Oracle ATG
One Main Street

ORACLE
ATG WEB COMMERCE

Service Center

Version 10.2

Ul Programming Guide

Cambridge, MA 02142

USA

ATG Service Center Ul Programming Guide

Product version: 10.2
Release date: 04-30-13
Document identifier: ServiceCenterProgrammingGuide1403311801

Copyright © 1997, 2013 Oracle and/or its affiliates. All rights reserved.
Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are
protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy,
reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any
means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please
report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government,
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed on the
hardware, and/or documentation, delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the programs, including any operating system, integrated software, any programs installed on the hardware, and/or
documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S.
Government.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended
for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or
hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures
to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in
dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are
trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or
registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.

Portions of this product may contain the following: EditLive Authoring Software Copyright © 2004 Ephox Corporation. All rights reserved.
Some code licensed from RSA Security, Inc. Some portions licensed from IBM, which are available at http://oss.software.ibm.com/icu4j/.
This product may include software developed by the Apache Software Foundation (http://www.apache.org/). Spell checking software from
Wintertree Software Inc. The Sentry Spell Checker Engine © 2000 Wintertree Software Inc. This product also includes software developed
by the following: Free Software Foundation, GNU Operating System, Incanto, JSON.org, JODA.org, The Dojo Foundation, Adobe Systems
Incorporated, Eclipse Foundation and Singular Systems.

The software is based in part on the work of the Independent JPEG Group.

This software or hardware and documentation may provide access to or information on content, products, and services from third parties.
Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party
content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to
your access to or use of third-party content, products, or services.

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website at http://www.oracle.com/pls/
topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support: Oracle customers have access to electronic support through My Oracle Support. For information, visit http://
www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing
impaired.

The MIT License

Copyright (c) 2007 FlexLib Contributors. See: http://code.google.com/p/flexlib/wiki/ProjectContributors

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute,
sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following
conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS
OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Table of Contents

I 12 oY ¥ Tt T o T PPN 1
Y T [1= T PPN 1
Documentation CONVENTIONSutueieiet ittt et ettt et ettt e et a et e et e et e eteneeenenenaenens 1
2{T =T (=To I oYl U o 1=y o1 3PN 1
FrameWork MOUIESuieiti i e e et et ettt e et e et et et e et e et eaeenaaaans 2

2. Service Center User Interface ArChiteCtUIEviiii e e e et e e e e e es 3
SEIVICE CONEET OVEIVIEW ...ttt etee ettt ettt et et ettt et et e e et e e et et e e a et e e eateasaaneeaneeneeneanes 3

User Interface Modules and Filesc.iuiiiiiiiiii e e e 3
T [0 (=T - Tl O] o) 1Tl £ PPN 4
U LT 101 =T s - Vel I Y=Y e o 3 - N 4
CUSTOMIZING SEIVICE CONTET ..euenititii ittt ettt et eeeae 5

| Programming SEIVICE CONTEIuietiiit ettt e ettt et e et et e e e e et e eneneeaanen 7

3. Service Center User Interface Data Modeloiiriiiiiiiiiii i e 9
SCNEMA ElOMENTS .ottt e ettt et ettt aa s 9
Initializing Framework Datac.oeuiuieiniii e 11

Data ComMDINING ... enin e 11
e T[N o O] o) =Tl T PPt 12
Framework Definition ODJECTSi.iuiii et e e e e e et e e e aaaaaans 14
FrameworkDefiNitionc.ouiuiiiii i a e 14
1) (71 =] 11T 1¢ o o TPt 15
L] o] B2 112 V1o o F PP 17
(@011 1Y 1 Y1 4o o PPt 18
PanelStackDefiNitioNeiriiie i e e e as 19
PaNEIDEfiINItION ...veiet i e e 21
Framework Supporting Object Definitionsiiiiiiiii e 23
(@0oTaY (=T 01 B L= 71 0 14T) TN 23
TempPlateDefiNitioNc.ie it 24
Framework Configuration ODJECTSiiinini e 25
Configuration Object Inherited AttribULESoiitiiii e 26
FramewWorKCONTIG e e e e 26
CONEENTCONTIG « ettt e et 26
TempPlateCoNn ig ... cn e e 26
1) (T e 2T T PPN 26
L1 o1 @o o T Pt 27
(@11 (@] o) o [PPN 27
PanelStackCoN ig e e 27
Lo 10 1=] (@071 £ T PPN 27
Framework INStance ObJECtSuu ittt e 28
Instance Object Inherited AttriDULESeuiiiiiieiiii e 28
(@00 01 (= a1 1] = T N 29
L aa] o] 1] g 151 = o L PP 29
T TN [0 1 = T I I PPN 29
1) (71415 = Tt 29
B o]] 2= el PP 29
(@01 T = T = PPt 30
PaNElSTACKINSTANCE . v ettt e 30
o 0= g T3 =T o Y 31
PANEITAIGEL .. ettt e 31
Modifying Framework Definitionsoc.oinini i 32
AddiNg @ DEfiNITIONuniii e 32
Modifying @ Definitioncoeuiiinii e 32

ATG Service Center Ul Programming Guide v

Deleting @ Definitionco.iuinii s 32

4. Service Center Framework APl 33
(@3 F=T o Yo [1a Ve T -] o L3 PN 33
SUDMITEING ACHIONS ... ettt et et ettt et e e et e et e e e e e neenaenenenes 34
Forwarding and Redirecting URLSouinininini ettt 36
II. Developing Pages i ServiCe CONTETttt e ettt et e e e 39
5. 5ervice Center Ul COMPONENTSuuuitetitet et ettt et et eateteeaeatenaeatententeneeneeeeneeerneanennes 41
Working With JavaServer PAgesueu et 41
Tag LIDrariesee e e 41
SEIVIET BEANS ... e 41
Customization Best PraCtiCesouieiuiiiitiiiiiii e 42
Extending Configuration FIlesocininiiiiiiii e 42
Adding JavaScript and CSS Filesouininiii i 42
Using Service Center Debugging Modesc.cuiuiuinininin i 43
Service Center Debugging Modeouiuiiiiiiiiiiii e 43
D0jo DebUGGING MOTEvinitiie et ettt e aeas 43
6. Working with the GIobal CONTEXT Araiuinin ittt e s 45
Global Context Area ArchiteCtUreouiuiii e 45
N Y @0 g = 1 =T 46
NAVITEMS Looeieiti e 47
NAVSEAICN ...t 48
NAVCONTEXT ettt e et ettt ettt et et e ettt e e e e eaanes 48
NaVACTIONCONTAINETS ...uuitiiiti ettt eeaes 49
NN 1YVt o] =Tt (o) Y N 50
NAVACTION .ottt e e et ettt et ettt et aa e 51
Rendering the Global ContexXt ArEaeueuin i 52
Rendering NaVCONTAINEIS ...ttt ettt erte ettt et e e et e et eeteeneeteeneeseenenes 52
Rendering NavSearcho.iiiri e 53
ReNdering NaVCONTEXTE ... eueuinititit ittt ettt e et e e e e enenes 53
Rendering NaVACLIONSenii e et 53
Creating @ NeW NaVACTION ...ttt ettt et e e e e e atenaenaenaen 54
Example: Creating a Options Policy Menu [te@mccvuiiiiiiiiiiiniiii e 54
7. WOTKING Wt PAgES ... ettt ettt ettt e e e e et e eenes 57
Creating @ New Tab Definition e 57
Example: Creating @ NeW Pageuiuiuiiiiie e e e e e 58
Modifying @ Tab ACTION ...uiniei e e et e e e e eanenas 61
Deleting @ Tab Definitionc.ouiuininie it eens 62
Adding a New Panel Definitiono.ouiuuiiiii e 62
Example: Adding Three New Panelsc.ouiiiriiiiiii e 62
Customer Management Panel Configurationcccooiiiiiiiiiiinineee e 64

TroubleshOOtiNg PAgesouiniiii i 65

8. WOrking With FOIMSo e e eene 67

Modifying EXIStING FOIMS ... ouinitit ittt ee e 67
Working with Page Fragmentso.uvuieiirtiiiiitire ettt eieeeaeaens 68
Overriding the Default Page Fragmentcooeiiiiiiiiii e 69
Modifiable Form Configuration Fileso 69

Creating NEW FOMMS ... ettt e e e et ettt et et e e e et e et e e et eneenaeneaeenens 73

Creating @ POP-UP Page ...t et 75
Creating the Caller Pageo.vuiniiii e 76
Creating the JSP file ... e 77
Creating the JaVaSCript ... e e e e e e ea e 80

9. Working With Grids and Tablesouiniiitiii e e et e e e aeeas 81
Modifiable Grids and Tablesoiniiii e 81

vi

ATG Service Center Ul Programming Guide

Customer INformation Pageiuinininiii e 81

Order VIEW Page ... cuniniiie e s 82
Scheduled Order Pageouiuiiii ittt it et e e e e e e enaaaans 82
GIfE/WISH LIST ettt et ettt et ettt et et ae 83
PrOMIOTIONS ..ttt et ettt et 83
Extending Table Configurationso 84
Extending Grid ConfigUIrationc.ouiiiiiiii e e e et e e e e eaenaaaaas 85
Working With Column LaYOUTouineitiititire ettt et et e ee e e e eeteenaeaenens 87
Customizing Column ATtHDULESouieiei e 89
Modifying Column Widths ... 20
Configuring the PageFragment COMPONENTuvuinininiiiieeeeeeterereae e eeeeeenenananas 20
Creating ColumN CONTENT .. . iuiti ittt ettt et ettt et et e e et e et eeneeaenenaenenenens 91
Rendering Column CONTENTuei i ettt e e 92
MOodifying COIUMINSee e eenes 95
P Yo [|1 To = W @] [1]5's] T PPN 95
RemMOVING @ COlUMN L. et e et e e e e enes 95
Reordering COIUMNSin i ettt et e e ne s 95
Changing the Item Detail (HOVEr) Page ..o 97
10. Rendering Pages with NUCIEUS COMPONENTS ...vuuiuiniitiiietiniet et et eeree et eaeeeeeteeneaaenans 99
CUSTOMIZAtION OPLIONS L. uenttiiti ettt ettt et e ettt e e e et et et eeetenenanaenenenaens 100
Y180 o SN QU E (T 4174 4 (o) o SR P 100
ReNAErer COMPONENTS . .outtinit ettt ettt et e et et e et et e et et aeateteeaeeraneasaneneasenanes 101
Targeting CUSTOMIZATIONintitit ittt et et e ettt et et et et eeeeeeenennennens 103
Creating @ ProdUCtSKURENAEIETuint ettt et ena e 105
AVAIlADIE RENEIEIS ... e 106
Customizing the Order Summary Panelo 107
Adding a New Order SUMMary StePouiuiuiuiiiiieii e 108
Editing an Existing Order SUMMary StEPvvuiriiriieiieii i eeees 109

11. Modifying Keyboard ShOrtCULSouieiiiiii e 111
MOdIfying SROMTCULS ...enen e e 11
Defining Global Keyboard SHOrCULSc.iuiniiiiiii e 112
12, CoONFIGUIING MESSAGING .. euvneninininini ettt e e e et et et et et et et e ae e e e e e e e e e en e enenanenenenenanns 113
Rendering Messages in the Message Baro.ouiuiuiiiiiiiii e 13
Server-Side ConfiguIationc.cii i 113
Adding Messages from a Form Handlerooooiiiiiiiiiee e 113

LY =TT Lo TN e o] o T<T o 1= S 113
Specifying @ Message SUMMAIYo.iuiuuiii ittt e e enenens 114
Adding Messages from JavaSCriptc.eu i 114
Implementing Client-Side Validationccouiiiiiiiiiii e 115
Implementing Client-Side Validation with DSP Tagsccvuviiiiiiiininiiiinniienineenenes 115
Available Client-Side Validation Widgetscccoiiiiiiiiiiiiiiee e, 115
Preventing the Form from Submittingcoooiiiiiiii e 116
Conditional Validationc.o.ouiiiiiiii e 116
Conditional REQUIFEMENTS ...vuuiuinttiii ettt ien e eraeeenens 117
Custom Validation CoNditionsouiuiuiuiniiiiii e 117
Additional Field Validationo 117

L o T | I e g0 o1 1= Y] o PP 119
2 =T B I o - 1 = PPN 121
ATG Service Common UL Tag Libraryo.ououiiiiiiiie e 121
ATG Service Framework Bean Tag Libraryc.co.ouiuiiiiiii e 124
ATG Service Framework Ul Tag Librarycocueueninininiiiii e 135
Commerce Service Center Tag LIbrary ...o.o.eee oo 142

ATG Service Center Ul Programming Guide vii

viii ATG Service Center Ul Programming Guide

1 Introduction

Welcome to the Service Center Ul Programming Guide. This document provides information on the
administration and customization of the Service Center Ul.

Audience

This manual is intended for administrators, programmers and page developers who are responsible for the
customization and modification of the default Service Center Ul. It assumes that you have a working knowledge
of programming techniques, as well as Java, XML and XSD.

Documentation Conventions

The following conventions are used in this manual:
+ Installation Directory

<ATGLOdi r >—the directory where you installed ATG 10.2. For example, the default location for UNIX
installations is / ATG ATGL0. 2.

* Menu Navigation

The “ > “ (greater than) symbol indicates menu choices. For example, “File > Save” means you should select
the Save option on the File menu.

Related Documents

Document Description

ATG Commerce Service Center Installation and ~ Describes how to configure and administer the Commerce
Programming Guide Service Center application.

1 Introduction

Document Description

ATG Ticketing User Guide Describes the ticketing components and configuration for
Service Center.

The following manuals provide additional reference information:

Document Description
ATG Content Administration Programming Describes how to set up and customize ATG Content
Guide Administration and its browser-based user interface, the

Business Control Center Home page. Also describes how to
deploy content to a production Web site. Intended for system
administrators, developers, and page developers.

ATG Page Developer's Guide Describes how to customize and work with Nucleus
components and JSP pages.

ATG Platform Programming Guide Presents a detailed description of Nucleus programming
concepts for developers and other advanced users. Includes
examples and reference information about developing
applications

Framework Modules

The following modaules exist for the Service Center Ul:

<ATGLOdi r >/ Ser vi ce/ Fr amewor k/ Agent
<ATGLOdi r >/ Servi ce/ Agent
<ATGL0di r >/ DCS- CSR/ DCS- CSR

<ATGLOdi r >/ Servi ce- Ul / Fr amewor k/ Agent
<ATGLOdi r >/ Ser vi ce- Ul / Agent
<ATGLOdi r >/ DCS- CSR- Ul / DCS- CSR- Ul

2 1 Introduction

2 Service Center User Interface
Architecture

ATG applications use Service Center to display a graphical interface that enables agents to provide customer
support. The following section provides an overview of the Service Center Ul structures and architecture.

Service Center Overview

Service Center is a Ul console that agents use when working with customers. The functionality of the console is
determined by the applications that are installed in your environment. The following applications use, work or
are displayed within Service Center:

+ Oracle ATG Web Commerce Service Center — allows agents to assist customers with purchases from a
Commerce environment. Information is presented on both customers and orders, as well as catalogs, price
lists and promotions. For additional information, refer to the ATG Commerce Service Center Installation and
Programming Guide

+ ATG Ticketing — allows agents to create, work with, and track work that is performed for Commerce Service
Center. Allows supervisors to monitor and manage escalations, as well as to assign work. For additional
information, refer to the ATG Ticketing User Guide

+ Oracle ATG Web Commerce Search - allows agents to search for information in Commerce Service
Center. Search allows administrators to create projects that index, track and search for specific data.
While this application does not provide a specific Ul, it integrates with Service Center’s core code to
provide customization of search criteria. For additional information, refer to the ATG Search Installation and
Configuration Guide

User Interface Modules and Files
The files for the Service Center Ul are stored within application Ul modules:
* DCS- CSR- Ul - Oracle ATG Web Commerce Service Center

+ Service- U -The Service-Ul module contains the Ser vi ce- Ul . Fr anewor k. Agent module, which contains
the Ul for the Service Center

These modules contain the JSPs, JavaScript, CSS, images, navigational configuration files, as well as framework
definition XML files.

2 Service Center User Interface Architecture 3

The framework definition XML files, which exist in various configuration layers, are combined into a single XML
file. For information on data binding and xm - combi ne, refer to the ATG Platform Programming Guide. The
combined XML file is unmarshalled into at g. svc. f r amewor k. r eposi tory.

beans. Fr anewor kQbj ect servlet beans. Detailed information on framework data and how to customize the
XML files can be found in the Service Center User Interface Data Model (page 9) section.

The navigational configuration files define the global context area, which provides the header navigation seen
on the top of the Service Center screen. Refer to the Working with the Global Context Area (page 45) section
for further information.

User Interface Objects
The Service Center Ul is defined by specifying the following components:
+ Framework - The master container for navigation, layout and look-and-feel
+ Skin - Defines the look-and-feel
+ Tab - Provides the top-level navigation
+ Cell - A basic layout component
+ Panel Stack — Defines an ordered content container
» Panel - A basic content component

The framework object is the container for everything in the Ul and contains skin objects for defining look-and-
feel as well as layout templates and tab objects for top-level navigation. Each tab object defines the layout cell
objects that are required, for example, two cells arranged as vertical columns. Tab objects also define panel stack
objects that should be displayed with the navigational item assigned to specific cell objects, for example left-
column panels and right-column panels. The panel stack objects contain panel objects, which are the most basic
content unit.

Note: Tab objects do not implement a physical tab Ul element.

The Service Framework data model also uses the following object types that can be referenced by other
framework objects:

+ Content - Provides static content definition such as CSS, JavaScript, and HTML
+ Template - Provides the JSP layout definition
The framework objects can be classified into three tiers:

+ Definition Objects — Defines the initial or default state for the framework. Definition objects are defined with
an XML schema. Refer to the Framework Definition Objects (page 14) section

+ Configuration Objects — Defines the state of the framework for a particular user. Refer to the Framework
Configuration Objects (page 25) section

+ Instance Objects — Holds the live or transient state of the framework for a browser window. Refer to the
Framework Instance Objects (page 28) section

User Interface Sections

The Service Center Ul is partitioned by a movable divider into three separate sections:

4 2 Service Center User Interface Architecture

+ The global context area - A tab object that defines navigational items that organize application features. Refer
to the Working with the Global Context Area (page 45) section for further information

+ The workspace area - This area is defined by a cell object that contains panel stacks and panel objects that
hold all of the rendered content.

+ The utilities area - This section is also identified by a cell and contains utilities panel stacks and panels that
provide additional functionality or navigation, depending on the application context

Customizing Service Center

You can customize the Ul for Service Center in a number of ways, including modifying Ul components, changing
form and Ul functions, and developing new pages. To that end, this document is divided into two parts:

+ Part|, “Programming Service Center” (page 7) is designed for those who build and develop applications
for Service Center and the applications that use Service Center

« Partll, “Developing Pages in Service Center” (page 39) is a reference for those who create front-end Uls for
agents

2 Service Center User Interface Architecture 5

2 Service Center User Interface Architecture

Part . Programming Service Center

The following section provides information to users who perform programming tasks such as building and deploying
dynamic, personalized applications for the Web. This section also discusses how to assemble applications out of component
beans (based on standard ATG classes or custom Java classes) and link them together through configuration files.

Service Center developers create servlets that extend Web applications using a component-based methodology.
Additionally, they create JSPs, which are an extension of the Java Servlet interface, and extend the standard JSP library using
either JSTL or DSP tags.

Using the framework components, schemas and XML configuration files, developers can modify the default Service Center
functionality.

This section contains the following:
Service Center User Interface Data Model (page 9)

Service Center Framework API (page 33)

3 Service Center User Interface Data
Model

The framework data for Service Center is contained in XML files that are located in various configuration layers.
When an ATG server instance is started, the XML instance files associated with the modules or applications
installed in your environment are combined into a single XML file. Using XML data binding, the combined XML
file is converted into at g. svc. f ramewor k. reposi tory.

beans. Fr anewor kObj ect servlet bean instances.

The/ Servi ce/ Framewor k/ | i b/ cl asses/ at g/ xsds/ Fr amewor kDat aSpeci fi cati on. xsd file defines
the framework data structure. It is also used to validate and parse XML instance files. The rules that are used to
combine the XML instance files are defined in the Fr amewor kDat aSpeci fi cati on. xsd.

comnbi ner Cust oni zer . xn file. Using these matching rules, the combiner reviews the XML files, locates
matches and then combines the matched elements. Refer to Appendix A, The XML Combiner Script (page 119)
for the framework definition object’s combiner customizer rules.

For detailed information on data binding through xni - conbi ne, refer to the ATG Platform Programming Guide.

Schema Elements

The Fr amewor kDat aSpeci fi cati on. xsd XML schema, which defines the data structures within the Ul,
contains the following objects:

« framewor k-t enpl at e — Root element for all framework objects

« framewor k- obj ect - Base class that contains attributes that are shared by all framework objects
« framewor k- defini ti on - Defines the initial state of the object

+ ski n-defini ti on - Defines the look and feel of the application

+ tab-definition-Defines navigation, page structure and panel stacks

+ cel | -definition-Represents the basic layout within a page

+ panel - st ack- defi ni ti on — Contains an ordered collection of panel identifiers

« panel - defi ni ti on - Defines a rectangular region of the page with content

« content-definition-Asupporting object that allows you to link static content to framework objects

3 Service Center User Interface Data Model

+ tenpl at e-defi ni ti on - A supporting object that defines templates for objects

For detailed information on each of these objects, refer to the Framework Definition Objects (page 14)

section.

Previous versions of Service Center stored framework data in a repository. Framework objects and data are now
stored in XML files. Because of this, the map and i d entry data types are reformatted using an XML adapter:

« map- ent ry — Contains keys and value properties that are used for the map objects. The HashMapAdapt er is
used to convert lists of map- ent r y objects from and into Map objects

+ id-entry - Contains an ID and priority properties that are used for the Li st St ri ng ID objects. The
I dEnt ryLi st Adapt er is used to convert lists of i d- ent ry objects from and into a Li st Stri ng. The
priority property is used to hold the priority value of the i d- ent ry objects. Based on this priority, the i d-
ent ry objects are sorted in ascending order

The following diagram shows all of the framework-objects:

tabbed-ym

Conbint-open-ym
allora-content-Igghe-ym
b ol
abwrys-tabbad-yn

allow-tabibing-yn
CunmEnd-prandskid
mab-scrollindax
parg-iem-court
panel-tite-styls

acoess-right
tabbed-panel-ids

frameworkObject
L]
app-id
enabdad-ym
rarme-key
object-type
description-key
Innage-url
rescurce-bundle
defaul-Tramewsork-id
contents-id
lemplateits
option-names
call-dafinition template-dofinition framework-definition skin-definition tab-dofinition
call-id template-id framework-id wkineid rab-id
cll-Openyn url curnent-tab-id tishe-key
i right ather-comext skin-igs action-id
tabrids rn-sleps-kd
wisible-ym
Becess-right
content-definition | | panal-stack-definition panel-definition panel-siack-assgnments
curreni-panel-stacks
conTtmngicl parel-siack-k panelid paned-stack-crdes
Ty haacer - call-assgnments
by emor-paned-id other-conbaxd
url panel-titlebar-tabbed-styla on-load
urkyn parsl-tilebar-uniabbed-style | | on-unhosd
other-coniexd parel-background-tab-style Tl e iy
tide-kay RN
takr-affiraty-ym witsibde-yr
panal-ids whacr-Lithe-
parsl-Cpan-ym
ko praandl-1ogghe- yn
aveatilatleym

Framework Schema Diagram

10

3 Service Center User Interface Data Model

Initializing Framework Data

When an ATG server instance is started, the framework data that is stored in XML files is unmarshalled for
conversion. The unmarshalling process first combines the XML framework object definitions using the xm -
conbi ne XML attribute. For detailed information on xn - conbi ne and data binding, refer to the ATG Platform
Programming Guide.

Once the XML files are combined, the data is then unmarshalled. The unmarshalled data is available as a
f ramewor k- t enpl at e, which is the root element for all framework objects and is used to access all framework
and other related elements.

When the data is unmarshalled, the Obj ect Fact or y class creates various instances of framework objects. The
following components are used to catalog framework object servlet bean instances in a map, and provide a
finder method to obtain framework definition objects:

+ The Fr amewor kHoneDef i ni t i onXM_Hone objects such as at g. svc. f r anewor k.
xm . Cel | Defi ni ti onXM_Hone or Cont ent Def i nti onXM_Hone contain methods that find framework
objects based on application requirements. These are known as finder methods. In the following example,
framework object servlet bean instances are cataloged into a cacheMap property. The key value pairs are
created and initialized based upon the application’s requirements. The finder methods then access the data
from the cacheMap property:

public class Framewor kDefiniti onXM_.Hone ext ends
_Framewor kDef i ni ti onHonme_Beanl npl

i mpl ements Framewor kQoj ectInitializer {
protected Map nCacheMap = new HashMap();

+ Servi ceFr anewor kXM_Hones holds references to the Fr anewor kHomeDef i ni t i onXM.Home objects home
definition. The Fr anmewor kDef i ni ti onHome. pr operti es file contains the Fr amewor kDef i nti onXM_Hone
instance. For example:

$cl ass=at g. svc. f ranewor k. r eposi t ory. beans. Ser vi ceFr amewor kXM_Hones
$scope=gl obal

panel St ackDefi ni ti onHone=/ at g/ svc/ f ranewor k/ xm / Panel St ackDef i ni ti onHonme
panel Defi ni ti onHome=/ at g/ svc/ f ramewor k/ xm / Panel Def i ni ti onHore

f ramewor kDef i ni ti onHome=/ at g/ svc/ f ramewor k/ xm / Fr amewor kDef i ni ti onHone
cont ent Defi ni ti onHonme=/ at g/ svc/ f ramewor k/ xm / Cont ent Def i ni ti onHome
tabDefi ni ti onHone=/ at g/ svc/ f ranewor k/ xm / TabDef i ni ti onHone

cel | Definiti onHome=/ at g/ svc/ framewor k/ xm / Cel | Defi ni ti onHone

ski nDef i ni ti onHome=/ at g/ svc/ f ramewor k/ xm / Ski nDef i ni ti onHome

t enpl at eDef i ni ti onHome=/ at g/ svc/ f ramewor k/ xm / Tenpl at eDef i ni ti onHone

f ramewor kXM_Manager =/ at g/ svc/ f r amewor k/ xm / Fr amewor kXM_Manager

+ The Fr amewor kXM_Manager contains code that handles framework objects, sets up cacheMap initializers,
sets up the JAXB context paths, initializes and adds base map keys for framework objects

Data Combining
The Fr amewor kDat aSpeci fi cati on. xsd. conbi ner Cust onmi zer. xmi file sets up rules to combine XML files.

The framework definition tags, such as f r anewor k- def i ni ti on ort enpl at e- def i ni ti on, are matched
using the i d sub-tag. The map- ent r y tag is matched using the key sub-tag.

Refer to the Appendix A, The XML Combiner Script (page 119) for details on the rules used for data combining.

3 Service Center User Interface Data Model 1

Framework Objects

The Service Center Ul is defined using the following objects. The data structure is defined by the
Fr anewor kDat aSpeci fi cati on. xsd XML schema, with data files stored in corresponding XML files.

The Fr amewor kbj ect base class contains attributes that are shared by all framework objects via an inheritance
relationship. The Fr amewor kQbj ect shared attributes can be organized into four groups:

« Indexing attributes for queries and database housekeeping:

* app-id
cid

* object-type

« Naming attributes for strings and images:

» description-key
* i mage-ul
* nane- key

* resource-bundl e

- State attributes for flags and other state data:

+ default

* enabl ed-yn

« Object attributes for integration to other objects in the system:

» content-id
* option-nanes

* tenplate-id

The attributes of the Fr anewor kQbj ect are:

Attribute Type Description
id string Provides a unique ID.
app-id string Identifier that partitions objects by application.
The following value can be used:
wor kspace=Service Center
enabl ed-yn boolean The enabled flag provides a quick way to turn the object on
or off in the Ul without removing it. Value ist rue or f al se.
name- key string Resource bundle key for providing an object name in

administration tools.

12

3 Service Center User Interface Data Model

Attribute Type Description
obj ect -type string Object sub-class name fori t em descri pt or inheritance.
descri pti on- key string Resource bundle key for providing an object description in
administration tools.
i mage-url string Path to object image graphic in administration tools. The
i mage- ur | allows a graphic to represent the object.
resour ce- bundl e string Resource bundle identifier for object resources. The resource
bundle identifier allows any resource bundle on the class
path to be used for object string resources, if not using the
default resource bundle.
def aul t - f r amewor k- string Second object that contains default values for the current
ids object. The default attribute defines a second object that
contains default values. This supports functionality to restore
defaults.
content-ids contains Identifies static content for the object, including JavaScript,
map-entry CSS or HTML, by a user-friendly local key.
elements
tenpl ate-ids contains Identifies JSP page layout templates for the object mapped
map-entry to a user-friendly local key.
elements
opt i on- nanme contains Lists segmented option names for the object mapped to a
map-entry user-friendly local key.
elements

The following extension methods are shared by all framework objects:

Returns Method Description

Map get-contents Returns a map of all cont ent - def i ni ti on objects assigned to
the framework object keyed to the logical content identifier.

Map get-tenpl ates Returns a map of all t enpl at e- def i ni ti on objects assigned to
the framework object keyed to the logical template identifier.

Map get - f ramewor k- obj ect s Utility method that returns a map of framework objects by item

type.

Arguments:i nt plteniType

3 Service Center User Interface Data Model

13

Framework Definition Objects

Framework definition objects define the initial state of the object.

FrameworkDefinition

The f r amewor k- def i ni ti on object is a container object for navigation, layout, and look-and-feel for the
entire Ul. The f r amewor k- def i ni ti on object contains skins and tabs. Skins contain configurable look-and-feel
and template definitions for the Ul layout. Tabs define the top-level navigation for the application.

