 ("empty");

Later, you can reference that parameter name through the string EMPTY as follows:

request.serviceLocalParameter(EMPTY, request, response);

You can pass a ParameterName to the following methods of atg.servlet.DynamoHttpServletRequest:

public Object getParameter (ParameterName pName);
public Object getLocalParameter (ParameterName pName);
public Object getObjectParameter (ParameterName pName);

This technique is useful when you want to resolve the same parameter repeatedly. The Oracle ATG Web

Commerce page compiler uses ParameterNames wherever possible to reduce the memory cost and parsing

time of accessing request parameters. You do not need to use a ParameterName for parameters that are found

in standard Oracle ATG Web Commerce servlet beans or in <valueof> or <setvalue> tags; the page compiler

takes care of that for you. If you create your own servlet bean, however, you can obtain better performance if

you use ParameterName for its parameters.

File Names in Properties Files

Sometimes a property refers to a file name, rather than a component or component’s property. Properties of

type java.io.File can use Oracle ATG Web Commerce system properties as part of the file’s pathname, with

the system property name in curly braces. You can use this notation with the following system properties:

System Property Notation Description

{atg.dynamo.home} Resolves to <ATG10dir>/home.

Example:

errorLog={atg.dynamo.home}/logs/error.log

{atg.dynamo.root} Resolves to <ATG10dir>.

Example:

helpDir={atg.dynamo.root}/DAS/help

2 Nucleus: Organizing JavaBean Components 21

System Property Notation Description

{atg.dynamo.server.home} Resolves to the home directory of the specified server.

Example:

archiveDir=\

{atg.dynamo.server.home}/servername/logs/

archive

IP Addresses in Properties Files

You can persistently set a property to an IP address. Java tries to convert a numeric InetAddress to a host

name, and if it succeeds, the host name alone is employed when Java saves or transmits the value of the address.

If no host name is available, the numeric form used.

ATG server References

If a component needs a name for the current instance of an Oracle ATG Web Commerce server, it can refer to

the serverName property of the /atg/dynamo/service/ServerName component. The server can be named

explicitly by setting the serverName property directly, or the name can be built from the combination of the

server hostname (obtained dynamically) and the DrpServer port.

Services that require a server name should not set a server name property directly from this services

serverName property. Instead, they should obtain a reference to the /atg/dynamo/service/ServerName

component and call the serverName() method. This forces the ServerName component to be fully started,

allowing the name to be built properly if necessary.

For more information about Oracle ATG Web Commerce servers, see the ATG Installation and Configuration Guide.

dynamosystemresource

The Oracle ATG Web Commerce platform includes a URL protocol named dynamosystemresource. You can use

this protocol to refer to any file in the system CLASSPATH. Just as Nucleus makes components available through

a Nucleus address relative to the Oracle ATG Web Commerce configuration path, the dynamosystemresource

protocol makes files available through an address relative to the CLASSPATH. For instance, the following notation

identifies a file with a path relative to the CLASSPATH of somepackage/file.txt:

dynamosystemresource:/somepackage/file.txt

You can use a URL in this form as a property value in components. For example:

fileLocation=dynamosystemresource:/somepackage/file.txt

Starting Multiple Components

Many applications require creation of multiple components when Nucleus starts. For example, an application

might be running three different server components. It is unlikely that these server components refer to each

other, so starting one of the servers does not necessarily start the other two.

22 2 Nucleus: Organizing JavaBean Components

You can start multiple components through a single component that references all components that must be

started, then start that component. The Initial component of class atg.nucleus.InitialService that

exists specifically for this purpose. Because it is specified in Nucleus.properties, it is always guaranteed to

start, and in turn starts other services that are specified in its initialServices property:

$class=atg.nucleus.InitialService
initialServices=\
 /atg/Initial,\
 VMSystem,\
 /atg/dynamo/StartServers

The initialServices property specifies three services that start when Nucleus starts. You can use this

technique to initialize entire sections of an application.

For example, an application might include multiple servers and loggers, where servers and loggers are started

by two Initial components:

• /servers/Initial starts the servers.

• /loggers/Initial starts the loggers.

The initialServices property of the master /Initial component references these two components. This

lets you manage each set of services separately, while ensuring that they are always included in the overall

startup process.

Note: A component that is started through the initialServices property must be globally scoped.

The following diagram shows how an Oracle ATG Web Commerce configuration can ensure that startup of a

Nucleus-based application precipitates startup of multiple initial services:

You can configure the Oracle ATG Web Commerce platform to send logging info messages for each component

that is started by setting the following property in the Nucleus component:

loggingInfo=true

2 Nucleus: Organizing JavaBean Components 23

Linking Property Values

In a system that contains many components, it is common that multiple components are initialized with the

same property values. In order to maintain consistent property settings among these components, you can

specify common property settings in one place, which the various components can all reference. Nucleus lets

you link the property of one component to the property in another component through the ^= operator, as

follows:

property-name^=component-name.property-name

Note: No white space should precede or follow the ^= operator.

For example, you might want to initialize the currentWeather property in the Sunny component from the

currentWeather property in the RainyWeather component. To do this, set the Sunny component’s properties

file as follows:

$class=Weather
currentWeather^=RainyWeather.currentWeather

When Nucleus starts, the Sunny. currentWeather property obtains its value from

RainyWeather.currentWeather.

Note: Property linkage only occurs when the related components are initialized. After initialization,

the linked properties are completely independent. So, given the previous example, changes to

RainyWeather.currentWeather have no effect on Sunny.currentWeather.

Typically, frequently modified configuration values are placed into properties of a single component, which only

serves to hold the property values referenced by other component. All components in the application that need

those values link their properties to this component.

Linking Map Properties

The Nucleus class atg.nucleus.ResolvingMap lets you link the value of a map key to another component

property, through the ^= operator:

myResolvingMapProperty=\
 key1^=/component-name.property-name
 key2^=/component-name.property-name
 ...

Note: No white space should precede or follow the ^= operator.

For example, the following property setting links the value of activeSolutionZones to another component

property textActiveZones property:

relQuestSettings=\
 activeSolutionZones^=/MyStuff/MyIndexingOutputConfig.textActiveZones

24 2 Nucleus: Organizing JavaBean Components

Debugging Nucleus Configuration

To help you identify configuration problems, Nucleus displays messages about the configuration process. You

configure the level of logging messages for Nucleus through the configuration file Nucleus.properties. By

default, Nucleus is configured to display warning and error messages; however, it can be configured to display

informative and debugging messages also For example, the default configuration looks like this:

initialServiceName=/Initial
loggingError=true
loggingWarning=true
loggingInfo=false
loggingDebug=false

If you have problems with configuration, it can be helpful to set the loggingInfo and loggingDebug

properties to true and examine the messages for indications where the problems might be.

Note: These settings apply only to Nucleus, and do not affect the logging settings of other components.

For more information about using the logging system in the Oracle ATG Web Commerce platform, see the ATG

Logging (page 250) section of the Logging and Data Collection (page 249) chapter.

Enabling Deadlock Detection

When Nucleus starts up a component, it also starts up other components referenced by that component’s

properties. Nucleus can resolve circular references, where a component referred to by another component has

properties that refer back to the first component. Circular references can cause deadlocks, which result from

multiple threads trying to lock the two components in different orders. To debug deadlock problems, add this

setting to the Nucleus.properties file:

debugComponentLock=true

If debugComponentLock is set to true and a potential deadlock is detected, a DeadlockException is thrown

and displayed in the console. The exception indicates the lock in question, the thread it conflicts with, and the

locks held on each side. Locks are named after the components involved, which can help determine which

component is causing the problem. One or more of the components is incompletely initialized, so you need to

fix the source of the problem and restart the Oracle ATG Web Commerce platform.

Component Scopes

An application component can be set to one of the following scopes:

• Global: Component is shared among all users.

• Session: Separate instances of the component are provided to each user.

• Request: Separate instances of the component are provided to each active request.

• Window: Separate instances of the component are provided to each browser window.

• Prototype: Separate instances of the component are provided each time the component is resolved.

2 Nucleus: Organizing JavaBean Components 25

Specifying Component Scopes

You specify a component’s scope by setting its $scope property to global, session, request, or window. For

example, a NewPerson component might be set to session scope as follows:

$class=Person
$scope=session
name=Bill
age=28

If a component’s $scope property is not explicitly set, it automatically has global scope.

Property Object Scopes

A component’s properties should always point to objects whose scope is equal to or greater than its own. Thus,

global-scope component properties should only point to objects that also have global scope; session-scope

component properties should only point to objects that have global or session scope; while request-scope

component properties can point to objects of any scope, including request.

Global Scope

If you set a component to global scope, it is accessible to all users across multiple sessions. For example, multiple

users might simultaneously access an input form that updates a NewPerson component, initially set as follows:

$class=Person
name=Bill
age=28

If the NewPerson component has global scope, each user can update the values of this component from their

respective browser sessions, and thereby overwrite changes posted by other users. In general, in an application

that is accessed by multiple users, components like this are set to session or request scope, in order to guarantee

data integrity and consistency within the current session or request.

Session Tracking

Oracle ATG Web Commerce provides a session-tracking mechanism that automatically matches browser

requests to a server session. The Oracle ATG Web Commerce platform uses cookies or rewritten URLs to identify

requests from a given browser as belonging to the same session.

If the browser makes no requests after a period of time, the Oracle ATG Web Commerce platform assumes that

the user has left the application. It invalidates the session and removes the components associated with that

session. Component data that was not copied to permanent storage is lost.

For more information about session tracking, see Session Management in Oracle ATG Web Commerce

Applications in the ATG Installation and Configuration Guide.

Multiple Scopes in the Same Namespace

If a component has session or request scope, separate instances of the component are distributed to the

various sessions or requests that access it. The Component Browser can show the multiple scopes of a given

26 2 Nucleus: Organizing JavaBean Components

component. If you click on /atg/dynamo/servlet/sessiontracking/SessionManager, the Component

Browser displays components with unique identifiers that correspond to the sessions associated with those

components. In each component, you should see separate instances of the entire component tree.

When Nucleus needs to resolve a component name, it merges the global tree of components with the tree of

components for a specific session. This allows the two scopes to appear in the same namespace, but still be

separated in the real tree of components.

Request Scope

If a component is marked with request scope, simultaneous requests each see a different instance of the

component. This is true even when the same session sends two requests simultaneously; each request gets a

pointer to a separate object. Each instance is handled independently and has no effect on the others.

Request scope can be especially useful for components whose properties are set by a form. When a form is

submitted, the component values are set by the appropriate setX methods, and actions are performed by

handleX methods.

If two forms are submitted at the same time to the same component, one submission might overwrite the

setX methods of the other. This is especially true for globally-scoped components, which are highly vulnerable

to multiple simultaneous requests from different sessions; with a session-scoped component, multiple

simultaneous requests occur only if the user submits the form twice in very rapid succession. As a general rule, it

is a good idea for forms to use request-scoped components; this ensures that only one request at a time can set

their properties.

Note: To ensure that multiple requests do not access the same component simultaneously, you can also set

the synchronized attribute in the form tag. With this attribute, the Oracle ATG Web Commerce platform locks

the specified component before setting any properties, and releases the lock only after form submission is

complete. Other form submissions can set the component’s properties only after the lock is released. For more

information, see the Forms chapter in the ATG Page Developer's Guide.

Preserving Request Scoped Objects on Redirects

If a request results in a redirect to a local page through the method

HttpServletResponse.sendLocalRedirect(), the Oracle ATG Web Commerce platform treats the redirect

request as part of the original request, and maintains any request-scoped objects associated with that request.

To implement this, the Oracle ATG Web Commerce platform adds an additional query parameter named

_requestid to the redirected URL.

Setting Properties of Session and Request-Scoped Components

At any given time, a session-scoped or request-scoped component might have multiple instances. For example,

a session-scoped component instance might exist for each user logged on to the site.

When a component instance is created, the Oracle ATG Web Commerce platform does not create objects for

its properties. In order to minimize memory use, new component properties are set as pointers to existing

instances of those objects. Consequently, be careful how you set properties of a session-scoped or request-

scoped component; changing the value of a property is liable to affect other component instances, depending

on the property data type:

• You can safely set the value of an immutable object such as a String property. In this case, Oracle ATG Web

Commerce platform creates a String object and sets the property to it. The property has a unique reference

to the String object which other component instances cannot affect.

2 Nucleus: Organizing JavaBean Components 27

• If you change the value of a mutable object such as an array, always replace the object rather than modify the

object in place.

For example, given an array property myArray String[] set to {"a", "b", "c"}, you should change its last

element by creating an array with the desired change and setting the property to it:

setMyArray(new String[] {"a", "b", "z"}

Conversely, the following code incorrectly modifies the array in place, and is liable to affect other component

instances:

String[] arr = getMyArray()
arr[2] = "z";

Prototype Scope

Each time Nucleus resolves a component with prototype scope it creates a new instance of the component. Use

prototype scope to repeatedly create configured instances of a component in your application.

If two components reference the same prototype-scoped component, Nucleus will create a separate instance

for each of them. If you need to configure two components with references to the same prototype-scoped

component, use the ^= operator to link the property values. See Linking Property Values (page 23).

Managing Properties Files

Nucleus provides several ways to manage an application’s properties files. Multiple configuration directories can

set properties differently for various modules and their components. You can also use global properties files to

set a property value to the same value in different components.

Setting the Configuration Path

On assembly, an application’s configuration path is set to one or more configuration directories. These

directories are set from the Configuration Path Attributes (page 27) in module manifest files. Precedence of

configuration path directories determines how component properties are set, and is generally determined by

two factors:

• Precedence of Configuration Path Attributes (page 29)

• Module List Order and Dependencies (page 29)

Configuration Path Attributes

On application assembly, each module adds to the configuration path the directories that are set in the

module’s manifest file. Each configuration path attribute can set one or more directories in the following format,

where spaces delimit multiple directories, and directory paths are relative to the module’s root directory:

28 2 Nucleus: Organizing JavaBean Components

config-path-attr: config-dir[config-dir]...

For example, the DAS module manifest <ATG10dir>/DAS/META-INF/MANIFEST.MF sets the attribute ATG-

Config-Path as follows:

ATG-Config-Path: config/config.jar

On application assembly, the directory’s absolute pathname is added to the configuration path as follows:

<ATG10dir>/DAS/config/config.jar

The following table lists the configuration path attributes that a module’s manifest file can set:

Attribute Specifies Directories of....

ATG-Config-Path Configuration files that are required by module application

components.

ATG-cfgNameConfig-Path Configuration files that are associated with the Named

Configuration (page 31) cfgName. These files are enabled

when the application is assembled with the switch -layer

cfgName.

For example, the following configuration path attribute is used

and its directories are added to the configuration path when the

application is assembled with the switch -layer Management:

ATG-ManagementConfig-Path: mgmt_config/

ATG-app-svrConfig-Path Configuration files that are specific to the third-party

application server specified by app-svr. For example, ATG-

JBossConfigPath points to configuration files that are specific

to the JBoss platform.

ATG-app-svrCfgNameConfig-Path Platform-specific configuration files that are associated with

the Named Configuration (page 31) CfgName. These files

are enabled when the application is on the application server

platform and is assembled with the switch -layer CfgName.

For example, the following configuration path attribute is used

and its directories are added to the configuration path when the

application runs on JBoss, and the application is assembled with

the –layer Management switch:

ATG-JbossManagementConfig-Path: mgmt_config/

ATG-LiveConfig-Path Module resources that provide Nucleus configuration files.

The specified directories are added to the configuration path

when the -liveconfig switch is supplied during application

assembly.

2 Nucleus: Organizing JavaBean Components 29

Attribute Specifies Directories of....

ATG-platformLiveConfig-Path Platform-specific configuration files. The specified directories are

added to the configuration path when two conditions are true:

the application runs on the platform specified by platform,;

and the -liveconfig switch is supplied during application

assembly.

Precedence of Configuration Path Attributes

The directories specified by the configuration path attributes of each module are appended to the configuration

path in the following order (left-to-right), where the left-most path (set by ATG-Config-Path) has lowest

precedence:

1. ATG-Config-Path

2. ATG-cfgNameConfig-Path

3. ATG-platformConfig-Path

4. ATG-app-svrCfgNameConfig-Path

5. ATG-3rdPartyConfig-Path

6. ATG-LiveConfig-Path

7. ATG-platformLiveConfig-Path

Module List Order and Dependencies

The previous section describes how the configuration path is set from a single module. Because an Oracle

ATG Web Commerce application is assembled from multiple modules, the assembly process must determine

precedence among them when it orders their respective configuration directories in the configuration path.

These modules include application modules that are explicitly specified in the assembly module list, and Oracle

ATG Web Commerce modules such as DAS and DSS. Together, these comprise the expanded module list, and the

assembly process must resolve dependencies among them when it creates the configuration path.

The ordering of directories from various modules in the configuration path is generally determined by two

factors:

• The order of the module list that is explicitly supplied for application assembly

• Dependencies among modules within the expanded module list

Unless inter-module dependencies mandate otherwise, Nucleus sets module configuration directories in the

configuration path in the same order as the module list. For example, a startup script might be supplied the

following module list:

-m foo bar

In this case, you can generally expect that the configuration directories specified by module foo are set in the

configuration path before those in module bar. Thus, given overlapping component properties, settings in bar

30 2 Nucleus: Organizing JavaBean Components

have precedence over those in foo. However, if foo is directly or indirectly dependent on bar, their order in the

configuration path is reversed to reflect this dependency. In that case, bar precedes foo, so foo settings have

precedence.

The Oracle ATG Web Commerce modules in the expanded module list might also have dependencies; these are

resolved during application assembly, before the configuration path is created. Dependencies are not always

obvious; you can view their resolution during application startup, when Nucleus outputs the application’s

configuration path.

Reading the Configuration Path

Component properties are set according to the precedence of configuration path directories. For example, a

configuration path might look like this:

<ATG10dir>/DAS/config/config.jar:<ATG10dir>/DAS/home/localconfig

Given this configuration path, properties that are set in localconfig always have precedence over

those set in config. So, when Nucleus needs to configure the component /services/Sunny, it looks for

Sunny.properties as follows:

1. <ATG10dir>/DAS/config/services/Sunny.properties

2. <ATG10dir>/DAS/home/localconfig/services/Sunny.properties

If Nucleus fails to find Sunny.properties in the configuration path, it generates an error.

Configuration Path versus CLASSPATH

An application’s configuration path and Java’s CLASSPATH behave differently as follows:

• Configuration files found in the configuration path are merged, not replaced; and the last-found properties in

configuration files have precedence over those found earlier.

• .class files found earlier in CLASSPATH supersede files found later.

Note: Never place .class files in the configuration path directory path. Doing so can yield errors, as the .class

files might interfere with Nucleus’ ability to resolve component names.

Configuration Directories

As installed, Oracle ATG Web Commerce sets the configuration path to the following directories:

• config is the module base configuration directory, specified by the configuration path attribute ATG-

Config-Path. config. This directory contains configuration files that are used to start up components

required by Oracle ATG Web Commerce products.

Because each new Oracle ATG Web Commerce distribution overwrites the configuration files in config, you

should not edit their properties.

• localconfig contains custom properties settings, and have the highest priority in the configuration path.

Settings in localconfig are preserved across product upgrades; changes to base configuration properties

can be safely set here.

2 Nucleus: Organizing JavaBean Components 31

Depending on application requirements, you can set the configuration path so it includes settings for specific

configurations:

• Application Server Configuration (page 31)

• Production Environment Configuration (page 31)

• Named Configuration (page 31)

Application Server Configuration

During application assembly, you can add to the configuration path directories that are specific to your

application server. You do so by setting the configuration path attribute ATG-platformConfig-Path, where

the string platform denotes the application server—for example, ATG-jbossConfig-Path.

Production Environment Configuration

Two configuration path attributes can be used to configure an application for production:

• ATG-LiveConfig-Path contains settings appropriate for applications that are deployed for production.

• ATG-platformLiveConfig-Path contains production-ready settings that are specific to your application

server. The string platform denotes the application server—for example, ATG-jbossLiveConfig-Path.

The directories specified by these attributes are included in the configuration path only when the application is

assembled with the -liveconfig switch (see the ATG Installation and Configuration Guide).

Named Configuration

Two configuration path attributes let you associate a set of properties files with a user-defined name:

• ATG-cfgNameConfig-Path specifies configuration directories that are associated with the named

configuration cfgName—for example, ATG-ManagementConfig-

Path.

• ATG-app-svrCfgNameConfig-Path specifies configuration directories that are associated with the named

configuration CfgName and are specific to the application server denoted by app-svr—for example, ATG-

JBossManagementConfig-Path.

In order to set the configuration path with the configuration directories associated with cfgName, the

application must be assembled with the –layer cfgName switch.

Named configurations are useful for associating related configuration settings that span multiple modules,

which can be simultaneously invoked under specific conditions.

For example, given the following configuration path attributes—

ATG-ManagementConfig-Path: management_config/
ATG-JbossManagementConfig-Path: jboss_management_config/

—the configuration path includes these directories if you assemble the application as follows:

runAssembler MyApp.ear –layer Management –m Service.admin

Note: You can assemble a single EAR file that contains all named configuration layers that are required across

various servers, then activate the desired named configuration layers on each server by setting the system

32 2 Nucleus: Organizing JavaBean Components

property atg.dynamo.layers on server startup. For more information, see Specifying Configuration Layers on

Server Startup (page 77).

Setting Properties from Multiple Configuration Directories

Nucleus can configure a component from properties that are set in multiple configuration directories. If

configuration files in multiple directories set the same property, Nucleus can resolve this in two ways:

• Override Property Settings (page 32) from previously-read configuration files.

• Combine Multi-Value Property Settings (page 32) from multiple configuration files.

Override Property Settings

You can override the settings in any properties file from another properties file that has higher precedence. For

example, any settings in a module’s base configuration can be overridden by a properties file of the same name

in the application’s localconfig directory.

Combine Multi-Value Property Settings

You can concatenate settings from multiple files for a given multi-value property (such as an array or list) by

using the += operator, as follows:

property-name+=property-setting[, property-setting]...

Note: No white space should precede or follow the += operator.

This can be especially useful when you need to supplement existing settings that are supplied by the base

configuration of an Oracle ATG Web Commerce module. For example, the standard Oracle ATG Web Commerce

distribution provides the base Initial.properties, which starts a number of services:

$class=atg.nucleus.InitialService
initialServices=\
 servers/Initial,\
 statistics/Sampler,\
 sessiontracking/SessionManager,\
 snmp/Initial

It is likely that your application also starts its own set of services. Because installation of any later Oracle ATG

Web Commerce distribution always overwrites the base Initial.properties, you should not modify

this file so it includes application-specific services. You also should not override it with another copy of

Initial.properties elsewhere in the configuration path—for example, in localconfig. If the next Oracle

ATG Web Commerce distribution changes the installed list of initial services, those changes are shadowed by the

localconfig version of Initial.properties.

Instead, you can concatenate settings for the initialServices property from the base and localconfig

versions of Initial.properties. For example, you might modify localconfig/Initial.properties as

follows:

initialServices+=store/CatalogManager

2 Nucleus: Organizing JavaBean Components 33

Given the previous settings in the base Initial.properties, this yields the following settings for

initialServices:

servers/Initial
statistics/Sampler
sessiontracking/SessionManager
snmp/Initial
store/CatalogManager

By using the += operator, the store/CatalogManager entry is appended to the list of services already

set by the base version of Initial.properties. When Nucleus reads the configuration path, it finds two

Initial.properties files in /config/config.jar and /localconfig, and combines initialServices

settings from both files. If product updates change the base version’s set of services, the /localconfig setting

is appended to the new set.

Global Properties Files

A global properties file can set the same property in multiple components. The property settings in a

GLOBAL.properties file apply to all components in the file’s configuration directory and subdirectories.

For example, /localconfig/services/GLOBAL.properties might have the following setting:

currentWeather=miserably hot

This setting is applied to any component in /services and its subdirectories that contains the

currentWeather property.

Precedence of Global and Component Settings

A component’s own property settings have precedence over global property settings. For example, if the

component /services/Sunny sets the currentWeather property, that value overrides the global setting; if

the component omits the currentWeather property, it uses the global setting. A component can also be set

by multiple global properties files, where the global properties file that is most proximate to the component has

precedence over other global properties files.

In the following example, the component /services/Sunny is configured by two global properties files and its

own properties file, listed in ascending order of precedence:

localconfig/GLOBAL.properties

localconfig/services/GLOBAL.properties

localconfig/services/Sunny.properties

Combining Global and Component Settings

Property files can append values to those set by a global properties file. For example, a global properties file

might declare the property affectedCities:

affectedCities=Detroit,Boston,Los Angeles

A contained component can append a single value to the same property as follows:

34 2 Nucleus: Organizing JavaBean Components

affectedCities+=Chicago

This yields the following composite of settings for the component:

affectedCities=Detroit,Boston,Los Angeles,Chicago

Site-Specific Component Properties

In a multisite environment, an Oracle ATG Web Commerce component can be configured to substitute site

configuration values for the values otherwise provided by the component’s own properties, by setting two

Nucleus properties:

• $instanceFactory: Set to the component /atg/multisite/SiteSourcedPropertyGetterSubClasser

(class atg.service.subclasser.SiteSourcedPropertyGetterSubClasser).

This component provides a cglib2-based proxy mechanism, which enables site-specific behavior for this

component.

• $overridePropertyToValuePropertyMap: Map component properties to the corresponding site

properties.

For example, you can configure a component so one of its properties is set from a site’s custom configuration

property cssFile . The component is defined with the following methods:

package my;
import atg.service.GenericService;
public class PageConfiguration extends GenericService {
...
String mStyleSheet;
 public void setStyleSheet(String pStyleSheet) {
 mStyleSheet = pStyleSheet;
 }

 public String getStyleSheet() {
 return mStyleSheet;
 }
 ...
}

The PageConfiguration component is configured as follows:

$class=my.PageConfiguration
$instanceFactory=/atg/multisite/SiteSourcedPropertyGetterSubClasser
$overridePropertyToValuePropertyMap=styleSheet=cssFile

styleSheet=default.css

At startup, Nucleus sets the component’s styleSheet property to default.css. However, on processing

each request for this property, Nucleus uses the current site context to look up the site configuration property

cssFile. If a value is found, Nucleus overrides the component’s styleSheet property setting and returns the

site-specific value in cssFile. If cssFile is null, Nucleus returns default.css.

2 Nucleus: Organizing JavaBean Components 35

You can also specify to return null values from the site configuration by setting the Nucleus property

$nullAsOverridePropertyNames. This property specifies to return null if the designated site configuration

settings are also null. It disregards any settings that are set within the properties file itself or derived from other

configuration directories. For example, you might modify the previous configuration with this setting:

$nullAsOverridePropertyNames=styleSheet

So, if cssFile is null, Nucleus overrides all other settings for styleSheet and returns null.

Tracing Component Property Settings

When an application has multiple configuration directories, a component can get its properties from multiple

sources. You can use the Oracle ATG Web Commerce Dynamo Server Admin Component Browser to determine

how a given component is configured:

1. Navigate to the target component.

2. Click View Service Configuration to view a hierarchical listing of the properties files for that component.

Setting Properties to Null

A null value does not override a non-null value set earlier in the configuration path. For example, a component

with the property /atg/foo/boo with a smells might be set as follows:

$class=atg.service.funkystuff.foo.Boo
smells=spicy

A configuration file with higher precedence in the configuration path cannot override this property value by

setting it to blank or null as follows:

smells=
smells=null

The Oracle ATG Web Commerce platform provides a Constants Nucleus service that lets you set null values by

reference. This service, with a Nucleus address of /Constants, has a single null property that is set to null.

Thus, you can set a property value to null as follows:

smells^=/Constants.null

Decoding Encrypted Properties in Nucleus Components

You might decide to encode or encrypt sensitive information that is stored in properties files with the

class atg.core.util.Base64, or another method. In this case, you must be able to access the encrypted

information.

Note: The Oracle ATG Web Commerce distribution currently supports BASE64 decryption only.

36 2 Nucleus: Organizing JavaBean Components

The atg.nucleus.PropertyValueDecoder class defines a component that can decode the value of

properties encoded with Base64. You can use a component of this type to protect properties that should remain

encoded until their value is used. For example, DataSource components can use a PropertyValueDecoder

component to decrypt user and password properties before using them to create a database connection. These

sensitive pieces of information are protected in the DataSource’s properties file until they are needed.

To use a PropertyValueDecoder, modify the original component to use the decoder for the

encoded property. Do not make the decoded value visible to any public method or property. The

PropertyValueDecoder decode() method should be called and its return value used directly (apart from

type casting). This lets your component use different implementations of the PropertyValueDecoder

interface without modification.

As installed, the atg.service.jdbc.FakeXADataSource class supports this feature. To use it, follow these

steps:

1. Create an atg.service.jdbc.SimpleLoginDecoder component that implements

PropertyValueDecoder—for example, MySimpleLoginDecoder.

2. Set the loginDecoder property of FakeXADataSource to MySimpleLoginDecoder.

3. Set the values of the user and password properties in FakeXADataSource with Base64-encoded values.

You can rely on the decoder to pass the decoded login to the database when connections are created.

If you need more robust security, you can subclass LoginDecoder and override its decode() methods, or

implement your own PropertyValueDecoder.

Loading Serialized Beans

In addition to specifying a class name, the $class property in a properties file can be used to define an instance

of a serialized JavaBean. A serialized JavaBean can be obtained from an IDE tool; you can also create one with

the ObjectOutputStream class. These files have a .ser suffix, and are stored in the CLASSPATH.

The value of the $class attribute should be a name of the form x.y. This first looks for a file x/y.ser in your

CLASSPATH. If that file does not exist, Nucleus loads the class x.y. Nucleus uses the standard JavaBean utility

method Beans.instantiate to implement this feature.

If you do not use any serialized JavaBeans, you can improve performance by disabling checks for .ser files.

To disable checking, set the checkForSerFiles property of the top-level Nucleus component to false. For

example, your <ATG10dir>/home/localconfig/Nucleus.properties might include this setting:

checkForSerFiles=false

Checking File Name Case on Windows

Nucleus component names are case-sensitive. An operating system that supports case-sensitive file

names can also support component names that differ only in case. For example, UNIX can differentiate

Person.properties and person.properties, which configure components Person and person,

respectively.

Windows does not support case-sensitive file names, so it cannot distinguish between properties files

Person.properties and person.properties. Consequently, attempts to create creating components

Person and person, cause one configuration file to overwrite the properties of the other. To avoid this, set the

2 Nucleus: Organizing JavaBean Components 37

checkFileNameCase property of the top-level Nucleus component to true. This setting prevents you from

creating components whose names are different only in case.

Note: Setting checkFileNameCase to true can slow performance, so set it to true only during development

When the application is ready for deployment, be sure to reset this property to false.

XML File Combination

Some Nucleus components use XML files instead of Java properties files for configuration or other initialization

tasks. Like properties files, several XML files of the same name can appear along the configuration path. At

runtime, the Oracle ATG Web Commerce platform combines these files into a single composite file, which is then

used by the appropriate component. This allows multiple applications or modules to layer on top of each other,

forming a single definition file from multiple definition files.

This section describes the operations and rules that are used to combine two XML files into a new XML file. XML

files are combined one tag at a time; in other words, tags are matched up, and the combination rules are applied

to each pair of matched tags.

XML file combination is controlled by an XML attribute xml-combine. This attribute is used only in the

preprocessing stage of XML file combination. Because the xml-combine attribute is not included in the file that

results from the preprocessing combination of the XML files, it does not need to appear in the document type

definition (DTD) for the XML files.

XML Encoding Declaration

The first line of an XML file should begin with this declaration:

<?xml version="1.0" ?>

An XML file with this declaration is assumed to use UTF-8 encoding for escaped Unicode characters. You can

specify another character encoding with a declaration of this form:

<?xml version="1.0" encoding="encoding-name" ?>

encoding-name is the name of a supported XML encoding—for example, ISO-8859-1 or SHIFT_JIS. For a list

of the XML encodings supported by the Oracle ATG Web Commerce XML parser, go to http://xml.apache.org/

xerces-j/faq-general.html.

Note: If you combine files with different encodings, the combined XML file (which exists only as a temporary file)

uses a common encoding of UTF-8.

DOCTYPE Declaration

When you combine XML files, only one file can have a DOCTYPE declaration. This file must be earliest in the

configuration path of all files to combine. The DOCTYPE that this base file declares determines the DOCTYPE of

the resulting file.

http://xml.apache.org/xerces-j/faq-general.html
http://xml.apache.org/xerces-j/faq-general.html

38 2 Nucleus: Organizing JavaBean Components

Combining Two Tags

When the configuration path contains two XML files of the same name, matching tags are combined according

to the xml-attribute specified by the tag in the second (last-read) XML file (see the next section, Controlling

Tag Combination (page 38)). If this attribute is omitted, the following combination rules are followed:

• If one of the combined tags contains only a PCDATA section—that is, a text block without embedded

tags—the first file’s tag is discarded and the tag content of the second file is used (equivalent to xml-

combine=replace).

• In all other cases, the contents of the tag in the second file are appended to the contents of tag in the first file

(equivalent to xml-combine=append).

Given these rules, you can combine most XML files without explicitly setting the xml-combine attribute,

reserving its use for special situations.

The values of XML elements can be set in the DTD. If an XML element has a default setting specified in the DTD,

that default setting is applied in any XML file that does not explicitly set the element. For example, the SQL

Repository DTD specifies the expert attribute of the property element as follows:

expert %flag; "false"

If your base SQL repository definition file sets the expert attribute of a property to true, and if supplemental

SQL repository definition files modify that property, you must also explicitly set the expert attribute of a

property to true in the supplemental SQL repository definition files; otherwise the attribute’s value reverts to

the default specified in the DTD.

Controlling Tag Combination

You can override the default rules for tag combination by setting the xml-combine attribute in tags of the last-

read configuration file. xml-combine can be set to one of the following values:

• replace (page 38)

• remove (page 39)

• append (page 40)

• append-without-matching (page 40)

• prepend (page 40)

• prepend-without-matching (page 41)

Note: The xml-combine attribute is removed from the combined file.

replace

Only the tag in file2.xml is used; the tag in file1.xml is ignored. for example:

File1.xml

<people>
 <person name="joe">

2 Nucleus: Organizing JavaBean Components 39

 <interests>
 <interest interest="rollerblading"/>
 <interest interest="bass"/>
 </interests>
 </person>
</people>

File2.xml

<people>
 <person name="joe" xml-combine="replace">
 <interests>
 <interest interest="parenting"/>
 </interests>
 </person>
</people>

Result

<people>
 <person name="joe">
 <interests>
 <interest interest="parenting"/>
 </interests>
 </person>
</people>

remove

The tag is removed from the combined file. For example:

File1.xml

<people>
 <person name="joe">
 <interests>
 <interest interest="rollerblading"/>
 <interest interest="bass"/>
 </interests>
 </person>
</people>

File2.xml

<people>
 <person name="joe" xml-combine="remove"/>
</people>

Result

<people>

40 2 Nucleus: Organizing JavaBean Components

</people>

append

The contents of file2.xml’s tag are appended to the contents of file1.xml’s tag. For example:

File1.xml

<people>
 <person name="joe">
 <interests>
 <interest interest="rollerblading"/>
 <interest interest="bass"/>
 </interests>
 </person>
</people>

File2.xml

<people>
 <person name="joe">
 <interests xml-combine="append">
 <interest interest="parenting"/>
 </interests>
 </person>
</people>

Result

<people>
 <person name="joe">
 <interests>
 <interest interest="rollerblading"/>
 <interest interest="bass"/>
 <interest interest="parenting"/>
 </interests>
 </person>
</people>

Embedded tags are matched and combined recursively.

append-without-matching

Identical to xml-combine="append", except embedded tags are not matched and combined recursively. Tag

content is simply appended.

prepend

The contents of file2.xml’s tag are prepended to the contents of file1.xml’s tag. For example:

File1.xml

<people>

2 Nucleus: Organizing JavaBean Components 41

 <person name="joe">
 <interests>
 <interest interest="rollerblading"/>
 <interest interest="bass"/>
 </interests>
 </person>
</people>

File2.xml

<people>
 <person name="joe">
 <interests xml-combine="prepend">
 <interest interest="parenting"/>
 </interests>
 </person>
</people>

Result

<people>
 <person name="joe">
 <interests>
 <interest interest="parenting"/>
 <interest interest="rollerblading"/>
 <interest interest="bass"/>
 </interests>
 </person>
</people>

Embedded tags are matched and combined recursively (see the Recursive Combination (page 41)).

prepend-without-matching

Identical to prepend, except embedded tags are not matched and combined recursively. Tag content is simply

prepended.

Recursive Combination

If a tag sets xml-combine to append or prepend, tags that are embedded in the combined tags also are

matched and combined recursively. Before the primary tags are combined, they are searched for matching

embedded tags. Given embedded tags tag1.subtag1 and tag2.subtag2 in file1.xml and file2.xml,

respectively, the two tags match if all attributes in tag2.subtag1 have matching attributes in tag1.subtag1.

The attributes in tag2.subtag2 can be a subset of the attributes in tag1.subtag1.

If a tag embedded in tag1 matches a tag from tag2, the tag from tag1 is replaced by its combination with

the matching tag2 as defined by tag2’s xml-combine attribute. That tag is replaced in place—that is, it is not

appended or prepended.

For example, each of the following XML files contains a <people> tag, where the tag in file2.xml sets its xml-

combine attribute to append:

File1.xml

42 2 Nucleus: Organizing JavaBean Components

<people>
 <person name="joe" title="CTO">
 <interests>
 <interest interest="rollerblading"/>
 <interest interest="bass"/>
 </interests>
 </person>
</people>

File2.xml

<people xml-combine="append">
 <person name="jeet" title="CEO">
 <interests>
 <interest interest="parenting"/>
 </interests>
 </person>
 <person name="joe" xml-combine="append">
 <interests xml-combine="prepend">
 <interest interest="parenting"/>
 </interests>
 </person>
</people>

Before appending, all tags embedded in tag1 are searched for matches. The search yields the following match:

<person name="joe" title="CTO">
<person name="joe">

It does not define all the same attributes found in tag1, but those that it does define match.

Because these tags are a match, the tag embedded in tag1 is modified in place to combine the tag from tag1

and the tag from tag2. The tag is then removed from tag2 so that it is not actually appended.

The embedded tags are then combined by recursively going through the entire combination process. In this

example they are combined by using append, but the <interests> tag in each matches, so the <interests>

tags are combined by using prepend, and the final result is:

<people>
 <person name="joe" title="CTO">
 <interests>
 <interest interest="parenting"/>
 <interest interest="rollerblading"/>
 <interest interest="bass"/>
 </interests>
 </person>
 <person name="jeet" title="CEO">
 <interests>
 <interest interest="parenting"/>
 </interests>
 </person>
</people>

2 Nucleus: Organizing JavaBean Components 43

If there are multiple matches for a tag, it is undefined which of the matching tags is used.

Root Tag

The rules described earlier specify how two tags are supposed to be combined. However, an additional rule is

required to specify how two XML files must be combined.

The rule for combining two XML files is to act as if each file were completely enclosed in a tag, that tag matched

for both files, and the tags are being combined with mode append. For example, consider two XML files:

File1.xml

<person name="joe" title="CTO">
 <interests>
 <interest interest="rollerblading"/>
 <interest interest="bass"/>
 </interests>
</person>

File2.xml

<person name="jeet" title="CEO">
 <interests>
 <interest interest="parenting"/>
 </interests>
</person>
<person name="joe" xml-combine="append">
 <interests xml-combine="prepend">
 <interest interest="parenting"/>
 </interests>
</person>

The <people> tag has been removed for the purpose of this example. In this case, the XML files should act as if

they were defined like this:

File1.xml

<pretend-enclosing-tag>
 <person name="joe" title="CTO">
 <interests>
 <interest interest="rollerblading"/>
 <interest interest="bass"/>
 </interests>
 </person>
</pretend-enclosing-tag>

File2.xml

<pretend-enclosing-tag xml-combine="append">
 <person name="jeet" title="CEO">
 <interests>
 <interest interest="parenting"/>
 </interests>

44 2 Nucleus: Organizing JavaBean Components

 </person>
 <person name="joe" xml-combine="append">
 <interests xml-combine="prepend">
 <interest interest="parenting"/>
 </interests>
 </person>
</pretend-enclosing-tag>

The enclosing tags are combined as normal, and the enclosing tag is omitted from the generated file.

id Attribute

The matching rules described earlier in this section match two tags on the basis of their attribute values.

Sometimes, tags cannot be matched in this way. For example, J2EE deployment descriptors do not typically

use attributes. Thus, the matching rules cause too many tag matches because there are no attribute values to

distinguish the tags.

In this case, it might be necessary to manufacture an attribute. The J2EE deployment descriptors provide the id

attribute, which is designed to be used when tags need to be matched at a lexical level.

The id tag can be used to hold the value of an embedded value that is known to be unique, as in this example:

<session>
 <ejb-name>Account</ejb-name>
 ...
</session>

<session>
 <ejb-name>Payroll</ejb-name>
 ...
</session>

Here, all <session> tags are distinguished by the value of their <ejb-name> child tag, but that is no help to the

XML combination rules. In this case, an id attribute is added to facilitate tag matching:

<session id="Account">
 <ejb-name>Account</ejb-name>
 ...
</session>

<session id="Payroll">
 <ejb-name>Payroll</ejb-name>
 ...
</session>

Viewing the Combined File

If a running Nucleus component has a property whose value is an XML file, the Oracle ATG Web Commerce

Dynamo Server Admin Component Browser can show you the configured XML and the source files that

combined to create it. For example, the component /atg/userprofiling/ProfileAdapterRepository

contains the property definitionFiles, whose value is set to an XML file. When you click on the property, the

Component Browser opens a window that includes the following information:

2 Nucleus: Organizing JavaBean Components 45

Testing XML File Combination

A reference implementation of the rules described in this section can be found in the scripts xmlCombine (for

UNIX) and xmlCombine.bat (for Windows). These scripts parse a set of input files, combine them and write the

result to an output file. These scripts are found in <ATG10dir>\home\bin, and are executed with the following

syntax:

xmlCombine file1 file2 ... –o outputfile

Writing Nucleus Components

Any Java class with a constructor that takes no arguments can be instantiated as a Nucleus component,

which gives you a wide degree of latitude when you create component classes. However, these classes should

implement certain interfaces that give components access to a number of Nucleus capabilities, such as

automatic creation, configuration, and notifications.

The easiest way to implement these interfaces is to subclass atg.nucleus.GenericService, which

implements all interfaces described in the following sections. However, your class might already extend some

46 2 Nucleus: Organizing JavaBean Components

other class, thereby preventing you from extending GenericService. In this case, your class must implement

the necessary interfaces.

Note: Your class does not need to implement all interfaces that GenericService implements, only the ones

with the functionality required.

Public Constructor with No Arguments

Nucleus can create a component automatically from a properties file if the component class is declared public

and it implements a public constructor with no arguments. For example:

public class Person {
 public Person () {}
}

The constructor is not required to be empty. However, as shown later in this chapter, it is often a good idea to

defer initialization functions until after the component starts.

If the constructor for the component class requires arguments, you will need to supply additional information.

See Parameterized Constructors (page 46).

Parameterized Constructors

You can create Nucleus components that are based on classes that have constructors that require arguments

(parameterized constructors). Oracle ATG Web Commerce includes two components that you can use to create

components based on classes with parameterized constructors. These components are:

• /atg/dynamo/nucleus/ParameterConstructorInstanceFactory

• /atg/dynamo/nucleus/MethodInstanceFactory

Use the $instanceFactory property to specify the component that Nucleus will use to create a

component with a parameterized constructor. See instructions for using the instance factory components in

ParameterConstructorInstanceFactory (page 46) and MethodInstanceFactory (page 47).

ParameterConstructorInstanceFactory

Use the /atg/dynamo/nucleus/ParameterConstructorInstanceFactory component to instantiate

components that are based on classes that have constructors that take arguments. See Parameterized

Constructors (page 46).

To use ParameterConstructorInstanceFactory:

1. Include the $class property in your component configuration file. This is the class that requires constructor

arguments.

2. Include the $instanceFactory property and set its value to /atg/dynamo/nucleus/

ParameterConstructorInstanceFactory.

3. Set the value of each constructor argument. Include one or more $constructor.param[n].value

properties. Replace n with the zero-based index number of the argument. For example, to set the value of the

first constructor argument:

$constructor.param[0].value=Hello

2 Nucleus: Organizing JavaBean Components 47

4. Set the Java data type of each constructor argument. Include one or more $constructor.param[n].type

properties. Replace n with the zero-based index number of the argument. For example, to set the type of

the first constructor argument:

$constructor.param[0].type=String

Note: You do not need to supply the Java data types of the constructor arguments if they are not ambiguous

(there is only one constructor that takes the number of arguments you supply). However, if you supply any

$constructor.param[n].type properties, you must supply them for all of the constructor arguments.

Whenever possible, provide type properties for all arguments.

The following example class and configuration files show how to use

ParameterConstructorInstanceFactory. The class requires constructor arguments.

package mycompany;
public class MyClass {
 private String mystring;
 private int mynumber;

 // The constructor requires two arguments.
 public MyClass (String pMyString, int pMyNumber) {
 mystring = pMyString;
 mynumber = pMyNumber;
 }

 public String getmMyString() {
 return mystring;
 }
 public int getmMyNumber() {
 return mynumber;
 }
}

The configuration file supplies values for each of the arguments.

$class=mycompany.MyClass
$instanceFactory=/atg/dynamo/nucleus/ParameterConstructorInstanceFactory
$constructor.param[0].value=Hello
$constructor.param[0].type=String
$constructor.param[1].value=321
$constructor.param[1].type=int
Set any further properties using standard syntax

MethodInstanceFactory

Use the /atg/dynamo/nucleus/MethodInstanceFactory component to create Nucleus components

based on objects returned by factory methods. Factory methods are one way to create components with

parameterized constructors. See Parameterized Constructors (page 46).

To use MethodInstanceFactory:

1. Include the $instanceFactory property in the component properties file. Set its value to /atg/dynamo/

nucleus/MethodInstanceFactory.

2. Specify the Java class or Nucleus component that contains the factory method.

48 2 Nucleus: Organizing JavaBean Components

To use a static factory method in a Java class, specify the class name with the $factory.class property as

shown below.

$factory.class=mycompany.MyStaticFactoryClass

To use a non-static factory method in another Nucleus component, specify the Nucleus path of that

component with the $factory.instance property as shown below.

$factory.instance=/mycompany/MyFactoryComponent

3. Include the $factory.methodName property. Set its value to the name of the method that will return the

component object.

4. Set the value of each factory method argument. Include one or more $factory.param[n].value

properties. Replace n with the zero-based index number of the argument. For example, to set the value of the

first factory method argument:

$factory.param[0].value=Hello

5. Set the Java data type of each factory method argument. Include one or more $factory.param[n].type

properties. Replace n with the zero-based index number of the argument. For example, to set the type of

the first factory method argument:

$factory.param[0].type=String

Note: You do not need to supply the Java types of the factory method arguments if they are not ambiguous

(there is only one factory method of that name that takes the number of arguments you supply). However, if

you supply any $factory.param[n].type properties, you must supply them for all of the factory method

arguments. Whenever possible, provide type properties for all arguments.

The following sections show examples of the Java classes and configuration files that use static and non-static

factory methods.

Example Configuration Using a Static Factory Method

The following example class and configuration files show how to use MethodInstanceFactory with a static

factory method.

This Java class includes a static factory method that returns the object that the new component is based on.

package mycompany;
public class MyStaticFactoryMethodClass {

 /* This static factory method returns the object that the
 new component is based on. */
 public static MyComponentObject makeComponentObject
 (String pMyString, int pMyNumber) {
 return new MyComponentObject(pMyString, pMyNumber);
 }
}

This is the configuration file for the component that is based on the object returned by the factory method.

$instanceFactory=/atg/dynamo/nucleus/MethodInstanceFactory
$factory.class=mycompany.MyStaticFactoryMethodClass
$factory.methodName=makeComponentObject

2 Nucleus: Organizing JavaBean Components 49

$factory.param[0].value=Hello
$factory.param[0].type=String
$factory.param[1].value=321
$factory.param[1].type=int
Set any further properties using standard syntax

Example Configuration Using a Non-Static Component Method

The following example class and configuration files show how to use MethodInstanceFactory with a non-

static factory method in another component.

This Java class includes a factory method that returns the object that the new component is based on. There is

an existing Nucleus component based on this class.

package mycompany;
public class MyFactoryComponent {

 /* This non-static factory method returns the object that the
 new component is based on. */
 public MyComponentObject makeComponentObject
 (String pMyString, int pMyNumber) {
 return new MyComponentObject(pMyString, pMyNumber);
 }
}

This is the configuration file for the component that is based on the object returned by the factory method.

$instanceFactory=/atg/dynamo/nucleus/MethodInstanceFactory

The component named in the following property is based on
the class shown in the example Java class above.
$factory.instance=/mycompany/MyFactoryComponent
$factory.methodName=makeComponentObject
$factory.param[0].value=Hello
$factory.param[0].type=String
$factory.param[1].value=321
$factory.param[1].type=int
Set any further properties using standard syntax

Properties

In order to enable configuration of a class variable from a properties file, the class defines setX() and getX()

methods for that variable, where X specifies the variable/property to configure.

For example, to make the variable age configurable from the property age, the class defines setAge() and

getAge() methods:

int age;
public void setAge (int age) { this.age = age; }
public int getAge () { return age; }

Exposing a variable as a property also exposes it to runtime inspection by the Nucleus administrator.

50 2 Nucleus: Organizing JavaBean Components

You might also wish to make a property read-only, meaning that it can be inspected at runtime but cannot be

configured through a properties file. This technique is often used for properties that contain runtime statistics.

To make a property read-only, simply omit the setX function:

int age;
public int getAge () { return age; }

Special $ Properties

Nucleus properties files use several special properties that are indicated by a leading $ character:

Property Description

$class The component’s Java class.

$scope The scope of the component (global, session, or request). The default value is

global. See the Component Scopes (page 24) section in this chapter.

$description (page

50)

A brief description of the component, for display in the ATG Control Center

Components task areas.

$basedOn The Nucleus path of another component that will supply configuration property

values for the current component. See Basing a Component on another

Component (page 58).

$instanceFactory Specifies the Nucleus path of a component that is based on a class that

implements the atg.nucleus.InstanceFactory interface. Nucleus will call the

createInstance method of this component to instantiate the component you

are configuring.

For example, you can use the $instanceFactory property to create components

that have parameterized constructors. See Parameterized Constructors (page

46).

$description

Given a large number of components in a typical Nucleus application, it can be helpful to document what each

component does. You can document your components using the $description property. For instance, you

might describe a Person component like this:

$description=Holds name and age traits of users

Event Sources

Your class can be a source for JavaBeans events by following the patterns outlined in the JavaBeans

specifications (see Events and Event Listeners (page 237) in the Core ATG Services (page 205) chapter). If your

class fires events, Nucleus properties files can be used to configure the listeners for those events.

2 Nucleus: Organizing JavaBean Components 51

NameContextBindingListener

When Nucleus creates your component from a properties file, it first calls your class constructor with

no arguments. It then binds the component into the namespace of the NameContext that contains the

component. For example, if your component was created with the name /services/servers/LatteServer,

the component is bound into the NameContext at /services/servers, using the name LatteServer.

If your class implements the atg.naming.NameContextBindingListener interface, the component is

notified when it is bound into a NameContext, and also receives notification when it is unbound from that

NameContext.

A typical implementation of NameContextBindingListener looks like this:

import atg.naming.*;

public YourClass implements NameContextBindingListener {
 String name;
 NameContext nameContext;

 public void nameContextElementBound (NameContextBindingEvent ev) {
 if (ev.getElement () == this) {
 nameContext = ev.getNameContext ();
 name = ev.getName ();
 }
 }
 public void nameContextElementUnbound (NameContextBindingEvent ev) {
 if (ev.getElement () == this) {
 nameContext = null;
 name = null;
 }
 }
}

Both methods check to verify that the element in the event really is the object. This is because the same

methods are called if the object is registered as a listener for binding events on other NameContexts. For the

time being, just remember to include this check before setting the member variables.

Although you can generally assume that these notifications happen all the time, the notifications usually

happen only if the NameContext also implements NameContextBindingEventSource. This is because the

NameContext is responsible for sending the events, so if a NameContext has a less responsible implementation,

it might not send the notifications.

NameContextElement

If you implement NameContextBindingListener, you might also wish to implement

atg.naming.NameContextElement. This is a simple extension to the NameContextBindingListener

interface that exposes the component’s name and nameContext as properties:

public NameContext getNameContext () { return nameContext; }
public String getName () { return name; }

Exposing these properties gives Nucleus some help when Nucleus is traversing the namespace looking

for components. These properties also show up in the Component Browser, which is always a help to the

52 2 Nucleus: Organizing JavaBean Components

administrator. In general, it is a good idea to implement NameContextElement if you already implemented

NameContextBindingListener.

NameContext

Components that implement atg.naming.NameContext are recognized by Nucleus as containers of other

components. This means that Nucleus can traverse through these components when it is resolving names.

It also means that the Component Browser allows the administrator to walk through the children of that

component, in the same way that a web browser allows a user to walk through the files in a directory.

The NameContext interface resembles java.util.Dictionary in that it has methods for getting, putting,

removing, and listing elements. One possible implementation of NameContext is to use a Hashtable:

Hashtable elements = new Hashtable ();

public Object getElement (String name) {
 return elements.get (name);
}
public void putElement (String name,
 Object element) {
 removeElement (name);
 elements.put (name, element);
}
public void removeElement (String name) {
 elements.remove (name);
}
public boolean isElementBound (String name) {
 return getElement (name) != null;
}
public Enumeration listElementNames () {
 return elements.keys ();
}
public Enumeration listElements () {
 return elements.elements ();
}

Some implementations, however, might not wish to implement all of this functionality. For example, a

NameContext can be hard-coded to have three elements: name, price, and availability:

public Object getElement (String name) {
 if (name.equals ("name")) return "PowerCenter Pro 180";
 else if (name.equals ("price")) return new Integer (1995);
 else if (name.equals ("availability")) return new Boolean (true);
 else return null;
}
public void putElement (String name,
 Object element) {
}
public void removeElement (String name) {
}
public boolean isElementBound (String name) {
 return getElement (name) != null;
}
public Enumeration listElementNames () {
 return new Enumeration () {

2 Nucleus: Organizing JavaBean Components 53

 int i = 0;
 public boolean hasMoreElements () {
 return i < 3;
 }
 public Object nextElement () {
 if (!hasMoreElements ()) throw new NoSuchElementException ();
 switch (i++) {
 case 0: return "name"; break;
 case 1: return "price"; break;
 case 2: return "availability"; break;
 }
 }
 };
}
public Enumeration listElements () {
 return new Enumeration () {
 Enumeration e = listElementNames ();
 public boolean hasMoreElements () {
 return e.hasMoreElements ();
 }
 public Object nextElement () {
 return getElement (e.nextElement ());
 }
 };
}

Notice how the putElement and removeElement methods do nothing. Also notice the use of inner classes

to implement the methods that return Enumerations. This is a common technique for satisfying these types of

interfaces.

Remember that NameContext extends NameContextElement, so your implementations of NameContext must

also implement all the methods for NameContextElement.

NameContextBindingEventSource

It is often useful for a NameContext to fire an event whenever an element is bound or unbound from that

NameContext. For example, a pricing component might wish to be notified whenever an element is bound into

a shopping cart component.

A NameContext declares that it fires such events by implementing NameContextBindingEventSource. This

declares that NameContextBindingListeners can be added to the NameContext. These listeners receive

notifications whenever elements are bound or unbound from the NameContext.

If a component declares that it implements NameContextBindingEventSource, that component

is also expected to perform the following behavior: whenever an element is bound or unbound

from the NameContext, the NameContext should check to see if that element implements

NameContextBindingListener. If it does, the NameContext should send a bound or unbound event to that

element. This behavior must be performed in addition to notifying the registered listeners.

A sample implementation of this behavior can be found in the source code for

atg.naming.NameContextImpl, found in the <ATG10dir>/DAS/src/Java/atg/naming directory. This class

implements all of the following interfaces:

• atg.naming.NameContextBindingEventSource, which extends

• atg.naming.NameContext, which extends

54 2 Nucleus: Organizing JavaBean Components

• atg.naming.NameContextElement, which extends

• atg.naming.NameContextBindingListener

If your component implements NameContext, you might consider implementing

NameContextBindingEventSource as well. This is usually only required if arbitrary elements are going to

be bound and unbound from your NameContext, which is usually not the case for an application-specific

component. For example, the last example of the previous section implements a read-only NameContext, and

implementing NameContextBindingEventSource on that object is not very useful.

Naming and Nucleus

All of the previous interfaces dealt with the general naming system interfaces found in atg.naming. The rest of

the interfaces described in this section are specific to Nucleus. They deal with notifications given to components

that are automatically created by Nucleus. They also deal with logging of application-specific messages, and

allow components to define their own HTML interfaces for use in Oracle ATG Web Commerce Dynamo Server

Admin.

ServiceListener

When Nucleus creates a component from a properties file, it goes through the following steps:

• Nucleus constructs the component using the public constructor with no arguments.

• Nucleus binds the component into its parent NameContext.

• If the NameContext implements NameContextBindingEventSource and the component implements

NameContextBindingListener, the component is notified that it was bound into a NameContext.

• Nucleus then configures the component by setting its properties from the values found in the properties

configuration file. This might involve resolving names of other components, which can involve creating,

binding, and configuring those components as well.

• Nucleus then adds any event listeners defined in the properties file. Again, this involves resolving component

names by finding or creating those components.

• After all of the component’s properties are set and its event listeners added, the component is ready to go.

Nucleus now notifies the component that it is all set up and ready to start. This notification is only performed

if the component implements atg.nucleus.ServiceListener.

Notice how the component can receive two notifications—one when it is bound into the NameContext, and

one when Nucleus is finished configuring its property values. Most application components wait until the

second notification before starting their operations. In order for a component to receive this second notification,

it must implement atg.nucleus.ServiceListener.

The following is a typical implementation of ServiceListener:

Nucleus nucleus;
Configuration configuration;
boolean running;

public void startService (ServiceEvent ev) throws ServiceException {
 if (ev.getService () == this && !running) {
 nucleus = ev.getNucleus ();
 configuration = ev.getServiceConfiguration ();

2 Nucleus: Organizing JavaBean Components 55

 running = true;
 doStartService ();
 }
}
public void stopService () throws ServiceException {
 if (running) {
 running = false;
 doStopService ();
 }
}

public void doStartService () throws ServiceException {}
public void doStopService () throws ServiceException {}

First, notice that startService checks the service specified by the event to make sure that it is actually this

service. Second, notice the use of a running flag. This flag is needed because Nucleus might call startService

multiple times, even after calling startService a first time. The use of the running flag makes sure that

the service performs its initialization functions only once. In this particular implementation, run-once logic is

placed in startService, while the actual initialization procedures are delegated to another method, such as

doStartService.

A similar technique is used for the stopService method. The running flag is used to make sure that the

shutdown procedures are executed only once, and the actual shutdown procedures are delegated to the

doStopService method. A service might be stopped for a variety of reasons: a direct command from the

administrator, overall Nucleus shutdown, or service reconfiguration.

A service that has been stopped should be prepared to start again at any time. For example, when reconfiguring

a service, the administrator typically stops the service, changes some configuration values, then restarts the

service. The service is expected to restart itself using the new configuration values. Thus, a service can expect to

be stopped and restarted several times during its lifetime in Nucleus.

Both start and stop methods can throw a ServiceException to indicate that some problem has occurred

during startup or shutdown.

Service

After a component has implemented ServiceListener, it should go on to implement Service,

which extends ServiceListener. The Service interface exposes the various properties set by the

ServiceListener interface:

public Nucleus getNucleus () { return nucleus; }
public Configuration getServiceConfiguration () { return configuration; }
public boolean isRunning () { return running; }

By implementing this interface, a component exposes these properties for inspection by the Nucleus

administrator. The configuration property, for example, tells the administrator what properties files

were used to configure the component. Your component does not actually need to do anything with the

configuration property except remember it and return it when asked.

ApplicationLogging

Most application services need a way to report events that occur during the operation of that service. In Oracle

ATG Web Commerce products, this is handled by having the component fire LogEvents. These LogEvents are

56 2 Nucleus: Organizing JavaBean Components

then broadcast to listeners that can handle those events. The Oracle ATG Web Commerce platform comes with a

set of listener services that can send LogEvents to files, to the screen, to databases, and so on.

With this setup, components only have to worry about what logging events they want to report, while other

components worry about sending those events to their eventual destinations. Like everything else in Nucleus,

the connections between components and their logging destinations are described by properties files.

For the convenience of programmers, the Oracle ATG Web Commerce platform uses a standard logging

interface called atg.nucleus.logging.ApplicationLogging. This interface defines the listener,

adding and removing methods needed to define a component as a source of LogEvents. This interface

also defines a set of properties for indicating what level of logging has been turned on. For example, the

loggingWarning property describes whether a component should be emitting warning log messages. See

Using ApplicationLogging (page 253) in the Logging and Data Collection (page 249) chapter for more

information.

AdminableService

When the Component Browser in the Administration Interface displays the page for a component, it uses a

special servlet that displays the default representation of a component. This servlet shows the name of the

component, its contained children, and the values of that component’s properties.

Some services might wish to customize this page, perhaps to show more information. The Scheduler service, for

example, extends the standard administration servlet to show information about scheduled events.

A component that wishes to present its own administration interface must implement

atg.nucleus.AdminableService. This interface has a method that allows Nucleus to obtain the servlet that

acts as the component’s administration interface:

public Servlet getAdminServlet ();

The component is expected to return a servlet from this method. Inner classes are often used to produce this

servlet.

A full description of how to customize the administrative servlet is located in the Customizing the ATG Dynamo

Server Admin Interface (page 66) section of this chapter.

GenericService

As described above, classes used for Nucleus components typically implement a large number of

standard interfaces. When you create classes, you can greatly simplify your task by extending the

atg.nucleus.GenericService class. This class implements most of the key Nucleus interfaces, so classes that

extend it also implement those interfaces.

Furthermore, two important interfaces, atg.naming.NameContext and

atg.naming.NameContextBindingEventSource, are implemented by a subclass of GenericService,

atg.nucleus.GenericContext (page 57), described later. Thus, a class can implement these interfaces by

extending the GenericContext class.

When you create a component that extends GenericService, you should be aware of the following:

• The method doStartService is called after Nucleus creates the component, installed it into the naming

hierarchy, set all of its property values from the properties file, and added all of its event listeners from the

2 Nucleus: Organizing JavaBean Components 57

properties file. Your component must override doStartService to perform any required initialization—

for example, create server ports and start threads. If initialization problems occur, the method can throw a

ServiceException.

• The method doStopService is called when the service stops. The component must override this method to

stop any processes that were started by this component—for example, close open file descriptors and server

ports, stop any threads that this component started, and remove any event listeners that it added. However,

the service should be prepared to start up again, possibly with new configuration values. When it restarts, the

component is notified by calling doStartService.

• GenericService contains an implementation of atg.nucleus.logging.ApplicationLogging, thereby

providing your service with a simple way to log events. For example, your service might log an error like this:

catch (SomeException exc) {

if (isLoggingError ()) {

logError ("Something went terribly wrong", exc);

}

}

The logError call might or might not include an exception. There are similar calls for the Error, Warning,

Info, and Debug logging levels. See the Logging and Data Collection (page 249) chapter.

• GenericService includes a default servlet to use for Oracle ATG Web Commerce Dynamo Server Admin.

If your component wishes to use a different servlet to display information about itself in the Administration

Interface, it should override createAdminServlet to create the servlet that should be used. See Customizing

the ATG Dynamo Server Admin Interface (page 66).

• GenericService implements a method called getAbsoluteName that returns the absolute name of the

component as seen in the Nucleus namespace.

• GenericService implements a couple of methods for resolving names in the Nucleus namespace. The

method resolveName resolves a name relative to the component’s parent. For example:

resolveName ("Pricer")

returns a pointer to the component named Pricer that is a child of the component’s parent. The method

tries to create the component from a configuration file if it cannot be found. GenericService also

implements the ComponentNameResolver interface, so that you can pass the resolveName method a

ComponentName key string, as well as a component’s real relative name. See ComponentName (page 19).

Your component might not need to use all or any of this functionality. You should, however, be aware that all of

these functions are available if your component extends GenericService.

Note: Be sure not to have a getName or setName method in a component that subclasses GenericService. If

you do, your component’s Nucleus pathname can become confused.

GenericContext

The GenericService class implements all useful Nucleus interfaces, except those that allow it to contain other

services: NameContext and NameContextBindingEventSource.

Nucleus includes a subclass of GenericService that goes the extra step and implements those two interfaces.

The subclass is called GenericContext. If your component extends GenericContext, it gets all the benefits

of GenericService, and it can contain arbitrary objects by calling putElement. Those objects appear in the

Nucleus namespace as children of your component.

58 2 Nucleus: Organizing JavaBean Components

Validateable

A component can implement an interface called atg.nucleus.Validateable, indicating that it knows how

to check the validity of its own state. Nucleus automatically recognizes components implementing this interface

and periodically calls validateService on these components to check their validity. If that method throws an

atg.nucleus.ValidationException, Nucleus prints the exception and immediately shuts down.

Components that extend GenericService or GenericContext do not automatically implement

Validateable.

Basing a Component on another Component

Use the $basedOn property to apply the configuration properties of one component to another. You can

override individual properties for the component that is based on the other. Use the $basedOn property when

you need multiple components to share many of their configuration properties.

Set the value of the $basedOn property to the Nucleus path of the component that will supply property values

to the current component.

The following configuration file shows the $basedOn property.

This component is based on the configuration for another component.
$basedOn=/mycompany/mybasecomponent/

Override individual property values.
loggingDebug=true

Nucleus API

Earlier sections of this chapter focus on the various interfaces used by naming and Nucleus services. Very little is

said about Nucleus itself, because Nucleus itself has little functionality. It exists solely to find components in the

hierarchy and create them if they do not exist. This function is offered in the following method:

public Object resolveName (String name,
 NameContext nameContext,
 boolean create)

The name is the name of the component to find. If the name is a relative name, the specified nameContext is

the NameContext that is used as a starting point of the name resolution. The create flag determines if Nucleus

should attempt to create the component if it cannot be found.

Nucleus also determines the policies for describing the namespace. For example, the fact that forward slash (/)

is used to separate the elements of a name is a policy issue implemented by Nucleus, not a general characteristic

of NameContext. These policies are exposed in the following methods:

public String getAbsoluteName (NameContextElement element);

2 Nucleus: Organizing JavaBean Components 59

This returns the absolute name of a component in the Nucleus namespace. The component must implement

NameContextElement in order to be examined by this method.

public String getAbsoluteElementName (NameContextElement element,
 String name)

This returns the absolute name of a hypothetical child of the specified element. For example, if the element is /

services/servers, and the name is HttpServer, this returns /services/servers/HttpServer.

In order for a component to use these functions, the component must have a pointer to Nucleus. If the

component implements ServiceListener, the component is passed a pointer to Nucleus when the

component is initialized. Nucleus also acts as the root of the name hierarchy.

For more information, see the description of the atg.nucleus.Nucleus class in the ATG Platform API Reference.

Dynamic Beans

Dynamic beans extend the standard JavaBeans specification, where a Java object can expose different sets of

properties, that are determined at runtime. Unlike Java Beans, any object can be treated as a dynamic bean

whose properties can be determined at runtime. This mechanism, for example, allows the Profile object to be

used in a DSP tag like the following, though there is no getCity() method in the Profile object.:

<dsp:valueof bean="Profile.city"/>

Dynamic beans lets you use the Profile class without having to extend it to include as JavaBean properties all

the profile attributes your application requires. Dynamic beans can be used in two broad sets of cases, where:

• All beans of a class have the same properties, but the properties are not known at runtime. The Profile

object is an example.

• Different instances of a class have different properties from each other. For example, in a Hashtable or a Map,

the properties are whatever keys are in the specific instance you are looking at.

A dynamic bean can be of any class, and need not implement any special interfaces. Before you can access

a dynamic bean’s properties, an implementation of DynamicPropertyMapper must be registered for the

bean’s class, one of the bean’s super-classes, or one of the bean’s interfaces. DynamicPropertyMappers

are registered by default for several classes and interfaces that are most commonly used as dynamic beans,

as listed in the next section, Registered DynamicBeans and Dynamic Types (page 65). You can register

such an implementation by calling DynamicBeans.registerPropertyMapper(). See Registering Dynamic

Beans (page 60) for more detailed information. After this has been done, you can use the methods

DynamicBeans.getPropertyValue() and DynamicBeans.setPropertyValue() to access dynamic

properties of objects belonging to the registered class or interface. This indirect approach permits existing

classes like java.util.Hashtable or interfaces like java.sql.ResultSet to be treated as dynamic beans.

If no DynamicPropertyMapper is registered, these methods simply access the object’s regular JavaBean

properties.

For example, because atg.userprofiling.Profile is registered as a dynamic bean, one way to access the

Profile.city value from Java is:

60 2 Nucleus: Organizing JavaBean Components

String city = (String) DynamicBeans.getPropertyValue(profile, "city");

DynamicBeans also has getSubPropertyValue() and setSubPropertyValue() methods, which take a

hierarchy property name of the form propertyName1.subPropertyName2.subSubPropertyName3. For

example:

String city = (String) DynamicBeans.getSubPropertyValue(profile,
 "homeAddress.country");

Registering Dynamic Beans

You can treat any object as a dynamic bean if a DynamicPropertyMapper is registered for its class or for one of

its super-classes or interfaces. A DynamicPropertyMapper looks like this:

public interface DynamicPropertyMapper {
 public Object getPropertyValue(Object pBean, String pName)
 throws PropertyNotFoundException;

 public void setPropertyValue(Object pBean, String pName, Object pValue)
 throws PropertyNotFoundException;

 public DynamicBeanInfo getBeanInfo(Object pBean)
 throws IntrospectionException;
}

You can register a DynamicPropertyMapper by calling DynamicBeans.registerPropertyMapper().

The registration needs to occur in a static initializer of some class that is guaranteed to load before the

first use of the kind of dynamic bean being registered. For example, the ProfileForm class (which

you can find at <ATG10dir>/DPS/src/Java/atg/userprofiling/ProfileForm.java) registers a

DynamicPropertyMapper for the ProfileFormHashtable class like this:

static {
 DynamicBeans.registerPropertyMapper(ProfileFormHashtable.class,
 new ProfileFormHashtablePropertyMapper());
 }

Example: DynamicPropertyMapper for Maps

For example, the Oracle ATG Web Commerce platform includes a DynamicPropertyMapper for

java.util.Map objects, which is implemented like this:

package atg.beans;

import java.beans.*;
import java.util.*;

/**
 * <P>Implementation of DynamicPropertyMapper that can work with any
 * subclass of java.util.Map.

2 Nucleus: Organizing JavaBean Components 61

**/

public class MapPropertyMapper
implements DynamicPropertyMapper
{
 //-------------------------------------
 // CONSTRUCTORS
 //-------------------------------------

 public MapPropertyMapper() {
 }

 //-------------------------------------
 // METHODS
 //-------------------------------------

 /**
 * Gets the value of the dynamic property from the specified object.
 */
 public Object getPropertyValue(Object pBean, String pPropertyName)
 throws PropertyNotFoundException
 {
 Object value = ((Map)pBean).get(pPropertyName);
 /*
 * There happens to be one property defined on the "map bean"
 * which we take advantage of in a few places due to the isEmpty
 * method. We treat this as a special case.
 */
 if (value == null && pPropertyName.equals("empty"))
 return ((Map) pBean).isEmpty() ? Boolean.TRUE : Boolean.FALSE;
 return value;
 }

 /**
 * Sets the value of the dynamic property from the specified object.
 */
 public void setPropertyValue(Object pBean, String pPropertyName, Object pValue)
 {
 ((Map)pBean).put(pPropertyName, pValue);
 }

 public DynamicBeanInfo getBeanInfo(Object pBean)
 throws IntrospectionException
}

The existence of such a DynamicPropertyMapper lets you insert values into Hashtables using a tag like this in a

JSP:

<dsp:setvalue bean="MyComponent.hashtableProp.foo" value="23"/>

This tag looks up the MyComponent bean, calls the getHashtableProp(), method, and calls the dynamic bean

method setPropertyValue(hashtableProp, "foo", "23").

Multiple Property Mappers

What happens if an object has more than one super-class or interface with a registered

DynamicPropertyMapper? If the definitions are at different levels of the inheritance hierarchy, the

62 2 Nucleus: Organizing JavaBean Components

DynamicPropertyMapper of the most specific definition is used—that is, the one closest to the

actual concrete class of the DynamicBean. If the object implements multiple interfaces that have

DynamicPropertyMappers, the one that was declared first in the object class’s implements clause wins. For

example, an atg.userprofiling.Profile object has a DynamicPropertyMapper registered for itself, and

for its atg.repository.RepositoryItem interface. The Profile DynamicPropertyMapper is used for it,

rather than the RepositoryItem one.

DynamicBeanInfo

The atg.beans package also includes a useful interface named DynamicBeanInfo. A DynamicBeanInfo

object allows a bean to be queried about what properties are available from the object, as well as other

descriptive data about the bean. This is very similar to the standard BeanInfo objects of JavaBeans, except

DynamicBeanInfo is based on the instance, not on the class. The DynamicBeanInfo allows user interfaces to

show dynamically the available properties of an object.

The DynamicBeanInfo interface has the following methods:

public interface DynamicBeanInfo {
 public DynamicBeanDescriptor getBeanDescriptor();
 public boolean hasProperty(String pPropertyName);
 public String [] getPropertyNames();
 public DynamicPropertyDescriptor getPropertyDescriptor(String pPropertyName);
 public DynamicPropertyDescriptor[] getPropertyDescriptors();
 public boolean isInstance(Object pObj);
 public boolean areInstances(DynamicBeanInfo pDynamicBeanInfo);
}

DynamicBeanDescriptor is a subclass of the java.beans.FeatureDescriptor class, which

includes human-friendly descriptive information about a bean. It includes methods like getName() and

getShortDescription(). DynamicPropertyDescriptor is also a subclass of FeatureDescriptor, and

allows individual properties of the properties, including a JavaBeans PropertyEditor for the property.

To implement this behavior in a DynamicPropertyMapper, use a getBeanInfo() method. For example, in the

MapPropertyMapper discussed earlier, there is a getDynamicBeanInfo method that looks like this:

public DynamicBeanInfo getBeanInfo(Object pBean)
 throws IntrospectionException
 {
 // A Map acts as its own dynamic bean type, since every map
 // is different.
 return DynamicBeans.getBeanInfoFromType(pBean);
 }

Using DynamicPropertyMappers

When you call the DynamicBeans.getPropertyValue() method, the Oracle ATG Web Commerce

platform first looks for a DynamicPropertyMapper registered for the class. If there is no other

applicable DynamicPropertyMapper, the Oracle ATG Web Commerce platform uses the default

DynamicPropertyMapper (registered for the java.lang.Object class) that treats its beans as regular

JavaBeans, using Introspection to determine the dynamic properties and meta-data. Objects that have no

other DynamicPropertyMapper registered default to this DynamicPropertyMapper and have dynamic

2 Nucleus: Organizing JavaBean Components 63

properties that correspond one-to-one with their non-dynamic JavaBeans properties. This is a convenient way to

manipulate regular JavaBeans easily without knowing their class in advance.

Here are some examples of how you can use the DynamicBeans.getPropertyValue() method to look up

JavaBean properties:

• To call the java.util.Date method getMonth:

Date d = new Date();

Integer month = (Integer) DynamicBeans.getPropertyValue(d, "month")

;

There is no DynamicPropertyMapper registered for java.util.Date; the Oracle ATG Web Commerce

platform uses the default DynamicPropertyMapper for java.lang.Object.

• To look up the DynamicPropertyMapper for DynamoHttpServletRequest and find the parameter named

month:

Integer month = (Integer) DynamicBeans.getPropertyValue(request,

"month");

In this example, the getPropertyValue() method calls the property mapper for

DynamoHttpServletRequest, which treats each query or post parameter as a property.

• To look for the month attribute in the user Profile:

Integer month = (Integer) DynamicBeans.getPropertyValue(getProfile

(), "month");

The Oracle ATG Web Commerce platform uses the registered property mapper for

atg.userprofiling.Profile.

Likewise, you can invoke lookup methods like those in these three previous examples, using <dsp:valueof>

tags in JSPs:

<dsp:valueof bean="CurrentDate.timeAsDate.month"/>
<dsp:valueof bean="/OriginatingRequest.month"/>
<dsp:valueof bean="Profile.month"/>

Displaying Information from BeanInfos

The next example shows how you might write an Oracle ATG Web Commerce servlet bean that dumps

information about any bean. This example servlet bean, named BeanInfoDroplet, sets a parameter named

beaninfo with the values of the BeanInfo of the bean passed to it:

public class BeanInfoDroplet extends DynamoServlet {
 public void service(DynamoHttpServletRequest pRequest,
 DynamoHttpServletResponse pResponse)
 throws ServletException, IOException {
 Object bean = pRequest.getObjectParameter("bean");

 try {
 pRequest.setParameter("beaninfo", DynamicBeans.getBeanInfo(bean));
 } catch (IntrospectionException ex) {
 logError(ex);

64 2 Nucleus: Organizing JavaBean Components

 }
 pRequest.serviceParameter("output", pRequest, pResponse);
 }
}

You might invoke the example BeanInfoDroplet servlet bean in a JSP like the following example. You pass the

name of the bean in the bean input parameter. This page then displays the beaninfo parameter in a table:

<%@ taglib uri="/dspTaglib" prefix="dsp" %>
<dsp:page>

<html>
<head><title>BeanInfo</title></head>
<body><h1>BeanInfo</h1>

<dsp:droplet name="BeanInfoDroplet">
 <dsp:param bean="/atg/userprofiling/Profile" name="bean"/>
 <dsp:oparam name="output">
 <dsp:valueof param="beaninfo.name"/><p>
 <i><dsp:valueof param="beaninfo.shortDescription"/></i><p>

 <dsp:droplet name="ForEach">
 <dsp:param name="array" param="beaninfo.propertyDescriptors"/>
 <dsp:oparam name="outputStart">
 <table>
 <tr>
 <td>Property</td>
 <td>Type</td>
 <td>Value</td>
 <td>Readable?</td>
 <td>Writable?</td>
 <td>Required?</td>
 <td>Expert?</td>
 <td>Hidden?</td>
 <td>Preferred?</td>
 <td>Description</td>
 </tr>
 </dsp:oparam>
 <dsp:oparam name="output">
 <tr>
 <td><dsp:valueof param="element.name"/></td>
 <td><dsp:valueof param="element.propertyType.name"/></td>
 <td>
 <dsp:valueof param='<%="bean." +
 request.getParameter("element.name")%>'/>
 </td>
 <td><dsp:valueof param="element.readable"/></td>
 <td><dsp:valueof param="element.writable"/></td>
 <td><dsp:valueof param="element.required"/></td>
 <td><dsp:valueof param="element.expert"/></td>
 <td><dsp:valueof param="element.hidden"/></td>
 <td><dsp:valueof param="element.preferred"/></td>
 <td><dsp:valueof param="element.shortDescription"/></td>
 <tr>
 </dsp:oparam>
 <dsp:oparam name="outputEnd">
 </table>
 </dsp:oparam>
 </dsp:droplet>

2 Nucleus: Organizing JavaBean Components 65

 </dsp:oparam>
</dsp:droplet>

</body></html>

</dsp:page>

Dynamic Types

Often you might like to get access to information about a DynamicBean that has not yet been instantiated. For

instance, you might have a DynamicBean based on JDBC ResultSets. You want to know what properties a

ResultSet for some query might have. Using the above techniques, there is no way to do this; where would the

DynamicBeanInfo come from?

You might have a Query class or interface, which describes a query that generates a ResultSet when executed.

It would be nice to have a way to get a DynamicBeanInfo from the Query without executing it. We’d like to

use the Query (apart from its other functions) as a dynamic type: it can provide information about the dynamic

beans that it is capable of generating.

Dynamic beans provides an interface called DynamicBeanTyper. It contains a single method:

public DynamicBeanInfo getBeanInfoFromType(Object pDescription)
 throws IntrospectionException;

The purpose of this method is to return a DynamicBeanInfo from an object (such as the imagined

Query) that plays the role of a dynamic type. You register a DynamicBeanTyper by calling

DynamicBeans.registerBeanTyper(Class, DynamicBeanTyper). The class parameter is the class of a

dynamic type, not the class of a DynamicBean. In this example, it is Query.class.

After the example DynamicBeanTyper is registered, the static method

DynamicBeans.getBeanInfoFromType(Object) can be used to obtain a DynamicBeanInfo for any Query.

One final, useful twist: instances of java.lang.Class—that is, static types—act as dynamic types. In other

words, there is a DynamicBeanTyper registered for Class.class. Its function is to return a DynamicBeanInfo

that describes an instance of the given class, as analyzed by JavaBeans introspection. You might, for instance, call

DynamicBeans.getBeanInfoFromType(Date.class), and the result is a DynamicBeanInfo describing an

instance of Date. This is the same result you get by calling DynamicBeans.getBeanInfo() on an instance of

Date.

Registered DynamicBeans and Dynamic Types

By default, the Oracle ATG Web Commerce platform registers the following classes and interfaces automatically

as DynamicBeans:

• java.lang.Object

• java.util.Map

• atg.repository.RepositoryItem

• atg.userprofiling.Profile

66 2 Nucleus: Organizing JavaBean Components

• atg.servlet.DynamoHttpServletRequest (parameters are treated as properties)

• org.w3c.xml.Node (attributes and bean properties are treated as properties)

The following are automatically registered as dynamic types:

• java.lang.Class (introspection determines properties)

• java.util.Map (treated as a prototype instance of a Map bean)

Customizing the ATG Dynamo Server Admin Interface

The Oracle ATG Web Commerce platform includes ATG Dynamo Server Admin, an HTML-based interface that

lets you inspect individual components at runtime. The default interface displays a component by listing its

contained children and the values of its properties. Individual components can override this default behavior

and provide their own servlets to act as the interface for that component. These custom servlets can also

subclass the default servlet, so that it looks like the normal default servlet, possibly with some additional

information.

In order for a component to define a custom administration interface, it must implement

atg.nucleus.AdminableService. When the administration interface is asked to display a particular

component, it first checks to see if the component implements AdminableService. If it does, Nucleus calls

getAdminServlet to get the servlet that displays the component’s administration interface, then passes the

call off to that servlet. If the component does not implement getAdminServlet, Nucleus uses the default

administrative servlet to display the component and its properties in the Component Browser.

The default administrative servlet is called atg.nucleus.ServiceAdminServlet. It contains a number

of methods that can be overridden, as well as a number of methods that perform useful functions, such as

formatting object values into HTML.

Creating Administration Servlets

GenericService already implements AdminServlet by creating an instance of ServiceAdminServlet when

asked for the administration servlet. Subclasses of GenericService should override createAdminServlet.

For example:

protected Servlet createAdminServlet ()
 {
 class AdminServlet extends ServiceAdminServlet {
 public AdminServlet (Object pService) {
 super (pService, getNucleus ());
 }

 protected void printAdmin (HttpServletRequest pRequest,
 HttpServletResponse pResponse,
 ServletOutputStream pOut)
 throws ServletException, IOException
 {
 pOut.println ("<h1>This is my special admin section</h1>");
 }

2 Nucleus: Organizing JavaBean Components 67

 }

 return new AdminServlet (this);
 }

This implementation uses an inner class that extends ServiceAdminServlet. The inner class overrides

printAdmin to print out a line of HTML. The default servlet calls printAdmin to insert service-specific HTML

between the listing of child components and the listing of property values. This is the easiest way for a service to

provide its own administrative servlet.

Formatting Object Values

When a custom administrative servlet prints its output, you might want it to format object values into HTML

output. The default administrative servlet ServiceAdminServlet provides a method that can be called by

subclasses to do this formatting:

protected String formatObject (Object pObject,
 HttpServletRequest pRequest);

This formatting method takes several steps to format the object:

• It checks whether the object is a component that implements NameContextElement. If so, it returns an

anchor tag that contains a link to that component.

• It checks whether the object implements atg.nucleus.ValueFormatter. If so, it calls the object’s

formatValue() method and returns the result.

• If the object is of type java.lang.Class, it returns an anchor tag that contains a link to the API

documentation for that class.

• If the object is of type java.lang.File, it returns an anchor tag that points to that file.

• Otherwise, it uses the object’s toString() method.

The default administrative servlet uses this method to format the values of the properties that it displays.

ValueFormatter

As mentioned above, objects can customize their HTML representations in ATG Dynamo Server Admin by

implementing atg.nucleus.ValueFormatter. This interface has two methods:

public String formatValue ();
public String formatLongValue ();

If you use the Component Browser, you might notice that property values can take on two forms. In the main

page that lists all properties, only the short form of the value is shown. But when you then click on the property,

the property is shown to you in its own page. On this page, the long form of the value is shown.

For example, the short form of a Hashtable entry might simply declare that it is a Hashtable, while the long form

might display all the keys and values in the Hashtable.

68 2 Nucleus: Organizing JavaBean Components

Spring Integration

Spring is an open source component framework. Like Nucleus, Spring is based on JavaBeans.

The Oracle ATG Web Commerce platform lets you integrate existing Nucleus-based and Spring-based

applications. For example, if you have a Spring-based web application that needs to access a property of an

Oracle ATG Web Commerce user profile, you can use the integration to enable that.

The integration includes two classes:

• atg.nucleus.spring.NucleusResolverUtil enables Spring configurations to refer to Nucleus

components

• atg.nucleus.spring.NucleusPublisher enables Nucleus components to refer to Spring components

NucleusResolverUtil

The NucleusResolverUtil class contains a single static resolveName method, which attempts to resolve

the specified Nucleus path. Because Spring is unaware of Nucleus component scope, NucleusResolverUtil

first attempts to resolve the name in the current request of the current thread (which should succeed if the

component is request- or session-scoped) and if that fails, it then attempts to resolve the name in the global

Nucleus scope.

To make a Nucleus component available in Spring, you declare it in your Spring configuration XML file. For

example, to resolve the current user profile as a Spring component:

<bean name="/Profile" class="atg.nucleus.spring.NucleusResolverUtil"
 factory-method="resolveName" singleton="false">
 <constructor-arg value="/atg/userprofiling/Profile"/>
</bean>

Note: Nucleus components that do not have global scope should be specified with the singleton attribute set

to false. If singleton is set to true, Spring caches the component, which can result in the wrong instance of a

request- or session-scoped component being exposed.

NucleusPublisher

The NucleusPublisher class publishes a Spring configuration (that is, a Spring ApplicationContext)

to a Nucleus path. The NucleusPublisher appears in the specified location as a Nucleus NameContext (a

Nucleus folder) containing the JavaBeans from the Spring ApplicationContext. You can view these Spring

components in the Component Browser in ATG Dynamo Server Admin.

For example, you can have the NucleusPublisher publish an ApplicationContext to /atg/spring/

FromSpring by including the following in the Spring configuration XML:

<bean name="/NucleusPublisher" class="atg.nucleus.spring.NucleusPublisher"
 singleton="true">
 <property name="nucleusPath">
 <value>/atg/spring/FromSpring</value>
 </property>
</bean>

2 Nucleus: Organizing JavaBean Components 69

This enables Nucleus components to refer to Spring components in this ApplicationContext. For example, a

Spring component called SpringBean has this Nucleus address:

/atg/spring/FromSpring/SpringBean

Because the NucleusPublisher itself is a Spring component, it can be referred to within Nucleus as:

/atg/spring/FromSpring/NucleusPublisher

The NucleusPublisher class is not in the main Oracle ATG Web Commerce CLASSPATH, but is included in

a separate JAR file, <ATG10dir>/DAF/spring/lib/springtonucleus.jar. NucleusPublisher requires

access to the Spring classes, so the springtonucleus.jar must be added to the WEB-INF/lib directory of

the web application containing the Spring configuration to be exported.

Note: The Nucleus NameContext created by the NucleusPublisher is not be available until the web

application containing the Spring configuration has been started, so any Nucleus components that depend

on Spring components must be started up after NucleusPublisher. Therefore, NucleusPublisher has an

initialServicePaths property, which can be configured with the paths of Nucleus components to start up

after NucleusPublisher has published the Spring ApplicationContext. This property must be configured

through the Spring configuration XML file, not through a Nucleus .properties file.

Naming Conflicts

Spring names can contain slash (/) characters, which are not legal in Nucleus names (because they are used as

path separators in Nucleus addresses). Therefore, when the NucleusPublisher publishes Spring components

to Nucleus, it replaces each slash character in a component’s name with a period. For example, a Spring

component named /my/spring is named .my.spring in Nucleus.

If this character substitution results in multiple components having the same Nucleus name, the names are

differentiated by adding -2 to the name of the second component, -3 to the third, and so on. For example, if

a Spring ApplicationContext has components named .my.spring, /my/spring, and /my.spring, their

Nucleus names are .my.spring, .my.spring-2, and .my.spring-3.

70 2 Nucleus: Organizing JavaBean Components

3 Developing and Assembling Nucleus-Based Applications 71

3 Developing and Assembling

Nucleus-Based Applications

Including Oracle ATG Web Commerce’s Nucleus component framework in your J2EE application gives you

access to the personalization, commerce, and content administration features of the Oracle ATG Web Commerce

platform in applications that are portable across application servers. For example, the Quincy Funds demo

application works this way.

To facilitate development, the Oracle ATG Web Commerce platform includes an application assembly tool that

you can use to build J2EE enterprise archive (EAR) files that run Nucleus. All necessary Nucleus classes and

configuration are included in the EAR file, so you can simply deploy the application and run it. You can even

deploy the application on a machine that does not have an Oracle ATG Web Commerce installation.

In this chapter

This chapter describes how to develop and assemble J2EE applications that include Nucleus. It includes these

sections:

• Developing Applications (page 71)

• Nucleus-Based Application Structures (page 73)

• Assembling Applications (page 73)

• Changing the ATG Dynamo Server Admin Login (page 80)

• Invoking the Application Assembler Through an Ant Task (page 80)

Developing Applications

To develop Nucleus-based applications, you can use Oracle ATG Web Commerce’s development tools such

as the ATG Dynamo Server Admin. However, to access these tools, you must connect to an already-running

Nucleus-based application. Therefore, when you install the Oracle ATG Web Commerce platform, the Oracle

ATG Web Commerce installer automatically builds and deploys the Quincy Funds demo. When you run your

application server, Quincy Funds starts up automatically, and you can connect to it, as described in the ATG

Installation and Configuration Guide.

72 3 Developing and Assembling Nucleus-Based Applications

Development Mode and Standalone Mode

You can create two types of EAR files with the Oracle ATG Web Commerce application assembler, development

and standalone. Both types contain all Oracle ATG Web Commerce classes needed for the application.

The primary difference is in where the configuration files for Nucleus components are stored:

• In development mode, the application draws its Nucleus configuration information from the Oracle ATG Web

Commerce installation.

• In standalone mode, the application stores its configuration in the EAR file itself.

The two types of EAR files also differ in how they handle output files such as log files and state information.

Use development mode during the development process, when you are making frequent changes to the

application, and standalone mode only when you deploy your production site. Later, if you need to update

your production site, make changes in your Oracle ATG Web Commerce installation and then reassemble and

redeploy the standalone EAR file.

Configuration File Sources and ATG-INF

The main differences between development-mode and standalone-mode EAR files are found in the WEB-INF/

ATG-INF directory of the atg_bootstrap.war J2EE module. In this directory, both types of EAR files have a file

called dynamo.env, which defines Oracle ATG Web Commerce application environment properties.

In a development-mode EAR, the dynamo.env file contains the following entry, which tells the application to

get its configuration from the .properties and XML files in the Oracle ATG Web Commerce installation:

atg.dynamo.use-install=true

You can make configuration changes without having to rebuild the EAR file.

In a standalone EAR file, instead of using the Oracle ATG Web Commerce installation properties, the ATG-

INF directory contains directories corresponding to the Oracle ATG Web Commerce modules included in the

application. These directories store the configuration data for the modules, making the EAR file totally self-

contained.

Additionally, in a standalone EAR the atg_bootstrap.war/WEB-INF/ATG-INF directory contains a home/

localconfig subdirectory, which replicates the localconfig directory in the Oracle ATG Web Commerce

installation. This localconfig directory is added to the application’s configuration path, so that any settings

stored in localconfig in the Oracle ATG Web Commerce installation are also used by the application.

Therefore, you can deploy a standalone EAR on a machine that does not have an Oracle ATG Web Commerce

installation, although your ability to modify the application without rebuilding the EAR file (which requires an

Oracle ATG Web Commerce installation) is limited.

Output Files and ATG-Data

Development-mode EAR files write output files to the Oracle ATG Web Commerce installation. For example, log

files are written by default to the <ATG10dir>/home/logs directory.

Standalone EAR files cannot write to the Oracle ATG Web Commerce installation, inasmuch as it might not

exist. When a standalone EAR file first starts up, it creates an ATG-Data directory. The ATG-Data directory

contains subdirectories logs, pagebuild, and data, which correspond to directories of the same name in

<ATG10dir>/home. The ATG-Data directory also contains a localconfig subdirectory that is the last entry in

the configuration path. This directory is used for any configuration files written out by the EAR file itself. You can

add properties files to this directory to modify the application configuration for debugging purposes; otherwise,

3 Developing and Assembling Nucleus-Based Applications 73

you should make these changes in the Oracle ATG Web Commerce installation, then rebuild and redeploy the

EAR file.

By default, the ATG-Data directory is created in the current working directory of the Java process. If the JVM

starts up in different directories, it creates ATG-Data directories there as well. To specify a location for the

directory, set the atg.dynamo-data-dir system property. For example:

java <arguments> -Datg.dynamo.data-dir=/var/data/ATG-Data/

These directory structures apply only if you are using the default Oracle ATG Web Commerce server. For

information about using non-default servers, see Using a Non-Default ATG Server (page 78) later in this

chapter.

Nucleus-Based Application Structures

Each EAR file built by runAssembler includes the following J2EE modules:

• atg_bootstrap_ejb.jar: This module contains a single session EJB. The EJB’s class loader is used to

load the Oracle ATG Web Commerce classes needed by the application. These classes are stored in the lib

directory (at the top level of the EAR file).

• atg_bootstrap.war: This module starts up Nucleus and runs the servlet pipeline.

In addition, the EAR file typically includes one or more additional J2EE modules (generally WAR files), containing

the web applications that actually run your site. For example, the QuincyFunds.ear file includes a web

application named quincy.war.

The EAR file can optionally include Oracle ATG Web Commerce Dynamo Server Admin, which is packaged as

a web application named atg_admin.war. See Including ATG Dynamo Server Admin (page 79) for more

information.

Assembling Applications

To assemble your application to run on your application server, use the runAssembler command-line script.

This script takes a set of Oracle ATG Web Commerce application modules and assembles them into an EAR file

(or the equivalent exploded directory structure).

The basic syntax of the command follows this format:

runAssembler earfilename –m module-list

For example, if you develop your application as an application module named MyApp, and you want to assemble

an EAR file that includes your application plus the DSS and DPS modules, use the following command:

runAssembler MyApp.ear –m MyApp DSS

74 3 Developing and Assembling Nucleus-Based Applications

You do not need to specify the DPS module, because the application assembler examines the manifest file for

each application module specified, and includes any modules that the specified modules depend on. The DSS

module requires the DPS module, so it is included without being specified.

In addition to the modules containing core Oracle ATG Web Commerce functionality (such as the DSS module),

you can also include Oracle ATG Web Commerce demos and reference applications in your EAR file. For example,

to assemble an EAR file that includes the Quincy Funds demo, include DSSJ2EEDemo in the list of module for the

runAssembler command.

When runAssembler creates an EAR file, unless otherwise instructed, it copies only CLASSPATH entries,

the configuration path entries, and J2EE modules. To include other module files, specify them via the ATG-

Assembler-Import-File attribute in the module’s META-INF/MANIFEST.MF file, as shown in this example

from the DafEar.base module:

ATG-Required: DSS DAS-UI
ATG-Config-Path: config/dafconfig.jar
ATG-Web-Module: j2ee-components/atg-bootstrap.war
ATG-EJB-Module: j2ee-components/atg-bootstrap-ejb.jar
ATG-Class-Path: ../Tomcat/lib/classes.jar ../WebLogic/lib/classes.jar
 ../WebSphere/lib/classes.jar lib/classes.jar
Name: ../WebLogic
ATG-Assembler-Import-File: True

In addition, to include a standalone WAR file in an application you must provide runAssembler with the WAR

file’s URL and context root. If not provided, runAssembler creates a unique name based on the directory

where it found the WAR file. To provide the URL and context root, within your WAR file, create a META-INF/

MANIFEST.MF file as follows:

Manifest-Version: 1.0
ATG-Enterprise-Nucleus: True
ATG-Module-Uri: atg_bootstrap.war
ATG-Context-Root: /dyn
ATG-Assembler-Priority: -1

For a list of modules included in the Oracle ATG Web Commerce installation, see Appendix D, ATG Modules (page

465). This appendix also contains information about how to access the demos and reference applications.

You can also include ATG Dynamo Server Admin in your EAR file, so you can monitor and change settings in

your application. See the Including ATG Dynamo Server Admin (page 79) section later in this chapter for

information.

Command Options

The runAssembler command takes a number of command-line flags that you can use individually or in

combination to alter the output of the command. These can be supplied as follows:

runAssembler [-liveconfig] [cmd-options]
 earfilename
 [-layer layer-name] [-standalone]
 -m module-list

3 Developing and Assembling Nucleus-Based Applications 75

Ordering is significant with respect to the following command options:

• –liveconfig must follow the runAssembler command

• -standalone must precede –m

• -layer must precede –standalone and –m

The following table describes runAssembler options.

Option Description

-add-ear-file filename Includes the contents from an existing EAR file in the assembled EAR file. See

Including an Existing EAR File (page 77), below.

-classesonly Instead of assembling a complete EAR file, creates a JAR file that collapses

the JAR files and directories in the CLASSPATH into a single library.

-collapse-class-path Collapses all JAR files and directories in the CLASSPATH into a single JAR

file in the assembled EAR file. By default, these JAR files and directories are

copied separately to the EAR file’s lib directory, and placed in the EAR file’s

CLASSPATH.

-context-roots-file

filename

Specifies a Java properties file whose settings are used to override the

default context root values for any web applications included in the

assembled EAR file.

To specify the context root for a web application in this properties file, add a

line with the following format:

module-uri=context-root

where module-uri is the module URI of the web application, and

context-root specifies the context root to use.

-displayname name Specifies the value for setting the display name in the application.xml

file for the assembled EAR file.

-distributable JBoss requires that your web.xml file include the <distributable/> tag

when running in a cluster. The –distributable flag for runAssembler

automatically adds the tag to all web.xml files in an EAR as it assembles.

If the <distributable/> tag is not included, JBoss does not enable session

failover.

-jardirs Collapses all classpath entries into individual jar files.

-layer Enables one or more Named Configuration (page 31) layers for the

application. This switch can take multiple arguments, each representing a

named configuration layer. This option must immediately precede the –m

switch.

-liveconfig Enables the liveconfig configuration layer for the application. For more

information, see the ATG Installation and Configuration Guide.

76 3 Developing and Assembling Nucleus-Based Applications

Option Description

-nofix Instructs runAssembler not to fix servlet mappings that do not begin with

a leading backslash.

By default the runAssembler command attempts to fix any servlet

mappings defined in a web.xml that do not start with a leading forward

slash (/). JBoss does not allow servlet mappings without starting slashes, so

runAssembler converts this:

<url-pattern>foo.bar.baz</url-pattern>

to

<url-pattern>/foo.bar.baz</url-pattern>

The runAssembler command does ignore mappings that begin with * or

with white space. For example, it does not change this:

<url-pattern>*.jsp</url-pattern>

-overwrite Overwrites all resources in the existing EAR file. By default, resources in the

assembled EAR are only overwritten if the source file is newer, to reduce

assembly time.

-pack Packs the assembled EAR file into the archived J2EE enterprise archive

format. By default, the EAR is assembled in an exploded, open-directory

format.

-prependJars Includes the comma separated list of jar files on the classpath. This

attribute is useful for applying hot fixes. For example:

runAssembler –prependJars hotfix1.jar,hotfix2.jar

myEarFile.ear –m DCS

Note: Special characters appearing in jar file names might cause that file to

be ignored. When naming files, use only alphanumeric characters and the

underscore.

-run-in-place JBoss only; this option should be used only in development environments.

When assembling the EAR file with -run-in-place, runassembler does

not copy classes.jar included in the application, but refers to the Oracle

ATG Web Commerce installation for these resources. If during development

you make changes to classes.jar in the Oracle ATG Web Commerce

installation, you do not need to reassemble the EAR in order to see the

changes.

-server servername Specifies the value for the atg.dynamo.server.name variable for this

EAR file. This variable determines which Oracle ATG Web Commerce server

directory is used for configuration and logging. If this option is not specified,

the default server directory is used. For more information about Oracle

ATG Web Commerce server directories, see Using a Non-Default ATG

Server (page 78) in this chapter.

3 Developing and Assembling Nucleus-Based Applications 77

Option Description

-standalone Configures the assembled EAR in standalone mode, so that it contains all

application resources, including Nucleus configuration files, and does not

refer to the Oracle ATG Web Commerce installation directory. By default, the

EAR is assembled in development mode, where only classes, libraries, and

J2EE modules are imported to the EAR file, and Nucleus configuration and

other resources are used directly from the Oracle ATG Web Commerce install

directory.

Specifying Configuration Layers on Server Startup

In some situations, you might want to deploy the same EAR file across various servers, where each server has

different configuration requirements. For example, two servers that run Oracle ATG Web Commerce Content

Administration both need to deploy to a staging site; however, one requires asset preview, while the other does

not. You can assemble a single EAR file for both servers by setting the –layer switch as follows:

-layer preview staging

When you start the applications, you can disable asset preview on one by explicitly specifying the configuration

layers you wish to activate on it—in this case staging only. For example, you can run the JBoss run script so it

activates only the staging configuration layer as follows:

-Datg.dynamo.layers=staging

Including an Existing EAR File

When you assemble an EAR file, the application modules you specify can contain EAR files, WAR files, and other

J2EE entities. The application assembler automatically includes these, as well as the Nucleus resources used by

the application modules themselves.

You can also have the application assembler include an existing EAR file that is not part of a module. To do this,

invoke the runAssembler command, and use the –add-ear-file flag to specify the EAR file to include. For

example:

runAssembler –add-ear-file resources.ear MyApp.ear –m MyApp DSS

To include more than one existing EAR file, use a separate –add-ear-file flag before the name of each EAR

file.

Note: Only use this option to include existing EAR files that are not part of Oracle ATG Web Commerce

application modules. To include an EAR file that is part of an Oracle ATG Web Commerce application module, just

include the module name in the list of modules specified with the –m flag. Including the whole module ensures

that any Nucleus resources that the existing EAR file depends on are included in the assembled EAR file.

78 3 Developing and Assembling Nucleus-Based Applications

Including Web Services

You can include any of Oracle ATG Web Commerce’s prepackaged web services in an assembled EAR file by

including the module that contains the desired services. For example, to include the Commerce services, specify

the DCS.WebServices module when you invoke the runAssembler command. To include web services you

created through the Web Service Creation Wizard, use the runAssembler flag –add-ear-file to specify the

EAR file that contains the service.

Using a Non-Default ATG Server

If you run the application assembler without specifying a server name, the resulting application uses the default

Oracle ATG Web Commerce server. This means that the application gets site-specific configuration settings from

standard configuration directories, such as <ATG10dir>/home/localconfig.

If the application is assembled in development mode, the localconfig directory in the Oracle ATG Web

Commerce installation is set as the last entry in the application’s configuration path. If the application is in

standalone mode, the assembler copies that directory from the Oracle ATG Web Commerce installation into the

atg_bootstrap.war/WEB-INF/ATG-INF directory in the EAR file (as described in Development Mode and

Standalone Mode (page 72)). This directory is added to the configuration path just before the ATG-Data/

localconfig directory, which is the last entry in the configuration path . For output files, the application uses

the logs and pagebuild subdirectories in the <ATG10dir>/home directory (in development mode) or the

ATG-Data/home directory (in standalone mode).

If you configure additional Oracle ATG Web Commerce server instances (see the ATG Installation and

Configuration Guide for information), you can build your application with a particular server’s configuration.

The effect of specifying a server differs depending on whether you are assembling a development-mode or

standalone EAR file.

Specifying a Server for a Development-Mode EAR File

To build a development-mode EAR file that uses a server, run the application assembler with the –server flag.

For example:

runAssembler –server myServer MyApp.ear –m MyApp DSS

The localconfig directory for the server is appended to the application’s configuration path. This means

that the last two entries in the configuration path are the standard localconfig (<ATG10dir>/home/

localconfig) followed by the server-specific localconfig—for example, <ATG10dir>/home/servers/

myServer/localconfig.

For output files, the application uses the logs and pagebuild subdirectories in the <ATG10dir>/home/

servers/servername directory. You should not use the same server for more than one EAR file. If multiple EAR

files are using the same output directories, errors or deadlocks can result.

Specifying a Server for a Standalone EAR File

To build a standalone-mode EAR file that uses a non-default server, you can run the application assembler with

the –standalone and –server flags. For example:

runAssembler –standalone –server myServer MyApp.ear –m MyApp DSS

3 Developing and Assembling Nucleus-Based Applications 79

Note: If your production environment is clustered, do not specify the Oracle ATG Web Commerce server when

you build the EAR. Instead, omit the –server flag and create a single EAR that can be deployed to all servers in

the cluster. When you run the application, supply the Java argument -Datg.dynamo.server.name= server-

name to specify the named instance of each server.

There are four localconfig directories at the end of the application’s configuration path. They appear in the

following order:

• atg_bootstrap.war/WEB-INF/ATG-INF/localconfig (a copy of <ATG10dir>/home/localconfig)

• ATG-Data/localconfig

• atg_bootstrap.war/WEB-INF/ATG-INF/home/servers/

servername/localconfig (a copy of <ATG10dir>/servers/

servername/localconfig)

• ATG-Data/servers/servername/localconfig

For output files, the application uses the logs and pagebuild subdirectories in the ATG-Data/

servers/servername directory. You should not use the same server for more than one EAR file. If multiple EAR

files are using the same output directories, errors or deadlocks can result.

Including ATG Dynamo Server Admin

To be able to administer your application through ATG Dynamo Server Admin, you must specify the

DafEar.Admin module when you run the application assembler. For example:

runAssembler QuincyFunds.ear –m DSSJ2EEDemo DafEar.Admin

Note: The DafEar.Admin module must precede any custom modules that are included in the module list.

The ATG Dynamo Server Admin user interface is included in the EAR file as a web application, atg_admin.war.

This WAR file includes all pages that comprise ATG Dynamo Server Admin . Its web.xml file declares a

NucleusProxyServlet that points to the Nucleus component /atg/dynamo/servlet/adminpipeline/

AdminHandler:

<servlet>
 <servlet-name>AdminProxyServlet</servlet-name>
 <servlet-class>atg.nucleus.servlet.NucleusProxyServlet</servlet-class>
 <init-param>
 <param-name>proxyServletPath</param-name>
 <param-value>/atg/dynamo/servlet/adminpipeline/AdminHandler</param-value>
 </init-param>
 <load-on-startup>2</load-on-startup>
</servlet>

<servlet-mapping>
 <servlet-name>AdminProxyServlet</servlet-name>
 <url-pattern>/admin/*</url-pattern>
</servlet-mapping>

In this configuration, the ContextPath is /dyn and the ServletPath is /admin, so the URL for accessing the

ATG Dynamo Server Admin server is:

80 3 Developing and Assembling Nucleus-Based Applications

http://{hostname}:{port}/dyn/admin/

To access ATG Dynamo Server Admin, use the listen port for your application server. For example, if an Oracle

ATG Web Commerce application runs on JBoss with a listen port of 8080, you can access ATG Dynamo Server

Admin on your machine at http://localhost:8080/dyn/admin.

Note: Your database must be running in order for you to use the Administration UI. If necessary, you can

override this requirement by copying /atg/dynamo/security/AdminUserAuthority.properties from the

<ATG10dir>\DAS\config\config.jar file to <ATG10dir>\home\localconfig\atg\dynamo\security.

Changing the ATG Dynamo Server Admin Login

By default, ATG Dynamo Server Admin requires password authentication to run. The initial user name and

password for this server are set as follows:

• User Name: admin

• Password: your organization sets the password while using the Configuration and Installation Manager (CIM)

utility to configure the server. See information about CIM in the ATG Installation and Configuration Guide.

Users who are members of the Systems Administrators group can modify the user name and password through

the ATG Control Center. If the default administrative account has been removed or you lose the password, you

can reset the user name and password to the default values.

For more information about modifying the default user name and password and creating user accounts and

groups, see Managing Access Control (page 329) in this guide.

Logging Attempts to Access the Administration Server

As a precaution, you might want to log information about attempts to log in to ATG Dynamo Server Admin,

such as the IP address from which the login originated. Logging this information can alert you to unauthorized

attempts to gain access to your Nucleus-based applications, or simply allow you to track usage of the Admin UI.

The /atg/dynamo/servlet/adminpipeline/AuthenticationServlet component has two properties that

control what login information is logged:

• logFailedAuthentications: If true, logs failed attempts to log in (defaults to true).

• logSuccessfulAuthentications: If true, logs all successful authentications (defaults to false). Setting

this to true causes a great deal of logging information, because each page request is logged.

Invoking the Application Assembler Through an Ant Task

The Oracle ATG Web Commerce platform includes two Ant tasks to simplify invoking the application assembler

from within Ant build files:

3 Developing and Assembling Nucleus-Based Applications 81

• CreateUnpackedEarTask builds an unpacked (exploded) EAR file

• PackEarFileTask takes an unpacked EAR file and packages it in a packed (unexploded) EAR file

The classes for these Ant tasks are available as part of your Oracle ATG Web Commerce platform installation, in

the JAR file located at <ATG10dir>/home/lib/assembler.jar. This library contains all the supporting classes

necessary to run the tasks.

CreateUnpackedEarTask

Class: atg.appassembly.ant.CreateUnpackedEarTask

Description

This Ant task invokes the application assembler, which combines Oracle ATG Web Commerce platform libraries,

Nucleus component configuration, J2EE applications, and J2EE application components to create a single J2EE

application, in the form of an unpacked (open-directory) EAR file.

Required Task Parameters

Attribute Description

destinationFile Specifies the path of the EAR file to be created.

dynamoModules Specifies the Oracle ATG Web Commerce modules to include in the EAR file, as a

comma-delimited string.

dynamoRoot Specifies the path to the Oracle ATG Web Commerce installation directory.

Optional Task Parameters

Attribute Description

addEarFile Specifies an existing EAR file whose contents are added to the assembled EAR

file.

collapseClasspath If true, the JAR files and directories in the CLASSPATH are collapsed into a

single JAR file in the assembled EAR file.

The default is false.

contextRootsFile Specifies a Java properties file to be used to override the context-root values for

any web applications included in the assembled EAR file. In this properties file,

each line has the format:

module-uri=context-root

This assigns the specified context root to the web application indicated by the

module URI.

82 3 Developing and Assembling Nucleus-Based Applications

Attribute Description

displayName Specifies the value to be used for the <display-name> tag in the

application.xml file in the assembled EAR file.

displayVariable Specifies the X Window System variable declaring where any X display should

be sent. For example, :0.0.

dynamoEnvPropsFile Specifies a file that supplies Oracle ATG Web Commerce environment properties

to be added to dynamo.env in the assembled EAR file.

layer Enables one or more Named Configuration (page 31) layers for the application.

This switch can take multiple arguments, each representing a named

configuration layer. This option must immediately precede the –m switch.

liveConfig If true, liveconfig mode is enabled in the assembled EAR file.

The default is false.

overwrite If true, overwrites an existing EAR file; if false, stops processing if the EAR file

already exists.

The default is false (do not overwrite.

prependJars Includes the comma separated list of jar files on the class path. This attribute is

useful for applying hot fixes. For example:

runAssembler –prependJars hotfix1.jar,hotfix2.jar

myEarFile.ear –m DCS

Note: Special characters appearing in jar file names can cause that file to be

ignored. When naming files, it is best to use only alphanumeric characters and

the underscore.

serverName If set, specifies the Oracle ATG Web Commerce server (for localconfig, etc.) to

be used by the assembled EAR file. If unset, the default server is used.

standalone If true, the EAR file is created in standalone mode, where all necessary

resources are imported into the resulting EAR file, and the EAR file does not

reference the Oracle ATG Web Commerce installation directory. If false, a

development-mode EAR file is created, where Nucleus configuration and

other runtime resources are used directly from the Oracle ATG Web Commerce

installation.

The default is false (development mode).

Example

To use CreateUnpackedEarTask in an Ant build file, you must first declare it, using the taskdef element:

<taskdef name="assemble-jar"
 classname="atg.appassembly.ant.CreateUnpackedEarTask"
 classpath="C:/ATG/ATG10.2/home/lib/assembler.jar">

3 Developing and Assembling Nucleus-Based Applications 83

You can then create a target that assembles an Oracle ATG Web Commerce application EAR file:

<target name="create-quincy-ear">
 <-- It's a good idea to delete any old directories
 before assembling... -->
 <delete dir="QuincyFundsEar"/>

 <assemble-jar dynamoRoot="c:/ATG/ATG10.2"
 dynamoModules="DSSJ2EEDemo,DafEar.Admin"
 destinationFile="QuincyFundsEar"
 overwrite="true" />
</target>

PackEarFileTask

Class: atg.appassembly.ant.PackEarFileTask

Description

This Ant task takes an EAR file in exploded (open-directory) format, and packs it into the archive-file format

specified by the J2EE standard.

Required Task Parameters

Attribute Description

sourceFile Specifies the staging directory containing the unpacked application.

destinationFile Specifies the filename for the packed EAR file.

Example

To use PackEarFileTask in an Ant build file, you must first declare it, using the taskdef element:

<taskdef name="pack-ear"
 classname="atg.appassembly.ant.PackEarFileTask"
 classpath="C:/ATG/ATG10.2/home/lib/assembler.jar">

This example is a target that uses CreateUnpackedEarTask to create the application in unpacked format, and

then uses the PackEarFileTask to pack the application in an EAR file:

<target name="create-quincy-ear">
 <-- It's a good idea to delete any old directories
 before assembling... -->
 <delete dir="QuincyFundsEar"/>

 <assemble-jar dynamoRoot="C:/ATG/ATG10.2"
 dynamoModules="DSSJ2EEDemo,DafEar.Admin"
 destinationFile="QuincyFundsEar"

84 3 Developing and Assembling Nucleus-Based Applications

 overwrite="true" />

 <pack-ear sourceFile = "QuincyFundsEar"
 destinationFile = "Quincy.ear" />

 <-- Delete the open directory, and keep the packed EAR file. -->
 <delete dir="QuincyFundsEar"/>

</target>

4 Working with Application Modules 85

4 Working with Application Modules

Oracle ATG Web Commerce products are packaged as separate application modules. An application module

groups application files and configuration files into a discrete package for deployment. Application modules

exist in the Oracle ATG Web Commerce installation as a set of directories defined by a manifest file. When you

assemble an application, these modules are analyzed to determine the CLASSPATH, configuration path, and

inter-module dependencies.

