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This chapter provides an overview of Oracle Communications Order and Service Management (OSM).
OSM coordinates the order fulfillment functions required to complete a customer order created in a customer relationship management (CRM) system, or other order-source system. As an order management system, OSM receives and recognizes customer orders and coordinates the actions to fulfill the order across provisioning, shipping, inventory, billing, and other fulfillment systems. As such, OSM occupies a central place in your order management solution.
The basic steps for order fulfillment are:
Note: OSM is not an order capture system. It does not collect order information directly from customers. |
While orders are being fulfilled, you can use the OSM Web clients to monitor and manage the orders as they are fulfilled. You can automate many of the tasks needed to complete an order, or you can use the Web clients to manually complete tasks.
OSM fulfills orders specifically to support your service offerings. Before you can use OSM to fulfill your orders, you need to use Oracle Communications Design Studio to model how your orders need to be fulfilled. For example, if you sell a DSL service, you model your DSL order to include the data necessary to activate the DSL service on the network.
To implement and use OSM, you follow this process:
The following procedure describes how OSM typically processes an order.
When received by OSM, the order is called a customer order. The customer order specifies all the data and tasks required to fulfill the order. For example, it might specify that the customer needs a telephone and a telephone number. These requirements are specified in order line items in the customer order.
See "About Receiving and Creating OSM Orders" for more information.
To create the orchestration plan, OSM reads the requirements defined in each order line item in the customer order and identifies the processes and tasks to fulfill them. For example:
A unique orchestration plan is generated for each order, based on the contents of the order.
An orchestration plan includes the following:
Note: An order can be created without recognition rules and without an orchestration plan. This is common when the order has a limited set of tasks that do not have dependencies; for example, an order that only manages service activation. |
See "Understanding Orchestration" for more information about orchestration plans.
As the order progresses, OSM communicates with the originating CRM or order-source system to provide information about the status of the order. OSM can aggregate notifications of task completion events to present a real time, unified view of the order to the originating system and to the OSM Web clients.
OSM manages changes to the order by using revision orders. For example, a customer might order Bronze level DSL service and later change the order to Gold level service. When a revision order is received, OSM analyzes it to determine what data has changed and what compensation must be performed due to the change. See "Managing Changes to Orders" for more information.
If an error occurs during order fulfillment; (for example, if a resource that has been assigned is not available on the network), OSM manages order fallout. You can use both the Order Management Web client and the Task Web client to search for and resolve fallout. OSM can also be configured to return data to CRM systems such as Siebel for the creation of trouble tickets. See "Order Fallout Management" for more information.
An order describes the products or services that need to be fulfilled. The contents of an order can include:
Figure 1-1 shows an order displayed in the Task Web client.
See "About Orders" for more information.
When fulfilling orders, OSM can perform two primary roles:
OSM in the central order management role receives customer orders from one or more order-source systems. OSM creates an order, and manages the fulfillment of the order across other enterprise systems including billing systems, shipping systems, and service fulfillment systems.
The central order management role is also responsible for receiving status information from the fulfillment systems and providing an aggregated status back to the order-source systems. The central order management role is sometimes called central fulfillment.
OSM in the service order management role is typically a part of a dedicated service fulfillment system, working with inventory and activation systems to fulfill services in one or more network domains. OSM in its service order management role typically receives a service order that manages a limited part of the overall order fulfillment. A service order is typically sent by OSM in its central order management role. OSM service order management can orchestrate and manage the fulfillment of the services and resources for the order. It typically works in conjunction with an inventory system to track and allocate resources (assign-and-design) and an activation system to configure the network devices and applications. The service order management role is sometimes called provisioning or local fulfillment.
All OSM functionality; (for example, orchestration) can be used in both of the roles. However, the order processing performed by OSM in the central order management role typically uses orchestration more, because of the need to manage relationships between multiple systems. Orders sent to a service order management system often do not require an orchestration plan because the tasks in the order can be run as a static process by OSM.
As an example, an order might be processed as follows:
Service order management typically handles specific provisioning tasks that do not require orchestration, but you can use orchestration with service order management. Figure 1-2 shows two scenarios. In the first scenario, central order management handles provisioning for a fixed-line service and a DSL service separately, and it is therefore able to send service orders directly to OSM in the service order management role. In the second scenario, the fixed-line service and the DSL service are sent simultaneously to service order management. Service order management uses an orchestration plan to send the provisioning requests to separate fulfillment systems.
To take advantage of the separation between customer-facing configuration and network-facing configuration, a typical OSM system architecture uses multiple instances of OSM in both roles. For example:
For example, you might have a specific service component running on a single machine, which handles all of the activation commands for the service component. You can create an instance of OSM in the service order management role on that machine. This instance would deploy an OSM cartridge configured exclusively for provisioning the service component. OSM in the central order management role would send provisioning orders to that system, and the provisioning orders would return the status.
Figure 1-3 shows a typical service provider environment. This figure shows how central order management communicates with multiple systems, including service order management systems.
Figure 1-4 shows how the two roles apply to the Business Process Framework. The Business Process Framework (eTOM) model is used in the communications, information, and entertainment industries. The central order management and service order management roles can be differentiated in the Operations section of the Business Process Framework.
By running OSM in two roles, central order management and service order management, you can decouple your customer-facing product configuration from the network-facing service configuration and simplify how you manage and maintain your overall system. For example:
In general, system management can be more flexible if central order management and service order management run on different systems:
When you manage orders, you typically perform two basic activities:
To complete manual tasks, you are assigned tasks in the OSM Task Web client. To help you manage your assigned tasks, you can add comments to the order, attach documents, display the history of the order, and receive notifications that alert you to events that occur in the system and to at-risk orders or tasks.
orderPurge
command. See OSM System Administrator's Guide for information. You cannot delete orders by using the OSM Web clients. A user who has privileges to create orders manually may delete orders before the order has begun processing. To avoid synchronization issues with orders in upstream systems, orders should not be deleted manually.
You can also run reports to get information about the overall order processing load. You can run the following summary reports:
You can also use the OSM Reporting Interface to generate reports. See OSM Reporting Interface Guide for more information.
See OSM Task Web Client User's Guide and OSM Order Management Web Client User's Guide for more information.
OSM makes extensive use of the XPath and XQuery languages to find, filter, and transform data. Data sources that can be queried include:
XQuery expressions can be included in Design Studio entities or referenced in separate files.
A typical XQuery expression includes:
For more information about XQuery, see the W3 Web site:
This chapter provides conceptual information about Oracle Communications Order and Service Management (OSM) orders.
Before reading this chapter, read "Order and Service Management Overview" to find out about basic OSM concepts.
An order in OSM contains all the data necessary to fulfill the products and services requested by an incoming customer order.
When a customer order is captured in a CRM or other order-source system, it includes data such as the customer's name and contact information, customer billing information, the products that the customer is ordering, and the requested date of delivery. A subset of that information is included in the customer order that is sent to OSM; for example, the customer information and the order line items that specify the service actions that need to be performed.
After the order is created in OSM, the order includes the data needed for processing the order, as well as information that specifies how to complete the order; for example, the default process to run and the order life-cycle policy. See "What an Order Contains" for more information.
This section introduces the terminology used in the OSM documentation when describing orders:
Orders that are submitted to OSM typically have a specific purpose that is defined as an order action. This information is usually included in the order header to indicate if the order adds, deletes, or moves a service. For example, the following line from an incoming customer order specifies that the order adds services:
In addition to orders that manage services in different ways, you can create orders for specific order-management purposes. For example:
You typically model a different order type when the structure or order data is different from any existing order type, or when there are specific and different fulfillment requirements.
You can use multiple order specifications to create multiple order types. Each order specification that you create defines a different order type. See "About Modeling Order Specifications" for more information. In addition, you can use inheritance to manage common configurations between orders. See "Re-Using an Order Specification" for more information.
Each order line item in an incoming customer order that OSM receives specifies an action to perform. Order line item actions are typically one of the following:
An order can contain a mix of actions for different products or services. For example, an existing customer might request to add some new products, change some existing products, and remove other products. These can all be included on the same order. See "About Order Items" for more information.
Each order type uses a different order specification. When you model order specifications, you can define the following:
For example, it might be common for a task that activates a port to return an error that the port is already in use. The fallout definition can identify the port ID as the data that needs correcting. This allows OSM to undo the resource assignment task in the inventory system, so the task can be redone and the port ID corrected. The order can then resume processing with the corrected data.
See "Order Fallout Management" for more information.
At run time, an order includes the data needed for service fulfillment, as well as information about how to process the order. An order includes the following:
You do not specify an orchestration plan when you create an order specification. You define the default process, which, for orchestration orders, is an orchestration process. See "About the Default Process" and "Understanding Orchestration" for more information.
You can display the orchestration plan, and the order components and order items included in it, in the Order Management Web client.
When you create a new order model in Oracle Communications Design Studio, you can base the order on an existing order. When you extend an order specification, the extended specification inherits all of the data, tasks, rules, and behaviors of the base specification. You can add new data and behaviors to define unique order specifications and functionality. When you modify a base order specification, the order specifications extended from it are also modified. This means that you can make changes in one place, in the base specification, and those changes apply to the orders that are extended from the base specification.
For example, you might have three order specifications that share a common set of data. You can create a base order that includes configurations common to all three orders. You can then add configurations to each of the three order specifications for the data that is unique to each order specification.
When defining an order specification that is inherited from a base order specification, you cannot edit the inherited order data. For example, you cannot remove or rename data elements inherited from the base order specification. To implement changes to the inherited data, you must edit the data in the base order specification. Design Studio automatically implements those changes among all of the extended order specifications.
When you model the data in an order, you specify the data that the order must include to fulfill the service. For example, in an order for a telephone service, the order must include telephone number data.
The data elements that you can use in an order are defined in the Design Studio Data Dictionary. When you define order data, you can use data elements that already exist in the Data Dictionary data schemas, or you can create new data elements and add them to the Data Dictionary. See "About Importing the Incoming Customer Order Data into the Data Dictionary" for more information.
You can specify alias names for data elements. For example, you might have a data model that contains two instances of a data element called EmployeeID: one defined as a string (defined by the employee's name and a two-digit number), the other defined as an integer (defined by a 6-digit number). To avoid data type collisions in the run-time environment, you can rename one instance of the EmployeeID data element at the order level.
The data model defined in an order specification is called the order template. An order template is the part of an order specification that defines the order data that OSM uses to process and fulfill an order. For example, the order template defines the data required for order items as well as the data required in an order header.
Figure 2-1 shows an order template.
OSM uses the order template when processing the order. For example:
The data in the order template defines the data that must be present when the order is created and the data that is generated during order processing. Design Studio generates the order-level order template by aggregating the order template definitions for the order item specifications and order components with any data defined at the order level.
Figure 2-2 shows the structure of customer data in the order template.
The order template includes control data. Control data is used by OSM to generate the orchestration plan. Control data is used only for orchestration.
There are typically two areas of the order control data:
You manually model the order control data of order items in Design Studio. Control data for function order components is automatically generated by Design Studio. See the Design Studio Help for information on how control data is modeled and generated.
You can configure the order template to hold status data returned from external systems. Figure 2-5 shows an order template structure that holds status data.
You can also store status data in the order item data and in the function data. Figure 2-6 shows a structure for storing status data. In this example:
Figure 2-7 shows a structure for storing status data for functions. In this example:
Before OSM can receive an order from an order-source system, you need to create the OSM Data Dictionary.
The Data Dictionary is the repository of data elements used in Design Studio. The Data Dictionary defines data types and structures that can be used within OSM orders. For example, you can define a simple type that represents an IP address or a phone number, or more complex types representing addresses, product attributes and so on.
Data elements in a Data Dictionary are used as building blocks of an OSM order. The data elements within a Data Dictionary project can be referenced by other projects in a work space.
Design Studio automatically creates a Data Dictionary when you create an OSM cartridge project. You can use this default Data Dictionary or create multiple data schemas to add data elements or structure within the same project.
Figure 2-8 shows a list of data schemas in Design Studio.
Each data schema includes a set of data relevant to the function that the data is used with. Figure 2-9 shows the data elements for the mobile Data Dictionary, with mobile-related data such as IMSI and MSISDN.
Figure 2-10 shows data elements for the incoming customer order data.
To import the Data Dictionary for the data received in orders, you import the XSD file for that incoming customer order into OSM. The elements in the XSD file are loaded into the Data Dictionary as OSM data elements. Example 2-1 shows part of an XSD file that includes some of the elements shown in Figure 2-10.
Example 2-1 Elements in Input Message XSD File
For each data element, you specify attributes about the data element; for example, the data type and display name. Figure 2-11 shows the configuration for the requestedDeliveryDate data element.
Child XML elements are imported as child data elements. The Path field shows the parent data elements. In this example, the parent data element of requestedDeliveryDate is SalesOrderLine.
In addition to the order data, the Data Dictionary contains information about the data structure of each incoming customer order. For example, it contains information about the hierarchy of sales item lines, which can consist of offers, bundles, products, and so on. This data structure information can be used to manage the data when it is passed between different fulfillment systems.
When you define an order specification in Design Studio, you must model a creation task. The creation task is a required task. It specifies the required and optional data to be present when the order is created.
The creation task data is used as follows:
If an order includes an orchestration plan, the Cancelled state is the final state. The order cannot be resumed. If the order does not have an orchestration plan, the canceled order is returned to the creation task for the order, and can be re-submitted to be processed again.
The creation task differs from other tasks as follows:
Tip: When modeling a creation task, create a manual task, even if the order is intended to be processed automatically. Using manual tasks as creation tasks ensures that task behaviors are supported at run time if you manually create an order. This can be useful for testing purposes. |
When an order is created, some data must be populated to the creation task data. To populate the data, you use a transformation rule, defined in a recognition rule. See "Understanding Order Transformation" for more information.
For orders that require an orchestration plan for fulfillment, (called orchestration orders), the default process is an orchestration process. For orders that do not use orchestration, the default process is a workflow process or workstream process. See "About Workflow Processes and Workstream Processes" for more information.
When an orchestration order is submitted to OSM, the following occurs:
Orchestration orders are typically used by OSM in the central order management role, where multiple fulfillment systems need to be managed and there are dependencies between the fulfillment actions.
Figure 2-12 shows the process flow for an orchestration order.
See "Understanding Orchestration" for more information.
For orders that do not require an orchestration plan for fulfillment, (called process-based orders), the default process is an OSM process, which includes tasks such as Activate_DSLAM. When a process-based order is submitted to OSM for processing, the following occurs:
Figure 2-13 shows the process flow for a process-based order.
See "About Tasks and Processes" for more information.
It is common for an order to be fulfilled by both orchestration orders and process-based orders. For example:
Figure 2-14 shows an orchestration order running a process-based order.
You assign the default process in the order specification. You specify an orchestration process the same way that you specify any other process. Figure 2-15 shows a default orchestration process in an order specification.
Figure 2-16 shows a default process defined in an order specification.
OSM uses order priority to determine which orders should be given more OSM system resources when the system is under heavy load. This ensures that orders that have higher priority are not starved for resources by lower priority orders.
Order priority does not prevent all lower priority orders from completing until all higher priority orders have completed. OSM is a multi-threaded system and processes as many orders as possible concurrently. You can use follow-on orders to manage inter-order dependencies.
You can specify two values to set the order priority:
The order priority in the recognition rule defines the priority of the order in relation to other order types. The default order priority is 5. You can enter a number between 0 and 9, inclusive, or you can include an XQuery expression that sets the order priority based on data in the incoming customer order. For example, the XQuery shown in Example 2-2 retrieves the order priority (as a number) from the FulfillmentPriorityCode data element:
Example 2-2 Example of Retrieving Order Priority
The order priority is typically set on the order submitted to OSM from the order-source system, and it is mapped to the OSM priority when transforming the order. An order's priority also can be modified programmatically or manually by using the Task Web client.
Important: Because OSM is typically one of several systems involved in fulfilling orders, order priority must be supported in all systems and middleware for it to be the most effective. |
The order priority range specifies the acceptable range of numeric priority (between 0 and 9) that orders of a single type may use. For example, this could allow you to configure a fixed-line order type with a lower range (0 to 4) and a mobile order type with a higher priority range (5 to 9), ensuring that mobile orders are prioritized higher than fixed-line orders.
You create an order priority range by specifying a minimum and maximum priority for the order. OSM rounds priority values up or down to ensure they conform to the order priority range. For example, if you specify a priority range of 5 to 7 and an order is created with a priority of less than 5, the system assumes the intent is to provide the lowest priority allowed for the order, and the priority value of the order is set to 5. Similarly, if a priority higher than 7 is provided for another order of the same type, the system assumes the intent is to provide the highest priority allowed for the order, and the priority value of the order is set to 7.
Table 2-1 shows examples of how the order priority is set by using the order priority from the recognition rule, and the order priority range from the order specification.
Table 2-1 Order Priority Examples
Order Priority Range | Recognition Rule Order Priority 1 | Recognition Rule Order Priority 5 | Recognition Rule Order Priority 9 |
---|---|---|---|
Order Priority Range 1 - 3 | Priority = 1 | Priority = 3 | Priority = 3 |
Order Priority Range 3 - 5 | Priority = 3 | Priority = 5 | Priority = 5 |
Order Priority Range 5 - 9 | Priority = 5 | Priority = 5 | Priority = 9 |
Figure 2-17 shows how to set the order priority range in the Design Studio order editor.
The order priority value is also considered when an order's tasks are run, so that automated tasks are run according to order priority. This requires that Java Messaging Service (JMS) message priority settings are configured for the JMS queues.
You can change the order priority of an in-flight order by using the Order Management Web client. You can specify permissions for which roles can change the priority. See the discussion of changing order priority in OSM Order Management Web Client User's Guide.
Order rules control how various actions take place; for example, when to trigger a jeopardy notification and how delays in the order process should be handled. Rules are used in process flow decisions, conditional transitions, subprocess logic, delay activities, jeopardies, and events.
OSM evaluates order rules by comparing data to data, or data to a fixed value. Figure 2-18 shows an order rule in Design Studio. This rule identifies residential customers in a specific city. This is an example of a rule that might be used to send a fallout notification to a regional fallout manager.
OSM Web client users are assigned roles, which you can use to manage who works on different types of orders, and different types of tasks. When you assign permissions to orders, you define the following for each role:
Flexible headers are typically used when there are one or more fields on an order that contain information that is the same for multiple orders and which can be used to query and find related orders. Examples of this are external reference numbers, customer numbers, and telephone numbers. Flexible headers can be used to allow order managers to query these data fields across orders in different cartridges as long as they have the same mnemonic path in their order templates. The Task Web Client query screen allows you to input search criteria once. It returns all orders that match the flexible header search values.
Figure 2-20 shows conditions defined in Design Studio that allows OSM users in the role to see only orders from customers who have the 408 and 510 area codes.
See "About OSM Roles" for more information.
As an order runs tasks, the data that is available at each task should be the minimum subset of order data necessary for the task to be performed. You can choose the data to display in the OSM Web clients using the following methods:
Order management personnel can display orders in the Task Web client and in the Order Management Web client. You can specify which data is displayed by assigning query tasks to an order. The data that is specified in the query task data is the data that is displayed.
You can select any task as the query task. You can also create special tasks whose only function is to specify which data to display.
Figure 2-21 shows the Permissions tab in the Design Studio Order Editor. The upper screen shows the permissions for the provisioning role, with the provisioning function task as the query task. For the billing role, the billing function task is assigned as the query task.
The Order Management Web client uses two types of views to display orders; a summary view in the Summary tab and a detailed view in the Data tab. When you model a query task, you can specify which of those views (either or both) to display the query task data in.
You can use multiple tasks as query tasks for an order. When you do so:
To display the query task in the Task Web client, select the Default checkbox, as shown in Figure 2-21.
In addition to defining the data that can be displayed, you can specify who can see it by using roles. Each role that is associated with an order can be assigned different query tasks. For example, if your order management personnel includes a role for billing specialists, you can create query tasks that show data specific to their activities.
The data that is available for each automation plug-in should be the minimum subset of order data necessary for the plug-in to be performed. You can choose the data to provide to automation plug-ins using the following methods:
In automated tasks, the data that is available to automation plug-ins associated to automated task is already defined in the Task Data tab. However, automation plug-ins used with order notifications, events, and jeopardies do not have immediate access to this task data, and, as a result, must reference a manual task called a query task that defines the task data and behavior data available to the automation plug-in.
You can select any manual task as the query task. You can also create special tasks that are only used as query tasks. Their only function is to specify which data to provide to an automation plug-in.
Figure 2-21 shows the Permissions tab in the Design Studio order editor. The upper screen shows the permissions for the provisioning role, with the provisioning function task as the query task. For the billing role, the billing function task is assigned as the query task.
To associate a query task with an automation plug-in, use the Default checkbox, as shown in Figure 2-21.
Figure 2-22 shows an event notification with an automation plug-in that uses the ProvisioningFunctionTask query task that is defined as the default query task for the provisioning role. This role must be associated to the Run as OSM user that runs the automation plug-in as shown in the Properties Details tab. For more information about associating roles to OSM users, see the OSM Administrator Application User's Guide.
This chapter describes how Oracle Communications Order and Service Management (OSM) processes an order when it is received from an order-source system and how it creates an OSM order.
Before reading this chapter, read "Order and Service Management Overview" for more information.
The typical process for receiving orders in OSM using the CreateOrder Web services operation is as follows:
The CreateOrder operation receives orders that are in the XML format of the order-source system, which is different from the OSM order format. The CreateOrder operation can recognize external order formats, and it uses a recognition rule to transform the requests to the OSM internal order format before creating the order.
You can use Java Message Service (JMS) or HTTP or HTTPS to send orders to OSM. Use JMS on production systems, because it provides quality-of-service guarantees not available from HTTP or HTTPS. Use HTTP or HTTPS on development and test systems.
Note: A single OSM instance can receive orders from multiple order-source systems. |
The CreateOrderBySpecification operation receives orders from systems that can provide order requests in the OSM native XML format. The CreateOrderBySpecification operation references an order specification that you define in Oracle Communications Design Studio, and the order details must conform to that order specification.
The CreateOrderBySpecification Web services operation is typically used for sending an order to an instance of OSM running in the service order management role. In that case, OSM creates the order and begins processing it.
If OSM is unable to create the order by using the CreateOrderBySpecification operation, the in-bound order is handled in one of two ways:
To receive and create orders, you need to do the following:
When received by OSM, the incoming customer order typically consist of these sections:
The order line items include details about the services that the order must fulfill. They can include:
Figure 3-1 shows part of a customer order, received from a CRM system.
Figure 3-2 shows one of the order line items. Included in this order line item are the requested delivery date and the action to take (Add).
The AIA Order-to Activate solution uses three sections, an AIA header, an order header, and order line items.
Order recognition is the process of determining the type of an incoming customer order so it can be mapped to an order type in OSM. Recognition rules allow OSM to accept any input message structure.
During order recognition, OSM steps through a prioritized list of recognition rules to determine which rule applies to the in-bound order. Each recognition rule is associated with an order specification. The first rule that evaluates to true determines the order specification to use for the incoming customer order and which validations and transformations are required, if any. Rules are evaluated in an order based on a property called relevancy, which is defined as part of the recognition rule specification in Design Studio.
Order recognition rules use XQuery expressions to match incoming customer orders. See "About Recognition Rule XQuery Expressions" for information about creating order recognition XQuery expressions.
Relevancy determines the order in which the OSM server evaluates the order recognition rules at run time. OSM evaluates a rule with a higher relevance before it evaluates a rule with a lower relevance. For example, OSM evaluates a rule with a relevancy value of 2 before it evaluates a rule with a relevancy value of 1. At run time, OSM uses the first order recognition rule that evaluates to true.
There are two possible errors during order recognition:
To avoid this kind of failure, you can create a lowest-relevancy catch-all rule that recognizes any in-bound order and maps it to a default order specification. See "Creating a Catch-All Recognition Rule" for more information.
An order that fails to be recognized by any recognition rule is rejected by OSM, and an error is returned by the Web services operation to the order-source system. To make sure that all orders are entered into OSM, create a catch-all recognition rule that accepts all incoming customer orders.
To configure this recognition rule:
Using this lowest-level recognition rule, an invalid order is recognized and then fails during validation. It then transitions to the Failed state and is kept by OSM.
When an incoming customer order is recognized, OSM checks the order using a validation rule XQuery defined in the order recognition rule. The validation step ensures that the order is syntactically correct.
For example, a validation rule can determine that:
See "About Validation Rule XQuery Expressions" for information about creating validation rule XQueries.
Incoming customer orders might come from multiple order-source systems. Data is often represented differently in different systems; for example, telephone number formats might include varying numbers of digits. You can use transformation rules to normalize data and to make it usable in OSM and in external systems. For example, you might use transformation rules to add information to the customer order data or to transform the generic order items and their attributes into specific attributes of an order required in an external system.
In addition, you use transformation rules to add data and properties to an order when it is created. This includes:
Note: An internal transformation rule always stores the raw XML input message in an XML data field as part of the order data. However, that data does not populate the fields in the creation task. |
You can use a transformation rule to modify data in the order. For example, you can concatenate the area code and phone number into a single data element.
You can retrieve data from external systems if it does not exist on the incoming customer order. For example, the incoming customer order might have a customer address, but you need to add the geographic region to the order, which is not in the input data. You can use a Web services operation, or an SQL call to an external system, to look up the region, based on the customer's address. You can then add the region code to the order.
The order reference number is an alphanumeric value supplied by the order-source system. It is usually unique, but it does not have to be unique. When OSM creates the order, OSM gives the order an OSM order ID. The original order reference number is stored as well, so the order reference number is associated with the OSM order ID.
You use XQuery expressions to define transformation rules. Figure 3-3 shows the Transformation tab in the Design Studio Recognition Rule editor.
At run time, the OSM server always runs all transformation rules, regardless of the failure of any transformation rule. Running all transformation rules ensures that the order is populated with all available data.
If a transformation rule fails, the order is populated with whatever data is available, and the order is placed in a Failed state with reasons corresponding to the type of transformation rule that failed:
OSM can add the input message to the order template automatically. To do so, you specify the data structure of the incoming customer order in the order's recognition rule. You can select from the Data Dictionary a previously imported XML structure, or a data element from a previously imported XML structure. At run time, when a recognition rule evaluates to true, OSM adds this input message to the order template (as an XML data type) to contain the incoming customer order. Figure 3-4 shows an input message specified in a recognition rule.
The order uses the XML data type. Figure 3-5 shows the order in the order template.
When you define recognition rules in Design Studio, you configure the following attributes:
You can create the following recognition, validation, and transformation rules:
The following sections provide reference information about order recognition rule XQueries.
This section refers to the Design Studio OSM Order Recognition Rule editor, Recognition tab, Recognition Rule XQuery field.
The Order Recognition Rule editor Recognition Rule XQuery expression specifies a customer order and associates it with an OSM target order type. The XQuery has the following characteristics:
If you have declared a namespace in the prolog, you can also check to see if specific values exist in the order. For example, you can use the fn:exists function to check that an element exists. Or you can use a comparison expression such as = (equal to) or != (not equal to) to compare a value in the customer order with a value in the XQuery.
Tip: Recognition rules are global entities within OSM, meaning that they could apply to any CreateOrder operation. An incoming customer order could be recognized by a recognition rule deployed in the system that you did not intend to be matched if you are not careful with the relevancy settings and the recognition rule. For more information about relevancy, see "About Recognition Rule Relevancy". |
For example, in a simple scenario, the XQuery is based on a namespace:
The input message XML file includes the following line, which matches the namespace specified in the recognition rule:
The XQuery expression returns a Boolean expression, for example, fn:true()
or fn:false()
The following example searches in a specific type of order:
Figure 3-6 shows a recognition rule in Design Studio. The recognition rule is based on a namespace, and the target order is OSMCentralOMExampleOrder.
In a more complicated scenario, you might create an XQuery expression that looks for a specific namespace and also interrogates the data within the incoming customer order. Example 3-1 shows a recognition rule that recognizes an order based on the following criteria:
Example 3-1 Recognition Rule for Broadband Service
See "Understanding Order Recognition" for more information about order recognition rules.
This section refers to the Design Studio OSM Order Recognition Rule editor, Recognition tab, Validation Rule XQuery field.
The Order Recognition Rule editor Validation Rule XQuery expression specifies nodes in the incoming customer order that must evaluate to true to accept the customer order into the system. The XQuery has the following characteristics:
In addition, if the Validation Rule fails, OSM automatically creates the order and sets the order state to Failed. The inbound message and validation failure output are attached to the order for reference. You can display and manage the order failure in the Order Management Web client.
The following sample XQuery checks for the existence of a sender ID:
The following sample XQuery checks for correct values in the typeCode data element in the incoming customer order:
Given this XQuery sample, the following part of a customer order would evaluate to true because the typeCode element value is BUNDLE.
See "Understanding Order Validation" for more information about validation rules.
This section refers to the Design Studio OSM Order Recognition Rule editor, Transformation tab, Order Priority XQuery field.