The attributes of the f r anewor k- def i ni t i on object, in addition to the attributes inherited from the
Fr amewor kQbj ect base class, are:

Attribute Description

framework-id Logical identifier that other objects use to refer to this object. This is exposed to other
objects and to the code, and is the primary external way to refer to the object.

current-tab-id The logical identifier for the currently selected tab.

skin-id Ordered list of the look-and-feel skins used by the framework that is mapped to a user-
friendly local key.

tab-id Defines the order of the application tabs.

The following are extension methods of the f r anewor k- def i ni ti on object:

Returns Method Description

List get Skin Returns a list of all ski n- def i ni t i on objects assigned to
the f r amewor k- def i ni ti on.

List get Tab Returns a list of all t ab- def i ni ti on objects assigned to the
f ramewor k- definition.

List get Fr amewor kDef i ni ti on Utility method that returns a list of framework definitions by
it emtype.

Arguments:i nt pltenType

The following is an example of a f r amewor k- def i ni ti on from the ser vi ceFr amewor k. xni file:

<f ramewor k- definition>
<i d>WsAgent Fr amewor k</i d>
<app-i d>wor kspace</ app-i d>

14 3 Service Center User Interface Data Model

<enabl ed- yn>t r ue</ enabl ed- yn>
<obj ect - t ype>Fr anmewor kDef i ni ti on</ obj ect -t ype>

</ franmewor k- defi ni ti on>

The f r amewor k- def i ni ti on also identifies the skin IDs used within the framework. For example, the skins
used in this framework definition object are the ht m Ski n and the ori gi nal Ski n.Thepri ority sets the skin
priority in the layout:

<ski n-ids>
<id-entry>
<i d>ht m Ski n</i d>
<priority>100</priority>
</id-entry>
<id-entry>
<i d>ori gi nal Ski n</id>
<priority>200</priority>
</id-entry>
</ skin-ids>

The f r amewor k- def i ni ti on identifies the tab IDs used within the framework. The pri ori t y property sets the
tab priority, for example:

<t ab-ids>
<id-entry>
<i d>br owseTab</i d>
<priority>100</priority>
</id-entry>
<id-entry>
<i d>sear chTab</i d>
<priority>200</priority>
</id-entry>
<t ab-ids>

SkinDefinition

The ski n- def i ni ti on object contains and provides a way to package the look-and-feel definitions available to
the application.

The ski n- def i ni ti on object, in addition to the attributes inherited from the Fr amewor kObj ect base class,
contains the following attribute:

Attribute Description

skin-id Logical identifier that other objects use to refer to this object, which is exposed to other
objects and to the code. This is the primary external way to refer to the object.

The extension method of the Ski nDef i ni t i onHone interface is:

3 Service Center User Interface Data Model 15

Returns Method Description

SkinDefinition | findByUserSegnent Returns the Ski nDef i ni ti on with the specified
AndSki nl d identifier based on the segment of the current user. If
the current user does not have a segment or no object
is found for the current segment, a default object is
returned based on skin identifier only. The appl d
indicates the framework application in which to look for
the object.

Arguments: String appl d, String ski nl d

The following is an example of a simple tab ski n- def i ni ti on:

<ski n-definition>
<i d>MySi npl eTabsSki n</i d>
<app-i d>wor kspace</ app-i d>
<enabl ed- yn>t r ue</ enabl ed- yn>
<nane- key>nySi npl eTabsSki n. nane</ nane- key>
<obj ect -t ype>Ski nDefi ni ti on</ obj ect -t ype>
<descri pti on- key>nySi npl eTabsSki n. descri pti on</ descri pti on- key>
<image-url>../../image/icons/ my_skin_tabs.gif</imge-url>
<content-ids>
<map-entry>
<key>styl e</ key>
<val ue>MySki nSi npl eTabsCSS</ val ue>
</ map-entry>
<map-entry>
<key>j avaScri pt </ key>
<val ue>MySki nSi npl eTabsJS</ val ue>
</ map-entry>
</content-ids>
<tenpl ate-i ds>
<map-entry>
<key>error Tenpl at e</ key>
<val ue>error Panel </ val ue>
</ map-entry>
<map-entry>
<key>panel Tenpl at e</ key>
<val ue>si npl eTabsPanel </ val ue>
</ map-entry>
<map-entry>
<key>| ayout Tenpl at e</ key>
<val ue>si npl eTabsLayout </ val ue>
</ map-entry>
</tenpl ate-i ds>
<opti on- nanes>
<map-entry>
<key>nmyOpti onl</ key>
<val ue>Ski nSi npl eTabsShowLogo</ val ue>
</ map-entry>
</ opti on- names>
<ski n-i d>nySi npl eTabsSki n</ ski n-i d>
</ ski n-definition>

16

3 Service Center User Interface Data Model

TabDefinition

Thet ab- def i ni ti on object has multiple functions, which are related to the overall purpose of dividing the
application into large functional areas:

- Define top-level navigation between functional areas

+ Specify page structure using layout cells and templates

+ Define panel stacks containing related content groupings

The attributes of the t ab- def i ni t i on object, in addition to the attributes inherited from the
Fr anewor kObj ect base class, are described below:

Attribute Description

tab-id Logical identifier that other objects use to refer to this object, which is
exposed to other objects and to the code. This is the primary external way
to refer to the object.

title-key Resource bundle key for the tab label.

action-id The application-interpreted action URL or JavaScript function that is

executed when the user selects an object on the tab.

next-steps-id

The identifier of the default next steps menu that is displayed with the tab.

vi si bl e-yn

The vi si bl eYn flag determines whether an enabled tab is rendered or
hidden.

access-right

panel - st ack- assi gnnment s

The access right that defines the security user role required to view the tab.

A map that assigns panel - st ack- i ds strings to cel | -i d strings. The
panel stack assignments indicate the cells where each panel stack is
displayed. Contains the reverse mapping of the cel | - assi gnnent s map.

current - panel - st acks

The listing of the identifiers of the panel stacks currently being displayed on
the tab. The panel - st ack- assi gnment s attribute indicates which cell the
panel stack populates within the page layout.

panel - st ack- or der

cel | -assi gnments

The list of all panel stacks for the tab in rendering order. This supports panel
stacks that must be rendered in a specific order.

Indicates the initial panel stack that is displayed in each cell. Contains the
reverse mapping of the panel - st ack- assi gnnent s map.

The extension method of the TabDef i ni t i onHone interface is:

3 Service Center User Interface Data Model

17

Returns Method Description

TabDefi nition fi ndByUser Segnment AndTabl d Returns the TabDef i ni ti on with the specified
identifier based on the segment of the current
user. If the current user does not have a segment
or no object is found for the current segment, a
default object is returned based on tab identifier
only. The appl d indicates the framework
application in which to look for the object.

Arguments: String appl d, String t abl d

The following is an example of at ab- def i ni ti on that defines a document tab layout:

<t ab-definition>
<i d>MyDocunent TabDefi ni ti on</id>
<app-i d>wor kspace</ app-i d>
<enabl ed- yn>t r ue</ enabl ed- yn>
<nane- key>nyDocunent Tab. nane</ nane- key>
<obj ect -t ype>TabDefi ni ti on</ obj ect -t ype>
<descri pti on- key>nyDocunent Tab. descri pti on</ descri pti on- key>
<i mage- url >/ i mage/ nyDocunent Tabdef aul t. gi f </i mage-url >
<t ab-i d>myDocunent Tab</t ab-i d>
<titl e-key>nyDocunent Tab. | abel </titl e-key>
<action-id>/ main.jsp?t=docunent Tab</action-id>
<vi si bl e-yn>f al se</vi si bl e-yn>
<access-right ></access-ri ght >
<panel - st ack- assi gnnment s>
<map-entry>
<key>document Panel s</ key>
<val ue>cent er Col utm</ val ue>
</ map-entry>
</ panel - st ack- assi gnment s>
<cel | - assi gnnment s>
<map-entry>
<key>cent er Col utm</ key>
<val ue>docunent Panel s</ val ue>
</ map-entry>
</ cel | - assi gnnent s>
</tab-definition>

CellDefinition

Thecel | -definition objectrepresents the basic layout unit within the page structure. The cel | -
defi ni ti on can refer to a DOM element or to another identifier on the page that contains a panel stack.

The attributes of the cel | - def i ni ti on object, in addition to the attributes inherited from the
Fr anmewor kQbj ect base class, are:

18 3 Service Center User Interface Data Model

Attribute

cell-id

cel | -open-yn

Description

Logical identifier that other objects use to refer to this object that is exposed to other
objects and to the code. This is the primary external way to refer to the object.

The cel | - open- yn flag determines whether a cell is toggled open or closed. Used in

Service Center only.

access-ri ght

The access right that defines the security user role required to view the cell.

The extension method of the Cel | Def i ni t i onHone interface is:

Returns

Method

Description

Cel | Definition

fi ndByUser Segnent
AndCel I 1 d

Returns the Cel | Def i ni ti on with the specified identifier
based on the segment of the current user. If the current
user does not have a segment or no object is found for
the current segment, a default object is returned based

on cell identifier only. The appl d indicates the framework
application in which to look for the object.

Arguments: String appl d, Stringcel | I d

The following is an example of the acel | - defi ni ti on:

<cel |l -definition>

<i d>WsCont ent Cel | Defi nition</id>
<app-i d>wor kspace</ app-i d>

<enabl ed- yn>t r ue</ enabl ed- yn>
<obj ect-type>Cel | Defini ti on</obj ect-type>
<cel | -i d>cont ent Col utm</cel | -i d>
<cel | -open-yn>true</cel | - open-yn>
<access-ri ght >cont ent Col uim</ access-ri ght >

</cell-definition>

PanelStackDefinition

The panel - st ack- def i ni ti on object contains an ordered collection of panel identifiers. The panel - st ack-
def i ni ti on object is assigned to a cell that corresponds to a DOM element on the page. The cell defines the
position of the panel - st ack- def i ni ti on object on the page.

The attributes of the panel - st ack- def i ni ti on object, in addition to the attributes inherited from the
Fr anewor kObj ect base class, are described below:

3 Service Center User Interface Data Model

19

Attribute

panel -stack-id

title-key

Description

Logical identifier that other objects use to refer to this object and is exposed to
other objects and code. This is the primary external way to refer to the object.

Resource bundle key for the label that is associated with the panel stack.

tab-affinity-yn

This flag indicates if the panel stack is associated with a particular tab (t r ue) or if
it can be rendered under any tab, as in the case of user preferences (f al se). If the
flag is true and this was the last panel - st ack viewed under a tab, when the user
navigates back to that tab, the panel stack will be rendered.

panel -id

The ordered collection of panel identifiers.

The extension method of the Panel - st ack- def i ni ti on objectis:

Returns Method

Description

List get Panel s

Returns a list of all panel - def i ni ti on objects assigned to the panel -
st ack-definition.

The extension method of the Panel St ackDef i ni ti onHome interface is:

Returns

Panel St ackDefi nition

Method Description
fi ndByUser Segnent Returns the Panel St ackDef i ni ti on with the
AndPanel St ackl d specified identifier based on the segment of the

current user. If the current user does not have
a segment or no object is found for the current
segment, a default object is returned based on
panel stack identifier only. The appl d indicates
the framework application in which to look for
the object.

Arguments: String appl d, String panel St ackl d

The following is an example of a panel - st ack- defi ni ti on:

<panel - st ack-definiti on>
<i d>MyHel pPanel St ack</i d>
<app-i d>wor kspace</ app-i d>
<enabl ed- yn>t r ue</ enabl ed- yn>
<nane- key>hel pPanel s. nane</ nane- key>
<obj ect -t ype>Panel St ackDefi ni ti on</ obj ect-type>
<descri pti on- key>hel pPanel s. descri pti on</ descri pti on-key>
<i mage-url >/ i mage/ defaul t. gi f</i mage-url >

20

3 Service Center User Interface Data Model

<panel - st ack- i d>hel pPanel s</ panel - st ack-i d>
<header >cont ent Header </ header >
<error-panel -i d>errorPanel </ error-panel -id>
<title-key>hel pPanel s. | abel </title-key>
<tab-affinity-yn>true</tab-affinity-yn>
<panel -i ds>
<id-entry>
<i d>MyEr r or Panel </ i d>
<priority>100</priority>
</id-entry>
</ panel -i ds>
</ panel - st ack-definiti on>

PanelDefinition

The panel - def i ni ti on object is the basic content unit for the application. The panel - def i ni ti on defines a
rectangular region of the page with related content referenced by an included JSP content template.

The attributes of the panel - def i ni ti on object, in addition to the attributes inherited from the

Fr anewor kQbj ect base class, are:

Attribute

panel -id

content-url

Description

Logical identifier that other objects use to refer to this object, which is
exposed to other objects and to the code. It is the primary external way to
refer to the object.

Use the t enpl at e- i ds mapping on the Fr anewor kbj ect to assign
arbitrary JSP pages to framework objects. Identifies the contents of the panel.

ot her - cont ext

Contains a static context link or a context/URL link.

onl oad Contains the optional name of a JavaScript function to evaluate when the
panel is loaded by the framework.

onunl oad Contains the optional name of a JavaScript function to evaluate when the
panel is unloaded by the framework.

hel p- key Provides a string for inline help accessible via a help icon located on the
panel title bar.

title-key Resource bundle key for the label that is associated with the panel.

vi si bl e-yn Determines whether an enabled tab is rendered or hidden.

showtitle-yn

Indicates whether the panel has a visible title bar or only a content area with
no title bar.

panel - open-yn

Indicates whether the entire panel is currently closed or minimized with a
placeholder displayed in the available panels.

al | ow panel -t oggl e-yn

Indicates whether the entire panel, including title bar, can be closed or
minimized and represented by a placeholder in the available panels.

3 Service Center User Interface Data Model

21

Attribute

al | ow cont ent -t oggl e-
yn

t ab- hol der-yn

Description

Indicates whether the panel contents can be closed or minimized, leaving
only the panel title bar visible.

Determines whether the panel can hold other panels in a tabbed format.

al ways-t abbed- yn

Indicates whether the panel is forced to be tabbed in a row of panel tabs on a
tab-holder panel with no ability to be removed from the tabbed position.

t abbed- yn

al | owt abbi ng-yn

Indicates whether the panel is currently a tabbed in a row of panel tabs on a
tab-holder panel.

Indicates whether the panel is allowed to be tabbed in a row of panel tabs on
a tab-holder panel.

current-panel -id

Holds the identifier of the currently visible panel based on the selected tab
for tab-holder panels.

panel -i t em count

Provides a way for the panel label to contain a number representing the
number of items displayed in the panel. For example, a panel that displays 17
search results in its content area is able to display My Search Results (17) in
the title bar.

access-right

The access right that defines the security user role required to view the panel.

t abbed- panel -i ds

Lists the identifiers of the other panels that are tabbed with the current tab-
holder panel. The tabs are rendered in the order that the corresponding
panels identifiers occur in the list.

The extension method of the Panel Def i ni t i onHone interface is:

Returns Method Description
Panel Definition fi ndByUser Segment Returns the Panel Def i ni ti on with the specified
AndPanel I d identifier based on the segment of the current user. If

the current user does not have a segment or no object
is found for the current segment, a default object is
returned based on panel identifier only. The appl! d
indicates the framework application in which to look for
the object.

Arguments: String appl d, String panel | d

The following is an example of a Panel Defi ni ti on:

<panel -definition>

<i d>WsCust oner Cr eat eNewPanel </ i d>
<app-i d>wor kspace</ app-i d>

22

3 Service Center User Interface Data Model

<enabl ed- yn>t r ue</ enabl ed- yn>
<obj ect - t ype>Panel Defi ni ti on</ obj ect-type>
<tenpl ate-ids>

<map-entry>

<key>panel Tenpl at e</ key>
<val ue>panel Tenpl at e</ val ue>

</ map-entry>
</tenpl ate-i ds>
<panel -i d>cust orer Cr eat ePanel </ panel -i d>
<content-url >/ panel s/ custoner/info.jsp</content-url>
<ot her - cont ext >agent </ ot her - cont ext >
<hel p- key>panel . cust oner | nf or mat i onPanel . hel p</ hel p- key>
<title-key>panel.custoner|nformati onPanel .| abel </title-key>
<vi si bl e-yn>true</vi si bl e-yn>
<showtitle-yn>true</showtitle-yn>
<panel - open-yn>t r ue</ panel - open-yn>
<al | ow panel -t oggl e- yn>f al se</ al | ow panel -t oggl e-yn>
<avai | abl e-yn>f al se</ avai | abl e-yn>
<cont ent - open- yn>t r ue</ cont ent - open-yn>
<al | ow cont ent -t oggl e- yn>f al se</ al | ow cont ent -t oggl e-yn>
<t ab- hol der - yn>f al se</t ab- hol der-yn>
<al ways-t abbed- yn>f al se</ al ways-t abbed-yn>
<t abbed- yn>f al se</t abbed- yn>
<al | owt abbi ng- yn>f al se</ al | owt abbi ng-yn>
<al | ow sl ot s-yn>f al se</ al | ow sl ot s-yn>
<t ab-scrol | -i ndex>0</t ab-scrol | -i ndex>
<panel - it em count >0</ panel -i tem count >
<access-ri ght >Cust oner | nf or mat i onPanel </ access-ri ght >

</ panel -definition>

Framework Supporting Object Definitions

A few supporting object definition types can be referenced by any other framework object. Content objects
define static content such as CSS, JavaScript, or HTML. Template objects define JSP layout templates.

ContentDefinition

The cont ent - def i ni ti on object provides an extensible way to link static content, such as CSS, HTML or
JavaScript to framework objects. The MIME type of the content is specified with the cont ent - def i ni ti on

object. Any framework object can define content definitions mapped by key. The following is an example of how

to import CSS contents into a JSP page:

<c:out val ue="${nySkin.contents.css.body}"/>

The attributes of the cont ent - def i ni ti on object, in addition to the attributes inherited from the
Fr amewor kObj ect base class, are:

3 Service Center User Interface Data Model

23

Attribute

body

Description

The text context that is defined as an alternative to referencing the content by a URL.

content-id

Logical identifier that other objects use to refer to this object. This identifier is exposed
to other objects and to the code. and is the primary external way to refer to the object.

m nme-t ype

The type of content being defined. For example, content with a MIME type of t ext / css
would place CSS contents in the body. Content with a MIME type of t ext / j avascri pt
would place JavaScript in the body. Other common content types in a Web application
mightbetext/htn ortext/xni.

ot her - cont ext

The Web context for rendering content from other Web applications.

url

A URL that references the static content.

url-yn

Indicates whether the content is referenced externally by a URL. If the URL flag is false,
the body of the static content is contained internally in the body attribute of the content
definition.

The extension method of the Cont ent Def i ni ti onHone interface is:

Returns

Method Description

Cont ent Defi ni tion fi ndByUser Segment Returns the Cont ent Def i ni ti on with the specified

AndCont ent | d identifier based on the segment of the current user. If
the current user does not have a segment or no object
is found for the current segment, a default object is
returned based on content identifier only. The appl d
indicates the framework application in which to look for
the object.

Arguments: String appl d, String content I d

TemplateDefinition

Thet enpl at e- def i ni ti on object defines templates for objects in the framework. Templates are JSP pages
that define the page structure for a framework object. Any framework object has the ability to define its own
layout templates mapped by key. The following is an example of how to import a skin layout template:

<dspel :i ncl ude page="${nySkin.tenpl ates.|ayout Tenplate.url}"/>

The attributes of the t enpl at e- def i ni ti on object, in addition to the attributes inherited from the
Fr anewor kObj ect base class, are:

24

3 Service Center User Interface Data Model

Attribute Description

ot her - cont ext The Web context for rendering content from other Web applications.

tenplate-id Logical identifier that other objects use to refer to this object, which is exposed
to other objects and to the code. It is the primary external way to refer to the
object.

url A URL that references the JSP template.

The extension method of the Tenpl at eDef i ni t i onHome interface is:

Returns Method

Description

Tenpl ateDefinition fi ndByUser Segnent
AndTenpl atel d

Returns the Tenpl at eDef i ni ti on with the
specified identifier based on the segment of the
current user. If the current user does not have

a segment or no object is found for the current
segment, a default object is returned based on
template identifier only. The appl d indicates the
framework application in which to look for the
object.

Arguments: String appl d, String t enpl atel d

The following is at enpl at e- def i ni ti on:

<tenpl ate-definiti on>

<i d>Si npl eLi nksEver yonePanel Tenpl at e</i d>

<app-i d>wor kspace</ app-i d>
<enabl ed- yn>t r ue</ enabl ed- yn>

<obj ect -t ype>Tenpl at eDef i ni ti on</ obj ect-type>
<t enpl at e-i d>si npl eLi nksPanel </tenpl ate-i d>
<ur | >/ ski ns/t enpl at es/ si npl eLi nksPanel Tenpl ate.j sp</url >

</tenpl ate-definition>

Framework Configuration Objects

In addition to the framework definition objects, which define default appearance and behavior, the
configuration objects store the current state of the framework objects for a particular user when the user logout.
The profile ID of the user is associated with the configuration. These configuration objects, which are defined in

the/ Ser vi ce/ Fr amewor k/ conf i g/ at g/ svc/ ui / f ramewor k / ser vi ceFr amewor kReposi t ory. xni file, are

associated with the profile ID of the user.

3 Service Center User Interface Data Model

25

Configuration Object Inherited Attributes

The Confi gur at i onObj ect base class contains attributes that are shared by all framework configuration
objects via an inheritance relationship. The Conf i gur at i onCbj ect shared attributes are:

Attribute Description
config-type Object sub-class name for item-descriptor inheritance.
enabl ed-yn The enabled flag turns the object on or off in the Ul via the object configuration.

Value is true or false.

id Repository identifier.
user-id Repository ID of the user to whom the configuration belongs.
FrameworkConfig

The Fr amewor kConf i g object manages user configuration for the Fr anewor kDef i ni t i on object.
The attributes of the Fr anewor kConf i g object, in addition to the attributes inherited from the
Confi gurati onObj ect base class, are:

Attribute Description
config-type Fr amewor kConf i g
current-tab-id The identifier of the currently selected tab for the current user.
framewor k-id Logical identifier for the corresponding Fr amewor kDef i ni ti on.
tab-ids List of tabs visible for the current user.

ContentConfig

The Cont ent Conf i g object manages user configuration for the Cont ent Def i ni t i on object and has the same
attributes as the Cont ent Def i ni ti on object.

TemplateConfig

The Tenpl at eConf i g object manages user configuration for the Tenpl at eDef i ni t i on object and has the
same attributes as the Tenpl at eDef i ni t i on object.

SkinConfig

The Ski nConf i g object is a placeholder configuration object for the Ski nDef i ni t i on object with no
significant attributes.

26 3 Service Center User Interface Data Model

TabConfig

The TabConf i g object manages user configuration for the TabDef i ni t i on object. The attributes of the
TabConf i g object, in addition to the attributes inherited from the Conf i gur ati onQbj ect base class, are:

Attribute Description

config-type TabConfig

tab-id Logical identifier for the corresponding TabDef i ni t i on.
vi si bl e-yn The flag indicates whether the tab is visible for the current user.
CellConfig

The Cel | Conf i g object manages user configuration for the Cel | Def i ni t i on object. The attributes of the
Cel | Confi g object, in addition to the attributes inherited from the Conf i gur at i onObj ect base class, are:

Attribute Description

config-type Cel | Config

cell-id Logical identifier for the corresponding Cel | Def i ni ti on.

cel | -open-yn The flag indicates whether the cell is open or closed for the current user.
PanelStackConfig

The Panel St ackConf i g object manages user configuration for the Panel St ackDef i ni ti on object.
The attributes of the Panel St ackConf i g object, in addition to the attributes inherited from the
Confi gur ati onQObj ect base class, are:

Attribute Description

config-type Panel St ackConfi g

panel -i ds List of panels defined for the current user.

panel - st ack-id Logical identifier for the corresponding Panel St ackDef i ni ti on.
PanelConfig

The Panel Confi g object manages user configuration for the Panel Def i ni t i on object. The attributes of the
Panel Confi g object, in addition to the attributes inherited from the Conf i gur at i onObj ect base class, are:

3 Service Center User Interface Data Model

Attribute

config-type

Description

Panel Config

avai | abl e-yn

The available flag indicates whether the panel is displayed in the available panels
for the current user.

cont ent - open-yn

current-panel -id

Indicates whether the panel content area is open or closed for the current user.

Holds the identifier of the initially visible panel tab for the current user. Applies to
tab-holder panels.

panel -id

Logical identifier for the corresponding Panel Defi ni ti on.

panel - open-yn

t abbed- panel -i ds

t abbed-yn

tab-scrol | -index

The panel open flag indicates whether the entire panel is open or closed,
including the title bar, for the current user.

Lists the identifiers of the other panels that are tabbed with the current tab-
holder panel for the current user. Applies to tab-holder panels.

The tabbed flag indicates whether the panel is initially tabbed on a tab-holder
panel for the current user. If set to f al se, the panel is not tabbed within the

panel.

Supports the scrollable tabs feature configuration for horizontal tab scrolling.

vi si bl e-yn

Indicates whether the panel is visible for the current user.

Framework Instance Objects

The framework definition and configuration objects both manage persistent aspects of the Service Center
framework. Framework instance objects manage the transient aspects of the Service Center framework by
holding the current in-memory state of a given framework object in a running Web application within a browser.

Below is a summary of the instance objects, which are defined in the / Ser vi ce/ Fr anewor k/
confi g/ at g/ svc/ ui / framewor k/ ser vi ceFr amewor kReposi t ory. xni file.

Instance Object Inherited Attributes

The I nst anceObj ect base class contains attributes that are shared by all framework instance objects via an
inheritance relationship. The | nst anceQbj ect shared attributes are:

Attribute Description

enabl ed-yn The enabled flag turns the object on or off in the Ul for the duration of the user’s

browser session. Valueist r ue or f al se.

i nstance-type Object sub-class name for item-descriptor inheritance.

28

3 Service Center User Interface Data Model

Contentinstance

The Cont ent | nst ance object manages transient state for the Cont ent Def i ni t i on object and has attributes
similar to the Cont ent Def i ni ti on object.

Templatelnstance

The Tenpl at el nst ance object manages transient state for the Tenpl at eDef i ni ti on object and has
attributes similar to the Tenpl at eDef i ni ti on object.

Frameworkinstance

The Fr amewor kI nst ance object manages transient state for the Fr amewor kDef i ni t i on object. The attributes
of the Fr anewor kI nst ance object, in addition to the attributes inherited from the | nst anceObj ect base

class, are:
Attribute Description
i nstance-type Fr amewor kI nst ance
current-tab-id The identifier of the currently selected tab in the browser.
framework-id Logical identifier for the corresponding Fr amewor kDef i ni ti on.
previous-tab-id The identifier of the last selected tab in the browser.
tab-ids List of tabs currently visible in the browser.
SkinInstance

The Ski nl nst ance object is a placeholder configuration object for the Ski nDef i ni t i on object with no
attributes currently defined.

Tablnstance

The Tabl nst ance object manages transient state for the TabDef i ni t i on object. The attributes of the
Tabl nst ance object, in addition to the attributes inherited from the | nst ancebj ect base class, are:

Attribute Description

i nstance-type Tabl nst ance

cel | -assi gnment s Map indicating the panel stacks that are currently assigned to each layout cell in
the browser.

3 Service Center User Interface Data Model 29

Attribute

current - panel - st acks

next -steps-id

Description

Map indicating the cell to which each panel stack is currently assigned in the
browser.

Identifier indicating the current next steps menu for the tab in the browser.

tab-id Logical identifier for the corresponding TabDef i ni ti on.
vi si bl e-yn Indicates whether the tab is visible in the browser.
Cellinstance

The Cel | I nst ance object manages transient state for the Cel | Def i ni t i on object. The attributes of the
Cel | I nst ance object, in addition to the attributes inherited from the | nst anceQbj ect base class, are:

Attribute

Description

i nstance-type

cell-id

Cel I I nst ance

Logical identifier for the corresponding Cel | Def i ni ti on.

cel | -open-yn

Indicates whether the cell is open or closed in the browser. Tracks the
open-closed state of the columns.

current-panel -stack-id

Identifier that indicates the current panel stack displayed in the cell in the
browser.

PanelStackinstance

The Panel St ackl nst ance object manages transient state for the Panel St ackDef i ni ti on object.
The attributes of the Panel St ackl nst ance object, in addition to the attributes inherited from the
I nst anceQbj ect base class, are:

Attribute

Description

i nstance-type

Panel St ackl nst ance

panel -stack-id

Logical identifier for the corresponding Panel St ackDef i ni ti on.

panel -target-el enents

List of panel target elements in the panel stack, each representing a single
instance of a panel within the UL.

t ar get - map

Maps a lists of panel target elements keyed by the logical panel identifier. Each
key in the map contains a list of all of the instances of a particular panel target
in the UL

30

3 Service Center User Interface Data Model

Panellnstance

The Panel | nst ance object manages transient state for the Panel Def i ni t i on object. The attributes of the
Panel | nst ance object, which are in addition to the attributes inherited from the | nst anceObj ect base class,

are:

Attribute

Description

i nstance-type

Panel | nst ance

avai |l abl e-yn

cont ent - open-yn

Indicates whether the panel is listed in the available panels in the browser.

Indicates whether the panel content area is open or closed in the browser.

current-panel -id

Holds the identifier of the currently visible panel tab in the browser. Applies to
tab-holder panels.

panel -id

Logical identifier for the corresponding Panel Def i ni ti on.

panel - open-yn

Indicates whether the entire panel is open or closed, including the title bar, in
the browser.

t abbed- panel -i ds

Lists the identifiers of the other panels that are tabbed with the current tab-
holder panel in the browser. Applies to tab-holder panels.

t abbed-yn Indicates whether the panel is currently tabbed on a tab-holder panel in the
browser.
tab-scrol | -i ndex Supports the transient scrollable tabs feature for horizontal tab scrolling.

vi si bl e-yn

Indicates whether the panel is visible in the browser.

