
Service Center

Version 10.2

UI Programming Guide

Oracle ATG

One Main Street

Cambridge, MA 02142

USA

ATG Service Center UI Programming Guide

Product version: 10.2

Release date: 04-30-13

Document identifier: ServiceCenterProgrammingGuide1403311801

Copyright © 1997, 2013 Oracle and/or its affiliates. All rights reserved.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are

protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy,

reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any

means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please

report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government,

the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed on the

hardware, and/or documentation, delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable

Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and

adaptation of the programs, including any operating system, integrated software, any programs installed on the hardware, and/or

documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S.

Government.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended

for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or

hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures

to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in

dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are

trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or

registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.

Portions of this product may contain the following: EditLive Authoring Software Copyright © 2004 Ephox Corporation. All rights reserved.

Some code licensed from RSA Security, Inc. Some portions licensed from IBM, which are available at http://oss.software.ibm.com/icu4j/.

This product may include software developed by the Apache Software Foundation (http://www.apache.org/). Spell checking software from

Wintertree Software Inc. The Sentry Spell Checker Engine © 2000 Wintertree Software Inc. This product also includes software developed

by the following: Free Software Foundation, GNU Operating System, Incanto, JSON.org, JODA.org, The Dojo Foundation, Adobe Systems

Incorporated, Eclipse Foundation and Singular Systems.

The software is based in part on the work of the Independent JPEG Group.

This software or hardware and documentation may provide access to or information on content, products, and services from third parties.

Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party

content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to

your access to or use of third-party content, products, or services.

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website at http://www.oracle.com/pls/

topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support: Oracle customers have access to electronic support through My Oracle Support. For information, visit http://

www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing

impaired.

The MIT License

Copyright (c) 2007 FlexLib Contributors. See: http://code.google.com/p/flexlib/wiki/ProjectContributors

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the

"Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute,

sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following

conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE

WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS

OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR

OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

ATG Service Center UI Programming Guide v

Table of Contents

1. Introduction . 1

Audience . 1

Documentation Conventions . 1

Related Documents . 1

Framework Modules . 2

2. Service Center User Interface Architecture . 3

Service Center Overview . 3

User Interface Modules and Files . 3

User Interface Objects . 4

User Interface Sections . 4

Customizing Service Center . 5

I. Programming Service Center . 7

3. Service Center User Interface Data Model . 9

Schema Elements . 9

Initializing Framework Data . 11

Data Combining . 11

Framework Objects . 12

Framework Definition Objects . 14

FrameworkDefinition . 14

SkinDefinition . 15

TabDefinition . 17

CellDefinition . 18

PanelStackDefinition . 19

PanelDefinition . 21

Framework Supporting Object Definitions . 23

ContentDefinition . 23

TemplateDefinition . 24

Framework Configuration Objects . 25

Configuration Object Inherited Attributes . 26

FrameworkConfig . 26

ContentConfig . 26

TemplateConfig . 26

SkinConfig . 26

TabConfig . 27

CellConfig . 27

PanelStackConfig . 27

PanelConfig . 27

Framework Instance Objects . 28

Instance Object Inherited Attributes . 28

ContentInstance . 29

TemplateInstance . 29

FrameworkInstance . 29

SkinInstance . 29

TabInstance . 29

CellInstance . 30

PanelStackInstance . 30

PanelInstance . 31

PanelTarget . 31

Modifying Framework Definitions . 32

Adding a Definition . 32

Modifying a Definition . 32

vi ATG Service Center UI Programming Guide

Deleting a Definition . 32

4. Service Center Framework API . 33

Changing Tabs . 33

Submitting Actions . 34

Forwarding and Redirecting URLs . 36

II. Developing Pages in Service Center . 39

5. Service Center UI Components . 41

Working with JavaServer Pages . 41

Tag Libraries . 41

Servlet Beans . 41

Customization Best Practices . 42

Extending Configuration Files . 42

Adding JavaScript and CSS Files . 42

Using Service Center Debugging Modes . 43

Service Center Debugging Mode . 43

Dojo Debugging Mode . 43

6. Working with the Global Context Area . 45

Global Context Area Architecture . 45

NavContainers . 46

NavItems . 47

NavSearch . 48

NavContext . 48

NavActionContainers . 49

NavActionFactory . 50

NavAction . 51

Rendering the Global Context Area . 52

Rendering NavContainers . 52

Rendering NavSearch . 53

Rendering NavContext . 53

Rendering NavActions . 53

Creating a New NavAction . 54

Example: Creating a Options Policy Menu Item . 54

7. Working with Pages . 57

Creating a New Tab Definition . 57

Example: Creating a New Page . 58

Modifying a Tab Action . 61

Deleting a Tab Definition . 62

Adding a New Panel Definition . 62

Example: Adding Three New Panels . 62

Customer Management Panel Configuration . 64

Troubleshooting Pages . 65

8. Working with Forms . 67

Modifying Existing Forms . 67

Working with Page Fragments . 68

Overriding the Default Page Fragment . 69

Modifiable Form Configuration Files . 69

Creating New Forms . 73

Creating a Pop-up Page . 75

Creating the Caller Page . 76

Creating the JSP file . 77

Creating the JavaScript . 80

9. Working With Grids and Tables . 81

Modifiable Grids and Tables . 81

ATG Service Center UI Programming Guide vii

Customer Information Page . 81

Order View Page . 82

Scheduled Order Page . 82

Gift/Wish List . 83

Promotions . 83

Extending Table Configurations . 84

Extending Grid Configuration . 85

Working With Column Layout . 87

Customizing Column Attributes . 89

Modifying Column Widths . 90

Configuring the PageFragment Component . 90

Creating Column Content . 91

Rendering Column Content . 92

Modifying Columns . 95

Adding a Column . 95

Removing a Column . 95

Reordering Columns . 95

Changing the Item Detail (Hover) Page . 97

10. Rendering Pages with Nucleus Components . 99

Customization Options . 100

Simple Customization . 100

Renderer Components . 101

Targeting Customization . 103

Creating a ProductSkuRenderer . 105

Available Renderers . 106

Customizing the Order Summary Panel . 107

Adding a New Order Summary Step . 108

Editing an Existing Order Summary Step . 109

11. Modifying Keyboard Shortcuts . 111

Modifying Shortcuts . 111

Defining Global Keyboard Shortcuts . 112

12. Configuring Messaging . 113

Rendering Messages in the Message Bar . 113

Server-Side Configuration . 113

Adding Messages from a Form Handler . 113

Message Properties . 113

Specifying a Message Summary . 114

Adding Messages from JavaScript . 114

Implementing Client-Side Validation . 115

Implementing Client-Side Validation with DSP Tags . 115

Available Client-Side Validation Widgets . 115

Preventing the Form from Submitting . 116

Conditional Validation . 116

Conditional Requirements . 117

Custom Validation Conditions . 117

Additional Field Validation . 117

A. The XML Combiner Script . 119

B. Tag Libraries . 121

ATG Service Common UI Tag Library . 121

ATG Service Framework Bean Tag Library . 124

ATG Service Framework UI Tag Library . 135

Commerce Service Center Tag Library . 142

viii ATG Service Center UI Programming Guide

1 Introduction 1

1 Introduction

Welcome to the Service Center UI Programming Guide. This document provides information on the

administration and customization of the Service Center UI.

Audience

This manual is intended for administrators, programmers and page developers who are responsible for the

customization and modification of the default Service Center UI. It assumes that you have a working knowledge

of programming techniques, as well as Java, XML and XSD.

Documentation Conventions

The following conventions are used in this manual:

• Installation Directory

<ATG10dir>—the directory where you installed ATG 10.2. For example, the default location for UNIX

installations is /ATG/ATG10.2.

• Menu Navigation

The “ > “ (greater than) symbol indicates menu choices. For example, “File > Save” means you should select

the Save option on the File menu.

Related Documents

Document Description

ATG Commerce Service Center Installation and

Programming Guide

Describes how to configure and administer the Commerce

Service Center application.

2 1 Introduction

Document Description

ATG Ticketing User Guide Describes the ticketing components and configuration for

Service Center.

The following manuals provide additional reference information:

Document Description

ATG Content Administration Programming

Guide

Describes how to set up and customize ATG Content

Administration and its browser-based user interface, the

Business Control Center Home page. Also describes how to

deploy content to a production Web site. Intended for system

administrators, developers, and page developers.

ATG Page Developer's Guide Describes how to customize and work with Nucleus

components and JSP pages.

ATG Platform Programming Guide Presents a detailed description of Nucleus programming

concepts for developers and other advanced users. Includes

examples and reference information about developing

applications

Framework Modules

The following modules exist for the Service Center UI:

<ATG10dir>/Service/Framework/Agent

<ATG10dir>/Service/Agent

<ATG10dir>/DCS-CSR/DCS-CSR

<ATG10dir>/Service-UI/Framework/Agent

<ATG10dir>/Service-UI/Agent

<ATG10dir>/DCS-CSR-UI/DCS-CSR-UI

2 Service Center User Interface Architecture 3

2 Service Center User Interface

Architecture

ATG applications use Service Center to display a graphical interface that enables agents to provide customer

support. The following section provides an overview of the Service Center UI structures and architecture.

Service Center Overview

Service Center is a UI console that agents use when working with customers. The functionality of the console is

determined by the applications that are installed in your environment. The following applications use, work or

are displayed within Service Center:

• Oracle ATG Web Commerce Service Center – allows agents to assist customers with purchases from a

Commerce environment. Information is presented on both customers and orders, as well as catalogs, price

lists and promotions. For additional information, refer to the ATG Commerce Service Center Installation and

Programming Guide

• ATG Ticketing – allows agents to create, work with, and track work that is performed for Commerce Service

Center. Allows supervisors to monitor and manage escalations, as well as to assign work. For additional

information, refer to the ATG Ticketing User Guide

• Oracle ATG Web Commerce Search – allows agents to search for information in Commerce Service

Center. Search allows administrators to create projects that index, track and search for specific data.

While this application does not provide a specific UI, it integrates with Service Center’s core code to

provide customization of search criteria. For additional information, refer to the ATG Search Installation and

Configuration Guide

User Interface Modules and Files

The files for the Service Center UI are stored within application UI modules:

• DCS-CSR-UI – Oracle ATG Web Commerce Service Center

• Service-UI – The Service-UI module contains the Service-UI.Framework.Agent module, which contains

the UI for the Service Center

These modules contain the JSPs, JavaScript, CSS, images, navigational configuration files, as well as framework

definition XML files.

4 2 Service Center User Interface Architecture

The framework definition XML files, which exist in various configuration layers, are combined into a single XML

file. For information on data binding and xml-combine, refer to the ATG Platform Programming Guide. The

combined XML file is unmarshalled into atg.svc.framework.repository.

beans.FrameworkObject servlet beans. Detailed information on framework data and how to customize the

XML files can be found in the Service Center User Interface Data Model (page 9) section.

The navigational configuration files define the global context area, which provides the header navigation seen

on the top of the Service Center screen. Refer to the Working with the Global Context Area (page 45) section

for further information.

User Interface Objects

The Service Center UI is defined by specifying the following components:

• Framework – The master container for navigation, layout and look-and-feel

• Skin – Defines the look-and-feel

• Tab – Provides the top-level navigation

• Cell – A basic layout component

• Panel Stack – Defines an ordered content container

• Panel – A basic content component

The framework object is the container for everything in the UI and contains skin objects for defining look-and-

feel as well as layout templates and tab objects for top-level navigation. Each tab object defines the layout cell

objects that are required, for example, two cells arranged as vertical columns. Tab objects also define panel stack

objects that should be displayed with the navigational item assigned to specific cell objects, for example left-

column panels and right-column panels. The panel stack objects contain panel objects, which are the most basic

content unit.

Note: Tab objects do not implement a physical tab UI element.

The Service Framework data model also uses the following object types that can be referenced by other

framework objects:

• Content – Provides static content definition such as CSS, JavaScript, and HTML

• Template – Provides the JSP layout definition

The framework objects can be classified into three tiers:

• Definition Objects – Defines the initial or default state for the framework. Definition objects are defined with

an XML schema. Refer to the Framework Definition Objects (page 14) section

• Configuration Objects – Defines the state of the framework for a particular user. Refer to the Framework

Configuration Objects (page 25) section

• Instance Objects – Holds the live or transient state of the framework for a browser window. Refer to the

Framework Instance Objects (page 28) section

User Interface Sections

The Service Center UI is partitioned by a movable divider into three separate sections:

2 Service Center User Interface Architecture 5

• The global context area – A tab object that defines navigational items that organize application features. Refer

to the Working with the Global Context Area (page 45) section for further information

• The workspace area – This area is defined by a cell object that contains panel stacks and panel objects that

hold all of the rendered content.

• The utilities area – This section is also identified by a cell and contains utilities panel stacks and panels that

provide additional functionality or navigation, depending on the application context

Customizing Service Center

You can customize the UI for Service Center in a number of ways, including modifying UI components, changing

form and UI functions, and developing new pages. To that end, this document is divided into two parts:

• Part I, “Programming Service Center” (page 7) is designed for those who build and develop applications

for Service Center and the applications that use Service Center

• Part II, “Developing Pages in Service Center” (page 39) is a reference for those who create front-end UIs for

agents

6 2 Service Center User Interface Architecture

Part I. Programming Service Center
The following section provides information to users who perform programming tasks such as building and deploying

dynamic, personalized applications for the Web. This section also discusses how to assemble applications out of component

beans (based on standard ATG classes or custom Java classes) and link them together through configuration files.

Service Center developers create servlets that extend Web applications using a component-based methodology.

Additionally, they create JSPs, which are an extension of the Java Servlet interface, and extend the standard JSP library using

either JSTL or DSP tags.

Using the framework components, schemas and XML configuration files, developers can modify the default Service Center

functionality.

This section contains the following:

Service Center User Interface Data Model (page 9)

Service Center Framework API (page 33)

3 Service Center User Interface Data Model 9

3 Service Center User Interface Data

Model

The framework data for Service Center is contained in XML files that are located in various configuration layers.

When an ATG server instance is started, the XML instance files associated with the modules or applications

installed in your environment are combined into a single XML file. Using XML data binding, the combined XML

file is converted into atg.svc.framework.repository.

beans.FrameworkObject servlet bean instances.

The /Service/Framework/lib/classes/atg/xsds/FrameworkDataSpecification.xsd file defines

the framework data structure. It is also used to validate and parse XML instance files. The rules that are used to

combine the XML instance files are defined in the FrameworkDataSpecification.xsd.

combinerCustomizer.xml file. Using these matching rules, the combiner reviews the XML files, locates

matches and then combines the matched elements. Refer to Appendix A, The XML Combiner Script (page 119)

for the framework definition object’s combiner customizer rules.

For detailed information on data binding through xml-combine, refer to the ATG Platform Programming Guide.

Schema Elements

The FrameworkDataSpecification.xsd XML schema, which defines the data structures within the UI,

contains the following objects:

• framework-template – Root element for all framework objects

• framework-object – Base class that contains attributes that are shared by all framework objects

• framework-definition – Defines the initial state of the object

• skin-definition – Defines the look and feel of the application

• tab-definition – Defines navigation, page structure and panel stacks

• cell-definition – Represents the basic layout within a page

• panel-stack-definition – Contains an ordered collection of panel identifiers

• panel-definition – Defines a rectangular region of the page with content

• content-definition – A supporting object that allows you to link static content to framework objects

10 3 Service Center User Interface Data Model

• template-definition – A supporting object that defines templates for objects

For detailed information on each of these objects, refer to the Framework Definition Objects (page 14)

section.

Previous versions of Service Center stored framework data in a repository. Framework objects and data are now

stored in XML files. Because of this, the map and id entry data types are reformatted using an XML adapter:

• map-entry – Contains keys and value properties that are used for the map objects. The HashMapAdapter is

used to convert lists of map-entry objects from and into Map objects

• id-entry – Contains an ID and priority properties that are used for the ListString ID objects. The

IdEntryListAdapter is used to convert lists of id-entry objects from and into a ListString. The

priority property is used to hold the priority value of the id-entry objects. Based on this priority, the id-

entry objects are sorted in ascending order

The following diagram shows all of the framework-objects:

Framework Schema Diagram

3 Service Center User Interface Data Model 11

Initializing Framework Data

When an ATG server instance is started, the framework data that is stored in XML files is unmarshalled for

conversion. The unmarshalling process first combines the XML framework object definitions using the xml-

combine XML attribute. For detailed information on xml-combine and data binding, refer to the ATG Platform

Programming Guide.

Once the XML files are combined, the data is then unmarshalled. The unmarshalled data is available as a

framework-template, which is the root element for all framework objects and is used to access all framework

and other related elements.

When the data is unmarshalled, the ObjectFactory class creates various instances of framework objects. The

following components are used to catalog framework object servlet bean instances in a map, and provide a

finder method to obtain framework definition objects:

• The FrameworkHomeDefinitionXMLHome objects such as atg.svc.framework.

xml.CellDefinitionXMLHome or ContentDefintionXMLHome contain methods that find framework

objects based on application requirements. These are known as finder methods. In the following example,

framework object servlet bean instances are cataloged into a cacheMap property. The key value pairs are

created and initialized based upon the application’s requirements. The finder methods then access the data

from the cacheMap property:

public class FrameworkDefinitionXMLHome extends

_FrameworkDefinitionHome_BeanImpl

implements FrameworkObjectInitializer {

protected Map mCacheMap = new HashMap();

• ServiceFrameworkXMLHomes holds references to the FrameworkHomeDefinitionXMLHome objects home

definition. The FrameworkDefinitionHome.properties file contains the FrameworkDefintionXMLHome

instance. For example:

$class=atg.svc.framework.repository.beans.ServiceFrameworkXMLHomes

$scope=global

panelStackDefinitionHome=/atg/svc/framework/xml/PanelStackDefinitionHome

panelDefinitionHome=/atg/svc/framework/xml/PanelDefinitionHome

frameworkDefinitionHome=/atg/svc/framework/xml/FrameworkDefinitionHome

contentDefinitionHome=/atg/svc/framework/xml/ContentDefinitionHome

tabDefinitionHome=/atg/svc/framework/xml/TabDefinitionHome

cellDefinitionHome=/atg/svc/framework/xml/CellDefinitionHome

skinDefinitionHome=/atg/svc/framework/xml/SkinDefinitionHome

templateDefinitionHome=/atg/svc/framework/xml/TemplateDefinitionHome

frameworkXMLManager=/atg/svc/framework/xml/FrameworkXMLManager

• The FrameworkXMLManager contains code that handles framework objects, sets up cacheMap initializers,

sets up the JAXB context paths, initializes and adds base map keys for framework objects

Data Combining

The FrameworkDataSpecification.xsd.combinerCustomizer.xml file sets up rules to combine XML files.

The framework definition tags, such as framework-definition or template-definition, are matched

using the id sub-tag. The map-entry tag is matched using the key sub-tag.

Refer to the Appendix A, The XML Combiner Script (page 119) for details on the rules used for data combining.

12 3 Service Center User Interface Data Model

Framework Objects

The Service Center UI is defined using the following objects. The data structure is defined by the

FrameworkDataSpecification.xsd XML schema, with data files stored in corresponding XML files.

The FrameworkObject base class contains attributes that are shared by all framework objects via an inheritance

relationship. The FrameworkObject shared attributes can be organized into four groups:

• Indexing attributes for queries and database housekeeping:

• app-id

• id

• object-type

• Naming attributes for strings and images:

• description-key

• image-ul

• name-key

• resource-bundle

• State attributes for flags and other state data:

• default

• enabled-yn

• Object attributes for integration to other objects in the system:

• content-id

• option-names

• template-id

The attributes of the FrameworkObject are:

Attribute Type Description

id string Provides a unique ID.

app-id string Identifier that partitions objects by application.

The following value can be used:

workspace=Service Center

enabled-yn boolean The enabled flag provides a quick way to turn the object on

or off in the UI without removing it. Value is true or false.

name-key string Resource bundle key for providing an object name in

administration tools.

3 Service Center User Interface Data Model 13

Attribute Type Description

object-type string Object sub-class name for item-descriptor inheritance.

description-key string Resource bundle key for providing an object description in

administration tools.

image-url string Path to object image graphic in administration tools. The

image-url allows a graphic to represent the object.

resource-bundle string Resource bundle identifier for object resources. The resource

bundle identifier allows any resource bundle on the class

path to be used for object string resources, if not using the

default resource bundle.

default-framework-

ids

string Second object that contains default values for the current

object. The default attribute defines a second object that

contains default values. This supports functionality to restore

defaults.

content-ids contains

map-entry

elements

Identifies static content for the object, including JavaScript,

CSS or HTML, by a user-friendly local key.

template-ids contains

map-entry

elements

Identifies JSP page layout templates for the object mapped

to a user-friendly local key.

option-name contains

map-entry

elements

Lists segmented option names for the object mapped to a

user-friendly local key.

The following extension methods are shared by all framework objects:

Returns Method Description

Map get-contents Returns a map of all content-definition objects assigned to

the framework object keyed to the logical content identifier.

Map get-templates Returns a map of all template-definition objects assigned to

the framework object keyed to the logical template identifier.

Map get-framework-objects Utility method that returns a map of framework objects by item

type.

Arguments: int pItemType

14 3 Service Center User Interface Data Model

Framework Definition Objects

Framework definition objects define the initial state of the object.

FrameworkDefinition

The framework-definition object is a container object for navigation, layout, and look-and-feel for the

entire UI. The framework-definition object contains skins and tabs. Skins contain configurable look-and-feel

and template definitions for the UI layout. Tabs define the top-level navigation for the application.

The attributes of the framework-definition object, in addition to the attributes inherited from the

FrameworkObject base class, are:

Attribute Description

framework-id Logical identifier that other objects use to refer to this object. This is exposed to other

objects and to the code, and is the primary external way to refer to the object.

current-tab-id The logical identifier for the currently selected tab.

skin-id Ordered list of the look-and-feel skins used by the framework that is mapped to a user-

friendly local key.

tab-id Defines the order of the application tabs.

The following are extension methods of the framework-definition object:

Returns Method Description

List getSkin Returns a list of all skin-definition objects assigned to

the framework-definition.

List getTab Returns a list of all tab-definition objects assigned to the

framework-definition.

List getFrameworkDefinition Utility method that returns a list of framework definitions by

item-type.

Arguments: int pItemType

The following is an example of a framework-definition from the serviceFramework.xml file:

<framework-definition>
 <id>WsAgentFramework</id>
 <app-id>workspace</app-id>

3 Service Center User Interface Data Model 15

 <enabled-yn>true</enabled-yn>
 <object-type>FrameworkDefinition</object-type>
…
</framework-definition>

The framework-definition also identifies the skin IDs used within the framework. For example, the skins

used in this framework definition object are the htmlSkin and the originalSkin. The priority sets the skin

priority in the layout:

<skin-ids>
 <id-entry>
 <id>htmlSkin</id>
 <priority>100</priority>
 </id-entry>
 <id-entry>
 <id>originalSkin</id>
 <priority>200</priority>
 </id-entry>
</skin-ids>

The framework-definition identifies the tab IDs used within the framework. The priority property sets the

tab priority, for example:

<tab-ids>
 <id-entry>
 <id>browseTab</id>
 <priority>100</priority>
 </id-entry>
 <id-entry>
 <id>searchTab</id>
 <priority>200</priority>
 </id-entry>
<tab-ids>

SkinDefinition

The skin-definition object contains and provides a way to package the look-and-feel definitions available to

the application.

The skin-definition object, in addition to the attributes inherited from the FrameworkObject base class,

contains the following attribute:

Attribute Description

skin-id Logical identifier that other objects use to refer to this object, which is exposed to other

objects and to the code. This is the primary external way to refer to the object.

The extension method of the SkinDefinitionHome interface is:

16 3 Service Center User Interface Data Model

Returns Method Description

SkinDefinition findByUserSegment

AndSkinId

Returns the SkinDefinition with the specified

identifier based on the segment of the current user. If

the current user does not have a segment or no object

is found for the current segment, a default object is

returned based on skin identifier only. The appId

indicates the framework application in which to look for

the object.