Application modules provide the following core features:

• Application components are packaged in a simple, modular directory structure.

• Modules can reference other modules on which they depend, and which can be automatically loaded.

• The correct class path, configuration path, and main Java class for a given set of modules are dynamically

calculated for both client and server.

• Updated modules are automatically downloaded from server to client.

The basic module and update mechanisms rely on the standard JAR manifest format; for information, see the

Oracle Web site.

In this chapter

This chapter includes the following topics:

• Using ATG Modules (page 85)

• Creating an Application Module (page 86)

• Adding Modules to the ATG Control Center (page 90)

• Launching a Client Application Against Remote Modules (page 91)

Using ATG Modules

An Oracle ATG Web Commerce application runs in your application server’s J2EE container. When you assemble

the application, resources such as class libraries, web applications, and EJB modules are copied from the Oracle

ATG Web Commerce installation into an EAR file. You deploy and run the EAR file on the application server. If

you make changes to resources in your Oracle ATG Web Commerce installation, you might need to recreate and

redeploy the EAR file to see the changes reflected.

86 4 Working with Application Modules

Development versus Standalone Modes

If you assemble an EAR file in development mode, the application draws configuration information for Nucleus

components from properties files in the Oracle ATG Web Commerce installation. Most of these properties

files are stored in application modules; for example, the directory <ATG10dir>/DSSJ2EEDemo has a config

subdirectory, which includes properties files for Nucleus components used by the Quincy Funds application.

If you assemble an EAR file in standalone mode, the properties files that configure your Nucleus components are

imported into the EAR file and stored in directories that correspond to the Oracle ATG Web Commerce modules

included in the application.

Creating an Application Module

When you develop a new application, package your class and configuration files into a new module in the

Oracle ATG Web Commerce installation. To create a module:

1. Create a module directory within your Oracle ATG Web Commerce installation.

2. Create a META-INF directory within the module directory.

3. Create a manifest file named MANIFEST.MF in the module’s META-INF directory. The manifest contains

metadata that describes the module.

Each of these steps is described in more detail in the sections that follow.

Application Module Directory Structure

An Oracle ATG Web Commerce installation must have a single module root directory that contains all available

module directories. The module root corresponds to the <ATG10dir> or DYNAMO_ROOT directory in the Oracle

ATG Web Commerce installation.

Each application module has its own subdirectory under the module root. The application module name and

module directory name are identical. If a module is not directly under the module root, the module name uses

this format:

parent-dir.module-dir

For example, a module located at <ATG10dir>/MyModule is named MyModule, and a module located at

<ATG10dir>/CustomModules/MyModule is named CustomModules.MyModules.

Each module directory and its subdirectories can contain any number of module resource files, in any desired

organization. Module resources can include any files that you wish to distribute, including:

• EAR files for J2EE applications

• WAR files for web applications

• EJB-JAR files for Enterprise JavaBeans

4 Working with Application Modules 87

• JAR files of Java classes

• Platform-dependent libraries

• HTML documentation

• Configuration files

Application Module Manifest File

A module must include a META-INF directory containing the manifest file MANIFEST.MF. For example, the

manifest used by the DPS module is located at:

<ATG10dir>/DPS/META-INF/MANIFEST.MF

Manifest Attributes

You can set a number of manifest attributes to specify the module’s environment and resources:

Manifest attribute Description

ATG-Assembler-Class-Path The CLASSPATH to use for the assembled EAR file. This attribute

overrides attribute ATG-Class-Path. If no value is set,

ATG-Class-Path is used.

ATG-Assembler-Skip-File Files to exclude from the assembled EAR file. By excluding unnecessary

files, you can reduce the size of the EAR file.

ATG-cfgNameConfig-Path The path to the directory that contains the configuration files for the

named configuration layer cfgName. These configuration files are

appended to the configuration path when the named configuration

layer is enabled by the -layer switch. Paths are relative to the module’s

root directory.

ATG-Class-Path A space-delimited set of paths to module resources that contain classes

required by this module, either .jar files or directories. As each module

is processed, the Oracle ATG Web Commerce platform adds the ATG-

Class-Path value to the beginning of the EAR file’s CLASSPATH.

Paths are relative to the module’s root directory. These libraries and

directories of classes are imported into the lib directory of the

assembled EAR file, and added to the CLASSPATH of the EAR-level class

loader.

ATG-Client-Class-Path A space-delimited set of paths to module resources that contain classes

required by the module’s client-side features.

ATG-Client-Help-Path A space-delimited set of paths to module resources that provide Java

Help help-sets to the module’s client application. For example, the DPS

module has this value for the ATG Control Center help set:

help/dps_ui_help.jar

88 4 Working with Application Modules

Manifest attribute Description

ATG-Config-Path A space-delimited set of paths to module resources that provide

Nucleus configuration files needed by the module’s application

components. These can be .jar files or directories.

ATG-EAR-Module One or more EAR files for this Oracle ATG Web Commerce module whose

J2EE modules are to be included in the assembled application.

ATG-EJB-Module One or more EJB modules for this Oracle ATG Web Commerce module to

include in the assembled application.

ATG-LiveConfig-Path A space-delimited set of paths to module resources that provide

Nucleus configuration files. These configuration files are appended to

the configuration path when you enable the liveconfig configuration

layer.

Paths are relative to the module’s root directory. For more information

about the liveconfig configuration layer, see the ATG Installation and

Configuration Guide.

ATG-Nucleus-Initializer A Nucleus pre-initializer required for this module, the name of a class

that implements interface atg.applauncher.

initializer.Initializer. This class must be in the CLASSPATH

specified by attributes ATG-Class-Path or

ATG-Assembler-Class-Path. Before Nucleus starts in the assembled

application EAR file, the initialize() method for each of the named

classes is invoked.

ATG-Required A space-delimited set of module names, specifying modules on which

this module depends. If you specify this module when you run the

application assembler, the modules listed here also are included in the

application.

When the application starts, the manifests of the modules listed here

are processed before the current module’s, in least-dependent to most-

dependent order .

Note: You should usually set this attribute to include DSS.

ATG-Web-Module One or more web applications to include in the assembled application

for this Oracle ATG Web Commerce module.

Individual Module Resource Entries

A module’s manifest can contain one or more entries for individual resources. The manifest must include an

entry for each resource that is automatically downloaded to the client. For example:

Name: help/das_ui_help.jar
ATG-Client-Update-File: true
ATG-Client-Update-Version: 3.0.2 build 42

4 Working with Application Modules 89

At a minimum, a resource entry must set ATG-Client-Update-File to true. The following table shows all

attributes that can be set for each resource:

Resource attribute Description

ATG-Assembler-Import-File Optional, specifies whether to copy the resource into EAR files.

ATG-Client-Update-File Required, this attribute must be set to true to enable auto-

downloading of the file.

SHA-Digest Optional, a SHA digest of the file in Base-64 form, permitting checking

of the resource’s version and integrity.

MD5-Digest Optional, a MD5 digest in Base-64 form, permitting checking of the

resource’s version and integrity.

ATG-Client-Update-Version Optional, a version string that specifies the resource’s version,

overriding consideration any SHA-Digest or MD5-Digest hash digest

attributes that might be present.

Including ATG-Web-Module

If you include ATG-Web-Module in your module’s MANIFEST.MF, you must declare the ATG-context-root

and ATG-Module-uri for those web modules in the web application’s own MANIFEST.MF file; otherwise, those

settings are not correct.

1. Create a META-INF/MANIFEST.MF file in the top level of the web application’s WAR file.

2. Add the following lines:

Manifest-Version: 1.0

ATG-Module-Uri: myModule.war

ATG-Context-Root: /myContextRoot

The next time the application is assembled, it uses the assigned values.

Accessing Module File Resources

Application module code on the server can access file resources relative to the module root by using the

appModuleResource expression. The value of this expression is evaluated at runtime, so it always maps to a

location relative to the current location of the module.

The syntax for this expression is:

{appModuleResource?moduleID=module-name&resourceURI=relative-path}

For example, to set the value of a property named myFile to a file called resource.txt in the lib

subdirectory of the module MyModule:

90 4 Working with Application Modules

myFile={appModuleResource?moduleID=MyModule&resourceURI=lib/resource.txt}

Creating an Application Module JAR File

You can package an application module as a JAR file, using the module’s manifest file as the JAR file’s manifest,

by invoking the jar command with the m option flag. For example, if you have a module’s resources and

manifest file in your /work/MyModule directory, you can make a JAR file named mymodule.jar for the module

with this command:

jar cvfm mymodule.jar MANIFEST.MF -C /work/MyModule .

Packaging the module into a single file makes it easier to copy the module to multiple Oracle ATG Web

Commerce installations. To add the module to an Oracle ATG Web Commerce installation, unjar the file in the

<ATG10dir> directory; this installs the module in the appropriate place in the directory structure. You might

need also to copy HTML files into your web server document root directory.

Adding Modules to the ATG Control Center

If you want your module to appear in the Components window of the ATG Control Center, add the following

elements to your module:

• CONFIG.properties File (page 90)

• Module Component (page 91)

• ModuleManager Entry (page 91)

The content of each of these elements is described below.

CONFIG.properties File

Create a CONFIG.properties file in your module’s config subdirectory. This file labels and configures a

configuration layer in the ATG Control Center. You can set the following properties:

Property Description Example

defaultForUpdates If true, changes made to components are made

in this configuration layer by default. This should

typically be set to false, so that localconfig

remains the default update layer.

false

readOnly If true, locks this configuration layer, preventing

users from editing it.

true

4 Working with Application Modules 91

Property Description Example

name The display name to use in the ATG Control Center. Cheese Grater

module The module name. CheeseGrater

Module Component

In the config/atg/modules directory of your module, create a Nucleus component of class

atg.service.modules.Module. Give it the same name as your module name. This component has a

properties file like this:

$class=atg.service.modules.Module
moduleName=CheeseGrater

This creates a component with a Nucleus address of /atg/modules/CheeseGrater of class

atg.service.modules.Module with the moduleName property set to CheeseGrater.

ModuleManager Entry

Add your module’s name to the modules property of the /atg/modules/ModuleManager component. Create

a ModuleManager.properties file in your module’s config/atg/modules directory with the following

property:

modules+=CheeseGrater

This adds the CheeseGrater component to the modules list of the ModuleManager and presents your module

in the ATG Control Center’s list of modules.

Launching a Client Application Against Remote Modules

The client version of the ATG Control Center or any other ATG client application is launched against the set of

Oracle ATG Web Commerce modules in a development-mode EAR file running on a remote server.

The client launcher displays a dialog box that prompts for the hostname, port, username, and password. The

hostname and port are used to resolve an RMI service on the server, which in turn provides the client with HTTP

URLs for remote downloading of module and system resources. The username and password are used for basic

HTTP authentication of the download.

The client then:

1. Obtains the list of modules running on the server, and their server-side manifests.

2. Determines the ATG-Client-Update-Directory manifest attribute of the main module(s). This is taken

as the name of a client-side module root subdirectory, immediately below the directory where the client

92 4 Working with Application Modules

launcher started. It is typically version-specific (such as 10.2) to permit the client to maintain multiple

downloaded versions of the software at the same time.

3. For each server module, examines whether that module exists in the client module-root and loads its client-

side manifest if it is found.

4. Compares the entries in the server manifest marked as ATG-Client-Update-

File: true with entries in the client manifest of previously downloaded files. It determines a list of all

module resources that need downloading, either because they do not exist on the client or because the client

versions or digests do not match those on the server.

5. Requests the user to confirm downloading, if the list is not empty.

6. Downloads the appropriate server resources.

When this procedure completes successfully, the client-side module root is in effect a mirror of the server-side

module root, but a selective one, covering only resources that were marked for downloading in the manifest.

The client application is then launched within a custom class loader, using the same set of modules as on the

server, but employing the ATG-Client-Class-Path and ATG-Client-Main-Class manifest attributes

instead of ATG-Class-Path and Main-Class.

Synchronization of Client and Server

For each file to be downloaded:

1. The client manifest entry is deleted and the client manifest is saved. This ensures that a crash does not result

in a manifest inaccurately stating that a partially downloaded file exists with such-and-such a digest hash.

2. The file is downloaded from the server archive to its corresponding location in the client archive.

3. The server manifest entry is copied to the client manifest and the client manifest is saved again.

After the files are downloaded, the main attributes of the server manifest are copied to the client manifest

on each connection attempt, regardless of whether any files are downloaded or not. Because files are never

removed from the client side, a single client can work with servers whose manifests have a common superset of

files, without constant removal and re-updating of files.

5 Creating and Using ATG Servlet Beans 93

5 Creating and Using ATG Servlet

Beans

You can use the dsp:droplet tag to embed the contents of one JSP file into another HTML file. Most

applications, however, require some way to generate JSP from a Java object. The dsp:droplet tag also lets you

do this, by referring to a Nucleus component rather than another JSP file. In this case, the JSP generated by the

Nucleus component is embedded into the JSP. A Nucleus component used in this way is called an Oracle ATG

Web Commerce servlet bean.

The ATG Page Developer's Guide describes how to use the servlet beans that are included with the Oracle ATG

Web Commerce platform.

In this chapter

This chapter explains how to create and use your own servlet beans, and includes the following topics:

• Creating Custom Servlet Beans (page 93)

• Using Custom Servlet Beans with the ATG Control Center (page 105)

• Resolving Component Names (page 107)

Creating Custom Servlet Beans

By using the dsp:droplet tag with a bean attribute, you can embed the output of a Java servlet (an

Oracle ATG Web Commerce servlet bean) in a JSP. JSP generation is performed according to the standard

Java Servlet specifications. This means that Oracle ATG Web Commerce servlet beans must implement the

javax.servlet.Servlet interface.

Oracle ATG Web Commerce servlet beans have access to all the parameters visible to the dsp:droplet tag.

Oracle ATG Web Commerce servlet beans also have access to APIs that give them the same kind of valueof

functionality available to JSPs.

This section explains how to create and use Oracle ATG Web Commerce servlet beans in JSPs. The next section

explains the functions of ten standard Oracle ATG Web Commerce servlet beans that are included in the Oracle

ATG Web Commerce platform, which can handle common design issues in a web application.

This section covers the following topics:

• Simple ATG Servlet Bean Example (page 94)

94 5 Creating and Using ATG Servlet Beans

• ATG Servlet Beans and Servlets (page 95)

• Passing Parameters to ATG Servlet Beans (page 96)

• Displaying Open Parameters in ATG Servlet Beans (page 97)

• Setting Parameters in ATG Servlet Beans (page 98)

• Local Parameters (page 99)

• Separating JSP Code and Java Code (page 99)

• Object Parameter Values (page 101)

• Property Parameter Values (page 102)

• Processing Servlet Beans (page 103)

• Limitations in Custom Servlet Beans (page 104)

Simple ATG Servlet Bean Example

The following is a simple example of using an Oracle ATG Web Commerce servlet bean to produce JSP code

within a page.

Create the following Oracle ATG Web Commerce servlet bean in a file named DSBTest.java and save it to

<ATG10dir>/home/locallib:

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;
import atg.servlet.*;

public class DSBTest extends DynamoServlet {
 public DSBTest () {}
 public void service (DynamoHttpServletRequest request,
 DynamoHttpServletResponse response)
 throws ServletException, IOException
 {
 ServletOutputStream out = response.getOutputStream ();
 out.println ("<h1>I am generated by a java object.</h1>");
 }
}

Define <ATG10dir>/DAS/lib/classes.jar in your CLASSPATH, and compile DSBTest.class. Create an

instance of it as a Nucleus component:

1. In the Components by Path task area, create a folder called test.

2. Click New Component.

3. Select the Generic Component template and click OK.

4. In the Class field, enter the class name, DSBTest.

5 Creating and Using ATG Servlet Beans 95

5. Save the component to the test directory, and click Finish.

Now you can access the component from a JSP. In the J2EE Pages task area, create a JavaServer Page named

dsbtest.jsp in a running application. For example, if you are running the ATG Adaptive Scenario Engine, save

this file in the QuincyFunds application.

Add this text to dsbtest.jsp:

<%@ taglib uri="/dspTaglib" prefix="dsp" %>
<dsp:page>

<html>
<head>
 <title>DSBtest</title>
</head>

<body>
<h1>DSB Test </h1>

<p>From a java object:

<p>Did it work?

</body>
</html>

</dsp:page>

Now embed the DSBTest servlet bean:

1. Move the insertion point after the <p>From a java object: line.

2. Click Insert Servlet Bean.

3. Click By Path.

4. Select the /test/DSBTest component and click OK.

The Document Editor inserts the following tag:

<dsp:droplet name="/test/DSBTest">

</dsp:droplet>

5. Click Preview to save and view the /test/dsbtest.jsp file. When you access this page, you should see the

output of the ATG servlet bean inserted into the JSP.

Notice how this example uses the dsp:droplet tag. When you embed an ATG servlet bean, you use a name

attribute that specifies the name of the Nucleus component to embed. Nucleus finds the component, makes

sure that it implements Servlet, then hands the request to the component to satisfy the dsp:droplet tag.

To make the /test/DSBTest component visible in the Dynamic Element Editor, you can use the

dsp:importbean tag to import the component into the scope of your page.

ATG Servlet Beans and Servlets

In the previous example, the DSBTest servlet was a subclass of DynamoServlet. Its service method took

DynamoHttpServletRequest and DynamoHttpServletResponse objects as parameters.

96 5 Creating and Using ATG Servlet Beans

These interfaces are subclasses of standard servlet interfaces. DynamoHttpServletRequest extends

HttpServletRequest and adds several functions that are used to access ATG servlet bean functionality. The

DynamoHttpServletResponse extends HttpServletResponse and also adds a couple of useful functions.

The DynamoServlet class implements the javax.servlet.Servlet interface. It passes requests to the

service method by passing a DynamoHttpServletRequest and DynamoHttpServletResponse as

parameters.

The DynamoServlet class extends atg.nucleus.GenericService, which allows an ATG servlet bean to act as

a Nucleus component. This means that the ATG servlet bean has access to logging interfaces, can be viewed in

the Component Browser, and has all the other advantages of a Nucleus service.

A servlet invoked with the DSP tag library <dsp:droplet name=...> tag need not be a subclass of

DynamoServlet; it only needs to implement the javax.servlet.Servlet interface. Any servlets that you

write for other application servers can be used inserted in JSPs with DSP tag library tags. However, those servlets

lack access to all other facilities available to Nucleus components. If you write ATG servlet beans from scratch,

the DynamoServlet class provides an easier starting point.

Passing Parameters to ATG Servlet Beans

You can pass parameters to an ATG servlet bean just as you do to an embedded JSP. For example, the

following passes the storename parameter with a value of Joe's Hardware to the ATG servlet bean /test/

DSBStoreTest:

<%@ taglib uri="/dspTaglib" prefix="dsp" %>
<dsp:page>

<html>
<head><title>DSB Store Test</title></head>
<body><h1>DSB Store Test</h1>

<dsp:droplet name="/test/DSBStoreTest">
 <dsp:param name="storename" value="Joe's Hardware"/>
</dsp:droplet>

</body></html>

</dsp:page>

You can access these parameters with the getParameter() call found in HttpServletRequest, as in the

following ATG servlet bean, DSBStoreTest.java, which prints out a header that includes the storename

parameter:

public void service (DynamoHttpServletRequest request,
 DynamoHttpServletResponse response)
 throws ServletException, IOException
{
 String storename = request.getParameter ("storename");
 if (storename == null) storename = "No-Name's";

 ServletOutputStream out = response.getOutputStream ();
 out.println ("<h1>Welcome to " + storename + "</h1>");
}

5 Creating and Using ATG Servlet Beans 97

If the parameter is not defined, getParameter()returns null, so your code should be prepared for that

situation.

Your ATG servlet bean can access any parameter that is visible to the dsp:droplet tag calling the ATG servlet

bean. This includes parameters passed directly to the ATG servlet bean, as well as any parameters visible to the

JSP containing the dsp:droplet tag.

Because getParameter() can return only Strings, this method should be used only for parameters that are

not open parameters. The next sections describe a more general way to deal with parameters, both simple and

open.

Displaying Open Parameters in ATG Servlet Beans

The previous section mentioned that, although it is possible to pass open parameters to ATG servlet beans,

those parameters should not be read with the standard getParameter() method. In fact, it is unlikely that your

ATG servlet bean wants to see the actual value of an open parameter. In most situations, an ATG servlet bean

wants to output the value of an open parameter. To do this, use the serviceParameter method of the request,

as in the following example:

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;
import atg.servlet.*;

public class DSBTest2 extends DynamoServlet {
 public DSBTest2 () {}
 public void service (DynamoHttpServletRequest request,
 DynamoHttpServletResponse response)
 throws ServletException, IOException
 {
 ServletOutputStream out = response.getOutputStream ();
 out.println ("Here's the value of the parameter 'storename':");
 request.serviceParameter ("storename", request, response);
 }
}

The serviceParameter method obtains the value of the given parameter and displays it.

To demonstrate this, save the previous code sample as DSBTest2.java and compile it into a class file and

create a corresponding Nucleus component in much the same way as you did in Simple ATG Servlet Bean

Example (page 94). Create dsbtest2.jsp with the following contents:

<%@ taglib uri="/dspTaglib" prefix="dsp" %>
<dsp:page>

<html>
<head>
 <title>Storename Test</title>
</head>

<body bgcolor="#ffffff">
 <h1>Storename Test</h1>

<dsp:droplet name="/test/DSBTest2">
 <dsp:oparam name="storename">
 <h1>Joe's Hardware</h1>

98 5 Creating and Using ATG Servlet Beans

 </dsp:oparam>
</dsp:droplet>

</body>
</html>

</dsp:page>

Preview this page to see how it looks when processed and compiled.

The serviceParameter prints out any parameter including simple Strings and open parameters. If an open

parameter includes dynamic elements such as dsp:valueof and dsp:droplet tags, those elements are also

generated dynamically.

The serviceParameter method returns a Boolean value indicating whether the specified parameter was

found or not (true if the parameter was found).

Setting Parameters in ATG Servlet Beans

When your ATG servlet bean displays an open parameter, that open parameter can itself contain dynamic

elements such as dsp:valueof and dsp:droplet tags. As always, when a dynamic element contained in an

open parameter is displayed, it draws from the list of visible parameters to display its own dynamic elements.

The parameters visible to those elements are the same as the parameters visible to the dsp:droplet tag. For

example:

<%@ taglib uri="/dspTaglib" prefix="dsp" %>
<dsp:page>

<html>
<head>
 <title>Store Test</title>
</head>

<body bgcolor="#ffffff">
 <h1>Store Test</h1>

<dsp:droplet name="/test/DSBTest2">
 <dsp:param name="goods" value="Lingerie"/>
 <dsp:oparam name="storename">
 <h1>Joe's <dsp:valueof param="goods"></dsp:valueof></h1>
 </dsp:oparam>
</dsp:droplet>

</body>
</html>

</dsp:page>

In this example, the storename parameter includes a dsp:valueof element that displays the value of goods.

The DSBTest2 object can display this by calling serviceParameter. When it is displayed, the dsp:valueof

tag looks through the visible parameters for a parameter called goods. Because that parameter is defined in

the dsp:droplet call, that parameter is visible to the dsp:valueof tag and is therefore used. Remember that

the parameter would be visible if it were defined as a top-level parameter, or if this page were itself included by

some other dsp:droplet tag that defined the goods parameter.

5 Creating and Using ATG Servlet Beans 99

The ATG servlet bean can also add or change parameters that are visible to displayed elements. This is done by

calling setParameter(). For example, the ATG servlet bean can set the goods parameter in code:

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;
import atg.servlet.*;

public class DSBTest3 extends DynamoServlet {
 public DSBTest3 () {}

public void service (DynamoHttpServletRequest request,
 DynamoHttpServletResponse response)
 throws ServletException, IOException
{
 request.setParameter ("goods", "Golf Balls");
 request.serviceParameter ("storename", request, response);
}
}

The setParameter call brings the goods parameter with value Golf Balls into the list of parameters that are

visible to displayed objects. If a goods parameter is already visible, this shadows the original definition of the

parameter. The original definition of the parameter returns after this method finishes execution.

Local Parameters

You might want to create parameters that are visible only locally to an ATG servlet bean. In that case, use

the getLocalParameter(String paramName) and serviceLocalParameter(String paramName,

ServletRequest, ServletResponse) methods. These methods return only values that are defined in the

current frame for this invocation of the ATG servlet bean. This includes parameters passed to the ATG servlet

bean between the open and close dsp:droplet tags and parameters defined at the top level of the called ATG

servlet bean.

For example:

<dsp:param name="notLocalForA" value="x"/>

<dsp:droplet name="A">
 <dsp:param name="localForA" value="y"/>
</dsp:droplet>

In this example notLocalForA is not local for the ATG servlet bean A, and localForA is local.

Local parameters are useful because they allow the ATG servlet bean to determine which parameters are defined

for a particular ATG servlet bean call. Without local parameters, it can be easy to get into an infinite loop by

nesting different ATG servlet beans, as the inner ATG servlet bean always sees all parameters defined to the outer

one.

Separating JSP Code and Java Code

The previous sections showed how you can write ATG servlet beans that generate JSP code from Java code,

while still being able to display parameters defined in a JSP and setting parameters for those displayed

parameters.

100 5 Creating and Using ATG Servlet Beans

These functions give you the ability to write applications that completely separate JSP formatting from Java

functionality, which is one of the main goals of tag libraries. This separation is essential in large applications

because it allows JSP designers and Java coders to work together and maintain autonomy.

As an example, consider the following ATG servlet bean that displays a list of numbers. Name this servlet bean

Counter.java and create a class and component for it as described in Simple ATG Servlet Bean Example (page

94):

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;
import atg.servlet.*;

public class Counter extends DynamoServlet {
public Counter () {}
public void service (DynamoHttpServletRequest request,
 DynamoHttpServletResponse response)
 throws ServletException, IOException
{
 ServletOutputStream out = response.getOutputStream ();
 out.println ("");
 for (int i = 0; i < 10; i++) {
 out.println ("This is number " + i);
 }
 out.println ("");
}
}

This ATG servlet bean might be invoked from a JSP like this:

<%@ taglib uri="/dspTaglib" prefix="dsp" %>
<dsp:page>

<html>
<head><title>Counter</title></head>
<body><h1>Counter</h1>

<dsp:droplet name="/test/Counter">
</dsp:droplet>

</body></html>

</dsp:page>

At first, this looks like a simple and workable solution. The problem is that the ATG servlet bean now contains

formatting information. This formatting information is usually subject to change many times during the course

of development. If every change requires a designer to ask a Java developer to change and recompile a Java

class, the simple solution becomes an obstacle.

When you use ATG servlet beans, you can rewrite the previous example so that all of the JSP is removed from the

Java object, while the functionality is retained by the Java object:

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

5 Creating and Using ATG Servlet Beans 101

import atg.servlet.*;

public class Counter2 extends DynamoServlet {
public Counter () {}
public void service (DynamoHttpServletRequest request,
 DynamoHttpServletResponse response)
 throws ServletException, IOException
{
 ServletOutputStream out = response.getOutputStream ();
 for (int i = 0; i < 10; i++) {
 request.setParameter ("number", new Integer (i));
 request.serviceParameter ("lineformat", request, response);
 }
}
}

This new ATG servlet bean has no formatting left in it at all. Instead, the ATG servlet bean relies on the formatting

to be passed as a parameter called lineformat. It then uses the number parameter to set the value for each

line. The ATG servlet bean is then invoked from a JSP like this:

<%@ taglib uri="/dspTaglib" prefix="dsp" %>
<dsp:page>

<html>
<head><title>Counter</title></head>
<body><h1>Counter</h1>

<dsp:droplet name="/test/Counter2">
 <dsp:oparam name="lineformat">
 This is number <dsp:valueof param="number"/>
 </dsp:oparam>
</dsp:droplet>

</body></html>

</dsp:page>

Now all formatting information is concentrated in JSP files, making it much easier for a JSP developer to get at it.

Object Parameter Values

All parameter values described so far are either Strings, or open parameters (whose values are of type

Servlet). It is possible for parameters to be assigned values that are of other types, such as Vectors, arrays,

or any other Java type. Earlier, you saw how arbitrary objects can be assigned to parameters through the

DynamoHttpServletRequest.setParameter() method.

Arbitrary objects can also be assigned to parameter values by attaching the parameter values to object

properties through JSP files. For example:

<dsp:droplet name="/test/counter">
 <dsp:param bean="/test/Person.age" name="maxcount"/>
 <dsp:oparam name="lineformat">

102 5 Creating and Using ATG Servlet Beans

 This is number <dsp:valueof param="number"/>
 </dsp:oparam>
</dsp:droplet>

Here the parameter maxcount has been assigned a value from the age property of the /test/person

component. Primitive types such as int, float, short, are converted automatically to the corresponding Java

object types Integer, Float, Short, and so on. Because the age property is of type int, the resulting property

value is of type Integer.

Parameters with arbitrary object values can be displayed using the dsp:valueof or paramvalue=...

constructs, just as they are for String parameter values. You can also display arbitrary object values within an ATG

servlet bean by calling DynamoHttpServletRequest.serviceParameter().

AN ATG servlet bean often needs to obtain the value of an object parameter without actually displaying that

parameter. For example, an ATG servlet bean might use the maxcount parameter to specify some sort of limit.

The HttpServletRequest.getParameter() method is not suitable for this because it can only access

parameters that are of type String. To access arbitrary objects, you must use another method from

DynamoHttpServletRequest called getObjectParameter(). For example:

public void service (DynamoHttpServletRequest request,
 DynamoHttpServletResponse response)
 throws ServletException, IOException
{
 ServletOutputStream out = response.getOutputStream ();

 int maxcount = 0;
 Object maxcountval = request.getObjectParameter ("maxcount");
 if (maxcountval instanceof Integer)
 maxcount = ((Integer) maxcountval).intValue ();

 for (int i = 0; i < maxcount; i++) {
 request.setParameter ("number", new Integer (i));
 request.serviceParameter ("lineformat", request, response);
 }
}

In this example, the maxcount parameter, assigned to an integer property, is used to specify the upper bound

for counting.

Property Parameter Values

The previous section demonstrated how a parameter can point to any object. Those objects might themselves

have property values that you want to access from a JSP.

For example, say that you wanted to print the age and name properties of some object, but you do not know

ahead of time what that object is. Presumably a pointer to that object is passed as a parameter—in this example,

currentPerson.

The following code prints those parameter properties:

<dsp:valueof param="currentPerson.name"></dsp:valueof> is
<dsp:valueof param="currentPerson.age"></dsp:valueof> years old.

5 Creating and Using ATG Servlet Beans 103

Notice how the dsp:param tag looks like it always has, except that instead of naming a parameter, the tag

names a specific property of a parameter.

This form of the dsp:param tag can be used be used to set a parameter, using param=.., or update a parameter

with another parameter value as in:

<dsp:setvalue param="currentPerson.name" paramvalue="user1"/>

This tag sets the first parameter, currentPerson.name, to the value in the second, user1. The currentPerson

page parameter maps to a component: that component’s name property takes the string value of user1. Earlier,

you set currentPerson as follows:

<dsp:param name="currentPerson" bean="/db/personGetter.person">

The parameter can also be set through Java code, as outlined in the previous section.

Processing Servlet Beans

When a JSP executes a servlet bean, the dsp:droplet cycles through its code internally several times in order

to arrange the servlet bean code in a manner that is cohesive with the expectations of open parameters.

Note: All references to dsp:droplet in this section describe the dsp:droplet tag or its class. The term servlet

bean refers to a specific kind of bean implemented by a dsp:droplet tag.

Consider how the ATG platform processes this example:

<dsp:droplet name="/atg/dynamo/droplet/ForEach">
 <dsp:param name="array" bean="/samples/Student.subjects"/>
 <dsp:oparam name="output">
 <p><dsp:valueof param="element"/>
 </dsp:oparam>
</dsp:droplet>

1. The dsp:droplet tag is called.

2. dsp:droplet allows its body to be executed once. During that execution, the nested input parameter tags

(in this case, just array) pass their information back to dsp:droplet, which uses it to construct a table of

input parameter names (array) and values (Reading; Writing; Arithmetic). The open parameter tags are

ignored during this phase.

3. dsp:droplet finds the servlet bean referenced by the dsp:droplet “name=" property (forEach) and calls

the servlet bean’s service() method with the input parameter values collected during step #2 (Reading;

Writing; Arithmetic).

4. As the servlet bean executes, it halts calls to setParameter and serviceParameter, and instead records

them as a list of DropletActions. These methods are organized in a manner that is readable by the open

parameters that process them and are made available to open parameters for execution.

5. The dsp:droplet parses through each setParameter and serviceParameter method in

DropletActions :

104 5 Creating and Using ATG Servlet Beans

• setParameter directs the dsp:droplet to set the specified request parameter to the recorded name

(ouput) and value (element).

• serviceParameter instructs the dsp:droplet to allow its body to be executed. This causes the related

open parameter to run (element equals Reading; Writing; Arithmetic).

6. After the dsp:droplet finishes the DropletActions list, servlet bean execution ends.

Limitations in Custom Servlet Beans

The main limitation that you need to be aware of when you are creating servlet beans is that open parameters

are not executed precisely when their serviceParameter is called. Instead, open parameters remain

dormant until the servlet bean service method completes and the dsp:droplet tag begins reviewing the

DropletActions as described in the previous section. Code your servlet beans to expect that the servlet bean’s

service method is not immediately followed by the execution of the open parameters serviceParameter.

The effects of this restriction have several side effects that might not be obvious, such as how nested open

parameters interact with each other. See the following sections for details on these side effects.

Here are some general operations you should avoid:

• Setting a global or thread-state variable that is accessed by code invoked from an open parameter.

• Opening or closing a socket or JDBC result set that is accessed by code invoked from an open parameter.

• Replacing the output stream/print writer in the response with your own designed to capture the output of an

open parameter.

Open Parameter Dependencies

A servlet bean’s service method cannot depend on the effects of a nested open parameter. Because the JSP

executes the open parameter after the service method completes, the service method cannot act on any

results or changes produced by the open parameter.

For example, when a certain output open parameter throws an exception, a service method catches it and

renders an error open parameter. This sequence does not operate successfully because the service method

completes execution before the open parameter throws the exception.

A servlet bean’s service method should not rely on values that are themselves determined during the

execution of the open parameter. If an open parameter, for example, were to set the value of a profile attribute,

you might think the service method can access that new value after the serviceParameter method has

returned. Because the open parameter changes the value after the service method call completes, the

service method is unaware of the open parameter change.

Similarly, a servlet bean’s service method cannot manipulate the output rendered from an open parameter.

For example, the servlet bean’s service method might attempt to translate the value produced from an open

parameter into another language. Again, the servlet bean’s service method is processed before the other open

parameter delivers the value so the translation does not occur.

Actions that Rely on Timely Open Parameter Processing

A servlet bean cannot perform arbitrary actions around an open parameter and expect the open parameter to

be affected by the results of those actions. For example, a servlet bean might:

5 Creating and Using ATG Servlet Beans 105

set profile property to "x"
call open parameter "a"
set profile property to "y"

This code executes as follows:

1. Set profile property to x.

2. Call open parameter a.

3. Set profile property to y.

4. Servlet bean code ends.

5. Execute open parameter a.

Because the open parameter is actually executed after the profile property is set to y, the open parameter never

sees the profile property set to x.

Request parameters are an exception to this rule. When you set a request parameter on the ATG request

object, that global parameter is visible to the open parameters within a given page. The record and play back

mechanism in dsp:droplet permits interdependence between open parameters and request parameters.

Open Parameter as an Object

You cannot manipulate an open parameter as an object.

Using Custom Servlet Beans with the ATG Control Center

In order to use custom ATG servlet beans with the ATG Control Center, the following requirements apply:

• The class must extend atg.servlet.DynamoServlet.

• You must create a BeanInfo file that describes the servlet bean’s parameters.

The BeanInfo file describes the servlet bean’s parameters to the ATG Control Center. The ATG Control Center

uses this information to provide guidelines for the parameters you need to set to make the servlet bean work

properly. The ATG Control Center does not guarantee that these parameters are present or that they have values

with the correct types. It is still up to the servlet bean to validate its input parameters. The ATG Control Center

also uses the BeanInfo as a source of the information displayed in the servlet bean’s information panel in the

ATG Control Center Components editor.

A BeanInfo is a standard Java Beans mechanism through which a Java Bean can describe information about

the features that it exposes—for example, its properties and events. ATG servlet beans extend this notion to

include parameter descriptors that specify information about the parameters that the servlet bean uses in a

JSP. If you do not explicitly create a BeanInfo class for your Java bean, a BeanInfo is generated for you by

the Java Beans Introspector. When you do build a BeanInfo for a custom ATG servlet bean, it must describe

all features of your Java Bean. You need to add descriptors for each property and event you want your bean to

expose. For more information about how to construct a BeanInfo, see the JSDK documentation for Java Beans

at <JSDK_dir>/jdoc/java/beans/BeanInfo.html. The next section describes how to augment a BeanInfo

with ParameterDescriptors to describe servlet bean parameters.

106 5 Creating and Using ATG Servlet Beans

Parameter Descriptors

Each BeanInfo has a single BeanDescriptor that is used to provide information about the Bean. The

BeanDescriptor supports a list of named attributes that augment the standard Java Bean’s information. You

set these using the BeanDescriptor’s setValue method. ATG servlet beans look for a paramDescriptors

attribute that contains an array of atg.droplet.ParamDescriptor objects. Each of these ParamDescriptor

objects defines one of the parameters of your servlet bean expects to be provided. It defines the following

information:

Argument Type

Name of the parameter String

Description of the parameter’s function. String

The Java class describing the parameter. For oparam parameters, you should specify

the class to be of type javax.servlet.Servlet because that is how oparam

parameters are compiled and represented.

String

Whether or not this parameter is optional or required. Set this to true if the

parameter is optional.

Boolean

Whether this parameter is local. Set this to true if the parameter is accessed with

getLocalParameter or serviceLocalParameterlocal.

Boolean

If this paramDescriptor describes a parameter of type

javax.servlet.Servlet—that is, an oparam parameter—list the

ParamDescriptors that define which parameters are set by the servlet bean

before it renders the oparam parameter. Otherwise, set this to null.

ParamDescriptor[]

ParamDescriptor Example

For example, the following paramDescriptor describes a parameter named numItems. Its description is

number of times to call output. It is described by the Integer class, is a required parameter, is not local,

and is not an oparam parameter.

paramDescriptors[0] = new ParamDescriptor("numItems",
 "number of times to call output", Integer.class,
 false, false, null);

Defining the Component Category

The ATG Control Center Components by Module view organizes components according to their component

category. You can set the component category of your custom servlet bean in its BeanInfo. For example, to set

the category to Servlet Bean, use this beanDescriptor:

beanDescriptor.setValue("componentCategory", "Servlet Beans");

5 Creating and Using ATG Servlet Beans 107

BeanInfo Example

To describe the parameters for a class called YourServlet, create a YourServletBeanInfo.java class like

this:

import atg.droplet.ParamDescriptor;

public class YourServletBeanInfo extends java.beans.SimpleBeanInfo {
 static java.beans.BeanDescriptor beanDescriptor = null;

 public java.beans.BeanDescriptor getBeanDescriptor() {
 if (beanDescriptor == null) {
 ParamDescriptor [] paramDescriptors = new ParamDescriptor[2];
 ParamDescriptor [] outputDescriptors = new ParamDescriptor[1];

//This parameter is set before we service the output parameter.
 outputDescriptors[0] = new ParamDescriptor("index", "loop index (0-based)",
 Integer.class, false, false, null);

 paramDescriptors[0] = new ParamDescriptor("numItems",
 "number of times to call output",
 Integer.class, false, false, null);
 paramDescriptors[1] = new ParamDescriptor("output",
 "rendered for each iteration",
 DynamoServlet.class,
 false, true, outputDescriptors);

 beanDescriptor = new BeanDescriptor(YourServlet.class);
 beanDescriptor.setShortDescription("A custom servlet bean.");
 beanDescriptor.setValue("paramDescriptors", paramDescriptors);
 beanDescriptor.setValue("componentCategory", "Servlet Beans");

 }
 return beanDescriptor;
 }
}

Resolving Component Names

An ATG application performs name resolution for Nucleus components whenever it encounters component

names in a tag. For example, the <dsp:droplet name= and <dsp:valueof bean=...> tags both specify

component names that the ATG server needs to resolve to pointers to actual objects. In performing this

name resolution, the server can create objects if they do not exist, and merge session and global namespaces

automatically.

Nucleus also provides a way to connect objects to each other by naming those objects in properties files. For

example, if the Person object needs a pointer to a Talents object, the Person object defines a property of

type Talents, and specifies the component name of that Talents object as the value of that property in the

properties file. Nucleus automatically resolves the name, creating the Talents object if necessary.

If you write your own servlet beans in Java, you might also want to resolve component names to Java objects.

This functionality is provided by the resolveName() method of the DynamoHttpServletRequest class. The

108 5 Creating and Using ATG Servlet Beans

resolveName() method handles both absolute and relative names, and also implements the merged global

and session namespaces.

For example, the following code obtains a pointer to the /services/scheduler/Scheduler component:

import atg.naming.*;
import atg.service.scheduler.*;

...

public void service (DynamoHttpServletRequest request,
 DynamoHttpServletResponse response)
 throws ServletException, IOException
{
 Scheduler scheduler = (Scheduler)
 request.resolveName ("/services/scheduler/Scheduler");

...

}

Because resolution is a potentially expensive operation, you should consider caching the results of a name

lookup of a global scope component, rather than requiring a name lookup be performed on every request.

There might be times when you want to look up an existing component, but you do not want to create an

instance of the component if it does not already exist. In that case, use the resolveName() method with a

false Boolean argument.

If you want to create a session-scoped or request-scoped component that looks up another session-scoped or

request-scoped component, then add a property of type DynamoHttpServletRequest to your component.

For example, to look up another request-scoped component, you might set a property called request as

follows:

request=/OriginatingRequest

Your component can now call getRequest().resolveName("target-component"), in your component’s

doStartService() method, where target-component is the name of the component you are looking up. For

instance, you can display the request locale in Java code with:

if (request.getRequestLocale() != null)
 out.print(request.getRequestLocale().getLocale());

You can use the URI of the request as the action attribute of a form tag in a JSP like this:

<dsp:getvalueof id="form0" bean="/OriginatingRequest.requestURI"
 idtype="java.lang.String">
 <dsp:form action="<%=form0%>"/>
</dsp:getvalueof>

If you are using a session-scoped component, the value of the request property becomes invalid upon

completion of the current request. To work around this problem, add the following line at the end your

doStartService() method:

5 Creating and Using ATG Servlet Beans 109

setRequest(null);

Note: It is not standard practice to have a session-scoped component refer to a request-scoped value. This

is a special case that you can use in a restricted way to access the request that creates your session-scoped

component.

If you want to resolve the name of a Nucleus component from Java code that is not itself a Nucleus service, you

must first initialize Nucleus with this construct:

Nucleus.getGlobalNucleus().resolveName("target component")

where target component is the name of the component you are looking up. Note that this construct works

only for components with global scope.

You can also resolve names of Nucleus components using the Java Naming and Directory Interface (JNDI). The

following example shows how you can use JNDI to access the Scheduler component:

String jndiName = "dynamo:/atg/dynamo/service/Scheduler";
Context ctx = new javax.naming.InitialContext ();
Scheduler s = (Scheduler) ctx.lookup (jndiName);

Before using these methods to resolve names, make sure that the functionality you want is not already provided

by configuration files or servlet bean tags.

110 5 Creating and Using ATG Servlet Beans

6 Working with Forms and Form Handlers 111

6 Working with Forms and Form

Handlers

The ATG Page Developer's Guide describes how to use the form handlers that are provided with the Oracle ATG

Web Commerce platform. This chapter describes form handler classes, and shows how you can modify and

extend these to suit the specific requirements of your application. It also discusses other form processing tools.

In this chapter

This chapter includes the following sections:

• Form Handlers and Handler Methods (page 111) explains how to create form handlers and handler methods

for processing forms.

• Creating Custom Tag Converters (page 119) explains how to create your own tag converters to parse and

display values in a variety of formats.

• File Uploading (page 123) describes how to create form elements and components that enable users to

upload files to a site.

Form Handlers and Handler Methods

Form handlers evaluate the validity of form data before it is submitted, check for errors, and determine what

action to take—for example, submit the data, direct the user to a different page, and display an error message.

Often when you use a form handler, the form input fields are associated with properties of the form handler

rather than the component you ultimately want to modify. For example, your form might include this tag:

<dsp:input type="text" bean="MyFormHandler.age"/>

When the form is submitted, a method of MyFormHandler associated with the age property is invoked.

Depending on how this method is written, it might validate the data and then set the value of Person1.age, or

use the data to fill in a record in a database.

A form handler class must include one or more handler methods. A handler method is typically invoked when

the user clicks the submit button, and handles the processing of the form. Depending on the purpose of

the form handler, it can have several different handler methods that each perform a different operation. For

example, a form handler that works with user profiles might have separate handler methods for creating the

profile, modifying the profile, and logging the user in.

112 6 Working with Forms and Form Handlers

Subclassing ATG Form Handlers

Oracle ATG Web Commerce form handler classes all implement the interface

atg.droplet.DropletFormHandler. Three form handler base classes implement this interface:

• atg.droplet.EmptyFormHandler (page 112)

• atg.droplet.GenericFormHandler (page 112)

• atg.droplet.TransactionalFormHandler (page 112)

You can create a form handler by extending one of these classes or any of their subclasses. The ATG Platform API

Reference lists all form handler classes that implement the DropletFormHandler interface.

EmptyFormHandler

atg.droplet.EmptyFormHandler implements the DropletFormHandler interface and provides empty

implementations of the methods in this interface.

GenericFormHandler

atg.droplet.GenericFormHandler extends EmptyFormHandler. It provides simple implementations of

DropletFormHandler interface methods and adds basic error handling logic. If errors occur in processing

a form that uses GenericFormHandler, the errors are saved and exposed as properties of the form handler

component. This form handler is included in the public API: see ATG Platform API Reference for more information.

TransactionalFormHandler

atg.droplet.TransactionalFormHandler extends atg.droplet.GenericFormHandler; it treats the

form processing operation as a transaction. Although this form handler methods are processed discretely,

their results are saved simultaneously. The transaction management occurs in the beforeGet and afterGet

methods. This establishes the transaction before any of properties are set or handler methods are called, rather

than in the handler methods themselves. See Handler Methods (page 112) for an explanation of handler

methods.

Handler Methods

Form handlers use handleX methods to link form elements with Nucleus components, where X represents the

name of a form handler property to set. handleX methods have the following signature:

public boolean handleX (javax.servlet.http.HttpServletRequest request,
 javax.servlet.http.HttpServletResponse response)

A handleX method can also declare that it throws java.io.IOException or

javax.servlet.ServletException.

handleX methods are called on form submission. If a corresponding setX method also exists, the setX method

is called before the handleX method is called.

Request and Response Object Arguments

The handleX method is passed the request and response objects that encapsulate the request. (See the Java

Servlet specifications on how to use these request and response types.) Often, the handler method does

6 Working with Forms and Form Handlers 113

nothing with the request and response objects. For example, the handler method might simply redirect the user

to another page.

A handleX method can also use the Oracle ATG Web Commerce extensions to the HttpServletRequest and

HttpServletResponse interfaces, DynamoHttpServletRequest and DynamoHttpServletResponse. Thus,

your handler method signature can look like this:

public boolean handleX (atg.servlet.DynamoHttpServletRequest request,
 atg.servlet.DynamoHttpServletResponse response)

Handler Method Returns

The handler method returns a Boolean value, which indicates whether to continue processing the rest of the

page after the handler is finished:

Return Value Action

false No further values are processed process after the handler is called, and the rest of the

page is not served. For example, a handler that redirects the user to another page should

return false.

true Normal processing of the remaining values continues, and the page specified by the

form’s action attribute is served.

As mentioned earlier, Oracle ATG Web Commerce form handlers typically implement the interface

DropletFormHandler. This interface has the following methods, which are called at specific points as the form

is processed:

Method When Called:

beforeSet Before any setX methods are called.

afterSet After all setX methods are called.

beforeGet Before any input tags that reference this component are rendered.

afterGet After page rendering is complete, before the socket is closed.

handleFormException If an exception occurs when trying to call the setX method of a form.

The beforeGet and afterGet methods are called only when the page is rendered, not when the form is

submitted. The beforeSet and afterSet methods are called only when the form is submitted, not when the

page is rendered. It is possible to have all four of these methods called on the same page.

See the Quincy Funds demo for an example of form handling. This demo uses form handler to process

registration, login, and profile updates.

114 6 Working with Forms and Form Handlers

Submit Handler Methods

You can create handler methods that are associated with a form’s submit button in the same way that form

fields are associated with specific properties. Submit handler methods are particularly powerful, because the

tags that implement them are processed after tags that use other input types so you can use them to evaluate

the form as a whole and take appropriate actions. For example, you might write a handler method called

handleRegister, which is invoked when the user clicks the Register Now button created by this tag:

<dsp:input type="submit" value="Register Now" bean="MyFormHandler.
 register"/>

A form handler can have multiple submit handler methods that each handle form submissions differently. For

example, registration, update, and change password forms might use the same form handler, which has three

handler methods: handleRegister, handleUpdate, and handleChangePassword. On submission, each form

calls the appropriate method. For example, the change password form might contain the following tag for the

submit button:

<dsp:input type="submit" value="Change Password"
 bean="MyFormHandler.changePassword"/>

Extending handleCancel()

The atg.droplet.GenericFormHandler class (and any subclass of GenericFormHandler you write)

includes a handleCancel method for implementing form Cancel buttons. This method redirects to the URL

specified in the form handler’s cancelURL property. Typically this property is set to the current page, so clicking

Cancel redisplays the form page. If the form handler component is request scoped, this creates a new instance of

the form handler object, and reinitializes the form data.

Note: If your form handler component is session scoped (see Form Handler Scope (page 118)), this re-

initialization does not occur. In this case you need to extend the handleCancel method of its class so it resets

the appropriate form data. In the following example, the handleCancel method calls a method you wrote that

resets the form data:

public boolean handleCancel(DynamoHttpServletRequest pRequest,
 DynamoHttpServletResponse pResponse)
 throws ServletException, IOException
 {
 resetMyFormData();
 return super.handleCancel(pRequest, pResponse);
 }

Transactions in Repository Form Handlers

A form handler that can manipulate repository items should ensure that all operations that occur in a handler

method call are committed in a single transaction. Committing all operations simultaneously helps ensure data

integrity. A repository or database transaction is completed successfully or not at all; partially committed data is

rolled back if an error occurs mid-transaction.

The RepositoryFormHandler and TransactionalRepositoryFormHandler classes ensure atomic

transactions in this way. If you subclass either class without overriding the handler methods, your subclass

6 Working with Forms and Form Handlers 115

handles transactions properly. If you override any handler methods, or add new handler methods, you must

make sure that these methods handle transactions properly.

Note: A form handler starts and ends a transaction only when no other active transactions are in progress. If

a transaction is in progress, the form handler returns a status for each operation it attempts and permits the

transaction to continue after the form handler itself finishes processing.

To create a form handler that works with repository items while a transaction is in progress:

1. Create a form handler that subclasses RepositoryFormHandler (page 115) or

TransactionalRepositoryFormHandler (page 115), depending on your requirements. The source code for

both form handlers is provided in

<ATG10dir>/DAS/src/Java/atg/repository/servlet

Both form handlers create a transaction if one is not already in progress and provide the status of all

operations performed by the form handler while the transaction is in place. The two form handlers mainly

differ in the transaction lifespan.

2. Create methods on your new form handler that are transaction-aware. See Transaction-Aware Methods (page

116).

Note: RepositoryFormHandler and TransactionalRepositoryFormHandler are useful for manipulating

repository items. The form handler class atg.droplet.TransactionFormHandler supports transactions and

lets you work with the JDBC directly.

RepositoryFormHandler

atg.repository.servlet.RepositoryFormHandler is a base form handler that provides tools for creating,

modifying, and deleting items stored in an SQL repository. Oracle ATG Web Commerce provides one direct

instance of this class, /atg/demo/QuincyFunds/FormHandlers/

EmailRepositoryFormHandler.

In the RepositoryFormhandler, the transaction is governed entirely by the submit handler method, meaning

the transaction starts when a submit handler method is invoked and ends when it completes execution.

Transaction status is reported for the data validation and the data commit operations.

TransactionalRepositoryFormHandler

The atg.repository.servlet.TransactionalRepositoryFormHandler, a subclass of the

RepositoryFormhandler, provides enhanced transaction support by broadening the scope of the transaction.

This class also defines a few additional properties that are useful for transaction monitoring. Oracle ATG Web

Commerce Adaptive Scenario Engine does not include any instances of this class.

Transactions begin when the beforeSet method is invoked and end with the afterSet method. Because a

transaction status is generated for all operations that occur during its execution, a status is recorded for each the

following operations:

• beforeSet method execution

• Processing of all other tags in the JSP (tags that implement submit operations have the lowest priority on the

page)

• Submit handler method data validation

• Submit handler method data commit

116 6 Working with Forms and Form Handlers

• afterSet method execution

Transaction-Aware Methods

When you create a form handler that subclasses RepositoryFormHandler (page 115) or

TransactionalRepositoryFormHandler (page 115), make sure that its methods can correspond with the

Transaction Manager. There are two ways to do this:

• Base New Handler Methods on handleUpdate Source Code (page 116) so that you can reuse the transaction

code in it, then modify the rest accordingly.

• Modify Existing Handler Methods (page 117) by inserting code before or after their execution in the preX or

postX methods, respectively.

Base New Handler Methods on handleUpdate Source Code

The code provided here implements the handleUpdate method. Create your own handler methods by making

changes to this code sample and inserting it into your subclassed form handler:

public boolean handleUpdate(DynamoHttpServletRequest pRequest,
 DynamoHttpServletResponse pResponse)
 throws ServletException, IOException
{
 TransactionDemarcation td = getTransactionDemarcation();
 TransactionManager tm = getTransactionManager();
 try {
 if (tm != null) td.begin(tm, td.REQUIRED);

 int status = checkFormError(getUpdateErrorURL(), pRequest, pResponse);
 if (status != STATUS_SUCCESS) return status == STATUS_ERROR_STAY;

 // update the repository item
 preUpdateItem(pRequest, pResponse);

 if (!getFormError())
 updateItem(pRequest, pResponse);

 postUpdateItem(pRequest, pResponse);

 // try to redirect on errors
 if ((status = checkFormError(getUpdateErrorURL(), pRequest, pResponse))
 != STATUS_SUCCESS)
 return status == STATUS_ERROR_STAY;

 // try to redirect on success
 return checkFormSuccess(getUpdateSuccessURL(), pRequest, pResponse);
 }
 catch (TransactionDemarcationException e) {
 throw new ServletException(e);
 }
 finally {
 try { if (tm != null) td.end(); }
 catch (TransactionDemarcationException e) { }
 }
}

6 Working with Forms and Form Handlers 117

Modify Existing Handler Methods

The three existing submit handler methods (handleCreate, handleUpdate, and handleDelete) each provide

a pair of empty pre and post methods where you can add custom code.

It is likely that you use either the preX or the postX method for a given existing handler method although you

can customize both. For example, consider a subclass of TransactionalRepositoryFormHandler where

preUpdate and postUpdate are used:

1. The form is rendered, which causes getX method to display current values for properties used in the form.

2. The user fills in the form and submits it.

3. The form handler’s beforeSet method is invoked. If a transaction is not currently in progress, the

TransactionalRepositoryFormHandler component creates a one.

4. If tag converters are used, they are applied to the specified content. Any form exceptions that occur now or at

any point during the form handler execution are saved to the form handler’s formException property.

5. The setX method is called, followed by the form handler’s handleUpdate method. Severe form exceptions

might cause form processing to stop and the transaction to rollback, before redirecting users to a different

page.

6. The preUpdateItem method is invoked. The preX method for the handleUpdate method is

preUpdateItem. Serious errors generated from this operation might also prompt the transaction to rollback.

7. The updateItem method, which is the handleUpdate method responsible for processing the content

and updating the database, is invoked. Again, this is another operation that can cause a transaction to

rollback when serious errors are detected. At this point, the changes made by the actions associated with the

transaction are kept private, meaning that they are only visible within the transaction itself.

8. The postUpdateItem method is invoked. Again, the transaction is rolled back if serious errors are detected.

9. The afterSet method is invoked. If the transaction was started by the beforeSet method, the transaction

concludes and the content it saved to the database is publicly visible.

Use the preX method when you want to expand the constraints for data validation. For example, you might

want to check if the user-entered zip code and country correspond to each other. The countries that use zip

codes require them to be a certain length. The preX method can verify that a zip code uses the appropriate

format for the country, before saving the zip code and country values to the database. Any discrepancies

produce a form exception and roll back the transaction.

The postX method is useful for verifying user entered-data after that data has been converted by tag

converters. For example, a form handler that saves credit card information might use a postX method to handle

authorization. After that credit card number has been formatted correctly and all related information is updated

in the database, the postX method executes. If the authorization fails, the transaction is rolled back, the original

data refreshed, a form error exception is thrown, and the user is redirected to a page where the use can re-enter

credit card information.

Handler Methods and dsp:setvalue

When a dsp:setvalue tag is rendered, it invokes the same methods as events processed from a form. This

includes calling both the appropriate setX and handleX methods. For example, a JSP might contain the

following tag:

<dsp:setvalue bean="/test/Person1.name" value="Frank"/>

118 6 Working with Forms and Form Handlers

When this tag is encountered during page rendition, the following actions occur:

1. setName("Frank") is called on the /test/Person1 component, if a setName method exists for the class

that Person1 instantiates.

2. The handleName method is called, if it exists;

This process is the same as when property values are set from a form input tag.

You can use this technique with a form handler to set up aspects of the form before it is displayed and handled.

For example, you might want to display the form only to users who are over the age of 13. You can write a

handleAge method for your form handler that returns false if the user is under 13. The page might contain

something like this:

<dsp:setvalue bean="MyFormHandler.age" paramvalue="currentUser.age"/>

<dsp:form action=...>
 ...

In this example, before the form is displayed, the setvalue statement sets the value of the form handler’s age

property to the value of the currentUser.age parameter. (Presumably, this parameter is set from information

stored when the user registered.) Setting the age property causes the form handler’s handleAge method to be

invoked. If age is less than 13, this method returns false, and the rest of the page (including the form) is not

rendered. If age is 13 or greater, handleAge returns true, and the rest of the page is rendered.

Form Handler Scope

A form handler component should be request-scoped or session-scoped. A request-scoped form handler exists

for the duration of the request. Consider a form that is held in one page. By clicking the submit button, the

user makes a request that, in turn, creates an instance of the form handler. The configured values in the form

handler’s properties file are used. You can override the values of these properties using a dsp:setvalue or

dsp:input tags. After a user submits the form, the form handler processes the data.

When a form handler spans several pages such as in a multi-page registration process, values entered in each

page should persist until final submission. If the form spans only two pages, you can implement the registration

process with a request-scoped form handler by designing it to support a redirect: make data from page one

available to page two. Only one redirect is available to a given form handler instance , so this approach is valid

only for forms that are no longer than two pages.

if a form spans more than two pages, two approaches enable persistence of form values:

• Use a Session-scoped form handler (page 118)

• Use Page-specific request-scoped form handlers (page 119)

Session-scoped form handler

A session-scoped form handler ensures that all form values persist across multiple pages. However, the form

remains in memory for the entire user session, so use of multiple form handlers within a single session can incur

considerable overhead.

If you use session-scoped form handlers, be sure to reset or clear values between uses of the form handler

because values remain in effect throughout the entire session. Also clear error messages so they do not appear

in other forms where they are not relevant.

6 Working with Forms and Form Handlers 119

Page-specific request-scoped form handlers

Each page of a multi-page form can use separate, request-scoped form handler instances; all pages share the

same session-scoped component. With each form submission, the form handler automatically copies the data

to the session-scoped component. That way, if you want page five to hold a list of data entered in pages one

through four for validation, you need only reference the relevant properties in the session-scoped component.

This technique offers the persistence of a session-scoped form handler and data refresh provided in a request-

scoped form handler.

This technique is especially helpful in implementing search form handlers when you want to search results

available for future reference. In order to implement this behavior, design your form handler’s submit handler

method to retrieve the session-scoped component and set specific properties on it.

Tag Converters

Oracle ATG Web Commerce provides tag converter classes that let you explicitly control how form data is

converted on input and displayed on output, and when exceptions are thrown. Certain DSP tags such as

dsp:input and dsp:valueof can specify these tag converters; details about syntax and usage is provided in

the ATG Page Developer's Guide.

Creating Custom Tag Converters

You can modify the tag converters provided in the Oracle ATG Web Commerce platform; you can also create a

custom tag converter in the following steps:

1. Extend an existing tag converter class or create one that implements interface

atg.droplet.TagConverter. The new class must implement the following TagConverter methods:

• getName() (page 119)

• getTagAttributeDescriptors() (page 120)

• convertStringToObject() (page 120)

• convertObjectToString() (page 121)

2. Optionally, create attributes for the tag converter through an instance of the TagAttributeDescriptor

class.

3. Register the new tag converter with the TagConverterManager (atg.droplet.TagConverterManager)

by calling TagConverterManager.registerTagConverter() with an instance of the new tag

converter’s class. The tag converter must be registered before a JSP can use it. Include the call to

registerTagConverter() in a class that is initialized during the startup process of your module—that is, is

in the Initial services list.

getName()

Returns the name of the tag converter that is supplied as an argument to the converter

attribute. For example, the getName() method that is implemented by the tag converter class

atg.droplet.CurrencyTagConverter returns the string currency. So, a dsp:valueof tag specifies this tag

converter as follows:

120 6 Working with Forms and Form Handlers

<dsp:valueof param="myPrice" converter="currency"/>

getTagAttributeDescriptors()

Returns an array of TagAttributeDescriptors (atg.droplet.TagAttributeDescriptor). The constructor

for a TagAttributeDescriptor is defined as follows:

TagAttributeDescriptor(String pName,
 String pDescription,
 boolean pOptional,
 boolean pAutomatic)

Each TagAttributeDescriptor is defined with an attribute name and description, and two Boolean

properties:

• Optional: Specifies whether this attribute is optional or required. For example, Oracle ATG Web Commerce’s

currency converter takes a locale attribute whose Optional property is set to true. If this attribute

is omitted, the locale associated with the current request is used. Conversely, the Date converter’s date

attribute is marked as required, so all Date converters must supply a date format.

• Automatic: Not supported for custom tag converter, this property specifies whether you can supply the

attribute without the converter attribute. Only one attribute be marked as automatic; all other attributes

must set this property to false.

For example, the tag converter class atg.droplet.Warthog defines the two attributes, recommendations and

winddirection, and sets their Optional and Automatic properties as follows:

public class Warthog implements TagConverter
{
...
static final String RECS_ATTRIBUTE = "recommendations";
static final String WINDDIR_ATTRIBUTE = " winddirection";
...
private final static TagAttributeDescriptor[] sTagAttributeDescriptors = {
 new TagAttributeDescriptor(RECS_ATTRIBUTE,
 "A string for recommendations",
 false, false),
 new TagAttributeDescriptor(WINDDIR_ATTRIBUTE,
 "A string for wind direction",
 true, false),
}

Note: Two constraints apply to custom tag converter attributes:

• The Automatic property is supported only for Oracle ATG Web Commerce tag converters; DSP tags can only

reference custom tag converters through the converter attribute.

• Custom tag converters must reference their attributes through the converterattributes attribute. See

Using Custom Tag Converters (page 121) for details.

convertStringToObject()

This method is called when a tag converter is used by one of the following DSP tags:

6 Working with Forms and Form Handlers 121

Tag Description

dsp:input On form submission, convertStringToObject() is called before the target property’s

setX method is called. convertStringToObject() creates the Object value for use by

the property’s setX method. The method can throw a TagConversionException if an

error occurs during the conversion process.

convertStringToObject() typically returns null if a form field is left empty. In this

case, the target property’s setX method is not called, and its value remains unchanged.

Alternatively, this method can specify setting the target property to a null value if the field

is empty, by returning TagConverterManager.SET_AS_NULL. This instructs the setX

method to set the property value to null.

dsp:param convertStringToObject() is called when the dsp:param tag defines the parameter’s

value.

convertObjectToString()

This method is called in two situations:

• When you use a converter in a valueof tag, this method is used to convert the Object value into a String

value before displaying it.

• When you use this tag in an input tag with a bean attribute and no existing value attribute, this method is

called to fill in the value attribute with the current value of the bean property.

Attribute Definition Constraints

Automatic attributes must be unique among all registered tag converters. Multiple tag converters can define

attributes with the same name only if a given attribute specification can always be associated unambiguously

with the appropriate converter.

For example, the class atg.droplet.RequiredTagConverter defines required as an automatic attribute.

The class atg.droplet.DateTagConverter defines date as an automatic attribute and required as an

optional attribute. Given these attribute definitions, DSP tags can use either tag converter with the required

attribute, as shown in the following examples:

DSP Tag Converter

<dsp:valueof param="date" date="M/dd/yy" required/> DateTagConverter

<dsp:input type="text"

bean="Person.userName" required="true"/>

RequiredTagConverter

Using Custom Tag Converters

A DSP tag that specifies a custom tag converter must reference its attributes through the

converterattributes attribute, as follows:

122 6 Working with Forms and Form Handlers

<dsp-tag converter="converter-name" converterattributes=attr-list />

attr-list is a list of semi-colon-delimited attributes that are defined in the tag converter, and their values.

The convertattributes attribute allows use of attributes that are unknown to the DSPJSP tag library

(http://www.atg.com/taglibs/daf/dspjspTaglib1_0).

For example, given a custom tag converter Warthog that defines two attributes, recommendations and

winddirection, a dsp:input tag can specify this tag converter as follows:

<dsp:input type="text"
 bean="NuclearOrderFormHandler.address1"
 converter="Warthog"
 converterattributes="recommendations=splunge;winddirection=west" />

Sample Tag Converter

The following example shows how you might create a tag converter that converts minutes into a formatted

string that shows the number of hours and minutes. For example, given installation of this tag converter, a JSP

can include the following tag:

<dsp:valueof param="numMinutes"
 converter="minutestToHoursMinutes"
 converterattributes="asHoursAndMinutes=true"/>

If the page parameter numMinutes has a value of 117, this tag converter displays the value as follows:

1 hr 57 mins

import atg.droplet.TagConverter;
import atg.droplet.TagAttributeDescriptor;
import atg.droplet.TagConversionException;
import atg.servlet.DynamoHttpServletRequest;
import java.util.Properties;

//Convert minutes into the format H hr(s) M min(s)

public class MinutesToHoursMinutesConverter implements TagConverter {

 private static final int MINUTES_PER_HOUR = 60;
 static final String ASHOURSANDMINUTES_ATTRIBUTE = "asHoursAndMinutes";
 private static final TagAttributeDescriptor[] S_TAG_ATTRIBUTE_DESCRIPTORS ={
 new TagAttributeDescriptor(
 "ASHOURSANDMINUTES_ATTRIBUTE",
 "If provided, assume input is # of minutes, format as H hr(s) M min(s)",
 false, true)};

 public String getName() {
 return "minutesToHoursMinutes";
 }

 public TagAttributeDescriptor[] getTagAttributeDescriptors() {

6 Working with Forms and Form Handlers 123

 return S_TAG_ATTRIBUTE_DESCRIPTORS;
 }

 public Object convertStringToObject(
 DynamoHttpServletRequest request,String string, Properties properties)
 throws TagConversionException {
 throw new TagConversionException("Unable to convert string to object.");
 }

 public String convertObjectToString(
 DynamoHttpServletRequest request, Object pValue, Properties properties)
 throws TagConversionException {
 if(pValue == null){
 return null;
 }
 if (pValue instanceof Integer) {
 return buildOutput(((Integer)pValue).intValue());
 } else {
 return pValue.toString();
 }
 }

 private String buildOutput(int totalMinutes) {
 int hours = (int) Math.floor(totalMinutes / MINUTES_PER_HOUR);
 int minutes = totalMinutes % MINUTES_PER_HOUR;
 return formatOutput(hours, minutes);
 }

 private String formatOutput(int hours, int minutes) {
 StringBuffer buf = new StringBuffer(100);
 if(hours > 0) {
 buf.append(hours);
 if(hours == 1) {
 buf.append(" hr");
 } else {
 buf.append(" hrs");
 }
 }
 if(minutes > 0) {
 buf.append(" ").append(minutes);
 if(minutes == 1){
 buf.append(" min");
 } else {
 buf.append(" mins");
 }
 }
 return buf.toString();
 }
}

File Uploading

You can use a DSP tag library form element to enable users to upload files. The form defines the input as type file

and makes sure that there is a place to put the file. Here is an example of a file upload form element:

124 6 Working with Forms and Form Handlers

<dsp:form enctype="multipart/form-data" action="a_page.jsp" method="post">
 Pick a file to upload:
 <dsp:input type="file" bean="/FileUploadComponent.uploadProperty" value=""/>
 <dsp:input type="submit" value="Upload now"/>
</dsp:form>

This form must exist in a JSP. The enctype multipart/form-data and the method post are required for file

upload. For the purposes of the upload itself, the value of the action attribute is not important.

The crucial attribute, the bean= attribute, is in the file input tag. This attribute links to a Nucleus component

written by you and containing as a property a member of type atg.servlet.UploadedFile. Here, that

component is /FileUploadComponent, and its property is named uploadProperty. The file upload

component’s property must have the usual getX and setX methods required of a JavaBean.

File Upload Component Example

The following is an example of a component that handles file uploads. One way to use this component is

through a form element such as the one presented in the previous example. The example here includes two

alternatives, one that returns the uploaded file as a byte array and one (which is commented out) where the

uploaded file is read from the input stream.

import atg.servlet.UploadedFile;
import java.io.*;
import atg.droplet.GenericFormHandler;
public class FileUploadComponent extends GenericFormHandler
{
 /**
 * This method is called when the form above is submitted. This code makes
 * sure that it has an appropriate object and then pass it along for further
 * processing.
 * @param Object either an UploadedFile or an UploadedFile[]
 **/
 public void setUploadProperty(Object fileObject) {
 if(fileObject == null) {
 System.err.println("**** ERROR: FileUploadDroplet received a NULL file.");
 return;
 }

 if (fileObject instanceof UploadedFile[]) {
 System.out.println("Reading in UploadedFile[]");
 readUpFiles((UploadedFile[]) fileObject);
 }else if (fileObject instanceof UploadedFile){
 readUpFiles(new UploadedFile[]{(UploadedFile)fileObject});
 }else{
 System.err.print
 ("**** ERROR: FileUploadDroplet received an Object which is "
 + "neither an UploadedFile or an UploadedFile[].");
 }
 }
/**
 * Returns property UploadProperty
 **/
 public Object getUploadProperty() {
 // return null since we don't need to maintain a
 // reference to the original uploaded file(s)
 return null;

6 Working with Forms and Form Handlers 125

 }
//-------------------------------------
 /**
 * Here you can access the data in the uploaded file(s). You
 * should get the data from the uploaded file before the
 * request is complete. If the file is large, it is stored as a temporary
 * file on disk, and this file is removed when the request is complete.
 * @param UploadedFile[] the uploaded file(s)
 **/
 void readUpFiles(UploadedFile[] pFiles){
 UploadedFile upFile = null;
 String clientFilePath = null;
 String fileName = null;
 File localFile = null;
 FileOutputStream fos = null;
 byte[] fileData = null;

 for (int i = 0; i < pFiles.length; i++){
 upFile = pFiles[i];
 clientFilePath = upFile.getFilename();

 // Check that file uploaded is not size 0.
 if(upFile.getFileSize() <= 0){
 System.err.println
 (" FileUploadDroplet Cannot upload - file has length 0: "
 + clientFilePath);
 return;
 }
 /**
 * Extract the FilePath, which is the file location provided by the
 * browser client. Convert the file separator character to use the one
 * accepted by the web client's Operating system.
 **/

 String otherSeparator = "/";
 if ("/".equals(File.separator))
 otherSeparator = "\\";
 String convertedClientFilePath = atg.core.util.StringUtils.replace
 (clientFilePath,otherSeparator,File.separator);

 fileName =
 new String
 (convertedClientFilePath.substring
 (convertedClientFilePath.lastIndexOf
 (File.separator)+1));

 // Construct a local file (using the uploaded file directory)
 localFile = new File
 (mUploadDirectory
 + File.separator
 + fileName);

 // You can either get the file as an array of bytes ...
 try {
 fileData = upFile.toByteArray();
 System.out.println
 (" ** client filename: " + clientFilePath);
 System.out.println
 (" ** client file is " + upFile.getFileSize() + " bytes long.");
 fos = new FileOutputStream(localFile);

126 6 Working with Forms and Form Handlers

 fos.write(fileData);
 fos.flush();
 }
 catch (IOException e) {
 System.err.println("FileUploadDroplet failed");
 e.printStackTrace();
 }
 finally {
 if (fos != null){
 try {
 fos.close();
 }catch(IOException exc) {
 exc.printStackTrace();
 }
 }//end try/catch
 }//end finally

 // ... or you can read the data yourself from the input stream.
 /**
 try{
 InputStream is = upFile.getInputStream();
 ...
 }
 catch (IOException e) {
 } **/
 }// end for
 }// end readUpFiles

 //-------------------------------------
 // property: UploadDirectory
 // where we will put the uploaded file
 String mUploadDirectory;

 /**
 * Sets property UploadDirectory
 **/
 public void setUploadDirectory(String pUploadDirectory) {
 mUploadDirectory = pUploadDirectory;
 }

 /**
 * Returns property UploadDirectory
 **/
 public String getUploadDirectory() {
 return mUploadDirectory;
 }

}

7 Accessing Nucleus in a Web Application 127

7 Accessing Nucleus in a Web

Application

As discussed in the Nucleus-Based Application Structures (page 73) section of the Developing and Assembling

Nucleus-Based Applications (page 71) chapter, each EAR file assembled by the runAssembler command includes

a web application named atg_bootstrap.war. This module’s web.xml file includes the tags necessary to

configure the application to run an instance of Nucleus. This Nucleus instance is then available to any other web

applications in the EAR file.

In addition to atg_bootstrap.war, the EAR file typically includes one or more web applications that actually

run your site. For example, the QuincyFunds.ear file includes a web application named quincy.war that

runs the demo site. This application uses Nucleus components that implement Oracle ATG Web Commerce’s

personalization features and are accessed in the application’s JSPs through the DSP tag libraries (described in

the ATG Page Developer's Guide).

This chapter describes how you can access Nucleus in web applications by adding the necessary entries to the

web application’s web.xml deployment descriptor. For general information about web.xml files, see the J2EE

specifications.

In this chapter

This chapter discusses the following topics:

• Request Processing in a Nucleus-Based Application (page 127)

• Resources in web.xml (page 130)

• Adding Request-Handling Resources to web.xml (page 132)

Request Processing in a Nucleus-Based Application

The main entry point to Nucleus is though its request-handling facilities. When a web application running

Nucleus receives an HTTP request, it invokes a series of servlets and servlet filters that process the request and

construct the response:

1. When a user requests a page, that request is sent to the web server as a stream of information that the web

server parses and holds in an HTTPServletRequest object.

2. The web server passes the HTTPServletRequest to the application server, which it wraps in its own flavor of

request around the generic one before passing it to the web application.

128 7 Accessing Nucleus in a Web Application

3. Any custom J2EE servlets are processed.

4. The web application calls the PageFilter resource and starts the servlet pipeline.

5. The request is passed on to a pipeline of servlets. Each servlet available to the pipeline is designed to insert

itself into the pipeline when a given request includes the information that it processes. So, a unique pipeline

is constructed for each request. If you created any custom servlets and they apply to the current request, they

are executed now.

6. If you created custom filters and a JSP is being requested, they execute after the last pipeline servlet, but

before the request returns to the application server.

7. After the servlet pipeline reaches the end, it returns the request to the application server for final processing

(executing the servlet representation of the page).

The following figure illustrates this process:

7 Accessing Nucleus in a Web Application 129

For more information about Oracle ATG Web Commerce’s request handling pipelines, see the Request Handling

with Servlet Pipelines (page 135) chapter in this guide.

130 7 Accessing Nucleus in a Web Application

Resources in web.xml

The web application deployment descriptor specifies a series of resources that are instantiated and configured

based on the settings you provide. In web.xml, you are required to include the following resources:

• The DTD declaration and web application name in your web.xml as you would for any other J2EE application.

• NucleusServlet, which is the servlet responsible for running Nucleus as a servlet.

• A PageFilter that starts the request-handling pipeline.

• A <distributable/> tag, in order to enable session failover when running in a cluster. This tag is added

automatically when you assemble your EAR using the

–distributable flag.

In additional to these required resources, you can specify other Optional Resources (page 131) (described later

in this chapter) that the Oracle ATG Web Commerce platform provides. Most applications require site-specific

resources.

Running Nucleus

To use Oracle ATG Web Commerce platform functionality, a web application needs to start Nucleus by invoking

NucleusServlet. This servlet does not need to have any paths mapped to it, but must have the load-on-

startup flag set to 1 so that it runs before any other Oracle ATG Web Commerce component. The web.xml file

in atg_bootstrap.war includes the following lines:

<servlet>
 <servlet-name>NucleusServlet</servlet-name>
 <servlet-class>atg.nucleus.servlet.NucleusServlet</servlet-class>
 <load-on-startup>1</load-on-startup>
</servlet>

The NucleusServlet creates an instance of Nucleus and sets it as an attribute of the web application. The

Nucleus instance can be retrieved using the Nucleus.getGlobalNucleus() method.

Note: When you declare servlets in web.xml, you can use optional load-on-startup tags to determine the

order the servlets are called. If you do not use these tags, the servlets are called in the order that they appear in

web.xml. Because NucleusServlet must run first, its load-on-startup value must be 1, as in the example

above.

Starting the Request-Handling Pipeline

After invoking NucleusServlet, the web container calls PageFilter filter, which starts execution of the

request-handling pipeline for JSP requests by calling the pipeline’s first servlet, /atg/dynamo/servlet/

dafpipeline/DynamoHandler. This servlet generates a DynamoHTTPServletRequest that wraps the

generic HTTPServletRequest so pipeline servlets can read information from the request and also modify it.

A matching DynamoHTTPServletResponse is also generated. DynamoHandler passes the Dynamo request/

response pair to the next servlet in the request-handling pipeline.

For more information, see Request Handling with Servlet Pipelines (page 135).

To include PageFilter in web.xml:

7 Accessing Nucleus in a Web Application 131

• Insert the filter name and class name in enclosing <filter> tags.

• Map the filter to either a directory holding JSPs or the .jsp extension. This information is included in

enclosing <filter-mapping> tags.

For example:

<filter>
 <filter-name>PageFilter</filter-name>
 <filter-class>atg.filter.dspjsp.PageFilter</filter-class>
</filter>
<filter-mapping>
 <filter-name>PageFilter</filter-name>
 <url-pattern>*.jsp</url-pattern>
</filter-mapping>

Optional Resources

The Oracle ATG Web Commerce platform installation provides a number of useful optional resources. Some

of these resources enable key portions of the Oracle ATG Web Commerce platform that are accessible only if

web.xml includes them.

Context Root Changes on a Live Site

The context-root context parameter is a mechanism for making a web application context root visible to the

ATG Control Center. Oracle ATG Web Commerce Scenarios relies on this parameter to inform the ATG Control

Center about changes to the context root that is defined for a live site. For more information, see the ATG

Personalization Programming Guide.

PageFilter Debugger

If set to true, the atg.filter.PagefilterDebug parameter signals error information to be tracked in a log.

The default setting is false. Set this parameter to true if you encounter unexpected behavior and need to

provide error information to Technical Support.

Targeted Email

When your site supports targeted email, you must invoke the InitSessionServlet and map it to the

appropriate component. See the ATG Installation and Configuration Guide.

ATG Dynamo Server Admin

To access ATG Dynamo Server Admin:

• Specify AdminProxyServlet and indicate AdminHandler, the first servlet in the Admin servlet pipeline as an

initialization parameter.

• Map AdminProxyServlet to the directory which, when requests for pages in it are called, prompts the

AdminProxyServlet to execute.

For more information, see Including ATG Dynamo Server Admin (page 79).

Prevention of Profile Swapping

Several Oracle ATG Web Commerce applications contain preview features that allow users to test content on a

sample user profile. The implementation of this feature requires swapping the profile of the logged-in user with

132 7 Accessing Nucleus in a Web Application

the profile selected for preview. If your web application does not include preview features, it is recommended

that you disable profile swapping by setting the atg.preview context parameter to false in the web.xml file.

For more information, see the ATG Personalization Programming Guide.

Tag Libraries

You can make a tag library available to a web application in two ways:

• Put the tag library class files and TLD in the web application WEB-INF directory. In the TLD, specify the URI

value that matches the value in the JSPs that use the tag library. All Oracle ATG Web Commerce tag libraries

are implemented in this fashion.

• Use web.xml to define the tag library URI and TLD location. The URI must match the one used in JSPs.

Both methods are equally effective; and with two methods available, you can support two URIs. You do so by

declaring the tag library in web.xml with one URI, and keeping the tag library files, including the TLD that

defines a second URI, in WEB-INF.

The following example shows how to declare the DSP tag library in web.xml:

<taglib>
 <taglib-uri>/dspTaglib</taglib-uri>
 <taglib-location>/WEB-INF/taglibs/dspjspTaglib1_0.tld</taglib-location>
</taglib>

For more information about the DSP tag libraries, see the ATG Page Developer's Guide.

Web Services

You make web services available to your J2EE application by declaring them in web.xml. It is common practice

to define web services in their own web application so they are the only resource defined in web.xml. All Oracle

ATG Web Commerce web services are implemented in this way. When you create custom web services in the

Oracle ATG Web Commerce platform, a new web application is created for them where they are specified in

web.xml.

You can include any of Oracle ATG Web Commerce’s prepackaged web services in an assembled EAR file by

including the module that contains the desired services. For example, to include the Oracle ATG Web Commerce

services, specify the DCS.WebServices module when you invoke the runAssembler command. To include

web services you created through the Web Service Creation Wizard, use the runAssembler flag –add-ear-

file to specify the EAR file that contains the service.

For more information about Oracle ATG Web Commerce web services, see the ATG Web Services Guide.

Adding Request-Handling Resources to web.xml

You might want to include resources in your web application that allow you to pass dynamic information to

Nucleus components through the Dynamo request. Such resources include context parameters, filters, servlets,

web services, and tag libraries. The resources you create need to be consistent with the J2EE (or W3C for web

services) standards described in their respective specifications. After resources are created, you must register

them with the web application by adding them to web.xml in accordance with the J2EE specifications.

7 Accessing Nucleus in a Web Application 133

Keep in mind that the J2EE servlets you create are processed after the servlet pipeline. Therefore, custom filters

should be called just after PageFilter. Thus, PageFilter first activates the servlet pipeline; on completion,

your custom filters execute.

Creating Filters and Servlets

It is likely that the filters and servlets you create need to access the Dynamo request and response objects, in

order to modify the data they retrieve during pipeline-processing. To do so, code your filters and servlets as

follows:

1. Import atg.servlet.DynamoHttpServletRequest, atg.servlet.DynamoHttpServletRequest, and

atg.servletServletUtil.

2. Call ServletUtil.getDynamoRequest(request). This method returns a reference to the

DynamoHttpServletRequest.

Add filters and servlets to web.xml following the J2EE specifications.

Filter Example

This filter accesses the Dynamo request and response objects and retrieves the Profile object attached to the

request. Next, the filter finds the Profile ID on the Profile object and saves as an attribute of the request. Finally,

the filter passes control to the filter chain so it determines the next resource to call.

Keep in mind that this code sample might not provide the most efficient means for obtaining the Profile object,

but rather it is an easy-to-follow code sample that illustrates how a filter operates in the context of a filter chain.

import atg.servlet.ServletUtil;
import atg.servlet.DynamoHttpServletRequest;
import atg.servlet.DynamoHttpServletResponse;
import atg.userprofiling.Profile;

import javax.servlet.*;
import javax.servlet.http.*;

/*
 * An example filter that demonstrates how
 * to get the DynamoHttpServletRequest
 * in a Filter.
 */
public class MyFilter
 implements Filter {

 /*
 * Called when MyFilter is started
 * by the application server.
 */
 public void init(FilterConfig pConfig) {
 // Initialize MyFilter here.
 }

 /*
 * Called when MyFilter is about to
 * be destroyed by the application server.
 */

134 7 Accessing Nucleus in a Web Application

 public void destroy() {
 // Cleanup MyFilter here
 }
 /*
 * Called by the application server
 * when this filter is involved in a request.
 * Resolves the Profile nucleus component
 * and adds the Profile id as a request
 * attribute.
 */
 public void doFilter(ServletRequest request,
 ServletResponse response,
 FilterChain chain)
 throws IOException, ServletException
 {
 // Get the Dynamo Request/Response Pair
 DynamoHttpServletRequest dRequest =
 ServletUtil.getDynamoRequest(request);
 DynamoHttpServletResponse = dRequest.getResponse();

 // Resolve the Profile object
 Profile profile =
 (Profile)dRequest.resolveName("/atg/userprofiling/Profile");

 // Add the Profile id as a request attribute
 request.setAttribute("PROFILE_ID",
 profile.getRepositoryId());

 // Pass control on to the next filter
 chain.doFilter(request,response);
 return;
 }
}

The example described here accesses the request and response in this manner. It also resolves a component

in Nucleus, which is another common operation that can be handled by a filter. Any resource that makes calls

to a Nucleus component must also provide a means for discerning that component’s Nucleus address. For

instructions on how to do this, see the Basic Nucleus Operation (page 5) section in the Nucleus: Organizing

JavaBean Components (page 3) chapter.

8 Request Handling with Servlet Pipelines 135

8 Request Handling with Servlet

Pipelines

One of the most important tasks for an Oracle ATG Web Commerce server is handling HTTP requests. The Oracle

ATG Web Commerce server extends the basic web server model with various Nucleus services that implement

the Servlet interface, and which are linked in order to process HTTP requests. Each servlet performs a

specialized function on a request, then relays the request—sometimes in modified form—to the next servlet in

the chain. While each servlet performs a unique service, it often relies on changes that previous servlets made to

the request. This chain of servlets is called a request handling pipeline.

For example, a typical request might be processed as follows:

1. Compare the request URI against a list of restricted directories, to make sure that the user has permission to

access the specified directory.

2. Translate the request URI into a real file name, taking index files into account when the file name refers to a

directory.

3. Given the file name’s extension, determine the MIME type of the file.

4. From the MIME type, dispatch the request to the appropriate handler.

This is one of many request-handling configurations. Other configurations might dispatch based on a beginning

path such as /cgi-bin. Other configurations might move the session-tracking step to be performed only for

files with the MIME type text/session-tracked.

Because the request handling pipeline is composed of Nucleus components that are independently

configurable, it is easy to modify, giving you the flexibility that enterprise applications often require.

In this chapter

This chapter includes the following sections that describe how to use and customize the DAF servlet pipeline:

• Request Processing (page 136)

• Servlet Interface (page 136)

• DynamoHttpServletRequest and Response (page 141)

• Filters and PageFilter (page 145)

• Request-Handling Pipeline Servlets (page 145)

• Customizing a Request-Handling Pipeline (page 148)

136 8 Request Handling with Servlet Pipelines

This chapter does not address features provided by the Oracle ATG Web Commerce Portal module. For more

information on these, see the ATG Portal Development Guide.

Request Processing

A request processed by an application server follows the path described in this section, which assumes you

configure your web application to use PageFilter as demonstrated in atg_bootstrap.war.

When a user performs an action that prompts a response, the application server creates an instance of the

HttpServletRequest and HttpServletResponse. Based on the directories and file extension of the

requestURI, the application server uses servlet and filter mappings defined in web.xml to determine the next

resource to call.

By default, PageFilter is mapped to handle JSP requests. When the application server invokes PageFilter,

it checks the request and response for a reference to a Dynamo request and response pair. The pair does

not exist, so PageFilter starts the DAF servlet pipeline by calling DynamoHandler, the first servlet in the

pipeline. The DAF servlet pipeline processes through a series of servlets that modify the request and response

by extracting path information and providing session, user, and security information. The last servlet in the

pipeline is TailPipelineServlet. It is responsible for calling FilterChain.doFilter(), which invokes the

next filter defined in web.xml. The web application, unless it uses Oracle ATG Web Commerce Portal, does not

include other servlet filters.

By default, no filters are involved in request-handling process. For more information on how to implement

J2EE servlets and filters in an Oracle ATG Web Commerce web application, see the Accessing Nucleus in a Web

Application (page 127) chapter in this guide.

Servlet Interface

In order to use the servlet pipeline, you should be familiar with the Servlet interface and the servlet model for

handling requests. This section outlines basic concepts.

The role of the web server can be summarized as parsing HTTP requests into request/response object pairs,

HttpServletRequest and HttpServletResponse, respectively. These object pairs are relayed to servlets that

actually handle the requests. A servlet services each request by examining request parameters and producing

the appropriate output.

Request Handling

When a web server receives a request, it receives a stream of information from the browser. This

information is parsed into different parts, such as a request URI, query arguments, headers, and

cookies (a subset of the headers). This information is packaged into a single Java object called a

javax.servlet.http.HttpServletRequest.

A request might also carry additional information depending on the type of the request. For example, a form

submitted through a POST request uses this additional information to pass the form submission arguments. This

additional information can be read as a stream from a javax.servlet.ServletInputStream, which can be

obtained from the HttpServletRequest.

8 Request Handling with Servlet Pipelines 137

Generated Response

After the web server receives the request, it generates output to send back to the browser. The output

includes a response code such as 404 or 200, header data, and the response data, which can consist of an

HTML page, an image, and so on. Methods for setting the response code and headers are encapsulated

in a javax.servlet.http.HttpServletResponse. The response data is written directly through a

javax.servlet.ServletOutputStream, which can be obtained from the HttpServletResponse.

Servlet Interface

A servlet must implement the javax.servlet.Servlet interface. This interface defines the service method

that is called to handle a request:

void service (ServletRequest, ServletResponse)
 throws ServletException, IOException

HttpServletRequest

The HttpServletRequest breaks down a request into parsed elements, such as request URI, query arguments

and headers. Various get methods allow you to access various parts of the request:

• requestURI (page 137)

• Parameters (page 138)

• Attributes (page 138)

• ServletInputStream (page 139)

requestURI

The requestURI deals with the URL sent by the browser. For example:

http://server:80/MyWebApplication/personal/info/top.html?info=intro

When the server receives this request, the http://server:80 is stripped from the URL, leaving two parts:

• requestURI

• queryString: the string that follows a question mark (?), set to null if there are no query arguments.

In the previous example, the requestURI and queryString are /MyWebApplication/personal/info/

top.html and info=intro, respectively.

The URI /MyWebApplication/personal/info/top.html is further split up into contextPath, servletPath

and pathInfo. This distinguishes the path to a file or other data from the prefix that indicates who handles

the request. In this case, the /MyWebApplication might be the contextPath, /personal might act as the

servletPath, while the /info/top.html represents the pathInfo.

The contextPath is the name of the J2EE web application accessed by the requestURI. One or more

contextPaths can be defined for a web application in the application.xml file.

The pathInfo is usually translated to a real file path by appending it to a document root or web application

root. This real file path is available through getPathTranslated.

Given the earlier request, the following methods are provided to access the request URI and query string:

138 8 Request Handling with Servlet Pipelines

Method Returns …

GetRequestURI /MyWebApplication/personal/info/top.html

GetContextPath /MyWebApplication

GetServletPath /personal

GetPathInfo /info/top.html

GetPathTranslated /www/docs/info/top.html

GetQueryString info=intro

GetRequestURIWithQueryString /personal/info/top.html?info=intro

The following equations describe the relationships among these properties:

requestURI = contextPath + servletPath + pathInfo
pathTranslated = documentRoot + pathInfo

Notice that contextPath, servletPath, and pathTranslated require additional information. For example,

to determine the pathTranslated from the pathInfo, the web server must determine the document root.

The web server uses the application’s application.xml file to recognize the contextPath. Or to split the

servletPath from the pathInfo, the web server needs to know what prefixes are to be treated specially, such

as /personal. Other requests might not have a contextPath or servletPath, and the pathInfo is not split

up at all.

The web server is not expected to know all of this information. The web server figures out what it can and leaves

the rest blank. For example, the web server might leave the pathTranslated and servletPath blank. Servlets

in the pipeline are given the responsibility of determining pathTranslated, and splitting servletPath from

pathInfo.

Parameters

HttpServletRequest methods let you access request parameters. The request type determines where the

parameters come from. In most implementations, a GET request obtains query string parameters, while a POST

request obtains parameters from the posted arguments.

The methods getParameter(), getParameterValues(), and getParameterNames() let you access these

arguments. For example, in a GET request with a query string of info=intro the call getParameter("info")

returns intro.

Note: If you submit a form with method="POST", the method

ServletUtil.getDynamoRequest.getParameter does not return parameter values for query parameters.

You must call ServletUtil.getDynamoRequest.getQueryParameter to get query arguments in pages that

might get hit from a POSTed form

Attributes

The request object defines a method called getAttribute(). The servlet interface provides this as a way to

include extra information about the request that is not covered by any of the other HttpServletRequest

methods.

8 Request Handling with Servlet Pipelines 139

A servlet in the pipeline can use attributes as a way to annotate the request with additional computed

information. For example, a servlet in the pipeline might be responsible for reading a cookie from the request,

finding a session object corresponding to that cookie, and making that session object available to subsequent

servlets in the pipeline. The servlet can do this by adding the session object as an attribute using a well-known

attribute name. Subsequent servlets can extract the session object using that name.

ServletInputStream

The ServletInputStream is an InputStream that allows your servlets to read all of the request’s input

following the headers. For example, the ServletInputStream can be used to read the incoming submission

from a POST argument.

All servlets in the pipeline share the same ServletInputStream, so if one servlet reads from the stream,

the data that is read is no longer be available for other servlets. Certain operations also perform an implicit

read on the ServletInputStream. For example, it was mentioned earlier that in a POST request, the calls to

getParameter return values taken from the posted data. This implies that the posted data has already been

read, and is no longer available through the ServletInputStream. It is instead made available through the

parameters.

In general, you should expect to read POST data through parameters rather than the ServletInputStream.

The ServletInputStream is more useful for reading other forms of request data.

HttpServletResponse

The HttpServletResponse can perform these tasks:

• Set Response Codes (page 139)

• Set Headers (page 139)

• Send Response Codes and Headers (page 139)

• Send Redirects (page 140)

• Set ServletOutputStream (page 141)

Set Response Codes

The response code for a request is a numeric value that represents the status of the response. For example, 200

represents a successful response, 404 represents a file not found, and so on. The setStatus() methods can

be used to set the response code. HttpServletResponse defines a number of constants for the various codes

—SC_OK for 200, SC_NOT_FOUND for 404, and so on.

By default, a response is automatically set with a response code of SC_OK. The response code can be changed.

Set Headers

 Headers for the response can be set by calling setHeader, specifying the name and value of the header

to be set. If you want to set more than one HTTP header with the same name, you can call addHeader,

addDateHeader, or addIntHeader. You might want to do this if, for example, you wanted to set more than one

cookie in a single response.

Send Response Codes and Headers

The response code and headers might not be sent immediately upon calling setStatus or setHeader.

Typically, the response code and headers are not committed until something is actually written to the

140 8 Request Handling with Servlet Pipelines

ServletOutputStream. A call to the ServletResponse.isCommitted () method lets you know whether

the response codes and headers were sent. If nothing is ever written to the ServletOutputStream, the

response code and headers are committed when the request is finished.

You should not call setHeader or setStatus after you write something to the ServletOutputStream as the

response might already be committed.

A couple of other methods can cause the response code and headers to be sent immediately. Calling

sendError instead of setStatus sets the status code and immediately writes the response code and any

headers set up to that point. Calling sendRedirect or sendLocalRedirect has the same effect.

Send Redirects

The sendRedirect method is used to issue a redirect to the browser, causing the browser to issue a request

to the specified URL. The URL passed to sendRedirect must be an absolute URL—it must include protocol,

machine, full path, and so on.

If you are redirecting to another page on the same site, you should call sendLocalRedirect instead of

sendRedirect. Unlike sendRedirect, the sendLocalRedirect method lets you specify a relative URL, such

as errors/LoginError.jsp. The sendLocalRedirect method also includes session information in the

location URL, which is required to maintain a user’s session across a redirect.

After calling sendRedirect or sendLocalRedirect, no other operations should be performed on the

response. If you use response.sendRedirect() or response.sendLocalRedirect() calls, they must be

made before any content has been output to the response.getOutputStream(). After you send content to

the output stream, the response headers are already sent and it is no longer possible to modify the response

headers to perform a redirect.

This means that you cannot have any content, including any white space, in a JSP before the redirect call is

performed. White space is treated as content of the page unless it is between <% and %> tags or between

<dsp:droplet> and </dsp:droplet> tags (and not in an <dsp:oparam> tag).

Here is an example of a redirect that does not work, because it includes white space in the <dsp:oparam> tag

before the <% tag:

------ top of the page:
<dsp:droplet name="/atg/dynamo/droplet/Switch">
 <dsp:param bean="FormHandler.shouldRedirect" name="value"/>
 <dsp:oparam name="true">
 <% ServletUtil.getDynamoResponse(request,response).sendLocalRedirect
 ("/error.jsp", request); %>
 </dsp:oparam>
</dsp:droplet>

Here is the same example coded so that it does work:

------ top of the page:
<dsp:droplet name="/atg/dynamo/droplet/Switch">
 <dsp:param bean="FormHandler.shouldRedirect" name="value"/>
 <dsp:oparam name="true"><% ServletUtil.getDynamoResponse(request,response).
 sendLocalRedirect
 ("/error.jsp", request); %>
 </dsp:oparam>
</dsp:droplet>

8 Request Handling with Servlet Pipelines 141

Set ServletOutputStream

The ServletOutputStream is obtained by calling getOutputStream on the HttpServletResponse. The

ServletOutputStream is a subclass of OutputStream that contains a number of convenient print and

println methods.

Data written to the ServletOutputStream goes straight back to the browser. In addition, the first data written

to the stream causes the response code and headers to be sent out, which means that the headers cannot

be changed after data has been written to the ServletOutputStream. The ServletOutputStream cannot

be used to print headers, response codes, or redirect commands. These must be performed by using the

appropriate HttpServletResponse methods.

In the servlet pipeline, all servlets in the pipeline generally share the same ServletOutputStream. So if one

servlet prints something to the stream, the next servlet in the pipeline prints something to the stream, both

outputs appear in the order they were printed.

Note: This is different from the servlet chaining function provided by some web servers. In servlet chaining,

the output from one servlet becomes the input of the next servlet, and so on. In the servlet pipeline model, the

servlets in the pipeline share the same input and output streams, which lead back to the browser.

DynamoHttpServletRequest and Response

One of the functions of the servlet pipeline is to modify a request as it runs through various processing

elements. For example, one pipeline element might find the file associated with a given pathInfo, and use that

file name to set the pathTranslated property of the request.

The HttpServletRequest interface is immutable—it only provides methods for reading the various

properties, but does not provide methods for setting those properties. Oracle ATG Web Commerce provides the

class atg.servlet.DynamoHttpServletRequest, which implements HttpServletRequest and provides

methods to change request properties, such as setPathInfo and setPathTranslated.

Similarly, the class atg.servlet.DynamoHttpServletResponse, which implements HttpServletResponse,

lets you change response properties such as the output stream, and access its values such as statusCode.

The very first element of the servlet pipeline converts an incoming HttpServletRequest/Response pair into

a DynamoHttpServletRequest/Response pair. This allows subsequent elements of the servlet pipeline to use

the additional functions provided by DynamoHttpServletRequest/Response. These functions are outlined

below.

DynamoHttpServletRequest

As mentioned previously, DynamoHttpServletRequest provides methods for setting the various fields of the

request, making these changed values visible to subsequent elements in the pipeline. The request is available as

a Nucleus component at /OriginatingRequest.

In addition to property setters, DynamoHttpServletRequest provides methods for adding attributes to the

request, which lets you annotate the request with additional information. The DynamoHttpServletRequest

also provides a way to attach attribute factories to the request, which allows you delay the computation of

attributes until they are first needed.

142 8 Request Handling with Servlet Pipelines

Finally, DynamoHttpServletRequest provides a way to attach permanent attributes to the request. These

are attributes that stay around from request to request. These permanent attributes allow you to reuse objects,

which is the key to getting high throughput out of the servlet pipeline.

These features are described in the following topics:

• Request Property Setters (page 142)

• OriginatingRequest Component (page 142)

• Request Attributes (page 143)

• Attribute Factories (page 143)

• Permanent Attributes (page 143)

Request Property Setters

DynamoHttpServletRequest offers the following setX methods that allow you to change the properties of a

request:

setAuthType
setContentLength
setContentType
setInputStream
setMethod
setPathInfo
setPathTranslated
setProtocol
setQueryString
setRemoteAddr
setRemoteHost
setRemoteUser
setRequestURI
setScheme
setServerName
setServerPort
setServletPath

These methods are derived from the base class, atg.servlet.MutableHttpServletRequest.

In addition, DynamoHttpServletRequest offers its own setX methods, such as:

setBaseDirectory
setRequestLocale
setMimeType
setSession

If you set a property with one of these setX methods, subsequent calls to the corresponding getX method

return the value that you set. These new values are also visible to servlets farther down in the pipeline.

OriginatingRequest Component

In addition, the current request is available in Nucleus as /OriginatingRequest. The HTTP headers of the

request are available as properties of this Nucleus component. This lets you get the value of the HTTP REFERER

header like this, for example:

8 Request Handling with Servlet Pipelines 143

<dsp:valueof bean="/OriginatingRequest.referer"/>

Request Attributes

You can also add arbitrary keyword/value mappings to the request. These mappings are called attributes. They

are added to the request by calling setAttribute. After an attribute has been added, it can be retrieved by

calling getAttribute. These attributes are visible to your own servlets and servlets farther down the pipeline.

Attributes are often used to annotate a request with information derived from the request. For example, an

attribute might hold the values of the cookies that came with the request, represented as a Dictionary of

cookie name/cookie value pairs. The entire Dictionary is added as an attribute using a well-known attribute

name, and subsequent servlets in the pipeline can access the Dictionary of cookies by retrieving that attribute

by name.

After a request has been completed, all attributes are cleared from the request before the next request begins.

Attribute Factories

One of the techniques that can be used to improve performance is to avoid calculating values unless they

are needed. The previous section described how a Dictionary of cookies might be useful as an attribute.

But if only 10 percent of the requests actually use that Dictionary, 90 percent of the requests waste cycles

calculating that Dictionary.

The DynamoHttpServletRequest lets you register an attribute factory for an attribute. This attribute factory

is able to compute the value of the attribute when it is needed. When getAttribute is called on a request,

the request determines if the value of the attribute has already been set. If not, the request checks to see if an

attribute factory has been registered for that attribute. If so, the attribute factory is called to generate the value

of the attribute. The generated value is then registered as an attribute and is available for subsequent calls to

getAttribute.

So for the cookies case, register an attribute factory with the request. The attribute factory can create the

Dictionary of cookies the first time the cookies attribute is accessed.

The attribute factory must be of type atg.servlet.AttributeFactory, which defines a single method

createAttributeValue. An attribute factory is registered by calling setAttributeFactory.

Like attributes, all attribute factories are cleared from the request after a request has been completed.

Permanent Attributes

Perhaps the most important technique for achieving high performance is reuse of objects. In Java, every object

creation is expensive, and every object creation also has a delayed cost in garbage collection, so reusing objects

is a guaranteed way to improve performance.

The DynamoHttpServletRequest provides a way for you to register permanent attributes. Unlike normal

attributes, permanent attributes are not cleared between requests, meaning that these permanent attributes are

available for reuse by multiple requests.

For the cookie example, the Dictionary used to hold the cookies might be stored as a Hashtable that

is a permanent attribute of the request. Instead of creating a Hashtable for each request, the permanent

Hashtable attribute can be extracted from the request, cleared, and reused.

Adding permanent attributes to the request uses a slightly different process from adding normal

attributes. Instead of having separate get and set methods, permanent attributes are only accessed by a

144 8 Request Handling with Servlet Pipelines

getPermanentAttribute method. The getPermanentAttribute must be passed an AttributeFactory.

This AttributeFactory serves two purposes: it acts as the key for the attribute, and it is used to create the

attribute if it has not already been created.

The following shows how you might use a permanent attribute to store the Hashtable for the cookies:

// Member variables
class CookiesFactory implements AttributeFactory {
 public Object createAttributeValue ()
 { return new Hashtable (); }
}
AttributeFactory cookiesKey = new CookiesFactory ();
...

public void service (DynamoHttpServletRequest request,
 DynamoHttpServletResponse response)
 throws ServletException, IOException
{
 Hashtable cookies = (Hashtable)
 request.getPermanentAttribute (cookiesKey);
 cookies.clear ();
 ...
}

The first part of the example shows how to define an AttributeFactory inner class that both creates the

Hashtable when needed, and also acts as the key. In the method where you need to extract the Hashtable,

you call getPermanentAttribute, passing it the AttributeFactory. The first time you call this on the

request, it fails to find a value associated with that key, and calls on the AttributeFactory key to create the

value. Subsequent calls on that same request find and return the value that was previously registered with that

key. This value remains part of the request even after the request is complete and a new request begins.

Each request object gets its own copy of your permanent attribute, so if your server is running 40 request-

handling threads, you might see the permanent attribute get created 40 times, once for each request object. But

after all request objects have a copy of the attribute, no more object creations are necessary.

DynamoHttpServletResponse

The DynamoHttpServletResponse is a wrapper around HttpServletResponse that adds a few useful

methods:

getHeader

Returns a Dictionary of all the headers that were set so far in the response.

setOutputStream

Sets the ServletOutputStream that subsequent servlets use to write their responses. You can use this to

intercept the outgoing data and process it in some way, before sending it to the original output stream. For

example, a caching element might set the output stream to send data both to a cache and to the browser.

isRequestComplete

Returns true if a complete response is already sent. This is typically only true if a redirect or error has been sent

through this response.

8 Request Handling with Servlet Pipelines 145

getStatus

Returns the status code sent through this response object. If no status code has been set explicitly,

SC_STATUS_OK is returned.

Accessing DynamoHttpServletRequest and DynamoHttpServletResponse

To access information contained in the request and response in your page, do so by making direct calls

to HttpServletRequest and HttpServletResponse. When you need application-specific information

held only by the Dynamo request and response, you should import the request or response using the

atg.servlet.ServletUtil class. For example, to access the state object parameter, your JSP might use this

code:

<%=atg.servlet.ServletUtil.getDynamoRequest(request).getObjectParameter
 ("state")%>

Any references to the Dynamo request and response are interpreted as calls to the generic

HttpServletRequest and HttpServletResponse.

Filters and PageFilter

Another way to alter a request or response is through the use of filters. A filter, as it is defined in the Java Servlet

Specification v2.3, implements the javax.servlet.Filter interface. You use a filter to create a wrapper for

the request and response in order to modify the data within it. You can also use a filter to examine the headers in

the request and to specify the next resource to call.

A series of filters are managed by a filter chain. After a filter completes execution, it makes a call to the filter

chain. The filter chain is responsible for determining the next operation: invoking another filter, halting the

request execution, throwing an exception, or calling the resource that passed the request to the first filter in the

chain.

Nucleus-based web applications use one filter, PageFilter, by default. For information on how to implement

PageFilter, see Starting the Request-Handling Pipeline (page 130).

Request-Handling Pipeline Servlets

The standard request handling pipeline configuration for an Oracle ATG Web Commerce server comprises

various servlet pipeline components that perform various operations on each request. The servlets included in

the pipeline vary according to the modules that are assembled into the application.

The following graphic provides a truncated view of the servlet pipeline as it might be assembled for an

application that includes Oracle ATG Web Commerce, and enabled for multisite. The main pipeline includes

standard platform servlets. The Oracle ATG Web Commerce and Oracle ATG Web Commerce Search modules

insert their servlets at different points on the main pipeline as required:

146 8 Request Handling with Servlet Pipelines

You can use the ATG Dynamo Server Admin Component Browser to view request handling pipeline servlets and

their sequence within the pipeline:

1. In the Component Browser (http://host:port/dyn/admin/nucleus/), navigate to the first pipeline

servlet:

/atg/dynamo/servlet/dafpipeline/DynamoHandler

2. The Component Browser lists all pipeline servlets in order of execution.

The following table lists servlets according to their likely order in a production server’s request handling

pipeline. The servlets actually contained in a given request handling pipeline and their order is likely to vary,

depending on the application.

For detailed information about these and other available servlets, see Appendix E, Request Handling Pipeline

Servlets Reference (page 471).

Core Platform Servlets Module Servlets Module

DynamoHandler (page 475)

SiteContextPipelineServlet (page 485)

8 Request Handling with Servlet Pipelines 147

Core Platform Servlets Module Servlets Module

ThreadUserBinderServlet (page 487)

DAFPassportServlet (page 474)

PathAuthenticationServlet (page 480)

URLArgumentServlet (page 488)

DynamoServlet (page 475)

ProtocolSwitchServlet (page 483)

ProfileRequestServlet (page 481)

ThreadNamingPipelineServlet (page

486)

ProfilePropertyServlet (page 481)

SessionEventTrigger (page 484)

PageViewServletTrigger (page 479)

SessionSaverServlet (page 484)

SiteSessionEventTrigger (page 484)

SearchClickThroughServlet Oracle ATG Web

Commerce Search

AccessControlServlet (page 471)

PromotionServlet (page 482) Oracle ATG Web

Commerce

CommerceCommandServlet (page

472)

Oracle ATG Web

Commerce

DAFDropletEventServlet (page 474)

MimeTyperServlet (page 478)

ExpiredPasswordServlet (page 476)

CookieBufferServlet (page 473)

MimeTypeDispatcher (page 478)

FileFinderServlet (page 476)

TailPipelineServlet (page 486)

148 8 Request Handling with Servlet Pipelines

Customizing a Request-Handling Pipeline

The ATG installation provides a servlet pipeline that is invoked each time an ATG server handles a request. ATG

Dynamo Server Admin also has its own servlet pipeline, which starts with the servlet /atg/dynamo/servlet/

adminpipeline/AdminHandler. You can construct pipelines used by your own applications, or you can

customize existing ATG server pipelines.

Inserting Servlets in the Pipeline

The atg.servlet.pipeline package provides interfaces for creating request handling

pipeline servlets. All pipeline servlet classes directly or indirectly implement interface

atg.servlet.pipeline.PipelineableServlet. This interface provides a nextServlet property

that points to the next component in the pipeline. The ATG installation provides the implementation class

atg.servlet.pipeline.PipelineableServletImpl, which you can subclass to create your own servlets.

PipelineableServletImpl implements all Servlet methods, so you only need to override the service

method.

To insert into a request handling pipeline a servlet that subclasses PipelineableServletImpl:

1. Extend atg.servlet.pipeline.PipelineableServletImpl.

2. Define the servlet as a globally scoped Nucleus component.

3. Reset the previous servlet’s nextServlet property to point to the new servlet.

4. Set the new servlet’s nextServlet property to point to the next servlet in the pipeline.

5. Add the servlet’s path to the initialServices property of /atg/dynamo/servlet/Initial.

The PipelineableServlet interface has two sub-interfaces that provide more flexibility for inserting new

servlets into the pipeline:

• atg.servlet.pipeline.InsertableServlet (page 148)

• atg.servlet.pipeline.DispatcherPipelineableServlet (page 150)

InsertableServlet

The InsertableServlet interface lets a servlet insert itself into the pipeline when the service starts, without

requiring changes to servlets already in the pipeline, through the insertAfterServlet property, which points

back to the preceding servlet. The inserted servlet reads the preceding servlet’s nextServlet property and

points to it as the next servlet to execute after itself.

For example, a servlet pipeline might contain Servlet1, whose nextServlet property points to Servlet2.

You can insert MyNewServlet, which implements InsertableServlet, between the two by setting its

insertAfterServlet property so it points to Servlet1. This configuration splices ServletNew between Servlet1

and Servlet2 as follows:

• MyNewServlet sets its own nextServlet property to the value of Servlet1’s nextServlet property.

• MyNewServlet reads Servlet1’s nextServlet property and links to Servlet2 as the next servlet to execute

after itself.

8 Request Handling with Servlet Pipelines 149

If an insertable servlet inserts only itself into a pipeline, it uses the nextServlet property of its

insertAfterServlet servlet to resume pipeline execution. However, if the inserted servlet starts a

secondary pipeline, it sets its own nextServlet property to the next servlet in that pipeline. After the last

secondary pipeline servlet executes, it passes control to the nextServlet servlet originally specified by the

insertAfterServlet servlet, and the original pipeline resumes execution.

The ATG installation provides an implementation of the InsertableServlet interface,

atg.servlet.pipeline.InsertableServletImpl. This class implements all Servlet methods, so you only

need to override the service method.

To add an InsertableServlet to the servlet pipeline:

1. Write your servlet by extending atg.servlet.pipeline.InsertableServletImpl.

2. Define the servlet as a globally scoped Nucleus component.

3. Set the insertAfterServlet property of your servlet to point to the path of the pipeline servlet you want

your servlet to follow. For example, you can insert a servlet after DynamoServlet as follows:

insertAfterServlet=/atg/dynamo/servlet/dafpipeline/DynamoServlet

4. Add the servlet’s path to the initialServices property of /atg/dynamo/servlet/Initial:

initialServices+=/myServlet

When the inserted servlet finishes processing, it calls the method passRequest() (defined in

InsertableServletImpl), which automatically passes the request and response objects to the next servlet in

the pipeline.

Sample Servlet Code

The following pipeline servlet class URIPrinter extends

atg.servlet.pipeline.InsertableServletImpl. It prints the request URI before passing the request on to

the next servlet in the pipeline:

import javax.servlet.*;
import javax.servlet.http.*;
import java.io.*;
import atg.servlet.*;
import atg.servlet.pipeline.*;

public class URIPrinter extends InsertableServletImpl{

150 8 Request Handling with Servlet Pipelines

 public URIPrinter () {}
 public void service (DynamoHttpServletRequest request,
 DynamoHttpServletResponse response)
 throws IOException, ServletException
 {
 System.out.println ("Handling request for " +
 request.getRequestURI ());
 passRequest (request, response);
 }
}

Note: Subclasses of InsertableServletImpl that add their own logic to doStartService must call

super.doStartService().

DispatcherPipelineableServlet

The DispatcherPipelineableServlet interface provides a mechanism for conditionally branching the

pipeline. This interface includes a dispatcherServiceMap property that is a Map of possible servlets to

invoke next, depending on some condition. For example, the MimeTypeDispatcher servlet determines

which servlet to invoke depending on the MIME type of the request. ATG provides the implementation class

DispatcherPipelineableServletImpl.

Using J2EE Servlets and Filters

The servlets discussed in this chapter are primarily ATG servlets created for use only in Nucleus. ATG servlets

are distinct from J2EE servlets, which run in a J2EE web container and follow the standards defined by the J2EE

specifications. While J2EE servlets and filters can interact with requests much like ATG servlets, they differ in key

respects:

• ATG servlets exist in the servlet pipeline, which executes before the request reaches the J2EE web container.

