Developer's Guide
Release 7.2.2
E35419-02
March 2013
Oracle Communications Order and Service Management Developer's Guide, Release 7.2.2
E35419-02
Copyright © 2007, 2013, Oracle and/or its affiliates. All rights reserved.
This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.
The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.
If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable:
U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.
This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.
Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.
Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.
This software or hardware and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.
This document provides information about the following customizable areas of Oracle Communications Order and Service Management (OSM):
This document also provides a process example of a CLEC provisioning a POTS customer using unbundled local loop to illustrate various customizations.
This document is intended for programmers who have a working knowledge of:
This document assumes that you have read OSM Concepts, and have a conceptual understanding of:
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
.
Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.
This chapter provides an introduction to customizing Oracle Communications Order and Service Management (OSM) interfaces.
Before customizing OSM, it is important to understand what needs to be done and to design the solution properly.
This topic is further explored in "Planning and Designing the OSM Implementation".
There are two areas of OSM that you can customize:
The two primary external interfaces for performing automated fulfillment are OSM Web Services and OSM automation. Additional external interfaces include OSM Security Callback and the OSM XML API.
OSM Web Services provide the primary interface for in-bound order operations such as creating or canceling an order. Web Services are typically initiated from customer relationship management (CRM) systems and other order sources that need to create and manage orders in OSM.
This topic is further explored in Chapter 4, "Using OSM Web Services."
OSM automation provides the primary interface for outbound operations to interact with external systems to achieve automated order fulfillment. Outbound operations are initiated by OSM through automated tasks and automated notifications.
Automated tasks and automated notifications are not limited to outbound operations: Automated tasks can send outbound messages to external systems and also receive in-bound messages back from the external systems. (Automated notifications only send outbound messages to external systems; they cannot receive in-bound messages.) Additionally, automated tasks and automated notifications can perform internal business logic or update the OSM database.
This topic is further explored in Chapter 5, "Using Automation." Additional information on automation is presented in Appendix A, "AutomationMap.xml File" and Appendix B, "Automation: Start to Finish."
OSM Security Callback allows you to generate an audit trail log of users before they gain access to order data that is considered sensitive. OSM provides a callback interface that is designed to intercept order access from defined functions.
This topic is further explored in Chapter 6, "Using OSM Security Callback."
The following sections briefly describe the ways you can customize the OSM user interfaces (UIs).
Behaviors provide the ability to customize data validation and data presentation in both the Task Web client and the Order Management Web client. OSM defines several behavior types, and you can define instances of behavior types on data elements defined in the data dictionary, for an order, or for a task.
For information about behaviors, see OSM Concepts.
The custom menu actions and items feature provides the ability to configure custom menu items and actions that are called from the Context menu of the Task Web client Worklist and Query Result pages.
This topic is further explored in Chapter 7, "Using Custom Menu Items and Actions."
Localizing OSM is the process of changing the user interfaces from the original language in which it was written to another language. You can localize the Order Management Web UI and the Task Web UI. This processes involves modifying OSM XML files.
This topic is further explored in Chapter 9, "Localizing OSM."
Oracle recommends that you use Log4j to generate and manage the system log messages. See OSM System Administrator's Guide for more information.
Several tools are available to you when customizing OSM, as described in the following sections.
Oracle Communications Design Studio is an Eclipse-based integrated development environment (IDE). Design Studio is a separate software that comes with your OSM installation, along with Design Studio plug-ins specific to OSM that enable you to configure and customize OSM. Detailed information on using Design Studio to customize OSM is presented in Chapter 3, "Using Design Studio."
Apache Ant is an open source software application often used for automating application build processes. See OSM Installation Guide for the required version of Ant.
Ant uses XML to define targets which are executable commands that perform a specific task. By default, the XML file is named build.xml.
Installing Design Studio OSM-specific plug-ins provide the build.xml and the automationBuild.xml files, which can be used to automate building automation plug-ins. Ant is also used by the XML Import/Export application, as described in the following section.