Arguments: String appId, String skinId

The following is an example of a simple tab skin-definition:

<skin-definition>
 <id>MySimpleTabsSkin</id>
 <app-id>workspace</app-id>
 <enabled-yn>true</enabled-yn>
 <name-key>mySimpleTabsSkin.name</name-key>
 <object-type>SkinDefinition</object-type>
 <description-key>mySimpleTabsSkin.description</description-key>
 <image-url>../../image/icons/my_skin_tabs.gif</image-url>
 <content-ids>
 <map-entry>
 <key>style</key>
 <value>MySkinSimpleTabsCSS</value>
 </map-entry>
 <map-entry>
 <key>javaScript</key>
 <value>MySkinSimpleTabsJS</value>
 </map-entry>
 </content-ids>
 <template-ids>
 <map-entry>
 <key>errorTemplate</key>
 <value>errorPanel</value>
 </map-entry>
 <map-entry>
 <key>panelTemplate</key>
 <value>simpleTabsPanel</value>
 </map-entry>
 <map-entry>
 <key>layoutTemplate</key>
 <value>simpleTabsLayout</value>
 </map-entry>
 </template-ids>
 <option-names>
 <map-entry>
 <key>myOption1</key>
 <value>SkinSimpleTabsShowLogo</value>
 </map-entry>
 </option-names>
 <skin-id>mySimpleTabsSkin</skin-id>
</skin-definition>

3 Service Center User Interface Data Model 17

TabDefinition

The tab-definition object has multiple functions, which are related to the overall purpose of dividing the

application into large functional areas:

• Define top-level navigation between functional areas

• Specify page structure using layout cells and templates

• Define panel stacks containing related content groupings

The attributes of the tab-definition object, in addition to the attributes inherited from the

FrameworkObject base class, are described below:

Attribute Description

tab-id Logical identifier that other objects use to refer to this object, which is

exposed to other objects and to the code. This is the primary external way

to refer to the object.

title-key Resource bundle key for the tab label.

action-id The application-interpreted action URL or JavaScript function that is

executed when the user selects an object on the tab.

next-steps-id The identifier of the default next steps menu that is displayed with the tab.

visible-yn The visibleYn flag determines whether an enabled tab is rendered or

hidden.

access-right The access right that defines the security user role required to view the tab.

panel-stack-assignments A map that assigns panel-stack-ids strings to cell-id strings. The

panel stack assignments indicate the cells where each panel stack is

displayed. Contains the reverse mapping of the cell-assignments map.

current-panel-stacks The listing of the identifiers of the panel stacks currently being displayed on

the tab. The panel-stack-assignments attribute indicates which cell the

panel stack populates within the page layout.

panel-stack-order The list of all panel stacks for the tab in rendering order. This supports panel

stacks that must be rendered in a specific order.

cell-assignments Indicates the initial panel stack that is displayed in each cell. Contains the

reverse mapping of the panel-stack-assignments map.

The extension method of the TabDefinitionHome interface is:

18 3 Service Center User Interface Data Model

Returns Method Description

TabDefinition findByUserSegmentAndTabId Returns the TabDefinition with the specified

identifier based on the segment of the current

user. If the current user does not have a segment

or no object is found for the current segment, a

default object is returned based on tab identifier

only. The appId indicates the framework

application in which to look for the object.

Arguments: String appId, String tabId

The following is an example of a tab-definition that defines a document tab layout:

<tab-definition>
 <id>MyDocumentTabDefinition</id>
 <app-id>workspace</app-id>
 <enabled-yn>true</enabled-yn>
 <name-key>myDocumentTab.name</name-key>
 <object-type>TabDefinition</object-type>
 <description-key>myDocumentTab.description</description-key>
 <image-url>/image/myDocumentTabdefault.gif</image-url>
 <tab-id>myDocumentTab</tab-id>
 <title-key>myDocumentTab.label</title-key>
 <action-id>/main.jsp?t=documentTab</action-id>
 <visible-yn>false</visible-yn>
 <access-right></access-right>
 <panel-stack-assignments>
 <map-entry>
 <key>documentPanels</key>
 <value>centerColumn</value>
 </map-entry>
 </panel-stack-assignments>
 <cell-assignments>
 <map-entry>
 <key>centerColumn</key>
 <value>documentPanels</value>
 </map-entry>
 </cell-assignments>
</tab-definition>

CellDefinition

The cell-definition object represents the basic layout unit within the page structure. The cell-

definition can refer to a DOM element or to another identifier on the page that contains a panel stack.

The attributes of the cell-definition object, in addition to the attributes inherited from the

FrameworkObject base class, are:

3 Service Center User Interface Data Model 19

Attribute Description

cell-id Logical identifier that other objects use to refer to this object that is exposed to other

objects and to the code. This is the primary external way to refer to the object.

cell-open-yn The cell-open-yn flag determines whether a cell is toggled open or closed. Used in

Service Center only.

access-right The access right that defines the security user role required to view the cell.

The extension method of the CellDefinitionHome interface is:

Returns Method Description

CellDefinition findByUserSegment

AndCellId

Returns the CellDefinition with the specified identifier

based on the segment of the current user. If the current

user does not have a segment or no object is found for

the current segment, a default object is returned based

on cell identifier only. The appId indicates the framework

application in which to look for the object.

Arguments: String appId, String cellId

The following is an example of the a cell-definition:

<cell-definition>
 <id>WsContentCellDefinition</id>
 <app-id>workspace</app-id>
 <enabled-yn>true</enabled-yn>
 <object-type>CellDefinition</object-type>
 <cell-id>contentColumn</cell-id>
 <cell-open-yn>true</cell-open-yn>
 <access-right>contentColumn</access-right>
</cell-definition>

PanelStackDefinition

The panel-stack-definition object contains an ordered collection of panel identifiers. The panel-stack-

definition object is assigned to a cell that corresponds to a DOM element on the page. The cell defines the

position of the panel-stack-definition object on the page.

The attributes of the panel-stack-definition object, in addition to the attributes inherited from the

FrameworkObject base class, are described below:

20 3 Service Center User Interface Data Model

Attribute Description

panel-stack-id Logical identifier that other objects use to refer to this object and is exposed to

other objects and code. This is the primary external way to refer to the object.

title-key Resource bundle key for the label that is associated with the panel stack.

tab-affinity-yn This flag indicates if the panel stack is associated with a particular tab (true) or if

it can be rendered under any tab, as in the case of user preferences (false). If the

flag is true and this was the last panel-stack viewed under a tab, when the user

navigates back to that tab, the panel stack will be rendered.

panel-id The ordered collection of panel identifiers.

The extension method of the Panel-stack-definition object is:

Returns Method Description

List getPanels Returns a list of all panel-definition objects assigned to the panel-

stack-definition.

The extension method of the PanelStackDefinitionHome interface is:

Returns Method Description

PanelStackDefinition findByUserSegment

AndPanelStackId

Returns the PanelStackDefinition with the

specified identifier based on the segment of the

current user. If the current user does not have

a segment or no object is found for the current

segment, a default object is returned based on

panel stack identifier only. The appId indicates

the framework application in which to look for

the object.

Arguments: String appId, String panelStackId

The following is an example of a panel-stack-definition:

<panel-stack-definition>
 <id>MyHelpPanelStack</id>
 <app-id>workspace</app-id>
 <enabled-yn>true</enabled-yn>
 <name-key>helpPanels.name</name-key>
 <object-type>PanelStackDefinition</object-type>
 <description-key>helpPanels.description</description-key>
 <image-url>/image/default.gif</image-url>

3 Service Center User Interface Data Model 21

 <panel-stack-id>helpPanels</panel-stack-id>
 <header>contentHeader</header>
 <error-panel-id>errorPanel</error-panel-id>
 <title-key>helpPanels.label</title-key>
 <tab-affinity-yn>true</tab-affinity-yn>
 <panel-ids>
 <id-entry>
 <id>MyErrorPanel</id>
 <priority>100</priority>
 </id-entry>
 </panel-ids>
</panel-stack-definition>

PanelDefinition

The panel-definition object is the basic content unit for the application. The panel-definition defines a

rectangular region of the page with related content referenced by an included JSP content template.

The attributes of the panel-definition object, in addition to the attributes inherited from the

FrameworkObject base class, are:

Attribute Description

panel-id Logical identifier that other objects use to refer to this object, which is

exposed to other objects and to the code. It is the primary external way to

refer to the object.

content-url Use the template-ids mapping on the FrameworkObject to assign

arbitrary JSP pages to framework objects. Identifies the contents of the panel.

other-context Contains a static context link or a context/URL link.

onload Contains the optional name of a JavaScript function to evaluate when the

panel is loaded by the framework.

onunload Contains the optional name of a JavaScript function to evaluate when the

panel is unloaded by the framework.

help-key Provides a string for inline help accessible via a help icon located on the

panel title bar.

title-key Resource bundle key for the label that is associated with the panel.

visible-yn Determines whether an enabled tab is rendered or hidden.

show-title-yn Indicates whether the panel has a visible title bar or only a content area with

no title bar.

panel-open-yn Indicates whether the entire panel is currently closed or minimized with a

placeholder displayed in the available panels.

allow-panel-toggle-yn Indicates whether the entire panel, including title bar, can be closed or

minimized and represented by a placeholder in the available panels.

22 3 Service Center User Interface Data Model

Attribute Description

allow-content-toggle-

yn

Indicates whether the panel contents can be closed or minimized, leaving

only the panel title bar visible.

tab-holder-yn Determines whether the panel can hold other panels in a tabbed format.

always-tabbed-yn Indicates whether the panel is forced to be tabbed in a row of panel tabs on a

tab-holder panel with no ability to be removed from the tabbed position.

tabbed-yn Indicates whether the panel is currently a tabbed in a row of panel tabs on a

tab-holder panel.

allow-tabbing-yn Indicates whether the panel is allowed to be tabbed in a row of panel tabs on

a tab-holder panel.

current-panel-id Holds the identifier of the currently visible panel based on the selected tab

for tab-holder panels.

panel-item-count Provides a way for the panel label to contain a number representing the

number of items displayed in the panel. For example, a panel that displays 17

search results in its content area is able to display My Search Results (17) in

the title bar.

access-right The access right that defines the security user role required to view the panel.

tabbed-panel-ids Lists the identifiers of the other panels that are tabbed with the current tab-

holder panel. The tabs are rendered in the order that the corresponding

panels identifiers occur in the list.

The extension method of the PanelDefinitionHome interface is:

Returns Method Description

PanelDefinition findByUserSegment

AndPanelId

Returns the PanelDefinition with the specified

identifier based on the segment of the current user. If

the current user does not have a segment or no object

is found for the current segment, a default object is

returned based on panel identifier only. The appId

indicates the framework application in which to look for

the object.

Arguments: String appId, String panelId

The following is an example of a PanelDefinition:

<panel-definition>
 <id>WsCustomerCreateNewPanel</id>
 <app-id>workspace</app-id>

3 Service Center User Interface Data Model 23

 <enabled-yn>true</enabled-yn>
 <object-type>PanelDefinition</object-type>
 <template-ids>
 <map-entry>
 <key>panelTemplate</key>
 <value>panelTemplate</value>
 </map-entry>
 </template-ids>
 <panel-id>customerCreatePanel</panel-id>
 <content-url>/panels/customer/info.jsp</content-url>
 <other-context>agent</other-context>
 <help-key>panel.customerInformationPanel.help</help-key>
 <title-key>panel.customerInformationPanel.label</title-key>
 <visible-yn>true</visible-yn>
 <show-title-yn>true</show-title-yn>
 <panel-open-yn>true</panel-open-yn>
 <allow-panel-toggle-yn>false</allow-panel-toggle-yn>
 <available-yn>false</available-yn>
 <content-open-yn>true</content-open-yn>
 <allow-content-toggle-yn>false</allow-content-toggle-yn>
 <tab-holder-yn>false</tab-holder-yn>
 <always-tabbed-yn>false</always-tabbed-yn>
 <tabbed-yn>false</tabbed-yn>
 <allow-tabbing-yn>false</allow-tabbing-yn>
 <allow-slots-yn>false</allow-slots-yn>
 <tab-scroll-index>0</tab-scroll-index>
 <panel-item-count>0</panel-item-count>
 <access-right>CustomerInformationPanel</access-right>
</panel-definition>

Framework Supporting Object Definitions

A few supporting object definition types can be referenced by any other framework object. Content objects

define static content such as CSS, JavaScript, or HTML. Template objects define JSP layout templates.

ContentDefinition

The content-definition object provides an extensible way to link static content, such as CSS, HTML or

JavaScript to framework objects. The MIME type of the content is specified with the content-definition

object. Any framework object can define content definitions mapped by key. The following is an example of how

to import CSS contents into a JSP page:

<c:out value="${mySkin.contents.css.body}"/>

The attributes of the content-definition object, in addition to the attributes inherited from the

FrameworkObject base class, are:

24 3 Service Center User Interface Data Model

Attribute Description

body The text context that is defined as an alternative to referencing the content by a URL.

content-id Logical identifier that other objects use to refer to this object. This identifier is exposed

to other objects and to the code. and is the primary external way to refer to the object.

mime-type The type of content being defined. For example, content with a MIME type of text/css

would place CSS contents in the body. Content with a MIME type of text/javascript

would place JavaScript in the body. Other common content types in a Web application

might be text/html or text/xml.

other-context The Web context for rendering content from other Web applications.

url A URL that references the static content.

url-yn Indicates whether the content is referenced externally by a URL. If the URL flag is false,

the body of the static content is contained internally in the body attribute of the content

definition.

The extension method of the ContentDefinitionHome interface is:

Returns Method Description

ContentDefinition findByUserSegment

AndContentId

Returns the ContentDefinition with the specified

identifier based on the segment of the current user. If

the current user does not have a segment or no object

is found for the current segment, a default object is

returned based on content identifier only. The appId

indicates the framework application in which to look for

the object.

Arguments: String appId, String contentId

TemplateDefinition

The template-definition object defines templates for objects in the framework. Templates are JSP pages

that define the page structure for a framework object. Any framework object has the ability to define its own

layout templates mapped by key. The following is an example of how to import a skin layout template:

<dspel:include page="${mySkin.templates.layoutTemplate.url}"/>

The attributes of the template-definition object, in addition to the attributes inherited from the

FrameworkObject base class, are:

3 Service Center User Interface Data Model 25

Attribute Description

other-context The Web context for rendering content from other Web applications.

template-id Logical identifier that other objects use to refer to this object, which is exposed

to other objects and to the code. It is the primary external way to refer to the

object.

url A URL that references the JSP template.

The extension method of the TemplateDefinitionHome interface is:

Returns Method Description

TemplateDefinition findByUserSegment

AndTemplateId

Returns the TemplateDefinition with the

specified identifier based on the segment of the

current user. If the current user does not have

a segment or no object is found for the current

segment, a default object is returned based on

template identifier only. The appId indicates the

framework application in which to look for the

object.

Arguments: String appId, String templateId

The following is a template-definition:

<template-definition>
 <id>SimpleLinksEveryonePanelTemplate</id>
 <app-id>workspace</app-id>
 <enabled-yn>true</enabled-yn>
 <object-type>TemplateDefinition</object-type>
 <template-id>simpleLinksPanel</template-id>
 <url>/skins/templates/simpleLinksPanelTemplate.jsp</url>
</template-definition>

Framework Configuration Objects

In addition to the framework definition objects, which define default appearance and behavior, the

configuration objects store the current state of the framework objects for a particular user when the user logout.

The profile ID of the user is associated with the configuration. These configuration objects, which are defined in

the /Service/Framework/config/atg/svc/ui/framework /serviceFrameworkRepository.xml file, are

associated with the profile ID of the user.

26 3 Service Center User Interface Data Model

Configuration Object Inherited Attributes

The ConfigurationObject base class contains attributes that are shared by all framework configuration

objects via an inheritance relationship. The ConfigurationObject shared attributes are:

Attribute Description

config-type Object sub-class name for item-descriptor inheritance.

enabled-yn The enabled flag turns the object on or off in the UI via the object configuration.

Value is true or false.

id Repository identifier.

user-id Repository ID of the user to whom the configuration belongs.

FrameworkConfig

The FrameworkConfig object manages user configuration for the FrameworkDefinition object.

The attributes of the FrameworkConfig object, in addition to the attributes inherited from the

ConfigurationObject base class, are:

Attribute Description

config-type FrameworkConfig

current-tab-id The identifier of the currently selected tab for the current user.

framework-id Logical identifier for the corresponding FrameworkDefinition.

tab-ids List of tabs visible for the current user.

ContentConfig

The ContentConfig object manages user configuration for the ContentDefinition object and has the same

attributes as the ContentDefinition object.

TemplateConfig

The TemplateConfig object manages user configuration for the TemplateDefinition object and has the

same attributes as the TemplateDefinition object.

SkinConfig

The SkinConfig object is a placeholder configuration object for the SkinDefinition object with no

significant attributes.

3 Service Center User Interface Data Model 27

TabConfig

The TabConfig object manages user configuration for the TabDefinition object. The attributes of the

TabConfig object, in addition to the attributes inherited from the ConfigurationObject base class, are:

Attribute Description

config-type TabConfig

tab-id Logical identifier for the corresponding TabDefinition.

visible-yn The flag indicates whether the tab is visible for the current user.

CellConfig

The CellConfig object manages user configuration for the CellDefinition object. The attributes of the

CellConfig object, in addition to the attributes inherited from the ConfigurationObject base class, are:

Attribute Description

config-type CellConfig

cell-id Logical identifier for the corresponding CellDefinition.

cell-open-yn The flag indicates whether the cell is open or closed for the current user.

PanelStackConfig

The PanelStackConfig object manages user configuration for the PanelStackDefinition object.

The attributes of the PanelStackConfig object, in addition to the attributes inherited from the

ConfigurationObject base class, are:

Attribute Description

config-type PanelStackConfig

panel-ids List of panels defined for the current user.

panel-stack-id Logical identifier for the corresponding PanelStackDefinition.

PanelConfig

The PanelConfig object manages user configuration for the PanelDefinition object. The attributes of the

PanelConfig object, in addition to the attributes inherited from the ConfigurationObject base class, are:

28 3 Service Center User Interface Data Model

Attribute Description

config-type PanelConfig

available-yn The available flag indicates whether the panel is displayed in the available panels

for the current user.

content-open-yn Indicates whether the panel content area is open or closed for the current user.

current-panel-id Holds the identifier of the initially visible panel tab for the current user. Applies to

tab-holder panels.

panel-id Logical identifier for the corresponding PanelDefinition.

panel-open-yn The panel open flag indicates whether the entire panel is open or closed,

including the title bar, for the current user.

tabbed-panel-ids Lists the identifiers of the other panels that are tabbed with the current tab-

holder panel for the current user. Applies to tab-holder panels.

tabbed-yn The tabbed flag indicates whether the panel is initially tabbed on a tab-holder

panel for the current user. If set to false, the panel is not tabbed within the

panel.

tab-scroll-index Supports the scrollable tabs feature configuration for horizontal tab scrolling.

visible-yn Indicates whether the panel is visible for the current user.

Framework Instance Objects

The framework definition and configuration objects both manage persistent aspects of the Service Center

framework. Framework instance objects manage the transient aspects of the Service Center framework by

holding the current in-memory state of a given framework object in a running Web application within a browser.

Below is a summary of the instance objects, which are defined in the /Service/Framework/

config/atg/svc/ui/framework/serviceFrameworkRepository.xml file.

Instance Object Inherited Attributes

The InstanceObject base class contains attributes that are shared by all framework instance objects via an

inheritance relationship. The InstanceObject shared attributes are:

Attribute Description

enabled-yn The enabled flag turns the object on or off in the UI for the duration of the user’s

browser session. Value is true or false.

instance-type Object sub-class name for item-descriptor inheritance.

3 Service Center User Interface Data Model 29

ContentInstance

The ContentInstance object manages transient state for the ContentDefinition object and has attributes

similar to the ContentDefinition object.

TemplateInstance

The TemplateInstance object manages transient state for the TemplateDefinition object and has

attributes similar to the TemplateDefinition object.

FrameworkInstance

The FrameworkInstance object manages transient state for the FrameworkDefinition object. The attributes

of the FrameworkInstance object, in addition to the attributes inherited from the InstanceObject base

class, are:

Attribute Description

instance-type FrameworkInstance

current-tab-id The identifier of the currently selected tab in the browser.

framework-id Logical identifier for the corresponding FrameworkDefinition.

previous-tab-id The identifier of the last selected tab in the browser.

tab-ids List of tabs currently visible in the browser.

SkinInstance

The SkinInstance object is a placeholder configuration object for the SkinDefinition object with no

attributes currently defined.

TabInstance

The TabInstance object manages transient state for the TabDefinition object. The attributes of the

TabInstance object, in addition to the attributes inherited from the InstanceObject base class, are:

Attribute Description

instance-type TabInstance

cell-assignments Map indicating the panel stacks that are currently assigned to each layout cell in

the browser.

30 3 Service Center User Interface Data Model

Attribute Description

current-panel-stacks Map indicating the cell to which each panel stack is currently assigned in the

browser.

next-steps-id Identifier indicating the current next steps menu for the tab in the browser.

tab-id Logical identifier for the corresponding TabDefinition.

visible-yn Indicates whether the tab is visible in the browser.

CellInstance

The CellInstance object manages transient state for the CellDefinition object. The attributes of the

CellInstance object, in addition to the attributes inherited from the InstanceObject base class, are:

Attribute Description

instance-type CellInstance

cell-id Logical identifier for the corresponding CellDefinition.

cell-open-yn Indicates whether the cell is open or closed in the browser. Tracks the

open-closed state of the columns.

current-panel-stack-id Identifier that indicates the current panel stack displayed in the cell in the

browser.

PanelStackInstance

The PanelStackInstance object manages transient state for the PanelStackDefinition object.

The attributes of the PanelStackInstance object, in addition to the attributes inherited from the

InstanceObject base class, are:

Attribute Description

instance-type PanelStackInstance

panel-stack-id Logical identifier for the corresponding PanelStackDefinition.

panel-target-elements List of panel target elements in the panel stack, each representing a single

instance of a panel within the UI.

target-map Maps a lists of panel target elements keyed by the logical panel identifier. Each

key in the map contains a list of all of the instances of a particular panel target

in the UI.

3 Service Center User Interface Data Model 31

PanelInstance

The PanelInstance object manages transient state for the PanelDefinition object. The attributes of the

PanelInstance object, which are in addition to the attributes inherited from the InstanceObject base class,

are:

Attribute Description

instance-type PanelInstance

available-yn Indicates whether the panel is listed in the available panels in the browser.

content-open-yn Indicates whether the panel content area is open or closed in the browser.

current-panel-id Holds the identifier of the currently visible panel tab in the browser. Applies to

tab-holder panels.

panel-id Logical identifier for the corresponding PanelDefinition.

panel-open-yn Indicates whether the entire panel is open or closed, including the title bar, in

the browser.

tabbed-panel-ids Lists the identifiers of the other panels that are tabbed with the current tab-

holder panel in the browser. Applies to tab-holder panels.

tabbed-yn Indicates whether the panel is currently tabbed on a tab-holder panel in the

browser.

tab-scroll-index Supports the transient scrollable tabs feature for horizontal tab scrolling.

visible-yn Indicates whether the panel is visible in the browser.

PanelTarget

The PanelTarget object manages transient state for a single instance of a panel in the UI. By providing an auto-

generated unique identifier for each panel instance, the PanelTarget object allows multiple instances of the

same PanelDefinition to exist simultaneously on the page.

The attributes of the PanelInstance object, in addition to the attributes inherited from the InstanceObject

base class, are:

Attribute Description

instance-type PanelTargetElement

panel-id Logical identifier for the corresponding PanelDefinition for the instance.

target-element-id Auto-generated unique identifier for the panel instance.

32 3 Service Center User Interface Data Model

Modifying Framework Definitions

You can modify the framework definition elements that are outlined in the Framework Objects (page 12)

section. Modifications should be made to the serviceFramework.xml file located in your customization

directory. Your modifications will be appended to the default serviceFramework.xml file. For detailed

information on xml-combine, or data binding, refer to the ATG Page Developer's Guide.

Adding a Definition

The following is an example of a new content definition named myexistingTabAction:

<content-definition>
 <id>myexistingTabAction</id>
 <app-id>workspace</app-id>
 <enabled-yn>true</enabled-yn>
 <object-type>ContentDefinition</object-type>
 <content-id>myexistingTabAction</content-id>
 <mime-type>text/javascript</mime-type>
 <body>atgChangeTab(atg.svc.framework.changeTab("DefaultTab"),
 null, null, null);</body>
 <url-yn>true</url-yn>
</content-definition>

Modifying a Definition

The following example shows a modification to an existing myexistingTabAction element that changes the

enabled-yn element from true to false. The myexistingTabAction element is matched on the content-

definition and id tags:

<content-definition>
 <id>myexistingTabAction</id>
 <enabled-yn>false</enabled-yn>
</content-definition>

Deleting a Definition

The following is an example of how to delete a definition named myexistingTabAction. Modifications should

be made to the serviceFramework.xml file located in your customization directory:

<content-definition xml-combine="remove">
 <id>myexistingTabAction</id>
</content-definition>

4 Service Center Framework API 33

4 Service Center Framework API

Service Center provides an API that accesses various features of the UI framework. The following information is

discussed in this section:

• atgChangeTab – Provides code that allows you to change the tab in the framework while setting arguments

for atgSubmitAction

• atgSubmitAction – Provides code that submits information from a form

• frameworkUrl – Provides code that identifies forwarding and redirecting URLs

Changing Tabs

The atgChangeTab performs the necessary client and server side actions to change the current tab in the

framework using the following attributes that set arguments for atgSubmitAction.

• newTab

• nextSteps

• panelStack

• panels

• extraParams

The following functions are available in atg.svc.framework.

Attribute Description

changeTab Change to the specified tab on the client-side only. Must be called in conjunction

with a server-side call to atgSubmitAction that specifies the ID of a valid tab

defined in the UI framework.

Arguments:

tabId – ID of the tab to make the current tab

34 4 Service Center Framework API

Attribute Description

toggleSidebar Changes and restores the state of the sidebar from the default expanded view

showing all of the helpful panels to a minimized view showing a vertical bar.

Arguments:

none

selectTabbedPanel Selects the specified panel in a row of tabbed panels as the current panel.

Arguments:

panelId – ID of the panel to make the current panel

nextStepsId – ID of the next steps

nextStepsPanelId – optional ID of the next steps panel

togglePanel Removes or restores the specified side panel. Removed panels are taken out of

the display and moved to a link in the Available Panels panel. Clicking the link in

Available Panels restores the panel to its original position.

Arguments:

panelId – ID of the panel to toggle

togglePanelsToTabs Moves a panel to or from a row of tabbed panels.