J2EE servlets are executed by the web container.

• ATG servlets themselves determine the order in which they execute. The application deployment descriptor

web.xml describes the order and conditions in which J2EE servlets execute.

Use the type of resources that best suit your preferences. You might find J2EE servlets and filters a more portable

and familiar technology in comparison to ATG servlets.

The J2EE specifications describe how to create J2EE servlets and filters. For information on how to implement

J2EE resources in the ATG platform, see Accessing Nucleus in a Web Application (page 127).

Exceptions in Pipeline Servlets

If you write a servlet and add it to the servlet pipeline, your servlet’s service method is called for all requests

that reach this stage in the pipeline. If your servlet does not call the passRequest() method (perhaps because

an application exception is thrown), no content reaches the browser and the likely result is a Document

Contains No Data message from the browser. Make sure your servlets are coded properly to avoid this

problem.

Your servlet (whether it appears in the servlet pipeline or not) should generally not catch IOExceptions that

occur when writing to the ServletOutputStream, as those exceptions indicate that the user has clicked the

browser’s stop button. If you need to execute some code when the user clicks the stop button, your code should

catch the IOException, do any needed processing, and then re-throw the IOException.

8 Request Handling with Servlet Pipelines 151

Authentication

The BasicAuthenticationPipelineServlet class provides authentication using the Basic HTTP

authentication mechanism. A component for this servlet is not included in the standard servlet pipelines, but

the class is available for use in servlet pipelines you might create in your own applications.

If a request comes in without an authorization header, this servlet immediately sends back a reply that causes

the browser to pop up an authorization window. The user is expected to enter a user name and password.

The request is then repeated, this time with an authorization header. The servlet checks that the user name

and password in the header are valid. If so, the servlet passes the request to the next servlet in the pipeline.

Subsequent requests contain the correct authorization and no longer cause the authorization window to pop

up. The request is never passed on if the correct authorization is not received.

Checking the user name and password is performed by a separate component that implements

atg.servlet.pipeline.Authenticator. This defines a single method called authenticate, that

takes a user name and password and returns true if the combination is valid, false if not. ATG provides an

implementation of Authenticator called atg.servlet.pipeline.BasicAuthenticator. This takes a

passwords property of type Properties, that maps user IDs to passwords. If a user ID/password combination

is found in the passwords property, the authentication is successful. Otherwise, the authentication fails. Other

Authenticator implementations are possible, such as implementations that check names and passwords in a

database.

Example

The following example shows how to configure an authentication servlet and authenticator:

AuthenticationServlet.properties:

$class=atg.servlet.pipeline.BasicAuthenticationPipelineServlet
realm=Dynamo6.0
authenticator=Authenticator
nextServlet=SomeHandler

Authenticator.properties:

$class=atg.servlet.pipeline.BasicAuthenticator
passwords=\
 admin=jjxr2,\
 hank=angry

In this example, the authentication servlet passes a request to SomeHandler only if the request is authenticated

with a name and password found in the passwords property of the authenticator component. The realm

property specifies what realm is to be shown to the user in the window that asks for name and password.

BrowserTyper

One service made available by DynamoHttpServletRequest is the BrowserTyper. The BrowserTyper service

enables an ATG server to identify a visitor’s web browser type and group it into one or more categories. This

service (a component of class atg.servlet.BrowserTyper) identifies browsers by the user-agent header field

in the request. The BrowserTyper manages a list of browser types, each of which has a name that identifies the

browser and a list of patterns that the BrowserTyper uses for matching user-agent fields to browser types.

152 8 Request Handling with Servlet Pipelines

The list of browser types is found in /atg/dynamo/servlet/pipeline/BrowserTypes. It includes all

commonly used browsers, and groups them according to several different attributes, including, among others:

• the vendor name

• whether the browser can handle frames or cookies

• whether the request is from a non-browser user-agent (a web robot)

• whether the browser supports file uploading

Each browser type is defined as a component in the /atg/dynamo/servlet/pipeline/BrowserTypes

directory. These components include two properties: the name of the browser type and the patterns in the

user-agent header by which the BrowserTyper attempts to recognize the browser type.

You can add to the list of browser types that the BrowserTyper can recognize. To do this:

1. Add the names of your browser types to the browserTypes property of the BrowserTyper component in /

atg/dynamo/servlet/pipeline, like this:

browserTypes+=\

BrowserTypes\MyFirstBrowserType,\

BrowserTypes\MySecondBrowserType

2. Create an atg.servlet.BrowserType class component in the /atg/dynamo/servlet/pipeline/

BrowserTypes directory for each additional browser type.

3. The .properties file of the BrowserType component should look like this:

$class=atg.servlet.BrowserType

name=MyFirstBrowserType

patterns=\

regular-expression-1,\

regular-expression-2

4. The patterns property is a list of simplified regular expressions that are matched against the

user-agent header for the request. If any of them match, the isBrowserType() method of

atg.servlet.BrowserTyper returns true.

5. The simplified regular expression string has the following form:

<regexps> = empty |

<regexps> <regexp>

<regexp> =

<base type>

<type set>

<regexp>*

<regexp>+

<regexp>?

<regexp>.

<regexp>|<regexp>

(<regexps>)

<base type> =

any character other than:

* + ? | () [] .

<type set> =

8 Request Handling with Servlet Pipelines 153

[<base types>]

<base types> = empty |

<base types> <base type>

'*' 0 or more times

'+' 1 or more times

'?' 0 or 1 time

'.' Matches any character except \n

'|' Separates alternatives, e.g. [a | b | c] is 'a or b or c'

[] Join multiple expressions into one expression

() Group expressions

Browser Caching of Dynamic Pages

Some browsers handle page caching in a way that conflicts with dynamic page requests. ATG’s browser type

marks page requests from those browsers as non-cacheable to override the aggressive caching behavior

of some browsers and proxy servers. Because an ATG server does not set a Last-modified header for JSP

requests, browsers should not cache results. However, some browsers (such as Microsoft IE 5.0) do cache these

pages. Thus, these browsers might display stale content to users on your site. This occurs because of bad

caching: instead of re-requesting the JSP, the browser incorrectly displays the cached version. In addition to

showing potentially stale content, URL-based session tracking breaks with these browsers.

To prevent browsers from caching dynamic pages, an ATG server sends headers to these browsers with the

following:

Pragma: no-cache
Expires: date-in-the-past

This behavior is controlled with a special ATG browser type called bad-cacher defined by the following

component:

/atg/dynamo/servlet/pipeline/BrowserTypes/BadCacher

This component has a patterns property that defines a regular expression that matches the user-agent

header sent by the browser. If the user-agent matches, the Pragma: no-cache and Expires: date-in-

the-past headers are sent with each request. By default, Microsoft IE 5.0 is listed as one of these browsers.

You can control the list of user-agents where caching is disabled by editing the values of the BadCacher

component’s patterns property.

BrowserAttributes Component

ATG includes a request-scoped component at /atg/dynamo/servlet/pipeline/BrowserAttributes that

exposes all the known BrowserTyper characteristics of the current request as boolean properties.

This component enables you to create JSPs that display different features, depending on properties like the

browser type, so you can include browser-specific or feature-specific code in your pages without resorting to

embedded Java tags to test the browser type.

The following example tests whether the request comes from an Internet Explorer browser:

<dsp:droplet name="/atg/dynamo/droplet/Switch">
 <dsp:param bean="BrowserAttributes.MSIE" name="value"/>
 <dsp:oparam name="true">
 Hmmm... you seem to be using Internet Explorer.

154 8 Request Handling with Servlet Pipelines

 </dsp:oparam>
 <dsp:oparam name="false">
 You aren't using Internet Explorer.
 </dsp:oparam>
</dsp:droplet>

PageFilterUtil

The atg.servlet.pagefilter.PageFilterUtil class lets you encode URLs in HTML dynamically. When an

HTML file is read from the input stream, the data is written to the response and, at the same time, URLs found in

the HTML are replaced with encoded versions. For improved performance, an offset table can be generated the

first time a given HTML file is parsed. Subsequent requests use the offset table to locate the URLs.

Any of the following operations can be accomplished by incorporating PageFilterUtil in a JSP tag or custom

servlet bean:

• Session IDs appended to URLs for session tracking are striped from the URLs when the page containing them

is rendered.

• Relative URLs are rewritten with a prepending forward slash (/) so they are recognized as such by the browser.

• Query parameters appended to URLs are striped from URLs when the page containing them is rendered.

• URLs are appended to support exit tracking.

You can find PageFilterUtil in <ATG10dir>\DAS\lib\classes.jar so it is appended to your CLASSPATH

by default. Design your classes to instantiate and reference PageFilterUtil as needed.

The writeHTMLFile method determines whether the page requires encoding and when needed, accomplishes

this task before writing the page content to the response object. When a page does not require any URL

Rewriting, page content is sent directly to the browser.

The encodeHTMLFile method calls response.encodeURL for every URL within a given page and writes the

resultant page content to the response object. Because pages that do not require parsing and encoding follow

the same process as those that do, you ought to use writeHTMLFile to speed page rendering when you are

unsure of the content in your pages.

The remaining methods, writeFile, writeByteFile, and writeCharFile, pass a page to the response

object directly. These methods assume encoding has already been applied to the page content, however you

can specify encoding using these methods in order to parse the page as characters and write out the result

through PrintWriter.

For more information see the atg.servlet.pagefilter.PageFilterUtil section of the ATG Platform API

Reference.

Improving Page Compilation Performance

The first time a page is requested, it undergoes several conversions: from JSP to Java code to HTML. The

first transformation from JSP to Java code causes a slight delay in performance that is easily avoided by pre-

compiling your JSPs with the Java compiler.

You can pre-compile individual JSPs at application startup by specifying them in your web application

deployment descriptor. Here is an example of what you’d add for a page called MyPage.jsp to web.xml in

enclosing <web-app> tags:

8 Request Handling with Servlet Pipelines 155

<servlet>
 <servlet-name>MyPage.jsp</servlet-name>

 <jsp-file>/path/to/jsp/MyPage.jsp</jsp-file>

 <load-on-startup>1</load-on-startup>
</servlet>

An explanation of each tag is as follows:

• <servlet-name> identifies the servlet to be compiled

• <jsp-file> identifies the path to the servlet

• <load-on-startup> identifies the order this servlet should be compiled

Servlet Pipeline Examples

The following examples show how to perform various functions with a pipeline servlet.

• Setting an Attribute (page 155)

• Setting an Attribute Factory (page 156)

• Setting a Permanent Attribute (page 157)

Setting an Attribute

In this example, a pipeline servlet examines a request to see if it starts with /stocks or /bonds. If so, it sets a

wallStreet attribute to true. Otherwise, it sets a wallStreet attribute to false.

import javax.servlet.*;
import javax.servlet.http.*;
import java.io.*;
import atg.servlet.*;
import atg.servlet.pipeline.*;

public class WallStreet extends PipelineableServletImpl {
 public WallStreet () {}
 public void service (DynamoHttpServletRequest request,
 DynamoHttpServletResponse response)
 throws IOException, ServletException
 {
 String pathInfo = request.getPathInfo ();
 boolean val =
 pathInfo.startsWith ("/stocks") ||
 pathInfo.startsWith ("/bonds");
 request.setAttribute ("wallStreet", new Boolean (val));
 passRequest (request, response);
 }
}

This wallStreet attribute is now available for use by subsequent servlets. For example, the following servlet

might follow the WallStreet servlet, printing a message if it finds the wallStreet attribute is true:

156 8 Request Handling with Servlet Pipelines

import javax.servlet.*;
import javax.servlet.http.*;
import java.io.*;
import atg.servlet.*;
import atg.servlet.pipeline.*;

public class Trader extends PipelineableServletImpl {
 public Trader () {}
 public void service (DynamoHttpServletRequest request,
 DynamoHttpServletResponse response)
 throws IOException, ServletException
 {
 Boolean b = (Boolean) request.getAttribute ("wallStreet");
 if (b != null && b.booleanValue ()) {
 System.out.println ("I'm on Wall Street!");
 }
 passRequest (request, response);
 }
}

Setting an Attribute Factory

The sample pipeline servlet element described in the previous section has a problem: it always examines

pathInfo and creates a new Boolean attribute, whether that attribute is needed or not. This attribute can be

expensive to create and wasteful if the attribute is never accessed.

Rather than setting an attribute, this pipeline servlet would be more efficient if it set an attribute factory that

creates the attribute value the first time it is needed. The following shows how to do this:

import javax.servlet.*;
import javax.servlet.http.*;
import java.io.*;
import atg.servlet.*;
import atg.servlet.pipeline.*;

public class WallStreet extends PipelineableServletImpl {
 // The AttributeFactory
 class WallStreetFactory implements AttributeFactory {
 DynamoHttpServletRequest request;
 public void setRequest (DynamoHttpServletRequest request)
 { this.request = request; }

 public Object createAttributeValue ()
 {
 String pathInfo = request.getPathInfo ();
 boolean val =
 pathInfo.startsWith ("/stocks") ||
 pathInfo.startsWith ("/bonds");
 return new Boolean (val);
 }
 }

 public WallStreet () {}
 public void service (DynamoHttpServletRequest request,
 DynamoHttpServletResponse response)
 throws IOException, ServletException
 {

8 Request Handling with Servlet Pipelines 157

 WallStreetFactory f = new WallStreetFactory ();
 f.setRequest (request);
 request.setAttributeFactory ("wallStreet", f);
 passRequest (request, response);
 }
}

The AttributeFactory is defined as an inner class. Every time a request comes through, a new attribute

factory is created and registered with the request. This factory is given a pointer to the request, so that when the

factory is asked to create the attribute value, it can compute the value from the request.

Setting a Permanent Attribute

The previous example showed how a request can improve performance by delaying computation of the

wallStreet attribute until it is needed. But there is still the problem that a WallStreetFactory is created

on every request. This repeated creation can be avoided by using permanent attributes. In this example, the

WallStreetFactory is stored as a permanent attribute that is accessed during the request.

import javax.servlet.*;
import javax.servlet.http.*;
import java.io.*;
import atg.servlet.*;
import atg.servlet.pipeline.*;

public class WallStreet extends PipelineableServletImpl {
 // The AttributeFactory
 class WallStreetFactory implements AttributeFactory {
 DynamoHttpServletRequest request;
 public void setRequest (DynamoHttpServletRequest request)
 { this.request = request; }

 public Object createAttributeValue ()
 {
 String pathInfo = request.getPathInfo ();
 boolean val =
 pathInfo.startsWith ("/stocks") ||
 pathInfo.startsWith ("/bonds");
 return new Boolean (val);
 }
 }

 // The permanent attribute
 class KeyFactory implements AttributeFactory {
 public Object createAttributeValue ()
 { return new WallStreetFactory (); }
 }
 KeyFactory key = new KeyFactory ();

 public WallStreet () {}
 public void service (DynamoHttpServletRequest request,
 DynamoHttpServletResponse response)
 throws IOException, ServletException
 {
 WallStreetFactory f = (WallStreetFactory)
 request.getPermanentAttribute (key);
 f.setRequest (request);
 request.setAttributeFactory ("wallStreet", f);
 passRequest (request, response);

158 8 Request Handling with Servlet Pipelines

 }
}

Now the pipeline servlet performs no object allocations when a request comes through. And when the attribute

is accessed, only a single Boolean value is created. More permanent attributes can be used to avoid even the

creation of that Boolean value.

Notice how this implementation is approximately twice as large as the first implementation that just created a

new attribute value with every request. Remember that all of this extra code improves performance—it reuses

objects and delays computation of attributes until they are needed. So even though the code is longer, the

performance should be better.

Dispatching Servlets

The PipelineableServletImpl provides a convenient method for specifying a nextServlet and for passing

calls to that servlet. This provides a nice linear model of processing. There are many instances, however, where

you might want to branch to one of many servlets based on the request. For example, if you want to call a

servlet that is not a pipeline servlet, you must use an alternative method.

To do this, make sure your servlet implements the java.servlet.RequestDispatcher interface defined

in the J2EE specifications. This interface creates a wrapper for your custom servlet. That wrapper specifies

the servlets that come before and after your servlet. You also need to define your servlet in your web.xml

deployment descriptor.

9 Multisite Request Processing 159

9 Multisite Request Processing

Note: For a general overview of multisite architecture, and detailed information about setting up a multisite

environment, see the ATG Multisite Administration Guide.

When an Oracle ATG Web Commerce web server receives a request in a multisite

environment, the request handling pipeline servlet SiteContextPipelineServlet (page 485)

(atg.multisite.SiteContextPipelineServlet) evaluates the request to determine the identity of the

Oracle ATG Web Commerce site associated with it. That identity enables delivery of site-specific information in

the server response. It is also important to maintain a site’s identity in order to differentiate it from other Oracle

ATG Web Commerce sites that the user might visit during the same session.

Broadly speaking, SiteContextPipelineServlet performs the following tasks:

1. Derives a site ID from the request URL.

2. Determines whether site information is available for requests.

3. Passes the site ID to the SiteContextManager and SiteSessionManager components:

• The SiteContextManager (atg.multisite.SiteContextManager) creates a request-scoped

SiteContext component, which gives the request thread access to site properties.

• The SiteSessionManager (atg.multisite.SiteSessionManager) associates the site with a session-

scoped SiteSession component, which maintains information about the site during the current session.

The following graphic illustrates this process and highlights components that play important roles. Later

sections in this chapter describe these components in greater detail.

160 9 Multisite Request Processing

Site Identification

On receiving a request, the SiteContextPipelineServlet examines each request URL in order to determine

which site to associate it with. This process comprises the following steps:

1. Iterate over an array of SiteContextRuleFilter components, or rule filters, which are set on the

SiteContextPipelineServlet property ruleFilters.

2. Call each rule filter’s filter() method until a site ID is returned for that request.

3. If none of these rule filters returns a site ID, call the rule filter that is set on the DefaultRuleFilter property,

DefaultSiteRuleFilter (page 163).

9 Multisite Request Processing 161

4. If no rule filter returns a site ID, the SiteContextPipelineServlet stops processing and passes on the

request to the next servlet in the request pipeline.

Errors

If a site ID is determined, but the SiteContextPipelineServlet cannot find a site configuration that

corresponds to the site ID, it logs a warning, stops processing, and passes on the request to the next servlet in

the request pipeline.

Installed Rule Filters

The Oracle ATG Web Commerce installation provides the following SiteContextRuleFilter components for

identifying a site:

• RequestParameterRuleFilter (page 161): Evaluates query parameters that supply the site ID and specify

whether that site should persist for the remainder of the current session.

• URLPatternMatchingRuleFilter (page 162): Encapsulates rules for obtaining a site ID from the request URL.

• DefaultSiteRuleFilter (page 163): Returns the server’s default site ID.

RequestParameterRuleFilter

Based on the class atg.multisite.PushedSiteParamFilter, the component /atg/multisite/

RequestParameterRuleFilter is the first rule filter to execute. This filter processes request query parameters

that set the current site, and specify it as a sticky site that persists throughout the session of that request. This

filter is typically useful for testing and previewing sites that are under development; it should be disabled for

production sites.

RequestParameterRuleFilter checks the request URL for these query parameters:

• pushSite is set to a site ID, which is returned by the rule filter’s filter() method.

• stickySite, if set to setSite, makes the pushSite-specified site sticky for the current session. Unless

explicitly reset or unset, the sticky site is used for all subsequent requests during that session.

• pushRealm is set to a profile realm ID. It sets the profile realm context for the duration of the request. See

Profile Realm Context Management (page 202).

A sticky site remains valid for the current session until another request URL sets one of the following query

parameters:

• pushSite specifies another site ID, which becomes the current site. If stickySite is also set to setSite, this

SiteContext becomes the new sticky site.

• stickySite is set to unsetSite. This unsets the sticky site, and the RequestParameterRuleFilter

returns null. The SiteContextPipelineServlet executes subsequent rule filters in its ruleFilters

property until one returns a valid site.

RequestParameterRuleFilter is enabled through two properties:

• enabled specifies whether the filter is active within the filter chain. If set to false,

SiteContextPipelineServlet skips over this filter when processing a request. By default, this property is

set to true.

162 9 Multisite Request Processing

• enableStickySite disables sticky site functionality if set to false. The filter remains active and supports

use of the pushSite query parameter; it ignores the stickySite query parameter. By default, this property

is set to false.

Note: Sticky site functionality is always enabled on preview servers through the SiteURLManager

property autoAppendStickySiteParams. For more about the SiteURLManager, see Multisite URL

Management (page 169) later in this chapter.

If desired, you can change the names of the query parameters that RequestParameterRuleFilter expects by

setting these properties:

• pushSiteParamName

• stickySiteParamName

Note: Changing these properties on an asset management or preview server might disrupt preview

functionality.

URLPatternMatchingRuleFilter

Based on the class atg.multisite.SiteContextRuleFilter, the filter component /atg/multisite/

URLPatternMatchingRulefilter encapsulates rules for obtaining a site ID from a request URL. The filter

implements two algorithms for determining the site ID:

• Looks up the request URL in a map that is set in the filter’s URLs property, which pairs URLs with site IDs. If the

URL maps to a virtual context room, the getPatternMatchingURLForRequest method returns the portion

of the URL containing the domain, port an servlet path.

The URLs property setting lets a specific server substitute URL-to-site mappings that are otherwise set and

managed by the SiteURLManager. This is generally useful for testing purposes, and is not typically used in a

production environment.

• Passes the request URL to the method SiteURLManager.getSiteIdForURL(). This method obtains a site

ID from the Multisite URL Management (page 169) system, described elsewhere in this chapter.

Several Boolean properties determine whether the URLPatternMatchingRuleFilter is enabled and how it

executes:

Property Description

enabled The filter is enabled.

enableSimpleAlgorithm Use the URLs property to look up the URL request.

enableSiteURLManagerAlgorithm Pass the request URL to the SiteURLManager for

processing.

By default, all properties are set to true.

URLPatternMatchingRuleFilter also checks the request for the context parameter

atg.multisite.URLPatternMatchingEnabled, which the application’s web.xml file can

set to true or false. If the parameter is set to false, the filter does not execute and returns

http://road.atg.com/road/javadoc/all/atg/multisite/PushedSiteParamFilter.html#mPushSiteParamName

9 Multisite Request Processing 163

null to the SiteContextPipelineServlet. If web.xml omits this context parameter, the

URLPatternMatchingRuleFilter behaves as if it were set to true.

DefaultSiteRuleFilter

Based on the class atg.multisite.DefaultSiteContextRuleFilter, the component /atg/multisite/

DefaultSiteRuleFilter is configured by a single property, defaultSiteId, which identifies the server’s

default site ID. This filter executes after all filters that are specified in the ruleFilters property execute, and

only if none of them returns a site ID.

Custom Rule Filters

To add your own rule filter:

1. Write the Rule Filter Class (page 163).

2. Add the Rule Filter (page 163) to the SiteContextPipelineServlet.

Write the Rule Filter Class

A custom rule filter class implements the SiteContextRuleFilter interface and its filter() method, which

analyzes the request and returns the site ID. The filter() method has this signature:

public String filter(DynamoHttpServletRequest pRequest,
 SiteSessionManager pSiteSessionManager)

Add the Rule Filter

Rule filters are managed by the SiteContextPipelineServlet. The servlet’s ruleFilters property specifies

the installed rule filters and their order of execution:

$class=atg.multisite.SiteContextPipelineServlet
$scope=global
siteContextManager=SiteContextManager
ruleFilters=\
 RequestParameterRuleFilter,\
 URLPatternMatchingRuleFilter

insertAfterServlet=/atg/dynamo/servlet/dafpipeline/DynamoHandler

If you use standard += notation to add your rule filter, it executes only after the installed rule filters. If any of

these filters returns a site ID, your custom filter might not execute.

You can use Nucleus configuration to modify this behavior in two ways:

• Disable any installed rule filter that might preempt execution of custom rule filters by setting its enabled

property to false.

• Override the SiteContextPipelineServlet's ruleFilters property and set the execution order of

installed and custom filters as desired.

For example:

164 9 Multisite Request Processing

ruleFilters=\
 RequestParameterRuleFilter,\
 MyCustomRuleFilter,\
 URLPatternMatchingRuleFilter

Site Accessibility

After the SiteContextPipeline identifies a site, it checks the site configuration to determine whether the site

is enabled and active:

• Enabled: The site’s enabled property is set to true.

• Active: The site is enabled and the current date falls between the site’s open and close dates, as configured

in the site’s openDate and closingDate properties, respectively. If these properties are not set, the site is

regarded as always active.

Note: Although an enabled site can be inactive, a disabled sites is always inactive, regardless of its openDate

and closingDate settings.

In the event that a site is disabled or inactive, other site properties can specify where to redirect requests. The

following site properties determine whether a site is enabled or active, and how to redirect requests for disabled

or inactive sites:

Property Description

enabled A Boolean property, specifies whether the site is enabled.

Default: false

siteDownURL Specifies where to redirect requests when the site’s enabled property is set to false.

openDate A Date property, specifies when the site starts accepting requests.

closingDate A Date property, specifies when the site starts refusing requests.

preOpeningURL Specifies where to redirect requests before its openDate setting.

postClosingURL Specifies where to redirect requests after its closingDate setting.

Redirecting Requests

The SiteContextPipelineServlet directs a request to the appropriate site as shown in the following flow

chart:

9 Multisite Request Processing 165

Redirect Constraints

The SiteContextPipelineServlet prevents an infinite loop of redirects by allowing only one redirect per

request. On the first redirect, the pipeline servlet appends a parameter to the redirect URL. A request with this

parameter cannot be redirected again; instead, it returns with a 404 error.

For example, the site repository might provide the following redirect settings for sites Jasper and Felix:

• Jasper sets its siteDownURL property to the URL of site Felix.

• Felix sets its preOpeningURL and postClosingURL properties to the URLs of sites Casper and Astro,

respectively.

Jasper is disabled, so the SiteContextPipelineServlet redirects requests to Felix. Felix is inactive, but

instead of forwarding the request to sites Casper or Astro, the SiteContextPipelineServlet aborts the

request and returns a 404 error.

Site Accessibility Processing

Processing of site accessibility is divided between two components:

166 9 Multisite Request Processing

• The component /atg/multisite/SiteManager determines whether a site is active.

• The request pipeline’s SiteContextPipelineServlet redirects requests for disabled and inactive sites.

Active Site Evaluation

The SiteManager determines whether a site is active through its SiteStateProcessor

component, which is referenced by the SiteManager's siteStateProcessor property—by

default, /atg/multisite/DefaultSiteStateProcessor. This component implements interface

atg.multisite.SiteStateProcessor. The Oracle ATG Web Commerce installation provides one

implementation class, atg.multisite.DefaultSiteStateProcessorImpl. This class defines the method

isSiteActive(), which evaluates the RepositoryItem of a given site and returns true (active) or false

(inactive).

DefaultSiteStateProcessorImpl has several properties that let individual servers determine whether a site

is enabled and active, regardless of its site repository settings:

Property Description

ignoreEnabled If set to true, nullifies the site’s enabled property setting and enables the

site.

Default: false

ignoreOpenDate If set to true, nullifies the site’s openDate property setting, and leaves the

site’s opening date unspecified.

Default: false

ignoreClosingDate If set to true, nullifies the site’s closingDate property setting and leaves

the site’s closing date unspecified.

Default: false

In its default implementation, isSiteActive() reads these properties when it determines whether a site is

enabled and active. By default, these Boolean properties are set to false; in this case, isSiteActive() reports

to the SiteManager on a site’s availability solely on the basis of its repository settings. For example, if a site’s

closingDate precedes the current date, the SiteManager regards the site as inactive and denies access to

it. However, if the siteStateProcessor's ignoreClosingDate property is set to true, the SiteManager

ignores the closingDate setting and regards the site as active.

Customizing Active Site Evaluation

You can modify and extend the logic of active site evaluation as follows:

1. Create a class that implements the atg.multisite.SiteStateProcessor interface.

2. Create a Nucleus component from the new class.

3. Set the SiteManager's siteStateProcessor property to the new Nucleus component.

Customizing Redirection

The SiteContextPipelineServlet redirects requests for disabled and inactive sites through its

DefaultInactiveSiteHandler property. This property is set to a component that is based, by default, on the

9 Multisite Request Processing 167

class atg.multisite.InactiveSiteHandlerImpl. This component redirects requests to the appropriate

URL. You can customize redirect handling as follows:

1. Create a class that extends atg.multisite.InactiveSiteHandlerImpl. The subclass should override

InactiveSiteHandlerImpl.determineRedirectURL(). This method should return a String that contains

the redirect URL, or null in order to return the default 404 error code.

2. Create a Nucleus component from the new subclass.

3. Set the SiteManager's siteStateProcessor property to the new Nucleus component.

Note: If you use your own implementation of the SiteStateProcessor interface, you should also customize

the DefaultInactiveSiteHandler to reflect those changes. The SiteStateProcessor only determines

whether a site is active; it supplies no information why the site is inactive.

Preview Request Handling

A preview server ignores a site’s enabled/active state. The preview configuration layer sets the

SiteContextPipelineServlet's isOnPreviewServer property to true, which prevents all redirection.

Site Context Management

After receiving a site ID from the SiteContextPipelineServlet, the /atg/multisite/

SiteContextManager uses it to create a SiteContext component for the current request by calling

getSiteContext(). The SiteContext component gives the current request thread access to site properties,

and provides a mechanism for storing and retrieving transient attributes related to that site.

After the SiteContext component is created, the SiteContextPipelineServlet then calls the following

methods on the SiteContextManager:

• clearSiteContextStack() ensures that the SiteContext stack is cleared out for this request, in case

another request used this thread.

• pushSiteContext() pushes the new SiteContext object onto the SiteContext stack, making it the

SiteContext for the current thread.

Subsequent calls to SiteContextManager.getCurrentSite() return this SiteContext. Also,

if a request resolves a reference to the component at /atg/multisite/SiteContext, it receives

an implementation of SiteContext that routes all method calls to the SiteContext returned by

SiteContextManager.getCurrentSite().

Site Session Management

The session-scoped SiteSessionManager manages SiteSession components; together, they provide the

mechanism that coordinates requests for multiple sites within a single session. Each SiteSession component

maintains information about a site during the current session; the SiteSessionManager maintains a map of all

SiteSession objects keyed by site IDs.

168 9 Multisite Request Processing

After receiving a site ID from the SiteContextPipelineServlet, the SiteSessionManager performs these

tasks:

1. Checks its Map of site IDs against SiteSession components:

• If the site ID is mapped to a SiteSession, it uses that SiteSession.

• If the site ID is not among the Map keys, the SiteSessionManager creates a SiteSession object and

adds it to its Map of SiteSession objects.

2. Calls handleSiteRequest(), which performs these tasks:

• Iterates over an array of SiteRequestProcessor Components (page 168), calling each component’s

processSiteRequest() method.

• In the case of a new site session, iterates over an array of SiteSessionStartProcessor Components (page

168), calling each one’s processSiteSessionStart() method.

SiteRequestProcessor Components

On each request, the SiteSessionManager invokes its handleSiteRequest() method to iterate over its

array of SiteRequestProcessor components and call each processor’s processSiteRequest() method.

This method typically updates SiteSessionManager or SiteSession attributes, in accordance with current

request properties. It has the following signature:

void processSiteRequest
 (SiteContext pSiteContext, DynamoHttpServletRequest pRequest)

The Oracle ATG Web Commerce installation provides one class that implements the SiteRequestProcessor

interface, atg.multisite.LastSiteVisitedProcessor. Its implementation of processSiteRequest()

sets the current session’s last-visited site in the SiteSessionManager's lastVisitedSite attribute.

SiteSessionStartProcessor Components

In the case of a new site session, SiteSessionManager.handleSiteRequest() iterates over the array of

SiteSessionStartProcessor components, calling each one’s processSiteSessionStart() method.

The Oracle ATG Web Commerce installation provides one class that implements the

SiteSessionStartProcessor interface, atg.multisite.ReferringSiteProcessor. This processor sets

the referringSite property on the requested site’s SiteSession.

Session Expiration

When the HTTP session expires, the SiteSessionManager's doStopService() method is called.

This method iterates over the array of SiteSessionEndProcessor components, calling each one’s

processSiteSessionEnd() method on each SiteSession.

You can also end a SiteSession directly by calling its SiteSession.end() method. This method runs all

SiteSessionEndProcessor components on the SiteSession, and removes the SiteSession from the

SiteSessionManager.

9 Multisite Request Processing 169

Multisite URL Management

Oracle ATG Web Commerce’s multisite URL management system ensures that an Oracle ATG Web Commerce

server can associate a request with the correct site. The system can handle a wide variety of URLs for production,

staging, and preview servers.

Additionally, Oracle ATG Web Commerce supports Internationalized Domain Names (IDN) and virtual context

roots that contain domain path information.

On receiving a request, an Oracle ATG Web Commerce server relies on the globally scoped Nucleus component /

atg/multisite/SiteURLManager to map the request URL to a site. The SiteURLManager manages this task

as follows:

1. Collects from the site repository the URLs for all registered sites.

2. Optionally, generates URLs according to the URL transformation rules that are configured for that

SiteURLManager.

3. Maps all URLs to site IDs and vice versa.

About SiteURLManager

The component /atg/multisite/SiteURLManager is an instance of the class

atg.multisite.SiteURLManager. A SiteURLManager is registered with the component /atg/epub/

DeploymentAgent.

Site URL Collection

On application startup and after each site configuration deployment, the SiteURLManager collects the URLs for

all registered sites:

• Obtains from the site repository each site’s production site URL and any additional URLs from repository

properties productionURL and additionalProductionURLs, respectively.

• Populates a lookup table to determine the correct site ID for an incoming URL. It also checks for IDN or non-

ASCII parameters and converts them if necessary.

• If necessary, runs transformation rules on production site URLs (see URL Transformation Rules (page 170)).

The SiteURLManager then processes the list of URLs as follows:

1. Creates a map keyed by the collected URLs, that pairs URLs with site IDs. If it finds any duplicate URLs, it logs

an error and removes the duplicates.

2. Creates a list of all URL keys in the map, which organizes URLs in the following order of precedence:

• Full URLs: contain context roots, domain and paths.

• Domain names only.

All domain names have equal precedence: a URL that consists only of a parent domain is equal to a URL

that includes subdomains. Thus, foo.com and bar.foo.com are regarded as equal.

• Paths only. Path-only URLs are sorted according to the number of levels in the path. Thus, /foo/bar has

precedence over /foo.

170 9 Multisite Request Processing

For example, URLs might be ordered as follows:

foobar.com/foo/bar

foobar.com/foo

foobar.com

/foo/bar

/foo

3. Creates an empty cache for storing requested URL-site mappings.

4. Creates a map keyed by all site IDs mapped to URLs, for reverse lookups. This map is used primarily

by Oracle ATG Web Commerce servlet beans in order to generate links from JSPs. The method

SiteURLManager.getProductionSiteBaseURL() also uses it to get a production site URL from the

supplied site ID.

The SiteURLManager executes an array of SiteBaseURLProcessor components, specified through its

siteBaseURLProcessors property. These control how URLs are processed. For more information, see

Absolute URL Generation (page 191) later in this chapter.

URL Transformation Rules

The SiteURLManager can use a transformation rules file to transform production site URLs, which is

generally useful for generating staging server URLs and associating them with the correct site IDs. In

a multisite environment with many servers, this can save much administrative overhead. For example,

you can use transformation rules to generate staging site URLs by appending the string -staging to all

production site URLs, in order to generate staging site URLs. Thus, requests for wishesArePonies.com and

wishesArePonies-staging.com are mapped to the same site ID and use the same site configuration.

The SiteURLManager's transformRuleFile property points to an XML file that contains transformation

rules—by default, /atg/multisite/urlTransform.xml. The SiteURLManager's Boolean property

enableURLTransform determines whether it executes URL transformations—by default set to true.

The SiteURLManager's transformURL() method processes the transform rule on all site production URLs.

Because the urlTransform.xml file may contain IDN Unicode, all strings are converted to ASCII before the

transformation occurs.

Note: It is generally good practice to implement transformation rules only for servers that are used for testing

purposes, such as staging and preview servers. Production servers should avoid using transformation rules, and

rely on production site URLs as configured through Site Administration.

Constraints

The following constraints apply to URL transformation rules:

• Only one rule is allowed per server configuration. All URLs are subject to the same transformation rule.

• A multisite application uses generated URLs only for a given site. URL transformations have no effect on

repository settings.

• Transformation Operations (page 170) apply only to portions of the domain name. They have no effect on

URL path elements.

Transformation Operations

URL management supports three rule operations:

9 Multisite Request Processing 171

Operation Syntax

replace <rule op="replace">

<new-string>new-string</new-string>

<original>old-string</original>

</rule>

prepend <rule op="prepend">

<new-string>new-string</new-string>

<level>integer</level>

</prepend>

append <rule op="append">

<new-string>new-string</new-string>

<level>integer</level>

</append>

Replace Operations

Replace operations can replace any portion of a domain name. For example, given the following rule:

<rule op="replace">
 <new-string>foobar</new-string>
 <original>example</original>
</rule>

hockey.example.com is transformed as follows:

hockey.foobar.com

Prepend and Append Levels

prepend and append transformation rules specify a string to add to the domain name. The <level> tag

provides an integer value that specifies which label of the domain name to modify:

Level Specifies...

1 Top-level domain—for example, com, edu, org

2 Parent domain

#3 Subdomain

For example, given the following rule:

<rule op="append">
 <new-string>-staging</new-string>

172 9 Multisite Request Processing

 <level>3</level>
</append>

accessories.wishesArePonies.com is transformed as follows:

accessories-staging.wishesArePonies.com

Production Site URL Conventions

URL site management rules generally assume that site URLs are differentiated by their domain names or context

paths:

• Domain Names (page 172): Each site has a unique domain name.

• URL Context Paths (page 173): All sites share the same domain, and are differentiated by their URL context

paths.

Note: While it is possible to mix URL context path and domain naming conventions in a single application, it is

generally advisable to choose one convention and use it for all sites.

Domain Names

You can differentiate sites through unique domain names; request URLs are mapped to site IDs accordingly. This

convention encompasses two approaches:

• Sites differentiate themselves by domain names.

• Sites differentiate themselves by subdomain names that share the same parent domain.

For example, you can differentiate three sites that specialize in different sports through their domain names:

www.baseball.com/
www.hockey.com/
www.basketball.com/

You can also differentiate these sites through their subdomain names:

www.baseball.sports.com/
www.hockey.sports.com/
www.basketball.sports.com/

Note: Production site URLs and additional URLs must not include protocols such as HTTP or HTTPS. Site

Administration automatically removes protocols from user-entered data; however, if you directly update the site

repository’s siteConfiguration properties productionURL or additionalProductionURLs, make sure

that the URLs written to these properties excludes protocols.

Domains versus Subdomains

You can rely on subdomains to differentiate sites, where all subdomains use the same parent domain. In this

case, you configure the application server to set the host name in JSESSIONID cookies to the parent domain.

Sharing the same session among different parent domains requires a different approach. For more information,

see Sharing a Session Across Multiple Domains (page 173).

9 Multisite Request Processing 173

URL Context Paths

You can differentiate sites that share the same domain through their URL context paths. For example:

www.mysports.com/baseball
www.mysports.com/hockey
www.mysports.com/basketball

To handle this case, follows these steps:

1. Configure the production site URLs of different sites with unique paths. For example: /baseball, /hockey,

and so on.

2. Configure each site to specify the context root of the content-serving web application.

Virtual Context Roots

You can configure multiple sites so they access the same web application. To do so, you set their production

URLs to virtual context roots—that is, URL context paths that do not map directly to the actual content-serving

web application. Instead, URL requests that contain the virtual context root are routed to the actual context root

as set in the site configuration’s contextRoot property.

For example, you might set the context root for several sites to /sportswhere and set their production site

URLs as follows:

/sportswhere/baseball
/sportswhere/hockey
/sportswhere/basketball

The following requirements for using virtual context roots apply:

• In the properties file for /atg/dynamo/service/VirtualContextRootService, set enabled to true.

• Configure application servers so URL requests that contain virtual context roots are redirected to the actual

context root. For more information, see Configuring Virtual Context Root Request Handling (page 184) later

in this chapter.

Sharing a Session Across Multiple Domains

Different sites with unique domains must be able to share sessions. Session sharing generally requires a

JSESSIONID cookie whose session identifier is shared among all sites within the same session.

If sites share a parent domain name—for example, www.baseball.sports.com and

www.hockey.sports.com—the session cookie can bind to the parent domain name sports.com. The browser

can use the same cookie for all hosts that share the parent domain name. However, sites with unique parent

domain names—for example, baseball.com and hockey.com—rely on session recovery, where all Oracle ATG

Web Commerce servers can access a common session ID that is maintained by a canonical session ID host, which

is one of the Oracle ATG Web Commerce instances in the multisite environment.

In general, Oracle ATG Web Commerce supports two session recovery approaches:

• Session Recovery without JavaScript (page 174)

• Session Recovery with JavaScript (page 175)

174 9 Multisite Request Processing

The non-JavaScript approach is simpler. However, it requires several URL changes within the address bar that

are visible to end users. It also exposes jsessionid in the address bar URL, which might be problematic from a

security viewpoint. The JavaScript approach avoids changing the address bar URL and embedding jsessionid

in the URL itself; however it might require extra requests, depending on the browser.

By default, session recovery with JavaScript is enabled. You configure the desired behavior through the

component /atg/multisite/CanonicalSessionHostnameServlet by setting its Boolean property

enableJavaScript.

Note: Session recovery uses cookies on the client Web browser. Session recovery will not affect site visitors who

have chosen to block cookies, including third-party cookies.

General Requirements

• All servers that participate in session recovery must be configured to point to the same JVM instance or same

cluster of JVM instances.

• If a cluster is used, the load balancer must make sure that a given session ID is always sent to the same JVM,

regardless of host name.

• The load balancer must use the JSESSIONID cookie and the URL’s jsessionid path parameter

(;jsessiond=session-id) to identify sessions.

Note: Session recovery tries to set the cookie for each host once per session, unless the cookie is already present.

Because session recovery duplicates some application server cookie configuration, the overlapping settings

must agree. As installed, session recovery supports standard J2EE settings. If you change application server

settings, be sure also to change the corresponding session recovery settings.

WebSphere Application Server Requirements

Session recovery requires additional configuration on each WebSphere application server that is part of a

multisite installation, as follows:

1. In the IBM WebSphere console, navigate as follows:

Servers

-> Server Types

-> WebSphere application servers

-> server-name

-> Web Container settings (on right)

-> Web Container

-> Session Management

2. Set the following checkbox fields to true:

• Enable URL rewriting

• Enable protocol switch rewriting

3. Navigate to Custom Properties and set the following properties to true:

• com.ibm.ws.webcontainer.invokefilterscompatibility

• HttpSessionReuse

Session Recovery without JavaScript

Session recovery can avoid JavaScript through simple redirects to the canonical session ID host and back. The

following example and graphic illustrate this approach:

9 Multisite Request Processing 175

1. A browser issues a request for http://foosite.com, and no session currently exists for this request—either

because the request provides no cookie or jsessionid path parameter, or because the old session expired.

2. The Oracle ATG Web Commerce instance redirects to the canonical session ID host barsite.com:

http://barsite.com/?postSessionRedirect=http%3A//foosite.com/

3. The browser provides a cookie for the redirect, and the canonical session ID server redirects back to the

original URL, which now contains its stored jsessionid:

http://foosite.com/;jsessionid=5FEF9C8A2B1AA8F6073DF9A7A352DF35

The redirect also includes a session ID cookie for foosite.com, if it does not already exist on the browser.

4. The browser gets the real content of foosite.com.

Session Recovery with JavaScript

Session recovery can be implemented through JavaScript-enabled HTML pages. This approach encompasses

two scenarios that apply to different browser capabilities:

• The browser sets the JSESSIONID cookie in an IFRAME that points to the canonical session ID server, and

supplies callback data for the container page in one of two ways:

• Invoke the postMessage() method.

• Appends callback data to the container page’s URL (Internet Explorer 6 and higher).

176 9 Multisite Request Processing

• The browser cannot set the JSESSIONID cookie in an IFRAME and lacks postMessage() support.

Note: These approaches apply to browsers that do not support the property

XMLHttpRequest.withCredentials, and therefore cannot issue JavaScript background requests.

The following example and graphic illustrate the first JavaScript scenario—set the JSESSIONID cookie in an

IFRAME:

1. A browser issues a request for http://foosite.com. No session currently exists for this request—either

because the request provides no cookie or jsessionid path parameter, or because the old session expired.

2. The Oracle ATG Web Commerce instance renders a blank page with an invisible IFRAME that points to the

canonical session ID server barsite.com.

3. The browser loads the IFRAME URL:

http://barsite.com/?postSessionRedirect=

http%3A/foosite.com/&fromIframe=true

4. The Oracle ATG Web Commerce instance renders a JavaScript-enabled page in the IFRAME as barsite.com.

This page calls the postMessage() method, which invokes a callback on the container HTML page; in the

case of Internet Explorer 6 and higher, the callback is specified by modifying the container page’s URL with a

hash anchor (#). In both cases, the callback contains the session ID of barsite.com, and indicates whether

the session cookie for barsite.com was set.

5. The container page reloads http://foosite.com.

9 Multisite Request Processing 177

The following example and graphic illustrate the second JavaScript scenario: the IFRAME cannot set the session

cookie and lacks postMessage() support:

1. A browser issues a request for http://foosite.com. No session currently exists for this request—either

because the request provides no cookie or jsessionid path parameter, or because the old session expired.

2. The Oracle ATG Web Commerce instance renders a blank page with an invisible IFRAME that points to the

canonical session ID server barsite.com.

3. The browser loads the IFRAME URL:

http://barsite.com/?postSessionRedirect=

http%3A/foosite.com/&fromIframe=true

4. The IFRAME cannot set the JSESSIONID cookie. It notifies the container HTML page foosite.com of the

failure.

5. The container HTML sets the cookie locally, then redirects to the canonical session ID server barsite.com

with a URL that contains the JSESSIONID:

http://barsite.com/?sessionIdFromCookie&postSessionRedirect=http%3A

/foosite.com

6. The canonical session ID server sets its JSESSIONID cookie and redirects back to http://foosite.com.

178 9 Multisite Request Processing

Handling POST Requests

Form submissions whose method is set to POST are not redirected, in order to avoid loss of form data in the

POST request. Instead, POST requests are processed as usual, and the session is marked for redirection to the

canonical server on the next non-POST request.

JavaScript Page Templates and Configuration

The HTML pages that are used in the JavaScript approach are rendered from page templates instead of JSPs,

as JSPs require a session and must have a given location in a web application. Page templates are also easy to

modify or replace, depending on your application’s specific requirements.

The Oracle ATG Web Commerce installation provides two templates:

• <ATG10dir>/DAS/lib/atg/multisite/jsRedirectPage.tmpl: Renders a page that tries to obtain the

session ID from the canonical session ID server.

9 Multisite Request Processing 179

• <ATG10dir>/DAS/lib/atg/multisite/jsRedirectBack.tmpl: Renders a page that acts as follows:

• Loads from the canonical session ID server in a hidden IFRAME, and tries to set the canonical JSESSIONID.

The page messages to the containing page the JSESSIONID or its failure to set one.

• Serves as the target of a top-level redirect, if the client browser IFRAME fails to set the canonical

JSESSIONID. The page determines whether the JSESSIONID cookie is set and responds appropriately.

As installed, the two page templates provide limited functionality:

• Only expressions of the form ${expr} are replaced, where expr is an exact match for a predefined

replacement symbol—for example cookieName.

• ${-- comment --} is replaced with nothing, where comment is a comment that is omitted from the final

page.

Both page templates define a number of JavaScript variables that correspond to properties in the

CanonicalSessionHostnameServlet, and are set by those properties. Each template contains comments

that describe the variables it uses.

The rendering of HTML pages is managed by two servlet components that implement

atg.servlet.TemplateRendererServlet, and are referenced by two /atg/multisite/

CanonicalSessionHostnameServlet properties as follows:

• /atg/multisite/JavaScriptRedirectPageTemplateRendererServlet: Referenced by the

property redirectJavaSriptRenderer, this servlet component renders the redirect page from the

page template specified in its templateResourcePath property—by default, set to atg/multisite/

jsRedirectPage.tmpl.

• /atg/multisite/JavaScriptRedirectBackPageTemplateRendererServlet: Referenced by the

property redirectBackJavaSriptRenderer, this servlet component renders the redirect back page from

the page template specified in its templateResourcePath property—by default, set to atg/multisite/

jsRedirectBack.tmpl.

Page templates are loaded from the ClassLoader at the path specified in the TemplateRendererServlet

property templateResourcePath. Use this property to specify your own templates or override those provided

by the installation. Only complete replacement is allowed.

Each TemplateRendererServlet relies on a component that implements interface

atg.servlet.TemplateRendererServlet.DynamicSubstitutionTextProvider. This component

maps page template symbols to substitution strings and supplies this map to the appropriate

TemplateRendererServlet. Two /atg/multisite/CanonicalSessionHostnameServlet properties

reference DynamicSubstitutionTextProvider components:

• redirectDynamicSubstitutionTextProvider: Specifies the servlet that helps the

JavaScriptRedirectPageTemplateRendererServlet render redirect pages.

• redirectBackDynamicSubstitutionTextProvider: Specifies the servlet that helps the

JavaScriptRedirectBackPageTemplateRendererServlet render redirect back pages.

At start-up, the CanonicalSessionHostnameServlet registers the appropriate

DynamicSubstitutionTextProvider for each TemplateRendererServlet servlet.

The TemplateRendererServlet interface also provides the echoToStdout property, which can be helpful

during development and debugging.

180 9 Multisite Request Processing

Session Recovery Configuration

Most session recovery behavior is configured through /atg/

multisite/CanonicalSessionHostnameServlet properties (class

atg.servlet.pipeline.CanonicalSessionHostnameServlet).

Property Description

browserTyper The name of the BrowserTyper to determine whether the agent

string of a given browser specifies a browser that appears to

support HTML 5’s postMessage but actually does not.

canonicalHostname Host name of the canonical session ID server. If this property is

null, the CanonicalSessionHostnameServlet is disabled.

Default: null

canonicalPort Port used by the canonical session id server.

Default: 80

canonicalRedirectProtocol Protocol used for redirects to the canonical session ID server.

Default: http

canonicalSubPath Represents any sub-path needed when redirecting to the

canonicalSubPath to trigger this servlet (typically triggered

by an Oracle ATG Web Commerce web application using the

PageFilter). If this property is null, the request’s requestURI is

used instead.

Note: On WebSphere application servers, set this property to the

full path of the web application’s default JSP. For example:

/myapp/index.jsp

cookieSetFailedParameterName The name of the parameter that indicates failure to set the cookie

on the canonical session ID server. This parameter is used when

redirecting back from the JavaScript-enabled redirect page in the

inner IFRAME.

Default: canonicalSessionCookieSetFailed

enableExternalSessionId

Workarounds

Boolean, specifies whether to enable workarounds for

application servers that use a different external/internal session

ID. These workarounds may not function properly in all cases.

enableJavaScript Boolean, specifies whether to enable Session Recovery with

JavaScript (page 175).

Default: true

9 Multisite Request Processing 181

Property Description

enableSettingSessionCookie Boolean, specifies whether to enable setting the JSESSIONID

cookie. This is done on application servers that assume that

setting the cookie failed because we have an existing session,

but jsessionid is in the URL.

excludedUrlRegexes A list of URLs to exclude from session recovery—for example,

URLs that implement REST web services.

fromIframeParameterName The name of the parameter that is set to true when an IFRAME is

used to fetch the session ID from the canonical host.

Default: fromIframe

hasDelayedRedirect Boolean, specifies whether to delay the redirect that sends the

session ID to the canonical session ID server.

iframeTimeout Number of milliseconds to wait for notification from the hidden

IFRAME when using IFRAMES for session recovery.

Default: http://pt-skua:8180/dyn/admin/nucleus/

atg/multisite/CanonicalSessionHostnameServlet/

?propertyName=iframeTimeout5000

jsessionIdName The jsessionid attribute that is inserted into the URL.

Default: jsessionid

jsessionIdPlaceholderUrl A string that is used as a placeholder for the session ID parameter

in the rendered URL when the JSESSIONID cookie is not set.

The installed page template jsRedirectPage.tmpl uses this

setting to replace the session ID parameter.

localHostConfiguration Set to a localHostConfiguration component used to

calculate a list of local host names; used if allowLocalHost is

set to true.

Default:

http://pt-skua:8180/dyn/admin/nucleus/atg/

multisite/CanonicalSessionHostnameServlet/

?propertyName=localHostConfiguration/atg/

dynamo/service/LocalHostConfiguration

noRedirectJavaScriptParameter

Name

The name of the parameter to use that specifies not to render

JavaScript. This parameter is typically set in a <noscript> tag on

the JavaScript redirect page template.

Default: noRedirectJavascript

noScriptURL The redirect URL that is used by a JavaScript page template when

JavaScript is disabled. This is the original request URL with an

additional parameter to indicate that the JavaScript page should

not be rendered. This URL is typically referenced in the template

page’s <noscript> tag.

182 9 Multisite Request Processing

Property Description

noSessionRecoveryBrowserTypes An array of BrowserTyper (page 151) types for which session

recovery is not attempted.

redirectBackDynamic

SubstitutionTextProvider

References the component /atg/multisite/

JavaScriptRedirectBackPage

TemplateRendererServlet, which renders the redirect back

page for Session Recovery with JavaScript (page 175).

redirectBackJavaScript

Renderer

Sets the TemplateRendererServlet that is used to render the

JavaScript-enabled redirect back page, from the page template

specified in its templateResourcePath property.

Default:

http://pt-skua:8180/dyn/admin/nucleus/atg/

multisite/CanonicalSessionHostnameServlet/

?propertyName=redirectBackJavaScriptRenderer/

atg/multisite/JavaScriptRedirectBack

PageTemplateRendererServlet

redirectDynamicSubstitution

TextProvider

References the component /atg/multisite/

JavaScriptRedirectPageTemplate

RendererServlet, which renders the redirect page for Session

Recovery with JavaScript (page 175).

redirectJavaScriptRenderer Sets the TemplateRendererServlet that is used to render

the JavaScript-enabled redirect page, from the page template

specified in its templateResourcePath property

Default:

http://pt-skua:8180/dyn/admin/nucleus/atg/

multisite/CanonicalSessionHostnameServlet/

?propertyName=redirectJavaScriptRenderer/

atg/multisite/JavaScriptRedirectPageTemplate

RendererServlet

sessionCookieDomain The domain of the cookie that is used to carry the session ID. If

null, then cookies are returned only to the host that saved them.

Default: null

sessionDataPath The Nucleus path of the CanonicalSessionData component

sessionIdFromCookieParameter

Name

The name of the query parameter that represents an existing

session ID, obtained from a cookie on the non-canonical host.

Default: http://pt-skua:8180/dyn/admin/nucleus/

atg/multisite/CanonicalSessionHostnameServlet/

?propertyName=sessionIdFromCookieParameterName

sessionIdFromCookie

9 Multisite Request Processing 183

Property Description

sessionNotificationParameter

Name

The name of the query parameter that marks a request to the

canonical session ID server that a session already exists.

Default: http://pt-skua:8180/dyn/admin/nucleus/

atg/multisite/CanonicalSessionHostnameServlet/

?propertyName=sessionNotificationParameterName

cannonicalSessionIsSessionNotification

URLPatternMatchingRuleFilter Specifies the URLPatternMatchingRuleFilter (page 162) that is

used to obtain a site if allowAllSiteURLs is true.

Default: http://pt-skua:8180/dyn/admin/nucleus/

atg/multisite/CanonicalSessionHostnameServlet/

?propertyName=URLPatternMatchingRuleFilter/atg

/multisite/URLPatternMatchingRuleFilter

useFoundSessionCookie

Parameter

Boolean, specifies whether to use the found session cookie

parameter on the redirect back.

Default: false

useJsessionIdOnCookieMatch Boolean, specifies whether to use a JSESSIONID in the URL after

a cookie match; might be required by WebSphere application

servers.

Default: false

The following properties should match those used by the Web application server. These are used to set the

session cookie if the application server does not do so:

Property Description

sessionCookieName Name and attributes for the RFC2109 cookie storing the session, set

with the following syntax:

SessionCookieName name attributes

Default: JSESSIONID

sessionCookiePath Default: /

sessionCookieComment The comment of the session cookie.

sessionCookieSecure False

sessionCookieMaxAge -1 (never expires)

Several CanonicalSessionHostnameServlet properties restrict which URLs are allowed for session recovery.

These properties address a potential security risk where the CanonicalSessionHostnameServlet responds

184 9 Multisite Request Processing

to requests for an unrelated domain. For example, a third party might generate a request and cause redirection

back to its own server with a recovered jsessionid.

The following table describes properties that can help minimize this security risk:

Property Description

allowAllSiteURLs Boolean, specifies whether to allow all site URLs that are configured in the

site repository, and the URLs generated from them via URL Transformation

Rules (page 170).

Default: true

Caution: If you set this property to true, be sure that all URLs in the site

repository are differentiated by unique domain names—that is, each URL

contains a host name. If this property is set to true and any site URL omits a

host name, that URL can be used by unknown hosts to obtain session IDs.

allowLocalHost Boolean, specifies whether to allow known host names from the local host for

session recovery, including addresses such as localhost and 127.0.0.1. You

specify host names through the localHostNames property.

Default: true

allowedHostNames A list of host names that are allowed to participate in session recovery. This

list can be used on its own, or can supplement other ways of allowing session

recovery.

localHostNames Set to a list of host names that are explicitly allowed to obtain session

IDs during session recovery. In order to make these host names available,

allowLocalHost must be set to true.

Several properties configure the various URL parameter names that the servlet uses during session recovery.

These are available in case there is a conflict with a parameter name. Typically, only two parameter names might

need to be changed on the canonical session ID server, as they serve to trigger special processing on a request:

Property Default Parameter Name

postSessionRedirectParameterName postSessionRedirect

renderSessionIdParameterName canonicalSessionRenderSessionId

Configuring Virtual Context Root Request Handling

If you rely on URL Context Paths (page 173) to differentiate sites, you must configure your environment to

forward HTTP requests to the content-serving application that these sites share. Configuration largely depends

on whether HTTP requests can be mapped directly to the context root of the shared application, or whether

they must first be handled by the default web application. Two scenarios apply:

9 Multisite Request Processing 185

• Configure the Content-Serving Web Application to Handle Requests (page 185)

• Configure the Default Web Application to Handle Requests (page 186)

Configure the Content-Serving Web Application to Handle Requests

If all production site URLs contain the context root of the content-serving web application, you can configure

the application’s web.xml to handle requests directly. For example, a multisite application might configure its

context root as /sportswhere. It also configures its production site URLs to include /sportswhere:

/sportswhere/baseball
/sportswhere/hockey
/sportswhere/basketball

Given this configuration, HTTP requests for one of these sites always include the context root /sportswhere as

in the following example:

http://sportswhere.com/sportswhere/baseball/uniforms

The non-virtual portion of this URL’s path — /sportswhere — maps directly to the context root of the content-

serving application. You enable the application to handle all URLs of this type by configuring its web.xml with

ForwardFilter, PageFilter, NucleusServlet and error code filtering as follows:

<web-app xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
 http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd"
 version="2.5">
...
 <filter>
 <filter-name>ForwardFilter</filter-name>
 <filter-class>atg.servlet.ForwardFilter</filter-class>
 </filter>

 <filter>
 <filter-name>PageFilter</filter-name>
 <filter-class>atg.filter.dspjsp.PageFilter</filter-class>
 </filter>

 <filter-mapping>
 <filter-name>ForwardFilter</filter-name>
 <url-pattern>/*</url-pattern>
 <dispatcher>FORWARD</dispatcher>
 </filter-mapping>

 <filter-mapping>
 <filter-name>PageFilter</filter-name>
 <url-pattern>/*</url-pattern>
 <dispatcher>REQUEST</dispatcher>
 </filter-mapping>

 <servlet>
 <servlet-name>NucleusServlet</servlet-name>
 <servlet-class>atg.nucleus.servlet.NucleusServlet</servlet-class>
 <load-on-startup>1</load-on-startup>

186 9 Multisite Request Processing

 </servlet>

Note: The <dispatcher> element requires that the application’s web.xml use web-app_2_5.xsd or later.

Configure the Default Web Application to Handle Requests

If production site URLs exclude the multisite context root, you must configure the web.xml of the application

server’s default web application to handle HTTP requests. For example, a multisite application might configure

its production site URLs as follows:

/baseball
/hockey
/basketball

Given a request URL of http://sportswhere.com/baseball/uniforms, the non-virtual portion of the

URL path is / (forward slash), which must be handled by the default web application. To do so, its web.xml

must include Oracle ATG Web Commerce resources PageFilter, NucleusServlet and error code filtering as

follows:

<filter>
 <filter-name>PageFilter</filter-name>
 <filter-class>atg.filter.dspjsp.PageFilter</filter-class>
</filter>

<filter-mapping>
 <filter-name>PageFilter</filter-name>
 <url-pattern>/*</url-pattern>
</filter-mapping>

<servlet>
 <servlet-name>NucleusServlet</servlet-name>
 <servlet-class>atg.nucleus.servlet.NucleusServlet</servlet-class>
 <load-on-startup>1</load-on-startup>
</servlet>

The content-serving web application must also be configured with the ForwardFilter servlet filter:

...
<filter>
 <filter-name>ForwardFilter</filter-name>
 <filter-class>atg.servlet.ForwardFilter</filter-class>
</filter>

...

<filter-mapping>
 <filter-name>ForwardFilter</filter-name>
 <url-pattern>/*</url-pattern>
 <dispatcher>FORWARD</dispatcher>
</filter-mapping>

Note: The <dispatcher> element requires that the application’s web.xml use web-app_2_5.xsd or later.

9 Multisite Request Processing 187

Configuration of the default web application varies among application servers. The following sections describe

different requirements among the various application servers that Oracle ATG Web Commerce supports.

JBoss

Set the default web application’s web.xml as shown earlier, at:

jboss-root-dir/server/server-name/deploy/ROOT.war/web.xml

IBM WebSphere

You configure the default web application in IBM WebSphere in the following steps:

1. In the IBM WebSphere console, navigate as follows:

Servers

-> Server Types

-> WebSphere application servers

-> server-name

-> Web Container settings (on right)

-> Web Container

-> Custom Properties (on right)

2. Set this property to true:

com.ibm.ws.webcontainer.invokefilterscompatibility

3. From the IBM WebSphere console, remove or disable DefaultApplication.

4. Recreate and deploy a default web application in your Oracle ATG Web Commerce application EAR. The new

default web application must be in the EAR before it is deployed to the server.

The default web application requires two files:

/default-app.ear/default-war.war/WEB-INF/web.xml

/default-app.ear/META-INF/application.xml

web.xml includes Oracle ATG Web Commerce resources PageFilter and NucleusServlet, it also includes the

<display-name> and <description> tags, as follows:

<?xml version="1.0" encoding="ISO-8859-1"?>
<web-app xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
 http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd"
 version="2.5">

 <display-name>default-war-name</display-name>
 <description>description</description>

 <filter>
 <filter-name>PageFilter</filter-name>
 <filter-class>atg.filter.dspjsp.PageFilter</filter-class>
 </filter>

 <filter-mapping>
 <filter-name>PageFilter</filter-name>
 <url-pattern>/*</url-pattern>

188 9 Multisite Request Processing

 </filter-mapping>

 <servlet>
 <servlet-name>Nucleus</servlet-name>
 <servlet-class>atg.nucleus.servlet.NucleusServlet</servlet-class>
 <load-on-startup>1</load-on-startup>
 </servlet>
</web-app>

The following example shows how you might set the contents of application.xml:

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE application PUBLIC "-//Sun Microsystems, Inc.//DTD J2EE Application
1.3//EN" "http://java.sun.com/dtd/application_1_3.dtd">

<application>
 <display-name>
 default-app-name
 </display-name>
 <module>
 <web>
 <web-uri>
 default.war
 </web-uri>
 <context-root>
 /
 </context-root>
 </web>
 </module>
</application>

Note: The <context-root> tag in application.xml must be set to / (forward slash).

Oracle WebLogic

You configure the default web application in Oracle WebLogic in the following steps:

1. From the Oracle WebLogic Server Administration console, remove or disable the default web application

mainWebApp .

2. Edit the content-serving web application web.xml as follows. Note that error-request settings in Oracle

WebLogic are added to the content-serving web.xml file:

<filter>

<filter-name>ErrorFilter</filter-name>

<filter-class>atg.servlet.ErrorFilter</filter-class>

</filter>

<filter>

<filter-name>ForwardFilter</filter-name>

<filter-class>atg.servlet.ForwardFilter</filter-class>

</filter>

<filter>

<filter-name>PageFilter</filter-name>

<filter-class>atg.filter.dspjsp.PageFilter</filter-class>

</filter>

<filter-mapping>

9 Multisite Request Processing 189

<filter-name>ErrorFilter</filter-name>

<url-pattern>/*</url-pattern>

<dispatcher>ERROR</dispatcher>

</filter-mapping>

<filter-mapping>

<filter-name>ForwardFilter</filter-name>

<url-pattern>/*</url-pattern>

<dispatcher>FORWARD</dispatcher>

</filter-mapping>

<filter-mapping>

<filter-name>PageFilter</filter-name>

<url-pattern>/*</url-pattern>

<dispatcher>REQUEST</dispatcher>

<dispatcher>ERROR</dispatcher>

</filter-mapping>

<servlet>

<servlet-name>NucleusServlet</servlet-name>

<servlet-class>atg.nucleus.servlet.NucleusServlet</servlet-class>

<load-on-startup>1</load-on-startup>

</servlet>

<error-page>

<error-code>404</error-code>

<location>/globalErrors/pageNotFound.jsp</location>

</error-page>

3. Edit the default web application web.xml file as follows:

<filter>

<filter-name>PageFilter</filter-name>

<filter-class>atg.filter.dspjsp.PageFilter</filter-class>

</filter>

<filter-mapping>

<filter-name>PageFilter</filter-name>

<url-pattern>/*</url-pattern>

<dispatcher>REQUEST</dispatcher>

</filter-mapping>

<servlet>

<servlet-name>Nucleus</servlet-name>

<servlet-class>atg.nucleus.servlet.NucleusServlet</servlet-class>

<load-on-startup>1</load-on-startup>

</servlet>

4. Deploy the new default web application that replaces the previous one. This application requires two files:

/default-app.ear/default-war.war/WEB-INF/web.xml

/default-app.ear/META-INF/application.xml

5. Edit the default web application

For information on configuring these files, see the previous section on IBM WebSphere.

Error Pages

If you configure error pages in the request-handling application’s web.xml, the following requirements apply:

• The ErrorFilter’s filter-mapping element must precede the PageFilter’s filter-mapping element.

190 9 Multisite Request Processing

• The PageFilter’s filter-mapping element must handle ERROR dispatches.

• The request-handling application’s web.xml must include all error-page elements.

One constraint applies when the default web application handles HTTP requests for multiple content-serving

web applications. In this case, an error page that is defined in the request-handling web.xml must be in the

same location within the various WAR files of the content-serving web applications.

Note: This error handing constraint differs for Oracle WebLogic. Refer to the section on Oracle WebLogic for

information.

For example, you might modify the request-handling web.xml by configuring an error page as follows (changes

that pertain to error handling are in bold face):

...
 <filter>
 <filter-name>ErrorFilter</filter-name>
 <filter-class>atg.servlet.ErrorFilter</filter-class>
 </filter>

 <filter>
 <filter-name>PageFilter</filter-name>
 <filter-class>atg.filter.dspjsp.PageFilter</filter-class>
 </filter>
...
 <filter-mapping>
 <filter-name>ErrorFilter</filter-name>
 <url-pattern>/*</url-pattern>
 <dispatcher>ERROR</dispatcher>
 </filter-mapping>
...
 <filter-mapping>
 <filter-name>PageFilter</filter-name>
 <url-pattern>/*</url-pattern>
 <dispatcher>REQUEST</dispatcher>
 <dispatcher>ERROR</dispatcher>
 </filter-mapping>

<servlet>
 <servlet-name>NucleusServlet</servlet-name>
 <servlet-class>atg.nucleus.servlet.NucleusServlet</servlet-class>
 <load-on-startup>1</load-on-startup>

 <error-page>
 <error-code>404</error-code>
 <location>/globalErrors/pageNotFound.jsp</location>
 </error-page>
...

Given this configuration, any 404 errors are directed to the same location within the appropriate WAR file:

context-root/pageNotFound.jsp.

Welcome Files

In order to use welcome files with virtual context roots, set the list of valid welcome files in the component /

atg/dynamo/service/VirtualContextRootService, through its defaultWelcomeFiles property. This

property has the following default setting:

9 Multisite Request Processing 191

defaultWelcomeFiles=/index.jsp,/index.html,/index.htm,/home.jsp,/main.jsp

For example, you might configure several sites with the same context root /sportswhere and assign

production site URLs as follows:

/sportswhere/baseball
/sportswhere/hockey
/sportswhere/basketball

You might also configure the VirtualContextRootService.defaultWelcomeFiles property as follows:

defaultWelcomeFiles=/index.jsp,/welcome.jsp

Given this configuration and the following request:

http://www.mysports.com/baseball/

the VirtualContextRootService launches the following search under the context root /sports:

1. Looks for /index.jsp.

2. Looks for /welcome.jsp.

3. If neither welcome file exists, returns a 404 error.

Absolute URL Generation

The SiteURLManager can generate URLs from site IDs, typically on requests from Oracle ATG Web Commerce

servlet beans such as SiteLinkDroplet (see the ATG Page Developer's Guide). Given a site ID and path, you can

use this servlet bean to write page code that generates links to different sites and paths. To create these links,

the SiteURLManager maintains a map keyed by site IDs that are paired with URLs.

URL Construction Rules

The SiteURLManager constructs URLs for a requested site according to the following rules:

• No path supplied: New URL retains old path relative to the new site’s root.

• Path contains leading forward slash (/): Path is relative to the new site’s root.

• Path omits leading forward slash (/): Path is relative to the current page, on the new site.

URL construction varies depending on whether production site URLs conform to a domain-based or path-

based convention (see Production Site URL Conventions (page 172)). The following examples show how

SiteLinkDroplet generates URLs according to these diferent conventions.

Production-Site URLs Use Path-Based Strategy

Target site’s production site URL: /foo

Current URL: http://domain.com/bar/dir/index.jsp

192 9 Multisite Request Processing

Input Path New URL

"" http://domain.com/foo/dir/index.jsp

/ http://domain.com/foo

/path/help.jsp http://domain.com/foo/path/help.jsp

path/help.jsp http://domain.com/foo/dir/path/help.jsp

Production-Site URLs Use Domain-Based Strategy

Target site’s production site URL: /foo.com

Current URL: http://domain.com/dir/index.jsp

Input Path New URL

"" http://foo.com/dir/index.jsp

/ http://foo.com

/path/help.jsp http://foo.com/path/help.jsp

path/help.jsp http://foo.com/dir/path/help.jsp

Sticky Site Parameters

A sticky site is specified through special URL query parameters pushSite and stickySite (see

RequestParameterRuleFilter (page 161) earlier in this chapter). Links that are generated on a

preview server automatically include these query parameters through the SiteURLManager property

autoAppendStickySiteParams. The generated link retains the root of the current site; the URL path is

modified according to the URL Construction Rules (page 191) described in the previous section.

Note: A preview server should always set its SiteURLManager property autoAppendStickySiteParams to

true; changing this property to false can yield unpredictable results.

The following examples show how the SiteURLManager generates links, given a site ID of fbar and this current

URL:

http://domain.com/root/path/index.jsp

Input Path New URL

"" http://domain.com/root/path/index.jsp?

pushSite=fbar&stickySite=setSite

9 Multisite Request Processing 193

Input Path New URL

/ http://domain.com/root/?

pushSite=fbar&stickySite=setSite

/path/help.jsp http://domain.com/root/path/help.jsp?

pushSite=fbar&stickySite=setSite

path/help.jsp http://domain.com/root/path/path/help.jsp?

pushSite=fbar&stickySite=setSite

getProductionSiteBaseURL()

You can also obtain site URLs by calling SiteURLManager.getProductionSiteBaseURL(), which, given a

DynamoHttpServletRequest (page 141) and a site ID, returns an absolute URL based on the URL Construction

Rules (page 191) described earlier.

This method has the following signature:

public String getProductionSiteBaseURL(DynamoHttpServletRequest pRequest,
 String pSiteId,
 String pPath,
 String pQueryParams,
 String pProtocol,
 boolean pInInclude)

getProductionSiteBaseURL() takes the following optional parameters:

Parameter Description

pPath Path string to include in the returned URL.

pQueryParams Query parameters to include in the returned URL.

pProtocol The protocol to use—http or https—with domain names. If omitted, the protocol is

set from the SiteURLManager property defaultProtocol.

pInInclude A Boolean flag, specifies whether relative paths should use the URI of the included

page.

Note: If a site ID contains unconventional characters—for example, hash (#) and plus (+)—you can enter them

directly for the pSiteID parameter and the equivalent input parameter in Oracle ATG Web Commerce servlets.

However, settings for the pPath parameter and query parameters must use URL encoding for non-alphanumeric

characters—for example, %40 and %7E for at (@) and tilde (~) characters, respectively.

SiteBaseURLProcessors

When required to generate a URL, the SiteURLManager executes an array of SiteBaseURLProcessor

components, specified through its siteBaseURLProcessors property. The Oracle ATG Web Commerce

installation provides two processors:

194 9 Multisite Request Processing

• NullSiteBaseURLProcessor: Returns / (slash) if the production site URL is null.

• PreviewSiteBaseURLProcessor: Removes the domain portion of the base URL to generate URLs on a

preview server.

Multisite Data Sharing

Data sharing is central to a multisite environment, and is enabled through site groups. Each site group contains

multiple sites that share a common resource—for example, two affiliated sites that share a shopping cart. When

you define a site group in Site Administration, you must specify the resources that its member sites share. The

shared resources can be Nucleus components, non-Nucleus Java objects, and other resources.

ShareableType Components

A site group can share any resources that are referenced by a ShareableType. A ShareableType is a

globally scoped Nucleus component that is created from the class atg.multisite.ShareableType

or an extension. The Oracle ATG Web Commerce installation provides the subclass

atg.multisite.NucleusComponentShareableType. A component of this class can reference any Nucleus

components that support data sharing.

You must register all ShareableType components with the globally scoped component /atg/multisite/

SiteGroupManager, through its shareableTypes property. The SiteGroupManager keeps track of all site

groups and their ShareableType components.

Sharing Nucleus Components

You designate the Nucleus components that can be shared by site groups through

a NucleusComponentShareableType. This component is created from the class

atg.multisite.NucleusComponentShareableType, which extends atg.multisite.ShareableType.

To designate Nucleus components as available for sharing:

• Create a component that uses or extends atg.multisite.NucleusComponentShareableType.

• Set the NucleusComponentShareableType component’s paths property to the Nucleus components that

you wish to be available for sharing.

• Register the NucleusComponentShareableType with the SiteGroupManager through its

shareableTypes property.

ATG Commerce provides a ShoppingCartShareableType component. By default, this component’s paths

property is set to two installed components:

paths=/atg/commerce/ShoppingCart,\
 /atg/commerce/catalog/comparison/ProductList

This setting enables use of a shopping cart and product comparison list as components that are shared by

member sites of any given site group. When you configure your multisite environment, you register the

ShoppingCartShareableType component with the SiteGroupManager by setting its shareableTypes

property as follows:

9 Multisite Request Processing 195

shareableTypes+=/atg/multisite/ShoppingCartShareableType

After registering a ShoppingCartShareableType, you can define site groups whose member sites share a

ShoppingCart component and a ProductList component. For detailed information about defining site

groups, see the ATG Multisite Administration Guide.

Making Nucleus Components Shareable

The Oracle ATG Web Commerce installation provides two Nucleus components that can be shared by a site

group:

• /atg/commerce/ShoppingCart

• /atg/commerce/catalog/comparison/ProductList

If desired, you can make other Nucleus components shareable. Keep in mind that the component’s state might

depend on other components or data that must be configured correctly for sharing; otherwise, the component

is liable to exhibit unexpected behavior across different sites.

In general, the following guidelines and constraints apply:

1. If a shared Nucleus component depends on other Nucleus components for state information, these must also

be shared.

2. If a shared Nucleus component depends on repository data for state information, it must be coded so that

only sites sharing this component have access to the same repository data.

Note: It might be difficult to ascertain and modify all dependencies for an installed Nucleus component in order

to make it shareable; doing so might require major changes to Oracle ATG Web Commerce code. Repository data

dependencies can be especially difficult to determine.

Sharing non-Nucleus Resources

Oracle ATG Web Commerce provides the infrastructure for sharing non-Nucleus objects and other resources. In

order to enable sharing of non-Nucleus components:

• Create a component of class atg.multisite.ShareableType or an extension.

• Register this component with the /atg/multisite/SiteGroupManager, through its shareableTypes

property. Your application code can use the SiteGroupManager to identify existing sharing groups and all

registered ShareableType components. You can use this information to set and access shared data as needed.

While the paths property of a NucleusComponentShareableType points to one or more Nucleus

components such as a shopping cart, a ShareableType component requires you to write your own code

in order to associate with it the objects that are shared within a site group. It is also possible to register a

ShareableType component that has no objects associated with it; it exists solely in order to create site groups

where membership is based on sharing an abstract condition or quality. The following examples outline both

use cases.

Sharing Java Objects

You can use a ShareableType component in order to create site groups that share non-Nucleus components,

such as Java objects or other resources. In order to do so, you must write your own code in order to associate

196 9 Multisite Request Processing

these objects/resources with the ShareableType component, so they can be shared within a group that is

configured with that ShareableType.

The following steps outline a simple implementation:

1. Create the ShareableType component /atg/test/MyShareableType with the following configuration:

$class=atg.multisite.ShareableType

id=SType

2. Register the MyShareableType component by setting the SiteGroupManager's ShareableTypes

property as follows:

shareableTypes+=/atg/test/MyShareableType

3. Use the Site Administration utility to create a site group from several existing sites, and set the site group’s

Shared Data field to SType.

4. Create a Java class for instantiating shared objects:

public class SharedObj

{

String id;

String dataProperty;

// define getX and setX methods

...

}

5. Create an handler component that provides a SharedObj instance to share among all sites within the SType

site group. To implement this handler:

• Define the custom Java class atg.test.SharedTypeHandler as outlined below.

• Configure the handler component as follows:

//component path: /atg/test/SharedTypeHandler

$class=atg.test.SharedTypeHandler

shareableTypeId^=/atg/test/MyShareableType.id

In this implementation, the Java class SharedTypeHandler is defined as follows:

package atg.test;
public class SharedTypeHandler
{
 ...
 String shareableTypeId; // set from properties file, identifies ShareableType
 SharedObj globalObj=null; // share with all sites if shareableTypeId unregistered
 Hashmap<String, sharedObj> siteObjectMap; // maps each site to a SharedObj
 ...
 // get a site's SharedObj or globalObj
public SharedObj getSharedObject(){

/***
 start pseudo code:
**

 get current site-id from SiteContextManager

9 Multisite Request Processing 197

 if site-id null
 return null
 else if site-id not null
 ask SiteGroupManager whether shareableTypeID is registered
 call SiteGroupManager.getShareableTypeById(shareableTypeId)
 if getShareableTypeById() returns null
 no site groups for shareableTypeID

 if globalObj property is null
 - create SharedObj instance with unique id
 - store SharedObj in globalObj and return globalObj
 else (globalObj property not null)
 return globalObj

 else if shareableTypeId registered
 get siteGroup ID from SiteGroupManager by calling
 getSiteGroup(siteId, shareableTypeId)

 if siteGroup ID null
 site-id does not belong to any group configured with shareableTypeID
 so give site-id its own copy of SharedObj:
 - create SharedObj instance with id property set to current site-id
 - save SharedObj in siteObjecMap map with the current site-id as key
 - return SharedObj
 else if siteGroup ID not null
 if site-id in siteObjecMap
 - return the associated SharedObj
 else if site-id not in siteObjectMap
 - get all site-ids in siteGroup with this siteGroup ID
 - create SharedObj instance with id property set to siteGroup ID
 - iterate over all sites in site group, map all site-ids to same
 SharedObj instance
 - return new SharedObj instance
**
 end pseudo code
***/
}

Given this configuration, a JSP can obtain data from the sharedObj instance that the current site shares. For

example, the following code renders the current site group ID:

<dsp:valueof bean="/atg/test/SharedTypeHandler.sharedObject.id" />

Identifying Sites in a Sharing Group

A ShareableType component is not required to be associated with any objects at all; it might be used

solely to create a site group where membership is based on sharing an abstract condition or quality. For

example, the Oracle ATG Web Commerce reference application Commerce Reference Store groups sites that

represent various geographical versions of the same store. Thus, it configures the ShareableType component

RelatedRegionalStores:

$class=atg.multisite.ShareableType

The shareable type ID used by application code
id=crs.RelatedRegionalStores

198 9 Multisite Request Processing

Information used to find strings appropriate for localized UIs
displayNameResource=relatedRegionsShareableTypeName
resourceBundleName=\
 atg.projects.store.multisite.InternationalStoreSiteRepositoryTemplateResources

This ShareableType component serves two goals:

• Enables creation of a site group whose member sites represent different geographical versions of the same

store.

• Allows JSPs to use the Oracle ATG Web Commerce servlet bean /atg/dynamo/droplet/multisite/

SharingSitesDroplet to identify and differentiate site group members.

The Commerce Reference Store application uses the ShareableType component RelatedRegionalStores

to create a site group that includes two sites: ATG Store US and ATG Store Germany. The application’s JSP

code uses the servlet bean SharingSitesDroplet to determine which sites share the sharing group

RelatedRegionalStores with the current site. When ATG Store US is the current site, the servlet bean returns

other sites in the group—in this case, ATG Store Germany—and vice versa. This approach allows addition of sites

to the group (via Site Administration) without requiring code changes and application reassembly.

The JSP code renders a widget for each site group member: the current site is represented by an identifying

label, while other sites are represented by hyperlinks:

<dsp:page>
 <dsp:importbean bean="/atg/multisite/Site"/>
 <dsp:importbean bean="/atg/dynamo/droplet/ComponentExists"/>
 <dsp:importbean bean="/atg/dynamo/droplet/ForEach" />
 <dsp:importbean bean="/atg/dynamo/droplet/multisite/SharingSitesDroplet" />

 <%-- Verify that this is an international storefront. If so, the Country portion
 of the site picker should be rendered. --%>
 <dsp:droplet name="ComponentExists">
 <dsp:param name="path" value="/atg/modules/InternationalStore" />
 <dsp:oparam name="true">

 <%-- Retrieve the sites that are in the Related Regional Stores sharing
 group with the current site. --%>
 <dsp:droplet name="SharingSitesDroplet">
 <dsp:param name="shareableTypeId" value="crs.RelatedRegionalStores"/>
 <dsp:oparam name="output">

 <dsp:getvalueof var="sites" param="sites"/>
 <dsp:getvalueof var="size" value="${fn:length(sites)}" />

 <c:if test="${size > 1}">

 <%-- Get the site ID for the current site. The current site should not
 be rendered as a link in the site picker. --%>
 <dsp:getvalueof var="currentSiteId" bean="Site.id"/>

 <div id="atg_store_regions">
 <h2>
 <fmt:message key="navigation_internationalStores.RegionsTitle" />
 <fmt:message key="common.labelSeparator"/>
 </h2>

9 Multisite Request Processing 199

 <dsp:droplet name="ForEach">
 <dsp:param name="array" param="sites"/>
 <dsp:setvalue param="site" paramvalue="element"/>
 <dsp:param name="sortProperties" value="-countryDisplayName"/>

 <dsp:oparam name="output">
 <dsp:getvalueof var="size" param="size"/>
 <dsp:getvalueof var="count" param="count"/>
 <dsp:getvalueof var="countryName"
 param="site.countryDisplayName"/>
 <dsp:getvalueof var="siteId" param="site.id"/>

 <li class="<crs:listClass count="${count}" size="${size}"
 selected="${siteId == currentSiteId}" />">
 <c:choose>

 <%-- For the current site, render its name only. --%>
 <c:when test="${siteId == currentSiteId}">
 <dsp:valueof value="${countryName}" />
 </c:when>

 <%-- For other sites, render a cross-site link. --%>
 <c:otherwise>
 <%-- this page uses SiteLinkDroplet to create a link
 from the supplied site ID and customURL value --%>
 <dsp:include page=
 "/global/gadgets/crossSiteLinkGenerator.jsp">
 <dsp:param name="siteId" value="${siteId}"/>
 <dsp:param name="customUrl" value="/"/>
 </dsp:include>
 <dsp:a href="${siteLinkUrl}"
 title="${countryName}">${countryName}</dsp:a>
 </c:otherwise>

 </c:choose>

 </dsp:oparam>
 </dsp:droplet>

 </div>
 </c:if>
 </dsp:oparam>
 </dsp:droplet>
 </dsp:oparam>
 </dsp:droplet>
</dsp:page>

When on the ATG Store US site, the code renders the following output, where the display name for the current

site, United States, is rendered as a label, while a hyperlink is generated for the ATG Store Germany site:

Shared Component Proxying

In a multisite environment, site groups and individual non-grouped sites might each require access to the

same shared component. For example, the site group US_StoresGroup might contain two member sites:

200 9 Multisite Request Processing

RetailSite and OutletSite, where both sites share the same ShoppingCart component. Two non-grouped

sites — EuroSite and ChinaSite — each have their own ShoppingCart component. If a user in the same

session accesses sites US_StoresGroup.RetailSite and EuroSite, two separate ShoppingCart instances

must be created and managed, and each client request on a ShoppingCart must be relayed to the appropriate

instance.

To handle this, Nucleus relies on a cglib2-based proxying mechanism that creates and maintains unique

ShoppingCart instances for each site group and ungrouped site, and maintains a ProxyCallback map for

relaying each ShoppingCart request to the appropriate instance.

In general, Nucleus processes all component requests in a multisite environment as follows:

1. Checks whether the component can be shared—that is, the component is referenced by a registered

ShareableType.

2. For a shared component, invokes one of the installed Proxy Factories (page 201) to create:

• A cglib2-based proxy that intercepts all calls to this component.

• An atg.service.proxy.multitarget.ProxyCallback object, which maps method invocations to the

appropriate context-specific proxy target component.

The ProxyCallback creates, as needed, a proxy target component for each site group that uses the shared

component; it also creates a proxy target component for each site that does not belong to any group.

Viewing Shared Components

A shared component’s proxy is visible to debugging and administrative tools such as ATG Dynamo Server

Admin. The ATG Dynamo Server Admin also lets you view proxy target components for a given site group

through its Component Browser Context page.

Restricting Access to Proxy Target Components

A proxy target component such as a ShoppingCart cannot return a direct reference to itself to the calling code.

This provides basic protection from invocations that inadvertently circumvent the ShoppingCart proxy, which

should intercept and route all calls. However, by following references that eventually lead back to the proxied

ShoppingCart, it is possible to circumvent this protection. For example, care should be taken to prevent the

proxy target component from returning references that can be used, in turn, to obtain a reference to the parent

object.

The following graphic shows how proxying might handle invocations on a shared ShoppingCart component:

http://sourceforge.net/projects/cglib/

9 Multisite Request Processing 201

Proxy Factories

Nucleus uses two extensions of the MultiTargetComponentProxyFactory:

• atg.multisite.session.MultisiteSessionComponentProxyFactory: Creates session-scoped proxies

for multisite components.

• atg.userprofiling.preview.PreviewComponentProxyFactory: Creates proxies that handle the special

requirements of components that are accessed in a preview session. For more information about configuring

asset preview, see the ATG Business Control Center Administration and Development Guide.

202 9 Multisite Request Processing

Profile Realm Context Management

If you have enabled profile realms for your Oracle ATG Web Commerce application, threads of execution have a

profile realm context. Profile realms are subsets of external users that control which sites a user can access. See

information about profile realms in the ATG Multisite Administration Guide. The profile realm context for a thread

controls the profile realm used for actions such as creating users, finding users, or logging in as a user.

In many cases, the profile realm context is derived from the profile realm associated with the current site

context. See Site Context Management (page 167). You can set the profile realm context for the current thread

explicitly using the pushRealmId and popRealmId methods of the /atg/multisite/ProfileRealmManager

component. See Profile Realm Context Push and Pop Methods (page 202). You can set the profile realm

context for an HTTP request using the Profile Realm pushRealm URL Parameter (page 202).

Use methods of the atg.multisite.ProfileRealmManager class to work with profile realms. See

information about the class and its API in ATG Platform API Reference.

Profile Realm Context Push and Pop Methods

Use the pushRealmId and popRealmId methods of the /atg/multisite/ProfileRealmManager

component to explicitly set the profile realm context for the current thread. Include the identifier of the profile

realm as the arguments to these methods. The following example code sets and then removes a profile realm

context.

// Obtain a reference to the ProfileRealmManager
// component. This example code assumes the following
// property configuration:
//
// profilerealmmanager=/atg/multisite/ProfileRealmManager/

try {
 // Set the profile realm context
 profilerealmmanager.pushRealmId("myrealmid");

 // Perform operations that require the profile realm context.

}
finally {
 // Remove the profile realm context
 profilerealmmanager.popRealmId("myrealmid");
}

Profile Realm pushRealm URL Parameter

Use the pushRealm URL query parameter to control the profile realm context for the duration of an HTTP

request. Set the value of the parameter to the profile realm identifier.

For example, the following URL query parameter sets the profile realm context while logging in to the Oracle

ATG Commerce Web Services REST Web services interface.

http://mydomain.com/rest/bean/atg/userprofiling/ProfileServices/loginUser?
pushRealm=myrealmid

9 Multisite Request Processing 203

Default Profile Realm Identifier Constant

The identifier of the default profile realm is atg.multisite.profileRealms.DefaultRealmId. Use this

String value to specify the default profile realm.

You can also access the default profile realm identifier using the static variable DEFAULT_REALM_ID of the

atg.multisite.ProfileRealmManager class. For example:

atg.multisite.ProfileRealmManager.DEFAULT_REALM_ID

204 9 Multisite Request Processing

10 Core ATG Services 205

10 Core ATG Services

Oracle ATG Web Commerce comes with a host of classes that can be used as Nucleus components. Because

these classes provide functionality that is generally useful across many applications, these classes are often

called services. This chapter outlines the different services that are available in Oracle ATG Web Commerce.

Like all Nucleus components, these classes are created and configured through configuration files (properties

files, most often) in the Nucleus configuration tree. Some services are meant to be used by multiple applications,

and are thus instantiated once in a well-known place. For example, the Scheduler service is used by many

applications, and is instantiated as part of the standard Oracle ATG Web Commerce server configuration.

Other services are instantiated and configured differently for different applications, sometimes creating many

instances for the same application. And finally, other services are not instantiated at all, but instead are extended

by subclasses, which should then be instantiated.

In this chapter

This chapter describes the following Oracle ATG Web Commerce services:

• TCP Request Server (page 206)

• RMI Services (page 208)

• Port Registry (page 212)

• Scheduler Services (page 213)

• ShutdownService (page 222)

• Sampler Services (page 222)

• Secure Random Number Generator (page 225)

• ID Generators (page 226)

• Resource Pools (page 232)

• Events and Event Listeners (page 237)

• Queues (page 240)

• E-mail Senders and Listeners (page 243)

206 10 Core ATG Services

TCP Request Server

Oracle ATG Web Commerce includes a standard HTTP request-handling mechanism for implementing HTML-

based interfaces to applications. Your applications might want to create additional TCP servers to handle other

types of requests from outside sources. These servers all run within the same process.

The class atg.server.tcp.RequestServer provides a mechanism for building TCP servers. When the

RequestServer starts, it creates a server socket that waits on a specific port. It also creates a number

of atg.server.tcp.RequestServerHandler objects that run in their own separate threads. The

RequestServer then waits for incoming connections, and each incoming connection is passed to a free

RequestServerHandler to be handled. If no RequestServerHandler objects are free, the RequestServer

waits until one is free. When a RequestServerHandler is done handling a request, the handler is returned to

the pool of handlers waiting for requests until it is asked to handle another request. A RequestServer reuses

RequestServerHandler objects between requests—it does not create and destroy RequestServerHandler

objects on each request. This enables high throughput for request-based services that require high

performance.

To use the RequestServer class, you must extend the RequestServerHandler and implement the

handleRequest method to actually handle the request. You must also extend RequestServer and implement

the createHandler method to create instances of your RequestServerHandler subclass. When you

configure a RequestServer instance, you specify the port and number of handlers that are created.

Defining a RequestServer

The following code example shows how to create a RequestServer that lets you telnet into a port, type your

name, and have it printed back to you. First, you must define a subclass of RequestServerHandler:

import java.io.*;
import java.net.*;
import atg.server.tcp.*;
public class MirrorHandler
extends RequestServerHandler
{
 public MirrorHandler (ThreadGroup group,
 String threadName,
 RequestServer server,
 Socket socket)
 {
 super (group, threadName, server, socket);
 }

 protected void handleRequest (Socket socket)
 {
 try {
 BufferedReader br = new BufferedReader(new
 InputStreamReader(socket.getInputStream()));
 OutputStream out = socket.getOutputStream ();
 PrintStream pout = new PrintStream (out);

 String name = br.readLine ();
 pout.println ("Hello " + name + "!");
 } catch (IOException exc) {}
 finally {
 try { if (socket != null) socket.close (); }
 catch (IOException exc) {}

10 Core ATG Services 207

 }
}

Ignore the constructor, as your constructor probably always looks like that. Look at the handleRequest

method, which contains the code that reads a line and sends it back. Note the use of try...finally, which

ensures that no matter what happens inside the handler, the socket is always closed. This is important because

sockets are a limited resource, and leaving them open accidentally because of unanticipated errors can cause

you eventually to run out of sockets.

Remember that these objects are reused from request to request. If you find that you are doing a lot of setup

in each request, that setup might be hurting your throughput. See if you can move some of the setup to the

constructor by creating objects that can be reused from request to request.

Also be aware that your handler need not be thread-safe. You can be assured that only one request is running

through your request handler at any one time. The RequestServer spins off multiple handler objects to handle

multiple simultaneous requests. This should help you make your handler more efficient for reuse.

In addition to extending RequestServerHandler, you must also extend RequestServer to tell it what

subclass of RequestServerHandler to create:

import java.net.*;
import atg.server.tcp.*;
public class Mirror
extends RequestServer
{
 public Mirror ()
 {
 super ();
 }

 protected RequestServerHandler createHandler (ThreadGroup group,
 String threadName,
 Socket socket)
 {
 return new MirrorHandler (group, threadName, this, socket);
 }
}

That should be all you need to do for RequestServer.

Configuring a RequestServer

A RequestServer typically needs to be configured with a port and a handlerCount property. For example:

port=8832
handlerCount=20

This declares that the server runs on port 8832, and spins off 20 handler objects, meaning that it can handle up

to 20 simultaneous requests.

You can also set the handlerCount to 0, which represents a special case. In that case, the server creates

no handler objects when it starts. Instead, each incoming connection results in a new handler object (and

corresponding thread). The handlers are used once and destroyed after each connection.

208 10 Core ATG Services

In order to start your server, you probably need to include a pointer to your server in the initialServices

property of some InitialService object. See Starting a Nucleus Component (page 9) in the Nucleus:

Organizing JavaBean Components (page 3) chapter to review how to do this.

A RequestServer has a connectionAcceptor property. This property specifies a Nucleus component

(atg.server.tcp.SimpleConnectionAcceptor) that regulates how client connections to the server

are accepted. Each RequestServer should use a separate connection acceptor component. The default

connection acceptor component allows the requesting thread to wait on the server socket, adjusting its priority

as configured by the priorityDelta property of the connection acceptor.

RequestServer Statistics

The RequestServer (and its subclasses) expose a number of runtime statistics as read-only properties. You can

examine these statistics through the Component Browser, or by calling the appropriate get methods:

runningHandlerCount

The number of handlers running, including both idle handlers and handlers currently handling requests. This

should be the same as handlerCount, unless handlerCount is set to 0.

activeHandlerCount

The number of handlers currently handling requests.

handledRequestCount

The total number of requests that all handlers completed.

totalRequestHandlingTime

The total amount of time taken to complete all requests handled by all handlers. This adds time spent in parallel

operations, so if 10 handlers running at the same time take 100msec each, the total handling time is 1000msec.

RMI Services

An Oracle ATG Web Commerce server includes a service that can expose certain components to other

applications through Java remote method invocation (RMI). If you write a service according to the RMI

specifications, you can register your service with the Oracle ATG Web Commerce RMI server, and other

applications can access it.

Writing an RMI Service

Before using the RMI server, you must write your service according to the RMI specifications. The following

example shows how to do that.

First, use an interface to encapsulate the functionality you want to expose through RMI. For example, say that

you want to make a bank account component that allows someone to adjust the balance. You might design the

BankBalance interface to look like this:

10 Core ATG Services 209

import java.rmi.*;
public interface BankBalance extends Remote
{
 public void adjustBalance (double amount) throws RemoteException;
 public double getCurrentBalance () throws RemoteException;
}

Remember that you do not have to put your service’s complete functionality in this interface—just the parts

that you want to make accessible remotely. And remember that the interface must extend java.rmi.Remote,

and every method must declare that it throws java.rmi.RemoteException.

After you finish writing the remote interface, write the actual implementation of that interface. For example:

import java.rmi.*;
public class BankBalanceImpl
extends atg.nucleus.GenericRMIService
implements BankBalance
{
 double balance;
 public BankBalanceImpl () throws RemoteException {}

 public void adjustBalance (double amount) throws RemoteException
 { balance += amount; }
 public double getCurrentBalance () throws RemoteException
 { return balance; }
}

This implementation can have any methods you wish, as long as it implements your remote interface.

It can even implement multiple remote interfaces. However, it must include the functionality of

java.rmi.UnicastRemoteObject and also implement atg.naming.NameContextElement. Oracle ATG Web

Commerce provides a convenient base class that does both, called atg.nucleus.GenericRMIService. This

class extends GenericService and adds the RMI capabilities provided by UnicastRemoteObject.

Now compile the BankBalance and BankBalanceImpl classes using any Java compiler. For example:

javac BankBalance.java BankBalanceImpl.java

In order for Java to use these classes remotely through RMI, it must have stub and skeleton classes

corresponding to your implementation. The JSDK comes with a command line utility called rmic, which

automatically generates the stub and skeleton classes. When you run rmic, you should use as an argument the

full class name of the implementation class (not the remote interface class). For example:

rmic BankBalanceImpl

You should see two new class files appear: BankBalanceImpl_Skel.class, and

BankBalanceImpl_Stub.class.

Your classes are now ready for use with the RmiServer. But first you must define an instance of your

BankBalance object in Nucleus. For example, the following might go into a BankBalance.properties file:

$class=BankBalanceImpl

210 10 Core ATG Services

Exporting an RMI Service

After you create your RMI service, you can use the atg.server.rmi.RmiServer class to make that service

available to remote clients through the RMI interface.

To export a service, add its Nucleus name to the exportedServices property of the RmiServer. Oracle ATG

Web Commerce comes with an RmiServer instance already configured at /atg/dynamo/server/RmiServer.

You might export your BankBalance component by adding this property setting to your RmiServer

component:

exportedServices+=/yourcomponents/BankBalance

You can export as many services as you wish, separating their names with commas. The names must be full

Nucleus names—that is, they must start with a forward slash (/). The next time Nucleus starts after making these

changes, your services are available for use through RMI.

Making an RMI Client

After you export your RMI service, you can test it by creating an RMI client. Accessing a remote object from a

Java client requires a single RMI call, and the URL to the remote object. The URL for a remote object in an Oracle

ATG Web Commerce server is formed like this:

rmi://{dynamo host}:{rmi port}{object's Nucleus name}

The standard RMI port for an Oracle ATG Web Commerce server is 8860, so a typical URL might look like this:

rmi://myhost:8860/yourcomponents/BankBalance

The following program demonstrates you can access an object using this URL:

import java.rmi.*;
import java.io.*;
public class BankBalanceClient {
 public static void main (String [] args)
 throws RemoteException, NotBoundException, IOException {
 BankBalance bb = (BankBalance)
 Naming.lookup ("rmi://myhost:8860/yourcomponents/BankBalance");
 System.out.println ("current balance = " + bb.getCurrentBalance ());
 System.out.println ("adding $8.23");
 bb.adjustBalance (8.23);
 }

After starting Nucleus, you can run this program a few times (with the URL changed to match your particular

configuration) to prove to yourself that you are accessing the Nucleus object remotely.

RMI Socket Factories

RMI is designed to be extensible at runtime, and in particular it supports the notion of socket factories, which

are pluggable objects with a responsibility for manufacturing network socket connections. A default socket

factory is installed when RMI starts up, which simply uses regular unencrypted TCP connections to communicate

10 Core ATG Services 211

RMI method calls and their results. However, other socket factories can be optionally installed. Socket factories

control how RMI endpoints communicate at the raw byte-stream level. They have no effect on the higher-level

operation of RMI, such as method calls and thread usage.

You can designate a Java class that is instantiated and used as RMI’s socket factory. This permits transparent use

of third-party vendor socket factory implementations by RMI, and thus by client/server RMI communication. This

supports such features as:

• Secure sockets (SSL)

• Tunneling—for example, RMI via firewall proxies

RMI-over-SSL can be useful in cases where a secure server needs to be contacted by authorized entities outside

the firewall, or where security behind the firewall is an issue.

Configuring an Alternate Socket Factory

The component /atg/dynamo/server/RmiInitialization (of class

atg.server.rmi.RmiInitialization) is responsible for performing RMI configuration prior to starting the

Oracle ATG Web Commerce RMI server. It provides two ways to specify the socket factory class to be used:

• You can use the RMISocketFactory property to specify a Nucleus component that is an instance of a socket

factory class.

• You can use the RMISocketFactoryClass property to specify a socket factory class directly.

In general, specifying a Nucleus component is preferable, because you can easily configure the component

through a properties file. Specifying a class directly is a useful alternative, if, for example, you are using a

preconfigured RMI socket factory implementation obtained from a third-party vendor.

To configure an alternate socket factory:

1. Install the third party vendor package that contains the factory and place the vendor code into the

CLASSPATH.

2. On the server, set the RMISocketFactoryClass property of the /atg/dynamo/server/

RmiInitialization component to the name of the socket factory class to be used. Or create a properties

file for a Nucleus component that is an instance of the socket factory class, and set the RMISocketFactory

property to the Nucleus address of this component.

3. Edit the client’s startup script to add the following to the JAVA_ARGS line:

-Drmi.socket.factory.class=classname

where classname is the name of the socket factory class.

To debug a socket factory at runtime, use vendor-supplied debugging switches if available. You can also use

the Java argument -Djava.rmi.server.logCalls=true to force all RMI method calls to be logged to the

console.

RMI Over SSL

You can secure RMI communications by transmitting them over SSL. The Oracle ATG Web Commerce platform

includes a class, atg.net.ssl.SSLRMISocketFactory, for creating secure sockets for RMI, and a Nucleus

component that is an instance of this class, /atg/dynamo/service/socket/

SSLRMISocketFactory. To enable RMI over SSL, set the RMISocketFactory property of the /atg/dynamo/

server/RmiInitialization component to point to the SSLRMISocketFactory component:

212 10 Core ATG Services

RMISocketFactory=/atg/dynamo/service/socket/SSLRMISocketFactory

To use RMI over SSL, configure public and private keys and wrap the public key in a self-signed certificate. Use

the keytool utility to generate a new private key and public key, and wrap the public key into a new self-signed

certificate.

1. Create a key store and trust store for each server.

2. Use the JDK keytool utility with the –genkey flag to generate a new self-signed certificate that wraps the

public key.

3. Import the certificate into the trust store of each server.

4. Configure the /atg/dynamo/security/BasicSSLConfiguration component on each server. You must

set the keyStore and trustStore properties to point to your new key store and trust store file locations.

You must also set the keyStorePassword and trustStorePassword properties to the values that you used

when creating the key store and trust store.

For more information about SSL keys and certificates, and for documentation about the Java Secure Socket

Extension (JSSE) APIs, see the Oracle Web site.

Alternative RMI Implementations

By default, Oracle ATG Web Commerce’s RMI Server handles RMI objects. If, however, you want to import an

alternative RMI implementation, you can do so:

1. Include the RMI implementation in your CLASSPATH, for both the server and UI clients.

2. Write your own code to export and resolve RMI objects using those implementations.

3. Be sure to either disable the Oracle ATG Web Commerce RMI Server (set the rmiEnabled property of /

atg/dynamo/Configuration to false) or run it on an alternate port number (set the port number in the

rmiPort property of /atg/dynamo/Configuration).

Port Registry

One of the more confusing aspects of server-side applications is the number of TCP servers that might start up.

The standard configuration for an Oracle ATG Web Commerce application, for example, starts between four and

six separate TCP servers. To help organize these servers, Oracle ATG Web Commerce includes a service called

atg.service.portregistry.PortRegistry that keeps track of which services started servers on which

ports. The PortRegistry has a Nucleus address of /atg/dynamo/server/PortRegistry. This component’s

page in the Component Browser lists which services are using which ports.

The PortRegistry does not automatically find server components. Instead, individual server components are

expected to register themselves with the PortRegistry.

Every subclass of RequestServer already has the ability to automatically register with a PortRegistry when

it starts up. To do this, the component must be configured with a property that points to the PortRegistry. For

example, the HTTP server might be configured like this:

10 Core ATG Services 213

portRegistry=/atg/dynamo/server/PortRegistry

If you create a server component that does not extend RequestServer, your component should define a

portRegistry property to be set in the configuration file. When it starts, it should register itself with the

PortRegistry like this:

if (getPortRegistry () != null) {
 getPortRegistry ().addEntry (getPort (), getAbsoluteName ());
}

Note: This assumes that port is available as a property. The getAbsoluteName method is available only if your

server component extends atg.nucleus.GenericService. If you extend GenericService, this code most

likely appears inside your doStartService method. Also, your doStopService method should include the

following code:

if (getPortRegistry () != null) {
 getPortRegistry ().removeEntry (getPort (), getAbsoluteName ());
}

Scheduler Services

Most server-side applications have routine tasks that must be performed periodically. For example, a component

in the application might need to clear a cache every 10 minutes, or send email each morning at 2:00, or rotate a

set of log files on the first of every month.

Oracle ATG Web Commerce includes a Scheduler service, atg.service.scheduler.Scheduler, which

keeps track of scheduled tasks and executes the appropriate services at specified times. You can see a list of all

scheduled tasks in the Component Browser at /atg/dynamo/service/Schedule .

Oracle ATG Web Commerce also includes a SingletonSchedulableService,

atg.service.scheduler.SingletonSchedulableService, which enables multiple Oracle ATG Web

Commerce servers to run the same scheduled service, while guaranteeing that only one instance of the service

performs the scheduled task at a time. This provides some protection from server failures, as the loss of one

Oracle ATG Web Commerce server does not prevent the scheduled service from running on another Oracle ATG

Web Commerce server.

Scheduling a Task

In order to schedule a task, a component needs a pointer to the Scheduler, which is usually set as a component

property. The component schedules a new task by calling addScheduledJob on the Scheduler. The Scheduler

executes the job as scheduled.

When the Scheduler executes a job, it calls performScheduledTask on the object that performs the task,

which must implement atg.service.scheduler.Schedulable. Typically, the component that schedules the

task is also the Schedulable component that executes it, but this is not strictly required.

214 10 Core ATG Services

When a component schedules a task, it must provide the Scheduler with the following information:

• A name for the scheduled job; used only for display to the administrator.

• The name of the component scheduling the job; used only for display to the administrator.

• The Schedulable object that handles the job; typically, the same as the component that schedules the job.

• A flag that indicates how to run the job:

• In a separate thread.

• In the same thread as other scheduled services.

• In a dedicated, reusable thread.

If a job runs in the same thread as other services, no other scheduled services can run until the job finishes. If

the job is long and expensive, it should run in a separate thread. If the job is short, it should run in the same

thread. For more information, see ScheduledJob Thread Methods (page 215).

• The Schedule that indicates when the job should run. This is specified as an object that implements

atg.service.scheduler.Schedule. The scheduler package provides a set of useful Schedule types,

including schedules that represent an event at a specific time, schedules that represent periodic events, and

schedules that represent events based on the calendar—for example, on the 1st and 15th of every month.

Usually the Schedule is passed in as a property. For more information, see Schedule Settings (page 216).

All of this information is encapsulated in a ScheduledJob object, which is passed to the Scheduler’s

addScheduledJob() method.

When a job is added to the Scheduler, the Scheduler returns an integer job ID, which you can later use to

reference that job. For example, to stop a scheduled job, you can call removeScheduledJob on the Scheduler,

passing in the ID of the job to stop.

When the Schedulable object is called to perform a task, it is passed the ScheduledJob object that was used

to schedule that task. This is useful in the case where a single service is supposed to perform several kinds of

scheduled tasks, and needs the properties of the ScheduledJob to determine which task it is supposed to

perform.

Writing a Schedulable Component

This section describes how to write a component that schedules itself to perform a task according to different

schedules. In this case, the task to be performed is to write Hello to the console.

Such a component might look like this:

import atg.nucleus.*;
import atg.service.scheduler.*;

public class HelloJob extends GenericService implements Schedulable
{
 public HelloJob () {}

 // Scheduler property
 Scheduler scheduler;
 public Scheduler getScheduler () { return scheduler; }
 public void setScheduler (Scheduler scheduler)

10 Core ATG Services 215

 { this.scheduler = scheduler; }

// Schedule property
 Schedule schedule;
 public Schedule getSchedule () { return schedule; }
 public void setSchedule (Schedule schedule)
 { this.schedule = schedule; }

 // Schedulable method
 public void performScheduledTask (Scheduler scheduler,
 ScheduledJob job)
 { System.out.println ("Hello"); }

 // Start method
 int jobId;
 public void doStartService () throws ServiceException
 {
 ScheduledJob job = new ScheduledJob ("hello",
 "Prints Hello",
 getAbsoluteName (),
 getSchedule (),
 this,
 ScheduledJob.SCHEDULER_THREAD);
 jobId = getScheduler ().addScheduledJob (job);
 }

 // Stop method
 public void doStopService () throws ServiceException
 {
 getScheduler ().removeScheduledJob (jobId);
 }
}

Notice that this component extends GenericService, which allows it to be notified of start and stop

conditions through doStartService and doStopService. The component also implements Schedulable

by defining the performScheduledTask method to print Hello. The component also requires the scheduler

and schedule to be set as properties.

When the component is started, it constructs a ScheduledJob from the schedule property, and also specifies

that the job should run in the Scheduler’s thread. The component then adds the job to the Scheduler, and stores

the job ID returned by the Scheduler. When the component is stopped, it removes the scheduled job by passing

the ID of the job.

ScheduledJob Thread Methods

A ScheduledJob component has a threadMethod property that indicates what threading model should be

used to execute the scheduled job. The threadMethod property can have one of the following values:

Thread Description

SCHEDULER_THREAD The job is run in the Scheduler’s own thread. This is the most efficient thread

method, but it blocks the Scheduler from performing any other jobs until the job is

complete. Therefore, use this thread method only for jobs that do not take a long

time to run. Jobs that use I/O should probably avoid using this option.

216 10 Core ATG Services

Thread Description

SEPARATE_THREAD Each time the job is triggered, a new thread is created to run the job. The thread is

destroyed when the job completes. If a job is set to run periodically at a rate that is

faster than the job itself can run, new threads are created to handle those jobs.

REUSED_THREAD A separate thread is created to handle the job. Whenever the job is triggered, that

thread is directed to run the job. When the job completes, the thread stays around

waiting for the next time the job is triggered. If the job is still running when it is

scheduled to begin to run again, it does not start again until the next time around.

With this method, the Scheduler thread is not blocked by executing jobs, and

threads do not multiply out of control if the job is triggering too quickly.

Configuring a Schedulable Component

The previous section defines a Schedulable component that schedules a task to print Hello to the console. To

schedule this task, the component needs to be configured with two properties:

Component Description

scheduler Points to a Scheduler such as the standard Oracle ATG Web Commerce Scheduler.

schedule Points to the standard Oracle ATG Web Commerce Scheduler. The schedule property can

be set in a wide variety of formats, which Oracle ATG Web Commerce interprets through the

PropertyEditor that is defined for the Schedule type. For more information on format

options, see the next section, Schedule Settings (page 216).

For example:

scheduler=/atg/dynamo/service/Scheduler
schedule=every 10 seconds

Schedule Settings

The schedule property of a Schedulable component can be set in a variety of formats, which Oracle ATG Web

Commerce interprets through the PropertyEditor that is defined for the Schedule type.

The different types of Schedules can also be created programmatically by creating instances of

RelativeSchedule, PeriodicSchedule, or CalendarSchedule.

PeriodicSchedule/RelativeSchedule

You can set a schedule property to a PeriodicSchedule and RelativeSchedule alone or in combination:

• PeriodicSchedule specifies a task that occurs at regular intervals, in this format:

schedule=every integer time-unit[with catch up]

10 Core ATG Services 217

• RelativeSchedule specifies a time relative to the current time, in this format:

schedule=in integer time-unit

You set time-unit to one of the following:

msec
sec
seconds
min
minute
minutes
hour
hours
day
days

For example, the following schedule property is set to a RelativeSchedule that specifies to start a task in 30

seconds:

schedule=in 30 seconds

The next example shows a schedule property set to a PeriodicSchedule that specifies to run a task every 20

minutes:

schedule=every 20 minutes

Finally, the following example shows a schedule property set to a PeriodicSchedule and a

RelativeSchedule that specify to wait 20 minutes before running a task, then run the task every 10 seconds

thereafter:

schedule=every 10 seconds in 20 minutes

with catch up

You can qualify a PeriodicSchedule with the string with catch up, which determines whether the

PeriodicSchedule tries to catch up on missed jobs. By default, the schedule executes without catch up. For

example, you might schedule two seconds between jobs as follows

schedule=every 2 seconds

If a job occurs at 14:00, the next job should occur at 14:02. If the Scheduler cannot handle the job until 14:05—

for example, the polling interval is greater than the period between jobs—the Scheduler schedules the next job

to start at 14:06, so the jobs scheduled for 14:02 and 14:04 are missed.

By specifying with catch up, you can force execution of the missed jobs:

schedule=every 2 seconds with catch up

218 10 Core ATG Services

Given this property setting, at the first opportunity—in this case,14:05—the Scheduler runs two jobs to

compensate for the jobs missed at 14:02 and 14:04. It runs the next job as regularly scheduled at 14:06.

CalendarSchedule

A CalendarSchedule schedules a task to run at designated points on the calendar. For example, you

might schedule a task for 2:30am each Sunday, or a specific date such as January 1. The format for a

CalendarSchedule looks like this:

schedule=calendar mos dates wkdays mo-occurs hrs mins

You set these parameters as follows:

Parameter Values Description

mos 0..11 The months when the task occurs, where 0 represents December.

dates 1..31 The days of the month when the task occurs

wkdays 1..7 The days of the week when the task occurs, where 1 represents Sunday.

mo-occurs 1..4,

last

Occurrences of the specified wkdays in a month—for example, the first and

third Wednesdays of the month.

hrs 0..23 The hours of the day when the task occurs, where 0 represents midnight.

mins 0..59 The minutes of the hour when the task occurs.