The Order Recognition Rule editor Order Priority XQuery expression specifies an element value in the incoming customer order that identifies the order priority. The XQuery has the following characteristics:
See "About Specifying the Order Priority" for more information about creating order priority XQuery expressions in the order recognition rule and about creating order priority ranges for an order type.
This section refers to the Design Studio OSM Order Recognition Rule editor, Transformation tab, Order Reference XQuery field.
The Order Recognition Rule editor Order Reference XQuery expression specifies an element value in the incoming customer order that identifies the order reference. The XQuery has the following characteristics:
The following example shows a transformation rule XQuery expression that retrieves the order reference number (as a string) from the numSalesOrder field in the incoming customer order:
See "Understanding Order Transformation" for more information about order reference.
This section refers to the Design Studio OSM Order Recognition Rule editor, Transformation tab, Order Data Rule XQuery field.
The Order Recognition Rule editor Order Data Rule XQuery expression specifies nodes in the incoming customer order that must be used in the creation task. The XQuery has the following characteristics:
Figure 3-7 shows the data defined in the creation task in Design Studio.
The following example shows the same fields in the incoming customer order:
The following XQuery expression specifies a variable for the location of the customerAddress node in the customer order that can then be used to map customerAddress child element values to CustomerDetails task data elements:
The following XQuery expression performs this mapping:
In the following example, the XQuery expression returns the <_root> portion of the order. The ControlData portion of the order is populated by the system during the generation of the orchestration plan.
See "Understanding Order Transformation" for more information about order reference.
This chapter describes Oracle Communications Order and Service Management (OSM) orchestration.
Before you read this chapter, read "Order and Service Management Overview" for information about basic OSM concepts.
A single customer order typically includes multiple order line items that request multiple products and fulfillment actions. To process the order, some order line items need to be fulfilled before others; for example, you cannot configure a call-waiting service until the base telco service is provisioned. There are also multiple external systems that OSM must interact with. OSM uses orchestration to handle all of the fulfillment actions efficiently, taking into consideration all of the dependencies between the actions.
To manage orchestration, OSM creates a unique orchestration plan for each customer order. The orchestration plan specifies the fulfillment functions required to fulfill the order, manages the sequence of those functions, and manages dependencies between them.
To create the orchestration plan, OSM reads the requirements defined in each order line item of the customer order and identifies the processes and tasks to fulfill them. For example:
The orchestration plan includes:
There are more entities in an orchestration plan than order items and order components; such as orchestration sequences and orchestration stages, but the main purpose of the orchestration plan is to manage how order items are fulfilled.
You can view order components and their order items in the Order Management Web client. Figure 4-1 shows a list of order components and their order items:
An orchestration plan is generated for each order, based on the contents of the order. The orchestration plan for an order specifies the following:
In the following example, an orchestration plan is created to fulfill the following order items:
Billing has the following requirements:
The following example shows how order components and order items are decomposed to fulfill different services in different regions.
The order components specify how the order items are processed by the orchestration plan. They also specify how the order items are displayed in the Order Management Web client. In this example, an order manager can monitor the status of the different billing components to track the order item progress.
In Figure 4-4, the order components serve two primary functions:
Not all order components run OSM processes. Those order components are used only for decomposition. In the example above, order components in the first and second stages of orchestration play that role. The order components that run OSM processes are called executable order components. The final stage of decomposition creates those order components.
To model how orchestration plans are generated, you model several OSM entities in Oracle Communications Design Studio.
Figure 4-5 shows a generalized process flow for orchestration.
The following process flow shows how OSM uses the orchestration entities to create orchestration plans.
Figure 4-8 shows how to define orchestration stages in Design Studio.
Each order item belongs to a product class. A product class is a group of related products that share common attributes. For example, the products Broadband Light, Broadband Medium, and Broadband Ultimate would all belong to the ServiceBroadBand product class. OSM maps the product class to a product specification.
The product specification manages the first stage of orchestration. It assigns order items to function order components in the first stage of orchestration. It also specifies the dependencies between the function order components. For example, the product specification might specify to process function order components in this order:
The product specification also specifies the fulfillment mode that the order items can be used for. See "About Mapping Order Items to Product Specifications" for more information.
Figure 4-10 shows function order components defined in a product specification.
Figure 4-11 shows order component dependencies defined in a product specification.
Figure 4-12 shows the order component dependencies shown in Figure 4-11. Provisioning must occur before billing, which must occur before marketing, customer updates (SyncCustomer), and collections.
An orchestration plan includes the order items, order components, and dependencies. An order-specific orchestration plan is generated for each order that requires orchestration.
Note: Many types of orders do not require an orchestration plan; for example, some service orders are created specifically for a simple service provisioning task and therefore require no dependencies. |
The orchestration plan for an order specifies the following:
In the OSM Order Management Web client, you can view graphical representations of an order's orchestration plan and dependencies. You can use this information as you model orders to validate that order decomposition and orchestration plan generation is functioning as intended. The graphical representation shows exactly how an order is fulfilled.
The Order Management Web client provides a graphical representation of the orchestration plan in two views:
Figure 4-13 shows three orchestration stages, represented in three columns:
Note: You can model any number of orchestration stages. |
At each orchestration stage, the graph shows the order components created by that stage. The final column on the right shows the order components that are run as part of the orchestration plan. Each component includes a name, which is based on the orchestration stages. Components also list their included order items.
The inset in Figure 4-13 shows details for three executable order components, as displayed in the orchestration plan decomposition.
Figure 4-14 shows the orchestration plan displayed in the Order Management Web client dependency graph. The dependency graph shows the executable order components which are the components shown in the final stage of the decomposition display. In this case, executable components are based on three orchestration stages corresponding to fulfillment function, fulfillment system, and processing granularity. The different colors represent fulfillment functions, such as InitiateBilling or FulfillBilling. The inset shows a detailed view of two order components. Even though the two fulfillment functions are targeted to the same system (BRM-VOIP), processing granularity rules defined for this order require that they take place as two separate actions.
Both of these representations are useful at design time and when debugging orchestration plans. For example, you can use the dependency graph to confirm that an order goes to all of the correct systems in the correct order. Use the decomposition tree to verify that decomposition happens as expected at a particular stage and that the order was decomposed into the correct components, each containing the correct order items.
Order items are individual products, services, and offers that need to be fulfilled as part of an order. Each item includes the action required to implement it: Add, Suspend, Delete, and so on. For example, a new order might add a wireless router; the order item created in OSM is Add Wireless Router.
When you model order items, you do not model every possible order item. Instead, you create an order item specification, which defines:
There must be one order item specification for each type of order received from the order-source system. When you model an order item specification, you can configure the following:
To create order items from customer order line items, OSM needs to know what nodes in the incoming customer order include the data to use in order items. OSM creates orchestration control data from these nodes (see "About Order Item Control Data").
Example 4-1 shows the <salesOrderLine> node-set in an incoming customer order. You can specify these node-sets as order items by creating an XQuery in the Design Studio Sequence editor that returns every instance of <salesOrderLine> contained in the customer order (see "About Order Item Specification Order Item Property XQuery Expressions"). These node-sets produce the Broadband Bundle and the Mobile Bundle order items. The elements in these node-sets can then be specified as order item properties in the order item specification.
Example 4-1 The <salesOrderLine> element in an Incoming Customer Order
Prior to generating an orchestration plan, OSM processes each customer order line item in the incoming customer order and turns it into an order item. The order item properties define the data that is included from these order items using XQuery expressions.
Figure 4-15 shows order item properties defined in Design Studio.
Figure 4-16 shows the order item created from the order item properties shown in Figure 4-15.
Most order items properties must be created in Design Studio and associated to corresponding customer order element values using XQuery expressions (see "About Order Item Specification Order Item Property XQuery Expressions"). However, in some cases the order item property is not provided in the customer order. In this case, you must use an XQuery expression to derive the missing property value from the existing customer order element values (see "About Order Item Specification Order Item Property XQuery Expressions").
Example 4-2 shows an order line item. This order line item adds a Commercial Fixed Service order item. In the following example, notice that the items in bold correspond to the order item properties. However, there are order item properties, such as productSpec and region, that are not in the order line item. Instead, you specify to create those order item properties by using XQuery expressions in the order item specification.
Example 4-2 Order Line Item in an Incoming Customer Order
Figure 4-17 shows all of the order items derived from an order, including the order item shown in Example 4-2.
In Figure 4-17, notice that order items are hierarchical. For example, the Fixed Service order item shown in Example 4-2 is part of the Fixed Bundle order item. In addition, the Fixed Service order item includes three more order items: Commercial Fixed Service, Fixed Caller ID, and Fixed Call Waiting. When you model orchestration, you ensure that the hierarchy in the incoming customer order is duplicated in the OSM order items. See "About Order Item Hierarchy" for more information.
The order item specification defines the order item properties that are required for generating the orchestration plan and the data to display in the Order Management Web client. This typically includes the display name, product class, line ID, requested delivery date, and so on. By contrast, the order item usually would not include supplementary account and customer details such as the street address or mailbox size. That type of data is defined in the task data for each task in the fulfillment data, and in the creation task data when the order is created.
Important: Order item properties do not represent all of the data in an order. For example, they do not define creation task data. That data is captured by transformation rules. Order item properties are a subset of the data and are used for orchestration. |
Figure 4-18 shows part of an order input file and how the city field is mapped to the region order item property in Design Studio. In this example, the <city> element in the XML file is used in the order item property expression.
See "About the Decomposition of Function to Target System Components" for an example of how the region order item property is used in orchestration.
A single order item specification is used for generating all of the order items that can be created for an order. This ensures a consistent order item structure. Therefore:
Important: When defining order item properties, include only the data required by OSM for orchestration. Performance is impacted by the number and size of order item properties. |
Figure 4-19 shows the data on an incoming customer order and the subset of data that is used for order items.
The properties you define for your order items will be different from those pictured in Figure 4-19. However, this selection provides a good example of the type of order properties that are commonly configured:
Order items can be organized hierarchically based on the content of the original customer order. The hierarchy can include various types of order line items, such as offers, products, and bundles of products or services. For example, an order could include a Broadband-VoIP offer with a High Speed Internet bundle, an Internet Services service bundle, and a Wireless Router product item. OSM maintains the order line item hierarchy from the customer order in the order item hierarchy. Maintaining this hierarchy allows OSM to aggregate order item status from a hierarchy of order items.
Figure 4-20 shows an item hierarchy that reflects the structure of the original customer order.
The hierarchy is defined in the <lineID> and <parentLineId> elements. Figure 4-21 shows the first part of Figure 4-20, as it appears in an incoming customer order.
To define the order item properties that specify the hierarchy, you configure the order item hierarchy in the order item specification using an XQuery expression. See "About Order Item Specification Order Item Hierarchy XQuery Expressions" for more information.
The first orchestration stage assigns order items to function order components, by using product specifications. You need to model how to map order items to product specifications and implement the model using an XQuery expression (see "About Mapping Product Class and Product Specification XQuery Expressions" for more information about using XQuery to map product class to product specifications).
You can create product classes by importing them or by creating them manually in Design Studio.
When you model a product class, you can specify:
Figure 4-22 shows a product class in Design Studio.
Product classes are typically created in a master product catalog in a CRM or other order-source system. You can import product classes from the Siebel product catalog into Design Studio. This is accomplished by using an Enterprise Business Service (EBS). The EBS supports a query interface that enables modelers to specify a Siebel product class ID and retrieve its definition. Design Studio converts the product class definition into a product specification.
You can map multiple product classes to one product specification. This enables you to introduce new products in existing product classes without needing to create new product specifications or fulfillment flows.
When new products are added to the master product catalog, the corresponding product class must be imported into Design Studio and mapped to a product specification.
In addition to defining order item properties in the order item specification, you need to provide a storage area for the order item properties. You do so by adding control data to the order item specification Order Template tab. This definition is automatically added to the order's order template. This makes it easier to track which entity is the master of the data and enables easier refactoring and maintenance of the overall order specification. Figure 4-23 shows the order item properties in the control data in an order template.
When you define the control data, note the following:
Note: To define data properties, you edit the entry in the data schema, not in the order item specification. |
An instance of ControlData/OrderItem is created for each data element returned by the order item selector from the orchestration sequence (see "About Creating Order Items from Customer Order Line Item Node-Sets").
The OracleComms_OSM_CommonDataDictionary model project contains predefined base data elements for control data. Oracle recommends that you use the data schema of this model project to add the ControlData/OrderItem structure to the order item specification Order Template tab.
Decomposition is the process of organizing order components into increasingly granular order components.
There are typically three stages of decomposition, which decompose order items into these types of order components:
Figure 4-24 shows a simplified decomposition process. In this example, the order includes two order items, adding a mobile service and adding a fixed service. The decomposition proceeds as follows:
Order items are assigned to function order components by using a product specification. See "About Mapping Order Items to Product Specifications" for more information.
Order items are often included in more than one order component. This is because order item fulfillment often requires multiple functions. For example, the top-level order item Create Mobile Service would be included in any order component that included the child order items belonging to Create Mobile Service.
Order components are usually modeled by extending order component specifications in Design Studio. For example, you can create a base order component for all function types and extend it for individual function types such as billing or collections. Figure 4-25 shows the Function order component as the base component, with extended components for specific functions.
Each order component has a component ID and a component key. The component ID is specified at design time. The component key is generated for each instance of the order component at run time. You can use customized order keys when assigning order items to order components.
By default, the component ID is the name of the component; for example, Billing Function or Billing System. The component key is a concatenation of the names of the components in the orchestration stages. For example, if the component IDs are modeled as:
The order keys generated at run time are:
You can customize how order keys are generated. See "About the Decomposition of Target System to Granularity Components" for an example of how to use customized order keys to generate granularity components. Figure 4-26 shows order component keys displayed in the Order Management Web client, in the Orchestration Plan page's Dependencies tab.
The following sections describe the decomposition of order items to function order components.
The first step in decomposition is to assign order items to function components. To do so, OSM uses the product class to find the product specification that the order item uses. (See "About Mapping Order Items to Product Specifications" for more information.) The product specification defines the order components to add the order item to.
Figure 4-27 shows the function order components selected in the Service.Broadband product specification. In this case, order items that use this product specification need all of the functions; billing, collections, provisioning, and so on.
Figure 4-28 shows the function order components selected for a non-service product specification. In this case, the order items do not need provisioning, so the provisioning function is not selected.
Figure 4-29 shows how to use a base specification to define the same function order components as described above. In this case, the base product specification selects all of the function order components except provisioning. The service and non-service product specifications inherit the selections. The service product specification adds the provisioning function. The non-service product specification does not add it.
In addition to using the product specification to assign order items to function components, you model an orchestration stage, which specifies to create the function order components to create. Figure 4-30 shows the function order components created at the DetermineFulfillmentFunction orchestration stage.
When OSM creates the order items and order components, it produces a set of control data. The control data provides information OSM requires to fulfill the order. OSM uses the control data to track the status of the entire order and to track the status of the individual order items. During fulfillment, order component transactions update this control data with system interaction responses.
Design Studio automatically generates control data for function order components provided that orchestration entities are preconfigured correctly and you use the OracleComms_OSM_CommonDataDictionary model project. If you do not use the OracleComms_OSM_CommonDataDictionary model project, you must manually model order component control data. See the Design Studio Help for information on how order component control data is automatically generated or how to manually model it.
See "About Order Template Control Data" for more information on adding function order components to the order control data.
You can use conditions to add order items to an order component only when the XQuery for the condition evaluates to true. For example, you might include an order item based on an XQuery that checks the action code (Add or None). This is useful in the case of an update to a service that changes some features while leaving other features unchanged. See "About Order Item Specification Condition XQuery Expressions" for more information.
To summarize this example, to model the decomposition from a order items to a function component, you model the following:
The following sections describe the decomposition of order items from functional components to target systems.
After the order items have been assigned to function order components, they need to be further decomposed into target system order components. To do so, you use decomposition rules.
A decomposition rule specifies a source order component and a target order component. Figure 4-31 shows a decomposition rule from the billing function component to the billing target system component.
You can use decomposition rules to decompose order items from one function component to multiple target system components. Figure 4-32 shows the source and target order components for two decomposition rules:
These two decomposition rules decompose the order items in the ProvisioningFunction order component into two target system order components based on Region 1 and Region 2.
Each of the decomposition rules uses decomposition conditions to specify which target system to use for a particular order. The target system is selected if the XQuery expression associated with the condition evaluate to true. In this example, the XQuery expression uses the value of the region order item property to make this evaluation. If the value of region is Toronto, then OSM selects the condition and target system for Region 1. If the value of region is New York, then OSM selects the condition and target system for Region 2. See "About Order Item Specification Condition XQuery Expressions" for more information about creating an XQuery condition expression that can be used for with a decomposition rule.
In addition to creating the decomposition rules that define the source and target components, you need to create an orchestration stage that produces the target system order components. Figure 4-33 shows the target system order components produced by the DetermineTargetSystem orchestration stage.
To summarize, to configure how order items are decomposed from a function order component to a target system order component, you do the following:
The following sections describe the decomposition of order items from target system components to granularity components.
After order items have been decomposed into target system order components, the next step is to decompose them into the granularity order components.
Some examples of the granularity requirements are:
The following example shows how to decompose target system order components items into bundle granularity components. You configure the following:
You create the customized order component by editing the bundle order component specification. Figure 4-35 shows an order component with a customized component ID.
In this example, you need to configure a decomposition rule and a bundle granularity order component specification to make sure that order items for a fixed service and a broadband service are decomposed into separate bundle granularity components, based on their customized component IDs. The customized component IDs result in separate instances of bundle order components, with separate component keys. This allows OSM to process the order components for the fixed service and the broadband service separately.
If you had not created customized component IDs, the component key of both order items would be BillingFunction.BillingSystem.Bundle. The order items would be processed together in the same order component.
This customization also ensures that the component ID is the same for order items within the same granularity (for example, a bundle) but not for order items at a higher granularity.
In addition, you may want to group order items into custom component IDs based on order item requested delivery date. For example, you might want an order component to process all order items with a requested delivery date that falls within the first two days of when an order start, and another order component for the next two days. You can further combine these grouping by requested delivery date within order item hierarchy groupings.
See "About Component Specification Custom Component IDs XQuery Expressions" for more information about configuring custom order component hierarchies using XQuery.
In addition to creating the decomposition rules that define the source and target components, you need to create an orchestration stage that produces the granularity order components.
To summarize this example, to model the decomposition from a target system order component to a bundle order component, you model the following:
Sometimes, you need to assign order items to order components that would not be assigned by their product specification. This is often the case when an interaction with an external system requires a specific context for an order item.
For example, a billing system might need to process billing-related order items in the context of a bundle, to manage the relationships between balances, discounts, and so on. Billing charges are often order line items, such as an installation service, that are included in the order outside of the service billing bundle hierarchy. However, they might need to be associated with the billing bundle to ensure that the charge is made against the correct service. In that case, you can associate the billing charges with a bundle order component.
By contrast, billing order items might be sent to the billing system in the context of a whole order. In that case, you do not need to associate the order items to a bundle, because they are already in context.
Figure 4-36 shows the associated order items, displayed with (assoc) in the orchestration plan.
Important: Associated order items are not considered as part of the decomposition and dependency calculations when OSM generates an orchestration plan. Therefore, you cannot reference associated order items in decomposition or dependency rules. |
You model order item associations in product specifications. Figure 4-37 shows an order item association modeled for the Bundle order component in the Service.Mobile product specification.
There are two ways to associate order items:
The fulfillment mode is the overall purpose of the order. For example:
Every incoming customer order can specify a fulfillment mode.
OSM can use the fulfillment mode as part of the orchestration process. For example, if OSM receives two identical incoming customer orders with different fulfillment mode order item properties, it generates a different orchestration plan for each order. The two plans include different executable order components with different dependencies among order items.
Fulfillment modes are configured in the following places:
Figure 4-39 shows the fulfillment modes defined in a product specification. Any order item that uses this product specification can be processed in either the Cancel or Deliver fulfillment mode.
When a product specification includes multiple fulfillment modes, you can model a different set of order components and dependencies for each fulfillment mode. Figure 4-40 shows the order components selected in a product specification when the fulfillment mode is Deliver. Figure 4-41 shows the same product specification, with different order components selected because the fulfillment mode is Cancel.
An orchestration plan is based on two main factors: decomposition, which derives the order components, and dependencies, which dictate when the order components are allowed to run.
Dependencies are relationships in which a condition related to one order item must be satisfied before another item can be processed successfully. For example, a piece of equipment must be shipped to a location before the action to install it at that location can be taken.
You can model the following types of dependencies:
You typically create dependencies between order items in the same order (intra-order dependencies). However, you can also create dependencies between order items in different orders (inter-order dependencies). For example, the order items in a follow-on order for VoIP provisioning might depend on the execution of the order items in the original order for DSL provisioning. See "About Inter-Order Dependencies" for more information.
A dependency requires two order components: the waiting order item and the blocking order item. The blocking order item is the order item that must complete before the waiting order item is started.
Dependencies can be based on several different factors, including:
Order items can have combinations of dependencies. For example, an order item for an installation can depend on a combination of a completion status dependency (item successfully shipped) and date dependency (wait two days after shipment to schedule installation).
Note: You can manage dependencies during amendment processing; for example, when you submit a revision order. See "About Compensation and Orchestration" for more information. |
Although dependencies exist logically between order items, they are managed by order components. In other words, if any item in a component has a dependency, the component as a whole cannot be started until the dependency is resolved. In the Order Management Web client, order items include dependency IDs to indicate items whose dependencies are managed together. See Order Management Web Client User's Guide for more information.
You can model dependencies in two ways in Design Studio:
Figure 4-42 shows order items displayed in the Order Management Web client. In this example, the billing order items for a fixed service can start immediately because they have no dependencies. The billing order items for high-speed Internet must wait until the provisioning order items have completed.
The following sections describe dependencies that can be created within the same order.
The simplest form of dependency is an order item dependency, configured in a product specification. This type of dependency is based on function order components; for example, the billing order component cannot start until the provisioning function has completed. Figure 4-43 shows an order item dependency in Design Studio.
Figure 4-44 shows the dependency relationships shown in Figure 4-43. Note the two layers of dependency: billing is dependent on provisioning, and everything else is dependent on billing.
In addition to defining the function order components, you need to define the conditions that govern the dependency. The default condition is to wait until the final task associated with the order item has completed. Figure 4-45 shows a wait condition defined in Design Studio. In this case, the waiting order item must wait until the blocking order item task has reached the Completed state. See "About Order Item Dependency Wait Conditions" for more information.
Dependency wait conditions specify the condition that the blocking order item must be in before the waiting order item can start. For example, the default wait condition is to start the waiting order item when the last task associated with the blocking order item reaches the Completed state.
You specify wait conditions in product specifications and orchestration dependencies. You can set different wait conditions for each dependency. The wait conditions can be:
Figure 4-46 shows the wait condition options in a product specification in Design Studio. The orchestration dependency wait condition options are identical.
You can base a dependency on a change to data. The data must be included in an order item property, and it must be in the task data of the task associated with the blocking order item.
To configure the dependency, you define the following:
Figure 4-47 shows a data change dependency in Design Studio.
In Figure 4-47:
The Relative Path field (not used in this example) is an optional field you can use to specify a child data element in the order item properties.
You can define dependencies across different order items by basing the dependency on the product specifications of the order items. For example, you can create a dependency that specifies to provision fixed services only after broadband services have been provisioned.
Figure 4-48 shows a dependency based on product specification. In this example, the dependency requires that fixed services be provisioned before broadband services. To configure this type of dependency, you edit the product specification of the waiting order item. In the product specification, you provide a list of waiting and blocking order components.
Figure 4-49 shows the dependency relationships shown in Figure 4-48. Note that fixed provisioning is the blocker for broadband provisioning and for fixed billing.
Using properties correlation is the most flexible way to configure dependencies. You use this method to create a dependency on two different order items that share the same order item property. As with other dependencies, you specify a blocking component (the From Component field) and a waiting component (the To Component field), but you also enter an XQuery expression to select the order item property that order items in the To Component field must share with order items in the From Component field (see "About Product Specification Order Item Dependency XQuery Expressions" for more information).
OSM is able to create dependencies at run time by inferring dependencies. For example, you might create this series of dependencies:
Provisioning - Billing - Marketing
If the order item has no billing function, there is an inferred dependency between Provisioning and Marketing, even though you have not modeled that dependency. Provisioning must complete before Marketing can start.
Inferred dependencies mean that whenever A is dependent on B and B is dependent on C, A is dependent on C. This avoids the need to model every dependency that might be possible.
Figure 4-50 shows a sample dependency configuration. Figure 4-51 shows the run-time view of the same configuration when there is no billing function. In this case, the Order Management Web client shows dependencies from provisioning to marketing, synchronize customer, and collections.
Inferred dependencies are supported within a product specification, but they are not supported across product specifications. For example, in Figure 4-52, OSM does not infer a dependency from ProvisioningFunction(Service.Fixed) to BillingFunction(Service.Broadband). You must specifically model that dependency.
An inter-order dependency is a dependency between order items in different orders. You typically configure this type of dependency to manage changes to an order when that order has passed the point of no return and cannot be amended. However, you can also use inter-order dependencies for other purposes, such as managing fulfillment functions on different systems, load balancing, and so on.
When using inter-order dependencies, the blocking order is the base order, and the waiting order is a follow-on order. A typical scenario is:
Here are some important points to know about inter-order dependencies:
You must model the inter-order dependencies into both the base order and the follow-on order.
To configure an inter-order dependency, you use the Order Item Dependencies tab, as shown in Figure 4-53. The configuration typically consists of the name of the dependency and its XQuery or data instance (see "About Order Item Inter Order Dependency XQuery Expressions" for more information about inter order item XQuery expressions).
You can create inter-order dependencies that involve order item hierarchies. For example, you can specify that the blocking order item include all of the order items in its hierarchy. To do so, you select the child completion dependency when specifying an order item hierarchy (see Figure 4-54). For more information about order item hierarchies, see "About Order Item Hierarchy").
You use orchestration dependencies to create dependencies between order components that are not based on product specifications. For example, if you need to define a generic dependency or want to model one without having to modify a product specification, you can use an orchestration dependency specification.
As with dependencies defined in product specifications, you can specify wait conditions and the type of order item dependency (for example, order item, product specification, and property correlation).
Figure 4-55 shows an orchestration dependency in Design Studio.
In OSM, you use fulfillment states to provide an aggregated status of order components. Fulfillment state functionality, which is an optional part of the orchestration configuration, provides the ability to compose the statuses received from external systems into normalized statuses for the order components, then into individual statuses for order items, and ultimately to a single status per order. Fulfillment state values are available in the Order Management Web client.
When OSM sends requests to external fulfillment systems, the external fulfillment systems respond with the status of the request; for example, Completed or Failed. Some fulfillment systems send multiple interim status update messages to indicate progress before sending a final completion response. Both interim and final statuses are referred to as external fulfillment states in OSM.
Each external system will have its own set of values to indicate status. For example, successful processing might be indicated by Complete in one external system and OK in another. A single order may require OSM to interact with many different external systems, so there is a need to normalize the incoming statuses into a common set of values. These values are then used as inputs to user-defined composition rules, which determine a composite fulfillment state for an order item. Using the order item hierarchy and further composition rules, OSM determines the fulfillment state for the entire order. This allows these common statuses to be sent to an upstream system, which would not be able to parse all of the individual statuses returned by the external systems. Fulfillment states can also be used to set a point of no return.
At a high level, configuration of fulfillment state management has the following main steps:
At run time, OSM maps the external fulfillment states 1:1 to mapped fulfillment states on an order item. Composite fulfillment states are composed using the set of input fulfillment states that are available to them:
Whenever one of the input fulfillment states for an order item changes, the fulfillment state of that order item (and all of its parents, including the order) is recalculated. For example, if the mapped fulfillment state of "leaf" order item A changes, the composite fulfillment state of order item A is recalculated. If the composite fulfillment state for order item A changes and it has a parent, order item B, order item B's fulfillment state is recalculated as well. If the composite fulfillment state of order item A does not change, the fulfillment state for order item B is not recalculated.
In addition to providing order item and order processing state information to upstream systems, fulfillment states may also be used to restrict processing of order amendments from the upstream system. This functionality is provided by point-of-no-return processing, which is based on fulfillment states. See "About Point of No Return" for more information.
Figure 4-56 depicts a fulfillment state mapping scenario.
In the figure, OSM receives the external fulfillment states (for example, Completed and Success) and uses fulfillment state maps and composition rules to translate those states into a value that the CRM system uses, such as SuccessfulCompletion. In some cases, the external fulfillment state that indicates a completed order may not be obvious. For example, if the task sent to a billing system is supposed to start the billing, the billing system might indicate a completed order by sending the status Started.
Figure 4-57 shows a more detailed depiction of fulfillment state processing for a small part of a sample implementation.