Arguments:

panelId – ID of panel to move to tabs

panelStackId – ID of panel stack that contains the panel to move to tabs

togglePanelContent Shows and hides the content area of a panel. The title bar of the panel remains in

place.

Arguments:

panelId – ID of the panel to toggle

startCall Initiates a new agent session with a customer without ending the existing

session.

endCall Terminates the existing agent session with the customer.

endAndStartCall Initiates a new agent session with a customer and terminates the existing session.

Framework parameters are submitted to the server using the atgSubmitAction function or with form handlers

using a successURL formatted by the frameworkUrl tag library.

Submitting Actions

The atgSubmitAction is used to submit a form. The JavaScript function atgSubmitAction has the following

signature, which accepts a single object argument:

4 Service Center Framework API 35

atgSubmitAction = function(params) {};

The params argument is a JavaScript object that may contain any combination of the following properties that

are used to configure the framework request. Some properties are converted to request or query parameters

and submitted to the server. Others are assigned to the submitted form. Most of the properties are either

optional or have defaults, so they do not have to be specified with each request.

Property Description

url Optional target URL for submitting framework requests. Overrides the default

framework URL.

mimeType Optional. Sets the mime-type of the request.

handleAs Optional. Sets the expected response format for proper handling.

form Reference to the DOM form to submit the framework request. The form can be a

DSP form linked to a form handler. Either form or formId is required.

formId Looks up the form to submit with the framework request. Either form or formId

is required.

formInputValues Requires the form specified in the form property. Maps form element names to

values. Each value is bound to the corresponding form element for submission

as such: For each name in formInputValues, set form[name].value =

forminputValues[name]

tab Navigates to the specified tab by ID. Submits the request parameter t.

nextSteps String name of the next steps to render in the next steps panel. Submits the

request parameter ns.

panelStack Navigates to the specified panel stack under the current tab. Renders all of the

currently-enabled member panels of the panel stack in the cell for which the

panel stack is assigned under the tab definition. Submits the request parameter

ps.

panels Array of panel identifiers to refresh. The panel will remain in its current place but

the contents will be re-rendered. Submits the request parameter p. For example:

["panel1", "panel2"]

selectTabbedPanels Array of panel identifiers to set to the selected state. Applies to panels

that are in a row of tabbed panels. Submits the request parameter

selectTabbedPanelIds.

paramsMapName Optional. Fully qualified Nucleus path of the form-handler bean map property

that will receive the extraParams. Allows JavaScript data to be passed to a form

handler.

36 4 Service Center Framework API

Property Description

formHandler Optional. Fully qualified Nucleus path of a form handler with a property

named parameterMap. Note: The form handler must have a property named

parameterMap. If the form handler does not have a property with this name, use

the paramsMapName property.

extraParams Optional. Map of parameters to map to key-value pairs on the default

FrameworkBaseFormHandler parameterMap property or another property

specified in paramsMapName. The values are assigned into a comma-delimited

list as such: For each key in extraParams, append key = extraParams[key]

to list. The comma-delimited list is assigned to the form handler parameter map

property: key1=value1, key2=value2, etc. Allows JavaScript data to be passed

to a form handler map.

listParams Optional. Map of keys to arrays of values. Requires the form specified in the

form property and the form handler specified in the formHandler property.

The values contained in each array are submitted to the same array-based form

handler property. For example, {param1: [a,b,c], param2: [x,y,z]}.

mapParams Optional. Map of keys to other maps. Requires the form specified in the form

property and the form handler specified in the formHandler property. The outer

keys map to the corresponding property names on formHandler. The inner

keys are appended to a comma-delimited list of key-value pairs. For example,

{property1: {key1: value1, key2: value2}}.

queryParams Optional. Map of parameters that are added without modification to the request

URL as query parameters.

sync Flag indicating whether to submit the request synchronously or asynchronously.

If the request is synchronous, the atgSubmitFunction will wait until a response

is received from the server (or a timeout occurs) before continuing execution. The

default value is false for asynchronous requests.

showLoadingCurtain Flag indicating whether to display a loading curtain and progress indicator

during requests. The default value is true to show the loading curtain and

progress indicator.

Forwarding and Redirecting URLs

The frameworkUrl tag constructs a forwarding and redirection URL with framework parameters. The URL can

be assigned to a form handler sucessURL property, allowing the form handler to navigate to different locations

in the Service Center application based on the results of processing the form.

The following example navigates to the global panels and the shopping cart panel stacks. If these panel stacks

are already displayed, they will be refreshed. This example also contains the custom parameter contentHeader,

which will be added to the query parameters as contentHeader=true. The result is stored in the successURL

page variable, which can be assigned to a form handler property.

<svc-ui:frameworkUrl var="successURL" panelStacks="globalPanels,

4 Service Center Framework API 37

 cmcShoppingCartPS" contentHeader="true"/>

The following attributes can be assigned to the tag. Custom dynamic attributes are also allowed and will be

included to the redirection URL as query parameters.

Attribute Description

context Optional. Context of the framework request URL for forwarding or redirecting.

Requires that url is specified.

dynamicIncludes Sets the delimiters for setting dynamic includes.

Context Sets the values for the Context.

panels Delimited list of panel identifiers for the panels to refresh. The panels will

remain in their current place but the contents will be re-rendered. Includes the

request parameter p. The default delimiter is a comma. The default delimiter

can be overridden with the splitChar attribute.

panelStacks Delimited list of panel stack identifiers for the panel stacks to navigate to under

the current panel. Renders the currently-enabled member panels of the panel

stack in the cell for which the panel stack is assigned under the tab definition.

Includes the request parameter ps. The default delimiter is a comma. The

default delimiter can be overridden with the splitChar attribute.

selectTabbedPanels Delimited list of panel identifiers for the tabbed panels to set to the selected

state. Applies only to panels that are in a row of tabbed panels. The default

delimiter is a comma. The default delimiter can be overridden with the

splitChar attribute.

splitchar Sets the delimiter to the specified set of characters overriding the default

comma delimiter.

tab Navigates to the specified tab by ID. Includes the request parameter.

url Optional. Target URL for forwarding or redirecting the framework request.

Overrides the default framework URL.

var Page variable name to be assigned the framework URL.

38 4 Service Center Framework API

Part II. Developing Pages in Service Center
The instructions in this section are intended for users who make changes to the user interface of Service Center. This section

provides information on components that are specific to Service Center and should be used in tandem with general page

development information, such as working with tags, forms and servlets, which can be found in the ATG Page Developer's

Guide.

This section contains the following:

5 Service Center UI Components 41

5 Service Center UI Components

This section discusses UI components that are specific to Service Center. General page development

information, such as working with tags, forms and servlets, can be found in the ATG Page Developer's Guide.

Working with JavaServer Pages

ATG applications provide an open, server-side environment for building and deploying dynamic, personalized

applications based on JavaBeans and JSP pages. Web application developers assemble applications out of

component servlet beans by linking them together through configuration files. For detailed information on

creating JavaBean components and JSPs, refer to the ATG Platform Programming Guide.

When a browser instance requests a JSP, all necessary documents are identified and located and then compiled

into Java code. The code is then converted into an HTML page and displayed. HTML can incorporate dynamic

elements that allow the page to be customized for each instance using JSP, which can pass information to

JavaBeans, servlets and other Java components. JSP-based applications can perform a number of capabilities,

including displaying property values or forms, invoke servlet beans or components and extract data stored in

XML.

For detailed information on creating JSPs, refer to the ATG Page Developer's Guide.

Tag Libraries

As a Web page designer, you build the front-end interface for the application out of JSPs that use the DSP tag

library. The DSP tag libraries used by Service Center are listed in Appendix B, Tag Libraries (page 121).

For additional information on working with tag libraries, refer to the ATG Page Developer's Guide.

Servlet Beans

Servlet beans are Java-based Web components that are managed by a container and generate dynamic content

from Java objects. They also transform data in XML documents. Detailed information on working with servlet

beans and integrating XML with servlet beans can be found in the ATG Page Developer's Guide.

42 5 Service Center UI Components

Customization Best Practices

The following are best practices to use when customizing your environment.

Extending Configuration Files

It is best to use configuration layering to create extended configuration files that reside within your own

application module, and point these files to the extended configuration files, JavaScript or CSS files contained

in your custom application. Adding a new field to the end of the default fields is best done by modifying the

appropriate extended properties file. New fields will be displayed after the default fields. This prevents your

customizations from being overwritten if Commerce Service Center is updated, as the configuration properties

are located in your Web application.

By creating an extended configuration component you can append content to the page without changing the

default configurations. The extended component contains the same functionality as, and is defined directly

after, the default components.

Adding JavaScript and CSS Files

When you add new JavaScript or CSS files to your customization directory, you should point the

AgentUIConfiguration component to it using the applicationScriptFiles property. When you add your

JavaScript or CSS files to the applicationScriptFiles property, they are aggregated and loaded at the same

time to the application server. This avoids multiple communications with the application server:

1. Add JavaScript files to the applicationScriptFiles property of the Service-UI/

Framework/Agent/config/atg/svc/agent/ui/

AgentUIConfiguration.properties file.

The following example adds myScript1.js and myScript2.js to myServiceCenter. To add to the list,

ensure that you use the += syntax:

applicationScriptFiles+=

/myServiceCenter/myScripts/myScript1.js,

/myServiceCenter/myScripts/myScript2.js

2. If dojoDebug is turned on, as discussed in Dojo Debugging Mode (page 43), you must add your custom

scripts to the debugScriptFiles list:

debugScriptFiles+=

/myServiceCenter/myScripts/myScript1.js,

/myServiceCenter/myScripts/myScript2.js

3. To add a new CSS file, add it to /atg/svc/agent/ui/AgentUIConfiguration using the

applicationStyleSheets property:

applicationStyleSheets+=

/myServiceCenter/myStyles/myStyles.css

5 Service Center UI Components 43

Using Service Center Debugging Modes

When customizing Service Center, you may find it helpful to activate the following debugging modes.

Service Center Debugging Mode

Service Center debugging mode provides information on all of the components that comprise the panel. When

the cursor is placed over the icon, debug information displays for the panel, as shown below:

The pop-up window presents a table of the data IDs that drive the display of the panel, as well as the JSP that

renders the panel content and the Web application that contains the JSP. The table also displays the resource

bundle and the key that are used to display the panel content.

Below the table is a list of the JSP sources, as well as a list of the included JSP files. This page is cross-linked to the

Dynamo Server Admin, which queries for the panel data, allowing real-time modification.

To turn on debug mode, set the useDebugPanelStackMode property of the /atg/svc/agent/ui/

AgentUIConfiguration to true.

Dojo Debugging Mode

Dojo debugging enables console logging in Firefox Firebug. To set Dojo debugging, set the dojoDebug

property of the /atg/svc/agent/ui/AgentUIConfiguration to true.

44 5 Service Center UI Components

6 Working with the Global Context Area 45

6 Working with the Global Context

Area

The global context area is a UI located at the top of the page in Service Center. This JSP-based UI is produced

using a series of configuration files that define the contents of each navigational item. The following section

describes the components that make the global context area, as well as steps to modify the UI.

Global Context Area Architecture

The global context area allows users to see and access a variety of information quickly. The items that are

displayed on the global context area depend on the modules and applications that have been installed in your

environment.

The global context area is comprised of three separate navigation containers, the PrimaryNavContainer, the

SecondaryNavContainer and the OptionsNavContainer. Each navigation container is a component of type

NavContainer, which defines the navigational item components of type NavItem that will be displayed in the

UI. The following individual navigation classes make up the entire global context area architecture:

• NavItem – A NavItem component encapsulates the components that make up a single navigational element

within the UI. A NavItem is comprised of NavSearch, NavContent and NavAction elements

• NavSearch – A NavSearch component provides the display and control elements that are displayed and

executed when a user clicks the search option on the NavItem

• NavContent – This component provides the display and control elements that are displayed and executed

when a use clicks on the context area of the NavItem

• NavAction – A NavAction defines the display and control elements for a single action. NavActions can be

referenced by a NavActionFactory using static component references or, in some cases can be dynamically

generated by a NavActionFactory. Dynamic NavActions are those that can change in availability,

appearance or execution, depending on the current state of the agent’s environment

• NavActionContainer – This component defines one or more NavActions available to the NavItem

46 6 Working with the Global Context Area

• NavActionFactory – A NavActionFactory component provides one or more NavActions. These

components are referenced by the NavActionContainer to provide the available NavActions

Anatomy of a NavItem

Each NavItem has a property file that contains commonly used attributes and sub-components, which can be

found in:

ATG Product Location

Commerce Service Center /DCS-CSR-UI/src/config/atg/svc/agent/ui/

Service Center Framework /Service-UI/framework/Agent/j2ee-apps/

Agent.ear/ServiceFramework.war/

The NavAction component contains properties for a resource bundle and a label, as well as a JavaScript

function call. These properties can be modified to customize the NavAction. The labels for the components are

all localized in a resource bundle, which is typically FrameworkResources. Note: There are separate bundles for

the Service Center Framework and Commerce Service Center

NavContainers

NavContainers contain multiple NavItems, which are divided into search, context and action subcomponents.

There are three default NavContainers:

• PrimaryNavContainer – Holds information such as Customer, Order, Product and Ticket and is rendered on

the bottom row of the global context area

• SecondaryNavContainer – H olds information such as Store, Site, Catalog and Pricelists and is rendered on

the top row of the global context area

• OptionsNavContainer – This contains Log Out, Preferences and About information and is rendered to the

right of the SecondaryNavContainer

NavContainers set the following:

6 Working with the Global Context Area 47

Name Type Description

id string IDs are optional. If you use an ID, it must be unique to the IDs that are

specified by other navigational components within the global context

area.

The ID is included when rendering the NavContainer component

within the DOM to enable custom CSS files to target the styling of the

NavContainer without having to modify the JSP file directly.

environmentTools path References and identifies the EnvironmentTools component.

navItems path References all of the contained navItem components.

NavItems

A NavItem provides three optional subcomponents, as well as properties for controlling rendering priority

within the container, secured access and display of the item. The subcomponents are the search, context and

action container components.

Applications that use the global context area add their NavItems to the NavContainer’s NavItems list within

their own config layer using the += syntax.

NavItems contain the following configuration:

Name Type Description

id string IDs are optional. If you use an ID, it must be unique to the IDs

that are specified by other navigational components within the

global context area.

The ID is included when rendering the NavItem component

within the DOM to enable custom CSS files to target the styling

of the NavItem without having to modify the JSP file directly.

available Boolean Determines if the NavItem is available. If false, the NavItem

will not be displayed in the UI

sortPriority integer Determines the position of the NavItem relative to other

NavItems defined by the NavContainer. The NavContainer

sorts the NavItems by this property in ascending order. Lower

sort order numbers are rendered first.

accessRight string Defines the access right required to use the NavItem. If

the agent does not have this right, the NavItem will not be

included within the UI.

labelResourceKey string The resource key that identifies the label that appears under

the NavItem in the UI.

resourceBundleName string Identifies the name of the resource bundle used to look up all

resourced values.

48 6 Working with the Global Context Area

Name Type Description

navSearch path References the search subcomponent.

navContext path References the context subcomponent.

navActionContainer path References the navActionContainer subcomponent.

NavSearch

The NavSearch component defines the navigational elements for the search button that exists on the

navigation item, allowing the user to activate the search function. When a user clicks on the Search button, a

JavaScript code snippet is executed, performing the specific search action.

The NavSearch component has the following configuration:

Name Type Description

id string IDs are optional. If you use an ID, it must be unique to the IDs

that are specified by other navigational components within the

global context area.

The ID is included when rendering the NavSearch component

within the DOM to enable custom CSS files to target the

styling of the NavSearch without having to modify the JSP file

directly.

toolTipResourceKey string The resource key used to identify the tooltip text that appears

when hovering over the search element of the NavItem in the

UI.

resourceBundleName string Identifies the name of the resource bundle used to look up all

resourced values.

javaScriptFunctionCall path Defines the string that is rendered as the JavaScript function for

the search icons.

NavContext

This component represents the context area on a NavItem. It provides a descriptive label for the NavItem that is

relative to the current context. The base version of the NavContext component defines layout properties such

as width limits, display strings and the JavaScript code snippet to execute.

The NavContext can be a static label or a dynamic value or a customized combination of the two. Customized

label strings are generated using subclasses of NavContext.

The NavContext component contains the following configuration:

6 Working with the Global Context Area 49

Name Type Description

id string IDs are optional. However, when used, they must be unique to

the IDs that are specified by other navigational components

within the global context area.

The ID is included when rendering the NavContext

component within the DOM to enable custom CSS files to

target the styling of the NavContext without having to

modify the JSP file directly.

labelResourceKey string The resource key used to identify the text that appears as the

context element of the NavItem in the UI.

Note: Because NavContext displays contextual information,

it is common for this text value to be dynamic in nature,

depending on the current state of the agent’s environment.

As such, it is common for the getLabel() API to be

overridden to provide a dynamic value.

toolTipResourceKey string The resource key used to identify the tooltip text that appears

when hovering over the context element of the NavItem in

the UI.

minWidth integer Identifies the minimum width allowed. Defined in pixels.

maxWidth integer Identifies the maximum width allowed. Defined in pixels.

javaScriptFunctionCall string Defines the string that is rendered as the JavaScript function

for the context label. This function is executed when the user

clicks the context label.

resourceBundleName string Identifies the name of the resource bundle used to look up all

resourced values.

NavActionContainers

This component represents the action menu within a NavItem. The action menu contains a collection of links to

display within a pop-up window. The NavActionContainer references the NavActionFactory components

that provide the navigational display and control elements for the NavActions.

The NavContainer, which uses the NavActionFactory sortPriorty property to identify the priority of the

grouped NavActions defined within the NavActionFactory, has the following configuration:

50 6 Working with the Global Context Area

Name Type Description

id string IDs are optional. However, when used, they must be unique to the

IDs that are specified by other navigational components within the

global context area.

The ID is included when rendering the NavActionContainer

component within the DOM to enable custom CSS files to target the

styling of the NavActionContainer without having to modify the

JSP file directly.

resourceBundleName string Identifies the name of the resource bundle used to look up all

resourced values.

labelResourceKey string Identifies the resource key for the text that appears for the

NavActionContainer. This property, which is used only when a

NavActionContainer contains a single NavAction, will display the

text that appears for the action in the NavAction’s menu.

toolTipResourceKey string Identifies the resource key for the tooltip text that appears for the

NavAction’s menu.

navActionFactories path Reference to an array of NavActionFactory components.

NavActionFactory

The NavActionFactory component enables you to group and sort NavActions that are displayed in

the action menu of the NavItem. A NavActionContainer can reference multiple NavActionFactories

and uses their sortPriority property to set their sort order. In turn, NavActions that are referenced by

a NavActionFactory are grouped together within the NavAction menu and can be sorted using the

NavAction sortPriority property.

The NavActionFactory contains the following configurations:

6 Working with the Global Context Area 51

Name Type Description

sortPriority integer Identifies the sort order relative to other NavActionFactories

referenced by the NavActionContainer. The NavActionContainer

sorts the NavActionFactories by this value before producing the list of

NavActions provided by those factories.

available Boolean Determines if the NavActionFactory is available for use. If false, the

NavActionFactory will not be included by the NavActionContainer.

accessRight string Defines the access right required to use the actions generated by this

factory. If the agent does not have this right, the actions will not be

included in the UI.

navActions path References an array of NavActions provided by this factory.

NavAction

The NavAction component represents an individual option in an action menu. These components also contain

information on rendering priority and the properties that control the display. The navAction configures the

text label that is displayed in the menu, as well as the JavaScript snippet that executes when the menu option is

selected.

NavActions contain the following configurations:

Name Type Description

id string IDs are optional. However, when used, they must be

unique to the IDs that are specified by other navigational

components within the global context area.

The ID is included when rendering the NavAction

component within the DOM to enable custom CSS files

to target the styling of the NavAction without having to

modify the JSP file directly.

sortPriority integer Identifies the sort order relative to other NavActions

provided by the NavActionFactory. The

NavActionFactory sorts the NavActions by this value

before producing the list of NavActions it provides.

available Boolean Determines if the NavAction is available. If false, the

NavAction will not be included by the NavActionFactory.

accessRight string Defines the access rights required to use this action. If the

agent does not have this right, the action will be filtered out

by the NavActionFactory and will not be included within

the UI.

resourceBundleName string Identifies the name of the resource bundle used to look up

all resourced values.

52 6 Working with the Global Context Area

Name Type Description

enabled Boolean Determines whether the action is enabled or disabled in the

UI. Disabled actions are grayed out.

Note: This value is useful in cases where an action becomes

unavailable at certain times based on the agent’s working

environment. As such, it is more common to extend the

isEnabled() API to get the desired behavior than it is to

statically provide the value through the properties file.

labelResourceKey string The resource key used to identify the text that appears for

the action in the NavItem’s action menu.

javaScriptFunctionCall string Calls the JavaScript to execute.

Rendering the Global Context Area

The global context area is rendered using the /Service-UI/framework/Agent/j2ee-apps/Agent

/ServiceFramework/templates/globalContentArea.jsp file. The file renders the global context area

layout, including the call and messages buttons and placeholders for the NavContainer components. This

directory also contains the callButtons.jsp and messages.jsp files that render the call buttons and the

messages widgets respectively. The generic rendering pages are stored in the /Service-UI/framework/

Agent/j2ee-apps/Agent/ServiceFramework/include/navigation folder. The following diagram shows

the relationships between the JSP files:

Navigation items are rendered using a hierarchy of navigational objects and JSPs files. At the top level is the

NavContainer.jps, which is typically called from globalContentArea.jsp. The NavContainer object to be

rendered is imported and passed along to the navContainer.jsp file.

Rendering NavContainers

To render a NavContainer, the JSP references a NavContainer object that contains all of the NavItem

components to display. The JSP iterates over each NavItem, rendering the NavSearch, NavContext, and

NavAction subcomponents using navSearch.jsp, navContext.jsp and navActions.jsp respectively.

6 Working with the Global Context Area 53

The navContainer.jsp iterates over the collection of NavItems passing each NavItem component to the

navItem.jsp file to render them individually.

Rendering NavSearch

The NavSearch component is rendered by the navSearch.jsp file to provide a link to a search page. The

navSearch.jsp page renders a <div> tab containing the navSearch ID, as well as the icon and tooltip. For

example:

<dspel:getvalueof var="navSearch" param="navSearch"/>

<%-- Embed the JavaScript function call and tooltip into the search component --%>
<a href="#" onclick="<c:out value="${navSearch.javaScriptFunctionCall}"/>"
 class="gcn_btn_search" title="<c:out
 value="${navSearch.toolTipText}"/>"><c:out
 value="${navSearch.toolTipText}"/>

Rendering NavContext

The NavContext component is rendered by navContext.jsp to provide the context display information and

the context navigation link. The navContext.jsp file also renders a <div> tag with the NavContext ID. For

example:

<dspel:getvalueof var="navContext" param="navContext"/>

<%-- Embed the context label and tooltip into the context component --%>
<a href="#" onclick="<c:out value="${navContext.javaScriptFunctionCall}"/>"
 class="gcn_btn_context"
 title="<c:out value="${navContext.toolTipText}"/>"><c:out
 value="${navContext.label}"/>

Rendering NavActions

The navActionContainer.jsp and the navActionItems.jsp files render the NavActions. NavActions are

rendered in three different ways, depending on the number of actions provided by the NavActionContainer,

and if the NavActionContainer has provided a label value.

• Action pop-up menu with menu label – This rendering provides a label on the action menu, as well as a pop-

up menu with the available actions. There are two configurations that are rendered this way by default, the

Commerce Service Center Products NavItem and the Options menu in the OptionsNavContainer

• Action pop-up menu with no menu label – This rendering provides a pop-up menu with the available actions

and no label that has been identified in the NavContainer. This rendering includes multiple actions that

have no NavActionContainerLabel, such as the Customer NavItem, or a single NavActions with no

NavActionContainerLabel

• No Action pop-up menu with an action label – This rendering does not provide a pop-up menu for the

actions, rendering instead only a single action link. This single action provides the JavaScript function

that is executed when the action label is clicked. The rendered label and tooltip text is defined by the

NavActionConatinerLabel and NavActionConatinertoolTip properties. The configuration provides

only a single NavAction with a NavActionContainerLabel, such as the Respond NavItem

54 6 Working with the Global Context Area

Creating a New NavAction

When creating new menu items in the global context area, create your files in your custom application directory

and extend the existing configuration files. To create a new NavAction:

1. Create the NavAction that you want to add to the menu.

2. Extend the NavActionFactory file to include your new NavAction within the list.

3. Ensure that your resource bundle file contains the necessary references to your new action.

Example: Creating a Options Policy Menu Item

The following example demonstrates how to add a Corporate Policy action as the final menu selection in the

Options menu. This custom action navigates the agent to the corporate policy panel stack.

1. Create an OptionsPolicyNavAction. The following example creates an OptionsPolicyNavAction, in

the /atg/svc/agent/ui/directory of your custom application. Because there are already five menu items

that are identified with sort priorities of 100 to 500, setting the sortPriority of this new NavAction to

600 will identify it as the sixth menu item, or the last menu option in the list. This example also implements a

JavaScript function call to the policy.jsp file:

$class=atg.svc.agent.ui.NavAction

$scope=window

id=optionsPolicyNavAction

sortPriority=600

#controls if this action is available. If not, it will not be included in

#the UI.

available=true

#use this property to assign a specific security access right to this

#action. If the agent doesn't have this right, it will not be included in

#the UI.