PanelTarget

The Panel Tar get object manages transient state for a single instance of a panel in the Ul. By providing an auto-
generated unique identifier for each panel instance, the Panel Tar get object allows multiple instances of the
same Panel Defi ni ti on to exist simultaneously on the page.

The attributes of the Panel | nst ance object, in addition to the attributes inherited from the | nst anceObj ect

base class, are:

Attribute

i nstance-type

Description

Panel Tar get El enent

panel -id

target-elenment-id

Logical identifier for the corresponding Panel Def i ni t i on for the instance.

Auto-generated unique identifier for the panel instance.

3 Service Center User Interface Data Model 31

Modifying Framework Definitions

You can modify the framework definition elements that are outlined in the Framework Objects (page 12)
section. Modifications should be made to the ser vi ceFr amewor k. xni file located in your customization
directory. Your modifications will be appended to the default ser vi ceFr amewor k. xni file. For detailed
information on xn - conbi ne, or data binding, refer to the ATG Page Developer's Guide.

Adding a Definition

The following is an example of a new content definition named nyexi st i ngTabAct i on:

<content-definition>
<i d>nyexi sti ngTabActi on</id>
<app-i d>wor kspace</ app-i d>
<enabl ed- yn>t r ue</ enabl ed- yn>
<obj ect -t ype>Cont ent Def i ni ti on</ obj ect-type>
<cont ent -i d>nyexi sti ngTabActi on</content-i d>
<m me-type>t ext/javascri pt </ m ne-type>
<body>at gChangeTab(at g. svc. f ranewor k. changeTab(" Def aul t Tab"),

null, null, null);</body>

<url -yn>true</url-yn>

</content-definition>

Modifying a Definition

The following example shows a modification to an existing myexi st i ngTabAct i on element that changes the
enabl ed- yn element fromtrue tof al se. The myexi sti ngTabAct i on element is matched on the cont ent -
definitionandid tags:

<content-definition>
<i d>nyexi stingTabActi on</i d>
<enabl ed- yn>f al se</ enabl ed- yn>
</ content-definition>

Deleting a Definition

The following is an example of how to delete a definition named nyexi st i ngTabAct i on. Modifications should
be made to the ser vi ceFr amewor k. xni file located in your customization directory:

<content-definition xm-conbi ne="renove">
<i d>nyexi sti ngTabActi on</id>
</ content-definition>

32

3 Service Center User Interface Data Model

4 Service Center Framework API

Service Center provides an APl that accesses various features of the Ul framework. The following information is
discussed in this section:

+ at gChangeTab - Provides code that allows you to change the tab in the framework while setting arguments
for at gSubmi t Act i on

+ at gSubni t Act i on - Provides code that submits information from a form

« framewor kUr | — Provides code that identifies forwarding and redirecting URLs

Changing Tabs

The at gChangeTab performs the necessary client and server side actions to change the current tab in the
framework using the following attributes that set arguments for at gSubmi t Act i on.

* newTab

* next St eps

* panel St ack
* panels

* extraParanms

The following functions are available in at g. svc. f r anewor k.

Attribute Description

changeTab Change to the specified tab on the client-side only. Must be called in conjunction
with a server-side call to at gSubni t Act i on that specifies the ID of a valid tab
defined in the Ul framework.

Arguments:
t abl d - ID of the tab to make the current tab

4 Service Center Framework API 33

Attribute Description

t oggl eSi debar Changes and restores the state of the sidebar from the default expanded view
showing all of the helpful panels to a minimized view showing a vertical bar.

Arguments:
none

sel ect TabbedPanel Selects the specified panel in a row of tabbed panels as the current panel.

Arguments:

panel | d — ID of the panel to make the current panel
next St epsl d - ID of the next steps

next St epsPanel | d - optional ID of the next steps panel

t oggl ePanel Removes or restores the specified side panel. Removed panels are taken out of
the display and moved to a link in the Available Panels panel. Clicking the link in
Available Panels restores the panel to its original position.

Arguments:
panel | d - ID of the panel to toggle

t oggl ePanel sToTabs Moves a panel to or from a row of tabbed panels.

Arguments:
panel | d - ID of panel to move to tabs
panel St ackl d - ID of panel stack that contains the panel to move to tabs

t oggl ePanel Cont ent Shows and hides the content area of a panel. The title bar of the panel remains in
place.

Arguments:
panel | d - ID of the panel to toggle

start Cal | Initiates a new agent session with a customer without ending the existing
session.

endCal | Terminates the existing agent session with the customer.

endAndSt art Cal | Initiates a new agent session with a customer and terminates the existing session.

Framework parameters are submitted to the server using the at gSubmi t Act i on function or with form handlers
using a successURL formatted by the f r amewor kUr | tag library.

Submitting Actions

The at gSubni t Act i on is used to submit a form. The JavaScript function at gSubni t Act i on has the following
signature, which accepts a single object argument:

34 4 Service Center Framework API

at gSubmi t Acti on = function(parans) {};

The par ans argument is a JavaScript object that may contain any combination of the following properties that
are used to configure the framework request. Some properties are converted to request or query parameters
and submitted to the server. Others are assigned to the submitted form. Most of the properties are either
optional or have defaults, so they do not have to be specified with each request.

Property Description

url Optional target URL for submitting framework requests. Overrides the default
framework URL.

m meType Optional. Sets the i ne- t ype of the request.
handl eAs Optional. Sets the expected response format for proper handling.
form Reference to the DOM form to submit the framework request. The form can be a

DSP form linked to a form handler. Either f or mor f or m d is required.

formd Looks up the form to submit with the framework request. Either f or mor f or m d
is required.
f or m nput Val ues Requires the form specified in the f or mproperty. Maps form element names to

values. Each value is bound to the corresponding form element for submission
as such: For each nane in f or m nput Val ues, setf or n{ nare] . val ue =
f or mi nput Val ues[nane]

tab Navigates to the specified tab by ID. Submits the request parametert .

next St eps String name of the next steps to render in the next steps panel. Submits the
request parameter ns.

panel St ack Navigates to the specified panel stack under the current tab. Renders all of the
currently-enabled member panels of the panel stack in the cell for which the
panel stack is assigned under the tab definition. Submits the request parameter

ps.

panel s Array of panel identifiers to refresh. The panel will remain in its current place but
the contents will be re-rendered. Submits the request parameter p. For example:
["panel 1", "panel 2"]

sel ect TabbedPanel s Array of panel identifiers to set to the selected state. Applies to panels
that are in a row of tabbed panels. Submits the request parameter
sel ect TabbedPanel | ds.

par anmsMapNane Optional. Fully qualified Nucleus path of the form-handler bean map property
that will receive the ext r aPar ans. Allows JavaScript data to be passed to a form
handler.

4 Service Center Framework API 35

Property

f or mHandl er

Description

Optional. Fully qualified Nucleus path of a form handler with a property

named par anet er Map. Note: The form handler must have a property named
par anet er Map. If the form handler does not have a property with this name, use
the par ams MapNane property.

ext raPar ans

Optional. Map of parameters to map to key-value pairs on the default

Fr amewor kBaseFor nHandl er par anet er Map property or another property
specified in par ams MapNane. The values are assigned into a comma-delimited
list as such: For each key in ext r aPar ans, append key = ext r aPar ans[key]
to list. The comma-delimited list is assigned to the form handler parameter map
property: keyl=val uel, key2=val ue2, etc. Allows JavaScript data to be passed
to a form handler map.

|'i st Parans Optional. Map of keys to arrays of values. Requires the form specified in the
form property and the form handler specified in the f or rHandl er property.
The values contained in each array are submitted to the same array-based form
handler property. For example, { par aniL: [a, b, c],paran2: [x,y, z]}.

mapPar ans Optional. Map of keys to other maps. Requires the form specified in the form

property and the form handler specified in the f or rHandl| er property. The outer
keys map to the corresponding property names on f or nHandl er . The inner
keys are appended to a comma-delimited list of key-value pairs. For example,
{propertyl: {keyl: val uel, key2: val ue2}}.

quer yPar ans

sync

Optional. Map of parameters that are added without modification to the request
URL as query parameters.

Flag indicating whether to submit the request synchronously or asynchronously.
If the request is synchronous, the at gSubni t Funct i on will wait until a response
is received from the server (or a timeout occurs) before continuing execution. The
default value is f al se for asynchronous requests.

showLoadi ngCurtai n

Flag indicating whether to display a loading curtain and progress indicator
during requests. The default value is true to show the loading curtain and
progress indicator.

Forwarding and Redirecting URLs

The f ramewor kUr | tag constructs a forwarding and redirection URL with framework parameters. The URL can
be assigned to a form handler sucessURL property, allowing the form handler to navigate to different locations
in the Service Center application based on the results of processing the form.

The following example navigates to the global panels and the shopping cart panel stacks. If these panel stacks
are already displayed, they will be refreshed. This example also contains the custom parameter cont ent Header ,
which will be added to the query parameters as cont ent Header =t r ue. The result is stored in the successURL
page variable, which can be assigned to a form handler property.

<svc-ui: framewor kUl

var ="successURL" panel St acks="gl obal Panel s,

36

4 Service Center Framework API

cncShoppi ngCart PS" cont ent Header ="true"/ >

The following attributes can be assigned to the tag. Custom dynamic attributes are also allowed and will be
included to the redirection URL as query parameters.

Attribute

Description

cont ext

Optional. Context of the framework request URL for forwarding or redirecting.
Requires that ur | is specified.

dynani cl ncl udes

Sets the delimiters for setting dynamic includes.

Cont ext

Sets the values for the Context.

panel s

Delimited list of panel identifiers for the panels to refresh. The panels will
remain in their current place but the contents will be re-rendered. Includes the
request parameter p. The default delimiter is a comma. The default delimiter
can be overridden with the spl i t Char attribute.

panel St acks

Delimited list of panel stack identifiers for the panel stacks to navigate to under
the current panel. Renders the currently-enabled member panels of the panel
stack in the cell for which the panel stack is assigned under the tab definition.
Includes the request parameter ps. The default delimiter is a comma. The
default delimiter can be overridden with the spl i t Char attribute.

sel ect TabbedPanel s

Delimited list of panel identifiers for the tabbed panels to set to the selected
state. Applies only to panels that are in a row of tabbed panels. The default
delimiter is a comma. The default delimiter can be overridden with the

spl it Char attribute.

splitchar Sets the delimiter to the specified set of characters overriding the default
comma delimiter.

tab Navigates to the specified tab by ID. Includes the request parameter.

url Optional. Target URL for forwarding or redirecting the framework request.
Overrides the default framework URL.

var Page variable name to be assigned the framework URL.

4 Service Center Framework API

37

38

4 Service Center Framework API

Part Il. Developing Pages in Service Center

The instructions in this section are intended for users who make changes to the user interface of Service Center. This section
provides information on components that are specific to Service Center and should be used in tandem with general page
development information, such as working with tags, forms and servlets, which can be found in the ATG Page Developer's
Guide.

This section contains the following:

5 Service Center Ul Components

This section discusses Ul components that are specific to Service Center. General page development
information, such as working with tags, forms and servlets, can be found in the ATG Page Developer's Guide.

Working with JavaServer Pages

ATG applications provide an open, server-side environment for building and deploying dynamic, personalized
applications based on JavaBeans and JSP pages. Web application developers assemble applications out of
component servlet beans by linking them together through configuration files. For detailed information on
creating JavaBean components and JSPs, refer to the ATG Platform Programming Guide.

When a browser instance requests a JSP, all necessary documents are identified and located and then compiled
into Java code. The code is then converted into an HTML page and displayed. HTML can incorporate dynamic
elements that allow the page to be customized for each instance using JSP, which can pass information to
JavaBeans, servlets and other Java components. JSP-based applications can perform a number of capabilities,

including displaying property values or forms, invoke servlet beans or components and extract data stored in
XML.

For detailed information on creating JSPs, refer to the ATG Page Developer's Guide.

Tag Libraries

As a Web page designer, you build the front-end interface for the application out of JSPs that use the DSP tag
library. The DSP tag libraries used by Service Center are listed in Appendix B, Tag Libraries (page 121).

For additional information on working with tag libraries, refer to the ATG Page Developer's Guide.

Servlet Beans

Servlet beans are Java-based Web components that are managed by a container and generate dynamic content
from Java objects. They also transform data in XML documents. Detailed information on working with servlet
beans and integrating XML with servlet beans can be found in the ATG Page Developer's Guide.

5 Service Center Ul Components a1

Customization Best Practices

The following are best practices to use when customizing your environment.

Extending Configuration Files

It is best to use configuration layering to create extended configuration files that reside within your own
application module, and point these files to the extended configuration files, JavaScript or CSS files contained
in your custom application. Adding a new field to the end of the default fields is best done by modifying the
appropriate extended properties file. New fields will be displayed after the default fields. This prevents your
customizations from being overwritten if Commerce Service Center is updated, as the configuration properties
are located in your Web application.

By creating an extended configuration component you can append content to the page without changing the
default configurations. The extended component contains the same functionality as, and is defined directly
after, the default components.

Adding JavaScript and CSS Files

When you add new JavaScript or CSS files to your customization directory, you should point the
Agent Ul Confi gur at i on component to it using the appl i cati onScri pt Fi | es property. When you add your
JavaScript or CSS files to the appl i cati onScri pt Fi | es property, they are aggregated and loaded at the same
time to the application server. This avoids multiple communications with the application server:

1. Add JavaScript files to the appl i cati onScri pt Fi | es property of the Ser vi ce- Ul /
Fr amewor k/ Agent / confi g/ at g/ svc/ agent/ ui /
Agent Ul Confi gurati on. properti es file.

The following example adds nyScri pt 1. j s and nyScri pt 2. j s to mySer vi ceCent er . To add to the list,
ensure that you use the += syntax:

applicationScriptFil es+=
/' nyServiceCenter/nmyScripts/nyScriptl.js,
/ myServi ceCenter/ nyScripts/myScript2.js

2. If doj oDebug is turned on, as discussed in Dojo Debugging Mode (page 43), you must add your custom
scripts to the debugScri pt Fi | es list:

debugScri ptFil es+=
/' nyServiceCenter/nyScripts/nyScriptl.js,
/I nyServiceCenter/nmyScripts/nyScript2.js

3. To add a new CSS file, add it to / at g/ svc/ agent / ui / Agent Ul Conf i gur at i on using the
appl i cati onStyl eSheet s property:

applicationStyl eSheet s+=
/ nyServi ceCenter/ nyStyl es/ nyStyl es. css

42 5 Service Center Ul Components

Using Service Center Debugging Modes

When customizing Service Center, you may find it helpful to activate the following debugging modes.

Service Center Debugging Mode

Service Center debugging mode provides information on all of the components that comprise the panel. When
the cursor is placed over the icon, debug information displays for the panel, as shown below:

The pop-up window presents a table of the data IDs that drive the display of the panel, as well as the JSP that
renders the panel content and the Web application that contains the JSP. The table also displays the resource
bundle and the key that are used to display the panel content.

Below the table is a list of the JSP sources, as well as a list of the included JSP files. This page is cross-linked to the
Dynamo Server Admin, which queries for the panel data, allowing real-time modification.

To turn on debug mode, set the useDebugPanel St ackMode property of the / at g/ svc/ agent / ui /
Agent Ul Confi gurationtotrue.

Dojo Debugging Mode

Dojo debugging enables console logging in Firefox Firebug. To set Dojo debugging, set the doj oDebug
property of the / at g/ svc/ agent / ui / Agent Ul Confi gurationtotrue.

5 Service Center Ul Components 43

44

5 Service Center Ul Components

6 Working with the Global Context
Area

The global context area is a Ul located at the top of the page in Service Center. This JSP-based Ul is produced
using a series of configuration files that define the contents of each navigational item. The following section
describes the components that make the global context area, as well as steps to modify the UI.

Global Context Area Architecture

The global context area allows users to see and access a variety of information quickly. The items that are
displayed on the global context area depend on the modules and applications that have been installed in your
environment.

E1T-B5E-$09D * —

O O O G GEDW QL OO G

The global context area is comprised of three separate navigation containers, the Pri mar yNavCont ai ner, the
Secondar yNavCont ai ner and the Opt i onsNavCont ai ner . Each navigation container is a component of type
NavCont ai ner, which defines the navigational item components of type Navl t emthat will be displayed in the
Ul. The following individual navigation classes make up the entire global context area architecture:

» Navl t em— A Navl t emcomponent encapsulates the components that make up a single navigational element
within the Ul. A Nav| t emis comprised of NavSear ch, NavCont ent and NavAct i on elements

* NavSear ch - A NavSear ch component provides the display and control elements that are displayed and
executed when a user clicks the search option on the Navl t em

* NavCont ent - This component provides the display and control elements that are displayed and executed
when a use clicks on the context area of the Navl t em

* NavActi on— A NavAct i on defines the display and control elements for a single action. NavAct i ons can be
referenced by a NavAct i onFact or y using static component references or, in some cases can be dynamically
generated by a NavAct i onFact or y. Dynamic NavAct i ons are those that can change in availability,
appearance or execution, depending on the current state of the agent’s environment

+ NavAct i onCont ai ner - This component defines one or more NavAct i ons available to the NavI t em

6 Working with the Global Context Area 45

+ NavActi onFact ory — A NavAct i onFact or y component provides one or more NavAct i ons. These
components are referenced by the NavAct i onCont ai ner to provide the available NavAct i ons
Mav Context
MavSearch — MavActionContalner
MevActionFactory

+

MavhActon

Anatomy of a Navltem

Each NavI t emhas a property file that contains commonly used attributes and sub-components, which can be

found in:
ATG Product Location
Commerce Service Center / DCS- CSR- Ul / src/ confi g/ at g/ svc/ agent/ ui /
Service Center Framework / Servi ce- Ul /framewor k/ Agent / j 2ee- apps/
Agent . ear/ Servi ceFr amewor k. war /

The NavAct i on component contains properties for a resource bundle and a label, as well as a JavaScript
function call. These properties can be modified to customize the NavAct i on. The labels for the components are
all localized in a resource bundle, which is typically Fr anewor kResour ces. Note: There are separate bundles for
the Service Center Framework and Commerce Service Center

NavContainers

NavCont ai ner s contain multiple Navl t ens, which are divided into search, context and action subcomponents.
There are three default NavCont ai ner s:

+ PrimaryNavCont ai ner — Holds information such as Customer, Order, Product and Ticket and is rendered on
the bottom row of the global context area

+ Secondar yNavCont ai ner — H olds information such as Store, Site, Catalog and Pricelists and is rendered on
the top row of the global context area

+ Opti onsNavCont ai ner — This contains Log Out, Preferences and About information and is rendered to the
right of the Secondar yNavCont ai ner

SacondaryMavContainer | OpSonsManvContaines

Harehim it Haitem [T Hardiem

PrimaryManConkaing:

it Mirettam Hanizem it M

NavCont ai ner s set the following:

46 6 Working with the Global Context Area

Name

Type Description

string IDs are optional. If you use an ID, it must be unique to the IDs that are
specified by other navigational components within the global context

area.

The ID is included when rendering the NavCont ai ner component
within the DOM to enable custom CSS files to target the styling of the
NavCont ai ner without having to modify the JSP file directly.

envi ronment Tool s

navl t ens

path References and identifies the Envi r onnent Tool s component.

path References all of the contained navI t emcomponents.

Navltems

A Navl t emprovides three optional subcomponents, as well as properties for controlling rendering priority
within the container, secured access and display of the item. The subcomponents are the search, context and
action container components.

Applications that use the global context area add their NavI t ens to the NavCont ai ner ‘s Navl t ens list within

their own config layer using the += syntax.

Nav| t ems contain the following configuration:

Name

Type

Description

string

IDs are optional. If you use an ID, it must be unique to the IDs
that are specified by other navigational components within the
global context area.

The ID is included when rendering the NavI t emcomponent
within the DOM to enable custom CSS files to target the styling
of the NavI t emwithout having to modify the JSP file directly.

avail abl e

Boolean

Determines if the Navl t emis available. If false, the Navl t em
will not be displayed in the Ul

sortPriority

integer

Determines the position of the Navl t emrelative to other

Navl t ems defined by the NavCont ai ner . The NavCont ai ner
sorts the Nav| t ens by this property in ascending order. Lower
sort order numbers are rendered first.

accessRi ght

string

Defines the access right required to use the Navl t em If
the agent does not have this right, the Navl t emwill not be
included within the UL.

| abel Resour ceKey

string

The resource key that identifies the label that appears under
the Navl t emin the UL

r esour ceBundl eNane

string

Identifies the name of the resource bundle used to look up all
resourced values.

6 Working with the Global Context Area

47

Name Type Description

navSear ch path References the search subcomponent.

navCont ext path References the context subcomponent.

navAct i onCont ai ner path References the navAct i onCont ai ner subcomponent.

NavSearch

The NavSear ch component defines the navigational elements for the search button that exists on the
navigation item, allowing the user to activate the search function. When a user clicks on the Search button, a
JavaScript code snippet is executed, performing the specific search action.

The NavSear ch component has the following configuration:

Name

Type

Description

string

IDs are optional. If you use an ID, it must be unique to the IDs
that are specified by other navigational components within the
global context area.

The ID is included when rendering the NavSear ch component
within the DOM to enable custom CSS files to target the
styling of the Nav Sear ch without having to modify the JSP file
directly.

t ool Ti pResour ceKey

string

The resource key used to identify the tooltip text that appears
when hovering over the search element of the Navl t emin the
ul.

r esour ceBundl eNane

string

Identifies the name of the resource bundle used to look up all
resourced values.

javaScri pt Functi onCal |

path

Defines the string that is rendered as the JavaScript function for
the search icons.

NavContext

This component represents the context area on a Navl t em It provides a descriptive label for the Navl t emthat is
relative to the current context. The base version of the NavCont ext component defines layout properties such
as width limits, display strings and the JavaScript code snippet to execute.

The NavCont ext can be a static label or a dynamic value or a customized combination of the two. Customized
label strings are generated using subclasses of NavCont ext .

The NavCont ext component contains the following configuration:

48

6 Working with the Global Context Area

Name

Type

string

Description

IDs are optional. However, when used, they must be unique to
the IDs that are specified by other navigational components
within the global context area.

The ID is included when rendering the NavCont ext
component within the DOM to enable custom CSS files to
target the styling of the NavCont ext without having to
modify the JSP file directly.

| abel Resour ceKey

string

The resource key used to identify the text that appears as the
context element of the NavlI t emin the UL.

Note: Because NavCont ext displays contextual information,
it is common for this text value to be dynamic in nature,
depending on the current state of the agent’s environment.
As such, it is common for the get Label () APl to be
overridden to provide a dynamic value.

t ool Ti pResour ceKey

string

The resource key used to identify the tooltip text that appears
when hovering over the context element of the Navl t emin
the Ul

m nW dt h

integer

Identifies the minimum width allowed. Defined in pixels.

maxW dt h

integer

Identifies the maximum width allowed. Defined in pixels.

javaScri pt Functi onCal |

string

Defines the string that is rendered as the JavaScript function
for the context label. This function is executed when the user
clicks the context label.

r esour ceBundl eNane

string

Identifies the name of the resource bundle used to look up all
resourced values.

NavActionContainers

This component represents the action menu within a Navl t em The action menu contains a collection of links to
display within a pop-up window. The NavAct i onCont ai ner references the NavAct i onFact ory components
that provide the navigational display and control elements for the NavAct i ons.

The NavCont ai ner, which uses the NavAct i onFact ory sort Pri orty property to identify the priority of the
grouped NavAct i ons defined within the NavAct i onFact or y, has the following configuration:

6 Working with the Global Context Area

49

Name

Type

string

Description

IDs are optional. However, when used, they must be unique to the
IDs that are specified by other navigational components within the
global context area.

The ID is included when rendering the NavAct i onCont ai ner
component within the DOM to enable custom CSS files to target the
styling of the NavAct i onCont ai ner without having to modify the
JSP file directly.

r esour ceBundl eNane

string

Identifies the name of the resource bundle used to look up all
resourced values.

| abel Resour ceKey

string

Identifies the resource key for the text that appears for the

NavAct i onCont ai ner . This property, which is used only when a
NavAct i onCont ai ner contains a single NavAct i on, will display the
text that appears for the action in the NavAct i on’s menu.

t ool Ti pResour ceKey

string

Identifies the resource key for the tooltip text that appears for the
NavAct i on’s menu.

navActi onFactori es

path

Reference to an array of NavAct i onFact ory components.

NavActionFactory

The NavAct i onFact or y component enables you to group and sort NavAct i ons that are displayed in
the action menu of the Navl t em A NavAct i onCont ai ner can reference multiple NavAct i onFactori es
and uses theirsort Pri ori ty property to set their sort order. In turn, NavAct i ons that are referenced by
aNavAct i onFact ory are grouped together within the NavAct i on menu and can be sorted using the

NavActionsortPriority property.

P At o

HawAotionFaciony 81 =

A tan Hem M1

Acticen i 52 Popug Meru

MarvActionFaciony 02 -

Ation b 64

Action w85

Actior Rem B

The NavAct i onFact or y contains the following configurations:

50

6 Working with the Global Context Area

Name Type Description

sortPriority integer Identifies the sort order relative to other NavAct i onFact ori es
referenced by the NavAct i onCont ai ner. The NavAct i onCont ai ner
sorts the NavAct i onFact ori es by this value before producing the list of
NavAct i ons provided by those factories.

avai | abl e Boolean Determines if the NavAct i onFact ory is available for use. If false, the
NavAct i onFact ory will not be included by the NavAct i onCont ai ner.

accessRi ght string Defines the access right required to use the actions generated by this
factory. If the agent does not have this right, the actions will not be
included in the UL.

navAct i ons path References an array of NavAct i ons provided by this factory.

NavAction

The NavAct i on component represents an individual option in an action menu. These components also contain
information on rendering priority and the properties that control the display. The navAct i on configures the
text label that is displayed in the menu, as well as the JavaScript snippet that executes when the menu option is

selected.

NavAct i ons contain the following configurations:

Name

Type

Description

sortPriority

string

integer

IDs are optional. However, when used, they must be
unique to the IDs that are specified by other navigational
components within the global context area.

The ID is included when rendering the NavAct i on
component within the DOM to enable custom CSS files
to target the styling of the NavAct i on without having to
modify the JSP file directly.

Identifies the sort order relative to other NavAct i ons
provided by the NavAct i onFact ory. The

NavAct i onFact ory sorts the NavAct i ons by this value
before producing the list of NavAct i ons it provides.

avail abl e

accessRi ght

Boolean

string

Determines if the NavAct i on is available. If false, the
NavAct i on will not be included by the NavAct i onFact ory.

Defines the access rights required to use this action. If the
agent does not have this right, the action will be filtered out
by the NavAct i onFact ory and will not be included within
the UL

r esour ceBundl eNane

string

Identifies the name of the resource bundle used to look up
all resourced values.

6 Working with the Global Context Area

51

Name Type Description

enabl ed Boolean Determines whether the action is enabled or disabled in the
Ul. Disabled actions are grayed out.

Note: This value is useful in cases where an action becomes
unavailable at certain times based on the agent’s working
environment. As such, it is more common to extend the

i sEnabl ed() APIto get the desired behavior than it is to
statically provide the value through the properties file.

| abel Resour ceKey string The resource key used to identify the text that appears for
the action in the Nav| t enis action menu.

javaScri pt Funct i onCal | string Calls the JavaScript to execute.

Rendering the Global Context Area

The global context area is rendered using the / Ser vi ce- Ul / f r amewor k/ Agent / j 2ee- apps/ Agent

/ Ser vi ceFr amewor k/ t enpl at es/ gl obal Cont ent Ar ea. j sp file. The file renders the global context area
layout, including the call and messages buttons and placeholders for the NavCont ai ner components. This
directory also contains the cal | But t ons. j sp and nessages. j sp files that render the call buttons and the
messages widgets respectively. The generic rendering pages are stored in the / Ser vi ce- Ul / f r amewor k/
Agent / j 2ee- apps/ Agent / Ser vi ceFr amewor k/ i ncl ude/ navi gat i on folder. The following diagram shows
the relationships between the JSP files:

FobalCorteniivea po

calBluiion g SRR Ap FEvCoraneT i il 5
narvitem jup
rarSaarch sp navConiet 5p AL (50

Navigation items are rendered using a hierarchy of navigational objects and JSPs files. At the top level is the
NavCont ai ner . j ps, which is typically called from gl obal Cont ent Ar ea. j sp. The NavCont ai ner object to be
rendered is imported and passed along to the navCont ai ner . j sp file.

Rendering NavContainers

To render a NavCont ai ner, the JSP references a NavCont ai ner object that contains all of the Navl t em
components to display. The JSP iterates over each Navl t em rendering the NavSear ch, NavCont ext , and
NavAct i on subcomponents using navSear ch. j sp, navCont ext . j sp and navAct i ons. j sp respectively.

52 6 Working with the Global Context Area

The navCont ai ner . j sp iterates over the collection of Navl t ens passing each Navl t emcomponent to the
navl t em j sp file to render them individually.

Rendering NavSearch

The NavSear ch component is rendered by the navSear ch. j sp file to provide a link to a search page. The
navSear ch. j sp page renders a <di v> tab containing the navSear ch ID, as well as the icon and tooltip. For
example:

<dspel : get val ueof var="navSearch" paran¥"navSearch"/>

<% - Enbed the JavaScript function call and tooltip into the search conponent --%
<a href="#" onclick="<c:out val ue="${navSearch.javaScript FunctionCall}"/>"
class="gcn_btn_search" title="<c: out
val ue="${ navSear ch. t ool Ti pText}"/>"><c: out
val ue="${navSear ch. t ool Ti pText }"/></ span></ a>

Rendering NavContext

The NavCont ext component is rendered by navCont ext . j sp to provide the context display information and
the context navigation link. The navCont ext . j sp file also renders a <di v> tag with the NavCont ext ID. For
example:

<dspel : get val ueof var="navContext" param="navContext"/>

<% - Enbed the context |abel and tooltip into the context conponent --%
<a href="#" onclick="<c:out val ue="${navContext.javaScri pt FunctionCall}"/>"
cl ass="gcn_btn_context"
title="<c:out val ue="${navContext.tool Ti pText}"/>"><c: out
val ue="${navCont ext . | abel }"/ >

Rendering NavActions

The navAct i onCont ai ner. j sp and the navActi onl t ens. j sp files render the NavAct i ons. NavAct i ons are
rendered in three different ways, depending on the number of actions provided by the NavAct i onCont ai ner,
and if the NavAct i onCont ai ner has provided a label value.