In the figure:
To model fulfillment states, start by defining external fulfillment states in order components. These external fulfillment states could match the status values returned from an external system, or the automation could transform status values before putting them on the order, in which case the external fulfillment state will match the transformed value.
After defining the external fulfillment states, create fulfillment state mappings in a fulfillment state map and composition rules for either the order, the order item, or both.
Fulfillment state maps are containers for common fulfillment states and fulfillment state mappings. Fulfillment state mappings are the entities that contain the actual mapping information, and fulfillment state maps are containers for the information. Functionally, it does not matter whether you have one or many fulfillment state maps. Each common fulfillment state is available to all of the fulfillment state mappings, regardless of which fulfillment state map it is configured in. This means that each common fulfillment state needs to be unique in the work space.
Common fulfillment states have two functions:
Common fulfillment states, used as either mapped or composite fulfillment states, are configured in a single list in the States tab of the Fulfillment State Map editor. You do not need to know how the common fulfillment state will be used when you configure it. The same common fulfillment state can be used for both purposes at the same time.
Figure 4-58 Detail from Fulfillment State Map Editor States Tab
After the fulfillment states have been created, you create the mappings in the Mappings tab of the Fulfillment State Map editor.
A fulfillment state mapping maps an external fulfillment state to a common fulfillment state. However, each mapping must specify a single product specification, order item, and orchestration sequence, with a single set of orchestration stage and order component combinations. Wild cards cannot be used, which may lead to a large number of mappings.
These criteria should be specified in the order given. Some of the entries later on the list cannot be set until the earlier ones have been entered.
You can further restrict the application of the mapping by specifying any of the following:
Figure 4-59 Detail from Fulfillment State Map Editor Mappings Tab
Orders contain one or more order items. Order items can in turn contain other order items using the order item hierarchy. See "About Order Item Hierarchy" for more information. An order item may be fulfilled by one or more order component specifications.
OSM assigns a fulfillment state for order items that are directly fulfilled by order components. This represents the status of the order item as it was fulfilled by a particular order component. This is referred to as a mapped fulfillment state because it is generated by fulfillment state maps. There is also a fulfillment state assigned to the order item as a whole that takes into account all of the mapped fulfillment states for that order item. This is referred to as a composite fulfillment state because it is generated by order item fulfillment state composition rules. In addition, fulfillment state management maintains a fulfillment state value for the order as a whole, which is also referred to as a composite fulfillment state, and is generated by order fulfillment state composition rules.
Common Features of Order and Order Item Fulfillment State Composition Rule Sets
The configuration processes for order fulfillment state composition rule sets and order item fulfillment state rule sets are similar.
Fulfillment state composition rules for the order are defined in order composition rule sets. These rule sets aggregate the composite fulfillment states of the highest-level parent order items.
A fulfillment state composition rule set contains rules, which in turn contain conditions, as shown in Figure 4-60.
You use order item fulfillment state composition rules to specify the fulfillment state for the order item when all of the conditions are met (logical AND). If there are separate situations that can result in the same fulfillment state (logical OR), create separate rules that evaluate to the same fulfillment state.
The fulfillment state condition based on the input fulfillment states is the same for both order item composition rule sets and order composition rule sets. It allows the inclusion (or exclusion) of one or more fulfillment states according to whether any, all, or none of the input fulfillment states are in a selected list of fulfillment states.
Figure 4-61 Fulfillment States Section of Condition Details Subtab
The fulfillment states selected in the condition are constrained by a conjunction that must be true for the condition to evaluate to true. The available conjunctions are:
The list of fulfillment states that can be assigned as mapped fulfillment states and the list that can be assigned as composite fulfillment states is the same list. The common fulfillment states created in the Fulfillment State Map editor States tab apply to both the mapped and composite fulfillment states. Therefore, when you are generating a composite fulfillment state, the list of fulfillment states that you can choose in this condition is the list of common fulfillment states. (See "Modeling Fulfillment State Maps" for more information about this list.)
Order Item Fulfillment State Composition Rule Sets
In addition to the fulfillment state conditions discussed above, you can set property values that must be present for the composition rule to evaluate to true. If both Any/All/None and property values are defined, both must be true for the composition rule to evaluate to true.
Order Fulfillment State Composition Rule Sets
Order fulfillment state composition rules determine the fulfillment state of the order based on the composite fulfillment states of the highest-level parent order items.
In addition to the common fulfillment state-related criteria discussed above, you can also specify an XQuery expression that must evaluate to true for the condition as a whole to evaluate to true. For example:
This XQuery expression provides the same functionality available to XQuery expressions exposed elsewhere in Design Studio, including access to order data, access to behavior instances, and external configuration.
This section includes information about Orchestration XQueries related to order decomposition.
The orchestration sequence editor provides the following areas to define XQuery expressions related to order decomposition:
This section refers to the Design Studio OSM Orchestration Sequence editor, Order Item Selector XQuery field.
The Orchestration Sequence editor Order Item Selector XQuery expression specifies which node-set to use from the customer order as order items and has the following characteristics:
Figure 4-62 shows an order item selector XQuery expression in Design Studio. In this case, the <salesOrderLine> node-set is specified. OSM can now use the data in the <salesOrderLine> node-set in the incoming customer order in the order items. There can only be one node-set selected per sequence.
This section refers to the Design Studio OSM Orchestration Sequence editor, Fulfillment Mode Expression XQuery field.
The orchestration sequence editor Fulfillment Mode Expression XQuery expression specifies the fulfillment mode for the orchestration sequence from a customer order element and has the following characteristics:
Typically, the fulfillment mode is specified in the order header. For example:
Figure 4-63 shows a hard coded fulfillment mode defined in an orchestration sequence, although normally you would derive the fulfillment mode from a customer order element.
In the following example, the XQuery looks in the incoming customer order (SalesOrder) for the <FulfillmentModeCode> element. It returns the text contained in that element.
This is the XML in the incoming customer order:
In this case, the XQuery returns Deliver.
The Order Item Specification editor provides the following areas to define XQuery expressions related to order decomposition:
This section refers to the Design Studio OSM Order Item Specification editor, Order Item Properties tab, Property Expression XQuery field.
You can define order item properties in the Order Item Specification editor based on the input context using XQuery expressions that have the following characteristics:
You can then access this variable within the XQuery body. For example, the following XQuery body uses $inputDoc to define the ItemReferenceName value:
See "How Incoming Customer Orders are Structured" for more information about typical customer order structure.
You can access this variable within the XQuery body. See "How Incoming Customer Orders are Structured" for more information about typical customer order structure.
After these XQueries have run against an order item, the order item and the order item properties become internally accessible as an XQuery context for other OSM entities. For example,
The following examples show some ways to map data in an incoming customer order to an order item property. The current context is a single node from salesOrderLines, which is one of the nodes returned by executing the orchestration sequence order item selector against the input message (see "About Order Sequence Order Item Selector XQuery Expressions").
To retrieve the requested delivery data for an order item, OSM looks in the incoming customer order for the <requestedDeliveryDate> element:
The definition of the requestedDeliveryDate order item property includes the following XQuery, which returns the text of the <requestedDeliveryDate> element:
This XQuery looks for two elements, <name> and <serviceActionCode>:
It then concatenates the text retrieved from the two elements to form the order item name, in this case Fixed Caller ID [Add].
The productClass order item property uses the following XQuery expression to get the data:
The order item property productSpec must map to an existing OSM product specification entity. The value could be contained in a customer order, but more often, it is derived from other customer order parameter. This property is mandatory.
The construction of the productSpec order item property follows the same rules as other order item property XQuery expressions. See "About Order Item Specification Order Item Property XQuery Expressions" for more information about the XQuery context, prolog, and body.
The following describes a common scenario for deriving product specifications from product class data contained in an order. In other scenarios, the mapping from product class to product specification might be simpler; or, there might be cases where some order line items have no product class, in which case the product class can be derived from the context of the order item.
You typically create product classes in your OSM system by importing them. (See "About Modeling Product Classes" for more information.) When you import product classes, Design Studio creates the productClassMapping.xml file in the resources/productSpecMapping folder of the cartridge project. This file contains product class to product specification mappings.
You can retrieve this mapping data from the productClassMapping.xml file by creating a data instance provider that can be referenced from an XQuery expression body using a data instance behavior (see "Using the Data Instance Behavior to Retrieve and Store Data").
For example, the following XQuery creates the $productClassMap variable that references the data instance that points to the productClassMapping.xml file:
The following code creates a variable that references the product class value from the customer order. For example:
You can now create an expression that matches the product class from the order with the product class contained in the productClassMapping.xml file and returns the product specification associated with it or else defaults to the Non.Service.Offer product specification. For example:
In the following example, OSM retrieves the product class Mobile Service Feature Class from the incoming customer order. OSM uses the productSpec order item property to map the product class to a product specification.
The productSpec order item property includes the following XQuery expression:
The productClassMapping.xml file includes the <productClass> element, that maps the Mobile Service Feature Class product class to the Service.Mobile product specification:
To summarize, to map an order line item in an incoming customer order to a product specification, you configure the following:
When you update your product catalog, you might need to add new product specifications. In that case, you need to:
You do not need to change the order item specification or the data instance behavior.
This section refers to the Design Studio OSM Order Item Specification editor, Order Item Hierarchies tab, Key Expression and Parent Key Expression sub tab XQuery fields.
The order item specification editor Order Item Hierarchies Key Expression and Parent Key Expression XQueries specifies the relative hierarchy of order items, in the same order or between different orders, based on an order item value, such as lineId and parentLineId and has the following characteristics:
You can declare the OrchestrationXQueryFunctions class in the prolog to use the ancestors method that returns the current node and all ancestors of the current node based on the specified hierarchy definition. This method can be useful when creating dependencies between order items based on hierarchy. For example:
For more information about the OrchestrationXQueryFunctions class, install the OSM SDK and extract the OSM_home/SDK/osm7.x.y.z-javadocs.zip OSM Java docs (where OSM_home is the directory in which the OSM software is installed and x.y.z are the software release, patch, and build numbers). See OSM Installation Guide for more information about installing the OSM SDK.
See "About the Decomposition of Target System to Granularity Components" for an example of how the ancestors method is used.
For example, for the Key Expression, you can identify a unique key for each order item, typically the order item line ID:
For example, for the Parent Key Expression, you can identify a parent order line item, typically the line ID for the parent order line item:
Figure 4-64 shows an example of an order item hierarchy.
In the following example, the key expression uses the parent order line item's <lineId> element from the order item property customer order:
The parent key expression uses the child order line item's <parentLineId> element from the incoming customer order:
This section refers to the Design Studio OSM Order Item Specification editor, Orchestration Conditions tab, Condition Expression sub tab XQuery field.
The order item specification editor Condition Expression XQuery specifies an order item property value as a condition that you can then use in an Order Decomposition Rule or in a Product Specification to determine whether an order item gets included in an order component. The XQuery for the condition has the following characteristics:
See "About Product Specification Order Component Condition XQuery Expressions" for a description of the XQuery condition based on the ServiceActionCode. See "About Decomposition Rule Condition XQuery Expressions" for a description of the XQuery condition based on the region.
Another condition could be created that would only evaluate to true if the value of region was set to Sao Paulo. In this case, the order item would only be included in the order component if the region were set to Sao Paulo.
The product specification editor provides the following areas to define XQuery expressions related to order decomposition:
Note: The XQuery expressions discussed in this chapter also apply to the Orchestration Dependency editor. |
This section refers to the Design Studio OSM Product Specification editor, Orchestration Plan tab, Order Components sub tab, Conditions sub tab XQuery field.
The Product Specification editor Component Condition Expression XQuery determines whether to include or exclude an order item from an order component. You can create a new specification from the Product Specification editor or select from conditions created in the Order Item Specification. See "About Order Item Specification Condition XQuery Expressions" for more information about the context, prolog, and body of condition XQuery expressions.
Figure 4-65 shows an order component condition in Design Studio.
The Example 4-3 XQuery expression only evaluates to true if the value of ServiceActionCode is not NONE or UPDATE. For example, if the value of ServiceActionCode were ADD, then the order item would be included in the order component.
This section refers to the Design Studio OSM Product Specification editor, Orchestration Plan tab, Order Components sub tab, Order Item Association sub tab, Property Correlation XQuery field.
The Product Specification editor Order Item Association XQuery assigns order items to order components that are not assigned by their product specification. These order item associations are typically required when external systems need a specific context for an order item and includes the following characteristics:
where
Given the sample provided in the context bullet, this XQuery would return the following association:
Example 4-4 shows an XQuery that associates all child order items with their parent items. (See "About Order Item Hierarchy" for more information.) The output of the XQuery expression returns a node-set of <osm:dependency fromOrderItemId='{$fromOrderItem/@id}' toOrderItemId=' {$toOrderItem/@id}'/> where item IDs are the @id attribute of the order item.
Example 4-4 Order Item Association Using Property Correlation
This section refers to the Design Studio OSM Decomposition Rule editor, Conditions tab, Conditions Details sub tab XQuery field.
To associate a condition with a decomposition rule, you can create the condition in the order item specification and select them in the decomposition rule, or you can create them directly in the decomposition rule. See "About Order Item Specification Condition XQuery Expressions" for more information about the context, prolog, and body of condition XQuery expressions.
The following is an example of two decomposition rules, each having a condition set that determines whether an order item is included in the target order component or not. In this example:
The XQuery for the isRegion1 decomposition rule condition is:
This condition specifies the value of the region order item property. If the value is Toronto, the decomposition rule condition is true, and the order item is included in the region 1 target system order component.
The XQuery for the isOtherRegion decomposition rule condition is:
This condition also specifies the value of the region order item property, but evaluates to true only if the value is not Toronto. All order items that have any other value are included in the region 2 target system order component.
The following example includes a variation on the isRegion1 decomposition rule that specifies that all the order items from the source order component to the target order component that have at least one order item with a region property of Toronto are included in the order component. Otherwise, if the condition evaluates to false then none of the order items in fromOrderComponent are included in the resulting order component.
For some functions, there is only one target system in the topology. For example, if you have only one collections system in the topology, you will have one dependency rule that uses a simple mapping from the source collections function order component to the collections target system order component, and no decomposition condition is necessary.
This section refers to the Design Studio OSM Order Component Specification editor, Component ID tab XQuery field.
The Component Specification editor Component ID XQuery can be used to create a custom component ID for an order component. These custom component IDs are typically required when the default component IDs are not sufficiently specific (see "About Component IDs and Component Keys" for more information about the default component ID). The Component ID XQuery includes the following characteristics:
For more information about the OrchestrationXQueryFunctions class, install the OSM SDK and extract the OSM_home/SDK/osm7.x.y.z-javadocs.zip OSM Java docs (where OSM_home is the directory in which the OSM software is installed and x.y.z are the software release, patch, and build numbers). See OSM Installation Guide for more information about installing the OSM SDK. For more information about how the OrchestrationXQueryFunctions are used in custom Component ID XQueries, see:
The following sections describe more complicated custom group ID generation scenarios that use Orchestration XQueryFunction OSM Java package methods.
A more common scenario where custom order component IDs can be used is when there is a need for additional groupings of order components at the granularity level. For example, three levels of decomposition from Function, System, to Bundle, results in the following component IDs:
If you had order items in the Bundle order components that were part of different bundles that go to different the billing system, you would need to separate each order item bundle into different bundle order component. A component ID for such a scenario could look like this:
To create custom component IDs for this scenario, you could use the following order item properties:
For example, the following four order items include two bundles and two associated products ("Order Item 1 - Fixed Bundle" with "Order Item 2 - Fixed Caller ID" and "Order Item 3 - BroadBand Bundle" with "Order Item 4 - BroadBand Service"):
Example 4-5 Order Item 1 - Fixed Bundle
Example 4-6 Order Item 2 - Fixed Caller ID
Example 4-7 Order Item 3 - BroadBand Bundle
Example 4-8 Order Item 4 - BroadBand Service
These order items have the following characteristics:
The customer order includes two bundles with two products. The hierarchy is:
To create the separate customized component IDs for the bundle order items 1 and 3, and include all their corresponding children order items you need to:
To do so, the XQuery uses the ancestors function to find whether the order item has a BUNDLE typeCode or has a BUNDLE typeCode in one of its parent order items. If the order item is a bundle, then a OSM creates a component ID for the bundle. If the order item has a bundle in one of its parent order items, then OSM includes the order item in its parent order item component ID. Example 4-9 shows an XQuery that does this.
Example 4-9 XQuery for Custom Component ID
This XQuery finds the child order line items, finds their parent order line items, and creates a bundle order component for each of the bundle lines. The component keys are:
In another example, there is one offer with two bundles and two products in each bundle. Table 4-1 shows the hierarchy of bundles and products. The component keys use the line IDs of the two bundle items.
Table 4-1 Example Bundle and Product Hierarchy
Line Number | Line Name | Line typeCode | Parent Line ID | Value to Use in Component Key |
---|---|---|---|---|
1 | Triple Play | OFFER | - | - |
2 | Fixed Bundle | BUNDLE | 1 | 2 |
2.1 | Fixed Service | PRODUCT | 2 | 2 |
2.2 | Call Forwarding | PRODUCT | 2 | 2 |
5 | Broadband Bundle | BUNDLE | 1 | 5 |
5.1 | Broadband Service | PRODUCT | 5 | 5 |
5.2 | High-Speed Internet | PRODUCT | 5 | 5 |
In some scenarios, you may want to create custom Order Component IDs based on order item requested delivery date and duration. For example, the following custom component ID XQuery creates order component grouping based on the order item requested delivery dates:
The XQuery creates a new order component for an order item based on the order item's requested delivery date and includes all order items within this group that fall within two days of the first order item's requested delivery date in the group. The XQuery does the same thing for all other order items within the order.
Table 4-2 shows how five order items would be grouped given a custom Order Component ID XQuery that creates a new component IDs.
Note: The group ID names are static with the first order component always called Group1 and the next Group2, and so on. |
Table 4-2 Custom Component ID by Requested Delivery Date and Duration
Order Item | Requested Delivery Date | Group ID |
---|---|---|
A | June 9, 2014 | Group1 |
B | June 10, 2014 | Group1 |
C | June 11, 2014 | Group2 |
D | June 12, 2014 | Group2 |
E | June 12, 2014 | Group3 |
For more information about the context, prolog, and body of this XQuery and the OrchestrationXQueryFunctions package functions, see "About Component Specification Custom Component IDs XQuery Expressions".
You can specify a minimum duration separation value for order items that fall very close to a custom Order ID grouping based on order item requested delivery date and duration. For example, the following XQuery is identical to the one that generated the group IDs listed in Table 4-2, but adds a minimum separation value of one day:
All order item requested delivery dates that fall within one day of a two day grouping, would be included in the two day grouping.
Table 4-3 shows how the five order items would be grouped given a one day minimum separation duration.
Table 4-3 Custom Component ID with a Minimum Separation Duration
Order Item | Requested Delivery Date | Group ID |
---|---|---|
A | June 9, 2014 | Group1 |
B | June 10, 2014 | Group1 |
C | June 11, 2014 | Group1 |
D | June 12, 2014 | Group2 |
E | June 12, 2014 | Group2 |
For more information about the context, prolog, and body of this XQuery and the OrchestrationXQueryFunctions package functions, see "About Component Specification Custom Component IDs XQuery Expressions".
You can combine the function to create custom Component IDs based on order item requested delivery date, duration, and minimum duration separation, or a combination of these functions with order component ID generation based on order item hierarchy. The following example creates separate component IDs for order items that, although they have the same requested delivery date, are part of different order item hierarchical groupings:
Table 4-4 shows how five hierarchically divided order items would be grouped given a one day minimum separation duration.
Table 4-4 Custom Component ID with a Minimum Separation Duration
Order Item | Requested Delivery Date | Group ID | Component ID |
---|---|---|---|
A.1 | June 9, 2014 | Group1 | A/Group1 |
A.1.1 | June 11, 2014 | Group1 | A/Group1 |
A1.2 | June 19, 2014 | Group2 | A/Group2 |
A.1.3 | June 20, 2014 | Group2 | A/Group2 |
B.1 | June 9, 2014 | Group1 | B/Group1 |
B.1.1 | June 11, 2014 | Group1 | B/Group1 |
B.1.2 | June 12, 2014 | Group1 | B/Group2 |
For more information about the context, prolog, and body of this XQuery and the OrchestrationXQueryFunctions package functions, see "About Component Specification Custom Component IDs XQuery Expressions".
This section includes information about Orchestration XQueries related to orchestration dependencies.
This section refers to the Design Studio OSM Product Specification editor, Dependencies tab, Order Item Dependency sub tab, Property Correlation XQuery field.
The Property Correlation XQuery can be used to create dependencies between different order items using order item properties. The Property Correlation XQuery has the same context, prolog, and body structure as the Product Specification editor, Order Components, Order Item Association XQuery field. See "About Associating Order Items Using Property Correlations XQuery Expressions" for more information.
Example 4-10 shows a dependency that requires provisioning of an Internet service before shipping a modem. This involves two order items: provision Internet service and ship modem. The correlating property is the order item ID.
Example 4-10 Properties Correlation Dependency
In this example:
If the order item IDs are:
Then the XQuery returns the following:
This section refers to the Design Studio OSM Product Specification editor, Orchestration Plan tab, Dependencies sub tab, Wait Condition sub tab, Wait Delay, Duration XQuery field.
The wait delay duration XQuery expression specifies the duration of delay, based on an order item property, before starting a waiting order component after all dependencies have been resolved.
where
Example 4-11 shows the sample XQuery to return a duration value.
Example 4-11 Wait Delay Duration Expression
This section refers to the Design Studio OSM Product Specification editor, Orchestration Plan tab, Dependencies sub tab, Wait Condition sub tab, Wait Delay, Date Time Expression XQuery field.
The wait delay date time XQuery expression specifies the date and time, based on an order item property, for starting a waiting order component after all dependencies have been resolved.
osm:toOrderComponent: returns the entire set of order items included in the order and returns the requested delivery date of all order items for the wait delay date and time.
Example 4-12 shows the sample XQuery to return a date time value.
Example 4-12 Wait Delay Date Time Expression
The wait for condition data change notification XQuery expression specifies a value that must exist in order item property (typically a blocking order item property) before a waiting order item starts.
This section refers to the Design Studio OSM Product Specification editor, Orchestration Plan tab, Dependencies sub tab, Wait Condition sub tab, Wait For Condition, Data Change Notification XQuery field.
Example 4-13 shows the XQuery that evaluates the data change. The dependency is met when all blocking order items have reached a state of PROVISION STARTED.
Example 4-13 XQuery for Data Change Dependency: All Blocking Order Items Must Be Complete
Example 4-14 shows a different example. The following example returns true when at least one blocking item is completed.
Example 4-14 XQuery for Data Change Dependency: At Least One Blocking Order Item Must Be Complete
This section refers to the Design Studio OSM Order Item Specification editor, Order Item Dependency tab, Order Item Selector XQuery field.
This XQuery expression creates dependencies between order items across orders.
where
Example 4-15 shows an XQuery for an inter-order dependency.
Example 4-15 Inter-Order Dependency XQuery
This chapter describes how Oracle Communications Order and Service Management (OSM) uses processes and tasks to fulfill order requirements.
Before reading this chapter, read "Order and Service Management Overview" for more information.
A task is a specific activity that must be carried out to complete the order; for example, if an order needs to verify that an ADSL service was activated, you might model a task named Verify ADSL Service. Tasks can be manual or automated. Manual tasks must be processed by an order manager, using the Task Web client. Automated tasks run automatically with no manual intervention. See "About Tasks" for more information.
A process is a sequence of tasks. A process includes tasks, subprocesses, the sequence in which tasks are run, and ways to control how the tasks are run; such as rules and delays. Processes allow you to break down the work required to execute and fulfill an order into functional tasks, which can be distributed to various systems and people to be completed in a controlled manner. See "Understanding Processes" for more information.
Figure 5-1 shows a process in Oracle Communications Design Studio. The process adds a DSL service. Each box represents a task in the process. Automated tasks include an arrow in the icon.
The process shown in Figure 5-1 includes the following tasks:
A task is a specific activity that must be carried out to complete the order. For example, to complete an order for a telephone service, the following tasks might be required:
There are two types of tasks: automated and manual.
In Figure 5-1, the automated tasks are used for verifying and activating a DSL service; for example, the automated task Activate DSLAM is used to interact with an activation system to activate the ADSL service.
When you create an automated task, you must also configure an automation plug-in to perform the operation. For example, you could define a task called Verify Address. An automation plug-in can be configured to send order data to a third-party address verification system whenever an order reaches the Verify Address task. The third party returns an address verification to OSM, completing the task. Design Studio provides several built-in plug-ins and a custom template to develop your own plug-in. See "About Automated Tasks" for more information.
To run manual tasks by using the OSM Task Web client, an order manager works from a list of manual tasks called a worklist. Tasks are assigned to the worklist by assigning tasks to workgroups. To complete a task, an order manager typically enters data or reviews the data, and clicks a button to indicate that the task is complete.
Figure 5-2 shows tasks displayed in the Task Web Client.
Automated and manual tasks share many of the same modeling activities, such as defining task data. Some configuration steps, however, are specific to each task type. For example, you model behaviors for manual tasks only.
Most tasks perform actions that fulfill order data; for example, activating a service. You can also use tasks for other purposes. For example:
Tip: You can insert manual tasks in a process that function as breakpoints for debugging. This allows you to control a process when you test it. |
Each task includes a set of data, which you specify when modeling the task. Figure 5-3 shows the task data included in a task for assigning a port.
The data included in a task is data relevant to the function of the task. Table 5-1 shows some example tasks and the task data they include.
Table 5-1 Examples of Tasks and Task Data
Task | Task Data |
---|---|
Add capacity | Bandwidth |
Send customer survey | Name, phone number, address |
Query task (to display data in the Task Web client) | Name, phone number, bandwidth, port ID |
When you model a task, you assign it to an order. The available task data is limited to the data that the order requires. At run time, task data can be entered by an OSM user, provided on an incoming order, or provided from a previous task in the order. Figure 5-4 shows a task specification for a task used by the order type named OsmCentralOMExampleOrder.
Figure 5-5 shows task data defined in a task in Design Studio and how the data is displayed in an order in the Task Web client.
Tip: To improve performance, usability, and security, include only the data that is necessary to perform the task. Unnecessary data is not exposed to the user performing the task, even though the order may contain much more data. |
When modeling orders, it is common to include the entire XML representation of the order in the order data as an XML data type. If you include the XML data, consider defining smaller XML elements for storing sections of a sales order rather than including a single XML data type that contains the entire sales order. This allows you to map only the parts of the order that are needed for each task. Including the XML representation is typically done only in the modeling process as an aid to development.
In addition to defining the data included in each task, you can use behaviors in manual tasks to manipulate many aspects of how the data is displayed, formatted, and validated. For example, you can specify if data is read-only, or you can modify the value of the data in a task. See "About Behaviors" for more information.
Some tasks require multiple task instances to complete. For example, you might need to create three task instances to retrieve three different address fields. To accomplish this, you designate a field as a pivot data element for the task. When OSM runs the task at run time, the system generates a separate task instance for each separate instance of the pivot data element in the order. The system creates as many instances of the task as there are instances of the data field or data structure, up to the maximum number defined for the field. This feature works for a structure of data also. For example, if the address is a structure called Address, with nested elements of Street, City, and Postal Code, the system generates an instance of a task for each instance of the structure. The data that is visible to the task instance will be restricted to data structure that it is for, and that task will not have visibility to the other instances of the data.
Note: OSM compensation processing does not support task pivot data elements. |
You can create a new task by extending from an existing task. The new task inherits all of the data, tasks, rules, and behaviors of the base task from which it was extended. Changing something on the base task is reflected in all tasks extending from it.
For example, if you have multiple tasks that all require the same data subset, you can create a base task that contains this data, then extend from this task to create as many new tasks as necessary. You can add new data and behaviors to each of the new tasks to create unique task and behavior functionality. Extending tasks can significantly reduce duplication and maintenance.
A task state determines the condition of a task in a process. Every task in OSM has a set of states that reflect the lifecycle of the task. The minimum states required for a task to be completed are Received, Accepted, and Completed.
Changing the state of a task changes how it can be worked on; for example, changing the state to Assigned restricts who can work on the task. Table 5-2 shows the predefined task states. All of them are mandatory.
Table 5-2 Task States
State | Description |
---|---|
Received | The task has been received by a workgroup and is waiting to be accepted. |
Assigned | The task has been assigned to a specific OSM user. Tasks that are in the assigned state cannot be worked on by other users. Users with assignment privileges can re-assign tasks if needed. |
Accepted | An order manager has accepted the task and is working on it. A task can be accepted by a user by explicitly changing the state of the task to Accepted or by editing the order. Tasks that are in the Accepted state cannot be worked on by other users unless the state is returned to the Received state. |
Completed | The task has been completed by a user or an automation plug-in. A task that has been completed no longer appears in a user's worklist. |
The Received, Assigned, and Accepted task states are the only task states provided by OSM. However, you can create your own task states. For example, you can define different types of suspended task states; for example, Waiting for Client Confirmation.