See Chapter 3, "Using Design Studio." for information on installing Ant.
OSM includes the option to install the XML Import/Export application, a set of customizable Ant commands that help you manage data when dealing with multiple OSM development and test environments.
You can also use the XML Import/Export application to manage data when dealing with multiple OSM production environments. This topic is further explored in OSM System Administrator's Guide.
To model OSM orders, you must have a working knowledge of the XPath and XQuery languages.
You typically use XPath statements to specify the location of data in OSM entities. You use XQuery statements to find and filter data needed for OSM functionality. You can use XQuery in situations where a more expressive language or transformation abilities are needed.
An XPath tutorial is available at:
http://www.w3schools.com/Xpath/default.asp
An XQuery tutorial is available at:
http://www.w3schools.com/xquery/default.asp
Note: In OSM, XQuery statements are limited to a maximum of 4000 characters. |
This chapter provides an overview of planning and design considerations for your Oracle Communications Order and Service Management (OSM) implementation.
Before you model your order fulfillment process, you must complete a planning phase, in which you analyze your business and system requirements. These requirements may include systems outside OSM, in order to ensure that the solution works as a complete system. The results of this analysis help you determine how to model your order processing.
This phase can include the following:
The analysis focuses on:
This analysis helps translate the commercial products into the services that need to be provisioned on the network.
Every order management implementation involves integration between multiple systems as a part of the end-to-end fulfillment lifecycle. To plan how to integrate OSM with external systems, do the following:
Table 2-1 lists the considerations you must take into account, and the entities and configurations you use to implement them in Oracle Communications Design Studio.
Table 2-1 Order Processing Considerations and Related Metadata Elements in OSM
Question	Metadata Element
What are the data elements related to the incoming order? What additional data is generated by the applications that are a part of the fulfillment process; for example, billing data? What are the data elements needed by individual tasks?	Data dictionary
How is the order data organized? How will the order be displayed to your order management personnel?	Order template and Behaviors
How will the incoming order format be recognized?	Order recognition rules
How can I validate specific content on the incoming order data?	Order recognition rule and Validation X-Query
How will OSM identify and understand the structure of the individual line items on the order?	Order item specifications
How will OSM determine the fulfillment actions that need to be performed for line items on the order?	Product specifications
How will OSM recognize which set of fulfillment actions need to be performed for an order?	Fulfillment modes
What are the fulfillment actions involved in the processing? Fulfillment actions include actions such as delivering a service, canceling a service, and qualifying a service.	Order component specifications - Fulfillment actions
Which systems are involved in the fulfillment life cycle?	Order component specifications - Fulfillment target systems
What is the processing granularity for each target fulfillment system? For example, is it:	
Order component specifications - processing granularity	
How will the order fulfillment actions be realized? Does the action need to be manual or can it be automated?	Processes and tasks
What are the steps in decomposing the sales order into a set of fulfillment requests to be executed by the different fulfillment systems?	Orchestration stages
What is the sequence in which the decomposition should happen?	Orchestration sequences
What are the teams and groups of people involved in executing the fulfillment actions?	Roles (called Workgroups in the Administrator application)
What are the policies that control the execution of the order, concerning which items can be modified, and when, and who is authorized to make modifications.	Order lifecycle policies
Is there a specific order in which the fulfillment actions must be performed?	Dependencies
Is there a stage in processing beyond which no revision to an in-flight order can be allowed?	Point of no return
What actions need to be performed when an in-flight order is revised?	Compensation configuration
How will external systems be notified of status changes or order data changes in OSM? How will OSM order processing personnel be notified if an order is in jeopardy.	Notifications
What are the key data elements of the order that need to be tracked? Changes to these data elements might need to be communicated to external systems.	Order Data Changed Notifications. Line item data fields returned from fulfillment, status and milestones on the order data
How can I customize the appearance and functionality of the Task Web client? How will data be validated?	Behaviors (called View Rules in previous releases)
How will OSM integrate with external applications to exchange data and invoke commands to execute the fulfillment actions?	Automation plug-ins
When you model OSM entities, you can define separate cartridges and combine them in a single solution. This allows you to create individual cartridges for specific purposes, and to create a library of cartridges which can be shared across multiple solutions. This approach can result in lower maintenance, better performance, and easier collaboration within the implementation team.	