+ Action pop-up menu with menu label - This rendering provides a label on the action menu, as well as a pop-
up menu with the available actions. There are two configurations that are rendered this way by default, the
Commerce Service Center Products Navl t emand the Options menu in the Opt i onsNavCont ai ner

+ Action pop-up menu with no menu label - This rendering provides a pop-up menu with the available actions
and no label that has been identified in the NavCont ai ner . This rendering includes multiple actions that
have no NavAct i onCont ai ner Label , such as the Customer Nav| t em or a single NavAct i ons with no
NavAct i onCont ai ner Label

+ No Action pop-up menu with an action label - This rendering does not provide a pop-up menu for the
actions, rendering instead only a single action link. This single action provides the JavaScript function
that is executed when the action label is clicked. The rendered label and tooltip text is defined by the
NavAct i onConat i ner Label and NavActi onConat i nert ool Ti p properties. The configuration provides
only asingle NavAct i on with a NavAct i onCont ai ner Label , such as the Respond Navl t em

6 Working with the Global Context Area 53

Creating a New NavAction

When creating new menu items in the global context area, create your files in your custom application directory
and extend the existing configuration files. To create a new NavAct i on:

1. Create the NavAct i on that you want to add to the menu.
2. Extend the NavAct i onFact ory file to include your new NavAct i on within the list.

3. Ensure that your resource bundle file contains the necessary references to your new action.

Example: Creating a Options Policy Menu Iltem

The following example demonstrates how to add a Corporate Policy action as the final menu selection in the
Options menu. This custom action navigates the agent to the corporate policy panel stack.

1. Create an Opt i onsPol i cyNavAct i on. The following example creates an Opt i onsPol i cyNavActi on,in

the/ at g/ svc/ agent / ui / directory of your custom application. Because there are already five menu items
that are identified with sort priorities of 100 to 500, setting the sort Pri ori t y of this new NavAct i on to
600 will identify it as the sixth menu item, or the last menu option in the list. This example also implements a
JavaScript function call to the pol i cy. j sp file:

$cl ass=at g. svc. agent . ui . NavActi on

$scope=wi ndow

i d=opt i onsPol i cyNavActi on

sortPriority=600

#controls if this action is available. If not, it will not be included in
#the U .

avai | abl e=true

#use this property to assign a specific security access right to this
#action. If the agent doesn't have this right, it will not be included in
#the U .

#accessRi ght =

envi ronnent Tool s=/ at g/ svc/ agent/ envi ronment / Envi ronment Tool s

r esour ceBundl eNane=nyconpany. nyapp. ui . Resour ces

| abel Resour ceKey=navi t em opti ons. acti on. policy. | abel

javaScri pt Functi onCal | Tenpl at e=at g. conmer ce. csr. openPanel St ackW t hTab

(' nyPol i cyPanel St ack',"' conmerceTab')

. Modify the Opt i onsNavAct i onFact or y file to include your new NavAct i on within the list. The following

Opt i onsNavAct i onFact or y example shows that an Opt i onsPol i cyNavAct i on has been added to the list
of actions available. Add the following properties file to the configuration layer to append the new action to
the/ at g/ svc/ agent/ ui / Opti onsNavAct i onFact ory:

actions+=\
/ at g/ svc/ agent/ ui / Opti onsPol i cyNavActi on

. Ensure that your resource bundle file contains the necessary references to your new action. The following

example resource file, which we defined in Step 1 as myconpany. nyapp. ui . Resour ces, defines the label
resources used by the new NavAct i on:

options
navi tem options.item | abel =Opti ons
navi t em options. acti on. | abel =Opti ons

54

6 Working with the Global Context Area

navi t em
navi t em
navi tem
navitem
navi t em
navi t em
navi tem
navitem

opti
opti
opti
opti
opti
opti
opti
opti

ons.
ons.
ons.
ons.
ons.
ons.
ons.
ons.

acti
acti
acti
acti
acti
acti
acti
acti

on.
on.
on.
on.
on.
on.
on.
on.

tool ti p=Log Qut, Preferences and Docunentation
| ogout . | abel =Log Qut

| ogout agent . | abel =Log CQut: {0}

preferences. | abel =Pr ef erences

docunent ati on. | abel =Docunent ati on

about . | abel =About

shortcuts. | abel =Shortcuts

policy. | abel =Cor porate Policies

This adds the Corporate Policies menu label to the Options menu. When the agent selects this menu option,
the nyPol i cyPanel St ack will be displayed.

6 Working with the Global Context Area

55

56

6 Working with the Global Context Area

7 Working with Pages

Pages within the Ul are defined with the following definitions:

+ Tab definitions - Divide the application into functional areas by defining the top level navigation. They also

specify page structures using cell and template definitions and define the panels and panel stack definitions

that comprise the page

+ Cell definitions - Define the basic layout of the page, including the position of panel stacks

+ Panel stack definitions - Contains a collection of panels that will be displayed within the page

+ Panel definitions - Defines a rectangular region of the page with related content referenced by an include JSP

content template

7’

Tab Deafinition

\

Cell Definition

L

(" Panal Stack A

Definition

' Panel
L Deafinition
[Panal

Definition

o

L

Panel Stack |
Definition

Panel W
Definition

Panel
Dafinition

o

~

L

Cell Definition

Fanel Stack
Deafinition

Panel

. Definition

"F Panegl
\ Deafinition

o

'\.,__“

4

When you create a new page, you create a tab definition that contains the other definition objects, thus
defining page structure and layout. For detailed information on the definition object, refer to the Framework

Objects (page 12) section.

Creating a New Tab Definition

To changes the layout of an existing page or create a new page that is accessed by a navigational item from the

global context area, you need to create or modify a tab definition.

Note: Customizations should occur in your custom directory as outlined in Customization Best Practices (page

42).

To create a new tab definition:

7 Working with Pages

57

1. Create an/ at g/ svc/ f ramewor k/ ser vi ceFr amewor k. xm file in your new custom module and add the
Cont ent Def i ni ti on item for the new tab action. This defines the JavaScript action that will be attached to
the TabDef i ni ti on item for the new tab and then executed.

2. To create a new navigational item within the tab, modify the NavCont ai ner and other Navl t emcomponents
as outlined in Creating a New NavAction (page 54) section.

3. Append your new tab definition information to the default tab definition.
4. Create the panel stack definition that will be used by your new tab definition.
5. Create the JSP files and resources that you identified in your definitions.

Note: You must ensure that the access rights for the tab and the panels are correct.

Example: Creating a New Page

The following example creates a new page by creating a nyNewTab tab definition and then rendering a new
panel stack called MyNewPS, which then renders three additional panels: myNewPanel 1, myNewPanel 2, and
nmyNewPanel 3.

In the following example, these properties will be changed for the new tab definition:
+ The appl d property must be set to wor kspace for the tab to be loaded in the Service Center Ul

+ Thet abl d property must correspond to the tab ID referenced in the Cont ent Def i ni ti on item defined for
the tab action

+ Thetit| eKey property references a resource defined in a resource bundle in the Commerce Service Center
class path

+ The accessRi ght may remain the default @ obal Panel right or a specific right. If using a specific right, the
right must be defined and assigned to Service Center users. Note: The access right must be defined or the
page will not be rendered

« The panel St ackAssi gnment s property uses pre-existing column names defined in the Service Framework
Repository. This positions the panel stacks in the left column using cont ent Col umm, the right column using
si debar Col umm or top area using gl obal Cel | . Note: Changing the top area in the gl obal Cel | is not
supported

+ Thecurrent Panel St acks property determines which panel stacks to show initially or by default

+ The panel St ackOr der property determines the sequence in which the panel stacks are rendered in case
there is cross-referencing JavaScript between panel stacks that creates dependencies in the rendering order

+ The cont ent | ds property points to the Cont ent Def i ni t i on item defined above so that the requested
JavaScript action is executed when the tab is selected

To create a new page:

1. Create an/ at g/ svc/ f ramewor k/ ser vi ceFr amewor k. xmi file in your new custom module and add the
Cont ent Def i ni ti on item for the new tab action. This defines the JavaScript action that will be attached
to the TabDef i ni ti on item for the new tab (via the cont ent | ds map, see below) and then executed. For
example:

<cont ent -definition>
<i d>WsMyNewTabAct i on</i d>

58

7 Working with Pages

<app-i d>wor kspace</ app-i d>

<enabl ed- yn>t r ue</ enabl ed- yn>

<obj ect -t ype>Cont ent Defi ni ti on</ obj ect -t ype>

<cont ent - i d>nyNewTabAct i on</ content-i d>

<m me-type>t ext/j avascri pt </ m nme-type>

<body>at gChangeTab(at g. servi ce. f ranmewor k. changeTab(' nyNewTab'),
null,null,null);</body>

<url-yn>true</url-yn>

</ content-definition>

. To create a new navigational item, modify the NavCont ai ner and other Navl t emcomponents as outlined in
Creating a New NavAction (page 54) section.

. Append your new tab definition information to the existing tab definition. This example creates a tab
definition named W MyNewTabDef i ni ti on. The tab definition identifies the ny. conpany. ui . Resour ces
file that defines the myNewTab. r esour ce key, which would be created in your custom application:

<tab-definition>

<i d>WsMyNewTabDef i ni ti on</id>

<app-i d>wor kspace</ app-i d>

<enabl ed- yn>t r ue</ enabl ed- yn>

<obj ect -t ype>TabDef i ni ti on</ obj ect -t ype>
<r esour ce- bundl e>ny. conpany. ui . Resour ces</ r esour ce- bundl e>
<content-ids>

<map-entry>

<key>acti onJavaScri pt </ key>

<val ue>nyTabActi on</ val ue>

</ map-entry>

</content-ids>

<tenpl at e-i ds>

<map-entry>

<key>cont ent Header </ key>

<val ue>cont ent Header Tenpl at e</ val ue>

</ map-entry>

</tenpl ate-ids>

<t ab-i d>nyNewTab</t ab-i d>

<titl e-key>nyNewTab. resource</title-key>
<vi si bl e-yn>t rue</ vi si bl e-yn>
<access-ri ght >3 obal Panel </ access-ri ght >
<panel - st ack- assi gnnent s>

<nmap-entry>

<key>pr ef er encesPanel </ key>

<val ue>cont ent Col um</ val ue>

</ map-entry>

<map-entry>

<key>hel pf ul Panel s</ key>

<val ue>si debar Col um</ val ue>

</ map-entry>

<nmap-entry>

<key>MyNewPS</ key>

<val ue>cont ent Col um</ val ue>

</ map-entry>

<map-entry>

<key>gl obal Panel s</ key>

7 Working with Pages 59

<val ue>gl obal Cel | </ val ue>
</ map-entry>
<map-entry>

<key>cntHel pf ul Panel s</ key>
<val ue>si debar Col utm</ val ue>

</ map-entry>

</ panel - st ack- assi gnnent s>
<current-panel - st acks>
<map-entry>
<key>MyNewPS</ key>

<val ue>cont ent Col utm</ val ue>

</ map-entry>
<map-entry>

<key>cntHel pf ul Panel s</ key>
<val ue>si debar Col utm</ val ue>

</ map-entry>

<map-entry>
<key>gl obal Panel s</ key>
<val ue>gl obal Cel | </ val ue>
</ map-entry>

</ current-panel - st acks>
<panel - st ack- or der >
<id-entry>

<i d>gl obal Panel s</i d>
<priority>0</priority>
</id-entry>

<id-entry>

<i d>cntHel pful Panel s</i d>
<priority>l</priority>
</id-entry>

<id-entry>

<i d>hel pf ul Panel s</i d>
<priority>2</priority>
</id-entry>

<id-entry>

<i d>MyNewPS</ i d>
<priority>3</priority>
</id-entry>

<id-entry>

<i d>pr ef er encePanel s</i d>
<priority>4</priority>
</id-entry>

</ panel - st ack- or der >
</tab-definition>

. Create a MyNewPS panel stack definition that will be used by the new WsMyNewTabDefinition tab definition.

The panel stack definition identifies the ny. conpany. ui . MyUser Resour ce file that defines the MyNewPS

key, which would be created in your custom application:

<panel - st ack-defini ti on>
<i d>MyNewPS</ i d>
<app-i d>wor kspace</ app-i d>

<enabl ed- yn>t r ue</ enabl ed- yn>
<obj ect - t ype>Panel St ackDefi ni ti on</ obj ect-type>

60

7 Working with Pages

<r esour ce- bundl e>ny. conpany. ui . MyUser Resour ce</ r esour ce- bundl e>
<panel - st ack- i d>MyNewPS</ panel - st ack-i d>
<header >cont ent Header </ header >
<error-panel -i d>errorPanel </ error-panel -i d>
<title-key>MyNewPS</titl e-key>
<tab-affinity-yn>true</tab-affinity-yn>
<panel -i ds>

<id-entry>

<i d>errorPanel </i d>
<priority>0</priority>

</id-entry>

<id-entry>

<i d>myNewPanel 1</i d>
<priority>l</priority>

</id-entry>

<id-entry>

<i d>myNewPanel 2</i d>
<priority>2</priority>

</id-entry>

<id-entry>

<i d>myNewPanel 3</i d>
<priority>3</priority>

</id-entry>

</ panel -i ds>

</ panel - st ack- defi ni ti on>

Modifying a Tab Action

You can modify the action that a tab performs by modifying the Cont ent Def i ni t i on for the action. Once you
have modified the item, you must define the JavaScript that will run when the tab is clicked.

Note: Refer to Customization Best Practices (page 42) before modifying definition files.

For example, you can modify the existing tab’s Cont ent Def i ni t i on to point to your new tab definitions. In this
example, the existing tab action is:

<content-definition>
<i d>exi sti ngTabAction</id>
<app- i d>wor kspace</ app-i d>
<enabl ed- yn>t r ue</ enabl ed- yn>
<obj ect -t ype>Cont ent Def i ni ti on</ obj ect -type>
<content-i d>exi sti ngTabActi on</content-id>
<m nme-type>t ext/javascri pt </ m ne-type>
<body>at gChangeTab(at g. svc. f ranewor k. changeTab(' Def aul t Tab"),

null, null, null);</body>

<url -yn>true</url-yn>

</content-definition>

Create or modify the / at g/ svc/ f r amewor k/ ser vi ceFr amewor k. xni file in your new custom module and
add the Cont ent Def i ni ti on items for the tab action. Note that you must include the ID so that the object
definition can be found during the combiner process. When writing the definition, you override only the

7 Working with Pages 61

attributes that you want to modify. To change the at gChangeTab attribute to point to your nyNewTab, you
would create the following:

<content-definition>
<i d>exi sti ngTabActi on</id>
<body>at gChangeTab(at g. svc. f ranewor k. changeTab(' myNewTab'), null, null,
nul ') : </ body>
</ content-defintion>

Deleting a Tab Definition

The following is an example of how to delete a tab definition named nyexi sti ngTabAct i on. To delete a
definition from your Ul, use the xm - combi ne="r enpbve" command to the ser vi ceFr amewor k. xm file
located in your custom directory.

Note: Refer to Customization Best Practices (page 42) before modifying definition files.

The following example appends the removal of the definition to the default configuration:

<content-definition xm -conbi ne="renove">
<i d>nyexi stingTabActi on</i d>
</ content-definition>

Adding a New Panel Definition

Add new panels to the / at g/ svc/ f ramewor k/ ser vi ceFr amewor k. xmi file in your custom application.
1. Create the panel JSP file.

2. Create the/ at g/ svc/ f ramewor k/ ser vi ceFr anewor k. xn file,

3. Add a panel stack definition that contains the new panel.

4. Add a panel definition for each new panel.

5. Add the panels to the existing panel stack by updating the panel I ds property. Similarly, the panels may be
added to a new panel stack.

Note: The JSPs for new panels should be housed in a custom application. If the JSPs are housed in a custom Web
application, the ot her Cont ext property of the Panel Def i ni t i on should be set to the value of the context
root of the containing Web application. Refer to the Customization Best Practices (page 42) section.

Example: Adding Three New Panels

Continuing with the example of adding three panels to the Customer Management page, the following
properties will be changed for the panel definition. Please note that:

62 7 Working with Pages

« The appl d property must be set to wor kspace for the panel to be loaded in Service Center

+ The accessRi ght may remain the default A obal Panel right or a specific right. If using a specific right, the
right must be defined and assigned to Service Center users. Note: The access right must be defined or the tab
will not be rendered

The following provides an example of code that adds three new panels, nyNewPanel 1, myNewPanel 2 and
nyNewPanel 3, to the W& Cust omer Panel St ack panel stack definition:

1. Create the nypanel 1. j sp, nypanel 2. j sp and nypanel 3. j sp files that will be called by the panel
definitions. Create these files in the / panel s/ or der/ directory of your custom application.

2. Create the/ at g/ svc/ f ramewor k/ ser vi ceFr amewor k. xm file in your custom application directory.

3. To this file, add a panel stack definition that contains the three new panels and their priorities. This appends
your new panels to the existing information that creates the Customer Panel Stack. For example:

<panel - st ack-definition>
<i d>WsCust oner Panel St ack</i d>
<panel -i ds>

<id-entry>

<i d>nmyNewPanel 1</i d>
<priority>4</priority>
</id-entry>

<id-entry>

<i d>nmyNewPanel 2</i d>
<priority>5</priority>
</id-entry>

<id-entry>

<i d>nmyNewPanel 3</i d>
<priority>6</priority>
</id-entry>

</ panel -i ds>

</ panel - st ack-definition>

4. Add a panel definition for each of the new panels. The following example displays the code for one of the
three panels:

<panel -definition>

<i d>nmyNewPanel 1</i d>

<app-i d>wor kspace</ app-i d>

<enabl ed- yn>t r ue</ enabl ed- yn>

<obj ect -t ype>Panel Def i ni ti on</ obj ect -type>

<resour ce- bundl e>at g. conmer ce. csr. Fr anewor kResour ces</ r esour ce- bundl e>
<tenpl at e-i ds>

<map-entry>

<key>panel Tenpl at e</ key>

<val ue>panel Tenpl at e</ val ue>

</ map-entry>

</tenpl ate-ids>

<panel - i d>nyNewPanel 1</ panel -i d>

<cont ent-url >/ panel s/ order/ nmypanel 1. j sp</content-url >
<ot her - cont ext >MyWebAppl i cat i on</ ot her - cont ext >
<title-key>nyNewPanel 1</titl e-key>

<vi si bl e-yn>t rue</ vi si bl e-yn>
<showtitle-yn>true</showtitle-yn>

7 Working with Pages 63

<panel - open-yn>t r ue</ panel - open-yn>

<al | ow panel -t oggl e- yn>f al se</ al | ow panel -t oggl e-yn>
<avai | abl e-yn>f al se</ avai |l abl e-yn>

<cont ent - open- yn>t r ue</ cont ent - open-yn>

<al | ow cont ent -t oggl e- yn>t rue</ al | ow cont ent -t oggl e-yn>
<t ab- hol der - yn>t rue</ t ab- hol der - yn>

<al ways-t abbed- yn>f al se</ al ways-t abbed- yn>

<t abbed- yn>f al se</t abbed-yn>

<al | ow t abbi ng- yn>t rue</ al | owt abbi ng-yn>

<al | ow sl ot s-yn>f al se</ al | ow sl ot s-yn>

<t ab-scrol | -i ndex>0</t ab-scrol | -i ndex>

<panel - it em count >0</ panel -i t em count >

<access-ri ght >NewPanel 2</ access-ri ght >

</ panel -definition>

5. Repeat Step 3 for nyNewPanel 2 and nyNewPanel 3.

6. The new panels can be added to any existing panel stack by updating the panel | ds property. Similarly, the
panels may be added to a new panel stack.

Note: The JSPs for the new panels should be housed in your custom application, so the ot her Cont ext
property of the Panel Def i ni ti on should be set to the value of the context root of the containing Web
application.

Customer Management Panel Configuration

You can customize the Customer Management Panel to display panels based upon your requirements by
adding or removing JSP files that display or manage customer specific data. Because the configuration is based
on components, you can perform module-specific customizations. For example, the DCS- CSR- Ul module
extends the Customer Management Panel with Commerce Service Center-specific sections, such as Credit Cards,
Credits and Promotions. For additional information on Oracle ATG Web Commerce customer management
modifications, refer to the ATG Commerce Programming Guide.

To update the Customer Management Panel, modify the / at g/ svc/ agent / cust omer /

Cust oner Panel Confi g. properti es file to identify the panels to display as well as the context where
the panel is displayed. The following example displays the Commerce Service Center extensions, the credit
card, credits and promotions panels, and adds three new custom panels named nyCust oner Panel 1. j sp,
nyCust omer Panel 2. j sp and nyCust oner Panel 3. j sp:

$cl ass=at g. svc. agent . cust ormer . Cust orrer Panel Confi g
subSecti ons+=\
/ panel s/ cust oner/creditCards.jsp,\
/ panel s/ custoner/credits.jsp,\
/ panel s/ cust oner/ pronotions. jsp,\
/ panel s/ cust oner/ myCust orrer Panel 1. j sp, \
/ panel s/ cust oner/ myCust oner Panel 2. j sp, \
/ panel s/ cust oner/ myCust ormer Panel 3. j sp

cont ext Root s+=\
/ DCS- CSR, \
/ DCS- CSR, \
/ DCS- CSR, \
/ DCS- CSR, \
/ DCS- CSR, \

64

7 Working with Pages

/ DCS- CSR

Troubleshooting Pages

When the application has started but your new tab, panel stack or panel is not visible, check the following
common causes:

1.

2.

Verify that the enabl eYn property is set to t r ue (the default value).

If you are using an access right other than G obal Panel s, verify that your access right has been created in
the appropriate repository. If unsure, set the accessRi ght to d obal Panel s, which is an access right with
no restrictions. The G obal Panel s access right can be used for both tabs and panels.

. If a panel stack is not displaying, verify that the panel St ackl d for the panel stack is added to the

panel St ackAssi gnment s, cur r ent Panel St acks and panel St ackOr der properties of the
TabDef i ni ti on item as described above.

. If a panel is not displaying, verify that the panel | d for the panel is added to the panel | ds property in the

Panel St ackDef i ni ti on item as described above.

. If the top panel in the panel stack is not displaying, verify that the t abHol der Yn property is setto t r ue.
. If a panel other than the top panel is not displaying, verify that the t abHol der Yn property is f al se.

. If tabbed panels are not displaying, verify the following:

 The first panel is configured with t abHol der Yn=t r ue. The cur r ent Panel | d should be set to the same
value as the panel | d. The t abbedPanel I ds should be set to the list of panel | d’s of panels in the row of
tabs excluding the first panel

+ The panels after the first panel should be configured with t abHol der Yn=f al se and cur r ent Panel I d
and t abbedPanel | ds set to null

+ All the tabbed panels should be configured to al waysTabbedYn=t r ue, t abbedYn=t r ue and
al | owTabbi ngYn=true

7 Working with Pages 65

66

7 Working with Pages

8 Working with Forms

Service Center obtains information by having users and agents complete forms. These forms are often required
to handle user information that come from a number of different formats. They also may require validation,
additional actions or the data acquired must be stored in specific repositories or databases. This section
identifies modifiable forms that are specific to Service Center, as well as information on creating new forms.

For information on working with forms, and detailed information on associating HTML form tags with Nucleus
components, refer to the ATG Page Developer's Guide. For information on creating forms for your application,
refer to the ATG Platform Programming Guide.

Modifying Existing Forms

Forms are customized using configuration layering. This extends the functionality of default forms within
Service Center by modifying the fields within the form. By extending configuration files, you can add or remove
fields or modify the behavior of fields. For example, you can identify required fields within a specific form by
mapping to your own JSP snippets that contain your customized layout. Once you have created your own
customized JSP snippets, you can modify the appropriate configuration property for that form to render your
customizations.

Using default or extended fragments, you can modify the default forms, and/or append your customizations. If
JSP snippets are not specified, the standard forms are rendered.

The following forms can be modified:

Page Form/Page Area

Customer Information Create New Customer

Customer Information Edit/View Customer

Customer Search Customer Search or the Select Customer pop-up in the shopping cart
Gift Lists Details, Search, Search Results and View Details

Order Search Order Search

Order View Display values

8 Working with Forms 67

Page Form/Page Area

Product Catalog Product Search

Forms are customized by modifying the associated configuration properties files that define the JSP fragments
that replace and/or append the field.

Not e: Refer to the Customization Best Practices (page 42) section before modifying files.

The JSP fragment is integrated within your page layout to display the new or modified field. Service Center uses
a default JSP fragment that contains all of the standard fields displayed on a page, and an optional extended JSP
fragment used for creating additional fields.

The default page fragment component is mapped to the default JSP snippet in Service Center but may be
redirected with a configuration property to your own JSP page. The page contains adsp: i ncl ude tag that
reads the associated configuration file and then includes the page defined by the page fragment component.
For example, to change the default fragment to your own code, you would change the page fragment’s

servl et Cont ext and URL properties to point to your page.

The extended page fragment component allows you to append content to the page without changing the
default page fragment. The extended page fragment component contains the same functionality as, and is
defined directly after, the default page fragment component. By default, the extended properties files do not
contain a reference to a JSP file. You can define a JSP for the extended fragment to incorporate form properties
that are specific to your environment.

The default and extended page fragment components are instances of at g. web. PageFr agment , which are
used to define the location of the JSP file. The configuration files that define the page fragment components
contain the following properties to identify the JSP:

+ servl et Cont ext - Specifies the context root of the JSP fragment that will be incorporated into the page
* URL - Specifies the URL of the JSP fragment to be incorporated into the page

Both the default and extended property files are instances of PageFr agnment , allowing a ser vl et Cont ext and
URL to be specified for the JSP snippet. As such, the ser vl et Cont ext and URL property descriptions can be
applied for both fragment types.

For general information on working with forms, refer to the Forms section of the ATG Page Developer's Guide.

Working with Page Fragments

When working with page fragments, you should work within your customization directory and use
configuration layering to ensure that your customizations are not overwritten. Refer to the Customization Best
Practices (page 42) section.

1. Create a JSP fragment file that provides the new field information.

2. Add the path of the newly created JSP file to the appropriate extended properties file. Specify the URL and
Ser vl et Cont ext for the appended file.

3. Save the extended properties file.

4. Create a new fragment and place it in the location specified by the URL property of the extended properties
file. Optionally, you can edit an existing JSP fragment that has been specified in the extended properties file
to include the new field information.

68

8 Working with Forms

Note: The JSP fragments are dynamically included and the file will be compiled and executed before being
embedded into the form. As such, import any necessary components into your page to ensure successful
compiling.

Overriding the Default Page Fragment

You can make customizations to existing form fields such as adding a new field within or above the default field
layout. Refer to the Customization Best Practices (page 42) section before modifying files.

1. Make a copy the appropriate default fragment.

2. Make your customizations to the copy of the default fragment. Specify the URL and Ser vl et Cont ext for the
Web application file. Save your changes.

3. Update the appropriate version of the / | ocal confi g configuration file to point to the new copy of the
default fragment.

Modifiable Form Configuration Files

The configuration property files for the modifiable forms are located below. Note that there are two properties
files, one for the default configuration and one for the extended configuration. By default, the extended
properties file does not contain a reference to a JSP file. You can define a JSP for the extended fragment to
incorporate form properties.

View Customer Form

The form that enables an agent to view customer profile information.

Default / Servi ce- Ul / Fr amewor k/ Agent / confi g/ at g/ svc/ agent / ui / f ragnent s/
cust omer / Cust oner Vi ewDef aul t . properties

Extended / Servi ce- Ul / Framewor k/ Agent / confi g/ at g/ svc/ agent/ ui / fragnent s/
cust omer / Cust oner Vi ewkExt ended. properti es

URL /'incl ude/ cust omer/ Profil eVi ewdl Fragnent . j sp

Servlet Context agent

Create New Customer Form

The form that enables an agent to create a new customer profile.

Default / Servi ce- Ul / Fr amewor k/ Agent / confi g/ at g/ svc/ agent/ ui / f ragment s/
cust ormer / Cust oner NewDef aul t . properties

Extended / Servi ce- Ul / Framewor k/ Agent / confi g/ at g/ svc/ agent/ ui / f ragment s/
cust omer / Cust oner NewExt ended. properti es

8 Working with Forms 69

URL /'incl ude/ cust omer/ Prof i | eNewUl Fragnent . j sp

Servlet Context agent

Edit Customer Form

The form that enables an agent to edit a customer profile.

Default / Servi ce- Ul / Framewor k/ Agent / confi g/ at g/ svc/ agent/ ui / f ragment s/
cust orer/ Cust orer Edi t Def aul t. properties

Extended / Servi ce- Ul / Fr amewor k/ Agent / confi g/ at g/ svc/ agent/ ui / f ragment s/
cust ormer / Cust oner Edi t Ext ended. properties

URL /'include/ custoner/Profil eEditU Fragnent.jsp

Servlet Context agent

Search Customer Form

The form that enables an agent to search for a customer profile. This also includes the Customer Select pop-up
screen in the Shopping Cart.

Default / Ser vi ce- Ul / Fr amewor k/ Agent/ confi g/ at g/ svc/ agent/ ui / fragment s/
cust omer/ Cust oner Sear chDef aul t . properties

Extended / Servi ce- Ul / Fr amewor k/ Agent / confi g/ at g/ svc/ agent/ ui / f ragment s/
cust ormer / Cust oner Sear chExt ended. properti es

URL /'include/ cust oner/ Profil eSearchU Fragnent. jsp

Servlet Context agent

Create Gift Lists Form

The form that enables an agent to create a gift list.