You can use task states when defining orchestration dependencies. For example, you can specify to wait until a task has reached a specified state before an order component can be processed. See "About Dependencies" for more information.
A task status represents the result of the task, and determines how a task can transition to a next step in the process. For example, if a task can either succeed or fail, the task status can be either success or failure, and each might transition to a different task in the process.
The statuses that you define in Design Studio appear as task transition options in an OSM Web client. Figure 5-6 shows part of the Task Web client. The list showing Delete and Submit shows the possible statuses for the task. Task statuses can also be displayed in the Task Web client as buttons; for example, the Back and Next buttons.
Figure 5-7 shows part of a process defined in Design Studio. The Assign Port task has two possible statuses: Port Available and Port Unavailable. If the port is available, the status is changed to Port Available. If not, the status is changed to Port Unavailable.
If the status is changed to Port Unavailable, the process transitions to the Add Capacity task. This task has two possible statuses: Next and Failure. If the capacity cannot be added, the task status is changed to Failure, and the process ends. If the capacity can be added, the task status is changed to Next and the process transitions back to the Assign Port task.
The default statuses for a manual task are:
The default statuses for an automated task are
The default statuses for activation tasks are:
You can also select from additional predefined statuses
You can also define your own task statuses.
You can use task states and task statuses to trigger event notifications. For example, changing to the Failure status can trigger a notification to a fallout specialist. See "About Event Notifications" for more information.
You can use task statuses in combination with Constraint behaviors to specify the conditions under which a process can make a transition to the next task or activity in the process.
You use Constraint behaviors to validate order data. For example, you can validate that a telephone number has 10 digits or ensure that a numeric value is between 0 and 100.
Constraint behaviors include a Display as violation severity level and a message to be displayed in the Task Web client when a constraint behavior violation occurs. When Save is clicked in the Task Web client Order editor, the save action taken depends on the constraint behavior violation severity level.
Table 5-3 Constraint Behavior Actions
Constraint behavior violation severity levels, from highest severity to lowest | Message display: | When Save is clicked: |
---|---|---|
Critical | OSM displays the message in bold red text, with the label "ERROR". | The data is not saved. |
Error | OSM displays the message in red text, with the label "ERROR". | The data is saved. |
Warning | OSM displays the message in yellow text, with the label "WARNING". | The data is saved. |
Valid | OSM displays the message in green text, with the label "INFO". | The data is saved. |
You can use task status Constraint values to determine how Constraint behavior violation severity return values affect whether or not a process can make a transition to the next task or activity. Task status Constraint values include:
The task status Constraint value represents the highest allowable Constraint behavior violation value with which the task transition will be allowed to occur. When Update is clicked, in the Task Web client Order editor, the transition action taken depends on the task status Constraint severity value in conjunction with the Constraint behavior violation severity level, if any.
For example, if the task status Constraint value is set to Error, then Error is the highest allowable Constraint behavior violation value with which the task can be transitioned. The task is not allowed to transition if a Constraint behavior violation of Critical occurs, but is allowed if an Error, a Warning, or a Valid Constraint violation occurs.
The following table explains whether task transition is allowed for all combinations of Constraint behavior violation severities and task status Constraint values.
Table 5-4 Constraint Behavior Actions
Task status Constraint value (highest allowable constraint violation): | Task transition allowed for Critical constraint violation? | Task transition allowed for Error constraint violation? | Task transition allowed for Warning constraint violation? | Task transition allowed for Valid constraint violation? |
---|---|---|---|---|
Critical | Yes | Yes | Yes | Yes |
Error | No | Yes | Yes | Yes |
Warning | No | No | Yes | Yes |
Valid | No | No | No | Yes |
None | No | No | No | No |
You can specify the expected length of time to complete a task. This information can be used to trigger jeopardy notifications and for reporting. See "About Notifications" for more information. This information is also used by OSM to calculate the order component duration.
You can specify the length of time in weeks, days, hours, minutes, and seconds. The default is one day.
You can also calculate the duration based on your workgroup calendars. If you have more than one workgroup with different calendars all responsible for the same task, the calculation is based on the first available workgroup that has access to the task. This ensures that a the task only exceeds it's duration based on the workgroup calendar time.
For example, there might be a task with an expected duration of two hours, and the workgroup that processes the task only works 9 AM - 5 PM Monday to Friday as indicated on their workgroup calendar. If such a task is received at 4 PM on Friday, then the expected duration of the task will expire at 10 AM Monday, as there was only two hours of the workgroup calendar time that had elapsed (4-5 PM Friday, then 9-10 AM Monday). This ensures that notifications and jeopardies are triggered appropriately.
See OSM Task Web Client User's Guide for more information.
Task priority is the same as the order priority unless a priority offset is defined. Priority of orders and their tasks becomes effective when the system is under heavy load, ensuring that high priority orders and tasks are not starved of resources by lower priority orders and tasks.
You define the task priority as an offset from the priority of the order itself. This specifies the priority of the task in relation to other tasks in the order.
For example, if the order is created at priority 6, and this task is assigned a priority offset of -2, then this task would run at priority 4 while tasks in the order with no offset would run at priority 6. Similarly, you could assign a task a priority offset of +2, which would mean that the task would run at a slightly higher priority than other tasks in the order.
See "About Specifying the Order Priority" for more information.
See "Managing Changes to Orders" for information about amendment processing.
You can define how amendment processing affects each task; for example, if it should be redone or undone. To model amendment processing, you specify if a task should be re-evaluated and, if so, what should be done (redo or undo then do).
Tasks must be re-evaluated when:
If a task must be re-evaluated, you can specify the following actions:
You can also specify how to handle the task if it is no longer needed. A task can no longer be needed in two cases:
In both scenarios, the system rolls back the order changes. For each task, you can specify that OSM either roll back the task automatically or run a manual undo task. The manual undo task must be completed in the Task Web client to allow OSM to roll back the canceled or obsolete task.
You can assign roles to each task and to each processing type that can be performed on a task; for example, Do, Redo, and Undo. For example, you can restrict basic order processing personnel from redoing and undoing tasks and allow those operations only for fallout specialists. Roles are also used for managing jeopardy notifications for tasks.
See the discussion of roles and permissions in OSM System Administrator's Guide for more information.
There are two approaches to assigning tasks to users in OSM:
For each manual task, you can specify how it is assigned to an OSM user for completion. You can use the following methods:
You can also create custom automatic assignment methods. For example, you might specify that the first task received is the first one assigned or that the last task received is the first one assigned.
Before you can use a custom task assignment algorithm in an OSM cartridge, you must develop then deploy custom task assignment algorithm Java code. The OSM cartridge management tool (CMT) is an Ant based application that you must use to deploy a custom task assignment algorithm to the OSM WebLogic Server.
OSM provides the OSM_home/SDK/Samples/TaskAssignment/code /CustomizedTaskAssignment.java sample task assignment algorithm as part of the selectable SDK Samples OSM installation component as a reference to help develop custom task assignment algorithms. This sample implements the com.mslv.oms.behavior and the com.mslv.oms.behavior.taskassignment OSM API packages and the java.util Java SE package. For more information about the classes in the OSM packages extract the OSM_home/SDK/osm7.2.x-javadocs.zip OSM Java docs (where x is the software build numbers). For more information about the java.util Java SE package, see the Java SE documentation.
Before you can use OSM CMT to deploy a custom task assignment algorithm, ensure that:
To deploy a custom task algorithm to an OSM server using OSM CMT:
For example, for a UNIX or Linux Bash shell:
For example, for a Windows command prompt:
For example, for a UNIX or Linux Bash shell:
For example, for a Windows command prompt:
where:
Note: ejbname, ejbclass, jndiname, and targetfile are preconfigured to deploy the OSM_home/SDK/Samples/TaskAssignment/code/CustomizedTaskAssignment.java sample task assignment algorithm. Replace these default values with those for the custom task assignment algorithm. |
Note: You can import the sample task assignment cartridge from OSM_home/SDK/Samples/TaskAssignment/data/ taskassignment.xml. For more information about importing an OSM model into Design Studio, see the Design Studio Help. |
The Ant script begins to run.
The ant tool compiles, assembles, and deploys the custom task assignment algorithm to the OSM WebLogic Server.
Note: You can also individually compile, assemble, deploy, or undeploy using the following Ant commands:ant compile ant assemble ant deploy ant undeploy |
You can create an automated task to connect to a database, transform some data, or communicate with an external system. Most tasks are automated.
Automated tasks and automated notifications trigger automation plug-ins. An automated task triggers a specific automation plug-in when the task transitions to the Received state. This occurs when an instance of the task is created in OSM. An automated task receives a message internally from OSM, and the information contained in the internal message is made available to the automation plug-in. The automation plug-in uses that information to perform custom logic, update OSM, or send a message to an external system. If a message is sent to an external system, the plug-in is capable of receiving a message externally from the system with which it initiated communication.
When you create an automated task, you must also configure at least one automation plug-in to perform the operation. An automated task might have a single automation plug-in associated with it (for example, to interrogate the task data, perform some calculation, and update the order data), or it might have multiple automation plug-ins associated with it (one to send information to an external system, one to receive replies from the external system, and another to perform some calculation, update the order, and transition the task).
Automated tasks are supported by the following plug-ins:
You can create custom plug-ins. See the Design Studio online Help and OSM Developer's Guide for more information.
There are two types of predefined automation plug-ins: automator and sender.
Both plug-in types can be implemented using XSLT or XQuery.
An automated task can be associated with either a single automation plug-in or with multiple automation plug-ins. For example, you might model multiple automation plug-ins for an automated task to communicate with external systems. These could include:
Important: Before you can model Activation tasks in Design Studio, you must install the Design Studio for Order and Service Management Integration feature. This feature includes the Design Studio for Activation feature for integrating with ASAP and IP Service Activator. To model activation tasks, you must also install the Design Studio for Activation feature. |
An activation task is a type of automated task that provides an integration between OSM and ASAP or OSM and IP Service Activator. By using activation tasks, you can model a process flow that includes one or more tasks that activate services in a network.
Note: Activation tasks include many of the same properties as automated tasks; for example, you can assign permissions, define the task data, and configure notifications. However, you also configure activation-specific data elements, such as how to map data sent to and received from ASAP or how to map data sent to and received from IP Service Activator. |
The interaction between OSM and ASAP or OSM and IP Service Activator is established through a Web request and response, which you configure by mapping OSM task data to ASAP parameters or to IP Service Activator parameters.
Other elements specific to activation tasks are:
Figure 5-8 shows activation task details.
You send fulfillment data to ASAP or to IP Service Activator as a service action request. To model a service action request, you map OSM header data (information that applies to the customer or to all order line items on the order) and OSM task data to the following service order activation data:
Figure 5-9 shows service action request modeling in Design Studio.
After ASAP or IP Service Activator activates a service, it returns information to OSM. You create data structures in OSM to contain the response information returned from ASAP or IP Service Activator. For each event and exception returned by ASAP or IP Service Activator, you select the ASAP or IP Service Activator data that you want to retain, then identify the OSM data structure to which that data is added. When ASAP or IP Service Activator returns an event or exception, OSM updates the order data with the ASAP or IP Service Activator data that you specified.
Tip: The amount of response data from ASAP or IP Service Activator can be very large, though the data that is needed might be small. Parsing large amounts of ASAP or IP Service Activator response data can affect OSM performance. If you notice a reduction in OSM performance due to large amounts of ASAP or IP Service Activator response data, you can specify a condition on specific parameters to limit the ASAP or IP Service Activator response data. |
Figure 5-10 shows service action response modeling in Design Studio.
You can configure state and status transitions to manage completion events (for example, activation complete) and errors returned by ASAP or returned by IP Service Activator. You can define multiple transitions to model different scenarios for variations in the data received from ASAP or received from IP Service Activator. For example, if an ASAP parameter or IP Service Activator parameter returns the value DSL, you may want the task to transition to a DSL task; when the same parameter returns the value VOIP, you want the task to transition to a different task.
You can define state transitions for user-defined states only; you cannot define transitions for system states, such as Received, Accepted, and Completed. At run time, OSM evaluates the conditions in the order and stops evaluating when a condition evaluates to true. Completion events and errors must include a default transition in case all specified conditions fail.
You can configure how to manage an activation task if the associated order undergoes amendment processing. The options are:
A process is a sequence of tasks and subprocesses that run consecutively or concurrently to fulfill all or part of an order. Any number of processes can be defined, consisting of any number or combination of manual and automated tasks. Subprocesses are processes that are launched from another process, as opposed to being launched from an order.
Figure 5-11 illustrates a simple process and its tasks, as shown in Design Studio:
This process manages the fulfillment of a request for an ADSL service:
Note: This example is a simplified example. A more complete process would have a failure path from this task, typically a fallout task to manage the order if the service is not available at that address. |
If the port is available, the next task is Activate DSLAM. However, if the port is not available, the process transitions to the Add Capacity task, and then back to the Assign Port task.
As the tasks are processed, they are displayed in the Task Web client. Figure 5-12 shows two parallel tasks displayed in the Task Web client. They can be completed separately.
The Assign Port task is dependent on the completion of both the Ship Modem self-install Pkg task and the Activate DSLAM task. Therefore, even if the Ship Modem self-install Pkg task completes, the Activate DSLAM task cannot start until the Assign Port task is finished.
Any of the tasks in this process could be configured as automated tasks. For example, the Assign Port task could be an automated task if there was an integration with the inventory system, and the inventory system was able to return the port number for the service.
For a detailed example of a process, see OSM Developer's Guide.
A workflow process is a standard OSM process. A workstream process is a special type of process that is run differently from a workflow process in the Task Web client.
With a workflow process, the Task Web client displays the worklist after it completes each task. This is because a workflow process is intended to distribute work among different users in different workgroups. The next task in the process might be handled by a different user.
With a workstream process, OSM displays the order editor page for the next task automatically without first returning you to the worklist. Next and Back buttons allow you to navigate through the sequence.
A workstream process can include manual and automated tasks. If an automated task occurs, OSM processes it and displays a message indicating that processing is taking place. While automated processing is occurring in the workstream, you can return to the worklist to work on other tasks. The automated task in the workstream will continue to progress to completion. This is useful if the automated task in the workstream takes some time.
After the automated task finishes, and the next task becomes available, any user in the workgroup can pick up the workstream from that point. When the final task in a workstream completes, OSM returns you to the worklist. OSM automatically displays the order editor page for the next manual task in the workstream to the user.
Processes have a single entry point and one or more exit points. When you create the process structure, you must place the tasks in the order in which the process is to complete them.
In addition to running tasks and subprocesses, you can control how a process runs; for example, specify to delay processing a task or redirect the process to another process.
Note: Redirecting a process is useful for backwards-compatibility, but is not recommended. An order that has been redirected cannot use amendment processing. |
You can specify the following properties to processes:
Figure 5-13 shows process Start properties in Design Studio.
You use process activities to design how the process runs. Figure 5-14 shows the Activities options in Design Studio. The example process includes a timer delay between the two tasks.
In addition to the tasks and subprocesses that the process runs, you can control the process by using the following:
Rules evaluate a condition and then specify the next step in the process. For example, a rule task might evaluate the data that describes the geographic region of the order and branch the process appropriately. Rule tasks perform as follows:
Timer delays delay the process until a rule evaluates to true. Timer delays perform as follows:
Event delays delay the process until a rule evaluates to true. Event delays perform as follows:
Joins combine a set of flows into a single flow. (Process flows define the sequence of tasks that the process performs. See "About Flows" for more information.) The unified flow can join flows based on all transitions completing or any one transition completing (by selecting All or selecting Any). Selecting Any will create one instance of the flow for each incoming transition.
Ends stop the process from continuing.
Redirects redirect the process to another task in the same process or to a different process.
Note: Timer and event delays are not used during amendment processing. |
You can create a rule that uses the system data as part of a condition. For example, you can create a rule used in a delay that delays a task transition for one day after the system date. To do so, the data in the rule must be of the dateTime data type. Figure 5-15 shows a rule that triggers one day after the system date.
Process flows define the sequence of tasks that the process performs. You can design flows for specific scenarios, including:
Figure 5-16 shows how flows appear in a process in Design Studio. In this figure, flows are labeled with the task status; for example, route_to_osm.
You can control flows in the following ways:
Figure 5-17 shows flow properties in Design Studio.
A process that starts from another process is called a subprocess.
Figure 5-18 shows a process (Process A) that has two branches. In one branch, a task completes successfully and the process ends. In the other branch, the task fails, which starts a subprocess. When the subprocess ends successfully, the calling task is completed and Process A completes.
When you model subprocesses, you specify the following properties:
There are two ways to model parallel processes:
When planning your order specifications, give careful consideration to which data you make available to each parallel process. Excessive and unnecessary data can have negative impacts on performance, and on usability if manual tasks are involved. Also, make sure to flag data as non-significant if the data is not needed for revision orders. By default, OSM assumes that all data is significant.
An amendment to an order on which some of the data affecting a multi-instance subprocess has changed can cause all subprocess instances to be redone, instead of only directly affected subprocesses to be redone. This can result in unneeded processing for the subprocesses with no data changes.
In amendment processing with multi-instance subprocesses, it is important to contain compensation to only the subprocess instances that require compensation. This is achieved by specifying a key. You specify a key in the Key subtab on the Order Template Node editor for the data element specified as the pivot data element of the subprocess in the order template. When a key is specified for a subprocess, OSM maps the revised data to the current data using the key field and redoes only the subprocess that was affected.
This chapter describes how to use minimum processing duration, life-cycle policies, and order events to manage the life cycle of Oracle Communications Order and Service Management (OSM) orders.
Before reading this chapter, read "Order and Service Management Overview" to learn about basic OSM concepts.
The order life cycle controls when the order starts, and how the order transitions between order states; for example, the conditions that allow an order to be amended.
To manage the order life cycle, you can do the following:
OSM can process orders at different times. In many cases, a customer wants an order to be completed as soon as possible, in which case OSM can start processing the order immediately. However, in some cases, the start date of an order should be delayed until a future date. For example:
In addition, there may be groups of order items within an order that need to be fulfilled at different times. For example, an order might contain three services, such as internet, IPTV, and VoIP. The internet and IPTV services might have an immediate requested delivery date, but the VoIP service might only be required at the end of the month, after the customer's current phone service plan has expired. In this case, you can enable OSM to calculate a time to start fulfilling the VoIP service at a future date that would allow the service to be activated by the requested delivery date: at the end of the month. For more information about enabling calculated start dates, see "About Calculated Order Component Start Dates".
Different groups of order items may have orchestration dependencies configured that have an impact on when a service gets fulfilled. For example, the internet service might be required before you can activate an IPTV or VoIP service. These dependency scenarios are fixed and take precedence over honoring requested delivery dates. In other words, OSM will only honor a requested delivery date for a service if there is enough time to fulfill that service given the time it takes to perform the fulfillment tasks and any dependencies that might exist between one service and another. In such a scenario, the order completion date will be later than the delivery date requested by the customer.
To accurately calculate when an order should start so that it can meet a requested delivery date, you must determine how long it takes to perform certain tasks contained in the order and you must know when a customer wants a service.
Important: Orders must have an orchestration plan to be able to calculate the order completion date. |
When viewing an entire order in the Order Management Web client Summary tab General area, you see the following fields:
These fields are used in, or derived from, an orchestration plan algorithm. This algorithm, at its highest level, uses the Order Creation Date (for orders that start immediately) or the Expected Order Start Date (for future dated orders) in conjunction with the Expected Order Duration to determine whether there is enough time to achieve the Requested Order Delivery date. If there is enough time, then the Expected Order Completion Date is the same date as the Requested Order Delivery Date. If there is not enough time, then the Expected Order Completion Date is later than the Requested Order Delivery Date.
When viewing a specific order item in the Order Management Web client Summary tab General area, you see the following fields:
The following sections describe the design-time and run-time elements that you must model so that the orchestration plan algorithm can generate an order fulfillment timeline.
The following sections describe order item requested delivery dates and aspects of order components that relate to how OSM attempts to honor these requested delivery dates.
OSM calculates the order component start dates based on the requested delivery date for order line items in customer orders. This requested delivery date order line item value must be mapped to an order item specification requestedDeliveryDate order item property in Oracle Communications Design Studio.
You can model the decomposition of order items into order components that typically share the same function, are destined for the same fulfillment system, and share the same processing granularity. The entity that ultimately processes order items is an executable order component that is linked to a process that contains a sequence of manual and automated tasks that fulfill every order item in the order component.
For example, a group of six order items might be gathered in an executable component that is linked to a process that contains an automated task that generates and sends a service request to an activation system. The service request that the automated task builds would contain all the information from the six order items that the activation system requires to activate services that correspond to the order items in the network.
When OSM has determined the order component start date, all order items in the order component begin processing immediately (regardless of their requested delivery date). Although this can mean that some order items might be delivered early, it ensures that no order items are delivered late.
If order items belong to the same function and go to the same fulfillment system need to be fulfilled on substantially different dates, you can model different order components in Design Studio that execute at different stages or within the same stage, but that have different start dates.
In addition, OSM provides Java functions that can be used along with order item hierarchies to further delineate and group order component IDs based on order item requested delivery date. For more information about creating custom component IDs using Java function, see "About Component Specification Custom Component IDs XQuery Expressions".
When you model orders in Design Studio, you need to provide OSM with enough information to be able to meet the order item requested delivery dates with as much accuracy as possible. To do so, you specify a minimum processing duration value that defines how long it typically takes to fulfill all order item within an executable order component. You can model this value at the order component level (see Figure 6-1) or at the product specification order component level (see Figure 6-2). OSM always uses the larger of the two values. This duration should take into account the total duration of any manual or automated tasks involved in completing the process. For example, if you know that it takes one week to ship a telephone, you specify one week for the minimum processing duration for an order component that is used for shipping a telephone.
You can specify a different minimum processing duration for each fulfillment mode in the product specification. For example, the Deliver fulfillment mode can have a different duration than the Cancel fulfillment mode.
Figure 6-1 shows the duration defined for an order component.
Figure 6-2 shows the processing duration assigned to an order component when it is used in a product specification Order Components tab, Selected Order Components sub-tab.
Note: The Duration tab displayed beside the Order Components tab and Dependencies tab in Figure 6-2 is no longer used. This tab still appears in Design Studio to support OSM cartridges that target pre-OSM 7.2.2 servers. |
The minimum processing duration of an order may vary greatly depending on a number of factors:
Because a single order can have multiple values for the minimum processing duration, defined in multiple order components and at the order level, OSM compares all of them (if they are defined) to find the longest processing duration for the order:
OSM uses the larger of the two values as the order component minimum processing duration.
For the minimum processing duration that is assigned to an order component by a product specification, the minimum processing duration for the order component is inherited in product specifications extended from the parent product specification. For example:
Figure 6-3 shows how the duration is inherited from a parent product specification.
In addition to specifying a fixed amount of time as the duration, you can use an XQuery expression. The following expression returns a duration of three hours:
You typically use a duration expression if you have an external system that keeps track of processing duration and the load levels of systems. You can write a duration expression that uses this information dynamically. For example, the calculation can take into account peek activity periods.
The first order component to start processing can contain one or more order items. OSM uses the order item with the earliest requested delivery date to calculate the order component start date. If there were only one level of order component decomposition in the orchestration plan and there were no dependencies between order components, OSM would calculate the order component start date by taking the earliest order item requested delivery date and subtracting the configured minimum processing duration for the order component. This calculated start date would also be the order start date.
In the scenario, the following order component start dates are possible:
The first order component in an order and any initial order component that does not depend on another order component always uses a calculated start date based on order item requested delivery date values. If the order items do not have values for the requested delivery date, then the order begins processing immediately.
Dependent order items start in the following ways:
For a three stage orchestration cartridge with function, system, and granularity components, you can enable calculated start dates at the function level if you wanted all components related to that function to use a calculated start date. Or you can enable calculated start dates at the system level. In this second scenario, one function might decompose to more than one system level component and a calculated start date might only be required for one of them.
An OSM orchestration cartridge can have several order components with dependencies configured between them. OSM always honors any order component dependency wait condition before starting a new order component. You can configure dependent order components to start immediately after the blocking order component is complete and all dependencies have been met, or you can use the calculated start date. See "About Calculated Order Component Start Dates" for more information.
This scenario assumes that the dependency between the order component order items are between different order items. For example, order item 1 is only processed by order component A (the blocking order component) and order item 2, which is dependent on order item 1, is only processed by order component B (the waiting order component).
The following dependent calculated order component start date scenarios are possible:
If OSM processes an order item in more than one executable order component, and there is a dependency between these executable order components, then OSM calculates the order component start dates for the first order component by subtracting the duration from the longest chain of order component durations involved in processing the order item from the earliest order item requested delivery date. This ensures that all order components can be delivered by the requested delivery date. All dependent order components in this scenario would start immediately after the previous order component was resolved. For example, if order item 1 is processed by order component A, B, and C, and B and C depend on A, then the order component start date for A would be the requested delivery date for order item 1 minus the duration of either order components B or C (whichever was longer) and A. Or, if B was dependent on A, and C was dependent on B, then OSM would subtract the total duration of A, B, and C from the requested order delivery date of order item 1 to determine the start date for order component A.
You can submit revision orders to future-dated orders. The revision order can have a different requested delivery date than the base order or the same requested delivery date. In either case, OSM re-calculates the start date for the revision order based on its requested delivery date and on the minimum processing durations of the revised order components.
Note: Future-dated orders that cancel a future-dated base order are special cases. In this situation, the base order is canceled immediately, regardless of the requested delivery dates. |
You can submit a future-dated revision order for an order that has already started processing. Only order components that have not started can have new calculated start dates applied. The new requested delivery date will trigger a compensation only if the order item specification requestedDeliveryDate order item property is marked as significant. Any task compensation required (for example, in previous completed order components) also happens immediately.
As a result of changing a significant order item requested delivery date, OSM calculates a new orchestration plan. Order components that have compensation tasks set with undo, redo, or amenddo compensation strategies are executed based on the dependency graph of the revised base order orchestration plan. The order item requested delivery date modification may change the calculated start date of the order component that is processing the order item and, by extension, may also change the expected order completion date.
The following examples show scenarios for calculating the expected start date for an order and order components.
In this example:
The start date for each order component is calculated as follows:
Because there are no dependencies between the order components, OSM calculates the start date for each order component separately.
OSM always uses the final set of order components for in an orchestration plan to determine the start date for the order component. A final order component has no successor order components. For example, Figure 6-5 shows the order component processing flow for three order items. Order components C and E are final order components.
OSM calculates start dates for each order component starting with the requested delivery date of the final order components minus the order duration and any dependency condition wait delay duration. In this example:
OSM calculates the start date of order component B by subtracting the configured duration for order component B (2 days) minus the start date for order component C (January 6th) resulting in a start date for order component B of January 4th.
OSM uses order component C instead of order component E to calculate the start date for order component B because order component C is a final order component with an order item that has the earliest requested delivery date. OSM does this to ensure that all order items being processed by an order component are not started late, even though they may start early. In other words, those order items being processed in order component B complete earlier than order component E needs them, but those order items destined for order component C complete with sufficient time for order component C to meet order item 1's requested delivery date of January 8th.
Finally, OSM calculates the start dates for order components A and D. Order component A has a configured duration of 3 days minus the start date for order component B (January 4th) resulting in a start date of January 1st. Order component D has a configured duration of 2 days resulting in a start date of January 2nd.
The order start date is the earliest of all starting order components. In this example, the earliest order component start date is January 1st for order component A.
Every order has an order state, which indicates the current condition of the order; for example, In Progress, Amending, or Completed. These OSM order states control the progress of the order. For example, an OSM user cannot work on tasks while the order is in the Suspended state, and an order in the Aborted state cannot be restarted.
Note: The order state represents the technical processing state of the order in the OSM system, not the state of the order as defined in a CRM system, or the fulfillment state defined in a fulfillment system. OSM order states are typically not equivalent to the states of the order in the CRM system or other order-source system, which might have different states for the customer order, as well as states for order line items on the order. |
A typical order uses the following states:
Changes from one order state to another order state are called transitions. Each order state has a set of allowable transitions. For example, when an order is completed, it transitions from the In Progress state to the Completed state.
Transitions are controlled by transactions. A transaction is an action taken by the OSM system. For example, the Suspend Order transaction performs the following actions:
Most transactions perform transitions that change the state of the order. However, some transactions do not perform a transition to another state. For example, the Update Order transaction can make changes to an order without changing the order's state.
You can customize how an order transitions from one state to another by customizing the order's life-cycle policy. Every order type that you model must be associated with an order life-cycle policy. Customizing an order life-cycle policy enables you to control the following:
OSM allows any number of order life-cycle policies to be configured. You can create a custom policy for each order type or one general policy that is applied to many order types. The default order life cycle contains the minimum set of order state and transaction combinations assigned to all roles defined in the system.
Transition conditions are Boolean expressions that specify if a transition from one state to another is allowed. For example, for the Submit Amendment state, you can prevent the Process Amendment transition from occurring until a condition is true.