While each deployment has its own specific considerations, Oracle recommends that you consider the following guidelines:	
Status values for an order item and for the whole order often need to be sent to the upstream system that submitted the original request. There are a number of ways to achieve this.	
Be aware that there can be race conditions if multiple status updates are executed in parallel. Since each update is taking a snapshot at a particular moment, it is possible that none of the status updates will have a snapshot that includes all of the final values. This strategy is better used when there are no multiple concurrent status updates.	
An automated task can process multiple responses from external systems. For example, an activation task might receive the status for each service on the activation request. The activation task needs this information to determine when the activation has been completed by the external system, at which point the task can transition to the Completed state.	
When OSM must determine the last response, there are special considerations for concurrent status updates. If the automated task needs to track the status of all responses, and multiple responses are processed concurrently, the automation receiver instances executing concurrently do not have visibility to status updates from the other receivers. The receiver may never execute with the task data that contains all status updates and so never encounters a condition where it can complete the task.	
This situation can be handled by configuring an automated notification plug-in that monitors the status fields and creates a notification whenever the data changes.	
Figure 2-1 Sequence Diagram for Concurrent Status Update Notification Process	
The notification plug-in is triggered every time the status field is updated by the automation receiver. The notification plug-in executes in a separate transaction after each receiver update, and can check the status responses to determine if all responses have been received for each action request. When all responses are received, the notification plug-in can generate a message to trigger an automation receiver. This receiver is correlated to the original sender by means of an ID set by the sender specifically for tracking the status updates. The receiver is then run with the task data that contains all of the status responses and it can complete the task.	
Oracle recommends that you determine a set of naming conventions for the Design Studio entities being created and a directory structure to contain those elements that is appropriate to your implementation. Following is an example set of naming conventions for selected configuration elements within Design Studio. However, each project team should determine what conventions are suitable for a particular project.	
Table 2-2 Suggested Design Studio Naming Conventions	
Metadata Element	Naming Convention
---	---
Order recognition rules	Use the convention of OrderTypeORR
Order item specifications	Use the convention of OrderItemTypeItemSpec
Product specifications	Use a name that indicates the fulfillment flow being supported. For example: PS_FulfillmentType_SpecType
Fulfillment modes	Use names that clearly identify the type of action to be taken
Order component specifications: Fulfillment actions	Use names that indicate the function of the fulfillment action; for example, Billing, or Shipping.
Order component specifications: Fulfillment target systems	Use names that indicate the function of the target system; for example, Billing, or Shipping.
Order component specifications: Processing Granularity	Use names that correspond to the order structure defined in the product catalog; for example, Item, Bundle, and Order.
Orchestration stages	Use names that describe the stages.
Orchestration sequences	Use the convention CartridgeNameSequence
Decomposition rules	Use the naming convention DR_FunctionName_To_SystemName for system decomposition rules Use the naming convention DR_DetermineGranularity_For_FunctionName for granularity decomposition rules
This chapter provides information on Oracle Communications Design Studio and the plug-ins specific to Oracle Communications Order and Service Management (OSM) that enable you to configure and customize OSM.	
Before you can use OSM to fulfill orders, you need to use Design Studio to model how orders are fulfilled. For example, if you sell a DSL service, you model your DSL order to include the data necessary to activate the DSL service on the network.	
You can approach the creation of process-based orders by modeling the process flow first or by defining data first and analyzing the process flow needed to support the data model. You can also use a hybrid approach, defining data as needed while modeling your process flow.	
When you use Design Studio, you create order specifications for the types of orders your business uses. You also create specifications for each of the elements in an order model; for example, order item specifications, and order component specifications.	