You can specify multiple values for each parameter in two ways:

• Separate discrete values with commas. For example, to indicate May and August in the mos parameter:

4,7

• Indicate a range of values with a dash (wraparound is allowed).. For example, to indicate each day between

Monday and Friday inclusive in the wkdays parameter:

2-6

You can substitute the following characters for each parameter:

• * (asterisk) specifies all values for that parameter.

• . (period) specifies no values for that parameter.

Using the CalendarSchedule, a task is performed if all of the following conditions are true:

• The current month matches one of the month entries.

• One of the following is true:

• The current day of the month matches one of the date entries,

10 Core ATG Services 219

• The current day of the week matches one of the wkdays entries and its occurrence in the month matches

one of the occurrence in month entries.

• The current hour matches one of the hour entries.

• The current minute matches one of the minute entries.

The following table provides some examples:

CalendarSchedule Setting Task Occurrence

calendar * 1,15 . * 14 5 1st and 15th of every month, 2:05pm

calendar * . 1 1,last 14 5 1st and last Sunday of every month, 2:05pm

calendar 1 * . * 1,13 0 Every day in February at 1am and 1pm

calendar 5 . 2 * * 0 Every Monday in June, every hour on the hour

calendar * * * * 9-17 30 Every day, between 9am-5pm on the half hour

Backwards Compatibility in CalendarSchedules

Early versions of Oracle ATG Web Commerce use a 5-field CalendarSchedule. This 5-field format is still

supported; a CalendarSchedule with 5 fields is interpreted as having an mo-occurs value of *.

Monitoring the Scheduler

Information about all tasks being run by the Scheduler is available through the Component Browser. If you

go to the page for the /nucleus/atg/dynamo/service/Scheduler component, you see a list of all tasks

monitored by the Scheduler.

The tasks are divided into two categories: scheduled and unscheduled. The only tasks that appear in

the unscheduled category are those using CalendarSchedules that never actually occur, such as a

CalendarSchedule that specifies only Feb. 30.

In addition, by default all scheduled jobs are instrumented with Performance Monitor startOperation and

endOperation methods. These operations appear grouped together under the line Scheduled Jobs in the

Performance Monitor page. If you do not want performance monitoring of scheduled jobs, you can set the

Scheduler’s performanceMonitorEnabled property to false to disable this behavior.

Running the Same Schedulable Service on Multiple Servers

Schedulable services are useful for a wide variety of tasks in an Oracle ATG Web Commerce application,

including session expiration, content and component indexing, session backup, JMS message polling, log file

management, and reporting. Typically, these are tasks that are performed periodically, and only affect the Oracle

ATG Web Commerce server where they run. There are certain recurring tasks, however, that should be performed

no more than once under any circumstances. There are many examples of at-most-once behavior, such as:

220 10 Core ATG Services

• Recurring or pre-scheduled orders in a commerce application, where it is critical that each scheduled order be

placed once and only once.

• Periodic (batch) order fulfillment, where it is critical that each order be shipped once and only once to the

customer.

• Mass or pre-scheduled email delivery, where each email message should be delivered only once.

• Periodic report generation, where each report should be generated only once.

The typical approach to implementing such tasks has been to create a scheduled service, then configure it on

only one Oracle ATG Web Commerce server within the site. This provides at-most-once behavior, but has the

disadvantage of introducing a single point of failure into the system. If the server handling order placement

goes down, orders are not placed. If the server handling report generation goes down, report generation stops.

How easily one can recover from this situation depends largely on the complexity of the scheduled services

involved.

The SingletonSchedulableService, a subclass of the standard SchedulableService, works in conjunction

with a client lock manager to guarantee that only one instance of a scheduled service is running at any given

time throughout a cluster of cooperating Oracle ATG Web Commerce servers. This provides the foundation for

an architecture where scheduled services can be configured on multiple Oracle ATG Web Commerce servers to

provide fault tolerance, but the system can still ensure that each task is performed at most once.

SingletonSchedulableService is an abstract base class that implements the Schedulable interface

by subclassing SchedulableService, and that automatically checks to see if any other instance of the

service is running anywhere on the local Oracle ATG Web Commerce server cluster before performing its

regularly scheduled task. Applications can subclass SingletonSchedulableService to provide concrete

implementations that perform whatever application-specific work is required.

Note: Singleton behavior of the scheduled service is necessary, but not in itself sufficient, to ensure at-most-

once behavior of the overall system. Consider the case of periodic order fulfillment:

Obviously, two scheduled fulfillment services should never wake up at the same time on two different Oracle

ATG Web Commerce servers and fulfill the same orders at the same time. The result would be to ship two

copies of each order to every customer, and to bill for both of them as well. On the other hand, two scheduled

fulfillment services should not wake up at completely different times and fulfill the same orders. Even though

the services might not overlap at all, another mechanism is necessary to keep the second service instance from

shipping orders that the first instance already handled.

SingletonSchedulableService is designed to work in situations where the job performed by the system can

be broken down into discrete work units, and where each work unit has some status indicator that tells whether

or not it currently requires processing. Examples of such systems include:

• A fulfillment system where the work units might be individual orders and the status might be a flag indicating

whether or not the order has shipped.

• A recurring order service where the work units might be individual orders and the status might be a

timestamp indicating the next date and time at which the order should be placed.

• An email system where the work units might be mailings or individual messages, and the status might be

a Boolean field in a database somewhere indicating whether or not each mailing has been successfully

delivered.

The assumption behind SingletonSchedulableService is that on each run the service wakes up, obtains a

lock to ensure that it is the only instance of the service running, fetches the work units that require processing,

processes them, and then updates their status before relinquishing the lock.

The following sequence must be performed atomically from the service’s point of view:

10 Core ATG Services 221

1. Fetch pending work units.

2. Process pending work units.

3. Update status of work units.

The automatic locking mechanism provided by SingletonSchedulableService ensures this atomicity.

Guaranteeing that only one instance of the service runs at a time throughout the Oracle ATG Web Commerce

server cluster prevents two instances of the service that happen to wake up at the same time from trying to

process the same work units. The fact that the service updates the status of the work units before releasing its

lock prevents a subsequent instance of the service from trying to process those same work units again. The

overall result is that each work unit should be processed once and only once, without the need to introduce a

single point of failure into the system.

Configuring a SingletonSchedulableService

SingletonSchedulableService is an abstract class that extends SchedulableService and implements the

performScheduledTask method in a way that tests for other instances of the service before proceeding.

To implement a SingletonSchedulableService, create a subclass of this class, and then create a component

based on that subclass. Configure the component with a reference to a client lock manager, a lock name, and a

timeout period. For example:

#Thu Aug 09 19:15:14 EDT 2001
$class=myclasses.MySingletonSchedulableService
$scope=global
clientLockManager=/atg/dynamo/service/ClientLockManager
lockName=ReportingLockManager
lockTimeOut=2000

The code in performScheduledTask contacts the client lock manager and requests a write lock using the

specified lock name and timeout. If a lock is obtained successfully, the SingletonSchedulableService

checks to see whether it is a global write lock or a local write lock.

If a global write lock is returned the service can assume that it is the only instance running anywhere on the

cluster, at least if all instances of the service point to client lock managers than in turn point to the same server

lock manager. In this case SingletonSchedulableService calls the doScheduledTask method to do

whatever work the service does, then releases the global lock.

If a local write lock is returned it means that the client lock manager was unable to contact the server lock

manager. The implementation then makes the pessimistic assumption that another instance of the service

might be running, so it logs a debugging message, releases the local lock without doing any work, and goes

back to sleep until the scheduler calls it again.

If the request to obtain a lock times out, the implementation assumes that another instance of the service

is running and taking a long time about it, so it logs a debugging message and goes back to sleep until the

scheduler calls it again.

Finally, if a DeadlockException is thrown, the implementation logs an error message and makes the

pessimistic assumption that another instance of the service might be running, so it logs an error message and

goes back to sleep.

Note: If the client lock manager’s useLockServer property is set to false, it means that global locking is

disabled for that lock manager. In this case, SingletonSchedulableService accepts a local lock in place of

the global lock, which at least ensures that only one instance of the service runs at a time on the current Oracle

ATG Web Commerce server.

222 10 Core ATG Services

ShutdownService

When Nucleus shuts down, it recursively shuts down all child services. The sequence in which these services

shut down is undefined. You can control this sequence by configuring the Nucleus component /atg/dynamo/

service/ShutdownService, which implements the class atg.service.ShutdownService. The services

property of this component lists the order in which services are shut down. For example:

$class=atg.service.ShutdownService
services+=\
 /atg/reporting/datacollection/search/QueryFileLogger
 /atg/reporting/datacollection/search/UseSearchEnvironmentFileLogger
 /atg/reporting/datacollection/search/ViewContentFileLogger
 /atg/reporting/datacollection/search/EnvironmentFileLogger
 /atg/reporting/datacollection/search/TopicFileLogger
 /atg/reporting/datacollection/userprofiling/SiteVisitFileLogger
 /atg/reporting/datacollection/userprofiling/UserFileLogger
 /atg/reporting/datacollection/userprofiling/SegmentFileLogger
 /atg/reporting/datacollection/search/ProjectFileLogger
 /atg/reporting/datacollection/commerce/OrderFileLogger

As a message sink that implements the interface atg.dms.patchbay.MessageSink, ShutdownService

listens for the JMS message atg.das.Shutdown, which is generated just before Nucleus starts to shut down.

On receiving this message, ShutdownService iterates over the list of services configured in its services

property and calls stopService() on each one. After this process is complete, Nucleus recursively shuts down

all remaining services.

Default Configuration

The Oracle ATG Web Commerce installation specifies the ShutdownService as an initial service in the DAS

module, in /atg/dynamo/service/Initial. The installation also provides three ShutdownService

components in the following modules:

• DAS configures no services.

• DPS configures three services:

/atg/reporting/datacollection/userprofiling/SiteVisitFileLogger

/atg/reporting/datacollection/userprofiling/UserFileLogger

/atg/reporting/datacollection/userprofiling/SegmentFileLogger

• DCS configures a single service:

/atg/reporting/datacollection/commerce/OrderFileLogger

Sampler Services

After an application has been deployed, monitoring the state of that application becomes an important task.

In the JavaBeans model, the current state of the application is usually exposed through properties. These

properties are often read-only, meaning that they expose only the getX method.

For example, the atg.server.tcp.RequestServer component exposes its state through properties such as

handledRequestCount and totalRequestHandlingTime, which report the number of requests handled by

10 Core ATG Services 223

that component, and how much time it took to handle those requests. By sampling these values periodically,

you can follow the throughput and latency of the system over time.

Oracle ATG Web Commerce provides an atg.service.statistics.Sampler service that you can configure

to monitor a set of component properties. The Sampler can be instructed to generate periodic samples of the

specified components, or to generate samples of the component on demand. Other components, such as the

MemorySampler, can use the basic Sampler to keep a history of the samples, or to summarize the samples into a

daily email, or perhaps display the samples in a graph.

Sample Class

The atg.service.statistics.Sample class represents the value of a single property as observed at a

specific point in time. It contains the following information:

• the name of the component and property from which the sample was taken

• the time the sample was taken

• the value of the sample, as an Object

In addition, if the value is a numeric value such as an Integer, the Sample also contains the difference in value

between the current sample and the last sample taken of that property. This is presented as the following

information:

• the difference in value, as a double

• the difference in time, in milliseconds

• the rate of change of the value, determined by dividing the difference in value by the difference in time,

expressed as change/seconds

The atg.service.statistics.SampleEvent class holds an ordered list of Samples, presumably taken at the

same point in time. When the Sampler runs, it generates SampleEvents, from which individual Sample objects

can be obtained.

Sampler Class

An atg.service.statistics.Sampler is configured with a list of service name/property name pairs, naming

the properties to be sampled. From this list, the Sampler can generate a SampleEvent containing the current

values of those properties. The method sample() generates such a SampleEvent.

A Sampler can also have one or more atg.service.statistics.SampleListener objects added

to it. When a Sample is taken, the sample can be broadcast to all SampleListener objects by calling

acceptSample() on those listeners. Calling sample(true) both generates a new SampleEvent and

broadcasts that event to all listeners.

A Sampler can also be configured with a Scheduler and Schedule. If so, the Sampler automatically calls

sample(true) according to the specified Schedule.

In summary, the Sampler can be used in the following ways:

• Call sample() to obtain samples manually.

• Attach SampleListeners and call sample(true) to broadcast samples manually.

• Attach SampleListeners and specify a Scheduler and Scheduler to broadcast samples automatically.

224 10 Core ATG Services

Configuring the Sampler

The properties of a Sampler component determine which properties of which services are to be sampled, how

often they should be sampled, and to whom the samples should be sent. You can use the following properties to

configure a Sampler:

sampleSources

The list of services and properties to be sampled. Each element of the list is of the form <service

name>.<property name>. For example:

sampleSources=\
 /atg/dynamo/server/HttpServer.handledRequestCount,\
 /atg/dynamo/server/HttpServer.averageRequestHandlingTime,\
 /atg/dynamo/server/HttpServer.activeHandlerCount

The order of the Samples in the SampleEvent matches the order of the properties declared in

sampleSources.

scheduler

If you want the Sampler to perform sampling automatically, set this property to point to the Scheduler that

schedules the samples:

scheduler=/atg/dynamo/service/Scheduler

schedule

If you want the Sampler to perform sampling automatically, set this property to specify the schedule used to

run the samples:

schedule=every 10 seconds

sampleListeners

The list of the SampleListener objects that receive the Samples broadcast by the Sampler:

sampleListeners=\
 MemorySampler,\
 SampleGrapher

Oracle ATG Web Commerce comes with a Sampler component at /atg/dynamo/service/Sampler. It

monitors various aspects of the Oracle ATG Web Commerce HTTP server, including throughput, latency, and

simultaneous connections. It is configured as follows:

$class=atg.service.statistics.Sampler
scheduler=Scheduler
schedule=every 60 sec
sampleSources=\
 ../../../VMSystem.freeMemory,\
 ../servlet/sessiontracking/SessionManager.residentSessionCount,\

10 Core ATG Services 225

 ../servlet/sessiontracking/SessionManager.createdSessionCount,\
 ../servlet/pipeline/DynamoHandler.handledRequestCount,\
 ../servlet/pipeline/DynamoHandler.averageRequestHandlingTime,\
 ../servlet/pipeline/DynamoHandler.totalRequestHandlingTime,\
 ../server/DrpServer.activeHandlerCount,\
 ../server/HttpServer.activeHandlerCount

sampleListeners=\
 LogSampler

You can modify this component’s configuration, or define your own Sampler component.

SampleListeners

The Sampler is responsible for generating SampleEvents, but does not actually do anything with those

Samples. Functions such as logging, graphing, and watchdog notifications should be performed by

SampleListeners.

Oracle ATG Web Commerce includes an example SampleListener called MemorySampler. This listener does

nothing more than save a small history of the SampleEvents sent to it. You can view that history by viewing the

MemorySampler component in the Component Browser.

The MemorySampler component that comes with Oracle ATG Web Commerce has a service name of /atg/

dynamo/service/MemorySampler. Its configuration file, MemorySampler.properties, looks like this:

$class=atg.service.statistics.MemorySampler
sampleListSize=40

The sampleListSize property determines how many SampleEvents are stored before the MemorySampler

starts discarding the oldest events.

Secure Random Number Generator

Oracle ATG Web Commerce includes a component you can use to generate secure random numbers. This

component, with a Nucleus address of /atg/dynamo/service/random/SecureRandom, can generate random

numbers more efficiently than the Java class, java.security.SecureRandom, as it provides the random

number generator with a random seed, rather than using the slower process of Java’s SeedGenerator.

You can configure the SecureRandom service using another component, /atg/dynamo/service/random/

SecureRandomConfiguration. The SecureRandomConfiguration component can configure the behavior

of the SecureRandom service with these properties:

Property Description Default Values

algorithm The secure random algorithm to use. SHA1PRNG

provider The security provider supplying SecureRandom algorithms to use. SUN

226 10 Core ATG Services

Property Description Default Values

seed Oracle ATG Web Commerce generates a seed value for the random

number generator when your application starts up. If the seed

property is null, the SecureRandom service uses that seed value.

Otherwise, the seed is supplemented by the byte array specified by the

seed property.

null

For more information, read the Java security architecture documentation, including the JavaDoc for

java.security.SecureRandom.

ID Generators

In many circumstances, an Oracle ATG Web Commerce application might need to generate unique identifiers.

For example, each repository item in a repository needs a unique repository ID, so that the item can be retrieved

by its ID. The atg.service.idgen package provides an interface and implementations that you can use to

generate unique IDs in a variety of ways.

IdGenerators and IdSpaces

Oracle ATG Web Commerce IdGenerator services use ID spaces that can be shared by multiple IDGenerator

components. Within an ID space, all IDs generated by these components are guaranteed to be unique. When an

IdGenerator starts up, it initializes one or more IdSpaces for use by applications.

The examples in theUsing IdGenerators (page 227) section describe ways to create an IdSpace

programmatically. An IdSpace can also be configured with an XML file. The location of the XML file is specified

by an IdGenerator component’s initialIdSpaces property. For example, the SQLIdGenerator uses:

initialIdSpaces=/atg/dynamo/service/idspaces.xml

Each IdSpace is defined in the XML file with an <id-space/> tag. The <id-space/> tag has the following

attributes:

Attribute Name Description Default

name A string that uniquely identifies an IdSpace within an

IdGenerator. An IdGenerator can refer to an IdSpace using this

name.

none

seed The first ID in the space to reserve. 1

batch-size How many IDs to reserve at a time. 100000

prefix A string to prepend to the beginning of all string IDs generated from

this IdSpace.

null

10 Core ATG Services 227

Attribute Name Description Default

suffix A string to append to the end of all string IDs generated from this

IdSpace.

null

If you want to define additional IdSpaces, it is best not to modify the XML configuration file at <ATG10dir>/

DAS/config/atg/dynamo/service/idspaces.xml. Instead, create your own XML file of the same name

in your localconfig directory and let Oracle ATG Web Commerce’s XML combination facility combine the

files. Note, however, that the idspaces.xml file is read only when the das_id_generator database table is

empty. If the das_id_generator table is already populated when you add a new IdSpace to the XML file,

your changes are not picked up. As a workaround, manually add the IdSpace with the desired prefix to the

das_id_generator table before trying to use that IdSpace.

Important: In general, you should not delete IdSpace rows from the das_id_generator table; doing so can

cause ID collisions if an application attempts to use the deleted IdSpace. If you are certain that an IdSpace is

never used again, it is safe to delete it.

Using IdGenerators

The IdGenerator interface includes methods for generating IDs that are strings or longs:

generateLongId(String pIdSpace)
generateStringId(String pIdSpace)

When you want to get a new ID, use these IdGenerator methods of the interface.

Normally, applications access the standard ID generator service at /atg/dynamo/service/IdGenerator,

which starts up when your application is started. The following examples demonstrate how to use

IdGenerator APIs in order to construct and use an ID generator. You can see these examples in context in the

sample class located at:

<ATG10dir>/DAS/src/Java/atg/service/idgen/sample/Example1.java

First, construct an IdGenerator and get some IDs. You do not need to specify a name for the IdSpace; the

default IdSpace is used:

TransientIdGenerator gen = new TransientIdGenerator();
gen.initialize();

 for (int i=0; i<3; i++)
 {
 gen.generateLongId();
 }

Generating an ID

The next line shows how you might generate a long ID in an IdSpace named foo. With the IdGenerator

component’s autoCreate property set to true, as it is by default, you do not have to create the foo IdSpace—

it is created automatically:

228 10 Core ATG Services

gen.generateLongId("foo");

Given a seed of 1, this generates the ID 1.

Creating an IdSpace

In most cases, your application uses the SQLIdGenerator and configure IdSpaces for it in an XML

configuration file. The following example shows how to create an IdSpace using the Java API:

IdSpace barSpace = new IdSpace("bar", // name of id space
 100, // starting id (seed)
 "Bar", // prefix
 null); // suffix

gen.addIdSpace(barSpace);

Generating More IDs

Now, let’s generate more IDs in the bar and foo IdSpaces:

gen.generateLongId("bar"); //generates ID=100
gen.generateLongId("bar"); //generates ID=101

// see how the "foo" space is independent of the bar space
gen.generateLongId("foo"); //generates ID=2

Generating String IDs

Now generate some String IDs. String IDs use the prefix and suffix properties of the IdSpace. These

properties are not consulted when long IDs are generated. Within an IdSpace, the same pool of IDs is used for

String and long IDs.

gen.generateStringId("bar"); //generates ID=Bar102
gen.generateStringId("bar"); //generates ID=Bar103
gen.generateStringId("bar"); //generates ID=Bar104
gen.generateLongId("bar"); //generates ID=105
gen.generateLongId("bar"); //generates ID=106
gen.generateStringId("bar"); //generates ID=Bar107

IdGeneratorException

IdGenerator methods throw the checked exception IdGeneratorException. This exception indicates an

ID cannot be generated. Common causes include database trouble for the SQLIdGenerator and asking for an

ID in a name space that does not exist when autoCreate is false. Production applications should catch this

exception. The following example forces an exception for demonstration purposes:

gen.setAutoCreate(false);
try
 {
 gen.generateStringId("bogus");

10 Core ATG Services 229

 }
catch (IdGeneratorException ige)
 {
 System.out.println("rats, couldn't get an id");
 ige.printStackTrace();
 }

SQLIdGenerator

Oracle ATG Web Commerce includes a full-featured IdGenerator implementation that can be used in a

distributed system. This component, located at /atg/dynamo/service/IdGenerator and with a class name

atg.service.idgen.SQLIdGenerator, uses an IdSpace to reserve a batch of IDs. Because of the way that

the SQLIdGenerator stores information about IdSpaces in a database table, SQLIdGenerators operating in

different Oracle ATG Web Commerce servers can independently assign IDs while being assured that the IDs are

unique across the system.

Using IdSpaces with the SQLIdGenerator

IdSpaces used by the SQLIdGenerator should define a batch-size attribute. The batch size determines how

many IDs the IdGenerator should reserve. For example, you might have an IdSpace with a seed of 1 and a

batch size of 10000, and two IdGenerators. The IDGenerators execute as follows:

1. When the first IdGenerator starts, it performs the following tasks:

• Consults the IdSpace.

• Starts with the seed ID and reserves all IDs that start with the seed, up to the batch size, 10000.

• Sets the value in the ID generator database table to 10001.

2. When the second IdGenerator starts, it performs these tasks:

• Consults the ID generator table and finds that the first available ID is 10001.

• Reserves all IDs from 10001 to 20000

• Sets the value in the ID generator database table to 20000.

3. When each IdGenerator exhausts its supply of reserved IDs, it returns to the ID generator table and reserves

another batch of IDs. It does not need to consult with other IdGenerators to guarantee that its reserved IDs

are unique.

Because an IdGenerator must access the database each time it gets another batch of IDs, it is best for

performance purposes to make batch sizes comparatively large. As IDs are Java longs (64 bit ints), you will not

run out of IDs for millions of years even with a batch size of 1 million and 1000 application restarts each day.

For example, the following XML tag defines an IdSpace named MessageIds, with a seed of 1 and a batch size

of 10000:

<id-space name="MessageIds" seed="1" batch-size="10000"/>

If for some reason it is essential that your IDs be generated sequentially with no gaps for unused IDs, you can

create an IdSpace like this:

230 10 Core ATG Services

<id-space name="costly_id_space" seed="0" batch-size="1"/>

However, every time you generate an ID, it requires an extra database request. Therefore, this is not generally

recommended unless you use this IdSpace very infrequently.

das_id_generator Database Table

The SQLIdGenerator uses a database table to store persistently information about what portion of the

IdSpace has been assigned. This table must be present when the SQLIdGenerator starts up. By default, this

table is named das_id_generator. If you have a different database table with this name, problems occur

unless you configure the SQLIdGenerator to use a different database table name, using the tableName

property:

tableName=my_id_generator

The ID generator table has a row for each IdSpace, and a column for each of the properties defined in the XML

file for the IdSpace: name, seed, batch size, prefix, and suffix. You can also specify different values for these

column names by setting the following properties of the SQLIdGenerator:

Property Name Default Value

nameColumn id_space_name

seedColumn seed

batchSizeColumn batch_size

prefixColumn prefix

suffixColumn suffix

Each time that an SQLIdGenerator accesses the IdSpace for another batch of IDs, it increments the seed value

for that ID space by the number of IDs, as specified by the batch size. So, at any given moment, the seed value of

the IdSpace indicates the first ID of the next batch of IDs to be reserved.

In addition to configuring the ID generator table properties, you can configure other properties of the

SQLIdGenerator:

Property Name Description Type and Default Value

autoCreate If true, the SQLIdGenerator can

automatically create an IdSpace on each

attempt to generate an ID, if it does not find

one.

Boolean

true

defaultIdSpaceName If no name is specified for an IdSpace, this

default IdSpace is used.

String__default__

10 Core ATG Services 231

Property Name Description Type and Default Value

defaultIdSpace Defines the properties needed to construct

the default IdSpace. The properties

in order are: name, seed, lastSeed,

batchSize, prefix, and suffix.

IdSpace(__default__,1

,1,100000,null,null)

TransientIdGenerator

Another IdGenerator implementation is the TransientIdGenerator (class

atg.service.idgen.TransientIdGenerator). This component is a sequential ID generator the IdSpaces

of which are not persistent. This IdGenerator is suitable for applications that you do not want to be dependent

on a database and which do not need IDs whose uniqueness is maintained across JVMs or application restarts.

IDs generated by the TransientIdGenerator are guaranteed to be unique within a JVM as long as it runs, but

a TransientIdGenerator does not maintain any persistent record of which IDs were generated.

ObfuscatedSQLIdGenerator

In some Oracle ATG Web Commerce applications, you might want to generate IDs that, for security

purposes, cannot be easily guessed. For example, ATG Commerce generates IDs for a gift certificates. The

ObfuscatedSQLIdGenerator obfuscates the generated IDs in two ways. First, for a given batch of reserved IDs,

it gives out only a few IDs. Second, IDs can be optionally hex encoded when being used as String IDs. Both the

String and long IDs generated use a pseudo-random number generator to get a long ID from the current batch

of IDs. In addition to not giving out the same ID twice, this implementation is not given out adjacent long IDs (or

String IDs that come from adjacent long IDs).

The IdSpace properties batchSize and idsPerBatch are used in conjunction. The batchSize property

works as in the SQLIdGenerator. The idsPerBatch property is the maximum number of IDs that are given out

in any given batch.

It is strongly recommended that idsPerBatch be less than 1 percent of the batchSize. This is both for security

and performance. For security, a sparse—that is, less dense—ID space makes it harder to guess IDs. Because this

implementation does not give out adjacent IDs, it might be forced to do more work to find suitable IDs if the ID

space is too dense. This implementation does not allow an ID space to be added that is denser than 10 percent.

That is, idsPerBatch divided by batchSize must be less than 0.1. Always set these two properties together to

maintain the 1 percent density goal.

The recommended values for batchSize and idsPerBatch are 100000 and 997, respectively. These numbers

are not magic: 100000 is the default batch size, while 997 is a prime number that is slightly less than 1 percent of

the batch size.

Extending the IdGenerator

The SQLIdGenerator and TransientIdGenerator implement the atg.service.idgen.IdGenerator

interface, and extend the AbstractSequentialIdGenerator abstract class. If you want to create your own

IdGenerator implementations, it is probably best to extend AbstractSequentialIdGenerator.

The SQLIdGenerator and TransientIdGenerator implementations happen to generate sequential IDs, but

that does not have to be true for all IdGenerator implementations. The AbstractSequentialIdGenerator

includes two empty hook methods, postGenerateLongId() and postGenerateStringId(), that you can

override in a subclass to provide additional ID generation logic.

232 10 Core ATG Services

Resource Pools

Most Oracle ATG Web Commerce applications must be able to handle large numbers of simultaneous requests.

In these applications, one of the keys to improving throughput is to share and reuse expensive resources.

For example, a single JDBC database connection might require several seconds to establish a connection to a

database and verify the password. After it is connected, however, a JDBC connection can be used repeatedly

to execute database operations quickly. So one of the tricks to achieving high throughput is to create a pool

of JDBC connections ahead of time. When requests come in, they grab connections from the pool and use

them, then return them to the pool when they are done. This approach is far more efficient than requiring each

request to create its own connection.

This pooling approach is applicable for any resource that is expensive to create, but cheap to share and reuse.

Oracle ATG Web Commerce includes a class called atg.service.resourcepool.ResourcePool that

encapsulates the notion of pooling shared resources. Subclasses can be defined which create their own types of

resources. For example, the atg.service.jdbc.MonitoredDataSource class is a subclass of ResourcePool

that pools JDBC Connection objects.

Subclassing ResourcePool

The most common way to use ResourcePool is to subclass it and override the methods createResource

and destroyResource. The createResource method creates a new instance of your expensive resource. The

destroyResource method is called when the resource pool decides that the resource is no longer needed, and

is called to give you a chance to perform any cleanup procedures required for that resource.

You also have the option of overriding verifyResourceValidity. This is called to make sure that a resource is

still available for use—for example, it can detect if a previously opened connection was closed since the last time

it was used.

The following example shows how one might subclass ResourcePool:

import atg.service.resourcepool.*;

public class MyPool extends ResourcePool {
 public MyPool () { }

 public Object createResource () throws ResourcePoolException {
 return new ReallyExpensiveObject ();
 }

 public void destroyResource (Object resource) {
 ((ReallyExpensiveObject) resource).close ();
 }
}

Notice that createResource throws ResourcePoolException. If your object creation procedure results in an

error, you must throw a ResourcePoolException to report that error.

Configuring a Resource Pool

Like all other components, your resource pool is created and configured through properties files. You can use

the following properties to configure a resource pool:

10 Core ATG Services 233

min

The property min sets the minimum number of resources the pool should start out with. Because resource

creation can be expensive, some applications require a starting minimum number of resources already in

the pool before the pool becomes active. This minimum is only a starting minimum and is not maintained

throughout the life of the pool. As invalid resources are checked back into the pool, the number of pooled

resources can drop below the starting minimum. After startup, resource creation is driven by resource demand.

max

The maximum number of objects that can be kept in the pool. This includes both free objects and objects

already in use.

blocking

If someone tries to check out a resource, and all free resources are currently checked out, the resource pool

creates a resource. But if the max number of resources has been reached, the resource pool can perform one of

the two following actions, depending on the value of the blocking property:

• If blocking is false, an exception is thrown, indicating that there are no more resources available.

• If blocking is true, the default setting, the resource pool can block and wait until someone else returns a

resource to the pool. When that happens, the resource is passed to the waiting customer.

checkoutBlockTime

You can use this property to set a limit on how long a resource pool can block. The value of this property is

the maximum time in milliseconds to block waiting for a resource on checkout. If this time limit is reached, an

exception is thrown. A value of zero (the default) indicates indefinite blocking.

warnOnNestedCheckouts

This setting enables or disables warnings about nested resource checkouts that might cause deadlocks.

maxFree

Certain types of resources can be expensive to keep around if they are not being used. In this case, you might

want to limit the number of resources kept around unused. The maxFree property indicates how many

resources are to be kept around that are not in use by other services. This might be different from the max

property, which indicates how many total resources are to be kept, both used and unused.

If, when a resource is checked into the pool, the number of resources then in the pool is greater than both the

maxFree property and the min property, the pool destroys the resource being checked.

The default value for maxFree is -1, indicating that the number of maximum free resources is not limited except

by the max property. This is usually the case, as there is rarely a need to destroy unused resources.

maxSimultaneousResourcesOut

When you are designing your application, it can be difficult to predict how many resources you need to make

available in a pool. The maxSimultaneousResourcesOut property keeps track of the largest number of

resources that were checked out of the resource pool at one time. You can examine this property during testing

and after deployment to get an idea of the maximum number of resources your application requires. If the value

of maxSimultaneousResourcesOut is significantly less than the value of max, you can probably reduce the size

of your resource pool.

234 10 Core ATG Services

maxThreadsWithResourcesOut

The maximum number of threads that can have resources checked out of the pool concurrently.

maxResourcesPerThread

The maximum number of resources a thread can check out of the pool concurrently.

Using a Resource Pool

After you define a resource pool component, other Nucleus components can use that resource pool to check out

resources and check them back in when they are done. A component that needs to use the resource pool can

be passed a pointer to the resource pool through a properties file. It defines a property for that resource pool as

follows:

ResourcePool resourcePool;
public ResourcePool getResourcePool ()
{ return resourcePool; }
public void setResourcePool (ResourcePool resourcePool)
{ this.resourcePool = resourcePool; }

When the component requires a resource from the pool, it calls checkOut:

try {
 // Get a resource
 ResourceObject resource =
 getResourcePool ().checkOut (getAbsoluteName ());
catch (ResourcePoolException exc) {
 if (isLoggingError ()) logError (exc);
}

This line gets the resource pool and checks out a resource from the pool. When it calls checkOut, it must pass

an identifying string, in this case the name of the service checking out the resource. This is required so that the

administrator can look at the resource pool and see which parts of the application are using which resources.

The object returned by checkOut is of type ResourceObject. This object contains the resource you wanted in

the first place. You obtain the resource by calling getResource:

try {
 // Get a resource
 ResourceObject resource =
 getResourcePool ().checkOut (getAbsoluteName ());
 ReallyExpensiveObject obj = (ReallyExpensiveObject)
 resource.getResource ();
}
catch (ResourcePoolException exc) {
 if (isLoggingError ()) logError (exc);
}

After you obtain the resource, it is yours to use. You can work on the assumption that no one else uses the

resource at the same time.

10 Core ATG Services 235

When you are done with the resource, you must check it back in:

try {
 // Get a resource
 ResourceObject resource =
 getResourcePool ().checkOut (getAbsoluteName ());
 ReallyExpensiveObject obj = (ReallyExpensiveObject)
 resource.getResource ();

 ...

 getResourcePool ().checkIn (resource);
}
catch (ResourcePoolException exc) {
 if (isLoggingError ()) logError (exc);
}

After checking in the resource, you are expected to no longer use that resource. If you need the resource again,

you must check out another resource from the pool.

Avoiding Resource Leaks

One of the most common mistakes that occurs when using a resource pool is forgetting to check resources back

in. This leads to resource leaks, a condition where resources disappear faster than expected, until no resources

are left and the application locks up waiting for resources that never appear.

The most obvious way to avoid resource leaks is to make sure that for every checkOut you have a

corresponding checkIn. This should be a fairly easy error to catch, because forgetting to do this causes you to

run out of resources fairly quickly.

A subtler problem arises in the case where an exception occurs, terminating the operation and bypassing the

checkIn call. If exceptions occur infrequently, it takes longer for your application to run out of resources, and it

is far harder to debug because your application appears to lock up at random intervals.

The way to avoid this problem is to put the checkIn call inside of a finally statement, thereby ensuring that

no matter what happens, the checkIn call is still made.

So the code from the previous example looks like this:

ResourceObject resource = null;
try {
 // Get a resource
 resource = getResourcePool ().checkOut (getAbsoluteName ());
 ReallyExpensiveObject obj = (ReallyExpensiveObject)
 resource.getResource ();

 ...
}
catch (ResourcePoolException exc) {
 if (isLoggingError ()) logError (exc);
}
finally {
 if (resource != null) getResourcePool ().checkIn (resource);
}

236 10 Core ATG Services

Remember that this is not an optional coding style. Failing to program in this manner is almost guaranteed to

cause your application to lock up at random, unexpected intervals.

Checking the Health of a Resource Pool

A common cause of performance problems is when request handling threads get hung up waiting for

a resource from a resource pool that has become unresponsive. To limit this problem, you can set the

ResourcePool’s creationTimeLimit and maxPendingCreations properties.

creationTimeLimit

When creationTimeLimit is set, if a resource creation fails and the attempt exceeded the value of

creationTimeLimit in milliseconds, the resource pool is disabled. In addition, before an attempt to create

a resource occurs, a check is made to see if a resource creation attempt already in progress has exceeded the

creationTimeLimit. If so, the resource pool is disabled.

maxPendingCreations

If you set the maxPendingCreations property, the resource pool has a limit on the maximum number of

resource creation attempts that can be pending at one time. This can prevent a situation where all available

request handling threads are tied up trying to create resources in an unresponsive resource pool.

The resource pool is disabled if the maxPendingCreations property is set to a value other than zero, and the

following conditions are also true:

• The resource pool is not in its startup cycle.

• The minimum resources (set by the min property of the resource pool) is greater than zero.

• There are no valid resources being managed by the resource pool.

• The number of pending resource creation attempts exceeds the value of the maxPendingCreations

property.

Disabled ResourcePools

When a resource pool is marked as disabled, it can still attempt to create resources when a thread attempts to

check out resources from the pool. However, only one thread at a time can do so. Any other threads are returned

a ResourcePoolException. This prevents more than one thread at a time from getting hung on a disabled

pool. The resource pool is not shut down; it is simply marked disabled so threads seeking resources know that

the resource pool is not behaving properly. The pool is marked enabled as soon as there is a successful resource

creation.

ResourceClassName

The previous sections demonstrated how to subclass ResourcePool to create the type of resource object to

be managed by your pool. The ResourcePool class provides a shortcut that lets you create resource objects

without subclassing ResourcePool. You can use this shortcut if your resource object fits the following criteria:

• The resource object has a public constructor that takes no arguments.

• The resource object requires no special initialization beyond the constructor.

• The resource object requires no special cleanup operations to be performed when the resource object is

destroyed.

10 Core ATG Services 237

If your resource object fits these criteria, you can use the base ResourcePool class without defining a subclass.

To do this, specify an extra property called resourceClassName. This property should define the full class name

of the resource object. For example:

resourceClassName=atg.resources.ReallyExpensiveObject

Now, whenever the resource pool requires a new object, it calls:

new atg.resources.ReallyExpensiveObject()

When the resource is no longer needed, the resource pool simply discards the object without calling any special

notification methods.

MonitoredDataSource

The type of resource pool most used by an Oracle ATG Web Commerce application is the

MonitoredDataSource. This service is a resource pool that is used to pool JDBC Connection objects. These

resources represent connections to databases that are established and ready for use.

Events and Event Listeners

JavaBeans provides a way for a JavaBean to declare events that can be fired by that bean. Such a bean that fires

events is called an event source. Other objects can register with the event source to receive those events when

they are fired. These objects are called the event listeners.

The JavaBeans specification explains how to create event sources and listeners. The following is a short example

that demonstrates how Nucleus services can fire and listen for events. In this example, a StockPricer service

fires stock events whenever it receives an update for a stock price. The StockWatcher service listens for these

events and prints them out.

Event Objects

First, create an object that represents the event. The class name of the event is based on the event name, which

in this case is stock. Thus, the event is called StockEvent:

public class StockEvent extends java.util.EventObject {
 String symbol;
 double price;

 public StockEvent (Object source,
 String symbol,
 double price) {
 super (source);
 this.symbol = symbol;
 this.price = price;
 }

238 10 Core ATG Services

 public String getSymbol () { return symbol; }
 public double getPrice () { return price; }
}

Event Listener and Event Source Requirements

Next, define an interface for objects that listens for stock events. In the example, the interface defines a single

method that is called when a stock price is updated. The interface must be named based on the event name,

and must extend java.util.EventListener.

public interface StockListener extends java.util.EventListener {
 public void stockPriceUpdated (StockEvent ev);
}

The event source Bean must include the following methods with these exact signatures:

public void addStockListener (StockListener listener);
public void removeStockListener (StockListener listener);

All of the above is taken directly from the JavaBeans specifications.

Event Listener Example

Now, create the definitions for the StockPricer and StockWatcher services. First, define the listener service:

public class StockWatcher implements StockListener {
 public StockWatcher () {
 }
 public void stockPriceUpdated (StockEvent ev) {
 System.out.println ("Stock " + ev.getSymbol () +
 " is at price " + ev.getPrice ());
 }
}

Not much is needed here. Like all services, this requires a public constructor with no arguments. Aside from that,

it implements StockListener by printing the current stock price.

Event Source Example

The implementation of the event source is not much more complex:

public class StockPricer {
 java.util.Vector listeners = new java.util.Vector ();

 public StockPricer () {
 }
 public synchronized void addStockListener (StockListener listener) {

10 Core ATG Services 239

 listeners.addElement (listener);
 }
 public synchronized void removeStockListener (StockListener listener) {
 listeners.removeElement (listener);
 }
 public void broadcastStockEvent(StockEvent ev);{
 java.util.Enumeration e = listeners.elements()
 while(e.hasMoreElements())
 ((StockListener) e.nextElement()).stockPriceUpdated(ev);
 }
}

This implementation uses a Vector to store the list of listeners. In order for this to be recognized as an

event source, only the addStockListener and removeStockListener methods must be declared. The

broadcastStockEvent method is a convenience method created to send the event to all listeners. Another

useful method you might use exposes the listeners as a property:

public synchronized StockListener [] getStockListeners () {
 StockListener [] ret = new StockListener [listeners.size ()];
 listeners.copyInto (ret);
 return ret;
 }

Testing the Event System

Now create the two services. Create a localconfig/test/services/stockWatcher.properties file that

looks like this:

$class=StockWatcher

And create a localconfig/test/services/stockPricer.properties file that looks like this:

$class=StockPricer
stockListeners=stockWatcher

The stockListeners property is recognized by Nucleus as indicating that the specified services act as listeners

for the stock event. If your event source has multiple listeners, those listeners should be separated by commas.

This means that the Bean should avoid creating a property called stockListeners.

Modify localconfig/Initial.properties to specify the initial service:

initialService+=/services/stockPricer

Now restart the application. This creates the stockPricer object, then creates the stockWatcher to listen to

the stock events. Because no one is actually sending any events, nothing should actually happen.

In the following example, stockWatcher starts a thread that waits for 4 seconds, then fires an event.

Note: This example is for demonstration purposes only, and should not be considered a general programming

technique.

240 10 Core ATG Services

public class StockPricer implements Runnable {
 java.util.Vector listeners = new java.util.Vector ();

 public StockPricer () {
 new Thread (this).start ();
 }
 public void run () {
 try { Thread.sleep (4000); }
 catch (InterruptedException exc) {}
 broadcastStockEvent (new StockEvent (this, "ATGC", 20.75));
 }
 public synchronized void addStockListener (StockListener listener) {
 listeners.addElement (listener);
 }
 public synchronized void removeStockListener (StockListener listener) {
 listeners.removeElement (listener);
 }
 public synchronized StockListener [] getStockListeners () {
 StockListener [] ret = new StockListener [listeners.size ()];
 listeners.copyInto (ret);
 return ret;
 }
 public void broadcastStockEvent (StockEvent ev) {
 for (int i = 0; i < listeners.size (); i++) {
 ((StockListener) listeners.elementAt (i)).stockPriceUpdated (ev);
 }
 }
}

Now reassemble your application. When you restart it, the StockPricer should wait 4 seconds, then fire an

event to the StockWatcher, which prints the event out.

Queues

Queues are the most important piece of architecture you can put into an application to improve throughput and

remove bottlenecks. There are many cases where an application creates contention on certain resources where

contention is not necessary. Queues eliminate these points of contention.

For example, a request handler might log every single page view to a log file. Suppose that it takes 50

milliseconds to write a line to a log file. If that is the case, the request handler cannot serve requests any faster

than 20 per second, even if the rest of the request handling mechanism is blazingly fast. But writing a line to a

log file is not a critical part of the request handling operation, and thus should not be such a limiting factor.

The solution to this problem is to introduce a queue between the request handler and the logging facility.

When the request handler wants to log a message, it places the message on the queue then continues handling

the rest of the request. A separate thread removes messages from the queue and writes them to the log. This

arrangement decouples the request handlers from the loggers, thereby eliminating the bottleneck introduced

by the log.

In Oracle ATG Web Commerce, the notion of queues is generalized to all types of JavaBean event listeners.

Oracle ATG Web Commerce comes with a utility that generates the Java code needed to create an EventQueue

class specialized to a type of EventListener. This queue class implements the same interface as the original

10 Core ATG Services 241

EventListener, so to other components it acts the same as the original component. Calls made to the queue

class are handled by being placed on a queue. A separate thread then takes the calls from the queue and passes

them to the original component.

After you realize that a particular component is a bottleneck, you should be able to create and insert a queue

component for that component, without changing any of your other components. The following topics describe

how to use queues:

Candidates for Queuing

Queuing is not always an appropriate way to improve throughput. Queuing is usually appropriate only when an

event occurs during a process, and the process does not care about the result of the event. Logging a message

is a perfect example, where a process fires off the logging event, but the rest of the process does not depend on

the result of writing that message to the log. In that case, any time spent waiting around for the log message to

be written is wasted, and is best pushed off to the other side of the queue.

However, a process that makes a call to a database and returns the results to the user is not a good candidate

for queuing. In that case, the process depends on the result of the operation, and must wait for the operation to

occur.

Here are two good rules of thumb for deciding if an operation is a good candidate for queuing:

• Is the operation best thought of as an event—that is, should that operation be encapsulated in an

EventListener interface?

• Does the method that invokes the operation return void? If so, it indicates that the component does not

depend on the result of the event.

Creating a Queue Class

A queue class is generated for a specific interface, usually an EventListener interface. For example, consider

the atg.nucleus.logging.LogListener interface:

package atg.nucleus.logging;
import java.util.EventListener;
public interface LogListener extends EventListener {
 public void logEvent (LogEvent logEvent);
}

This is a simple EventListener interface where the relevant methods return void—a good candidate for

queuing.

EventQueueGenerator Utility

To create the appropriate queuing class for this interface, Oracle ATG Web Commerce includes a utility class

called atg.service.queue.EventQueueGenerator. The class is run using the java command, like this:

javan ATG.service.queue.EventQueueGenerator\
 atg.nucleus.logging.LogListener\
 mypackage.queues\
 LogListenerQueue

242 10 Core ATG Services

The first argument is the name of the interface for which you wish to generate a queuing class. The second and

third arguments are the package and class name of the new queuing class.

The output of the command is written to stdout, so you can redirect the contents to a file like this:

javan ATG.service.queue.EventQueueGenerator\
 atg.nucleus.logging.LogListener\
 mypackage.queues\
 LogListenerQueue > LogListenerQueue.java

You should place the resulting .java file into the correct package of your source hierarchy. Like all of your other

source files, you must compile this one and add it to source control as if you created this class yourself.

The resulting class looks fairly cryptic if you examine it yourself. But it has the following important

characteristics:

• It implements LogListener, so anything that used to send events to a LogListener can send events to this

queue instead.

• It implements addLogListener and removeLogListener. This means that the class is a source of

LogEvents, as well as a listener for LogEvents.

Using a Queue Component

A Queue class acts as an event filter. It listens for events and places those events on a queue. Another thread

pulls events from that queue and rebroadcasts them to the queue’s listeners. This means that you can interpose

a Queue between two components that originally had an event source/event listener relationship.

For example, say that component A generates LogEvents and broadcasts them to any listeners. Component B

listens for LogEvents from A and writes the log events to a log:

A -> B -> file

Now say that component B is starting to hamper the throughput of component A because of the time required

to write to a file. The solution is to interpose a LogListenerQueue as component Q:

A -> Q -> B -> file

This can be done purely through changing configuration files. Neither components A nor B need to know that

there is a queue sitting between them.

The original configuration files for A and B might look like this:

A.properties:

$class=blah.blah.LoggingSource
logListeners=B

B.properties:

$class=atg.nucleus.logging.FileLogger

10 Core ATG Services 243

logFileName=events.log

With the queue component interposed, the configuration files look like this:

A.properties:

$class=blah.blah.LoggingSource
logListeners=Q

Q.properties:

$class=atg.nucleus.logging.LogListenerQueue
logListeners=B

B.properties:

$class=atg.nucleus.logging.FileLogger
logFileName=events.log

Configuring a Queue Component

In general, you should be able to configure a queue component just by specifying a list of listeners, as shown in

the previous example. There are, however, two additional properties you might want to change:

initialCapacity

This property sets the initial size of the queue, specifying how many elements can be queued up before the

queue must resize itself. The queue automatically resizes itself, so it is usually not necessary to set this property.

Its default value is 16. For example:

initialCapacity=32

threadCount

This property specifies the number of threads that are to pull events from the queue. By default, this is set to 1.

You might wish to increase this number if it makes sense to handle multiple events in parallel, and if you are not

concerned with the order events are handled. This value should always be set to at least 1.

E-mail Senders and Listeners

Oracle ATG Web Commerce includes a facility for sending e-mail, and a JavaMail-based implementation for

sending Internet email through SMTP. The email interface is called atg.service.email.EmailListener, and

the SMTP implementation is called atg.service.email.SMTPEmailSender. Internally, SMTPEmailSender

uses JavaMail’s SMTP implementation to send the email.

E-mail is sent using an event listener model. A single piece of email is described by an

atg.service.email.EmailEvent. The SMTPEmailSender implements EmailListener, so you can send a

piece of mail by calling sendEmailEvent() on the SMTPEmailSender, passing it the EmailEvent.

244 10 Core ATG Services

This event source/event listener model lets you use EventQueues (see the Events and Event Listeners (page

237) and Queues (page 240) sections) to queue up email messages, thereby preventing email from

becoming a bottleneck in high-throughput systems.

EmailEvent

An EmailEvent can be defined with the various properties that you expect for a piece of e-mail: From,

Recipient, Subject, and Body. You can also set additional headers to be sent in the mail, and specify a list of

recipients as opposed to a single recipient.

For example:

EmailEvent em = new EmailEvent ();
em.setFrom ("dynamotester");
em.setRecipient ("test@example.com");
em.setSubject ("I'm just testing the e-mail sender");
em.setBody ("Sorry to bother you, but I'm testing the e-mail sender");

The EmailEvent also includes a number of constructors that simplify the construction of typical e-mail events:

EmailEvent em =
 new EmailEvent ("dynamotester",
 "test@example.com",
 "I'm just testing the e-mail sender"
 "Sorry to bother you, but I'm testing the e-mail sender");

You can also set a list of recipients:

String [] recipients = {
 "test@example.com",
 "noone@example.com"
};
em.setRecipientList (recipients);

Creating JavaMail Messages

While the examples above demonstrate how to create EmailEvent objects describing simple e-mail

messages, they do not show you how to create messages with different recipient types, multipart messages,

or messages with file attachments. These more sophisticated capabilities can be achieved using JavaMail’s

javax.mail.Message class to describe the email message.

You can create Message objects yourself via method calls to one of the Message child

classes, such as javax.mail.internet.MimeMessage. Alternatively, you can use the

atg.service.email.MimeMessageUtils helper class to create and fill in MimeMessage objects. For example,

here is how one might use MimeMessageUtils to create the simple email message shown in the previous

section:

Message msg = MimeMessageUtils.createMessage();
MimeMessageUtils.setFrom(msg, "dynamotester");

10 Core ATG Services 245

msg.setSubject("I'm just testing the e-mail sender");
MimeMessageUtils.setRecipient(msg, RecipientType.TO, "test@example.com");
msg.setText("Sorry to bother you, but I'm testing the e-mail sender");

or, alternatively,

Message msg = MimeMessageUtils.createMessage
 ("dynamotester",
 "I'm just testing the e-mail sender",
 "test@example.com",
 "Sorry to bother you, but I'm testing the e-mail sender");

MimeMessageUtils can also be used to create much more complex Message objects. For example, here is how

one might create a multi-part message with a text/plain part and a text/html part, a file attachment, and

several kinds of recipients:

// create a Message with the given From and Subject
Message msg = MimeMessageUtils.createMessage("dynamotester",
 "more complex test");
// set the To and Bcc recipients
MimeMessageUtils.setRecipient(msg, Message.RecipientType.TO, "test@example.com");
MimeMessageUtils.setRecipient(msg, Message.RecipientType.BCC, "dynamotester");

// set the Cc recipients
String[] ccAddresses = { "fred@example.com", "jane@example.com" };
MimeMessageUtils.setRecipients(msg, Message.RecipientType.CC, ccAddresses);

// set the message content: multipart message + attachment
ContentPart[] content =
 { new ContentPart("this is plain text", "text/plain"),
 new ContentPart("this is html text", "text/html") };
File attachment = new File("attachment.html");
MimeMessageUtils.setContent(msg, content, attachment, false);

After you have a Message object, you can use it to set the email event’s message property:

EmailEvent em = new EmailEvent();
em.setMessage(msg);

Or, more simply,

EmailEvent em = new EmailEvent(msg);

Registering Content Types

When using JavaMail Message objects to send email, you must specify the MIME type of the message content.

Oracle ATG Web Commerce provides support for sending messages with content type of text/plain and

text/html. If you need to send content that has some other MIME type, you must first register your content

type with the JavaBeans Activation Framework (JAF), which JavaMail uses to handle message content.

246 10 Core ATG Services

For example, suppose you’d like to send messages with a MIME type of application/x-foobar. To do this,

you must provide an implementation of javax.activation.DataContentHandler for your MIME type, say

FoobarDataContentHandler. You must then create a mapping between the MIME type application/x-

foobar and FoobarDataContentHandler, so that JAF can use it.

One general way to register a DataContentHandler with JAF is to provide a mailcap file with the appropriate

content handler entry in it. Another way, which is Oracle ATG Web Commerce-specific but perhaps more

convenient, is to configure the /atg/dynamo/service/DataContentHandlerRegistry component

to know about your content type and the associated handler. The dataContentHandlerMap property of

the DataContentHandlerRegistry contains a list of mappings between MIME types and the associated

DataContentHandler class names. To register a new MIME type, simply add a mapping as follows:

dataContentHandlerMap+=\
 application/x-foobar=package.name.FoobarDataContentHandler

See the API documentation for the javax.activation package or the Oracle Web site for more information

about JAF.

Sending E-mail

You can send e-mail to an EmailListener by calling sendEmailEvent() on the listener, passing it a

EmailEvent containing the e-mail you want to send. Typically, a service broadcasts an EmailEvent to all of its

attached EmailListener objects. For example, the following code defines a service to be a source of Email

events and shows how to broadcast an EmailEvent to the listeners of that event:

Vector emailListeners = new Vector ();
public void addEmailListener (EmailListener listener) {
 emailListeners.addElement (listener);
}
public void removeEmailListener (EmailListener listener) {
 emailListeners.removeElement (listener);
}
public EmailListener [] getEmailListeners () {
 EmailListener [] ret = new EmailListener [emailListeners.size ()];
 emailListeners.copyInto (ret);
 return ret;
}
public void broadcastEmailEvent (EmailEvent event) {
 for (int i = 0; i < emailListeners.size (); i++) {
 try {
 ((EmailListener) (emailListeners.elementAt (i))).sendEmailEvent (event);
 }
 catch (EmailException exc) {}
 }
}

The properties file configuring your service can then hook up the listeners of the email events like this:

emailListeners=/atg/dynamo/service/SMTPEmail

Now, when you call broadcastEmailEvent, your email is sent through the /atg/dynamo/service/

10 Core ATG Services 247

SMTPEmail component, which sends the e-mail.

Configuring SMTPEmail

Oracle ATG Web Commerce comes with a standard component of type SMTPEmailSender, located at /atg/

dynamo/service/SMTPEmail. You can send your e-mail messages to the SMTPEmail component, or you can

create your own e-mailer component.

You can configure the SMTPEmail component to define several default properties—for example, for

From, Recipients, and Subject. If one of these default properties is set, the default is used in when the

corresponding property is not set in the EmailEvent. The defaultBody property is an exception—if the

defaultBody property is set, that defaultBody is prepended to all email messages, whether they specify a

body or not.

Note: The defaultFrom and charSet properties must be set to ASCII values. SMTPEmail cannot send e-mail if

either of these properties has a non-ASCII value.

The emailHandlerHostName and the emailHandlerPort properties should be set to the name

of the host (usually remote) that sends the e-mail, and the port number it uses. The default value for

emailHandlerHostName is localhost, and the default value for emailHandlerPort is 25.

Some SMTP servers require authentication. If your SMTP server requires authentication, set the values of the

username and password properties of the SMTPEmail component to the username and password for the

account it uses to send e-mail.

You might want to increase the waitForConnectionMillis property to reduce timeouts; the default is 5

seconds. To increase the setting, modify the waitForConnectionMillis property in <ATG10dir>/home/

localconfig/SMTPEmail.properties. For example:

waitForConnectionMillis=30000

Using BatchEmailListener

Each time an SMTPEmailSender is used to send an EmailEvent, an SMTP connection is opened to the mail

server, the e-mail is sent, and the connection is closed. A new SMTP connection is opened and closed every time

an e-mail is sent, even if you are calling sendEmailEvent continuously to send multiple e-mail messages. This

can be costly and unnecessary if many messages need to be sent at once.

A BatchEmailListener performs batch sending of e-mail over a single connection to the mail server.

Like SMTPEmailSender, it implements EmailListener; but instead of sending e-mail after receiving each

EmailEvent, it collects the EmailEvent objects and periodically sends the messages out in batches. The

emailMessageSender property points to the component that actually performs the message sending, for

example, SMTPEmail.

Two properties of BatchEmailListener control how often the batch sends are performed, maxBatchSize

and sendSchedule. If maxBatchSize is specified, a send is performed whenever the number of batched e-mail

events reaches maxBatchSize. Also, if sendSchedule is specified, sends are performed according to the given

schedule.

Oracle ATG Web Commerce comes with an instance of BatchEmailListener at /atg/dynamo/service/

SMTPBatchEmail. This batch listener points to SMTPEmail as its emailMessageSender. The default

configuration has no maxBatchSize, and a sendSchedule which calls for a send to be performed every 3

minutes.

248 10 Core ATG Services

Using EmailListenerQueue

Sending e-mail can be an expensive operation, and you generally do not want your components waiting

for e-mail to be sent. To prevent e-mail from being a bottleneck, Oracle ATG Web Commerce includes an

EmailListenerQueue class. This class again implements EmailListener, so it can be used in place of the

SMTPEmail component. Any e-mail messages sent to components of this class are queued up and handled

by a separate thread, freeing your component from the potential bottleneck. That separate thread pulls e-mail

messages from the queue and sends them to another EmailListener, such as the SMTPEmail component or

the SMTPBatchEmail component.

Oracle ATG Web Commerce comes with an instance of EmailListenerQueue at /atg/dynamo/service/

SMTPEmailQueue. This queue empties into the /atg/dynamo/service/SMTPBatchEmail component.

Thus, if you send your e-mail events to the queue, they are first queued and then batched, for maximum

performance. If you wish your e-mail queue to empty directly into the SMTPEmail component, simply override

the SMTPEmailQueue configuration such that its emailListeners property points to SMTPEmail rather than

SMTPBatchEmail.

You probably want to configure your services to send e-mail to the queue, rather than going directly to the

SMTPEmail or the SMTPBatchEmail component:

emailListeners=/atg/dynamo/service/SMTPEmailQueue

11 Logging and Data Collection 249

11 Logging and Data Collection

Oracle ATG Web Commerce includes three different systems for sending, receiving, and recording messages

generated by components: Logging, Data Collection, and Recorders. Oracle ATG Web Commerce Logging

provides a convenient way to log system messages. Any component that extends the GenericService class

or implements the ApplicationLogging interface can send LogEvents that are received by log listeners and

logged to a flat file. The logging system can log only text messages and exceptions.

Like Logging, Data Collection is based on the Java event model. But Data Collection lets you record data

contained in any JavaBean (not just subclasses of LogEvent). Therefore, your choice of Beans to use as data

items is not restricted. In addition, Data Collection provides in-memory summarization, which makes it suitable

for handling the data needs of more demanding applications.

Recorders collect data through a combination of scenario events, mappers, and datasets.

Note: If you are running the DSS module, use recorders rather than the Data Collection techniques described in

this chapter. See the ATG Personalization Programming Guide for more information.

In this chapter

This chapter includes the following sections:

• ATG Logging (page 250): Oracle ATG Web Commerce’s message logging system, based on the

atg.nucleus.logging API.

• Data Collection Sources and Events (page 265): Data collection begins with a data collection source, which

can be any JavaBean with a dataListeners property. Events are generated by data sources and sent to data

listeners.

• Data Listeners (page 265): Data collection events are received by data listeners, which then process them.

• Formatting File Loggers (page 266): A type of data listener that logs data to a file.

• Database Loggers (page 270): A type of data listener that logs data to a database.

• Data Collector Queues (page 274): A type of data listener that stores data in a queue, before flushing it to

another data listener.

• Summarizers (page 274): A type of data listener that accumulates data events and passes a summary of the

data to another data listener.

250 11 Logging and Data Collection

ATG Logging

You can use the Oracle ATG Web Commerce logging facility as a method for producing logging events that

can be used by any component. Use the message logging facility for error, warning, debug, or informational

messages that need to be communicated to a developer or administrator.

Logging is performed through JavaBeans events. LogEvent objects contain logging messages, and are

broadcast by components that log those messages. Events are received by LogListener objects that handle

the logging events in various ways. A LogListener object might perform these tasks:

• Write events to a log file.

• Send e-mail.

• Dispatch events to multiple listeners.

The separation between log source and log listener allows for a flexible logging configuration that can be

tailored to individual applications.

The following topics describe how message logging works in an Oracle ATG Web Commerce application:

• LogEvents (page 250)

• LogListeners (page 250)

• Logging Levels (page 251)

• Broadcasting LogEvents (page 252)

• Using ApplicationLogging (page 253)

• Improving Log Readability (page 253)

• Using Terse Logging (page 254)

• Implementing Logging (page 255)

LogEvents

In an Oracle ATG Web Commerce application, log messages are treated as JavaBeans events. Each log message

is encapsulated in an atg.nucleus.logging.LogEvent object. Various types of messages are represented by

subclasses of LogEvent, such as ErrorLogEvent and WarningLogEvent. When a component wants to send a

logging message, it creates a LogEvent object of the appropriate class, containing the contents of the message.

Those contents can include a String message, a Throwable, or both. The component then broadcasts that event

object to all listeners.

Components that implement interface atg.nucleus.logging.ApplicationLogging can act as sources of

LogEvents. Because GenericService implements ApplicationLogging and Nucleus components extend

GenericService, Nucleus components all follow the Oracle ATG Web Commerce logging conventions and can

act as sources of error, warning, info and debug LogEvents.

LogListeners

In keeping with the JavaBeans specifications, objects that receive logging messages must implement

the LogListener interface. This also means that log sources must have addLogListener and

removeLogListener methods.

11 Logging and Data Collection 251

Oracle ATG Web Commerce provides several LogListener implementations that perform the following tasks:

• Write log messages to files, the console, and so on. See LogEvent Sinks (page 255) and the components in /

atg/dynamo/service/logging.

• Dispatch a log message to one of several destinations, so error events are written to one file, warning events

are written to another file, and so on. See DispatchLogger (page 258).

• Queue log events from various components before sending them to their final destinations. A component can

send a log event without waiting for the event to be written to disk; the event is sent to the queue, which later

passes the event on to the listener that eventually writes it to the file. See LogListenerQueue (page 260).

A log source does not need to know where its log messages go, whether they are queued, and so on. Because

listeners are defined in properties files, all logging decisions are configurable. The log source is only responsible

for generating and broadcasting logging messages.

Logging Levels

As installed, Oracle ATG Web Commerce defines four standard logging levels:

Level Description

Error Represents fault conditions that indicate an immediate problem.

Default: Log all error messages.

Warning Represents fault conditions that might indicate a future problem.

Default: Log all warning messages.

Info Represents events that occur during the normal operation of the component. For instance,

server messages indicating handled requests are usually sent as Info messages.

Default: Log all info messages.

Debug Represents events specific to the internal workings of the component that should only be

needed for debugging situations.

Default: Do not log debug messages.

A log source can emit logging events at one or more of these levels. Individual components can enable or

disable logging messages at any level through the Boolean properties loggingError, loggingWarning,

loggingInfo, and loggingDebug. These components must implement the following methods:

public void setLoggingError (boolean loggingError);
public boolean isLoggingError ();
public void setLoggingWarning (boolean loggingWarning);
public boolean isLoggingWarning ();
public void setLoggingInfo (boolean loggingInfo);
public boolean isLoggingInfo ();
public void setLoggingDebug (boolean loggingDebug);
public boolean isLoggingDebug ();

252 11 Logging and Data Collection

Before sending a log message, a component should check whether logging is enabled for that log message’s

level, in order to avoid unnecessary overhead. For example:

// Log an error
if (isLoggingError ()) {
 // create and broadcast the logging message
}

Broadcasting LogEvents

In order to send a log message, a component must create a LogEvent object, then broadcast that object to all

LogListener objects attached to the component.

This operation is best placed in a method that can be called quickly. For example, the following implementation

includes such convenience methods:

Vector mLogListeners;
public synchronized void addLogListener (LogListener pListener){
 if (mLogListeners == null) mLogListeners = new Vector ();
 mLogListeners.addElement (pListener);
}
public synchronized void removeLogListener (LogListener pListener){
 if (mLogListeners != null)
 mLogListeners.removeElement (pListener);
}
public int getLogListenerCount (){
 return (mLogListeners == null) ? 0 : mLogListeners.size ();
}
public synchronized void sendLogEvent (LogEvent pLogEvent){
 if (mLogListeners != null) {
 int len = mLogListeners.size ();
 for (int i = 0; i < len; i++) {
 ((LogListener) mLogListeners.elementAt (i)).logEvent (pLogEvent);
 }
 }
}
public void logError (String pMessage){
 logError (pMessage, null);
}
public void logError (Throwable pThrowable){
 logError (null, pThrowable);
}
public void logError (String pMessage, Throwable pThrowable){
 sendLogEvent (new ErrorLogEvent (pMessage, pThrowable));
}

With these methods available, the component can now send error events like this:

// Log an error
if (isLoggingError ()) {
 logError ("Look out, it's gonna blow!");
}

11 Logging and Data Collection 253

Using ApplicationLogging

Oracle ATG Web Commerce includes an interface called atg.nucleus.logging.ApplicationLogging

that encapsulates the above concepts. It also includes a sample implementation of this interface named

atg.nucleus.logging.ApplicationLoggingImpl.

For each logging level, ApplicationLogging defines the following methods:

public void setLoggingError (boolean loggingError);
public boolean isLoggingError ();
public void logError (String str);
public void logError (Throwable t);
public void logError (String str, Throwable t);

Similar methods are also defined for warning, info, and debug log levels.

ApplicationLoggingImpl also includes the methods that define a component as a source of log events:

public void addLogListener (LogListener listener);
public void removeLogListener (LogListener listener);

The ApplicationLogging interface is meant to serve as a template for components that wish to follow

Oracle ATG Web Commerce logging conventions. This is useful for developers that wish to subclass an existing

component. If you know that the base component already implements ApplicationLogging, you can follow

the Oracle ATG Web Commerce conventions for sending logging messages in the subclass.

Components that are derived from GenericService automatically inherit all of these behaviors

because GenericService implements ApplicationLogging. Components that are unable to subclass

GenericService can also implement ApplicationLogging. The source code for the sample implementation,

located at <ATG10dir>/DAS/src/Java/atg/nucleus/logging/

ApplicationLoggingImpl.java, can be used as the template for such implementations.

Improving Log Readability

To improve the readability of logged output, you can configure certain properties in the log listener component.

The following table shows the properties that you can set on components of these classes:

atg.nucleus.logging.FileLogger
atg.nucleus.logging.RotatingFileLogger
atg.nucleus.logging.PrintStreamLogger

254 11 Logging and Data Collection

Property Description

cropStackTrace Boolean, determines whether to show the entire stack trace. This option is

typically set to false only in development environments. Set to true for

production environments, in order to prevent excessive log file growth.

Note: If set to true, sure to set maxLinesInStackTrace to a value that

provides enough information to troubleshoot potential problems—in

general, 100 or greater.

Default: false

maxLinesInStackTrace If cropStrackTrace is set to true, sets the maximum number of lines to log

when a log event occurs that contains a Java exception.

prefixEachLine Boolean, determines whether to prepend the logging prefix (date and

component name) to each line of logging output for multi-line log messages.

You can configure the values of these properties in each of the following log listener components:

/atg/dynamo/service/logging/{DebugLog, ErrorLog, InfoLog, WarningLog,
 ScreenLog}

The default value for cropStackTrace is true. The default value for maxLinesInStackTrace is 10. The

default value for prefixEachLine is true.

Using Terse Logging

The atg/dynamo/service/loggingScreenLog component lets you see shortened versions of logging

information, in this form:

[type] time ComponentName Message

For example:

[i] 01:13:00 MBeanServer MBeanServer, MBeanServer is running.

In the preceding example, [i] means info. Only the short hh:mm:ss time format is shown, with no date, and

only the component name (MBeanServer) is shown.

The first time a component appears in the log, the log prints out a name mapping, identified by a [k], denoting a

key message:

[k] MBeanServer --> /atg/dynamo/service/management/MBeanServer
[i] 01:13:00 MBeanServer MBeanServer, MBeanServer is running.

If there are multiple components with the same name at different paths (such as is the case with MBeanServer),

the terse logger differentiates them like this:

11 Logging and Data Collection 255

[k] MBeanServer(2) --> /atg/management/MBeanServer
[i] 01:13:10 MBeanServer(2) MBeanServerService started: domain = Dynamo

To use this feature, set the terse property on the /atg/dynamo/service/logging/ScreenLog component

to true.

Note: You should use terse logging only during development, as fragments of terse logs do not contain

complete component path and date information.

Implementing Logging

Logging is performed through JavaBeans events. To log a message, a component creates a LogEvent that

includes the message, then broadcasts the event. Events are received by LogListener objects that handle the

logging events in various ways. Some LogListener objects write events to a log file, some send e-mail, some

dispatch events to multiple listeners. The separation between log source and log listener allows for a flexible

logging configuration that can be tailored to individual applications.

A LogListener can be either a LogEvent sink (performs a final action) or a LogEvent filter (sends an event to

other LogListeners). The following sections describe how to implement log events:

• LogEvent Sinks (page 255)

• DispatchLogger (page 258)

• LogListenerQueue (page 260)

• Logging Configuration (page 260)

• Designing Logging Systems (page 261)

LogEvent Sinks

A LogEvent sink is a LogListener that performs a final action on a LogEvent. This can include writing the

LogEvent to a file, sending the LogEvent as e-mail, or writing the LogEvent to a database. Oracle ATG Web

Commerce defines several different kinds of LogEvent sinks:

• PrintStreamLogger (page 255)

• FileLogger (page 256)

• RotatingFileLogger (page 256)

• EmailLogger (page 257)

PrintStreamLogger

A PrintStreamLogger writes logging messages to a PrintStream. By default, a PrintStreamLogger is

configured to write logging messages to System.out, which usually leads to the console.

A PrintStreamLogger is useful as a debugging tool during development. Oracle ATG Web Commerce

defines a PrintStreamLogger called /atg/dynamo/service/logging/ScreenLog of the

atg.nucleus.logging.PrintStreamLogger class. By default, the ScreenLog component is a logListener

for all Nucleus components that implement ApplicationLogging. You can disable the ScreenLog component

by setting its loggingEnabled property to false. This is the recommended setting for live Oracle ATG Web

Commerce sites.

256 11 Logging and Data Collection

FileLogger

A FileLogger writes logging messages to a text file. Two properties define an instance of a FileLogger:

Property Description

logFilePath The path to the directory that holds the log file. The path can be relative to the directory

where the Oracle ATG Web Commerce server runs. For example, logFilePath=./logs

points to the <ATG10dir>/home/logs directory, while logFilePath=logs points to

the <ATG10dir>/home/servers/<server>/logs directory.

logFileName The actual name of the log file, within the logFilePath. So if logFilePath is ./logs,

and logFileName is warnings.log, the logging messages are written to <ATG10dir>/

home/logs/warnings.log.

You can disable any FileLogger component by setting its loggingEnabled property to false.

RotatingFileLogger

A RotatingFileLogger is a subclass of atg.nucleus.logging.FileLogger that periodically archives its log

file to another directory. This prevents log files from growing without bound, but still lets you keep some log file

history around.

The archiving is controlled by the following properties:

Property Description

scheduler The Scheduler to use to perform the archiving. This is usually set to /atg/

dynamo/service/Scheduler.

schedule The Schedule to use to perform the archiving (see Configuring a Schedulable

Component (page 216)). This is often set to a CalendarSchedule, allowing

it to perform the archiving on a calendar-based schedule such as every

Sunday morning at 1am.

logArchivePath The directory where the archived log files are to be placed. This is usually

different from the logFilePath, to make it easier for you to manage your log

files and your archive files separately.

maximumArchiveCount This is the maximum number of archive files that are kept for a particular

log file. After this maximum has been reached, the oldest file is discarded

whenever the log file is archived.

archiveCompressed Specifies whether log files are compressed before being archived. See below.

When the log file is archived, it is moved from the logFilePath to the logArchivePath, and is renamed

<logFileName>.0. If there already is a <logFileName>.0, it is renamed <logFileName>.1. 1 is renamed to 2,

11 Logging and Data Collection 257

2 is renamed to 3, and so on. This rotation stops at the maximumArchiveCount. If the maximumArchiveCount

is 10, <logFileName>.9 is not moved to <logFileName>.10, but is instead erased.

After the log file is archived, a new log file is opened in the logFilePath, and logging continues as normal.

You also have the option of compressing log files before they are archived. If the archiveCompressed property

is set to true, log files are compressed into a ZIP file format. The archived log files also have the extension .zip.

These compressed log files can be read by a standard ZIP file reader, or by using the jar command that comes

with the JSDK:

jar xvf info.log.0.zip

One example instance of RotatingFileLogger can be found at /atg/dynamo/service/logging/InfoLog.

It has the following properties:

$class=atg.nucleus.logging.RotatingFileLogger
logFilePath=./logs
logFileName=info.log
logListeners=ErrorLog

scheduler=../Scheduler
schedule=calendar * . 1 1 0
logArchivePath=./logs/archives
maximumArchiveCount=20
archiveCompressed=true

EmailLogger

An EmailLogger takes log messages and sends them out as e-mail to a list of recipients. This is useful for system

administrators who wish to be notified whenever certain parts of the system malfunction. Administrators who

use e-mail-to-pager gateways can be paged when certain critical events take place.

The EmailLogger batches log messages before sending them as e-mail. This is extremely valuable in situations

where the system malfunctions in such a way that it is generating many error messages in a short amount of

time. In such a situation, an administrator finds it much more helpful to receive, say, ten pieces of e-mail with

100 error messages in each, than to receive 1000 messages with one error in each. The logger can be triggered

to send its batched log messages when a certain number of messages are batched, or after a certain amount of

time.

When the logger sends its e-mail message, it generates an EmailEvent, which is then sent to an EmailSender.

The following properties control the configuration of an EmailLogger:

Property Description

logEventThreshold The number of log messages that are batched before being sent as e-mail.

schedule Using the above threshold, messages are not sent until the threshold is reached.

So if the threshold is 10, and 9 log events are issued, e-mail is still not sent until

the 10th is received. By specifying a schedule, you can tell the EmailLogger

to send out e-mail according to a time trigger as well as a threshold. So if the

schedule is set to every 5 minutes, e-mail is sent within 5 minutes of

receiving a log event, whether or not the log event threshold has been reached.

258 11 Logging and Data Collection

Property Description

scheduler If you are going to specify a schedule, you must also specify a scheduler. This

is usually set to /atg/dynamo/service/Scheduler.

emailListeners This is a pointer to the EmailSender that performs the task of sending e-mail.

This is usually set to /atg/dynamo/service/SMTPEmailQueue.

defaultRecipients This is a comma-separated list specifying the e-mail addresses

of those for whom the e-mail is intended. For example,

sysadmin@example.com,test@example.com.

defaultFrom This is what you want to appear in the from field of the e-mail.

defaultSubject This is what you want to appear in the subject field of the e-mail.

defaultBody Anything placed in here appears at the top of the e-mail body. The log messages

are placed after the defaultBody.

A sample EmailLogger can be found at /atg/dynamo/service/logging/EmailLog:

$class=atg.nucleus.logging.EmailLogger
emailListeners=../SMTPEmail
logEventThreshold=10
scheduler=../Scheduler
schedule=every 5 minutes
defaultRecipients=sysadmin@example.com,test@example.com
defaultFrom=Dynamo_Number_12
defaultSubject=Main Reactor Core Down
defaultBody=Run now!

DispatchLogger

A DispatchLogger is a LogListener that routes LogEvents to other LogListeners based on the types of

those LogEvents. For example, you might wish to send ErrorLogEvents to an EmailLogger, while all other

log event types are sent to a file.

A DispatchLogger is configured with the following properties:

logEvents

The class names of the different types of log events to be dispatched to various listeners. For example, to

dispatch ErrorLogEvents and WarningLogEvents to different listeners, specify:

logEvents=\
 atg.nucleus.logging.ErrorLogEvent,\
 atg.nucleus.logging.WarningLogEvent

The next property, logDestinations, specifies where those two types of events are to be sent.

11 Logging and Data Collection 259

logDestinations

The names of the LogListeners that receive the log event types specified by the logEvents properties. For

example:

logDestinations=\
 SysadminPager,\
 SysadminEmailer

This specifies that ErrorLogEvents are to be sent to the SysadminPager component, while

WarningLogEvents are to be sent to the SysadminEmailer component. The LogEvent is sent to the first

destination matching the given class, as either an exact class match, or a subclass. So any ErrorLogEvent or

subclass of ErrorLogEvent is sent to SysadminPager.

defaultDestinations

The destinations of any log events that do not match any of the types in logEvents. For example:

defaultDestinations=\
 FileLogger

This specifies that any LogEvents that are not errors or warnings are sent to the FileLogger component.

You can specify multiple destinations; in that case, the event is sent to all specified destinations in order. If

you do not specify the logEvents or logDestinations properties, events are always be distributed to the

defaultDestinations. This is a useful way for you to send a single LogEvent to multiple destinations—for

example, e-mail and a file.

However, unlike the defaultDestinations property, the logDestinations property cannot be used to send

one type of LogEvent to two different destinations. If you set these properties:

logEvents=\
 InfoLogEvent,\
 InfoLogEvent
logDestinations=\
 /logging/infoListener1,\
 /logging/infoListener2

then no InfoLogEvents reach infoListener2; all are sent to infoListener1. You can send a single

LogEvent to multiple destinations either by using the defaultDestinations property, or by using two

DispatchLoggers in sequence. The first DispatchLogger might have these properties:

logEvents=\
 InfoLogEvent,\
 FooLogEvent
logDestinations=\
 /logging/infoDispatchLogger2,\
 /logging/fooListener

while the second, the /logging/infoDispatchLogger2 named in the logDestinations property, receives

only InfoLogEvents and can use the defaultDestinations property to route the InfoLogEvents to both /

logging/infoListener1 and /logging/infoListener2:

260 11 Logging and Data Collection

defaultDestinations=\
 /logging/infoListener1,\
 /logging/infoListener2

LogListenerQueue

A LogListenerQueue is a subclass of EventQueue that buffers calls to LogListeners (see the Queues (page

240) section). This allows a high-throughput process, such as HTTP request handling, to be decoupled from the

slower logging processes such as writing to files or sending e-mail. The logListeners property specifies the

LogListener where log messages are to be sent after being run through the queue.

All log messages are typically sent through a LogListenerQueue before being run through the rest of the

logging system.

Logging Configuration

In the standard Oracle ATG Web Commerce configuration, all components are directed to send their logging

events to a single LogQueue component. This is specified in the /GLOBAL.properties file, which you can view

in the Configuration tab of the Component Editor of any Nucleus component:

logListeners=\
 atg/dynamo/service/logging/LogQueue,\
 atg/dynamo/service/logging/ScreenLog

All components also direct their output to the ScreenLog component, causing all messages to appear on the

console. This is useful for debugging at development time, and should be removed at production time.

The LogQueue component queues log events, preventing the handling of those events from impacting the

throughput of the rest of the system. The LogQueue feeds its output to a LogDispatch component:

logListeners=LogDispatch

The LogDispatch separates the error, warning, info, and debug log events and directs them to separate

components. Any events that do not match the above classes are sent to the info logs:

logEvents=\
 atg.nucleus.logging.InfoLogEvent,\
 atg.nucleus.logging.WarningLogEvent,\
 atg.nucleus.logging.ErrorLogEvent,\
 atg.nucleus.logging.DebugLogEvent,\
 atg.nucleus.logging.LogEvent
logDestinations=\
 InfoLog,\
 WarningLog,\
 ErrorLog,\
 DebugLog,\
 InfoLog

11 Logging and Data Collection 261

Each of the destination logs (InfoLog, WarningLog, ErrorLog, DebugLog) is a RotatingFileLogger. Each

log is stored in a separate file in the ./logs directory, and is archived at 1am every Sunday into the ./logs/

archives directory:

$class=atg.nucleus.logging.RotatingFileLogger
logFilePath=./logs
logFileName=info.log

scheduler=../Scheduler
schedule=calendar * . 1 1 0
logArchivePath=./logs/archives
maximumArchiveCount=20
archiveCompressed=true

As you can see, the entire Oracle ATG Web Commerce logging system is completely defined using standard

Nucleus components and configuration files. This means that you can change the logging configurations and

procedures by changing configuration files, usually without writing any Java code.

Designing Logging Systems

The logging model used by Oracle ATG Web Commerce provides a flexible mechanism for setting up complex

application logging rules. With a combination of filters and sinks, you can design a logging configuration that

handles all requirements.

The key to designing logging systems is to model your logging rules in terms of the logging filters and sinks

provided with Oracle ATG Web Commerce (or with new filters and sinks that you write yourself).

For example, if you want to monitor a particular component so errors are sent as e-mail, but all messages,

including errors, are sent to a single file, you need the following:

• LogListenerQueue, to ensure the component is not hampered by the logging processes

• DispatchLogger that:

• receives events from the LogListenerQueue

• defines only the logDestinations property

• distributes all events to two listeners

• Another DispatchLogger that feeds from the first DispatchLogger but only recognizes ErrorLogEvents

• EmailLogger to receive events from the second DispatchLogger and to send those events as e-mail

• RotatingFileLogger to receive all events from the first DispatchLogger and write those events to a file

Finally, the log source component must specify the LogListenerQueue as one of its logListeners.

Here is an example of what a logging system might look like:

262 11 Logging and Data Collection

Logging for Non-GenericService Components

Using Nucleus logging for non-GenericService objects can present two relatively common problems:

• Your Nucleus-instantiated component cannot extend GenericService

• You use classes that are not created by Nucleus, but for which you want to do Nucleus-style logging

The LoggingPropertied interface and the ClassLoggingFactory can be used to solve these problems.

Note: You should use GenericService Nucleus components as much as possible, because that interface is

simple to use and well supported. If you cannot use GenericService components, use a Nucleus-instantiated

component that implements the LoggingPropertied interface. This retains the power and flexibility of a

Nucleus configured component, even if your base class did not implement ApplicationLogging. Use the

ClassLoggingFactory if neither of these approaches is possible.

Logging with Nucleus-instantiated Non-GenericService

If your Nucleus component cannot extend GenericService—for example, because it already extends some

other class—you can use the LoggingPropertied interface.

The LoggingPropertied interface consists of a single method:

public ApplicationLoggingSender getLogging();

11 Logging and Data Collection 263

This method returns the application logging instance your component uses for its logging. Using this interface

means that you do not have to implement the entire ApplicationLogging interface on your subclass, or use

another component’s ApplicationLogging instance, which means that your own component’s name does

not appear in the log files.

A LoggingPropertied component typically implements LoggingPropertied and ServiceListener (to

get startService calls so that the component name can be set on the logging instance), and includes the

following code:

ApplicationLoggingImpl mLogging = new ApplicationLoggingImpl(
 this.getClass().getName());

public ApplicationLoggingSender getLogging() {
 return mLogging;
}

public void startService (ServiceEvent pEvent) throws ServiceException {
 mLogging.initializeFromServiceEvent(pEvent);
}

public void stopService() {
}

Then, when your component needs to log, it can use code such as the following:

if (getLogging().isLoggingDebug()) {
 getLogging().logDebug("Debugging!");
}

Nucleus is now aware of the LoggingPropertied interface, and displays properties for the

ApplicationLogging instance. The administrative UI also lets you access the ApplicationLogging

properties, including changing them at runtime.

Nucleus understands simple dot notation for nested property names, with some limitations. So the Nucleus

properties file for your component implementing ApplicationLogging can contain the following to turn on

logging debug when your application starts up:

logging.loggingDebug=true

Note: The logging property object must exist before the startService, because all property settings are

applied before startService is invoked.

Logging with Non-Nucleus-instantiated Classes

In some cases, you need logging for classes that are not instantiated by Nucleus, such as a servlet class

created by the web container, a static utility class that has no instances, or a light-weight class that has

many instances, which do not each need their own ApplicationLogging instances. In this case, you

can use the ClassLoggingFactory to create a logger. An ApplicationLogging logger created by

ClassLoggingFactory is shared by all instances of that class, and appears in Nucleus under the /atg/

dynamo/service/logging/ClassLoggingFactory named for the class that created it. So, for example, given

the following class:

264 11 Logging and Data Collection

package my.lovely;
import atg.nucleus.logging.*;

public class NonNucleus {
 ApplicationLogging mLogging =
 ClassLoggingFactory.getFactory().getLoggerForClass(NonNucleus.class);
}

an ApplicationLogging instance appears in Nucleus as follows:

/atg/dynamo/service/logging/ClassLoggingFactory/my.lovely.NonNucleus

This lets you turn logging on and off at runtime. Note that the component appearing in Nucleus is just the

ApplicationLogging logger, and not the class (or instance) itself.

You can turn on logging for ClassLoggingFactory client classes when your application starts up by creating

a properties file at the appropriate location. Given the previous example, you can create a properties file

<DYNAMO_HOME>/atg/dynamo/service/logging/ClassLoggingFactory/

my.lovely.NonNucleus.properties with the following content:

$class=atg.nucleus.logging.ApplicationLoggingImpl
loggingDebug=true

This turns on loggingDebug for the example NonNucleus class when the application starts up.

Introduction to Data Collection

Oracle ATG Web Commerce’s Data Collection facility provides a flexible way to collect information. Like Logging,

Data Collection is based on the Java event model. But Data Collection lets you record data contained in any

JavaBean (not just subclasses of LogEvent). Like the Logging system, the Data Collection system includes

components that act as sources, events, and listeners. In addition, Data Collection summarizer components

perform in-memory summarization. The following topics describe the components of the Oracle ATG Web

Commerce Data Collection system:

• Data Collection Sources and Events

• Data Listeners

• Formatting File Loggers

• Database Loggers

• Data Collector Queues

• Summarizers

11 Logging and Data Collection 265

Data Collection Sources and Events

The most important aspect of data collection is its use of arbitrary JavaBeans as data points. Your components

do not have to subclass LogEvent (or anything else) to use data collection. You can even use data collection

without writing any Java.

Oracle ATG Web Commerce includes the source code for a class named

atg.service.datacollection.DataSource, located at <ATG10dir>/DAS/src/Java/

atg/service/datacollection/DataSource.java. This class serves as a sample design pattern you can use

when creating components that serve as sources of data for the data collection system.

There are three ways you can make a component be a data source:

• Subclass atg.service.datacollection.DataSource.

• Encapsulate a Data Source (declare an object that extends DataSource in your component and pass through

the DataListener method calls).

• Implement the DataListener method calls in your component.

To be a source of data items, a class needs to implement the Java event design pattern for event sources. All data

collection listeners implement the atg.service.datacollection.DataListener interface. So to create a

source of data events, implement the following two methods in your data source component:

public void addDataListener(DataListener listener);
public void removeDataListener(DataListener listener);

Then to send a data item to your listeners, call the method:

sendDataItem(Object dataItem)

This method sends the data item as a data collection event to each data listener in your list. The data listeners

can then examine and extract information from the data item’s properties. This is based on the Java event

model, so there is no interface that you need to implement.

Data Listeners

Data collection sources each have one or more data listeners (specified by the data source’s dataListeners

property). Depending on how you design your data collection system, a data listener might log the data

event’s properties to a file, log them to a data base, summarize a set of data events, or queue data events

before passing them to another data listener. Oracle ATG Web Commerce data listeners implement the

atg.service.datacollection.DataCollector interface. The following topics describe different sorts of

data listeners:

• Formatting File Loggers

• Database Loggers

266 11 Logging and Data Collection

• Summarizers

• Data Collector Queues

You can also create your own data listener by writing a class that implements atg.service.

datacollection. DataCollector.

Compatibility with Logging

For backward compatibility and the convenience of those who do not want to implement the data source

design pattern, some data listeners, such as GenericSummarizer, implement the atg.nucleus.

logging. LogListener interface in addition to the atg.service.datacollection.DataCollector

interface. So you can send data items (that are actually LogEvents) to the data collection facility from any

GenericService, simply by configuring one or more Data Listeners as one of the logListeners of your

GenericService. Also, by extending LogEvent, your data item can use all features of data collection.

Formatting File Loggers

You can use a formatting file logger (atg.service.datacollection.FormattingFileLogger) to write data

from a data collection event to a flat file in a format you specify. A formatting logger lets you specify:

• Which properties of your data item should be logged

• The order the properties should be logged

• Arbitrary constant strings to log

• Format control strings (for date properties)

• Field delimiters (written after each field except the last one)

• Line terminator (written after the last field in the log entry)

FormattingFileLogger components are also rotating loggers: you can set a schedule where the log file is

closed and a new log is opened with a different name.

In production systems, you should use DataListenerQueues to feed data to your formatting file logger. This

allows unlogged data to queue up without being lost and without affecting the performance of data sources.

See Data Collector Queues (page 274).

Configuring Fields

Having control over the order of fields lets you configure a formatting logger to write files suitable for post-

processing or bulk data loading into an SQL database. You can implement more advanced formatting, such as

changing the delimiter or terminator. You can also create a logger that emits data formatted in XML.

The following properties of the FormattingFileLogger component control the contents of log fields and

fields:

11 Logging and Data Collection 267

• formatFields (page 267)

• fieldDelimiter (page 268)

• lineTerminator (page 268)

formatFields

This property is an ordered list of the properties to log, taken from the incoming data item. Each item in the list

represents a single field in a line of formatted text in the log file. Separate each item with a comma. For example:

formatFields=id,requestId,contentId

Remember that Java properties files treat white space as part of the property value. Set the formatFields

property like this:

formatFields=name,address.number,address.streetName

and not like this, with white space between the comma separator and the field name:

formatFields=name, address.number, address.streetName

Note: As shown in the example above, you can log subproperties, such as address.streetName.

Formatting Individual Fields (Dates)

By default, each property of a data item is converted to a string by calling the standard toString() method.

This is usually what is expected and desired. However, sometimes it is not the right thing. For instance, Date

objects often require special formatting.

To handle this, format fields can have format strings. To use a format string, specify the property name, followed

by a colon and the format string. Here is an example that shows how the RequestLogger component (/atg/

dynamo/service/logging/RequestLogger) logs the currentDate property:

currentDate:d/MMM/yyyy:H:mm:ss

If a format string is present, the field is formatted using that string and the JSDK standard java.text formatting

facility. Currently, this formatting is only supported for java.util.Date objects. If you have a property to

format in a certain way, you can make that property be a class and override its toString() method.

Note, however, that formatting a date can be an expensive operation. If logging performance is an issue,

consider storing date or timestamp information as a long primitive.

For Date objects, possible formats are those supported by the java.text.SimpleDateFormat of the

JSDK you are using. See the documentation for your JSDK at, for example, <JSDK dir>/jdoc/java/text/

SimpleDateFormat.html. The formatting loggers use this date format by default:

yyyy-MM-dd HH:mm:ss

268 11 Logging and Data Collection

fieldDelimiter

By default, a formatting logger delimits fields with tabs. You can specify a different separator with the

fieldDelimiter property. For example, to use the colon (:) as a delimiter, you can set the following

property:

fieldDelimiter=:

You might want to have a different delimiter for each field. You can set the fieldDelimiter property to null

and set the delimiter for each field in the value of the formatFields property, using single quotes to add labels

to each line of the log, as in this example:

formatFields='RemoteAddr='request.remoteAddr,' - - -\
 [Date=',currentDate:d/MMM/yyyy:H:mm:ss,'] '
fieldDelimiter=

This produces output that looks like the following:

RemoteAddr=remoteAddr1 - - -[Date=12Jul1999:22:04:47]
RemoteAddr=remoteAddr2 - - -[Date=13Jul1999:02:16:31]

From the example, you can see that strings enclosed in single quotes are written to the log file as-is. This lets

you craft almost any kind of flat file format you like without writing a single line of Java.

lineTerminator

By default, a formatting logger terminates lines in the log file with newlines. This behavior is configurable with

the lineTerminator property:

lineTerminator=\n

Configuring Log File Names

The following properties of the FormattingFileLogger component enable you to control how you name the

log files:

Property Type Function

logFileDir string Specifies the directory where log files are written, relative to

<ATG10dir>/home/.

Example:

logs

logFileName string Specifies the first element of the log’s file name.

Example:

logFileName=userevents_

11 Logging and Data Collection 269

Property Type Function

logFileExtension string Specifies the file extension (such as data, log) that is attached

to each log file.

Example:

logFileExtension=data

timestampLogFileName Boolean If set to true, a timestamp is included in each log file name.

timestampDateFormat string Specifies the date format to use in file name timestamps.

Example:

MM-dd-yyyy_HH-mm-ss-SS

For example, the following property settings yields log file names like userevents_02-09-2001_18-36-

03-55.data:

logFileName=userevents_
logFileExtension=data
timestampLogFileName=true
timestampDateFormat=MM-dd-yyyy_HH-mm-ss-SS

Using timestamps in your log file names ensures that log files have unique names and are preserved on

application restarts.

In the timestampDateFormat, avoid using separator characters that result in invalid file names in your

operating system. For example, if you set:

timestampDateFormat=yyyy-MM-dd_HH:mm:ss

the resulting log file name is like this:

userevents_02-09-2001_18:36:03.data

Because the colon (:) is not a valid character in Windows file names, this yields errors on a Windows platform.

The schedule and scheduler properties of the FormattingFileLogger determine when a log file is closed

and a new log created with a new name.

Formatting Logger Example: the RequestLogger

Oracle ATG Web Commerce includes a formatting file logger component that can be set to log page requests

from users, /atg/dynamo/service/logging/RequestLogger. The RequestLogger logs properties of

the request and response objects for each user request, which it obtains from the ATGServlet. To use the

RequestLogger, set the dataListeners property of /atg/dynamo/servlet/pipeline/DynamoServlet as

follows:

dataListeners=/atg/dynamo/service/logging/RequestLogger

270 11 Logging and Data Collection

You can set the dataListeners property using the Event tab in the Component Editor:

1. Select the data event set.

2. In the Registered Event Listeners column, click

3. Click Insert Before or Insert After.

4. Select /atg/dynamo/service/logging/RequestLogger as a registered event listener.

The RequestLogger has the following properties file:

$class=atg.service.datacollection.FormattingFileLogger

directory and file name
logFileDir=logs
logFileName=request.log

formatFields=request.remoteAddr,' - - [',currentDate:d/MMM/yyyy:H:mm:ss,']
 "',request.method,' ',request.requestURI,' ',request.protocol,'"
 ',response.status,' -'

the default field delimiter is a tab char ('\t')
in this example we set it to null as our formatFields
above include custom field delimiters
fieldDelimiter=

The $class line loads the FormattingFileLogger class, which formats data items and logs them to a file. The

logFileDir and logFileName properties control the file you log to.

The key property to look at here is formatFields. This is an ordered list of the properties to log. In this

example, the RequestLogger is expecting data items that have properties named request.remoteAddr,

request.method, request.requestURI, request.protocol, and response.status. The RequestLogger

gets this data from the request and response objects. By default, fields are delimited by tabs and terminated

by newlines. However, the formatFields property in this example provides custom field delimiters. One

line in the log is written for each data item that the logger receives. To log just the requestURI, change the

formatFields property to:

formatFields=request.requestURI

This writes to the logs/request.log file, entering the request.requestURI of each data item followed by a

newline.

Database Loggers

Another type of data listener is an SQL table logger that writes data directly to a relational database. Use a

component of class atg.service.datacollection.JTSQLTableLogger. SQL table loggers are configured

with properties that link them to the JDBC data source, database table name, and database column in which to

log the data items.

Each data item an SQL table logger receives is written to the named table using an appropriate INSERT

statement. For this to work, the table must exist, and the dataSource must have INSERT permission on the

11 Logging and Data Collection 271

table. The SQL table logger attempts to reconnect to the database as needed. It also gives you control over the

size of the database transactions it uses when flushing data.

In production systems, you should use DataListenerQueues to feed data to your SQL table logger. This allows

unlogged data to queue up without being lost and without affecting the performance of data sources. See Data

Collector Queues (page 274).

The following table describes the properties you use to configure an SQL table logger:

Property Description

dataSource A JTA data source that the SQL table logger uses to connect to the database.

See the ATG Installation and Configuration Guide.

tableName The name of the SQL table that holds the logged data.

SQLColumnMappings A mapping of the property name of the data collection event to the column

name in the database table specified by the tableName property, in the form:

propertyName:columnName

where propertyName is the name of a property to be logged, and columnName

is the name of the column within the database table that holds the value of the

property. For example:

username:user_name,firstname:first,lastname:last

dataItemThreshold Flush data after receiving this number of data items. See Data Flushing (page

273).

scheduler Scheduler component to use with a data flushing schedule. See Data

Flushing (page 273).

schedule Schedule to use in flushing data. See Data Flushing (page 273).

transactionManager The transaction manager used by the SQL table logger. See the Transaction

Management (page 317) chapter.

transactionSize The maximum number of rows to be inserted in each database transaction. See

Configuring Transaction Size (page 273).

enableTruncation With truncation enabled (the default), the SQL table logger determines the SQL

column size when the application starts up. String items that are longer than

the available SQL column size are truncated before being logged. If truncation is

disabled, an attempt to log a string that is too large for the SQL column results

in the insertion failing and the data being lost.

Truncation of number and time entries is handled, if at all, by your JDBC driver.

bufferSize The maximum number of entries to accumulate before flushing the data to the

database. See Configuring Transaction Size (page 273).

blocking Should the data source be blocked if the buffer is full? See Using Blocking with a

Data Collector Queue (page 273).

272 11 Logging and Data Collection

The following properties can be helpful in cases where the user does not own the table where log entries are to

be made:

Property Description

tablePrefix If the user does not own the table where log entries are to be made, you

can use this property to construct a qualified table name. This property is

not used during the initial metadata query, but if present is prepended to

the table name when inserts or updates are made.

metaDataSchemaPattern A String representing a schema name pattern. If the user does

not own the table where log entries are to be made, this property

can be used once during initialization of the logger in a call to

determine the column types. Make sure you set this property using

the exact case (upper, lower, mixed) that your database uses to

store object identifiers. For example, Oracle stores its identifiers in

uppercase. In this case, use metaDataSchemaPattern=DYNAMO

instead of metaDataSchemaPattern=Dynamo. See the JavaDoc for

java.sql.DatabaseMetaData.getColumns() for more information.

metaDataCatalogName A String representing a catalog name. If the user does not own the table

where log entries are to be made, this property can be used once during

initialization of the logger in a call to determine the column types. See the

JavaDoc for java.sql.DatabaseMetaData.getColumns() for more

information.

For instance, in a case where a table named ztab is owned by admin and the user is dynamo, here is how these

properties can be used with Oracle and Microsoft SQL Server DBMS:

Property Oracle Microsoft SQL Server

tableName ztab ztab

metaDataSchemaPattern admin If the table owner is not the database

owner, use the table owner name

(here, admin). If the table owner is the

database owner, use dbo.

metaDataCatalogName Ignored, leave blank. If user shares a database with the table

owner, you might be able to leave this

blank; otherwise use the table owner

name (here, admin).

tablePrefix Leave blank if user has an Oracle

synonym, otherwise use admin.

admin

11 Logging and Data Collection 273

Data Flushing

You can configure an SQL table logger to flush data to the database using either a schedule or a data threshold.

A schedule flushes data to the database based on a time schedule, while a data threshold flushes data to the

database upon receiving a specified number of events. It is strongly recommended that you use a schedule

rather than a data threshold.

To enable in-line flushing using a data threshold, set the value of the dataItemThreshold property to

whatever threshold you want. A threshold of 10 means that the SQL table logger flushes its data after receiving

10 events.

For best performance in production systems, use a schedule to control your flush operations, and not a

dataItemThreshold. The schedule frequency should be tuned based on the rate at which data is being fed to

the SQL table logger. Configure the schedule with the scheduler and schedule properties. For example:

scheduler=/atg/dynamo/service/Scheduler
schedule=every 3 minutes

Configuring Transaction Size

The transactionSize property controls the way the SQL table logger batches its database operations. The

default value, 0 is in effect infinity; it means that each flush occurs in a single database transaction, no matter

how many rows of data are inserted. This might be undesirable if the flush has a lot of data to store. By setting

this property, you can tell the SQL table logger to batch its INSERT operations into chunks that are as big as the

transactionSize setting. So, for example if you set the transactionSize property to 20, when the SQL table

logger flushes its data, it commits after every 20 rows. The SQL table logger always commits after the last row

regardless of the transactionSize setting.

The best value for this property depends on the size and number of data items you are logging. Because a data

item can be any object of any size you might have to experiment with this property to see what works best for

your site. A good starting value might be 100.

Configuring the Buffer Size

AN SQL table logger uses an internal buffer to hold data before flushing it to the database. When this buffer

is full, the SQL table logger flushes data to the database, whether or not the scheduled time has arrived. You

should not need to change this parameter. However, the maximum amount of data that can be flushed at once

is equal to the size of the buffer. So, if you have an SQL table logger that is expected to store a lot of data with

each flush, you should set the bufferSize property accordingly. When the SQL table logger flushes data to the

database, the maximum transaction size is the lesser of bufferSize and transactionSize.

Using Blocking with a Data Collector Queue

The blocking property controls the behavior of the SQL table logger when its internal buffer is full. The default

value is true, which means that the data source feeding the SQL table logger blocks until there is room in the

buffer. Use this setting in conjunction with a DataListenerQueue. See Data Collector Queues (page 274)

in this chapter and Queues (page 240) in the Core ATG Services (page 205) chapter for more information about

using queue components.

If you are not using a DataCollectorQueue and do not want your data source to block, set blocking to

false. This is not recommended, however, as it causes new data to be lost when the internal buffer is full.

274 11 Logging and Data Collection

SQL Data-types

AN SQL table logger uses the setObject() method to convert the following Java types to their default SQL

data-types as specified by JDBC:

• String

• Number

• java.sql.Timestamp

• java.sql.Date

A java.util.Date property value is first converted to a java.sql.Timestamp and then setObject() is

called on it. Properties of other data-types are logged as strings, using the toString() method on the property

value.

Data Collector Queues

Just as in the logging system, a well-designed data collection system usually interposes a data collector

queue between the source of the data collection events and the logger or other data listener that acts on the

event. A DataCollectorQueue (atg.service.datacollection.DataCollectorQueue) is a subclass of

EventQueue that buffers calls to data listeners (see the Queues (page 240) section of the Core ATG Services (page

205) chapter). Using a queue allows a high-throughput process, such as HTTP request handling, to be decoupled

from the slower logging processes, such as writing to files or database tables. A DataCollectorQueue is a

data listener that passes data collection events on to other data listeners. The dataListeners property of a

DataCollectorQueue specifies the data listeners where data collection events are to be sent after being run

through the queue.

Summarizers

When collecting volumes of data, handling the information sometimes becomes a problem. Applications

often fire off events to be logged and analyzed later, such as HTTP requests logged by a web server.

Often you summarize the data, then archive or delete the detailed events. In some applications the

detailed events are not even pertinent; it is only the summary that is required. Logging huge volumes

of data to files or to an SQL database just to summarize it carries an unnecessary performance and

administrative overhead. You can handle situations of this sort using a data collection summarizer

(atg.service.datacollection.GenericSummarizer).

A summarizer is a data listener that listens for data items and summarizes them in memory. The summarizer

summarizes and groups beans by one or more properties. Summarized data can then be logged to flat files or

SQL tables. At intervals, the summarizer flushes summarized data to its dataListeners (typically, a file logger

or an SQL logger).

Summarizer Method and Timestamps

The method used by summarizers is a simple counting mechanism coupled with timestamps. The summarizer

checks whether each data item it receives matches any item it has seen before. If the data item matches an

11 Logging and Data Collection 275

existing item, the summary count for that item is incremented. If the data item does not match, a new slot for

the item is created and its count is set to 1.

Matching and the groupBy Property

The summarizer uses the groupBy property to determine whether or not a data item matches any of the data

items in its list. The groupBy property lists the data item properties that are considered in the matching process.

To compare two data items, the summarizer compares each of the values in the groupBy property. If each of the

values match, the data items are said to match for this summarizer. The net effect is analogous to the use of the

SQL GROUP BY clause used in many relational database reports.

SummaryItems

Summarized data are grouped together in instances of the Java class

atg.service.datacollection.SummaryItem. A SummaryItem contains a reference to the data item being

summarized as well as the following summary information:

• summaryCount: count of data items received

• summaryFromTime: time first data item was received

• summaryToTime: time last data item was received

Thus, the summarizer’s summarized data is a list of SummaryItems. Each time new data is received, the

matching SummaryItem is updated or a new SummaryItem is added to the list.

Summarizer Example

For example, you might have an object that represents the delivery of an advertisement called AdEvent. Let’s

assume an AdEvent has three relevant properties: accountName, campaignName, and adName. In order to

summarize by all three properties, set your groupBy property as follows:

groupBy=accountName,campaignName,adName

This causes the summarizer to only consider two AdEvents as matching if all three of the properties are the

same. To summarize by campaigns instead (regardless of accounts or ads), set the groupBy property to:

groupBy=campaignName

This causes the summarizer to consider two AdEvents as matching if their campaignNames are equal. You

can have more than one summarizer listening for the same data items. So if you want to combine the last two

summarization examples, configure two summarizers and have them both listen for the same data items.

Flushing Data from the Summarizer

The summarizer keeps its SummaryItem list until it is time to flush it to its dataListeners. The summarizer

flushes on the earlier of:

276 11 Logging and Data Collection

• when its scheduled flush time comes

• when it receives dataItemThreshold data items

Both the scheduled time and the dataItemThreshold are configurable properties of the summarizer. By using

these properties to control the flush interval, you can balance the performance of the summarizer and the

amount of summarized data that would be lost in a system crash.

When the summarizer flushes its data, it sends SummaryItems to the data listeners specified by the

summarizer’s dataListeners property. These data listeners can be queues, and are usually one of the loggers

that come with the data collection package. The summarizer’s dataListeners consists of a list of summary

loggers, FormattingSummaryLogger or JTSQLTableSummaryLogger.

Logging SummaryItems

SummaryItems are JavaBeans with properties; thus, they can be logged. When logging a SummaryItem, it is

useful to log properties of both the SummaryItem and the data item being summarized. For this reason, the data

collection package contains summary loggers that extend the logging syntax to support this.

The Formatting File Logger has a corresponding formatting summary logger and the SQL table logger has

a corresponding SQL table summary logger. The summary loggers are just like the regular loggers, except

that they add the ability to refer to summary variables as well as data item properties. See the Formatting

File Loggers (page 266) and Database Loggers (page 270) sections in this chapter, and the Summary

Variables (page 277) topic in this section.

Continuing the example, you might have a summarizer listening for AdEvents with the following groupBy:

groupBy=accountName,campaignName,adName

To log the summarizer’s SummaryItems to a log file, configure a summary logger as a dataListener of the

summarizer, with properties as follows:

$class=atg.service.datacollection.FormattingSummaryFileLogger
logFileDir=logs
logFileName=foo.txt
the things that will be logged
formatFields=accountName,campaignName,AdName,%SummaryCount
fieldDelimiter=:

The only thing new here is %SummaryCount value in the formatFields property. This refers to the

SummaryCount summary variable, while the other properties refer to properties of the data item being

summarized. In the example, the logger writes the accountName, campaignName, adName, and the count of

how many AdEvents were received. The summarizer might receive the following events during a single flush

interval:

accountName campaignName adName

OmniCorp new image small_banner

OmniCorp new image small_banner

11 Logging and Data Collection 277

accountName campaignName adName

OmniCorp new image small_banner

OmniCorp new image large_banner

OmniCorp new image large_banner

MegaSomething traditional small_banner

MegaSomething new image small_banner

The summarizer generates SummaryItems, sends them to the summary logger, which in turn writes the

following to the log file:

OmniCorp:new image:small_banner:3
OmniCorp:new image:large_banner:2
MegaSomething:traditional:small_banner:1
MegaSomething:new image:small_banner:1

Summary Variables

The following table outlines the available summary variables.

Summary Variables Description

%SummaryCount Number of data items received.

%SummaryFromTime Time (java.sql.Timestamp) the first data item was received.

%SummaryFromTimeMillis Time the first data item was received (Java long value in milliseconds

since Jan 1, 1970).

%SummaryToTime Time (java.sql.Timestamp) the last data item.

%SummaryToTimeMillis Time the last data item was received (Java long value in milliseconds since

Jan 1, 1970).

%CurrentTime Time (java.sql.Timestamp) the SummaryItem was flushed.

%CurrentTimeMillis Time the SummaryItem was flushed (Java long value in milliseconds since

Jan 1, 1970).

DBWriteMethod in an SQL Table Summary Logger

The JTSQLTableSummaryLogger component extends JTSQLTableLogger. It adds a new property,

DBWriteMethod, which determines how summary log information is written to the SQL database table. The

DBWriteMethod property is a string whose valid values are insert and update.

278 11 Logging and Data Collection

If you use the update write method (DBWriteMethod=update), you also need to configure the

SQLColumnMappings property of the JTSQLTableSummaryLogger. If a property should be incremented when

the table is updated, use the :add string in the SQLColumnMappings property. If a property should be set to the

new value when the table is updated, use the :set string in the SQLColumnMappings property. For example:

SQLColumnMappings=cartItems:itemsPurchased:add

You can define more than one value in SQLColumnMappings, as in this example:

SQLColumnMappings=company:comp_id:set,dept:dept_id:set,hits:num_hits:add

Summarizer Flush Methods

The GenericSummarizer class extends DataCollectorService, which provides the summarizer with several

methods in controlling how summary data gets flushed from the summarizer. When the summarizer component

or the Oracle ATG Web Commerce server is shut down, you want to make sure that any data in the summarizer

is flushed before shutdown. To accomplish this, the summarizer’s doStopService() method calls its flush()

method.

You might also want the summarizer to instruct its data listeners to flush the data as well. To provide for that

case, the summarizer has a propagateFlush property. If propagateFlush is set to true, the flush() method

also causes the data listeners to flush.

Special localFlush() and flushListeners() methods are available to selectively flush only the summarizer

or its listeners, respectively.

12 ATG Message System 279

12 ATG Message System

The Java Message Service (JMS) defines a standard way for different elements of a J2EE application to

communicate with each other. With JMS, components do not access each other directly. Instead, a component

posts a message to a message broker, which then distributes the message to other components. In general,

the posting and delivery actions occur in separate transactions, and might even occur in different processes,

machines, or sites. This mechanism decouples the actions of the sending and receiving components to so that

the sender can continue with its work without having to wait for the receiver to process the message. This

decoupling is often called asynchronous processing.

The JMS API defines the interfaces for sending and receiving messages. It also defines the semantics for message

delivery and acknowledgement, and how message delivery should behave in a transactional environment. The

API is intended to be flexible enough to allow applications to work with existing enterprise messaging products.

In this chapter

This chapter discusses JMS and the Oracle ATG Web Commerce Message System, which is a set of tools that

Oracle ATG Web Commerce provides for working with JMS. The chapter includes the following sections:

• Overview of JMS (page 279)

• ATG and JMS (page 282)

• Using Local JMS (page 283)

• Using SQL JMS (page 284)

• Administering SQL JMS (page 286)

• Overview of Patch Bay (page 293)

• Patch Bay API (page 295)

• Configuring Patch Bay (page 298)

• Using Patch Bay with Other JMS Providers (page 313)

Overview of JMS

As discussed above, a critical architectural feature of JMS is that it decouples the objects that send messages

from those that receive messages. This architecture contrasts, for example, with the JavaBean event model,

where an event listener must register with the object that fires the event. In the JMS messaging model, objects

280 12 ATG Message System

that send messages (message producers) and objects that receive messages (message consumers) do not need

to be aware of each other, because a producer does not send messages directly to a consumer.

Instead, a JMS message producer sends a message to a destination, where it is retrieved by one or more

message consumers. JMS defines two types of destinations, corresponding to two basic forms of messaging:

• Topic: A destination used in publish/subscribe messaging. If a topic has several subscribed listeners, each

message published to that topic is delivered to all listeners.

• Queue: A destination used for point-to-point messaging. If a queue has several subscribed receivers, each

message is delivered to only one of the receivers. A different receiver might be chosen for each message,

possibly depending on some load balancing mechanism.

JMS Message Producers and Consumers

The JMS API defines a set of interfaces for creating message producers and consumers. There are separate

interfaces for producers and consumers, and for objects that communicate with topics and queues. These

interfaces are all part of the javax.jms package:

• QueueSender

• QueueReceiver

• TopicPublisher

• TopicSubscriber

In addition to implementing one of these interfaces, the producer or consumer must do a considerable amount

of setup in order to send or receive messages: obtain a ConnectionFactory, find destinations, obtain a JMS

Connection, create a JMS Session, and so on. One of the main advantages of using Oracle ATG Web Commerce’s

Patch Bay system is that it handles the bulk of these setup tasks, so your code does not have to. See the

Overview of Patch Bay (page 293) section for more information.

JMS Destinations

As mentioned above, JMS defines two types of destinations, topics and queues. Most JMS providers support

both topics and queues, and an application can make use of both. Oracle ATG Web Commerce applications

typically use topics, as they offer the most flexibility for expansion. However, a messaging application might use

queues for certain purposes, such as load balancing.

The use of destinations provides much of the flexibility in JMS. If a new application needs to send messages to

or receive messages from an existing application, it can publish or subscribe to the destinations used by that

application. The new application does not need to be aware of the message producers and consumers in the

original application, just the destinations. This means that message producers and consumers can be added to

or removed from one application without affecting other applications, as long as the destinations remain the

same.

Each destination is maintained by a single JMS provider, which typically maintains many destinations. The

creation and management of destinations within a JMS provider is usually an administrative or configuration

operation. If a message is sent to a destination, that destination’s JMS provider is responsible for receiving the

message and passing it on to subscribers waiting for messages from that destination. Different providers might

use different mechanisms to accomplish this. For example, Oracle ATG Web Commerce’s SQL JMS uses an SQL

database to store and deliver messages, for applications that require the messaging system to be highly reliable.

Other JMS providers might use file- or memory-based storage.

12 ATG Message System 281

Message Persistence

Queue destinations typically are persistent. If a message is sent to a queue but no receiver is online, the message

is kept in the queue, waiting for a receiver to connect and start reading from the queue. After a message is

delivered to a single receiver, it is removed from the queue.

Topics, however, are non-persistent by default. If a message is sent to a topic, it is delivered to all subscribers

to that topic that are currently online, and then removed. Any subscriber that is offline does not receive the

message. If no subscribers are currently online, the message is simply removed from the topic without being

delivered anywhere.

Some applications require the flexibility of a topic, but also the persistence offered by a queue. For example,

suppose an application requires a message to be delivered to several subscribers, but it is not acceptable for

a subscriber to miss any of the messages if it goes offline. Sending e-mail to a mailing list demonstrates this

paradigm (in a non-JMS environment), where a single message is distributed to many readers, and queued up

for each reader to be delivered when the reader comes online.