Figure 6-6 shows the life-cycle policy for the Process Amendment transition. In this case, it returns true, so it is always allowed to transition.
A common scenario for configuring permissions is when you set the point of no return for amendment processing. See "About Point of No Return" for more information.
When specifying conditions, the minimum set of required order states is Not Started, In Progress, and Completed. The life cycle must allow an order to transition to those states.
OSM uses more transactions than those shown in Design Studio. Design Studio shows only the transactions that you can assign permissions on and set conditions for. For example, the Complete Task transaction can transition an order to the Completed state, but that transaction cannot be customized.
The transition grace period specifies the amount of time that OSM should wait before transitioning the order. For example, if a Suspend Order transaction is run on an In Progress order, a grace period can allow the order processing to reach a definitive state for all currently executing tasks before transitioning to the Suspended state. In this case, OSM waits until all active tasks are in the Received, Completed, or user-defined Suspended task state. (An active task is a task that is in the Accepted state.) If the grace period expires before all tasks move out of the Accepted task state, OSM transitions the order state.
During the grace period, the target order state header in the Task Web client displays the order state the order is transitioning to. The target order state is populated only when an order is in grace period. Figure 6-7 shows the target order displayed in the Task Web client.
You can specify a grace period for certain transactions, such as Suspend Order, Process Amendment, Cancel Order, and Fail Order. For other transactions, a grace period is unnecessary or not permitted, such as for Submit Amendment, Update Order, and Abort Order.
You can define the following grace period parameters:
Figure 6-8 shows how you can customize the order life cycle in Design Studio. In this figure, the Cancel Order exit transaction for the In Progress order state is selected. A grace period for transitioning to an order cancellation is set for a minimum of one day, and a maximum of five days. A jeopardy event is triggered every hour.
You can specify the roles that are allowed to perform a transaction. For example, while an order is in the In Progress state, your customer service role might need to perform the Update Order and Cancel Order transactions, whereas your fallout specialist role might perform only the Raise Exception transaction.
Figure 6-9 shows life-cycle permissions configured in Design Studio.
OSM includes a standard set of order states and transactions. You cannot add states or transactions, but you can control how the order transitions between states.
Table 6-1 shows the OSM order states.
Table 6-1 Order States
Order State | Description |
---|---|
Aborted | The order has been permanently stopped. This is a final state. An order in the aborted state cannot transition to another order state. See "About the Aborted Order State" for more information. |
Amending | The order is being amended. OSM identifies which tasks are affected by the amended data and compensates the order as necessary. See "About the Amending Order State" for more information. |
Cancelled | The order has been canceled. All tasks have been undone back to the creation task. If an order includes an orchestration plan, the Cancelled state is the final state. The order cannot be resumed. If the order does not have an orchestration plan, the canceled order is returned to the creation task for the order. The order can be re-submitted to be run again. See "About the Cancelled Order State" for more information. |
Cancelling | The order is being canceled. At least one task is running to perform amendment processing for the cancellation. While the order is in the Cancelling state, OSM undoes all completed tasks to return the order to the creation task. When OSM is finished, the order transitions to the Cancelled state See "About the Cancelling Order State" for more information. |
Completed | The order has been fulfilled. There are no tasks running and processing is complete. This is a final state. An order in the Completed state cannot transition to another order state. See "About the Completed Order State" for more information. |
Failed | The order has failed during processing. The Failed state is not a final state; the order can be resumed when the problem is fixed. See "About the Failed Order State" for more information. |
In Progress | The order is actively running. Future-dated orders have an In Progress state while they wait for dependencies to be resolved. See "About the In Progress Order State" for more information. |
Not Started | The order has been created but has not started. There are no tasks running. See "About the Not Started Order State" for more information. |
Suspended | The order has been suspended and all processing on the order in OSM has been halted. No task can be updated or transitioned while the order is in this state. See "About the Suspended Order State" for more information. |
Waiting for Revision | The order is waiting for a revision. This state is common following compensation to an order for fallout, when the order is awaiting a revision from the order-source system to correct something that caused a failure in the originally submitted order. See "About the Waiting for Revision Order State" for more information. |
Table 6-2 shows transactions that are included in the order life-cycle policy and the operations they perform.
Table 6-2 Order State Transactions
Transaction | Description |
---|---|
Abort Order | Immediately and permanently stops order processing. Transitions the order state to Aborted. In the Order Management Web client and the Task Web client, Abort Order transactions are identified as "Terminate Order". |
Cancel Order | Transitions the order to the Cancelling state. After OSM performs the necessary tasks to cancel the order, the order transitions to the Cancelled state. In Design Studio, you can specify a grace period to wait for all accepted tasks to complete before transitioning the order. |
Complete Task | Completes a task and allows the transition to the next task. Completing the last active task implicitly transitions the order to a Completed state. This transaction is not configurable in the life-cycle policy. |
Copy Order | Copies an order; for example, when you create an order in the Task Web client by copying an order. This transaction does not change the order state. It is not configurable. |
Create Order | Creates an instance of an order. The transaction starts the order in either the Not Started state or the In Progress state. This transaction is not a configurable transaction in the OSM life-cycle policy. Permissions for creating an order are not set in the life-cycle policy. Instead you assign an order creation permission to roles and assign permissions on the orders. |
Delete Order | Removes an order from the system. To delete orders, use the |
Fail Order | Transitions the order to the Failed state. Processing on the order is stopped. In Design Studio, you can specify a grace period to wait for all accepted tasks to complete before transitioning the order. |
Fallout Order | Compensates an existing order based on error data identified during provisioning. This transaction is not configurable in the life-cycle policy. |
Manage Order Fallout | Transitions the order to the state it had before it failed. Processing on the order resumes. This transaction enables Task Web client users to locate orders with errors that require manual intervention, analyze the order to determine the cause of the errors, and take the corrective action to correct errors allowing the order to continue to process normally. |
Process Amendment | Transitions the order to the Amending state. This transaction is always preceded by the Submit Amendment transaction. See "About the Amending Order State" for more information. In Design Studio, you can specify a grace period to wait for all accepted tasks to complete before transitioning the order. |
Raise Exception | Raises an exception. The system can be configured to initiate fallout compensation with this transaction. In this situation the order transitions to the Amending state while it compensates tasks. From the Amending state, it can transition to the Failed, In Progress, or Waiting for Revision states. For backwards compatibility this transaction can also trigger a preconfigured exception process. Exception processes are incompatible with OSM's built-in compensation. An order for which an exception process is triggered cannot have compensation applied for revisions, cancellations, or fallout. In this case, the order remains in the In Progress state. In Design Studio, you can specify a grace period to wait for all accepted tasks to complete before transitioning the order. |
Resume Order | Transitions the order to the In Progress state, typically from the Suspended state. |
Submit Amendment | Submits an amendment but does not change the order state. This transaction is followed by the Process Amendment transaction, which changes the order state to Amending. See "About the Amending Order State" for more information. |
Suspend Order | Transitions the order to the Suspended order state. Processing on the order halts. In Design Studio, you can specify a grace period to wait for all accepted tasks to complete before transitioning the order. |
Update Order | Allows changes to order data, remarks, and attachments outside the context of a task. The Update Orders can add new data elements, delete existing data elements, or change existing data element. Update Orders can be sent from locations such as:
In most situations, Update Order does not allow the state of the task to change; for example, when updating an order that is in the Aborted state. When an order is in the Not Started state or the Cancelled state, the Update Order transaction can start or resume the order by running the creation task. To use Update Order to start or resume an order, you need to use the startOrder flag in the Update Order transaction, in an automation plug-in, a Web services operation, or through the Task Web client. You cannot specify to start or resume an order by configuring the order life-cycle policy in Design Studio. |
Figure 6-10 shows OSM order states and transactions.
Note: Because the transaction from Not Started to Completed for revision orders is required by OSM and is performed by the system, you cannot define permissions or conditions for it. Therefore, it is not shown as a transaction from the Not Started state in Design Studio. |
Order states can be categorized by the overall condition of the order that they apply to; for example, if the order is open, closed, or running:
Figure 6-11 shows the order state categories.
A typical order processing scenario uses the following order states:
Figure 6-12 shows the states, state categories, and transactions for a basic order processing flow.
The process for revising an order uses the following order states:
Figure 6-13 shows the order states used for a revision order.
A follow-on order uses the following order states:
A future-dated order uses the following order states:
Transactions for each order state can be optional, mandatory, or prohibited. Optional transactions can either be allowed or prohibited based on conditions and permissions defined in the order life-cycle policy.
Table 6-3 OSM Order Transactions
Order State | Mandatory Transactions | Prohibited Transactions | Optional Transactions |
---|---|---|---|
Aborted | None |
|
|
Amending | Process Amendment |
|
|
Canceled | None |
|
|
Canceling | None |
|
|
Completed | None |
|
|
Failed | None |
|
|
In Progress | Complete Task |
|
|
Not Started | Complete Task |
|
|
Suspended | None |
|
|
Waiting for Revision | None |
|
|
An order can be transitioned to the Aborted order state when an unrecoverable error or condition has stopped the processing for the order and the order cannot return to a valid processing state through a revision or fallout management activity within OSM. It can be considered a last resort to prevent any further execution of an order.
An order can be terminated manually from the Order Management Web client or from the Task Web client. (In the Web clients, the command Terminate Order moves the order to the Aborted order state.) You can also transition to the Aborted order state programmatically by using the OSM Web services API or by using an automated task.
The Aborted order state is a final state; the order has been permanently stopped. An order in the Aborted state cannot transition to another state.
Terminated orders may require manual intervention in an OSM Web client to compensate for tasks that have completed or that were in the process of completing. For example, you may be required to release port assignments, delete accounts in billing systems, and so forth.
The entrance transaction to the Aborted order state is Abort Order. This transaction can be run from all order states except the Completed order state.
The exit transaction from the Aborted state is Delete Order, which removes the order from the OSM system.
The Update Order transaction is used when the order is updated manually, outside of the order processing.
Figure 6-14 shows the order states that can transition to or from the Aborted order state.
An order in the Amending state is undergoing compensation. See "Managing Changes to Orders" for more information.
The transactions that cause an order to move to the Amending state are the Submit Amendment transaction (as a result of a revision order) and the Raise Exception transaction (as a result of fallout for which compensation is needed). The order can be amended from the following order states:
To transition an order to the Amending state, OSM uses two transactions: Submit Amendment and Process Amendment. These transactions work together to make sure that the order is in a condition that can be amended and that the amendment is allowed.
Each revision to an order uses the Submit Amendment transaction to place the amendment in a queue. The Submit Amendment transaction does not change the order state. Instead, it makes sure that the order is ready to be amended. For example, there might be life-cycle rules that prevent the order from being amended until a condition is met.
When the order is able to process the amendment, the Process Amendment transaction is run on the latest amendment in the queue, and the transition is made to the Amending state. Not every order in the queue is processed:
Unless multiple revisions are common and frequent, the order state transition to Amending will happen almost immediately after the Submit Amendment transaction.
The configurable exit transactions for the Amending state are:
An order can transition from the Amending state to the In Progress state, but there is no transaction involved. This transition is handled internally by OSM.
An order can transition from the Amending state to the Waiting for Revision state. However, there is no transaction required to transition from the Amending state to the Waiting for Revision state. This transition happens when fallout occurs, and OSM has found that the fallout is caused by the submitted order. In that case, OSM cannot use further compensation (redo/undo) to fix the problem. Instead, OSM waits for a revision to be submitted from the upstream order-source system to fix the problem.
Figure 6-15 shows the order states that can transition to or from the Amending order state.
When an order is in the Cancelled state, all tasks have been undone back to the creation task.
The actions allowed when an order is in the Cancelled state are different depending on if the order has an orchestration plan:
The transaction that causes the Cancelled state is the same Cancel Order transaction that was used for canceling the order.
If the order includes an orchestration plan, the configurable exit transactions are:
If the order does not have an orchestration plan, the configurable exit transactions are:
Important: When resumed after being canceled, the order begins again at the beginning of the execution; it is not resumed at the point in the execution it was in when canceled. |
Figure 6-16 shows the order states that can transition to or from the Cancelled order state if the order has an orchestration plan.
Figure 6-16 Order States that Can Transition to or from the Cancelled Order State if the Order Has an Orchestration Plan
Figure 6-17 shows the order states that can transition to or from the Cancelled order state if the order does not have an orchestration plan.
When an order is in the Cancelling state, at least one live task is running in a cancellation compensation mode. OSM undoes all completed tasks to return the order to the creation task. When OSM has finished, the order transitions to the Cancelled state
The entrance transaction for the Cancelling order state is the Cancel Order transaction. An order can be canceled from the following order states:
The configurable exit transactions for the Cancelling order state are:
Figure 6-18 shows the order states that can transition to or from the Cancelling order state.
The order has been fulfilled. There are no live tasks and processing is complete. This is a final state. An order in the Completed state cannot transition to another state.
The entrance transaction for the Completed state is the Complete Task transaction. It transitions from the In Progress state.
The Complete Task transaction is used internally whenever the last task is completed in the order, which is determined automatically by OSM. Therefore the Complete Task transaction is not shown as part of the life-cycle policy in Design Studio.
The transition from the Not Started state to the Completed state is specific to revision orders. When a revision order that has been submitted and accepted transitions to the Completed state directly, because the compensation for the revision happens on the base order being revised.
The configurable exit transactions for the Completed order state are:
Figure 6-19 shows the order states that can transition to or from the Completed order state.
If an order is the Failed state, the order failed during fulfillment, after the order was submitted by the order-source system.
The entrance transaction for the Failed order state is the Fail Order transaction. An order can transition to the Failed state from the following states:
The configurable exit transactions for the Failed order state are:
Figure 6-20 shows the order states that can transition to or from the Failed order state.
An order in the In Progress state is actively running. Future-dated orchestration orders have an In Progress state while they wait for dependencies to be resolved.
The entrance transactions for the In Progress state are:
Tip: The Cancelled state returns the order to the creation task, so the Resume Order transaction does not resume from the state it was in when canceled. Instead, it resumes at the beginning of the process. |
An order can transition from the Amending state to the In Progress state, but there is no transaction involved. This transition is handled internally by OSM.
The exit transactions for the In Progress order state are:
Figure 6-21 shows the order states that can transition to or from the In Progress order state.
When an order is in the Not Started state, the order has been created but has not started. There are no live tasks other than the creation task.
The entrance transactions for the Not Started state are:
The exit transactions for the Not Started state are:
Figure 6-22 shows the order states that can transition to or from the Not Started order state.
In the Suspended state, all processing on the order has been halted. No task can be updated or transitioned.
The only entrance transaction for the Suspended state is the Suspend Order transaction. Orders can be suspended from the following order states:
The exit transactions for the Suspended order state are:
Figure 6-23 shows the order states that can transition to or from the Suspended order state.
This state is common following compensation to an order for fallout, when the order is awaiting a revision from the order-source system to correct something that caused a failure in the originally submitted order.
The entrance transaction for the Waiting for Revision order state is the Manage Order Fallout transaction, which runs from the Failed state.
An order can transition from the Amending state to the Waiting for Revision state. However, there is no transaction required to transition from the Amending order state to the Waiting for Revision order state. This internal transition is triggered by the Raise Exception transaction and it happens when fallout occurs and OSM has found that the fallout is generated by the submitted order instead of by a task in the process. Therefore, OSM cannot use compensation (redo/undo) to fix the problem. Instead, OSM waits for a revision to be submitted from upstream to fix the problem.
The exit transactions for the Waiting for Revision order state are:
Figure 6-24 shows the order states that can transition to or from the Waiting for Revision order state.
You can configure orders to publish events when any of the following occurs:
Order life-cycle events are published as Java Message Service (JMS) messages containing order identification and state information. You can configure which life-cycle events you want to be generated for an order type in Design Studio.
Figure 6-25 shows the events you can publish.
This chapter describes how Oracle Communications Order and Service Management (OSM) manages changes to in-flight orders.
Any order that is not in a closed state (Completed or Aborted) is an in-flight order. An in-flight order still has the potential for further work to be performed on it.
There are many scenarios that require changes to an in-flight order. The most common scenarios are:
A revision order can be used to correct a failed order.
Note: A single revision order can make multiple changes to an order. |
Note: Order cancellation can also be run from the OSM Web clients. However, if order processing has been configured such that the upstream system initiates cancellation, canceling an order by using the Web clients might cause discrepancies in the order life cycle as it is tracked in the upstream system. |
Using revision orders is the most efficient way to manage changes made to in-flight orders. OSM automatically detects the revisions that must be made and changes the orchestration plan as necessary. No manual work is required to find changes that need to be made. The revision order changes the base order in OSM, so only one order needs to be managed, even when there are multiple revisions to the same order.
When you model orders and tasks, you can control the amendment processing that is allowed for the order. For example:
In addition to revision orders, you can update order data in the following ways:
Update orders can:
You can manually send an update order when the order is in the Not Started state before any tasks are completed. You can also manually send an update order when the order is in the In Progress state. In this scenario, amendment processing can be triggered if a revision order does not match the data manually provided in the update order. Conflicts between manually updated data and revision order data can be avoided if the data is marked as not significant.
Update orders sent by automated task automators are configured as part of normal order processing. The changes from these order updates normally only change task data for a specific automated task. However, amendment processing can be triggered if a revision order does not match the data automatically provided in the update order. Conflicts between automatically updated data and revision order data can be avoided if the data is marked as not significant.
To revise or cancel in-flight orders, OSM performs amendment processing. Amendment processing analyzes the requested changes, determines how to make the changes, and processes them. Amendment processing functions as follows:
To submit the revision order, the upstream system can use either the CreateOrder Web services operation or the CreateOrderBySpecification Web services operation.
The new version of the order can:
Note: You can create revision orders by using the Task Web client. This is typically used only for testing or for low-volume order processing. |
Note: When you model orders, make sure that orders that are expected to be amended are configured to be amendable. If not, an order that is sent as a revision order is instead processed as a new order. This can cause errors during fulfillment because there are two orders fulfilling the same services for the same customer. |
OSM now has two orders to work with: the revision order and the base order.
If a revision cannot be processed, or if the order life-cycle has not allowed the revision, the revision order is set to the Failed state, and the base order continues to be processed.
Note: OSM queues orders that need amending. This means it is possible that multiple revisions are submitted and queued for the same order while the order is in the queue. If amending the order is allowed, OSM chooses the latest version of the amendments in queue by looking at the optional version identifier (if configured) or by the date and time in which they were received if there is no configured version identifier. |
In the Process Amendment state, OSM determines the compensation required. For example, OSM might redo a task with different values for one or more data elements on the task data that were used for input into the task.
For process-based orders, the tasks are analyzed to find the impact of the changes. That impact determines the compensation plan. For example, OSM might need to redo a task with different data values or undo a task if it is no longer required. The data comparison is based on the data in the creation task of the base order and the revision order. See "About Compensation" for information.
For orchestration orders, the order components of the orchestration plan are analyzed to determine which order components need to be redone, undone, or done for the first time (amend do). The tasks of the sub-processes run for each of those order components to be compensated are also analyzed.
Figure 7-1 shows a simplified amendment processing flow.
A simple example of a revision order is as follows:
Figure 7-2 shows the start of the process. In this example, the process begins with the Verify_ADSL_Service task and then transitions to the Assign_Port task.
Figure 7-3 shows the order displayed in the Task Web client. In this figure, the Verify_ADSL_Service_Availability task has an execution mode of Redo. Because the port has not been assigned yet, the Assign Port task has an execution mode of Do, but it cannot be worked on until the order completes compensation for the revision.
The task execution mode can be Undo, Redo, Do, or Amend Do. (See "About Task Execution Modes" for more information.)
You can monitor revisions in the Web clients. Figure 7-4 shows a revision order (Order 316) and the base order that it revised (Order 315).
In most cases, revision orders are submitted from an order-source system. You can also revise and cancel orders by using the OSM Task Web client; for example, by using the Amend Order menu command. This is useful for testing revisions and cancellations within OSM, however, this method is not appropriate for production systems.
You should use the Task Web client to submit amendments only when the order was submitted from the Task Web client originally or when the upstream system cannot submit an amendment. If the upstream system submits an amendment after you manually submit an amendment, data synchronization errors can occur.
When you use the Task Web client to amend an order:
Important: If you use revision versioning, increment the revision version. |
When receiving an order flagged as amendable, OSM checks in-flight orders for a matching value in an order key. (You configure the order key when you model the order specification.) For example, you can specify to use the sales order number as the order key. In that case, when OSM processes an order, it looks for an existing order that has the same sales order number and amends that order.
Tip: Because OSM must check the order key for all in-flight amendable orders, you should make orders amendable only if they might need to be amended. That way, OSM does not need to check for an order key for orders that would not be amended. |
You define the order key in the order specification as one or more XPath expressions that reference one or more data elements in the incoming customer order. If you use multiple data elements, the values are concatenated in the order key. Figure 7-5 shows an order key defined in Oracle Communications Design Studio. The expression is the path to the data in the order template.
OSM generates an order key when the order is created. To assign an order key:
Order key values should not be modified after an order is submitted.
In some cases, multiple revisions to a single order are submitted. Each revision is expected to be a new revision of the in-flight order, not a cumulative comparison of previous revisions. The latest amendment is assumed to be the most complete revision containing all of the changes from earlier revisions. Intermediate revisions are not processed by OSM.
You can use versioning in the revision orders to recognize the order of the revisions as OSM receives them. For example:
To configure revision versioning, you specify a data element on the incoming customer order that OSM checks when processing revisions for the order. You specify the data element as an XPath expression in the order specification Amendable tab. For example, if the data element is <version>, the XPath expression is:
Figure 7-6 shows the version specified in an order.
You can delay amendment processing for an order. For example, the order might be in the middle of running an automated task that is executing system interactions with fulfillment systems, so you want to postpone the processing of the revision until after the tasks complete. After the system interaction is complete, OSM can begin processing the revision.
During amendment processing, the order is in the Amending state, which prevents normal processing such as task updates. This allows compensation to deal with one set of data changes without also needing to carry out normal processing activities at the same time. To manage the transition to the Amending state, OSM does the following:
To control when amendment processing starts, you use the order life-cycle policy to control OSM transactions. A transaction is an action taken by the OSM system. For example, for the In Progress state, you can prevent the Process Amendment transaction from occurring until a condition is true. Figure 7-7 shows the life-cycle policy for the Process Amendment transition. In this case, it returns true, so it is always allowed to transition.
See "About Managing Order States and Transitions" for more information about transactions.
To manage amendment processing, OSM uses two order state transactions, in the following order:
A grace period specifies a period of time to wait for all accepted tasks to complete before an order can transition to a different state. For example, if an automated task has sent a request to an external system, but the external system has not responded, OSM does not know if the task has been completed and therefore does not know if the task needs to be compensated. A grace period set on the Process Amendment order state transaction can allow the order the opportunity to reach a known state for all current tasks before transitioning to the Amending state.
Grace periods are defaulted to be indefinite, so OSM waits until all currently accepted tasks are completed before transitioning to the target state. You can limit the grace period:
If an automation response is received for a task after the order has transitioned to the Amending state, an automation exception is thrown, because the automation plug-in cannot process the response when the order is in the Amending state. The automation exception is sent to the JMS response queue and is retried. When the retry limit is reached, the message is forwarded to an error destination, if one is configured. To manage exceptions that occur during amendment processing, you can review the errors to determine if the messages can be resubmitted or handled by fallout.
If there are multiple queued revisions waiting for the grace period to end, OSM selects the latest version among the queued amendments to process. The other versions are assumed to be out of date and are ignored. See "About Submitting Multiple Revisions of an Order" and "About Modeling Life-Cycle Policies" for more information. See "OSM Order States and Transactions" for information about order states.
To manage changes to an order, OSM uses order compensation. OSM analyzes the required order changes and their impact on everything that has already been completed by the in-flight order including manual updates from Task Web client users and order updates from automated tasks. OSM then creates a compensation plan to define the actions that need to be carried out to amend the in-flight order. After compensation has ended, the in-flight order will have incorporated the required order changes and continues executing normally. You can recognize when compensation is happening to an order when the order is in the Amending state or the Cancelling state.
Note: If you submit a revision order that uses a different cartridge version from the one that the original base order was created with, OSM uses the original base order cartridge version to execute any required compensation tasks and not the cartridge version used to create the revision order. |
When you model OSM entities such as order specifications and tasks, aspects of your model affect compensation, including the following:
You can model compensation in the following entities:
You cannot configure compensation for timer delays or event delays in processes.
When the revision order is received, OSM analyzes the differences between the revision order data and the base order data (or between this revision order data and the last submitted revision order data) to see if a compensation is indicated.
During the compensation analysis, OSM compares the contemporary order perspective with the historical order perspective. The data in the contemporary order perspective can be the data provided in the current revision order and may also include compensation changes made up that point. The data in the historical order perspective is the last data that had been processed on each task.
In Design Studio, you can model compensation strategies for manual and automated tasks statically from a predefined list or dynamically from revision order data. If you model the compensation task dynamically, you can create an XQuery that has access to order data provided in the contemporary and historical perspectives as well as a comparison between the two. You can use the results of this comparison to dynamically select an appropriate task-level compensation strategy. For more information about compensation strategies, see "Modeling Compensation for Tasks".
OSM does the following when discrepancies occur between the contemporary order perspective and the historical order perspective:
OSM compares order data in the following ways:
Note: OSM uses order data keys to determine order data changes during compensation and to identify pivot nodes that generate multiple task instances based on multi-instance data nodes (see "Generating Multiple Task Instances from a Multi-Instance Field") and should be distinguished from order keys used to match base orders with revision orders (see "About Order Keys"). |
To set an order key for a data element value, you must specify the data element as an XPath expression in the Key subtab on the Order Template Node editor.
Oracle recommends using order data keys for multi-instance data nodes to differentiate between instances of the same data node. For example, the data structure in Figure 7-8 can be used multiple times to identify different product specifications. You can associate an order data key to the children nodes of specification to uniquely identify each instance of a product specification contained in a customer order.
You could also make every instance of specification unique by setting a key on specification that points to the name child node. For expression for this key would be:
During amendment processing, OSM identifies all tasks in the order that are affected by the changed order data. It then determines whether the data being changed is flagged as significant. (When you define orders or tasks, you can mark data as Significant or Not Significant. By default, all data is flagged significant.) OSM compensates only those tasks that process significant data.
If any of the data changes are significant, OSM transitions the order to the Amending state and builds a compensation plan based on all affected tasks, creating redo or undo compensation tasks as necessary.
Changes to non-significant data are updated on the in-flight order. For example, if the customer's preferred contact method (email or text message) is marked as non-significant, a revision order that changes only that data does not trigger amendment processing. Instead, the base order is changed, and the revision order is completed without starting amendment processing. The next task that uses the changed data uses the updated values.
You can configure data significance at the following levels:
Each level can inherit or override the significance flag of its parent level. The Data Dictionary is at the top parent level.
The order template can inherit or override the data significance specified in the Data Dictionary. This allows one order type to consider the data significant while another order type does not.
The task data can inherit the data significance set in the order template only to override it as non-significant data. This allows data to be significant in one task and not significant in another. In that case, a revision with that one data element changed would cause the task that considers the data element significant to be compensated: the task that does not consider it significant will not be compensated.
It is not possible to specify a data element as not significant at the order level and significant at the task level.
Figure 7-9 shows how data significance can be inherited and overridden.
Figure 7-10 shows data significance specified in the Data Dictionary. Because this is the top level, there is nothing to inherit the significance from, so there is no inheritance option.
Figure 7-11 shows data significance specified in the order template. In this example, the significance is inherited from the Data Dictionary.
Figure 7-12 shows significance specified in the task data. Note that the significance is either inherited, or it is not significant. There is no option for significant: instead, that value is inherited from the order template.
Tasks run in the following modes:
Undoing tasks is performed in reverse order to how they were run. For example, if task B was completed after task A, then task B is undone before task A is undone.
Undo is used when the order component in the base order has completed, and the revision order has no corresponding order component. A cancellation order, therefore, can include no order components. This causes all of the order components in the base order to be undone. The Orchestration Plan tab in the Order Management Web Client displays nothing when this is the case, indicating that the order may have been canceled.
The Redo execution mode is used when an order component has completed in the base order, and the revision order has the same order component, but specifies different order items or data values.
The Amend Do execution mode functions like the Do execution mode. When a task runs in the Amend Do mode, all of the permissions and automation plug-in logic for the Do mode of that task apply.
See "Example 4: Amend Do Compensation" for an example of how the Amend Do execution mode is used.
Note: You can specify which tasks can by amended by the Redo and Undo compensation modes, but Amend Do is not configurable. This is because OSM determines when Amend Do is required, and the logic followed is that of the Do mode. |
Table 7-1 summarizes the possible combinations and the required compensation for a revision order.