#accessRight=

environmentTools=/atg/svc/agent/environment/EnvironmentTools

resourceBundleName=mycompany.myapp.ui.Resources

labelResourceKey=navitem.options.action.policy.label

javaScriptFunctionCallTemplate=atg.commerce.csr.openPanelStackWithTab

('myPolicyPanelStack','commerceTab')

2. Modify the OptionsNavActionFactory file to include your new NavAction within the list. The following

OptionsNavActionFactory example shows that an OptionsPolicyNavAction has been added to the list

of actions available. Add the following properties file to the configuration layer to append the new action to

the /atg/svc/agent/ui/OptionsNavActionFactory:

actions+=\

/atg/svc/agent/ui/OptionsPolicyNavAction

3. Ensure that your resource bundle file contains the necessary references to your new action. The following

example resource file, which we defined in Step 1 as mycompany.myapp.ui.Resources, defines the label

resources used by the new NavAction:

options

navitem.options.item.label=Options

navitem.options.action.label=Options

6 Working with the Global Context Area 55

navitem.options.action.tooltip=Log Out, Preferences and Documentation

navitem.options.action.logout.label=Log Out

navitem.options.action.logoutagent.label=Log Out: {0}

navitem.options.action.preferences.label=Preferences

navitem.options.action.documentation.label=Documentation

navitem.options.action.about.label=About

navitem.options.action.shortcuts.label=Shortcuts

navitem.options.action.policy.label=Corporate Policies

This adds the Corporate Policies menu label to the Options menu. When the agent selects this menu option,

the myPolicyPanelStack will be displayed.

56 6 Working with the Global Context Area

7 Working with Pages 57

7 Working with Pages

Pages within the UI are defined with the following definitions:

• Tab definitions - Divide the application into functional areas by defining the top level navigation. They also

specify page structures using cell and template definitions and define the panels and panel stack definitions

that comprise the page

• Cell definitions - Define the basic layout of the page, including the position of panel stacks

• Panel stack definitions - Contains a collection of panels that will be displayed within the page

• Panel definitions - Defines a rectangular region of the page with related content referenced by an include JSP

content template

When you create a new page, you create a tab definition that contains the other definition objects, thus

defining page structure and layout. For detailed information on the definition object, refer to the Framework

Objects (page 12) section.

Creating a New Tab Definition

To changes the layout of an existing page or create a new page that is accessed by a navigational item from the

global context area, you need to create or modify a tab definition.

Note: Customizations should occur in your custom directory as outlined in Customization Best Practices (page

42).

To create a new tab definition:

58 7 Working with Pages

1. Create an /atg/svc/framework/serviceFramework.xml file in your new custom module and add the

ContentDefinition item for the new tab action. This defines the JavaScript action that will be attached to

the TabDefinition item for the new tab and then executed.

2. To create a new navigational item within the tab, modify the NavContainer and other NavItem components

as outlined in Creating a New NavAction (page 54) section.

3. Append your new tab definition information to the default tab definition.

4. Create the panel stack definition that will be used by your new tab definition.

5. Create the JSP files and resources that you identified in your definitions.

Note: You must ensure that the access rights for the tab and the panels are correct.

Example: Creating a New Page

The following example creates a new page by creating a myNewTab tab definition and then rendering a new

panel stack called MyNewPS, which then renders three additional panels: myNewPanel1, myNewPanel2, and

myNewPanel3.

In the following example, these properties will be changed for the new tab definition:

• The appId property must be set to workspace for the tab to be loaded in the Service Center UI

• The tabId property must correspond to the tab ID referenced in the ContentDefinition item defined for

the tab action

• The titleKey property references a resource defined in a resource bundle in the Commerce Service Center

class path

• The accessRight may remain the default GlobalPanel right or a specific right. If using a specific right, the

right must be defined and assigned to Service Center users. Note: The access right must be defined or the

page will not be rendered

• The panelStackAssignments property uses pre-existing column names defined in the Service Framework

Repository. This positions the panel stacks in the left column using contentColumn, the right column using

sidebarColumn or top area using globalCell. Note: Changing the top area in the globalCell is not

supported

• The currentPanelStacks property determines which panel stacks to show initially or by default

• The panelStackOrder property determines the sequence in which the panel stacks are rendered in case

there is cross-referencing JavaScript between panel stacks that creates dependencies in the rendering order

• The contentIds property points to the ContentDefinition item defined above so that the requested

JavaScript action is executed when the tab is selected

To create a new page:

1. Create an /atg/svc/framework/serviceFramework.xml file in your new custom module and add the

ContentDefinition item for the new tab action. This defines the JavaScript action that will be attached

to the TabDefinition item for the new tab (via the contentIds map, see below) and then executed. For

example:

<content-definition>

<id>WsMyNewTabAction</id>

7 Working with Pages 59

<app-id>workspace</app-id>

<enabled-yn>true</enabled-yn>

<object-type>ContentDefinition</object-type>

<content-id>myNewTabAction</content-id>

<mime-type>text/javascript</mime-type>

<body>atgChangeTab(atg.service.framework.changeTab('myNewTab'),

null,null,null);</body>

<url-yn>true</url-yn>

</content-definition>

2. To create a new navigational item, modify the NavContainer and other NavItem components as outlined in

Creating a New NavAction (page 54) section.

3. Append your new tab definition information to the existing tab definition. This example creates a tab

definition named WsMyNewTabDefinition. The tab definition identifies the my.company.ui.Resources

file that defines the myNewTab.resource key, which would be created in your custom application:

<tab-definition>

<id>WsMyNewTabDefinition</id>

<app-id>workspace</app-id>

<enabled-yn>true</enabled-yn>

<object-type>TabDefinition</object-type>

<resource-bundle>my.company.ui.Resources</resource-bundle>

<content-ids>

<map-entry>

<key>actionJavaScript</key>

<value>myTabAction</value>

</map-entry>

</content-ids>

<template-ids>

<map-entry>

<key>contentHeader</key>

<value>contentHeaderTemplate</value>

</map-entry>

</template-ids>

<tab-id>myNewTab</tab-id>

<title-key>myNewTab.resource</title-key>

<visible-yn>true</visible-yn>

<access-right>GlobalPanel</access-right>

<panel-stack-assignments>

<map-entry>

<key>preferencesPanel</key>

<value>contentColumn</value>

</map-entry>

<map-entry>

<key>helpfulPanels</key>

<value>sidebarColumn</value>

</map-entry>

<map-entry>

<key>MyNewPS</key>

<value>contentColumn</value>

</map-entry>

<map-entry>

<key>globalPanels</key>

60 7 Working with Pages

<value>globalCell</value>

</map-entry>

<map-entry>

<key>cmcHelpfulPanels</key>

<value>sidebarColumn</value>

</map-entry>

</panel-stack-assignments>

<current-panel-stacks>

<map-entry>

<key>MyNewPS</key>

<value>contentColumn</value>

</map-entry>

<map-entry>

<key>cmcHelpfulPanels</key>

<value>sidebarColumn</value>

</map-entry>

<map-entry>

<key>globalPanels</key>

<value>globalCell</value>

</map-entry>

</current-panel-stacks>

<panel-stack-order>

<id-entry>

<id>globalPanels</id>

<priority>0</priority>

</id-entry>

<id-entry>

<id>cmcHelpfulPanels</id>

<priority>1</priority>

</id-entry>

<id-entry>

<id>helpfulPanels</id>

<priority>2</priority>

</id-entry>

<id-entry>

<id>MyNewPS</id>

<priority>3</priority>

</id-entry>

<id-entry>

<id>preferencePanels</id>

<priority>4</priority>

</id-entry>

</panel-stack-order>

</tab-definition>

4. Create a MyNewPS panel stack definition that will be used by the new WsMyNewTabDefinition tab definition.

The panel stack definition identifies the my.company.ui.MyUserResource file that defines the MyNewPS

key, which would be created in your custom application:

<panel-stack-definition>

<id>MyNewPS</id>

<app-id>workspace</app-id>

<enabled-yn>true</enabled-yn>

<object-type>PanelStackDefinition</object-type>

7 Working with Pages 61

<resource-bundle>my.company.ui.MyUserResource</resource-bundle>

<panel-stack-id>MyNewPS</panel-stack-id>

<header>contentHeader</header>

<error-panel-id>errorPanel</error-panel-id>

<title-key>MyNewPS</title-key>

<tab-affinity-yn>true</tab-affinity-yn>

<panel-ids>

<id-entry>

<id>errorPanel</id>

<priority>0</priority>

</id-entry>

<id-entry>

<id>myNewPanel1</id>

<priority>1</priority>

</id-entry>

<id-entry>

<id>myNewPanel2</id>

<priority>2</priority>

</id-entry>

<id-entry>

<id>myNewPanel3</id>

<priority>3</priority>

</id-entry>

</panel-ids>

</panel-stack-definition>

Modifying a Tab Action

You can modify the action that a tab performs by modifying the ContentDefinition for the action. Once you

have modified the item, you must define the JavaScript that will run when the tab is clicked.

Note: Refer to Customization Best Practices (page 42) before modifying definition files.

For example, you can modify the existing tab’s ContentDefinition to point to your new tab definitions. In this

example, the existing tab action is:

<content-definition>
 <id>existingTabAction</id>
 <app-id>workspace</app-id>
 <enabled-yn>true</enabled-yn>
 <object-type>ContentDefinition</object-type>
 <content-id>existingTabAction</content-id>
 <mime-type>text/javascript</mime-type>
 <body>atgChangeTab(atg.svc.framework.changeTab('DefaultTab"),
 null, null, null);</body>
 <url-yn>true</url-yn>
</content-definition>

Create or modify the /atg/svc/framework/serviceFramework.xml file in your new custom module and

add the ContentDefinition items for the tab action. Note that you must include the ID so that the object

definition can be found during the combiner process. When writing the definition, you override only the

62 7 Working with Pages

attributes that you want to modify. To change the atgChangeTab attribute to point to your myNewTab, you

would create the following:

<content-definition>
 <id>existingTabAction</id>
 <body>atgChangeTab(atg.svc.framework.changeTab('myNewTab'), null, null,
 null):</body>
</content-defintion>

Deleting a Tab Definition

The following is an example of how to delete a tab definition named myexistingTabAction. To delete a

definition from your UI, use the xml-combine="remove" command to the serviceFramework.xml file

located in your custom directory.

Note: Refer to Customization Best Practices (page 42) before modifying definition files.

The following example appends the removal of the definition to the default configuration:

<content-definition xml-combine="remove">
 <id>myexistingTabAction</id>
</content-definition>

Adding a New Panel Definition

Add new panels to the /atg/svc/framework/serviceFramework.xml file in your custom application.

1. Create the panel JSP file.

2. Create the /atg/svc/framework/serviceFramework.xml file.

3. Add a panel stack definition that contains the new panel.

4. Add a panel definition for each new panel.

5. Add the panels to the existing panel stack by updating the panelIds property. Similarly, the panels may be

added to a new panel stack.

Note: The JSPs for new panels should be housed in a custom application. If the JSPs are housed in a custom Web

application, the otherContext property of the PanelDefinition should be set to the value of the context

root of the containing Web application. Refer to the Customization Best Practices (page 42) section.

Example: Adding Three New Panels

Continuing with the example of adding three panels to the Customer Management page, the following

properties will be changed for the panel definition. Please note that:

7 Working with Pages 63

• The appId property must be set to workspace for the panel to be loaded in Service Center

• The accessRight may remain the default GlobalPanel right or a specific right. If using a specific right, the

right must be defined and assigned to Service Center users. Note: The access right must be defined or the tab

will not be rendered

The following provides an example of code that adds three new panels, myNewPanel1, myNewPanel2 and

myNewPanel3, to the WsCustomerPanelStack panel stack definition:

1. Create the mypanel1.jsp, mypanel2.jsp and mypanel3.jsp files that will be called by the panel

definitions. Create these files in the /panels/order/ directory of your custom application.

2. Create the /atg/svc/framework/serviceFramework.xml file in your custom application directory.

3. To this file, add a panel stack definition that contains the three new panels and their priorities. This appends

your new panels to the existing information that creates the Customer Panel Stack. For example:

<panel-stack-definition>

<id>WsCustomerPanelStack</id>

<panel-ids>

<id-entry>

<id>myNewPanel1</id>

<priority>4</priority>

</id-entry>

<id-entry>

<id>myNewPanel2</id>

<priority>5</priority>

</id-entry>

<id-entry>

<id>myNewPanel3</id>

<priority>6</priority>

</id-entry>

</panel-ids>

</panel-stack-definition>

4. Add a panel definition for each of the new panels. The following example displays the code for one of the

three panels:

<panel-definition>

<id>myNewPanel1</id>

<app-id>workspace</app-id>

<enabled-yn>true</enabled-yn>

<object-type>PanelDefinition</object-type>

<resource-bundle>atg.commerce.csr.FrameworkResources</resource-bundle>

<template-ids>

<map-entry>

<key>panelTemplate</key>

<value>panelTemplate</value>

</map-entry>

</template-ids>

<panel-id>myNewPanel1</panel-id>

<content-url>/panels/order/mypanel1.jsp</content-url>

<other-context>MyWebApplication</other-context>

<title-key>myNewPanel1</title-key>

<visible-yn>true</visible-yn>

<show-title-yn>true</show-title-yn>

64 7 Working with Pages

<panel-open-yn>true</panel-open-yn>

<allow-panel-toggle-yn>false</allow-panel-toggle-yn>

<available-yn>false</available-yn>

<content-open-yn>true</content-open-yn>

<allow-content-toggle-yn>true</allow-content-toggle-yn>

<tab-holder-yn>true</tab-holder-yn>

<always-tabbed-yn>false</always-tabbed-yn>

<tabbed-yn>false</tabbed-yn>

<allow-tabbing-yn>true</allow-tabbing-yn>

<allow-slots-yn>false</allow-slots-yn>

<tab-scroll-index>0</tab-scroll-index>

<panel-item-count>0</panel-item-count>

<access-right>NewPanel2</access-right>

</panel-definition>

5. Repeat Step 3 for myNewPanel2 and myNewPanel3.

6. The new panels can be added to any existing panel stack by updating the panelIds property. Similarly, the

panels may be added to a new panel stack.

Note: The JSPs for the new panels should be housed in your custom application, so the otherContext

property of the PanelDefinition should be set to the value of the context root of the containing Web

application.

Customer Management Panel Configuration

You can customize the Customer Management Panel to display panels based upon your requirements by

adding or removing JSP files that display or manage customer specific data. Because the configuration is based

on components, you can perform module-specific customizations. For example, the DCS-CSR-UI module

extends the Customer Management Panel with Commerce Service Center-specific sections, such as Credit Cards,

Credits and Promotions. For additional information on Oracle ATG Web Commerce customer management

modifications, refer to the ATG Commerce Programming Guide.

To update the Customer Management Panel, modify the /atg/svc/agent/customer/

CustomerPanelConfig.properties file to identify the panels to display as well as the context where

the panel is displayed. The following example displays the Commerce Service Center extensions, the credit

card, credits and promotions panels, and adds three new custom panels named myCustomerPanel1.jsp,

myCustomerPanel2.jsp and myCustomerPanel3.jsp:

$class=atg.svc.agent.customer.CustomerPanelConfig
subSections+=\
 /panels/customer/creditCards.jsp,\
 /panels/customer/credits.jsp,\
 /panels/customer/promotions.jsp,\
 /panels/customer/myCustomerPanel1.jsp,\
 /panels/customer/myCustomerPanel2.jsp,\
 /panels/customer/myCustomerPanel3.jsp

contextRoots+=\
 /DCS-CSR,\
 /DCS-CSR,\
 /DCS-CSR,\
 /DCS-CSR,\
 /DCS-CSR,\

7 Working with Pages 65

 /DCS-CSR

Troubleshooting Pages

When the application has started but your new tab, panel stack or panel is not visible, check the following

common causes:

1. Verify that the enableYn property is set to true (the default value).

2. If you are using an access right other than GlobalPanels, verify that your access right has been created in

the appropriate repository. If unsure, set the accessRight to GlobalPanels, which is an access right with

no restrictions. The GlobalPanels access right can be used for both tabs and panels.

3. If a panel stack is not displaying, verify that the panelStackId for the panel stack is added to the

panelStackAssignments, currentPanelStacks and panelStackOrder properties of the

TabDefinition item as described above.

4. If a panel is not displaying, verify that the panelId for the panel is added to the panelIds property in the

PanelStackDefinition item as described above.

5. If the top panel in the panel stack is not displaying, verify that the tabHolderYn property is set to true.

6. If a panel other than the top panel is not displaying, verify that the tabHolderYn property is false.

7. If tabbed panels are not displaying, verify the following:

• The first panel is configured with tabHolderYn=true. The currentPanelId should be set to the same

value as the panelId. The tabbedPanelIds should be set to the list of panelId’s of panels in the row of

tabs excluding the first panel

• The panels after the first panel should be configured with tabHolderYn=false and currentPanelId

and tabbedPanelIds set to null

• All the tabbed panels should be configured to alwaysTabbedYn=true, tabbedYn=true and

allowTabbingYn=true

66 7 Working with Pages

8 Working with Forms 67

8 Working with Forms

Service Center obtains information by having users and agents complete forms. These forms are often required

to handle user information that come from a number of different formats. They also may require validation,

additional actions or the data acquired must be stored in specific repositories or databases. This section

identifies modifiable forms that are specific to Service Center, as well as information on creating new forms.

For information on working with forms, and detailed information on associating HTML form tags with Nucleus

components, refer to the ATG Page Developer's Guide. For information on creating forms for your application,

refer to the ATG Platform Programming Guide.

Modifying Existing Forms

Forms are customized using configuration layering. This extends the functionality of default forms within

Service Center by modifying the fields within the form. By extending configuration files, you can add or remove

fields or modify the behavior of fields. For example, you can identify required fields within a specific form by

mapping to your own JSP snippets that contain your customized layout. Once you have created your own

customized JSP snippets, you can modify the appropriate configuration property for that form to render your

customizations.

Using default or extended fragments, you can modify the default forms, and/or append your customizations. If

JSP snippets are not specified, the standard forms are rendered.

The following forms can be modified:

Page Form/Page Area

Customer Information Create New Customer

Customer Information Edit/View Customer

Customer Search Customer Search or the Select Customer pop-up in the shopping cart

Gift Lists Details, Search, Search Results and View Details

Order Search Order Search

Order View Display values

68 8 Working with Forms

Page Form/Page Area

Product Catalog Product Search

Forms are customized by modifying the associated configuration properties files that define the JSP fragments

that replace and/or append the field.

Note: Refer to the Customization Best Practices (page 42) section before modifying files.

The JSP fragment is integrated within your page layout to display the new or modified field. Service Center uses

a default JSP fragment that contains all of the standard fields displayed on a page, and an optional extended JSP

fragment used for creating additional fields.

The default page fragment component is mapped to the default JSP snippet in Service Center but may be

redirected with a configuration property to your own JSP page. The page contains a dsp: include tag that

reads the associated configuration file and then includes the page defined by the page fragment component.

For example, to change the default fragment to your own code, you would change the page fragment’s

servletContext and URL properties to point to your page.

The extended page fragment component allows you to append content to the page without changing the

default page fragment. The extended page fragment component contains the same functionality as, and is

defined directly after, the default page fragment component. By default, the extended properties files do not

contain a reference to a JSP file. You can define a JSP for the extended fragment to incorporate form properties

that are specific to your environment.

The default and extended page fragment components are instances of atg.web.PageFragment, which are

used to define the location of the JSP file. The configuration files that define the page fragment components

contain the following properties to identify the JSP:

• servletContext - Specifies the context root of the JSP fragment that will be incorporated into the page

• URL - Specifies the URL of the JSP fragment to be incorporated into the page

Both the default and extended property files are instances of PageFragment, allowing a servletContext and

URL to be specified for the JSP snippet. As such, the servletContext and URL property descriptions can be

applied for both fragment types.

For general information on working with forms, refer to the Forms section of the ATG Page Developer's Guide.

Working with Page Fragments

When working with page fragments, you should work within your customization directory and use

configuration layering to ensure that your customizations are not overwritten. Refer to the Customization Best

Practices (page 42) section.

1. Create a JSP fragment file that provides the new field information.

2. Add the path of the newly created JSP file to the appropriate extended properties file. Specify the URL and

ServletContext for the appended file.

3. Save the extended properties file.

4. Create a new fragment and place it in the location specified by the URL property of the extended properties

file. Optionally, you can edit an existing JSP fragment that has been specified in the extended properties file

to include the new field information.

8 Working with Forms 69

Note: The JSP fragments are dynamically included and the file will be compiled and executed before being

embedded into the form. As such, import any necessary components into your page to ensure successful

compiling.

Overriding the Default Page Fragment

You can make customizations to existing form fields such as adding a new field within or above the default field

layout. Refer to the Customization Best Practices (page 42) section before modifying files.

1. Make a copy the appropriate default fragment.

2. Make your customizations to the copy of the default fragment. Specify the URL and ServletContext for the

Web application file. Save your changes.

3. Update the appropriate version of the /localconfig configuration file to point to the new copy of the

default fragment.

Modifiable Form Configuration Files

The configuration property files for the modifiable forms are located below. Note that there are two properties

files, one for the default configuration and one for the extended configuration. By default, the extended

properties file does not contain a reference to a JSP file. You can define a JSP for the extended fragment to

incorporate form properties.

View Customer Form

The form that enables an agent to view customer profile information.

Default /Service-UI/Framework/Agent/config/atg/svc/agent/ui/fragments/

customer/CustomerViewDefault.properties

Extended /Service-UI/Framework/Agent/config/atg/svc/agent/ui/fragments/

customer/CustomerViewExtended.properties

URL /include/customer/ProfileViewUIFragment.jsp

Servlet Context agent

Create New Customer Form

The form that enables an agent to create a new customer profile.

Default /Service-UI/Framework/Agent/config/atg/svc/agent/ui/fragments/

customer/CustomerNewDefault.properties

Extended /Service-UI/Framework/Agent/config/atg/svc/agent/ui/fragments/

customer/CustomerNewExtended.properties

70 8 Working with Forms

URL /include/customer/ProfileNewUIFragment.jsp

Servlet Context agent

Edit Customer Form

The form that enables an agent to edit a customer profile.

Default /Service-UI/Framework/Agent/config/atg/svc/agent/ui/fragments/

customer/CustomerEditDefault.properties

Extended /Service-UI/Framework/Agent/config/atg/svc/agent/ui/fragments/

customer/CustomerEditExtended.properties

URL /include/customer/ProfileEditUIFragment.jsp

Servlet Context agent

Search Customer Form

The form that enables an agent to search for a customer profile. This also includes the Customer Select pop-up

screen in the Shopping Cart.

Default /Service-UI/Framework/Agent/config/atg/svc/agent/ui/fragments/

customer/CustomerSearchDefault.properties

Extended /Service-UI/Framework/Agent/config/atg/svc/agent/ui/fragments/

customer/CustomerSearchExtended.properties

URL /include/customer/ProfileSearchUIFragment.jsp

Servlet Context agent

Create Gift Lists Form

The form that enables an agent to create a gift list.

Default /DCS-CSR-UI/config/atg/commerce/custsvc/ui/fragments/

gift/GiftlistCreateDefault.properties

Extended /DCS-CSR-UI/config/atg/commerce/custsvc/ui/fragments/

gift/GiftlistCreateExtended.properties

URL /include/gift/giftlist/giftlistCreateUIFragment.jsp

8 Working with Forms 71

Servlet Context DCS-CSR

Gift Lists Purchase Details Form

The form that enables an agent to see the purchase details of a gift list.

Default /DCS-CSR-UI/config/atg/commerce/custsvc/ui/fragments/

gift/GiftlistDetailsPurchaseDefault.properties

Extended /DCS-CSR-UI/config/atg/commerce/custsvc/ui/fragments/

gift/GiftlistDetailsPurchaseExtended.properties

URL /include/gift/giftlist/giftlistDetailsPurchaseUIFragment.jsp

Servlet Context DCS-CSR

View Gift Lists Details Form

The form that enables an agent to see the purchase details of a gift list.

Default /DCS-CSR-UI/config/atg/commerce/custsvc/ui/fragments/

gift/GiftlistDetailsViewDefault.properties

Extended /DCS-CSR-UI/config/atg/commerce/custsvc/ui/fragments/

gift/GiftlistViewDetailsExtended.properties

URL /include/gift/giftlist/giftlistDetailsViewUIFragment.jsp

Servlet Context DCS-CSR

Search Gift Lists Form

The form that enables an agent to search for a gift list.

Default /DCS-CSR-UI/config/atg/commerce/custsvc/ui/fragments/

gift/GiftlistSearchDefault.properties

Extended /DCS-CSR-UI/config/atg/commerce/custsvc/ui/fragments/

gift/GiftlistSearchExtended.properties

URL /include/gift/search/giftlistSearchUIFragment.jsp

Servlet Context DCS-CSR

72 8 Working with Forms

Search Results Gift Lists Form

The form that enables an agent to see the results of a search for a gift list.

Default /DCS-CSR-UI/config/atg/commerce/custsvc/ui/fragments/

gift/GiftlistSearchResultsDefault.properties

Extended /DCS-CSR-UI/config/atg/commerce/custsvc/ui/fragments/

gift/GiftlistSearchResultsExtended.properties

URL /include/gift/search/giftlistSearchResultsUIFragment.jsp

Servlet Context DCS-CSR

Product Search Form

The form that enables an agent to search for a product.