Default / DCS- CSR- Ul / confi g/ at g/ conmer ce/ cust svc/ ui / fragnment s/
gift/GftlistCreateDefault. properties

Extended / DCS- CSR- Ul / confi g/ at g/ conmer ce/ cust svc/ ui / fragnent s/
gift/GftlistCreateExtended. properties

URL /include/gift/giftlist/giftlistCreateU Fragnent.jsp

70 8 Working with Forms

Servlet Context

DCS- CSR

Gift Lists Purchase Details Form

The form that enables an agent to see the purchase details of a gift list.

Default / DCS- CSR- Ul / conf i g/ at g/ conmer ce/ cust svc/ ui / fragnment s/
gift/GftlistDetail sPurchaseDefault.properties

Extended / DCS- CSR- Ul / confi g/ at g/ commer ce/ cust svc/ ui / fragment s/
gift/GftlistDetail sPurchaseExt ended. properties

URL /linclude/gift/giftlist/giftlistDetail sPurchaseU Fragnment.jsp

Servlet Context

DCS- CSR

View Gift Lists Details Form

The form that enables an agent to see the purchase details of a gift list.

Default / DCS- CSR- Ul / confi g/ at g/ conmer ce/ cust svc/ ui / fragnment s/
gift/GftlistDetail sViewDefault.properties

Extended / DCS- CSR- Ul / confi g/ at g/ conmer ce/ cust svc/ ui / fragment s/
gift/GftlistViewDetail sExtended. properties

URL linclude/gift/giftlist/giftlistDetailsViewd Fragnent.jsp

Servlet Context DCS- CSR

Search Gift Lists Form

The form that enables an agent to search for a gift list.

Default / DCS- CSR- Ul / confi g/ at g/ conmer ce/ cust svc/ ui / fragnment s/
gift/GftlistSearchDefault. properties

Extended / DCS- CSR- Ul / confi g/ at g/ conmer ce/ cust svc/ ui / fragnment s/
gift/GftlistSearchExtended. properties

URL linclude/gift/search/giftlistSearchU Fragment.jsp

Servlet Context DCS- CSR

8 Working with Forms

71

Search Results Gift Lists Form

The form that enables an agent to see the results of a search for a gift list.

Default / DCS- CSR- Ul / conf i g/ at g/ commer ce/ cust svc/ ui / fragnment s/
gift/GftlistSearchResul tsDefault.properties

Extended / DCS- CSR- Ul / confi g/ at g/ commer ce/ cust svc/ ui / fragment s/
gift/GftlistSearchResul t sExt ended. properties

URL

Servlet Context

linclude/gift/search/giftlistSearchResul tsU Fragnent.jsp

DCS- CSR

Product Search Form

The form that enables an agent to search for a product.

Default /| DCS- CSR- Ul / confi g/ at g/ conmer ce/ cust svc/ ui / fragnent s/
cat al og/ Product Sear chDef aul t. properti es

Extended / DCS- CSR- Ul / confi g/ at g/ commer ce/ cust svc/ ui / fragnent s/
cat al og/ Product Sear chExt ended. properties

URL /i ncl ude/ cat al og/ product Sear chUl Fragnent . j sp

Servlet Context

DCS- CSR

Order Search Form

The form that enables an agent to search for an order.

Default / DCS- CSR- Ul / confi g/ at g/ conmer ce/ cust svc/ ui / fragnment s/
order/ Order Sear chDef aul t. properties

Extended / DCS- CSR- Ul / confi g/ at g/ conmer ce/ cust svc/ ui / fragnment s/
or der/ Or der Sear chExt ended. properties

URL /i ncl ude/ or der/ or der Sear chUl Fragnent . j sp

Servlet Context

DCS- CSR

Order View Form

This form allows an agent to view an order.

72

8 Working with Forms

Default / DCS- CSR- Ul / conf i g/ at g/ conmer ce/ cust svc/ ui / fragnment s/
order/ Order Vi enDef aul t . properties

Extended / DCS- CSR- Ul / confi g/ at g/ conmer ce/ cust svc/ ui / fragnment s/
order/ Order Vi enExt ended. properties

URL /i ncl ude/ or der/ or der Vi ewJl Fragnent . j sp

Servlet Context DCS- CSR

Creating New Forms

When you create new forms, you must also create the appropriate files, including the form handler and JSP files.
The following example shows how to create an electronic shipping group in Commerce Service Center by:

+ Creating a form that creates a new electronic shipping group
+ Defining and identifying the form’s components

+ Identifying the resource bundles

+ Defining the submit button calls

+ Configuring form validation

For general information on creating forms, form handlers and working with JSP files, refer to the ATG Page
Developer's Guide and the ATG Platform Programming Guide. For detailed information on all Service Center form
handlers, refer to the ATG API Reference for Commerce Service Center :

1. Create a new JSP file in your customization directory. Define the components of the form. For example:

<%@include file="/include/top.jspf" %

<dsp: page xm ="true">

<dsp: i nport bean bean="/at g/ conmer ce/ cust svc/ order/
Cr eat eEl ect r oni cShi ppi ngG oupFor nHandl er"/ >

<dsp: i nport bean bean="/at g/ dynano/ dropl et/ Sw tch"/>
<dsp: i nport bean var ="addEl ect r oni cShi ppi ngG oup"
bean="/ at g/ comrer ce/ cust svc/ ui / fragment s/ or der/
AddEl ect r oni cShi ppi ngGr oup"/ >

<dsp: i nport bean var="el ect roni cShi ppi ngG oupConfi g"
bean="/ at g/ comrer ce/ cust svc/ ui/

El ect r oni cShi ppi ngG oupConfi gurati on"/>

<c:set var="form d" val ue="nycsr AddEl ectroni cAddress"/>

2. Define the URLs that are called on success and error conditions. For example:

<svc-ui: framewor kUl var="successURL"
panel St acks="cntShi ppi ngAddr essPS"/ >
<svc-ui: framewor kUl var="error URL" panel St acks="cntShi ppi ngAddr essPS"/ >

3. Define the form and the elements used by the form. For example:

8 Working with Forms 73

<dsp: set Layer edBundl e basenane="at g. conmer ce. csr. or der. \\ebAppResour ces"/ >
<dsp:formid="${formd}" formd="${form d}">

<dsp:input type="hidden" priority="-10" val ue=""

bean="Cr eat eEl ect r oni cShi ppi ngG oupFor nHandl er.

newEl ect r oni cShi ppi ngG oup"/ >

<dsp:input type="hidden" value="${errorURL }" name="error URL"
bean="Cr eat eEl ect r oni cShi ppi ngG oupFor nHandl er.

newEl ect r oni cShi ppi ngG oupEr r or URL"/ >

<dsp:input type="hidden" val ue="${successURL }" name="successURL"
bean="Cr eat eEl ect r oni cShi ppi ngG oupFor nHandl er.

newEl ect r oni cShi ppi ngG oupSuccessURL"/ >

<ul class="atg_dat aForm at g_commrer ce_csr_addressFor ni

i d="at g_commer ce_csr_newor der _newShi ppi ngAddr ess" >

<li class="atg_conmerce_csr_address">

<l abel class="atg_nessagi ng_requiredl ndi cat or">

*</ span>

<fnt: message key="newAddress.emil" />

</ | abel >

</ span>

<dsp:input id="${form d}_emnil Address" type="text"

bean="/ at g/ commer ce/ cust svc/ or der/

Cr eat eEl ect r oni cShi ppi ngG oupFor mHandl er .

el ectroni cShi ppi ngG oup. enai | Addr ess" si ze="25" maxl engt h="50">
<dsp:tagAttri bute nanme="doj oType"

val ue="at g. wi dget . f orm Val i dat i onText Box" />

<dsp:tagAttribute nane="trin' value="true" />

<dsp:tagAttribute name="required" value="true" />

</ dsp: i nput >

. Provide the submit button call. For example,

<li class="atg_svc_formActions">

<div cl ass="atg_comerce_csr_panel Footer">

<i nput type="button" nane="nyaddAddressButton"

i d="myaddAddr essBut t on"

cl ass="atg_conmerce_csr_activeButton"

oncl i ck="cust om conmer ce. csr. order. shi ppi ng. addEl ect r oni cAddress();

return fal se;"

val ue="<f nt: nessage key="newOr der Si ngl eShi ppi ng. addShi ppi ngAddr ess.

but t on. addAddr ess"/ >

forme"${formd}"

doj oType="at g. wi dget . val i dati on. Submi t Butt on"

/>

</ div>

</ ul >

</ dsp: fornme

. If you are using JSP validation, provide the validation function. When the form or page is loaded, the
validation routine tracks user input and validates each input field. If the validation is successful, the submit
button is enabled:

8 Working with Forms

<script type="text/javascript">

var ${form d}Validate = function () {

var disable = fal se;

<c:if test="${!enpty isDisabl eSubm t}">di sable =

${i sDi sabl eSubmit}();</c:if>

<c:if test="9${'!enpty validatelf}">if (${validatelf}) {</c:if>
if ('dijit.byld("${form d}_ennil Address").isValid()) disable =
true;

<c:if test="%{!enpty validatelf}">}</c:if>

doj o. byl d("${form d}"). nyaddAddr essBut t on. di sabl ed = di sabl e;
H

_cont ai ner _. onLoadDef erred. addCal | back(function () {

${form d}Validate();

atg.service.formwatchl nputs("${formd}", ${form d}Validate);
at g. keyboar d. r egi st er For nDef aul t Ent er Key(" ${form d}",
"addAddressButton", "buttondick");

1)

_cont ai ner _. onUnl oadDef err ed. addCal | back(function () {

atg. service.formunWatchlnputs(' ${formd}"');

at g. keyboar d. unRegi st er For nDef aul t Ent er Key("${form d}");

1)

</script>

</ dsp: page>

6. Once you have created the form, create a customized JavaScript file to identify the submit action for your new
form. For example:

cust om conmer ce. csr. order. shi ppi ng. addEl ectroni cAddress = function (){
at gSubmi t Acti on({form doj o. byl d(" nycsr AddEl ect roni cAddress")});

b

This example creates a form similar to this:

* Ermail Address:

Creating a Pop-up Page

A pop-up page presents a form within a new window. Pop-up pages are invoked from a parent, or caller page,
which defines the pop-up page and calls the JSP that displays the page.

To create a pop-up page, you must perform the following:
1. Create the parent or caller page, as outlined in Creating the Caller Page (page 76).
2. Create the JSP file that creates and displays the page, as outlined in Creating the JSP file (page 77).

3. Create the JavaScript file that performs the actions that occur when the submit button is selected. This is
outlined in Creating the JavaScript (page 80) section.

8 Working with Forms 75

Creating the Caller Page

1. Create a caller page that defines the pop-up window. For example:

<script type="text/javascript">

if (!dijit.byld("mycsrEditAddressFl oatingPane")) {
new doj ox. Di al og({ id: "nycsrEditAddressFl oati ngPane",
cacheContent: "false",

executeScripts: "true",

scri pt HasHooks: "true",

duration: 100,

"class": "atg_conmerce_csr_popup"});

}

</script>

. Define the pop-up window URL with the window parameters. For example:

<c:url var="edit AddressURL" context="/MY-DCS- CSR}"
val ue="editEl ectronic.jsp">

<c: param nane="ni cknane" val ue="${addr essKey}"/>

<c: par am nanme="${ st at eHol der . wi ndowl dPar anet er Nare} "
val ue="${w ndow d}"/ >

</c:url>

In the following example, the caller page defines the pop-up window using Dojo, and then calls the
edi t El ectroni c. j sp file to display the pop-up page.

Pass in the wi ndowl d and any other parameters that are required by the new pop up page.

. Define the link that loads the pop-up page. For example:

<li class="atg_commerce_csr_edit Address" >

<a class="atg_tablelcon atg_propertyEdit" style="m n-w dth: 100px"

title="<fnt:nessage key="common. addr ess. edi t. nouseover"/>" href="#"

onclick="atg. commerce. csr. comon. showPopupW t hRet ur n({
popupPanel d: ' nmycsr Edi t Addr essFl oat i ngPane' ,

title: '<fmt:nessage key="common.edit"/>",

url: '${editAddressURL}",

onCl ose: function(args) {

if (args.result == 'ok') {

at gSubmi t Acti on({

panel Stack :['cntShi ppi ngAddressPS', ' gl obal Panel s'],
form: docunent. get El ement Byl d(' t ransfornform)

1)

}

}});return fal se; ">

<fnt: message key="comon.edit"/>

</ a>

</ span>

The ond ose function defines the actions that should occur when the pop-up window is closed. When
the pop-up window is closed automatically, the pop-up page passes back the ar gs. r esul t value as ok,

refreshing the shipping address panel stack and global panel stacks.

76

8 Working with Forms

4. Save the parent page.

Creating the JSP file

The following example creates the edi t El ect r oni c. j sp that was created in the above example.

Note: When writing your JSP file, ensure that all tags are closed appropriately. The following example may be
missing end tags due to formatting.

The pop-up page is served on both the success and error conditions. If the success condition is met, the pop-up
page is closed automatically and the caller page determines the appropriate actions to take once the pop-up
page is closed.

1. Create theedi t El ectroni c. j sp page. For example:

<% - This page is used to edit the electronic shipping group.
param - ni ckname

This paraneter is used to initialize shipping group fromthe

Shi ppi ngG oupMapCont ai ner .

param - success

This paraneter is used to close the popup panel and refresh the parent
page. This paraneter is added to the request on edit form subm ssion.
--%

<%@include file="/include/top.jspf"%

<dsp: page xm ="true">

<dsp: i nport bean var ="updat eShi ppi ngG oupFor nHandl er "

bean="/ at g/ commer ce/ cust svc/ or der/

Updat eEl ect r oni cShi ppi ngG oupFor nHandl er "/ >

<dsp: i nport bean var="sgConfig"

bean="/ at g/ commer ce/ cust svc/ ui/

El ect r oni cShi ppi ngG oupConfi guration"/>

<dsp: i nport bean bean="/at g/ dynano/ dropl et/ Sw tch"/>

<dsp: i nport bean bean="/at g/ dynano/ dr opl et/ Err or MessageFor Each"/ >
<dsp: i nport bean var ="el ect r oni cAddr essFor nt

bean="/ at g/ conmer ce/ cust svc/ ui / fragnent s/ or der/

El ect roni cAddr essForni'/ >

<dsp: get val ueof var="ni ckname" paran¥"ni cknane"/>

<dsp: get val ueof var="success" paran¥"success"/>

2. Identify the success and error URLs for the form. For example:

<% - forns success and error url --%

<c:url var="successError URL"

context ="/ ${sgConfi g. edi t PageFr agnent . servl et Cont ext }"
val ue="${sgConfi g. edi t PageFr agnent . URL} " >

<c: param nane="ni cknane" val ue="${ni cknanme}"/>

<c: par am nanme="${ st at eHol der . wi ndow dPar anet er Nare} "
val ue="${wi ndowl d}"/ >

<c: param nane="success" val ue="true"/>

</c:url>

3. Define the layered resource bundles used. For example:

<% - Uses | ayered resource bundle --%

8 Working with Forms 77

<dsp: | ayer edBundl e basenane="at g. conmer ce. csr. order . WebAppResour ces" >
<div id="atg_conmmerce_csr_edit Shi ppi ngAddr ess"

cl ass="at g_commrer ce_csr_popupPanel

at g_conmer ce_csr _addr essFor nPopup" >

<dsp: | ayer edBundl e basenanme="${sgConfi g. resourceBundl e}">
<fnt: message var="edit PageFragnmentTitle"

key="${sgConfi g. edi t PageFragnent Ti t| eKey}"/ >

</ dsp: | ayer edBundl e>

<h2>

<c:out val ue="${editPageFragnentTitle}"/>

</ h2>

<di v cl ass="at g_comrerce_csr_popupPanel C oseButton"></div>

. Within the <di v cl ass>, define what happens whether or not there is an error to display. For example:

<di v>

<% -When there is an error, display the error on the page. --%
<dsp: dropl et nanme="Swi tch">

<dsp: par am bean=

" Updat eEl ect r oni cShi ppi ngGr oupFor mHandl er . fornError"
nanme="val ue"/ >

<dsp: opar am nanme="true" >

 <br/ ><br/ >

<fnt: message key="common. error. header"/>

<dsp: dropl et name="Error MessageFor Each" >

<dsp: par am bean=

" Updat eEl ect r oni cShi ppi ngG oupFor nHandl er. f or nExcepti ons"
nane="exceptions"/>

<dsp: opar am nanme="out put " >

<Ll >

<dsp: val ueof paranF"nessage"/>

</ dsp: opar an»>

</ dsp: dropl et >

</ UL>

</ span>

</ dsp: opar an»>

<dsp: opar am nane="f al se" >

<c:if test="${success}">

<% -When there is no error on the page subm ssion, close the
popup page and refresh the parent page. The parent page
only will refresh if the result paraneter value is ok.
--%

<script type="text/javascript">

hi dePopupW t hResul t s

(" at g_conmer ce_csr_edi t Shi ppi ngAddress', {result : 'ok'});
</script>

</c:if>

</ dsp: opar an»>

</ dsp: dropl et >

</ di v>

78

8 Working with Forms

5. Identify the form components to use. For example:

<c:set var="form d" val ue="nmnycsr Edi t Shi ppi ngAddr essFor ni'/ >
<dsp:formid="${form d}"

form d="${fornl d}">

<dsp:input type="hidden" priority="-10" val ue=""
bean="Updat eEl ect r oni cShi ppi ngG oupFor nHandl er.

updat eShi ppi ngGr oup”/ >

<dsp:input type="hi dden" val ue="${successErrorURL }"
bean="Updat eEl ect r oni cShi ppi ngG oupFor nHandl er.

updat eShi ppi ngG oupError URL"/ >

<dsp:input type="hi dden" val ue="${successErrorURL }"
bean="Updat eEl ect r oni cShi ppi ngG oupFor nHandl er.

updat eShi ppi ngG oupSuccessURL"/ >

<dsp:input type="hi dden"

bean="Updat eEl ect r oni cShi ppi ngG oupFor nHandl er.

shi ppi ngG oupByN ckname"

val ue="${f n: escapeXm (ni ckname) }" priority="5"/>

<c:if test="${enpty updat eShi ppi ngG oupFor nHandl er . shi ppi ngG oup }">
<dsp: set val ue bean="Updat eEl ect r oni cShi ppi ngG oupFor nHandl er.
shi ppi ngG oupByN cknane"

val ue="${f n: escapeXm (ni cknarme) }"/>

</fc:iif>

<ul cl ass="atg_dat aForm at g_conmer ce_csr _addr essFor n{ >

<li class="atg_conmerce_csr_address">

<l abel class="atg_nessagi ng_requiredl ndi cat or">

*</ span>

<fnt: message key="newAddress.emil" />

</ | abel >

</ span>

<dsp:input id="${form d}_email Address" type="text"

bean="/ at g/ conmer ce/ cust svc/ or der/

Cr eat eEl ect roni cShi ppi ngG oupFor mHandl er . wor ki ngShi ppi ngG- oup.
enmai | Address" si ze="25" maxl engt h="50">

<dsp:tagAttri bute nanme="doj oType"

val ue="at g. wi dget . f orm Val i dat i onText Box" />
<dsp:tagAttribute nane="trin' value="true" />
<dsp:tagAttribute name="required" value="true" />

</ dsp: i nput >

</ ul >

<di v cl ass="at g_conmmerce_csr_panel Footer">

<i nput type="button"

narme="${f or m d} SaveBut t on"

val ue="<f nt: nessage key='common. save' [>"

oncl i ck="cust om commer ce. csr. order. shi ppi ng. edi t Shi ppi ngAddr ess
(" ${successErrorURL}");return false;"

doj oType="at g. wi dget . val i dati on. Subm t Button"/>

<% - When the user clicks on the cancel button, hide the popup panel.
--%

<i nput type="button"

val ue="<f nt: nessage key='common. cancel ' />"

oncl i ck="hi dePopupWt hResul t s

8 Working with Forms

7.

('"atg_conmmerce_csr_edit Shi ppi ngAddress', {result
"cancel '});return false;"/>

</ div>

</ dsp: form

<% - end of edit Shi ppi ngAddressForm -- %

. If you are using JSP validation, provide the validation function. When the form or page is loaded, the

validation routine tracks user input and validates each input field. If the validation is successful, the submit

button is enabled:

<% -) The follow ng code is for JS validation--%

<script type="text/javascript">

var ${formd}Validate = function () {

var disable = fal se;

<c:if test="%{!enpty isDi sabl eSubmit}">disable =

${i sDi sabl eSubmit}();</c:if>

<c:if test="${!enpty validatelf}">if (${validatelf}) {</c:if>
if (!dijit.byld("${form d}_enunil Address").isValid())

di sable = true;

<c:if test="${!enpty validatelf}">}</c:if>

doj o. byl d("${form d}").addAddr essBut t on. di sabl ed = di sabl e;
b

_cont ai ner _. onLoadDef erred. addCal | back(function () {
${form d}Validate();

atg.service.formwatchl nputs("${formd}", ${form d}Validate);
at g. keyboar d. r egi st er For nDef aul t Ent er Key (" ${form d}",
"addAddr essButton", "buttondick");

1)

_cont ai ner _. onUnl oadDef erred. addCal | back(function () {

atg. service.formunWatchlnputs(' ${formd}"');

at g. keyboar d. unRegi st er For nDef aul t Ent er Key (" ${form d}");
1)

</script>

Save the edi t El ect roni c. j spfile.

Creating the JavaScript

Once you have created the edi t El ect r oni c. j sp file, add the following JS call to a new custom JS file:

cust om conmer ce. csr. or der. shi ppi ng. edi t Shi ppi ngAddress = functi on(pURL){

}

at g. commrer ce. csr. common. subm t Popup(pURL,
doj 0. byl d(" mycsr Edi t Shi ppi ngAddr essForni'),
dijit.byld("mycsrEditAddressFl oati ngPane"));

This function submits a pop up page form.

80

8 Working with Forms

9 Working With Grids and Tables

Tables and grids are similar in that they provide structured layouts for data. Tables, which are created in HTML,
display standard data that is defined using configuration files. Grids extend standard tables by allowing paging
and by using Dojo components.

Using configuration layering, you can identify the location and file names of JSP snippets to be included inside
the default pages. If these JSP snippets are not specified, the default grid pages are displayed. However, you
can choose to specify these JSP snippets, and extend the grid components, by providing additional rendering
information and grid data that is integrated into the existing grids.

Grids or tables can be modified to add columns, reorder or remove columns, change column widths or sorting,
as well as to change hover information.

The components of a grid that can be modified are:

+ Changing grid layouts

+ Column width

* Number of rows displayed per page

+ Number of rows displayed at a time per user scrolls
* Number of columns to display

+ Adding or modifying hover information

The components of a table that can be modified are:
* Number of columns to display

+ Changing table layouts

Note: All grid and table components are located in the application Ul modules, for example Ser vi ce- Ul or
DCS- CSR- Ul .

Modifiable Grids and Tables

The following grids and tables can be modified in Service Center.

Customer Information Page

The following grids and tables can be modified on the Customer Information page:

9 Working With Grids and Tables 81

Grid/Table Location

Order History / DCS- CSR- Ul / conf i g/ at g/ commer ce/ cust svc/ ui / t abl es/ or der/
OrderHi storyGrid. properties

Scheduled Orders / DCS- CSR- Ul / confi g/ at g/ conmer ce/ cust svc/ ui / t abl es/ order/
Schedul edOrdersGri d. properties

Ticket History / Servi ce- Ul / Framewor k/ Agent / confi g/ at g/ svc/ agent/ ui /
tabl es/ticket/CustomerTi cket Gid. properties

Customer Search Results | / Servi ce- Ul / Fr amewor k/ Agent / confi g/ at g/ svc/ agent/ ui /
Cust oner Profi | eSear chUl Confi guration. properties

Order View Page

The following grids and tables can be modified on the Order View page:

Grid/Table Location

Exchange History / DCS- CSR- Ul / conf i g/ at g/ commer ce/ cust svc/ ui / t abl es/ order/
ExchangeH storyGri d. properties

Related Tickets / DCS- CSR- Ul / confi g/ at g/ commer ce/ cust svc/ ui / t abl es/
ticket/ Rel atedTi cket Gri d. properties

Order Search / DCS- CSR- Ul / confi g/ at g/ commer ce/ cust svc/ or der/
Or der Sear chUl Confi guration. properties

Order Search Results / DCS- CSR- Ul / confi g/ at g/ commer ce/ cust svc/ or der/
Or der Sear chResul t sTabl e. properties

Approvals / DCS- CSR- Ul / confi g/ at g/ comrer ce/ cust svc/ ui / t abl es/
approval s/ Approval sGi d. properties

Purchased Items / DCS- CSR- Ul / conf i g/ at g/ cormer ce/ cust svc/ ui / t abl es/ order/
Pur chasedl tensGri d. properties

Scheduled Order Page

The following grids and tables can be modified on the Scheduled Order page:

Grid/Table Location

Submitted Orders / DCS- CSR- Ul / confi g/ at g/ conmer ce/ cust svc/ ui / t abl es/ or der/
Submi ttedOrdersGri d. properties

82 9 Working With Grids and Tables

Grid/Table

Related Tickets

Location

/ DCS- CSR- Ul / confi g/ at g/ commer ce/ cust svc/ ui / tabl es/ticket/
Rel at edTi cket Gri d. properties

Gift/Wish List

The following grids and tables can be modified on the Gift/Wish List panel of the Customer Profile:

Grid/Table Location

Edit Gift Lists Search / DCS- CSR- Ul / src/ confi g/ at g/ conmer ce/ cust svc/ ui/tabl es/ gift/
Results giftlist/GftlistEditResultsTable.properties

View Gift Lists / DCS- CSR- Ul / mai n/ src/ confi g/ at g/ conmer ce/ cust sve/ ui /

Purchased Items

tables/gift/giftlist/GftlistPurchaseResul tsTabl e. properties

View Gift Lists Search
Results

/ DCS- CSR- Ul / mai n/ src/ confi g/ at g/ commer ce/ cust svc/ ui / t abl es/
gift/giftlist/GftlistViewResultsTable.properties

Display Gift Lists / DCS- CSR- Ul / mai n/ src/ confi g/ at g/ conmer ce/ cust svc/ ui / t abl es/
gift/customer/ G ftlistGid. properties
Search Gift Lists / DCS- CSR- Ul / mai n/ src/ confi g/ at g/ conmer ce/ cust svc/ ui /t abl es/

gift/search/GftlistGid. properties

Edit Wish List Search
Results

/ DCS- CSR- Ul / mai n/ src/ confi g/ at g/ comrer ce/ cust svc/ ui / t abl es/
gift/wi shlist/WshlistEditResul tsTabl e. properties

View Wish List Search
Results

/ DCS- CSR- Ul / mai n/ src/ confi g/ at g/ conmer ce/ cust svc/ ui / t abl es/
gi ft/wi shlist/WshlistViewResul tsTabl e. properties

Promotions

The following grids and tables can be modified on the Available Promotions panel of the Order View page:

Grid/Table

Location

Browse Available
Promotions

/ DCS- CSR- Ul / nai n/ src/ confi g/ at g/ comrer ce/ cust svc/ ui / t abl es/
pronoti on/ Avai | abl ePronoti onsGri d. properties

Promotions Search

/ DCS- CSR- Ul / i n/ src/ confi g/ at g/ comrer ce/ cust svc/ ui / t abl es/
pronoti on/ Pronoti onSearchGri d. properties

9 Working With Grids and Tables

83

Extending Table Configurations

Use configuration layering to extend the default table configuration. Refer to the Customization Best
Practices (page 42) section before modifying configuration files.

The Tabl eConfi gur ati on class is located in ATG Service Agent classes. The columns are defined in a list. The
properties for Tabl eConf i gur ati on are:

Property Description

col ums List containing all columns in display order.

f or nHandl er Pat h The Nucleus path to the form hander that renders the results.

i mged osed The file name of the image to render when the table item detail is not visible
oris closed.

i mgeQpen The file name of the image to render when the table item detail is visible or is
open.

i magePat h The URL path to the images.

t abl ePage The page fragment containing the table implementation.

t abl ePat h The Nucleus path to the grid configuration component.

r owsPer Page The number of items to fetch per server request, usually extracted from the

results form handler.

defaul t SortField The default sort column. This field should point to the configured values in
the particular column configuration to be sorted. The Vi ewLi nk. sort Fi el d
must match what is defined in indexing output file for the index being
searched.

defaul t SortDirection The default sort direction, either ascendi ng or descendi ng. This field
should point to the configured values in the particular column configuration
to be sorted.