You also use Design Studio to define how OSM fulfills orders. For example, you design the way orders are recognized, how they are decomposed, the processes and data required to complete them, and how to manage fallout.	
You create projects to contain the order specifications that you develop. When a project is complete, you use Design Studio to build a cartridge that is deployed into OSM.	
You also define the following entities in Design Studio to further specify particular aspects of order management.	
Design Studio is based on Eclipse, an industry-standard, open-source development environment.	
See the Design Studio Help for more information.	
Design Studio is the primary application for modeling orders, orchestration details, processes, and creating automated tasks. For directions on how to install Design Studio, which includes the installation of Eclipse, see Design Studio Installation Guide. For version compatibility information for Design Studio and plug-ins, see OSM Installation Guide.	
For directions on how to install the OSM plug-ins, see Design Studio Installation Guide. The section on installing Design Studio features into Eclipse describes how to install all available Oracle Communications plug-ins.	
For OSM, you need to install the following plug-ins:	
If you plan to integrate OSM with Oracle Communications ASAP or with Oracle Communications IP Service Activator, or if you plan to use the orchestration capabilities of OSM, you need to install the following plug-ins:	
Before developing with Design Studio, configure your Oracle WebLogic Server, Java, and OSM SDK home directories:	
Perspectives define your Workbench layout and provide different functionality for working with different types of resources. Several perspectives are available within Design Studio. The Java perspective, Design perspective, and Environment perspective are commonly used when customizing OSM.	
Within a given perspective, views further define your Workbench layout and provide different presentations of resources. Several views are available within Design Studio, and the available views are dependent upon the perspective.	
For example, within the Java perspective, commonly used views include:	
Within the Design perspective, commonly used views include:	
Within the Environment perspective, commonly used views include:	
For instructions on how to open perspectives and views in Design Studio, see the Design Studio Help.	
Cartridges contain OSM customizations, such as order templates, order processes, automated tasks, and custom automation plug-ins. Use Design Studio to develop cartridges that model your business logic.	
When customizing OSM, you can create one or more cartridges, depending on how you choose to organize the customizations. For example, you may create a cartridge that contains only order templates, another that contains only processes, another that contains only automations, and so on. Or, you may create one cartridge per business area where all order templates, processes, and automations for one business area are defined in one cartridge, while all order templates, processes, and automations for another business area are defined in a different cartridge.	
Everything you create in Design Studio (order templates, processes, automations, and so on) resides in a cartridge. After the initial build of the cartridge project, a corresponding portal archive (PAR) file is created. A PAR file is a standard ZIP file with a .par extension that contains Java classes, Web resources, and other files required to run the application. The name you choose for the cartridge becomes the name of the PAR file. The PAR file is saved to the cartridgeName/cartridgeBin directory, as seen from the Java perspective Package Explorer view. Everything you create in Design Studio that resides in a cartridge is saved to the corresponding PAR file.	
There are two types of cartridges in OSM: component cartridges and composite cartridges. Most cartridges (and all cartridges in versions of OSM prior to 7.2) are component cartridges. An OSM composite cartridge is a type of cartridge that references other cartridges, called component cartridges, within a single logical scope. You use component cartridges and composite cartridges together to develop, deploy, and maintain OSM solutions. A composite cartridge is used to assemble an OSM solution from a collection of component cartridges. When you deploy the composite cartridge into the run-time environment, all of the component cartridges that are referenced in the composite cartridge are deployed as a solution in a single action.	
Composite cartridge projects may contain any number of component cartridges, but not other composite cartridges. You cannot create entities directly in a composite cartridge project; rather, you create the entities in the component cartridges that are referenced in the composite cartridge.	
You can configure how orders are fulfilled by deploying cartridges in different ways. For example:	
The following is an outline of creating a cartridge using Design Studio.	
The OracleComms_OSM_CommonDataDictionary model project contains predefined base data elements for control data. It is recommended that you use the data schema of this model project to add the ControlData data element in the data schema.	