Default /DCS-CSR-UI/config/atg/commerce/custsvc/ui/fragments/

catalog/ProductSearchDefault.properties

Extended /DCS-CSR-UI/config/atg/commerce/custsvc/ui/fragments/

catalog/ProductSearchExtended.properties

URL /include/catalog/productSearchUIFragment.jsp

Servlet Context DCS-CSR

Order Search Form

The form that enables an agent to search for an order.

Default /DCS-CSR-UI/config/atg/commerce/custsvc/ui/fragments/

order/OrderSearchDefault.properties

Extended /DCS-CSR-UI/config/atg/commerce/custsvc/ui/fragments/

order/OrderSearchExtended.properties

URL /include/order/orderSearchUIFragment.jsp

Servlet Context DCS-CSR

Order View Form

This form allows an agent to view an order.

8 Working with Forms 73

Default /DCS-CSR-UI/config/atg/commerce/custsvc/ui/fragments/

order/OrderViewDefault.properties

Extended /DCS-CSR-UI/config/atg/commerce/custsvc/ui/fragments/

order/OrderViewExtended.properties

URL /include/order/orderViewUIFragment.jsp

Servlet Context DCS-CSR

Creating New Forms

When you create new forms, you must also create the appropriate files, including the form handler and JSP files.

The following example shows how to create an electronic shipping group in Commerce Service Center by:

• Creating a form that creates a new electronic shipping group

• Defining and identifying the form’s components

• Identifying the resource bundles

• Defining the submit button calls

• Configuring form validation

For general information on creating forms, form handlers and working with JSP files, refer to the ATG Page

Developer's Guide and the ATG Platform Programming Guide. For detailed information on all Service Center form

handlers, refer to the ATG API Reference for Commerce Service Center :

1. Create a new JSP file in your customization directory. Define the components of the form. For example:

<%@ include file="/include/top.jspf" %>

<dsp:page xml="true">

<dsp:importbean bean="/atg/commerce/custsvc/order/

CreateElectronicShippingGroupFormHandler"/>

<dsp:importbean bean="/atg/dynamo/droplet/Switch"/>

<dsp:importbean var="addElectronicShippingGroup"

bean="/atg/commerce/custsvc/ui/fragments/order/

AddElectronicShippingGroup"/>

<dsp:importbean var="electronicShippingGroupConfig"

bean="/atg/commerce/custsvc/ui/

ElectronicShippingGroupConfiguration"/>

<c:set var="formId" value="mycsrAddElectronicAddress"/>

2. Define the URLs that are called on success and error conditions. For example:

<svc-ui:frameworkUrl var="successURL"

panelStacks="cmcShippingAddressPS"/>

<svc-ui:frameworkUrl var="errorURL" panelStacks="cmcShippingAddressPS"/>

3. Define the form and the elements used by the form. For example:

74 8 Working with Forms

<dsp:setLayeredBundle basename="atg.commerce.csr.order.WebAppResources"/>

<dsp:form id="${formId}" formid="${formId}">

<dsp:input type="hidden" priority="-10" value=""

bean="CreateElectronicShippingGroupFormHandler.

newElectronicShippingGroup"/>

<dsp:input type="hidden" value="${errorURL }" name="errorURL"

bean="CreateElectronicShippingGroupFormHandler.

newElectronicShippingGroupErrorURL"/>

<dsp:input type="hidden" value="${successURL }" name="successURL"

bean="CreateElectronicShippingGroupFormHandler.

newElectronicShippingGroupSuccessURL"/>

<ul class="atg_dataForm atg_commerce_csr_addressForm"

id="atg_commerce_csr_neworder_newShippingAddress">

<li class="atg_commerce_csr_address">

<label class="atg_messaging_requiredIndicator">

*

<fmt:message key="newAddress.email" />

</label>

<dsp:input id="${formId}_emailAddress" type="text"

bean="/atg/commerce/custsvc/order/

CreateElectronicShippingGroupFormHandler.

electronicShippingGroup.emailAddress" size="25" maxlength="50">

<dsp:tagAttribute name="dojoType"

value="atg.widget.form.ValidationTextBox" />

<dsp:tagAttribute name="trim" value="true" />

<dsp:tagAttribute name="required" value="true" />

</dsp:input>

4. Provide the submit button call. For example,

<li class="atg_svc_formActions">

<div class="atg_commerce_csr_panelFooter">

<input type="button" name="myaddAddressButton"

id="myaddAddressButton"

class="atg_commerce_csr_activeButton"

onclick="custom.commerce.csr.order.shipping.addElectronicAddress();

return false;"

value="<fmt:message key="newOrderSingleShipping.addShippingAddress.

button.addAddress"/>

form="${formId}"

dojoType="atg.widget.validation.SubmitButton"

/>

</div>

....

</dsp:form>

5. If you are using JSP validation, provide the validation function. When the form or page is loaded, the

validation routine tracks user input and validates each input field. If the validation is successful, the submit

button is enabled:

8 Working with Forms 75

<script type="text/javascript">

var ${formId}Validate = function () {

var disable = false;

<c:if test="${!empty isDisableSubmit}">disable =

${isDisableSubmit}();</c:if>

<c:if test="${!empty validateIf}">if (${validateIf}) {</c:if>

if (!dijit.byId("${formId}_emailAddress").isValid()) disable =

true;

<c:if test="${!empty validateIf}">}</c:if>

dojo.byId("${formId}").myaddAddressButton.disabled = disable;

};

container.onLoadDeferred.addCallback(function () {

${formId}Validate();

atg.service.form.watchInputs("${formId}", ${formId}Validate);

atg.keyboard.registerFormDefaultEnterKey("${formId}",

"addAddressButton", "buttonClick");

});

container.onUnloadDeferred.addCallback(function () {

atg.service.form.unWatchInputs('${formId}');

atg.keyboard.unRegisterFormDefaultEnterKey("${formId}");

});

</script>

</dsp:page>

6. Once you have created the form, create a customized JavaScript file to identify the submit action for your new

form. For example:

custom.commerce.csr.order.shipping.addElectronicAddress = function (){

atgSubmitAction({form:dojo.byId("mycsrAddElectronicAddress")});

};

This example creates a form similar to this:

Creating a Pop-up Page

A pop-up page presents a form within a new window. Pop-up pages are invoked from a parent, or caller page,

which defines the pop-up page and calls the JSP that displays the page.

To create a pop-up page, you must perform the following:

1. Create the parent or caller page, as outlined in Creating the Caller Page (page 76).

2. Create the JSP file that creates and displays the page, as outlined in Creating the JSP file (page 77).

3. Create the JavaScript file that performs the actions that occur when the submit button is selected. This is

outlined in Creating the JavaScript (page 80) section.

76 8 Working with Forms

Creating the Caller Page

In the following example, the caller page defines the pop-up window using Dojo, and then calls the

editElectronic.jsp file to display the pop-up page.

1. Create a caller page that defines the pop-up window. For example:

<script type="text/javascript">

if (!dijit.byId("mycsrEditAddressFloatingPane")) {

new dojox.Dialog({ id: "mycsrEditAddressFloatingPane",

cacheContent: "false",

executeScripts: "true",

scriptHasHooks: "true",

duration: 100,

"class": "atg_commerce_csr_popup"});

}

</script>

2. Define the pop-up window URL with the window parameters. For example:

<c:url var="editAddressURL" context="/MY-DCS-CSR}"

value="editElectronic.jsp">

<c:param name="nickname" value="${addressKey}"/>

<c:param name="${stateHolder.windowIdParameterName}"

value="${windowId}"/>

</c:url>

Pass in the windowId and any other parameters that are required by the new pop up page.

3. Define the link that loads the pop-up page. For example:

<li class="atg_commerce_csr_editAddress">

<a class="atg_tableIcon atg_propertyEdit" style="min-width:100px"

title="<fmt:message key="common.address.edit.mouseover"/>" href="#"

onclick="atg.commerce.csr.common.showPopupWithReturn({

popupPaneId: 'mycsrEditAddressFloatingPane',

title: '<fmt:message key="common.edit"/>',

url: '${editAddressURL}',

onClose: function(args) {

if (args.result == 'ok') {

atgSubmitAction({

panelStack :['cmcShippingAddressPS','globalPanels'],

form : document.getElementById('transformForm')

});

}

}});return false;">

<fmt:message key="common.edit"/>

The onClose function defines the actions that should occur when the pop-up window is closed. When

the pop-up window is closed automatically, the pop-up page passes back the args.result value as ok,

refreshing the shipping address panel stack and global panel stacks.

8 Working with Forms 77

4. Save the parent page.

Creating the JSP file

The following example creates the editElectronic.jsp that was created in the above example.

Note: When writing your JSP file, ensure that all tags are closed appropriately. The following example may be

missing end tags due to formatting.

The pop-up page is served on both the success and error conditions. If the success condition is met, the pop-up

page is closed automatically and the caller page determines the appropriate actions to take once the pop-up

page is closed.

1. Create the editElectronic.jsp page. For example:

<%-- This page is used to edit the electronic shipping group.

param - nickname

This parameter is used to initialize shipping group from the

ShippingGroupMapContainer.

param - success

This parameter is used to close the popup panel and refresh the parent

page. This parameter is added to the request on edit form submission.

--%>

<%@ include file="/include/top.jspf"%>

<dsp:page xml="true">

<dsp:importbean var="updateShippingGroupFormHandler"

bean="/atg/commerce/custsvc/order/

UpdateElectronicShippingGroupFormHandler"/>

<dsp:importbean var="sgConfig"

bean="/atg/commerce/custsvc/ui/

ElectronicShippingGroupConfiguration"/>

<dsp:importbean bean="/atg/dynamo/droplet/Switch"/>

<dsp:importbean bean="/atg/dynamo/droplet/ErrorMessageForEach"/>

<dsp:importbean var="electronicAddressForm"

bean="/atg/commerce/custsvc/ui/fragments/order/

ElectronicAddressForm"/>

<dsp:getvalueof var="nickname" param="nickname"/>

<dsp:getvalueof var="success" param="success"/>

2. Identify the success and error URLs for the form. For example:

<%-- forms success and error url --%>

<c:url var="successErrorURL"

context="/${sgConfig.editPageFragment.servletContext}"

value="${sgConfig.editPageFragment.URL}">

<c:param name="nickname" value="${nickname}"/>

<c:param name="${stateHolder.windowIdParameterName}"

value="${windowId}"/>

<c:param name="success" value="true"/>

</c:url>

3. Define the layered resource bundles used. For example:

<%-- Uses layered resource bundle --%>

78 8 Working with Forms

<dsp:layeredBundle basename="atg.commerce.csr.order.WebAppResources">

<div id="atg_commerce_csr_editShippingAddress"

class="atg_commerce_csr_popupPanel

atg_commerce_csr_addressFormPopup">

<dsp:layeredBundle basename="${sgConfig.resourceBundle}">

<fmt:message var="editPageFragmentTitle"

key="${sgConfig.editPageFragmentTitleKey}"/>

</dsp:layeredBundle>

<h2>

<c:out value="${editPageFragmentTitle}"/>

</h2>

<div class="atg_commerce_csr_popupPanelCloseButton"></div>

4. Within the <div class>, define what happens whether or not there is an error to display. For example:

<div>

<%--When there is an error, display the error on the page. --%>

<dsp:droplet name="Switch">

<dsp:param bean=

"UpdateElectronicShippingGroupFormHandler.formError"

name="value"/>

<dsp:oparam name="true">

<fmt:message key="common.error.header"/>

<dsp:droplet name="ErrorMessageForEach">

<dsp:param bean=

"UpdateElectronicShippingGroupFormHandler.formExceptions"

name="exceptions"/>

<dsp:oparam name="output">

<dsp:valueof param="message"/>

</dsp:oparam>

</dsp:droplet>

</dsp:oparam>

<dsp:oparam name="false">

<c:if test="${success}">

<%--When there is no error on the page submission, close the

popup page and refresh the parent page. The parent page

only will refresh if the result parameter value is ok.

--%>

<script type="text/javascript">

hidePopupWithResults

('atg_commerce_csr_editShippingAddress',{result : 'ok'});

</script>

</c:if>

</dsp:oparam>

</dsp:droplet>

</div>

8 Working with Forms 79

5. Identify the form components to use. For example:

<c:set var="formId" value="mycsrEditShippingAddressForm"/>

<dsp:form id="${formId}"

formid="${formId}">

<dsp:input type="hidden" priority="-10" value=""

bean="UpdateElectronicShippingGroupFormHandler.

updateShippingGroup"/>

<dsp:input type="hidden" value="${successErrorURL }"

bean="UpdateElectronicShippingGroupFormHandler.

updateShippingGroupErrorURL"/>

<dsp:input type="hidden" value="${successErrorURL }"

bean="UpdateElectronicShippingGroupFormHandler.

updateShippingGroupSuccessURL"/>

<dsp:input type="hidden"

bean="UpdateElectronicShippingGroupFormHandler.

shippingGroupByNickname"

value="${fn:escapeXml(nickname) }" priority="5"/>

<c:if test="${empty updateShippingGroupFormHandler.shippingGroup }">

<dsp:setvalue bean="UpdateElectronicShippingGroupFormHandler.

shippingGroupByNickname"

value="${fn:escapeXml(nickname) }"/>

</c:if>

<ul class="atg_dataForm atg_commerce_csr_addressForm">

<li class="atg_commerce_csr_address">

<label class="atg_messaging_requiredIndicator">

*

<fmt:message key="newAddress.email" />

</label>

<dsp:input id="${formId}_emailAddress" type="text"

bean="/atg/commerce/custsvc/order/

CreateElectronicShippingGroupFormHandler.workingShippingGroup.

emailAddress" size="25" maxlength="50">

<dsp:tagAttribute name="dojoType"

value="atg.widget.form.ValidationTextBox" />

<dsp:tagAttribute name="trim" value="true" />

<dsp:tagAttribute name="required" value="true" />

</dsp:input>

<div class="atg_commerce_csr_panelFooter">

<input type="button"

name="${formId}SaveButton"

value="<fmt:message key='common.save' />"

onclick="custom.commerce.csr.order.shipping.editShippingAddress

('${successErrorURL}');return false;"

dojoType="atg.widget.validation.SubmitButton"/>

<%-- When the user clicks on the cancel button, hide the popup panel.

--%>

<input type="button"

value="<fmt:message key='common.cancel'/>"

onclick="hidePopupWithResults

80 8 Working with Forms

('atg_commerce_csr_editShippingAddress', {result :

'cancel'});return false;"/>

</div>

</dsp:form>

<%-- end of editShippingAddressForm --%>

6. If you are using JSP validation, provide the validation function. When the form or page is loaded, the

validation routine tracks user input and validates each input field. If the validation is successful, the submit

button is enabled:

<%--) The following code is for JS validation--%>

<script type="text/javascript">

var ${formId}Validate = function () {

var disable = false;

<c:if test="${!empty isDisableSubmit}">disable =

${isDisableSubmit}();</c:if>

<c:if test="${!empty validateIf}">if (${validateIf}) {</c:if>

if (!dijit.byId("${formId}_emailAddress").isValid())

disable = true;

<c:if test="${!empty validateIf}">}</c:if>

dojo.byId("${formId}").addAddressButton.disabled = disable;

};

container.onLoadDeferred.addCallback(function () {

${formId}Validate();

atg.service.form.watchInputs("${formId}", ${formId}Validate);

atg.keyboard.registerFormDefaultEnterKey("${formId}",

"addAddressButton", "buttonClick");

});

container.onUnloadDeferred.addCallback(function () {

atg.service.form.unWatchInputs('${formId}');

atg.keyboard.unRegisterFormDefaultEnterKey("${formId}");

});

</script>

7. Save the editElectronic.jsp file.

Creating the JavaScript

Once you have created the editElectronic.jsp file, add the following JS call to a new custom JS file:

custom.commerce.csr.order.shipping.editShippingAddress = function(pURL){
 atg.commerce.csr.common.submitPopup(pURL,
 dojo.byId("mycsrEditShippingAddressForm"),
 dijit.byId("mycsrEditAddressFloatingPane"));
};

This function submits a pop up page form.

9 Working With Grids and Tables 81

9 Working With Grids and Tables

Tables and grids are similar in that they provide structured layouts for data. Tables, which are created in HTML,

display standard data that is defined using configuration files. Grids extend standard tables by allowing paging

and by using Dojo components.

Using configuration layering, you can identify the location and file names of JSP snippets to be included inside

the default pages. If these JSP snippets are not specified, the default grid pages are displayed. However, you

can choose to specify these JSP snippets, and extend the grid components, by providing additional rendering

information and grid data that is integrated into the existing grids.

Grids or tables can be modified to add columns, reorder or remove columns, change column widths or sorting,

as well as to change hover information.

The components of a grid that can be modified are:

• Changing grid layouts

• Column width

• Number of rows displayed per page

• Number of rows displayed at a time per user scrolls

• Number of columns to display

• Adding or modifying hover information

The components of a table that can be modified are:

• Number of columns to display

• Changing table layouts

Note: All grid and table components are located in the application UI modules, for example Service-UI or

DCS-CSR-UI.

Modifiable Grids and Tables

The following grids and tables can be modified in Service Center.

Customer Information Page

The following grids and tables can be modified on the Customer Information page:

82 9 Working With Grids and Tables

Grid/Table Location

Order History /DCS-CSR-UI/config/atg/commerce/custsvc/ui/tables/order/

OrderHistoryGrid.properties

Scheduled Orders /DCS-CSR-UI/config/atg/commerce/custsvc/ui/tables/order/

ScheduledOrdersGrid.properties

Ticket History /Service-UI/Framework/Agent/config/atg/svc/agent/ui/

tables/ticket/CustomerTicketGrid.properties

Customer Search Results /Service-UI/Framework/Agent/config/atg/svc/agent/ui/

CustomerProfileSearchUIConfiguration.properties

Order View Page

The following grids and tables can be modified on the Order View page:

Grid/Table Location

Exchange History /DCS-CSR-UI/config/atg/commerce/custsvc/ui/tables/order/

ExchangeHistoryGrid.properties

Related Tickets /DCS-CSR-UI/config/atg/commerce/custsvc/ui/tables/

ticket/RelatedTicketGrid.properties

Order Search /DCS-CSR-UI/config/atg/commerce/custsvc/order/

OrderSearchUIConfiguration.properties

Order Search Results /DCS-CSR-UI/config/atg/commerce/custsvc/order/

OrderSearchResultsTable.properties

Approvals /DCS-CSR-UI/config/atg/commerce/custsvc/ui/tables/

approvals/ApprovalsGrid.properties

Purchased Items /DCS-CSR-UI/config/atg/commerce/custsvc/ui/tables/order/

PurchasedItemsGrid.properties

Scheduled Order Page

The following grids and tables can be modified on the Scheduled Order page:

Grid/Table Location

Submitted Orders /DCS-CSR-UI/config/atg/commerce/custsvc/ui/tables/order/

SubmittedOrdersGrid.properties

9 Working With Grids and Tables 83

Grid/Table Location

Related Tickets /DCS-CSR-UI/config/atg/commerce/custsvc/ui/tables/ticket/

RelatedTicketGrid.properties

Gift/Wish List

The following grids and tables can be modified on the Gift/Wish List panel of the Customer Profile:

Grid/Table Location

Edit Gift Lists Search

Results

/DCS-CSR-UI/src/config/atg/commerce/custsvc/ui/tables/gift/

giftlist/GiftlistEditResultsTable.properties

View Gift Lists

Purchased Items

/DCS-CSR-UI/main/src/config/atg/commerce/custsvc/ui/

tables/gift/giftlist/GiftlistPurchaseResultsTable.properties

View Gift Lists Search

Results

/DCS-CSR-UI/main/src/config/atg/commerce/custsvc/ui/tables/

gift/giftlist/GiftlistViewResultsTable.properties

Display Gift Lists /DCS-CSR-UI/main/src/config/atg/commerce/custsvc/ui/tables/

gift/customer/GiftlistGrid.properties

Search Gift Lists /DCS-CSR-UI/main/src/config/atg/commerce/custsvc/ui/tables/

gift/search/GiftlistGrid.properties

Edit Wish List Search

Results

/DCS-CSR-UI/main/src/config/atg/commerce/custsvc/ui/tables/

gift/wishlist/WishlistEditResultsTable.properties

View Wish List Search

Results

/DCS-CSR-UI/main/src/config/atg/commerce/custsvc/ui/tables/

gift/wishlist/WishlistViewResultsTable.properties

Promotions

The following grids and tables can be modified on the Available Promotions panel of the Order View page:

Grid/Table Location

Browse Available

Promotions

/DCS-CSR-UI/main/src/config/atg/commerce/custsvc/ui/tables/

promotion/AvailablePromotionsGrid.properties

Promotions Search /DCS-CSR-UI/main/src/config/atg/commerce/custsvc/ui/tables/

promotion/PromotionSearchGrid.properties

84 9 Working With Grids and Tables

Extending Table Configurations

Use configuration layering to extend the default table configuration. Refer to the Customization Best

Practices (page 42) section before modifying configuration files.

The TableConfiguration class is located in ATG Service Agent classes. The columns are defined in a list. The

properties for TableConfiguration are:

Property Description

columns List containing all columns in display order.

formHandlerPath The Nucleus path to the form hander that renders the results.

imageClosed The file name of the image to render when the table item detail is not visible

or is closed.

imageOpen The file name of the image to render when the table item detail is visible or is

open.

imagePath The URL path to the images.

tablePage The page fragment containing the table implementation.

tablePath The Nucleus path to the grid configuration component.

rowsPerPage The number of items to fetch per server request, usually extracted from the

results form handler.

defaultSortField The default sort column. This field should point to the configured values in

the particular column configuration to be sorted. The ViewLink.sortField

must match what is defined in indexing output file for the index being

searched.

defaultSortDirection The default sort direction, either ascending or descending. This field

should point to the configured values in the particular column configuration

to be sorted.

The following is an example of the /DCS-CSR-UI/atg/commerce/custsvc/order/

OrderSearchUIConfiguration.properties file that uses the TableConfiguration class:

$class=atg.svc.agent.ui.tables.TableConfiguration
$scope=global

columns=\
 /atg/commerce/custsvc/ui/tables/order/search/Toggle,\
 /atg/commerce/custsvc/ui/tables/order/search/ViewLink,\
 /atg/commerce/custsvc/ui/tables/order/search/LastName,\
 /atg/commerce/custsvc/ui/tables/order/search/FirstName,\
 /atg/commerce/custsvc/ui/tables/order/search/Total,\
 /atg/commerce/custsvc/ui/tables/order/search/ItemsReturned,\
 /atg/commerce/custsvc/ui/tables/order/search/DateSubmitted,\

9 Working With Grids and Tables 85

 /atg/commerce/custsvc/ui/tables/order/search/Originator,\
 /atg/commerce/custsvc/ui/tables/order/search/State,\
 /atg/commerce/custsvc/ui/tables/order/search/WorkOn

imageClosed=icon_find.gif
imageOpen=icon_find.gif
imagePath=/images/icons/

rowsPerPage=10

defaultSortField^=/atg/commerce/custsvc/ui/tables/order/search/ViewLink.sortField
defaultSortDirection^=/atg/commerce/custsvc/ui/tables/order/search
 /ViewLink.defaultSort

tablePath=/atg/commerce/custsvc/ui/tables/order/search/OrderSearchResultsTable
tablePage=/atg/commerce/custsvc/ui/tables/order/search/OrderSearchTablePage

Extending Grid Configuration

The GridConfiguration object is located in ATG Service Agent classes and extends the

TableConfiguration class by allowing for additional customization using Dojo. The columns are defined in

order in an array of ColumnConfiguration components. Refer to the Customization Best Practices (page 42)

section before modifying configuration files.

The properties for GridConfiguration are:

Property Description

columns The array of ColumnConfiguration components that specify the columns

for the grid in display order.

dataModelPage The page fragment component that contains the data model (for example,

JSON). Include the full Nucleus path to the component.

detailFormId The DOM ID of the form node to submit to retrieve an item detail.

formHandlerPath The Nucleus path to the form handler that renders the results.

gridHeight The value assigned to the height CSS style for the table to determine its

visible height.

gridInstanceId The JavaScript variable name that should be unique for each instance of the

table in the application.

gridPage The page fragment containing the grid implementation.

gridPath The Nucleus path to the grid configuration component.

gridWidgetId The Dojo ID of the table widget that should be unique for each instance of

the grid in the application.

86 9 Working With Grids and Tables

Property Description

imageClosed The file name of image to render when the grid item detail is not visible or

closed.

imageOpen The file name of image to render when the grid item detail is visible or open.

imagePath The URL path to the images.

itemDetailPage The page fragment component containing the item details (currently

implemented as a hover pop-up).

pageBaseOffset The base of the paging: 0 for 0-based paging, 1 for 1-based paging, etc.

pageIndexElementName The element name of the page index form input.

progressNodeId The optional ID for a DOM node to render status messages, such as ‘search in

progress...’ or ‘No results found.’ etc.

rowsPerPage The size of the result to send back from the form handler in each page.

searchFormId The DOM ID of the form node to submit to retrieve orders.

selectLink An anchor tag template with pattern replacement for selecting the item in

the application.

viewLink An anchor tag template with pattern replacement for viewing the item in the

application.