The following is an example of the / DCS- CSR- Ul / at g/ commer ce/ cust svc/ or der /
Or der Sear chUl Confi gurati on. properti es file that uses the Tabl eConf i gur at i on class:

$cl ass=at g. svc. agent . ui . t abl es. Tabl eConfi gurati on
$scope=gl obal

col ums=\
[at g/ commer ce/ cust svc/ ui / t abl es/ order/ sear ch/ Toggl e, \
/ at g/ commer ce/ cust svc/ ui / t abl es/ or der/ sear ch/ Vi ewLi nk, \
[at g/ conmer ce/ cust svc/ ui / t abl es/ or der/ sear ch/ Last Nane, \
[at g/ commer ce/ cust svc/ ui / t abl es/ order/ sear ch/ Fir st Nane, \
/ at g/ commer ce/ cust svc/ ui / t abl es/ order/search/ Total , \
[at g/ conmer ce/ cust svc/ ui / t abl es/ order/ search/|tenmsRet urned,\
[at g/ commer ce/ cust svc/ ui / t abl es/ order/ search/ Dat eSubnmi tted,\

84 9 Working With Grids and Tables

| at g/ commer ce/ cust svc/ ui / t abl es/ order/search/ Ori gi nator, \
/ at g/ conmer ce/ cust svc/ ui / t abl es/ order/search/ State, \
/ at g/ commer ce/ cust svc/ ui / t abl es/ or der/ sear ch/ Wr kOn

i mged osed=i con_find. gi f
i mageOpen=i con_find. gif
i magePat h=/i nages/ i cons/

r owsPer Page=10
def aul t Sort Fi el d*=/ at g/ commer ce/ cust svc/ ui/tabl es/ order/search/ Vi ewLi nk. sort Fi el d
defaul t Sort Di recti on™=/ at g/ commer ce/ cust svc/ ui / t abl es/ order/ search

/ Vi ewLi nk. def aul t Sort

t abl ePat h=/ at g/ comer ce/ cust svc/ ui / t abl es/ order/ sear ch/ O der Sear chResul t sTabl e
t abl ePage=/ at g/ commer ce/ cust svc/ ui / t abl es/ or der/ sear ch/ Or der Sear chTabl ePage

Extending Grid Configuration

The Gri dConf i gur at i on object is located in ATG Service Agent classes and extends the

Tabl eConfi gur at i on class by allowing for additional customization using Dojo. The columns are defined in
order in an array of Col umConf i gur at i on components. Refer to the Customization Best Practices (page 42)
section before modifying configuration files.

The properties for G'i dConfi gur ati on are:

Property Description

col ums The array of Col unmConf i gur at i on components that specify the columns
for the grid in display order.

dat aMbdel Page The page fragment component that contains the data model (for example,
JSON). Include the full Nucleus path to the component.

detail Formd The DOM ID of the form node to submit to retrieve an item detail.

f or nHandl er Pat h The Nucleus path to the form handler that renders the results.

gri dHei ght The value assigned to the height CSS style for the table to determine its
visible height.

gridlnstancel d The JavaScript variable name that should be unique for each instance of the

table in the application.

gri dPage The page fragment containing the grid implementation.
gridpPath The Nucleus path to the grid configuration component.
gridwdgetld The Dojo ID of the table widget that should be unique for each instance of

the grid in the application.

9 Working With Grids and Tables

Property

Description

i maged osed The file name of image to render when the grid item detail is not visible or
closed.

i mmgeQOpen The file name of image to render when the grid item detail is visible or open.

i magePat h The URL path to the images.

it enDet ai | Page

The page fragment component containing the item details (currently
implemented as a hover pop-up).

pageBaseOf f set

The base of the paging: 0 for 0-based paging, 1 for 1-based paging, etc.

pagel ndexEl enent Nane

The element name of the page index form input.

progressNodel d

The optional ID for a DOM node to render status messages, such as ‘search in
progress..." or ‘No results found.’ etc.

r owsPer Page

The size of the result to send back from the form handler in each page.

searchForn d

The DOM ID of the form node to submit to retrieve orders.

sel ect Li nk

An anchor tag template with pattern replacement for selecting the item in
the application.

vi ewLi nk

An anchor tag template with pattern replacement for viewing the item in the
application.

The following is an example of the / at g/ svc/ agent / ui / t abl es/ t abl es/ ti cket/
Cust oner Ti cket Gi d. properti es file, which uses the Gri dConfi gur ati on class:

$cl ass=at g. svc. agent . ui . t abl es. Gri dConfi gurati on

col ums=\

| at g/ svc/ agent/ ui/tabl es/ticket/ Vi ewli nk, \

[at g/ svc/ agent/ui/tabl es/ticket/Description,\
/at g/ svc/agent/ui/tabl es/ticket/CreatedDate,\
| at g/ svc/ agent/ui/tabl es/ticket/ Age,\

[atg/ svc/ agent/ui/tabl es/ticket/Status,\
/atgl/svc/agent/ui/tables/ticket/Id,\

[at g/ svc/ agent/ ui/tabl es/ticket/ Sel ectLi nk

r owsPer Page=10

gri dHei ght =450px

gridl nstancel d=at g. svc. agent.ticket. historyGidl nstance
gridPat h=/ at g/ svc/ agent/ ui/tabl es/ticket/CustonerTi cketGid
gri dW dget | d=at g_svc_agent _ti cket _hi storyTabl e
progressNodel d=at g_svc_agent _ticket_historyGi dStatus

sear chForm d=ti cket Hi storyLi st Form

dat aMbdel Page=/ at g/ svc/ agent/ ui /tabl es/ti cket/ Ti cket Dat aPage
gri dPage=/ at g/ svc/ agent/ ui/tabl es/ticket/Ti cket Gi dPage

86

9 Working With Grids and Tables

Each of the columns is configured using a property file, which identifies column properties. For example, the
Vi ewLi nk. properti es file that is referenced in the Cust oner Ti cket Gri d file:

$cl ass=at g. svc. agent . ui . t abl es. Col umConfi gurati on

def aul t Sort =ascendi ng

field=viewLi nk

sortField=id

wi dt h=6em

resour ceBundl e=at g. svc. agent . ui . User Messages
resour ceKey=vi ewti cket

i sVi sible=true

dat aRender er Page=/ at g/ svc/ agent/ ui / t abl es/ ti cket/ Col utmRender er Page

These configuration files allow you to make specific changes to individual columns within the grid.

Working With Column Layout

The Col utmConf i gur at i on object is located in at g. svc. agent . ui . t abl es, and manages column
configuration for an instance of a Ul grid.

Dojo Grid Column Configuration

The properties for Col umConf i gur at i on within Dojo are:

Property Description

cel | Render er Page The page fragment component that can contain a client-side JavaScript function
to render the cell contents. Includes the full Nucleus path to the component.

dat aRender er Page The page fragment component that returns server-side data in JSON that inserts a
cell. Includes the full Nucleus path to the component.

def aul t Sort Is set to either ascending or descending sorting or left blank for no sorting.

field The field name identifier for the data to render in the column from the data model.
Ul-only columns without a backing data representation should leave the field
parameter undefined.

sortField The name of the data model field on which to sort, which is different than f i el d.
If this property is undefined and sorting is enabled using def aul t Sor t, the data
is sorted on the f i el d property. If this property is defined and sorting is enabled
using def aul t Sor t, the data is sorted on the sor t Fi el d property. This property
allows a column to contain rendering and markup that does not interfere with the
sorting of the field. For example, the Vi ewLi nk column can have a link to view

an item where the column is not sorted on the link markup, but on a separate
corresponding data value.

9 Working With Grids and Tables 87

Property Description

isVisible Whether to display the column in the Ul or only to send back the data for the
column. This is useful for JavaScript widgets that store invisible column data
for other columns. For example, an ond i ck function in the | Dfield can use an
invisible DBSt at e field to identify what to do when an order is opened.

resour ceBundl e The resource bundle that contains the column display name.

r esour ceKey The key that references the column display name in the resource bundle.
Wi dt h The extent of the column using the Dojo-grid syntax (e.g. ‘5em’ or ‘auto’).
styles The column CSS styles. Note: Styles are not modifiable for tables.

The following is an example of the / at g/ commrer ce/ cust sve/ ui / t abl es/ or der/
Vi ewLi nk. properti es column configuration:

$cl ass=at g. svc. agent . ui . t abl es. Col umConfi gurati on

def aul t Sort =ascendi ng

fiel d=viewLi nk

sortField=id

wi dt h=4em

resour ceBundl e=at g. conmer ce. csr. Messages
resour ceKey=vi ew or der

i sVisible=true

dat aRender er Page=/ at g/ commer ce/ cust svc/ ui / t abl es/ or der / Col utmRender er Page

HTML Table Column Configuration

The properties for Col umConf i gur at i on using an HTML table are:

Property Description

dat aRender er Page The page fragment component that returns server-side data in JSON that inserts a
cell. Includes the full Nucleus path to the component

field The field name identifier for the data to render in the column from the data model.
Ul-only columns without a backing data representation should leave the field
parameter undefined.

isVisible Whether to display the column in the Ul or only to send back the data for the
column. This is useful for JavaScript widgets that store invisible column data
for other columns. For example, an onCl i ck function in the | Dfield can use an
invisible DBSt at e field to identify what to do when an order is opened.

resour ceBundl e The resource bundle that contains the column display name

r esour ceKey The key that references the column display name in the resource bundle

88 9 Working With Grids and Tables

Property Description

wi dt h The extent of the column using the Dojo-grid syntax (e.g. ‘5em’ or ‘auto’)

The following is an example of the / at g/ conmer ce/ cust svc/ ui / t abl es/ ti cket/
Last Name. properti es column configuration:

$cl ass=at g. svc. agent . ui . t abl es. Col umConfi gurati on

fiel d=I ast Nane

wi dt h=10%

resour ceBundl e=at g. svc. agent . WebAppResour ces
resour ceKey=r el at edTi cket s. | ast Nane

i sVi sible=true

dat aRender er Page=/ at g/ conmrer ce/ cust svc/ ui / t abl es/ti cket/ Col uimRender er Page

Customizing Column Attributes

The steps for customizing column title, sorting and width are similar in that they update properties in the
column configuration component. Note: Do not use quotes when setting values in this map.

When customizing column attributes, use configuration layering as described in the Customization Best
Practices (page 42) section. To begin customization, override the column configuration by performing the
following:

1. Create a new application module for customizations. Include this module when starting your Web
application. Refer to the ATG Installation and Configuration Guide for information on creating new application
modules with your Web application.

2. Locate the properties file that defines the appropriate column configuration.

3. Inside the customization module, create a properties file at the corresponding path that contains no
properties.

Working with a Column Title
1. Create or edit a resource bundle for customized strings in your customization module.

2. In the properties file for the column, update the r esour ceBundl e and r esour ceKey properties to point to
the corresponding resource bundle and key that contain the customized string. This overrides the default
values for these properties. For example:

def aul t Sort =ascendi ng

fiel d=vi ewLi nk

sortField=id

wi dt h=4em

resour ceBundl e=at g. conmmrer ce. csr. newMessages
resour ceKey=new- vi ew or der

i sVisible=true

9 Working With Grids and Tables 89

Modifying Column Sorting

1. In the appropriate properties file for the column, set the def aul t Sort property to either ascendi ng or
descendi ng. Removing the property or setting the property to an empty string will remove sorting. For
example:

def aul t Sort =ascendi ng

fiel d=vi ewLi nk

sortField=id

wi dt h=4em

resour ceBundl e=at g. commrer ce. csr. newMessages
resour ceKey=new- vi ew or der

i sVi sible=true

2. To configure a Dojo-grid column to sort on a field other than the data field that is rendered in the column, set
the sort Fi el d to any field in the data model.

For example, your column might display a data field containing an HTML link or JavaScript, such as vi ewLi nk,
which is not appropriate for sorting. By setting the sor t Fi el d property to | D, the column can still be sorted
by the corresponding ID property.

3. Configure an HTML-grid column by configuring the appropriate Ul configuration file, such as the
Cust oner Prof i | eSear chUl Confi gurati on. properti es or the
Or der Sear chUl Confi gurati on. properti es file.

Modifying Column Widths

Each grid contains a list of columns to display within the grid. These columns are configured using a property
file. You must modify these properties file to modify the column width.

1. In the properties file for the column, update the wi dt h property to the desired CSS width specification, for
example. 4em For example:

def aul t Sort =ascendi ng

fiel d=vi ewLi nk

sortField=id

wi dt h=4em

resour ceBundl e=at g. commrer ce. csr. newMessages

resour ceKey=new vi ew or der

i sVisible=true

dat aRender er Page=/ at g/ svc/ agent/ ui /t abl es/ ti cket/ Col umRender er Page

2. To set the column width to fill the remaining space on the screen, set the width to aut o.

Configuring the PageFragment Component

The table and column configuration components use the PageFr agment component in the Web Ul to reference
JSP pages located in the / at g/ web/ PageFr agment directory.

* URL - the URL of the page to include

920 9 Working With Grids and Tables

« servl et Cont ext - the context root of the application that contains the page

The following is an example of the / at g/ commer ce/ cust svc/ ui / t abl es/ or der
/ Col umRender er Page:

$cl ass=at g. web. PageFr agnent

URL=/i ncl ude/ or der/ col umRenderer.jsp
ser vl et Cont ext =DCS- CSR

Creating Column Content

The data renderer page displays the content to render within the column.

Dojo-Grid Column Content

By default, the data renderer page is called for each column when the grid items are iterated. The following
parameters are passed to the data renderer page:

Parameter Description

field The string identifier of the column to render as defined in the Col unmConf i gur ati on
object.

col I ndex The zero-based index of the column.

[bean] The object(s) containing the data for the grid item. They will vary depending on the data
being rendered. For an order, the item is a single or der | t enVap bean.

The following is an example from the /i ncl ude/ or der / col umRender er . j sp file:

<dsp: getval ueof var="field" param="field"/>
<dsp: getval ueof var="col | ndex" paran¥"col | ndex"/>
<dsp: getval ueof var="orderltemvap" param="orderltenmvap"/>

<c: choose>

<c: when test="${field == "id }">
"id": "${orderltenvap.id}"

</ c: when>

<c: when test="${field == "viewLink'}">
<fmt: bundl e basenanme="at g. cormer ce. csr. Messages" >
"viewLi nk": "<a href=\"#\" class=\"blueW" title=\"
<fnt: nmessage key="view order"/>\"
onclick=\"atg. commerce. csr.order.vi ewkxi sti ngOrder (\' ${orderltenmvap.id}\',\
"${orderltenvap.state}\');return fal se;\">${orderltenmvap.id}"
</fnt: bundle>

9 Working With Grids and Tables

91

HTML Table Column Content

</ c: when>

The data renderer page displays the content to render within the column. By default, the data renderer page is
called for each column heading and data cell. The following parameters are passed to the data renderer page:

Parameter

Description

field

The string identifier of the column to render as defined in the
Col umConf i gur at i on object

cust oner |t enmvap

The current customer item being rendered

r esour ceBundl e

The resource bundle that defines the resource keys

resour ceKey

The key that maps to the resource string

i sPopup Identifies if the search table is a pop up. For example, the customer search from the
Shopping Cart page is a pop up table
i sHeadi ng Identifies if a heading should be rendered

Rendering Column Content

The data renderer page displays the content to render within the column. By default, this page is called for each
column when the grid items are iterated. The following parameters are passed to the data renderer page each

time it is included:

+ field-Thestring identifier of the column to render as defined in the Col unmConf i gur at i on object

+ col I ndex - The zero-based index of the column

+ [bean] - The object(s) containing the data for the grid item. This varies depending on the data being rendered.
For example, for an order, the item is a single or der I t emvap bean

Before customizing the data renderer page, perform the following steps:

1. Refer to the Customization Best Practices (page 42) section.

2. Create a new application module for customizations. Include this module when starting JBoss. Refer to
the ATG Platform Programming Guide for information on creating new application modules and the ATG
Installation and Configuration Guide for information on starting JBoss.

3. Locate the properties file that defines the column configuration.

4. Inside the customization module, create an empty properties file at the corresponding path.

To configure the data render page with page fragments:

1. Create a new JSP file in the module that will render the customized data.

92

9 Working With Grids and Tables

2. In this module, create a new PageFr agnent properties file under/ confi g/ at g/ conmer ce/ cust svc/ ui /
t abl es. For example, create a NewCol unmRender er Page. pr operti es file.

3. In the properties file for the page fragment, set the URL and ser vl et Cont ext to reference the JSP page
created in the customization module. For example:

@ersion $1d: //application/DCS-CSR at g/ comrer ce/ cust svc/ ui/tabl es/
or der / NewCol utmRender er Page. properti es

$cl ass=at g. web. PageFr agnent

URL=/i ncl ude/ or der / newCol utmRenderer. j sp

ser vl et Cont ext =DCS- CSR

4. In the properties file for the column or grid, update the dat aRender er Page property to point to the
PageFr agnent properties file. For example:

dat aRender er Page=NewCol unmRender er Page
Example: Customizing Column Content

This example replaces the Origin column in the default application with a Last Modified column in the Order
History grid.

1. In the resource bundle at/ myconpany/ r esour ces/ Resour ces. property, add a new key for the column
title.

| ast Modi fi edDat e=Last Modifi ed

To avoid a recompile of the JAR, add both the new resource bundle and the new key into your <ATGLOdi r >/
| ocal |'i b directory. You must restart your server once you have created the key.

2. In the sample application, create a grid properties file at/ at g/ commer ce/ cust svc/
ui /tabl es/ order/ Order H storyG i d. properti es to override the default file. Override the columns
property with the new columns; however, ensure that the invisible columns are included so that the order
links work correctly:

invisible data col ums: DBState

col utms=\

[at g/ commrer ce/ cust svc/ ui / t abl es/ order/ Toggl e, \

| at g/ commer ce/ cust svc/ ui / t abl es/ order/ Vi ewLi nk, \

/ at g/ commer ce/ cust svc/ ui / t abl es/ order/ Total ,\

[at g/ commer ce/ cust svc/ ui / t abl es/ order/ |t enCount , \

/ at g/ conmrer ce/ cust svc/ ui / t abl es/ order/ | tenSunmary, \
[at g/ commer ce/ cust svc/ ui / tabl es/ order/ Submi ttedDat e, \
[at g/ comrer ce/ cust svc/ ui / t abl es/ order/ Last Modi fi ed, \
/ at g/ commer ce/ cust svc/ ui / t abl es/ order/ State, \

[at g/ commrer ce/ cust svc/ ui / t abl es/ order/ Sel ect Li nk, \

/ at g/ commer ce/ cust svc/ ui / t abl es/ order/ DBSt at e

3. In the sample application, create the properties file for the column at/ at g/ conmer ce/ cust svc/ ui /
t abl es/ order/ Last Modi fi ed. properti es that contains the configuration for the new column:

$cl ass=at g. svc. agent . ui . t abl es. Col uimConf i gurati on
field=lastMdified

wi dt h=5em

resour ceBundl e=nyconpany. r esour ces. Resour ces
resour ceKey=l ast Modi fi edDat e

def aul t Sort =descendi ng

9 Working With Grids and Tables 93

i sVisible=true
dat aRender er Page=/ at g/ conmrer ce/ cust svc/ ui / t abl es/ order/
Last Modi fi edRender er Page

4. In the sample application, create the properties file for the content page at/ at g/ conmer ce/ cust svc/ ui /
t abl es/ order/
Last Modi fi edRender er Page. properti es:

$cl ass=at g. web. PageFr agnent
URL=/ panel s/ order/| ast Modi fi edRenderer.jsp
ser vl et Cont ext =/ Sanpl e- DCS- CSR- App

5. In the sample application, create a JSP page at the location referred to by the page configuration. The JSP
renders the last modified date property from the order:

<%@include file="/include/top.jspf"%

<dsp: page>

<fm: bundl e basenane="acme. resour ces. Resources">

<dsp: getval ueof var="field" paran"field"/>

<dsp: getval ueof var="col | ndex" paran¥"col | ndex"/>

<dsp: getval ueof var="orderltenMvap" param="orderltenivap"/>
<c: choose>

<c: when test="${field == "lastMdified }">
"l ast Modi fied": "${orderltemnVap. | ast MdifiedDate}"
</c: when>

<c: otherw se>
</c: otherw se>
</c: choose>
</fmt: bundl e>
</ dsp: page>

6. Test and verify that the last modified date column is rendered in the grid.

Note: Default date formats can be modified using the webAppResour ces. properti es file in the / VEB- | NF
directory.

Example: Creating Calculated Content
The following provides an example that returns calculated content.

1. Follow the steps for creating customized content, as outlined in the Creating Column Content (page 91)
section.

2. Create a JSP page that returns a calculation of one or more data items. For example:

<%@include file="/include/top.jspf"%

<dsp: page>

<fnt: bundl e basename="acne. resour ces. Resources">

<dsp: getval ueof var="field" paranr"field"/>

<dsp: getval ueof var="col | ndex" paran¥"col | ndex"/>

<dsp: getval ueof var="orderltenvap" param="orderltenivap"/>
<c: choose>

<c: when test="${field == "total NoTax'}">

<dsp: tomap var="pricelnfo" value="${orderltenMap. pricelnfo}"/>
<c: set var="total Val ue"><dsp: val ueof converter="currency"
val ue="${pri cel nf o. anount +pri cel nf 0. shi ppi ng}"/></c: set>

94 9 Working With Grids and Tables

"total NoTax": "${total Val ue}",
</c: when>

3. Test and verify that the calculation is rendered in the grid.

Modifying Columns

The following steps provide information on how to add, delete or reorder columns. When working with columns,
ensure that you are performing the steps outline in the Customization Best Practices (page 42) section.

Adding a Column

1. Follow the steps above to customize column content to create the new column. However, instead of opening
an existing column configuration file, create a new properties file for the column.

2. Set the column properties as outlined above.

3. Open the properties file for the grid under / at g/ commer ce/ cust svc/ ui / t abl es and insert the column
using the full Nucleus path to the column configuration component in the desired location of the col urms
list.

Removing a Column
1. Open the properties file for the grid under / at g/ commer ce/ cust svc/ ui / t abl es.

2. Delete the column identifier from the col ums list.

Reordering Columns
1. Open the properties file for the grid under / at g/ commrer ce/ cust svc/ ui / t abl es.
2. Reorder the column identifiers within the col umms list.

Example: Adding a New Column to the Order Search Results
1. Create a new column as outlined above in the Adding a Column (page 95) section.

2. Add your new column to the or der - out put - confi g. xni file. Adding the st or e- as- net a- i ndex
parameter allows your search engine to store the data within this column in a sort-enabled format. For
example, to add a Last Modified column, you would create the following:

<?xm version="1.0" encodi ng="UTF-8"7?>

<! DOCTYPE item PUBLIC "-//Art Technol ogy G oup, Inc.//DTD Repository
Quput Specifier 1.0//EN' "http: //ww. atg. com dtds/search/i ndexi ng-
dependency- schena. dt d" >

<itemitemdescriptor-nane="order">

9 Working With Grids and Tables 95

<met a- properties>

<property nanme="| ast Modi fi edDate" type="date" store-as-neta-
i ndex="fal se" />

</ nmet a- properties>

</itenw

. Invoke the / dyn/ admi n/ nucl eus/ at g/ comnmer ce/ sear ch/

Or der Qut put Confi g/ bul kl oad method.

. Create a property file for the new column in the / at g/ comer ce/ cust svc/ ui /

t abl es/ or der/ sear ch directory. Using the Last Modi f i edDat e example, you would create an /at g/
commer ce/ cust svc/ ui / t abl es/ or der/ sear ch/ file. For example:

$cl ass=at g. svc. agent . ui . t abl es. Col umConfi gurati on
field=lastMdified

sort Fi el d=I ast Modi fi edDat e

wi dt h=5em

resour ceBundl e=acne. r esour ces. Resour ces

resour ceKey=l ast Modi fi edDat e

def aul t Sort =descendi ng

i sVi sible=true

dat aRender er Page=/ at g/ conmrer ce/ cust svc/ ui / t abl es/ order/ sear ch/
Last Modi fi edRender er Page

. Create a new dat aRender er Page property file in the location indicated in the new column property file you

just created. This file will identify the URL page to use, as well as the context application.

Using the previous example, you would create a/ at g/ conmer ce/ cust sve/ ui /
t abl es/ or der/ sear ch/ Last Modi fi edRender er Page. properti es file that contained the following:

$cl ass=at g. web. PageFr agnent
URL=/ panel s/ order/ search/ | ast Modi fi edRenderer.j sp
ser vl et Cont ext =/ Sanpl e- DCS- CSR- App

. Create the new JSP file at the location identified above in the URL parameter.

When you create the JSP file use the i sHeadi ng parameter to determine whether to render a heading

or a data row. If rendering a heading you can display the heading title or information can be passed into
the or der Sear chResul t Sor t Headi ng. j sp file, which allows users to sort on this column. Note: The
sort Fi el d used must be the same as what is used in the XML file because this parameter is passed to the
search engine. For example:

<% -

Last nodified date renderer exanple for order search table

@ersion $ld: //application/DCS-CSR/ mai n/ sanpl e- app/ src/ web- apps/ Sanpl e-
DCS- CSR- App/ panel s/ or der/ search/ | ast Modi fi edRenderer.jsp $

@pdat ed $Dat eTi me: 2009/04/01 11: 29: 04 $

--%
<%@i nclude file="/include/top.]jspf"%
<dsp: page>

<fm: bundl e basenane="acne. r esour ces. Resour ces">

<dsp: getval ueof var="field" paranr"field"/>

<dsp: getval ueof var="sortField" paran¥"sortField" />

<dsp: getval ueof var="orderltemvap" paran="orderltenivap"/>
<dsp: getval ueof var="isHeadi ng" paran¥"i sHeadi ng" />

<dsp: getval ueof var="resourceBundl e" param="resourceBundl e" />

926

9 Working With Grids and Tables

<dsp: getval ueof var="resourceKey" paran¥"resourceKey" />
<c: if test="$%{enpty isHeading}">
<c: set var="isHeadi ng" value="fal se" />

</fc: if>

<c: choose>

<c: when test="${field == 'lastMdified and isHeading=="false'}">
<c: out value="${orderltenmVap.|astMdifiedDate}" />

</c: when>

<c: when test="${field == 'l astMdified and isHeading=="true'}">

<dsp: include src="/panel s/ order/order Sear chResul t Sort Headi ng. j sp"
ot her Cont ext =" ${ CSRConf i gur at or . cont ext Root } " >

<dsp: param nane="resour ceBundl e" val ue="${resourceBundl e}"/>
<dsp: param nanme="r esour ceKey" val ue="${resourceKey}"/>

<dsp: param nane="fiel dName" val ue="${sortField}"/></dsp: include>
</c: when>

<c: otherw se>

</c: otherw se>

</c: choose>

</fm: bundle>

</ dsp: page>

7. Create the new table column configuration and add the new column information by creating a/ at g/
conmer ce/ cust svc/ order/ O der Sear chUl Conf i gurati on.
properti es file. The following example extends the default values by identifying the number of results per
page, as well as enabling search on the new column:

$cl ass=at g. svc. agent . ui . t abl es. Tabl eConfi guration

$scope=gl obal

col ums=\

[at g/ commer ce/ cust svc/ ui / t abl es/ order/ search/ Toggl e, \

/ at g/ commrer ce/ cust svc/ ui / t abl es/ or der/ sear ch/ Vi ewLi nk, \

/ at g/ commrer ce/ cust svc/ ui / t abl es/ or der/ sear ch/ Last Nane, \

/ at g/ commer ce/ cust svc/ ui / t abl es/ order/ sear ch/ Fi r st Nane, \

[at g/ commer ce/ cust svc/ ui / t abl es/ order/search/ Total , \

/ at g/ commer ce/ cust svc/ ui / t abl es/ or der/ search/ |t ensRet ur ned, \

/ at g/ conmrer ce/ cust svc/ ui / t abl es/ or der/ search/ Dat eSubni tted, \

/ at g/ commer ce/ cust svc/ ui / t abl es/ order/ sear ch/ Last Modi fi ed, \

/ at g/ commer ce/ cust svc/ ui / t abl es/ order/search/ Ori gi nat or, \

/ at g/ commer ce/ cust svc/ ui / t abl es/ order/search/ State, \

[at g/ commrer ce/ cust svc/ ui / t abl es/ or der/ sear ch/ Wr kOn

r owsPer Page=3

def aul t Sort Fi el d*=/ at g/ comrer ce/ cust svc/ ui/ t abl es/ order/search/
Last Modified.sortField

defaul t SortDi recti on®=/ at g/ cormer ce/ cust svc/ ui/tabl es/ order/ search/
Last Modi fi ed. def aul t Sort

Changing the Item Detail (Hover) Page

The following provides information on changing the page that is displayed for the order detail, which is
configured as a hover object.

9 Working With Grids and Tables 97

1. Create a JSP page to render the order item detail in a new application module. If necessary, use the existing
item detail page located at/ panel s/ or der/
orderDetail . j sp asatemplate for the new file.

2. Open the properties file for the grid and find the i t enDet ai | Page property. This component contains the
URL to the item detail page.

3. Create a new properties file for the item detail page component under/ at g/ commer ce/ cust svc/ ui /
t abl es. Override the ser vl et Cont ext and URL properties to point to the new file.

98

9 Working With Grids and Tables

10

Rendering Pages with Nucleus
Components

Some portions of the Service Center Ul use a technique that makes the rendering of pages, or portions

of pages, configurable through Nucleus components. This feature allows you to customize page content
without unpacking the Web application, modifying its JSP, and then repackaging the modified application.
Customization in this context means the addition or replacement of JSP.

Examples of customizations with Nucleus components include the Products View panel, which is accessed in /
panel s/ cat al og/ pr oduct Vi ew. j sp. The Product View panel contains the Pr oduct I nf or mat i on panel, the
Pr oduct Sku panel and the Cr ossSel | | t ens panels.

Productiniomation

Procuciyids Farnsl Productioy Panel

= |

CraniSelltamy, - T b
et —1

Another example of customization includes the SkuPr oduct Popup, which is accessed using the
SkuChangePopup. When the SkuChangePopup is activated, the SkuChangePanel and SkuChangeTabl e, as
well as the Pr oduct | nf or mat i on panel, are displayed.

You can change the SKU of Comrer cel t emobjects in an order. The CSRCar t Modi f i er For nHandl er contains
the handle method handl eChangeSKUs() that uses the changeSKUs SuccessURL and changeSKUsEr r or URL
properties, as well as the pre/post handler methods.

10 Rendering Pages with Nucleus Components 929

Productinfoamaticsn

o SHUChangeT sk

SELICRangePsnel

Customization Options

You can use personalization to control who has access to specific content. When customizing your pages,

you work with personalization assets such as rules, targeters and segments. If you are working in a multisite
environment, personalization assets can be used between multiple sites. For example, ATG Personalization uses
a Rules tab that displays and manages multiple Site Override Rules and Site Filters. Site filters can be applied to
Content Groups and targeters, allowing site-filtered searches. ATG Personalization with Segments, Targeters and
Content Groups is defined per site. Scenarios are aware on which site the scenario event has occurred.