Table 7-1 Compensation Types
Base Order Component | Revision Order Component | Compensation Type |
---|---|---|
Exists | Does not exist | Undo |
Does not exist | Exists | Do (run after compensation is complete) or Amend Do (while the order is in the Amending state. |
Exists | Exists, no changes found | No compensation required |
Exists | Exists, changes found | Redo |
To perform compensation, OSM must identify the tasks that need to be compensated and then do or undo them in the appropriate sequence.
A task needs to be compensated if it was completed and a change to at least one significant data element in the task's data has been made. Tasks in the Received, Accepted, Assigned, or a user-defined state are not compensated. This is because OSM cannot determine what work has been accomplished. For example, an automated task might have sent a request to an external system, but a response has not been received yet. If those tasks have not completed before the grace period expires, they would be started again after the compensation has completed and the order resumes to the In Progress state.
In the Design Studio Task Editor Compensation tab (see Figure 7-13), you can model:
As shown in Figure 7-13, there are two scenarios that need to be compensated:
In the case of a manual task, the task will appear in the worklist in Redo mode, and the user can display the historical perspective and the contemporary perspective of the task data (from the last time the task was run) in two separate tabs. The user updates the data on the Contemporary Perspective tab and completes the task.
Note: When this option is used, it forces all completed tasks subsequent to this task to be undone in reverse sequence prior to executing the undo and then do of this task. To redo the task, you need to roll back all subsequent tasks first, then undo the task and redo it. |
Figure 7-14 shows a process that has two potential paths. In this example, the base order followed the path from Task_1 to Task_2_1. The revision caused the path to change to follow Task_1 to Task_2_2. This means that Task_2_1, Task_3_1, and Task_4_1 do not need any compensation, because they are no longer on the path required to fulfill the order.
The two options are:
You can dynamically assign compensation strategies to tasks by creating XQuery expressions in the Design Studio Task Editor Compensation tab for re-evaluation compensation strategies or compensation strategies for when a task is no longer required.
Note: If the XQuery expression is invalid OSM logs the error but does not rollback the transaction. Instead, OSM uses the static compensation strategy as the default. |
This section refers to the Design Studio OSM Automated Task or Manual Task editor, Compensation tab Compensation Expression XQuery field for re-evaluation compensation strategies:
For example:
For more information about the classes in the OSM packages extract the OSM_Home/SDK/osm7.2.x-javadocs.zip OSM Java docs (where x is the software build numbers).
For example, the following XQuery expression creates variables for the ReevaluationContext methods. The expression then checks that a specific value exists in the $value variable and that the value in the $significantValue variable both exists and is significant. If the value exists and is significant, then the expression sets the compensation strategy for the task to Undo then Do (undoThenDo in the ReevaluationContext Java class). If not, then the expression sets the compensation strategy to Redo (redo in the ReevaluationContext Java class).
This section refers to the Design Studio OSM Automated Task or Manual Task editor, Compensation tab Compensation Expression XQuery field for when a task is no longer required. The context, prolog, and body are similar to the XQuery expression for the re-evaluation strategy, except that the XQuery expression implements the java:oracle:communications.ordermanagement.compensation.RollbackContext package.
For example:
When an automated task is redone, it is redone automatically. When a manual task is redone, the Task Web client displays the task with an execution mode of Redo. The manual task must be processed in the Task Web client.
To manage compensation in the Task Web client, you can do the following:
Note: You can assign roles in Design Studio to specify who can redo and undo tasks in the Task Web client. OSM also supports the ability to assign the different execution modes of a task to different roles. This is useful because OSM can compensate using both manual and automated tasks. For example, the regular processing of a task in Do mode could be automated, and the Undo and Redo modes for the same task could be set to a special role to be done manually. |
See OSM Task Web Client User's Guide for more information.
You can specify to redo a rule in a process, or to do nothing. Because rules only evaluate data, and therefore do not modify data or interact with other systems, there is no undo necessary for a rule.
Figure 7-15 shows rule properties in Design Studio.
An automated task can include multiple automation plug-ins; for example, senders and receivers. Each automation plug-in can be associated with one or more execution modes. For example, if you create an automated task to activate a service, you can use the same logic to handle the initial activation request and the redo compensation for the activation request.
Figure 7-16 shows compensation for the sender automation plug-in for an automated task.
Each automated task can have separate plug-ins for each of the three modes; Do, Redo, and Undo. When an automated task runs in Redo or Undo mode, OSM provides information about the task data that was present when the task was last ran. For redo tasks, the Automation framework provides the historical data, the contemporary data, and the delta to the automation plug-in for use in the plug-in logic you write.
OSM performs compensation on both process-based orders and orchestration orders. When compensating an order that has an orchestration plan, the compensation can change the orchestration plan.
Each orchestration order has its own unique orchestration plan, generated specifically for that order. Therefore, to manage a revision order for the base order, OSM must generate a new orchestration plan for the revision order. The orchestration plan for the revision order can be different from the orchestration plan for the base order; for example, it might include different order components, with different dependencies and different order items.
By contrast, a process-based order has a predefined process; the process is not generated when the order is created. The tasks that make up that process and the flow of those tasks in the process do not change. The data values for those tasks change as a result of a revision, and the path through the predefined process may change as a result of compensation, but the overall process remains the same.
To manage compensation for an orchestration plan, OSM needs to recognize and account for dependencies between the order components in the order that is being amended. The compensation required depends on whether components exist in one or both orders' (revision order and base) orchestration plans and on whether changes to the contents of those order components (such as different order items) exist.
Redoing an order component in an orchestration plan is performed by redoing the tasks run by the order component. In redoing order components, OSM follows the sequence of dependencies in the orchestration plan. OSM takes into account the dependencies from the revised orchestration plan, unless a successor component has previously started in the original base order, in which case the dependency is considered resolved.
OSM analyzes the order component compensation type and component dependencies to determine the sequence of component compensation. OSM performs order component compensations in the following stages:
For example, OSM performs undo tasks for order component B before performing any undo task for order component A if B was dependent upon A in the base order.
The revised orchestration plan may include new components to be completed using Amend Do and Redo compensation types.
Note: When switching from reverse to forward compensation, OSM identifies the new order components that need to be completed using the Amend Do compensation type. These components participate in the compensation plan as compensation items. This facilitates appropriate compensation sequencing for compensation tasks of existing downstream order components or other components that require amend do compensation. |
All processing not related to compensation is suspended for an orchestration plan until compensation is complete. After compensation is complete, the order is restored from the Amending state to an In Progress state and normal processing continues.
You can plan for compensation when designing tasks. When an order amendment is received, tasks should be undone and redone only if the order change requires it. For example, a provisioning system task might have a data element that contains the full customer name. You might include this information in the task, even if it is not something that needs to be sent to another system. However, a change to this data element would not require any action in OSM for the provisioning system. The same data element might, however, be significant in a task for a billing system. So, when designing tasks it is important to ensure that the correct data for the task has been marked as significant. This optimizes the calculation of the deltas for each task, and ensures that only the necessary tasks are compensated.
When modeling processes, you can use subprocesses to control the scope of compensation. For example; Figure 7-17 shows a process that includes only tasks, with no subprocesses.
In this figure, there is a choice between two possible flows: one through Task_2_1 and the other through Task_2_2, depending on the exit status of Task_1.
Assume this flow has completed Task_1, Task_2_2, Task_3, and Task_4 and has reached Task_Final when a revision is received. The revision indicates that the process now should go through Task_2_1 instead of Task_2_2.
In this scenario, the compensation plan undoes Task_4, then undoes Task_3 and then undoes Task_2_2, before re-processing with the correct data.
Now consider the following flow, which is modified so that Task_1, Task_2_1, Task_2_2, and Task_3 are now contained in a subprocess.
Assume that the same processing has taken place as before. Task_1, Task_2_2, and Task_3 are run in the subprocess, and Task_4 is run in the main process, which reaches Task_Final when a revision is received. With this configuration, the compensation for SubProc1 takes place before the compensation for Task_4. Task_4 does not need compensation, because the compensation is isolated in the subprocess.
Figure 7-18 Process Example with Subprocess
The following examples show different compensation scenarios.
In this example of a process-based order, a subscriber requests ADSL service with 3MBps speed. The order is submitted to OSM, and service fulfillment begins. The subscriber calls back while the base order is in-flight and has just completed the Activate_DSLAM task and requests the order be changed from 3MBps to 5MBps speed.
The tasks that might be affected by this change are:
In this example, there are three possible scenarios:
In this scenario, the second compensation requirement is derived from the first. The original amendment directly affected only the Assign_Port task, but circumstances required a second compensation action.
Figure 7-19 shows a compensation scenario for an orchestration order. In this example, OSM is running in the central order management role, fulfilling multiple functions.
Figure 7-20 shows a compensation scenario for billing:
Figure 7-21 shows a scenario for Amend Do compensation:
You can use the OSM Order Management Web client to see how compensation affects an order's orchestration plan.
Figure 7-22 shows how an orchestration plan changes when a single service attribute changes. In this example, the connection speed changes from 8 MBps to 16 MBps. The order components remain the same, but the value of the connection speed changes in the provisioning component and in the billing component.
Figure 7-23 shows how an orchestration plan changes when a revision order removes a service from the base order. In the example, the Fixed service was ordered in the base order, but it was removed in the revision order. The provisioning and billing components are removed, and the DSL provisioning component no longer has a dependency on the Fixed order component.
Figure 7-24 shows how an orchestration plan changes when a service is added by a revision order. In this example, the Fixed service is added. This creates a new dependency for the DSL provisioning component.
In some cases, there may be a point in the order process after which it becomes impossible or undesirable to make changes to an order. This is called a point of no return.
There are two types of point of no return in OSM.
Note: A follow-on order is not a change to an in-flight order but is an alternative when revising the in-flight order is not possible. Follow-on orders are used to make changes to items on an order that have not yet been completed but are past the point of no return. OSM manages follow-on orders to ensure they do not run until the order items upon which they depend are completed. |
You can define multiple point of no return milestones in an order's fulfillment flow. For example:
A point of no return is typically set at the order item level. This allows order components with varying processing durations to run, instead of stopping the entire order at the first order item with a point of no return.
Figure 7-25 shows two different point of no return scenarios.
There are two ways to set a point of no return. The first, only available for orchestration orders, is to set it on the product specification using fulfillment states. The second is to write an expression in the order life-cycle policy.
When you use the product specification to set a point of no return, the point of no return rules set a point of no return value for that order component. Order life-cycle policy conditions can then leverage this point of no return value for restricting order amendments.
When you create a point of no return, model the following in Design Studio:
When you use life-cycle policies to set a point of no return, you define the point of no return as an expression in the order life-cycle policy, by setting conditions on the Submit Amendment transaction. Figure 7-26 shows part of a point of no return expression defined in Design Studio.
The following example shows a simple point of no return expression:
When a revision order is received, OSM checks the life-cycle policy to see if there are any point of no return conditions preventing the transition to the Amending order status. If OSM finds any point of no return conditions that are met, the order is not allowed to be amended. In the example above, if the broadband service is billed before the fixed-line service is provisioned, the order has passed the point of no return, even though the fixed-line service has not passed its point of no return.
If the life-cycle policy determines that the revision is not allowed, an OrderTransactionNotAllowedFault message is returned to the order-source that submitted the revision order.
When you model order change management, you configure the following OSM entities:
You can use the following methods to troubleshoot your order change management modeling:
This chapter describes how to model roles in Oracle Communications Order and Service Management (OSM).
Note: Roles are also known as workgroups in the OSM Web clients and in the OSM Administrator application. |
See OSM Administrator Application User's Guide for information about assigning users to workgroups.
You create roles to define who can perform OSM order management functions. To use roles, you do the following:
For example, you might create roles based on what a user can do in the Task Web client. You can assign the same tasks to multiple workgroups, but users in each workgroup can work with it differently; for example, you might have a workgroup specifically for fallout management.
Roles are also used by the automation framework. For example, automations use OSM roles to restrict who can receive a notification. If a notification is sent to an external system by using an automation plug-in, ensure that you include the role whose credentials are used when running the automation plug-in.
Figure 8-1 shows a role defined in Design Studio. In this example, members of workgroups assigned to this role can generate online reports, search for orders, and access the Task Web client Worklist display.
Roles are defined globally in OSM. Using the example shown above, any user assigned to the OrderDisplay workgroup can generate reports. You can also assign permissions to specific order types and tasks. For example, you can specify which roles can create each type of order. This gives you more control over how orders are processed; for example, a fallout role can be allowed to create only fallout-related orders.
Table 8-1 shows the functions that can be assigned to roles in Design Studio.
Table 8-1 Functions Assigned to Roles
Function | Description |
---|---|
Create Versioned Orders | Enables users to create orders for different versions of cartridges. If not granted this permission, users can create orders only for the default version of the cartridge. |
Exception Processing | Enables users to alter the flow of a process by applying exception statuses at any time throughout the process. |
Online Reports | Enables users to view summarized reports on all orders and tasks on the system. |
Order Priority Modification | Enables users to modify the priority of a task in an order. |
Reference Number Modification | Enables users to modify the reference number of an order. |
Search View | Enables users to access the order Query function. See "Specifying Which Data to Display in the OSM Web Clients" for more information. |
Task Assignment | Enables users to assign tasks to others. |
Worklist Viewer | Enables users to display the worklist in the Task Web client. |
Roles are used in the following OSM entities:
When you model orders, you can specify the orders that roles can display in the Web clients and the data in the order that can be displayed. See "About Setting Permissions for Orders" for more information.
Figure 8-2 shows roles defined in an order specification. In this example, members of BillingUpdateRole are allowed to display orders for customers in the 408 and 510 area codes.
When you model tasks, you can specify which roles can perform which task execution modes (Do, Redo, and Undo). See "About Task Execution Modes" for more information.
Figure 8-3 shows roles used in a task specification.
When modeling order components and order item specifications, you can define permissions to allow specific roles access to order component search queries and order item search queries in the Order Management Web client. You can also define the data set that their queries return.
Figure 8-4 shows roles used in an order component. In this example, members of ProvisionRole can perform queries based on ProvisioningFunctionTask and display the data in both the summary and detail views in the Order Management Web client. The method for applying roles in an order item specification is identical.
This chapter describes how to use behaviors to manipulate data used by orders and tasks.
You can use behaviors to specify how Oracle Communications Order and Service Management (OSM) manages data. For example:
You can model behaviors in tasks and in orders. Figure 9-1 shows how behaviors are modeled in a task that enters payment information. In this figure, the field that shows the payment total uses two behaviors:
Note: The examples are for illustrative purposes only; OSM is not typically used for payment handling. |
Figure 9-2 shows a behavior modeled in an order. This behavior is used by an order to display a tool tip for the payment information field.
Table 9-1 lists the OSM behaviors.
Table 9-1 OSM Behaviors
Behavior Name | Descriptions |
---|---|
Calculation | Computes the value of a field value based on a formula that references order data. See "Using the Calculation Behavior" for more information. |
Constraint | Specifies a condition that must be met for the data to be considered valid. See "Using the Constraint Behavior to Validate Data" for more information. |
Data Instance | Declares an instance that can be used by other behaviors. See "Using the Data Instance Behavior to Retrieve and Store Data" for more information. |
Event | Specifies an action that is performed when data is modified. See "Using the Event Behavior to Re-evaluate Data" for more information. |
Information | Specifies the label, hint, and help information for the data element instance. See "Using the Information Behavior to Display Data and Online Help" for more information. |
Lookup | Specifies a set of dynamically generated choices from which you can select. See "Using the Lookup Behavior to Display Data Selection Lists" for more information. |
Read Only | Specifies whether a value can be modified or not. See "Using the Read-Only Behavior" for more information. |
Relevant | Specifies whether data is visible or hidden. See "Using the Relevant Behavior to Specify if Data Should Be Displayed in the Web Client" for more information. |
Style | Specifies the visual appearance of fields. See "Using the Style Behavior to Specify How to Display Data in the Task Web Client" for more information. |
It is possible that multiple behaviors can be applied to the same data. At run-time, OSM determines which behavior should be applied by evaluating the conditions defined for behaviors using a combination of server rules and behavior attributes that you model by using Design Studio configuration options. The following configuration options affect the manner in which OSM evaluates behaviors at run-time:
Note: The style behavior is the only behavior applied to Redo, Undo, and Do Nothing compensation strategies and the historical order perspective displayed in the Task Web client. See "Managing Changes to Orders" for more information about compensation strategies and the historical order perspective. |
In Design Studio, you can create behaviors for data nodes at three levels:
OSM evaluates behaviors from the general level to the specific level. For example, OSM evaluates behavior conditions defined at the data element level first, and evaluates behaviors defined for data nodes at the task level last. At run-time, OSM determines which level to use for a behavior type and data node combination and evaluates rules from that level only.
For example, consider that you create a Calculation behavior at the data element level, and for the same data node you create a Calculation behavior at the order level. In this scenario, OSM would never evaluate the conditions defined for the Calculate behavior at the order level (unless you force evaluation using the Override or Final options), even if all of the conditions defined for the behavior at the data element level evaluate to false.
OSM does, however, evaluate different types of behaviors defined for a data node at different levels. For example, if for the same data node you define a Calculation behavior at the data element level and a Constraint behavior at the order level, OSM evaluates the conditions for both behaviors at run-time.
Note: The Constraint behavior is an exception to the way in which behaviors are evaluated. When the run-time environment evaluates Constraint behaviors, it evaluates all of them, regardless of the level at which they are declared. |
You can force local, specific exceptions to the way behaviors are evaluated for a given node by selecting the Override and Final check boxes on the appropriate Behaviors Properties view Details tab in Design Studio. You can select the Override attribute to allow the behavior to take precedence over any other behavior:
For example, consider that you have a data element called customer that you declare twice: at the data element level and at the task level. For each occurrence of customer, you create a behavior called styleBehaviorType. At the specific task level, you select the behavior's Override check box. At run-time, OSM evaluates the behavior conditions defined at the task level, as the task-level version of styleBehaviorType overrides the data element-level version of the same behavior type.
Note: Override does not function if the behavior that you are trying to override has the Final check box selected. |
When selected, the Final check box prevents another behavior of the same type, for the same node, declared at the same or more specific level, from overriding that behavior.
For example, you define the element customer at the data dictionary level (highest), and add it at the task level (lowest). For each occurrence of customer, you define a Style behavior. On the data dictionary level (most general) of the behavior definition, you select the Final check box. On the task level (lowest) of the behavior definition, you select the Override check box. When OSM evaluates the behaviors, the selection of the Final check box at the data dictionary level prevents the task level (lowest) definition of the Style behavior from overriding the data dictionary level (highest) definition of the behavior.
OSM automatically evaluates behaviors whenever you retrieve, save, or transition an order. OSM evaluates the behaviors in a specific nested sequence, as outlined below:
The next node in the order is based on a depth first, left-to-right traversal.
Figure 9-3 shows the element selection order.
Note: Relevant rules can prevent other rules from being evaluated. For example, if the Relevant rule of a data node evaluates to false, then rule types with a precedence lower than the Relevant rule are not evaluated (the Lookup, Constraint, Read-only, and Event rules). Additionally, if a data node's Relevant rule evaluates to false, no rule evaluation is done for any descendents of that node. |
The evaluation process prioritizes data levels, which are evaluated in the following order:
Behaviors defined on a task can override behaviors defined on an order if you have enabled the behavior's Override option at the task level and if you have disabled the behavior's Final option at the order level.
Note: The Constraint behavior is an exception to the way behaviors are evaluated: When OSM evaluates Constraint behaviors, it evaluates all of them, regardless of the level at which they are defined. |
Within an order, within an element, within a behavior type, within a data level, the evaluation proceeds as follows:
Note: If you define two or more behaviors for an element at the same level, to avoid unpredictable behavior you should define mutually exclusive conditions. OSM does not guarantee the order of evaluation for the same behavior types defined at the same level. |
When the evaluation process determines that a behavior is to be applied at a particular level, some behavior types stop evaluating behaviors of the same type, while others continue evaluating behaviors of the same type at that level for the same element.
For example, you define three behaviors of the same type on the same data element at the same level, and all go through the evaluation process ending with the condition being met (the behavior is applied). For behaviors that stop evaluating, only the first behavior is applied. For behaviors that continue evaluating, multiple behaviors of the same type may be applied, and their effect on the UI is cumulative.
The following behaviors stop evaluating behaviors of the same type after a condition is met and a behavior of the type is applied:
The following behaviors continue evaluating behaviors of the same type after a condition is met and a behavior of the type is applied:
Note: The behaviors in both lists above are presented in alphabetical order, not in behavior type evaluation order. |
For example, if three Constraint behaviors are defined, and all go through the evaluation process ending with the behavior being applied, all three Constraint violation messages display in OSM. In another example, if three Read Only behaviors are defined, if any of them get applied, the field is set to read-only (even if prior and/or subsequent Read Only behaviors evaluate to false). Style and Information behaviors are a bit more complicated in that they have multiple facets. The end result is the cumulative effect of these facets. For example, you can define hints and labels with an Information behavior. If one behavior has a hint and another behavior has a label, the end result is that both are applied. If two behaviors define hints, then the second behavior's hint is applied.
When modeling behaviors of the same type, at the same level, for the same data node, ensure that the conditions you define for each behavior are mutually exclusive. When evaluating behaviors of the same type and defined on the same data node and level, the OSM run-time server has no ability to guarantee a predicable order of evaluation. When modeling behaviors for a data node, when it's necessary to define behaviors of the same type at the same level, ensure that you configure conditions that do not rely on a specific order of evaluation.
Additionally, the OSM server evaluates the conditions of each behavior until the conditions of one behavior evaluate to true. Subsequently, OSM does not continue to evaluate any conditions defined for behaviors of the same type and for the same data node.
Conditions enable you to specify when a behavior should function. You set a condition by defining an XPath expression. If the XPath expression evaluates to false at run time, the condition is not met and the behavior is not applied. If the XPath expression evaluates to true at run time, the condition is met and the behavior may or may not be applied, depending on the outcome of evaluation of the behavior at run time.
If no conditions are defined, OSM considers the condition to be met. If multiple conditions are defined, all conditions must evaluate to true for the condition to be met.
Note: The Constraint behavior is the only exception to the way conditions are handled.Constraint behaviors specify a condition that must be met for the data to be considered valid. |
XPath Examples
This section provides XPath examples that are applicable to setting a condition on any behavior type.
You use the Calculation behavior to calculate a field's value based on a formula that references other field values. You can perform numeric operations and string concatenations.
OSM supports the Calculation behavior in the Task Web client and in the Order Management Web client Data tab.
For example, you can use the following expression in a Calculation behavior to calculate the current balance for a customer:
In this example, the current balance displays the value from the amount_owing field after subtracting the value from the payment_amount field; the balance = (amount owed) - (amount paid).
Figure 9-4 shows an XPath expression that combines the first_name field and the last_name field. The Calculation behavior is applied to a field that contains the card-holder name field, where the first and last names are combined into a single field value.
Figure 9-5 Shows how the fields appear in the Task Web client.
The following examples show how to use XPath statements in the Calculation behavior.
Table 9-2 shows Calculation behavior attributes.
Table 9-2 Calculation Behavior Attributes
Attributes | Value |
---|---|
Order of evaluation | 1st |
Default value | None |
Applies to | All elements |
Parent/child inheritance | Does not inherit (This applies to element relationships within a structure, which is different than the inheritance of behaviors between the data dictionary, order, and task levels.) |
You can use the Constraint behavior to validate data that is entered in an order. For example:
In addition to specifying how data is validated, you can:
For example, you might want to ensure that value in a Payment Amount field is less than the amount owed and greater than 0. The Constraint behavior would include this condition:
The same Constraint behavior would include the following message to display if the behavior was not met:
OSM supports constraint rules in the Task Web client.
OSM only displays a Constraint behavior error message if there is a constraint violation caused by the failure of a Constraint behavior condition or by an exception that occurred during the behavior evaluation while you are attempting to either:
Otherwise, OSM cues you that a field requires some value by placing a red dot to the left of the field label.
Note: The red dot behavior does not apply to read-only fields. If an error occurs in a read-only field (for example, a failed lookup prevents the display of data) OSM always displays an error message.The red dot is the same UI element that OSM uses to alert you that a field is mandatory, as defined in the order template. If the field fails the constraint condition and is defined as mandatory, only one red dot appears. |
OSM always evaluates Constraint behaviors except when the element or parent element is not relevant, as defined through the Relevant behavior. OSM does not evaluate the Constraint behavior when the task to which the Constraint behavior is associated is at the rollback status. In cases when data is rolled back, it is understood that the Constraint behavior was already evaluated.
Constraint behavior evaluation is different from that of other behaviors. Constraint behaviors are evaluated only when one or more specified conditions evaluate to false. All other behaviors are either:
In addition, when OSM does evaluate Constraint behaviors, it always evaluates all of the Constraint behaviors, regardless of where they are defined. This is different from other types of behaviors, where only the first instance of each behavior is selected and applied. However, the Override and Final check boxes give you control over inheritance. See "Evaluating Design Studio Final and Override Options" for more information.
Table 9-3 shows Constraint behavior attributes.
Table 9-3 Constraint Behavior Attributes
Attributes | Value |
---|---|
Order of evaluation | Not applicable. The data instance type is unique in that it doesn't perform any action. It's just a container for data provider instances. |
Default value | True |
Applies to | All elements and structures |
Parent/child inheritance | Does not inherit (This applies to element relationships within a structure, which is different than the inheritance of behaviors between the data dictionary, order, and task levels.) |
You can use the Data Instance behavior to get data from external sources. For example, an order processor using the Task Web client can retrieve a set of available ports in real time from an ADSL inventory system.
This behavior differs from all other behaviors in that it has no affect on the UI display of the element for which the behavior is defined. You can think of the Data Instance behavior as a “supporting” behavior because it provides functionality that can be used with other behaviors.
You can use the Data Instance behavior to:
When you use the Data Instance behavior, you need to specify the data provider that you get data from. OSM supports several data providers; for example, Oracle Communications Unified Inventory Management (UIM), XML files, and data in the incoming customer order. You can also configure your own data provider.
See "About Mapping Order Items to Product Specifications" for an example of how to use a Data Instance behavior.
When a Data Instance behavior is defined for an element, regardless of the data level, the container is available to the element on all data levels. Because of this:
This section provides XML, XPath, and XQuery examples that are applicable to defining a Data Instance behavior.
Table 9-4 shows Data Instance behavior attributes.
Table 9-4 Data Instance Behavior Attributes
Attributes | Value |
---|---|
Order of evaluation | Not applicable |
Default value | None |
Applies to | All elements and structures |
Parent/child inheritance | Children inherit instances declared on parent (This applies to element relationships within a structure, which is different than the inheritance of behaviors between the data dictionary, order, and task levels.) |
You can use the Event behavior to save or refresh data when the data changes. This is useful when a change in a field can cause a behavior to automatically occur in the same field or in another field. For example, you might include an Event behavior in the account_information/country field, that causes the data to refresh. That refreshed data might in turn be used by a Relevant behavior assigned to the address details fields that display address information based on the country.
Refreshing causes OSM to re-evaluate all the behaviors associated with the task but does not save the order. Saving re-evaluates the behaviors and automatically saves the contents of the order.
Figure 9-6 shows an Event behavior defined in Design Studio. In this figure, the Event behavior refreshes the data in the account_information/country field.
See "Using the Relevant Behavior to Specify if Data Should Be Displayed in the Web Client" for more information on the Relevant behavior, and this scenario in particular.
OSM supports the Event behavior in the Task Web client.
Table 9-5 shows Event behavior attributes.
Table 9-5 Event Behavior Attributes
Attributes | Value |
---|---|
Order of evaluation | 8th |
Default value | None |
Applies to | All elements |
Parent/child inheritance | Does not inherit (This applies to element relationships within a structure, which is different than the inheritance of behaviors between the data dictionary, order, and task levels.) |
You can use the Information behavior to specify how data is displayed in the OSM Task Web client. You can do the following:
Note: In the Order Management Web client, any information rule on the first instance of a group node that uses a table layout style is used to determine the text of the table panel header. The first instance of each of this group instance's child field nodes are used to determine the column header text for that field node. Hint text for the group instance row and child field instance cells are displayed as tooltip text. Help defined for the group can be executed with either a menu item in the table's Actions menu or a row-level context menu and displays help in a modal window in the page containing the table. The implementation of this help behavior differs from the task client implementation, which uses a hyperlinked icon in each table cell to load the help in a separate browser window. |
This section provides XPath examples that are applicable to defining an Information behavior.
Table 9-6 shows Information behavior attributes.
Table 9-6 Information Behavior Attributes
Attributes | Value |
---|---|
Order of evaluation | 3rd |
Default value | None |
Applies to | All elements and structures |
Parent/child inheritance | Does not inherit (This applies to element relationships within a structure, which is different than the inheritance of behaviors between the data dictionary, order, and task levels.) |
You can use the Lookup behavior to display data in a GUI field that users can select from. You can specify the order of the labels in the list, such as alphabetically.
You can look up data from the following sources:
Data can be retrieved dynamically based on input. For example, you can look up and populate a list of phones that cost less than $100, where $100 is a value obtained from another field in the order.