The following is an example of the /atg/svc/agent/ui/tables/tables/ticket/

CustomerTicketGrid.properties file, which uses the GridConfiguration class:

$class=atg.svc.agent.ui.tables.GridConfiguration

columns=\
 /atg/svc/agent/ui/tables/ticket/ViewLink,\
 /atg/svc/agent/ui/tables/ticket/Description,\
 /atg/svc/agent/ui/tables/ticket/CreatedDate,\
 /atg/svc/agent/ui/tables/ticket/Age,\
 /atg/svc/agent/ui/tables/ticket/Status,\
 /atg/svc/agent/ui/tables/ticket/Id,\
 /atg/svc/agent/ui/tables/ticket/SelectLink

rowsPerPage=10

gridHeight=450px
gridInstanceId=atg.svc.agent.ticket.historyGridInstance
gridPath=/atg/svc/agent/ui/tables/ticket/CustomerTicketGrid
gridWidgetId=atg_svc_agent_ticket_historyTable
progressNodeId=atg_svc_agent_ticket_historyGridStatus
searchFormId=ticketHistoryListForm

dataModelPage=/atg/svc/agent/ui/tables/ticket/TicketDataPage
gridPage=/atg/svc/agent/ui/tables/ticket/TicketGridPage

9 Working With Grids and Tables 87

Each of the columns is configured using a property file, which identifies column properties. For example, the

ViewLink.properties file that is referenced in the CustomerTicketGrid file:

$class=atg.svc.agent.ui.tables.ColumnConfiguration

defaultSort=ascending
field=viewLink
sortField=id
width=6em
resourceBundle=atg.svc.agent.ui.UserMessages
resourceKey=view-ticket
isVisible=true

dataRendererPage=/atg/svc/agent/ui/tables/ticket/ColumnRendererPage

These configuration files allow you to make specific changes to individual columns within the grid.

Working With Column Layout

The ColumnConfiguration object is located in atg.svc.agent.ui.tables, and manages column

configuration for an instance of a UI grid.

Dojo Grid Column Configuration

The properties for ColumnConfiguration within Dojo are:

Property Description

cellRendererPage The page fragment component that can contain a client-side JavaScript function

to render the cell contents. Includes the full Nucleus path to the component.

dataRendererPage The page fragment component that returns server-side data in JSON that inserts a

cell. Includes the full Nucleus path to the component.

defaultSort Is set to either ascending or descending sorting or left blank for no sorting.

field The field name identifier for the data to render in the column from the data model.

UI-only columns without a backing data representation should leave the field

parameter undefined.

sortField The name of the data model field on which to sort, which is different than field.

If this property is undefined and sorting is enabled using defaultSort, the data

is sorted on the field property. If this property is defined and sorting is enabled

using defaultSort, the data is sorted on the sortField property. This property

allows a column to contain rendering and markup that does not interfere with the

sorting of the field. For example, the ViewLink column can have a link to view

an item where the column is not sorted on the link markup, but on a separate

corresponding data value.

88 9 Working With Grids and Tables

Property Description

isVisible Whether to display the column in the UI or only to send back the data for the

column. This is useful for JavaScript widgets that store invisible column data

for other columns. For example, an onClick function in the ID field can use an

invisible DBState field to identify what to do when an order is opened.

resourceBundle The resource bundle that contains the column display name.

resourceKey The key that references the column display name in the resource bundle.

width The extent of the column using the Dojo-grid syntax (e.g. ‘5em’ or ‘auto’).

styles The column CSS styles. Note: Styles are not modifiable for tables.

The following is an example of the /atg/commerce/custsvc/ui/tables/order/

ViewLink.properties column configuration:

$class=atg.svc.agent.ui.tables.ColumnConfiguration

defaultSort=ascending
field=viewLink
sortField=id
width=4em
resourceBundle=atg.commerce.csr.Messages
resourceKey=view-order
isVisible=true

dataRendererPage=/atg/commerce/custsvc/ui/tables/order/ColumnRendererPage

HTML Table Column Configuration

The properties for ColumnConfiguration using an HTML table are:

Property Description

dataRendererPage The page fragment component that returns server-side data in JSON that inserts a

cell. Includes the full Nucleus path to the component

field The field name identifier for the data to render in the column from the data model.

UI-only columns without a backing data representation should leave the field

parameter undefined.

isVisible Whether to display the column in the UI or only to send back the data for the

column. This is useful for JavaScript widgets that store invisible column data

for other columns. For example, an onClick function in the ID field can use an

invisible DBState field to identify what to do when an order is opened.

resourceBundle The resource bundle that contains the column display name

resourceKey The key that references the column display name in the resource bundle

9 Working With Grids and Tables 89

Property Description

width The extent of the column using the Dojo-grid syntax (e.g. ‘5em’ or ‘auto’)

The following is an example of the /atg/commerce/custsvc/ui/tables/ticket/

LastName.properties column configuration:

$class=atg.svc.agent.ui.tables.ColumnConfiguration

field=lastName
width=10%
resourceBundle=atg.svc.agent.WebAppResources
resourceKey=relatedTickets.lastName
isVisible=true

dataRendererPage=/atg/commerce/custsvc/ui/tables/ticket/ColumnRendererPage

Customizing Column Attributes

The steps for customizing column title, sorting and width are similar in that they update properties in the

column configuration component. Note: Do not use quotes when setting values in this map.

When customizing column attributes, use configuration layering as described in the Customization Best

Practices (page 42) section. To begin customization, override the column configuration by performing the

following:

1. Create a new application module for customizations. Include this module when starting your Web

application. Refer to the ATG Installation and Configuration Guide for information on creating new application

modules with your Web application.

2. Locate the properties file that defines the appropriate column configuration.

3. Inside the customization module, create a properties file at the corresponding path that contains no

properties.

Working with a Column Title

1. Create or edit a resource bundle for customized strings in your customization module.

2. In the properties file for the column, update the resourceBundle and resourceKey properties to point to

the corresponding resource bundle and key that contain the customized string. This overrides the default

values for these properties. For example:

defaultSort=ascending

field=viewLink

sortField=id

width=4em

resourceBundle=atg.commerce.csr.newMessages

resourceKey=new-view-order

isVisible=true

90 9 Working With Grids and Tables

Modifying Column Sorting

1. In the appropriate properties file for the column, set the defaultSort property to either ascending or

descending. Removing the property or setting the property to an empty string will remove sorting. For

example:

defaultSort=ascending

field=viewLink

sortField=id

width=4em

resourceBundle=atg.commerce.csr.newMessages

resourceKey=new-view-order

isVisible=true

2. To configure a Dojo-grid column to sort on a field other than the data field that is rendered in the column, set

the sortField to any field in the data model.

For example, your column might display a data field containing an HTML link or JavaScript, such as viewLink,

which is not appropriate for sorting. By setting the sortField property to ID, the column can still be sorted

by the corresponding ID property.

3. Configure an HTML-grid column by configuring the appropriate UI configuration file, such as the

CustomerProfileSearchUIConfiguration.properties or the

OrderSearchUIConfiguration.properties file.

Modifying Column Widths

Each grid contains a list of columns to display within the grid. These columns are configured using a property

file. You must modify these properties file to modify the column width.

1. In the properties file for the column, update the width property to the desired CSS width specification, for

example. 4em. For example:

defaultSort=ascending

field=viewLink

sortField=id

width=4em

resourceBundle=atg.commerce.csr.newMessages

resourceKey=new-view-order

isVisible=true

dataRendererPage=/atg/svc/agent/ui/tables/ticket/ColumnRendererPage

2. To set the column width to fill the remaining space on the screen, set the width to auto.

Configuring the PageFragment Component

The table and column configuration components use the PageFragment component in the Web UI to reference

JSP pages located in the /atg/web/PageFragment directory.

• URL – the URL of the page to include

9 Working With Grids and Tables 91

• servletContext – the context root of the application that contains the page

The following is an example of the /atg/commerce/custsvc/ui/tables/order

/ColumnRendererPage:

$class=atg.web.PageFragment

URL=/include/order/columnRenderer.jsp
servletContext=DCS-CSR

Creating Column Content

The data renderer page displays the content to render within the column.

Dojo-Grid Column Content

By default, the data renderer page is called for each column when the grid items are iterated. The following

parameters are passed to the data renderer page:

Parameter Description

field The string identifier of the column to render as defined in the ColumnConfiguration

object.

colIndex The zero-based index of the column.

[bean] The object(s) containing the data for the grid item. They will vary depending on the data

being rendered. For an order, the item is a single orderItemMap bean.

The following is an example from the /include/order/columnRenderer.jsp file:

<dsp: getvalueof var="field" param="field"/>
<dsp: getvalueof var="colIndex" param="colIndex"/>
<dsp: getvalueof var="orderItemMap" param="orderItemMap"/>

<c: choose>
<c: when test="${field == 'id'}">
 "id": "${orderItemMap.id}",
</c: when>

<c: when test="${field == 'viewLink'}">
 <fmt: bundle basename="atg.commerce.csr.Messages">
 "viewLink": "<a href=\"#\" class=\"blueU\" title=\"
 <fmt: message key="view-order"/>\"
 onclick=\"atg.commerce.csr.order.viewExistingOrder(\'${orderItemMap.id}\',\
 '${orderItemMap.state}\');return false;\">${orderItemMap.id}"
 </fmt: bundle>

92 9 Working With Grids and Tables

</c: when>

...

HTML Table Column Content

The data renderer page displays the content to render within the column. By default, the data renderer page is

called for each column heading and data cell. The following parameters are passed to the data renderer page:

Parameter Description

field The string identifier of the column to render as defined in the

ColumnConfiguration object

customerItemMap The current customer item being rendered

resourceBundle The resource bundle that defines the resource keys

resourceKey The key that maps to the resource string

isPopup Identifies if the search table is a pop up. For example, the customer search from the

Shopping Cart page is a pop up table

isHeading Identifies if a heading should be rendered

Rendering Column Content

The data renderer page displays the content to render within the column. By default, this page is called for each

column when the grid items are iterated. The following parameters are passed to the data renderer page each

time it is included:

• field - The string identifier of the column to render as defined in the ColumnConfiguration object

• colIndex - The zero-based index of the column

• [bean] - The object(s) containing the data for the grid item. This varies depending on the data being rendered.

For example, for an order, the item is a single orderItemMap bean

Before customizing the data renderer page, perform the following steps:

1. Refer to the Customization Best Practices (page 42) section.

2. Create a new application module for customizations. Include this module when starting JBoss. Refer to

the ATG Platform Programming Guide for information on creating new application modules and the ATG

Installation and Configuration Guide for information on starting JBoss.

3. Locate the properties file that defines the column configuration.

4. Inside the customization module, create an empty properties file at the corresponding path.

To configure the data render page with page fragments:

1. Create a new JSP file in the module that will render the customized data.

9 Working With Grids and Tables 93

2. In this module, create a new PageFragment properties file under /config/atg/commerce/custsvc/ui/

tables. For example, create a NewColumnRendererPage.properties file.

3. In the properties file for the page fragment, set the URL and servletContext to reference the JSP page

created in the customization module. For example:

@version $Id: //application/DCS-CSR/atg/commerce/custsvc/ui/tables/

order/NewColumnRendererPage.properties

$class=atg.web.PageFragment

URL=/include/order/newColumnRenderer.jsp

servletContext=DCS-CSR

4. In the properties file for the column or grid, update the dataRendererPage property to point to the

PageFragment properties file. For example:

dataRendererPage=NewColumnRendererPage

Example: Customizing Column Content

This example replaces the Origin column in the default application with a Last Modified column in the Order

History grid.

1. In the resource bundle at /mycompany/resources/Resources.property, add a new key for the column

title.

lastModifiedDate=Last Modified

To avoid a recompile of the JAR, add both the new resource bundle and the new key into your <ATG10dir>/

locallib directory. You must restart your server once you have created the key.

2. In the sample application, create a grid properties file at /atg/commerce/custsvc/

ui/tables/order/OrderHistoryGrid.properties to override the default file. Override the columns

property with the new columns; however, ensure that the invisible columns are included so that the order

links work correctly:

invisible data columns: DBState

columns=\

/atg/commerce/custsvc/ui/tables/order/Toggle,\

/atg/commerce/custsvc/ui/tables/order/ViewLink,\

/atg/commerce/custsvc/ui/tables/order/Total,\

/atg/commerce/custsvc/ui/tables/order/ItemCount,\

/atg/commerce/custsvc/ui/tables/order/ItemSummary,\

/atg/commerce/custsvc/ui/tables/order/SubmittedDate,\

/atg/commerce/custsvc/ui/tables/order/LastModified,\

/atg/commerce/custsvc/ui/tables/order/State,\

/atg/commerce/custsvc/ui/tables/order/SelectLink,\

/atg/commerce/custsvc/ui/tables/order/DBState

3. In the sample application, create the properties file for the column at /atg/commerce/custsvc/ui/

tables/order/LastModified.properties that contains the configuration for the new column:

$class=atg.svc.agent.ui.tables.ColumnConfiguration

field=lastModified

width=5em

resourceBundle=mycompany.resources.Resources

resourceKey=lastModifiedDate

defaultSort=descending

94 9 Working With Grids and Tables

isVisible=true

dataRendererPage=/atg/commerce/custsvc/ui/tables/order/

LastModifiedRendererPage

4. In the sample application, create the properties file for the content page at /atg/commerce/custsvc/ui/

tables/order/

LastModifiedRendererPage.properties:

$class=atg.web.PageFragment

URL=/panels/order/lastModifiedRenderer.jsp

servletContext=/Sample-DCS-CSR-App

5. In the sample application, create a JSP page at the location referred to by the page configuration. The JSP

renders the last modified date property from the order:

<%@ include file="/include/top.jspf"%>

<dsp: page>

<fmt: bundle basename="acme.resources.Resources">

<dsp: getvalueof var="field" param="field"/>

<dsp: getvalueof var="colIndex" param="colIndex"/>

<dsp: getvalueof var="orderItemMap" param="orderItemMap"/>

<c: choose>

<c: when test="${field == 'lastModified'}">

"lastModified": "${orderItemMap.lastModifiedDate}"

</c: when>

<c: otherwise>

</c: otherwise>

</c: choose>

</fmt: bundle>

</dsp: page>

6. Test and verify that the last modified date column is rendered in the grid.

Note: Default date formats can be modified using the webAppResources.properties file in the /WEB-INF

directory.

Example: Creating Calculated Content

The following provides an example that returns calculated content.

1. Follow the steps for creating customized content, as outlined in the Creating Column Content (page 91)

section.

2. Create a JSP page that returns a calculation of one or more data items. For example:

<%@ include file="/include/top.jspf"%>

<dsp: page>

<fmt: bundle basename="acme.resources.Resources">

<dsp: getvalueof var="field" param="field"/>

<dsp: getvalueof var="colIndex" param="colIndex"/>

<dsp: getvalueof var="orderItemMap" param="orderItemMap"/>

<c: choose>

<c: when test="${field == 'totalNoTax'}">

<dsp: tomap var="priceInfo" value="${orderItemMap.priceInfo}"/>

<c: set var="totalValue"><dsp: valueof converter="currency"

value="${priceInfo.amount+priceInfo.shipping}"/></c: set>

9 Working With Grids and Tables 95

"totalNoTax": "${totalValue}",

</c: when>

...

3. Test and verify that the calculation is rendered in the grid.

Modifying Columns

The following steps provide information on how to add, delete or reorder columns. When working with columns,

ensure that you are performing the steps outline in the Customization Best Practices (page 42) section.

Adding a Column

1. Follow the steps above to customize column content to create the new column. However, instead of opening

an existing column configuration file, create a new properties file for the column.

2. Set the column properties as outlined above.

3. Open the properties file for the grid under /atg/commerce/custsvc/ui/tables and insert the column

using the full Nucleus path to the column configuration component in the desired location of the columns

list.

Removing a Column

1. Open the properties file for the grid under /atg/commerce/custsvc/ui/tables.

2. Delete the column identifier from the columns list.

Reordering Columns

1. Open the properties file for the grid under /atg/commerce/custsvc/ui/tables.

2. Reorder the column identifiers within the columns list.

Example: Adding a New Column to the Order Search Results

1. Create a new column as outlined above in the Adding a Column (page 95) section.

2. Add your new column to the order-output-config.xml file. Adding the store-as-meta-index

parameter allows your search engine to store the data within this column in a sort-enabled format. For

example, to add a Last Modified column, you would create the following:

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE item PUBLIC "-//Art Technology Group, Inc.//DTD Repository

Ouput Specifier 1.0//EN" "http: //www.atg.com/dtds/search/indexing-

dependency-schema.dtd">

<item item-descriptor-name="order">

96 9 Working With Grids and Tables

<meta-properties>

<property name="lastModifiedDate" type="date" store-as-meta-

index="false" />

</meta-properties>

</item>

3. Invoke the /dyn/admin/nucleus/atg/commerce/search/

OrderOutputConfig/bulkload method.

4. Create a property file for the new column in the /atg/commerce/custsvc/ui/

tables/order/search directory. Using the LastModifiedDate example, you would create an /atg/

commerce/custsvc/ui/tables/order/search/ file. For example:

$class=atg.svc.agent.ui.tables.ColumnConfiguration

field=lastModified

sortField=lastModifiedDate

width=5em

resourceBundle=acme.resources.Resources

resourceKey=lastModifiedDate

defaultSort=descending

isVisible=true

dataRendererPage=/atg/commerce/custsvc/ui/tables/order/search/

LastModifiedRendererPage

5. Create a new dataRendererPage property file in the location indicated in the new column property file you

just created. This file will identify the URL page to use, as well as the context application.

Using the previous example, you would create a /atg/commerce/custsvc/ui/

tables/order/search/LastModifiedRendererPage.properties file that contained the following:

$class=atg.web.PageFragment

URL=/panels/order/search/lastModifiedRenderer.jsp

servletContext=/Sample-DCS-CSR-App

6. Create the new JSP file at the location identified above in the URL parameter.

When you create the JSP file use the isHeading parameter to determine whether to render a heading

or a data row. If rendering a heading you can display the heading title or information can be passed into

the orderSearchResultSortHeading.jsp file, which allows users to sort on this column. Note: The

sortField used must be the same as what is used in the XML file because this parameter is passed to the

search engine. For example:

<%--

Last modified date renderer example for order search table

@version $Id: //application/DCS-CSR/main/sample-app/src/web-apps/Sample-

DCS-CSR-App/panels/order/search/lastModifiedRenderer.jsp $

@updated $DateTime: 2009/04/01 11: 29: 04 $

--%>

<%@ include file="/include/top.jspf"%>

<dsp: page>

<fmt: bundle basename="acme.resources.Resources">

<dsp: getvalueof var="field" param="field"/>

<dsp: getvalueof var="sortField" param="sortField" />

<dsp: getvalueof var="orderItemMap" param="orderItemMap"/>

<dsp: getvalueof var="isHeading" param="isHeading" />

<dsp: getvalueof var="resourceBundle" param="resourceBundle" />

9 Working With Grids and Tables 97

<dsp: getvalueof var="resourceKey" param="resourceKey" />

<c: if test="${empty isHeading}">

<c: set var="isHeading" value="false" />

</c: if>

<c: choose>

<c: when test="${field == 'lastModified' and isHeading=='false'}">

<c: out value="${orderItemMap.lastModifiedDate}" />

</c: when>

<c: when test="${field == 'lastModified' and isHeading=='true'}">

<dsp: include src="/panels/order/orderSearchResultSortHeading.jsp"

otherContext="${CSRConfigurator.contextRoot}">

<dsp: param name="resourceBundle" value="${resourceBundle}"/>

<dsp: param name="resourceKey" value="${resourceKey}"/>

<dsp: param name="fieldName" value="${sortField}"/></dsp: include>

</c: when>

<c: otherwise>

</c: otherwise>

</c: choose>

</fmt: bundle>

</dsp: page>

7. Create the new table column configuration and add the new column information by creating a /atg/

commerce/custsvc/order/OrderSearchUIConfiguration.

properties file. The following example extends the default values by identifying the number of results per

page, as well as enabling search on the new column:

$class=atg.svc.agent.ui.tables.TableConfiguration

$scope=global

columns=\

/atg/commerce/custsvc/ui/tables/order/search/Toggle,\

/atg/commerce/custsvc/ui/tables/order/search/ViewLink,\

/atg/commerce/custsvc/ui/tables/order/search/LastName,\

/atg/commerce/custsvc/ui/tables/order/search/FirstName,\

/atg/commerce/custsvc/ui/tables/order/search/Total,\

/atg/commerce/custsvc/ui/tables/order/search/ItemsReturned,\

/atg/commerce/custsvc/ui/tables/order/search/DateSubmitted,\

/atg/commerce/custsvc/ui/tables/order/search/LastModified,\

/atg/commerce/custsvc/ui/tables/order/search/Originator,\

/atg/commerce/custsvc/ui/tables/order/search/State,\

/atg/commerce/custsvc/ui/tables/order/search/WorkOn

rowsPerPage=3

defaultSortField^=/atg/commerce/custsvc/ui/tables/order/search/

LastModified.sortField

defaultSortDirection^=/atg/commerce/custsvc/ui/tables/order/search/

LastModified.defaultSort

Changing the Item Detail (Hover) Page

The following provides information on changing the page that is displayed for the order detail, which is

configured as a hover object.

98 9 Working With Grids and Tables

1. Create a JSP page to render the order item detail in a new application module. If necessary, use the existing

item detail page located at /panels/order/

orderDetail.jsp as a template for the new file.

2. Open the properties file for the grid and find the itemDetailPage property. This component contains the

URL to the item detail page.

3. Create a new properties file for the item detail page component under /atg/commerce/custsvc/ui/

tables. Override the servletContext and URL properties to point to the new file.

10 Rendering Pages with Nucleus Components 99

10 Rendering Pages with Nucleus

Components

Some portions of the Service Center UI use a technique that makes the rendering of pages, or portions

of pages, configurable through Nucleus components. This feature allows you to customize page content

without unpacking the Web application, modifying its JSP, and then repackaging the modified application.

Customization in this context means the addition or replacement of JSP.

Examples of customizations with Nucleus components include the Products View panel, which is accessed in /

panels/catalog/productView.jsp. The Product View panel contains the ProductInformation panel, the

ProductSku panel and the CrossSellItems panels.

Another example of customization includes the SkuProductPopup, which is accessed using the

SkuChangePopup. When the SkuChangePopup is activated, the SkuChangePanel and SkuChangeTable, as

well as the ProductInformation panel, are displayed.

You can change the SKU of CommerceItem objects in an order. The CSRCartModifierFormHandler contains

the handle method handleChangeSKUs() that uses the changeSKUsSuccessURL and changeSKUsErrorURL

properties, as well as the pre/post handler methods.

100 10 Rendering Pages with Nucleus Components

Customization Options

You can use personalization to control who has access to specific content. When customizing your pages,

you work with personalization assets such as rules, targeters and segments. If you are working in a multisite

environment, personalization assets can be used between multiple sites. For example, ATG Personalization uses

a Rules tab that displays and manages multiple Site Override Rules and Site Filters. Site filters can be applied to

Content Groups and targeters, allowing site-filtered searches. ATG Personalization with Segments, Targeters and

Content Groups is defined per site. Scenarios are aware on which site the scenario event has occurred.

For detailed information on personalization and using ATG Personalization, refer to the ATG Personalization

Programming Guide.

There are two general options for customizing page content.

• Simple Customization – This customization requires the configuration of an alternate URL in a component

property. Depending upon requirements, this customization may be all that is required for most

customization needs

• Targeting Customization – Targeting customization is useful when one of a number of JSPs could be rendered

in a particular situation. In this situation, the decision of which JSP to render depends on complex rules,

rules that are expected to change often, or in instances where it is necessary to modify these rules without

restarting the application.

Targeting Customizations require writing targeting XML rules that contain information such as request

attributes, product and/or order information, the current customer and the current agent, or other

information relevant to the functional area in question. Targeting rules normally target repository items;

however, in this case targeting rules target Nucleus components that identify which JSPs to render

Simple Customization

Simple customization involves writing custom JSPs and configuring Nucleus components to refer to that JSP. For

example, to replace the area of the Product View panel that displays product SKUs and allows agents to enter

quantities for each SKU, you would modify the /atg/commerce/custsvc/ui/

renderers/ProductSkuRenderer component that are located in the DCS-CSR-UI directory.

10 Rendering Pages with Nucleus Components 101

Because renderer components are globally scoped, you can temporarily change the page though the Dynamo

Server Admin. All renderer components exist in the Nucleus configuration path at /atg/commerce/custsvc/

ui/renderers/. For example, the SKU rendering component may be located at:

http://localhost:8080/dyn/admin/nucleus/atg/commerce/custsvc/ui/
renderers/ProductSkuRenderer/

Changing the url property of this component to point to the new JSP temporarily implements the

customization. This example points to a newProductSkus.jsp file:

The JSP that renders the product view SKU browser area
url=/renderers/order/newProductSkus.jsp

To make this configuration persistent, you must use a configuration file.

For detailed information on working with Nucleus components, refer to the Managing Nucleus Components

Appendix in the ATG Page Developer's Guide.