If you define ControlData in the data schema manually:	
Create or import at least a skeleton order item specification that contains the base ControlData/OrderItem structure. The OracleComms_OSM_CommonDataDictionary model project contains this base structure.	
For instructions on how to create a cartridge in Design Studio, see the Design Studio Help.	
When you create and build a cartridge, OSM gives the cartridge and resultant PAR file the same name. The name is based on what was entered in the Project name field when creating the cartridge.	
Figure 3-1 shows an example of a cartridge, named myCartridge, as it appears in the Design perspective Cartridge view (left side). The corresponding Order and Service Management Cartridge editor is also shown (right side).	
Expand the cartridge in the Cartridge explorer pane (on the left in Figure 3-1) to see the contents created with each cartridge. For a component cartridge, this includes a default order based on the name of the cartridge. When you initially create a new OSM component cartridge, errors are always present because the default order requires you to define:	
A composite cartridge does not require these entities, so there are no errors when it is initially created. For a component cartridge, after these entities are defined for the order, the errors are resolved, but the graphic will still show the presence of an error by placing a small red "x" box on the lower left corner of the icons in the Cartridge explorer pane. This is because the graphic shows what is present when the cartridge is created. When the errors are resolved, the pane reflects the additional entities of a process and a life-cycle policy that are not part of cartridge creation.	
Switching to the Java perspective Package Explorer view and expanding the cartridge displays the file types of the contents created with each cartridge.	
Figure 3-2 shows an example of a cartridge, named myCartridge, as it appears in the Java perspective Package Explorer view. The corresponding Order and Service Management Cartridge editor is also shown.	
In the example, myCartridge was entered in the Project name field when creating the cartridge. As a result, the Java perspective Package Explorer view shows:	
After creating the cartridge, an immediate build of the project creates additional directories and files in the cartridge, as shown in Figure 3-3. The directories include, among others:	
This directory contains the myCartridge.par file, which contains the Design Studio entity files and is deployed to the OSM server.	
This directory is created with the cartridge, but the automationMap.xsd and databasePlugin.xsd files are pulled into the cartridge with the build.	
Note: If working with automation plug-ins, the directories and files listed below are of importance, and are further explored in "Using Automation":	
For instructions on how to add content to a cartridge in Design Studio, see the Design Studio Help.	
To see the OSM-specific options that are available to add to a cartridge:	
For example, some of options may be Automated Task, Custom Automation Plug-in, Manual Task, Order, and Process. When content is added to a cartridge, Design Studio automatically groups the content based on these options.	
For example, when an Automated Task is created, it is grouped under Automated Tasks. When a Manual Task is created, it is grouped under Manual Tasks. These groupings are not physical directories, and they display only in the Cartridge view of the Design perspective. Figure 3-4 illustrates this concept, showing four Design Studio entity instances created from two different Design Studio entity types.	
Some additional configuration is necessary to deploy multiple versions of a cartridge to an OSM environment. All of the following considerations should be taken into account:	
Only one version of a cartridge should be set as the default version of the cartridge. For example, if you have versions 1.0.0 and 2.0.0 of an OSM cartridge deployed, only one of them should have the Default box in the editor checked.	
See the Design Studio Help for the cartridge editor Properties tab for more information.	
XML Catalog should be used to allow multiple cartridge versions to refer to their own set of resources using the cartridge model variable CARTRIDGE_VERSION.	
If a rewriteURI entry in the XML Catalog contains a version-specific portion in the URI such as “1.0.0” in the following:	
the version-specific portion of the rewriteURI must be updated to point to the correct cartridge version.	
See "Using XML Catalogs to Support Cartridge Versioning" for more information.	
When there are multiple versions of automation external event receivers listening to the same JMS Source, this can pose a problem because the automation external event receivers may consume the wrong version of the message. To configure the correct version of the message to be consumed, a version identifier should be encoded in either the JMS message properties or the XML message body. This will allow the automation to consume the right version of the message through either the Message Property Selector or XML Message Body Selector option in the External Event Receiver tab of the automation property.	