For detailed information on personalization and using ATG Personalization, refer to the ATG Personalization
Programming Guide.

There are two general options for customizing page content.

+ Simple Customization — This customization requires the configuration of an alternate URL in a component
property. Depending upon requirements, this customization may be all that is required for most
customization needs

+ Targeting Customization — Targeting customization is useful when one of a number of JSPs could be rendered
in a particular situation. In this situation, the decision of which JSP to render depends on complex rules,
rules that are expected to change often, or in instances where it is necessary to modify these rules without
restarting the application.

Targeting Customizations require writing targeting XML rules that contain information such as request
attributes, product and/or order information, the current customer and the current agent, or other
information relevant to the functional area in question. Targeting rules normally target repository items;
however, in this case targeting rules target Nucleus components that identify which JSPs to render

Simple Customization

Simple customization involves writing custom JSPs and configuring Nucleus components to refer to that JSP. For
example, to replace the area of the Product View panel that displays product SKUs and allows agents to enter
quantities for each SKU, you would modify the / at g/ comer ce/ cust svc/ ui /

render er s/ Product SkuRender er component that are located in the DCS- CSR- Ul directory.

100

10 Rendering Pages with Nucleus Components

Because renderer components are globally scoped, you can temporarily change the page though the Dynamo
Server Admin. All renderer components exist in the Nucleus configuration path at/ at g/ commer ce/ cust svc/
ui / render er s/ . For example, the SKU rendering component may be located at:

http://1 ocal host: 8080/ dyn/ adm n/ nucl eus/ at g/ comrer ce/ cust svc/ ui /
render er s/ Product SkuRender er/

Changing the ur | property of this component to point to the new JSP temporarily implements the
customization. This example points to a newPr oduct Skus. j sp file:

The JSP that renders the product view SKU browser area
ur | =/ render er s/ or der / newPr oduct Skus. j sp

To make this configuration persistent, you must use a configuration file.

For detailed information on working with Nucleus components, refer to the Managing Nucleus Components
Appendix in the ATG Page Developer's Guide.

Renderer Components

All components live in the DCS- CSR- Ul directory under the Nucleus path / at g/ cormer ce/ cust svc/
ui / render er s/ . There are four components for each renderer:

* BaseNaneRender er
« BaseNanePageDat a
* BaseNanmeSour ceMap
* BaseNaneTar get er

The BaseNameRender er identifies the renderer and the renderer information that is used by the targeter, the
data and the source map. The renderer contains the properties that are necessary to identify the JSP in particular
Web application. The Render | nf o class creates the render information:

package atg.commerce. csr.rendering;

public class Renderlnfo

{

/1 Some |ID string

public String getld() {}

/1l URL to JSP

public String getUl () {}

/1 \WWebApp nane which contains the JSP referenced
/1 in the Ul, or null for current web-app
public String get WebAppName() {}

/1 Values for use in constructing rules

public Map getRul eOptions() {}

/1 Options for use in custonizing page rendering
public Map get PageOptions() {}

10 Rendering Pages with Nucleus Components 101

The renderer uses properties files to represent both the default and a custom product rendering page. For
example, the default product renderer might be defined in the Def aul t Pr oduct Render er . properti es file:

$cl ass=at g. commer ce. csr. rendering. Render | nfo
i d=def aul t
url =/ renderers/ product/generic.jsp

And the custom product renderer may be defined the Cust onPr oduct Render er . properti es file:

$cl ass=at g. commer ce. csr. renderi ng. Render | nf o
i d=def aul t

url =/ renderers/ product/custom jsp
webAppNanme=Cust om App 2.0

The BaseNanmePageDat a component is used by the page as a place to store parameters to the targeting rule.
For example, to use the product item that you are viewing in the rule that you are going to execute to determine
which page fragment to use for the product, you would store the product item in the PageDat a component.
The PageDat a component is a map whose keys can be referenced in the rule as pageDat a. key- nane where
key_nane is a key in the map.

The BaseNameSour ceMap holds the container component of the associated targeter. For example, the source
map for a targeter may contain the following:

$cl ass=at g. t argeti ng. Tar get i ngSour ceMap
sour ceMap=\
Rul eDat a=/ at g/ commer ce/ cust svc/ ui / render er s/ Product Vi ewRender er Rul eDat a

The BaseNaneTar get er component is configured to target the Render | nf o configurations, using the
Pr oduct REnder er . r ul es. For example the Pr oduct Vi ewPr oduct Render er Tar get er . properti es file
might contain the following:

$cl ass=at g.targeti ng. Rul eBasedCol | ecti onTar get er
col | ecti onConponent s=\

Def aul t Product Renderer, \

Cust onPr oduct Render er

The Rul eSet configured above

rul eSet Ser vi ce=Pr oduct Vi ewPr oduct Render er Rul eSet

Pages that use renderers reference them using the path and the base name, for example:

<csr: renderer nane="/at g/ comerce/ custsvc/renderers/BaseNane" >
<csr: renderer nane="/at g/ comerce/ custsvc/renderers/Product!|nformation”>

There are optional Render | nf o properties, which include:

+ pageOpt i ons (Map) - A placeholder for settings used by the page

102

10 Rendering Pages with Nucleus Components

« rul eOpti ons (Map) - A container for use in targeting rules

There is also a subclass Render I nf o for additional custom properties. A cont ext Root property is available
inthe at g. commer ce. csr. renderi ng. Render | nf o class, allowing you to identify a Web application within
Commerce Service Center. The Web application is executed when a user’s Web browser references a URL that
contains the Web module’s context root.

Because the context root controls the location of all files mentioned in the BasenaneRender er . properti es
file, whenever you modify a context root, you must ensure that any page that is referenced by the component is
also available in that context root.

For example, if you were to modify a renderer component such as /at g/ comrer ce/ cust svc/ ui / to identify
the cont ext Root property of:

cont ext Root =/ web- app
url =/ web-app/test. htm

You must ensure that all other pages referenced by this renderer can access the context root. This
replaces the contents of the product information panel with whatever would be rendered by visiting
http:// machi ne: port/web-app/test. htni.

Targeting Customization

To customize the Ul using the JSP targeting rules, one or more renderer component configuration must be
added to in the Dynamo component path. Each renderer component represents one variation, or one JSP, of the
Ul to display.

The following example describes the creation of a custom renderer for the SKU display and input area of the
Product View panel. The following / at g/ commrer ce/ cust svc/ ui / r ender er s components are involved in this
example customization:

» Product SkuRender er : The default renderer for the product SKU area

* Product SkuPageDat a: A component that will contain data from the enclosing page, such as product or
customer information

* Product SkuSour ceMap: The main component container used by the targeting rules. This component refers
to the PageDat a component above

+ Product SkuTar get er : The targeter configuration. This component refers to the Sour ceMap component
above, and one or more Renderer components

+ To create a targeting customization:

+ Create a new renderer component to represent the custom JSP. The basic properties of each renderer
component should be made in the / nucl eus/
conponent / pat h/ Cust onRender er . properti es file:

The base class for renderer conponents.

10 Rendering Pages with Nucleus Components 103

$cl ass=at g. comrer ce. csr. renderi ng. Render | nfo

An I D that uniquely identifies this renderer conponent in the
domain in which it is used. Al renderers currently shipped by
ATG use the value "default" as their ID.

i d=cust om

The custom JSP that perforns the actual content rendering

url =/filelsysteni path/custonSkub splay.jsp

+ Create a default Rul eSet Ser vi ce configuration. This component identifies the rules file and contains
settings for when that file is loaded. In the / nucl eus/ conponent /
pat h/ Rul eSet Ser vi ce. properti es file, add the following:

$cl ass=at g. targeting. Rul eSet Servi ce

Path to rules file

rul esFi |l ePat h=/fil e/ system pat h/sku.rul es

Settings that control when/if rules files are |oaded:
updat esEnabl ed=t r ue

rul esFi | eCheckSeconds=0

The values used for updat esEnabl ed and r ul esFi | eCheckSeconds above are useful when testing
targeting rules because they cause the rule file to be reloaded for every request.

Note: If the default Rul eSet Ser vi ce has been configured to always reload targeting rules, it is easier to
experiment with rules by changing the file and causing the page to be redisplayed.

+ Create the rules file for the Rul eSet Ser vi ce configured in Step 2.Inthe/fi | e/ syst en pat h/ sku. rul es
file, add the following:

<rul eset >

<accept s>

<rul e op="and">

<rul e op="eq">

<!-- pageData is obtained fromthe SourceMap conponent -->
<val ueof bean="pageDat a. product.id">
<val ueof constant="prod10001">

</rul e>

<rul e op=eq>

<l-- target (display) the customJSP -->
<val ueof target="id">

<val ueof constant="custoni>

</rul e>

</rul e>

</ accept s>

</rul eset>

In the example, the sku. r ul es file will target the custom renderer only when the product being

displayed has a value of “prod10001”. Only the first targeted component is displayed because the

Tar get i ngFi r st Dropl et is used, so while multiple targets may match, only the first matching component’s
JSP will be rendered.

+ Update the existing Pr oduct SkuTar get er configuration to refer to the new Renderer component created in
Step 1, and to the Rul eSet Ser vi ce configured in Step 2.

+ You may need to restart the server for the settings to take effect.

For in-depth information on working with targeters, refer to the ATG Personalization Programming Guide.

104 10 Rendering Pages with Nucleus Components

Creating a ProductSkuRenderer

To create a Pr oduct SkuRender er, modify the DCS- CSR- Ul / conf i g/ at g/ commer ce/ cust svc/ ui /
render er s/ Product SkuRender er component path. The render components that should be extended are
at g. conmer ce. csr. renderi ng. Render | nf o with at g. conmer ce. csr. renderi ng.

SkuRender | nf o.

Create new properties that describe how to render each table column. Property names can be actual SKU
property names or symbolic names such as pri ce and st at us. Symbolic properties, or property names that do
not represent actual properties of the SKU, specify a JSP in the renderer property.

The Pr oduct SkuRender er uses the standard pageOpt i ons property to specify form handler, URL properties
and other information. The pageOpt i ons properties include:

pageOpt i ons=\
acti onRender er =/ r ender er s/ or der/ sku/ skuBr owser Acti on. j sp, \
giftlistActi onRenderer=/renderers/gift/skuG ftlistBrowserAction.jsp,\
f or mHandl er =/ at g/ cormer ce/ cust svc/ or der/ Car t Modi fi er For nHandl er, \
successPanel St acks=cntCat al ogPS, \
errorPanel St acks=cntCat al ogPS, \
successUr | Property=addl t enifoOr der SuccessURL, \
error Url Property=addl t enifoOr der Err or URL

The proper ti es variable includes:

properti es=view temi d, di spl ayNane, price, status, quantity

By default, the Pr oduct SkuRender er page uses skul t em propertyName to display the SKU property.

The property renderer specifies optional JSP files that are used to render named cells:

render er =\
vi e t en¥/ render ers/ order/ sku/ view tem j sp, \
pri ce=/renderers/order/sku/ skuPrice.jsp,\
status=/renderers/order/sku/inventoryStatus.jsp,\
quantity=/renderers/order/sku/quantityl nput.jsp,\
i d=/renderers/order/sku/ sku.jsp,\
di spl ayNane=/render er s/ or der/ sku/ nane. j sp

Each fragment renders its column header and column cell

<c: choose>
<c: when test="${area == 'cell'}">
render cell content
</ c: when>
<c: when test="${area == 'header'}">
render col um header content
</ c: when>
</c: choose>

10 Rendering Pages with Nucleus Components 105

Available Renderers

All renderers listed contain the four component files, the * Render er , * PageDat a, * Sour ceMap and

*Tar get er properties files.

The following renderers are available in the DCS- CSR- Ul module in the/ at g/ comer ce/ cust svc/

ui / render er s directory.

Renderer

CrossSellltens

Rendering JSP

/ render ers/order/
crossSellltens.jsp

conet xt Root =/ DCS- CSR

Description

A renderer for product information
cross-sells, a section of a page that
by default displays a product image,
ID, description and price range.

Cust omer Sear ch

/ panel s/ cust oner/
cust oner Sear ch. j sp

cont ext Root =/ agent

A renderer for the Customer Search
page.

Cust oner Sear chResul ts

/ panel s/ cust oner/
cust oner Sear chResul ts. j sp

cont ext Root =/ agent

A renderer for the Customer Search
Results page.

Cust orrer Sel ect i onPopup

I'tenDescription

/ render er s/ cust oner/
cust oner Sel ection.jsp

cont ext Root =/ DCS- CSR

/ render ers/order/
i tenDescription.jsp

cont ext Root =/ DCS- CSR

A renderer for the Customer
Selection pop-up page.

A renderer for the description of a
product in an order. It is used in the
existing order view and the order
confirmation panel.

Product I nf ormati on

/ renderers/order/
product I nformation.jsp

cont ext Root =/ DCS- CSR

A renderer for product information
that displays on the Product Quick
View panel, the SKU Change panel
and the Read-Only Product view.

Pr oduct Qui ckVi ewPopup

Pr oduct ReadOnl yPopup

/ render er s/ order/
product Qui ckVi ew. j sp

cont ext Root =/ DCS- CSR

/ render ers/order/
product ReadOnl y. j sp

cont ext Root =/ DCS- CSR

A renderer for the Product Quick
View pop-up page.

A renderer for the product view
page, specifically the read-only
product information pop-up.

Pr oduct Sku

/ render er s/ order/
product Skus. j sp

cont ext Root =/ DCS- CSR

A default renderer for SKU items in
the SKU browser.

10 Rendering Pages with Nucleus Components

Renderer

Pr oduct SkuReadOnl y

Rendering JSP

/ render ers/order/
product Skus. j sp

cont ext Root =/ DCS- CSR

Description

A renderer for read-only SKU items.

Pr oduct Vi ewPanel

/ render er s/ order/
product Vi ew. j sp

cont ext Root =/ DCS- CSR

A default renderer for the product
view page.

Qui ckVi ewSkuTabl e

/ render ers/ order/
product Skus. j sp

cont ext Root =/ DCS- CSR

A default renderer for SKU items
in the SKU browser that displays
an array of SKU properties to be
displayed in the SKU table.

Ret ur nShi ppi ngAddr ess

Ret urnsLi neltem

/ panel s/ order/returns/
r et ur nShi ppi ngAddr ess. j sp

cont ext Root =/ DCS- CSR

/ panel s/ order/returns/
returnltensLineltemjsp

cont ext Root =/ DCS- CSR

A default renderer for the returns
line item page shipping address.

A default renderer for a line item on
the Returns Item page.

Shi ppi ngAddr essTabl e

SkuChangePanel

/ render er s/ order/
shi ppi ngVi ewPanel . j sp

cont ext Root =/ DCS- CSR

/i ncl ude/ order/ product/
skuChangePanel . j sp

cont ext Root =/ DCS- CSR

A default renderer that displays the
shipping information contained on
the Order View page.

A renderer used on the shopping
cart when a line item has been
edited to change the SKU.

SkuChangeTabl e

/ render er s/ order/ sku/
skuChangeAction.j sp

/ render ers/ order/
product Skus. j sp

cont ext Root =/ DCS- CSR

A default renderer for displaying
the SKU changes in the
SKUChangePanel .

Customizing the Order Summary Panel

The Order Summary panel, which is available to the agent when using the Commerce page, displays order status
information. It also presents links based on the state of the order and where the agent is in the order process.
The Order Summary display is triggered when the agent performs a specific action or navigates to a specific

page.

10 Rendering Pages with Nucleus Components

107

Note: Page navigation changes take precedence over action changes.

The following actions trigger an update of the Order Summary display:

+ Select an order, which also changes the active order in the global context area
+ Add a product to the shopping cart

+ Cancel an exchange from within the exchange process

+ Cancel a refund from within the refund process

The following processes trigger an update of the Order Summary display:

+ Modification of an order on the Shopping Cart, Shipping Address, Shipping Method, Billing, Review Order and
Confirmation pages

» Scheduling a new or updating an existing schedule using the Schedule page
+ A Return using Return Items, Return Type or the Return Confirmation pages
+ Exchanges

To customize the Order Summary panel, override the Nucleus configuration files located in the conf i g/ at g/
commer ce/ cust svc/ or der sunmmar y directory. Then copy and modify the JSP files in DCS- CSR- Ul . war /
panel s/ or der sunmary.

Adding a New Order Summary Step

1. If the new step fits into one of the pre-existing paths, such as modify order or returns, add a new properties
file to the configuration. If necessary, create a new JSP file. Pre-existing paths are indicated by the use of a
task-based name, such as exchange, nodi fy,ret urn,t enpl at e, conpl et e and subni t t ed.

The properties files have the following entries:

+ page= indicates the JSP file to display when the agent is in the step. If necessary, add a new JSP file and add
it to the page entry

+ cont ent = indicates the Web application that contains your JSP files. If you do not indicate the Web
application, then the application server will try to find your new JSP in the DCS-CSR-UI Web application.
Placing your JSP in the DCS-CSR-UIl Web application for testing is appropriate, but JSPs should be moved
into your own Web application for production. Additionally, this will prevent your JSPs from being
overwritten during any subsequent patch upgrades

+ vi si bl eWenl nSt eps=is a comma separated list of the steps where the JSP should be displayed. The
panel stack’s ID is used to identify the step. Use this for paths where steps appear immediately after the
step on which the agent is working. Leave the list blank if the step should always remain visible

+ conpl et eWhenl nSt eps=is a comma separated list of the steps where the step should be in the conpl et e
state. Completion is indicated when the step shifts from showing edit links to display the text “complete”.
These steps are performed after the step in which the agent is working. Leave the list empty if the step is
always complete

2. Edit the properties files of the other steps in the path to provide information on the new step. For example,
add the ID of the new step to the vi si bl eWhenl nSt eps= list of the steps bef or e this new step in the path
when the agent is in the new step.

108

10 Rendering Pages with Nucleus Components

3. Ensure that one of the panels in the new panel stack calls the JavaScript function
at g. progr ess. updat e(' sonel dStri ngHere'), passing the ID of the panel stack. This lets the progress
bar know it needs to update itself, and indicates where the agent is in the process.

4. To add the JSP into your Web applications, modify the Nucleus configuration properties files to identify which
Web-app contains the JSP file. For example:

pat h=/ panel s/ or der sunmary/ speci al 0f fers. j sp
cont ext =/ my- web- app

Editing an Existing Order Summary Step

1. Copy an existing JSP file and rename the file.

2. Modify the JSP. For example, to modify the template bi | | i ng step so that it is visually different than the
modifiable order bi | | i ng step, copy the existing bi | | i ng JSP file and make the changes as needed.

10 Rendering Pages with Nucleus Components 109

110

10 Rendering Pages with Nucleus Components

11 Modifying Keyboard Shortcuts

You may modify the keyboard shortcuts that are used throughout the Service Center Ul by modifying the
appropriate JavaScript files.

Modifying Shortcuts

Keyboard shortcuts are located in the following files:

* Service-U/Framework/ Agent/ Servi ceFranewor k/ scri pt
/ keyboar dShortcutsService.js

* Service- U/ Framewor k/ Agent / Ser vi ceFr amewor k/ scri pt/
Agent/ scri pt/ keyboar dTopi csService.js

* DCS-CSR- Ul /script/keyboardShortcutsCSC.js
* DCS-CSR- Ul /script/keyboardTopi csCSC. j s

The keyboar dShor t cut s files are used to map keyboard shortcuts to published topics. The keyboar dTopi cs
files are used to execute these topics and perform the specific functions.

The following is an example of a keyboard shortcut definition for the shortcut key ALT+6:

at g. keyboar d. r egi st er Short cut (
"ALT+6", {
shortcut: "ALT + 6",
name: get Resour ce("keyboard. servi ce. cust oner sTab. nane"),
description: getResource("keyboard. service. custonersTab. description"),
area: getResource("keyboard. area. wor kspace"),
topic: "CustonersTab",
notify: true

1)

Where:
+ shortcut is the shortcut key that is shown in the help window
» nane is the localized display name, shown in the help window

+ descri ptionis the localized description, shown in the help window

11 Modifying Keyboard Shortcuts 111

+ areais the localized functional area, shown in the help window
* topi c is the name of the topic that is fired when this shortcut is pressed

+ acti onis the optional JavaScript function that is called when the shortcut is pressed (used when a topic is
not available)

« noti fy isan attribute that determines whether the small pop-up window in the bottom right of the screen is
shown for the particular topic

Defining Global Keyboard Shortcuts

There are attributes that may be defined on a global basis for keyboard navigation. The
keyboar dNavi gat i on. j s file is the main keyboard navigation file. In it, you can set the following variables:

var _showNoti ficati onW ndow = true;
var _hi ghli ght AndFadePanel s = true;
var _hi ghl i ght AndFadeNodes = true;

Where:

+ showNot i fi cati onW ndowdetermines whether the small notification window that pops up in the bottom
right part of the screen is shown when a shortcut is pressed. Each shortcut has an attribute called noti fy
that specifies the use of the notification window on a shortcut-by-shortcut basis. However, the use of the
notification window may be disabled if the showNot i f i cat i onW ndowis settof al se

+ hi ghl i ght AndFadePanel s provides a visual highlight as users jump from one panel to the next using the
panel shortcuts. When this attribute is set to f al se, the panel highlighting will not occur

» hi ghl i ght AndFadePanel s provides a visual highlight as users tab throughout the Service Center. When this
attribute is set to f al se, the screen elements will not be highlighted

112

11 Modifying Keyboard Shortcuts

12 Configuring Messaging

This section provides an overview of configuring the messaging Ul in Service Center.

Rendering Messages in the Message Bar

This section describes the requirements needed to display messages in the message bar that is used by both the
server-side code and client-side code.

Server-Side Configuration

Before configuring messages, ensure that the exception collector servlet has been activated in the application
by inserting it in the servlet pipeline and adding the following lines to the web. xni file:

<cont ext - par an>
<par am nanme>excepti on-col | ecti ng- enabl ed</ par am nane>
<par am val ue>t r ue</ par am val ue>

</ cont ext - par an>

The exception collector servlet creates messages from Dr opl et Except i on and Ser vl et Except i on objects
that occur in the request.

Adding Messages from a Form Handler
There are two methods you can use to add messages to the messaging Ul from a form handler:

+ Add a servlet bean exception with a message to the form handler by invoking the addFor nExcept i on()
method on the form handler. The message property on the added exception will be displayed by the Ul

+ Create a user message bean (at g. web. nessagi ng. User Message) directly and add it to the messaging slot
using the MessageTool s addMessage() method

The messaging Ul will also display unhandled exceptions from the form handlers and server-side business logic.

Message Properties

Messages have the following properties:

12 Configuring Messaging 113

+ type-canbeerror,confirnation,warningorinformation
+ summary - contains the message title
+ det ai | s— contains an array of exception or other messages

When one or more exceptions occur during either form handler exceptions or an unhandled servlet exception,
a single message is created witht ype = "error".Each exception is added as a detail within the message.
Exceptions that occur during a request are grouped inside a single container message. When no exceptions
occur during the request, and a success summary is specified via the request parameters, the messaging Ul
creates a confirmation message.

Specifying a Message Summary

Success and failure summaries are specified using the at g. successMessage and at g. f ai | ur eMessage
parameters. For example, to specify message summaries with a form you could add the following:

<i nput name="atg. successMessage" type="hi dden" val ue="Updated info
for John Doe."/>

<input nanme="atg.failureMessage" type="hi dden" val ue="There was a
probl em updati ng John Doe's info."/>

If no failure summary is specified in the request, the messaging Ul adds the default summary that is specified in
the message bar:

<di v doj oType="nmessagi ng: MessageBar" error Message="There were
errors with the request."/>

By default, no message is displayed for successful requests.

Adding Messages from JavaScript

Add messages from JavaScript code by using the message bar addMessage function:

doj o. wi dget . byl d(' messageBar '). addMessage({type: "warni ng", sunmary:"An
error has occurred."});

To add a message that contains bulleted details, write your JavaScript similar to the following:

doj 0. wi dget . byl d(' messageBar'). addMessage({type:"error", summary:"An
error has occurred.", details:[{description: "First detail"},
{description: "Second detail"}]});

114

12 Configuring Messaging

Implementing Client-Side Validation

Note: Tag converters should be used for server-side validation., as they use the mechanism for form handler
exceptions described above.

Implementing Client-Side Validation with DSP Tags

Applying client-side validation to dsp: i nput and dsp: sel ect tags enable the following behaviors based on
the state of the validation in the input or select element:

+ Allows an inline indicator graphic to show or hide

+ Allows a client-side validation message to be added to the message bar when invalid contents are present
(optional)

+ Causes the Dojo Subni t But t on widget(s) (if present) to enable or disable

To enable client-side validation with a dsp: i nput ordsp: sel ect tag, use the dsp: t agAttri but e tag:

<dsp:input id="dateO'Birth" type="text" val ue="01/01/1980"
size="30" converter="date" date="Mdd/yyyy"
bean="/ at g/ web/ messagi ng/ t est/ User | nf oFor mHandl er . dateOf Bi rt h" >
<dsp:tagAttri bute name="doj oType" val ue="Dat eText box"/>
<dsp:tagAttribute name="Il ang" val ue="en-us"/>
<dsp:tagAttribute name="required" value="true"/>
<dsp:tagAttribute name="trinf val ue="true"/>
<dsp:tagAttribute name="inval i dMessage" val ue="The date of birth is
invalid."/>
<dsp:tagAttri bute name="m ssi ngMessage" val ue="The date of birth is
required."/>
<dsp:tagAttribute name="inlinelndicator" value="dateO'BirthAlert"/>
</ dsp:i nput>

The doj oType attribute specifies the type of client-side widget to use for the input element.

Note: The dsp: i nput or equivalent tag must have an ID property defined for the Subni t But t on auto-enabling
feature to work properly.

For detailed information on DSP tags, refer to the ATG Page Developer's Guide.

Available Client-Side Validation Widgets
The following client-side validation widgets are available from Dojo:
+ Val i dati onText box - Provides basic validation functionality, such as required values
+ I nteger Text box - Tests for signed or unsigned integer input and ranges
* Real Number Text box - Tests for real number input and ranges
+ CurrencyText box — Tests if input denotes a monetary value or range

+ | pAddr essText box - Tests for a valid IP address

12 Configuring Messaging 115

+ Url Text box - Tests for a valid URL

« Emai | Text box — Tests for a valid email address

+ Emi | Li st Text box — Tests for a list of valid email addresses

+ Dat eText box — Tests for a valid date in specified locale

« Ti meText box — Tests for a valid time

+ UsSt at eText box - Tests for a United States state abbreviation

+ UsZi pText box — Tests if input is a US zip code: validates zip-5 and zip-5 plus 4

+ UsSoci al Securit yNunber Text box — Tests for a United States Social Security number

+ UsPhoneNunber Text box — Tests for a United States 10-digit telephone number, extension is optional
* RegexpText box - Tests input based on conformity to a specified regular expression

Refer to the Dojo documentation for details on implementing specific widgets.

The following validation widgets are available:

+ Si npl eConboBox - forces a selection in a drop-down box (use dsp: sel ect with Si npl eConboBox)

+ Text Ar ea — performs range validation on the length of the t ext ar ea contents (use dsp: i nput instead of
dsp: t ext ar ea with Text Ar ea, since dsp: t ext ar ea does not accept Dojo widgets)

Preventing the Form from Submitting

The Subni t But t on widget prevents a form from being submit while there is invalid content in any of the
contained Dojo validation widgets:

<dsp:input id="updateUserlnfo" type="Submt" val ue="Submt"
bean="/at g/ web/ messagi ng/ t est/ User | nf oFor mHandl er . updat eUser | nf 0" >
<dsp:tagAttribute name="doj oType" val ue="val i dati on: Subm t Button"/>
</ dsp:input >

When present in a form, the Subni t But t on widget will automatically enable and disable to prevent form
submission while there are invalid contents in any of the Dojo validation widgets contained in the form. One or
more Subni t But t on widgets may be used in the same form. If the Subni t But t on must be placed outside of
the form that it validates, use the form attribute of the Submi t But t on to specify the form to validate.

Conditional Validation

Validation may be made conditional based on the state of another element, such as a radio button.

1. Create a function to test the state of the radio button. The following example tests a Commerce Service
Center radio button:

atg. commerce. csr.rule0 = function () { return
docurnent . get El enent sByNane(' addr essType')[0] . checked; };

2. Reference the function from the val i dat el f attribute on the widget:

116 12 Configuring Messaging

<dsp:tagAttri bute nane="validatel f"
val ue="at g. conmerce. csr. rul e0. appl y()"/>

Validation rules of the widget will be applied conditionally only when the referenced function returns true.

Conditional Requirements

A validation widget may be conditionally required based on the evaluation of an expression. As with conditional
validation, perform the following steps:

1. Create a function to test the condition.

2. Reference the function from ther equi r edl f attribute on the widget. The following example tests a
Commerce Service Center condition:

<dsp:tagAttribute nane="requiredl f"
val ue="at g. conmerce. csr. rul e0. appl y()"/>

This creates a widget that will perform required checks only when the condition applies, but will always perform
validation checks when the widget contains data.

Custom Validation Conditions

Custom validation conditions may be applied to any validation widget through the val i dI f and i ssi ngl f
attributes. The val i dI f attribute applies a custom validation condition to the widget:

<dsp:tagAttribute name="validlf" value="this.getValue() != "blank'"/>

In the above example, the widget will be considered valid only when the expression in the val i dI f attribute
evaluatestot r ue.

The ni ssi ngl f attribute applies a custom condition to determine whether the widget is missing a required
value.