Renderer Components

All components live in the DCS-CSR-UI directory under the Nucleus path /atg/commerce/custsvc/

ui/renderers/. There are four components for each renderer:

• BaseNameRenderer

• BaseNamePageData

• BaseNameSourceMap

• BaseNameTargeter

The BaseNameRenderer identifies the renderer and the renderer information that is used by the targeter, the

data and the source map. The renderer contains the properties that are necessary to identify the JSP in particular

Web application. The RenderInfo class creates the render information:

package atg.commerce.csr.rendering;
public class RenderInfo
{
// Some ID string
public String getId() {}
// URL to JSP
public String getUrl() {}
// WebApp name which contains the JSP referenced
// in the Url, or null for current web-app
public String getWebAppName() {}
// Values for use in constructing rules
public Map getRuleOptions() {}
// Options for use in customizing page rendering
public Map getPageOptions() {}

102 10 Rendering Pages with Nucleus Components

}

The renderer uses properties files to represent both the default and a custom product rendering page. For

example, the default product renderer might be defined in the DefaultProductRenderer.properties file:

$class=atg.commerce.csr.rendering.RenderInfo
id=default
url=/renderers/product/generic.jsp

And the custom product renderer may be defined the CustomProductRenderer.properties file:

$class=atg.commerce.csr.rendering.RenderInfo
id=default
url=/renderers/product/custom.jsp
webAppName=Custom App 2.0

The BaseNamePageData component is used by the page as a place to store parameters to the targeting rule.

For example, to use the product item that you are viewing in the rule that you are going to execute to determine

which page fragment to use for the product, you would store the product item in the PageData component.

The PageData component is a map whose keys can be referenced in the rule as pageData.key-name where

key_name is a key in the map.

The BaseNameSourceMap holds the container component of the associated targeter. For example, the source

map for a targeter may contain the following:

$class=atg.targeting.TargetingSourceMap
sourceMap=\
 RuleData=/atg/commerce/custsvc/ui/renderers/ProductViewRendererRuleData

The BaseNameTargeter component is configured to target the RenderInfo configurations, using the

ProductREnderer.rules. For example the ProductViewProductRendererTargeter.properties file

might contain the following:

$class=atg.targeting.RuleBasedCollectionTargeter
collectionComponents=\
DefaultProductRenderer,\
CustomProductRenderer
The RuleSet configured above
ruleSetService=ProductViewProductRendererRuleSet

Pages that use renderers reference them using the path and the base name, for example:

<csr: renderer name="/atg/commerce/custsvc/renderers/BaseName">
<csr: renderer name="/atg/commerce/custsvc/renderers/ProductInformation">

There are optional RenderInfo properties, which include:

• pageOptions (Map) - A placeholder for settings used by the page

10 Rendering Pages with Nucleus Components 103

• ruleOptions (Map) - A container for use in targeting rules

There is also a subclass RenderInfo for additional custom properties. A contextRoot property is available

in the atg.commerce.csr.rendering.RenderInfo class, allowing you to identify a Web application within

Commerce Service Center. The Web application is executed when a user’s Web browser references a URL that

contains the Web module’s context root.

Because the context root controls the location of all files mentioned in the BasenameRenderer.properties

file, whenever you modify a context root, you must ensure that any page that is referenced by the component is

also available in that context root.

For example, if you were to modify a renderer component such as /atg/commerce/custsvc/ui/ to identify

the contextRoot property of:

contextRoot=/web-app
url=/web-app/test.html

You must ensure that all other pages referenced by this renderer can access the context root. This

replaces the contents of the product information panel with whatever would be rendered by visiting

http://machine:port/web-app/test.html.

Targeting Customization

To customize the UI using the JSP targeting rules, one or more renderer component configuration must be

added to in the Dynamo component path. Each renderer component represents one variation, or one JSP, of the

UI to display.

The following example describes the creation of a custom renderer for the SKU display and input area of the

Product View panel. The following /atg/commerce/custsvc/ui/renderers components are involved in this

example customization:

• ProductSkuRenderer: The default renderer for the product SKU area

• ProductSkuPageData: A component that will contain data from the enclosing page, such as product or

customer information

• ProductSkuSourceMap: The main component container used by the targeting rules. This component refers

to the PageData component above

• ProductSkuTargeter: The targeter configuration. This component refers to the SourceMap component

above, and one or more Renderer components

• To create a targeting customization:

• Create a new renderer component to represent the custom JSP. The basic properties of each renderer

component should be made in the /nucleus/

component/path/CustomRenderer.properties file:

The base class for renderer components.

104 10 Rendering Pages with Nucleus Components

$class=atg.commerce.csr.rendering.RenderInfo

An ID that uniquely identifies this renderer component in the

domain in which it is used. All renderers currently shipped by

ATG use the value "default" as their ID.

id=custom

The custom JSP that performs the actual content rendering

url=/file/system/path/customSkuDisplay.jsp

• Create a default RuleSetService configuration. This component identifies the rules file and contains

settings for when that file is loaded. In the /nucleus/component/

path/RuleSetService.properties file, add the following:

$class=atg.targeting.RuleSetService

Path to rules file

rulesFilePath=/file/system/path/sku.rules

Settings that control when/if rules files are loaded:

updatesEnabled=true

rulesFileCheckSeconds=0

The values used for updatesEnabled and rulesFileCheckSeconds above are useful when testing

targeting rules because they cause the rule file to be reloaded for every request.

Note: If the default RuleSetService has been configured to always reload targeting rules, it is easier to

experiment with rules by changing the file and causing the page to be redisplayed.

• Create the rules file for the RuleSetService configured in Step 2. In the /file/system/path/sku.rules

file, add the following:

<ruleset>

<accepts>

<rule op="and">

<rule op="eq">

<!-- pageData is obtained from the SourceMap component -->

<valueof bean="pageData.product.id">

<valueof constant="prod10001">

</rule>

<rule op=eq>

<!-- target (display) the custom JSP -->

<valueof target="id">

<valueof constant="custom">

</rule>

</rule>

</accepts>

</ruleset>

In the example, the sku.rules file will target the custom renderer only when the product being

displayed has a value of “prod10001”. Only the first targeted component is displayed because the

TargetingFirstDroplet is used, so while multiple targets may match, only the first matching component’s

JSP will be rendered.

• Update the existing ProductSkuTargeter configuration to refer to the new Renderer component created in

Step 1, and to the RuleSetService configured in Step 2.

• You may need to restart the server for the settings to take effect.

For in-depth information on working with targeters, refer to the ATG Personalization Programming Guide.

10 Rendering Pages with Nucleus Components 105

Creating a ProductSkuRenderer

To create a ProductSkuRenderer, modify the DCS-CSR-UI/config/atg/commerce/custsvc/ui/

renderers/ProductSkuRenderer component path. The render components that should be extended are

atg.commerce.csr.rendering.RenderInfo with atg.commerce.csr.rendering.

SkuRenderInfo.

Create new properties that describe how to render each table column. Property names can be actual SKU

property names or symbolic names such as price and status. Symbolic properties, or property names that do

not represent actual properties of the SKU, specify a JSP in the renderer property.

The ProductSkuRenderer uses the standard pageOptions property to specify form handler, URL properties

and other information. The pageOptions properties include:

pageOptions=\
 actionRenderer=/renderers/order/sku/skuBrowserAction.jsp,\
 giftlistActionRenderer=/renderers/gift/skuGiftlistBrowserAction.jsp,\
 formHandler=/atg/commerce/custsvc/order/CartModifierFormHandler,\
 successPanelStacks=cmcCatalogPS,\
 errorPanelStacks=cmcCatalogPS,\
 successUrlProperty=addItemToOrderSuccessURL,\
 errorUrlProperty=addItemToOrderErrorURL

The properties variable includes:

properties=viewItem,id,displayName,price,status,quantity

By default, the ProductSkuRenderer page uses skuItem.propertyName to display the SKU property.

The property renderer specifies optional JSP files that are used to render named cells:

renderer=\
 viewItem=/renderers/order/sku/viewItem.jsp,\
 price=/renderers/order/sku/skuPrice.jsp,\
 status=/renderers/order/sku/inventoryStatus.jsp,\
 quantity=/renderers/order/sku/quantityInput.jsp,\
 id=/renderers/order/sku/sku.jsp,\
 displayName=/renderers/order/sku/name.jsp

Each fragment renders its column header and column cell

<c: choose>
 <c: when test="${area == 'cell'}">
 render cell content
 </c: when>
 <c: when test="${area == 'header'}">
 render column header content
 </c: when>
</c: choose>

106 10 Rendering Pages with Nucleus Components

Available Renderers

All renderers listed contain the four component files, the *Renderer, *PageData, *SourceMap and

*Targeter properties files.

The following renderers are available in the DCS-CSR-UI module in the /atg/commerce/custsvc/

ui/renderers directory.

Renderer Rendering JSP Description

CrossSellItems /renderers/order/

crossSellItems.jsp

conetxtRoot=/DCS-CSR

A renderer for product information

cross-sells, a section of a page that

by default displays a product image,

ID, description and price range.

CustomerSearch /panels/customer/

customerSearch.jsp

contextRoot=/agent

A renderer for the Customer Search

page.

CustomerSearchResults /panels/customer/

customerSearchResults.jsp

contextRoot=/agent

A renderer for the Customer Search

Results page.

CustomerSelectionPopup /renderers/customer/

customerSelection.jsp

contextRoot=/DCS-CSR

A renderer for the Customer

Selection pop-up page.

ItemDescription /renderers/order/

itemDescription.jsp

contextRoot=/DCS-CSR

A renderer for the description of a

product in an order. It is used in the

existing order view and the order

confirmation panel.

ProductInformation /renderers/order/

productInformation.jsp

contextRoot=/DCS-CSR

A renderer for product information

that displays on the Product Quick

View panel, the SKU Change panel

and the Read-Only Product view.

ProductQuickViewPopup /renderers/order/

productQuickView.jsp

contextRoot=/DCS-CSR

A renderer for the Product Quick

View pop-up page.

ProductReadOnlyPopup /renderers/order/

productReadOnly.jsp

contextRoot=/DCS-CSR

A renderer for the product view

page, specifically the read-only

product information pop-up.

ProductSku /renderers/order/

productSkus.jsp

contextRoot=/DCS-CSR

A default renderer for SKU items in

the SKU browser.

10 Rendering Pages with Nucleus Components 107

Renderer Rendering JSP Description

ProductSkuReadOnly /renderers/order/

productSkus.jsp

contextRoot=/DCS-CSR

A renderer for read-only SKU items.

ProductViewPanel /renderers/order/

productView.jsp

contextRoot=/DCS-CSR

A default renderer for the product

view page.

QuickViewSkuTable /renderers/order/

productSkus.jsp

contextRoot=/DCS-CSR

A default renderer for SKU items

in the SKU browser that displays

an array of SKU properties to be

displayed in the SKU table.

ReturnShippingAddress /panels/order/returns/

returnShippingAddress.jsp

contextRoot=/DCS-CSR

A default renderer for the returns

line item page shipping address.

ReturnsLineItem /panels/order/returns/

returnItemsLineItem.jsp

contextRoot=/DCS-CSR

A default renderer for a line item on

the Returns Item page.

ShippingAddressTable /renderers/order/

shippingViewPanel.jsp

contextRoot=/DCS-CSR

A default renderer that displays the

shipping information contained on

the Order View page.

SkuChangePanel /include/order/product/

skuChangePanel.jsp

contextRoot=/DCS-CSR

A renderer used on the shopping

cart when a line item has been

edited to change the SKU.

SkuChangeTable /renderers/order/sku/

skuChangeAction.jsp

/renderers/order/

productSkus.jsp

contextRoot=/DCS-CSR

A default renderer for displaying

the SKU changes in the

SKUChangePanel.

Customizing the Order Summary Panel

The Order Summary panel, which is available to the agent when using the Commerce page, displays order status

information. It also presents links based on the state of the order and where the agent is in the order process.

The Order Summary display is triggered when the agent performs a specific action or navigates to a specific

page.

108 10 Rendering Pages with Nucleus Components

Note: Page navigation changes take precedence over action changes.

The following actions trigger an update of the Order Summary display:

• Select an order, which also changes the active order in the global context area

• Add a product to the shopping cart

• Cancel an exchange from within the exchange process

• Cancel a refund from within the refund process

The following processes trigger an update of the Order Summary display:

• Modification of an order on the Shopping Cart, Shipping Address, Shipping Method, Billing, Review Order and

Confirmation pages

• Scheduling a new or updating an existing schedule using the Schedule page

• A Return using Return Items, Return Type or the Return Confirmation pages

• Exchanges

To customize the Order Summary panel, override the Nucleus configuration files located in the config/atg/

commerce/custsvc/ordersummary directory. Then copy and modify the JSP files in DCS-CSR-UI.war/

panels/ordersummary.

Adding a New Order Summary Step

1. If the new step fits into one of the pre-existing paths, such as modify order or returns, add a new properties

file to the configuration. If necessary, create a new JSP file. Pre-existing paths are indicated by the use of a

task-based name, such as exchange, modify, return, template, complete and submitted.

The properties files have the following entries:

• page= indicates the JSP file to display when the agent is in the step. If necessary, add a new JSP file and add

it to the page entry

• content= indicates the Web application that contains your JSP files. If you do not indicate the Web

application, then the application server will try to find your new JSP in the DCS-CSR-UI Web application.

Placing your JSP in the DCS-CSR-UI Web application for testing is appropriate, but JSPs should be moved

into your own Web application for production. Additionally, this will prevent your JSPs from being

overwritten during any subsequent patch upgrades

• visibleWhenInSteps= is a comma separated list of the steps where the JSP should be displayed. The

panel stack’s ID is used to identify the step. Use this for paths where steps appear immediately after the

step on which the agent is working. Leave the list blank if the step should always remain visible

• completeWhenInSteps= is a comma separated list of the steps where the step should be in the complete

state. Completion is indicated when the step shifts from showing edit links to display the text “complete”.

These steps are performed after the step in which the agent is working. Leave the list empty if the step is

always complete

2. Edit the properties files of the other steps in the path to provide information on the new step. For example,

add the ID of the new step to the visibleWhenInSteps= list of the steps before this new step in the path

when the agent is in the new step.

10 Rendering Pages with Nucleus Components 109

3. Ensure that one of the panels in the new panel stack calls the JavaScript function

atg.progress.update('someIdStringHere'), passing the ID of the panel stack. This lets the progress

bar know it needs to update itself, and indicates where the agent is in the process.

4. To add the JSP into your Web applications, modify the Nucleus configuration properties files to identify which

Web-app contains the JSP file. For example:

path=/panels/ordersummary/specialOffers.jsp

context=/my-web-app

Editing an Existing Order Summary Step

1. Copy an existing JSP file and rename the file.

2. Modify the JSP. For example, to modify the template billing step so that it is visually different than the

modifiable order billing step, copy the existing billing JSP file and make the changes as needed.

110 10 Rendering Pages with Nucleus Components

11 Modifying Keyboard Shortcuts 111

11 Modifying Keyboard Shortcuts

You may modify the keyboard shortcuts that are used throughout the Service Center UI by modifying the

appropriate JavaScript files.

Modifying Shortcuts

Keyboard shortcuts are located in the following files:

• Service-UI/Framework/Agent/ServiceFramework/script

/keyboardShortcutsService.js

• Service-UI/Framework/Agent/ServiceFramework/script/

Agent/script/keyboardTopicsService.js

• DCS-CSR-UI/script/keyboardShortcutsCSC.js

• DCS-CSR-UI/script/keyboardTopicsCSC.js

The keyboardShortcuts files are used to map keyboard shortcuts to published topics. The keyboardTopics

files are used to execute these topics and perform the specific functions.

The following is an example of a keyboard shortcut definition for the shortcut key ALT+6:

atg.keyboard.registerShortcut(
 "ALT+6", {
 shortcut: "ALT + 6",
 name: getResource("keyboard.service.customersTab.name"),
 description: getResource("keyboard.service.customersTab.description"),
 area: getResource("keyboard.area.workspace"),
 topic: "CustomersTab",
 notify: true
 });

Where:

• shortcut is the shortcut key that is shown in the help window

• name is the localized display name, shown in the help window

• description is the localized description, shown in the help window

112 11 Modifying Keyboard Shortcuts

• area is the localized functional area, shown in the help window

• topic is the name of the topic that is fired when this shortcut is pressed

• action is the optional JavaScript function that is called when the shortcut is pressed (used when a topic is

not available)

• notify is an attribute that determines whether the small pop-up window in the bottom right of the screen is

shown for the particular topic

Defining Global Keyboard Shortcuts

There are attributes that may be defined on a global basis for keyboard navigation. The

keyboardNavigation.js file is the main keyboard navigation file. In it, you can set the following variables:

var _showNotificationWindow = true;
var _highlightAndFadePanels = true;
var _highlightAndFadeNodes = true;

Where:

• showNotificationWindow determines whether the small notification window that pops up in the bottom

right part of the screen is shown when a shortcut is pressed. Each shortcut has an attribute called notify

that specifies the use of the notification window on a shortcut-by-shortcut basis. However, the use of the

notification window may be disabled if the showNotificationWindow is set to false

• highlightAndFadePanels provides a visual highlight as users jump from one panel to the next using the

panel shortcuts. When this attribute is set to false, the panel highlighting will not occur

• highlightAndFadePanels provides a visual highlight as users tab throughout the Service Center. When this

attribute is set to false, the screen elements will not be highlighted

12 Configuring Messaging 113

12 Configuring Messaging

This section provides an overview of configuring the messaging UI in Service Center.

Rendering Messages in the Message Bar

This section describes the requirements needed to display messages in the message bar that is used by both the

server-side code and client-side code.

Server-Side Configuration

Before configuring messages, ensure that the exception collector servlet has been activated in the application

by inserting it in the servlet pipeline and adding the following lines to the web.xml file:

<context-param>
 <param-name>exception-collecting-enabled</param-name>
 <param-value>true</param-value>
</context-param>

The exception collector servlet creates messages from DropletException and ServletException objects

that occur in the request.

Adding Messages from a Form Handler

There are two methods you can use to add messages to the messaging UI from a form handler:

• Add a servlet bean exception with a message to the form handler by invoking the addFormException()

method on the form handler. The message property on the added exception will be displayed by the UI

• Create a user message bean (atg.web.messaging.UserMessage) directly and add it to the messaging slot

using the MessageTools addMessage() method

The messaging UI will also display unhandled exceptions from the form handlers and server-side business logic.

Message Properties

Messages have the following properties:

114 12 Configuring Messaging

• type – can be error, confirmation, warning or information

• summary – contains the message title

• details– contains an array of exception or other messages

When one or more exceptions occur during either form handler exceptions or an unhandled servlet exception,

a single message is created with type = "error". Each exception is added as a detail within the message.

Exceptions that occur during a request are grouped inside a single container message. When no exceptions

occur during the request, and a success summary is specified via the request parameters, the messaging UI

creates a confirmation message.

Specifying a Message Summary

Success and failure summaries are specified using the atg.successMessage and atg.failureMessage

parameters. For example, to specify message summaries with a form you could add the following:

<input name="atg.successMessage" type="hidden" value="Updated info
 for John Doe."/>
<input name="atg.failureMessage" type="hidden" value="There was a
 problem updating John Doe's info."/>

If no failure summary is specified in the request, the messaging UI adds the default summary that is specified in

the message bar:

<div dojoType="messaging:MessageBar" errorMessage="There were
 errors with the request."/>

By default, no message is displayed for successful requests.

Adding Messages from JavaScript

Add messages from JavaScript code by using the message bar addMessage function:

dojo.widget.byId('messageBar').addMessage({type:"warning", summary:"An
error has occurred."});

To add a message that contains bulleted details, write your JavaScript similar to the following:

dojo.widget.byId('messageBar').addMessage({type:"error", summary:"An
error has occurred.", details:[{description: "First detail"},
{description: "Second detail"}]});

12 Configuring Messaging 115

Implementing Client-Side Validation

Note: Tag converters should be used for server-side validation., as they use the mechanism for form handler

exceptions described above.

Implementing Client-Side Validation with DSP Tags

Applying client-side validation to dsp:input and dsp:select tags enable the following behaviors based on

the state of the validation in the input or select element:

• Allows an inline indicator graphic to show or hide

• Allows a client-side validation message to be added to the message bar when invalid contents are present

(optional)

• Causes the Dojo SubmitButton widget(s) (if present) to enable or disable

To enable client-side validation with a dsp:input or dsp:select tag, use the dsp:tagAttribute tag:

<dsp:input id="dateOfBirth" type="text" value="01/01/1980"
 size="30" converter="date" date="M/dd/yyyy"
 bean="/atg/web/messaging/test/UserInfoFormHandler.dateOfBirth">
<dsp:tagAttribute name="dojoType" value="DateTextbox"/>
<dsp:tagAttribute name="lang" value="en-us"/>
<dsp:tagAttribute name="required" value="true"/>
<dsp:tagAttribute name="trim" value="true"/>
<dsp:tagAttribute name="invalidMessage" value="The date of birth is
 invalid."/>
<dsp:tagAttribute name="missingMessage" value="The date of birth is
 required."/>
<dsp:tagAttribute name="inlineIndicator" value="dateOfBirthAlert"/>
</dsp:input>

The dojoType attribute specifies the type of client-side widget to use for the input element.

Note: The dsp:input or equivalent tag must have an ID property defined for the SubmitButton auto-enabling

feature to work properly.

For detailed information on DSP tags, refer to the ATG Page Developer's Guide.

Available Client-Side Validation Widgets

The following client-side validation widgets are available from Dojo:

• ValidationTextbox – Provides basic validation functionality, such as required values

• IntegerTextbox – Tests for signed or unsigned integer input and ranges

• RealNumberTextbox – Tests for real number input and ranges

• CurrencyTextbox – Tests if input denotes a monetary value or range

• IpAddressTextbox – Tests for a valid IP address

116 12 Configuring Messaging

• UrlTextbox – Tests for a valid URL

• EmailTextbox – Tests for a valid email address

• EmailListTextbox – Tests for a list of valid email addresses

• DateTextbox – Tests for a valid date in specified locale

• TimeTextbox – Tests for a valid time

• UsStateTextbox – Tests for a United States state abbreviation

• UsZipTextbox – Tests if input is a US zip code: validates zip-5 and zip-5 plus 4

• UsSocialSecurityNumberTextbox – Tests for a United States Social Security number

• UsPhoneNumberTextbox – Tests for a United States 10-digit telephone number, extension is optional

• RegexpTextbox – Tests input based on conformity to a specified regular expression

Refer to the Dojo documentation for details on implementing specific widgets.

The following validation widgets are available:

• SimpleComboBox – forces a selection in a drop-down box (use dsp:select with SimpleComboBox)

• TextArea – performs range validation on the length of the textarea contents (use dsp:input instead of

dsp:textarea with TextArea, since dsp:textarea does not accept Dojo widgets)

Preventing the Form from Submitting

The SubmitButton widget prevents a form from being submit while there is invalid content in any of the

contained Dojo validation widgets:

<dsp:input id="updateUserInfo" type="Submit" value="Submit"
 bean="/atg/web/messaging/test/UserInfoFormHandler.updateUserInfo">
 <dsp:tagAttribute name="dojoType" value="validation:SubmitButton"/>
</dsp:input>

When present in a form, the SubmitButton widget will automatically enable and disable to prevent form

submission while there are invalid contents in any of the Dojo validation widgets contained in the form. One or

more SubmitButton widgets may be used in the same form. If the SubmitButton must be placed outside of

the form that it validates, use the form attribute of the SubmitButton to specify the form to validate.

Conditional Validation

Validation may be made conditional based on the state of another element, such as a radio button.

1. Create a function to test the state of the radio button. The following example tests a Commerce Service

Center radio button:

atg.commerce.csr.rule0 = function () { return

document.getElementsByName('addressType')[0].checked; };

2. Reference the function from the validateIf attribute on the widget:

12 Configuring Messaging 117

<dsp:tagAttribute name="validateIf"

value="atg.commerce.csr.rule0.apply()"/>

Validation rules of the widget will be applied conditionally only when the referenced function returns true.

Conditional Requirements

A validation widget may be conditionally required based on the evaluation of an expression. As with conditional

validation, perform the following steps:

1. Create a function to test the condition.

2. Reference the function from the requiredIf attribute on the widget. The following example tests a

Commerce Service Center condition:

<dsp:tagAttribute name="requiredIf"

value="atg.commerce.csr.rule0.apply()"/>

This creates a widget that will perform required checks only when the condition applies, but will always perform

validation checks when the widget contains data.

Custom Validation Conditions

Custom validation conditions may be applied to any validation widget through the validIf and missingIf

attributes. The validIf attribute applies a custom validation condition to the widget:

<dsp:tagAttribute name="validIf" value="this.getValue() != 'blank'"/>

In the above example, the widget will be considered valid only when the expression in the validIf attribute

evaluates to true.

The missingIf attribute applies a custom condition to determine whether the widget is missing a required

value.

Additional Field Validation

You can use field validation to capture specific information. For example, to add an additional required field to

the billing addresses to capture an e-mail address, add code similar to the following on your billing page:

<span class="atg_messaging_requiredIndicator"
 id="emailValidatorAlert">
 <dsp:input type="text" name="emailAddress"
 bean="BillingFormHandler.emailAddress" required="<%=true%>"
 size="25" maxlength="25">
 <dsp:tagAttribute name="dojoType" value="EmailTextbox" />
 <dsp:tagAttribute name="required" value="true" />
 <dsp:tagAttribute name="missingMessage" value="${emailMissing
 }" />
 <dsp:tagAttribute name="invalidMessage"
 value="${emailInvalid}"/>
 <dsp:tagAttribute name="inlineIndicator"

118 12 Configuring Messaging

 value="emailValidatorAlert" />
 </dsp:input>

Additionally, you must have a form handler equivalent to BillingFormHandler in the example that accepts

the e-mail address as one of its inputs.