JMS addresses this need through the use of durable subscriptions. A message consumer that has a durable

subscription to a topic can go offline, then reconnect later and pick up any messages that were sent to the

topic in its absence. Durable versus non-durable is a property of each individual subscriber, not of the topic as a

whole. A topic can have a mix of subscribers, some durable and some non-durable.

Durable and non-durable subscribers are created through the JMS API. Creating a durable subscriber requires

specifying a name that the topic uses to identify the subscriber. Each durable subscriber to a topic must have a

name that is unique for that topic. If a subscriber disconnects, the JMS provider holds any subsequent messages

under that name. If the subscriber then reconnects using the same durable subscription name, the messages

held under that name are delivered to the subscriber.

JMS Message Formats

The JMS API defines the standard form of a JMS message, which should be portable across all JMS providers.

Because the JMS API was designed to accommodate many existing providers, the resulting message form

encompasses a wide variety of features. Oracle ATG Web Commerce supports all of these features, but internally

adheres to conventions that greatly narrow the set of features developers must master.

A JMS message consists of two parts:

• Message Header (page 281)

• Message Body (page 282)

Message Header

The header contains system-level information common to all messages, such as the destination and the time it

was sent, while the body contains only application-specific data. The header can also contain some application-

specific information, stored as keyword/value properties. However, not all providers allow an arbitrary amount of

data to be stored in the header, it is a good idea to keep most application-specific data in the message body.

The most important header value is the JMSType. This is a String that is used to identify what kind of message is

being sent. Handlers often examine the JMSType to see how they should handle an incoming message.

The header is useful for specifying message selectors. When a receiver subscribes to a destination, it can specify

a message selector, which acts as a filter for weeding out messages the receiver does not want to see. The

message selector must be specified in terms of the message’s header. For example, a receiver can specify a

282 12 ATG Message System

message selector saying that it wants to see only messages whose JMSType is atg.das.Startup. The message

selector can refer to both system-level and application-specific header properties.

Message Body

To accommodate the various data formats of existing providers, JMS defines five distinct message body types. In

the JMS API, these translate into five Java interfaces, each subclassing javax.jms.Message:

Interface Message Body Type

javax.jms.TextMessage A block of text, represented in Java as a String. For example, this type of

message can be used to represent a message as an XML file.

javax.jms.ObjectMessage A Java object (which must be serializable). For example, the message

can contain a Java Bean whose properties represent the different data

elements of the message.

javax.jms.MapMessage A set of keyword/value pairs.

javax.jms.BytesMessage A block of binary data, represented in Java as a byte array. This format is

often used to interface with an external messaging system that defines

its own binary protocol for message formats.

javax.jms.StreamMessage A list of Java primitive values. This type can be used to represent certain

data types used by existing messaging systems.

JMS systems can support all, or only a subset, of these message formats. Oracle ATG Web Commerce’s JMS

providers support the subset described in the next section.

ATG and JMS

Oracle ATG Web Commerce includes a number of JMS-related tools, which are known collectively as the Dynamo

Messaging System (DMS). The main parts of DMS are:

• Two JMS providers, Local JMS and SQL JMS. Local JMS is built for high-speed low-latency synchronous

messaging within a single process. SQL JMS is more robust, and uses an SQL database to handle

communication between components within the same Oracle ATG Web Commerce application, or

components running in different processes.

• Patch Bay is an API and configuration system layered on top of JMS. Patch Bay is designed to ease the

development of messaging applications in Oracle ATG Web Commerce. The Patch Bay API allows Nucleus

components to send and receive messages. The configuration system uses an XML file to specify how these

components should be connected. This file allows developers to change or add connections between

components without changing code. Patch Bay also maintains a Message Registry that the Oracle ATG Web

Commerce user interfaces use to present lists of possible notifications to users. Oracle ATG Web Commerce

registers the messages that it sends with the Message Registry. Applications can also register their own

messages, which then appear in the Oracle ATG Web Commerce user interfaces.

12 ATG Message System 283

The different DMS pieces can be used independently. For example, you can use Local JMS with Patch Bay and

SQL JMS with or without Patch Bay. You can use a third-party JMS provider, or use the JMS implementation

provided with your application server, also with or without Patch Bay. For more information about other JMS

providers you can use, see the documentation for your application server.

ATG Message Conventions

Oracle ATG Web Commerce’s JMS providers use the following message format conventions, based on a subset of

the JMS message options:

• Messages are of type javax.jms.ObjectMessage. The objects stored in the ObjectMessage are serializable

Java Beans whose properties contain the message’s data. These Java Beans are called message beans.

• The class names for the Message Beans all end with Message—for example,

atg.nucleus.dms.DASMessage.

• The JMSType header is used to identify the type of message being fired. JMSType names follow package

name conventions—for example, atg.das.Startup. The JMSType name does not need to be an actual Java

class name; it follows the package naming conventions to avoid collisions with other JMS applications.

• Each JMSType corresponds to exactly one Message Bean class. For example, a message

of JMSType atg.das.Startup is always an ObjectMessage containing a bean of type

atg.nucleus.dms.DASMessage. Multiple JMSTypes can correspond to the same Message Bean class. For

example, JMSType atg.das.Shutdown also corresponds to atg.nucleus.dms.DASMessage.

• Messages avoid the use of application-specific header values. All such values are instead represented as

properties of the contained message bean.

Using Local JMS

Local JMS is a JMS provider supplied with Oracle ATG Web Commerce. Messages sent through Local JMS can

travel only between components in the same Oracle ATG Web Commerce process. Local JMS delivers messages

synchronously. This means that when a component sends a message, the sending component blocks until

the receiving components receive and process the message. In fact, the entire message sending and receiving

process occurs within a single thread. As a result, both the sending and receiving of the message occurs in the

same transaction. Also as a result, Local JMS has extremely high performance, adding very little overhead to

each message delivery.

Local JMS does no queuing. When a message is sent, Local JMS immediately finds out who the receivers are and

calls the appropriate methods on the receivers to deliver the message, waiting for each receiver to process the

message before delivering the message to the next receiver. Only when the message has been delivered to all

receivers does control return to the sender. In this way, Local JMS works more like Java Bean events than like

typical JMS implementations; when a Java Bean fires an event, it actually calls a method on several registered

listeners.

Local JMS is also non-durable; all messages are non-persistent. If a message is sent to a queue destination

that has no listeners, the message disappears. Also, durable subscriptions to topic destinations act exactly like

non-durable subscriptions—if a subscriber is not listening to a topic, it misses any messages sent to that topic

whether it is subscribed durably or not.

284 12 ATG Message System

Local JMS is most often used to pass data around to various components within a single request. For example,

a user might view content on a certain page, thereby causing a message to be sent. A listener might be

configured to listen for that message and update a value in the user’s profile as a result. The profile must be

updated in the same request, or the updated value might not take effect in time for the next request. To make

sure the sender and receiver both carry out their actions in the same request, the message should be carried

over Local JMS.

Of course, the same effect can be achieved by using a single component to watch for the user to view content

then update the database. But by decoupling the two actions into separate components joined by JMS, the

system allows new senders or receivers to be added to the system without changing any existing code.

Creating Local JMS Destinations

Use the DMS configuration file (discussed in the Configuring Patch Bay (page 298) section) to create Local JMS

destinations. These destinations are specified by name, separated into topics and queues:

<dynamo-message-system>
 <patchbay>
 ...
 </patchbay>

 <local-jms>

 <topic-name>/MyApp/RegistrationEvents</topic-name>
 <topic-name>/MyApp/FinancialEvents</topic-name>
 ...

 <queue-name>/MyApp/Orders</queue-name>
 ...
 </local-jms>
</dynamo-message-system>

When a Nucleus-based application starts up, it create these destinations with the JNDI names localdms:/

local/MyApp/RegistrationEvents, localdms:/local/MyApp/FinancialEvents, and localdms:/

local/MyApp/Orders.

Remember that Local JMS keeps no state, so adding these topics and queues simply creates named locations for

messages to be sent locally. Nothing is actually added to a back-end storage system.

Using SQL JMS

Local JMS implements synchronous, extremely high-performance messaging. However, many messaging

applications require messaging to be asynchronous. When a sender sends a message asynchronously, the

message is handed off to the JMS provider, and the sender continues on with its work. After the sender passes

the message to the JMS provider, the sender does not need to be informed if or when the message has been

delivered to its final recipients.

Asynchronous messaging is useful for processes that can be broken down into separate stages, where each

stage might take an unknown amount of time. For example, ATG Commerce uses asynchronous messaging to

12 ATG Message System 285

process an order. Each stage in the order (calculating tax, checking inventory, sending orders to shipping houses,

sending confirmation e-mail to the user) is a single action that is activated by an incoming message from the

previous stage, and ends by sending a message to the next stage in the process. When the user submits an

order, a message is sent to the first stage in the process. The user is told that the ordering process has started,

but does not know about the completion of the process until a later e-mail is sent.

Another key difference between Local JMS and SQL JMS is message persistence. Local JMS stores no state, so if

the system fails, all messages are lost. SQL JMS uses an SQL database for persistence of messages. This ensures

that messages are not lost in the event of system failure, and enables support for persistent queues and durable

subscriptions, as described in Message Persistence (page 281).

To deliver messages, SQL JMS polls the database periodically, checking the appropriate tables to see if any

new messages were written. If so, those messages are delivered to the appropriate message receivers and then

removed from the database. This all occurs transactionally, so if a failure occurs or the transaction rolls back, the

messages are all returned to the database, again guaranteeing that messages do not get lost.

Note: In SQL JMS, the sending of a message and the receiving of a message occur in separate transactions.

A sender might send a message in a transaction that later commits successfully. This does not mean that

the receiver has successfully received the message. It just means that SQL JMS has successfully delivered the

message to its destination. At some point in the future, receipt of the message is placed in another transaction.

The message is then removed from the database when that second transaction successfully commits.

SQL JMS uses standard JDBC drivers to communicate with the database. This allows SQL JMS to operate in a

distributed environment, where an Oracle ATG Web Commerce server and the database are located on different

machines. SQL JMS can also run on multiple Oracle ATG Web Commerce servers at once, all utilizing the same

database. This enables multiple Oracle ATG Web Commerce servers to use SQL JMS to communicate with each

other. Finally, if the JDBC driver supports the XA protocol, SQL JMS also supports XA, so it can participate in

transactions involving multiple resources.

By default, the connection factory for all SQL JMS topic and queue connections (including XA connections) is

the Nucleus component /atg/dynamo/messaging/SqlJmsProvider. If you are using SQL JMS with Patch

Bay, you can specify a different connection factory when you configure Patch Bay (though there is generally no

reason to do so). If you are using SQL JMS without Patch Bay, you cannot specify a different connection factory.

From the developer’s perspective, very little changes when using SQL JMS instead of Local JMS. The message

source and receiver components are still coded in essentially the same way whether they are using Local JMS or

SQL JMS. The main difference is that the components are configured by pointing them at SQL JMS destinations

rather than Local JMS destinations.

Creating and Accessing SQL JMS Destinations

In SQL JMS, destinations are represented by entries in the dms_queue and dms_topic tables, so adding new

destinations is a matter of inserting new rows into these tables. However, this should not be done directly, as is

difficult to coordinate this with the mechanism that generates new IDs for the destinations.

Instead, you can create destinations using the requiredQueueNames and requiredTopicNames properties of

the /atg/dynamo/messaging/SqlJmsProvider component. For example:

requiredQueueNames+=MyApp/Orders
requiredTopicNames+=MyApp/RegistrationEvents,MyApp/FinancialEvents

When SQL JMS starts, it looks at these lists of queue and topic names. It then looks into the dms_queue and

dms_topic tables and add any topic or queue names that are not already in those tables.

286 12 ATG Message System

To access an SQL JMS destination in your code, you use JNDI references of the form:

sqldms:/{queue-or-topic-name}

For example, the first topic above is:

sqldms:/MyApp/RegistrationEvents

Administering SQL JMS

When SQL JMS is used, the database keeps track of all the topics and queues that were added to the system.

The database also keeps track of any subscribers that are currently in the system so that it can know who should

receive a message sent to a particular destination. The database stores messages that were sent through a

particular destination to various subscribers, so that the next time a subscriber polls to see if there are any

messages, those messages can be delivered at that time. After a message has been delivered to all of its

recipients, that message is automatically removed from the database by the last polling recipient.

Because SQL JMS stores state in a database, it requires occasional administration and maintenance. This section

explains how the database administrator can perform various tasks to manage SQL JMS:

• Configuring Databases and Data Sources

• Adjusting the SQL JMS Polling Interval

• Removing SQL JMS Destinations and Subscriptions

• Monitoring Message Buildup

• Using the SQL-JMS Administration Interface

Configuring Databases and Data Sources

If you will use SQL JMS, create the appropriate tables in that database. These tables are created by the script that

creates the DAS schema:

<ATG10dir>/DAS/sql/install/{db-type}/das_ddl.sql

This script should be run on the appropriate database to initialize the DAS schema, including the SQL JMS tables.

To drop the tables in the DAS schema, use the script:

<ATG10dir>/DAS/sql/install/{db-type}/drop_das_ddl.sql

By default, the SQL JMS system uses the JTDataSource component (located in Nucleus at /atg/dynamo/

service/jdbc/JTDataSource) to obtain its JDBC connections. This means that SQL JMS uses the same

database as other Oracle ATG Web Commerce application components. If SQL JMS is to be used with a different

12 ATG Message System 287

database, a DataSource component must be configured for that database, and the SQL JMS system must be

configured to use this new data source. The SQL JMS system is controlled by the Nucleus component at /atg/

dynamo/messaging/SqlJmsProvider; you can set the dataSource property of this component to specify a

different data source, like this:

dataSource=/atg/dynamo/service/jdbc/MyDataSource

Configuring the SQLJmsProvider for Informix

If your Oracle ATG Web Commerce installation uses an Informix database system, add the following setting to

the properties of /atg/dynamo/messaging/SqlJmsProvider:

parameterizedSelect=false

Configuring the SQLJmsProvider for DB2

If your Oracle ATG Web Commerce installation uses a DB2 database system, add the following settings to the

properties of /atg/dynamo/messaging/SqlJmsProvider:

parameterizedSelect=false
useSetBinaryStream=false

Adjusting the SQL JMS Polling Interval

SQL JMS works through polling. At periodic intervals it performs a query on the database to see if there are any

messages waiting to be delivered to its local clients. By default, this polling occurs at 20 second intervals. This

means that messages have an average latency of 10 seconds (average latency is half of the polling interval, as

long as messages are sent at random times).

Decreasing the polling interval decreases the average latency. However, decreasing the polling interval also

increases the frequency of queries from each client, thereby increasing the database load. For example, if the

polling interval is halved to 10 seconds, Oracle ATG Web Commerce doubles the number of queries that it makes

in the same period of time. If there are many Oracle ATG Web Commerce servers running SQL JMS against the

same database, this can add up to a significant load on the database.

So if the database load is too high, the administrator should increase the polling interval on the Oracle ATG Web

Commerce servers to decrease the number of queries each server is making. This increases latency, making

some messages take longer to get from sender to receiver, but decreases the load on the database.

The polling interval is set in the messagePollSchedule property of the /atg/dynamo/messaging/

SqlJmsProvider component:

messagePollSchedule=every 20 sec in 10 sec

Note: While latency is affected by the polling interval, overall system throughput should remain unchanged.

Each time a query performs a poll, it reads in all messages waiting for that client. For example, if a message is

being sent every second, and the polling interval is set to 20 seconds, every poll reads 20 messages, yielding an

effective throughput of 1 message/second, with an average latency of 10 seconds. But if the polling interval is

288 12 ATG Message System

set to 30 seconds, the average latency increases to 15 seconds, but every poll reads 30 messages, again yielding

a throughput of 1 message/second.

So, administrators should be aware that they are trading low latency for high database load, or high latency for

low database load. But overall throughput is not affected by the polling interval.

Removing SQL JMS Destinations and Subscriptions

The requiredQueueNames and requiredTopicNames properties can be used to add new destinations to the

system, but they cannot be used to remove destinations. Removing a destination from one of those properties

just means that the system does not make sure that the destination exists when it starts up; it does not actually

remove the destination from the system.

Oracle ATG Web Commerce includes a browser-based interface that you can use to administer and remove

queues and topics. See Using the SQL-JMS Administration Interface (page 290) below.

Removing a queue or topic involves more than just removing rows from the dms_queue and dms_topic tables.

Any messages in those queues or topics also have to be removed, as well as any subscriptions associated with

those queues or topics.

The process of removing a queue or topic should preferably be done when the Oracle ATG Web Commerce

application is shut down. If you want to perform this task on a running Oracle ATG Web Commerce application,

you must first make sure that all message producers and consumers are closed and unsubscribed.

Removing a Queue

You can remove a queue using the SQL-JMS Administration Interface, or by issuing SQL statements. For example,

the following SQL statements remove a queue named fooQueue:

DELETE FROM dms_msg_properties
 WHERE msg_id IN (SELECT msg_id
 FROM dms_queue_entry
 WHERE queue_id IN (SELECT queue_id
 FROM dms_queue
 WHERE queue_name = 'fooQueue'))
DELETE FROM dms_msg
 WHERE msg_id IN (SELECT msg_id
 FROM dms_queue_entry
 WHERE queue_id IN (SELECT queue_id
 FROM dms_queue
 WHERE queue_name = 'fooQueue'))
DELETE FROM dms_queue_entry
 WHERE queue_id IN (SELECT queue_id
 FROM dms_queue
 WHERE queue_name = 'fooQueue')
DELETE FROM dms_queue
 WHERE queue_name = 'fooQueue'

Removing a Topic

You can remove a topic using the SQL-JMS Administration Interface, or by issuing SQL statements. Before

you remove a topic, however, make sure that no message producer is still publishing to the topic, and that all

durable subscribers to the topic were deleted. See Removing Durable Subscribers (page 289) below for more

information.

12 ATG Message System 289

The following SQL statements delete a topic named fooTopic, along with any remaining subscribers to that

topic:

DELETE FROM dms_msg_properties
 WHERE msg_id IN (SELECT msg_id
 FROM dms_topic_entry
 WHERE subscriber_id IN (SELECT subscriber_id
 FROM dms_topic_sub
 WHERE topic_id IN (SELECT topic_id
 FROM dms_topic
 WHERE
 topic_name = 'fooTopic')))
DELETE FROM dms_msg
 WHERE msg_id IN (SELECT msg_id
 FROM dms_topic_entry
 WHERE subscriber_id IN (SELECT subscriber_id
 FROM dms_topic_sub
 WHERE topic_id IN (SELECT topic_id
 FROM dms_topic
 WHERE
 topic_name = 'fooTopic')))
DELETE FROM dms_topic_entry
 WHERE subscriber_id IN (SELECT subscriber_id
 FROM dms_topic_sub
 WHERE topic_id IN (SELECT topic_id
 FROM dms_topic
 WHERE topic_name = 'fooTopic'))
DELETE FROM dms_topic_sub
 WHERE topic_id IN (SELECT topic_id
 FROM dms_topic
 WHERE topic_name = 'fooTopic')
DELETE FROM dms_topic
 WHERE topic_name = 'fooTopic'

Removing Durable Subscribers

Durable subscriptions hold messages for topic subscribers even when those subscribers are not online. If a

message is sent to a destination that has a durable subscriber, the message is stored in the database until that

subscriber comes online and reads its message.

However, if a client never comes online to read its messages, perhaps because the application is no longer active

or has been changed to use another durable subscription name, those messages build up in the database. If

durable subscribers disappear from the system, the appropriate entries in the database should also be removed

to prevent messages from building up without bound.

You can remove SQL JMS subscribers using the SQL-JMS Administration Interface, or you can

remove them programmatically. There is a standard JMS method for removing durable subscribers,

TopicSession.unsubscribe(). This method deletes the state being maintained on behalf of the subscriber

by its provider. You should not delete a durable subscription while it has an active TopicSubscriber for it, or

while a message received by it is part of a transaction or has not been acknowledged in the session.

The following code removes a durable subscriber:

SqlJmsManager manager = (SqlJmsManager) service;
XATopicConnection xac = manager.createXATopicConnection();
xac.start();

290 12 ATG Message System

XATopicSession xas = xac.createXATopicSession();
TopicSession ts = xas.getTopicSession();
tx.unsubscribe("fooTopic");
xac.close();

Monitoring Message Buildup

Both queues and durable topic subscriptions can build up messages in the database. If no client is reading from

the queue, or no client connects to read from a durable subscription, those lists of messages continue to grow

without bound.

The administrator should periodically check the JMS system to see if there are any queues or durable

subscriptions that are growing in this manner. If so, the administrator should contact the application developers

to see if their applications are behaving correctly. If necessary, the administrator might wish to remove the

messages in those queues and durable subscriptions.

You can check the number of entries in a queue or a durable subscription using the SQL-JMS Administration

Interface. You can also check these statistics using SQL, as described below.

Measuring a Queue

The following SQL statements select all entries in the queue named fooQueue. Counting these entries gives the

current size of the queue:

SELECT msg_id
 FROM dms_queue_entry
 WHERE queue_id IN (SELECT queue_id
 FROM dms_queue
 WHERE queue_name = 'fooQueue')

Measuring a Durable Subscription

The following SQL statements select all entries in the durable subscription named fooSubscriber. Counting

these entries gives the current size of the durable subscription.

SELECT msg_id
 FROM dms_topic_entry
 WHERE subscriber_id IN (SELECT subscriber_id
 FROM dms_topic_sub
 WHERE subscriber_name = 'fooSubscriber')

Using the SQL-JMS Administration Interface

Oracle ATG Web Commerce includes a browser-based administration interface for its SQL JMS message system.

This interface makes it easy to view, add, and delete SQL JMS clients, queues, and topics. For information about

starting up and accessing the interface, see the ATG Installation and Configuration Guide.

The main page of the SQL-JMS Administration Interface displays lists of all clients, queues, and topics in the SQL

JMS system:

12 ATG Message System 291

You can click on any of the links to view more details about each client, queue, and topic. You can click on the

delete links to delete a client, queue, or topic.

The Queue Entries page displays all pending and unhandled queue entries for the queue you selected. The

move and delete links for each entry let you move an item to a different queue or topic, or delete the entry

altogether. The radio buttons let you delete or move more than one queue entry.

292 12 ATG Message System

The Topic Subscriptions page lists information for each topic. You can delete a topic subscription using the

delete link, or view the entries for the topic by clicking the topic entries link. The Topic Entries page, just like the

Queue Entries page, displays all pending and unhandled topic entries for the topic you selected and lets you

move or delete topic entries.

In general, you should avoid manipulating an SQL JMS system while it is running. When you delete SQL JMS

components from a system that is running, you only delete entries from the database. Some information can

be maintained in memory at that point. If you delete a client while it is not running, you need also to delete any

associated queues. Also, remember that it is better to shut down an Oracle ATG Web Commerce application

normally, using the Stop Dynamo button in ATG Dynamo Server Admin or the ATG Control Center, rather than

abruptly killing the process.

Be careful when moving messages. If a message’s class is not compatible with the destination where you move

it, errors result. You can check the message class in the View Message table in the SQL-JMS Administration

Interface:

12 ATG Message System 293

Overview of Patch Bay

Patch Bay is designed to simplify the process of creating JMS applications. Patch Bay includes a simplified API for

creating Nucleus components that send and receive messages, and a configuration file where you declare these

components and your JMS destinations. When a Nucleus-based application starts up, it examines this file and

automatically creates the destinations and initializes the messaging components. This means your code does

not need to handle most of the JMS initialization tasks, such as obtaining a ConnectionFactory, obtaining a

JMS Connection, and creating a JMS Session.

Patch Bay Manager

Patch Bay is represented in Nucleus as the component /atg/dynamo/messaging/MessagingManager, which

is of class atg.dms.patchbay.PatchBayManager. As with all Nucleus components, Patch Bay is configured

with a properties file. The properties file controls the general behavior of the Patch Bay system; it configures

such things as the transaction manager used by Patch Bay and logging behavior.

In addition to the properties file, the MessagingManager uses an XML file called the DMS configuration file

to configure the individual parts of the Patch Pay system, such as JMS providers, message sources and sinks,

and destinations. The definitionFile property of the MessagingManager component names the DMS

configuration file. (In some places, the DMS configuration file is also referred to as the Patch Bay definition file.)

See Configuring Patch Bay (page 298) for more information.

294 12 ATG Message System

Messaging Components

As with standard JMS, the Patch Bay API includes Java interfaces that messaging components must implement

in order to send and receive messages. However, these interfaces differ from the standard JMS interfaces, and

the terminology is somewhat different:

• Message source: A component that can send messages. A message source must implement the

atg.dms.patchbay.MessageSource interface.

• Message sink: a component that can receive messages. A message sink must implement the

atg.dms.patchbay.MessageSink interface.

• Message filter: a component that implements both interfaces, and can send and receive messages.

All message sources, sinks, and filters must have global scope.

Note: Unlike standard JMS, Patch Bay does not have separate interfaces for objects that communicate with

topics and those that communicate with queues. A message source can send messages to both topics and

queues, and a message sink can receive messages from topics and queues.

In addition to your sources and sinks, you must also define standard JMS destinations; for example, if your JMS

provider is SQL JMS, you create destinations as described in Creating and Accessing SQL JMS Destinations (page

285). Patch Bay cannot connect a message source directly to a message sink. Instead, the two must be

connected through a JMS destination.

Configuration

One of the key DMS design principles is to separate the design of the messaging components from the

plumbing. Message sources should be written without regard for where their messages are going. The same

code should be used if the messages are to be delivered to multiple subscribers, no subscribers, or subscribers

in different processes. Directing where messages go is part of the Patch Bay’s configuration, not the message

source’s code. In the same way, message sinks should be written regardless of where messages are coming

from. The same code should be used if messages are coming in from multiple publishers simultaneously, or if

messages are arriving from remote processes, or if no messages are arriving at all. Determining how messages

are delivered to message sinks is determined by the Patch Bay’s configuration, not the code in the message

sinks.

For more information about configuring Patch Bay, see the Configuring Patch Bay (page 298) section.

Patch Bay Initialization

Patch Bay defines a simple life cycle for message sources, sinks, and filters. When Patch Bay is started, it resolves

each of the Nucleus names. If the referenced components are not yet created, they are created at this time

according to the standard Nucleus name resolution procedure (including a call to doStartService if the

component extends GenericService). For information about Nucleus name resolution procedure, see the

Basic Nucleus Operation (page 5) section of the Nucleus: Organizing JavaBean Components (page 3) chapter.

At this point, message sinks should be prepared to receive messages, which can start arriving at any time,

possibly from multiple simultaneous threads.

Message sources follow a slightly more complicated protocol. After a message source is resolved in Nucleus,

Patch Bay calls MessageSource.setMessageSourceContext() on the component. This provides the

component with a context object that it can use to create and send messages. However, the component

should not begin to send messages yet.

12 ATG Message System 295

At this point, Patch Bay initializes the various JMS providers and makes sure that the messaging

infrastructure is up and running. It then walks through each of the message sources and calls

MessageSource.startMessageSource() on each one. After this call, the message sources can start sending

messages. Depending on the message source, this method is where a message source registers itself with the

scheduler, or start a server to listen for incoming messages, or just set a flag that gates the sending of messages.

Message filters are combinations of message sources and message sinks. They implement both interfaces, and

must follow the protocols for both. This means that a message filter must be able to receive messages as soon as

it has been initialized, but should not initiate the sending of messages before setMessageSourceContext()

and startMessageSource() are called.

There is one situation where message filters behave differently. A typical operation for a message filter is to

receive a message, then to send another message in response. In this case, it is acceptable for the message to

send a message in response to a received message, even if startMessageSource() has not yet been called

(although setMessageSourceContext() must be called first in all cases). It is still not acceptable for a message

filter to initiate a message before startMessageSource() has been called, but it is fine for the message filter to

send a message in response to a received message.

Patch Bay API

One of Patch Bay’s main design goals is to ease the burden of coding messaging applications. To do this, Patch

Bay presents a highly distilled API for messaging components to use to send and receive messages.

This section discusses:

• Creating Message Sources (page 295)

• Creating Message Sinks (page 296)

• Creating Message Filters (page 297)

Creating Message Sources

A message source must implement the atg.dms.patchbay.MessageSource interface. Through this interface,

the message source is assigned a MessageSourceContext that it can use to create and send messages. The

following example demonstrates how to do this:

import atg.dms.patchbay.*;
import javax.jms.*;

...

MessageSourceContext mContext;
boolean mStarted = false;

// These methods implement the MessageSource interface
public void setMessageSourceContext (MessageSourceContext pContext)
{ mContext = pContext; }
public void startMessageSource ()
{ mStarted = true; }
public void stopMessageSource ()

296 12 ATG Message System

{ mStarted = false; }

// This method will send a message
public void sendOneMessage ()
 throws JMSException
{
 if (mStarted && mContext != null) {
 TextMessage msg = mContext.createTextMessage ();
 msg.setJMSType ("atg.test.Test1");
 msg.setText ("Test text string");
 mContext.sendMessage (msg);
 }
}

The setMessageSourceContext, startMessageSource, and stopMessageSource methods implement

the MessageSource interface. Messages can be sent from any method in the message source, such as the

sendOneMessage method in the example.

The sendOneMessage method makes sure that startMessageSource has been called. It then creates,

populates, and sends a TextMessage. Typically the only data that needs to be set on a message is the JMSType

and the data in the message’s body. A TextMessage’s body is set by calling setText, an ObjectMessage’s

body is set by calling setObject, and so on. The sendMessage method then delivers the message to Patch

Bay. Depending on how Patch Bay is configured, that message is delivered to a JMS destination or group of

destinations.

If any of those destinations are managed by Local JMS, the sendMessage call does not return until the message

is delivered to all message sinks attached to the Local JMS destinations. Destinations that are not managed

by Local JMS (such as those managed by SQL JMS) deliver messages asynchronously. In other words, the

sendMessage call returns immediately, even if the messages are not yet delivered to their final recipients.

If the destinations are managed by a transactional JMS provider (such as SQL JMS), any messages sent through

sendMessage are not actually sent until the overall transaction is committed. If the transaction rolls back,

none of the messages are sent. This does not apply to Local JMS; because Local JMS is synchronous, sending a

message happens instantly, without waiting for the current transaction to complete.

Creating Message Sinks

Message sinks are somewhat simpler than message sources. A message sink must implement the

atg.dms.patchbay.MessageSink interface. This interface defines a single method, receiveMessage,

which is called to notify the message sink that a message is being delivered. This method might be called

simultaneously by many threads, so the message sink should be coded accordingly. The following is a simple

example of how a message sink might handle a message:

import atg.dms.patchbay.*;
import javax.jms.*;

...

public void receiveMessage (String pPortName, Message pMessage)
 throws JMSException
{
 System.out.println ("Received message from port " +
 pPortName +
 " of JMSType " +
 pMessage.getJMSType ());

12 ATG Message System 297

 if (pMessage instanceof TextMessage) {
 System.out.println (" TextMessage, value = \"" +
 ((TextMessage) pMessage).getText () +
 "\"");
 }
 else if (pMessage instanceof ObjectMessage) {
 System.out.println (" ObjectMessage, value = \"" +
 ((ObjectMessage) pMessage).getObject () +
 "\"");
 }
 else if (pMessage instanceof MapMessage) {
 System.out.println (" MapMessage");
 }
 else if (pMessage instanceof StreamMessage) {
 System.out.println (" StreamMessage");
 }
 else if (pMessage instanceof BytesMessage) {
 System.out.println (" BytesMessage");
 }
}

This example just prints out a text string whenever it receives a message, including the port name (described in

the Using Messaging Ports (page 304) section of this chapter), the JMSType, and some additional information

depending on the actual subclass of the message.

Creating Message Filters

Message filters must implement both the MessageSource and the MessageSink interface. A message filter

typically implements receiveMessage by manipulating the message in some way, then sending a new

message, like this:

import atg.dms.patchbay.*;
import javax.jms.*;

...

MessageSourceContext mContext;
boolean mStarted = false;

// These methods implement the MessageSource interface
public void setMessageSourceContext (MessageSourceContext pContext)
{ mContext = pContext; }
public void startMessageSource ()
{ mStarted = true; }
public void stopMessageSource ()
{ mStarted = false; }

public void receiveMessage (String pPortName, Message pMessage)
 throws JMSException
{
 if (pMessage instanceof TextMessage) {
 String text = ((TextMessage).getText ());
 String newText = text.replace ('.', '/');
 TextMessage msg = mContext.createTextMessage ();
 msg.setJMSType (pMessage.getJMSType ());

298 12 ATG Message System

 msg.setText (newText);
 mContext.sendMessage (msg);
 }
}

This filter takes in TextMessages, then sends them out again with period (.) replaced by forward slash (/) in the

text. Notice that the mStarted flag is not consulted, because a message filter is allowed to send out messages in

response to incoming messages regardless of whether it has been started or stopped.

Configuring Patch Bay

Patch Bay is represented in Nucleus as the component /atg/dynamo/messaging/MessagingManager. The

definitionFile property of the component MessagingManager names the XML file that configures Patch

Bay. The value of this property is:

/atg/dynamo/messaging/dynamoMessagingSystem.xml

The name refers to a file within the configuration path, and should not be changed. For example, if the

configuration path includes /work/ATG10.2/home/localconfig, the XML file might be found at:

/work/ATG10.2/home/localconfig/atg/dynamo/messaging/
 dynamoMessagingSystem.xml

For more information about the configuration path, see the Managing Properties Files (page 27) section in the

Nucleus: Organizing JavaBean Components (page 3) chapter.

As with properties files found in the configuration path, the DMS configuration file might appear at several

points in the configuration path. In this case, the configuration files are automatically combined at runtime into

a single virtual file, using Oracle ATG Web Commerce’s file combination feature (see XML File Combination (page

37) in the Nucleus: Organizing JavaBean Components (page 3) chapter). The resulting file is then used by the

messaging system. This allows multiple applications to layer on top of each other, forming a single configuration

file out of multiple configuration files. The overall file used by the messaging system is a combination of all those

files, in the order they are found in the configuration path.

Depending on how many Oracle ATG Web Commerce products are installed, the configuration file can be

compiled from the files with the pathname /atg/dynamo/messaging/dynamoMessagingSystem.xml within

the various Oracle ATG Web Commerce configuration JAR files, using Oracle ATG Web Commerce’s XML file

combination rules. To modify the DMS configuration file, you should not edit any of the files in these JAR files.

Instead, create a file with the pathname /atg/dynamo/messaging/

dynamoMessagingSystem.xml and place it in your own application module or in the <ATG10dir>/

home/localconfig directory.

To view the full (combined) DMS configuration file on your system, use the Component Browser in ATG Dynamo

Server Admin. Navigate to the /atg/dynamo/messaging/MessagingManager component, and in the

Properties table, click on the definitionFiles property. The resulting page displays the configuration path

file name, the URL of the DTD, the pathnames of the source files that were combined to make up the configured

value, and the full combined text of the XML file. Appendix C, DMS Configuration File Tags (page 453) shows

the DTD for the Patch Bay configuration file, which provides a description of all tags used in the file.

12 ATG Message System 299

This section discusses:

• Declaring JMS Providers (page 299)

• Declaring Message Sources, Sinks, and Filters (page 300)

• Connecting to Destinations (page 301)

• Using Messaging Ports (page 304)

• Using the Message Registry (page 307)

• Delaying the Delivery of Messages (page 310)

• Configuring Failed Message Redelivery (page 311)

Declaring JMS Providers

By default, Patch Bay is configured to use Local JMS and SQL JMS. These providers and

the connection factories they use are specified through Nucleus components of class

atg.dms.patchbay.JMSProviderConfiguration. For example, to configure SQL JMS, Oracle ATG Web

Commerce includes a component of this class named /atg/dynamo/messaging/

DynamoSQLJMSProvider. The properties file for this component includes these lines:

providerName=sqldms
topicConnectionFactoryName=dynamo:/atg/dynamo/messaging/SqlJmsProvider
queueConnectionFactoryName=dynamo:/atg/dynamo/messaging/SqlJmsProvider
XATopicConnectionFactoryName=dynamo:/atg/dynamo/messaging/SqlJmsProvider
XAQueueConnectionFactoryName=dynamo:/atg/dynamo/messaging/SqlJmsProvider
supportsTransactions=true
supportsXATransactions=true

You generally should not need to modify any of these settings for Local JMS or SQL JMS. However, you can

configure Patch Bay to work with additional JMS providers. See Using Patch Bay with Other JMS Providers (page

313) for more information.

You can designate a JMS provider as the default provider in Patch Bay by setting the defaultJMSProvider

property of the /atg/dynamo/messaging/MessagingManager component to point to the component that

configures the provider. By default, this property points to the DynamoSQLJMSProvider component, which

configures SQL JMS. Designating a provider as the default simplifies configuration of the destinations for that

provider, and makes it easier to switch between providers. See Connecting to Destinations (page 301) for

more information.

You can also declare JMS providers at the top of the Patch Bay configuration file, using tags that correspond to

the properties of JMSProviderConfiguration. Note, however, that a JMS provider declared this way cannot

be designated as the default provider.

These tags are equivalent to the DynamoSQLJMSProvider properties shown above:

<!-- SQL JMS provider -->
<provider>
 <provider-name>
 sqldms
 </provider-name>
 <topic-connection-factory-name>

300 12 ATG Message System

 dynamo:/atg/dynamo/messaging/SqlJmsProvider
 </topic-connection-factory-name>
 <queue-connection-factory-name>
 dynamo:/atg/dynamo/messaging/SqlJmsProvider
 </queue-connection-factory-name>
 <xa-topic-connection-factory-name>
 dynamo:/atg/dynamo/messaging/SqlJmsProvider
 </xa-topic-connection-factory-name>
 <xa-queue-connection-factory-name>
 dynamo:/atg/dynamo/messaging/SqlJmsProvider
 </xa-queue-connection-factory-name>
 <supports-transactions>
 true
 </supports-transactions>
 <supports-xa-transactions>
 true
 </supports-xa-transactions>
</provider>

Declaring Message Sources, Sinks, and Filters

One of the functions of the DMS configuration file is to name all message sources, sinks, and filters existing

in the system. As described earlier, these elements are globally scoped Nucleus services that implement the

appropriate interfaces. Each element should be declared with its Nucleus name. For example:

<?xml version="1.0" ?>

<dynamo-message-system>
 <patchbay>

 <message-source>
 <nucleus-name>
 /atg/dynamo/messaging/TestSource1
 </nucleus-name>
 </message-source>

 <message-sink>
 <nucleus-name>
 /atg/dynamo/messaging/TestSink1
 </nucleus-name>
 </message-sink>

 <message-filter>
 <nucleus-name>
 /atg/dynamo/messaging/TestFilter1
 </nucleus-name>
 </message-filter>

 </patchbay>
</dynamo-message-system>

Note: The Nucleus names are examples only, and might not correspond to actual Nucleus components.

Any number of sources, sinks, and filters can be specified, in any order. Also, as mentioned above, if there are

multiple dynamoMessagingSystem.xml files spread across configuration path entries, the sources, sinks, and

filters from all of those files are registered.

12 ATG Message System 301

Connecting to Destinations

After a message source, sink, or filter has been declared in the configuration file, it must be hooked up to

JMS in order for its messages to go anywhere, or for it to receive messages. As discussed earlier, a messaging

component is never connected directly to another component. Instead, a messaging component is hooked up

to a JMS destination, maintained by one of the JMS providers registered with Patch Bay. Messaging components

communicate with each other by hooking up to the same destination—if message source A sends messages to

destination D, and message sink B receives messages from destination D, messages flow from A to B.

Whenever a destination is specified in the DMS configuration file, it must specify which provider owns that

destination. The destination must also be named by its JNDI name, using the prefix appropriate to that

destination’s provider. As discussed earlier, Oracle ATG Web Commerce includes two providers: Local JMS and

SQL JMS. The following table specifies the required information for each provider:

Provider Provider-Name Destination JNDI Prefix

Local JMS local localdms:/local

SQL JMS sqldms sqldms:/

The following illustrates how a message source is connected to a destination in the DMS configuration file. In

this case, the destination is managed by Local JMS, and is called localdms:/local/TestMessages:

<message-source>
 <nucleus-name>
 /atg/dynamo/j2ee/examples/TestMessageSource1
 </nucleus-name>

 <output-port>
 <port-name>
 DEFAULT
 </port-name>

 <output-destination>
 <provider-name>
 local
 </provider-name>
 <destination-name>
 localdms:/local/TestMessages
 </destination-name>
 <destination-type>
 Topic
 </destination-type>
 </output-destination>

 </output-port>

</message-source>

The output-port definition is described in the Using Messaging Ports (page 304) section of this chapter.

The important part of this example is the output-destination definition. This definition says that

messages coming out of this Nucleus component should be directed to the topic called localdms:/local/

302 12 ATG Message System

TestMessages, managed by JMS provider local. Multiple destinations can be specified for a component. For

example:

<message-source>
 <nucleus-name>
 /atg/dynamo/j2ee/examples/TestMessageSource1
 </nucleus-name>

 <output-port>
 <port-name>
 DEFAULT
 </port-name>

 <output-destination>
 <provider-name>
 local
 </provider-name>
 <destination-name>
 localdms:/local/TestMessages
 </destination-name>
 <destination-type>
 Topic
 </destination-type>
 </output-destination>

 <output-destination>
 <provider-name>
 sqldms
 </provider-name>
 <destination-name>
 sqldms:/PersistentTopic1
 </destination-name>
 <destination-type>
 Topic
 </destination-type>
 </output-destination>

 </output-port>

</message-source>

This says that each message coming out of the component is sent to a destination in Local JMS, and a

destination in SQL JMS. The messages are sent in the order specified.

Message sinks are configured in much the same way. For example:

<message-sink>
 <nucleus-name>
 /atg/dynamo/j2ee/examples/TestMessageSink1
 </nucleus-name>

 <input-port>
 <port-name>
 DEFAULT
 </port-name>

 <input-destination>
 <provider-name>

12 ATG Message System 303

 local
 </provider-name>
 <destination-name>
 localdms:/local/TestMessages
 </destination-name>
 <destination-type>
 Topic
 </destination-type>
 </input-destination>

 <input-destination>
 <provider-name>
 sqldms
 </provider-name>
 <destination-name>
 sqldms:/PersistentTopic1
 </destination-name>
 <destination-type>
 Topic
 </destination-type>
 <durable-subscriber-name>
 testMessageSink1
 </durable-subscriber-name>
 </input-destination>

 </input-port>

</message-sink>

This configuration says that messages sent to either topic in either provider are passed to the

TestMessageSink1 component, using the MessageSink.receiveMessage() call.

Notice that the sqldms input-destination specifies a durable-subscriber-name. This means that the

connection to the topic should be made using a durable subscription, with the given durable subscriber name.

If messages are sent to this topic while the subscriber is off-line, those messages are held under this name. When

the subscriber starts up, the messages held under that name are passed to the message sink.

The durable-subscriber-name is optional. If it is not supplied, the subscription is non-durable, meaning

that the message sink misses any messages sent to the topic while the message sink server is off-line. Durable

subscriptions are probably used whenever SQL JMS is used, as most applications that require the robust

persistence of SQL JMS also probably want the functionality of durable subscriptions.

Specifying Destinations for the Default Provider

A potential problem with specifying destinations as described above is that the names are provider-specific,

because each provider can use different naming conventions for destinations. This means that if you change

providers, you might need to rename all of your destinations in the Patch Bay configuration file. This is especially

likely if your application server is IBM WebSphere Application Server or Oracle WebLogic Server, because you

might want to switch at some point from SQL JMS to the application server’s own provider.

To simplify this process, Patch Bay provides a generic naming scheme for destinations, and automatically

maps these names to the actual names used by SQL JMS, IBM WebSphere Application Server, or Oracle

WebLogic Server, depending on the provider designated as the default provider in Patch Bay. (See Declaring JMS

Providers (page 299) for information about the default JMS provider.) In this naming scheme, destinations for

the default provider begin with the prefix patchbay:/. For example, suppose you specify a destination name as

patchbay:/myQueues/alertsQueue. The following table shows the actual destination name that Patch Bay

maps this name to, depending on whether the default JMS provider is SQL JMS, WebSphere, or WebLogic:

304 12 ATG Message System

Provider Destination Name

SQL JMS sqldms:/myQueues/alertsQueue

IBM WebSphere Application Server jms/myQueues/alertsQueue

Oracle WebLogic Server myQueues.alertsQueue

Using Messaging Ports

In the Patch Bay configuration, a component can be configured to send its messages to a destination (or group

of destinations), or to receive its messages from a destination (or group of destinations). Sometimes, however,

you might want a component to have more control over where its messages are going. For example, a message

filter might read in a message and then resend that message to one of several outputs based on some aspect of

the message, such as its JMSType. Each of those outputs are then configured in Patch Bay to go to a separate set

of destinations.

In Patch Bay, those outputs are called ports. The author of a messaging component chooses the names of

the ports that are used by that component. Whenever a message source (or filter) sends a message, it must

specify the name of the port through which the message is sent. This means that the port names used by the

component are hard-coded into the component.

In Patch Bay, each of a component’s output ports can be attached to a different set of destinations. For example:

<message-source>
 <nucleus-name>
 /atg/dynamo/j2ee/examples/TestMessageSource1
 </nucleus-name>

 <output-port>
 <port-name>
 Normal
 </port-name>

 <output-destination>
 <provider-name>
 local
 </provider-name>
 <destination-name>
 localdms:/local/NormalMessages
 </destination-name>
 <destination-type>
 Topic
 </destination-type>
 </output-destination>

 </output-port>

 <output-port>
 <port-name>
 Emergency
 </port-name>

 <output-destination>
 <provider-name>

12 ATG Message System 305

 local
 </provider-name>
 <destination-name>
 localdms:/local/EmergencyMessages
 </destination-name>
 <destination-type>
 Topic
 </destination-type>
 </output-destination>
 </output-port>
</message-source>

In this example, it is assumed that TestMessageSource1 is sending messages through at least two ports:

Normal and Emergency. Patch Bay then directs messages coming out of those two ports to different

destinations:

• Normal messages go to localdms:/local/NormalMessages.

• Emergency messages go to localdms:/local/EmergencyMessages.

If TestMessageSource1 sends a message through some other port name, that message goes nowhere.

A MessageSource must be coded to specify which port it wants a message to use. The port is specified in both

the createMessage and sendMessage methods. For example, this sends a TextMessage through the Normal

port.

public void sendOneMessage ()
 throws JMSException
{
 if (mStarted && mContext != null) {
 TextMessage msg = mContext.createTextMessage ("Normal");
 msg.setJMSType ("atg.test.Test1");
 msg.setText ("Test text string");
 mContext.sendMessage ("Normal", msg);
 }
}

Notice that the message source does not need to declare what ports it uses. It just sends a message out using

a name, and if Patch Bay has destinations hooked up to that name, the message is sent to those destinations. It

is the responsibility of the message source developer to provide documentation as to what output ports it uses

and in what situations.

Message sinks can also make use of ports. Whenever a message is received, the receiveMessage method

passes in the name of the port through which the message arrived. For example, the DMS configuration might

look something like this:

<message-sink>
 <nucleus-name>
 /atg/dynamo/j2ee/examples/TestMessageSink1
 </nucleus-name>

 <input-port>
 <port-name>
 LowPriority
 </port-name>

306 12 ATG Message System

 <input-destination>
 <provider-name>
 local
 </provider-name>
 <destination-name>
 localdms:/local/TestMessages
 </destination-name>
 <destination-type>
 Topic
 </destination-type>
 </input-destination>

 </input-port>

 <input-port>
 <port-name>
 HighPriority
 </port-name>

 <input-destination>
 <provider-name>
 sqldms
 </provider-name>
 <destination-name>
 sqldms:/PersistentTopic1
 </destination-name>
 <destination-type>
 Topic
 </destination-type>
 <durable-subscriber-name>
 testMessageSink1
 </durable-subscriber-name>
 </input-destination>

 </input-port>

</message-sink>

If a message arrives from localdms:/local/TestMessages, the receiveMessage method is passed

LowPriority as the name of the port. But if a message arrives from sqldms:/PersistentTopic1, the

receiveMessage methods are passed HighPriority. An input port can have many input destinations. If a

message arrives from any of those destinations, it is passed in with the name of its associated input port. Again,

the message sink need not declare what ports it uses. However, the message sink developer should document

what port names the message sink expects to see.

Ports provide another level of flexibility available through Patch Bay, but they should be used with care because

they push some of the hookup responsibility into the messaging component code. Many of the functions

provided by ports can be provided by other means, such as using different JMSTypes. The vast majority

of message sources and sinks use only one output or input port. Use of multiple ports should be kept to a

minimum, perhaps restricted to special general-purpose components such as multiplexers/de-multiplexers or

other message distribution components that really require them.

Using the Default Port

If a message source uses only one output port, that port should be called DEFAULT. The same is true for message

sinks that use one input port. This is illustrated in the examples in the Connecting to Destinations (page 301)

section.

12 ATG Message System 307

Note: If you use the DEFAULT port name, you can omit the port-name tag from the Patch Bay configuration file,

because the default value for this tag is DEFAULT.

The createMessage and sendMessage methods also default to using DEFAULT for the port name. For example:

MessageSourceContext.createTextMessage()

is equivalent to

MessageSourceContext.createTextMessage("DEFAULT")

and

MessageSourceContext.sendMessage(pMessage)

is equivalent to

MessageSourceContext.sendMessage("DEFAULT",pMessage)

Using the Message Registry

DMS and Patch Bay make no assumptions about what kinds of messages flow through the various destinations.

However, it is often useful to document what kinds of messages are used in the system, and what data is

associated with those messages.

Patch Bay provides a Message Registry, which is a facility that maps message types to the data carried by

those message types. The data in the Message Registry can then be accessed at runtime through a set of APIs.

Application construction tools, such as the ATG Control Center, make use of this data to present lists of available

message types or types of data associated with each message type.

The Message Registry works only for Oracle ATG Web Commerce messages—that is, messages that adhere to

the conditions specified in the ATG Message Conventions (page 283) section of this chapter. The important

points are:

• The messages are identified by JMSType.

• They are ObjectMessages.

• The object in the message is a bean whose class is always the same for a given JMSType.

The Message Registry maps the JMSType string to the class of bean held by messages of that type. For

example, messages with JMSType atg.dcs.Purchase are ObjectMessages containing objects of type

atg.dcs.messages.PurchaseMessage.

Because there can be many message types in a large system, the Message Registry allows these message types

to be grouped into message families. A message family is simply a group of message types that is given a name.

For example, each application probably defines its own message family. A message family can itself contain

message families, further subdividing the list of message types used by the application.

308 12 ATG Message System

All of this is declared in the DMS configuration file:

<dynamo-message-system>
 <patchbay>
 ...
 </patchbay>
 <local-jms>
 ...
 </local-jms>

 <message-registry>

 <message-family>
 <message-family-name>
 Commerce
 </message-family-name>

 <message-type>
 <jms-type>
 atg.dcs.Purchase
 </jms-type>
 <message-class>
 atg.dcs.messages.PurchaseMessage
 </message-class>
 </message-type>

 </message-family>

 </message-registry>
</dynamo-message-system>

This declares a message family named Commerce, which contains a single declared message

type. The message is identified by JMSType atg.dcs.Purchase, and contains objects of type

atg.dcs.messages.PurchaseMessage. The Commerce family might have subfamilies:

<dynamo-message-system>
 <patchbay>
 ...
 </patchbay>
 <local-jms>
 ...
 </local-jms>

 <message-registry>

 <message-family>
 <message-family-name>
 Commerce
 </message-family-name>

 <message-family>
 <message-family-name>
 Purchasing
 </message-family-name>

 <message-type>
 ...
 </message-type>

12 ATG Message System 309

 ...
 </message-family>

 <message-family>
 <message-family-name>
 CustomerService
 </message-family-name>

 <message-type>
 ...
 </message-type>
 ...
 </message-family>

 <message-family>
 <message-family-name>
 CatalogManagement
 </message-family-name>

 <message-type>
 ...
 </message-type>
 ...
 </message-family>

 </message-family>

 </message-registry>
</dynamo-message-system>

These declarations and subdivisions have no effect on how these messages are handled by the messaging

system. They only affect the way that tools see these lists. Tools access these lists through the interfaces

in the atg.dms.registry package: MessageRegistry, MessageFamily, and MessageType. The

MessagingManager component implements the MessageRegistry interface, which exposes the list

of MessageFamily objects and searches for a MessageType by a particular MessageType name. Each

MessageFamily then exposes its name, the list of MessageFamilies that it holds in turn, and the list of

MessageTypes it holds.

Dynamic Message Types

One purpose of the Message Registry is to provide metadata about the expected dynamic beans properties

of messages, in the form of a DynamicBeanInfo associated with each MessageType. In most cases, the

properties of an object message can be determined purely by analyzing its object’s Java class (that is, the class

specified by the <message-class> element in the Patch Bay configuration file). The Message Registry does this

automatically, by default.

However, in some cases properties might need to be determined dynamically from the application environment.

A typical case of this is a message with a property of type atg.repository.RepositoryItem; in advance

of actually receiving a message, this item’s subproperties can only be determined by locating the appropriate

repository within the application and examining its atg.repository.RepositoryItemDescriptor.

To handle this case, the Message Registry includes a facility for dynamic message typing. The optional

<message-typer> element can be included immediately following a <message-class> element. It must

specify a Nucleus component by use of a child <nucleus-name> element. The component, in turn, must

implement the interface atg.dms.registry.MessageTyper; for each message that references the message

typer, the typer’s getBeanInfo() method is called with the message’s name and class to determine that

message’s DynamicBeanInfo.

310 12 ATG Message System

Here is an imaginary example:

<message-type>
 <jms-type>
 myproject.auction.BidMessage
 </jms-type>
 <message-class>
 myproject.jms.auction.BidMessage
 </message-class>
 <message-typer>
 <nucleus-name>
 /myproject/messaging/MessageTyper
 </nucleus-name>
 </message-typer>
 <message-context>
 session
 </message-context>
 <display-name>
 Bid on an item
 </display-name>
 <description>
 Message sent when someone bids on a repository item.
 </description>
</message-type>

The MessageTyper interface includes a single method:

public interface MessageTyper
{
 //-------------------------------------
 /**
 * Returns the DynamicBeanInfo associated with a JMS message type
 * and optional message object class. If a class is provided, the
 * MessageTyper can expect that it is the class to which an object
 * message of this type will belong, and can introspect it to
 * determine the non-dynamic portion of the message metadata.
 *
 * @param pJMSType the JMS message type, which is required
 * @param pMessageClass an optional class which will be used at
 * runtime for an object message.
 **/
 public DynamicBeanInfo getBeanInfo (String pJMSType, Class pMessageClass);
}

A typical implementation of this interface might analyze the class to determine a basic DynamicBeanInfo by

calling DynamicBeans.getBeanInfoFromType(pMessageClass), and then return a DynamicBeanInfo that

overlays the class-based metadata with dynamically determined metadata.

Delaying the Delivery of Messages

Patch Bay includes a feature that lets you delay the delivery of a message until a specific time. To support this

behavior, Patch Bay uses a class called atg.dms.patchbay.MessageLimbo that receives messages that are

marked for delayed delivery, stores them in database tables until the specified delivery time, and then sends

them to their intended destinations. The delivery time for a message can be specified by inserting a property in

12 ATG Message System 311

the header of the message. The name of this property is stored in the MessageLimbo DELIVERY_DATE field, and

its value should be a Long datetime, specified as UTC milliseconds from the epoch start (1 January 1970 0:00

UTC).

For example, the following code creates an SQL JMS message and specifies that it should not be delivered until

one hour has passed:

Message m = (Message) qs.createMessage();
long hourInMillis = 1000 * 60 * 60;
long now = System.currentTimeMillis();
Long deliveryDate = new Long(now + hourInMillis);
m.setObjectProperty(atg.dms.patchbay.MessageLimbo.DELIVERY_DATE, deliveryDate);

If you require delivery on a specific date and not just a time offset, you can use the Java Date or Calendar class

to produce the UTC milliseconds for the specific delivery date.

Note: The message cannot be delivered any sooner than the specified time, but there is no guarantee how

much later the delivery actually takes place.

Configuring Delayed Delivery

The following are key properties of the MessagingManager component that configure the delayed delivery

feature:

• allowMessageDelays: If true (the default), delayed delivery is enabled. If false, delayed delivery is

disabled, and the message’s delivery time is ignored.

• limboSchedule: Controls how often the MessageLimbo component polls the database for messages that

are ready to be delivered. Default is once per minute.

• limboDeliveryRetry: Number of times the MessageLimbo can attempt to deliver the message to its

destination. For example, if this value is 2 and the first delivery attempt fails, the MessageLimbo attempts

one more delivery. Default is 1, which means that only one attempt is made, and if it fails, the message is

discarded.

Configuring Failed Message Redelivery

JMS can work with the Java Transaction API (JTA) to provide transaction management for messaging. When

a transaction manager creates a transaction, resources such as JMS destinations can be enlisted with the

transaction. When the application is done processing the data within the transaction, it can ask the transaction

manager to commit the transaction. When this occurs, the transaction manager asks each of the resources if it

can commit the changes made. If all resources claim they can commit the changes, the transaction manager

asks all resources to commit their changes. If a resource claims it cannot commit its changes, the transaction

manager directs the resources to undo any changes made. The application can also set the transaction to

rollback only mode, which forces the transaction manager to roll back the transaction.

Note that message redelivery works only for SQL JMS destinations. For each JMS input destination, Patch Bay

creates a thread that continuously loops through a cycle of beginning a transaction, receiving a message from

the destination, and calling the configured message sink, and ending the transaction. If Patch Bay attempts to

deliver a message to a message sink and an error condition arises (such as violation of a database constraint), the

transaction is rolled back. The message remains in the destination, as if it were never delivered. Patch Bay tries to

redeliver the message.

312 12 ATG Message System

If the failed delivery is the result of some temporary condition, Patch Bay successfully delivers the message in a

subsequent attempt. However, in some cases, the exception is caused by a problem with the message itself. This

can result in an infinite loop, where the message delivery fails and the transaction is rolled back, and then Patch

Bay continually tries to redeliver the message, and each time the delivery fails and the transaction is rolled back.

To avoid this situation, you can configure a message sink (or filter) so that only a certain number of attempts can

be made to deliver a message to it. For example:

<message-sink>
 <nucleus-name>/fulfillment/OrderFulfiller</nucleus-name>
 <input-port>
 <input-destination>
 <destination-name>patchbay:/Fulfillment/SubmitOrder</destination-name>
 <destination-type>Topic</destination-type>
 <durable-subscriber-name>
 OrderFulfiller-SubmitOrder
 </durable-subscriber-name>
 <redelivery>
 <max-attempts>3</max-attempts>
 <delay>60000</delay>
 <failure-output-port>FulfillmentError</failure-output-port>
 </redelivery>
 </input-destination>
 </input-port>
 <redelivery-port>
 <port-name>FulfillmentError</port-name>
 <output-destination>
 <destination-name>patchbay:/Fulfillment/ErrorNotification</destination-name>
 <destination-type>Queue</destination-type>
 </output-destination>
 </redelivery-port>
</message-sink>

In this example, the message sink is configured so that Patch Bay makes a maximum of 3 attempts to deliver

a message to it. The delay between each attempt is set to 60,000 milliseconds (10 minutes), which allows time

for any transient errors responsible for a failed delivery to resolve themselves. This example also configures a

destination to direct the message to if the delivery fails 3 times.

The redelivery port can define multiple destinations. The following example defines a second destination that

has no components listening to it to act as a Dead Message queue. This allows the message to be kept in a JMS

delivery engine waiting for eventual future delivery. After the source for the error is resolved, an administrator

can use tools provided by the JMS provider to move the message back to the correct destination so that the

message can be properly processed.

<redelivery-port>
 <port-name>FulfillmentError</port-name>
 <output-destination>
 <destination-name>patchbay:/Fulfillment/ErrorNotification</destination-name>
 <destination-type>Queue</destination-type>
 </output-destination>
 <output-destination>
 <destination-name>patchbay:/Fulfillment/DeadMessageQueue</destination-name>
 <destination-type>Queue</destination-type>
 </output-destination>
</redelivery-port>

12 ATG Message System 313

Failed Message Redelivery and the MessageLimbo Service

The failed message redelivery system uses the MessageLimbo service discussed in the section Delaying

the Delivery of Messages (page 310). There are thus two different types of messages handled by the

MessageLimbo service:

• Delayed messages that are not yet published to a JMS destination

• Messages that were published to a destination, but were not successfully delivered to a message sink

These two types of messages are stored in the same set of tables, except that messages stored for redelivery

have entries in one additional table named dms_limbo_delay. See Appendix B, DAF Database Schema (page

441) for more information about these tables.

The maximum number of attempts to redeliver a failed message is set in the Patch Bay configuration file,

using the max-attempts tag, as shown above. After this number of attempts, if the message still has not been

successfully delivered to a message sink, Patch Bay creates a new message object and copies the message

properties and message body into the new message. Patch Bay then attempts to publish the new message to

the failure destination configured in the redelivery port.

If, due to some error condition, the new message cannot be published to the failure destination, the

MessageLimbo service makes further attempts to publish the message. The maximum number of attempts

is set by the limboDeliveryRetry property of the MessagingManager component. The default value of

this property is 5, so after 5 attempts to publish the message, no further attempts are made, and the message

remains in the database tables used by MessageLimbo. If the error condition is subsequently resolved, a

database administrator can issue SQL statement to reset the counter on the message so the message is

published. For example, the following SQL statement resets the counter for all messages being handled by the

MessageLimbo service:

UPDATE dms_limbo_msg SET delivery_count=1

Using Patch Bay with Other JMS Providers

Patch Bay comes preconfigured to use Local JMS and SQL JMS. This ensures that Oracle ATG Web Commerce

products and demos work without any further configuration. If desired, you can configure Patch Bay to use your

application server’s JMS provider or a third-party JMS provider, through standard Patch Bay tags. Consult the

provider’s documentation to determine the values to use.

In addition, you must add the client libraries for the JMS provider to Oracle ATG Web Commerce’s CLASSPATH.

See the ATG Installation and Configuration Guide for information about modifying the Oracle ATG Web Commerce

CLASSPATH.

The DMS configuration file must declare all providers before it declares message sources and sinks. For example:

<?xml version="1.0" ?>

<dynamo-message-system>
 <patchbay>

 <provider>

314 12 ATG Message System

 <provider-name>
 companyMessaging
 </provider-name>

 <topic-connection-factory-name>
 /newProvider/TopicConnectionFactory
 </topic-connection-factory-name>
 <queue-connection-factory-name>
 /newProvider/QueueConnectionFactory
 </queue-connection-factory-name>
 <xa-topic-connection-factory-name>
 /newProvider/XATopicConnectionFactory
 </xa-topic-connection-factory-name>
 <xa-queue-connection-factory-name>
 /newProvider/XAQueueConnectionFactory
 </xa-queue-connection-factory-name>
 <supports-transactions>
 true
 </supports-transactions>
 <supports-xa-transactions>
 true
 </supports-xa-transactions>
 <username>
 someUser
 </username>
 <password>
 somePassword
 </password>
 <client-id>
 local
 </client-id>
 <initial-context-factory>
 /myApp/jms/InitialContextFactory
 </initial-context-factory>

 </provider>

 <message-source>
 ...
 </message-source>
 ...

 </patchbay>
</dynamo-message-system>

If you specify multiple providers, each must have a unique provider-name.

Each <provider> tag can supply the following fields:

provider-name

Required, identifies the provider. The field can have any value that is unique among other providers in the

system.

When message sources and sinks define input and output destinations, those destinations are associated with a

provider name. This provider name must match the provider name declared for the provider that is handling a

particular destination.

topic-connection-factory-name

12 ATG Message System 315

queue-connection-factory-name

xa-topic-connection-factory-name

xa-queue-connection-factory-name

A JMS provider is accessed through ConnectionFactories that are identified by JNDI names., as specified by

the JMS provider documentation.

Some of these fields might be optional. For example, JMS providers that do not support XA do not require xa-

topic-connection-factory-name and xa-queue-connection-factory-name.

supports-transactions

Set to true or false, to specify whether the JMS provider supports commit() and rollback().

supports-xa-transactions

Set to true or false, to specify whether the JMS provider supports XA transactions.

Note: If this field is set to true, you must also set xa-topic-connection-factory-name and xa-queue-

connection-factory-name.

username

password

Many JMS providers require that clients log in to the JMS system using a username and password. If these fields

are defined, their values are used to log in when creating JMS connections.

client-id

Many JMS providers have a notion of a client identifier, which allows the provider to remember who a client is

even if that client is disconnected and later reconnects. This allows the JMS provider to queue up messages for

the client while the client is disconnected. When the client reconnects, it uses the same client identifier it had

previously, and the JMS provider knows to deliver the messages queued up for that client.

This field is optional, but it should be filled in if there are multiple clients running against the same JMS provider.

In this case, each client should be assigned a unique client-id.

initial-context-factory

JNDI names are used to identify the connection factories and the topics and queues managed by a provider.

These JNDI names are resolved against an InitialContext. Each provider obtains the InitialContext in

its own way, as described by its documentation. Typically, a Dictionary is created with several properties, and is

passed to the InitialContext’s constructor.

For example, a JMS provider might say that the InitialContext must be created using this code:

Hashtable h = new Hashtable ();
h.put (Context.INITIAL_CONTEXT_FACTORY, "...");
h.put (Context.PROVIDER_URL, "...");
...

Context ctx = new InitialContext (h);

In order for Patch Bay to create the InitialContext as required by the provider, this code must be packaged

into a Nucleus component, and the name of the Nucleus component must be supplied as the initial-

context-factory.

316 12 ATG Message System

The Nucleus component must implement the interface atg.dms.patchbay.JMSInitialContextFactory,

which defines a single method createInitialContext(). Patch Bay calls this method to get the Context that

it uses to resolve a JNDI name.

The code for that Nucleus component might look like this:

import javax.naming.*;
import atg.dms.patchbay.*;

public class MyInitialContextFactory
 implements JMSInitialContextFactory
{
 public Context createInitialContext (String pProviderName,
 String pUsername,
 String pPassword,
 String pClientId)
 throws NamingException
 {
 Hashtable h = new Hashtable ();
 h.put (Context.INITIAL_CONTEXT_FACTORY, "...");
 h.put (Context.PROVIDER_URL, "...");
 ...

 return new InitialContext (h);
 }
}

The arguments passed to createInitialContext are taken from the provider’s other configuration values.

Some JMS providers might need this information when creating the InitialContext.

This Nucleus component must be placed somewhere in the Nucleus hierarchy and its full Nucleus name must be

supplied to the initial-context-factory.

13 Transaction Management 317

13 Transaction Management

Transaction management is one of the most important infrastructure services in an application server. Because

nearly all Internet applications access some sort of transactional database through JDBC, Oracle ATG Web

Commerce developers need to understand how transaction management is handled by a J2EE application

server, how transactions affect the behavior of applications, and how applications should be written to

cooperate with the transaction system.

In this chapter

This chapter includes the following sections:

• Transaction Overview (page 317)

• Transaction Manager (page 318)

• Working with Transactions (page 319)

• Transaction Demarcation (page 323)

Transaction Overview

Most developers are familiar with the concept of a transaction. In its simplest definition, a transaction is a set of

actions that is treated as an atomic unit; either all actions take place (the transaction commits), or none of them

take place (the transaction rolls back).

A classic example is a transfer from one bank account to another. The transfer requires two separate actions.

An amount is debited from one account, then credited to another account. It is unacceptable for one of these

actions to take place without the other. If the system fails, both actions must be rolled back, even if the system

failed in between the two actions. This means that both actions must take place within the same transaction.

Within an application server, transaction management is a complex task, because a single request might

require several actions to be completed within the same transaction. A typical J2EE request can pass through

many components—for example, servlets, JSPs, and EJBs. If the application is responsible for managing the

transaction, it must ensure that the same transactional resource (typically a JDBC connection) is passed to all of

those components. If more than one transactional resource is involved in the transaction, the problem becomes

even more complex.

Fortunately, managing transactions is one of the primary tasks of an application server. The application server

keeps track of transactions, remembering which transaction is associated with which request, and what

318 13 Transaction Management

transactional resources (such as JDBC or JMS connection) are involved. The application server takes care of

committing those resources when the transaction ends.

As a result, transactional programming is much simpler for applications. Ideally, the application components

do not need to be aware that transactions are used at all. When an application component needs to access a

database, it just asks the application server for a JDBC connection, performs its work, then closes the connection.

It is the application server’s responsibility to make sure that all components involved in a request get the

same connection, even though each component is coded to open and close its own separate connection.

The application server does this behind the scenes, by mapping threads to transactions and transactions to

connections.

When the application has completed the set of operations, it can commit the transaction that it created. It is

the application server’s responsibility to know which JDBC connections were used while that transaction was in

place, and to commit those connections as a result.

Transactions are often associated with requests, but they can be associated with other sequences of actions

performed in a single thread. For example, the Oracle ATG Web Commerce scheduler is used to notify

components to perform some kind of action at specified times. When a component receives a notification,

it can start a transaction, thus ensuring that its operations are treated as an a unit. When the component has

completed its work, it can commit the transaction, thereby committing all of these operations.

Transaction Manager

Each active transaction is represented by a transaction object, which implements the interface

javax.transaction.Transaction. This object keeps track of its own status, indicating if it is active, if it has

been committed or rolled back, and so on. The transaction also keeps track of the resources that were enlisted

with it, such as JDBC connections. A transaction object lasts for the space of exactly one transaction—when

the transaction begins, a new transaction object is created. After the transaction ends, the transaction object is

discarded.

A transaction is usually associated with a thread, which is how a transaction appears to be carried along

throughout the duration of a request or other sequence of actions. Only one transaction can be associated with

a thread at any one time. This leads to the notion of the current transaction, which is the transaction that is

currently associated with a thread.

An application server can have many active transactions at once, each associated with a different thread running

in the server. A central service, called the Transaction Manager, is responsible for keeping track of all these

transactions, and for remembering which transaction is associated with which thread. When a transaction

is started, the Transaction Manager associates it with the appropriate thread. When a transaction ends, the

Transaction Manager dissociates it from its thread.

The Transaction Manager is implemented through the Java Transaction API (JTA). The JTA includes

two main interfaces for managing transactions, javax.transaction.TransactionManager and

javax.transaction.UserTransaction.

The TransactionManager interface is intended to be used by the application server, and it provides a full

range of methods for managing transactions. It allows transactions to be created, suspended, resumed,

committed, and rolled back. It also provides direct access to the javax.transaction.Transaction object,

through which synchronizations can be registered and resources can be enlisted.

In Oracle ATG Web Commerce applications, the TransactionManager object is represented by a Nucleus

component, /atg/dynamo/transaction/TransactionManager. Depending on what application server you

13 Transaction Management 319

are running, this component is configured in various ways to point to the appropriate TransactionManager

implementation. See the ATG Installation and Configuration Guide for information about how the Nucleus

TransactionManager component is configured on your application server.

The TransactionManager object keeps track of the transactions running in Oracle ATG Web Commerce

applications, and which threads are associated with which transactions. Nucleus components can get a pointer

directly to the /atg/dynamo/transaction/TransactionManager component. Oracle ATG Web Commerce

also exposes this component to standard J2EE components, such as servlets and EJBs, through the JNDI name

dynamo:/atg/dynamo/transaction/TransactionManager. However, it is not a standard practice in J2EE for

an application to access the TransactionManager interface directly.

J2EE applications instead use the UserTransaction interface, which provides a subset of the methods in the

TransactionManager interface. A UserTransaction object can begin, commit, and rollback transactions,

set the rollback-only flag, and examine the status of the current transaction, but it cannot suspend or resume

transactions, or directly access a Transaction object. The UserTransaction object is represented in Oracle ATG

Web Commerce by the Nucleus component /atg/dynamo/transaction/UserTransaction. This component

actually delegates all of its calls to the /atg/dynamo/transaction/TransactionManager component, but

limits those calls to the methods that are part of the UserTransaction interface.

The methods of both interfaces always operate in the context of the calling thread. For example, the begin

method creates a new Transaction and associates it with the calling thread, or throws an exception if there is

already a Transaction associated with the calling thread.

Accessing the UserTransaction Interface

The UserTransaction interface is typically accessed by EJBs that use bean-managed transactions (BMTs). An

EJB generally uses BMTs if it needs to start and end several transactions within the space of a single method.

Other J2EE components, such as servlets and JSP tags, can also access the UserTransaction object. However,

there are some restrictions; for example, EJBs using container-managed transactions cannot access the

UserTransaction object. The full set of restrictions is found in the EJB specification.

The standard way for a J2EE application to get a pointer to the UserTransaction object is by resolving the

JNDI name java:comp/UserTransaction. To ensure that this reference works properly, you should configure

the Nucleus component /atg/dynamo/transaction/TransactionManager to point to the appropriate class.

For information about how to do this, see the ATG Installation and Configuration Guide.

Working with Transactions

Although the application server handles most of the transaction management for your applications, there are

times when an application needs to control or influence how transactions are handled. This section discusses

how to configure applications (either in deployment descriptors or code) to work with J2EE transaction

management, including:

• Resource Access and Enlistment

• Transaction Completion

• Transaction Synchronization

• Marking Rollback Only

• Transaction Suspension

320 13 Transaction Management

Resource Access and Enlistment

The transaction objects maintained by the Transaction Manager do not do any actual transactional work. For

example, a transaction object does not know how to commit or rollback changes. Instead, the transaction object

is responsible for coordinating these actions in the data storage devices that do know how to commit and

rollback. When a transaction object is committed or rolled back, the transaction object passes that request on to

the data storage devices responsible for carrying out that actual work.

In order for a transaction to keep track of all the resources used during the transaction’s lifetime, those resources

must be enlisted with the transaction. At the API level, resource enlistment is somewhat complicated. The

resource connection to be enlisted must be able to produce an XAResource object, which is then enlisted into

the Transaction object associated with the current thread.

Fortunately, resource enlistment is the job of the application server, not the application. When the application

asks for a resource connection, the application server takes care of enlisting the connection with the current

transaction before returning the connection to the application.

However, this means that applications must obtain resource connections in a manner that cooperates with

this process. The model established by J2EE uses a combination of JNDI and resource connection factories.

A connection factory is an object supplied by the application server that produces connections of the

appropriate type. The interfaces for these connection factories are defined by Java standards—for example,

JDBC connections are produced by javax.sql.DataSource objects, while JMS connections are produced by

javax.jms.TopicConnectionFactory or javax.jms.QueueConnectionFactory objects.

These factory objects are available in Oracle ATG Web Commerce as Nucleus services. For example, the standard

Oracle ATG Web Commerce DataSource object is found at /atg/dynamo/service/jdbc/JTDataSource.

New resource factories can be added as needed by creating them like any other new Nucleus service.

Nucleus components should acquire resources through the proper connection factory services, rather than

accessing drivers directly from their managers. This allows Oracle ATG Web Commerce applications containing

both Nucleus components and standard J2EE components to interoperate.

An application can enlist multiple resources over the course of a single transaction. For example, an application

might read a JMS message, then write a resulting database row through a JDBC connection. Both resources are

enlisted into the same transaction, even if the resources were enlisted by the same or different components. At

the end of the transaction, both resources are committed, as described below.

An application might use the same resource several times over the course of a transaction, perhaps through

multiple disparate components. For example, a request might call an EJB that uses JDBC to perform a database

operation, then call a second EJB that also uses JDBC. Each usage of the resource should go through the entire

sequence outlined previously: use JNDI to get a pointer to the resource factory, acquire a connection from the

factory, then close the connection when finished. The application should not attempt to acquire the resource

once and pass it around from component to component in the interest of avoiding the code for acquiring or

closing the connection.

The application server does what is necessary to make sure that the connection returned to each component

refers to the same transaction. For JDBC drivers, this means that the same Connection object must be returned

each time a connection is requested throughout a single transaction. (JDBC 2.0 drivers that support XA are

not bound by this limitation.) The application server does this by maintaining an internal table mapping

transactions to JDBC connections. When a component requests a JDBC connection, the server consults this

table to see if a connection is already associated with the current transaction and if so, returns that connection.

Otherwise, a new connection is checked out of the connection pool, and remains associated with the current

transaction so that further requests for connections return the same Connection object.

Application components are required to close JDBC connections when they finish doing their individual portion

of work. This might seem odd, especially if other components use the same connection later in the request.

However, rather than actually closing the connection to the database, the application server intercepts these

13 Transaction Management 321

close requests and interprets them as signals from the application that it is done with the connection for the

time being. The application server then responds to that signal by returning the connection to a pool, or by

maintaining the connection’s transactional association.

This means that each individual component should be written as if it were the only component in the request

that needs to access the database. The component should also be written without regard for how the

connection is being managed. The same code should be used regardless of whether connections are being

pooled or not, or whether XA connections are supported or not. These are all permutations that the application

server supports—the application does not need to consider any of this in its compiled code.

Transaction Completion

All transactions eventually end, either in a commit or a rollback. If a transaction commits, all work done through

the resources enlisted over the course of that transaction is made permanent and visible to other transactions. If

a transaction rolls back, none of the work done through any enlisted resources is made permanent.

If a single resource has been enlisted with the transaction, the commit or rollback result is passed directly to

the resource. This is the most common case, because most applications make use of a single database and

communicate with no other transactional resources.

If multiple resources were enlisted with the transaction, such as two database connections or a database

connection and a JMS connection, a two-phase commit must be used to end the transaction. A two-phase

commit is comprised of two stages, prepare and commit:

• prepare: The transaction instructs each resource to prepare itself for a commit. Each resource prepares

by evaluating whether a commit succeeds or not, and responds with a vote to commit or roll back. If any

resource responds with a rollback during the prepare phase, all resources are immediately rolled back and the

transaction ends with a rollback. If a resource votes to commit, that resource must ensure that it can commit

its work, even if a system failure occurs before the commit occurs.

• commit : If all resources vote to commit, the transaction instructs each resource to commit. Resources cannot

roll back at this point.

After a transaction commits or rolls back, it ends and is dissociated from its thread, leaving the thread without a

transaction.

Simulating Two-Phase Commit

A two-phase commit is much more complex than a commit involving a single resource. Not only is it more

complex for the application server, but the resources themselves must be fairly advanced to be able to ensure

that they can commit their work even if the system fails. As it turns out, few databases support this ability, and

even fewer JDBC drivers include this support (sometimes called XA support). As a result, very few applications

make use of multiple resources at once.

Resources can simulate two-phase behavior, even if they do not inherently support two-phase commits. This

allows JDBC drivers that do not support the two-phase commit protocol to work with the application server’s

two-phase commit mechanism. A resource can simulate the two-phase protocol by committing in the prepare

phase, and ignoring the commit phase. If the commit succeeds, the resource votes to commit, otherwise the

resource votes to rollback. The transaction can proceed as normal, using both resources that understand the

two-phase commit protocol, and those that simulate it.

This works most of the time. In the majority of applications where only a single resource is involved, this

technique works flawlessly. However, if a transaction involves multiple resources then there are instances

where a resource might commit while the others roll back. If, during the prepare phase, the resource commits

but then a subsequent resource votes to rollback, it is too late for the first resource to rollback, so there is an

inconsistency.

322 13 Transaction Management

Fortunately, these situations arise very rarely. Because of this, and because two-phase commits can cause

performance problems, resources and drivers that support true two-phase commits are still fairly uncommon.

In fact, the default configuration for an Oracle ATG Web Commerce application uses a JDBC driver configured to

simulate two-phase commits. This driver should be sufficiently robust to handle the majority of applications.

Transaction Synchronization

The Java Transaction API includes a javax.transaction.Synchronization interface, which issues

notifications before and after a transaction is completed. Objects implementing this interface can be registered

with a Transaction object. Just before the transaction’s completion process begins, the TransactionManager

calls the Synchronization object’s beforeCompletion() method. After the transaction is committed or

rolled back, the TransactionManager calls the Synchronization object’s afterCompletion() method.

The beforeCompletion() method is usually used to perform any last-minute work. For example, an

application might use this callback to write some built-up state to the database.

The afterCompletion() method is called after the commit or rollback, and passes in a status code indicating

which of those outcomes occurred. Applications can use this callback to clean up any state or resources that

were used during the transaction.

To register synchronizations directly, your code must use the TransactionManager to get a hold of the

Transaction object. J2EE components do not have explicit access to the TransactionManager interface, so

J2EE provides other ways for its components to receive synchronization callbacks. Specifically, stateful session

EJBs can implement the javax.ejb.SessionSynchronization interface, which includes methods for

receiving synchronization notifications.

Marking Rollback Only

As a result of an error condition or exception, an application can determine that the current transaction should

be rolled back. However, the application should not attempt to rollback the transaction directly. Instead, it

should mark the transaction for rollback only, which sets a flag on the transaction indicating that the transaction

cannot be committed.

When the time comes to end the transaction, the application server checks to see if the transaction is marked

for rollback only, and if so, rolls back the transaction. If the rollback-only flag is not set, the application server

attempts to commit the transaction, which can result in a successful commit or in a rollback.

An application can also check whether a transaction has already been marked for rollback only. If so, the

application should not attempt to enlist any further resources with the transaction. If a transaction has been

marked for rollback only, each subsequent attempt to obtain resources results in an error. Checking for rollback

only can eliminate some of these errors and make debugging easier.

Setting and getting the rollback-only flag can be performed using the setRollbackOnly() and getStatus()

methods of the UserTransaction interface. J2EE provides other interfaces for implementing these

capabilities in specific component types. For example, the javax.ejb.EJBContext interface provides

getRollbackOnly() and setRollbackOnly() methods to EJBs.

Transaction Suspension

When a transaction is created, it is associated with the thread that created it. As long as the transaction is

associated with the thread, no other transaction can be created for that thread.

13 Transaction Management 323

Sometimes, however, it is helpful to use multiple transactions in a single set of actions. For example, suppose a

request performs some database operations, and in the middle of those operations, it needs to generate an ID

for a database row that it is about to insert. It generates the ID by incrementing a persistent value that it stores in

a separate database table. The request continues to do some more database operations, then ends.

All of this can be done in a single transaction. However, there is a potential problem with placing the ID

generation within that transaction. After the transaction accesses the row used to generate the ID, all other

transactions are locked out of that row until the original transaction ends. If generating IDs is a central

activity, the ID generation can end up being a bottleneck. If the transaction takes a long time to complete, the

bottleneck can become a serious performance problem.

This problem can be avoided by placing the ID generation in its own transaction, so that the row is locked for

as short a time as possible. But if the operations before and after the ID generation must all be in the same

transaction, breaking up the operations into three separate transactions (before ID generation, ID generation,

and after ID generation) is not an option.

The solution is to use the JTA’s mechanism for suspending and resuming transactions. Suspending a transaction

dissociates the transaction from its thread, leaving the thread without a current transaction. The transaction still

exists and keeps track of the resources it has used so far, but any further work done by the thread does not use

that transaction.

After the transaction is suspended, the thread can create a transaction. Any further work done by the thread,

such as the generation of an ID, occurs in that new transaction.

The new transaction can end after the ID has been generated, thereby committing the changes made to the ID

counter. After ending this transaction, the thread again has no current transaction. The previously suspended

transaction can now be resumed, which means that the transaction is re-associated with the original thread. The

request can then continue using the same transaction and resources that it was using before the ID generator

was used.

The steps are as follows:

1. Suspend the current transaction before the ID generation.

2. Create a transaction to handle the ID generation.

3. End that transaction immediately after the ID generation

4. Resume the suspended transaction.

An application server can suspend and resume transactions through calls to the TransactionManager object;

individual applications should not perform these operations directly. Instead, applications should use J2EE

transaction demarcation facilities (described in the next section), and let the application server manage the

underlying mechanics.

Transaction Demarcation

When using the J2EE transaction model, developers should not think in terms of starting and stopping

transactions. Instead, developers should think about sections of sequential actions that should be enclosed in

some sort of transactional behavior. This enclosing of transactional behavior is called transaction demarcation.

Transaction demarcation always wraps a sequence of actions, such as a single request, a single method,

or a section of code within a method. The demarcation initializes some transactional behavior before the

324 13 Transaction Management

demarcated area begins, then ends that transactional behavior when the demarcated area ends. The application

server uses these demarcations to determine the appropriate calls to the TransactionManager object.

Transaction Modes

The simplest form of transaction demarcation is to create a transaction at the beginning of the demarcated

area, then end that transaction at the end of the demarcated area. However, there are several transaction

demarcation modes, which are defined as follows:

Mode Description

Required Indicates that a transaction must be in place in the demarcated area. If a transaction is

already in place in the area, nothing further is done. If no transaction is in place, one is

created when the demarcated area is entered and ended when the demarcated area

ends.

RequiresNew Indicates that all activity within the demarcated area must occur in its own separate

transaction. If no transaction is in place in the area, a transaction is created at the

beginning of the demarcated area and ended at the end of the demarcated area.

If a transaction is in place when the demarcated area is entered, that transaction is

suspended, and a new transaction is begun; at the end of the demarcated area, the new

transaction is ended, and the original transaction is resumed.

NotSupported Indicates that a transaction must not be in place in the demarcated area. If no

transaction is in place in the area, nothing further is done. If there is a transaction

in place when the demarcated area is entered, that transaction is suspended, then

resumed at the end of the demarcated area.

Supports This mode does nothing. If a transaction is in place when the demarcated area is entered

then that transaction remains in place. Otherwise, the area is executed without a

transaction in place.

Mandatory Throws an exception if a transaction is not in place when the demarcated area is

entered. This mode does not create a transaction; it is used to verify that a transaction is

in place where the developer expects.

Never Throws an exception if there is a transaction in place when demarcated area is entered.

This mode does not end or suspend any existing transactions; it is used to verify that a

transaction is not in place where the developer does not expect one.

Declarative Demarcation

When using declarative demarcation, you specify what transaction demarcation modes should be used around

certain areas of code. Rather than implementing these demarcations directly in your code, you declare the

demarcations in a configuration file or deployment descriptor. The application server is then responsible for

making sure that the correct transactional behavior is used around the specified area.

At present, declarative demarcations are used only for EJBs that use container-managed transactions (CMT).

In the ejb-jar.xml deployment descriptor, you declare the transaction-type for the EJB as container,

and for each method of the EJB, declare what transaction demarcation mode should be used (using the

13 Transaction Management 325

container-transaction and trans-attribute tags). The application server then makes sure that the

declared transaction mode is enacted around the method call.

For example, if an EJB method is declared to have transaction demarcation mode RequiresNew, the application

server suspends the current transaction and creates a new one before entering the method, then ends the new

transaction and resumes the suspended transaction after exiting the method.

Demarcation in Pages

Oracle ATG Web Commerce’s DSP tag libraries include several tags that you can use to demarcate transactions in

JSPs:

• dsp:beginTransaction initiates a transaction and tracks its status.

• dsp:commitTransaction commits the current transaction.

• dsp:demarcateTransaction begins a transaction, executes one or more operations within the transaction,

and then commits the transaction.

• dsp:rollbackTransaction rolls back the current transaction.

• dsp:setTransactionRollbackOnly marks the current transaction for rollback only.

• dsp:transactionStatus returns the status of the current transaction.

See the ATG Page Developer's Guide for more information about these tags.

Transaction Servlet Bean

In addition to the transaction handling tags in the DSP tag libraries, Oracle ATG Web Commerce has a servlet

bean class, atg.dtm.TransactionDroplet, for demarcating transactions, and includes a Nucleus component

of this class at /atg/dynamo/transaction/droplet/Transaction. For example:

<dsp:droplet name="/atg/dynamo/transaction/droplet/Transaction">
 <dsp:param name="transAttribute" value="requiresNew"/>
 <dsp:oparam name="output">

 ... portion of page executed in demarcated area ...

 </dsp:oparam>
</dsp:droplet>

In this particular example, the demarcated portion of the page executes in its own separate transaction,

as specified by the requiresNew directive. The valid values for the transAttribute input parameter are

required, requiresNew, supports, notSupported, mandatory, and never.

Ending Transactions Early

The transaction demarcation mechanisms, such as the Transaction servlet bean, take care of both creating

and ending transactions. The application itself does not need to commit or rollback the transaction.

Sometimes, however, you might want to force the transaction to complete. This is usually done if the application

needs to determine the outcome of the transaction before reaching the end of the demarcated area. For

example, an entire page might be demarcated in a single transaction, meaning that the transaction ends after

326 13 Transaction Management

the page has been served to the user. This is a problem if the user needs to know that there was a problem

ending the transaction, because by the time the transaction fails, it is too late to tell the user.

The solution is for the application to end the transaction before the end of the demarcated area. Oracle ATG Web

Commerce has a servlet bean class, atg.dtm.EndTransactionDroplet, for ending transactions, and includes

a Nucleus component of this class at /atg/dynamo/transaction/droplet/EndTransaction. For example:

<dsp:droplet name="/atg/dynamo/transaction/droplet/EndTransaction">
 <dsp:param name="op" value="commit"/>
 <dsp:oparam name="successOutput">
 The transaction ended successfully!
 </dsp:oparam>
 <dsp:oparam name="errorOutput">
 The transaction failed with reason:
 <dsp:valueof param="errorMessage"/>
 </dsp:oparam>
</dsp:droplet>

This causes the transaction to commit or rollback (according to the op parameter), and displays one of

the two open parameters, depending on the outcome. The remainder of the page executes without any

transaction context, so the page must not attempt to access any resources after ending the transaction (unless it

demarcates that resource use with a new transaction demarcation).

For more information about including servlet beans and other Nucleus components in pages, and for more

information about the Transaction and EndTransaction servlet beans, see the ATG Page Developer's Guide.

Programmatic Demarcation

At times, you might need to demarcate transactions in your code. Generally, you should use programmatic

demarcation as little as possible, as it is error-prone and can interfere with the application server’s own

transaction demarcation mechanisms. If you find it necessary to use programmatic demarcation, you must be

very careful to ensure that your code handles any unexpected errors and conditions.

The Oracle ATG Web Commerce platform includes two classes that you can use to demarcate transactions in

code:

• atg.dtm.UserTransactionDemarcation can be used by J2EE components and Nucleus components

to perform basic transaction demarcation. This class accesses the UserTransaction object to perform its

operations.

• atg.dtm.TransactionDemarcation can be used by Nucleus components to demarcate areas of code at a

fine granularity. J2EE components cannot use this class, because it accesses the TransactionManager object

directly.

Using the UserTransactionDemarcation Class

The following example illustrates how to use the UserTransactionDemarcation class:

UserTransactionDemarcation td = new UserTransactionDemarcation ();
try {
 try {
 td.begin ();

 ... do transactional work ...

13 Transaction Management 327

 }
 finally {
 td.end ();
 }
}
catch (TransactionDemarcationException exc) {
 ... handle the exception ...
}

There are a few things to note about using the UserTransactionDemarcation class:

• The begin() method implements the REQUIRED transaction mode only. If there is no transaction in place, it

creates a new one; but if a transaction is already in place, that transaction is used.

• If begin() creates a new transaction, the end() method commits that transaction, unless it is marked for

rollback only. In that case, end() rolls it back. However, if begin() does not create a transaction (because

there is already a transaction in place), end() does nothing.

• The code must ensure that end() is always called, typically by using a finally block.

• begin() and end() can throw exceptions of class atg.dtm.TransactionDemarcationException. The

calling code should log or handle these exceptions.

Using the TransactionDemarcation Class

The following example illustrates using the TransactionDemarcation class:

TransactionManager tm = ...
TransactionDemarcation td = new TransactionDemarcation ();
try {
 try {
 td.begin (tm, td.REQUIRED);

 ... do transactional work ...
 }
 finally {
 td.end ();
 }
}
catch (TransactionDemarcationException exc) {
 ... handle the exception ...
}

There are a few things to note about using the TransactionDemarcation class:

• The begin() method takes two arguments. The first argument is the TransactionManager object.

The second argument specifies one of the 6 transaction modes: REQUIRED, REQUIRES_NEW, SUPPORTS,

NOT_SUPPORTED, MANDATORY, or NEVER. If the second argument is not supplied, it defaults to REQUIRED.

• The code must ensure that the end() method is always called, typically by using a finally block.

• The begin() and end() methods can throw exceptions of class

atg.dtm.TransactionDemarcationException. The calling code should log or handle these exceptions.

The TransactionDemarcation class takes care of both creating and ending transactions. For example, if the

TransactionDemarcation object is used with a RequiresNew transaction mode, the end() call commits or

328 13 Transaction Management

rolls back the transaction created by the begin() call. The application is not expected to commit or rollback the

transaction itself.

If for some reason the application needs to force the transaction to end, this can be done by calling the

TransactionManager.commit() method:

TransactionManager tm = ...
TransactionDemarcation td = new TransactionDemarcation ();
try {
 try {
 td.begin (tm);

 ... do transactional work ...

 tm.commit ();
 }
 catch (RollbackException exc) { ... }
 catch (HeuristicMixedException exc) { ... }
 catch (HeuristicRollbackException exc) { ... }
 catch (SystemException exc) { ... }
 catch (SecurityException exc) { ... }
 catch (IllegalStateException exc) { ... }
 finally {
 td.end ();
 }
}
catch (TransactionDemarcationException exc) {
 ... handle the exception ...
}

Ending a transaction in this way should be avoided wherever possible, because handling all exceptions

introduces a lot of complexity in the code. The same result can usually be accomplished by more standard

means.

14 Managing Access Control 329

14 Managing Access Control

User account security is managed through the atg.security API. Using this API, you can manage persistent

user accounts, look up user identities and associate them with roles, manage access control lists, and tie

together multiple security systems running against the same user account database and/or authentication

mechanisms.

The Security Services Interface is a set of fast, flexible APIs that you can use in an application to provide security

for the application’s features. The Security Management Interface enables programmers to configure account

and privilege information with minimal programming.

In this chapter

This chapter covers the following topics:

• Security Services Classes and Interfaces (page 329): Outlines the main interfaces, objects and classes of the

Security Services.

• Extending the Security Model (page 332): Provides examples of extending the default security model and

authenticating a user.

• Configuring Access Privileges (page 338): Describes how to configure and restore Oracle ATG Web

Commerce’s default login accounts, and how to create accounts, groups, and privileges using the ATG Control

Center.

• Configuring LDAP Repository Security (page 341): Describes how to configure an Oracle ATG Web

Commerce application to use an LDAP repository to authenticate users and groups.

Security Services Classes and Interfaces

The main interfaces, objects, and classes for Security Services are as follows:

Object Description

User Authority This interface is used for authenticating a user. The interface produces Persona

objects that are used to identify a user and any roles that the user might have.

330 14 Managing Access Control

Object Description

Persona Identity of a user, a user’s role (for example, a user group such as Designers

or Developers), or an application privilege. Persona objects can have multiple

embedded identities. For example, a user can have several roles, such as

manager and developer, and a role can have multiple privileges. The Persona

interface is a superset of the standard J2EE Principal interface, and implements

the Principal interface for interoperability.

User The User object holds a collection of Personae that were collected by one or

more user authorities. This object is like a wallet where identities are placed.

A User object can hold several identities if a user has been authenticated by

several means.

Security Policy A security policy is used to determine whether a user has access to an object

by checking an access control list composed of access privileges and/or deny

privileges.

Secured Object The SecuredObject interface provides a standard way to look

up and change security information related to an object. The

atg.security.StandardSecurityPolicy class uses this interface to

determine the ACL for an object and any related container objects that might

affect the ACL.

Secured Container Like SecuredObject, SecuredContainer provides a standard interface

for determining a list of security-related parents of an object, to support ACL

inheritance or other cross-object semantics, for example.

Security Configuration A security configuration is a security policy grouped together with the user

authority that determines the identity information for a user. The security

configuration is used primarily for reconstituting persisted ACL information

using the parse() method of atg.security.AccessControlList.

Security Context Every SecuredObject has a related Security Context, which is a Security

Configuration plus a reference back to the object. This allows the access checker

in the security policy to use the object itself to determine access control rules.

User Authority Object

The first contact that a user has with the security system is usually a user authority object, which determines

who the user is. At its most basic, the user authority object simply provides a persona object for a user with a

particular name.

Oracle ATG Web Commerce’s central user authority object is in Nucleus at /atg/dynamo/security/

UserAuthority and is an instance of the UserDirectoryUserAuthority class. This class takes the account

information from one or more user directories and exposes it through the UserAuthority interface. In the

standard configuration, both the ATG Control Center and Profile account information are exposed.

The user authority object also can be responsible for authenticating a user. How it does so depends on the

implementation. Typically, a user authority authenticates users through name/password verification, but any

sort of identification system is possible, including smart cards, certificates, biometrics, or even profiling—for

example, a user can be granted or denied access based on responses to a questionnaire.

14 Managing Access Control 331

There are three user authorities that use the name/password verification approach:

• XmlAccountManager: This read-only implementation derives user information from an XML file. The

implementation is intended for prototyping, although it can be useful in a production environment if the set

of accounts and identities is not expected to change often or is expected to remain static. Oracle ATG Web

Commerce uses an instance of the XmlAccountManager to provide a template for the ATG Control Center

account information.

• RepositoryAccountManager: This implementation derives user information from an Oracle ATG Web

Commerce repository. The repository can be any type of repository, including XML, SQL, and Profile

Repositories. This implementation is for production applications, which typically use a repository-based user

authority in conjunction with the Generic SQL Adapter (GSA) connector, which interfaces the Repository API

to an SQL database. Oracle ATG Web Commerce uses an instance of the RepositoryAccountManager to

manage the ATG Control Center accounts.

• UserDirectoryLoginUserAuthority: Because UserDirectoryUserAuthority can merge multiple

account databases, the UserDirectoryLoginUserAuthority is used to expose the login functionality

for only a single database (and, thus, account namespace). There are two such authorities: /atg/

dynamo/security/AdminUserAuthority (for ATG Control Center account information) and /atg/

userprofiling/ProfileUserAuthority (for profile accounts). Oracle ATG Web Commerce does not yet

implement authentication mechanisms other than name/password verification, although it is easy to extend

the UserAuthority interface as necessary to provide new authentication mechanisms.

All other security objects refer to the user authority to provide namespace separation between different

authentication schemes. Two users with the same name (such as peterk) have two different identities to an

Oracle ATG Web Commerce application if they are authenticated by two different user authorities. A single user

authority often is shared by multiple security objects to obtain single-log-on functionality.

For more information about configuring the ATG User Directory, see the ATG Personalization Programming Guide.

User Object

The system passes around user identity information in a user object. This object is similar to a wallet and can

contain more than one identity, just as a wallet can contain a driver’s license, credit card, and ATM card. Identities

are accumulated over the course of a session as a user becomes identified with various security systems.

A management interface, atg.security.ThreadSecurityManager, ties a user object to a particular thread

and temporarily assigns user objects to a thread. In this way, identity is associated with an execution context.

Oracle ATG Web Commerce’s request handling pipeline automatically associates the session’s User object with

the request thread, so calling the ThreadSecurityManager.currentUser() returns the user for the current

session.

Persona Object

A discrete user identity is called a persona. A persona is more than just the identification of a particular user; it

can also be the identity of a group or role or even an identity associated with a system privilege. Persona objects

can be compound identities; a user often is a member of various groups or should have access to resources

according to the roles the user holds in an organization. Typically, the user authority adds these identities as sub-

personae.

332 14 Managing Access Control

Access Privileges

An access privilege is access control for a resource. For example, a file object might have read, write, and delete

access privileges. The access privilege object implements the atg.security.AccessRight interface, which

extends the java.security.acl.Permission interface.

Access Control Lists

Access to individual resources is controlled by an Access Control List (ACL). An ACL consists of identities

and their access privileges. In the standard implementation of the security system, an ACL is a collection

of access control entries, each of which associates a single persona with a set of access privileges. This

object extends the java.security.acl.Acl interface. An access control entry object extends the

java.security.acl.AclEntry interface.

For information the AccessControlList methods, see atg.security.AccessControlList in the ATG

Platform API Reference.

Security Policy Object

A security policy determines whether a user has access to a particular object. In an Oracle ATG Web Commerce

application, the standard security policy is in Nucleus at /atg/dynamo/security/SecurityPolicy. This

instance of the atg.security.StandardSecurityPolicy object provides the following policy:

• If no ACL is defined for an object, access is allowed.

• If the accessor is the owner of an object, access is allowed if the desired access privilege is LIST, READ_ACL, or

WRITE_ACL. This approach makes the object’s security information modifiable if the ACL become corrupted.

• If the ACL for the object has a deny (or negative) access privilege that applies to the user, access is denied

even if other permissions are positive.

• If the ACL for the object has an allow (or positive) access privilege that applies to the user, access is allowed

as long as there is not a corresponding deny.

• If no ACL entries apply to the user, access is denied.

Note: This policy differs slightly from the java.security.acl policy, where a combination of positive and

negative ACL entries with the same Principal negate each other, providing no change to the access control

for that Principal. This differentiation is deliberate; in no case should an explicit deny access control entry be

ignored.

Extending the Security Model

This section provides two examples of extending the default security model and an example of authenticating a

user:

• Extending the Standard Security Policy (page 333) shows how to deny access if the access control list is null.

The second example shows how to deny access except during specified hours.

14 Managing Access Control 333

• Authenticating a User (page 333) defines a bean and associated form that presents a login form to a user

until their login succeeds, then lists some details about the account they logged in with after the login is

successful.

Extending the Standard Security Policy

You can extend the StandardSecurityPolicy to make the policy more flexible or tighter, depending on the

needs of your application.

In the following example, access is denied if the access control list is null (unspecified):

public class DefaultDenySecurityPolicy
 extends StandardSecurityPolicy
{
 public int getAccess(AccessControlList pAcl,
 Object pObject,
 Persona pPersona,
 AccessRight pRight,
 boolean pExactPersona)
 {
 if (pAcl == null)
 return DENIED;
 else
 return super.getAccess(pAcl, pObject, pPersona, pRight, pExactPersona);
 }
}

In the following example, access is denied except during the hours of 9:00 to 5:00 in the default (local) time zone:

public class DenyOutsideBusinessHoursSecurityPolicy
 extends StandardSecurityPolicy
{
 public int getAccess(AccessControlList pAcl,
 Object pObject,
 Persona pPersona,
 AccessRight pRight,
 boolean pExactPersona)
 {
 Calendar calender = new GregorianCalendar(new Date());
 int hourOfDay = calendar.get(Calendar.HOUR_OF_DAY);
 if ((hourOfDay < 9) || (hourOfDay > 5))
 return DENIED;
 else
 return super.getAccess(pAcl, pObject, pPersona, pRight, pExactPersona);
 }
}

Authenticating a User

The following example defines a Bean and associated form that presents a login form to a user until the user’s

login succeeds, then lists some details about the account the user logged in with after the login is successful.

This example illustrates the use of the LoginUserAuthority interface and some features of the Persona

interface.

334 14 Managing Access Control

Authenticate Bean (Authenticate.java)

import java.io.*;
import javax.servlet.http.*;
import atg.security.*;
import atg.servlet.*;

/**
 * A bean that authenticates and identifies a user.
 */
public class Authenticate extends DynamoServlet
{
 private LoginUserAuthority mAuthority;
 private String mLoginFailedPage;
 private User mUser = new User();
 private String mLogin;
 private String mPassword;

 /////////////////////
 // Bean properties //
 /////////////////////

 /**
 * Returns true if the user has been authenticated.
 */
 public boolean isAuthenticated()
 {
 return mUser.getPersonae(mAuthority) != null;
 }

 /**
 * Returns the page that the browser will be redirected to when a login
 * fails.
 */
 public String getLoginFailedPage()
 {
 return mLoginFailedPage;
 }

 /**
 * Changes the page that the browser will be redirected to when a login
 * fails.
 */
 public void setLoginFailedPage(String pPage)
 {
 mLoginFailedPage = pPage;
 }

 /**
 * Returns the persona for the currently logged-in user, if any.
 */
 private Persona getLoginPersona()
 {
 Persona[] loginPersonae = mUser.getPersonae(mAuthority);
 if ((loginPersonae == null) || (loginPersonae.length == 0))
 return null;
 else
 return loginPersonae[0];
 }

14 Managing Access Control 335

 /**
 * Returns the account name that the user logged in with.
 */
 public String getUserAccount()
 {
 Persona loginPersona = getLoginPersona();
 if (loginPersona == null)
 return "<not logged in>";
 else
 return loginPersona.getName();
 }

 /**
 * Returns the list of groups that the logged-in user is a member of.
 */
 public String[] getUserGroups()
 {
 Persona loginPersona = getLoginPersona();
 if (loginPersona == null)
 return new String[] { "<not logged in>" };

 // convert set of personae to a set of account names
 Persona[] groups = loginPersona.getSubPersonae();
 if ((groups == null) || (groups.length == 0))
 return new String[] { "<no groups>" };
 String[] groupNames = new String[groups.length];
 for (int i = 0; i < groups.length; i++)
 groupNames[i] = groups[i].getName();
 return groupNames;
 }

 /**
 * Returns the currently configured user authority.
 */
 public LoginUserAuthority getUserAuthority()
 {
 return mAuthority;
 }

 /**
 * Changes the user authority used for authentication.
 */
 public void setUserAuthority(LoginUserAuthority pAuthority)
 {
 mAuthority = pAuthority;
 }

 /////////////////////
 // Form properties //
 /////////////////////

 public String getLogin()
 {
 return mLogin;
 }

 public void setLogin(String pLogin)
 {
 mLogin = pLogin;

336 14 Managing Access Control

 }

 public String getPassword()
 {
 return mPassword;
 }

 public void setPassword(String pPassword)
 {
 mPassword = pPassword;
 }

 //////////////////
 // Form handler //
 //////////////////

 /**
 * Handles a form submission to perform a login.
 */
 public void handleAuthenticate(DynamoHttpServletRequest pRequest,
 DynamoHttpServletResponse pResponse)
 {
 try {
 // Check validity of form properties
 if ((mLogin == null) || (mLogin.length() == 0) ||
 (mPassword == null)) {
 pResponse.sendLocalRedirect(mLoginFailedPage, pRequest);
 return;
 }

 // Hash the password as required by the user authority. In a more
 // tightly coupled client/server arrangement the client would obtain
 // the password hasher from the user authority via RMI and pass the
 // hash and the hash key back to the server, but we can't do that
 // in the browser interface so instead we do it all in the server.
 PasswordHasher hasher = mAuthority.getPasswordHasher();
 String hashedPassword;
 if (hasher == null)
 hashedPassword = mPassword; // not hashed
 else
 hashedPassword = hasher.hashPasswordForLogin(mPassword);

 // Perform the login
 if (!mAuthority.login(mUser, mLogin, hashedPassword,
 hasher.getPasswordHashKey()))
 pResponse.sendLocalRedirect(mLoginFailedPage, pRequest);
 }
 catch (IOException e) {}
 finally { // clear out password
 mPassword = null;
 }
 }
}

Authenticate Bean Configuration file (Authenticate.properties)

/atg/dynamo/security/examples/Authenticate
$class=Authenticate

14 Managing Access Control 337

$scope=session
userAuthority=/atg/dynamo/security/AdminUserAuthority
loginFailedPage=loginfailed.html

Authenticate JSP (authenticate.jsp)

The authenticate.jsp file is as follows:

<%@ taglib uri="/dspTaglib" prefix="dsp" %>
<%@ page import="atg.servlet.*"%>
<dsp:page>

<html>
<dsp:importbean bean="/atg/dynamo/droplet/ForEach"/>
<dsp:importbean bean="/atg/dynamo/droplet/Switch"/>
<dsp:importbean bean="/atg/dynamo/security/examples/Authenticate"/>

<body>
<!-- Display a login form if they have not logged in yet,
 -- or their login attributes if they have.
 -->

<dsp:droplet name="/atg/dynamo/droplet/Switch">
 <dsp:param bean="Authenticate.authenticated" name="value"/>
 <dsp:oparam name="false">
 Please log in:<p>

 <dsp:form action="<%=ServletUtil.getDynamoRequest(request).getRequestURI()%>"
 method="post">
 <table>
 <tr><td>Name:</td><td><dsp:input bean="Authenticate.login"
 type="text"/></td></tr>
 <tr><td>Password:</td><td><dsp:input bean="Authenticate.password"
 type="password"/></td></tr>
 </table><p>
 <dsp:input bean="Authenticate.authenticate" type="submit" value="Login"/>
 </dsp:form>
 </dsp:oparam>

 <dsp:oparam name="true">
 You are logged in as '<dsp:valueof
 bean="Authenticate.userAccount">?</dsp:valueof>'<p>
 You are a member of the following groups:<p>
 <dsp:droplet name="/atg/dynamo/droplet/ForEach">
 <dsp:param bean="Authenticate.userGroups" name="array"/>
 <dsp:oparam name="output">
 <dsp:valueof param="element">?</dsp:valueof>

 </dsp:oparam>
 </dsp:droplet><!-- ForEach -->
 </table>
 </dsp:oparam>
</dsp:droplet><!-- Switch -->
</body>

</html>

</dsp:page>

338 14 Managing Access Control

Configuring Access Privileges

The ATG Control Center supports role-based access control and security. This enables administrators to assign

different ATG Control Center privileges to users according to their role on the web development team. The

process involves several basic steps:

1. Create a user group for each role (for example, application developers or page designers).

2. Define access privileges for each group.

3. Creating a login account for each user.

4. Assign everyone to the appropriate groups.

An Oracle ATG Web Commerce application includes a set of default user accounts and groups with predefined

access privileges. You can use the ATG Control Center to modify standard login accounts. You can also create

user accounts and groups that suit your specific requirements.

This section covers the following topics:

• Configuring the Default Login Accounts (page 338)

• Managing User Accounts (page 339)

• Managing User Groups and Privileges (page 340)

Configuring the Default Login Accounts

By default, Oracle ATG Web Commerce automatically creates a set of standard user accounts, groups, and

privileges each time you start your application (except when the liveconfig layer is enabled). Doing so

ensures that the necessary accounts are initialized correctly.

On each application startup, the /atg/dynamo/security/AdminAccountManager runs an account initializer

specified by the component’s accountInitializer property. By default, this property points to the /atg/

dynamo/security/AdminAccountInitializer component.

The AdminAccountInitializer object obtains its information from another account manager (usually /atg/

dynamo/security/SimpleXmlUserAuthority), which reads account information from the XML files included

in each Oracle ATG Web Commerce product module:

<ATG10dir>/module root/src/config/atg/dynamo/security

Oracle ATG Web Commerce combines these files, resulting in an account database that contains the

appropriate login accounts, groups, and privileges for each Oracle ATG Web Commerce module in your

application. The account initializer copies this information from the SimpleXmlUserAuthority into the

AdminAccountManager each time you start your application.

Note: Oracle ATG Web Commerce preserves new accounts and groups that you create, and any changes you

make to the default login accounts. Any default accounts or groups that you delete, however, are recreated each

time you start your application, unless you disable the automatic account creation feature.

Automatic account creation is disabled by default in the liveconfig configuration layer. If you want to

prevent Oracle ATG Web Commerce from recreating the default accounts in development mode as well, set

14 Managing Access Control 339

the forceCreation property of the /atg/dynamo/security/AdminAccountInitializer component to

false.

Default User Accounts

The following table lists the default login accounts for the Oracle ATG Web Commerce Adaptive Scenario

Engine and ATG Commerce. You can use the ATG Control Center to change the names, passwords and group

assignments for any of these accounts. To learn more about these accounts and the access privileges associated

with them, see the Managing User Accounts (page 339) section.

User Name Login Name / Password User Group Module

Andy Administrator (see

warning below)

admin/admin All Users

System Administrators

Content Repositories User

Commerce Repositories User

DSS

DCS

Dana Designer design/ design All Users

Designers

DSS

Donna Developer developer/ developer All Users

Developers

DSS

Mary Manager manager/ manager All Users

Managers

DSS

Mike Marketer marketing/ marketing All Users

Marketing People

Content Repositories User

DSS

Mark Merchant merchant/ merchant All Users

Commerce Repositories User

DCS

Managing User Accounts

Select People and Organizations > Control Center Users from the ATG Control Center navigation menu to see the

account details and group affiliations of authorized ATG Control Center users.

340 14 Managing Access Control

People and Organizations > Control Center Users screen

• The accounts list on the left displays individual users by name and login. You can add and delete users from

this list by clicking on New User and Delete User in the toolbar. If you need to find a specific account, select

the Show Matching Users option (top left), type the account name you are looking for, and click on List.

• The property/value table (top right) displays the account information of the person you select from the

accounts list.

• The Groups checklist (bottom right) displays the user groups that were created so far, and to which of these

groups, if any, the selected user has been assigned. You can specify group assignments here (by checking the

group checkboxes), or in the People and Organizations > Control Center Groups screen described in the next

section.

Managing User Groups and Privileges

Select People and Organizations > Control Center Groups from the ATG Control Center navigation menu to see

the list of user groups, their members, and their group-based access privileges.

14 Managing Access Control 341

People and Organizations > Control Center Groups

• The Groups list (top) displays all user groups that were created so far. You can add and delete groups from this

list by clicking New Group and Delete Group in the toolbar.

Warning: Do not delete the System Administrators group; if you delete this group, the Oracle ATG Web

Commerce application might not work properly.

• The Group Members list (bottom right) shows you the users currently assigned to the selected group. You can

add and delete users from the group by clicking Add Members and Remove Members in the toolbar.

• The Group UI Access Privileges panel (bottom left) lists the individual screens in the ATG Control Center.

Everyone in the selected user group has access to all areas that are checked.

If a user belongs to several groups that have different privileges, the user has all the privileges of those groups.

For example, the Andy Administrator user account is a member of both the System Administrators group

and the Content Repositories User group. The System Administrators group does not have privileges to

access repositories, but the Content Repositories User group does. Thus, as a member of both groups, Andy

Administrator can access repositories.

Configuring LDAP Repository Security

 By default, an Oracle ATG Web Commerce application uses an SQL repository to authenticate users and groups

and authorize access. You can configure the security mechanism to use the LDAP repository of an Oracle

Directory Server (formerly Sun ONE or iPlanet Directory Server) or Microsoft Active Directory Server instead. An

LDAP repository can be used to authenticate users and to authorize access by retrieving users’ privileges from

the LDAP directory. For more information about LDAP repositories, see the ATG Repository Guide.

This section describes how to configure an Oracle ATG Web Commerce application to use an LDAP repository to

authenticate users and roles. The configuration process consists of the following steps:

342 14 Managing Access Control

1. Configure Users and Groups on an LDAP Server (page 342).

2. Configure Base Common Names (page 346). (Microsoft Active Directory only)

3. Configure a Password Hasher (page 346). (Sun ONE Directory Server 5.0 only)

4. Configure the InitialContextEnvironment Component (page 347).

5. Create an XML Definition File (page 348).

6. Test the LDAP Server Connection (page 348).

7. Configure the DYNAMO_MODULES Variable (page 349).

8. Enable Security Information Caching (page 350).

The following sections describe these steps in detail.

Configure Users and Groups on an LDAP Server

This section describes how to configure users and groups on Active Directory and Oracle Directory Server. (For

information about Oracle ATG Web Commerce’s default users, groups, and privileges, see the Configuring Access

Privileges (page 338) section, earlier in this chapter.)

Configuring an ActiveDirectory Server

To configure users and groups on an Active Directory server, do the following:

1. Select Start > Program Files > Active Directory Users and Computers.

2. Select Action > New > Organizational Unit. Under the relevant domain, create an organizational unit called

dynamo-users.

3. From any location in the domain, select Action > New > Users and create the users listed in Creating

Users (page 343), later in this chapter.

4. In the dynamo-users organizational unit, select Action > New > Group and create the groups listed in

Creating Groups, later in this chapter. Set the groups’ scope to Universal and the type to Distribution.