Figure 9-7 shows a Lookup behavior that creates a choice of cities. The upper part of the figure shows the behavior in Design Studio, and the lower part of the figure shows how the data displays in the Task Web client.
Note: The Task Web client supports two types of lookups: simple lookups with single label value entries, and table lookups, where a single lookup value has multiple associated labels. This latter lookup type is displayed as a text field with an associated icon that launches a secondary window which displays a table of label/value relationships.In the OM Web Client, simple lookups are fully supported, but complex lookups are rendered as if they were simple: the first-defined label is shown as the display label. In both cases, the field is displayed as a read-only list of values. |
This section provides an XPath examples that is applicable to defining a Lookup behavior.
This example shows an XPath expression that selects data from an XML file that defines elements (nodes) of bookstore, book, price, and title. This example returns a list of titles with a price greater than $35:
Table 9-7 shows Constraint behavior attributes.
Table 9-7 Lookup Behavior Attributes
Attributes | Value |
---|---|
Order of evaluation | 5th |
Default value | The static lookup values (if any) that are specified in the data dictionary. |
Applies to | Elements of data type:
|
Parent/child inheritance | Does not inherit (This applies to element relationships within a structure, which is different than the inheritance of behaviors between the data dictionary, order, and task levels.) |
You can use the Read Only behavior to specify that data displayed in the Task Web client is read only. You can specify that data can be read only based on conditions; for example, data can be read only depending on other data in the order.
You typically create read-only fields for fields where the value is derived from other fields. For example, in your order display, you might have two windows: an account window and a payment window. Both windows might have an Amount Owed field, which displays the same data. However, you could make the Amount Owed field in the payment window the field where the data is collected, and the Amount Owed field in the account window read only. In that case, the field in the account window uses two behaviors:
Table 9-8 shows Read-Only behavior attributes.
Table 9-8 Read-Only Behavior Attributes
Attributes | Value |
---|---|
Order of evaluation | 7th |
Default value | The default specified by the static read-only value. |
Applies to | All elements and structures |
Parent/child inheritance | If any ancestor evaluates to true, this value is treated as true. Otherwise, the local value is used. (This applies to element relationships within a structure, which is different than the inheritance of behaviors between the data dictionary, order, and task levels.) |
You can use the Relevant behavior to specify if data should be displayed in the Task Web client or in the Order Management Web Client Data tab, based on specified conditions.
For example, you can use the Relevant behavior to display address-input fields appropriate to the country that the order applies to. In this example, the Relevant behavior can be used as follows:
Note: The account_information/country field includes an Event behavior, which refreshes the data in the field, making it available to the Relevant behavior. |
Figure 9-10 shows the address fields for the United States (address_details_us) and Canada (address_details_ca). The Relevant18 behavior applies to the selected data, address_details_ca.
Figure 9-11 shows the XPath expression that specifies the condition (country = Canada) under which the Relevant18 behavior is enabled.
In the Order Management Web client, if a group instance displayed with a table style beharior is not relevant, then the entire associated table row is omitted. If a particular field is not relevant, the associated table cell is rendered empty.
Table 9-9 shows Relevant behavior attributes.
Table 9-9 Relevant Behavior Attributes
Attributes | Value |
---|---|
Order of evaluation | 4th |
Default value | True |
Applies to | All elements and structures |
Parent/child inheritance | If any ancestor evaluates to false, this value is treated as false. Otherwise, the local value is used. (This applies to element relationships within a structure, which is different than the inheritance of behaviors between the data dictionary, order, and task levels.) |
You can use the Style behavior to specify where and how to display data in the Task Web client. You can do the following:
Important: If you define a behavior that contains an apostrophe (') character, OSM will throw an exception error when loading the data. To prevent this from happening, you must include the escape character before and after the apostrophe.Example: 'L'Information De Carte de credit' should be "'"L"'"Information De Carte de credit"'" |
Figure 9-12 shows how the Style behavior changes the appearance of the Current Account Balance field in the Task Web client.
Figure 9-13 shows the condition that determines if the Style behavior should be applied. In this case, the Style behavior is applied if the account balance is less than zero or greater than the amount owed.
Figure 9-14 shows the style definitions to apply to a field.
Figure 9-15 shows how three different conditions can change how the field is displayed. If the balance is zero, the field is green. If the balance is the same as the amount that the customer owes, the field is orange. If the balance is less than zero, or greater than the customer owes, the field is red.
This section provides additional information on table layouts, which you can choose to set as None, Page Layout, or Table Layout.
The Page Layout option gives you the ability to organize structures elements onto separate pages that you can access directly, through the use of tabs. This is particularly useful for improving access where there are numerous large structures by eliminating the need to scroll through a single page to find the required structure.
The Table Layout option displays multi-instance structures in a grid format. By default, Table Layout displays all of the child elements in the structures. However, you can prevent a given child element from being used as a column by setting its hidden attribute to true.
Child elements within the structure are represented by columns, and instances of the structure are represented by rows. Table Layout displays the columns from left to right in the same order that they appear from top to bottom when displayed without a table layout. If you need to change the order in which the columns appear, you do so by changing their order in the Design Studio order template. The table uses the same child element label to form the column header that it does when displayed without a table layout.
Note: If you use an Information behavior to dynamically change the child element labels, Table Layout uses the label associated with the first data instance it encounters. |
If you need to hide the value of an individual cell in the resulting table, you can do so by declaring a Relevant behavior for the corresponding child element. See "Using the Relevant Behavior to Specify if Data Should Be Displayed in the Web Client".
Note: Table Layout does not support nested structures in the Task Web client but does support nested structures in the Order Management Web client data tab.In the Order Management Web client data tab, multi-instance child values can be displayed within the corresponding parent value table cell and stacked vertically. You cannot access data history or behavior help from within the cell, but the information about the child multi-instance values can be accessed from the data history for the row. You can access the data history for a row by right clicking on the row and selecting data history or by selecting data history from the table drop down menu. OSM uses the first instance of the table group node to determine the CSS style and class of the header text in the Order Management Web client. All other style rule attributes of the group instances are ignored. CSS style and class rules, appearance rules, and secret rules are applied to child field (table cell) instances. No other style rules will be applied. |
The following figures illustrate the different types of available layouts. Each figure shows the same structure with a different layout type:
Behaviors that define password fields can ensure unauthorized users cannot view the contents of elements containing sensitive information. For example, by using this feature you can define a password field in such a way that users in an activation work group can not see the information, but users in the system administrator's work group can.
How Password Fields Display
If you define a password behavior on a writable field, OSM displays the contents of the field as specified by the browser, such as a line of asterisks (*) within a text box. If you define this feature on a read only field, OSM displays the data as specified by the browser, such as line of eight asterisks next to the field label, but not within a text box.
If you open the data history, OSM displays when and by whom the data was modified. When this feature is applied to a field, OSM displays the password field values as specified by the browser, such as a line of eight asterisks.
While you can define a Style behavior on all types of elements, this feature of the Style behavior has no effect on structures.
Do Not Use Password Field Feature with Boolean and Lookup Fields
Because this feature is designed for use with free form entry fields, as opposed to fields that force you to select from a limited number of choices, Oracle recommends that you do not use this feature with Boolean and lookup fields. If you do, you risk exposing confidential information to unauthorized users. This is because OSM displays the value that was previously set in a Boolean or lookup field, even if the field defines this feature through a Style behavior.
Displaying the Data History of Password Fields
OSM only evaluates behaviors at the Web UI level, so any password field that you save (that is, create, update, or delete) through the XML API/Automator is not treated as a password field, even if it is defined as such. This can introduce some complexity into how OSM displays the data history for password fields. Use the following general guidelines and examples to understand how OSM displays password field data history.
General Guidelines
Examples
Table 9-10 shows Style behavior attributes.
Table 9-10 Style Behavior Attributes
Attributes | Value |
---|---|
Order of evaluation | 2nd |
Default value | Data type specific:
|
Applies to | Elements of data type:
Elements with Lookup behaviors that display only one column. |
Parent/child inheritance | Does not inherit (This applies to element relationships within a structure, which is different than the inheritance of behaviors between the data dictionary, order, and task levels.) |
This chapter describes Oracle Communications Order and Service Management (OSM) event notifications and jeopardy notifications.
You can use notifications to alert users and external systems to events that occur in the order process or to tell users that an action must be carried out.
There are two types of notifications:
Figure 10-1 shows notifications displayed in the Task Web client. You can specify which workgroups can see the notifications.
You can specify a priority for most types of notifications. For example:
OSM evaluates notifications with the highest priority first (1 is the highest priority). For notifications that are sent to external systems, the notification priority represents the JMS queue priority.
You can deliver notifications in email. The email message consists of the same information that is displayed in the Notifications window in the Task Web client. You cannot customize the message or add information to it. The message template is:
For most types of notifications, you specify to send email by selecting a checkbox in the notification configuration. For event notifications that are used only for running an automation plug-in, you configure the automation plug-in to send the email. See OSM Developer's Guide for information about automation.
To specify who to send the email to, you do the following:
All jeopardy notifications and most event notifications use order rules to determine if the notification should be triggered. (Event notifications that are used only for running an automation plug-in do not use order rules.)
Figure 10-2 shows an example of a rule defined in Design Studio. This rule finds the city that the customer lives in and the type of account, (Business or Residential).When the jeopardy notification uses this rule, the notification is sent only if the order came from a residential customer in Sao Paulo.
You can use rules such as the one shown in Figure 10-2 to route notifications to specific roles. For example, you can combine rules and roles as follows:
Table 10-1 Example Rule and Role Combinations
Notification Type | Triggered By | Rule Specifies | Sent to Role |
---|---|---|---|
Notification_Residential | Expected duration exceeded | Residential account | Residential |
Notification_Business | Expected duration exceeded | Business account | Business |
In this example, two identical notifications are created, both triggered by the order processing time exceeding the expected duration. If the order is for a residential account, the notification is triggered and sent to the role that handles residential accounts.
OSM uses a system-based null_rule. This rule always evaluates to true. Therefore, if you do not specify a rule for a notification, the null_rule is used; because it is set to true, the notification is triggered. If you do not specify any conditions to trigger the notification, and the notification uses the null_rule, the notification is triggered every time it is polled.
Note: The polling interval cannot be changed at run time. |
See "About Order Rules" for more information about rules.
All types of notifications can run automation plug-ins to send the notification to an external system. For example, you can trigger a notification that runs an automation plug-in that sends a message that a task has completed to the order-source system. An automation plug-in can also perform custom logic, update an order, send email, and send a message to display on the Task Web client Notifications page.
An automated notification triggers a specific automation plug-in when a notification is created in OSM, which can occur several different ways depending on the notification definition, such as a task reaching a specified state or an order reaching a specified milestone. An automated notification receives a message internally from OSM, and the information contained in the message is made available to the automation plug-in. The automation plug-in can then use that information to perform custom logic, update an order, or send a message to the OSM Notifications page, to a user email address, or to an external system. Automated notifications are not capable of receiving external messages back from an external system.
Automations use OSM roles to restrict who can receive the notification. If the notification is sent to an external system by using an automation plug-in, ensure that you include the role whose credentials are used when running the automation plug-in.
Automation plug-ins run by notifications are always defined as internal event receivers because notifications are used to notify OSM users or other areas of the OSM system of something happening within OSM. To notify users on external systems, you need to configure an automation plug-in.
When you use automation plug-ins, you configure the automation plug-in properties; for example, the automation type and the event type. See OSM Developer's Guide for more information.
You define notifications when you model orders, tasks, and processes. There is no OSM notification entity, so you cannot model notifications and reuse them.
Before you configure notifications, you need to configure the following entities:
You can model automation plug-ins as you define notifications, but modeling automation plug-ins before you configure notifications is more efficient.
Some common uses for notifications are:
A jeopardy notification is a message that is sent to OSM users or users on other systems (for example, to return status to a CRM system). Jeopardy notifications are not event-driven; they use polling at specified intervals to identify processes or tasks in jeopardy.
OSM uses three methods to deliver jeopardy notifications:
Jeopardy notifications can be defined for an order or for a task. Many of the jeopardy properties are the same for orders and tasks; for example, you can specify the roles to notify and the rule to trigger the notification. However, defining a jeopardy for an order or a task allows you use the order or task properties. For example:
You can use two methods to trigger a jeopardy notification:
To trigger a notification, OSM follows this process:
You can specify how often OSM should poll to re-evaluate the jeopardy condition. You can specify a polling interval in hours, days, weeks, or months. You can specify the day of the week (for example, Monday), or the day of the month (for example, the first day of the month). You can specify a date and time for OSM to begin polling. The default is the current date.
Tip: When configuring notifications, consider the performance impact from polling for jeopardy notifications. For example, a configuration that polls every minute on one million orders has a much greater performance impact than polling every hour on one thousand orders. |
You can trigger jeopardy notifications based on an order or task condition. For example, you can specify to send a jeopardy notification if a task has exceeded its expected duration.
The conditions you can use are different, depending on if you define the jeopardy notification in an order or in a task.
When you define an order, you can specify to trigger a jeopardy notification based on the following:
To determine the duration that the order has been in any of these conditions, OSM polls the system at an interval that you define.
When you define a task, you can specify to trigger a jeopardy notification based on the following:
To determine the duration that the order has been in any of these conditions, OSM polls the system at an interval that you define.
When you define a jeopardy notification in a task, and the task can have multiple instances, you can specify if the notification should be triggered for every task instance.
In this example, the order processing for a service requires that a customer service manager enter payment information. This has been configured as a manual task. It is expected that the task can be and should be completed quickly. Therefore, a jeopardy notification is configured that triggers if the task is in the Received state for longer than one hour.
Figure 10-3 shows the configuration for a jeopardy notification in Design Studio. This jeopardy notification sends an email notification to members of a workgroup.
Figure 10-4 shows the conditions under which the jeopardy notification is triggered. In this case, the given notification specifies to trigger notification if the task has been in the Received state for longer than one hour.
Figure 10-5 shows the roles defined for receiving email about the jeopardy notification.
Figure 10-6 shows the configuration for the polling used for the jeopardy notification. In this case, OSM polls every hour.
Event notifications are triggered by events. You do not specify polling intervals for event notifications. You can configure them to occur in the following cases:
Event notifications triggered by transitions can be sent to a workgroup. See "About Using Task Transitions to Trigger Event Notifications" for more information.
When you use the task state to trigger an automated event notification, the notification is run from all processes that include the task. When you configure a notification based on a task state change in a process, the notification is applicable only to the task within the process in which it is defined.
An event notification based on a task transition does not apply to all instances of the task. It applies to a task only as it is used in a specific process. Therefore, to configure an event notification based on a task transition, you edit the process that includes the transition and apply the event notification to the transition. Figure 10-7 shows the configuration for a success transition in Design Studio. In this figure, the success transition is selected, and the event notification properties are defined below the process window.
The event notification for a status change works as follows:
When you use a task transition to trigger an event notification, you can specify an automation plug-in that the notification runs; however, an automation plug-in is not required.
An event notification triggered by a task state change and rules works as follows:
For example, you can specify that when the Completed task state is reached, a rule evaluates if the billing address is in California.
This type of notification does not apply to all instances of the task. It applies to a task only as it is used in a specific process. Therefore, you create this type of notification when you create processes in Design Studio. Figure 10-8 shows how to assign an event notification to a task in a process. In this figure, the EnterAccountInformation task is selected, and the rule and state are defined in the window below.
You can specify an automation plug-in that the notification runs; however, an automation plug-in is not required.
You can use a task state to trigger an automated event notification. In this case, only the task state is evaluated (no rules are applied to evaluate a condition), and the notification triggers an automation plug-in which handles the notification actions. This type of notification runs for every instance of the task, independent of the process that it is in. Event notifications triggered by task states are not displayed in the Task Web client.
For example, you can define an automated notification that sends a notification when the task reaches the Assigned state. The event notification works as follows:
Figure 10-9 shows an event notification configured in Design Studio. Any time this task runs, the event notification is triggered when the task reaches the Completed state.
You can use an order milestone to trigger an event notifications. Figure 10-10 shows an event notification based on an order milestone.
Only the order milestone is evaluated (no rules are applied to evaluate a condition), and the notification triggers an automation plug-in that handles the notification actions. Each event notification maps to one or more automation plug-ins. Event notifications triggered by order milestones are not displayed in the Task Web client.
For example, you can define an event notification that specifies the Completion milestone. The event notification works as follows:
Note: You cannot define custom order milestones. Order milestones are based on order states; for example, the Completion milestone occurs when the order transitions to the Completed state. |
When you create event notification that is triggered by an order milestone, you specify the order milestone that triggers the notification. You can use the following order milestones:
You define event notifications based on order data changes when you create orders in Design Studio. For example, you can define an event notification that sends a notification when a telephone number is entered. Event notifications triggered by data changes are shown in the Task Web client.
When you create an event notification based on order data changes, you can specify the data field that triggers the notification when the data is changed. Any change to the field causes the notification to trigger. However, this value is not evaluated for content. To trigger the notification based on the value of the data, you must configure a rule to evaluate it.
For example, to trigger a rule when the billing address is changed to California, you specify the billing address field as the field that triggers the notification and run a rule that evaluates if the address was changed to California.
You can specify an automation plug-in that the notification runs; however, an automation plug-in is not required.
Figure 10-11 shows an event notification based on data change in an order. In this example, when a credit card number changes, the notification is triggered.
Table 10-2 shows a summary of notification functionality.
Table 10-2 Summary of Notification Functionality
Notification Type | Sends Email | Displays in Task Web Client | Can Be Evaluated By a Rule | Can Be Sent to Different Roles | Runs Automation Plug-in | Has a Priority |
---|---|---|---|---|---|---|
Jeopardy - Task | Yes | Yes | Yes | Yes | Optional | Yes |
Jeopardy - Order | Yes | Yes | Yes | Yes | Optional | Yes |
Event - Task status | Yes | No | Yes | Yes | Optional | No |
Event - Task state, automation | Sent by automation plug-in only | No | No | Defined by automation plug-in only | Mandatory | Yes |
Event - Task state, in a process | Yes | No | Yes | Yes | Optional | Yes |
Event - Order milestone | Sent by automation plug-in only | No | No | Defined by automation plug-in only | Mandatory | No |
Event - Order data change | Yes | Yes | No | Yes | Optional | Yes |
This chapter describes Oracle Communications Order and Service Management (OSM) order fallout handling
Order fallout occurs when an order fails during processing. Order fallout is often called order failure. Fallout management is the ability to resolve fallout and allow an order to continue processing. You can model automated fallout management, which corrects errors by compensation, or you can model manual fallout management, which supports manual intervention to correct errors.
OSM can manage fallout that occurs both internally during OSM processing, such as errors in internal data, and as the result of an error returned by an external fulfillment system. The most common fallout scenarios are:
See "Managing Fallout Generated from a Failure in a Downstream System" for more information.
Managing fallout typically follows three stages: detection, notification, and recovery.
When an order is identified as fallout, the order state is typically changed to the Failed state.
Order recovery can be carried out in various ways. For example:
OSM in the central order management role can function as the central fallout management system, coordinating fallout activity for all of the order processing in your system. For example, in an order-to-activate solution, OSM can be integrated with the Siebel Service module and other systems. In such a solution, OSM might do the following:
If your OSM implementation includes both central order management and service order management, order fallout can occur and be managed in both instances. An order failure can affect each role independently, or the same failure can affect OSM running in both roles. For example:
Failures from a downstream system are typically caused by the following:
These scenarios typically must be resolved directly; retrying or waiting does not resolve the problem.
A failure in a downstream system is usually detected by using an automation plug-in. The failure message is received in the JMS receiver queue and correlated to an order and task context. Details about the failure are stored in the order data.
Note: OSM can maintain a history of the communications with external systems. However, because of the work that OSM must do to manage and store the messages, this can impact performance. |
In addition to automated detection, order managers can use the Web clients to find failed orders.
Notification of fallout from failures in downstream systems is typically handled by the following:
Notifications can be based on changes to order milestones, order data, task states, or task status. See "About Notifications" for more information.
To recover from a failure in a downstream system, actions include:
With all of these options, you can specify query tasks and roles to restrict the recovery to fallout managers.
A failure in network or system resources is typically one of the following:
These failures are usually temporary, and can be resolved by waiting or addressing the network problem. Order processing might be delayed, but is usually not otherwise affected.
These failures can be detected by using an automated response notifying OSM of the failure. These failures are usually handled by a jeopardy notification, triggered by a task or order not completing in the expected amount of time.
Network and system failures are usually managed by the network administrator or system administrator. They usually do not affect the status of the order; the order retries processing and resumes when the network is available. A typical recovery scenario is as follows:
Failures in order creation can occur because of the following:
In the case of validation errors, revise the order request and resubmit it. In the case of transformation errors, troubleshoot and fix the transformation logic, and resubmit the order.
The error response includes error details.
If either of these two faults is returned, revise the order and resubmit it.
You can specify to display a message in the Task Web client if an order fails during validation and transformation. To do so, specify the fail-order reason when you model the recognition rule in Oracle Communications Design Studio.
Tip: An order that fails to be recognized by any recognition rule is rejected by OSM and lost. No record of it is sent to the order-source system. To make sure that all orders are captured in OSM, create a recognition rule that accepts all incoming customer orders. Prioritize it at the lowest level (0) and prioritize all other recognition rules higher so they are processed first. Using this lowest-level recognition rule, an invalid order is recognized, and then it fails during validation. It then transitions to Failed state and is kept by OSM. |
Recognition rules are global entities. An incoming customer order could be recognized by a recognition rule deployed in the system that you did not intend to be matched if you are not careful with the relevancy settings and the recognition rule.
Failures in run-time OSM execution are typically caused by OSM modeling errors, usually in the design of automations, rules, and orchestration. These errors are usually resolved in test systems and should not be a common occurrence in a production system.
A failure in an automation results in an exception. You can configure how the error is handled; for example, fail the order, transition the task to a user-defined failed state, or transition to a fallout recovery task.
A failed rule results in the associated tasks being marked as INVALID. Notifications are provided as system events, displayed in the Task Web client.
Orchestration failures typically result in incorrect or empty orders.
When an order fails, the Fail Order transaction transitions the order to the Failed state. An order can transition to the Failed state from the following states:
When the problem is fixed, the order can be moved out of the Failed state as follows:
If the order needs a revision to be fixed, the Submit Amendment transaction places the order in the amendment queue, after which the Process Amendment transaction transitions the order to the Amending state. A revision can come from two sources:
If the order must be restarted, the Cancel Order transaction transitions the order to the Cancelling state, and then to the Cancelled state. This operation undoes all changes and returns the order to the creation task.
Note: If the order has an orchestration plan, it cannot be restarted after being canceled. The Cancelled state is a final state for orders that have an orchestration plan. |
If the order cannot be revised or restarted, the Abort Order transaction transitions the order to the Aborted state.
See "About Managing Order States and Transitions" for more information.
The following example shows how fallout management combined with amendment processing can resolve an order failure:
A typical fallout management configuration allows you to do the following:
You can use the Order Management Web client to review failed orders to determine why they failed. You can configure fallout entities in Design Studio to specify the data that you want to display in the Order Management Web client. To do so, when modeling an order, create a fallout entity and include it in the order model. A fallout entity includes one or more data elements that you want the Order Management Web client to display.
Figure 11-2 shows a fallout configured in OSM. In this example, the fallout is named PortAlreadyAssigned. It is used when a task for activating a service fails because a port was assigned that is not available. The data element is asdl_service_details/port_id.
After you configure fallouts in the order specification, you can assign those fallouts to manual tasks that need them. This association enables OSM to identify the task that generated the error, transition the order to the Amending state, and initiate amendment processing.
To resolve fallout, OSM follows the same process as when it performs amendment processing: It builds a compensation plan, and then applies the required changes.
Figure 11-3 shows a fallout assigned to a manual task.
Fallout can be triggered based on a single incorrect field in a single task. Because fallout can be mapped to one or more data elements, it is possible to have multiple errors in a single task view.
You can also create fallout groups to simplify assigning fallout data to orders. A fallout group is a group of fallout specifications, each of which includes a set of data to display in the Order Management Web client. This enables you to review multiple fallouts together in the Order Management Web client when the corresponding types of fallout occur.
To trigger fallout in an automated task, use the XML API FalloutTask.Request through com.mslv.oms.automation.OrderContext.processXMLRequest.
You can configure fallout-management processes and tasks to enable your fallout specialists to manage fallout by using the Task Web client. Fallout management tasks include such tasks as submitting and responding to trouble tickets, resubmitting orders, failing orders, and undoing tasks following a failure.
Figure 11-4 shows a fallout process (OrderCreationFalloutSubprocess) included in the AIA Order-to-Activate fallout cartridge. This process manages the fallout in the event of an order creation error. For more information, see OSM Cartridge Guide for Oracle Application Integration Architecture.
In addition to creating processes and tasks specifically to manage fallout, you can add failure flows to any type of process; for example, provisioning processes.
You can use both the Order Management Web client and the Task Web client to manage order fallout.
Both clients can be used for fallout management, but the primary differences are:
For orchestration orders, you sometimes must work in both clients to manage fallout because you require both an orchestration view and a task-level view of the order. For example, you must find and examine an order component of an order in the Order Management Web client and then drill down to the worklist to see the task-level view of the order component's tasks in the Task Web client.
Each client can launch the other client when required. To learn more about navigating between the clients so you can quickly access the orchestration view and task-level view of an orchestration order, see the getting-started discussions in each Web client's user guide.
In the Order Management Web client, you can do the following:
To correct the error that caused the failure, you often must use the OSM Task Web client to run fallout-related tasks, such as fallout recovery tasks. You might also need to work with external systems. There is no functionality in the Order Management Web client to manually run tasks.
While resolving the order failure, you can suspend the order to prevent processing on it. You can resume the order when you are ready to resolve the failure.
After the problem has been resolved, you use the Order Management Web client to resolve the order. When you do, you enter a description of how the order was resolved in the Resolve Order Failure dialog box. The order state is reset to In Progress.
Note: If the order failed because of a recognition rule failure or after reaching its point of no return, it cannot be resolved. Also, the ability to suspend, cancel, or terminate an order depends on its life-cycle policy. |
Figure 11-5 shows the Resolve Failure dialog box. Using this feature does not perform the steps required to resolve the failure; it tells OSM that the problem has been resolved and that the order can be resumed.
If you cannot resolve the order, you can use the Order Management Web client to cancel or terminate the order:
Note: Consider the impact on other systems of canceling or terminating orders. Depending on how your solution is configured, upstream systems may not be aware that an order has been canceled or terminated. |
In most cases, orders are failed automatically. You can also use the Order Management Web client to fail an order manually. Failing an order stops its processing and sets its state to Failed. It is not possible to change the state of a failed order or to make other changes until you resolve the order failure. Orders you fail manually are treated the same way as orders that are failed automatically by the system. They are considered fallout.
Note: In most environments, fallout-handling rules detect processing problems and automatically fail orders. Manually failing orders is not normally required. There may be some situations and environments when it is necessary to manually fail orders, however.Make sure you understand how other systems in your order processing solution handle failed orders. Depending on how your solution is implemented, upstream systems may not be aware that an order has been manually failed. |
You can initiate fallout in the Task Web client by raising an exception. An exception is a mechanism used to interrupt or stop an order or to redirect it to any task in the same process or any other process. You can use two types of exceptions: process exceptions and fallout exceptions.
You can use a process exception to stop or redirect an order. Process exceptions are typically part of the configured order flow and can be used to manage the order manually. Figure 11-6 shows the Process Exception page in the Task Web client. In this example, an error has been made in the order processing, and the process exception redirects the order to correct it.
You can use a fallout exception to initiate fallout to correct an error. A fallout exception allows you to initiate fallout from a particular task to correct an error caused by a previous task. When you raise a fallout exception, the system identifies the task that generated the error, transitions the order to the Amending state, and initiates amendment processing.
To recover from order fallout, the order might require a revision order to redo some of the order processing. Figure 11-7 shows how the system manages compensation tasks due to fallout.
In this scenario, Task B is responsible for the error and Tasks C and D include the error data. The fallout exception is raised at Task G.
In this figure:
Note: If the error data was generated by the creation task, the order transitions to the Failed state. No compensation tasks are created and the order must be corrected through an external amendment. |
activation
The enabling, disabling or changing of a service or network feature.
activation task
A type of automated task designed specifically to interact with the Oracle Communications ASAP product or the Oracle Communications IP Service Activator product.
Administrator application
An OSM application used to manage user workgroups, calendars and schedules, email notifications, and system events.
amend and amendment processing
A generic term that refers to making changes to in-flight orders. Amendments are typically made when processing a revision order, or managing an order cancellation or order failure. The amendment usually performs compensation; such as redoing or undoing tasks.
Application Integration Architecture (AIA)
The Oracle Application Integration Architecture. A set of Oracle products that enable you to set up and orchestrate cross-application business processes so that multiple applications can work together. OSM integrates with Oracle AIA for Communications. Oracle AIA runs on top of Oracle Fusion Middleware.