Additional Field Validation

You can use field validation to capture specific information. For example, to add an additional required field to
the billing addresses to capture an e-mail address, add code similar to the following on your billing page:

<span cl ass="at g_nessagi ng_r equi r edl ndi cat or "
i d="emai | Val i dat or Al ert" > &bsp; &bsp; </ span>
<dsp:input type="text" name="enuil Address"
bean="Bi | | i ngFor nHandl er . ermai | Addr ess" required="<%true%"
si ze="25" max| engt h="25">
<dsp:tagAttri bute name="doj oType" val ue="Enmi |l Text box" />
<dsp:tagAttribute name="required" val ue="true" />
<dsp:tagAttribute nanme="ni ssi ngMessage" val ue="${emai | M ssi ng
>
<dsp:tagAttri bute name="inval i dvessage"
val ue="${enuil I nvalid}"/>
<dsp:tagAttri bute nanme="inlinelndicator"

12 Configuring Messaging 117

val ue="enumi | Val i datorAlert" />
</ dsp:i nput>

Additionally, you must have a form handler equivalent to Bi | | i ngFor nHandl er in the example that accepts
the e-mail address as one of its inputs.

118

12 Configuring Messaging

Appendix A. The XML Combiner Script

The xm Conbi ner Cust oni zer script sets up the rules that combine the XML definition files. For information on
this script, refer to the Data Combining (page 11) section.

The following is an example of the xnl Conmbi ner Cust oni zer file:

<?xm version="1.0"?>

<! DOCCTYPE conbi ner - cust om zers
PUBLIC "-//Art Technol ogy G oup, Inc.//DTD XM. Conbi ner Custom zer//EN'
"http://ww. atg. conl dtds/xm conbi ner/xm Conbi ner Cust omi zer_1.1.dtd' >

<conbi ner - cust om zer s>
<conbi ner - cust om zer >
<t ag- nane>cont ent - def i ni ti on</t ag- nane>
<mat ch- subt ag>i d</ mat ch- subt ag>
</ conbi ner - cust omi zer >

<conbi ner - cust om zer >
<t ag- nanme>i d- ent ry</t ag- name>
<mat ch- subt ag>i d</ mat ch- subt ag>
</ conbi ner - cust om zer >

<conbi ner - cust om zer >
<t ag- nane>map- ent ry</ t ag- nane>
<mat ch- subt ag>key</ mat ch- subt ag>
</ conbi ner - cust om zer >

<conbi ner - cust om zer >
<t ag- nane>t enpl at e- defi ni ti on</t ag- nane>
<mat ch- subt ag>i d</ mat ch- subt ag>

</ conbi ner - cust omi zer >

<conbi ner - cust om zer >

<t ag- nanme>f r amewor k- def i ni ti on</t ag- name>
<mat ch- subt ag>i d</ mat ch- subt ag>
</ conbi ner - cust oni zer >

<conbi ner - cust oni zer >
<t ag- name>ski n- def i ni ti on</ t ag- nanme>
<mat ch- subt ag>i d</ mat ch- subt ag>

</ conbi ner - cust oni zer >

<conbi ner - cust om zer >
<t ag- nane>t ab- def i ni ti on</ t ag- name>
<mat ch- subt ag>i d</ mat ch- subt ag>

</ conbi ner - cust om zer >

Appendix A. The XML Combiner Script 119

<conbi ner - cust om zer>
<t ag- nane>cel | -defi ni ti on</tag- name>
<mat ch- subt ag>i d</ mat ch- subt ag>

</ conbi ner - cust om zer >

<conbi ner - cust oni zer >
<t ag- name>panel - st ack- defi ni ti on</t ag- name>
<mat ch- subt ag>i d</ mat ch- subt ag>

</ conbi ner - cust oni zer >

<conbi ner - cust om zer >
<t ag- nane>panel - defi ni ti on</t ag- nanme>
<mat ch- subt ag>i d</ mat ch- subt ag>

</ conbi ner - cust om zer >

<conbi ner - cust om zer >
<t ag- nanme>i d</ t ag- nanme>
<mat ch-t ext >
<i gnhori ng- out er - whi t espace/ >
</ mat ch-t ext >
</ conbi ner - cust om zer >

<conbi ner - cust om zer >
<t ag- nane>key</ t ag- nanme>
<mat ch-t ext >
<i gnori ng- out er - whi t espace/ >
</ mat ch-t ext >
</ conbi ner - cust om zer >
</ conbi ner - cust om zer s>

120 Appendix A. The XML Combiner Script

Appendix B. Tag Libraries

The following tag libraries, which are used in Service Center, provide specialized markup tags that render
content dynamically by linking Nucleus components directly to JSPs. ATG applications support both the
standard Java Server Pages Standard Tag Library (JSTL) and the DSP tag library and provides tag converter
classes that allow you to define the conversion of form data.

For detailed information on working with tag libraries, refer to the ATG Page Developer's Guide. For information
on developing tag libraries and customized tag converters, refer to the ATG Platform Programming Guide.

ATG Service Common Ul Tag Library

The ATG Service Common Ul tag library, in the at g. svc. t agl i b package, located in the / ser vi ce/ cormon-
ui / src/ tagl i bs directory contains the following tags:

Tag Description

addAdHocFavQuery Sets the Ad Hoc Query Favorites view.

get Chi | dFocusTopi cs Returns a list of child focus objects from a focus topic.

Attributes:

id

var

root Topi cld
results
focusChi |l dren

get Chi | dTopi cs Gets a collection of child topics under a topic.
Attributes:
id
var
topicld
| abel I ncl ude
| abel Excl ude

countFilter

Appendix B. Tag Libraries 121

Tag Description

get Local e Gets the locale associated with a language code string.

Attributes:

id

var

| anguageCode

get Local eFr onSear chLanguage Gets the locale associated with the search language.

Attributes:

id

var

sear chLanguage

get Organi zati onPat h Gets a collection of parent organizations for an organization.

Attributes:

id

var

organi zationltem
| abel I ncl ude

get RankedSol uti ons Returns a list of hot solutions based upon the selected topics and
solution classes.

Attributes:

var

I ength

topi cs

sol uti ond asses
rankCat egory

get Sear chLanguage Gets the search language that is associated with the language of a
code string.

Attributes:

id

var

| anguageCode

get Topi c Gets the collection of child topics under a topic.

Attributes:
id

var

pri maryKey

122 Appendix B. Tag Libraries

Tag

get Topi cPat h

Description
Gets the collection of child topics under a topic.

Attributes:

id

var

topicld

| abel | ncl ude

f ronByst enRoot

hi ghl i ght Fi el ds

Retrieves the fields to be highlighted.

Attributes:

id

var

hi ghl i ghtInfo

| ogi cal Partitions

Returns a list of logical partitions.

Attributes:
var
PDFHi ghl i ght Highlights PDFs.
Attributes:
hi ghl i ghtInfo
PDFUr | Generates the PDF URL with the highlighting file appended.

Attributes:

id

var

pdf Ur |

hi ghl i ght Fi | eUr|
hi ghl i ght I nf o

property.isPropertyVisible

Checks to see if the property is visible to the user.

Attributes:

id

var
propertyName

retrieveDocunent Fr onES

Retrieves document or highlighting offsets from ES.

Attributes:

id

var

response
searchServi ce
node

Appendix B. Tag Libraries

123

Tag

sear ch. queryTermSpel I i ng

Description

Generates a “Did you mean” string for the search and query text
provided by the user.

Attributes:

mar KupAf t er

mar kupBef or e

scope

sear chText

terns

t ext Separ at or

var Mar kup

var

var UnknownTer s

var Unsear chabl eTer ns
var Al ter nat eTer nsUsed
var HasSuggest i ons

serialize

Serializes and encodes objects.

Attributes:
obj ect

sol ution. renderProperty

sol ution. render St at ement

sol uti onH ghli ght

Renders a property based upon the property value.

Attributes:
propertyName
pr opertyVal ue

Renders a statement based upon the statement text value.

Attributes:
id

var

t ext

Highlights solution statements.

Attributes:
fields
fieldld

hi ghl i ghtInfo
fiel dText

got oLocati on
hi ghl i ght Col or

ATG Service Framework Bean Tag Library

The ATG Service Framework bean tag library, at g. svc. f ranewor k. t agl i b. beans.

124

Appendix B. Tag Libraries

comon, is used for finder methods and home definitions. This tag library is located in the / ser vi ce/

framewor k/ src/ tagl i bs directory.

Tag

Description

cel | DefinitionFi ndByAppld

Finds all cells by application.

Attributes:
id

var

appl d

cel | DefinitionFindByCellld

Finds cell definitions by application and logical IDs.
Gets all skins by application and enabled status.

Attributes:
id
var

appl d
cellld

cel | DefinitionFi ndByPri maryKey

Finds cell definitions by repository ID.

Attributes:

id

var

cell Definitionld

cel | DefinitionFindBySiteld

Gets cell definitions by application and site ID.

Attributes:
id

var
siteld

cel | DefinitionFindBySitel dAndCellld

cel | DefinitionFi ndByUser Si t el dAnd
Cellld

Finds cell definitions by application, site and logical
partition IDs.

Attributes:
id

var

appl d
siteld
cellld

Finds content definitions by user site and cell IDs.

Attributes:
id

var

appl d
cellld

Appendix B. Tag Libraries

125

Tag Description

cont ent Def i ni ti onFi ndByAppl d Gets all content definitions by application.

Attributes:
id

var

appl d

content Defi ni ti onFi ndByContent!d Find content definitions by application and logical
IDs.

Attributes:
id
var

appl d
contentld

cont ent Def i ni ti onFi ndByPri mar yKey Finds content definitions by repository ID.

Attributes:
id

var
contentld

cont ent Def i ni ti onFi ndBySiteld Find all content definitions by application and site
IDs.

Attributes:
id

var

appl d
siteld

cont ent Defi ni ti onFi ndBySi t el dAnd Finds content definitions by application, site and
Contentld logical partition IDs.

Attributes:
id

var

appl d
siteld
contentld

content Defi ni ti onFi ndByUser Si t el dAnd Finds content definitions by user site and content IDs.

Contentld
Attributes:

id

var

appl d
contentld

126 Appendix B. Tag Libraries

Tag

f ramewor kDef i ni ti onFi ndByFr anewor ki d

Description

Gets framework definitions by application and logical
IDs.

Attributes:
id
var

appl d
f ramewor ki d

f ramewor kDef i ni ti onFi ndByPri mar yKey

Gets the Fr amewor kDef i ni ti on by repository ID.

Attributes:

id

var

framewor kDefinitionld

franmewor kDef i niti onFi ndBySiteld

Gets all framework definitions by application and site
IDs.

Attributes:
id

var

appl d
siteld

f ramewor kDef i ni ti onFi ndBySi t el dAnd
Fr amewor ki d

f ramewor kDef i ni ti onGet Ski ns

Finds framework definitions by application, site and
logical IDs.

Attributes:

id

var

appl d
siteld
framewor kil d

Gets the skins associated with the framework
definition.

Attributes:

id

var

franmewor kDef i nitionld

f ramewor kDef i ni ti onGet Tabs

Gets the tabs associated with the framework
definition.

Attributes:

id

var

framewor kDefinitionld

Appendix B. Tag Libraries

127

Tag Description

f ramewor kDef i nti onFi ndByAppl d Gets the framework definition by its application
identifier.

Attributes:
id

var

appl d

f r amewor kQbj ect Fi ndByPr i mar yKey Finds a Fr amewor kObj ect by its repository ID.

Attributes:

id

var

franewor kObj ect | d

f ramewor kQbj ect Get Cont ent s Retrieves content information.

Attributes:

id

var

franewor kObj ect I d

f ramewor kQbj ect Get Tenpl at es Retrieves template information.

Attributes:

id

var

f ranewor kObj ect I d

get Cel | Defi ni ti onHone Gets the home for the cel | Def i ni ti on servlet
bean.

Attributes:
id
var

get Cont ent Def i ni ti onHome Gets the home for the cont ent Def i ni ti on servlet
bean.

Attributes:
id
var

get Fr amewor kDef i ni ti onHone Gets the home for the Fr amewor kDef i ni ti on
servlet bean.

Attributes:
id
var

128 Appendix B. Tag Libraries

Tag

get Franewor kObj ect Hone

Description

Gets the home for the Fr amewor kObj ect servlet
bean.

Attributes:
id
var

get Panel Defi ni ti onHone

Gets the home for the panel Def i ni ti on servlet
bean.

Attributes:
id
var

get Panel St ackDefi niti onHone

Gets the home for the panel St ackDefi nition
servlet bean.

Attributes:
id
var

get Ski nDef i ni ti onHone

Gets the home for the Ski nDef i ni ti on servlet
bean.

Attributes:
id
var

get TabDefi ni ti onHone

get Tenpl at eDef i ni ti onHone

panel Def i ni ti onFi ndByPanel | d

Gets the home for the TabDef i ni ti on servlet bean.

Attributes:
id
var

Gets the home for the Tenpl at eDef i ni ti on servlet
bean.

Attributes:
id
var

Finds panel definitions by application and logical IDs.
Gets all skins by application and enabled status.

Attributes:
id
var

appl d
panel | d

Appendix B. Tag Libraries

129

Tag

panel Def i ni ti onFi ndByPri mar yKey

Description

Finds skin definitions by repository ID.
Attributes:

id

var

panel Definitionld

panel DefinitionFindBySiteld

Gets panel definitions by application and site ID.

Attributes:
id

var
siteld

panel Def i nitionFi ndBySitel dAnd
Panel | d

panel kDef i ni ti onFi ndByAppl d

panel St ackDefi niti onFi ndByAppl d

panel St ackDefi niti onFi ndByAppl d
NoSiteld

Finds panel definitions by application, site and logical
partition IDs.

Attributes:
id

var

appl d
siteld
panel | d

Finds all panels by application.

Attributes:
id

var

appl d

Finds all panel stacks by application.

Attributes:
id

var

appl d

Gets all panel stacks by application and not set
siteld.

Attributes:
id

var

appl d

130

Appendix B. Tag Libraries

Tag

panel St ackDefi ni ti onFi ndByPanel St ackl d

panel St ackDefi ni ti onFi ndByPri mar yKey

panel St ackDefiniti onFi ndBySiteld

Description

Finds panel stack definitions by application and
logical IDs. Gets all skins by application and enabled
status.

Attributes:

id

var

appl d

panel St ackl d

Finds skin definitions by repository ID.

Attributes:

id

var

panel St ackDefinitionld

Gets panel stack definitions by application and site
ID.

Attributes:
id

var
siteld

panel St ackDefi ni ti onFi ndBySi t el dAnd
Panel St ackl d

panel St ackDefi ni ti onGet Panel s

Finds panel stack definitions by application, site and
logical partition IDs.

Attributes:

id

var

appl d

siteld

panel St ackl d

Finds panel definitions associated with the panel
stack repository ID.

Attributes:

id

var

panel St ackDefinitionld

ski nDef i ni ti onFi ndByAppl d

Finds all skins by application.

Attributes:
id

var

appl d

Appendix B. Tag Libraries

131

Tag Description

ski nDefi ni ti onFi ndByAppl dAndEnabl ed Gets all skins by application and enabled status.
Attributes:
id
var
appl d
enabl edYn
ski nDef i ni ti onFi ndByPri mar yKey Finds skin definitions by repository ID.
Attributes:
id
var

skinDefinitionld

ski nDefi niti onFi ndBySiteld Gets skin definitions by application and site ID.

Attributes:
id

var
siteld

ski nDefi ni ti onFi ndBySi t el dAndSki nl d Finds skin definitions by application, site and logical
partition IDs.

Attributes:
id

var

appl d
siteld
skinld

ski nDef i ni ti onFi ndBySki nl d Finds skin definitions by application and logical IDs.
Gets all skins by application and enabled status.

Attributes:
id

var

appl d
skinld

ski nDefinitionFi ndByUser Si t el dAnd Finds panel stack definitions by user site and skin IDs.

Panel I d
Attributes:

id

var

appl d
panel | d

132 Appendix B. Tag Libraries

Tag

ski nDefi ni ti onFi ndByUser Si t el dAnd
Panel St ackl d

Description

Finds panel stack definitions by user site and skin IDs.

Attributes:

id

var

appl d

panel St ackld

ski nDef i ni ti onFi ndByUser Si t el dAnd
Skinld

Finds content definitions by user site and skin IDs.

Attributes:
id
var

appl d
skinld

tabDefi ni ti onFi ndByAppl d

Finds all tabs by application.

Attributes:
id

var

appl d

tabDefi ni ti onFi ndByPri mar yKey

Finds tab definitions by repository ID.

Attributes:

id

var
tabDefinitionld

tabDefiniti onFi ndBySiteld

Gets tab definitions by application and site ID.

Attributes:
id

var
siteld

tabDefi ni ti onFi ndBySi t el dAndTabl d

Finds tab definitions by application, site and logical
partition IDs.

Attributes:
id

var

appl d
siteld
tabld

Appendix B. Tag Libraries

133

Tag

tabDefi ni ti onFi ndByTabl d

Description

Finds tab definitions by application and logical IDs.
Gets all skins by application and enabled status.

Attributes:
id
var

appl d
tabld

tabDefi ni ti onFi ndByUser Si t el dAnd
Tabl d

t enpl at eDefi ni ti onFi ndByAppl d

t enpl at eDefi ni ti onFi ndByPri mar yKey

tenpl at eDefi nitionFi ndBySiteld

Finds content definitions by user site and tab IDs.

Attributes:
id

var

appl d
tabld

Gets all template definitions by application.

Attributes:
id

var

appl d

Finds template definitions by repository ID.

Attributes:
id

var

tenpl ateld

Find all content definitions by application and site
IDs.

Attributes:
id
var

appl d
siteld

t enpl at eDefi ni ti onFi ndBySi t el dAnd
Tenpl atel d

Finds template definitions by application, site and
logical partition IDs.

Attributes:
id

var

appl d
siteld
tenplateld

134

Appendix B. Tag Libraries

Tag Description

t enpl at eDef i ni ti onFi ndByTenpl at el d Finds a template definition by application and logical
IDs.

Attributes:
id

var

appl d
tenpl ateld

t enpl at eDef i ni ti onFi ndByUser Siteld Finds template definitions by user site and content
AndTenpl at el d IDs.

Attributes:
id

var

appl d
tenpl ateld

The following tags are available in the / Ser vi ce/ f ramewor k/ Ul / t agl i bs/ svc-ui /| i b/ directory:

Tag Description
f ramewor kPopupUr | . t ag Constructs the pop-up URL with framework parameters.
frameworkUrl.tag Constructs a forwarding and redirection URL with framework parameters.

ATG Service Framework Ul Tag Library

The ATG Service Framework Ul tag library at g. svc. t agl i b package, located in the/ servi ce/ f r amewor k/
Ul / src/ tagli bs directory, contains the following tags:

Tag Description
body Creates a scrollable body for a tree table item.

Attributes:
childltens
itens

nol t emrsUr |
scope
varltem
var Node
var St at us

Appendix B. Tag Libraries 135

Tag Description
checkBox A sub-tag that defines the tree table checkbox components.

Attributes:
onCheck

col urm A sub-tag that defines the tree table column components.

Attributes:
defaul tSortDirection
i sSortabl e

key

onCheck

onSort

percent Wdth
sortField

sort | gnoreCase
sort Expressi on
style

st yl eDown

styl eHover

styl eSorted
title

contr ol Bar Creates a paging-enabled control bar for an expanding table.

Attributes:
control Barld
scope

showAl ways
style
treeTabl eBean
treeTabl el d
var Hi ghl ndex
var Node

var Of f set

var Tot al

wi dt h

del et eBut t on Creates a delete button.

Attributes:

di sabl edl nage
i mge

l'i nk

I'i nkPosi tion
onDel ete

del et eOper ati on
style

styl eDi sabl ed
st yl eDown
styl eHover
title

136 Appendix B. Tag Libraries

Tag

execut eQperation

Description
Initiates an operation on a tree table.

Attributes:
oper at i onNane
treeTabl el d

expandBut t on

A sub-tag that assigns a button to expand an item.

Attributes:
closedTitle
cl osedUr |
enptyUr|
onExpand
openTitle
openUr |
style

st yl eDown
styl eHover

field

A sub-tag that defines the tree table field components.

Attributes:
col umKey
i sChecked
noWw ap
onCheck
over f | ow
percent Wdth
position
style
iclass
col span
title

wor dW ap

filterOption

Creates a filter option within a filter selection drop down.

Attributes:
filterVal ue

filterSelect

Creates a filter selection drop down element.

Attributes:

filterField
filterOperation
filterTest Expression
noFi | teri ngVal ue

onFilter
style
varFilter

Appendix B. Tag Libraries

137

Tag

get Deci mal For mat Synbol s

Description

Gets the Deci mal For mat Synbol s for the locale or the current
user’s locale.

Attributes:
id

var

| ocal e

get EncodedJavascript String

Gets an encoded truncation for special characters.

Attributes:
var
original String

get Opti onAsArray

Gets an option by name and returns the value as an array.

Attributes:

id

var

opti onNane

segment Nane

useVer si onedReposi tory

get Opt i onAsBool ean

Gets an option by name and returns the value as Boolean.

Attributes:

id

var

opt i onNane

segnent Nanme

useVer si onedReposi tory

get Opt i onAsl nt eger

Gets an option by name and returns the value as an integer.

Attributes:

id

var

opti onNane

segnent Nanme

useVer si onedReposi tory

get Opti onAsStri ng

Gets an option by name and returns the value as a string.

Attributes:

id

var

opt i onNane

segnent Nanme

useVer si onedReposi tory

138

Appendix B. Tag Libraries

Tag

head

Description
Creates a header for a tree table column.

Attributes:
showAl ways
style

ht t pCacheHeader

Sets the HTTP cache control headers.

initial Sort

Defines the sort for a tree table.

Attributes:

defaul t SortDi rection
sort | gnoreCase

sort Epxressi on
sortField

i nsert Body

i nsert Contr ol Bar

Inserts a body object for the tree table implementation.

Attributes:
childltens

i sExpandi ng

i sNavi gati ng
it enKey

i t emNane
itens
varltem

vi si bl eLevel s

Inserts an empty tree table control bar on the page.

Attributes:
control Barld
treeTabl el d

i nsertTreeTabl e

Inserts an empty tree table on the page, with the global attributes
already defined.

Attributes:
actionld

col ums
hasHeader
hasPagi ng

hei ght

initial Ul
over f | ow
pageSi ze
position

ski pRestore
st at Savi ngMet hod
treeTabl eBean
treeTabl el d
wi dt h

Appendix B. Tag Libraries

139

Tag

itentStyle

Description

Defines a style for items within the tree table with the ability to have

alternating row styles.

Attributes:
styl eName

i tenlenpl ate

nmoveBut t on

navi gat eButt on

Defines a template for items that are contained in the body of the

tree table.

Attributes:

i sExpanded
key

noW ap
onDel ete
onSel ect
overfl ow
position
style

styl eHover
styl eSel ect ed

Creates a move button.

Attributes:

di sabl edl nage
i mge

I'i nk

|'i nkPosi tion
onMbve
nmoveQOperati on
style

styl eDi sabl ed
st yl eDown
styl eHover
title

Creates a navigate button.

Attributes:

di sabl edl nage
i mge

key

l'i nk

I'i nkPosi tion
onNavi gat e
style

styl eDi sabl ed
st yl eDown
styl eHover
title

140

Appendix B. Tag Libraries

Tag

oper at i onPar anet er

Description
Defines a tree table operation parameter in page elements.

Attributes:

el ement 1 d

el ement Property
name

val ue

pagi ngBut t on

Creates a paging button within a paging component.

Attributes:

di sabl edl mage
i mge

I'i nk

I'i nkPosi tion
onPage

pagi ngQper ati on
style

styl eDi sabl ed
st yl eDown
styl eHover
title

refreshButton

Creates a refresh button.

Attributes:

di sabl edl mrage
i mge

l'i nk

I'i nkPosi tion
onRefresh
pagi ngQper ati on
style

styl eDi sabl ed
st yl eDown
styl eHover
title

restoreState

Restores window-based state from the state holder to the attribute.

Attributes:
key
scope
var

saveSt at e

Saves the window-based state in the state holder.

Attributes:
key
val ue

Appendix B. Tag Libraries

141

Tag

servi ceMet hod

Description

Invokes methods on repository services, with arguments passed in
using child tags.

Attributes:
bean

net hod
scope
var

servi ceMet hodAr gunent

Passes an argument to a service method tag.

Attributes:
val ue

sort Opti on

Creates a sort option within a sort selection drop down.

Attributes:

defaul t SortDi rection
islnitiallySorted
sort Expressi on
sortField
sortlgnoreCase

sort Sel ect

Creates a sort selection drop down.

Attributes:
onSort
style

Commerce Service Center Tag Library

The following tag files are located in the / DCS- CSR- Ul / j 2ee- apps/ DCS- CSR- Ul / WEB- | NF/ t ags/ directory.
To use these tags, you must copy these tags into your customization library. For detailed information on working
with tag files, refer to the ATG Page Developer's Guide:

Tag

Description

di spl ayCredi t CardType. t ag

Displays the credit card name and renders the last four digits of the
credit card number.

get CurrencyCode. t ag

get Product . tag

Retrieves a currency code that is used by the order. If no currency code
is set, the default currency code is used.

Obtains the product repository item from the order if the
commer cel t em d has been set. If not, it runs a Pr oduct Lookup using
the Pr oduct I d.

142

Appendix B. Tag Libraries

Tag

inventoryStatus.tag

Description

Provides a string description of the inventory status.

pri ceRange. tag

Sets the hi ghPri ce and | owPri ce of the price range.

renderer.tag

Adds renderer, targeter and rule data components to renderers.

sitelcon.tag

Displays the si t el con for a specified si t el d. Used only in
environments with multiple sites.

skuPrice.tag

Returns the appropriate SKU price based upon the agent’s currency
code and price lists.

skuPri ceDi spl ay. tag

Displays the appropriate SKU price from the current price and sales
price lists.

Appendix B. Tag Libraries

143

144 Appendix B. Tag Libraries

	ATG Service Center UI Programming Guide
	Table of Contents
	1 Introduction
	Audience
	Documentation Conventions
	Related Documents
	Framework Modules

	2 Service Center User Interface Architecture
	Service Center Overview
	User Interface Modules and Files
	User Interface Objects
	User Interface Sections

	Customizing Service Center

	Part I. Programming Service Center
	3 Service Center User Interface Data Model
	Schema Elements
	Initializing Framework Data
	Data Combining

	Framework Objects
	Framework Definition Objects
	FrameworkDefinition
	SkinDefinition
	TabDefinition
	CellDefinition
	PanelStackDefinition
	PanelDefinition

	Framework Supporting Object Definitions
	ContentDefinition
	TemplateDefinition

	Framework Configuration Objects
	Configuration Object Inherited Attributes
	FrameworkConfig
	ContentConfig
	TemplateConfig
	SkinConfig
	TabConfig
	CellConfig
	PanelStackConfig
	PanelConfig

	Framework Instance Objects
	Instance Object Inherited Attributes
	ContentInstance
	TemplateInstance
	FrameworkInstance
	SkinInstance
	TabInstance
	CellInstance
	PanelStackInstance
	PanelInstance
	PanelTarget

	Modifying Framework Definitions
	Adding a Definition
	Modifying a Definition
	Deleting a Definition

	4 Service Center Framework API
	Changing Tabs
	Submitting Actions
	Forwarding and Redirecting URLs

	Part II. Developing Pages in Service Center
	5 Service Center UI Components
	Working with JavaServer Pages
	Tag Libraries
	Servlet Beans

	Customization Best Practices
	Extending Configuration Files
	Adding JavaScript and CSS Files

	Using Service Center Debugging Modes
	Service Center Debugging Mode
	Dojo Debugging Mode

	6 Working with the Global Context Area
	Global Context Area Architecture
	NavContainers
	NavItems
	NavSearch
	NavContext
	NavActionContainers
	NavActionFactory
	NavAction

	Rendering the Global Context Area
	Rendering NavContainers
	Rendering NavSearch
	Rendering NavContext
	Rendering NavActions

	Creating a New NavAction
	Example: Creating a Options Policy Menu Item

	7 Working with Pages
	Creating a New Tab Definition
	Example: Creating a New Page

	Modifying a Tab Action
	Deleting a Tab Definition
	Adding a New Panel Definition
	Example: Adding Three New Panels
	Customer Management Panel Configuration

	Troubleshooting Pages

	8 Working with Forms
	Modifying Existing Forms
	Working with Page Fragments
	Overriding the Default Page Fragment
	Modifiable Form Configuration Files

	Creating New Forms
	Creating a Pop-up Page
	Creating the Caller Page
	Creating the JSP file
	Creating the JavaScript

	9 Working With Grids and Tables
	Modifiable Grids and Tables
	Customer Information Page
	Order View Page
	Scheduled Order Page
	Gift/Wish List
	Promotions

	Extending Table Configurations
	Extending Grid Configuration
	Working With Column Layout
	Customizing Column Attributes
	Modifying Column Widths

	Configuring the PageFragment Component
	Creating Column Content
	Rendering Column Content

	Modifying Columns
	Adding a Column
	Removing a Column
	Reordering Columns

	Changing the Item Detail (Hover) Page

	10 Rendering Pages with Nucleus Components
	Customization Options
	Simple Customization
	Renderer Components
	Targeting Customization
	Creating a ProductSkuRenderer
	Available Renderers
	Customizing the Order Summary Panel
	Adding a New Order Summary Step
	Editing an Existing Order Summary Step

	11 Modifying Keyboard Shortcuts
	Modifying Shortcuts
	Defining Global Keyboard Shortcuts

	12 Configuring Messaging
	Rendering Messages in the Message Bar
	Server-Side Configuration
	Adding Messages from a Form Handler
	Message Properties
	Specifying a Message Summary
	Adding Messages from JavaScript

	Implementing Client-Side Validation
	Implementing Client-Side Validation with DSP Tags
	Available Client-Side Validation Widgets
	Preventing the Form from Submitting
	Conditional Validation
	Conditional Requirements
	Custom Validation Conditions
	Additional Field Validation

	Appendix A. The XML Combiner Script
	Appendix B. Tag Libraries
	ATG Service Common UI Tag Library
	ATG Service Framework Bean Tag Library
	ATG Service Framework UI Tag Library
	Commerce Service Center Tag Library