Appendix A. The XML Combiner Script 119

Appendix A. The XML Combiner Script

The xmlCombinerCustomizer script sets up the rules that combine the XML definition files. For information on

this script, refer to the Data Combining (page 11) section.

The following is an example of the xmlCombinerCustomizer file:

<?xml version="1.0"?>

<!DOCTYPE combiner-customizers
 PUBLIC "-//Art Technology Group, Inc.//DTD XML Combiner Customizer//EN"
 'http://www.atg.com/dtds/xmlcombiner/xmlCombinerCustomizer_1.1.dtd'>

<combiner-customizers>
 <combiner-customizer>
 <tag-name>content-definition</tag-name>
 <match-subtag>id</match-subtag>
 </combiner-customizer>

 <combiner-customizer>
 <tag-name>id-entry</tag-name>
 <match-subtag>id</match-subtag>
 </combiner-customizer>

 <combiner-customizer>
 <tag-name>map-entry</tag-name>
 <match-subtag>key</match-subtag>
 </combiner-customizer>

 <combiner-customizer>
 <tag-name>template-definition</tag-name>
 <match-subtag>id</match-subtag>
 </combiner-customizer>
 <combiner-customizer>

 <tag-name>framework-definition</tag-name>
 <match-subtag>id</match-subtag>
 </combiner-customizer>

 <combiner-customizer>
 <tag-name>skin-definition</tag-name>
 <match-subtag>id</match-subtag>
 </combiner-customizer>

 <combiner-customizer>
 <tag-name>tab-definition</tag-name>
 <match-subtag>id</match-subtag>
 </combiner-customizer>

120 Appendix A. The XML Combiner Script

 <combiner-customizer>
 <tag-name>cell-definition</tag-name>
 <match-subtag>id</match-subtag>
 </combiner-customizer>

 <combiner-customizer>
 <tag-name>panel-stack-definition</tag-name>
 <match-subtag>id</match-subtag>
 </combiner-customizer>

 <combiner-customizer>
 <tag-name>panel-definition</tag-name>
 <match-subtag>id</match-subtag>
 </combiner-customizer>

 <combiner-customizer>
 <tag-name>id</tag-name>
 <match-text>
 <ignoring-outer-whitespace/>
 </match-text>
 </combiner-customizer>

 <combiner-customizer>
 <tag-name>key</tag-name>
 <match-text>
 <ignoring-outer-whitespace/>
 </match-text>
 </combiner-customizer>
</combiner-customizers>

Appendix B. Tag Libraries 121

Appendix B. Tag Libraries

The following tag libraries, which are used in Service Center, provide specialized markup tags that render

content dynamically by linking Nucleus components directly to JSPs. ATG applications support both the

standard Java Server Pages Standard Tag Library (JSTL) and the DSP tag library and provides tag converter

classes that allow you to define the conversion of form data.

For detailed information on working with tag libraries, refer to the ATG Page Developer's Guide. For information

on developing tag libraries and customized tag converters, refer to the ATG Platform Programming Guide.

ATG Service Common UI Tag Library

The ATG Service Common UI tag library, in the atg.svc.taglib package, located in the /service/common-

ui/src/taglibs directory contains the following tags:

Tag Description

addAdHocFavQuery Sets the Ad Hoc Query Favorites view.

getChildFocusTopics Returns a list of child focus objects from a focus topic.

Attributes:

id

var

rootTopicId

results

focusChildren

getChildTopics Gets a collection of child topics under a topic.

Attributes:

id

var

topicId

labelInclude

labelExclude

countFilter

122 Appendix B. Tag Libraries

Tag Description

getLocale Gets the locale associated with a language code string.

Attributes:

id

var

languageCode

getLocaleFromSearchLanguage Gets the locale associated with the search language.

Attributes:

id

var

searchLanguage

getOrganizationPath Gets a collection of parent organizations for an organization.

Attributes:

id

var

organizationItem

labelInclude

getRankedSolutions Returns a list of hot solutions based upon the selected topics and

solution classes.

Attributes:

var

length

topics

solutionClasses

rankCategory

getSearchLanguage Gets the search language that is associated with the language of a

code string.

Attributes:

id

var

languageCode

getTopic Gets the collection of child topics under a topic.

Attributes:

id

var

primaryKey

Appendix B. Tag Libraries 123

Tag Description

getTopicPath Gets the collection of child topics under a topic.

Attributes:

id

var

topicId

labelInclude

fromSystemRoot

highlightFields Retrieves the fields to be highlighted.

Attributes:

id

var

highlightInfo

logicalPartitions Returns a list of logical partitions.

Attributes:

var

PDFHighlight Highlights PDFs.

Attributes:

highlightInfo

PDFUrl Generates the PDF URL with the highlighting file appended.

Attributes:

id

var

pdfUrl

highlightFileUrl

highlightInfo

property.isPropertyVisible Checks to see if the property is visible to the user.

Attributes:

id

var

propertyName

retrieveDocumentFromES Retrieves document or highlighting offsets from ES.

Attributes:

id

var

response

searchService

mode

124 Appendix B. Tag Libraries

Tag Description

search.queryTermSpelling Generates a “Did you mean” string for the search and query text

provided by the user.

Attributes:

markupAfter

markupBefore

scope

searchText

terms

textSeparator

varMarkup

var

varUnknownTerms

varUnsearchableTerms

varAlternateTermsUsed

varHasSuggestions

serialize Serializes and encodes objects.

Attributes:

object

solution.renderProperty Renders a property based upon the property value.

Attributes:

propertyName

propertyValue

solution.renderStatement Renders a statement based upon the statement text value.

Attributes:

id

var

text

solutionHighlight Highlights solution statements.

Attributes:

fields

fieldId

highlightInfo

fieldText

gotoLocation

highlightColor

ATG Service Framework Bean Tag Library

The ATG Service Framework bean tag library, atg.svc.framework.taglib.beans.

Appendix B. Tag Libraries 125

common, is used for finder methods and home definitions. This tag library is located in the /service/

framework/src/taglibs directory.

Tag Description

cellDefinitionFindByAppId Finds all cells by application.

Attributes:

id

var

appId

cellDefinitionFindByCellId Finds cell definitions by application and logical IDs.

Gets all skins by application and enabled status.

Attributes:

id

var

appId

cellId

cellDefinitionFindByPrimaryKey Finds cell definitions by repository ID.

Attributes:

id

var

cellDefinitionId

cellDefinitionFindBySiteId Gets cell definitions by application and site ID.

Attributes:

id

var

siteId

cellDefinitionFindBySiteIdAndCellId Finds cell definitions by application, site and logical

partition IDs.

Attributes:

id

var

appId

siteId

cellId

cellDefinitionFindByUserSiteIdAnd

CellId

Finds content definitions by user site and cell IDs.

Attributes:

id

var

appId

cellId

126 Appendix B. Tag Libraries

Tag Description

contentDefinitionFindByAppId Gets all content definitions by application.

Attributes:

id

var

appId

contentDefinitionFindByContentId Find content definitions by application and logical

IDs.

Attributes:

id

var

appId

contentId

contentDefinitionFindByPrimaryKey Finds content definitions by repository ID.

Attributes:

id

var

contentId

contentDefinitionFindBySiteId Find all content definitions by application and site

IDs.

Attributes:

id

var

appId

siteId

contentDefinitionFindBySiteIdAnd

ContentId

Finds content definitions by application, site and

logical partition IDs.

Attributes:

id

var

appId

siteId

contentId

contentDefinitionFindByUserSiteIdAnd

ContentId

Finds content definitions by user site and content IDs.

Attributes:

id

var

appId

contentId

Appendix B. Tag Libraries 127

Tag Description

frameworkDefinitionFindByFrameworkId Gets framework definitions by application and logical

IDs.

Attributes:

id

var

appId

frameworkId

frameworkDefinitionFindByPrimaryKey Gets the FrameworkDefinition by repository ID.

Attributes:

id

var

frameworkDefinitionId

frameworkDefinitionFindBySiteId Gets all framework definitions by application and site

IDs.

Attributes:

id

var

appId

siteId

frameworkDefinitionFindBySiteIdAnd

FrameworkId

Finds framework definitions by application, site and

logical IDs.

Attributes:

id

var

appId

siteId

frameworkId

frameworkDefinitionGetSkins Gets the skins associated with the framework

definition.

Attributes:

id

var

frameworkDefinitionId

frameworkDefinitionGetTabs Gets the tabs associated with the framework

definition.

Attributes:

id

var

frameworkDefinitionId

128 Appendix B. Tag Libraries

Tag Description

frameworkDefintionFindByAppId Gets the framework definition by its application

identifier.

Attributes:

id

var

appId

frameworkObjectFindByPrimaryKey Finds a FrameworkObject by its repository ID.

Attributes:

id

var

frameworkObjectId

frameworkObjectGetContents Retrieves content information.

Attributes:

id

var

frameworkObjectId

frameworkObjectGetTemplates Retrieves template information.

Attributes:

id

var

frameworkObjectId

getCellDefinitionHome Gets the home for the cellDefinition servlet

bean.

Attributes:

id

var

getContentDefinitionHome Gets the home for the contentDefinition servlet

bean.

Attributes:

id

var

getFrameworkDefinitionHome Gets the home for the FrameworkDefinition

servlet bean.

Attributes:

id

var

Appendix B. Tag Libraries 129

Tag Description

getFrameworkObjectHome Gets the home for the FrameworkObject servlet

bean.

Attributes:

id

var

getPanelDefinitionHome Gets the home for the panelDefinition servlet

bean.

Attributes:

id

var

getPanelStackDefinitionHome Gets the home for the panelStackDefinition

servlet bean.

Attributes:

id

var

getSkinDefinitionHome Gets the home for the SkinDefinition servlet

bean.

Attributes:

id

var

getTabDefinitionHome Gets the home for the TabDefinition servlet bean.

Attributes:

id

var

getTemplateDefinitionHome Gets the home for the TemplateDefinition servlet

bean.

Attributes:

id

var

panelDefinitionFindByPanelId Finds panel definitions by application and logical IDs.

Gets all skins by application and enabled status.

Attributes:

id

var

appId

panelId

130 Appendix B. Tag Libraries

Tag Description

panelDefinitionFindByPrimaryKey Finds skin definitions by repository ID.

Attributes:

id

var

panelDefinitionId

panelDefinitionFindBySiteId Gets panel definitions by application and site ID.

Attributes:

id

var

siteId

panelDefinitionFindBySiteIdAnd

PanelId

Finds panel definitions by application, site and logical

partition IDs.

Attributes:

id

var

appId

siteId

panelId

panelkDefinitionFindByAppId Finds all panels by application.

Attributes:

id

var

appId

panelStackDefinitionFindByAppId Finds all panel stacks by application.

Attributes:

id

var

appId

panelStackDefinitionFindByAppId

NoSiteId

Gets all panel stacks by application and not set

siteId.

Attributes:

id

var

appId

Appendix B. Tag Libraries 131

Tag Description

panelStackDefinitionFindByPanelStackId Finds panel stack definitions by application and

logical IDs. Gets all skins by application and enabled

status.

Attributes:

id

var

appId

panelStackId

panelStackDefinitionFindByPrimaryKey Finds skin definitions by repository ID.

Attributes:

id

var

panelStackDefinitionId

panelStackDefinitionFindBySiteId Gets panel stack definitions by application and site

ID.

Attributes:

id

var

siteId

panelStackDefinitionFindBySiteIdAnd

PanelStackId

Finds panel stack definitions by application, site and

logical partition IDs.

Attributes:

id

var

appId

siteId

panelStackId

panelStackDefinitionGetPanels Finds panel definitions associated with the panel

stack repository ID.

Attributes:

id

var

panelStackDefinitionId

skinDefinitionFindByAppId Finds all skins by application.

Attributes:

id

var

appId

132 Appendix B. Tag Libraries

Tag Description

skinDefinitionFindByAppIdAndEnabled Gets all skins by application and enabled status.

Attributes:

id

var

appId

enabledYn

skinDefinitionFindByPrimaryKey Finds skin definitions by repository ID.

Attributes:

id

var

skinDefinitionId

skinDefinitionFindBySiteId Gets skin definitions by application and site ID.

Attributes:

id

var

siteId

skinDefinitionFindBySiteIdAndSkinId Finds skin definitions by application, site and logical

partition IDs.

Attributes:

id

var

appId

siteId

skinId

skinDefinitionFindBySkinId Finds skin definitions by application and logical IDs.

Gets all skins by application and enabled status.

Attributes:

id

var

appId

skinId

skinDefinitionFindByUserSiteIdAnd

PanelId

Finds panel stack definitions by user site and skin IDs.

Attributes:

id

var

appId

panelId

Appendix B. Tag Libraries 133

Tag Description

skinDefinitionFindByUserSiteIdAnd

PanelStackId

Finds panel stack definitions by user site and skin IDs.

Attributes:

id

var

appId

panelStackId

skinDefinitionFindByUserSiteIdAnd

SkinId

Finds content definitions by user site and skin IDs.

Attributes:

id

var

appId

skinId

tabDefinitionFindByAppId Finds all tabs by application.

Attributes:

id

var

appId

tabDefinitionFindByPrimaryKey Finds tab definitions by repository ID.

Attributes:

id

var

tabDefinitionId

tabDefinitionFindBySiteId Gets tab definitions by application and site ID.

Attributes:

id

var

siteId

tabDefinitionFindBySiteIdAndTabId Finds tab definitions by application, site and logical

partition IDs.

Attributes:

id

var

appId

siteId

tabId

134 Appendix B. Tag Libraries

Tag Description

tabDefinitionFindByTabId Finds tab definitions by application and logical IDs.

Gets all skins by application and enabled status.

Attributes:

id

var

appId

tabId

tabDefinitionFindByUserSiteIdAnd

TabId

Finds content definitions by user site and tab IDs.

Attributes:

id

var

appId

tabId

templateDefinitionFindByAppId Gets all template definitions by application.

Attributes:

id

var

appId

templateDefinitionFindByPrimaryKey Finds template definitions by repository ID.

Attributes:

id

var

templateId

templateDefinitionFindBySiteId Find all content definitions by application and site

IDs.

Attributes:

id

var

appId

siteId

templateDefinitionFindBySiteIdAnd

TemplateId

Finds template definitions by application, site and

logical partition IDs.

Attributes:

id

var

appId

siteId

templateId

Appendix B. Tag Libraries 135

Tag Description

templateDefinitionFindByTemplateId Finds a template definition by application and logical

IDs.

Attributes:

id

var

appId

templateId

templateDefinitionFindByUserSiteId

AndTemplateId

Finds template definitions by user site and content

IDs.

Attributes:

id

var

appId

templateId

The following tags are available in the /Service/framework/UI/taglibs/svc-ui/lib/ directory:

Tag Description

frameworkPopupUrl.tag Constructs the pop-up URL with framework parameters.

frameworkUrl.tag Constructs a forwarding and redirection URL with framework parameters.

ATG Service Framework UI Tag Library

The ATG Service Framework UI tag library atg.svc.taglib package, located in the /service/framework/

UI/src/taglibs directory, contains the following tags:

Tag Description

body Creates a scrollable body for a tree table item.

Attributes:

childItems

items

noItemsUrl

scope

varItem

varNode

varStatus

136 Appendix B. Tag Libraries

Tag Description

checkBox A sub-tag that defines the tree table checkbox components.

Attributes:

onCheck

column A sub-tag that defines the tree table column components.

Attributes:

defaultSortDirection

isSortable

key

onCheck

onSort

percentWidth

sortField

sortIgnoreCase

sortExpression

style

styleDown

styleHover

styleSorted

title

controlBar Creates a paging-enabled control bar for an expanding table.

Attributes:

controlBarId

scope

showAlways

style

treeTableBean

treeTableId

varHighIndex

varNode

varOffset

varTotal

width

deleteButton Creates a delete button.

Attributes:

disabledImage

image

link

linkPosition

onDelete

deleteOperation

style

styleDisabled

styleDown

styleHover

title

Appendix B. Tag Libraries 137

Tag Description

executeOperation Initiates an operation on a tree table.

Attributes:

operationName

treeTableId

expandButton A sub-tag that assigns a button to expand an item.

Attributes:

closedTitle

closedUrl

emptyUrl

onExpand

openTitle

openUrl

style

styleDown

styleHover

field A sub-tag that defines the tree table field components.

Attributes:

columnKey

isChecked

noWrap

onCheck

overflow

percentWidth

position

style

iclass

colspan

title

wordWrap

filterOption Creates a filter option within a filter selection drop down.

Attributes:

filterValue

filterSelect Creates a filter selection drop down element.

Attributes:

filterField

filterOperation

filterTestExpression

noFilteringValue

onFilter

style

varFilter

138 Appendix B. Tag Libraries

Tag Description

getDecimalFormatSymbols Gets the DecimalFormatSymbols for the locale or the current

user’s locale.

Attributes:

id

var

locale

getEncodedJavascriptString Gets an encoded truncation for special characters.

Attributes:

var

originalString

getOptionAsArray Gets an option by name and returns the value as an array.

Attributes:

id

var

optionName

segmentName

useVersionedRepository

getOptionAsBoolean Gets an option by name and returns the value as Boolean.

Attributes:

id

var

optionName

segmentName

useVersionedRepository

getOptionAsInteger Gets an option by name and returns the value as an integer.

Attributes:

id

var

optionName

segmentName

useVersionedRepository

getOptionAsString Gets an option by name and returns the value as a string.

Attributes:

id

var

optionName

segmentName

useVersionedRepository

Appendix B. Tag Libraries 139

Tag Description

head Creates a header for a tree table column.

Attributes:

showAlways

style

httpCacheHeader Sets the HTTP cache control headers.

initialSort Defines the sort for a tree table.

Attributes:

defaultSortDirection

sortIgnoreCase

sortEpxression

sortField

insertBody Inserts a body object for the tree table implementation.

Attributes:

childItems

isExpanding

isNavigating

itemKey

itemName

items

varItem

visibleLevels

insertControlBar Inserts an empty tree table control bar on the page.

Attributes:

controlBarId

treeTableId

insertTreeTable Inserts an empty tree table on the page, with the global attributes

already defined.

Attributes:

actionId

columns

hasHeader

hasPaging

height

initialUrl

overflow

pageSize

position

skipRestore

statSavingMethod

treeTableBean

treeTableId

width

140 Appendix B. Tag Libraries

Tag Description

itemStyle Defines a style for items within the tree table with the ability to have

alternating row styles.

Attributes:

styleName

itemTemplate Defines a template for items that are contained in the body of the

tree table.

Attributes:

isExpanded

key

noWrap

onDelete

onSelect

overflow

position

style

styleHover

styleSelected

moveButton Creates a move button.

Attributes:

disabledImage

image

link

linkPosition

onMove

moveOperation

style

styleDisabled

styleDown

styleHover

title

navigateButton Creates a navigate button.

Attributes:

disabledImage

image

key

link

linkPosition

onNavigate

style

styleDisabled

styleDown

styleHover

title

Appendix B. Tag Libraries 141

Tag Description

operationParameter Defines a tree table operation parameter in page elements.

Attributes:

elementId

elementProperty

name

value

pagingButton Creates a paging button within a paging component.

Attributes:

disabledImage

image

link

linkPosition

onPage

pagingOperation

style

styleDisabled

styleDown

styleHover

title

refreshButton Creates a refresh button.

Attributes:

disabledImage

image

link

linkPosition

onRefresh

pagingOperation

style

styleDisabled

styleDown

styleHover

title

restoreState Restores window-based state from the state holder to the attribute.

Attributes:

key

scope

var

saveState Saves the window-based state in the state holder.

Attributes:

key

value

142 Appendix B. Tag Libraries

Tag Description

serviceMethod Invokes methods on repository services, with arguments passed in

using child tags.

Attributes:

bean

method

scope

var

serviceMethodArgument Passes an argument to a service method tag.

Attributes:

value

sortOption Creates a sort option within a sort selection drop down.

Attributes:

defaultSortDirection

isInitiallySorted

sortExpression

sortField

sortIgnoreCase

sortSelect Creates a sort selection drop down.

Attributes:

onSort

style

Commerce Service Center Tag Library

The following tag files are located in the /DCS-CSR-UI/j2ee-apps/DCS-CSR-UI/WEB-INF/tags/ directory.

To use these tags, you must copy these tags into your customization library. For detailed information on working

with tag files, refer to the ATG Page Developer's Guide:

Tag Description

displayCreditCardType.tag Displays the credit card name and renders the last four digits of the

credit card number.

getCurrencyCode.tag Retrieves a currency code that is used by the order. If no currency code

is set, the default currency code is used.

getProduct.tag Obtains the product repository item from the order if the

commerceItemId has been set. If not, it runs a ProductLookup using

the ProductId.

Appendix B. Tag Libraries 143

Tag Description

inventoryStatus.tag Provides a string description of the inventory status.

priceRange.tag Sets the highPrice and lowPrice of the price range.

renderer.tag Adds renderer, targeter and rule data components to renderers.

siteIcon.tag Displays the siteIcon for a specified siteId. Used only in

environments with multiple sites.

skuPrice.tag Returns the appropriate SKU price based upon the agent’s currency

code and price lists.

skuPriceDisplay.tag Displays the appropriate SKU price from the current price and sales

price lists.

144 Appendix B. Tag Libraries

	ATG Service Center UI Programming Guide
	Table of Contents
	1 Introduction
	Audience
	Documentation Conventions
	Related Documents
	Framework Modules

	2 Service Center User Interface Architecture
	Service Center Overview
	User Interface Modules and Files
	User Interface Objects
	User Interface Sections

	Customizing Service Center

	Part I. Programming Service Center
	3 Service Center User Interface Data Model
	Schema Elements
	Initializing Framework Data
	Data Combining

	Framework Objects
	Framework Definition Objects
	FrameworkDefinition
	SkinDefinition
	TabDefinition
	CellDefinition
	PanelStackDefinition
	PanelDefinition

	Framework Supporting Object Definitions
	ContentDefinition
	TemplateDefinition

	Framework Configuration Objects
	Configuration Object Inherited Attributes
	FrameworkConfig
	ContentConfig
	TemplateConfig
	SkinConfig
	TabConfig
	CellConfig
	PanelStackConfig
	PanelConfig

	Framework Instance Objects
	Instance Object Inherited Attributes
	ContentInstance
	TemplateInstance
	FrameworkInstance
	SkinInstance
	TabInstance
	CellInstance
	PanelStackInstance
	PanelInstance
	PanelTarget

	Modifying Framework Definitions
	Adding a Definition
	Modifying a Definition
	Deleting a Definition

	4 Service Center Framework API
	Changing Tabs
	Submitting Actions
	Forwarding and Redirecting URLs

	Part II. Developing Pages in Service Center
	5 Service Center UI Components
	Working with JavaServer Pages
	Tag Libraries
	Servlet Beans

	Customization Best Practices
	Extending Configuration Files
	Adding JavaScript and CSS Files

	Using Service Center Debugging Modes
	Service Center Debugging Mode
	Dojo Debugging Mode

	6 Working with the Global Context Area
	Global Context Area Architecture
	NavContainers
	NavItems
	NavSearch
	NavContext
	NavActionContainers
	NavActionFactory
	NavAction

	Rendering the Global Context Area
	Rendering NavContainers
	Rendering NavSearch
	Rendering NavContext
	Rendering NavActions

	Creating a New NavAction
	Example: Creating a Options Policy Menu Item

	7 Working with Pages
	Creating a New Tab Definition
	Example: Creating a New Page

	Modifying a Tab Action
	Deleting a Tab Definition
	Adding a New Panel Definition
	Example: Adding Three New Panels
	Customer Management Panel Configuration

	Troubleshooting Pages

	8 Working with Forms
	Modifying Existing Forms
	Working with Page Fragments
	Overriding the Default Page Fragment
	Modifiable Form Configuration Files

	Creating New Forms
	Creating a Pop-up Page
	Creating the Caller Page
	Creating the JSP file
	Creating the JavaScript

	9 Working With Grids and Tables
	Modifiable Grids and Tables
	Customer Information Page
	Order View Page
	Scheduled Order Page
	Gift/Wish List
	Promotions

	Extending Table Configurations
	Extending Grid Configuration
	Working With Column Layout
	Customizing Column Attributes
	Modifying Column Widths

	Configuring the PageFragment Component
	Creating Column Content
	Rendering Column Content

	Modifying Columns
	Adding a Column
	Removing a Column
	Reordering Columns

	Changing the Item Detail (Hover) Page

	10 Rendering Pages with Nucleus Components
	Customization Options
	Simple Customization
	Renderer Components
	Targeting Customization
	Creating a ProductSkuRenderer
	Available Renderers
	Customizing the Order Summary Panel
	Adding a New Order Summary Step
	Editing an Existing Order Summary Step

	11 Modifying Keyboard Shortcuts
	Modifying Shortcuts
	Defining Global Keyboard Shortcuts

	12 Configuring Messaging
	Rendering Messages in the Message Bar
	Server-Side Configuration
	Adding Messages from a Form Handler
	Message Properties
	Specifying a Message Summary
	Adding Messages from JavaScript

	Implementing Client-Side Validation
	Implementing Client-Side Validation with DSP Tags
	Available Client-Side Validation Widgets
	Preventing the Form from Submitting
	Conditional Validation
	Conditional Requirements
	Custom Validation Conditions
	Additional Field Validation

	Appendix A. The XML Combiner Script
	Appendix B. Tag Libraries
	ATG Service Common UI Tag Library
	ATG Service Framework Bean Tag Library
	ATG Service Framework UI Tag Library
	Commerce Service Center Tag Library