Configuring an Oracle Directory Server

To configure users and groups on an Oracle (formerly Sun ONE) Directory Server, do the following:

1. Start the Directory Server Console.

2. In the navigation tree in the left pane, select the Directory Server that you want to use; for example,

"Directory Server" (server_name).

3. In the panel on the right side, click Open.

4. Click the Directory tab and locate the organization folder you wish to use (such as yourcompany.com).

5. Click the plus sign (+) next to the organization folder to expand the view.

6. To create an Organizational Unit, select Object > New > Organization Unit. Name the new unit dynamo-

users.

7. Select Object > New > User and create the users listed in Creating Users (page 343), later in this chapter.

8. In the right pane, select dynamo-users.

14 Managing Access Control 343

9. Select Object > New > Group and create the static groups listed in Creating Groups (page 343), later in this

chapter.

10.(Optional) If you have other existing users that you want to add to a group, add them to the one of the groups

you created in Step 9.

Creating Users

The set of user and group accounts that Oracle ATG Web Commerce creates during account initialization

depends on the application modules included in your application. If you want your LDAP configuration to

support Oracle ATG Web Commerce’s default set of users, create the following users:

User Login name Password Module

Andy Administrator admin admin DSS

Dana Designer design design DSS

Donna Developer developer developer DSS

Mary Manager manager manager DSS

Mike Marketer marketing marketing DSS

Mark Merchant merchant merchant DCS

Creating Groups

Create the following groups for the Oracle ATG Web Commerce Adaptive Scenario Engine:

Group Description Members

everyone-group All Users admin

design

developer

manager

marketing

ATG Commerce:

merchant

administrators-group System Administrators admin

designers-group Designers design

developers-group Developers developer

managers-group Managers manager

marketing-group Marketing People marketing

344 14 Managing Access Control

Group Description Members

server-restart-privilege Server Restart administrators-group

developers-group

server-shutdown-

privilege

Server Shutdown administrators-group

support-cases-privilege Tools: Submit a Support Request administrators-group

designers-group

developers-group

managers-group

support-knowledge-base-

privilege

Support: Knowledge Base administrators-group

managers-group

developers-group

designers-group

components-module

privilege

Pages and Components: Components By

Module

administrators-group

developers-group

components-path

privilege

Pages and Components: Components By

Path

administrators-group

developers-group

pages-privilege Pages and Components: Pages administrators-group

designers-group

admin-users-

privilege

User Admin: Users administrators-group

managers-group

admin-roles-

privilege

User Admin: Groups administrators-group

managers-group

tools-pipeline-editor-privilege Tools: Pipeline Editor administrators-group

developers-group

tools-integrations-

privilege

Tools: Integrations N/A

content-

repositories-user-group

Content Repositories User administrators-group

marketing-group

targeting-profile-

groups-privilege

Targeting: Profile Groups administrators-group

content-repositories-user-

group

marketing-group

targeting-content-

groups-privilege

Targeting: Content Groups administrators-group

content-repositories-user-

group

marketing-group

14 Managing Access Control 345

Group Description Members

targeting-targeted-

content-privilege

Targeting: Content Targeters administrators-group

content-repositories-user-

group

marketing-group

targeting-preview-

privilege

Targeting: Preview administrators-group

content-repositories-user-

group

marketing-group

scenarios-privilege Scenarios: Scenarios administrators-group

marketing-group

scenarios-

templates-privilege

Scenarios: Scenario Templates administrators-group

marketing-group

people-organization admin-

privilege

Repository: Organizations administrators-group

marketing-group

people-roleadmin-privilege Repository: Roles administrators-group

marketing-group

people-profiles-privilege Repository: Profile Repository administrators-group

marketing-group

people-profiles-indiv-privilege Repository: Profile Repository administrators-group

marketing-group

If you are running Oracle ATG Web Commerce Content Administration, create these additional static groups:

Group Description Members

publishing-workflow-privilege Publishing: Workflow administrators-group

publishing-repository-privilege Publishing: Epublishing Repository administrators-group

If you are running ATG Commerce, create this additional static group:

Group Description Members

commerce-repositories-user-group Commerce Repositories User admin

merchant

346 14 Managing Access Control

Configuring Dynamically Generated Privileges

 Any ATG Control Center privileges that are associated with a repository are generated dynamically by Oracle

ATG Web Commerce as needed. If there are any ATG Control Center features with undefined privileges, you

might see the following error message when your application starts up:

Allowing access for unknown privilege privilege_name

For example:

Allowing access for unknown privilege commerce-customproductcatalog-privilege

If you see an unknown privilege error message, create the privilege in your LDAP repository, then add it as a

member of the appropriate group, as follows:

Type of Privilege Member of Group

commerce commerce-repositories-user-group

repository content-repositories-user-group

If you want to automatically deny access to ATG Control Center features with undefined privileges (and disable

unknown privilege error messages), set /atg/devtools/

DevSecurityDomain.allowUnknownPrivileges to false.

Configure Base Common Names

Note: This section applies only to Microsoft Active Directory users.

In the /atg/dynamo/security/AdminAccountManager component, set the baseCNs property to the

locations in the Active Directory server where users might be located. For example:

CN=Users,DC=adtest,DC=atg,DC=com,\DC=adtest,DC=atg,DC=com

When a user logs into the ATG Control Center or ATG Dynamo Server Admin UI as admin, for example, Oracle

ATG Web Commerce converts that login name to CN=admin and appends it to the first entry in the baseCNs

property. If the first combination fails, Oracle ATG Web Commerce tries to combine the login with the next

baseCN in the list. In the previous example, this yields the following:

CN=admin,CN=Users,DC=adtest,DC=atg,DC=com

Note: The baseCNs values are case-sensitive.

Configure a Password Hasher

Note: This section applies only to Sun ONE Directory Server 5.0 users.

14 Managing Access Control 347

Sun ONE Directory Server 5.0 uses the Salted Secure Hash Algorithm (SSHA) to encrypt passwords. (Version 4.13

uses SHA encryption.) If you are using Sun ONE Directory Server 5.0, you must configure the /atg/dynamo/

security/AdminAccountManager and /atg/dynamo/security/

AdminUserAuthority components to use the SSHAPasswordHasher instead of the default

SHAPasswordDigestHasher.

To do this, edit the passwordHasher property of the AdminAccountManager and AdminUserAuthority as

shown below:

passwordHasher=/atg/dynamo/security/SSHAPasswordHasher

Note: You must edit the AdminAccountManager.properties and AdminUserAuthority.properties files

manually in the following directory:

<ATG10dir>/DAS/LDAP/iPlanetDirectory/config/atg/dynamo/security/

Configure the InitialContextEnvironment Component

You must set up your InitialContextEnvironment component so that it specifies the JNDI environment

properties used to connect to the LDAP repository.

Note: You must edit the InitialContextEnvironment.properties file manually instead of through the ATG

Control Center.

Set the following values in your InitialContextEnvironment.properties file, which is in the following

directory:

Active Directory

<ATG10dir>/DAS/LDAP/MicrosoftActiveDirectory/config/atg/dynamo/security

Oracle Directory Server

<ATG10dir>/DAS/LDAP/iPlanetDirectory/config/atg/dynamo/security

Property Description

providerURL URL of your LDAP server.

Default value: ldap://localhost:389

securityAuthentication Authentication mechanism for the provider to use. Choose one of the

following mechanisms:

simple: weak authentication (clear text password)

CRAM-MD5: CRAM-MD5 (RFC-2195) SASL mechanism

none: no authentication (anonymous)

Default value: simple

348 14 Managing Access Control

Property Description

securityPrincipal Identity of the principal to be authenticated, in the form of a distinguished

name (DN). This identity is the Root DN’s full common name (CN). For

information about determining the DN, see your server’s documentation.

For example:

For Active Directory:

CN=Administrator,CN=Users,DC=atg,DC=com

For Oracle Directory Server:

CN=Directory Manager

Tip: For Active Directory, you can use Active Directory Service Interfaces

(ADSI) to determine the full common name. For more information about

ADSI, see the Microsoft web site.

Default value: RootDN

securityCredentials Credentials of principal to be authenticated; this is the Root DN’s

password.

Default value: password

Create an XML Definition File

To create an XML definition file for the LDAP directory, do the following:

1. Open the ldapAdminUsers.xml file in the following directory:

<ATG10dir>/DAS/LDAP/<server vendor>/config/atg/dynamo/security

2. Modify all yourdomain references so they refer to the DN of the dynamo-users folder. For example:

parent-dn="CN=dynamo-users,DC=atg,DC=com"

search-root dn="CN=dynamo-users,DC=atg,DC=com"

Test the LDAP Server Connection

You can use Oracle ATG Web Commerce’s LDAP server connection tool to test whether the JNDI environment

properties in the InitialContextEnvironment component are configured appropriately for your server.

To test the connection to the LDAP server, do the following:

1. From the command line, switch to the following directory:

<ATG10dir>/DAS/LDAP/lib

2. Issue the following command:

For Active Directory:

java -classpath ./ldap.jar LDAPConnection MicrosoftActiveDirectory

http://www.microsoft.com

14 Managing Access Control 349

For Oracle Directory Server:

java -classpath ./ldap.jar LDAPConnection iPlanetDirectory

If Oracle ATG Web Commerce connects successfully to your LDAP server, it displays this message:

Successfully Created Context:
javax.naming.directory.InitialDirContextcontext_number

Troubleshooting the Server Connection

If Oracle ATG Web Commerce does not connect to your LDAP server, it displays one of the following error

messages:

Error Message InitialContextEnvironment

Property to Modify

The following Error Occurred:

javax.naming.CommunicationException:

<host:port>.

Root exception is java.net.NoRouteToHostException:

Operation timed out: no further information

providerURL

The following Error Occurred:

javax.naming.AuthenticationNotSupportedException:

SASL support not available:<value>

securityAuthentication

Bad Username and/or Password:

javax.naming.AuthenticationException: [LDAP: error code 49

- Invalid Credentials]

securityPrincipal and/or

securityCredentials

Configure the DYNAMO_MODULES Variable

The environment.sh/.bat file in your <ATG10dir>/home/localconfig directory contains a

DYNAMO_MODULES line that specifies application modules to include when you assemble your application. To

include the LDAP Access Control Module when you start your application, you must append the module’s name

to the DYNAMO_MODULES line, as follows (enter the DYNAMO_MODULES setting all on one line, with no line breaks):

LDAP Server Platform DYNAMO_MODULES Setting

Active Directory Windows set DYNAMO_MODULES=%DYNAMO_MODULES%;DSS;DAS.LDAP.

MicrosoftActiveDirectory

Active Directory UNIX DYNAMO_MODULES=$DYNAMO_MODULES:DSS:DAS.LDAP.

MicrosoftActiveDirectory; export DYNAMO_MODULES

Oracle Directory

Server

Windows set DYNAMO_MODULES=%DYNAMO_MODULES%;DSS;DAS.LDAP.

iPlanetDirectory

350 14 Managing Access Control

LDAP Server Platform DYNAMO_MODULES Setting

Oracle Directory

Server

UNIX DYNAMO_MODULES=$DYNAMO_MODULES:DSS:DAS.LDAP.

iPlanetDirectory; export DYNAMO_MODULES

Note: Do not specify the LDAP Access Control module when you assemble your application; Oracle ATG Web

Commerce does not set the configuration path properly.

Enable Security Information Caching

The LDAP security mechanism includes an option to enable caching of security information.

By default, caching is disabled to minimize potential security breaches. When caching is enabled, if you make

changes on the LDAP server, there is a delay in propagating those changes to an Oracle ATG Web Commerce

server because the view is not reloaded until the cache expires or is reloaded. You can manually reload the

cache as described in the following section, Refreshing the Cache (page 350). To enable caching, set the

memberOfCacheEnabled property of the following component to true:

Active Directory

<ATG10dir>/DAS/LDAP/MicrosoftActiveDirectory/config/atg/dynamo/security/

AdminAccountManager

Oracle Directory Server

<ATG10dir>/DAS/LDAP/iPlanetDirectory/config/atg/dynamo/security/

AdminAccountManager

Refreshing the Cache

The AdminAccountManager gets its information from /atg/dynamo/security/LDAPRepository. By default,

caching is enabled for this LDAP repository. If you make any changes to the LDAP directory, be sure to refresh

the LDAP repository cache before propagating the changes to the AdminAccountManager.

To refresh the cache, do the following:

1. Open the ATG Dynamo Server Admin page with your web browser.

2. When ATG Dynamo Server Admin opens, click on the Admin ACC (ATG Control Center) link.

3. Click Reload Cache.

Note: This button appears only if an LDAP repository is used to authenticate administrative users.

Scheduling Cache Updates

The cache is a schedulable service. You can configure the AdminAccountManager to never look in the cache, or

you can configure it to reload itself periodically.

To configure the frequency of cache updates, specify the frequency (in minutes) in the cacheReloadFrequency

property of the following component:

Active Directory

14 Managing Access Control 351

<ATG10dir>/DAS/LDAP/MicrosoftActiveDirectory/config/atg/dynamo/security/

AdminAccountManager

Oracle Directory Server

<ATG10dir>/DAS/LDAP/iPlanetDirectory/config/atg/dynamo/security/

AdminAccountManager

For example, to specify that the cache should be updated every 60 minutes, set cacheReloadFrequency as

follows:

cacheReloadFrequency=60

For more information about configuring LDAP caching behavior, see the ATG Repository Guide.

352 14 Managing Access Control

15 Search Engine Optimization 353

15 Search Engine Optimization

Search Engine Optimization (SEO) is a term used to describe a variety of techniques for making pages more

accessible to web spiders (also known as web crawlers or robots), the scripts used by Internet search engines to

crawl the Web to gather pages for indexing. The goal of SEO is to increase the ranking of the indexed pages in

search results.

This chapter describes several SEO techniques and the tools that the Oracle ATG Web Commerce platform

provides for implementing them:

URL Recoding (page 353)

Canonical URLs (page 361)

Sitemaps (page 362)

SEO Tagging (page 373)

URL Recoding

The URLs generated by web applications can create problems for web spiders. These URLs typically include

query parameters that the spider may not know how to interpret. In some cases, a spider will simply ignore a

page whose URL includes query parameters.

Even if the spider does index the page, it may give the page lower ranking than desired, because the URL

may not contain search terms that could increase the ranking. For example, consider a typical URL for an ATG

Commerce site:

/mystore/product/product.jsp?prodId=prod1002&catId=cat234

This type of URL is sometimes referred to as “dynamic,” because the content of the page is dynamically

generated based on the values of the query parameters.

Now consider a static URL for the same page:

/mystore/product/Q33+UltraMountain/Mountain+Bikes

A spider is more likely to index the page with the static URL, and when it does, it is likely to mark “Mountain

Bikes” and “Q33 UltraMountain” as key search terms and weight the page heavily for them. As a result, when a

354 15 Search Engine Optimization

user searches for one of these terms, this page appears near the top of the search results. The dynamic URL may

return the same page and content when it’s clicked, but it is less likely to be ranked highly for these searches,

and in some cases may not be indexed at all.

To address this concern, the Oracle ATG Web Commerce platform includes a URL recoding feature that enables

you to optimize your pages for indexing by web spiders, without compromising the human usability of the

site. The key to this feature is the ability to render URLs in different formats, depending on whether a page is

accessed by a human visitor or a web spider. This is handled through the atg.repository.seo.ItemLink

servlet bean, which uses the User-Agent property of the HTTP request to determine the type of visitor. If the

visitor is a spider, the servlet bean renders a static URL that the spider can use for indexing; otherwise, it renders

a standard Oracle ATG Web Commerce dynamic URL.

Of course, the Oracle ATG Web Commerce request-handling components cannot actually interpret these

static URLs. Therefore, URL recoding also requires a servlet (atg.repository.seo.JumpServlet) that reads

incoming static URLs (for example, if a user clicks a link returned by a Google search), and translates these URLs

into their dynamic equivalents.

This section describes:

• Using URL Templates (page 354)

• Configuring the ItemLink Servlet Bean (page 359)

• Configuring the SEO Jump Servlet (page 360)

Using URL Templates

To translate URLs from dynamic to static (or vice versa) requires some complex parsing logic and pattern

matching. Both the ItemLink servlet bean and the SEO jump servlet construct URLs using properties that

specify the format of the URL and the type of visitor viewing the page.

An important aspect of URL recoding is the use of URL templates. These templates are Nucleus components

that the ItemLink servlet bean and the jump servlet use when they construct URLs. URL templates include

properties that specify the format of the URLs, the browser types supported, and how to parse requests.

The URL template classes consist of atg.repository.seo.UrlTemplate, which is an abstract base class, and

its two subclasses:

• atg.repository.seo.DirectUrlTemplate defines the format of the direct (dynamic) URLs created by the

ItemLink servlet bean for human site visitors.

• atg.repository.seo.IndirectUrlTemplate defines the format of the indirect (static) URLs created by

ItemLink servlet bean for web spiders. It is also used by the SEO jump servlet to determine how to translate

these static URLs back to dynamic URLs.

In addition, the atg.repository.seo package has a UrlTemplateMapper interface that is used by ItemLink

to map repository item descriptors to URL templates. The package also includes a UrlTemplateMapperImpl

implementation class for this interface.

Configuring URL Templates

The UrlTemplate base class has several key properties that are inherited by the DirectUrlTemplate and

IndirectUrlTemplate subclasses. The following list summarizes these properties. Some of the properties are

described in more detail in subsequent sections.

urlTemplateFormat

15 Search Engine Optimization 355

The URL format used by the ItemLink servlet bean to generate page links. The format is

expressed in java.text.MessageFormat syntax, but uses parameter names instead of

numbers as placeholders. See Specifying URL Formats (page 355).

maxUrlLength

The maximum number of characters in a generated URL.

supportedBrowserTypes

List of browser types supported by this template. Each entry must match the name of an

atg.servlet.BrowserType component. See Specifying Supported and Excluded Browser

Types (page 357).

excludedBrowserTypes

List of browser types that are explicitly not supported by this template. Each entry must

match the name of an atg.servlet.BrowserType instance. See Specifying Supported and

Excluded Browser Types (page 357).

webAppRegistry

The web application registry that contains the context paths for registered web applications.

The IndirectUrlTemplate class has additional properties not found in the DirectUrlTemplate class. These

properties are summarized in the following list. Note that these properties are used only by the SEO jump

servlet, and not by the ItemLink servlet bean.

indirectRegex

The regular expression pattern the jump servlet uses to extract parameter values from static

request URLs. See Using Regular Expression Groups (page 358).

regexElementList

An ordered list where each list element specifies the parameter type of the corresponding

regular expression element in indirectRegex. See Using Regular Expression Groups (page

358).

forwardUrlTemplate

The URL format used by the jump servlet to generate a dynamic URL for forwarding a static

request URL. Like the urlTemplateFormat property, this is expressed using the same syntax

as java.text.MessageFormat, but uses parameter names instead of parameter numbers

as placeholders.

useUrlRedirect

If true, the jump servlet redirects the request to a dynamic URL rather than forwarding it.

Default is false, which means that forwarding is used.

Specifying URL Formats

The urlTemplateFormat property of the DirectUrlTemplate and IndirectUrlTemplate classes is used to

specify the format of the URLs generated by the ItemLink servlet bean. In addition, the urlTemplateFormat

property of the IndirectUrlTemplate class is used by the jump servlet to determine how to interpret static

request URLs created by the servlet bean.

The value of urlTemplateFormat should include placeholders that represent properties of repository items.

ItemLink fills in these placeholders when it generates a URL. The jump servlet uses them to extract the

property values from a static request URL.

The placeholder format is a parameter name (which typically represents a property of a repository item) inside

curly braces. For example, a dynamic URL for displaying a product on an ATG Commerce site might be specified

in a direct URL template like this:

356 15 Search Engine Optimization

urlTemplateFormat=\
 /catalog/product.jsp?prodId\={item.id}&catId\={item.parentCategory.id}

A dynamic URL generated using this format might look like this:

/catalog/product.jsp?prodId=prod1002&catId=cat234

The static URL equivalent in an indirect URL template might look like this:

urlTemplateFormat=/jump/product/{item.id}/{item.parentCategory.id}\
 /{item.displayName}/{item.parentCategory.displayName}

Note that this URL format includes the displayName properties of the repository item and its parent category,

and also the repository IDs of these items. The displayName properties provide the text that a web spider

can use for indexing. The repository IDs are included so that if an incoming request has this URL, the SEO jump

servlet can extract the repository IDs and use them to fill in placeholders in the dynamic URL it generates. In

addition, the URL begins with /jump to enable the jump servlet to detect it as a static URL (as described in

Specifying Context Paths (page 356)).

A static URL generated using this format might look like this:

/jump/product/prod1002/cat234/Q33+UltraMountain/Mountain+Bikes

Encoding Parameter Values

By default, the SEO components use URL encoding when they insert parameter values in placeholders. This

ensures that special characters in repository item property values do not make the URL invalid. For example, the

value of a displayName property will typically include spaces, which are not legal characters in URLs. Therefore,

each space is encoded as a plus sign (+), which is a legal character.

In some cases, it is necessary to insert a parameter value un-encoded. For example, some repository properties

represent partial URL strings, and therefore need to be interpreted literally. To support this, the placeholder

syntax allows you to explicitly specify whether to encode a parameter. For example:

{item.template.url,encode=false}

For parameters that should be encoded, you can explicitly specify encode=true; however, this is not necessary,

because encode defaults to true.

Another way to specify that a parameter should not be encoded is to use square brackets rather that curly

braces. For example:

[item.template.url]

Specifying Context Paths

When developing a site that uses URL recoding for SEO, you must be careful about whether the generated

URLs should include the application’s context path. Dynamic URLs must include the context path (so that

15 Search Engine Optimization 357

these URLs are properly interpreted by Oracle ATG Web Commerce’s request-handling pipeline). Static URLs

do not need the context path (the URL is never actually interpreted by the pipeline), and it is better to omit

it because it may interfere with the jump servlet’s ability to detect static URLs in requests. This is because the

urlTemplateFormat property of an indirect URL template will typically start with a special string (such as /

jump) that enables the jump servlet to detect these URLs. The jump servlet should then be configured to use

URI-mapping to detect these URLs, as described in Configuring the SEO Jump Servlet (page 360).

Therefore, when ItemLink generates an indirect URL, it is undesirable for the application’s context path to

be prepended to the URL. To avoid including the context path, links created with the <dsp:a> tag should use

the href attribute, not the page attribute. The page attribute prepends the application’s context path to the

generated URL, but the href attribute does not.

However, using the href attribute means that the context path will not automatically be prepended to the

dynamic URLs generated by ItemLink. Also, since static URLs will not have the context path, the jump servlet

will not be able to include this information in the dynamic URLs it forwards inbound requests to. Therefore, you

should include the context path when you configure the following:

• The urlTemplateFormat property of each direct URL template.

• The forwardUrlTemplateFormat property of each indirect URL template.

There are two ways you can specify the context path:

• Explicitly include the context path when you set the property.

• Specify the name of a registered web application. There must be a single colon character after the web

application name to denote that it is a web application name.

Specifying the name of a registered web application rather than including the context path itself has the

advantage that you do not need to know what the context path actually is. Also, if the context path changes,

you do not need to update each URL template component. The main disadvantage is that you need to know

what web application registry the web application is registered with, and set the webAppRegistry property of

each URL template component to this value.

Note that for a multisite application that uses a path-based URL strategy, you should not configure URL

templates to include the context path in generated URLs. See URL Recoding for Multisite Applications (page

361).

When generating a direct URL (either with ItemLink using a direct template, or the jump servlet using the

forward URL in an indirect template), the following logic is used to determine the context path:

1. If a web application name occurs in the first part of the URL with the format webAppName:restOfUrl, the

web application is resolved using the web application registry specified in the webAppRegistry property of

the template. The web application’s context path is then used to replace the webAppName placeholder.

2. If there is a colon in the first part of the URL but no web application name before the colon, the context

path of the default web application is used. The default web application is specified in the defaultWebApp

property of the ItemLink servlet bean or of the jump servlet (the former if generating a direct URL for a page

link, the latter if generating a forwarding URL for an inbound request).

3. Otherwise, the context path is assumed to already be present.

Specifying Supported and Excluded Browser Types

Both the ItemLink servlet bean and SEO jump servlet can be configured to use multiple URL templates. The

actual template used for any given request is partly determined by examining the User-Agent property of the

HTTP request and finding a template that supports this browser type.

358 15 Search Engine Optimization

The supportedBrowserTypes and excludedBrowserTypes properties of a URL template are mutually

exclusive. You can configure an individual template to support a specific set of browser types, or to exclude a

specific set of browser types, but not both. A typical configuration is to set excludedBrowserTypes to robot

in direct URL templates, and set supportedBrowserTypes to robot in indirect URL templates. This will ensure

that web spiders will see indirect URLs, and human visitors will see direct URLs.

The supportedBrowserTypes or excludedBrowserTypes property is a list of components of class

atg.servlet.BrowserType. (Note that to add a component to the list, you specify the name property of

the component, rather than the Nucleus name of the component.) The Oracle ATG Web Commerce platform

includes a number of BrowserType components, which are found in Nucleus at /atg/dynamo/servlet/

pipeline/BrowserTypes. You can also create additional BrowserType components. For more information,

see Customizing a Request-Handling Pipeline (page 148).

Using Regular Expression Groups

When a static URL is part of an incoming request, the SEO jump servlet parses the URL to extract parameter

values, which it then uses to fill in placeholders in the dynamic URL it generates. To extract the parameter values,

the servlet uses regular expression groups, which you specify using the indirectRegex property of the indirect

URL component.

For example, suppose you have a URL format that looks like this:

urlTemplateFormat=/jump/product/{item.id}/{item.parentCategory.id}\
 /{item.displayName}/{item.parentCategory.displayName}

The regular expression pattern for this format might be specified like this:

indirectRegex=/jump/product/([^/].*?)/([^/].*?)/([^/].*?)/([^/].*?)$

This pattern tells the jump servlet how to extract the parameter values from a static URL. In addition, the servlet

needs information about how to interpret the parameters. Some parameters may be simple String values, while

others may represent the ID of a repository item. If the parameter is a repository item ID, the servlet needs to

determine the item type and the repository that contains the item.

Therefore the indirect URL template also includes a regexElementList property for specifying each parameter

type. This property is an ordered list where the first element specifies the parameter type of the first regular

expression, the second element specifies the parameter type of the second regular expression, and so on.

The syntax for each parameter type entry in the list is:

paramName | paramType [| additionalInfo]

The paramName is used to match the parameter with placeholders in the direct URL that the servlet forwards the

request to.

Valid values for paramType are:

• string, which denotes a simple string

• id, which denotes the ID of a repository item

The optional additionalInfo field can be used to specify additional details if paramType is id. (This field

should be omitted if paramType is string.) The syntax of additionalInfo takes one of the following forms:

15 Search Engine Optimization 359

repositoryName:itemDescriptorName
itemDescriptorName

The parameter type list for the regular expression pattern shown above would look similar to this:

item | id | /atg/commerce/catalog/ProductCatalog:product
parentCategory | id | /atg/commerce/catalog/ProductCatalog:category
displayName | string
parentCategoryDisplayName | string

Configuring URL Template Mappers

URL template mappers are used by the ItemLink servlet bean to map repository item descriptors to URL

templates. The servlet bean has an itemDescriptorNameToMapperMap property that maps item descriptors to

URL template mappers. For example:

itemDescriptorNameToMapperMap=\
 product=/atg/repository/seo/ProductTemplateMapper,\
 category=/atg/repository/seo/CategoryTemplateMapper

Each template mapper component has a templates property that specifies one or more templates to use

for rendering static URLs, and a defaultTemplate property that specifies the template to use for rendering

dynamic URLs. So, in this example, the product item descriptor is associated with the templates listed by the

ProductTemplateMapper component, and the category item descriptor is associated with the templates

listed by the CategoryTemplateMapper component. When ItemLink generates a link to a specific repository

item, it uses this mapping to determine the URL template to use.

Configuring the ItemLink Servlet Bean

The ItemLink servlet bean takes a repository item as input and uses a URL template to construct a static or

dynamic link to that item, depending on the value of the HTTP request’s User-Agent property. It uses an

indirect URL template if the visitor is a web spider, and a direct URL template otherwise.

For a given item descriptor, there can be multiple URL templates. The one selected is based on matching the

value of the HTTP request’s User-Agent property to the browser types in the template’s configuration.

Most of the information needed by the servlet bean is provided using its input parameters. However, there are a

few properties that you can set as well:

Property Description

itemDescriptorNameToMapperMap Map of item descriptor names to UrlTemplateMapper

instances. This property must be set. See Configuring URL

Template Mappers (page 359).

defaultItemDescriptorName Specifies the value to use for the itemDescriptorName input

parameter, if the input parameter is not supplied.

360 15 Search Engine Optimization

Property Description

defaultRepository Specifies the value to use for the repository input parameter,

if the input parameter is not supplied.

defaultWebApp Specifies the default web application to use when determining

the context path for a URL.

Note: If you embed the ItemLink servlet bean in the Cache servlet bean, you must be sure to create separate

cache keys for human visitors and web spiders (which can be differentiated based on the UserAgent value of

the request). Otherwise the page may end up containing the wrong type of URL for the visitor.

For additional information about the ItemLink servlet bean, see the ATG Page Developer's Guide.

Configuring the SEO Jump Servlet

The atg.repository.seo.JumpServlet class is responsible for translating static request URLs to their

dynamic equivalents. This class extends the atg.servlet.pipeline.InsertableServletImpl class, so

it can be inserted in the DAS or DAF servlet pipeline. However, because this servlet is intended to process

only static URLs, and incoming URLs are typically dynamic, including the servlet in a pipeline may be very

inefficient. Therefore, it is generally preferable to configure it as a URI-mapped servlet in the web.xml file of your

application, to ensure that it processes only static URLs.

To configure the jump servlet in a web.xml file, you actually declare another class,

atg.repository.seo.MappedJumpServlet. This is a helper class that invokes the JumpServlet component.

In addition, you declare a servlet mapping for the pattern that the servlet uses to detect static request URLs.

For example, if you have configured your static URLs to include /jump/ immediately after the context root, the

entry in the web.xml file would be similar to this:

<servlet>
 <servlet-name>MappedJumpServlet</servlet-name>
 <servlet-class>atg.repository.seo.MappedJumpServlet</servlet-class>
 <init-param>
 <param-name>jumpServlet</param-name>
 <param-value>ctx:dynamo:/atg/repository/seo/JumpServlet</param-value>
 </init-param>
</servlet>
<servlet-mapping>
 <servlet-name>MappedJumpServlet</servlet-name>
 <url-pattern>/jump/*</url-pattern>
</servlet-mapping>

There also are several properties you can configure for the Nucleus component:

Property Description

templates An array of IndirectUrlTemplate components that the servlet examines in the

order specified until it finds one that matches the static request URL.

15 Search Engine Optimization 361

Property Description

defaultRepository Specifies the repository to associate with repository items for which a repository

is not otherwise specified.

defaultWebApp Specifies the default web application to use when determining the context path

for a URL.

In addition, the servlet has nextServlet and insertAfterServlet properties for including the component in

a servlet pipeline. If the servlet is configured through the web.xml file, you should not set these properties.

URL Recoding for Multisite Applications

For a multisite application, the URL for a link from one site to another must include information that identifies

the target site. Depending on how the application is configured, the site information is part of the domain

name or the context root. (Links within a site typically use relative URLs, so site information does not need to be

included.)

You do not need to configure any of your URL recoding components to include the site information (such as

the context path) in cross-site links. Instead, you pass the URL generated by the ItemLink servlet bean to the

atg.droplet.multisite.SiteLinkDroplet servlet bean, which adds the site information to the URL.

For information about the SiteLinkDroplet servlet bean, see ATG Page Developer's Guide.

Canonical URLs

A number of Web search engines enable you to specify the canonical form of the URL for an indexed page. For

example, suppose your site has a page that can be accessed by several different URLs (either because the query

parameters can vary, or because there are multiple paths to the same page). Rather than indexing the page

separately by each different URL (and diluting the page ranking as a result), you can instruct search engines to

index the page by a single URL in its standard (canonical) form.

You specify the canonical URL for a page using a link tag with its rel attribute set to "canonical". For

example:

<link rel="canonical" href="www.example.com/product/Blue+Suede+Shoes" />

When a web spider crawls a page, it records the page’s URL as the value specified in the href attribute, rather

than the actual URL that was used to access the page.

Creating Canonical URLs

To code your JSPs to render canonical URLs, you use the URL recoding feature described in the URL

Recoding (page 353) section. The canonical URL generated for a page is similar to the static URL rendered for

web spiders by an indirect URL template. The canonical URL should always be static, regardless of whether the

362 15 Search Engine Optimization

page is accessed by a spider or a human user. That way, if a spider happens to access a page using a dynamic

URL (e.g., by following a link from another page), it will still see (and record) the static URL it finds in the link

tag. As with the URL recoding feature, when a user accesses a page via a static URL, the SEO jump servlet

translates it back to its dynamic equivalent for processing.

To render canonical URLs, you use the atg.repository.seo.CanonicalItemLink servlet bean.

This class is similar to the ItemLink servlet bean, except that it does not use template mappers,

because the URL template used does not depend on the browser type of the request. So rather than

configuring the ItemLink servlet bean’s itemDescriptorNameToMapperMap property to map item

descriptors to UrlTemplateMapper components, you configure the CanonicalItemLink servlet bean’s

itemDescriptorNameToUrlTemplateMap property to map item descriptors directly to UrlTemplate

components. For example:

itemDescriptorNameToUrlTemplateMap=\
 product=/atg/repository/seo/ProductIndirectTemplate,\
 category=/atg/repository/seo/CategoryIndirectTemplate

The following example illustrates using the CanonicalItemLink servlet bean on a product detail page to

render a link tag specifying the page’s canonical URL:

<dsp:droplet name="/atg/repository/seo/CanonicalItemLink">
 <dsp:param name="id" param="productId"/>
 <dsp:param name="itemDescriptorName" value="product"/>
 <dsp:param name="repositoryName"
 value="/atg/commerce/catalog/ProductCatalog"/>
 <dsp:oparam name="output">
 <dsp:getvalueof var="pageUrl" param="url" vartype="java.lang.String"/>
 <link rel="canonical" href="${pageUrl}"/>
 </dsp:oparam>
</dsp:droplet>

For additional information about the CanonicalItemLink servlet bean, see the ATG Page Developer's Guide.

Sitemaps

HTML-only pages are generally easy for a web spider to parse, but on pages that use Flash or JavaScript, a spider

may have difficulty finding links to other pages. As a result, search engines may give those pages low rankings.

You can often improve the ranking of your site pages by using sitemaps to help spiders find the pages. Sitemaps

are files stored on a web server that list the URLs of the site pages, so web spiders are able to identify site

content without relying exclusively on their ability to crawl and parse the pages. Sitemaps are not an official

standard, but they are supported by many search engines, including Google, Yahoo!, and MSN.

This section includes the following:

• Overview of Sitemaps (page 363)

• Sitemap Generation Tools (page 364)

• Configuring Sitemap Generation (page 364)

15 Search Engine Optimization 363

• Additional Configuration for Multisite Applications (page 370)

• Configuring Sitemap Writing (page 371)

• Invoking Sitemap Generation and Writing (page 371)

Overview of Sitemaps

Sitemap files are XML documents that contain URLs for the pages of your site. A simple sitemap file would look

similar to this:

<?xml version="1.0" encoding="UTF-8"?>
<urlset xmlns="http://www.sitemaps.org/schemas/sitemap/0.9">
 <url>
 <loc>http://www.example.com/</loc>
 </url>
 <url>
 <loc>http://www.example.com/contact/</loc>
 </url>
</urlset>

Each <url> tag is used to specify the URL of a single page. This tag has several child tags:

• <loc> is a required tag that specifies the actual URL. Note that the value of a <loc> tag must begin with the

protocol (such as http) and end with a trailing slash, if your web server requires it. This value must be less

than 2,048 characters long.

• <lastmod> is an optional tag for specifying the date the page was last modified.

• <changefreq> is an optional tag that indicates how often the page is likely to change.

• <priority> is an optional tag that assigns a priority value to the page, relative to other pages on the site.

For more information about these tags, see:

http://www.sitemaps.org/protocol.php

Sitemap Indexes

A single site can have more than one sitemap. Using multiple sitemaps can help make your sitemaps more

manageable; for example, you can have a separate sitemap for each area of a site. On very large sites, having

multiple sitemaps may be necessary to ensure that no individual sitemap exceeds the maximum file size (10 Mb

or 50,000 URLs).

To use multiple sitemaps, you list them all in an XML file called a sitemap index. For example:

<?xml version="1.0" encoding="UTF-8"?>
<sitemapindex xmlns="http://www.sitemaps.org/schemas/sitemap/0.9">
 <sitemap>
 <loc>http://www.example.com/sitemap.xml</loc>
 </sitemap>
 <sitemap>
 <loc>http://www.example.com/sitemap2.xml</loc>
 </sitemap>

364 15 Search Engine Optimization

</sitemapindex>

The <loc> tag is a required child tag of the <sitemap> tag; it specifies the URL of a sitemap file. The <sitemap>

tag also has an optional <lastmod> child tag that specifies the date the sitemap file was last modified.

Sitemap Generation Tools

An Oracle ATG Web Commerce site typically consists of both static pages (such as contact information pages)

and dynamic pages (such as product detail pages), as discussed in URL Recoding (page 353). The logic for

creating sitemaps for these two types of pages differs, so the Oracle ATG Web Commerce sitemap generation

tools create separate sitemaps for static and dynamic pages, and then include the sitemaps for both types of

pages in a single sitemap index.

The process of generating sitemaps and sitemap indexes is managed by the

atg.sitemap.SitemapGeneratorService class. This service can invoke all of the following:

• One or more components of class atg.sitemap.StaticSitemapGenerator, for generating sitemaps of

static pages.

• One or more components of class atg.sitemap.DynamicSitemapGenerator, for generating sitemaps of

dynamic pages.

• One component of class atg.sitemap.SitemapIndexGenerator, for creating a sitemap index containing

references to the sitemaps generated by the SitemapGenerator components.

Creating sitemaps is a two-step process. First, you run the SitemapGeneratorService, which creates the

sitemaps and the sitemap index as repository items in the SitemapRepository. Then, to write out the

actual XML files, you run the atg.sitemap.SitemapWriterService on each page-serving Oracle ATG Web

Commerce instance in your production environment. This repository-based approach makes it possible to

distribute the sitemaps and index to all of your servers without running the generators multiple times.

There are three ways to invoke the SitemapGeneratorService and SitemapWriterService:

• Scheduling them to run automatically at specified times or intervals.

• Configuring a deployment listener so they are run automatically after a CA deployment.

• Invoking them manually through ATG Dynamo Server Admin.

Configuring the sitemap generation and writing components is described in Configuring Sitemap

Generation (page 364) and Configuring Sitemap Writing (page 371). The different ways of invoking the

generation process are discussed in Invoking Sitemap Generation and Writing (page 371).

Note that the Oracle ATG Web Commerce sitemap generation tools assume that you are using the techniques

described in the URL Recoding (page 353) section, and they invoke some of the same classes and components

described there.

Configuring Sitemap Generation

To set up the sitemap generation process, you must create and configure:

• One SitemapGeneratorService component

• One or more StaticSitemapGenerator components

15 Search Engine Optimization 365

• One or more DynamicSitemapGenerator components

• One SitemapIndexGenerator component

• One SitemapWriterService component on each page-serving Oracle ATG Web Commerce instance

Configuring the SitemapGeneratorService

The atg.sitemap.SitemapGeneratorService class manages the process of generating sitemaps and

sitemap indexes. The Oracle ATG Web Commerce platform includes a component of this class, /atg/sitemap/

SitemapGeneratorService. To configure a SitemapGeneratorService component, set the following

properties:

Property Description

sitemapGenerators An array of components of classes that implement the

atg.sitemap.SitemapGenerator interface. Typically this is a mix of

components of class atg.sitemap.StaticSitemapGenerator and

components of class atg.sitemap.DynamicSitemapGenerator.

sitemapIndexGenerator A component of class atg.sitemap.SitemapIndexGenerator.

sitemapRepository The repository that stores the sitemaps and the sitemap index. This

should be set to /atg/sitemap/SitemapRepository.

sitemapPropertiesManager A component that maps properties in the SitemapRepository to

the names used in Java code. This should be set to /atg/sitemap/

SitemapPropertiesManager.

sitemapTools A component with utility methods for looking up and modifying items

in the SitemapRepository. This should be set to /atg/sitemap/

SitemapTools.

maxUrlsPerSitemap The maximum number of URLs to be stored in a single sitemap file. If

this property is not set explicitly, it defaults to 50000, the maximum

allowed by sitemap.org.

maxSitemapSize Maximum size of a single sitemap file, in bytes. If this property is not

set explicitly, it defaults to 10485760 (10 Mb), the maximum allowed by

sitemap.org.

urlPrefix String to prepend to the URL entries produced by the generator

components. This property is not actually used by the

SitemapGeneratorService itself, but you can set it here and then set

the corresponding property of the generator components by linking to

this value.

webApp The Nucleus pathname for the component of class

atg.service.webappregistry.WebApp that represents the web

application that the sitemap is generated for. This property is not

actually used by the SitemapGeneratorService itself, but you can

set it here and then set the corresponding property of the generator

components by linking to this value.

366 15 Search Engine Optimization

Property Description

warDir The operating-system pathname of the deployed WAR file that the

sitemap is generated for. This property is not actually used by the

SitemapGeneratorService itself, but you can set it here and then set

the corresponding property of the generator and writer components by

linking to this value.

There are additional properties that need to be configured for a multisite application. See Additional

Configuration for Multisite Applications (page 370).

In addition to these sitemap-related properties, SitemapGeneratorService also has several properties it

inherits from atg.service.scheduler.SingletonSchedulableService. See Invoking Sitemap Generation

and Writing (page 371) for more information.

A properties file for a SitemapGeneratorService component might look like this:

$class=atg.sitemap.SitemapGeneratorService
$scope=global

schedule=calendar * * . . 1 .
scheduler=/atg/dynamo/service/Scheduler
clientLockManager=/atg/dynamo/service/ClientLockManager
lockName=SitemapGeneratorService

sitemapGenerators=\
 /atg/sitemap/ProductSitemapGenerator,\
 /atg/sitemap/CategorySitemapGenerator,\
 /atg/sitemap/StaticSitemapGenerator
sitemapIndexGenerator=/atg/sitemap/SitemapIndexGenerator

sitemapRepository=/atg/sitemap/SitemapRepository
sitemapPropertiesManager=/atg/sitemap/SitemapPropertiesManager
sitemapTools=/atg/sitemap/SitemapTools

maxUrlsPerSitemap=10000
maxSitemapSize=5000000

Configuring the StaticSitemapGenerator

The atg.sitemap.StaticSitemapGenerator class generates sitemaps for static pages. This class has a

staticPages property that you use to specify a list of static pages to be included in the sitemap. For example:

staticPages=/index.jsp,\
 /support/contact.jsp,\
 /company/news.jsp,\
 /company/aboutUs.jsp

The entries in the list can use wildcards in the following ways:

• A single asterisk (*) matches a filename of any length in the specified directory, but does not include files in

subdirectories. For example, /company/*.jsp matches any JSP file in the /company/ directory, but not in

the /company/about/ subdirectory.

15 Search Engine Optimization 367

• Two asterisks (**) match subdirectories to any depth. For example, /company/**/*.jsp matches any JSP file

in the /company/ directory or any subdirectory of it.

• A question mark (?) matches any single character in a filename. For example, /company/news?.jsp matches

news1.jsp, news2.jsp, etc., in the /company/ directory.

The StaticSitemapGenerator class has changeFrequency and priority properties for setting the default

values of the <changefreq> and <priority> tags for each URL in the static pages sitemap. You can override

these values for an individual page or group of pages by explicitly setting the values in the entry for the page or

pages, as in this example:

staticPages=/index.jsp,\
 /support/contact.jsp:monthly:0.8,\
 /company/*.jsp:weekly

To configure a StaticSitemapGenerator component, set the following properties:

Property Description

changeFrequency The default value to use for the <changefreq> tag for each URL. This value can be

overridden for specific pages in the staticPages property (see above).

priority The default value to use for the <priority> tag for each URL. This value can be

overridden for specific pages in the staticPages property (see above).

staticPages A list of static pages to be included in the sitemap (see above).

sitemapFilePrefix A String used to form the names of the static sitemap files. If a single

file is generated, .xml is appended to this String to form the filename

(e.g., if sitemapFilePrefix=staticSitemap, the resulting filename is

staticSitemap.xml). If multiple files are generated (because the maximum

number of URLs or maximum file size is exceeded), 2.xml, 3.xml, and so on

are appended to the second and subsequent files (e.g., staticSitemap2.xml,

staticSitemap3.xml, etc.). Note that the value of sitemapFilePrefix must be

unique for each sitemap generator component, to prevent overwriting of files.

urlPrefix String to prepend to the filenames found using staticPages to form the URL

entries included in the sitemap. This should include the protocol, domain, and

port (if needed). If the webApp property is null, urlPrefix should also include the

context root; for example:

http://www.example.com/mywebapp/

webApp The Nucleus pathname for the component of class

atg.service.webappregistry.WebApp that represents the web application

that the sitemap is generated for; for example:

/atg/registry/webappregistry/MyWebApp

The StaticSitemapGenerator examines the web application to find the context

root to append to urlPrefix. If you include the context root in urlPrefix, leave

webApp null.

368 15 Search Engine Optimization

Property Description

warDir The operating-system pathname of the deployed WAR file that the sitemap is

generated for; for example:

C:\jboss-eap-4.2\jboss-as\server\atg\deploy\ATG.ear

\mywebapp.war

The StaticSitemapGenerator looks in this directory for files that match the

patterns specified in the staticPages property.

Configuring the DynamicSitemapGenerator

The atg.sitemap.DynamicSitemapGenerator class generates sitemaps for dynamic pages. This class uses a

URL template to translate dynamic URLs to static URLs for inclusion in the sitemaps. For example, suppose the

URL for a product detail page looks like this:

http://mywebsite.com/mywebapp/productDetail.jsp?productId=id

DynamicSitemapGenerator iterates through all of the product repository items in the ProductCatalog

repository and for each item generates a static URL, such as:

http://mywebsite.com/mywebapp/jump/product/12345/Oxford+Shirt/

See the Using URL Templates (page 354) section for more information about URL templates.

To configure a DynamicSitemapGenerator component, set the following properties:

Property Description

changeFrequency The value to use for the <changefreq> tag for each URL.

priority The value to use for the <priority> tag for each URL.

sourceRepository The repository whose items are used to construct the dynamic

sitemap URLs. For example, for an ATG Commerce site, this is

typically /atg/commerce/catalog/ProductCatalog.

itemDescriptorName The name of the type of item to retrieve from the source repository

to use for constructing URLs. For example, for a product detail

page on an ATG Commerce site, this would typically be product.

Note that an individual DynamicSitemapGenerator component

can use only a single item type, so if you want your sitemap

to include pages based on different item types (e.g., product

pages and category pages), you need to configure a separate

DynamicSitemapGenerator for each item type.

transactionManager The transaction manager to use. Typically /atg/dynamo/

transaction/TransactionManager.

15 Search Engine Optimization 369

Property Description

numberOfItemsPerTransaction The number of repository items to process in each transaction.

template A URL template component that translates URLs for

inclusion in sitemaps. Typically this is a component of class

atg.repository.seo.IndirectUrlTemplate, which

translates dynamic URLs to their static equivalents. See Using URL

Templates (page 354) for more information.

sitemapFilePrefix A String used to form the names of the dynamic sitemap files. If

a single file is generated, .xml is appended to this String to form

the filename (e.g., if sitemapFilePrefix=dynamicSitemap,

the resulting filename is dynamicSitemap.xml). If multiple

files are generated (because the maximum number of URLs

or maximum file size is exceeded), 2.xml, 3.xml, and so

on are appended to the second and subsequent files (e.g.,

dynamicSitemap2.xml, dynamicSitemap3.xml, etc.). Note that

the value of sitemapFilePrefix must be unique for each sitemap

generator component, to prevent overwriting of files.

urlPrefix String to prepend to the URLs created by the URL template. This

should include the protocol, domain, and port (if needed). If the

webApp property is null, urlPrefix should also include the context

root; for example:

http://www.example.com/mywebapp/

webApp The Nucleus pathname for the component of class

atg.service.webappregistry.WebApp that represents the web

application that the sitemap is generated for; for example:

/atg/registry/webappregistry/MyWebApp

The DynamicSitemapGenerator examines the web application to

find the context root to append to urlPrefix. If you include the

context root in urlPrefix, leave webApp null.

Configuring the SitemapIndexGenerator

The atg.sitemap.SitemapIndexGenerator class generates sitemap indexes. This class creates a sitemap

index containing a list of all of the sitemap files generated by the corresponding SitemapGenerator

components.

To configure a SitemapIndexGenerator component, set the following properties:

Property Description

siteIndexFilename The name of the generated sitemap index file; for example, sitemap.xml.

370 15 Search Engine Optimization

Property Description

urlPrefix String to prepend to the sitemap filenames to form the URL entries included

in the sitemap index. This should include the protocol, domain, and port (if

needed). If the webApp property is null, urlPrefix should also include the

context root; for example:

http://www.example.com/mywebapp/

webApp The Nucleus pathname for the component of class

atg.service.webappregistry.WebApp that represents the web application

that the sitemap is generated for; for example:

/atg/registry/webappregistry/MyWebApp

The SitemapIndexGenerator examines the web application to find the context

root to append to urlPrefix. If you include the context root in urlPrefix,

leave webApp null.

Additional Configuration for Multisite Applications

For a multisite application, each URL in a sitemap must identify the site it is associated with. The same product

can have multiple URLs if it is available on multiple sites.

StaticSitemapGenerator and DynamicSitemapGenerator components invoke the getSites()

method of the SitemapGeneratorService to determine the sites to generate URLs for. To configure the

SitemapGeneratorService so it can obtain this information, set the following properties:

Property Description

siteUrlManager The site URL manager component. This should be set to /atg/multisite/

SiteURLManager.

siteContextManager The site context manager component. This should be set to /atg/multisite/

SiteContextManager.

activeSitesOnly If true, indicates that URLs should be generated only for active sites. Default is

true.

enabledSitesOnly If true, indicates that URLs should be generated only for enabled sites. Default

is true.

Note that if activeSitesOnly is set to true, enabledSitesOnly is ignored, because an active site is always

enabled, but an enabled site may not be active. If both activeSitesOnly and enabledSitesOnly are set to

false, then URLs are generated for all sites.

15 Search Engine Optimization 371

Configuring Sitemap Writing

The atg.sitemap.SitemapWriterService class writes sitemaps and sitemap indexes out to XML

files. The Oracle ATG Web Commerce platform includes a component of this class, /atg/sitemap/

SitemapWriterService. Typically you need to run a component of this class on each page-serving Oracle ATG

Web Commerce instance in your production environment.

To configure a SitemapWriterService component, set the following properties:

Property Description

sitemapRepository The repository that stores the sitemaps and the sitemap index. This

should be set to /atg/sitemap/SitemapRepository.

sitemapPropertiesManager A component that maps properties in the SitemapRepository to

the names used in Java code. This should be set to /atg/sitemap/

SitemapPropertiesManager.

sitemapTools A component with a utility methods for looking up and modifying

items in SitemapRepository. This should be set to /atg/sitemap/

SitemapTools.

warDir The operating-system pathname of the deployed WAR file that the

sitemap is generated for; for example:

C:\jboss-eap-4.2\jboss-as\server\atg\

deploy\ATG.ear\mywebapp.war

The SitemapWriterService writes sitemaps files to the top-level

directory of the web application, as recommended by sitemaps.org.

In addition to these sitemap-related properties, SitemapWriterService also has several properties it inherits

from atg.service.scheduler.SingletonSchedulableService. See Invoking Sitemap Generation and

Writing (page 371) for more information.

Invoking Sitemap Generation and Writing

There are three ways to invoke the SitemapGeneratorService and SitemapWriterService:

• Scheduling them to run automatically at specified times or intervals

• Configuring a deployment listener so they are run automatically after a CA deployment

• Invoking them manually through ATG Dynamo Server Admin

After you generate and write out your sitemaps, you must submit them to search engines for indexing. For more

information, see sitemaps.org.

Scheduling

The SitemapGeneratorService and the SitemapWriterService classes both extend

atg.service.scheduler.SingletonSchedulableService, so you can schedule components of these

372 15 Search Engine Optimization

classes to run automatically at specified times or intervals. Because these are singleton services, only one

instance of each class can run on your Oracle ATG Web Commerce environment at any given time.

In general, you need to run the SitemapGeneratorService only after your site is updated. If your site is

updated frequently, you might want to configure the service to run once a day at a time when site activity is low.

If your site is updated infrequently, rather than scheduling the service, you can invoke it manually through ATG

Dynamo Server Admin or configure a deployment listener to run the service after a CA deployment.

The SitemapWriterService, on the other hand, can be configured to run frequently. When this service starts

up, it checks when the SitemapRepository was last modified. If the repository has been modified since the

SitemapWriterService last ran, the service runs and writes out the updated sitemaps. If the repository has

not been modified since the service last ran, it immediately shuts down.

This mechanism ensures that the SitemapWriterService runs only if the site has actually changed, and that

(assuming the SitemapWriterService is scheduled to run frequently) there is never a long delay between

running the SitemapGeneratorService and running the SitemapWriterService. Also, running the

SitemapWriterService on a schedule (rather than invoking it manually) is desirable because you need to run

a separate instance of this service on each page-serving Oracle ATG Web Commerce instance in your production

environment (unlike the SitemapGeneratorService, which can run on a single Oracle ATG Web Commerce

instance).

To configure the SitemapGeneratorService or the SitemapWriterService to run automatically, you set

various scheduling and locking properties.

Configuring a Deployment Listener

The PublishingAgent.base module includes a deployment listener that can trigger the

SitemapGeneratorService to run after a CA deployment. This component is /atg/epub/

SitemapGeneratorPolicy, and by default it is configured like this:

$class=atg.deployment.agent.DeploymentMethodInvocationPolicyImpl

object=/atg/sitemap/SitemapGeneratorService
methodName=generateSitemaps
deploymentState=DEPLOYMENT_COMPLETE
failDeploymentOnInvocationError=false
active=false

To enable this component, set the active property to true.

Manual Invocation through ATG Dynamo Server Admin

You can invoke the SitemapGeneratorService or the SitemapWriterService manually though ATG

Dynamo Server Admin. The top-level page has a Sitemap Administration link that takes you to a page with

Generate Sitemaps and Write Sitemaps links.

By default, the Generate Sitemaps link invokes /atg/sitemap/SitemapGeneratorService, and the Write

Sitemaps link invokes /atg/sitemap/SitemapWriterService. To configure these links to invoke different

components, change the values of the sitemapGeneratorService and sitemapWriterService properties

of /atg/sitemap/SitemapGeneratorFormHandler.

15 Search Engine Optimization 373

SEO Tagging

Web search engines partly base their rankings of pages on the words that appear in certain HTML tags,

particularly <meta> tags and the <title> tag. A common SEO technique is to list key search terms in those

tags, to raise the ranking of the pages for those terms.

The Oracle ATG Web Commerce platform includes an SEO tag repository for storing the content of these tags.

This repository has a single item type, SEOTags. An SEOTags item has the following properties, whose values are

used to create HTML tags:

• title -- String used to set the body of the <title> tag; for example:

Welcome to example.com, home of bargain clothing and shoes!

This value can be up to 254 characters long. However, Google and MSN will consider only the first 66

characters, while Yahoo! will consider the first 115.

• description -- Used to set the content attribute of a <meta name="description" ...> tag; for

example:

example.com offers the finest women's clothing and shoes at low prices.

This value can be up to 254 characters long.

• keywords -- Used to set the content attribute of a <meta name="keywords" ...> tag; for example:

shoes, women's shoes, dresses, skirts, pants, shorts, jackets, accessories

This value can be up to 254 characters long.

The property values shown in these examples would result in the following tags:

<title>Welcome to example.com, home of bargain clothing and shoes!</title>
<meta name="description" content="example.com offers the finest women's clothing
 and shoes at low prices." />
<meta name="keywords" content="shoes, women's shoes, dresses, skirts,
 pants, shorts, jackets, accessories" />

In addition to title, description, and keywords, SEOTags items have three other properties:

• displayName -- The display name for the item, used in Oracle ATG Web Commerce Merchandising and the

ATG Control Center.

• key -- An arbitrary identifier used to look up the item. You typically give each SEOTags item a unique key to

ensure the correct content is rendered.

• sites -- For multisite applications, a comma-separated list of the sites the tag applies to. You can write page

code to use this property to determine the tags to display for a given site.

Creating SEO Tags

If your Oracle ATG Web Commerce installation includes ATG Commerce and ATG Content Administration, you

can create SEO tags by editing the versioned SEO tag repository in Oracle ATG Web Commerce Merchandising.

This repository is deployed to the staging or production environment when the catalog is deployed. See the ATG

Merchandising Guide for Business Users for more information.

374 15 Search Engine Optimization

If your Oracle ATG Web Commerce installation does not include ATG Commerce or Oracle ATG Web Commerce

Content Administration, you can create SEO tags by editing the non-versioned SEO tag repository directly on the

staging or production environment, using the ATG Control Center:

1. Register the SEO tag repository by adding it to the list of repositories in the initialRepositories

property of the /atg/registry/ContentRepositories component. To do this, in <ATG10dir>/home/

localconfig/atg/registry create a ContentRepositories.properties file containing the following:

initialRepositories+=/atg/seo/SEORepository

2. Start up your Oracle ATG Web Commerce application and the ATG Control Center.

3. From the navigation menu, select Content > SEORepository.

This takes you to an editor where you can view, create, and modify SEOTags items. For example, if you click

New Item, the following window opens:

4. Fill in the values and click OK to create the item.

Rendering SEO Tags on Pages

To render SEO tags on a page, you pass the value of the key property of an SEOTags item to the

RQLQueryRange servlet bean. This servlet bean finds an SEOTags item with that key value and uses the other

properties of the item to supply the content for the tags.

The following example queries the repository for an item whose key property has the value "featured". The

other properties of the returned item are then used to render the <title> tag and <meta> tags.

<dsp:droplet name="/atg/dynamo/droplet/RQLQueryRange">

15 Search Engine Optimization 375

 <dsp:param name="repository" value="/atg/seo/SEORepository" />
 <dsp:param name="itemDescriptor" value="SEOTags" />
 <dsp:param name="howMany" value="1" />
 <dsp:param name="mykey" value="featured" />
 <dsp:param name="queryRQL" value="key = :mykey" />

 <dsp:oparam name="output">

 <title><dsp:valueof param="element.title"/></title>

 <dsp:getvalueof var="description" param="element.description"/>
 <dsp:getvalueof var="keywords" param="element.keywords"/>

 <meta name="description" content="${description}" />
 <meta name="keywords" content="${keywords}"/>

 </dsp:output>
</dsp:droplet>

Note that the howMany parameter is set to 1 to ensure that only one set of tags is rendered. In general, you

should make sure that the key property of each SEOTags item is unique.

The approach shown in the example above is useful if you have multiple pages using the same tag. You can

include this servlet bean call in each of these pages, and they will all create tags use the SEOTags item whose

key is "featured".

If you have pages that each require a unique set of tags (and therefore a unique SEOTags item), a better

approach is to set each SEOTags item’s key to a page-specific portion of the page URL, such as the servlet path.

The servlet path does not include the protocol, domain, port, context root, or query arguments, and typically

looks similar to this:

/browse/category.jsp

In the servlet bean call, you dynamically evaluate the servlet path and pass that value to the servlet bean as the

key. This approach allows you to use the same call in multiple pages, rather than having to hard-code the key in

each one individually.

The following example illustrates this approach. A parameter named pageURL is set to the servlet path of

the originating request. The pageURL parameter is then used to construct RQL to query the repository for an

SEOTags item whose key value is that servlet path.

<dsp:droplet name="/atg/dynamo/droplet/RQLQueryRange">
 <dsp:param name="repository" value="/atg/seo/SEORepository" />
 <dsp:param name="itemDescriptor" value="SEOTags" />
 <dsp:param name="howMany" value="1" />
 <dsp:param name="pageURL" bean="/OriginatingRequest.servletPath" />
 <dsp:param name="queryRQL" value="key = :pageURL" />
 ...
</dsp:droplet>

Note that the key should be based on the actual (dynamic) page URL, not the static URL created through the

URL recoding feature. When a spider accesses a page through a recoded (static) URL, the static URL is translated

by the SEO jump servlet back to its dynamic equivalent. So the page is actually served using the dynamic URL.

376 15 Search Engine Optimization

16 DAF Deployment 377

16 DAF Deployment

Oracle ATG Web Commerce includes a deployment system you can use to deploy repository and file-based

assets from one server cluster to another—typically, from a development environment to a cluster that

represents a staging or production site. DAF deployments are designed to optimize performance and scalability

by using multi-threading in a multi-server configuration. Error recovery is supported; you can resume a

deployment after an error occurs, or after a deployment is halted manually, without restarting the entire

operation. If your deployment setup includes Oracle ATG Web Commerce Content Administration, you can also

roll the target site back to a previous state.

Oracle ATG Web Commerce Content Administration is a content and deployment management system that uses

DAF deployment. For more information, see the ATG Content Administration Programming Guide.

Non-Versioned and Versioned Deployments

DAF deployment can be used to deploy content from non-versioned and versioned repositories:

• You can deploy from multiple non-versioned GSA repositories, where each source repository has a

corresponding target repository. DAF deployment can also deploy file items from one or more non-versioned

virtual file systems to corresponding virtual file systems on the target site.

• Oracle ATG Web Commerce Content Administration uses DAF deployment to deploy data in versioned

repositories and files to non-versioned repositories and virtual file systems, respectively.

In this chapter

This chapter contains the following sections:

• DAF Deployment Architecture (page 378)

• DAF Deployment API (page 384)

• Deployment Repository (page 388)

• Setting Up DAF Deployment (page 392)

• Using DAF Deployment to Deploy to Multiple Sites (page 394)

• Performing a Deployment (page 394)

• Configuring DAF Deployment for Performance (page 396)

378 16 DAF Deployment

DAF Deployment Architecture

DAF deployment uses multi-threading to move data from a source to a target server. The number of threads and

the number of assets per thread are configurable, which lets you tailor deployment performance to available

hardware.

In addition to using multiple threads, the work of deploying data can be split among many servers. This

clustering capability allows the deployment mechanism to scale as the number of assets to deploy increases.

For repository assets, DAF deployment uses the JDBC driver to connect directly from the source server—for

example, Oracle ATG Web Commerce Content Administration—to the target database, allowing it to read

and write repository assets without converting the data into an intermediate format. File system assets are

transferred across the network using a TCP connection.

The following diagram shows the database, data source, and repository setup for instances of Oracle ATG Web

Commerce servers using DAF deployment.

Each development instance can have multiple source repositories. For example, an ATG Commerce environment

might have a product catalog repository and a price list repository. Each development instance also must have

a destination repository that is configured for the target environment. The previous example shows just one

production target. For examples of configurations with multiple targets, see the ATG Content Administration

Programming Guide.

Each deployment is initiated by the Nucleus component /atg/deployment/DeploymentManager, which

spawns a thread to start the deployment process, logs information about the deployment, and returns control to

the caller. The deployment process continues asynchronously, as follows:

1. Persist asset data.

16 DAF Deployment 379

2. Send a message to DeploymentManager instances on the asset management servers to start the

deployment.

3. For each asset management server, spawn two types of threads:

• RepositoryWorkerThreads process repository assets

• FileWorkerThreads process file assets.

The number of threads of each type is determined by the ratio of repository and file assets to deploy.

Deployment transactions are performed in batches to avoid memory problems. After a given number of

operations (specified by the DeploymentManager's transactionBatchSize property), a thread tries to

commit its current set of operations as a transaction batch. If the commit succeeds, the thread requests another

batch and continues until all batches are processed.

Note: Transactions cannot span threads.

DeploymentManager

The deployment process is initiated by the /atg/deployment/DeploymentManager component, which is

also responsible for sending JMS messages that signal the start of each subsequent deployment phase. The

following code sample shows the properties file for the default DeploymentManager component:

@version $Id: //product/DAF/main/Deployment/config/atg/deployment/
DeploymentManager.properties
$class=atg.deployment.DeploymentManager

deploymentRepository=DeploymentRepository
transactionManager=/atg/dynamo/transaction/TransactionManager
lockManager=/atg/dynamo/service/ClientLockManager
messagingSource=/atg/deployment/messaging/DeploymentMessagingSource
serverNameService=/atg/dynamo/service/ServerName
clusterNameService=/atg/dynamo/service/ClusterName

transactionBatchSize=250
threadBatchSize=1000
maxThreads=10
maxFailureCount=0

loggingDebug=false
loggingThreadDebug=false
loggingItemDebug=false
loggingPropertyDebug=false
loggingFileDebug=false

phaseCompletePollingInterval=15000
threadSpawnInterval=1000

repositoryMappings=

The following table describes key DeploymentManager properties:

380 16 DAF Deployment

Property Description

deploymentRepository The location of the repository used to store deployment status

and management data.

messagingSource The Nucleus component that sends the JMS messages used to

indicate the status of each deployment phase.

Default: /atg/deployment/messaging/

DeploymentMessagingSource

maxFailureCount The number of errors that are allowed before a deployment is

declared a failure. By default, the deployment fails on the first

error. In some cases, particularly during development or testing,

you might want to increase this value so that a deployment can

continue even if errors are found.

Default: 0

phaseCompletePollingInterval The frequency in milliseconds of DeploymentManager queries,

which determine whether a deployment phase is complete and

the next phase is ready to be launched.

Default: 15000

For local deployment, the DeploymentManager uses the

localDeploymentPhaseCompletePollingInterval value,

whose default setting is 750.

To expedite large deployments, decrease polling frequency by

increasing the value of these properties.

purgeDeploymentData Specifies whether to delete from the deployment repository

marker and deploymentData items associated with this

deployment when deployment is complete.

Default: True

maxThreads The maximum number of threads that can be spawned for each

deployment. Increase the value as the number of assets in the

system increases.

The value of this property must be less than the number of

connections specified in your datasource.

For more information, see Configuring DAF Deployment for

Performance (page 396).

Default: 10

16 DAF Deployment 381

Property Description

transactionBatchSize The number of items that each transaction can process. See

Configuring DAF Deployment for Performance (page 396) for

more information.

The transactionBatchSize is ignored if it is greater than the

threadBatchSize.

Default: 250

threadBatchSize The maximum number of items that can be assigned to each

thread.

By default this number is 1000, which means that for a

deployment containing 2000 items, 2 threads are created. For

5000 items 5 threads are created, and so on until the maxThreads

limit is reached.

Default: 1000

useDistributedDeployment Specifies whether to perform distributed or local deployments.

See Enabling Distributed Deployments (page 381).

Default: False

Enabling Distributed Deployments

By default, deployment events are sent locally only to the server that initiated the deployment. In order to

use distributed deployment, where deployment events are sent as JMS messages to configured listeners, set

the useDistributedDeployment property to true. If you enable distributed deployment but the number of

assets to deploy is less than or equal to the number of assets assigned to each thread, deployment is local only,

because only one thread is required. By default, threadBatchSize is set to1000, so all deployments of 1000

assets or less are always local. This behavior can significantly improve performance for small deployments. The

default setting of useDistributedDeployment is false.

Configuring Error Logging and Debugging

The DeploymentManager includes several properties that determine the amount and type of error and

debugging information that is displayed in the Oracle ATG Web Commerce console, and saved to the

debug.log file in the <ATG10dir>\home\logs directory:

Property Logs this information:

loggingDebug Component-level debugging

Default: False

loggingThreadDebug Thread-level debugging

Default: False

382 16 DAF Deployment

Property Logs this information:

loggingItemDebug Debugging for repository items

Default: False

loggingPropertyDebug Debugging at repository item property level

Default: False

loggingFileDebug Debugging for file assets

Default: False

Enabling the properties loggingItemDebug, loggingPropertyDebug, and loggingFileDebug can result in

very large amounts of output, depending on the number of assets in your system. For performance reasons, set

these flags to true only during development and testing.

You can also use the DAF Deployment API (page 384) to obtain status and error information as it is generated.

Deployment Phases

Deployment has the following phases:

1. Deployment Start (page 382)

2. Pre-Deployment (page 383)

3. Add/Update (page 383)

4. Reference Resolution (page 383)

5. Delete (page 384)

6. Destination Synchronization (page 384)

7. Deployment Completion (page 384)

The following sections describe these phases, and the JMS messages that the DeploymentManager sends to

coordinate each phase across multiple deployment servers.

Deployment Start

When a call to the deploy() method of the DeploymentManager is received, the following actions occur:

1. The DeploymentManager sends a START_DEPLOYMENT message. No deployment engine processing occurs

at this point; the message exists principally to allow custom integration with the deployment system.

Note: if another deployment is in progress when the call to the deploy() method is received, the second

deployment is queued.

2. A thread is spawned that manages the remaining deployment process. This thread is the main or

management thread; there is only one instance, and it resides on the calling machine.

3. Control returns to the caller. The DeploymentData objects that are passed into the deploy() method are

retained by the management thread. They should not be altered by any client code.

16 DAF Deployment 383

4. In the management thread, the DeploymentManager writes DeploymentData and Markers to the

deployment repository. This process is controlled by the DeploymentManager where the deploy() call was

made.

To write the data efficiently to the deployment repository, the DeploymentManager spawns no more than

maxThreadCount number of worker threads, assigning each thread DeploymentData and Marker objects

up to a maximum of threadBatchSize.

Before starting the worker threads, the DeploymentManager sends a MARKER_PERSISTENCE message.

Pre-Deployment

After the threadBatchSize number of Marker objects are written, deployment enters the pre-

deployment phase. With a full deployment, all repository items are deleted during this phase from the

target repositories. Depending on the configuration (specifically, when the /atg/deployment/file/

DeploymentConfiguration.noVerificationByChecksum option is enabled), all files can also be deleted

from the target virtual file systems.

When this phase is complete, the DeploymentManager sends an ADD_UPDATE_PHASE message that triggers the

start of the Add/Update phase.

Add/Update

This phase begins when an ADD_UPDATE_PHASE message is sent to a deployment-specific JMS topic. The

message contains the ID of the deployment associated with the message. Instances of the DeploymentManager

on each server are subscribed to that topic and begin processing on receipt of this message; this includes the

DeploymentManager component on the server that manages the deployment process.

During this phase, the following actions occur:

• All repository items whose action property value is add or update are created.

• All properties with primitive types are set on items whose action is add or update.

• Properties of repository items that are required references are set to a temporary dummy item. Only one

dummy item of each referenced item descriptor is created; these are deleted at the end of the deployment.

• Properties marked as deployable=false are not deployed.

• Files whose action is add or update are copied to the responsible deployment agents.

When these actions are complete, the Marker item status is set to ADD_UPDATE_COMMITTED.

If an error occurs, the current transaction is rolled back. In a separate transaction, the Marker status for the item

that failed in the current batch is set to FAILURE. The deployment’s failureCount property is incremented,

and the Marker is removed from the worker thread’s list of items to operate on. The transaction is restarted from

the beginning, skipping the item that failed. When the failureCount is greater than the maxFailureCount

property configured in the DeploymentManager, the entire deployment fails.

After the management thread determines that the status of all Markers is ADD_UPDATE_COMMITTED, it starts

the next deployment phase.

Reference Resolution

During this phase, all repository items with an action of add or update that contain references to other items,

either a single reference or a collection of references, are resolved. To start this phase, the management thread

384 16 DAF Deployment

sends a REFERENCE_UPDATE_PHASE message to the deployment-specific JMS topic. As in the first phase, each

DeploymentManager starts all its threads and begins querying the deployment repository for work.

At the end of this phase, each Marker that has been processed has its status changed to

REFERENCES_COMMITTED. Any Marker whose action is delete also has its status changed to

REFERENCES_COMMITTED.

For file assets, this deployment phase is ignored.

Delete

This phase starts when the management thread sends a DELETE_PHASE message. All worker threads are started,

and each one requests a series of Markers to process. In this phase, only Markers whose action is delete are

processed. For those, the specified items are deleted from their repository. If an error occurs, the transaction is

rolled back and all Marker statuses are set to FAILURE.

When all deletions are complete, control returns to the management thread, which sets the deployment’s status

field to DATA_DEPLOYMENT_COMPLETE.

Destination Synchronization

During this phase, all destination repositories are synchronized by invalidating the caches for all the repositories

on the target instances.

Note: For large file deployments in certain configurations (when the /atg/deployment/file/

DeploymentConfiguration.noVerificationByChecksum option is disabled, or on the second apply phase

of a switched deployment when Oracle ATG Web Commerce Content Administration is being used), operations

that occur on the target can be time consuming.

Deployment Completion

The management thread sets the status of the deployment to DEPLOYMENT_COMPLETE and sends a

COMPLETE_DEPLOYMENT message to all the DeploymentManager components. If the purgeDeploymentData

flag is true in the deployment repository item, the Marker and deploymentData items are removed from the

repository before the status is set.

DAF Deployment API

The following classes and interfaces comprise the DAF Deployment API:

• atg.deployment.DeploymentManager (page 385)

• atg.deployment.DeploymentData (page 385)

• atg.deployment.DeploymentOptions (page 385)

• atg.deployment.DeploymentProgress (page 386)

• atg.deployment.DeploymentReporter (page 386)

• atg.deployment.DeploymentFailure (page 387)

For detailed information, see the online ATG Platform API Reference.

16 DAF Deployment 385

atg.deployment.DeploymentManager

As described earlier, implementations of the atg.deployment.DeploymentManager class are used to initiate a

DAF deployment and manage the deployment process. The following methods are available:

• deploy starts a new deployment.

• cancel cancels a running deployment.

• resume resumes a deployment that failed or was cancelled.

• restart restarts a deployment that failed or was cancelled.

• isDeploymentRunning determines whether a given deployment is running.

• deploymentExists determines whether the specified deployment exists in the deployment repository.

• getDeploymentProgress returns a DeploymentProgress object, which contains information about the

number of items that were deployed and the total number of items in the deployment.

• getDeploymentReporter returns a DeploymentReporter object, which contains information about

specific items that were successfully deployed or failed deployment.

• purgeDeploymentData removes the DeploymentData and Markers from the DeploymentRepository for

the specified deployment.

atg.deployment.DeploymentData

A DeploymentData object is passed into the DeploymentManager deploy() call and defines the

source and destination for a single set of data as well as identifying the actual data to be deployed.

atg.deployment.DeploymentData is a marker interface that has two subclasses that provide the API for their

respective types of deployment data object:

• RepositoryDeploymentData generates a list of repository items for deployment.

• FileDeploymentData generates a list of files for deployment.

Whenever add methods of either subclass are called, the DeploymentData object creates a Marker object,

which is internal to the deployment system and should not be used by the caller. Each Marker object represents

a single item to be deployed.

The constructors of both subclasses create a DeploymentData object. The subclasses also contain these

methods:

• addNewItem and addNewFile methods deploy a new item and file to the target.

• addItemForUpdate and addFileForUpdate methods deploy a changed item and file (one that exists

already on the target).

• addItemForDelete and addFileForDelete methods delete an item from the target.

Note: These classes are not thread-safe and should be used only by a single thread.

atg.deployment.DeploymentOptions

The atg.deployment.DeploymentOptions.addOption method supplies various deployment-wide settings

to the DeploymentManager's deploy() method. You specify options as one of the following constants:

386 16 DAF Deployment

Constant Effect

FULL_DEPLOYMENT Causes a full deployment, where only add operations are

included in the DeploymentData, and the deployment

deletes any information in the target repositories or virtual

file systems that is not included in the DeploymentData.

CODE_STRICT_REPOSITORY_OPERATIONS Constrains repository operations so that an add fails if

the item exists, and update or delete fails if the item does

not exist. If you omit this option, these situations trigger

warnings rather than failures. You can also require this

behavior through the DeploymentManager property

strictRepositoryOperations.

CODE_STRICT_FILE_OPERATIONS Constrains file operations so that an add fails if the file

exists and an update or delete fails if the file does not

exist. If you omit this option, these situations trigger

warnings rather than failures. You can also require this

behavior through the DeploymentManager property

strictFileOperations.

CODE_PRESERVE_FILE_TIMESTAMPS File operations set the timestamp of changed files

to the timestamp recorded in the source virtual file

system. Use this setting with care, as it can confuse

production systems such as JSP handling that require

reliable timestamps. Specifying this option also sets

the noVerificationByChecksum option for full

deployments.

CODE_NO_VERIFICATION_BY_CHECKSUM Files are always pushed to the target server. Without this

option, a file is pushed during an add or update operation

only if the file size or 64-bit file checksum does not match.

atg.deployment.DeploymentProgress

Methods of this class retrieve the following information about a deployment’s status:

• getWorkCompleted obtains the number of items that were deployed so far (the current value of the

workCompleted property of the deploymentProgress repository item).

• getTotalWork obtains the total number of items in the deployment (the current value of the totalWork

property of the deploymentProgress repository item).

• getTotalWork obtains a human-readable message indicating the deployment phase currently in progress,

for example Updating item references.

atg.deployment.DeploymentReporter

This class can be used to get information about any running or completed deployment. The

DeploymentReporter returns a list of the items that were committed to the database or failed deployment. It

can also show the number of committed and failed items.

16 DAF Deployment 387

The class has the following methods:

• getCommittedItems gets a list all the items successfully deployed as part of the deployment with the given

ID.

• getModifiedItems gets a list of items modified as part of the deployment with the specified ID.

• getFailures gets a list of all failed deployment items for the deployment with the specified ID.

• getCommittedCount gets the number of items that were committed to the database as part of the

deployment with the specified ID.

• getModifiedCount gets the number of items that were modified as part of the deployment with the

specified ID.

• getFailedCount gets the number of items that failed the deployment process as part of this deployment.

atg.deployment.DeploymentFailure

This class lets you retrieve detailed information about a specific deployment failure, including the type of

operation, the time the failure occurred, and the item that was the subject of the operation. You can call

the method getSubject to obtain the repository item that was the subject of the failed operation: either a

repositoryMarker or a fileMarker. These items have the following properties:

Properties Description

deploymentData A reference to the DeploymentData repository item, which has source and

destination string properties that are the paths to the Nucleus component,

either a repository or a virtual file system, where the failed item exists.

status Enumeration set to one of these values:

Pending

Initiated

AddUpdateCommitted

ReferencesCommitted

Committed

Failure

action Enumeration set to one of these values:

Add

Update

Delete

deploymentId The ID of this marker’s deployment.

itemDescriptorName Valid for repositoryMarkers only, the name of the specific item type that is

represented by this DeploymentFailure object.

itemId Valid for repositoryMarkers only, the item’s repository ID.

filePath Valid for fileMarkers only, the path of the failed file.

388 16 DAF Deployment

Deployment Repository

The deployment repository stores runtime and management data for deployments. The deployment repository

is defined in deployment.xml in <ATG10dir>\DAF\Deployment\config.jar. This repository contains the

following items:

• deployment (page 388)

• deploymentProgress (page 389)

• deploymentData (page 389)

• marker (page 390)

• repositoryMarker (page 391)

• fileMarker (page 391)

• failureInfo (page 391)

deployment

Contains management information for a current or past deployment.

This item has the following properties:

Property Description

id The deployment ID.

startTime The time the deployment was started.

endTime The time the deployment ended.

failureTime The time the deployment stopped because of an error.

status The deployment status, one of the following:

0: WAITING

1: RUNNING

2: MARKER_PERSISTENCE_COMPLETE

3: DATA_DEPLOYMENT_COMPLETE

4: DEPLOYMENT_COMPLETE

5: FAILURE

6: CANCEL

statusDetail Contains a user-readable message about the current status.

currentPhase The phase that the deployment is passing through. Can be any

of Start Deployment (0), Pre-Deployment (1), Add-Update Phase

(2), Reference Update Phase (3), Delete Phase (4), Destination

Synchronization (5), Complete Deployment (6)

16 DAF Deployment 389

Property Description

repositoryHighWaterMark A runtime value used by each repository thread to get the next set of

markers to operate on.

repositoryMarkersAvailable A runtime value representing the total number of repository markers

for deployment.

fileHighWaterMark A runtime value used by each file thread to get the next set of

markers to operate on.

fileMarkersAvailable A runtime value representing the total number of file markers for

deployment.

threadBatchSize The size by which to increase the highWaterMark when getting a

new set of items to operate on.

failureCount The number of items that failed in the deployment.

purgeDeploymentData A boolean that signifies whether the marker and deploymentData

items associated with this deployment should be purged

from the deployment repository. The value comes from

the purgeDeploymentData configuration property in the

DeploymentManager. The default is true.

deploymentData A list of deploymentData items that define a part of a deployment.

deploymentOptions A map of the option flags set for this deployment through /atg/

deployment/DeploymentOptions.

deploymentProgress

Represents the same information as the DeploymentProgress object.

This item has the following properties:

Property Description

id The deployment ID.

workCompleted The number of items that successfully deployed for this deployment.

totalWork The total number of items in the deployment.

See atg.deployment.DeploymentProgress (page 386) for more information.

deploymentData

Represents the same information as the DeploymentData object.

390 16 DAF Deployment

This item contains the following properties:

Property Description

id The deploymentData ID.

type Specifies whether the item handles file or repository items.

source For RepositoryDeploymentData objects, the name of the source repository. For

FileDeploymentData objects, the Nucleus path of the source component.

destination For RepositoryDeploymentData objects, the name of the destination repository. For

FileDeploymentData objects, the IP and port information for the target where the data

should be deployed.

markers A list of marker objects that contain information about each item to be deployed.

marker

Stores information about each individual item in the deployment.

There are two types of marker item descriptors, repositoryMarker and fileMarker, where each inherits

properties from marker and contains information specific to the type of asset being deployed.

The marker item contains the following properties:

Property Description

id The marker ID.

type Specifies whether this marker handles a repository (0) or file (1) item.

status One of the following:

0: PENDING

1: INITIATED

2: ADD_UPDATE_COMMITTED

3: REFERENCES_COMMITTED

4: COMMITTED

5: FAILURE

index The index of this marker. All indexes are unique within a deployment. The value is

derived from the highWaterMark in the deployment object.

deploymentData A reference to the marker’s deploymentData object

action One of the following:

0: ADD

1: UPDATE

2: DELETE

16 DAF Deployment 391

Property Description

deploymentId The ID of the deployment for which this marker was created.

deploymentData A reference to the marker’s deploymentData object.

repositoryMarker

Extends marker (page 390) with the following properties:

Property Description

id The repositoryMarker ID.

itemDescriptorName The item descriptor name of the repository item.

itemId The ID of the item. For composite IDs, the property is a string separated by the

configured ID separator character.

fileMarker

Extends marker (page 390) with the following properties:

Property Description

id The fileMarker ID.

filePath The path and name of the file in the virtual file system.

failureInfo

Stores data about deployment errors and has the following properties:

Property Description

id The failureInfo ID.

deployment The ID of the associated deployment item.

marker The ID of the associated marker item.

392 16 DAF Deployment

Property Description

severity One of the following:

0: WARNING

1: ERROR

message The human-readable message displayed with the warning or error.

time A timestamp showing the time when the warning or error occurred.

errorCode The code associated with the warning or error.

cause The exception that was generated when the failure occurred.

Setting Up DAF Deployment

This section describes how to configure DAF deployment for repository and file items.

Note: If you use Oracle ATG Web Commerce Content Administration, see the ATG Content Administration

Programming Guide for information on configuring deployments.

Setting Up DAF Deployment for Repository Items

The procedure for configuring DAF deployment to deploy repository items requires you to create a

GSARepository that matches your source repository, and then create a data source for the new repository

that points to the database used by the repository that is the target for the deployment. See the diagram

in DAF Deployment Architecture (page 378) earlier for an illustration. It might also be helpful to refer to

the deployment setup procedure ATG Content Administration Programming Guide, which contains a detailed

example.

1. Configure a data source to point to the database used by the target repository. To do so, you can copy and

rename the Oracle ATG Web Commerce server’s FakeXADataSource and JTDataSource properties files,

pointing the new FakeXADataSource.properties file to the target site’s database. Put the files in the same

location as the Oracle ATG Web Commerce server’s FakeXADataSource and JTDataSource.

For more information on the FakeXADataSource and JTDataSource, see the ATG Installation and

Configuration Guide.

2. Create a destination GSARepository for each source repository/target repository combination. For example,

if you have a source repository called MyContent, and a target repository, TargetContent, create an

additional GSARepository, DestinationContent. To configure it, copy the source repository’s properties

file and rename it as appropriate. Change the value of the repositoryName property, and change the

dataSource property to point to the data source you created in step 1, for example:

repositoryName=DestinationContent

dataSource=/atg/dynamo/service/jdbc/TargetJTDataSource

Put these files in the localconfig directory on the Oracle ATG Web Commerce server.

16 DAF Deployment 393

3. Add the repository you just created to the initialRepositories property of the localconfig/atg/

registry/ContentRepositories.properties file on the Oracle ATG Web Commerce server.

Make sure the value you enter matches the RepositoryName property in the repository’s properties file

(rather than the name specified in the properties file itself).

4. Repeat steps 2 and 3 for each additional source/target repository pair.

Setting Up DAF Deployment for Files

Files are deployed directly from the appropriate source component on the Oracle ATG Web Commerce server to

the component with the same path on the target. Thus, in the case of file deployment, there is no need to create

additional destination components on the source server as there is for repository item deployments. Other than

setting up the source and target VFS components, the only other step required for file deployments is as follows:

by default, the FileDeploymentServer uses port 8810 to communicate with the target. Depending on your

environment, you might need to open this port in your target server’s firewall. If you need to change the port

that is used, you can do so by adding an /atg/deployment/file/FileDeploymentServer.properties file

to the target’s localconfig directory, and setting the port as follows:

port=new-port-number

Setting Up DAF Deployment for Multiple ATG Servers

This section describes the additional steps you need to complete to set up DAF deployment for environments

where you want to increase performance by using multiple servers to perform the deployment.

Note: Unless you use Oracle ATG Web Commerce Content Administration, you cannot deploy different data

from multiple Oracle ATG Web Commerce servers clusters to a single target. The multiple server setup described

here applies only for situations where multiple servers are used as a single cluster to deploy the same data. For

information about configuring deployment from multiple server clusters, see the ATG Content Administration

Programming Guide.

1. Set up a server lock manager and a client lock manager for the Oracle ATG Web Commerce server cluster

(as for any other multi-server Oracle ATG Web Commerce configuration). For information, refer to the ATG

Installation and Configuration Guide.

2. On each instance in the Oracle ATG Web Commerce server cluster, set the /atg/dynamo/service/

ServerName.properties file to have serverName and drpPort properties that are unique for each

instance in the cluster. For example, server A might be set as follows:

serverName=serverA:8850

drpPort=8850

Server B might be set with distinct values, as follows:

serverName=serverB:18850

drpPort=18850

Caution: Do not run the DAF.Deployment module on any server that is used as a standalone lock manager.

Doing so causes the lock manager to attempt to deploy items, and the deployment deadlocks as a result.

394 16 DAF Deployment

Using DAF Deployment to Deploy to Multiple Sites

The DAF deployment architecture lets you deploy from a single Oracle ATG Web Commerce server to multiple

sites, including multiple sites on a single target. To do so, follow the steps in Setting Up DAF deployment for a

Single Oracle ATG Web Commerce Server, creating corresponding repositories on the target server or servers for

each repository that you want to deploy from the Oracle ATG Web Commerce server. For data that you do not

want to deploy to a particular site or target, do not set up a matching repository on the target. The data is not

deployed if no matching repository exists.

Any repositories that have data dependencies—for example, items that have links to other assets—must be

deployed together.

The following diagram shows two target sites that have different data supplied by a single Oracle ATG Web

Commerce server instance: Production Site 1 and Production Site 2. On Production Site 1, there is no matching

repository for the Repository C that is configured on the source, so this target site does not receive Repository

C data. Similarly, Repository A is not configured on Production Site 2, so this target does not receive data for

Repository A.

Performing a Deployment

Note: For information on deployments with Oracle ATG Web Commerce Content Administration, refer to the ATG

Content Administration Programming Guide.

The DAF.Deployment module is included by default on the Oracle ATG Web Commerce source server. The

appropriate modules are also included by default on both the source and target servers if your environment

includes Oracle ATG Web Commerce Content Administration. However, if you do not use Oracle ATG Web

Commerce Content Administration, and you are deploying files, you must specify DAF.DeploymentAgent in the

list of modules when you assemble your application for the target server. For more information, see Assembling

Applications (page 73)

To trigger a deployment for repository assets, create an object of type RepositoryDeploymentData,

specifying a source and destination repository. For deploying assets from multiple source repositories, create

16 DAF Deployment 395

a DeploymentData object for each pair of source and destination repositories. For each item you want

to add, invoke addNewItem(). To update an item, use addItemForUpdate(). To delete an item, invoke

addItemForDelete().

For example:

RepositoryDeploymentData dd = new RepositoryDeploymentDataImpl(sourceRepository,
 targetRepository);
RepositoryDeploymentData dd2 = new RepositoryDeploymentDataImpl(sourceRepository2,
 targetRepository2);

dd.addItemForUpdate(myRepositoryItem);
dd.addItemForDelete(myOtherRepositoryItem);
dd2.addItemForUpdate(myRepositoryItem2);
dd2.addItemForDelete(myOtherRepositoryItem2);

DeploymentData[] dataArray = {dd, dd2};

DeploymentManager manager = (DeploymentManager)
 Nucleus.getGlobalNucleus().resolveName("/atg/deployment/DeploymentManager");

String deploymentId = manager.deploy(dataArray, new DeploymentOptions());

To deploy file assets, construct a FileDeploymentData object, which represents a particular agent or target

process. It holds only the IP address of that machine, and the port number of the FileDeploymentServer on

the running agent.

Create a separate FileDeploymentData object for each agent or target server that needs data from any

particular virtual file system. Also, a separate FileDeploymentData object should be created for each distinct

VirtualFileSystem component targeted on a particular agent process.

Use the **byURI functions when deploying from a versioned ContentRepositoryFileSystem. The URI

passed in is the String representation of the version manager URI. Use the other functions when deploying non-

versioned data.

The following example deploys the same data from a single non-versioned virtual file system to two target

agents simultaneously:

VirtualFileSystem sourceSystem = (VirtualFileSystem)
 Nucleus.getGlobalNucleus().resolveName("/com/path/SourceVFS");

FileDeploymentDestination dest1 =
 new FileDeploymentDestination("server1.company.com:8810");
FileDeploymentDestination dest2 =
 new FileDeploymentDestination("server2.company.com:8810");

FileDeploymentData fdd1 =
 new FileDeploymentData(sourceSystem, dest1); FileDeploymentData fdd2 =
 new FileDeploymentData(sourceSystem, dest2);

fdd1.addNewFile(myVirtualFile1); fdd2.addNewFile(myVirtualFile1);
fdd1.addFileForUpdate(myVirtualFile2);
fdd2.addFileForUpdate(myVirtualFile2);
fdd1.addFileForDelete(myVirtualFile3);
fdd2.addFileForDelete(myVirtualFile3);

DeploymentData[] dataArray = {fdd1, fdd2};

396 16 DAF Deployment

DeploymentManager manager = (DeploymentManager)
 Nucleus.getGlobalNucleus().resolveName("/atg/deployment/DeploymentManager");

String deploymentId = manager.deploy(dataArray, new DeploymentOptions());

See atg.deployment.DeploymentData (page 385) for more information.

Performing Switch Deployments

Switch deployments, where a target server has both an active and an offline database and data is sent to an

offline database, are not currently supported through the DAF deployment API. For information on configuring

switch deployments for an Oracle ATG Web Commerce Content Administration environment, refer to the ATG

Content Administration Programming Guide.

Configuring DAF Deployment for Performance

This section suggests some configuration settings that can help ensure optimal performance for the DAF

deployment system.

• Increase the JVM heap size as the number of assets in the system increases.

• Increase the value of the maxThreads property in the /atg/deployment/DeploymentManager component

as the number of assets in the system increases. The default value is 10. However, increasing the value beyond

20 for UNIX systems and 10 for Windows is not recommended. Use additional Oracle ATG Web Commerce

Content Administration server instances instead.

Note: The value of maxThreads must be less than the number of connections specified in your datasource.

• Make sure that the number of connections to the source and destination repositories is larger than the value

of the maxThreads property.

• Do not increase the transactionBatchSize property in the DeploymentManager to a large value because

doing so requires transaction management to use more database memory, and performance of the database

can be degraded as a result.

• If your environment uses Oracle databases, perform statistics gathering after the initial data load, on both the

source and target databases.

For information on using checksum caching to optimize deployment for file assets, refer to the ATG Content

Administration Programming Guide.

17 Content Distribution 397

17 Content Distribution

To achieve faster performance in a large Oracle ATG Web Commerce application, it is best to keep as much

content cached on the HTTP server as possible. This shortens the request handling process. Oracle ATG Web

Commerce’s content distributor feature manages content across multiple HTTP and Oracle ATG Web Commerce

servers, pushing content from the Oracle ATG Web Commerce document root to the HTTP servers’ document

roots.

The Oracle ATG Web Commerce content distributor system consists mainly of three main components of:

• DistributorSender components are installed on Oracle ATG Web Commerce servers open TCP/IP

connections to a list of DistributorServer components and send put file and file check commands.

• DistributorServer components are installed with HTTP servers. They accept TCP/IP connections from the

DistributorSender components and create DistributorReader components to handle each such TCP/IP

connection.

• DistributorReader components handle the input from the DistributorSender, writing the files they

receive to the HTTP server’s local file system or the document cache.

In this chapter

This chapter includes the following sections:

• Content Distribution Operation (page 397)

• Using Content Distribution with an SQL Content Repository (page 399)

• Setting Up a Content Distributor System (page 399)

Content Distribution Operation

In a content distributor system, a DistributorServer component is installed with each HTTP server.

Each Oracle ATG Web Commerce server includes one or more DistributorSender components or

DistributorPool components (a resource pool of DistributorSender components) that are configured to

connect to the DistributorServer component on each HTTP server.

When the putFile methods of a DistributorSender are invoked, the DistributorSender:

1. Generates a file name and directory to use on the remote servers.

398 17 Content Distribution

2. Checks whether the file was sent to the remote servers:

• Checks locally in its document cache (RemoteServerCache)

• Checks remotely, issuing a fileCheck command to the remote DistributorServer components.

The check is performed by comparing the file’s size and last modified time to that of the version of the file in

the local document cache and then in the remote document cache.

3. If the file is not found either in the local cache or the remote cache, the DistributorSender sends the file to

the remote server. On the remote server, a DistributorReader writes the file in the specified directory.

4. The file is cached locally.

5. The putFile operation returns a URL that can be used to access the sent file.

Distributor Commands

When a DistributorServer receives a connection from a DistributorSender, the DistributorServer

creates a DistributorReader, which actually handles the command from the DistributorSender. A

DistributorSender can send two types of commands: fileCheck and put.

fileCheck Command

The fileCheck command sends to the DistributorReader the following information:

• Directory name

• File name

• File size

• Last modified time

The DistributorReader checks the file in its local document root that corresponds to the directory name and

file name. It tests whether the file size and last modified time of this file match those sent in the fileCheck

command by the DistributorSender. The DistributorReader sends back a success or failure code, based

on whether the files match or not.

put Command

The put command sends to the DistributorReader the following information:

• Directory name

• File name

• File size

• Last modified time

• Data (a content repository item, file, or byte array)

The DistributorReader writes the data in the file in its local document root that corresponds to the directory

name and file name in the put command.

17 Content Distribution 399

Using Content Distribution with an SQL Content

Repository

The Oracle ATG Web Commerce content distributor system can be used with an SQL Content Repository that

stores both its content and its metadata in an SQL database. Note, however, that the content distributor system

cannot be used with a repository that stores any information on a file system, such as an SQL/File System

Connector.

The putFile operation of a DistributorSender returns a URL that can be used to access

content repository items. AN SQL Content Repository can define user-defined properties of type

atg.distributor.DistributorPropertyDescriptor. You can then use this property to get the URL of a

repository item and use the URL to fetch the content of the item.

So, for example, you might have a repository item type named product. You can fetch and display its URL in a

link like this:

link text here

Here is an example of how you might set up a property of type DistributorPropertyDescriptor. You might

define a property like this in an SQL Content Repository’s repository Definition file:

<property name="url" data-type="string"
 property-type="atg.distributor.DistributorPropertyDescriptor"
 queryable="false">
 <attribute name="poolPath"
 value="/atg/commerce/catalog/ContentDistributorPool"/>
</property>

This tag defines a property named url. Its type is defined by the property-type attribute. The <attribute>

tag gives the Nucleus address of a DistributorPool component to use in fetching the content item. If you

want to use a single DistributorSender instance, rather than a DistributorPool, you use an <attribute>

tag like this:

<attribute name="senderPath" value="/nucleus/path/to/DistributorSender"/>

Setting Up a Content Distributor System

The Oracle ATG Web Commerce content distributor system includes the following types of components:

• DistributorSender

• DistributorPool

• RemoteServerCache

• DistributorServer

• DistributorReader

400 17 Content Distribution

To set up a content distributor system, you need to install and configure a number of these components on your

Oracle ATG Web Commerce servers and your HTTP servers:

1. Create and configure one DistributorSender or DistributorPool component on each of your

Oracle ATG Web Commerce servers that handles user sessions. See DistributorSender (page 400) and

DistributorPool (page 402).

2. If you choose to use local caching, create and configure one RemoteServerCache component on each of

your Oracle ATG Web Commerce servers that has a DistributorSender or DistributorPool component.

See RemoteServerCache (page 403).

3. Install, configure, and start up a DistributorServer component on each HTTP server machine. See

DistributorServer (page 403).

Note: You do not need to create or configure any DistributorReader components. When a

DistributorServer receives a connection from a DistributorSender, the DistributorServer

automatically creates a DistributorReader.

DistributorSender

The DistributorSender is an instance of atg.distributor.DistributorSender. It opens connections to

each host in its serverList property. The DistributorSender has the following properties that you might

want to configure:

Property Name Description

serverList A comma-separated list of hosts of DistributorServer components.

Include an entry for each HTTP server in your site.

cacheLocally When a file is sent, should it also be cached locally?

Default is true

documentRoot The local document root.

documentRootCachePath The directory in the remote HTTP server’s document root that

should be used to store all the cached content. For example if

the remote HTTP server’s document root is at /work/www/doc

and documentRootCachePath is set to DIST_CONTENT then

the DistributerReceiver creates a directory named /work/

www/doc/DIST_CONTENT to hold cached content sent by the

DistributorSender.

createCacheDirectories Create any directories that do not already exist in the remote cache.

Default is true

contentItemNameProperty The repository item property to use in generating a file name for a

content item. See Generating a File Name (page 402) for more details.

remoteServerCache A local cache of items that the DistributorSender has sent to the

remote servers. See RemoteServerCache (page 403).

17 Content Distribution 401

Property Name Description

minReconnectInterval If the DistributorSender fails to connect, it tries again after this

interval.

Default is 120000 milliseconds, or 2 minutes.

Running the DistributorSender from a Command Line

You can also run the DistributorSender from a command line. This can be helpful in testing and

development. The DistributorSender command uses this syntax:

javan ATG.distributor.DistributorSender -<arguments>

The DistributorSender command takes the following arguments:

Argument Description

-put filepath, filepath Send the named files, using the put command.

-docroot path The local document root from which to get the files.

-doccache path The local document cache.

-hosts host:port, host:port The host names and port numbers of the DistributorServer

components to connect to.

-test Sends test files to verify that connections can be made. See Test

Argument (page 401).

Test Argument

When you start the DistributorSender with the -test option, the sender should output something similar

to this:

sending file: name="distributortest_0.tst";size="890"
sending file: name="distributortest_1.tst";size="890"
sending file: name="distributortest_2.tst";size="890"
sending file: name="distributortest_3.tst";size="890"
sending file: name="distributortest_4.tst";size="890"
Sending files took 139 msec

The DistributorSender sends five distributortest_#.tst files to the remote servers. Each file is 890

bytes long, and contains 100 lines of text consisting of the word Line and the line number, like this:

Line: 0
Line: 1

402 17 Content Distribution

Line: 2
 ...

DistributorPool

If you have a single instance of DistributorSender, it can form a performance bottleneck. To avoid this

problem, you can configure a resource pool of DistributorSender components. Oracle ATG Web Commerce

provides a class for this purpose: atg.distributor.SenderResourcePool. It is a resource pool that pools

TCP/IP connections to the DistributorServer components. Like other resource pools, you can configure

the minimum and maximum size of a DistributorPool. (See Resource Pools (page 232) in the Core ATG

Services (page 205) chapter.) The default maximum size is 10, but you might need to increase that, depending

on the load served by your Oracle ATG Web Commerce application. An instance of a DistributorPool exists in

ATG Commerce at /atg/commerce/Catalog/ContentDistributorPool.

The DistributorPool also has the following properties that you might want to configure:

Property Name Description

cacheLocally When a file is sent, should it also be cached locally? See

RemoteServerCache (page 403).

Default is true

contentItemNameProperty The repository item property to use in generating a file name for a

content item. See Generating a File Name (page 402) for more details.

createCacheDirectories Create any directories that do not already exist in the remote cache.

Default is true

documentRoot The local document root.

documentRootCachePath If you want to store documents in a subdirectory of the document root.

For example:

documentRootCachePath=doc/MEDIA

Generating a File Name

The DistributorSender needs to generate a unique file name for each file it sends. The usual way to do this is

to concatenate the repository ID with the value of a repository item property. The name of this repository item

property is specified by the contentItemNameProperty property of the DistributorSender.

For example, you might have a content item type defined like this:

<item-descriptor name="articles">
 <table name="articles" type="primary" id-column-name="article_id">
 <property name="id" column-name="article_id"/>
 <property name="description"/>
 </table>

17 Content Distribution 403

</item-descriptor>

You can set contentItemNameProperty=id, and the DistributorSender uses the id property in creating a

unique file name for a repository item of type articles.

RemoteServerCache

If you use local caching (by setting the cacheLocally property to true), the DistributorSender checks the

file size and last modified time of items against the entries in a local cache of items that were sent to the remote

servers. This cache component is called a RemoteServerCache.

To use this feature, create a RemoteServerCache component (of class

atg.distributor.RemoteServerCache) for each DistributorSender or DistributorPool instance and

set the remoteServerCache property of the DistributorSender or DistributorPool to point to it. The

RemoteServerCache component might be configured like this:

$class=atg.distributor.RemoteServerCache
sizeLimit=10000

The sizeLimit property sets the maximum number of entries in the cache.

DistributorServer

A DistributorServer runs as a Nucleus component on each HTTP server machine. When a

DistributorServer receives a connection from a DistributorSender, the DistributorServer creates a

DistributorReader. The DistributorReader handles the processing of the put or fileCheck command

from the DistributorSender.

Installing the DistributorServer

To install a DistributorServer on Windows:

1. Make sure the HTTP server machine has a Java Virtual Machine installed.

2. Obtain the ATG Web Server Extensions distribution file, ATGWebServerExtensions10.2.exe.

3. Run the ATG Web Server Extensions file.

4. The installer displays the Welcome dialog box. Click Next to continue.

5. Select the installation directory, and then click Next to continue. The default directory is C:\ATG

\ATGWeb10.2.

6. The installer displays the list of web server extensions you can configure during the installation process. Make

sure the DistributorServer is selected, and click Next to continue. (If you want to install the Publishing

web agent as well, see the ATG Content Administration Programming Guide.)

7. Specify the port that the DistributorServer should use to listen for connections from

DistributorSender components, and click Next to continue. The default is 8810.

8. Specify the directory that the DistributorServer should use to cache files, and click Next to continue. The

directory can be the HTTP server’s document root, or any subdirectory within it. The default is the home\doc

subdirectory of the installation directory you previously specified.

404 17 Content Distribution

9. Enter a name for the Program Folder, and click Next to continue. The default is <ATG10dir>\ATG Web Server

Extensions.

10.The installer displays the settings you selected. If you need to make any changes, click Back. Otherwise, click

Next to proceed with the installation.

To install a DistributorServer on Unix:

1. Make sure the HTTP server machine has a Java Virtual Machine installed.

2. Obtain the ATG Web Server Extensions distribution file, ATGWebServerExtensions10.2.jar.

3. Unpack the ATGWebServerExtensions10.2.jar file:

jar xvf ATGWebServerExtensions10.2.jar

The installer creates an ATGWeb10.2 subdirectory in the current directory. This subdirectory includes the

files and directories needed to install the web server extensions.

4. Change to the ATGWeb10.2/home directory and enter the following command (or its equivalent) to set read

and write permissions for the Install script:

chmod 755 bin/Install

5. Run the Install script:

bin/Install

6. The installer displays the list of web server extensions to install. Type A to install the DistributorServer. (If

you want to install the Publishing web agent as well, see the ATG Content Administration Programming Guide.)

7. Specify the port that the DistributorServer should use to listen for connections from

DistributorSender components. The default is 8810.

8. Specify the directory that the DistributorServer should use to cache files. The directory can be the

HTTP server’s document root, or any subdirectory within it. The default is the home/doc subdirectory of the

installation directory.

Configuring the DistributorServer

The DistributorServer component is an instance of atg.server.distributor.DistributorServer.

You can configure it by editing the DistributorServer.properties file in the home\localconfig\atg

\dynamo\server subdirectory of the ATG Web Extensions installation directory. The DistributorServer has

the following properties:

Property Name Description

enabled If true, the DistributorServer service is enabled. Default is true.

port The port where the DistributorServer should listen for connections from

DistributorSender components. Default is 8810.

cacheDirectory Directory on the HTTP server where the DistributorServer stores files. Default is

the home\doc subdirectory of the ATG Web Extensions installation directory.

17 Content Distribution 405

Property Name Description

allowedSenders A comma-separated list of <host>:<port> entries. If this property is set, the

DistributorServer accepts connections only from these hosts. By default the

property is not set, which means the DistributorServer accepts connections from

any host running a DistributorSender.

Starting the DistributorServer

To start up Nucleus and run the DistributorServer component, use the following command:

startNucleus -m Distributor

If you also have a configured Oracle ATG Web Commerce Publishing web agent on the web server, you can start

up the Distributor and PublishingWebAgent modules at the same time. In this case, use the following

command:

startNucleus –m PublishingWebAgent:Distributor

For information about the Oracle ATG Web Commerce Publishing web agent, see the ATG Content Administration

Programming Guide.

406 17 Content Distribution

18 Internationalizing an ATG Web Site 407

18 Internationalizing an ATG Web Site

Internationalizing a web site is the process of creating a site that is capable of displaying content in different

languages. Oracle ATG Web Commerce internationalization is based on Java internationalization standards. You

can design an Oracle ATG Web Commerce web site for a single locale or for multiple locales. In your translated

web pages, you can vary the display of data such as dates and currencies according to locale-specific formatting

rules.

Internationalizing an application and localizing it are different activities:

• Internationalization is the process of preparing a site for delivery in different languages.

• Localization is the process of translating its contents for a specific locale or locales.

For example, an internationalized site is one that has its text messages separated into easily accessible resource

files rather than included in the source code; that same site can then be localized easily by translating the text

messages into French, for example. You do not have to localize your Oracle ATG Web Commerce application to

create a web site in another language.

In this chapter

This chapter includes the following topics:

• Overview (page 408): Briefly describes the basics of creating an internationalized web site.

• Setting Up a Multi-Locale ATG Web Site (page 411): Introduces the steps involved in preparing an ATG web

site to serve content to different locales.

• Using ResourceBundles for Internationalization (page 411): Explains how to internationalize

ResourceBundle files containing Strings that appear in your web site.

• Setting Character Encoding in JSPs (page 416): Describes how to specify a JSP’s character encoding by

setting the content type within the page.

• Using the EncodingTyper to Set the Character Encoding (page 417): Explains how to use the

EncodingTyper component to determine the character encoding for posted data in forms.

• Configuring the Request Locale (page 422): Explains how to use the RequestLocale component to

associate a character encoding with a request.

• Character Encoding and Locale Configuration Examples (page 427): Provides examples for setting the

EncodingTyper and RequestLocale components for different server and locale configurations.

• Setting the Java Virtual Machine Locale (page 429): Describes how to set the Oracle ATG Web Commerce

server locale by changing the locale of the Java Virtual Machine.

• Configuring the Database Encoding (page 429): Explains how to set the character encoding for the database

server.

408 18 Internationalizing an ATG Web Site

• Setting the E-mail Encoding (page 430): Describes how to determine the character encoding for targeted e-

mails.

• Internationalizing Content Repositories (page 430): Describes how to configure content repositories to

serve content for several different locales.

• Creating Locale-Specific Content Pages (page 432): Explains how to set up and work with content pages for

a localized site. Includes information on translating JSP tags.

• Designing a Multi-Locale Entry Page (page 434): Describes how to create a top-level index page that acts as

an entry point for a multi-locale site.

• Converting Properties Files to Escaped Unicode (page 435): Describes how to convert properties files

containing non-Latin or non-Unicode fonts to Unicode so that they can be processed by tools such as the Java

compiler.

• Localizing the Profile Repository Definition (page 436): Explains how to localize the entries in the profile

repository definition file.

• Localizing Profile Group Names, Scenario Names, and Similar Items (page 436): Describes how to localize

some of the items that appear in the ATG Control Center interface.

• Changing Date and Currency Formats (page 437): Introduces some options for displaying dates and

currency information in localized web pages.

• Using Third-Party Software on an Internationalized Site (page 438): Briefly describes the third-party software

requirements for an internationalized Oracle ATG Web Commerce web site.

Before reading this chapter, you should be familiar with Java internationalization standards. For more

information, refer to the JavaSoft Internationalization Specification at http://java.sun.com/j2se/1.3/docs/guide/

intl/index.html.

Overview

This section provides an overview of some basic internationalization concepts, as well as the ways Oracle ATG

Web Commerce implements these concepts. It contains the following topics:

• ResourceBundles (page 408)

• Character Encodings (page 409)

• EncodingTyper Component (page 410)

• RequestLocale Component (page 410)

• Java Internationalization Objects (page 410)

ResourceBundles

Internationalizing a web site is easier when text messages are not stored directly in code. Java provides

the ResourceBundle mechanism for the separation of messages from Java code. A ResourceBundle is a

Dictionary of keys that map to specific text messages.

http://java.sun.com/j2se/1.3/docs/guide/intl/index.html
http://java.sun.com/j2se/1.3/docs/guide/intl/index.html

18 Internationalizing an ATG Web Site 409

Most web sites have two types of text messages:

• User messages that are displayed to site visitors.

• Developer messages that are visible to developers only—for example, error logs.

To internationalize your web site, create separate ResourceBundles for user and developer messages. Often,

localization teams do not translate developer messages, so it is helpful for people who are localizing your site if

you keep the two types of message separate.

The ATG Control Center also uses ResourceBundles to store text for user interface display.

For more information, refer to Using ResourceBundles for Internationalization (page 411).

Locales

A locale represents a geographic or cultural region and is used to distinguish between the language variants

used by different groups of people. For example, English has several language variants such as British English

and American English; each of these is a locale. Locales are usually represented by language and country

parameters. For example, en_GB represents British English, en_US represents American English, and fr_FR

represents French used in France.

There are two types of Oracle ATG Web Commerce locales: the request locale and the server locale.

• Oracle ATG Web Commerce uses the request locale to generate locale-based user messages. For more

information, refer to Configuring the Request Locale (page 422).

• Oracle ATG Web Commerce uses the server locale to generate developer messages. For information on how to

change the server locale, refer to Setting the Java Virtual Machine Locale (page 429).

The profile repository can also include a locale property for each user; when this property is set, for example by

means of a language preference specified in a registration form, it can be used with targeting rules or scenarios

to display content that is appropriate for the user’s locale.

Character Encodings

A character encoding is a technique for translating a sequence of bytes into a sequence of characters (text). For

example, content from a web page is stored on the server as a sequence of bytes and, when it is sent to a web

browser, it is converted to human-readable text using an appropriate character encoding. Different character

encodings are available for handling the requirements of different languages; for example, languages such as

English have a relatively small number of characters and can use a single-byte character set such as ISO-8859-1,

which allows up to 256 symbols, including punctuation and accented characters. Other languages such as

Chinese, however, use thousands of characters and require a double-byte character set such as Unicode, which

allows up to 65536 symbols.

You can create internationalized web sites with Oracle ATG Web Commerce in any character encodings

supported by the Java Development Kit (JDK). Java bases all character data on Unicode. All Strings in Java are

considered to be Unicode characters. Likewise, I/O classes support the conversion of character data to and from

native encodings and Unicode. Find a list of the character encodings that Oracle ATG Web Commerce supports

in the Oracle ATG Commerce Supported Environments Matrix document in the My Oracle Support knowledge

base.

Developers and web designers generally use a native encoding method for their content. Oracle ATG Web

Commerce handles native encoded content the same way Java does. When Oracle ATG Web Commerce

410 18 Internationalizing an ATG Web Site

reads in character data, it is converted to Unicode by the GenericConverter that is included with Oracle

ATG Web Commerce. The GenericConverter handles any character encodings supported by Java and by

your version of the JDK. Whenever data is written out and sent to a web browser, the GenericConverter

converts the data back to a native encoding. Typically, the encoding written out to a browser is the same as

the encoding of the document that is read in by Oracle ATG Web Commerce. The Java InputStreamReader

and OutputStreamWriter classes are used to convert text from locale-specific encoding to Unicode and then

convert the text back to the locale-specific encoding for display to the user. For more information, see Using the

EncodingTyper to Set the Character Encoding (page 417) in this chapter.

EncodingTyper Component

To properly parse a document, the server must know the character encoding of the document before reading

it. Character encoding is determined by specific tags that you add to the JSPs. For more information, refer to

Setting Character Encoding in JSPs (page 416).

Note: The EncodingTyper component is used for determining the encoding of posted form data. See

Converting Posted Data with the EncodingTyper (page 421).

RequestLocale Component

An internationalized Oracle ATG Web Commerce web site can serve content that is in a different language

from the one in which the server is running. For example, a server that is configured to use Japanese can serve

content in Korean. An Oracle ATG Web Commerce server serves content in various languages by identifying the

language or locale associated with the request and delivering content that is appropriate.

The RequestLocale component is a session-scoped component that attaches locale information to the

requests of the session. You can configure the DynamoHandler servlet to add a RequestLocale to the request

object. When a RequestLocale component is first created, it runs through a hierarchy of sources to determine

which locale to use for the session. When the Oracle ATG Web Commerce server finds a source providing the

necessary information, a Locale object is created and stored in the RequestLocale for use by all requests

within the user’s session. For more information, see the Configuring the Request Locale (page 422) section in

this chapter.

When designing your site, keep in mind that Oracle ATG Web Commerce does not automatically ensure that

the RequestLocale of the current visitor matches the language of the content in the pages that the visitor

requests. In order to ensure that a visitor with a particular locale sees content suited for that locale, you must

design your site with the appropriate directory and navigational structure. For more information, see Creating

Locale-Specific Content Pages (page 432) and Designing a Multi-Locale Entry Page (page 434) in this

chapter. If you want to enforce a correspondence between the RequestLocale and document language, you

can build this logic into the servlet pipeline.