See the Design Studio Help for the External Event Receiver sub-tab of the properties view in the automated task editor Automation tab.	
When there are multiple versions of a cartridge with orchestration entities, order recognition rules should be modeled to recognize a specific version of the order instead of the default version. To recognize a specific version of the order, the Target Order Version of the order recognition rule should be set to the version of the cartridge where the specific version of the order resides.	
Note: When an order recognition rule is used in a composite cartridge and there are multiple versions of the composite cartridge, the Target Order Version of the order recognition rule should be set to the version of the composite cartridge that contains the target order as part of the solution.	
For example, we might have version 1.0.0 of the OsmCentralOMExample-Solution composite cartridge with the following dependent cartridges:	
The target order version of the order recognition rule should be set to 1.0.0, because the order recognition rule is used as part of a composite cartridge and the version of the composite cartridge that contains the order is 1.0.0.	
Use Design Studio to package a cartridge by specifying entities to include in the cartridge. By default, all entities created within the cartridge are included unless otherwise specified on the Order and Service Management Cartridge editor Packaging tab.	
To build cartridges:	
Oracle recommends that you periodically clean the project prior to a build (see "Cleaning and Rebuilding Cartridges Prior to Deployment".)	
For instructions on how to package and build a cartridge, see the Design Studio Help.	
If you need to modify the build performed by Eclipse, you can modify the build files that are provided with the creation of each cartridge. Common modifications include adding logic to the build file for the generation of Java code and the creation of JAR files. The build files are:	
As part of the build process, the CartridgeName/lib directory is copied into the automation staging area, resulting in the lib directory being included in the automation.ear file. The CartridgeName/src/build.xml file can be customized to add files to the lib directory before this happens. For example, you may want to get a JAR file from another project as part of the build or do some other custom staging activity. Nothing in the lib directory goes on the classpath automatically. You can do this manually as well.	
Design Studio allows you to deploy a cartridge to an OSM environment. However, you must first specify the OSM environment by creating a Design Studio environment entity. The Design Studio environment entity defines the connection information for the server hosting the OSM environment to which you plan to deploy your cartridge. For instructions on how to define an environment in Design Studio, or instructions on how to do any of the steps described in this section, see the Design Studio Help.	
Note: You do not need to define the environment every time you deploy a cartridge; the environment is only be defined once per OSM environment.	
Note: If you are deploying to a clustered environment, specify the proxy server when defining the Environment Design Studio entity.	
To deploy a cartridge:	
A menu is displayed, listing the cartridges within your workspace that are available for deployment.	
A menu is displayed, listing the configured OSM environments available to which you can deploy a cartridge.	
OR	
A list of the cartridges within your workspace that are available for deployment is displayed.	
Note: You can also undeploy previously deployed cartridges from the Environment perspective Cartridge Management view.	
Cleaning and rebuilding a cartridge is not included as a deployment step because it is not required for a successful deployment. However, Oracle recommends that you periodically clean and rebuild a cartridge prior to deployment because multiple people can work in the same cartridge; cleaning and rebuilding the cartridge picks up these changes, ensuring that the cartridge is in its current state.	
During the development process, you can save time by redeploying your changes only, rather than redeploying the entire application. For more information about this option, see the Design Studio Platform Help.	
You can simultaneously deploy multiple cartridges when deploying from the Environment perspective Cartridge Management view. When you select multiple cartridges for deployment, the system deploys the cartridges individually based on any existing cartridge dependencies. The system prevents you from deploying cartridges independently of those cartridges upon which they depend. See "Deploying Cartridges with Dependencies".	
A cartridge can be dependent upon information defined in another cartridge. When dependencies exist between cartridges, the build of the cartridge with the dependency extracts the dependent information from the built cartridge upon which it is dependent and copies it to the cartridge being built. As a result, the cartridges can be deployed independently from each other.	