Application Integration Architecture (AIA) Order-to-Activate Cartridges
A set of OSM cartridges that integrate with the Oracle Communications Order to Cash Integration Pack for Oracle Communications Order and Service Management (Order to Cash Integration Pack for OSM). The Order-to-Activate cartridges and the integration pack enable OSM to be part of an order fulfillment solution that cover the entire order-to-activate process from order creation to service activation.
ASAP
Automated Service Activation Program. An Oracle product used by communication service providers to activate operational support systems equipment across multiple technology domains. ASAP supports many hardware vendor's network systems, and is integrated with OSM using activation tasks.
automated task
A task that does not require manual activity. Automated tasks handle interactions with external systems such as billing systems, shipping systems, and activation systems. They can also perform custom calculations and other tasks. Automated tasks are implemented using automation plug-ins. See manual task.
automation framework
An interface that enables the integration of OSM with external applications. It is used to automate tasks and notifications to other systems. It can also be used to perform business logic (such as performing complex calculations) without interacting with an external system. The automation framework is an OSM server component that performs the work required by automation plug-ins.
automation plug-in
An OSM component that performs the operation specified by an automated task. For example, you can create automation plug-ins to update order data, complete order tasks with appropriate statuses, set process exceptions, react to system notifications and events, send requests to external systems, and process responses from external systems. These operations can involve communication with external systems. OSM provides several predefined plug-ins. You can also develop your own plug-ins using a custom template.
behaviors
OSM behaviors allow you to control the validation and presentation of data elements in the OSM Web clients and data providers. For example, you can use the Calculate behavior to derive the value of the data in a field by adding the values in two other fields. You could use the Information behavior to present a tool tip for a field in the Task Web client.
cartridge
A software package created in Design Studio to deploy functionality to an OSM run-time system. Cartridges contain order metadata such as recognition rules, processes, order states, behaviors, specification, and other entities used for order processing.
Cartridges are created with Design Studio, but Oracle also offers customized cartridges that support integration with other common applications (for example, the Oracle Communications Order to Cash Integration Pack for Oracle Communications Order and Service Management). Oracle also offers pre-configured cartridges that demonstrate the capabilities of OSM.
central order management
The OSM system role that receives customer orders from one or more order-source systems such as Siebel CRM, creates an OSM order, and manages the fulfillment of the order across other enterprise systems including billing, shipping, and service fulfillment systems. OSM operating in the central order management role also receives status information from these systems and provides visibility of an order's status back to the order-source system. The central order management role is sometimes called central fulfillment.
An OSM instance can operate in a central order management role or in a service order management role.
common fulfillment state
The fulfillment state list that is defined on the States tab of the fulfillment state map entity. The common fulfillment state list provides the values that can be used for both mapped fulfillment states and composite fulfillment states.
compensation
Changes that are made to accommodate revisions to in-flight orders (orders still being processed). For example, if a customer initially orders Bronze-level DSL service but upgrades to Gold-level service while the original order is in place, tasks may need to be done, redone, or undone. OSM automatically calculates the compensation required to accommodate the changes to orders.
OSM uses these types of compensation: Do, which is a change that needs to be made in addition to the original tasks. Redo, which is a change that needs to be made to redo work that was already performed by the order. Undo, which is a change that needs to be made to undo work that has already been done by the order. Amend Do, which is the same as Do, but performed during amendment processing.
composite fulfillment state
The fulfillment state that results from an order fulfillment state composition rule set or an order item fulfillment state composition rule set.
control data
Metadata in an orchestration order that is used to manage the execution of the orchestration plan. OSM extracts control data from an order. Control data provides information about order items, order components and dependencies required to create the orchestration plan. This includes status and timestamps for its order items and components. During the execution of an orchestration plan, the order data, including control data, can be updated as transactions are completed.
Design Studio automatically generates control data for order components. You manually model control data for order items.
creation task
The task that contains data required for the order. The creation task specifies what information must be provided to the order before it can start processing. This applies equally to manual order entry through the Task Web client as well as through OSM WS or XML APIs. A creation task is defined in the order specification.
In OSM Web clients, the creation task represents the step that creates and submits an order instance that starts the order workflow.
CRM
Customer relationship management. A system for managing a company's interactions with customers, clients and sales prospects; for example, Oracle's Siebel CRM. When used in OSM documentation, CRM refers to sales and order capture activities.
customer order
An order request received by OSM to obtain a product or products, typically generated by the CRM or some other order-source system. OSM converts the customer order to OSM format after which it is referred to as an order. Sometimes called an in-bound order.
Data Dictionary
The logical repository of data elements used in Design Studio. The Data Dictionary defines data types and structures that can be used within OSM orders. For example, you can define a simple type that represents an IP address or a phone number, or more complex types representing addresses, product attributes and so on. Data elements in a Data Dictionary are used as building blocks of an OSM order.The data elements within a Data Dictionary project can be referenced by other projects in a work space. Multiple data dictionaries can be used to contribute data structures to a single order definition. A single Data Dictionary can also contribute to multiple order definitions.
data element
An entity viewable in Design Studio. When you model simple and structured data elements in the Data Dictionary, you can create new data elements that inherit their attributes from other existing data elements.The new data element can extend the information configured in the parent data element (also referred to as the base data element). For example, if you have a structured data element called person with first name, last name, and social security number child elements. You can extend the person structured data element by using it as a base for a new structured data element called employee, to which you add the employee number, hire date, and department child elements.
Simple data elements are reusable data types that contain no child dependencies. A simple data element has no structure, and is associated—directly or indirectly—to a primitive type (int, boolean, char, and so forth). Structured data elements are reusable data types and are containers of simple data elements and other structured data elements.
data provider
An adapter that can retrieve order data from external systems in an XML format. Design Studio provides several built-in data providers to retrieve external XML instances from specific sources such as a JDBC database or a SOAP Web service. Additionally, you can create your own custom data provider. Data providers are used when defining Data Instance behaviors.
decomposition
The process by which a customer order is broken into constituent order items, which are then organized into order components. For example, OSM can use the following algorithm to achieve decomposition:
The example above is representative of what OSM is normally configured to do for decomposition, but OSM is not restricted to these three stages. Decomposition is specified through configuration and can have any number of stages through which the order is decomposed.
See also order component, executable order component, orchestration stage.
decomposition rule
Rules that determine the order items in each order component. Decomposition rules specify the conditions in which OSM decomposes one or more order components into another order component. OSM evaluates every order item in the source order component against the conditions that you define for the decomposition rule. If an order item passes all specified conditions, OSM includes the order item in the target order component.
Unlike many other OSM modeling entities, decomposition rules are not directly referenced by other parts of the model. OSM selects decomposition rules by matching the source and target order components of the decomposition rule to the order components in the orchestration stages in the orchestration sequence.
See also executable order component.
default process
The first process that runs after an order is created. A default process can either be an orchestration process (which will be backed by a dynamically generated orchestration plan) or a workflow or workstream process.
delay
A process activity that specifies that a process stops until a condition evaluates as true. In OSM there are two types of delays, timer delays and event delays. A timer delay retries the evaluation of the rule at a fixed time interval. An event delay retries the evaluation of the rule only when order data changes.
dependency
A relationship in which a condition related to one order component or order item must be satisfied before another order item can be processed. For example, it may be necessary to perform provisioning before billing can occur for the same order item. Dependencies can have the following relationships:
See also inter-order dependency, intra-order dependency.
Design Studio
The software application used to design, configure, and deploy OSM Order Management cartridges into OSM environments. Design Studio is based on the Eclipse Integrated Design Environment (IDE). OSM plug-ins provide the specific screens (editors), validation logic, and cartridge-build functionality that allow users to create and configure OSM cartridges.
entity
A functional unit created and edited in Design Studio; for example, tasks, processes, behaviors, projects, and notifications. Entities are collected in a cartridge to deploy in a run-time environment to support your business processes (for example, you deploy cartridges to OSM run-time environments.
Entity names must be unique by entity type. For example, you cannot name two task entities with the same name. However, you can create identical names for different entity types. For example, you can model a task entity and a process entity with the name AddDS
.
Entity names are sometimes defined just by a simple name (the filename of the entity), and sometimes by a simple name and a namespace URI. In the case where a namespace URI is provided, it is the combination of the URI plus the simple name that gives the entity its unique name.
See also data element.
event delay
See delay.
executable order component
An order component with an associated process. Typically this is a component decomposed to its final level of granularity. Executable order components are generated during the last orchestration stage in an order.
See also order component and decomposition.
expected duration
The amount of time an order, or some part of the order (order component, product specification or task), is expected to take to complete processing.
expected start date
The date on which an order is expected to start being processed. Expected start date is determined for orchestration orders by calculating the expected order duration and factoring this in with the requested delivery date for order items on the order.
external fulfillment state
The status returned from a fulfillment system to an order component. This may be the exact status returned by the system, or automation may be used to translate the status before it is put on the order. It is a key input into a fulfillment state mapping.See also fulfillment state.
fallout
The failure of an order during processing. Fallout occurs whenever an order encounters a situation that prevents it from being processed. Causes for fallout include missing data or the inability to access a fulfillment system. Fallout management includes detecting, investigating, and resolving failed orders.
fallout exception
A mechanism initiated from the OSM Task Client to interrupt or stop an order, or to redirect it to any task in the same process or any other process. A fallout exception halts an order at a particular task in order to correct an error caused by a previous task.
fallout management
A process that includes detecting, investigating, and resolving failed orders. Administrators perform fallout management with the OSM Web clients. The clients allow them to search for failed orders, identify the reason for the failure by viewing order details, and resolve dependencies to allow order processing to proceed. In cases where the dependency cannot be resolved, you can cancel or terminate the order.
follow-on order
An order that is submitted to modify a completed order. Follow-on orders are not processed until their order-item dependencies on the in-flight orders allow them to proceed.
fulfillment
Operations that fulfill a customer's order. This may be providing, modifying, resuming or canceling a customer's requested products and services.
fulfillment function
Fulfillment functions are operations that must be performed to process an order item; for example, initiating billing, shipping, or performing installation. Fulfillment functions are defined in order component specifications created in Design Studio.
fulfillment modes
An entity that represents the intent of an order. For example, the fulfillment mode could indicate whether the order is intended for qualification, delivery to fulfillment systems, testing and so on. Every customer order can specify a fulfillment mode.
Different fulfillment modes will have different orchestration sequences. If OSM receives two identical incoming customer orders with different fulfillment modes, it generates a different orchestration plan for each order. The two plans include different executable order components with different dependencies among order items.
fulfillment state
The state of an order or order item aggregated and translated from status values returned by external systems. This state can be used to provide status visibility to upstream systems and to users by using the Order Management Web client.See also common fulfillment state, composite fulfillment state, external fulfillment state, and mapped fulfillment state.
fulfillment state map
The Design Studio entity that contains both the definition of common fulfillment states and fulfillment state mappings. A common fulfillment state defined on one fulfillment state map is available to all fulfillment state mappings in the workspace.
fulfillment state mapping
The Design Studio entity that maps external fulfillment states to values from the common fulfillment state list. The resulting fulfillment state is referred to as a mapped fulfillment state.
fulfillment system
A participating system in an order management solution. Fulfillment systems can include billing, provisioning, activation, shipping and workforce management systems, among others. OSM interacts with fulfillment systems when processing orders.
fulfillment topology
The arrangement of network elements, processes, systems, and software used to fulfill a customer order. The fulfillment topology represents the types and instances of fulfillment systems involved in fulfilling an order. For example, all of the Business Support Systems (BSS) and Operational Support Systems (OSS) that participate in order capture and order fulfillment represent the fulfillment topology.
future-dated order
An order that has a requested delivery date that is later than the current date and time. For example, a customer order to have a new VoIP service added at the beginning of the next month is a future-dated order. OSM uses the order orchestration plan to calculate the order start date of future-dated orders so the order can be completed by the time the customer wants it.
See also expected duration and expected start date.
in-flight changes
Changes that are made to an order that is being processed.
in-flight order
Any order that is not in a closed state (Closed or Aborted). An in-flight order still has the potential for further work to be performed on it.
intra-order dependency
A dependency between order items in the same order. An intra-order dependency can refer to external information, but not to data in other orders.
IP Service Activator
Internet Provider Service Activator. An Oracle product used by communication service providers to define and fully automate the activation of services on large-scale multi-vendor IP networks. IP Service Activator delivers end-to-end network control and enables real time reaction to new service and customer demands.
line item
See order line item.
manual task
Tasks performed by OSM operations personnel using the Task Web client. See also automated task.
metadata
Data definitions for entities such as processes, states, and rules modeled in Design Studio. OSM uses metadata to determine how to process order data. For example, OSM uses metadata from the product specification to determine how order items are to be grouped into order components in an orchestration plan.
mnemonic
A synonym for an entity name. Mnemonic is a legacy term for OSM. The proper name is entity name.
multi-instance data element
A data element that is permitted to have more than one instance. For example, you configure the ControlData/OrderItem structure as a multi-instance data element so that OSM can create an instance of the structure for every order line item extracted off the in-bound customer order.
namespace
1. An XML namespace is a method for uniquely naming elements and attributes in an XML document. Attributes and elements are identified by a fully qualified name that consists of a namespace name paired with the local attribute or element name.
2. An OSM entity namespace is a method for uniquely naming OSM entities across projects. Fully qualified OSM entity names consists of a namespace name paired with the local entity name. OSM entity namespaces allow different work groups of Design Studio users to create different entities without concern for name contention. Services can be implemented independently by a different teams, then deployed into a single OSM run-time environment.
Not every OSM entity has a separate namespace (example: tasks and processes). For these types of entities, a unique name is created by attaching the cartridge name and version number to the entity name.
3. An OSM cartridge namespace is a method for uniquely naming OSM cartridges. This allows you to identify what cartridge is deployed in an environment. For example, if you are diagnosing an order failure, it's useful to know the logic and configuration of the cartridge that processed that order. Fully qualified cartridge names consist of a namespace name paired with the cartridge name.
You can view namespaces and other details about an entity or cartridge through Design Studio.
notification
Messages sent by OSM to alert users of order problems (jeopardy notifications) or changes to an order's state, status or data (event notifications). By default, OSM sends most types of notifications to the Task Web client Notifications page. You can also specify that notifications be sent by e-mail.
Oracle WebLogic Server
Oracle's application server for building and deploying enterprise Java EE applications. The Oracle WebLogic Server hosts the OSM server, OSM integration, and related interfaces.
orchestration
The process OSM uses to manage the fulfillment of a complex order. Order fulfillment often requires interaction with many fulfillment systems. Various dependencies may require that these interactions be run in a specific order to ensure that order items are sent to the proper systems, and that the required steps, in the proper sequence are run.
orchestration order
An order that requires an orchestration plan for fulfillment. Orchestration orders contain control data for an orchestration plan. The default process for an orchestration order is an orchestration process. See process-based order.
orchestration plan
A dynamically generated plan that is used to manage the fulfillment of an order. Order fulfillment often requires interaction with many fulfillment systems, and various dependencies may require that these interactions be run in a specific order. The orchestration plan includes the order, order component, and the type and the sequence of order component execution. An orchestration plan is generated for each order based on the metadata defined for the type of order being processed.
For example, an order is captured by Siebel CRM and is sent to OSM for processing. Using the recognition rules and other entities provided by the OSM cartridges in the Order to Cash Integration Pack for OSM, OSM decomposes the order and dynamically generates an orchestration plan that is used to manage the fulfillment of the customer's order across other enterprise systems.
orchestration sequence
A set of orchestration stages for an order. Orchestration sequences specify the set of orchestration stages for an order. Orchestration stages and sequences together define how an order is decomposed.
See also decomposition, orchestration stage.
orchestration stage
A step in an orchestration sequence used to decompose an order and create an orchestration plan.
See also decomposition, order.
order
An order in the OSM format. You model orders by creating order specifications in Design Studio.
There are many order variants including:
order component
A collection of order items that can be processed together because they meet some common criteria as determined by an orchestration stage. Order components are modeled in Design Studio, based on factors such as a function that needs to be performed, the systems that need to perform that function, and what other items can be processed in the same group.
See also decomposition, executable order component, orchestration stage.
order component ID
An ID associated with an order component that can be used in decomposition. When implementing fulfillment systems; for example, you can configure OSM to achieve decomposition by using decomposition rules or by using the component IDs of the order items. For example, a decomposition rule can select order items from fulfillment system order components and group them into an order component to create a single bundle. OSM can then use an order component ID calculation to generate distinct bundle instances.
order data
The data that is used for fulfilling an order; for example, a customer name and address.
order data key
Uniquely identifies a data element or structure in an order by differentiating the data element or structure based on a data element value. Order data keys are important when identifying order data changes during compensation and for multi-instance data elements.
order definition
See order specification.
order duration
See expected duration.
order entity
See order specification.
order fallout
See fallout.
order fulfillment state composition rule set
The Design Studio entity used to aggregate and evaluate the fulfillment states of root-level order items and compose them into a single composite fulfillment state for the entire order.
order header
Orders typically consist of two parts: an order headers containing information that is applicable to the entire order such as the customer name and address, and order line items such as the products, services, and offers requested by the customer and the action to be performed on them (Add, Suspend, Delete, Move, and so on).
order item
An order line item transformed so that it can be processed in OSM. Each order item includes the action required to implement it, such as Add, Suspend, and Delete. Order items are decomposed into order components based on shared characteristics defined in a product specification.
See also order component.
order item fulfillment state composition rule set
The Design Studio entity used to aggregate and evaluate the fulfillment states of order component order items and child order items and compose them into a single composite fulfillment state for the entire order item.
order key
Unique value that enables the system to match incoming revision orders to the corresponding OSM order. If the order key matches an order that is currently in progress, the order is considered to be a revision that amends a base order. For example, you can specify to use the customer reference ID as the order key. In that case, when OSM processes an order, it looks for previous orders that have the same customer reference ID, and amends it.
The order key can be any data or combination of data associated with the order. It is configured in Design Studio as an XPath expression to a data element that will uniquely match an amended order to its corresponding OSM order. For example, you might specify a customer reference ID as the following Xpath expression: root/Cust_Ref_ID
order life cycle
The sequential states through which an order passes and the transactions it undergoes from the time it is received in OSM until the time it is resolved. States include Not Started, In-progress, Suspended, and Completed. Each order state is associated with a set of transactions that can be performed while the order is in that particular state. Transactions include Update Order, Cancel Order, Complete Task, and Raise Exception. The life cycle of an OSM order is governed by the order state model and order life cycle.
order life-cycle policy
A set of policies that controls the states in which an order can be, and the transactions allowed in those states. The order life-cycle policy also determines which roles can perform which transactions. For example, while an order is in the In Progress state, you might want your Customer Service role to be able to perform the Update Order, Cancel Order, and Suspend Order transactions, while your Fallout role is able to perform the Raise Exceptions transaction. Every order type you create must be associated with an order life-cycle policy.
order line item
Specific items such as individual products, services, and offers on an incoming customer order. OSM transforms order line items into order items.
Order Management Web client
An OSM web application that displays an order's orchestration plan, including dependency, orchestration stages, order components, order items, and processes. The Order Management Web client is used by fallout administrators responsible for locating orders with errors, determining the causes of failures, and taking the necessary corrective actions; operations and management personnel who monitor the progress of orders; and orchestration plan designers who can use this application to test and validate orchestration-based orders during the modeling and implementation of OSM solutions.
order priority
A value that OSM uses to determine which orders should be given more processing resources. OSM uses order priority to determine the next thing to be done. Orders with higher priority will be processed before orders with lower priority. In situations where resources are constrained (for example, the system is using all available CPU, memory, or other resources to process orders), orders with higher priority will process faster than orders with lower priority.
order recognition
The process of determining the type of an incoming customer order so it can be mapped to an order specification in OSM. During order recognition, OSM steps through an ordered list of recognition rules to determine which rule applies to the customer order. Each rule is associated with an order specification.
order reference number
A value associated with an order specified in one of the OSM Web clients or OSM APIs. OSM uses an order reference number as an identifier to external systems. Reference numbers can be used as keys to correlate orders between systems.
order specification
An order entity defined in Design Studio. The order specification is the central entity in OSM. It defines the basic information OSM requires for it to be able to process orders. It specifies such things as what data is allowed in an order (order template), what are the range of order priorities, whether amendments are allowed and how they are processed, how to handle jeopardy, fallout, permissions and so on.
Other entities such as tasks, processes, and notifications require that you specify an order specification to which it relates. Order specifications can inherit from other order specifications, and multiple order specifications can be modeled and can exist simultaneously. Also known as an order definition and order entity.
order state
OSM processes each order within a set of order states. A state is the condition of the order. For example:
See order life cycle.
order state transition
Changes from one order state to another order state as a result of a transaction. Each order state has a set of allowable transitions. For example, when an order is completed, it transitions from the In Progress state to the Completed state.
order template
A part of an order specification that defines what order data OSM will use to process and fulfill the order. For example, the order template defines the data required for order items as well as the data required in an order header. Create or modify order templates by adding data elements from one or more data dictionaries.
order transformation
The manipulation and enrichment of the structure and contents of a customer order through a set of rules. Transformation rules are defined as part of recognition rules, and are based on applying a series of XQueries to the in-bound order.
Three types of transformation rules are available: order priority rules, which define the priority of the order in relation to others; order reference rules, which define the order reference number; and order data rules, which add to or modify incoming customer order data.
order validation
A process that occurs during order recognition that validates that an order is syntactically correct. When an inbound order is recognized, OSM validates it based on validation rules defined in the order recognition rule.
For example, a validation rule can determine that all mandatory fields are populated, that valid characters (numeric or alphanumeric) are used for fields, and that the order has a valid status code such as Open. Validation rules are implemented as XQuery expressions. Each node in the expression must evaluate to true for validation to pass.
OSM order management Web services API
The primary interface for external systems to OSM. The OSM order management Web services provide for in-bound order operations such as creating, managing, retrieving, updating, or canceling an order. Web services are Web APIs that support interoperable machine-to-machine interaction over a network such as the Internet. Web services run on a remote system hosting the requested services such as OSM. Web service interfaces are described by the Web service definition language (WSDL).
OSM security callback
A callback interface that allows you to generate an audit trail log of users before they gain access to order data that is considered sensitive. The security callback interface is designed to intercept order access from defined functions such as GetOrder, XML API WorkList.Request, and Task Web client Order Data History page.
OSM server
The server that manages OSM run-time functionality, including in-bound order operations and outbound communications with external systems. The OSM server is deployed on Oracle WebLogic Server.
OSM Web clients
The two OSM GUI applications called the Order Management Web client and the Task Web client. The Order Management Web client displays an order's orchestration plan, including dependency, orchestration stages, order components, order items, and processes. The Task Web client is used for monitoring and managing the tasks in an order.
point of no return
The point in the orchestration of an order item after which revisions can no longer be accepted.
process
A sequence of tasks and subprocesses that need to be carried out to fulfill all or part of an order. For example, an ADSL fulfillment process could include the following tasks that can take place over a number of days: assign a port, ship modem to customer, activate DSLAM, send customer survey, and verify order. The process includes definitions of the relationships between tasks and the sequence in which they are run.
process-based order
An order that does not include an orchestration plan. A process-based order typically handles a provisioning process. See orchestration order.
processing granularity
Decomposition groups order items into optimally executable order components. For example, if monthly fees, VoIP adapter, and VoIP phone are all billed by the same billing system, they can be grouped into a single executable order component. This is called processing granularity. See decomposition.
product catalog
A data repository that stores and retrieves information about your products including price lists, discount lists, and unit groups. The product catalog is used to create customer orders. Sometimes called the master product catalog. The product catalog exists on the CRM or other order-source system. An example of a product catalog is the Siebel Sales Catalog or Oracle Product Information Management Data Hub for Telco.
product class
Groups of related products that share common attributes. For example, suppose you sell products for three levels of DSL service. Though there are different values to differentiate the service levels, the products are structurally identical and provisioned by the same system; they are variations of the basic DSL service. As a result, a single product-class to product-specification mapping can be used for all of them.
Product classes are defined in a product catalog such as the Siebel Sales Catalog or Oracle Product Information Management Data Hub for Telco.
product specification
An entity that includes the fulfillment function order components and dependencies required to fulfill a product order. Each order item in an order is mapped to a product specification. OSM uses the product specification to determine the necessary fulfillment functions, order components, the dependencies that exist between them, and dependencies on other product specifications to generate an orchestration plan.
provisioning
Providing the data necessary for enabling a service, with the actual enabling done by activation.
recognition rule
Rules that enable OSM to validate a customer order and transform it into an OSM order format.
related order
An order that contains order items that depend on another order.
reporting interface
A tool for generating reports about OSM orders, tasks, and notifications. The Reporting Interface augments the reports that are available through the OSM Web clients. See OSM Reporting Interface Guide for more information.
revision order
An order that modifies a previously submitted order that is still being processed. For example, a customer may want to switch to a higher level of service before an order is completed. Revision orders may require compensation. The system can process revision orders until the original order reaches its point of no return. A revision order is sometimes called a supplemental order.
See also follow-on order.
role
A set of permissions to access to functions in the Task Web client and Order Management Web client that can be assigned to users. Functions include viewing reports, assigning tasks, and querying orders. In addition to granting OSM Web client permissions, you can also grant permissions at the order and task levels. Roles are created with the OSM Administrator application or Design Studio. The Administrator application refers to roles as workgroups, although they are both the same thing.
rule
Rules are defined as part of an order specification to work on data in the order. Rules are used in many OSM activities to evaluate conditions and determine next process steps. For example, you can specify to delay the next task in a process until a specified data element includes a certain value.
rule engine
A processing component of OSM that evaluates rule and timer delays for transition to the next task. The engine is implemented as one or more Oracle database jobs. The rule engine is configured as one or multiple jobs to improve performance.
security callback interface
service order management
The OSM system role that serves as part of a service fulfillment stack, working with inventory and activation systems to fulfill services in one or more network domains. An OSM instance can operate in a service order management role or in a central order management role. Sometimes called local fulfillment.
subprocess
A process started by another process. A subprocess is used to organize any large process into smaller more re-usable pieces. It includes one or more tasks and realizes an executable order component.
task
An individual step that is required for the processing of an order. Tasks are defined by the order specification in Design Studio, and can be either a manual task (performed by human action) or automated task (performed by an automation plug-in).
Tasks are run as part of any process-based order. For example, a completely process-based order consists of a series of steps which are defined by tasks. By contrast, an orchestration order starts out as orchestration plan. Each order component within the orchestration plan is implemented by a subprocess which in turn contains tasks and other subprocesses.
task state
A state describing the milestones of a task in a process. The task state also determines how it can be worked on. OSM provides the following task states: Received, Assigned, and Accepted. You can, however, create your own task states. For example, you can define a Suspended task state to indicate the progress of automated tasks, or you can define a Completed task to indicate that user is finished with the task and the order is ready to move to the next task in the process.
task status
A representation of how a task can transition to the next step in a process. The task status shows how the task transitions in a process; for example, if the task transitioned the process to the next task, or if it caused the process to fail. Changing the status of the task determines the next step in the order process. The statuses that you define appear as task transition options in the OSM Web clients.
For example, if you have a task called Assign Port, and the two statuses are Port Available and Port Unavailable, the status determines whether the process can proceed to the next task. Task status also controls notifications, so when the status is Port Available, OSM can send a message saying Successful.
Task Web client
An OSM GUI application used for monitoring and managing the tasks in an order. This application is typically used by order processing personnel to ensure that all the tasks are completed. It is also used by order fallout managers. You can also suspend and resume orders, cancel orders, and create orders manually.
timer delay
See delay.
transaction
An action taken by the OSM system on an order. For example, the Suspend Order transaction stops all processing on the order and transitions the order to the Suspended state. Also called an order state transaction
Some other transactions are Abort Order, Complete Task, Process Amendment and Raise Exception. Most transactions perform transitions that change the state of the order to a different state. However, some transactions do not perform a transition to another state. For example, the Update Order transaction can make changes to an order without changing the order's state.
trouble ticket (TT)
A request to the trouble ticketing system indicating that an error occurred during the processing of an order. Different from a fallout task in that trouble tickets come from front-end systems such as Siebel CRM.
unresolved dependency
A dependency with at least one unmet condition.
WebLogic Server
workgroup
A group of users with assigned permissions to access to functions in the Task Web client and Order Management Web client. Functions include viewing reports, assigning tasks, and querying orders. In addition to granting OSM Web client permissions, you can also grant permissions at the order and task levels. Workgroups are created with the OSM Administrator application or Design Studio. Design Studio refers to workgroups as roles, although they are the same thing.
worklist
A list of manual tasks assigned to OSM operations personnel who use the Task Web client to manage orders. When an order arrives at a task, it is added to the worklist of all the members of all the workgroups assigned to work on that task. Users can select a task from their worklist to view the assigned task in the order process. Worklist also refers to the main page in the Task Web client used for managing orders.
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