Java Internationalization Objects

In an internationalized Oracle ATG Web Commerce application, specific Java internationalization classes must be

used for the following purposes:

• formatting of numbers, percentages, currencies, dates, and times

• formatting of compound messages and plurals

• character checking

18 Internationalizing an ATG Web Site 411

• String comparison

• character, word, and sentence text boundaries

In order for these objects to be locale-sensitive, Oracle ATG Web Commerce requires these objects to call either a

RequestLocale object or a DynamoHttpServletRequest object.

For information on the Java internationalization classes, refer to the Java Internationalization Specification

at http://java.sun.com/j2se/1.3/docs/guide/intl/index.html. For information on the RequestLocale and

DynamoHttpServletRequest objects, see Configuring the Request Locale (page 422) in this chapter.

Setting Up a Multi-Locale ATG Web Site

To set up a multi-locale Oracle ATG Web Commerce web site, complete the steps outlined below. Each one is

described in more detail in the section shown. There might be additional steps to perform depending on your

requirements. For example, if you send targeted e-mails to web site users in different locales, you might have to

configure e-mail encoding. For information on these additional steps, refer to the rest of this chapter.

1. Set up your document directory structure with parallel directories for each locale. For more information on

this step, see Content Page Directories (page 434).

2. For each locale, copy, rename, and translate the ResourceBundle.properties files. See Using

ResourceBundles for Internationalization (page 411).

3. For each locale, copy, rename, and translate the pages that contain content for the web site. Refer to Creating

Locale-Specific Content Pages (page 432) for more information.

4. Design an entry page for the site. See Designing a Multi-Locale Entry Page (page 434) for more information.

5. Configure the character encoding for the site’s content pages. See Using the EncodingTyper to Set the

Character Encoding (page 417) or Setting Character Encoding in JSPs (page 416).

6. Configure the request locale. For more information, see Configuring the Request Locale (page 422).

7. Change the Java Virtual Machine locale if necessary. See Setting the Java Virtual Machine Locale (page 429).

8. Set the encoding for the database server. See Configuring the Database Encoding (page 429).

9. Set up your repositories to store multi-locale content. See Internationalizing Content Repositories (page

430) in this chapter for more information.

Using ResourceBundles for Internationalization

When designing an internationalized Oracle ATG Web Commerce web site, you can use the Java

ResourceBundle class of the java.util.* package and store messages as .properties files in

ResourceBundles. Each message ResourceBundle is a Dictionary that maps an identifying key to a text

message. ResourceBundle objects can be used to store the following types of information: globally scoped

user messages, server-side exception messages, log messages, and session/request-scoped user messages.

http://java.sun.com/j2se/1.3/docs/guide/intl/index.html

412 18 Internationalizing an ATG Web Site

Note: If you store a session-scoped or request-scoped message in a ResourceBundle, you should be careful not

to store this ResourceBundle in static member variables.

You can also store session-scoped or request-scoped user messages in JSPs rather than in ResourceBundles.

This behavior is useful because content pages are easily accessible to web designers. For information on storing

user messages in content pages, see Creating Locale-Specific Content Pages (page 432) in this chapter.

This section provides an overview of ResourceBundle objects in the following topics:

• Introduction to ResourceBundles (page 412)

• ResourceBundle Objects (page 412)

• ResourceBundle Inheritance (page 413)

• Internationalizing ResourceBundles (page 414)

Introduction to ResourceBundles

There are three types of Oracle ATG Web Commerce ResourceBundles:

• The ResourceBundles that affect the web site visitor’s content, such as user messages

• ResourceBundles for the Oracle ATG Web Commerce Control Center user interface

• Server-side ResourceBundles that store developer messages and logs

The only ResourceBundles that you need to translate to create an internationalized web site are the

ResourceBundles that affect the web site visitor’s content.

The visitor’s request locale determines the locale of the ResourceBundles that store user content for an

internationalized web site. For example, if the user visits an internationalized Oracle ATG Web Commerce web

site, and the user’s visitor locale is Japanese, the ResourceBundle_ja.properties file is used to generate user

messages in Japanese.

In order to internationalize an Oracle ATG Web Commerce web site, all visitor locale

ResourceBundle.properties files must be copied and renamed for each locale, according to Java naming

guidelines. These naming conventions are necessary in order for the Java locale inheritance system to work

correctly. The renamed .properties files must then be translated according to the Oracle ATG Web Commerce

translation guidelines.

For information on ResourceBundle inheritance, see the ResourceBundle Inheritance (page 413) topic. For

information on ResourceBundle naming, see the Internationalizing ResourceBundles (page 414) section. For

detailed information on ResourceBundles, see the Java documentation for java.util.ResourceBundle.

By default, Oracle ATG Web Commerce does not log the names or prefixes of resource bundles if the server’s

locale is set to en by the JVM (see Setting the Java Virtual Machine Locale (page 429)). To change this behavior,

set the logResourceNames property in the /localconfig/Nucleus.properties file to true.

ResourceBundle Objects

To fetch a ResourceBundle object, use the Java ResourceBundle.getBundle method. This method

instantiates a ResourceBundle object for the specified ResourceBundle basename and locale. After using the

18 Internationalizing an ATG Web Site 413

getBundle method to instantiate the object, use the getObject or getString method to retrieve the value

from the specified property in the given ResourceBundle object.

The ResourceBundle that is instantiated depends on the ResourceBundle.properties files that exist for the

given basename. If a ResourceBundle.properties file does not exist for the specified basename and locale

arguments, the locale of the returned ResourceBundle depends on the ResourceBundle inheritance rules.

See the ResourceBundle Inheritance (page 413) topic in this chapter for more information.

Example

For example, you can create a ResourceBundle with a base name of DynamoBundle and the current request

locale as follows:

resourceA = ResourceBundle.getBundle ("atg.dynamo.DynamoBundle",
 currentLocale);

If the current request locale is de_DE, a DynamoBundle object is created from the

DynamoBundle_de_DE.properties file. If this file does not exist, the next best .properties file is used,

according to the ResourceBundle inheritance rules.

To retrieve the price label string from the DynamoBundle ResourceBundle, you specify the appropriate key

from the DynamoBundle when invoking the getString method:

String PriceLabel = resourceA.getString ("PriceKey");

This method retrieves the PriceKey value from the instantiated DynamoBundle object.

ResourceBundle Inheritance

Oracle ATG Web Commerce uses the Java ResourceBundle inheritance rules. According to Java specifications,

all internationalized ResourceBundles belong to a family of ResourceBundle subclasses that share the

same basename. The following steps are followed to determine which ResourceBundle.properties file to

instantiate.

1. The getBundle method first looks for a class name that matches the request locale’s basename, language,

country, and variant. For example, if the desired class is DynamoBundle_fr_FR_Unix, it first looks for this

class.

If no class is found with the specified language, country, and variant arguments, it proceeds to step 2.

2. The getBundle method looks for a class that matches the request locale’s basename, language, and

country, such as DynamoBundle_fr_FR.

If no class is found with the specified language and country arguments, it proceeds to step 3.

3. The getBundle method looks for a class with a name that matches the request locale’s basename and

language, such as DynamoBundle_fr.

If no class is found with the specified language argument, it proceeds to step 4.

4. The getBundle method then goes through steps 1-3 for the default locale, instead of the request locale. For

example, if the default locale is en_US_UNIX, it looks for a class name in the following order:

414 18 Internationalizing an ATG Web Site

DynamoBundle_en_US_UNIX

DynamoBundle_en_US

DynamoBundle_en

If no class is found for the default locale, it proceeds to step 5.

5. The getBundle method looks for a class with a name of the following format: basename, such as

DynamoBundle. This class is used as a default ResourceBundle that can be used by any locale that is not

supported by the web site.

If no class is found for the specified basename, a Java MissingResourceException is thrown.

Internationalizing ResourceBundles

In order to internationalize a web site’s ResourceBundle logs and user messages, you must copy, rename, and

translate the ResourceBundle.properties files. These files must be renamed according to the Java naming

conventions to enable ResourceBundle inheritance.

For translation instructions, see ResourceBundle Translation Instructions (page 415). For information on

ResourceBundle inheritance see ResourceBundle Inheritance (page 413).

Preparing ResourceBundles for Internationalization

Each ResourceBundle.properties file should contain comments, which are formed by lines with either a # or

! as the first character. Each property’s comments should describe whether the property affects user messages,

developer messages, or log messages. These comments should also mark certain properties that should not be

translated.

An internationalized Oracle ATG Web Commerce web site uses the Java ResourceBundle class to dynamically

display the appropriate ResourceBundle object. The Java ResourceBundle naming guidelines stipulate

that each ResourceBundle.properties file must designate a locale in the file name, which must be in the

following format: basename_language_country_variant. The language suffix is required, and the variant

and country suffixes are optional.

In order to fully internationalize a web site, each user message ResourceBundle.properties file must be

copied and renamed with the appropriate language, country, and variant suffixes. For example you can

copy the ResourceBundle DynamoBundle.properties and rename it DynamoBundle_fr_FR.properties

for the fr_FR locale.

The following displays an example of ResourceBundles with the basename DynamoBundle for five locales:

DynamoBundle_en_US_UNIX.properties
DynamoBundle_en_US.properties
DynamoBundle_fr_FR.properties
DynamoBundle_de_DE.properties
DynamoBundle_ja.properties

Each user message ResourceBundle.properties file should be translated according to the guidelines in the

ResourceBundle Translation Instructions (page 415) section in this chapter. In addition, any references to other

.properties files, JSP files, HTML files, GIF files, and other media files should be changed to reflect the names

of new files.

Note the following:

18 Internationalizing an ATG Web Site 415

• You must perform an ASCII conversion to Escaped Unicode for all translated ResourceBundle files that

contain non-Latin 1 fonts or non-Unicode characters (including single-byte character sets). For more

information, see Converting Properties Files to Escaped Unicode (page 435).

• Make sure that the internationalized ResourceBundles are referenced in the Oracle ATG Web Commerce

CLASSPATH.

ResourceBundle Translation Instructions

The following topics describe the various types of text messages, escape sequences, and media elements in

ResourceBundle.properties files that might have to be translated:

• Translating ResourceBundles (page 415)

• Compound Messages (page 415)

• Escape Sequences (page 416)

• Line Continuation (page 416)

• Media Elements (page 416)

Translating ResourceBundles

Oracle ATG Web Commerce uses ResourceBundles to generate user messages that display in an Oracle ATG

Web Commerce web site. Each property in a ResourceBundle.properties file is a key-value pair, in the

format key=value. Make sure that only the values are translated. The keys should remain in English.

Both the keys and values of ResourceBundle properties that are commented as properties that should not be

converted should remain in English. Any Oracle ATG Web Commerce code, such as DROPLET BEAN=\"/atg/

dynamo/droplet/Switch\", should not be translated.

Compound Messages

Compound messages are formatted with locale-sensitive formatting objects. A compound message is a user

message that contains one or more variables, including dates, times, currencies, and Strings.

The message pattern property contains the message variables and the static text portion of the message, in the

format xxx {0} xxx. Each variable, such as {0}, represents a dynamic value. A text string might contain multiple

variables, such as {0} and {1}. Only the text, not the variables, should be translated. The translator can move the

variables as necessary.

Plurals

Plurals are formatted with standard Java internationalization formatting objects. A plural is a plural noun

variable, such as errors or files. In Java, plurals are formatted as a special type of variable within a compound

message. The plural compound message is stored in a ResourceBundle. The message pattern property

contains choices for the message, which vary based on the number of the noun variable, either 0, 1, or greater

than 1. The static text portion of the message choices must be translated. The translator can move the variables

as necessary.

Possessive Strings

Possessive strings represent the phrases that relate to possession and should be translated accordingly. An

example of a possessive string is Susan's Coat. The two parameters in this example are Susan and Coat. The

416 18 Internationalizing an ATG Web Site

‘s is derived from the message format of {0}''s {1}. This phrase structure should be translated in accordance

with the language of internationalization.

Escape Sequences

If the value contains an ASCII escape sequence like one of the following, it is converted to a single character:

\t
 \n
 \r
 \\
 \"
 \'
 \ (space)
\uxxxx

Line Continuation

If the last character on the line is a backslash character, \, the next line is treated as a continuation of the current

line. When translating continuation values, each line but the last should end in a space and a \ character.

Media Elements

The internationalization process can include translation of a subset or all media elements. If changes are made

to media files, the content pages must be edited to reflect the names of the internationalized media files.

Setting Character Encoding in JSPs

You use the contentType page directive to specify the character encoding for a JSP. For example, you might

place the following line at the top of a page:

<% page contentType="text/html; charset=ISO-8859-9"%>

You specify the content type before you retrieve the Java PrintWriter or JspWriter. The charset tag is

parsed to select the content type the first time the PrintWriter or JspWriter on the response is created. As

data goes through the PrintWriter or JspWriter, it is converted from Unicode to the encoding specified in

the contentType directive. Make sure you use the IANA name for the encoding; this is the standard required by

the HTTP specification. (See www.iana.org for a list of encoding names.)

With this technique, there is one encoding for each response, so the encoding applies to the entire page.

Alternatively, you can set the content type through a method call as follows:

<% response.setContentType("text/html; charset=utf-8"); %>

All code that comes after the method call uses the specified character set. Any code that comes before the

method call uses the previous character set setting.

http://www.iana.org

18 Internationalizing an ATG Web Site 417

Embedded pages inherit the character set from their parent page.

Converting Posted Data with a Hidden Dyncharset Tag

If you set a page’s character encoding using the JSP contentType page directive, the data submitted through

a form on the page might not have the same encoding. For example, it might be determined by the user’s

specified locale. Typically, you use the EncodingTyper component to specify the converter for data that a user

enters through a form, as described in Converting Posted Data with the EncodingTyper (page 421). However,

assuming you use the Oracle ATG Web Commerce request wrapper to retrieve your form data, you can specify

the encoding for the form data in the page itself by including a hidden "_dyncharset" input tag. For example:

<input type="hidden" name="_dyncharset"
 value="<%=response.getCharacterEncoding() %>">

When the form is submitted, the specified character set is used to convert the data back into Unicode.

Note: If you use dsp:input tags, you do not need to specify the "_dyncharset" tag; the command is

generated automatically. You need to specify the tag only if you use non-DSP <input> tags.

Using the EncodingTyper to Set the Character Encoding

The EncodingTyper component provides the converter that handles the conversion of posted data—for

example, from a registration form.

This section describes the EncodingTyper in the following topics:

• Introduction to the EncodingTyper (page 417)

• DefaultEncoding Property (page 418)

• EncodingMappings Property (page 418)

• PathPatternPrefixes Property (page 420)

• Converting Posted Data with the EncodingTyper (page 421)

• Customizing the EncodingTyper (page 421)

For information on specifying character encoding for JSPs, see Setting Character Encoding in JSPs (page 416).

Introduction to the EncodingTyper

The EncodingTyper, a Nucleus component located at /atg/dynamo/servlet/pagecompile/

EncodingTyper, defines the encoding that an Oracle ATG Web Commerce server uses to deliver locale-specific

content to the user. If the site is configured to serve content to one locale, the EncodingTyper simply uses

the defaultEncoding. If the site is configured to deliver content to multiple locales, the EncodingTyper

recognizes the document’s encoding through a portion of the content’s directory path. It checks the content

path for a set of patterns that denote the content’s encoding. After an Oracle ATG Web Commerce server has

determined the encoding, the page compiler compiles the page. The compiled page is stored in a directory that

includes the encoding as a suffix in the directory file name.

418 18 Internationalizing an ATG Web Site

In a multi-locale site, an Oracle ATG Web Commerce server can determine which encoding to use only if the

documents are separated in the document root by directories that identify the language (or encoding) of the

documents. The directory names must follow a definable pattern. See Content Page Directories (page 434)

for more information. An Oracle ATG Web Commerce server recognizes the pattern of content directories

and which encodings the directories map to based on the configuration of the encodingMappings and

pathPatternPrefixes properties in the EncodingTyper. If none of the site’s locale-specific encodings is

found for the file, the encoding defined by the defaultEncoding property is used.

The EncodingTyper also provides character data converters for a given encoding. When a browser posts

form data, there is no identifying field from the browser that indicates which encoding the data is in. The

EncodingTyper determines the encoding of the data that is posted and provides a Converter to convert the

data from its native encoding to Unicode for use by an Oracle ATG Web Commerce application.

In addition to configuring the EncodingTyper, you might have to configure the DynamoHandler and

RequestLocale components. For more information see the Configuring the Request Locale (page 422)

section in this chapter.

Note 1: The encoding that is defined by the EncodingTyper determines the character set that is specified in

the HTTP header.

Note 2: The EncodingTyper discerns the document’s encoding exclusively through the directory path. The

EncodingTyper ignores all HTML meta-tag encoding information.

DefaultEncoding Property

You must set the defaultEncoding property for any internationalized web site that is serving non-

ASCII content. If the site is a single-locale site that is using only the ASCII encoding, it is best to leave the

defaultEncoding property set to null. This setting allows for faster processing because conversion to UTF-8 is

not performed.

If you are setting up an internationalized web site where one non-ASCII encoded content is served, which

might or might not be different from the encoding of the server locale, the EncodingTyper simply requires

configuration of the defaultEncoding property. Set this property to the encoding that you want your

site to display by default. In this case, you do not have to define values for the encodingMappings and

pathPatternPrefixes properties (see below).

If you are designing a site with multiple supported request locales, the defaultEncoding,

encodingMappings, and pathPatternPrefixes properties must all be configured.

It is recommended that for internationalized web sites using IDN, your application server should be set to use

UTF-8 for URL encoding. Refer to your web application documentation for instructions on setting URL encoding.

EncodingMappings Property

In a site that is serving content to multiple locales, the property encodingMappings maps the locale-based

Page directory names to the actual page encoding of documents in those directories. This mapping uses a set of

identifiers found in the relative document path.

The mappings are defined as a list of colon-delimited strings that use the following pattern:

Java Encoding:Identifier1:Identifier2:Identifier3:Identifier4

18 Internationalizing an ATG Web Site 419

You must use the IANA (Internet Assigned Numbers Authority) names to specify the encodingMappings

property, instead of the canonical Java encoding names. If you do not use the IANA encoding names the

encodingMappings incorrectly sets the character set in the header passed to the web server. You can find a

complete list of the IANA names at http://www.iana.org/assignments/character-sets.

Example A

In this example, each directory path uses one identifier, en, fr, or ja. In each case, the identifier is used to

identify the associated page encoding.

<docroot>/en/...
<docroot>/fr/...
<docroot>/ja/...

The following displays the configuration of the encodingMappings property that corresponds with the

directory structure in Example A:

encodingMappings=\
 US-ASCII:en:::,\
 ISO-8859-1:fr:::,\
 Shift_JIS:ja:::

Example B

The keywords used in the directory path do not have to be full directory names, as long as they follow a pattern.

In the following example, the same identifiers that were used in Example A are referenced with different

directory names:

<docroot>/en-content/...
<docroot>/fr-content/...
<docroot>/ja-content/...

The following displays the configuration of the encodingMappings property that corresponds with the

directory structure in Example B.

encodingMappings=\
 US-ASCII:en:::,\
 ISO-8859-1:fr:::,\
 Shift_JIS:ja:::

In Examples A and B, the values for the encodingMappings property are the same. In both cases, only the first

identifier is used to identify the encoding.

Example C

The encodingMappings property allows for up to four identifiers to indicate the page encoding of a directory

path. Content directories can be as simple as those used in Example A, or more complicated as in the following

example:

<docroot>/en_US/...

http://www.iana.org/assignments/character-sets

420 18 Internationalizing an ATG Web Site

<docroot>/en_GB/...
<docroot>/en_CA/...
<docroot>/fr_FR/...
<docroot>/fr_CA/...
<docroot>/ja_JP/EUC/...
<docroot>/ja_JP/Shift_JIS/...
<docroot>/ja_JP/JIS/...

The following displays the configuration of the encodingMappings property that corresponds with Example C:

encodingMappings=\
 ASCII:en:US::,\
 ASCII:en:GB::,\
 ASCII:en:CA::,\
 ISO-8859-1:fr:FR::,\
 ISO-8859-1:fr:CA::,\
 EUC_JP:ja:JP:EUC:,\
 Shift_JIS:ja:JP:Shift_JIS:,\
 JIS:ja:JP:JIS:

PathPatternPrefixes Property

The pathPatternPrefixes property specifies the directory patterns in which the identifiers are used. The

pathPatternPrefixes property is a list of patterns, each representing a prefix that is looked for at the

beginning of a URL document path. The pattern strings are in Java MessageFormat pattern string format. The

pattern string argument fields map directly to the mapping identifiers used in the encodingMappings property

as follows:

{0} = Identifier1
{1} = Identifier2
{2} = Identifier3
{3} = Identifier4

The following displays three possible configurations of the pathPatternPrefixes property. These examples

correspond with Examples A, B, and C in the EncodingMappings Property topic:

A
pathPatternPrefixes=\
 /{0}/

B
pathPatternPrefixes=\
 /{0}-content/

C
pathPatternPrefixes=\
 /{0}_{1}/{2}/,\
 /{0}_{1}/

The third example uses two patterns. This is because there are two sets of patterns in the respective mapping.

One set of patterns uses two identifiers and one set of patterns uses three identifiers. In order for a pattern

18 Internationalizing an ATG Web Site 421

to match a relative document path, all identifiers in the mapping must be found in the pattern. In Example C,

the relative document path /ja_JP/... does not map to the Shift-JIS encoding (SJIS) because the path

contains only two of the identifiers, and this example requires three identifiers in order to specify the correct

Japanese encoding for the user’s platform.

Converting Posted Data with the EncodingTyper

When a browser posts form data, there is no identifying field from the browser that indicates which encoding

the data is in. The EncodingTyper determines the encoding of the data that is posted and provides a converter

to convert the data from its native encoding to Unicode for use by an Oracle ATG Web Commerce application.

Three EncodingTyper properties relate to the conversion of character data from a native encoding to Unicode:

encodings, converters, and nullEncodings.

The encodings and converters properties map converter classes to specific encodings. Oracle ATG

Web Commerce comes with two default converters, GenericConverter and JapaneseConverter.

The GenericConverter simply converts the supplied native-encoded character data into Unicode. The

JapaneseConverter is described in the next section.

JapaneseConverter

Some languages, for example Japanese, can use more than one encoding. In this case you need a language-

specific converter that detects which encoding the characters are using by inspecting a sample of the

characters. Oracle ATG Web Commerce includes a JapaneseConverter that you can use out-of-the-box. The

JapaneseConverter gathers a sample of the incoming characters and determines whether their encoding is

SJIS or EUC. In some situations, however, the converter lacks access to enough characters to be able to detect

the encoding. For this reason, when you are using a converter such as the JapaneseConverter, make sure

to change the fallbackEncoding attribute of the JapaneseConverter component from its default setting

of NULL to a specific encoding that you want the converter to use as the default. If you do not change this

attribute, the converter uses ASCII as the default encoding and your web browser cannot correctly display the

page.

The nullEncodings property of the EncodingTyper component defines a list of encodings that do not

require conversion. For example, ASCII maps directly into Unicode character for character. In other words, no

conversion is necessary to make an ASCII string into a Unicode string. ASCII is therefore listed as a null encoding.

Customizing the EncodingTyper

You can customize the means by which an Oracle ATG Web Commerce server determines the encoding type of

a specific document by sub-classing the EncodingTyper and overriding the getEncodingType() method. In

the following example, this method is passed document paths relative to the document root.

atg.servlet.pagecompile.PageEncodingTyper.java:

/**
 * Get the encoding to use for the specified path.
 *
 * @return the encoding string, or null if there is no encoding
 * corresponding to the specified path
 */
public String getEncodingType (String pPath)
{
 // Your code here.

422 18 Internationalizing an ATG Web Site

}

Configuring the Request Locale

If an Oracle ATG Web Commerce server is serving content to a locale other than the server

locale, the request must have a locale associated with the content being served. The service

OriginatingRequest.requestLocale is an on-the-fly, session-scoped component that provides locale-

related information for the duration of a session. When an OriginatingRequest.requestLocale component

is first created, it looks through a hierarchy of sources to determine which locale to use for the session. After a

Locale object is created, it is stored in the OriginatingRequest.requestLocale component for use by all

requests within a visitor session. Because this is an on-the-fly component, you cannot access it within the ATG

Control Center. It only exists for the duration of a web site user’s session. You can configure the /atg/dynamo/

servlet/RequestLocale component, however, as the OriginatingRequest.requestLocale component

searches this component for information about a user’s locale.

When a request reaches the servlet pipeline, the DynamoHandler pipeline servlet adds a RequestLocale

component in the requestLocale property of the DynamoHttpServletRequest object. This behavior is

controlled by the DynamoHandler’s generateRequestLocales property; the RequestLocale is added to

the request object only if generateRequestLocales=true. In an Oracle ATG Web Commerce servlet bean, the

DynamoHttpServletRequest object is used to access the RequestLocale object. If a Nucleus component

does not have access to the DynamoHttpServletRequest object, the request locale can be accessed by

including requestLocale as a property in the component.

When configuring a site’s supported request locales, you must configure components related to the

RequestLocale component. For more information on configuring your request locales, see Using the

EncodingTyper to Set the Character Encoding (page 417) in this chapter.

This section describes the OriginatingRequest.requestLocale and RequestLocale services in the

following topics:

• RequestLocale Hierarchy (page 422)

• Configuring RequestLocale Properties (page 423)

• Additional RequestLocale Properties (page 424)

• Request Locale in Personalization Module Web Sites (page 424)

• Allowing Users to Choose a Locale (page 425)

• Using RequestLocale in an ATG Servlet Bean (page 425)

• Adding the RequestLocale Property (page 427)

• HTTPServletRequest Component (page 427)

RequestLocale Hierarchy

When a OriginatingRequest.requestLocale component is created for a session, the component must

determine which locale to use for the session. In order to determine which locale to use, a hierarchy of sources is

checked for information on setting the locale. By default, this hierarchy is as follows:

18 Internationalizing an ATG Web Site 423

1. The request’s ACCEPT-LANGUAGE HTTP header field.

2. The default locale set via the RequestLocale.defaultRequestLocaleName property.

3. The default locale of the server JVM.

This hierarchy is important only to Oracle ATG Web Commerce web sites that are configured to serve content to

multiple visitor locales. Single language sites that are serving content for the same locale as the server locale do

not follow this hierarchy. Sites that are delivering content to one locale that is different from the server locale set

a locale for use by all sessions and requests.

Note: The DynamoHandler.generateRequestLocales property must be set to true to generate a

RequestLocale for each session. By default, the property is set to false.

Customizing the Hierarchy

The hierarchy of locale sources can easily be expanded to include custom sources. You can sub-class

atg.servlet.RequestLocale and override the method:

public Locale discernRequestLocale (DynamoHttpServletRequest pRequest,
 RequestLocale pReqLocal)
 {
 }

This method returns the locale to use in the RequestLocale. Add super.discernRequestLocale() at the

end of your overridden method so that the default request locale is set if no other source provides a locale.

Finally, change the class used by the /atg/dynamo/servlet/RequestLocale component to that of your new

RequestLocale sub-class.

Configuring RequestLocale Properties

You must configure the following RequestLocale properties when you are configuring your site’s

supported request locales. See Using the EncodingTyper to Set the Character Encoding (page 417) for

information on configuring components related to the RequestLocale component. For information on

additional RequestLocale properties that do not require configuration, see the Additional RequestLocale

Properties (page 424) section.

defaultRequestLocaleName

If a locale cannot be determined for the session from any other source, this is the locale that is used. This

property must be configured.

overrideRequestLocaleName

This property should be configured only if the Oracle ATG Web Commerce server is serving visitor content for

a single locale that is different from the server locale. In this case, all sessions can use the same request locale.

Setting this property to the single locale of the site can improve performance because it avoids the processing

time of discerning the request locale. All request locales are set to this value.

detectHTTPHeaderChanges

When this property is set to false, HTTP headers are not checked to see if the ACCEPT-LANGUAGE and

ACCEPT_CHARSET fields changed. A user does not commonly change these browser options in mid-session.

Therefore, for performance reasons, the default value for this property is false.

424 18 Internationalizing an ATG Web Site

validLocaleNames

The language in a request’s ACCEPT-LANGUAGE HTTP header field might not be one of the site’s supported

request locales. Setting the validLocaleNames property to the list of locales associated with the site’s content

languages prevents a request locale from being created for a locale that is not supported by the site.

Additional RequestLocale Properties

In addition to the RequestLocale properties that require configuration, the RequestLocale component

contains the following optional properties.

locale

The java.util.Locale objects used in locale-sensitive operations. These Locale objects are cached for reuse.

localeString

A String representation of the locale. Calling toString() on a java.util.Locale results in a new String

allocation for each call. The localeString property uses the same String representation repeatedly for a given

Locale.

previousLocale

Sometimes a locale is changed during a session. The previousLocale is the Locale object used in the

previous request.

previousLocaleString

A String representation of the previousLocale. The previousLocaleString property uses the same String

representation repeatedly for a given Locale.

acceptLanguage

The ACCEPT-LANGUAGE HTTP header field from the request that defined the RequestLocale component for

the session.

acceptLanguageList

The acceptLanguage property parsed into an array of Strings.

acceptCharset

The ACCEPT-CHARSET HTTP header field from the request that defined the RequestLocale component for the

session.

acceptCharsetList

The acceptCharset property parsed into an array of Strings.

Request Locale in Personalization Module Web Sites

This section describes the use of the RequestLocale and OrginatingRequest.requestLocale components

that is specific to the Personalization module. It contains the following topics:

• Personalization RequestLocale Hierarchy (page 425)

18 Internationalizing an ATG Web Site 425

• Personalization RequestLocale Properties (page 425)

Personalization RequestLocale Hierarchy

The Personalization module request locale hierarchy is set by default to the following. This hierarchy differs from

the Oracle ATG Web Commerce request locale hierarchy in that the Personalization module hierarchy includes

the profile attribute.

1. Profile locale property: The locale value in the profile can be set, for example, by having the user choose a

locale from a list of choices on a Preferences page that is provided at the web site.

2. The ACCEPT-LANGUAGE HTTP header: This is set in the /atg/dynamo/

servlet/RequestLocale.validLocales component.

3. Default request locale: This is defined in the /atg/dynamo/

servlet/RequestLocale.defaultRequestLocaleName component.

4. The default locale specified in the server’s JVM.

See also Allowing Users to Choose a Locale (page 425). For more information on setting up a site with

language options, see the Quincy Funds Demo and the ATG Quincy Funds Demo Documentation.

Personalization RequestLocale Properties

The Personalization module sub-classes the Oracle ATG Web Commerce RequestLocale object to

obtain a locale from the visitor’s profile. The Personalization module adds the following properties to the

RequestLocale component.

• profilePath: The Nucleus path to the Profile object in each session. This is required so that the

RequestLocale component can access the visitor’s profile.

• profileAttributeName: This attribute specifies the locale choice of the visitor. It is best to let this value

default to null in the profile template. If this value defaults to null and the user has not made a language

choice, no locale is assigned from the profile. The other locale determinants such as the request’s ACCEPT-

LANGUAGE HTTP header are used for the session until the user makes a language choice and thereby sets the

profile attribute value.

Allowing Users to Choose a Locale

When designing your web site, you might want to add options to your web pages that allow users to change the

initial request locale assigned by the Oracle ATG Web Commerce server to one of the other request locales that

the site supports. For example, you can set up a Preferences page where users can define their language choice.

This language preference is carried across site visits. To do this, design a page with a profile form that presents a

list of supported locales, and use the form to update the locale property in the profile or the /atg/dynamo/

servlet/RequestLocale.localeString property. Make sure that /atg/dynamo/servlet/pipeline/

DynamoHandler.generateRequestLocales is set to true.

The locale that the user specifies does not take effect automatically. For information on the code you must

include to update the locale, see also Updating the RequestLocale (page 426) below.

Using RequestLocale in an ATG Servlet Bean

The RequestLocale component is stored for easy access in the requestLocale property of the

DynamoHttpServletRequest object that is passed in each request. This section describes how to reference the

RequestLocale, and it contains the following topics:

426 18 Internationalizing an ATG Web Site

• Getting the RequestLocale (page 426)

• Updating the RequestLocale (page 426)

Getting the RequestLocale

The following is an example of getting and using the RequestLocale inside an Oracle ATG Web Commerce

servlet bean or other servlet:

public void service (DynamoHttpServletRequest pRequest,
 DynamoHttpServletResponse pResponse)
 throws IOException, ServletException
{
 RequestLocale reqLocale = null;
 Locale locale = null;

 // Make sure the RequestLocale isn't null...
 if ((reqLocale = pRequest.getRequestLocale()) != null) {
 // ...then get the Locale
 locale = reqLocale.getLocale();
 }
 else {
 // Otherwise, just use the JVM's default Locale
 locale = Locale.getDefault();
 }

 // Then you can use the locale to set up formatters; for instance...
 NumberFormat format = NumberFormat.getCurrencyInstance(locale);
 // ...etc....
}

Updating the RequestLocale

For performance reasons, the RequestLocale is created the first time it is needed in a session. The locale

to use for a session is decided at the time of the RequestLocale creation. The Locale object stored in

the RequestLocale component is not updated from request to request; it is updated only when the

handleRefresh method is called to refresh the component. For example, the handleRefresh method

is required when a visitor has changed the language of his or her session (via one of the sources in the

RequestLocale hierarchy).

To make the RequestLocale component re-evaluate the Locale object being used, call the

RequestLocale.handleRefresh() method. This method can be called from a JSP as follows:

<dsp:setvalue bean="/atg/dynamo/servlet/RequestLocale.refresh" value=" "/>

Note: Changes to a browser’s ACCEPT-LANGUAGE value are not detected unless the property

RequestLocale.detectHTTPHeaderChanges is set to true.

After a session has ended, any information that the RequestLocale component provided for the session is

stored in the locale property of the user’s profile.

If you want to update the RequestLocale immediately after a user has changed the locale on a profile form,

you can design the updating form to set the ProfileFormHandler.updateSuccessURL to a success page as

follows. For example:

18 Internationalizing an ATG Web Site 427

<dsp:form action="<%=ServletUtil.getRequestURI(request)%>" method="POST">
<dsp:input bean="ProfileFormHandler.updateSuccessURL" type="HIDDEN"
 value="../index.jsp"/>

The success page must then update the request URL by calling the RequestLocale.handleRefresh()

method as shown above.

Adding the RequestLocale Property

If a Nucleus component does not have access to the DynamoHttpServletRequest object, another means

of accessing the request locale is by including requestLocale as a property in the component. The

requestLocale object is session-scoped, so requestLocale cannot be used as a property in a globally scoped

component.

HTTPServletRequest Component

The following property that is related to the RequestLocale is contained in the ATG HttpServletRequest

component.

requestLocalePath

This property is the Nucleus path to the RequestLocale component. If the RequestLocale component is

moved to a different location in the component hierarchy, this property must be changed to point to the new

location.

Character Encoding and Locale Configuration Examples

This section summarizes how you set the character encoding and request locale, described in the previous

sections, for different types of web site configuration.

• The server runs in the same locale as the content being served. See One Locale for Server and Content (page

427).

• The server runs in one locale, and content is served in a different language. See Server Locale and One

Different Content Locale (page 428).

• The server runs in one locale, and content is served in several different locales. See Server Locale and Multiple

Content Locales (page 428).

One Locale for Server and Content

If you design a site where the server locale and the web content locale are the same, the following configuration

steps are necessary:

1. If necessary, set the server locale by changing the JVM locale. See Setting the Java Virtual Machine

Locale (page 429) for more information.

2. Configure the character encoding for site content. See Using the EncodingTyper to Set the Character

Encoding (page 417) or Setting Character Encoding in JSPs (page 416).

428 18 Internationalizing an ATG Web Site

3. Set the generateRequestLocales property to false in the /atg/dynamo/servlet/pipeline/

DynamoHandler component.

4. If necessary, configure the JDBC driver and database for the appropriate encoding. Generally, the encoding

of the database should be the same as the encoding of the site content, including JSP files and repository

content. See the Configuring the Database Encoding (page 429) section in this chapter for more

information.

Server Locale and One Different Content Locale

If you design a site with two different locales—one server locale and a different web content locale—the

following configuration steps are necessary:

1. If necessary, set the server locale by changing the JVM locale. See Setting the Java Virtual Machine

Locale (page 429) for more information.

2. Configure the character encoding for site content. See Using the EncodingTyper to Set the Character

Encoding (page 417) or Setting Character Encoding in JSPs (page 416).

3. Set the generateRequestLocales property to true in /atg/dynamo/servlet/pipeline/

DynamoHandler component.

4. In the /atg/dynamo/servlet/RequestLocale component, set the overrideRequestLocale property to

the request locale.

For more information, see Configuring the Request Locale (page 422).

5. If necessary, configure the JDBC driver and database for the appropriate encoding Generally, the encoding

of the database should be the same as the encoding of the site content, including JSP files and repository

content. See the Configuring the Database Encoding (page 429) section in this chapter for more

information.

Server Locale and Multiple Content Locales

If you design a site with a server locale and multiple visitor locales, the following configuration steps are

necessary:

1. Separate the content pages into language-specific directories.

See the Locale-specific Content Pages section in this chapter for more information.

2. Decide which repository design best fits the needs of your site. Edit targeting rules and repository meta-tags

as necessary.

For more information, see the Internationalizing Content Repositories (page 430) section in this chapter.

3. If necessary, set the server locale by changing the JVM locale. See Setting the Java Virtual Machine

Locale (page 429) for more information.

4. Configure the character encoding for site content. See Using the EncodingTyper to Set the Character

Encoding (page 417) or Setting Character Encoding in JSPs (page 416).

5. Set the generateRequestLocales property to true in the /atg/dynamo/servlet/pipeline/

DynamoHandler component.

6. Set the validLocaleNames and defaultRequestLocaleName properties in the /atg/dynamo/servlet/

RequestLocale component.

For more information, see Configuring the Request Locale (page 422).

18 Internationalizing an ATG Web Site 429

7. Design the entry point to your site so that it matches the user’s request locale to the appropriate content

directory. For more information, see the Designing a Multi-Locale Entry Page (page 434) section in this

chapter.

8. If necessary, configure the JDBC driver and database for the appropriate encoding. In this situation, you are

likely to want to configure your database to use Unicode. See the Configuring the Database Encoding (page

429) section in this chapter for more information.

9. Add an attribute for the user’s locale to the profile template.

Setting the Java Virtual Machine Locale

In order to run an internationalized Oracle ATG Web Commerce web site, you might have to set the Java Virtual

Machine (JVM) locale. By default, the JVM locale is the locale of the platform where the JVM is installed. To

override the default JVM locale, you must set the appropriate language and region (country) arguments in

the server environment. You can do this by adding these arguments to the environment.sh file (UNIX) or

environment.bat file (Windows).

For example, you can add the following line to an environment.bat file to change the JVM locale to French:

set JAVA_ARGS=-Duser.language=fr -Duser.region=FR %JAVA_ARGS%

Note: The JVM locale determines the Oracle ATG Web Commerce server locale, which is used for the

resourceBundles that generate Oracle ATG Web Commerce server messages and log file messages.

Configuring the Database Encoding

You should set the character encoding of your JDBC driver and database with the encoding that is suitable for

the locales that your site is supporting. The encoding of the database server must be the same as the encoding

of the site content, including JSP files and repository content. This encoding should match the EncodingTyper

encoding. For example, if you are setting up a database for one or more Western-European languages, the

encoding of the database server should be ISO8859_1. If you are setting up a Japanese-locale site that serves

content in SJIS, the encoding of the database server should be SJIS. If you are setting up a web site to support

multiple locales, including Western-European languages and non-Latin character languages, the encoding

of the database server should be Unicode. You should also make sure that the database you use has the

appropriate character set installed and selected in order to support multi-byte character sets.

The following are three example configurations:

• If the web content is in one or more Western European languages, set the encoding of the database server to

ISO8859_1.

• If the web site is serving Japanese content that is in SJIS, set the encoding of the database server to SJIS.

• If the web site is serving Japanese content and Western-European content, set the encoding of the database

server to Unicode.

Evaluate the needs of your web site and choose the appropriate encoding.

430 18 Internationalizing an ATG Web Site

Setting the E-mail Encoding

When you send targeted e-mail, you must make sure the character set used is supported by the most popular e-

mail clients. For example, Japanese JSP templates are stored by default in the SJIS character set (on Windows)

or the EUC character set (on UNIX). These are 8-bit encodings, while the default encoding for most Japanese e-

mail clients is the 7-bit ISO-2022-JP character set. You can configure an Oracle ATG Web Commerce application

to send e-mail in the ISO-2022-JP encoding.

The TemplateEmailSender component can translate e-mail messages to different encodings for transmission.

For example, you can specify that SJIS and EUC should be translated to JIS.

To specify the mapping between the template encoding and the message encoding, set the

emailEncodingMap property of the TemplateEmailSender component used to send out the e-mail. This

property is a Hashtable that can list any number of mappings. For example, the default setting of this property

is:

emailEncodingMap=SJIS=iso-2022-jp,EUC=iso-2022-jp

This setting specifies that if the template uses either the SJIS or EUC character set, the resulting e-mail

messages should use the ISO-2022-JP character set. (ISO-2022-JP is the IANA/MIME equivalent name for

the JIS Java charset.) You can change these mappings, or append additional mappings of the form template-

encoding=message-encoding (separated by commas).

You can use either the Java charset or the IANA/MIME names for the character sets. Typically, the template

encoding is specified by its Java charset name and the message encoding is specified by its IANA/MIME name.

(The default setting shown above uses this convention.) If you specify the Java charset name for the message

encoding, TemplateEmailSender uses the equivalent IANA/MIME name in the message header.

For more information about targeted e-mail, see the ATG Personalization Programming Guide.

Internationalizing Content Repositories

There are various ways to set up SQL-based content repositories to store content for multiple site locales. For

example, you can set up a separate repository for each locale, or you can store content for all locales in a single

repository and add locale-specific attributes to each repository item.

Multiple Repositories

With this method, you create a separate content repository for each locale. Then you write separate targeting

rules for each locale, with each rule referencing the appropriate repository.

One advantage of this method is that it lets you target different pieces of content to different locales. For

example, site visitors from Germany might not be interested in the same news articles as site visitors from the

US; with separate targeting rules or scenarios for each locale, you can display only those articles that are relevant

to each visitor.

Disadvantages include the need to maintain multiple copies of each item (each item is duplicated in each locale-

specific repository). In addition, storing separate values for each locale-sensitive property can take more space in

the database than storing a single value.

18 Internationalizing an ATG Web Site 431

Single Repository

With this method, you configure a single repository that holds content for all locales, and you include a

locale attribute for each repository item. Then you write a targeting rule or scenario that matches the

RequestLocale’s localeString property to the locale attribute of the content repository item, thereby

allowing you to display content that is appropriate for each user’s language preference.

Locale-specific properties of each item are stored in multi-valued tables that hold many different language

versions of the same information. This method therefore has the advantage of requiring you to maintain only

one copy of each repository item, avoiding the duplication of the multiple repository method.

Disadvantages include the need to use a single character encoding that is appropriate for all content locales in

the repository. In addition, a large repository that contains items for multiple locales might be less convenient to

work with than a set of smaller repositories, each containing items for only one locale.

For more advantages and disadvantages of each method, and for a detailed description of how to set up SQL

content repositories for an internationalized site, see the ATG Commerce Programming Guide.

The Motorprise demo application (Oracle ATG Web Commerce Business Commerce) uses the single repository

method to store content in two languages, English and German. For information, see the ATG Business Commerce

Reference Application Guide.

The Quincy Funds demo application stores content for four locales in a single repository, which is a combination

SQL/file system repository. All content is encoded in UTF-8. For more information, refer to the ATG Quincy Funds

Demo Documentation.

Using the EncodingTyper Component with Content Repositories

If you use the EncodingTyper component to determine character encodings, you must configure it to

match the locale-based repository directories to encodings; the mapping works in the same way as the

EncodingTyper mapping of page directories to encodings. See Using the EncodingTyper to Set the Character

Encoding (page 417) for more information.

Localizing an SQL Content Repository Definition File

The configuration file that defines an SQL content repository contains various values that are used in the content

repository editor in the Oracle ATG Web Commerce Control Center. For example, each item has a display-name

property and a description property whose values are labels that can be used to identify them in the editor.

You can localize the definition file so that these values appear in a different language. For detailed information,

see the ATG Repository Guide.

Localizing User Messages

When designing an Oracle ATG Web Commerce web site for internationalization, you should move all text

messages from your Java code to ResourceBundle.properties files and content pages. You can use

ResourceBundle objects for any user messages that display in the web site. It is often recommended that you

use content pages instead of ResourceBundles to store session/request-scoped user messages. This is because

content pages are more accessible to web designers than ResourceBundles.

432 18 Internationalizing an ATG Web Site

You can use the Switch servlet bean to generate user messages dynamically according to the event that

has occurred. When an error event or any other event that generates a user message occurs, a parameter

is set indicating that a message should be displayed. An additional parameter, which is the key, is set that

indicates which message should be displayed. The Switch servlet bean generates the text contained within the

<oparam> </oparam> tags for a given key, and this is the text you translate for each locale in a multi-locale web

site.

You can then use any one of the methods described earlier in this chapter to determine the page that is

appropriate for each user’s locale. For example, you can use the user profile’s locale property.

In the following JSP example, you translate the text that is shown in italics:

<dsp:oparam name="keyA">
Text to translate
</dsp:oparam>

For information on translating text within content pages, see Creating Locale-Specific Content Pages (page

432). For information on the Switch servlet bean, refer to the ATG Page Developer's Guide.

Creating Locale-Specific Content Pages

In an internationalized Oracle ATG Web Commerce web site, JSPs display locale-specific web site content.

Content Page Translation

Content pages for use in an Oracle ATG Web Commerce application contain standard HTML tags and JSP tags.

When translating text within or between JSP tags, translate only the text that appears to the user; all other code

should remain in English.

The following tags require translation:

• HTML (page 432)

• oparam (page 432)

• param (page 433)

• input (page 433)

You must also localize Content Page Directories (page 434), as described at the end of this section. For

information about Localizing User Messages (page 431), see the previous section.

HTML

Standard HTML text, such as paragraph text, anchor tag values, text in lists, and submit button values must be

translated.

oparam

In general, translate the text between the<oparam> </oparam > tags. Do not translate the text within the

<oparam > tag. In the following JSP example, you translate the text that is shown in italics:

18 Internationalizing an ATG Web Site 433

<dsp:oparam name="keyA">
Text to translate
</dsp:oparam>

param

Take great care when translating text within <param> tags. In some cases, text within <param> tags should be

translated; in other cases, it should not.

value

In the following JSP example, the value text should be translated.

<dsp:include page="header.jsp">
 <dsp:param name="storename" value="Text to translate"/>
</dsp:include>

key

The values associated with each key value should be translated.

bean

No text should be translated, because the <param> value is defined as a bean property, as shown in the

following example:

<dsp:param bean="SurveyBean.formError" name="value"/>

Embedding within anchor Tags

In the following example, the <param> tag is nested within an anchor tag. In this case, the <param> value should

be translated. In addition, the text between the <a href> tags should be translated.

<dsp:a href="rainbow.jsp">
 <dsp:param name="position" value="Text to translate"/>
 Text to translate
</dsp:a>

For more information on <param> tags, refer to the ATG Page Developer's Guide

input

There are certain cases when text within <input> tags should be translated and certain cases when it should

not.

Default Values in Text Bean Input Tags

A default value specified for the value attribute. This value is visible to the user. In this case, the default value

text for this attribute should be translated.

434 18 Internationalizing an ATG Web Site

Default Values in Hidden Bean Input Tags

No text should be translated. The default value of the value attribute is a hidden value that is not visible to the

user.

Checkbox Input Tags

If input tags are used to display a checkbox, no text should be translated.

If multiple options are displayed with checkboxes, the text following the input tag should be translated.

Radio Button Input Tags

If input tags are used to display radio buttons, no text should be translated.

Image Input Tags

If an image input is represented as an image (taken from the src attribute), no text should be translated.

Submit Input Tags

In the case of submit input tags, the value associated with the submit button should be translated. For example,

if the value attribute specifies the button value the text should be translated.

Content Page Directories

If your site hosts multiple visitor locales, parallel sets of content pages must be contained in locale-specific

directories in the document root. If you design your site to serve content to multiple visitor locales, set up a

separate page directory for each locale. Each locale-specific directory should be at the same level directly under

the context root for JSPs.

All web site content pages should be mirrored for each locale, even if only a portion of the content in each

directory is translated.

The following example shows the directory structure for a JSP-based web application—in this case, the Quincy

Funds demo:

DSSJ2EEDemo/j2ee-apps/QuincyFunds/web-app/en/
DSSJ2EEDemo/j2ee-apps/QuincyFunds/web-app/fr/
DSSJ2EEDemo/j2ee-apps/QuincyFunds/web-app/de/
DSSJ2EEDemo/j2ee-apps/QuincyFunds/web-app/ja/

If you use the EncodingTyper component to determine the character encoding for the content pages, you

must then configure the EncodingTyper to map each of the directories to the correct encoding. For more

information, see Using the EncodingTyper to Set the Character Encoding (page 417) in this chapter.

Designing a Multi-Locale Entry Page

For a multi-locale Oracle ATG Web Commerce web site, include a single top-level index.jsp page as an entry

page for all users. Use a Switch servlet in this page to check the language setting of the user’s request locale

18 Internationalizing an ATG Web Site 435

object (RequestLocale.locale.language) and then redirect the request to the index page of the matching

language directory. For example, if a user chooses French on the registration page, thereby setting the request’s

language property to fr, he or she is redirected to the index page in the French directory.

This example shows the Switch servlet from the top-level index.jsp file in the Quincy Funds demo:

<dsp:setvalue bean="/atg/dynamo/servlet/RequestLocale.refresh" value=" "/>
<dsp:droplet name="/atg/dynamo/droplet/Switch">
 <dsp:param bean="/atg/dynamo/servlet/RequestLocale.locale.language"
 name="value"/>
 <dsp:oparam name="fr">
 <dsp:droplet name="/atg/dynamo/droplet/Redirect">
 <dsp:param name="url" value="fr/index.jsp"/>
 </dsp:droplet>
 </dsp:oparam>
 <dsp:oparam name="de">
 <dsp:droplet name="/atg/dynamo/droplet/Redirect">
 <dsp:param name="url" value="de/index.jsp"/>
 </dsp:droplet>
 </dsp:oparam>
 <dsp:oparam name="ja">
 <dsp:droplet name="/atg/dynamo/droplet/Redirect">
 <dsp:param name="url" value="ja/index.jsp"/>
 </dsp:droplet>
 </dsp:oparam>
 <dsp:oparam name="en">
 <dsp:droplet name="/atg/dynamo/droplet/Redirect">
 <dsp:param name="url" value="en/index.jsp"/>
 </dsp:droplet>
 </dsp:oparam>
 <dsp:oparam name="default">
 <dsp:droplet name="/atg/dynamo/droplet/Redirect">
 <dsp:param name="url" value="en/index.jsp"/>
 </dsp:droplet>
</dsp:oparam>
</dsp:droplet>

Converting Properties Files to Escaped Unicode

The Java compiler and other Java tools can process only files that contain Latin-1 and/or Unicode-encoded (

\uddd notation) characters. To view a .properties file that contains non-Latin-1 font characters, you must

convert the .properties file into a format that the ATG Control Center can read and process. In order to

convert the .properties file to the appropriate format, you must run the file through the Java Native-to-ASCII

Converter (native2ascii). This utility is supplied with your version of the JDK, and it converts the non-Latin

font characters into escaped Unicode in the format \uxxxx.

For example, the file ManagerAppResources_ja_SJIS.properties contains Japanese characters. To convert

the file into a ManagerAppResources_ja.properties file in escaped Unicode, run the following command:

native2ascii ManagerAppResources_ja_sjis.properties
ManagerAppResources_ja.properties

436 18 Internationalizing an ATG Web Site

If the JDK is properly installed, you should be able to run this command from any directory.

Note: All .properties files, including ResourceBundle.properties files, must be run through the Native-

to-ASCII Converter if they contain non-Latin 1 fonts or non-Unicode characters. You should run the Native-to-

ASCII Converter on each file or group of files as you test the internationalization of your site. If you do not run the

Converter, your internationalization changes do not appear in the ATG Control Center.

Localizing the Profile Repository Definition

If your Oracle ATG Web Commerce product suite includes the Personalization module, and you are setting

up a web site for a non-Latin locale, you can perform some localization of the site by translating the Strings

in the profile repository definition file, userprofile.xml. The Strings in this file are actually keys that link

to a ResourceBundle file named UserProfileTemplateResources.properties. The Strings in this

ResourceBundle appear in the People and Organizations section of the ATG Control Center, and they might

also appear in any web site pages whose content you generate directly from these values in the profile

repository. If you translate these Strings, the translated values appear in the ATG Control Center as well as in your

web site.

The following example is taken from the UserProfileTemplateResources.properties file. The keys appear

on the left, and the text to translate is in italic font on the right side of the equals sign:

item descriptor User
itemDescriptorUser=User
securityStatus=security-status
id=Id
login=login-name
password=password
member=member
firstName=first-name
middleName=middle-name
lastName=last-name

For more information on profile repositories, see the ATG Personalization Programming Guide.

Localizing Profile Group Names, Scenario Names, and

Similar Items

This section describes how to configure the machine that you use to create items such as profile groups,

targeters, and scenarios so that their names are saved in an appropriate character set. This step is optional for

delivering internationalized web content to end users; it is a localization issue that applies only to items in the

ATG Control Center interface. (The names of these items as they appear in the ATG Control Center are also their

file names.) These items are used by application developers only, not by site visitors.

The names of items such as profile groups, targeters, and scenarios are saved in the encoding specified in the

Java system’s file.encoding property. For example, if you want to create an EUC profile group name, set

18 Internationalizing an ATG Web Site 437

the file.encoding property to EUC. If you want to create a Greek group name, set the file.encoding

property to ISO8859-7. To create group names in more than one language, choose an encoding that supports

all the languages you require; for example, to create group names in both in Russian and French, set the

file.encoding property to UTF-8.

To set the file.encoding property, set the JAVA_ARGS variable as follows:

JAVA_ARGS=-Dfile.encoding=UTF-8 (or the encoding you require).

On Solaris, you can set the machine’s default locale as an alternative to setting the file.encoding property. To

set the locale to eucJP, for example, do the following:

setenv LANG ja
setenv LC_ALL ja

To set it to UTF-8, do the following:

setenv LANG ja_JP.UTF-8
setenv LC_ALL ja_JP.UTF-8

Consider the following example: you use the ATG Control Center to create a scenario on a machine that is using

a Japanese version of an Oracle ATG Web Commerce product. The appropriate character sets are installed on the

machine. When you create a scenario, the ATG Control Center appears to allow you to enter the scenario’s name

using Japanese characters; however, when you save the scenario, its name displays as a series of question marks.

To correct the problem, check that the Java file.encoding property is set to an appropriate value as shown

above.

Changing Date and Currency Formats

The Oracle ATG Web Commerce date tag converter lets you display Java dates in a variety of formats. For more

information about the date tag converter, see Creating Custom Tag Converters (page 119) in the Working with

Forms and Form Handlers (page 111) chapter.

Some date formats, including Japanese and Chinese dates, include date characters after the month value, but

not after the day and year values. You need to supply the date characters in non-Western format dates yourself,

using the ‘ (single quote) escape character. For example:

<VALUEOF BEAN="myTest.someDate" date="G yyyy'"X'MMMMd'"X'"></VALUEOF>

where X is the non-Latin character signifying the year and day characters.

Changing Currency Formats

Oracle ATG Web Commerce includes several currency conversion utilities, including the currencyConversion

tag converter (class atg.droplet.CurrencyTagConverter), that you can add to JSPs to display currencies

according to locale-specific rules. For more information on how tag converters work and how to create your

438 18 Internationalizing an ATG Web Site

own tag converters, see Creating Custom Tag Converters (page 119) in the Working with Forms and Form

Handlers (page 111) chapter of this manual.

Note also that the ATG Business Commerce demo application, Motorprise, contains examples of localized

currency formatting. For more information, refer to the Motorprise documentation.

Using Third-Party Software on an Internationalized Site

In order to run an internationalized Oracle ATG Web Commerce web site, all third-party software that is used

in the web site must be compliant with Java internationalization standards. In other words, the JDBC drivers,

servers, databases, operating systems, browsers, search engines, and Oracle ATG Web Commerce Connectors

must be compliant with Java internationalization standards.

Appendix A. Disposable Class Loader 439

Appendix A. Disposable Class Loader

In most cases, when you modify a Java class definition during development, you must not only recompile

the class, but also reassemble your application to load the new class definition. Nucleus can also use a

disposable Class Loader to instantiate components and to resolve class names in general, which under some

circumstances you might be able to use to reduce the number of times you need to reassemble your application

during development. This disposable Class Loader loads classes from one or more directories defined by the

atg.nucleus.class.path system variable. The value of this variable is a comma-delimited list of directories

or URLs. These classes must not exist in the regular CLASSPATH; if they do, they are loaded by the regular class

loader and are not reloadable. Nucleus then uses a special disposable Class Loader to load the classes specified

by atg.nucleus.class.path, if it cannot find those classes in the regular CLASSPATH.

To use the Class Loader:

1. Be careful to segregate the classes you are changing in their own build directory tree, outside the CLASSPATH.

2. Specify that build tree in the atg.nucleus.class.path system variable. You can do this by adding the

following Java argument to your environment.sh or environment.bat file:

set JAVA_ARGS=

%JAVA_ARGS% -Datg.nucleus.class.path=file:/path/to/build/tree

The value of the atg.nucleus.class.path system variable is a comma-delimited list of URLs. For example,

it might look like this in Windows:

set JAVA_ARGS=%JAVA_ARGS% -Datg.nucleus.class.path=

file:///C:\ATG\Dynamo\MyFiles,file:///C:\Zapf\Dynamo\YourFiles

or like this in UNIX:

JAVA_ARGS="-Datg.nucleus.class.path=

file:///work/ATG/Dynamo/MyFiles,file:///relax/Zapf/Dynamo/YourFiles

${JAVA_ARGS}"

3. When you change a class, remove from Nucleus any instances of that class. You can do this by selecting each

such component in the ATG Control Center Components window by selecting File > Stop Component or by

right-clicking on the component and selecting Stop Component from the pop-up menu.

4. Select Tools > Make New Class Loader in the ATG Control Center Components window.

The disposable class loader does not work with any code that uses java.lang.Class.forName to resolve a

class.

Use Caution in Making New Class Loaders

Every Java Class has a reference to the class loader that loaded it. Classes of the same name loaded by two

different class loaders are considered to be completely different. This causes instanceof checks to fail, even

440 Appendix A. Disposable Class Loader

if the class is identical in both loaders. As a result, you need to be very careful when using the disposable Class

Loader feature. It is very easy to find yourself in a situation where you have two components that appear to be

identical, but are in fact inconsistent.

For example, you might perform these tasks:

1. Load a class named Arbitrary

2. Instantiate it as object arbitrary1

3. Switch class loaders

4. Reload class Arbitrary

5. Instantiate it as arbitrary2

If arbitrary2 resolves arbitrary1 as an Object and casts it to the type Arbitrary, a ClassCastException

is thrown. The disposable Class Loader feature, therefore, is really most helpful when you have a set of classes to

be reloaded whose instances are easy to completely expunge from the server prior to creating a Class Loader.

Appendix B. DAF Database Schema 441

Appendix B. DAF Database Schema

Oracle ATG Web Commerce’s database schema includes the following types of tables:

Security Tables (page 441)

DMS Tables (page 444)

Security Tables

Oracle ATG Web Commerce uses the following tables to store security information:

• das_gsa_subscriber (page 441)

• das_id_generator (page 442)

• das_secure_id_gen (page 442)

• das_account (page 443)

• das_group_assoc (page 443)

• das_sds (page 443)

das_gsa_subscriber

This table contains information used by the SQL Repository caching feature when you use

cache-mode="distributed" on one or more item descriptors. This table is automatically populated by the

SQL Repository at application startup and used by each server to determine which other servers need to receive

cache invalidation events when items are modified.

Column Data Type Constraint Description

id INTEGER NOT NULL The unique identifier associated with the

server

address VARCHAR(15) NOT NULL The IP address of the GSAEventServer

442 Appendix B. DAF Database Schema

Column Data Type Constraint Description

port INTEGER NOT NULL The port number of the GSAEventServer

itemdescriptor VARCHAR(256) NOT NULL The name of the itemdescriptor where you

set the cache-mode

das_id_generator

The SQLIdGenerator service uses this table to generate IDs.

Column Data Type Constraint Description

id_space_name VARCHAR(60) NOT NULL A string that uniquely identifies an IdSpace

within an IdGenerator. An IdGenerator can

refer to an IdSpace using this name.

seed NUMERIC(19) NOT NULL The first ID in the space to reserve.

batch_size INTEGER NOT NULL How many IDs to reserve at a time.

prefix VARCHAR(10) NULL A string to prepend to the beginning of all string

IDs generated from this IdSpace.

suffix VARCHAR(10) NULL A string to append to the end of all string IDs

generated from this IdSpace.

das_secure_id_gen

The ObfuscatedSQLIdGenerator service uses this table to generate Ids that are difficult to guess.

Column Date Type Constraint Description

id_space_name VARCHAR(60) NOT NULL A string that uniquely identifies an IdSpace

within an IdGenerator. An IdGenerator can

refer to an IdSpace using this name.

seed NUMERIC(19) NOT NULL The first ID in the space to reserve.

batch_size INTEGER NOT NULL How many IDs to reserve at a time.

ids_per_batch INTEGER NULL The number of IDs to reserve per batch.

prefix VARCHAR(10) NULL A string to prepend to the beginning of all string

IDs generated from this IdSpace.

suffix VARCHAR(10) NULL A string to append to the end of all string IDs

generated from this IdSpace.

Appendix B. DAF Database Schema 443

das_account

This table contains a list of accounts, groups, and privileges to be used by Oracle ATG Web Commerce and the

ATG Control Center for administration purposes.

Column Data Type Constraint Description

account_name WVARCHAR(254) NOT NULL The name of the account a user types to log in.

type INTEGER NOT NULL The type of account: (1) a login account that a

user can use to log in, (2) a group account used

for organization, or (3) a privilege account to

control access to an Oracle ATG Web Commerce

application and/or ATG Control Center features.

first_name WVARCHAR(254) NULL For a login (type 1) account, the first name of

the user.

last_name WVARCHAR(254) NULL For a login (type 1) account, the last name of

the user.

password VARCHAR(254) NULL For a login (type 1) account, the encrypted

password that verifies the user’s identity.

description WVARCHAR(254) NULL For a group (type 2) account, this is the name

of the account that displays in the ATG Control

Center.

das_group_assoc

This table associates accounts with the groups and privileges of which they are members.

Column Data Type Constraint Description

account_name WVARCHAR(254) NOT NULL The name of an account that has a group or

privilege association.

sequence_num INTEGER NOT NULL An index number used to define the order of

groups. This is required by the SQL Repository

for array properties.

group_name WVARCHAR(254) NOT NULL The name of the group of which the account is

a member.

das_sds

This table contains information about data source switching. Each row in the table corresponds to the state of a

single switching data source service.

444 Appendix B. DAF Database Schema

Column Data Type Constraint Description

sds_name VARCHAR(50) NOT NULL The name of the switching data source.

curr_ds_name VARCHAR(50) NULL The name of the data source that the switching

data source is currently using.

dynamo_server VARCHAR(80) NULL A pseudo-ID for the Oracle ATG Web Commerce

server where the switching data source is

running. This can be, but does not have to be, a

unique ID.

last_modified TIMESTAMP NULL The time of the last switch operation or the time

the switching data source was first started.

DMS Tables

Oracle ATG Web Commerce’s DMS messaging system uses the following tables to store messaging data:

• dms_client (page 444)

• dms_queue (page 445)

• dms_queue_recv (page 445)

• dms_queue_entry (page 446)

• dms_topic (page 446)

• dms_topic_sub (page 447)

• dms_topic_entry (page 447)

• dms_msg (page 448)

• dms_msg_properties (page 449)

• dms_limbo (page 450)

• dms_limbo_msg (page 450)

• dms_limbo_replyto (page 451)

• dms_limbo_body (page 451)

• dms_limbo_props (page 451)

• dms_limbo_ptypes (page 452)

• dms_limbo_delay (page 452)

dms_client

The list of Oracle ATG Web Commerce instances that started an SQL-JMS instance pointing to this database.

Clients listed in this table might or might not still be active.

Appendix B. DAF Database Schema 445

Column Data Type Constraint Description

client_name VARCHAR(250) NOT NULL The unique name the client uses to identify itself.

By default this name is a combination of the Oracle

ATG Web Commerce server’s DRP IP address and

port.

client_id NUMERIC(19) NULL The unique numeric representation of the client

used internally by the SQL-JMS system.

dms_queue

The list of queues available for messaging.

Column Data Type Constraint Description

queue_name VARCHAR(250) NULL The unique name of the queue used by clients to

send messages to and receive messages from a

specific queue.

queue_id NUMERIC(19) NOT NULL The unique numeric representation of the queue

used internally by the SQL-JMS system.

temp_id NUMERIC(19) NULL Denotes whether or not the queue is a temporary

queue. If the queue is a temporary queue, the

column contains the client ID of the client that

created the temporary queue. If the queue is not a

temporary queue, the column contains the value

zero.

dms_queue_recv

The list of queue receivers that are registered with a queue. Each row represents a single receiver listening to a

queue.

Column Data Type Constraint Description

client_id NUMERIC(19) NULL The unique numeric representation of the client

used internally by the SQL-JMS system.

receiver_id NUMERIC(19) NOT NULL The numeric ID of the receiver listening to the

queue.

queue_id NUMERIC(19) NULL The numeric ID of the queue the receiver is listening

to.

446 Appendix B. DAF Database Schema

dms_queue_entry

The list of messages currently in any queue. Each row in this table represents a single message in a queue.

Column Data Type Constraint Description

queue_id NUMERIC(19) NOT NULL The queue ID of the queue this message is

currently in.

msg_id NUMERIC(19) NOT NULL The unique numeric representation of the

message used internally by the SQL-JMS

system.

delivery_date NUMERIC(19) NULL A Java long date value that specifies

when the message should be delivered.

The value is a date/time in the form of

UTC milliseconds from the epoch start

(1 January 1970 0:00 UTC). If there is to

be no delayed delivery of the message,

this column effectively holds a timestamp

of when the message was put into the

queue allowing it to be delivered as soon

as possible.

handling_client_id NUMERIC(19) NULL The client ID of the client that is

attempting to handle this message. If

no client is attempting to handle this

message yet, this column contains the

value –1.

read_state NUMERIC(19) NULL The current state of the message. A

message that is not currently being

handled by a client has a value of zero. A

message that is being handled has a non-

zero value. Messages that are handled

successfully are deleted from this table.

dms_topic

The list of topics available for messaging.

Column Data Type Constraint Description

topic_name VARCHAR(250) NULL The unique name of the topic used by clients to send

messages to and receive messages from a specific

topic.

topic_id NUMERIC(19) NOT NULL The unique numeric representation of the topic used

internally by the SQL-JMS system.

Appendix B. DAF Database Schema 447

Column Data Type Constraint Description

temp_id NUMERIC(19) NULL Denotes whether or not the topic is a temporary

topic. If the topic is a temporary topic, the column

contains the client ID of the client that created the

temporary topic. If the topic is not a temporary topic,

the column contains the value zero.

dms_topic_sub

The list of topic subscribers that are currently registered with a topic. Each row represents a single subscriber

listening to a topic.

Column Data Type Constraint Description

client_id NUMERIC(19) NULL The client ID of the client that created the

subscriber.

subscriber_name VARCHAR(250) NULL The unique name used by the client to

identify the subscriber.

subscriber_id NUMERIC(19) NOT NULL The subscriber ID of the subscriber receiving

the message.

topic_id NUMERIC(19) NULL The topic ID of the topic the subscriber is

registered to listen to.

durable NUMERIC(1) NULL Denotes whether or not the subscriber is

durable. Durable subscribers have a value of

1. Non-durable subscribers have the value

zero.

active NUMERIC(1) NULL Denotes whether or not the subscriber is

flagged as active by the client.

dms_topic_entry

The list of messages waiting to be handled by a subscriber listening to a topic. Each row in this table represents a

single message for a subscriber.

Column Data Type Constraint Description

subscriber_id NUMERIC(19) NOT NULL The subscriber ID of the subscriber receiving the

message.

msg_id numeric(19) NOT NULL The unique identifier of the message used

internally by the SQL-JMS system.

448 Appendix B. DAF Database Schema

Column Data Type Constraint Description

delivery_date NUMERIC(19) NULL A Java long date value that specifies when the

message should be delivered. The value is a date/

time in the form of UTC milliseconds from the

epoch start (1 January 1970 0:00 UTC). If there

is to be no delayed delivery of the message, this

column effectively holds a timestamp of when

the message was put into the queue allowing it to

be delivered as soon as possible.

read_state NUMERIC(19) NULL The current state of the message. A message that

is not currently being handled by a client has a

value of zero. A message that is being handled

has a non-zero value. Messages that are handled

successfully are deleted from this table.

dms_msg

The list of actual messages currently in the SQL-JMS system. Each row represents a single message that might be

in a single queue or waiting to be received by multiple topic subscribers.

Column Data Type Constraint Description

msg_class VARCHAR(250) NULL The Java class of the message.

has_properties NUMERIC(1) NULL Whether or not the message has

properties beyond the standard

JMS header properties, such as

implementation or application specific

properties.

reference_count NUMERIC(10) NULL The number of topic subscribers still

waiting to receive the message.

msg_id NUMERIC(19) NOT NULL The unique identifier of the message

used internally by the SQL-JMS system.

timestamp NUMERIC(19) NULL JMS header property: the time the

message was handed off to the provider

to be sent.

correlation_id VARCHAR(250) NULL JMS header property: the correlation ID.

Currently, this property is unsupported

and this column is always null.

Appendix B. DAF Database Schema 449

Column Data Type Constraint Description

reply_to NUMERIC(19) NULL JMS header property: the destination

where a reply to the message should be

sent. This column uses the topic or queue

ID to represent the reply destination.

If no reply-to was specified in the JMS

message the column has the value zero.

destination NUMERIC(19) NULL JMS header property: the destination

where the message is being sent. This

column uses the topic or queue ID to

represent the destination.

delivery_mode NUMERIC(1) NULL JMS header property: the delivery mode

of the message.

redelivered NUMERIC(1) NULL JMS header property: an indication

of whether the message is being

redelivered.

type VARCHAR(250) NULL JMS header property: the message type.

expiration NUMERIC(19) NULL JMS header property: the message’s

expiration value.

priority NUMERIC(1) NULL JMS header property: the message

priority.

small_body VARBINARY(250) NULL The body of the message if the body is

within the preset size for small bodies.

large_body LONG VARBINARY NULL The body of the message if the body

is larger than the preset size for small

bodies.

dms_msg_properties

This table contains the non-standard properties for messages currently in the SQL-JMS system. Each row

represents one property for a single message. A single message with multiple non-standard properties has

multiple rows in the table.

Column Data Type Constraint Description

msg_id NUMERIC(19) NOT NULL The message ID of the message with which the

property is associated.

data_type NUMERIC(1) NULL The data type of the property represented as a

number.

450 Appendix B. DAF Database Schema

Column Data Type Constraint Description

name VARCHAR(250) NOT NULL The name of the property used by the JMS client to

identify it within the JMS message.

value VARCHAR(250) NULL The value of the property represented as a String.

dms_limbo

This table identifies the Patch Bay instances that store delayed messages.

Column Data Type Constraint Description

limbo_name VARCHAR(250) NOT NULL The name of the Oracle ATG Web Commerce server

Patch Bay is on, which comes from /atg/dynamo/

service/ServerName.

limbo_id NUMERIC(19) NOT NULL The generated ID for internal identification of the

Patch Bay instance.

dms_limbo_msg

The main table for delayed messages. Each row corresponds to a single message.

Column Data Type Constraint Description

msg_id NUMERIC(19) NOT NULL A generated ID identifying the message

limbo_id NUMERIC(19) NOT NULL The generated ID for internal

identification of the instance

delivery_date NUMERIC(19) NOT NULL When the message should be sent, in

system milliseconds

delivery_count NUMERIC(2) NOT NULL The counter for failures to send a delayed

message

msg_src_name VARCHAR(250) NOT NULL The name of the message source that

produced this message

port_name VARCHAR(250) NOT NULL The output port where this message is

going

msg_class VARCHAR(250) NOT NULL The actual class string of the message

class—that is, getClass().getName()

msg_class_type NUMERIC(1) NOT NULL The actual class of the message object

Appendix B. DAF Database Schema 451

Column Data Type Constraint Description

jms_type VARCHAR(250) NULL The JMS header type of the message

jms_expiration NUMERIC(19) NULL The JMS header expiration of the message

jms_correlationid VARCHAR(250) NULL The JMS header correlation ID of the

message

dms_limbo_replyto

This table stores the reply to headers for delayed messages.

Column Data Type Constraint Description

msg_id NUMERIC(19) NOT NULL A generated ID identifying the message.

jms_replyto VARBINARY(500) NULL The JMS header reply to of the message.

dms_limbo_body

This table stores the message bodies for delayed messages.

Column Data Type Constraint Description

msg_id NUMERIC(19) NOT NULL A generated ID identifying the message.

msg_body LONG VARBINARY NULL The body of the specified message type—for

example, object, stream, and so on.

dms_limbo_props

This table stores the message properties for delayed messages.

Column Data Type Constraint Description

msg_id NUMERIC(19) NOT NULL A generated ID identifying the message.

prop_name VARCHAR(250) NOT NULL The message property name.

prop_value VARCHAR(250) NOT NULL The message property value.

452 Appendix B. DAF Database Schema

dms_limbo_ptypes

A sub-table of properties identifying the property types.

Column Data Type Constraint Description

msg_id NUMERIC(19) NOT NULL A generated ID identifying the message.

prop_name VARCHAR(250) NOT NULL The message property name.

prop_type NUMERIC(1) NOT NULL The property type.

dms_limbo_delay

The table for messages in the redelivery process.

Column Data Type Constraint Description

msg_id NUMERIC(19) NOT NULL A generated ID identifying the message.

delay NUMERIC(19) NOT NULL The delay between attempts to deliver

the message (in milliseconds).

max_attempts NUMERIC(2) NOT NULL Maximum number of times to attempt to

deliver the message.

failure_port VARCHAR(250) NOT NULL Port through which to send the message

to failure destinations if all attempts to

deliver the message are unsuccessful.

jms_timestamp NUMERIC(19) NULL JMS attribute used to create the new

message for redelivery.

jms_deliverymode NUMERIC(10) NULL JMS attribute used to create the new

message for redelivery.

jms_priority NUMERIC(10) NULL JMS attribute used to create the new

message for redelivery.

jms_messageid VARCHAR(250) NULL JMS attribute used to create the new

message for redelivery.

jms_redelivered NUMERIC(1) NULL JMS attribute used to create the new

message for redelivery.

jms_destination VARBINARY(500) NULL JMS attribute used to create the new

message for redelivery.

Appendix C. DMS Configuration File Tags 453

Appendix C. DMS Configuration File

Tags

This appendix contains the Document Type Definition (DTD) for DMS configuration files. The DTD describes all

XML tags that can be used in a DMS configuration file.

<!--
This is the XML DTD for the PatchBay 1.0 configuration file.
-->

<!--
The dynamo-message-system element describes the configuration of all
the elements of the dynamo messaging system. It describes the patch
bay, the local JMS configuration, and the message registry.
-->
<!ELEMENT dynamo-message-system (patchbay, local-jms,
message-registry)>

<!--
The patchbay element defines the configuration of the PatchBay
component of the dynamo messaging system. It begins with a
declaration of the JMS providers used in the system, then declares
each message-source, message-sink, and message-filter managed by the
PatchBay.

Used in: dynamo-message-system
-->
<!ELEMENT patchbay (provider*, message-source*, message-sink*,
message-filter*)>

<!--
The provider element describes one JMS provider that will be used in
the Patch Bay. It assigns a name to the provider, describes where the
various ConnectionFactory interfaces can be found, and includes flags
describing the provider's transaction capabilities.

Used in: patchbay
-->
<!ELEMENT provider (provider-name, topic-connection-factory-name?,
queue-connection-factory-name?, xa-topic-connection-factory-name?,
xa-queue-connection-factory-name?, supports-transactions?,
supports-xa-transactions?, username?, password?, client-id?,
initial-context-factory?)>

454 Appendix C. DMS Configuration File Tags

<!--
The provider-name assigns a name to a provider for use by destination
references in the file.

Used in: provider, input-destination, output-destination

Example:
<provider-name>MQSeries</provider-name>
-->
<!ELEMENT provider-name (#PCDATA)>

<!--
The topic-connection-factory-name describes the JNDI location of the
provider's TopicConnectionFactory interface.

Used in: provider

Example:
<topic-connection-factory-name>
 dynamo:/dms/local/LocalDMSManager
</topic-connection-factory-name>
-->
<!ELEMENT topic-connection-factory-name (#PCDATA)>

<!--
The queue-connection-factory-name describes the JNDI location of the
provider's QueueConnectionFactory interface.

Used in: provider

Example:
<queue-connection-factory-name>
 dynamo:/dms/local/LocalDMSManager
</queue-connection-factory-name>
-->
<!ELEMENT queue-connection-factory-name (#PCDATA)>

<!--
The xa-topic-connection-factory-name describes the JNDI location of
the provider's XATopicConnectionFactory interface.

Used in: provider

Example:
<xa-topic-connection-factory-name>
 dynamo:/dms/local/LocalDMSManager
</xa-topic-connection-factory-name>
-->
<!ELEMENT xa-topic-connection-factory-name (#PCDATA)>

<!--
The xa-queue-connection-factory-name describes the JNDI location of
the provider's XAQueueConnectionFactory interface.

Appendix C. DMS Configuration File Tags 455

Used in: provider

Example:
<xa-queue-connection-factory-name>
 dynamo:/dms/local/LocalDMSManager
</xa-queue-connection-factory-name>
-->
<!ELEMENT xa-queue-connection-factory-name (#PCDATA)>

<!--
The supports-transactions element indicates if the provider supports
transactions through the Session.commit()/rollback() methods.

Used in: provider

Must be one of:
<supports-transactions>true</supports-transactions>
<supports-transactions>false</supports-transactions>
-->
<!ELEMENT supports-transactions (#PCDATA)>

<!--
The supports-xa-transactions element indicates if the provider supports
transactions through the XA interface.

Used in: provider

Must be one of:
<supports-xa-transactions>true</supports-xa-transactions>
<supports-xa-transactions>false</supports-xa-transactions>
-->
<!ELEMENT supports-xa-transactions (#PCDATA)>

<!--
The username element specifies the username that should be
provided when creating a new connection.

Used in: provider

Example:
<username>
 charles
</username>
-->
<!ELEMENT username (#PCDATA)>

<!--
The password element specifies the password that should be
provided when creating a new connection.

Used in: provider

Example:
<password>
 charles
</password>

456 Appendix C. DMS Configuration File Tags

-->
<!ELEMENT password (#PCDATA)>

<!--
The client-id element specifies the client identifier that will be
assigned to the connection. This is primarily used to reconnect to
durable subscription state.

Used in: provider

Example:
<client-id>
 OrderProcessor
</client-id>
-->
<!ELEMENT client-id (#PCDATA)>

<!--

The initial-context-factory element specifies the nucleus name of a
component that implements the
atg.dms.patchbay.JMSInitialContextFactory interface. This nucleus
component will be called on to create an InitialContext whenever a
JNDI name needs to be resolved for the provider (i.e., when resolving
the JNDI name of a Topic/QueueConnectionFactory, or a Topic or a
Queue). If no initial-context-factory is supplied, then the JNDI
names will be resolved against a "vanilla" InitialContext (i.e., one
created by calling "new InitialContext()").

Used in: provider

Example:
<initial-context-factory>
 /atg/jmsproviders/providerx/InitialContextFactory
</initial-context-factory>
-->
<!ELEMENT initial-context-factory (#PCDATA)>

<!--

The message-source element describes one MessageSource. It specifies
its Nucleus name, and also describes each of the MessageSource's
output ports.

Used in: patchbay
-->
<!ELEMENT message-source (nucleus-name, output-port*)>

<!--
The nucleus-name element specifies the absolute name of a global
Nucleus component.

Used in: message-source, message-sink, message-filter

Example:
<nucleus-name>

Appendix C. DMS Configuration File Tags 457

 /atg/commerce/sources/EmailSource
</nucleus-name>
-->
<!ELEMENT nucleus-name (#PCDATA)>

<!--
The output-port element specifies how one of the output ports is
connected to possibly many destinations.

Used in: message-source, message-filter
-->
<!ELEMENT output-port (port-name?, output-destination*)>

<!--
The redelivery-port element specifies how one of the redelivery ports is
connected to possibly many destinations.

Used in: message-sink, message-filter
-->
<!ELEMENT redelivery-port (port-name?, output-destination*)>

<!--
The port-name element specifies the name of an input or output port.

Used in: output-port, input-port

Example:
<port-name>
 DEFAULT
</port-name>
-->
<!ELEMENT port-name (#PCDATA)>

<!--
The output-destination describes one Destination to which Messages
through an output port should be sent. Each destination describes the
JMS provider through which the Message should be sent, the JNDI name
of the Destination, whether the Destination is a Topic or Queue, and
what options should be set on Messages on their way out.

Used in: output-port
-->
<!ELEMENT output-destination (provider-name?, destination-name,
destination-type, priority?, delivery-mode?)>

<!--
The destination-name element specifies the JNDI name of the
Destination

Used in: output-destination, input-destination

Example:
<destination-name>
 localjms:/local/dcs/PurchaseEvents
</destination-name>
-->
<!ELEMENT destination-name (#PCDATA)>

458 Appendix C. DMS Configuration File Tags

<!--
The destination-type element specifies the type of the Destination

Used in: output-destination, input-destination

Must be one of:
<destination-type>Topic</destination-type>
<destination-type>Queue</destination-type>
-->
<!ELEMENT destination-type (#PCDATA)>

<!--
The priority element specifies the JMSPriority that should be assigned
to all Messages going to this Destination through this output-port.
The priority should be between 0 and 9 (inclusive).

Used in: output-destination

Example:
<priority>8</priority>
-->
<!ELEMENT priority (#PCDATA)>

<!--
The delivery-mode element specifies the JMSDeliveryMode that should be
assigned to all Messages going to this Destination through this
output-port.

Used in: output-destination

Must be one of:
<delivery-mode>PERSISTENT</delivery-mode>
<delivery-mode>NON_PERSISTENT</delivery-mode>
-->
<!ELEMENT delivery-mode (#PCDATA)>

<!--
The message-sink element describes one MessageSink. It specifies its
Nucleus name, and also describes each of the MessageSink's input
ports.

Used in: patchbay
-->
<!ELEMENT message-sink (nucleus-name, input-port*, redelivery-port*)>

<!--
The input-port element specifies how one of the input ports receives
Messages from possibly many destinations.

Used in: message-sink, message-filter
-->
<!ELEMENT input-port (port-name?, input-destination*)>

Appendix C. DMS Configuration File Tags 459

<!--
The input-destination element describes one Destination from which
Messages are received and attributed to this input-port. Each
Destination describes the JMS provider from which the Message should
be received, the JNDI name of the Destination, whether the Destination
is a Topic or Queue, the message selector to be used, and whether
local messages should be received.

Used in: input-port
-->
<!ELEMENT input-destination (provider-name?, destination-name,
destination-type, durable-subscriber-name?, message-selector?,
no-local?, redelivery?)>

<!--
The redelivery element describes the configuration parameters used
for message redelivery during failure conditions. max-attempts defines
the maximum number of delivery attempts by Patch Bay to the input
destination. The delay interval (specified in msec) defines how long a
message should be delayed before a redelivery is attempted. Finally
if the maximum number of delivery attempts has been reached then
the message will be redirected to the output port named through
the failure-output-port element.

Used in: input-destination
-->

<!ELEMENT redelivery (max-attempts, delay, failure-output-port)>
<!ELEMENT max-attempts (#PCDATA)>
<!ELEMENT delay (#PCDATA)>
<!ELEMENT failure-output-port (#PCDATA)>

<!--
The message-selector element describes the filter that will restrict
the flow of Messages from this Destination.

Used in: input-destination

Example:
<message-selector>
 JMSType = 'atg.dcs.Purchase'
</message-selector>
-->
<!ELEMENT message-selector (#PCDATA)>

<!--
The durable-subscriber-name element specifies the name of the durable
subscription to which this should subscribe. This may only be
specified for Topic Destinations. If this is not specified, a durable
subscription will not be used.

Used in: input-destination

Example:
<durable-subscriber-name>
 orders
</durable-subscriber-name>
-->
<!ELEMENT durable-subscriber-name (#PCDATA)>

460 Appendix C. DMS Configuration File Tags

<!--
The no-local indicates whether Messages sent to this Topic by the same
Session should not be received. If true, then such messages are
blocked, otherwise such messages are received. This may only be
specified for Topic destinations. Defaults to false if not specified.

Used in: input-destination

Must be one of:
<no-local>true</no-local>
<no-local>false</no-local>
-->
<!ELEMENT no-local (#PCDATA)>

<!--
The message-filter element describes one MessageFilter.

Used in: patchbay
-->
<!ELEMENT message-filter (nucleus-name, input-port*, output-port*,
redelivery-port*)>

<!--
The local-jms element configures the Local JMS system that will be
used with the patch bay in the dynamo messaging system. It configures
the JNDI prefix that will be used for the destination names, and also
names all of the queues and topics in the Local JMS system.

Used in: dynamo-message-system
-->
<!ELEMENT local-jms (jndi-prefix, topic-name*, queue-name*)>

<!--
The jndi-prefix element specifies what JNDI prefix should be prepended
to each topic or queue name to form the destination's JNDI name. The
prefix should start with "/" and should not include the "localdms:".
The destination's JNDI name will be
"localdms:{jndi-prefix}{topic/queue-name}".

Used in: local-jms

Example:
<jndi-prefix>
 /local
</jndi-prefix>
-->
<!ELEMENT jndi-prefix (#PCDATA)>

<!--
The topic-name element specifies the name of a Topic in the Local JMS
system. The name should begin with a "/", and must be unique among
both topic-name and queue-name elements.

Used in: local-jms

Appendix C. DMS Configuration File Tags 461

Example:
<topic-name>
 /ProfileEvents
</topic-name>
-->
<!ELEMENT topic-name (#PCDATA)>

<!--
The queue-name element specifies the name of a Queue in the Local JMS
system. The name should begin with a "/", and must be unique among
both queue-name and queue-name elements.

Used in: local-jms

Example:
<queue-name>
 /ProfileEvents
</queue-name>
-->
<!ELEMENT queue-name (#PCDATA)>

<!--
The message-registry element is the root element of the
MessageRegistry configuration file. It defines several message-family
elements.

Used in: dynamo-message-system
-->
<!ELEMENT message-registry (message-family*)>

<!--
The message-family element describes a group of message-type elements,
and may also recursively contain a set of message-family elements.

Used in: message-registry, message-family
-->
<!ELEMENT message-family (message-family-name, message-family*,
message-type*)>

<!--
The message-family-name element specifies the name of a
message-family.

Used in: message-registry, message-family

Example:
<message-family-name>atg.dcs</message-family-name>
-->
<!ELEMENT message-family-name (#PCDATA)>

<!--
The message-typer element describes one MessageTyper.

Used in: message-type

462 Appendix C. DMS Configuration File Tags

-->
<!ELEMENT message-typer (nucleus-name)>

<!--
The message-type element describes one mapping from JMSType to Object
class.

Used in: message-family
-->
<!ELEMENT message-type (jms-type, message-class, message-typer?, message-context?,
 display-name?, display-name-resource?, expert?, hidden?,
 description?, description-resource?, resource-bundle?)>

<!--
The jms-type element specifies the JMSType for this message type. The
jms-type must be unique across all message types in the message
registry.

Used in: message-type

Example:
<jms-type>
 atg.dcs.Purchase
</jms-type>
-->
<!ELEMENT jms-type (#PCDATA)>

<!--
The message-class element specifies the fully-qualified class name of
the Java Bean that contains the message's data.

Used in: message-type

Example:
<message-class>
 atg.dcs.PurchaseMessage
</message-class>
-->
<!ELEMENT message-class (#PCDATA)>

<!--
The message-context element specifies the nature of the message's
originating context. If omitted, then no assumptions are made
concerning the message's context. The following values are recognized:

 request: the message originates in a request thread, and
 request- or session-specific values may be resolved
 via JNDI.

 session: the message originates in a session-specific context, and
 session-specific values may be resolved via JNDI.
Used in: message-type

Example:
<message-context>
 request
</message-context>

Appendix C. DMS Configuration File Tags 463

-->
<!ELEMENT message-context (#PCDATA)>

<!--
The display-name element specifies a GUI display name for an element
described in the patch bay definition file.

Example:
<display-name>
 Buys Product
</display-name>
-->
<!ELEMENT display-name (#PCDATA)>

<!--
The display-name-resource element specifies a GUI display name for an element
described in the patch bay definition file, which can be loaded from a resource
bundle.

Example:
<display-name-resource>
 buysProduct
</display-name-resource>
-->
<!ELEMENT display-name-resource (#PCDATA)>

<!--
The description element specifies a GUI description for an element
described in the patch bay definition file.

Example:
<description>
 Generated when user purchases a product
</description>
-->
<!ELEMENT description (#PCDATA)>

<!--
The description-resource element specifies a GUI description for an element
described in the patch bay definition file, which can be loaded from a resource
bundle.

Example:
<description-resource>
 buysProductDescription
</description-resource>
-->
<!ELEMENT description-resource (#PCDATA)>

<!--
The resource-bundle element specifies a resource bundle from which resources
for an element described in the patch bay definition file can be loaded.

Example:
<resource-bundle>
 atg.dms.Resources
</resource-bundle>
-->
<!ELEMENT resource-bundle (#PCDATA)>

464 Appendix C. DMS Configuration File Tags

<!--
The hidden element specifies a flag indicating that the given message type
should be hidden in a GUI.

Example:
<hidden>
 true
</hidden>
-->
<!ELEMENT hidden (#PCDATA)>

<!--
The expert element specifies a flag indicating that the given message type
should be hidden in a GUI from non-expert users.

Example:
<expert>
 true
</expert>
-->
<!ELEMENT expert (#PCDATA)>

Appendix D. ATG Modules 465

Appendix D. ATG Modules

The following tables list the module names for the main Oracle ATG Web Commerce applications, demos, and

reference applications. This is not an exhaustive list of all Oracle ATG Web Commerce modules.

Module Description

Admin.Init Adds missing administrative accounts for the ATG Control Center. For more information,

see the Managing Access Control (page 329) chapter.

Admin.Reset Resets the default login accounts for the ATG Control Center. For more information, see

the Managing Access Control (page 329) chapter.

DAF.Search Enables the Oracle ATG Web Commerce platform to use Oracle ATG Web Commerce

Search to index and search content from product catalogs and other repositories. See the

ATG Search Administration Guide.

DAS-UI Enables an Oracle ATG Web Commerce server to accept connections from the ATG Control

Center.

Note: This module must be running if you want to use the ATG Control Center.

DCC Runs the ATG Control Center in the same JVM used by the application server that the

Nucleus-based application is running on. For more information, see the ATG Installation

and Configuration Guide.

DPS Oracle ATG Web Commerce Personalization.

DSS Oracle ATG Web Commerce Scenario.s

DSSJ2EEDemo Oracle ATG Web Commerce Adaptive Scenario Engine demo (Quincy Funds).

RL Repository Loader. Takes files that are stored in a file system, converts them into

repository items, and loads the items into the repository. To learn more, see the ATG

Repository Guide.

SQLJMSAdmin Browser-based administration interface for Oracle ATG Web Commerce’s SQL JMS

message system. For more information, see Using the SQL-JMS Administration

Interface (page 290).

466 Appendix D. ATG Modules

Content Administration Modules

Module Description

AssetUI Supports the building of browser-based user interfaces for an ATG

Content Administration (versioned) environment. The module includes

the Asset Picker and functionality related to it. Requires the WebUI

module (see below).

BizUI The Oracle ATG Web Commerce Business Control Center. Includes the

Home page functionality.

PublishingAgent Publishing Agent. Runs on production and staging servers and performs

content deployment operations by communicating with the ATG

Content Administration server.

PublishingWebAgent Publishing web agent. Runs on the production and staging web servers

and performs web content deployment operations by communicating

with the ATG Content Administration server.

Publishing.base ATG Content Administration. See the ATG Content Administration

Programming Guide for more information.

Publishing.WebAppRef The source module for the Web Application Reference Implementation

provided with ATG Content Administration.

Publishing.WebAppRefVer The versioning module for the Web Application Reference

Implementation provided with ATG Content Administration.

PubPortlet Supplies the portlets that make up the Oracle ATG Web Commerce

Business Control Center interface. Including this module also causes

the Publishing.base, AssetUI, and BizUI modules to be included.

Include this module to perform most basic tasks in ATG Content

Administration, such as product evaluation.

WebUI Contains support for browser-based user interfaces. Examples are the

tree-based asset browsing feature, a calendar widget, and the View

Mapping system.

Portal Modules

Module Description

Portal.gears Includes the Portal Application Framework and baseline gears.

Portal.paf Portal Application Framework (PAF). At a minimum, you must include

this module to use Oracle ATG Web Commerce Portal. To learn more

about the PAF, see the ATG Portal Administration Guide.

Appendix D. ATG Modules 467

Module Description

Portal.gear-name

Portal.portlet-name

Includes the specified gear or portlet. For example, if you create a gear

called productprices, include the module Portal.productprices.

ATG Commerce Modules

Module Description

B2BCommerce ATG Business Commerce

Note: To run ATG Commerce, you must use one and only one of the

following modules: B2BCommerce, B2BCommerce.Versioned,

B2CCommerce, or B2CCommerce.Versioned.

B2BCommerce.Search Enables Business Commerce extensions to the ATG Commerce

Search. See the ATG Search Administration Guide for more

information.

B2BCommerce.Versioned Use instead of B2BCommerce module if running ATG

Merchandising. (Also requires modules DCS-UI.Versioned and

PubPortlet.)

Note: To run ATG Commerce, you must use one and only one of the

following modules: B2BCommerce, B2BCommerce.Versioned,

B2CCommerce, or B2CCommerce.Versioned.

Including this module also includes B2BCommerce,

DCS.DynamicCustomCatalogs.Versioned, and their modules.

B2CCommerce ATG Consumer Commerce

Note: To run ATG Commerce, you must use one and only one of the

following modules: B2BCommerce, B2BCommerce.Versioned,

B2CCommerce, or B2CCommerce.Versioned.

Including this module also includes DCS and its modules.

B2CCommerce.Versioned Use instead of B2CCommerce module if running ATG

Merchandising. (Requires the DCS-UI.management and

PubPortlet modules also.)

Note: To run ATG Commerce, you must use one and only one of the

following modules: B2BCommerce, B2BCommerce.Versioned,

B2CCommerce, or B2CCommerce.Versioned.

Including this module also includes B2Commerce, DCS.Versioned,

and their modules.

468 Appendix D. ATG Modules

Module Description

CommerceGears.orderapproval Order Approval Portal Gear (Requires ATG Portal also.)

Including this module also includes Portal.paf,

Portal.authentication, Portal.templates,

Portal.communities, B2BCommerce, and their modules.

CommerceGears.orderstatus Order Status Portal Gear (Requires ATG Portal also.)

Including this module also includes Portal.paf,

Portal.authentication, Portal.templates,

Portal.communities, DCS, and their modules.

Cybersource Third-party commerce module (from CyberSource Corp.) for

authorizing credit cards, crediting and settling accounts, calculating

taxes, and verifying addresses.

Including this module also includes DCS and its modules.

DCS Base ATG Commerce module.

Including this module also includes DSS, DPS, and their modules.

DCS.AbandonedOrderServices Provides tools for dealing with abandoned orders and shopping

carts.

Including this module also includes DCS and its modules.

DCS.CustomCatalogs Runs custom catalogs in an ATG Commerce production

environment, required to support pre-ATG 10.2 Commerce

applications; otherwise unused.

DCS.DynamicCustomCatalogs Runs custom catalogs in an ATG Commerce development

environment.

Including this module also includes DCS.CustomCatalogs and its

modules.

DCS.DynamicCustomCatalogs.

Versioned

Runs custom catalogs in an environment running ATG Commerce

and ATG Merchandising. (Requires the DCS-UI.management and

PubPortlet modules also.)

Including this module also includes

DCS.DynamicCustomCatalogs,

DCS.CustomCatalogs.Versioned, and their modules.

DCS.PublishingAgent Use instead of the PublishingAgent module on the target server

if ATG Commerce repository items are deployed to that server.

Including this module also includes PublishingAgent, DCS, and

their modules.

DCS.Search Enables ATG Commerce to use ATG Search to index and search

content from product catalogs and other repositories. See the ATG

Search Administration Guide.

Appendix D. ATG Modules 469

Module Description

DCS.Versioned Use instead of DCS module if running ATG Commerce with ATG

Merchandising.

Including this module also includes Publishing.base, DCS, and

their modules.

DCSSampleCatalog ATG Commerce Sample Catalog.

Including this module also includes DCS and its modules.

Fulfillment ATG Commerce order fulfillment.

Including this module also includes DCS and its modules.

MotorpriseJSP ATG Business Commerce reference application (Motorprise).

Including this module also includes B2BCommerce,

DCS.AbandonedOrderServices, and their modules.

PayFlowPro Third-party commerce module (from VeriSign) for handling credit

card authorization, settlement, and crediting.

Including this module also includes DCS and its modules.

Taxware Third-party commerce module (from ADP Taxware) for calculating

taxes, verifying addresses and determining tax jurisdictions.

Including this module also includes DCS and its modules.

470 Appendix D. ATG Modules

Appendix E. Request Handling Pipeline Servlets Reference 471

Appendix E. Request Handling Pipeline

Servlets Reference

This section documents the servlets that are provided by the Oracle ATG Web Commerce platform modules.

Each component description includes its complete component name and class.

AccessControlServlet

Class atg.userprofiling.AccessControlServlet

Component /atg/dynamo/servlet/dafpipeline/AccessControlServlet

AccessControlServlet checks the requestURI to see if it matches any of the restricted URLs identified

in its accessController map. The accessController map is made up of URLs matched to an

AccessController instance that governs the rules that determine, when that URL is requested, whether

the active Profile is permitted to view the page. When access is denied by an AccessController,

AccessController calls AccessControlServlet, which redirects the user to the URL in deniedAccessURL.

When access is permitted or denied by an AccessController, AccessControlServlet alerts the registered

listeners held in the appropriate property: accessAllowedListeners or accessDeniedListeners.

These properties are populated with the components that register themselves as listeners with

AccessControlServlet.

You can disable AccessControlServlet by setting its enabled property to false.

For more information on configuring AccessControlServlet, see the ATG Personalization Programming Guide.

472 Appendix E. Request Handling Pipeline Servlets Reference

CachePreventionServlet

Class atg.servlet.pipeline.CachePreventionServlet

Component /atg/dynamo/servlet/dafpipeline/CachePreventionServlet

CachePreventionServlet modifies the response headers for certain requests to indicate that the returned

content should not be cached.

CheckSessionExpiration

Class atg.projects.b2bstore.servlet.WACheckSessionExpiration

Component /atg/dynamo/servlet/dafpipeline/CheckSessionExpiration

CheckSessionExpiration checks the session associated with the request to see whether the it has expired

and when it has, what caused the expiration. By examining the sessionRestored parameter of the Oracle ATG

Web Commerce request, CheckSessionExpiration can determine if the session ended because of a server

failure. When an Oracle ATG Web Commerce server fails during a request, a second Oracle ATG Web Commerce

server creates a new session, retrieves information about the first session from the backup server, and changes

the sessionRestored parameter from null to the original session ID to indicate that the session ID is invalid.

CheckSessionExpiration reads sessionRestored and halts the request, if sessionRestored indicates it is

been superseded by another request. Otherwise, CheckSessionExpiration assumes the session was ended

due to an expired cookie; in that case it redirects the user to the URL provided in its URLExpiration property.

This servlet is used only by the Motorprise Reference Application. For information on how

CheckSessionExpiration its use, see the ATG Business Commerce Reference Application Guide.

CommerceCommandServlet

Class atg.commerce.order.CommerceCommandServlet

Component /atg/dynamo/servlet/dafpipeine/CommerceCommandeServlet

Appendix E. Request Handling Pipeline Servlets Reference 473

CommerceCommandServlet has an actionMap property that matches actions to the servlets that process

those actions. When a request includes a dcs_action parameter, CommerceCommandServlet checks the value

of the dcs_action, locates the action’s corresponding servlet using actionMap, and calls that servlet. For

example, if a request attempts to add an item to a user’s cart by URL, the dcs_action is addItemToCart and

the AddItemToCartServlet is called.

For more information, see on this servlet, see the ATG Commerce Programming Guide.

CookieBufferServlet

Class atg.servlet.http.CookieBuffer

Component /atg/dynamo/servlet/dafpipeline/CookieBufferServlet

CookieBufferServlet maintains a FIFO queue of cookies in a cookie buffer. When a cookie object is added

to the CookieBuffer, it tries to add the cookie to the current HTTP response header. In the next HTTP request,

the cookies in the buffer are verified against the cookies returned to the server from the browser. Cookies in the

buffer that were properly added to the browser are removed from the buffer. Cookies that were not added to the

browser are added back into the HTTP response header.

The API to add cookies to the cookie buffer is found in:

atg.servlet.DynamoHttpServletResponse.addCookieToBuffer(Cookie pCookie)

You can configure this servlet with the following properties:

Property Description

maxQueueAttempts The number of times the servlet tries to add a queued cookie to the

HTTP response header before discarding the cookie.

requeueCookiePostFailure Determines whether a cookie should be re-queued if it was successfully

added to the HTTP response header, but not returned in the

subsequent HTTP request—that is, the browser disables cookies.

cookieBufferListeners Registers event listeners that implement the interface

atg.servlet.http.CookieBufferListener.

474 Appendix E. Request Handling Pipeline Servlets Reference

DAFDropletEventServlet

Class atg.droplet.DropletEventServlet

Component /atg/dynamo/servlet/pagecompile/DAFDropletEventServlet

The DAFDropletEventServlet calls the setX/handleX methods of a bean when a form is submitted from

a dynamic page or when serving a request from an anchor tag with bean attributes. You can configure how

this servlet handles errors encountered in processing a page. By default, errors are set as an element of the

DropletExceptions set in the request attribute DropletConstants.DROPLET_EXCEPTIONS_ATTRIBUTE.

Setting the following property returns errors to the requesting page:

reportDropletExceptions=true

Preventing Cross-Site Scripting Attacks

Cross-site scripting attacks take advantage of a vulnerability that makes it possible for a malicious site you

access to use your browser to submit form requests to another site (such as an Oracle ATG Web Commerce-

based site). To prevent processing of these requests, the Oracle ATG Web Commerce platform can use a request

parameter _dynSessConf, containing a session-confirmation number, to verify that a request is legitimate. This

randomly generated long number is associated with the session of the submitted form. On submission of a form

or activation of a property-setting dsp:a tag, DAFDropletEventServlet checks the value of _dynSessConf

against the current session’s confirmation number. If it detects a mismatch or missing number, it can block form

processing and return an error.

You can configure this behavior through two properties in the component /atg/dynamo/Configuration:

• enforceSessionConfirmation specifies whether the request-handling pipeline requires session

confirmation in order to process the request; the default value is true.

• warnOnSessionConfirmationFailure specifies whether to issue a warning on a confirmation number

mismatch; the default value is true.

You can also control session confirmation for individual requests by setting the attribute

requiresSessionConfirmation to true or false on the applicable dsp:form or dsp:a tag. If this

attribute is set to false, the _dynSessConf parameter is not included in the HTTP request, and the

DAFDropletEventServlet skips validation of this request’s session-confirmation number.

DAFPassportServlet

Class atg.userprofiling.sso.DAFPassportServlet

Component /atg/userprofiling/sso/DAFPassportServlet

Appendix E. Request Handling Pipeline Servlets Reference 475

DAFPassportServlet checks the status of a user’s Oracle ATG Web Commerce Passport. There are two

pieces of a passport, a cookie and a session scoped Passport component, which might or may not be in sync. A

Passport can be issued, reissued or a user can be auto authenticated depending on configuration and state.

Note: DAFPassportServlet is not included in /atg/dynamo/servlet/dafpipeline/DynamoHandler by

default. If you need to use DAFPassportServlet, add it to the DynamoHandler servlet.

DynamoHandler

Class atg.servlet.pipeline.HeadPipelineServlet

Component /atg/dynamo/servlet/dafpipeline/DynamoHandler

DynamoHandler is always the first servlet in a pipeline. This pipeline servlet takes in an HttpServletRequest/

Response pair and passes on a DynamoHttpServletRequest/Response pair. Putting this servlet at

the head of the pipeline ensures that all subsequent pipeline servlets are passed all the functionality of

DynamoHttpServletRequest and DynamoHttpServletResponse.

RequestLocale Object

The DynamoHandler servlet also creates a RequestLocale object in the request. This servlet identifies the

locale of the request and sets the locale property of the request’s RequestLocale accordingly. This enables

you to deliver different content based on the visitor’s locale. You can disable the creation of RequestLocale

objects by setting the DynamoHandler's generateRequestLocales property to false.

See the Internationalizing an ATG Web Site (page 407) chapter of this guide for more information.

DynamoServlet

Class atg.servlet.pipeline.DynamoPipelineServlet

Component /atg/dynamo/servlet/dafpipeline/DynamoServlet

DynamoServlet sets various properties of the DynamoHttpServletRequest to point to other services in an

Oracle ATG Web Commerce application. This includes the request scope manager and the MIME typer. These are

all services necessary to provide the functionality offered by the DynamoHttpServletRequest.

This servlet is also responsible for determining if a resolved URL should include a context path, using the

encodeContextPathModeProperty. This property accepts the following numeric values

• 0 (ENCODE_NONE): The resultant URL does not have a context path.

476 Appendix E. Request Handling Pipeline Servlets Reference

• 1 (ENCODE_CONTEXT_PATH): The context path defined for the web application should be inserted in the

resultant URL. This value is used when none is explicitly provided.

• 2 (ENCODE_IF_NOT_THERE): Causes the Oracle ATG Web Commerce platform to check the URL for a context

path. If the first entry in the URL is not a context path defined for that web application, the context path is

inserted in the final URL.

ExpiredPasswordServlet

Class atg.userprofiling.ExpiredPasswordServlet

Component /atg/dynamo/servlet/dafpipeline/ExpiredPasswordServlet

ExpiredPasswordServlet checks a user session for the passwordexpired attribute. If set to true, it redirects

the user to a specified URL. This servlet must follow the MimeTyperServlet (page 478).

FileFinderServlet

Class atg.servlet.pipeline.FileFinderPipelineServlet

Component /atg/dynamo/servlet/dafpipeline/FileFinderServlet

FileFinderServlet finds the disk file associated with a request. More specifically, this servlet sets the

pathTranslated property of a request by appending the pathInfo property to a document root. The

document root is specified as the documentRoot property of the servlet. This document root is relative to the

directory where you run the Oracle ATG Web Commerce server, or it can be an absolute pathname. For example:

documentRoot=/www/docs

If a pathInfo specifies a directory rather than a file, this servlet searches for an index file in that directory. If

an index file is found, the pathInfo and requestURI properties are rewritten to use that index file, and the

pathTranslated property is set to point to that index file. The list of possible index files is specified in the

indexFiles property.

If no such index file is found, this servlet can then handle the request by listing the files in that directory. This

only happens if the shouldListDirectory property is true; otherwise a file not found error is returned.

If the specified file or index file is found and the pathTranslated property is set, the request is passed to the

next servlet. Otherwise a file not found error is returned.

Appendix E. Request Handling Pipeline Servlets Reference 477

One special case comes up when a directory request comes in without a trailing slash character. In this case,

the browser must change its request to have a trailing slash in order to handle relative requests properly. The

FileFinder servlet accomplishes this by issuing a redirect to the browser using the same request URI but

including a trailing slash.

alwaysTranslate Property

By default, when you run an Oracle ATG Web Commerce server with a commercial web server, such as Apache

or Microsoft IIS, the web server translates the PathInfo information setting PathTranslated. This allows the

Oracle ATG Web Commerce server to use virtual directories and other special path translation that is normally

able to be performed by the web server. In this situation, the FileFinderServlet just passes the request on

to the next servlet in the pipeline when it sees this request. This requires the web server and the Oracle ATG

Web Commerce server to have the same file system path structure for documents, even if they are on separate

machines.

In this case, the FileFinderServlet still translates pathInfos that are requested from an Oracle ATG Web

Commerce server. This includes any calls to the method DynamoHttpServletRequest.getRealPath("/

pathinfo").

Using the web server’s path translation requires that the Oracle ATG Web Commerce server and web server can

see documents served with the same absolute pathname. For example, if the web server serves files from /sun/

webserver6.1/docs, the Oracle ATG Web Commerce server must also see files in /sun/webserver6.1/docs.

You can change this behavior by setting the alwaysTranslate property to true in the FileFinderServlet.

In this case, the web server is still responsible for determining whether requests are sent to the Oracle ATG

Web Commerce server or not, but the application always performs path translation, overriding the translation

performed by the web server. This allows the document roots to be located at different absolute paths. Setting

alwaysTranslate="true" can also improve security by preventing the Oracle ATG Web Commerce server

from serving any file outside of the document root. This can have a security benefit, as it can block attempts to

have Oracle ATG Web Commerce server serve files that are not meant to be served to users.

Translation of Index or Default Files

When the web server sees a request for a directory, it typically translates this pathInfo into a request for one of

a list of files such as index.html, index.jsp and so on. When the web server performs path translation, it must

be able to see the index file in its document root. By default, the FileFinderServlet only performs index files

translation if it is performing pathTranslation as well. You can set the processIndexFiles property to true

to have it try to expand index files even if PathTranslated is already set. This typically is only necessary for

web servers that turn /foo/ into /docs/foo/ in cases where the path translation should be /foo/ to /docs/

foo/index.html.

Virtual File Translation

When the FileFinderServlet is performing path translation, it can also translate a list of virtual directories.

A virtual directory lets you map all pathInfos that start with a particular path prefix to a separate directory on

your file system. The virtual directories are specified in FileFinderServlet by the virtualDirectoryMap

property. This property contains a list of mappings of the form: /pathInfoPrefix=/fileSystemPath. For

example:

virtualDirectoryMap=/myVirtURL1=c:/myVirtRoot1,/myVirtURL2=c:/myVirtRoot2

You should set the virtual directories if you set always Translate="true" or if you translate paths via the

request.getRealPath() method.

478 Appendix E. Request Handling Pipeline Servlets Reference

LocaleServlet

Class atg.epub.servlet.LocaleServlet

Component /atg/dynamo/servlet/dafpipeline/LocaleServlet

LocaleServlet provides a value of en_US to the response locale property when none other is provided.

MimeTypeDispatcher

Class atg.servlet.pipeline.MimetypeDispatcherPipelineServlet

Component /atg/dynamo/servlet/dafpipeline/MimeTypeDispatcher

MimeTypeDispatcher is an instance of a subclass of DispatcherPipelineServlet that sends a request to

one of several servlets depending on the MIME type of the request. The dispatcherServiceMap property

maps each MIME type to the appropriate servlet. As installed, this property has one mapping:

dispatcherServiceMap=\
 dynamo-internal/html=/atg/dynamo/servlet/dafpipeline/
 FileFinderServlet

The MIME type is extracted from MimeTyperPipelineServlet.ATTRIBUTE_NAME, so MimeTyperServlet (page

478) must precede MimeTypeDispatcher in the pipeline. The MIME types specified in the

dispatcherServiceMap property must already be mapped to filename extensions (see Adding MIME

Types (page 479)). The servlets specified by dispatcherServiceMap must have global scope.

MimeTyperServlet

Class atg.servlet.pipeline.MimeTyperPipelineServlet

Component /atg/dynamo/servlet/dafpipeline/MimeTyperServlet

Appendix E. Request Handling Pipeline Servlets Reference 479

The MimeTyperServlet examines a request’s pathTranslated property to determine

its MIME type. The MIME type is then added as an attribute of the request called

MimeTyperPipelineServlet.ATTRIBUTE_NAME.

The servlet property mimeTyper must be configured. This property points to another service, usually an

atg.servlet.ExtensionMimeTyper. This MIME type service contains a list of extensions and corresponding

MIME types.

The servlet adds the MIME type using an attribute factory, so that the MIME type is not actually calculated until

the first time it is needed.

Forbidden Mime Type

All file types unknown to an Oracle ATG Web Commerce server default to the forbidden MIME type. The

forbidden MIME type designates file types that might compromise a web site’s security if the Oracle ATG Web

Commerce server served them back to a client, such as .log, .properties, or .ini files. Dynamo rejects

all requests for files of these MIME types and passes them to SendErrorServlet, which returns a 404 error.

Therefore, you must configure any MIME types that you want served in addition to those already configured in

the MimeTyperServlet.

Adding MIME Types

In order to specify handling of additional MIME types, reconfigure the component /atg/dynamo/

servlet/pipeline/MimeTyper (class atg.servlet.ExtensionMimeTyper), which is referenced by the

MimeTyperServlet's mimeTyper property. The MimeTyper's extensionToMimeType property is a string

array that pairs filename extensions to MIME types. For example:

shtml,magnus-internal/parsed-html,\
cgi,magnus-internal/cgi,\
jsp,dynamo-internal/html,\

After you add the desired MIME types, configure the MimeTypeDispatcher (page 478) to specify how the

servlet pipeline handles requests of those MIME types

PageViewServletTrigger

Class atg.userprofiling.PageEventTriggerPipelineServlet

Component /atg/dynamo/servlet/dafpipeline/PageViewServletTrigger

When a page is requested, PageViewServletTrigger fires a PageEventTrigger, by passing

PageViewedEvent in the Dynamo request. In addition, PageEventTrigger checks the request for a dsource

parameter and, when found, PageEventTrigger fires a ClickThroughEvent.

For more information, see the ATG Personalization Programming Guide.

480 Appendix E. Request Handling Pipeline Servlets Reference

PathAuthenticationServlet

Class atg.servlet.pipeline.PathAuthenticationPipelineServlet

Component /atg/dynamo/servlet/dafpipeline/PathAuthenticationServlet

PathAuthenticationServlet provides username and password authentication. You can associate one or

more usernames and passwords with any URL request prefix. The servlet requires authentication in the form of a

valid username/password pair before it allows service of a URL that begins with that prefix.

The PathAuthenticationServlet has the following properties:

Property Description

Realm The realm to use in authentication. Defaults to Dynamo.

Enabled Is authentication enabled? Defaults to false.

authenticators A ServiceMap that maps path prefixes to components that implement the

Authenticator interface, which checks whether a username/password pair is valid.

By default, PathAuthenticationServlet appears in the DAF servlet pipeline between the

ThreadUserBinderServlet and the DynamoServlet, but PathAuthenticationServlet is not enabled.

You can enable PathAuthenticationServlet by setting the enabled property to true.

PathAuthenticationServlet (if enabled) searches all the keys in the authenticators map to see if the

requested URL starts with any of the path prefixes listed there. The servlet uses the longest path prefix that

matches and the corresponding authenticator object is used to authenticate the request.

Example

The following example assumes your HTTP server has a document root of /docs. You can enable password

authentication for directories called docs/truth and docs/truth/inside_truth with the following

properties settings in the PathAuthenticationServlet :

enabled=true
authenticators=\
 /truth=/application/auth/TruthPassword,\
 /truth/inside_truth=/application/auth/Inside_TruthPassword

Note: The paths exclude the /docs prefix; these paths are relative to the docroot of the HTTP server.

An authenticator component includes a passwords property. The value of the passwords property is a list of

valid username/password pairs. Thus, the TruthPassword.properties file might read:

$class=atg.servlet.pipeline.BasicAuthenticator

Appendix E. Request Handling Pipeline Servlets Reference 481

passwords=\
 satchmo=cornet

In this example, if a user requests any document in the /docs/truth area, the user is required to provide

the username satchmo and the password cornet. You can create a separate authenticator component at /

application/auth/Inside_TruthPassword to require a different username/password pair in order to

request documents from the /docs/truth/inside_truth area.

ProfilePropertyServlet

Class atg.userprofiling.ProfilePropertyServlet

Component /atg/dynamo/servlet/dafpipeline/ProfilePropertyServlet

ProfilePropertyServlet sets properties on the profile by calling out to setters that implement the

ProfilePropertySetter interface.

ProfileRequestServlet

Class atg.userprofiling.ProfileRequestServlet

Component /atg/dynamo/servlet/dafpipeline/ProfileRequestServlet

ProfileRequestServlet manages Profile information for the current session. If a Profile does not

already exist for the active session, ProfileRequestServlet creates an instance of the atg/userprofiling/

Profile component. While creating the Profile, ProfileRequestServlet creates a transient

RepositoryItem and sets it to the Profile component dataSource property.

When a session begins, ProfieRequestServlet prompts the CookieManager to create a cookie containing

the Profile ID of the current guest user. When a user logs in or registers, a second cookie created by the

ProfileFormHandler with a different Profile ID representing the logged in user overwrites the first. If you’d

prefer not to user cookies on your site, you can maintain user session data though an authentication process. To

do so, enable Basic Authentication (verifyBasicAuthentication property). For more information on Basic

Authentication, see Authentication (page 151).

You can set ProfileRequestServlet to maintain persistent information about guest visitors by setting

persistentAnonymousProfiles to true. By doing so, you instruct the Oracle ATG Web Commerce server to

482 Appendix E. Request Handling Pipeline Servlets Reference

create a persistent RepositoryItem for each new session. There might be circumstances where you do not

want this to occur. For example, the session ends when a user logs out, and a new session begins where the user

is recognized as a guest. Creating a persistent RepositoryItem might be unnecessary in this case. By default, a

temporary RepositoryItem is created in this scenario, because persistAfterLogout is set to false.

ProfileRequestServlet can fire a login event when a user auto-logs in. It can also fire a login event when a

persistent anonymous profile is created.

For a complete discussion on Profiles, cookies, the ProfileFormHandler and more detail on the properties

mentioned here, see the ATG Personalization Programming Guide.

ProjectServlet

Class atg.epub.servlet.ProjectServlet

Component /atg/dynamo/servlet/dafpipeline/ProjectServlet

ProjectServlet invokes VersioningLayerServlet (page 489), which looks for a project parameter and pushes

the project’s workspace.

PromotionServlet

Class atg.commerce.promotion.PromotionServlet

Component /atg/dynamo/servlet/dafpipeline/PromotionServlet

When PromotionServlet is enabled (enabled property set to true), PromotionServlet scans the

requestURI for the PROMO parameter, and when it is present, matches the promotion ID associated to it against

the promotion IDs in the promotionItemDescriptorNames property to ensure that the promotion is active.

When a match is found, PromotionServlet checks to see if the user qualifies for the promotion by examining

the Profile RepositoryItem for persistency and the Promotion giveToAnonmousProfiles property

for a value of true. If either condition is met, PromotionServlet adds the promotion ID to the Profile

activePromotions property.

Appendix E. Request Handling Pipeline Servlets Reference 483

ProtocolSwitchServlet

Class atg.projects.store.servlet.pipeline.ProtocolSwitchServlet

Component /atg/dynamo/servlet/dafpipeline/ProtocolSwitchServlet/

ProtocolSwitchServlet performs switching between a secure sever and a non-secure server. A list of

secure paths and the enable property controls the switching. The servlet is configured with a list of URL

mappings; if the URL to access is in the URL mapping, the request is passed off to the secure server. By default,

the nonSecureHostName and secureHostname are taken from /atg/dynamo/Configuration. These can be

overridden at the component level.

PublishingActionServlet

Class atg.epub.servlet.PublishingActionServlet

Component /atg/dynamo/servlet/dafpipeline/PublishingActionServlet

PublishingActionServlet examines the requestURI for the action parameter and when located,

PublishingActionServlet passes the located actionId value to the framework component, which

executes the action.

PublishingSecurityServlet

Class atg.epub.servlet.PublishingSecurityServlet

Component /atg/dynamo/servlet/dafpipeline/PublishingSecurityServlet

PublishingSecurityServlet enables security checking for request threads. It enables it only for requests

from logged-in users.

484 Appendix E. Request Handling Pipeline Servlets Reference

SessionEventTrigger

Class atg.userprofiling.SessionEventTrigger

Component /atg/dynamo/servlet/dafpipeline/SessionEventTrigger

When SessionEventTrigger receives a request, it determines whether the session is new. For new sessions,

SessionEventTrigger fires a StartSession event.

SessionEventTrigger registers itself as a listener in the SessionManager nameContextBindingListeners

property so it is among the list of listeners alerted when the session expires. After SessionEventTrigger

detects an expired session, it fires a EndSession event.

SessionEventTrigger is also responsible for firing ReferrerEvents. SessionEventTrigger checks the

request for the referer parameter that is set by the browser when a user clicks a link. The referer is set to a

URL for the page where the request is initiated: it might be set to a relative path, a portion of the URL or the URL

in its entirety. When referer is populated with a non-null value, SessionEventTrigger fires an event.

For information on StartSession, EndSession, and ReferrerEvents, see the ATG Personalization

Programming Guide.

SessionSaverServlet

Class atg.servlet.sessionsaver.SessionSaverServlet

Component /atg/dynamo/servlet/dafpipeline/SessionSaverServlet

SessionSaverServlet is a part of Oracle ATG Web Commerce’s session failover architecture. This servlet

identifies whether a session has a non-local origin. If the session is non-local, SessionSaverServlet restores

the session from the backup server. SessionSaverServlet also backs up the session’s properties to the

backup server.

SiteSessionEventTrigger

Class atg.multisite.SiteSessionEventTriggerPipelineServlet

Component /atg/dynamo/servlet/dafpipeline/SiteSessionEventTrigger

Appendix E. Request Handling Pipeline Servlets Reference 485

SiteSessionEventTriggerPipelineServlet checks the current SiteContext to determine whether the

current request is the start of a new site session. If it is, it sends an event

SetCurrentLocation

Class atg.projects.b2bstore.servlet.WASetCurrentLocation

Component /atg/dynamo/servlet/dafpipeline/SetCurrentLocation

A web site is divided into sections that share subject matter or function, such as My Profile, Product Catalog, and

Administration. SetCurrentLocation has a locationMap property that matches a directory of pages to the

section name that identifies them. For example, one entry might be:

/MotorpriseJSP/en/user/=my_account

SetCurrentLocation examines the requestURI and uses locationMap to find the matching section name

and section root directory. Then, SetCurrentlocation saves the section name to its location property and

the section root directory to the Profile component currentLocation property.

This servlet is used only by the Motorprise Reference Application. For more information on how

SetCurrentLocation is used in Motorprise, see the ATG Business Commerce Reference Application Guide.

SiteContextPipelineServlet

Class atg.multsite.SiteContextPipelineServlet

Component /atg/multisite/SiteContextPipelineServlet/

When an Oracle ATG Web Commerce server receives a request from a given site in a multisite environment,

SiteContextPipelineServlet evaluates the request to determine the site’s identity. That identity enables

delivery of site-specific information in the Oracle ATG Web Commerce server response.

For detailed information, see the Multisite Request Processing (page 159) chapter.

http://pt-skua:8080/dyn/admin/nucleus/
http://pt-skua:8080/dyn/admin/nucleus/atg/
http://pt-skua:8080/dyn/admin/nucleus/atg/multisite/

486 Appendix E. Request Handling Pipeline Servlets Reference

TailPipelineServlet

Class atg.servlet.pipeline.TailPipelineServlet

Component /atg/dynamo/servlet/dafpipeline/TailPipelineServlet

The request is passed to TailPipelineServlet when the DAF servlet pipeline has completed processing.

TailPipelineServlet calls FilterChain.doFilter() on PageFilter to create FilterChain object,

which invokes the servlet filter identified in web.xml. When no other filters are found, as is with the default DAF

servlet pipeline provided with Oracle ATG Web Commerce Adaptive Scenario Engine, PageFilter passes the

Oracle ATG Web Commerce request and response back to the application server.

ThreadNamingPipelineServlet

Class atg.servlet.pipeline.ThreadNamingPipelineServlet

Component /atg/dynamo/servlet/dafpipeline/ThreadNamingPipelineServlet

ThreadNamingPipelineServlet modifies a request’s thread name by appending session- and user-specific

information. This servlet can be useful in troubleshooting hanging threads for a given site, as the appended data

can help identify the source of the problem—for example, hanging threads that all share the same remote user

IP address.

As installed, the servlet class appends the following data to the original thread name:

• Request URI

• Session ID

• Remote user IP address

• User profile ID

For example, given the following JBoss HTTP handler thread name:

http-0.0.0.0-8180-2

ThreadNamingPipelineServlet might modify the thread name as follows:

http-0.0.0.0-8180-2 requestURI=/PioneerCycling/example.jsp
 jsessionid=4CDA4BC58E0F38F52AA7F87E06446888.drp1 remoteAddr=127.0.0.1
 userid=1240001

Appendix E. Request Handling Pipeline Servlets Reference 487

Servlet Properties

The servlet component should be configured as follows:

$class=atg.servlet.pipeline.ThreadNameServlet
insertAfterServlet=ProfileRequestServlet

profilePath=/atg/userprofiling/Profile

Inserting in the Request Handling Pipeline

To insert this servlet in the pipeline at server startup, set /atg/dynamo/servlet/Initial.properties as

follows:

$class=atg.nucleus.InitialService

initialServices+=dafpipeline/ThreadNameServlet

ThreadUserBinderServlet

Class atg.servlet.security.ThreadUserBinderServlet

Component /atg/dynamo/servlet/dafpipeline/ThreadUserBinderServlet

ThreadUserBinderServlet takes the atg/dynamo/security/User component that was previously

associated to the request by SessionServlet and associates it to the request thread itself. You can find which

User component the ThreadUserBinderServlet component uses in the userComponentName property. If a

User component does not exist in the request, ThreadUserBinder creates one.

This servlet makes user information available to other security-related portions of the Oracle ATG Web

Commerce platform so be sure to insert ThreadUserBinderServlet before any security components that

expect user information.

TransactionServlet

Class atg.dtm.TransactionPipelineServlet

Component /atg/dynamo/servlet/dafpipeline/TransactionServlet

488 Appendix E. Request Handling Pipeline Servlets Reference

The TransactionServlet can be configured to cause each request to be wrapped in a transaction. By default,

the TransactionServlet’s transAttribute property is set to supports, which means a new transaction

is not created for each request. In most circumstances, the transAttribute property should remain set to

supports. In all cases, the TransactionServlet checks to see if the request created a Transaction without

ending it. If so, the servlet rolls back that Transaction and reports an error.

URLArgumentServlet

Class atg.servlet.pipeline.URLArgumentPipelineServlet

Component /atg/dynamo/servlet/dafpipeline/URLArgumentServlet

A URL can contain one or more arguments that are appended to the URL path and precede any query

arguments. Each argument is paired with a value and starts with a semicolon:

.../mypage;arg1=val1;arg2=val2...

URLArgumentServlet extracts these arguments from the URL and places them in a java.util.Dictionary

that maps argument names to values. The URL is rewritten without the arguments, and requestURI is modified

as follows:

requestURI=servletPath+pathInfo+'?'+queryString

ValidateURLServlet

Class atg.epub.servlet.ValidateURLServlet

Component /atg/dynamo/servlet/dafpipeline/ValidateURLServlet

ValidateURLServlet is a security precaution that prevents spoofing of URLs. When a user initiates an

action, an action parameter holding an ID for the action is added to the URL. An encryption key based on the

action parameter value is also added to the URL. Likewise, when a user selects a view, a view parameter and

corresponding encryption key are appended to the URL. When both action and view parameters are added to

the URL, the encryption key represents the combination of the parameter values.

ValidateURLServlet recalculates the encryption key in the URL based on the action or view parameter

values and compares it to the encryption key already in the URL. For URLs with the appropriate key,

Appendix E. Request Handling Pipeline Servlets Reference 489

ValidateURLServlet adds an attribute to the request, which permits ATG Content Administration to display

the request URL. URLs that lack the expected key do not include the request attribute and as a result, cause

errors when rendering the request URL.

The best way to disable ValidateURLServlet is to configure ATG Content Administration to display the

request URL regardless of whether the request includes the attribute. To do this, set the validateActions

and validateViews properties of <ATG10dir>\Publishing\base\config\atg\epub\pws\framework

\Framework.properties to false.

VersioningLayerServlet

Class atg.pub.servlet.VersioningLayerServlet

Component /atg/dynamo/servlet/dafpipeline/VersioningLayerServlet

VersioningLayerServlet checks the requestURI to see if it contains a project ID in the projectId

parameter and if it does, VersioningLayerServlet retrieves that project’s workspace and makes that

workspace available to the user.

490 Appendix E. Request Handling Pipeline Servlets Reference

Appendix F. Integration Framework 491

Appendix F. Integration Framework

In addition to the Oracle ATG Web Commerce Web Services functionality discussed in the preceding chapters,

the Oracle ATG Web Commerce platform includes a more generalized framework that enables you to integrate

your applications with remote software systems for cases where using Web Services might not be appropriate.

For example, you could use the integration framework to integrate an ATG Commerce application with an order-

processing system. When a customer places an order through ATG Commerce, the order data can be transferred

to the order-processing system, and the Oracle ATG Web Commerce platform can trigger events that invoke the

processing facilities in the remote system.

The integration framework involves several key facilities that you can use to integrate Oracle ATG Web

Commerce applications with remote systems:

• JMS messaging, configured through Patch Bay, to enable the Oracle ATG Web Commerce platform to trigger

events in the remote system, or the remote system to trigger events in the Oracle ATG Web Commerce

platform.

• Remote Procedure Calls (page 516) (RPC), for inter-application command execution. For example, the Oracle

ATG Web Commerce platform can use RPC to query an inventory management system.

• Data integration. Refer to the ATG Web Services Guide Repository to XML Data Binding section.

You can use these facilities individually, but a typical integration will use all of these facilities together. For

example, the Integration Repository typically uses RPC to execute the commands used to move data between

the Oracle ATG Web Commerce platform and the remote system.

Integrators and Adapters

Integrating the Oracle ATG Web Commerce platform with a remote system generally involves additional

software to handle the communication between the two systems:

• A middleware transport layer, such as Tibco or MQ

• Adapters that enable the Oracle ATG Web Commerce platform and the remote system to communicate

through the middleware transport layer

• An integrator that implements the Integration Framework’s queries and commands in a form understood by

the remote system, enabling the two systems to interoperate and share data

The following figure illustrates the Oracle ATG Web Commerce integration architecture:

492 Appendix F. Integration Framework

You can write adapters and integrators by implementing the various APIs described in this manual. Note

that Oracle ATG Web Commerce adapters handle only the communication between the Oracle ATG Web

Commerce platform and the middleware transport. Adapters for communication between a remote system

and a middleware transport are typically available from the company that develops the remote system or the

middleware.

Using the Integration Repository

The Oracle ATG Web Commerce Integration Framework includes the Integration Repository, which adds to the

Oracle ATG Web Commerce Repository feature the ability to represent data on external systems as Oracle ATG

Web Commerce repository items. The Integration Repository provides several key features for integrating Oracle

ATG Web Commerce with external systems:

• You can execute queries from Oracle ATG Web Commerce against remote systems. The Integration Repository

represents the results of the queries as repository items.

• You can create queries using RQL or other Oracle ATG Web Commerce query building techniques, and the

Integration Repository translates the queries into the format required by the remote system.

• When data from the remote system is represented as repository items, the Integration Repository can

automatically submit changes to these items to the remote system without requiring special update calls to a

remote system.

Appendix F. Integration Framework 493

Architecture

The Integration Repository is a wrapper around an Oracle ATG Web Commerce SQL repository, which is referred

to as the local repository. In a system architecture that uses an Integration Repository, the integrated data

resides in the remote system, rather than just in a local database, and queries are made using the RPC command

structure described in the Remote Procedure Calls (page 516) chapter.

Just like other repositories, an Integration Repository defines one or more item descriptors. Each item descriptor

defines one or more commands to be used for the operations that need to interact with the remote system:

• executeQuery

• getItem

• createItem

• updateItem

• removeItem

These operations are described in more detail in the Command Operations (page 502) section of this chapter.

Each command involves an RPC call that may access the remote system, as described in the Remote Procedure

Calls (page 516) chapter.

The Integration Repository enables you to use the Oracle ATG Web Commerce Repository Query Language

(RQL) and all the RQL droplets to access data that is stored on remote systems. The translation between

RQL and the query format required by the remote system is handled by an implementation of the

IntegrationRepositoryView (page 501) class. An implementation of IntegrationRepositoryView typically

needs to be written for each remote system you want to integrate with Oracle ATG Web Commerce.

Wrapping the SQL repository provides the Integration Repository with superior performance and robustness

by leveraging the SQL repository’s sophisticated item caching features. You can persist data from the remote

system locally in a SQL repository. By maintaining locally-cached copies of the remote data, the Integration

Repository can make the data available more quickly than if you needed to access the remote system every time

you needed to access the data. In addition, the local SQL repository offers a degree of protection against the

remote system being temporarily unavailable.

More details of the Integration Repository architecture are described in the Integration Repository APIs (page

497) section of this chapter.

Integration Approaches

The Integration Repository is designed to help integrate Oracle ATG Web Commerce applications with remote

systems. It assumes that your business maintains data on a remote system and you want to expose and possibly

modify this data within your Oracle ATG Web Commerce application in the form of Oracle ATG Web Commerce

repository items. There are several ways you can set up such an integration, depending on the demands of your

Oracle ATG Web Commerce application and the characteristics of the remote system and the data maintained

there. Here are four possible approaches for getting remote data. Which approach to choose depends on

balancing your need for consistent data and best performance.

Remote Only

In this case, the data is maintained only on the remote system. Each time that the Oracle ATG Web Commerce

application needs to access the data, a command is issued to the remote system. The local repository is

configured to use transient repository items.

494 Appendix F. Integration Framework

Advantages:

• You are always sure that the data returned to Oracle ATG Web Commerce is up to date.

Disadvantages:

• If the remote system is unavailable, then no form of the data is available to the Oracle ATG Web Commerce

application.

• Frequent queries to the remote system can affect the performance of the remote system, which may also be

serving functions other than the Oracle ATG Web Commerce application.

• The need to query the remote system will tend to slow the performance of the Oracle ATG Web Commerce

application.

See Configuring the Remote-Only Model (page 507) for more details about how this approach could be

configured.

Remote then Local

In this case, the primary source for the data is the remote system. Each time that the Oracle ATG Web Commerce

application needs to access the data, a command is issued to the remote system. If the command fails to return,

then the command is issued to the local repository.

Advantages:

• You are sure that the data returned to Oracle ATG Web Commerce is up to date, except in cases where the

remote system is unavailable. In addition, the existence of the local repository can provide a backup form of

the data, in case the remote system is inaccessible.

Disadvantages:

• Frequent queries to the remote system can affect the performance of the remote system, which may also be

serving functions other than the Oracle ATG Web Commerce application.

• The need to query the remote system will tend to slow the performance of the Oracle ATG Web Commerce

application.

See Configuring the Remote-then-Local Model (page 508) for more details about how this approach could be

configured.

Local then Remote

In this case, a version of the data is maintained in a local repository. Only if the data is not available locally, or if

the local copy has been marked invalid or has expired, does the Integration Repository query the remote system

for the data.

You might use this integration model if you need to make sure the system is as fast as possible, and you do not

have to worry so much about data consistency because the data does not change that often. When the remote

system is down, you can block changes to the data (updates, creating and removing items), but you make the

data available from the local system, so that your users can continue to work.

Advantages:

• Oracle ATG Web Commerce’s performance is as fast as possible.

• There are fewer queries to the remote system, so less burden is placed on the remote system.

Appendix F. Integration Framework 495

• You can configure the lifetime of items in the local repository, so you can be assured that the data is not out of

date by more than a specified amount of time.

Disadvantages:

• You have less assurance that the data returned from the local repository is consistent with the data in the

remote system.

See Configuring the Local-then-Remote Model (page 508) for more details about how this approach could be

configured.

Local Only

This approach does not need to use the Oracle ATG Web Commerce Integration Framework. In this case, we

periodically dump data from the remote system into the relational database used by the Oracle ATG Web

Commerce application. The data is accessed by the SQL repository. Since this approach does not need to issue

commands against the remote system in real time, there does not need to be an Integration Repository.

Advantages:

• Oracle ATG Web Commerce’s performance is as fast as possible.

• The only interaction with the remote system is a periodic batch data transfer, which probably can be

scheduled to place a minimal burden on the remote system.

Disadvantages:

• The local repository is not updated in real time, so any changes in the remote system are reflected in the local

repository and therefore in your Web application only after the scheduled data transfer.

Setting Up an Integration Repository

Here is a brief overview of the steps involved in setting up an Integration Repository:

1. Create and configure an Integration Repository. This is a component of class

atg.adapter.integrations.IntegrationRepository. Configure the properties described in the

IntegrationRepository (page 497) section.

2. Create the Integration Repository’s definition file, as described in the Defining an Integration

Repository (page 496) section.

3. Create and configure your local repository. The local repository is a normal SQL repository. See SQL Repository

Overview in the ATG Repository Guide for more information.

4. Create the database schema for your local repository.

5. Create any mapping files you desire for each item descriptor in the Integration Repository. See

Mapping (page 505) for more information.

6. Create a subclass of IntegrationRepositoryView for each remote system you need to query.

7. Create Commands that correspond to each of the command operations you want to define for your

Integration Repository. See the Remote Procedure Calls (page 516) chapter.

To set up a complete integration with a remote system, you will also need to perform many tasks that are

outside the scope of this chapter. You will need to configure the transport layer that connects Oracle ATG Web

496 Appendix F. Integration Framework

Commerce to the remote system. You will also typically want to create a portlet (Oracle ATG Web Commerce

Portal gear) or set of form pages to display and modify data from the remote system.

Defining an Integration Repository

The Integration Repository is defined by an XML template file. This file is specified by the definitionFile

property of the IntegrationRepository component. The Integration Repository definition file defines

the integration behavior, including the commands used for the executeQuery, getItem, createItem,

updateItem, and removeItem integration operations. The elements of the Integration Repository definition file

are described in the Integration Repository Definition File (page 509) section. The commands are described in

the Command Operations (page 502) section.

Since the Integration Repository wraps another repository, the underlying SQL repository also requires a

definition file to define the repository item properties. You may also want to create mapping files to handle

the relation of your repository item properties to the data maintained on the remote system. See the ATG Web

Services Guide for more information.

This is an example of what the Integration Repository definition file would look like. It defines a single item

descriptor, named account, and specifies the Commands used to query, get, add, update, and remove account

items:

<integration-repository-template>
 <header>
 <name>RemoteX Repository</name>
 </header>

 <item-descriptor name="account">
 <query command="/atg/integrations/remotex/queries/AccountQuery"
 view="atg.integrations.remotex.RemoteXView">
 </query>
 <get-item command="/atg/integrations/remotex/queries/AccountQuery">
 </get-item>

 <add-item command="/atg/integrations/remotex/queries/AccountUpdateRPC">
 </add-item>
 <update-item command="/atg/integrations/remotex/queries/AccountUpdateRPC">
 </update-item>
 <remove-item command="/atg/integrations/remotex/queries/AccountDeleteRPC">
 </remove-item>

 </item-descriptor>
</integration-repository-template>

The Integration Repository is also configured using normal JavaBean properties. An IntegrationRepository

component might be configured in a properties file like this:

$class=atg.adapter.integrations.IntegrationRepository

repositoryName=MyStuff
localRepository=/mystuff/MyLocalRepository
definitionFile=/mystuff/irConfig.xml
transactionManager=/atg/dynamo/transaction/TransactionManager
integrationRepositoryTools=/atg/integrations/repository/IntegrationRepositoryTools
persistentCacheManager=/atg/integrations/repository/PersistentCacheManager
mappingManager=/atg/repository/xml/SchemaManager
mappingTools=/atg/integrations/repository/MappingTools

Appendix F. Integration Framework 497

lockManager=/atg/dynamo/service/ClientLockManager

The IntegrationRepository (page 497) section describes these properties.

Integration Repository APIs

The Integration Repository consists of a set of item descriptors. Each item is queryable through a

RepositoryView using a QueryBuilder. Each item descriptor is associated with a particular Command or set

of Commands. One of these Commands returns results that are converted to repository items of the given item

descriptor. Other Commands are used for updating or deleting values in the remote system.

The Integration Repository includes extensions to, or implementations of, the following repository classes. Each

of these classes is in the atg.adapter.integrations package.

IntegrationRepository (page 497) extends atg.repository.RepositoryImpl

IntegrationRepositoryItemDescriptor (page 500) extends
atg.repository.ItemDescriptorImpl

IntegrationRepositoryItem (page 500) implements atg.repository.RepositoryItem,
atg.repository.MutableRepositoryItem

ChangedPropertyBean (page 500) implements atg.repository.RepositoryItem,
atg.repository.MutableRepositoryItem

atg.repository.databinding.MappingRepositoryItem (page 500) implements
atg.repository.RepositoryItem, atg.repository.MutableRepositoryItem

IntegrationRepositoryView (page 501) extends atg.repository.RepositoryViewImpl

In addition, each IntegrationRepositoryItemDescriptor refers to one or more commands, which

implement the atg.integrations.Command interface. The RPC call in a Command returns an object of the

atg.integrations.CommandResult class. Command and CommandResult are discussed in the Remote

Procedure Calls (page 516) chapter.

IntegrationRepository

extends RepositoryImpl

The IntegrationRepository references another repository, which is referred to as the local repository and

which is a SQL repository. The IntegrationRepository is defined by a Nucleus properties file and an XML

definition file. Each method call functions as described in the following table, forwarding the request either to

the local repository or to the IntegrationRepositoryItemDescriptor, which then executes a Command

against the remote system.

498 Appendix F. Integration Framework

Element Description

properties localRepository

The SQL repository that acts as a local repository. The local repository is a normal SQL

repository. It might be configured in a properties file like this:

//mystuff/MyLocalRepository.properties

$class=atg.adapter.gsa.GSARepository

definitionFiles=/mystuff/localConfig.xml

repositoryName=MyLocalStuff

groupContainerPath=/atg/registry/RepositoryGroups

XMLToolsFactory=/atg/dynamo/service/xml/XMLToolsFactory

transactionManager=/atg/dynamo/transaction/TransactionManager

dataSource=/atg/dynamo/service/jdbc/JTDataSource

idGenerator=/atg/dynamo/service/IdGenerator

definitionFile

The Integration Repository definition file. This is an XML file that uses the Integration

Repository DTD, http://www.atg.com/dtds/integrations/integration-repository_1.0.dtd .

See Integration Repository Definition File (page 509) for information about creating an

Integration Repository definition file

integrationRepositoryTools

This is a property of type atg.adapter.integrations.

IntegrationRepositoryTools. This class provides a set of helper methods that are used to

convert between the local repository items and the remote system’s data format. An instance

of this class exists at /atg/integrations/repository/IntegrationRepositoryTools.

persistentCacheManager

This is a property of type atg.adapter.integrations.PersistentCacheManager. This

class provides management of persistent caching. An instance of this class exists at /atg/

integrations/repository/PersistentCacheManager. See the Persistent Caching (page

505) section.

mappingManager

This is a property of type atg.repository.databinding.MappingManager. You can

optionally define a mapping of the local repository item to the data on the remote system.

This class manages that mapping. See Mapping (page 505) in this chapter and see also the

ATG Web Services Guide.

mappingTools

This is a property of type atg.repository.databinding.MappingTools, which is a helper

class to manage the mappings. An instance of this class exists at /atg/integrations/

repository/MappingTools.

defaultTimeoutResponse

The Integration Repository needs to deal with the case of a Command timing out before a

result is returned from the remote system. If the Command times out, this property defines

what the default behavior should be. There are four choices:

ROLLBACK - Rollback the current transaction.

INVALID - Mark the item’s state as invalid. See Persistent Caching (page 505).

UNKNOWN - Mark the item’s state as unknown. See Persistent Caching (page 505).

IGNORE - Do nothing.

sendScenarioEvents

A boolean property that controls whether the repository sends scenario

events. The Integration Framework includes one scenario event by default,

atg.adapter.integrations.IntegrationExternalIdChange, which

is sent when the externalId of an item is set. To trigger this event, use the

IntegrationRepositoryTools.externalIDWasUpdated method.

http://www.atg.com/dtds/integrations/integration-repository_1.0.dtd

Appendix F. Integration Framework 499

Element Description

methods Most methods in the IntegrationRepository class are pass-through to the local

repository. The following methods provide special behavior:

getItem

Depending on how you have configured the Integration Repository, this method either:

Calls localRepository.getItem and, if the result is null, then calls

IntegrationRepositoryItemDescriptor.getRemoteItem, or

Calls IntegrationRepositoryItemDescriptor.getRemoteItem and, if the result is null,

then calls localRepository.getItem, or

Calls IntegrationRepositoryItemDescriptor.getRemoteItem only.

Both the local repository’s query cache and the IntegrationRepository’s query cache

will be used depending on the item descriptor. If the IntegrationRepository definition

file includes a query Command, then the IntegrationRepository executes the query (and

uses its query cache). If there is no query Command, then the query is forwarded to the local

repository.

For a more detailed description, see getItem (page 503) in the Command Operations (page

502) section.

getView

This method can operate in two ways. If querying is implemented in the local repository (no

query command) then this returns a LocalRepositoryViewWrapper. If a Command is used

for querying then this returns the configured RepositoryView class.

getItemDescriptor

Return an IntegrationRepositoryItemDescriptor (page 500) that wraps an item descriptor

from the local repository. The local repository’s item cache will be used.

getItemForUpdate

getItemsForUpdate

Return one (or more) IntegrationRepositoryItem, using similar behavior to the getItem

method above.

createItem

Call localRepository.createItem. This method is just a pass through. See addItem.

addItem

Call localRepository.addItem. Also call

IntegrationRepositoryItemDescriptor.addRemoteItem. For a more detailed

description, see addItem in the Command Operations (page 502) section.

updateItem

Call localRepository.updateItem. Also call

IntegrationRepositoryItemDescriptor.updateRemoteItem. For a more detailed

description, see updateItem in the Command Operations (page 502) section.

removeItem

Call localRepository.removeItem. Also call

IntegrationRepositoryItemDescriptor.removeRemoteItem. For a more detailed

description, see removeItem in the Command Operations (page 502) section.

Each of the Command executions is relevant only if the given command is defined for the item

descriptor.

500 Appendix F. Integration Framework

IntegrationRepositoryItemDescriptor

extends ItemDescriptorImpl

This class references an item descriptor from the local repository. Most operations will be pass-through to the

local repository item descriptor. The following operations (described in the Command Operations (page 502)

section) execute a Command if one is defined for the item descriptor; otherwise they do nothing.

executeQuery
getItem
updateItem
addItem
removeItem

In addition, this class is responsible for converting the results of queries obtained from the remote system into

repository items.

IntegrationRepositoryItem

implements RepositoryItem, MutableRepositoryItem

This class references a repository item in the local repository. Most operations will be passed through to it.

ChangedPropertyBean

implements RepositoryItem, MutableRepositoryItem

This class includes only the external ID property plus the list of properties in a RepositoryItem that have been

changed. When, for example, updateItem is invoked on an IntegrationRepositoryItem, this wrapper can

be passed to the update Command instead of the RepositoryItem. This allows us to send only the changed

properties to be saved to the remote system, instead of trying to update all the properties of a repository item.

For example, if you change the middleName property of the user profile, and the user profile is configured

with an external id property called remoteId, the ChangedPropertyBean will only expose two properties:

middleName and remoteId. If you call ChangedPropertyBean.getPropertyDescriptors, the result will

only contain these two properties. A ChangedPropertyBean is read-only.

atg.repository.databinding.MappingRepositoryItem

implements RepositoryItem, MutableRepositoryItem

A MappingRepositoryItem wraps a repository item and exposes properties as they are configured in a

mapping file. The Integration Repository creates MappingRepositoryItems automatically if it is configured

with a mapping file. The property names that are exposed are the target names as defined in the mapping file.

If a property’s include attribute is false in the mapping file, then that property is not a legal property of the

MappingRepositoryItem. For example, if the following mapping exists:

<item-descriptor
 repository-path="/atg/userprofiling/ProfileAdapterRepository"
 name="user"
 default-include="false">
 <property name="firstName" include="true"/>
 <property name="lastName" include="true"/>
 <property name="id" target-name="dynamoId" include="true"/>
</item-descriptor>

Appendix F. Integration Framework 501

then the corresponding MappingRepositoryItem would contain three properties: firstName, lastName, and

dynamoId.

IntegrationRepositoryView

extends RepositoryViewImpl

IntegrationRepositoryView is an abstract class that provides some standard operations like applyOptions

and getRange. For each type of remote system that you want to integrate with, you need to create an

implementation of IntegrationRepositoryView specific for your remote system in order to provide the

translation between the Oracle ATG Web Commerce Query format, and the format expected by the remote

system. When a query is executed, the executeUncachedQuery method is called. That method looks like this:

public RepositoryItem[] executeUncachedQuery(Query pQuery, QueryOptions pOptions)
{
 // Step 1
 Object input = createQueryCommandInput(pQuery, pOptions);

 // Step 2
 RepositoryItem[] items = executeQueryCommand(input);

 // Step 3
 return applyOptions(items, pOptions);
}

The inputs to this method are a standard Query object and a standard QueryOptions object. The

executeUncachedQuery method goes through the following steps:

Step 1

The first thing the view needs to do is translate the Query object into an object that is understandable by the

remote system. This is the responsibility of your subclass of IntegrationRepositoryView and the only

method that you must implement.

Step 2

This step is a call to the method defined in IntegrationRepositoryView that gets the correct Command

according to your configuration and calls Command.execute with the provided query input.

Step 3

This step may not be necessary. If your remote system supports sorting and ranging (returning a subset of the

items) then it will be more efficient for that information to be included in the command input. In that case this

step can be skipped in the executeUncachedQuery and you should override the applyOptions method to do

nothing.

The only thing required for querying to work is to subclass IntegrationRepositoryView and implement

createQueryCommandInput. The implementation of this method will introspect the Query class and create an

input object. The type and contents of the input object depend on the requirements of your application and the

remote system you are querying. You then need to create a Command that knows what to do with this input.

In addition, you will typically need to implement a processResults method in your

IntegrationRepositoryView subclass. This method is responsible for translating between the remote data

format and the repository items in the local repository.

The default implementation of IntegrationRepositoryView.processResults calls

IntegrationRepositoryTools.createRepositoryItems. It passes in the results from

pCommandResult.getResults() as the first argument. The createRepositoryItems method

uses DynamicBeans to look at the given command results. For each object in the result it uses the

IntegrationRepositoryItemDescriptor to find the external ID. It uses this external ID to look for an

502 Appendix F. Integration Framework

existing item in the local repository with the same external ID. If one is found, this method iterates across the

properties in the result object (using DynamicBeans) and updates the properties. If one is not found, a new item

is first created, then the properties are updated.

Command Operations

The Integration Repository can define five types of operations that allow Oracle ATG Web Commerce repository

items to access data in remote systems:

• executeQuery (page 502)

• getItem (page 503)

• addItem (page 504)

• updateItem (page 503)

• removeItem (page 504)

executeQuery

There are four possibilities here:

• Always query against the local repository. For example, you may decide that updates to profiles need to be

sent to a remote system, but queries of that data will always be done locally.

• Always query against the remote system. For example, you may want the data to remain in the remote system

with no persistent storage in Dynamo.

• Check the local repository first, then check the remote system.

• Check the remote system first, then Dynamo.

If there is a Command associated with the query operation then the remote system is queried. If no Command is

configured, then the local repository is queried.

When you want to execute a query against the Integration Repository, your code will look something like this:

Repository rep = getRepository(getMyRepository());
RepositoryView view = rep.getView(getMyView());
QueryBuilder builder = view.getQueryBuilder();
Query query = builder.createSomeQuery(MyQueryExpression);
RepositoryItem[] results = view.executeQuery(query);

There is no Integration Repository specific code in any of this. This is because you build queries with the

Integration Repository in exactly the same way that you would build queries with the SQL repository. This also

means that you can use RQL. You can use standard query builder calls, so the Query object that gets generated

is a standard Query object from the atg.repository.query package.

This real difference is in the RepositoryView. The Integration Framework uses a subclass named

IntegrationRepositoryView. This class provides an implementation of executeUncachedQuery that is

expected to call the query Command. There needs to be a subclass of IntegrationRepositoryView for each

remote system you want to query. This subclass is responsible for translating between the Oracle ATG Web

Commerce Query and the query format expected by the remote system.

A query Command will receive whatever input is created by the createQueryCommandInput method of your

IntegrationRepositoryView.

Appendix F. Integration Framework 503

The IntegrationRepositoryView.processResults method is responsible for translating between the

remote data format and our repository items.

getItem

The getItem operation returns the value from the local repository. If there is no result, or if the entry in the

local repository is invalid, the getItem operation updates the local repository with the results returned by the

execution on the remote system of the Command associated with the getItem operation.

This operation uses the IntegrationRepositoryItemDescriptor.getRemoteItem()

method. Commands executed for get-item will receive whatever input is created by

IntegrationRepositoryTools.createGetCommandInput(). By default this is a map of the external

ID property name to the value of the external ID. If you require a more complex command input, extend

IntegrationRepositoryTools and override the createGetCommandInput() method.

If the item descriptor’s use-external-id attribute is true, then the given local repository item ID is identical

to the remote ID. If this attribute is false, then the remote ID must be retrieved from the local item (using the

item descriptor’s external-id-property).

If getRemoteItem throws an exception, then if the item descriptor’s use-local-on-failure attribute is true,

the operation returns the value from the local repository. Otherwise, the exception is passed on.

updateItem

The updateItem operation updates the values of the repository item’s properties both in the local repository

and the remote system. The update is handled transactionally, so that if the update of the remote system fails,

the change to the local value will not occur.

This operation uses the IntegrationRepositoryItemDescriptor.updateRemoteItem() method.

If the Integration Repository item descriptor defines a mapping file for the updateItem operation, then

the updateItem operation creates a MappingRepositoryItem. If the changed-properties-only

attribute is true, then the updateItem operation creates a ChangedPropertyBean. Otherwise, the

IntegrationRepositoryItem is used.

The input for the updateItem Command is either the IntegrationRepositoryItem, the

MappingRepositoryItem, or the ChangedPropertyBean as appropriate. It returns a CommandResult. The

updateItem operation checks if there is an external ID in the CommandResult returned by the updateItem

Command. If there is, the updateItem operation updates the external ID property of the local repository item

with the value.

If update-local-with-result is set to true, then the Integration Repository looks in the CommandResult for

new property values. Any values that appear in the result will be set on the local value of the item.

If the updateRemoteItem call times out, the response depends on the setting of the timeout-response

attribute for the updateItem operation. The possible settings are ROLLBACK, INVALID, UNKNOWN, IGNORE.

updateItem and Derived Properties

If your underlying local repository uses the derived properties feature of the SQL repository and you are using

the changed-properties-only attribute set to true, then you should define a derived-properties

element to specify how the derived properties are handled. The derived-properties element is a container

for a list of derived properties mapped to some property that is used in the derivation. It ensures that if the

value of a property that is one of the derivation expressions of a derived property is changed, the Integration

Repository treats the derived property itself as changed as well.

The derived-properties element can optionally be used as a child element of an update-item tag. It is a

container for one or more property elements, each of which has a name attribute and a referenced-property

504 Appendix F. Integration Framework

attribute. The name attribute is the name of a property that can be derived from the referenced-property.

The name attribute and referenced-property attribute must both be valid property names defined within

the given item descriptor.

If changed-properties-only="true" in the update-item element, then whenever the referenced-

property is sent in the update command, the name property will be as well. For example, suppose you have a

property named remoteAddress that can be derived from a property named businessAddress. By including

this derived-properties element in the update-item element, then whenever the businessAddress

property is included as a changed property, the remoteAddress property will also be included as a changed

property:

<derived-properties>
 <property name="remoteAddress"
 referenced-property="businessAddress"/>
</derived-properties>

If you do not configure the derived-properties element for any derived properties in your item, then a

change to a derived property’s expression will not cause the derived property itself to appear as a changed

property. See SQL Repository Data Models: Derived Properties in the ATG Repository Guide for more information

about derived properties.

addItem

The addItem operation adds the item to the local repository and to the remote system. If the addItem

operation fails on the remote system, then the item will not be added to the local system. Since the item is being

newly added to the remote system, it is impossible to know in advance what value of the external ID is. The

addItem operation attempts to set the external ID property with the result of the addItem Command. If the use-

external-id attribute is true, then a change to the ID results in a clone of the item passed into this operation.

This operation uses the IntegrationRepositoryItemDescriptor.addRemoteItem() method. The input

for add-item Commands is the RepositoryItem being added. If the Integration Repository item descriptor

defines a mapping file, then the addItem operation creates a MappingRepositoryItem. Otherwise, the

IntegrationRepositoryItem is used.

When the addItem Command returns successfully from the remote system, the addItem operation checks

if there is an external ID in the CommandResult. If there is, the addItem operation updates the external ID

property in the local repository with the ID value. If update-local-with-result is set to true, then the

Integration Repository looks in the CommandResult for new property values. Any values that appear in the

result will be set on the local value of the item. If the item was cloned, the original item is removed and the new

item is returned.

If the addRemoteItem call times out, the response depends on the setting of the timeout-response attribute

for the addItem operation. The possible settings are ROLLBACK, INVALID, UNKNOWN, IGNORE.

removeItem

The removeItem operation removes the item from the local repository and from the remote system. This

operation uses the IntegrationRepositoryItemDescriptor.removeRemoteItem() method. If there

is a mapping file defined in the item descriptor, the target name of the external ID property is used. If the

useExternalId is false, then the given ID is the local repository item ID.

The input for commands executed for remove-item is whatever input is created by

IntegrationRepositoryTools.createRemoveCommandInput(). By default this is a map of the external

ID property name to the value of the external ID. If you require a more complex command input, extend

IntegrationRepositoryTools and override the createRemoveCommandInput() method.

Appendix F. Integration Framework 505

If the remove operation in the remote system fails, the local item will not be removed. If the removeRemoteItem

call times out, the response depends on the setting of the timeout-response attribute for the removeItem

operation. The possible settings are ROLLBACK, INVALID, UNKNOWN, IGNORE.

Mapping

The Oracle ATG Web Commerce Integration Framework provides tools to help you map Oracle ATG Web

Commerce repository items to data objects on the remote system. Rather than export all the properties of a

repository item in an integration command, you can define a map of repository item properties to attributes of

the remote system’s data objects. The mapping file controls which properties are sent as input in a Command,

and what the external names of those properties are.

For details about repository item mapping, see the ATG Web Services Guide.

Persistent Caching

The Integration Framework uses a separate SQL repository to track integration information. This SQL repository

is referred to as the persistent cache or the Integration Data repository. This repository exists to track when

particular repository item properties have been fetched from the remote system. This lets the Integration

Framework limit the frequency with which it needs to access the remote system.

The Integration Data repository has a Nucleus address of /atg/integrations/repository/

IntegrationData. You should not need to do anything to configure or use the Integration Data repository.

The repository uses a database table named if_integ_data that is created when you install Oracle ATG Web

Commerce.

The Integration Data repository defines a single item descriptor, named integration-data. For each

repository item in the local repository, there is a corresponding repository item in the Integration Data

repository. The integration-data item descriptor defines five properties:

Property Description

itemID The repository ID of the repository item in the local repository that this information

applies to.

itemDescriptor The name of the item descriptor in the local repository that this information applies

to.

repositoryName The name of the local repository.

state This property tracks whether the item in the local repository is up to date with the

data in the remote system. The state can be one of OK, INVALID, or UNKNOWN. Unless

the state is OK, then the Integration Repository tries to get the data from the remote

system, rather than relying on the local repository.

lastRun This property tracks the last time a getItem operation retrieved the item’s data from

the remote system. If the current time minus the lastRun time exceeds the local-

value-timeout value set in the Integration Repository, then this item is marked

INVALID and the Integration Repository retrieves the item’s data from the remote

system with a getItem operation.

506 Appendix F. Integration Framework

The item descriptor definition in the Integration Repository definition file specifies a local-value-timeout

attribute:

<item-descriptor name="my-item" local-value-timeout="1000"/>

The state of a repository item can be set to one of OK, INVALID, or UNKNOWN. The state can be changed if an

Integration Repository command returns an error or times out. The Integration Repository checks the state and

lastRun values on a get-item operation. If the state is INVALID, or the lastRun time for the given command

is more than local-value-timeout milliseconds from the current time, then the item is reloaded from the

remote system (using the get-item Command). If an item is transient, then a transient instance of the Integration

Data repository item would be created.

An item descriptor in the Integration Repository can also define one or more read-only states. If the state of an

item in the Integration Data repository is in a read-only state, then the values in the local repository can be used

for read-only operations (query, get) but not for write operations (update, add, remove).

Cleaning up the Persistent Cache

The Integration Framework includes a scheduled service named CleanIntegrationData

(class atg.adapter.integrations.CleanIntegrationData extends

atg.service.scheduler.SingletonSchedulableService). This service is a Nucleus component

with the address /atg/integrations/repository/CleanIntegrationData. It is responsible for

cleaning up the persistent cache. The CleanIntegrationData service deletes from the Integration Data

repository any records that have not been updated since the time specified by its expireTimePeriod

property. If its deleteInvalidStateItems property is set to true, then records that are not in the state

IntegrationRepository.OK will also be deleted. Note that the corresponding repository items are not

deleted from the local repository. The CleanIntegrationData component has the following configurable

properties:

Property Name Description Default Value

expireTimePeriod Time in seconds that items remain in the persistent

cache after they are last updated.

864000 (10 days)

deleteInvalidStateItems Items are deleted if their state is not OK. true

schedule SeeScheduler Services (page 213)for information

about how to set schedules in schedulable

services.

Configuration Examples

The following examples show some ways to configure three of the alternatives described in the Integration

Approaches (page 493) section:

• Configuring the Remote-Only Model (page 507)

• Configuring the Remote-then-Local Model (page 508)

• Configuring the Local-then-Remote Model (page 508)

Appendix F. Integration Framework 507

Configuring the Remote-Only Model

The Remote Only (page 493) model is sketched in the Integration Approaches (page 493) section. In this use

case model, the data is maintained only on the remote system. Each time that the Oracle ATG Web Commerce

application needs to access the data, a command is issued to the remote system.

To configure this integration model, configure your Integration Repository with transient properties. None of the

repository item properties will be stored in the local repository database, so there are no table tags defined in

the local repository definition file. In addition, the local-value-timeout attribute in the item descriptors of

the Integration Repository is set to a small value. For example, the local repository definition might look like this:

localRepositoryDefinition.xml

<gsa-template>
 <item-descriptor name="contact" display-property="lastName">
 <property name="id" data-type="string"/>
 <property name="firstName" data-type="string" display-name="First Name"/>
 <property name="lastName" data-type="string" display-name="Last Name"/>
 <property name="email" data-type="string" display-name="Email Address"/>
 </item-descriptor>
</gsa-template>

You can define a mapping file that specifies the names of these properties on the remote system:

mapping.xml

<item-descriptor
 repository-path="/atg/integrations/remotex/RemoteXIntegrationRepository"
 name="contact">
 <property name="id" targetName="Id" include="true"/>
 <property name="firstName" targetName="First Name" include="true"/>
 <property name="lastName" targetName="Last Name" include="true"/>
 <property name="email" targetName="Email Address" include="true"/>
</item-descriptor>

The Integration Repository definition file would then look like this:

integrationRepository.xml

<integration-repository-template>
 <item-descriptor name="contact"
 external-id-property="id" use-external-id="true"
 mapping-file="/atg/integrations/remotex/mapping.xml"
 local-value-timeout="1000">
 <query command="/atg/integrations/remotex/GetContacts"
 view-class="atg.integrations.remotex.RemoteXQueryView"/>
 <get-item command="/atg/integrations/remotex/GetContacts"
 use-local-on-failure="false"/>
 <update-item command="/atg/integrations/remotex/UpdateContacts"/>
 </item-descriptor>
</integration-repository-template>

This configuration means that queries and getItem operations use the GetContacts command. Users cannot

remove or create contacts in the remote system, since no Command has been defined for these operations, but

508 Appendix F. Integration Framework

can update existing ones. If the remote system is unavailable in a getItem operation, then no data is available,

since the use-local-on-failure attribute is set to false.

Note that you could change this to provide Oracle ATG Web Commerce with read-only access to the remote

system by omitting the updateItem Command, leaving only the GetContacts Command to query and get

items.

Configuring the Remote-then-Local Model

The Remote then Local (page 494) model is sketched in the Integration Approaches (page 493) section. In

this case, the primary source for the data is the remote system. A local copy of the data is maintained in the local

repository. Each time that the Oracle ATG Web Commerce application needs to access the data, a command is

issued to the remote system. If the command fails to return, then the command is issued to the local repository.

To configure this integration model, use persistent properties that are stored through the local repository in a

database on the local system. These persistent properties are defined within table tags in the local repository

item descriptors. For example:

localRepositoryDefinition.xml

<gsa-template>
 <item-descriptor name="contact" display-property="lastName">
 <table name="contact" ... >
 <property name="id" data-type="string"/>
 <property name="firstName" data-type="string" display-name="First Name"/>
 <property name="lastName" data-type="string" display-name="Last Name"/>
 <property name="email" data-type="string" display-name="Email Address"/>
 </table>
 </item-descriptor>
</gsa-template>

integrationRepository.xml

The Integration Repository definition file uses the local-value-timeout attribute with a small value, so that

subsequent attempts to access an item will continue to try the remote system before resorting to the local

repository. In addition, the use-local-on-failure attribute for the getItem command is set to true.

<integration-repository-template>
 <item-descriptor name="contact"
 external-id-property="id" use-external-id="true"
 local-value-timeout="1000">
 <query command="/atg/integrations/remotex/GetContacts"
 view-class="atg.integrations.remotex.RemoteXQueryView"/>
 <get-item command="/atg/integrations/remotex/GetContacts"
 use-local-on-failure="true"/>
 <update-item command="/atg/integrations/remotex/UpdateContacts"/>
 </item-descriptor>
</integration-repository-template>

Configuring the Local-then-Remote Model

The Local then Remote (page 494) model is sketched in the Integration Approaches (page 493) section. In

this case, a version of the data is maintained in a local repository. Only if the data is not available locally, or if the

local copy has expired or otherwise been marked invalid, do we query the remote system for the data.

Appendix F. Integration Framework 509

To configure this integration model, use persistent properties that are stored through the local repository in a

database on the local system. The local repository is defined pretty much the same way as in the Configuring the

Remote-then-Local Model (page 508).

The Integration Repository definition is a bit different. It uses the local-value-timeout attribute with a large

value, so that items will remain valid in the local repository for a reasonable length of time.

integrationRepository.xml

<integration-repository-template>
 <item-descriptor name="contact"
 external-id-property="id" use-external-id="true"
 local-value-timeout="3600000">
 <query command="/atg/integrations/remotex/GetContacts"
 view-class="atg.integrations.remotex.RemoteXQueryView"/>
 <get-item command="/atg/integrations/remotex/GetContacts"
 use-local-on-failure="true"/>
 <update-item command="/atg/integrations/remotex/UpdateContacts"
 timeout-response="UNKNOWN"/>
 <add-item command="/atg/integrations/remotex/AddContacts"
 timeout-response="INVALID"/>
 <remove-item command="/atg/integrations/remotex/RemoveContacts"/>
 </item-descriptor>
</integration-repository-template>

Integration Repository Definition File

The XML definition file for Integration Repositories conforms to the integration-repository Document Type

Definition (page 514) with the URL:

http://www.atg.com/dtds/integrations/integration-repository_1.0.dtd

The definition file includes the following elements:

• integration-repository-template tag (page 509)

• header tag (page 509)

• item-descriptor tag (page 510)

• item-descriptor Child Tags (page 510)

integration-repository-template tag

The integration-repository-template tag acts as a container for the Integration Repository definition file.

It contains a single header tag and one or more item-descriptor tags.

header tag

The header tag contains information about the Integration Repository definition file. It can contain the following

child elements:

• name

• author

• version

510 Appendix F. Integration Framework

• description

item-descriptor tag

Each item descriptor in the local repository that is integrated must be defined in the Integration Repository

definition file and configured in the item-descriptor tag. This tag has the following attributes:

Attribute Description

name The name of the item descriptor being configured. This must match the name of

the item descriptor in the local repository.

mapping-file This is the default mapping file that is used when sending a repository item to any

of the configured commands. The mapping file controls which properties are sent

as input, and what the external names of those properties are. See Mapping (page

505).

external-id-

property

Just as there is a local ID (repositoryId) for each item in the local repository,

there must also be an ID for each corresponding item in the remote system. This

attribute identifies which repository item property in the local repository will be

used to store the external ID. The external ID property does not have to be the

same property as the repository ID in the local repository. If it is not, set use-

external-id to false.

use-external-id If the local repository ID should match the external ID, then this property should

be set to true. If the external ID is just stored as a non-ID property on the local

item, then set this property to false.

local-value-

timeout

This property configures the number of milliseconds that a local item is valid

before it should be retrieved from the external system. For example, if this is set to

600000, and you call getItem, then each subsequent call to getItem for the next

10 minutes will return that same item with no updates. After 10 minutes, a call to

getItem will once again execute the getItem command.

read-only-states Each item retrieved from the remote system has a state associated with it in the

persistent cache. The state can be one of OK, INVALID, or UNKNOWN. The default

value is UNKNOWN. This property identifies which of those states will render the

item read-only. This is useful if you timed out on a recent call to getItem and you

still want people to be able to view the item but do not want to run the risk of

them changing it. See Persistent Caching (page 505).

allow-local-

operation

This attribute controls the behavior if there is no configured command for a

particular operation. If this attribute is true, then the local repository can act on

the local repository item without reference to the remote system. For example, if

there is no update-item command configured, and someone calls updateItem,

is this an error? Should the update just go to the local repository with no Command

execution?

item-descriptor Child Tags

The item-descriptor tag has the child tags described in the following table. The operations defined by these

tags are also described in the Command Operations (page 502) section.

Appendix F. Integration Framework 511

Tag Description

query This configures the behavior of the Integration Repository when the

executeQuery method is called on the RepositoryView for items of this type.

Attributes:

command

This is the Nucleus path to the Command implementation that will perform the

query of the remote system.

view-class

If the default view class is not sufficient for querying items of this type, this

subclass of atg.adapter.integrations.IntegrationRepositoryView will

be used for queries instead.

query-cache-size

This is the same as the SQL repository attribute of the same name. How many

queries will be cached at a time?

query-expire-timeout

The time in milliseconds that each query cache entry remains valid.

get-item This configures the behavior of the Integration Repository when getItem is called

for repository items of this type.

Attributes:

command

This is the Nucleus path to the Command implementation that will get the item

from the remote system. Usually, the Command for getting is the same as the

Command for querying.

use-local-on-failure

If this attribute is set to true then a locally cached value will be used in cases

that the Command fails. For example, if the remote system is unavailable, the

locally cached item will be returned to the user. If the remote item has never been

retrieved before, this attribute has no effect.

512 Appendix F. Integration Framework

Tag Description

update-item This configures the behavior of the Integration Repository when updateItem

is called for repository items of this type. It can optionally contain a derived-

properties tag as a child element. See updateItem and Derived Properties (page

503) in the Command Operations section.

Attributes:

command

This is the Nucleus path to the Command implementation that will update the item

in the remote system.

mapping-file

If the mapping file that is defined on the item descriptor is insufficient for creating

input to the update Command, a different mapping file can be configured here.

One common use for this is to exclude read-only properties from the input.

timeout-response

This defines the behavior in response to a CommandTimeoutException

thrown by the update item Command. If this is not set, then the repository’s

defaultTimeoutResponse property will be used instead. The possible settings

for this attribute are: ROLLBACK, INVALID, UNKNOWN, IGNORE. The default is

ROLLBACK.

changed-properties-only

If this is set to true, then only properties that have changed will be passed to the

update item Command. The external-id-property is always included.

update-local-with-result

If this is set to true, then the Integration Repository will look in the

CommandResult for new property values. Any values that appear in the result will

be set on the local value of the item.

ignore-external-id-change

If this is set to true, then if the only changed property on the item is the external

ID property, no call to the update item Command will be made.

Appendix F. Integration Framework 513

Tag Description

add-item This configures the behavior of the Integration Repository when addItem is called

for repository items of this type.

Attributes:

command

This is the Nucleus path to the Command implementation that will add the item to

the remote system.

mapping-file

If the mapping file that is defined on the item descriptor is insufficient for creating

input to the add Command, a different mapping file can be configured here. One

common use for this is to exclude read-only properties from the input.

timeout-response

This defines the behavior in response to a CommandTimeoutException

thrown by the add item Command. If this is not set, then the repository’s

defaultTimeoutResponse property will be used instead. The possible settings

for this attribute are: ROLLBACK, INVALID, UNKNOWN, IGNORE. The default is

ROLLBACK.

update-local-with-result

If this is set to true, then the Integration Repository will look in the

CommandResult for new property values. Any values that appear in the result will

be set on the local value of the item.

remove-item This configures the behavior of the Integration Repository when removeItem is

called for repository items of this type.

Attributes:

command

This is the Nucleus path to the Command implementation that will remove the item

from the remote system.

timeout-response

This defines the behavior in response to a CommandTimeoutException

thrown by the remove item Command. If this is not set, then the repository’s

defaultTimeoutResponse property will be used instead. The possible settings

for this attribute are: ROLLBACK, INVALID, UNKNOWN, IGNORE. The default is

ROLLBACK.

514 Appendix F. Integration Framework

Tag Description

derived-properties If your underlying local repository uses the derived properties feature of the

SQL repository and you have set changed-properties-only="true" in

the update-item element, then you should define a derived-properties

element to specify how the derived properties are handled. The derived-

properties element is a container for a list of derived properties mapped to

some property that is used in the derivation. The derived-properties element

can optionally be used as a child element of an update item tag. See updateItem

and Derived Properties (page 503) in the Command Operations section. See also

SQL Repository Data Models: Derived Properties in the ATG Repository Guide for more

information about derived properties.

The derived-properties element contains one or more property tags.

property The property tag in the Integration Repository definition file is a child element of

a derived-properties element.

Attributes:

A property tag in a derived-properties element uses the following attributes:

name - The name of a property that can be derived from the referenced-

property.

referenced-property - The name of a derivation expression of a derived

property specified by the name attribute.

If changed-properties-only="true" in the update-item element, then

whenever the referenced-property is sent in the update command, the

property specified by the name attribute will be as well. See updateItem and

Derived Properties (page 503) in the Command Operations section

integration-repository Document Type Definition

<?xml encoding="UTF-8"?>

<!-- === -->
<!-- integration-repository_1.0.dtd - Integration Repository configuration spec
 -->
<!-- @version $Id: //product/DAS/main/Java/atg/dtds/integrations/integration-
repository_1.0.dtd#5 $$Change: 294774 $ -->
<!-- === -->

<!-- ===
 The following XML attributes have a uniform meaning throughout
 this DTD:

 (none yet)

 === -->

<!-- === -->
<!-- integration-repository-configuration - top level element -->

Appendix F. Integration Framework 515

<!-- === -->

<!ENTITY % timeoutresponses "(ROLLBACK|UNKNOWN|INVALID|IGNORE)">

<!ELEMENT integration-repository-template (header?, item-descriptor*)>

<!-- The header -->
<!ELEMENT header (name?, author*, version?, description?)>

<!-- Name of template -->
<!ELEMENT name (#PCDATA)>

<!-- The author(s) -->
<!ELEMENT author (#PCDATA)>

<!-- Version string -->
<!ELEMENT version (#PCDATA)>

<!-- Description string -->
<!ELEMENT description (#PCDATA)>

<!-- === -->
<!-- integration-view element: -->
<!-- The definition of a view as it appears to code that calls the -->
<!-- integration repository. -->
<!-- === -->

<!ELEMENT item-descriptor (query?, get-item?, update-item?, add-item?,
 remove-item?)>

<!ATTLIST item-descriptor
 name CDATA #REQUIRED
 mapping-file CDATA #IMPLIED
 external-id-property CDATA #IMPLIED
 use-external-id CDATA #IMPLIED
 local-value-timeout CDATA #IMPLIED
 read-only-states CDATA #IMPLIED
 allow-local-operation CDATA #IMPLIED
>

<!ELEMENT query EMPTY>

<!ATTLIST query
 command CDATA #IMPLIED
 view-class CDATA #IMPLIED
 query-cache-size CDATA #IMPLIED
 query-expire-timeout CDATA #IMPLIED
>

<!ELEMENT get-item EMPTY>

<!ATTLIST get-item
 command CDATA #IMPLIED
 use-local-on-failure CDATA #IMPLIED
>

<!ELEMENT update-item (derived-properties?)>

516 Appendix F. Integration Framework

<!ATTLIST update-item
 command CDATA #IMPLIED
 mapping-file CDATA #IMPLIED
 timeout-response %timeoutresponses; "ROLLBACK"
 changed-properties-only CDATA #IMPLIED
 update-local-with-result CDATA #IMPLIED
 ignore-external-id-change CDATA #IMPLIED
>

<!ELEMENT derived-properties (property+)>

<!ELEMENT property EMPTY>

<!ATTLIST property
 name CDATA #REQUIRED
 referenced-property CDATA #REQUIRED
>

<!ELEMENT add-item EMPTY>

<!ATTLIST add-item
 command CDATA #IMPLIED
 mapping-file CDATA #IMPLIED
 timeout-response %timeoutresponses; "ROLLBACK"
 update-local-with-result CDATA #IMPLIED
>

<!ELEMENT remove-item EMPTY>

<!ATTLIST remove-item
 command CDATA #IMPLIED
 timeout-response %timeoutresponses; "ROLLBACK"
>

Remote Procedure Calls

The integration framework includes a facility for making remote procedure calls (RPC). The Integration

Repository makes extensive use of RPC to make calls to the remote system for querying and data

synchronization.

The RPC facility is designed to be as generic as possible in order to support a variety of remote systems and

middleware transports. The classes and interfaces in the atg.integrations package provide an API that can

be implemented in various ways to work with Web Services, the Java Connector Architecture (JCA), or different

middleware transports. For example, the Oracle ATG Web Commerce Tibco Adapter includes an implementation

of the RPC API that enables the Oracle ATG Web Commerce platform to execute Tibco commands.

This chapter discusses the following topics:

RPC API Architecture (page 517)

Implementing the RPC API (page 518)

Executing Commands in Pages (page 519)

Appendix F. Integration Framework 517

RPC API Architecture

The core pieces of the Oracle ATG Web Commerce RPC API architecture are:

• atg.integrations.Command interface – generic representation of a command

• atg.integrations.CommandHandler interface – executes a command, and performs pre- or post-

processing

• atg.integrations.CommandResult class – encapsulates the results of a command

To implement the RPC API, you create classes that implement the Command or CommandHandler interface, and

return CommandResult objects. This section discusses the expected behavior of these classes. Note that some of

this behavior is not enforced by the interfaces, but is nonetheless required by the API.

For additional information about Command, CommandHandler, and CommandResult, see the ATG Platform API

Reference.

Command Interface

The atg.integrations.Command interface is a generic representation of a command. You create specific

commands by implementing this interface.

The Command interface has two methods for executing commands, execute() and invokeRPC(). Both of

these methods take a java.lang.Object as input (to be as generic as possible), and return a CommandResult.

The execute() method is the one actually called by an application. Invoking this method sets off a chain of

actions that ultimately results in the invokeRPC() method being executed. The invokeRPC() method does

the actual work of making a call to the remote system. Note, however, that applications should not call this

method directly, as the processing of commands is based on the assumption that execute() is called first.

The Command.execute() method must implement the following logic:

• If the Command points to a CommandHandler (that is, if the Command.commandHandler

property is not null), pass the Command and its input to that CommandHandler by calling the

CommandHandler.executeCommand() method.

• If the Command does not point to a CommandHandler, call the Command.invokeRPC() method.

CommandHandler Interface

The atg.integrations.CommandHandler interface is a generic representation of a handler class for

preprocessing and post-processing commands. Command handlers are not a required part of the RPC API, since

a Command.execute() method can call the corresponding Command.invokeRPC() method directly. However,

command handlers add a great deal of power and flexibility to the RPC system.

To pass a Command and its input to a CommandHandler, the Command.execute() method calls the

CommandHandler.executeCommand() method. The CommandHandler.executeCommand() method must

implement the following logic:

• If the CommandHandler points to another CommandHandler (that is, if the

CommandHandler.nextCommandHandler property is not null):

• Perform any preprocessing.

• Pass along the Command and its input to the next CommandHandler by calling

CommandHandler.getNextCommandHandler().executeCommand().

• Perform any post-processing.

518 Appendix F. Integration Framework

• If the CommandHandler does not point to another CommandHandler:

• Perform any preprocessing.

• Execute the Command.invokeRPC() method.

• Perform any post-processing.

This logic allows command handlers (and the services they implement) to be chained together. The final

CommandHandler in the chain must be able to call the Command.invokeRPC() method, to ensure that the

command can be executed. However, it is not required that the command is always executed. For example, one

typical use for a command handler is caching of commands and their results. Such a command handler might

work like this:

• Examine the command to determine if it is in the cache.

• If the command is in the cache, return the cached result.

• If the command is not in the cache, execute the command, return the result, and cache the command and

result.

CommandResult Class

When a Command or CommandHandler object executes a Command, it must return a CommandResult. A

CommandResult is just a container that has two other objects as properties:

• The result property is a java.lang.Object that is the actual object returned by the remote call.

• The context property is a java.util.Map that can be used to store additional parameters and their values.

Application code should access the results in the result object by using the DynamicBeans API. For example,

suppose the RPC call adds two integers and stores the result as an integer named sum. The application code

could obtain the value of sum like this:

Integer sum = (Integer)
 DynamicBeans.getPropertyValue(getCommandResult.getResults(),"sum");

The DynamicBeans API is recommended because it eliminates the need to convert the object returned from the

transport RPC into a generic data format, which requires additional memory and processing time. For example,

if a query returns a DOM object, the DynamicBeans API can be used to access the data directly from it, avoiding

the need to copy the properties from the DOM object to another object type (such as a Map).

RPC implementations are not required to use the context Map. It is included in the CommandResult object to

provide a way to store additional information that is not part of the result object.

Implementing the RPC API

As mentioned above, the RPC API is intended to be as generic as possible so implementations can support

a wide variety of transports and remote systems. However, this flexibility also puts a lot of burden on the

implementer. To simplify the process, the atg.integration package includes basic implementations of the

Command and CommandHandler interfaces. Rather than implementing the interfaces directly, you can just

extend the BaseCommand and BaseCommandHandler classes.

The atg.integrations.BaseCommand class provides an execute() method that implements the logic

described in the Command Interface (page 517) section above. Classes that extend this class must provide

their own implementations of the invokeRPC() method.

Appendix F. Integration Framework 519

The atg.integrations.BaseCommandHandler class provides an executeCommand() method that

implements the logic described in the CommandHandler Interface (page 517) section above. Classes that

extend this class can override the executeCommand() method to do their pre- or post-processing as needed.

Implementing this method can be simplified by having the executeCommand() method of the subclass call the

executeCommand() method of the parent class while adding pre- or post-processing of its own. For example, a

CachingCommandHandler class might look like this:

Public class CachingCommandHandler extends BaseCommandHandler {
 Map sCache = new HashMap(); // Cache of method invocations.
Public CommandResult executeCommand(Command pCommand, Object pInput) {
 if (sCache.containsKey(pInput)) {
 return sCache.get(pInput);
 }
else {
 CommandResult result = super.executeCommand(pCommand, pInput);
 sCache.put(pInput, result);
 return result;
 }
}
}

For more information about BaseCommand and BaseCommandHandler, see the ATG Platform API Reference.

Exception Handling

The Command.execute(), Command.invokeRPC(), and CommandHandler.executeCommand() methods

must throw exceptions of class atg.integration.CommandInvocationException. This exception is

intended to wrap any underlying exceptions that might be thrown by a particular transport or remote system.

This exception must wrap the underlying exception, rather than copying its message, so that stack trace

printouts include the information from the underlying exception.

The CommandInvocationException class has two useful subclasses:

• atg.integration.CommandTimeoutException can be thrown when an RPC call times out. This is a special

case, since a timeout does not indicate whether the RPC call succeeded or not.

• atg.integration.InvalidInputException can be thrown if the input object passed to the Command is

invalid.

Executing Commands in Pages

You can use the atg.integrations.MapRPCDroplet servlet bean to execute RPC commands in JavaServer

Pages. This servlet bean executes a command and, depending on whether the command is executed

successfully, renders either its output open parameter or its error open parameter. If the command is executed

successfully, the result output parameter is set to the result of the command, and the output open parameter

is rendered. If an exception is thrown, the exception output parameter is set to the exception, and the error

open parameter is rendered.

The command input parameter takes an object that implements the atg.integrations.Command interface.

The inputParameters parameter supplies the inputs to the command as a java.util.Map of parameter

name/value pairs.

As an alternative to specifying these values in pages, MapRPCDroplet has command and inputParameters

properties that you can use to specify these values in the servlet bean’s properties file. Note, however, that you

520 Appendix F. Integration Framework

cannot specify the same parameter both in the properties file and in a page. If you do this, MapRPCDroplet

throws a ServletException.

MapRPCDroplet also takes an inputParameterNames parameter that you can use to specify the input names

as a list of page parameters, and then use those page parameters to specify the input values. For example:

<dsp:param name="inputParameterNames" value="first_name,age"/>
<dsp:param name="first_name" value="Bill"/>
<dsp:param name="age" value="43"/>

You cannot include both the inputParameters and the inputParameterNames parameter in the same page,

or include inputParameterNames in the page if inputParameters is specified in the servlet bean’s properties

file.

However, there is a way you can specify default values for the command parameters in the servlet bean’s

properties file, and then optionally override these values in pages. To do this:

• Use the inputParameters property to specify the command parameters and their default values.

• In your pages, define page parameters with the same names as the command parameters.

The values specified for the page parameters override the values in the properties file, and are used when the

command is invoked. If a command parameter has no corresponding page parameter, the default value from the

properties file is used.

Parameters Description

input command

The command to execute. Must be an instance of a class that implements the

atg.integrations.Command interface. This parameter can either be defined in

a page or by setting the command property of the servlet bean, but it cannot be

defined both ways.

inputParameters

The inputs to pass to the command, supplied as a java.util.Map of parameter

name/value pairs. This parameter can either be defined in a page or by setting the

inputParameters property of this servlet bean, but it cannot be defined both

ways.

inputParameterNames

A comma-separated list of command input parameter names. Each name defines a

page parameter whose name and value (specified in the page) are used to supply

one of the inputs to the command.

parameter names

Page parameters that correspond to the names of command input parameters

specified in inputParameterNames.

output result

The result object from the command, if the execution is successful.

exception

The exception thrown by the command, if the execution is unsuccessful.

Appendix F. Integration Framework 521

Parameters Description

open output

Rendered if the command is executed successfully.

error

Rendered if the command throws an exception.

The following example uses inputParameterNames to create a UserId page parameter, and then sets its value

to the value of a profile ID. This parameter name/value pair is passed as an input to the command. Depending

on whether the command is executed successfully, Dynamo renders either the output open parameter or the

error open parameter.

<dsp:droplet bean="/atg/integrations/MapRPCDroplet">
 <dsp:param name="command"
 value="bean:/atg/integrations/jdbc/QueryForUser"/>
 <dsp:param name="inputParameterNames" value="UserId"/>
 <dsp:param name="UserId" value="bean:Profile.Id"/>
 <dsp:oparam name="output">
 <p>The user's email address is:
 <dsp:valueof param="result.emailAddress"/>
 </dsp:oparam>
 <dsp:oparam name="error">
 <p>Unable to execute query. The following exceptions occurred:
 <dsp:valueof param="exception"/>
 </dsp:oparam>
</dsp:droplet>

522 Appendix F. Integration Framework

Index 523

Index

Symbols
$basedOn property, 58

$class property, 6

define serialized JavaBean instances, 36

$description property, 50

$instanceFactory, 46

A
access control, 329, 329

(see also security)

access privileges, dynamically generated, 346

ACL (Access Control Lists), 332

configure privileges, 338

entries, 332

LDAP repository security, 341, 341

(see also LDAP repository security)

Persona, 331

privileges, 332

resource, 332

security services, 329

user, 331

user groups, 340

users, 339

AccessControlServlet, 471

AdminUserAuthority, 331

application logging, 55

application modules

configuration path attributes, 28

configuration path attributes precedence, 29

create, 86

directory structure, 86

file resources, 89

JAR file, 90

launch against remote modules, 91

manifest, 87

module root, 86

overview, 85

precedence, 29

ATG Control Center

add module to Components window, 90

change Nucleus properties at runtime,

class directory, create, 7

event listener settings, 50

event source settings, 50

IP address settings, 21

link ;properties,

Nucleus component scope,

view Nucleus component properties, 9

ATG Dynamo Server Admin

access, 80

AdminableService, 56

customize interface, 66

log login attempts, 80

login changes, 80

WAR file, 79

ATG services, 205

ATG servlet beans, 93

BeanInfo, 105

custom, 93

custom servlet bean limitations, 104

JSP processing, 103

local parameters, 99

object parameters, 101

open parameters, 97, 97

(see also open parameters,)

pass parameters to, 96

property parameters, 102

set parameters, 98

ATG-Config-Path attribute, 28

ATG-LiveConfig-Path attribute, 28, 31

attribute factories, 143

B
BadCacher browser type, 153

Base64 encoding, 35

BasicAuthenticationPipelineServlet, 151

BatchEmailListener, 247

browser

caching behavior, 153

identify type, 151

BrowserAttributes, 153

BrowserType, 152

BrowserTyper, 151

Business Commerce pipeline components

CheckSessionExpiration , 472

CommerceCommandServlet , 473

PromotionServlet, 482

SetCurrentLocation, 485

C
caches

refresh security data, 350

schedule updates, 350

524 Index

security data, 350

canonical URLs, 361

CanonicalItemLink servlet bean, 361

CanonicalSessionHostnameServlet, 174

configuration, 180

CheckSessionExpiration , 472

class loader, 439

CLASSPATH, 7, 21

command operations

executeQuery, 502

getItem, 503

Integration Repository, 502

CommerceCommandServlet, 473

components (see Nucleus components)

creating with factory methods, 47

creating with parameterized constructors, 46

CONFIG.properties file, 90

configuration files (see properties files)

configuration path, 6

application server directories, 31

ATG-Config-Path attribute, 28

attributes, application module manifest, 28

concatenate property settings, 32

contrasted with CLASSPATH, 30

default directories, 30

directories included, 27

LiveConfig-Path , 28, 31

module precedence, 29

named configuration directories, 31

override property settings, 32

precedence of attributes, 29

production server directories, 31, 32

read Nucleus component properties, 30

resolve multiple property settings, 32

connection acceptor components, 208

Constants component, 35

Consumer Commerce pipeline components

CommerceCommandServlet , 473

PromotionServlet, 482

containers, 6, 51, 57

Content Administration pipeline components

LocaleServlet, 478

PublishingActionServlet, 483

SetCurrentLocation, 485

ValidateURLServlet, 488

VersioningLayerServlet, 489

content distributor, 397

DistributorPool, 402

DistributorReader, 398, 403

DistributorSender, 397, 400, 401

DistributorServer, 397, 403, 404

RemoteServerCache, 403

SQL content repositories, 399

cross-site scripting attacks , 474

currency formats, internationalize, 437

D
DAF Deployment (see deployment)

DAF servlet pipeline

AccessControlServlet, 471

DAFDropletEventServlet, 474

DynamoHandler, 475

DynamoServlet, 475

FileFinderServlet, 476

handle a JSP request, 136

MimeTypeDispatcher, 478

MimeTyperServlet, 479

PageEventTrigger, 479

PathAuthenticationServlet, 480

ProfileRequestServlet, 481

SessionEventTrigger, 484

SessionSaverServlet, 484

TailPipelineServlet, 486

ThreadUserBinderServlet, 487

DAFDropletEventServlet, 474

DAS servlet pipeline

AccessControlServlet, 471

BasicAuthenticationPipelineServlet, 151

DynamoHandler, 475

DynamoServlet, 475

FileFinderServlet, 476

handle a JHTML request, 136

MimeTypeDispatcher, 478

MimeTyperServlet, 479

PageEventTrigger, 479

PathAuthenticationServlet, 480

ProfileRequestServlet, 481

SessionEventTrigger, 484

SessionSaverServlet, 484

ThreadUserBinderServlet, 487

TransactionServlet, 488

das_id_generator database table, 230

data collection, 264

data sources, 265

FormattingFileLoggers, 266

queues, 274

SQL table loggers, 270

summarizers, 274

SummaryItems, 275

data listeners, 265

database schema, 441

messaging tables, 444

security tables, 441

date formats, internationalize, 437

DB2 and SQL JMS configuration, 287, 287

deadlock detection, 24

Index 525

DefaultSiteRuleFilter, 163

demarcation of transactions

declarative, 324

in pages, 325

modes, 324

programmatic, 326

deployment

API, 384

architecture, 378

continue despite errors, 379

DAF.Deployment module, 394

debug, 381

DeploymentManager API, 385

enable distributed, 381

error logging, 381

introduction, 377

JMS messages, 382

number of threads spawned, 379

performance settings, 396

phases, 382

set up, 392

start, 394

switch, 396

thread batch size, 379

transaction batch size, 379

deployment repository

deployment item, 388

deploymentData item, 389

deploymentProgress item, 389

description, 388

failureInfo item, 391

fileMarker item, 391

marker item, 390

repositoryMarker item, 391

DeploymentManager

API, 385

description, 379

description SEO tag, 373

DispatchLogger (see log listeners, DispatchLogger)

disposable class loader (see class loader)

DistributorPool , 402

DistributorReader, 398, 403

DistributorSender, 397, 400, 401

DistributorServer, 397, 403, 404

DMS, 282

(see also JMS, Patch Bay)

architecture, 282

configuration file combination, 298

configuration files, 293, 298, 453

database tables, 444

DOCTYPE and XML file combination, 37

durable subscriptions, 281, 303

SQL JMS, 289

dynamic beans, 59

dynamic types, 65

DynamicBeanInfo, 62

DynamicBeanTyper, 65

DynamicPropertyMapper, 60

getPropertyValue method, 62

multiple property mappers, 61

register, 60

registered classes and interfaces, 65

registered dynamic types, 66

dynamic sitemaps, 368

DynamicBeanInfo, 62

DynamicPropertyMappers, 59

DYNAMO_MODULES, 349

dynamoEnv, 8

DynamoHandler, 475

DynamoHttpServletRequest, 141

access in JSP, 145

access with OriginatingRequest, 142

attribute factories, 143

attributes, 143

register permanent attributes, 143

set methods, 142

DynamoHttpServletResponse

access in JSP, 145

methods, 144

DynamoServlet, 475

dynamosystemresource, 21

E
e-mail

BatchEmailListener, 247

encode for internationalization, 430

send, 246, 248

sender components, 243

set MIME types, 245

SMTPBatchEmail, 247

SMTPEmail, 247

use atg.service.email.EmailEvent, 244

use javax.mail.Message, 244

EmailEvent, 244

EmailListenerQueue, 248

EmailLoggers (see log listeners, EmailLoggers)

EncodingTyper, 417

encryption, 35

entry page, localizing, 434

environment variables

CLASSPATH, 7

DYNAMO_HOME, 7

events, 5, 237

event listeners, 238

event object, 237

event queues, 240

526 Index

event sources, 238, 238

executeQuery operations, 502

F
file combination (see XML file combination)

file.encoding property, 436

FileFinderServlet, 476

FileLoggers (see log listeners, FileLoggers)

files, upload from JSP form, 123

filters, 145

fonts, convert to escaped Unicode, 435

form handlers, 111

methods, 112

scope, 118

subclass, 112

submit handler methods, 114

transactions, 114

formatting file loggers, 266

data fields, configure, 266

example, 269

format strings, 267

log file names, configure, 268

G
getItem operations, 503

global properties files, 33

global-scope components, 25

groups

default, 338

initialize, 338

H
headers, HTTP

send, 139

set, 139

HTTP request handling pipeline, 135

BrowserTyper, 151

components, 471

custom components, 148

examples, 155

filter request data, 136, 145, 154

HttpServletRequest, 136

request processing, 136

HTTP response handling pipeline

filter response data, 145

HttpServletResponse, 137, 139

HttpServletRequest, 136, 137, 137

(see also DynamoHttpServletRequest)

attributes, 138

parameters, 138

request URI, 137

ServletInputStream, 139

HttpServletResponse, 137, 139, 139

(see also DynamoHttpServletResponse)

call ServletOutputStream, 141

send headers, 139

send redirects, 140

set headers, 139

set response code, 139

I
IdGenerator, 226

create string IDs, 228

exceptions, 228

extend, 231

methods, 227

ObfuscatedSQLIdGenerator, 231

SQLIdGenerator implementation, 229

TransientIdGenerator, 231

usage, 227

IdSpace, 226

create, 228

define in XML, 226

use with SQLIdGenerator, 229

Informix and SQL JMS configuration, 287, 287

Initial component, 9

InitialContextEnvironment, 347

initialServices, 9

integration commands, 517

addItem, 504

executing, 517

executing in pages, 519

invoking, 517

removeItem, 504

updateItem, 503

Integration Data repository, 505

cleaning up, 506

Integration Repository, 492

APIs, 497

architecture, 493

command operations, 502

definition files, 496, 509

DTD, 514

examples, 506

operations, 493

persistent cache, 505

queries, 501

setting up, 495

IntegrationRepository, 496, 497

IntegrationRepositoryView, 493

internationalization

character encoding, JHTML files, 417

character encoding, JSP files, 416

character encodings supported, 409

configure servers and locales, 427

convert form data, 421

Index 527

currency formats, 437

date formats, 437

e-mail encoding, 430

EncodingTyper, 417

EncodingTyper component, 410

Japanese converter, 421, 421

Java objects, 410

locale, 409

overview, 407

personalization request locale, 424

properties files, convert to Unicode, 435

RequestLocale component, 410, 422

ResourceBundles, 411

set the ATG server locale, 429

set the JVM locale, 429

SQL repository definition files, 431

third-party software support, 438

translation instructions, 415

IP addresses, 21

ItemLink servlet bean, 359

J
JAF (see JavaBeans Activation Framework)

Java internationalization objects, 410

Java remote method invocation (see remote method

invocation (RMI))

Java source file, compiling, 8

java.security.SecureRandom, 225

java.util.Properties, 6

JavaBeans, 4

(see also Nucleus components, Nucleus component

properties)

dynamic beans (see dynamic beans)

events, 237

serialized, 36

JavaBeans Activation Framework, 245

JavaMail messages, 244

JMS

ATG message conventions , 283

connect to destinations, 301

durable subscriptions to topics, 281

filter creation, 297

filters, 295

JMSType value, 281

Local JMS, 283

Local JMS destinations, 284

message body types, 282

message destinations, 280

message formats, 281

message headers, 281

message source creation, 295

message sources, 294

Patch Bay Message Registry, 307

Patch Bay providers, 313

queues, 280

sink configuration, 302

sink creation, 296

SQL JMS, 284

topics, 280

JSP

localize, 432

localize directories, 434

K
keywords SEO tag, 373

L
LDAP repository security, 341

access privileges, 346

cache data, 350

configure DYNAMO_MODULES, 349

configure groups, 342

configure password hasher, 346

configure users, 342

create groups, 343

create users, 343

create XML definition file, 348

Microsoft Active Directory, 341

Oracle Directory Server, 341

refresh cached data, 350

schedule cache updates, 350

test server connection, 348

live configuration, 28

Local JMS, 283

destinations, 284

local parameters, ATG servlet beans, 99

locale, 475

LocaleServlet, 478

localization

content pages, 432

entry page, 434

file names, 436

JSP directories, 434

JSPs, 432

profile repository, 436

log events, 250

broadcast, 252

log listeners, 250

configure, 253

DispatchLogger, 258

EmailLoggers, 257

FileLoggers, 256

LogEvent sinks, 255

LogListenerQueues, 260

PrintStreamLoggers, 255

RotatingFileLoggers, 256

528 Index

LogEvent sinks, 255

logging

ApplicationLogging interface, 253

broadcast LogEvents, 252

design patterns, 255, 260, 261

levels, 251

loggingDebug, 251

loggingError, 251

loggingInfo, 251

loggingWarning, 251

summarized data, 276

to a database, 270

M
MappingRepositoryItem, 500

MemorySampler, 225

message, 279

(see also JMS)

messaging, 281

(see also DMS, JMS, Patch Bay)

DMS configuration files, 453

DMS database tables, 444

message families, 307

Message Registry, 282

MessageTyper, 309

Nucleus components, 294

Patch Bay, 282, 293

Patch Bay components, 294

ports, 304

SQL-JMS administration interface, 290

MessagingManager component, 293, 298

MethodInstanceFactory, 47

Microsoft Active Directory, 341

configure base common name, 346

configure users and groups, 342

MIME types

add to MimeTyperServlet, 479

e-mail, 245

MimeTypeDispatcher, 478

MimeTyperServlet, 479

add MIME types, 479

Module components, 91

ModuleManager, 91

modules (see application modules)

multisite accessibility, 164

customize active site evaluation , 166

customize redirection , 166

evaluate active site, 166

request redirection, 164

site properties, 164

multisite applications

SEO tagging, 373

sitemap configuration, 370

URL recoding, 361

multisite request processing

associate URL with site, 160

create SiteContext, 167

end site session, 168

manage site context, 167

manage site sessions, 167

rule filters, 160

start site session, 168

URL management, 169

multisite session recovery, 173

CanonicalSessionHostnameServlet, 174

configuration , 180

HTML page templates , 178

POST request handling , 178

with JavaScript, 175

without JavaScript, 174

multisite session sharing, 167, 173

session recovery, 173

multisite URL generation, 191

get production site URL, 193

SiteBaseURLProcessor , 193

sticky site query parameters, 192

URL construction rules, 191

multisite URL management, 169

SiteURLManager, 169

URL strategies, 172

URL transformation rules, 170

multisite URL strategies, 172

context path-based, 173, 184, 184

(see also virtual context roots)

domain-name based, 172

subdomain-based, 172

N
named configuration, 31

Nucleus, 3

API, 58

Spring integration, 68

Nucleus component properties

arrays, 12

arrays of components, 16

Boolean, 10

concatenate settings, 32

configuration directories, 30

define, 4

define read-only, 5

define with getX and setX methods, 4

encrypted, 35

file names in, 20

global settings, 33

IP addresses in, 21

manage file settings, 27

Index 529

names, 10, 10

null value settings, 35

override settings, 32

precedence of settings, 30

read-only, 50

refer to other component properties, 23

refer to other components, 5, 6, 14

resolve multiple settings, 32

ServiceMap, 17

set for request-scope, 26

set for session scope, 26

set from configuration path, 30

types, 11

Nucleus component scopes, 24

form handlers, 118

global, 25

namespace, 25

property object, 25

prototype, 27

redirect requests, 26

request, 26

requestid parameter, 26

session, 25

set $scope property, 25

set in ATG Control Center,

Nucleus components

alias for, 18

constructors, 46

containers, 6, 51, 52, 57

create, 45

debugging property references, 16

define the Java class, 6

dynamic beans (see dynamic beans)

event sources, 50

name resolution, 5, 17, 107

name resolution, dot notation, 17

name resolution, relative names, 6, 16

properties (see Nucleus component properties)

public constructor, 10

scopes (see Nucleus component scopes)

start, 9, 16

null values, set in Nucleus component properties, 35

NullSiteBaseURLProcessor, 194

O
ObfuscatedSQLIdGenerator, 231

object parameters, ATG servlet beans, 101

open parameters

as objects, 105

dependencies, 104

display, 97

processing, 104

set, 98

Oracle Directory Server, 341

configure password hasher, 346

configure users and groups, 342

OriginatingRequest, 142

P
PageEventTrigger, 479

PageFilterUtil, 154

ParameterConstructorInstanceFactory, 46

parameterized constructors, 46

Patch Bay, 282, 293

add JMS providers, 313

configuration, 293

delayed message delivery, 310

failed message redelivery, 311

Message Registry, 307

messaging components, 294

messaging ports, 304

MessagingManager component, 293

Patch Bay definition files (see DMS configuration files)

PathAuthenticationServlet, 480

permanent request attributes, 143

persistent cache (see Integration Data repository)

Persona, 330, 331

polling interval for SQL JMS, 287

PortRegistry, 212

ports

messaging, 304

register, 212

PreviewSiteBaseURLProcessor, 194

PrintStreamLogger (see log listeners, PrintStreamLoggers)

profile group names, localize, 436

profile realms, 202

profile repository, localize, 436

ProfileRequestServlet, 481

ProfileUserAuthority, 331

PromotionServlet, 482

properties, 10

(see also Nucleus component properties)

$ character, 50

$class, 6

$description, 50

properties files, 6

format, 13

property types

complex, 11

simple, 11

PropertyValueDecoder, 35

providerURL, 347

public constructor, 10

PublishingActionServlet, 483

530 Index

Q
queries

executeQuery operation, 502

Integration Repository, 501

queues, 240

appropriate usage, 241

configure, 243

create, 241

DataCollectorQueues, 274

EventQueueGenerator, 241

LogListenerQueues, 260

messaging, 280

R
random numbers, generating, 225

realms, profile, 202

redirect

send, 140

sendLocalRedirect method, 140

sendRedirect method, 140

remote method invocation (RMI), 208

configuration, 211

create an RMI client, 210

create an RMI service, 208

export an RMI service, 210

socket factories, 210

stub and skeleton classes, 209

use SSL, 211

Remote Procedure Calls, 516

APIs, 517

exception handling, 519

RemoteServerCache, 403

RepositoryAccountManager, 331

request (see DynamoHttpServletRequest and

HttpServletRequest)

request handling (see HTTP request handling)

request URI, 137

pathInfo, 137

queryString, 137

servletPath, 137

request-scope components, 26

redirect request, 26

set properties, 26

RequestLocale component, 422, 475

RequestParameterRuleFilter, 161

RequestServerHandlers, 206

RequestServers, 206

configure, 207

connection acceptors, 208

create, 206

handlerCount property, 207

statistics, 208

resource pool, 232

block, 233

blocking time limit, 233

check health, 236

configure, 232

mark as disabled, 236

maximum contents, 233

maximum pending creation attempts, 236

maximum resource checkouts, 233

maximum unused, 233

minimum contents, 233

MonitoredDataSource, 237

nested resource warnings, 233

resource leaks, 235

resourceClassName, 236

subclass ResourcePool, 232

response (see DynamoHttpServletRequest and

HttpServletResponse)

response code, HTTP

send, 139

set, 139

RMI (see remote method invocation (RMI))

RmiServer, 208, 208

(see also remote method invocation (RMI))

use alternative implementation, 212

RotatingFileLoggers (see log listeners, RotatingFileLoggers)

RPCs (see Remote Procedure Calls)

rule filters, 160

custom, 163

DefaultSiteRuleFilter, 163

installed, 161

order of execution, 163

RequestParameterRuleFilter, 161

URLPatternMatchingRuleFilter, 162

S
SampleListeners, 225

Sampler, 222

configure, 224

default configuration, 224

scenario names, localize, 436

Schedulable component

configure, 216

create, 214

ScheduledJob, 215

Scheduler

job ID, 214

Performance Monitor, 219

schedule, 214

schedule tasks, 213

view scheduled jobs, 219

Scheduler component, 213

schedules

calendar, 218

Index 531

relative, 216

scopes (see Nucleus component scopes)

Search Engine Optimization, 357, 358

canonical URLs, 361

CanonicalItemLink servlet bean, 361

encode URL parameters, 356

ItemLink servlet bean, 359

jump servlet, 360

SEO tagging, 373

sitemaps, 362

techniques, 353

URL formats, 355

URL recoding, 353

URL template mappers, 359

URL templates , 354

SecuredContainer, 330

SecuredObject, 330

SecureRandom, 225

security, 329

(see also access control)

access privileges, 332

ACL, 332

AdminUserAuthority, 331

authenticate users, 330, 333

authentication example, 333

cache data, 350

configuration, 330

context, 330

example, 332

extend, 332

identity, 331

modify groups, 338

modify user account, 338

Persona, 330, 331

policy, 330, 332

ProfileUserAuthority, 331

refresh cached data, 350

RepositoryAccountManager, 331

schedule cache updates, 350

secured object, 330

services, 329

StandardSecurityPolicy, 333

user, 331

user authority, 330

user directory, 330

user groups, 340

User object, 330

UserDirectoryLoginUserAuthority, 331

users, 339

XmlAccountManager, 331

security database tables, 441

securityAuthentication, 347

securityCredentials, 348

securityPrincipal, 348

SEO tagging, 373

creating tags, 373

description, 373

keywords, 373

multisite applications, 373

rendering tags on pages, 374

repository, 373

title, 373

serialized JavaBeans, 36

servers, starting non-default, 78

ServiceMaps, 17

Servlet interface, 136

servlet pipeline

BasicAuthenticationPipelineServlet, 151

dispatch servlets, 158

exception handling, 150

HTTP request handling, 135

ServletInputStream, 139

ServletOutputStream, 141

send response codes and headers, 139

session invalidation, 25

session-scope components, 25

session invalidation, 25

set properties, 26

SessionEventTrigger, 484

SessionSaverServlet, 484

SetCurrentLocation, 485

ShutdownService, 222

SingletonSchedulableService, 213

SiteBaseURLProcessor, 193

SiteContext, 167

create, 167

SiteContextPipelineServlet, 159

request redirection, 164

rule filters execution order, 163

SiteContextRuleFilter , 160, 161

sitemaps

configure generators, 364

configure index generators, 369

deployment listener, 372

dynamic, 368

generators, 364

indexes, 363

manually invoke generators, 372

multisite configuration, 370

overview, 363

repository, 364

scheduling generators, 371

Search Engine Optimization , 362

static, 366

submit to search engines, 371

writing , 371

532 Index

SiteRequestProcessor, 168

SiteSession, 167

SiteSessionEndProcessor, 168

SiteSessionManager, 167

end-of-session processing, 168

new session processing, 168

site request processing, 168

SiteSessionStartProcessor , 168

SiteURLManager

, 170

autoAppendStickySiteParams property, 192

collect site URLs, 169

generate URLs from site ID , 193

generate URLs from site IDs, 191

getProductionSiteBaseURL method, 193

map request URL to site, 169

transformation rules file, 170

SMTPBatchEmail, 247

SMTPEmail, 247

SMTPEmailQueue, 248

socket factories in RMI, 210

source file, compiling , 8

Spring integration, 68

make Nucleus components available in Spring, 68

make Spring components available in Nucleus, 68

naming conflicts, 69

SQL content repositories

content distribution, 399

localize definition files, 431

SQL JMS, 284

administration interface, 290

data source, 286

database schema, 286

destinations, 285

destinations, remove, 288

durable subscriptions, 289

durable subscriptions, measure entries, 290

polling interval, 287

queues, measure entries, 290

queues, remove, 288

subscriptions, remove, 288

topics, remove, 288

SQL table loggers, 270

configure, 271

data-types, 274

flush data to the database, 273

transaction size, 273

SQLIdGenerator, 229

configure, 230

database table, 230

IdSpace, 229

SSL

keys and certificates, 212

with RMI, 211

StandardSecurityPolicy, extension, 333

static sitemaps, 366

sticky sitem generating query parameters , 192

submit handler methods, 114

summarizers, 274

example, 275

flush data, 275

flush methods, 278

log SummaryItems, 276

SummaryItems, 275

variables, 277

write method in database, 277

T
tag converters, 119

TailPipelineServlet, 486

targeter names, localize, 436

ThreadUserBinderServlet, 487

title SEO tag, 373

topics, messaging, 280

durable subscriptions, 281

transaction

commit, 321

complete, 321

demarcate, 323

end early, 325, 327

form handlers, 114

resource access, 320

rollback, 321, 322

suspend, 322

Transaction Manager, 318

TransactionServlet, 488

TransientIdGenerator, 231

U
URL management (see multisite URL management)

URL recoding

context paths, 356

multisite applications, 361

Search Engine Optimization, 353

URL strategies (see multisite URL strategies)

URL templates

direct, 354

indirect, 354

Search Engine Optimization, 354

template mappers, 359

URL transformation rules, 170

append operations, 171

operations, 170

prepend operations, 171

replace operations, 171

rules file, 170

Index 533

URLPatternMatchingRuleFilter, 162

properties, 162

user accounts

automatic creation, 338

default, 338, 339

disable automatic creation, 338

initialize, 338

manage, 339

user directory, 330

user groups

manage, 340

UserAuthority

interface, 329

object, 330

UserDirectoryLoginUserAuthority, 331

V
ValidateURLServlet, 488

VersioningLayerServlet, 489

virtual context roots

configure on application servers, 184

configure on IBM WebSphere, 187

configure on Oracle WebLogic, 188

configure welcome files, 190

W
web.xml, 130

writing sitemaps, 371

X
XML definition file, create, 348

XML encoding, 37

XML file combination, 37, 37

id attribute, 44

match tags, 41

root tag, 43

test, 45

xml-combine attributes, 38

XmlAccountManager, 331

534 Index

	ATG Platform Programming Guide
	Table of Contents
	1 Introduction
	2 Nucleus: Organizing JavaBean Components
	Building Applications from JavaBeans
	Using Properties to Connect Components
	Using Events to Connect Components

	Basic Nucleus Operation
	Using Nucleus
	Creating a Nucleus Component
	Starting a Nucleus Component
	Public Constructor
	Property Names
	Property Types
	Properties File Format
	Class versus Component Names
	Specifying Components as Properties
	ServiceMap Properties
	Component Names in Properties Files
	Aliases for Nucleus Components
	Pre-Parsed Component and Parameter Names
	File Names in Properties Files
	IP Addresses in Properties Files
	ATG server References
	dynamosystemresource
	Starting Multiple Components
	Linking Property Values
	Linking Map Properties
	Debugging Nucleus Configuration
	Enabling Deadlock Detection

	Component Scopes
	Global Scope
	Session Tracking
	Multiple Scopes in the Same Namespace
	Request Scope
	Setting Properties of Session and Request-Scoped Components
	Prototype Scope

	Managing Properties Files
	Setting the Configuration Path
	Reading the Configuration Path
	Configuration Directories
	Setting Properties from Multiple Configuration Directories
	Global Properties Files
	Site-Specific Component Properties
	Tracing Component Property Settings
	Setting Properties to Null
	Decoding Encrypted Properties in Nucleus Components
	Loading Serialized Beans
	Checking File Name Case on Windows

	XML File Combination
	XML Encoding Declaration
	DOCTYPE Declaration
	Combining Two Tags
	Controlling Tag Combination
	Recursive Combination
	Root Tag
	id Attribute
	Viewing the Combined File
	Testing XML File Combination

	Writing Nucleus Components
	Public Constructor with No Arguments
	Parameterized Constructors
	ParameterConstructorInstanceFactory
	MethodInstanceFactory
	Properties
	Special $ Properties
	Event Sources
	NameContextBindingListener
	NameContextElement
	NameContext
	NameContextBindingEventSource
	Naming and Nucleus
	ServiceListener
	Service
	ApplicationLogging
	AdminableService
	GenericService
	GenericContext
	Validateable
	Basing a Component on another Component

	Nucleus API
	Dynamic Beans
	Registering Dynamic Beans
	DynamicBeanInfo
	Using DynamicPropertyMappers
	Displaying Information from BeanInfos
	Dynamic Types
	Registered DynamicBeans and Dynamic Types

	Customizing the ATG Dynamo Server Admin Interface
	Creating Administration Servlets
	Formatting Object Values
	ValueFormatter

	Spring Integration
	NucleusResolverUtil
	NucleusPublisher

	3 Developing and Assembling Nucleus-Based Applications
	Developing Applications
	Development Mode and Standalone Mode

	Nucleus-Based Application Structures
	Assembling Applications
	Command Options
	Specifying Configuration Layers on Server Startup
	Including an Existing EAR File
	Including Web Services
	Using a Non-Default ATG Server
	Specifying a Server for a Development-Mode EAR File
	Specifying a Server for a Standalone EAR File
	Including ATG Dynamo Server Admin

	Changing the ATG Dynamo Server Admin Login
	Logging Attempts to Access the Administration Server

	Invoking the Application Assembler Through an Ant Task
	CreateUnpackedEarTask
	PackEarFileTask

	4 Working with Application Modules
	Using ATG Modules
	Creating an Application Module
	Application Module Directory Structure
	Application Module Manifest File
	Including ATG-Web-Module
	Accessing Module File Resources
	Creating an Application Module JAR File

	Adding Modules to the ATG Control Center
	CONFIG.properties File
	Module Component
	ModuleManager Entry

	Launching a Client Application Against Remote Modules
	Synchronization of Client and Server

	5 Creating and Using ATG Servlet Beans
	Creating Custom Servlet Beans
	Simple ATG Servlet Bean Example
	ATG Servlet Beans and Servlets
	Passing Parameters to ATG Servlet Beans
	Displaying Open Parameters in ATG Servlet Beans
	Setting Parameters in ATG Servlet Beans
	Local Parameters
	Separating JSP Code and Java Code
	Object Parameter Values
	Property Parameter Values
	Processing Servlet Beans
	Limitations in Custom Servlet Beans

	Using Custom Servlet Beans with the ATG Control Center
	Parameter Descriptors
	Defining the Component Category
	BeanInfo Example

	Resolving Component Names

	6 Working with Forms and Form Handlers
	Form Handlers and Handler Methods
	Subclassing ATG Form Handlers
	Handler Methods
	Submit Handler Methods
	Transactions in Repository Form Handlers
	Transaction-Aware Methods
	Handler Methods and dsp:setvalue
	Form Handler Scope

	Tag Converters
	Creating Custom Tag Converters
	Attribute Definition Constraints
	Using Custom Tag Converters
	Sample Tag Converter

	File Uploading
	File Upload Component Example

	7 Accessing Nucleus in a Web Application
	Request Processing in a Nucleus-Based Application
	Resources in web.xml
	Running Nucleus
	Starting the Request-Handling Pipeline
	Optional Resources

	Adding Request-Handling Resources to web.xml
	Creating Filters and Servlets
	Filter Example

	8 Request Handling with Servlet Pipelines
	Request Processing
	Servlet Interface
	HttpServletRequest
	HttpServletResponse

	DynamoHttpServletRequest and Response
	DynamoHttpServletRequest
	DynamoHttpServletResponse
	Accessing DynamoHttpServletRequest and DynamoHttpServletResponse

	Filters and PageFilter
	Request-Handling Pipeline Servlets
	Customizing a Request-Handling Pipeline
	Inserting Servlets in the Pipeline
	Using J2EE Servlets and Filters
	Exceptions in Pipeline Servlets
	Authentication
	BrowserTyper
	PageFilterUtil
	Improving Page Compilation Performance
	Servlet Pipeline Examples

	9 Multisite Request Processing
	Site Identification
	Installed Rule Filters
	Custom Rule Filters

	Site Accessibility
	Redirecting Requests
	Redirect Constraints
	Site Accessibility Processing
	Preview Request Handling

	Site Context Management
	Site Session Management
	SiteRequestProcessor Components
	SiteSessionStartProcessor Components
	Session Expiration

	Multisite URL Management
	Site URL Collection
	URL Transformation Rules
	Production Site URL Conventions
	Sharing a Session Across Multiple Domains
	Configuring Virtual Context Root Request Handling
	Absolute URL Generation

	Multisite Data Sharing
	Sharing Nucleus Components
	Sharing non-Nucleus Resources
	Shared Component Proxying

	Profile Realm Context Management
	Profile Realm Context Push and Pop Methods
	Profile Realm pushRealm URL Parameter
	Default Profile Realm Identifier Constant

	10 Core ATG Services
	TCP Request Server
	Defining a RequestServer
	Configuring a RequestServer
	RequestServer Statistics

	RMI Services
	Writing an RMI Service
	RMI Socket Factories
	RMI Over SSL
	Alternative RMI Implementations

	Port Registry
	Scheduler Services
	Scheduling a Task
	Writing a Schedulable Component
	ScheduledJob Thread Methods
	Configuring a Schedulable Component
	Schedule Settings
	Monitoring the Scheduler
	Running the Same Schedulable Service on Multiple Servers

	ShutdownService
	Sampler Services
	Sample Class
	Sampler Class
	Configuring the Sampler
	SampleListeners

	Secure Random Number Generator
	ID Generators
	IdGenerators and IdSpaces
	Using IdGenerators
	SQLIdGenerator
	TransientIdGenerator
	ObfuscatedSQLIdGenerator
	Extending the IdGenerator

	Resource Pools
	Subclassing ResourcePool
	Configuring a Resource Pool
	Using a Resource Pool
	Avoiding Resource Leaks
	Checking the Health of a Resource Pool
	ResourceClassName
	MonitoredDataSource

	Events and Event Listeners
	Event Objects
	Event Listener and Event Source Requirements
	Event Listener Example
	Event Source Example
	Testing the Event System

	Queues
	Candidates for Queuing
	Creating a Queue Class
	Using a Queue Component
	Configuring a Queue Component

	E-mail Senders and Listeners
	EmailEvent
	Creating JavaMail Messages
	Registering Content Types
	Sending E-mail
	Configuring SMTPEmail
	Using BatchEmailListener
	Using EmailListenerQueue

	11 Logging and Data Collection
	ATG Logging
	LogEvents
	LogListeners
	Logging Levels
	Broadcasting LogEvents
	Using ApplicationLogging
	Improving Log Readability
	Using Terse Logging
	Implementing Logging
	LogEvent Sinks
	DispatchLogger
	LogListenerQueue
	Logging Configuration
	Designing Logging Systems

	Logging for Non-GenericService Components
	Logging with Nucleus-instantiated Non-GenericService
	Logging with Non-Nucleus-instantiated Classes

	Introduction to Data Collection
	Data Collection Sources and Events
	Data Listeners
	Compatibility with Logging

	Formatting File Loggers
	Configuring Fields
	Configuring Log File Names
	Formatting Logger Example: the RequestLogger

	Database Loggers
	Data Flushing
	Configuring Transaction Size
	Configuring the Buffer Size
	Using Blocking with a Data Collector Queue
	SQL Data-types

	Data Collector Queues
	Summarizers
	Summarizer Method and Timestamps
	Matching and the groupBy Property
	SummaryItems
	Summarizer Example
	Flushing Data from the Summarizer
	Logging SummaryItems
	Summary Variables
	DBWriteMethod in an SQL Table Summary Logger
	Summarizer Flush Methods

	12 ATG Message System
	Overview of JMS
	JMS Message Producers and Consumers
	JMS Destinations
	JMS Message Formats

	ATG and JMS
	ATG Message Conventions

	Using Local JMS
	Creating Local JMS Destinations

	Using SQL JMS
	Creating and Accessing SQL JMS Destinations

	Administering SQL JMS
	Configuring Databases and Data Sources
	Adjusting the SQL JMS Polling Interval
	Removing SQL JMS Destinations and Subscriptions
	Monitoring Message Buildup
	Using the SQL-JMS Administration Interface

	Overview of Patch Bay
	Patch Bay Manager
	Messaging Components
	Patch Bay Initialization

	Patch Bay API
	Creating Message Sources
	Creating Message Sinks
	Creating Message Filters

	Configuring Patch Bay
	Declaring JMS Providers
	Declaring Message Sources, Sinks, and Filters
	Connecting to Destinations
	Using Messaging Ports
	Using the Message Registry
	Delaying the Delivery of Messages
	Configuring Failed Message Redelivery

	Using Patch Bay with Other JMS Providers

	13 Transaction Management
	Transaction Overview
	Transaction Manager
	Accessing the UserTransaction Interface

	Working with Transactions
	Resource Access and Enlistment
	Transaction Completion
	Transaction Synchronization
	Marking Rollback Only
	Transaction Suspension

	Transaction Demarcation
	Transaction Modes
	Declarative Demarcation
	Demarcation in Pages
	Programmatic Demarcation

	14 Managing Access Control
	Security Services Classes and Interfaces
	User Authority Object
	User Object
	Persona Object
	Access Privileges
	Access Control Lists
	Security Policy Object

	Extending the Security Model
	Extending the Standard Security Policy
	Authenticating a User

	Configuring Access Privileges
	Configuring the Default Login Accounts
	Managing User Accounts
	Managing User Groups and Privileges

	Configuring LDAP Repository Security
	Configure Users and Groups on an LDAP Server
	Configure Base Common Names
	Configure a Password Hasher
	Configure the InitialContextEnvironment Component
	Create an XML Definition File
	Test the LDAP Server Connection
	Configure the DYNAMO_MODULES Variable
	Enable Security Information Caching

	15 Search Engine Optimization
	URL Recoding
	Using URL Templates
	Configuring the ItemLink Servlet Bean
	Configuring the SEO Jump Servlet
	URL Recoding for Multisite Applications

	Canonical URLs
	Creating Canonical URLs

	Sitemaps
	Overview of Sitemaps
	Sitemap Generation Tools
	Configuring Sitemap Generation
	Additional Configuration for Multisite Applications
	Configuring Sitemap Writing
	Invoking Sitemap Generation and Writing

	SEO Tagging
	Creating SEO Tags
	Rendering SEO Tags on Pages

	16 DAF Deployment
	DAF Deployment Architecture
	DeploymentManager
	Deployment Phases

	DAF Deployment API
	atg.deployment.DeploymentManager
	atg.deployment.DeploymentData
	atg.deployment.DeploymentOptions
	atg.deployment.DeploymentProgress
	atg.deployment.DeploymentReporter
	atg.deployment.DeploymentFailure

	Deployment Repository
	deployment
	deploymentProgress
	deploymentData
	marker
	repositoryMarker
	fileMarker
	failureInfo

	Setting Up DAF Deployment
	Setting Up DAF Deployment for Repository Items
	Setting Up DAF Deployment for Files
	Setting Up DAF Deployment for Multiple ATG Servers

	Using DAF Deployment to Deploy to Multiple Sites
	Performing a Deployment
	Performing Switch Deployments

	Configuring DAF Deployment for Performance

	17 Content Distribution
	Content Distribution Operation
	Distributor Commands

	Using Content Distribution with an SQL Content Repository
	Setting Up a Content Distributor System
	DistributorSender
	Running the DistributorSender from a Command Line
	DistributorPool
	Generating a File Name
	RemoteServerCache
	DistributorServer

	18 Internationalizing an ATG Web Site
	Overview
	ResourceBundles
	Locales
	Character Encodings
	EncodingTyper Component
	RequestLocale Component
	Java Internationalization Objects

	Setting Up a Multi-Locale ATG Web Site
	Using ResourceBundles for Internationalization
	Introduction to ResourceBundles
	ResourceBundle Objects
	ResourceBundle Inheritance
	Internationalizing ResourceBundles
	ResourceBundle Translation Instructions

	Setting Character Encoding in JSPs
	Converting Posted Data with a Hidden Dyncharset Tag

	Using the EncodingTyper to Set the Character Encoding
	Introduction to the EncodingTyper
	DefaultEncoding Property
	EncodingMappings Property
	PathPatternPrefixes Property
	Converting Posted Data with the EncodingTyper
	Customizing the EncodingTyper

	Configuring the Request Locale
	RequestLocale Hierarchy
	Configuring RequestLocale Properties
	Additional RequestLocale Properties
	Request Locale in Personalization Module Web Sites
	Allowing Users to Choose a Locale
	Using RequestLocale in an ATG Servlet Bean
	Adding the RequestLocale Property
	HTTPServletRequest Component

	Character Encoding and Locale Configuration Examples
	Setting the Java Virtual Machine Locale
	Configuring the Database Encoding
	Setting the E-mail Encoding
	Internationalizing Content Repositories
	Multiple Repositories
	Single Repository
	Using the EncodingTyper Component with Content Repositories
	Localizing an SQL Content Repository Definition File

	Localizing User Messages
	Creating Locale-Specific Content Pages
	HTML
	oparam
	param
	input
	Content Page Directories

	Designing a Multi-Locale Entry Page
	Converting Properties Files to Escaped Unicode
	Localizing the Profile Repository Definition
	Localizing Profile Group Names, Scenario Names, and Similar Items
	Changing Date and Currency Formats
	Changing Currency Formats

	Using Third-Party Software on an Internationalized Site

	Appendix A. Disposable Class Loader
	Appendix B. DAF Database Schema
	Security Tables
	das_gsa_subscriber
	das_id_generator
	das_secure_id_gen
	das_account
	das_group_assoc
	das_sds

	DMS Tables
	dms_client
	dms_queue
	dms_queue_recv
	dms_queue_entry
	dms_topic
	dms_topic_sub
	dms_topic_entry
	dms_msg
	dms_msg_properties
	dms_limbo
	dms_limbo_msg
	dms_limbo_replyto
	dms_limbo_body
	dms_limbo_props
	dms_limbo_ptypes
	dms_limbo_delay

	Appendix C. DMS Configuration File Tags
	Appendix D. ATG Modules
	Appendix E. Request Handling Pipeline Servlets Reference
	AccessControlServlet
	CachePreventionServlet
	CheckSessionExpiration
	CommerceCommandServlet
	CookieBufferServlet
	DAFDropletEventServlet
	DAFPassportServlet
	DynamoHandler
	DynamoServlet
	ExpiredPasswordServlet
	FileFinderServlet
	LocaleServlet
	MimeTypeDispatcher
	MimeTyperServlet
	PageViewServletTrigger
	PathAuthenticationServlet
	ProfilePropertyServlet
	ProfileRequestServlet
	ProjectServlet
	PromotionServlet
	ProtocolSwitchServlet
	PublishingActionServlet
	PublishingSecurityServlet
	SessionEventTrigger
	SessionSaverServlet
	SiteSessionEventTrigger
	SetCurrentLocation
	SiteContextPipelineServlet
	TailPipelineServlet
	ThreadNamingPipelineServlet
	ThreadUserBinderServlet
	TransactionServlet
	URLArgumentServlet
	ValidateURLServlet
	VersioningLayerServlet

	Appendix F. Integration Framework
	Using the Integration Repository
	Architecture
	Integration Approaches
	Setting Up an Integration Repository
	Integration Repository APIs
	Command Operations
	Mapping
	Persistent Caching
	Configuration Examples
	Integration Repository Definition File

	Remote Procedure Calls
	RPC API Architecture
	Implementing the RPC API
	Executing Commands in Pages

	Index