For example, CartridgeA is created and defines phoneNumber as a data element in a data schema. CartridgeB is then created, and phoneNumber is added to a CartridgeB order template. This causes CartridgeB to be dependent upon CartridgeA. CartridgeA is built first. When CartridgeB is built, the phoneNumber data element is extracted from CartridgeA and copied to cartridgeB. As a result, cartridgeB can be deployed even if CartridgeA is not deployed.	
Caution: Cartridges should not be circularly dependent upon each other (CartridgeA is dependent upon CartridgeB and CartridgeB is dependent upon CartridgeA). If you define cartridges with a circular dependency, the cartridge build will fail, with an error like, "CartridgeA Cartridge Model Dependency Error – Cyclic dependency exists: CartridgeA <- CartridgeB." If there is a composite cartridge that refers to cartridgeX or cartridgeY, the composite cartridge build will also fail, as a result of the component cartridge builds failing.	
When you build and package a composite cartridge, it is packaged as a single PAR file which contains:	
When a composite cartridge is deployed, it includes all of the OSM non-orchestration entities and all component cartridges referenced in the composite cartridge, if they are either changed or not currently deployed.	
Projects have dependencies on other projects when entities in one project reference entities in a different project. If you configure a cartridge to reference content in other cartridges without declaring project dependencies, Design Studio creates a warning. For information about how to set cartridge dependencies, see the Design Studio Platform Help.	
When defining a data element in Design Studio, you have the option of defining numeric data as type int, double, float, or decimal. OSM does not directly support these data types. Rather, the OSM Data Dictionary defines the data type numeric. When a cartridge containing the data types int, double, float, or decimal is deployed to the OSM server, the data types are converted to the OSM Data Dictionary type numeric.	
You can make changes to a cartridge after the cartridge has been deployed to the OSM server by making changes to the original cartridge in Design Studio and then redeploying the cartridge. Before doing this, you should back up the original cartridge, because exporting a deployed Design Studio cartridge back out of OSM into Design Studio is not supported.	
Metadata errors can cause order processing failures and can occur in any cartridge with orchestration model entities. Metadata is the information used to represent OSM modeled entities such as order templates, order components, order items, tasks, decomposition rules and so on. If there are no metadata errors, the cartridge models deployed are valid.	
Metadata errors occur when OSM references an entity that is missing or the modeling for an entity is incorrect (for example, a data type for an entity is incorrectly entered).	
OSM detects and logs metadata errors during the following procedures:	
These actions reload OSM metadata, and errors are detected while running validation constraints against certain orchestration model entities. Table 3-1 lists the orchestration entities that are currently validated.	
Table 3-1 Orchestration Entities That Are Currently Validated	
Entity Type	Schema Constraint Description
---	---
OrchestrationStageType	Verifies that the value for the element dependsOnStage is a valid stage. dependsOnStage is empty if the stage is independent. A stage is valid if it is defined in the orchestrationSequence of orchestrationModel.
OrderComponentSpecRef	Verifies that this reference is pointing to a valid OrderComponentSpec. OrderComponentSpec is valid if it is defined in orchestrationModel.
OrchestrationConditionRef	Verifies that this reference is pointing to a valid orchestration condition. An orchestration is valid if it is defined in orderItemSpec of orchestrationModel.
DurationType	Verifies that a valid duration value is specified.
ProductSpecRef	Verifies that this reference is pointing to a valid ProductSpec. ProductSpec is valid if it is defined in orchestrationModel.
OrderItemSpecRef	Verifies that this reference is pointing to a valid OrderItemSpec. OrderItemSpec is valid if it is defined in orchestrationModel.
After rebuilding or deploying a cartridge, check for metadata errors. Search for the string Metadata Errors in the Console view of the Cartridge Management editor in Design Studio. If you are not using Design Studio to deploy cartridges, look in the Oracle WebLogic Server logs for the same string.	
Metadata errors appear together in a numbered list. For example:	
where	
If you find metadata errors, it most likely means that OSM is calling on an entity that is missing, has the wrong name, or has a value that is incompatible for the entity type.	
To fix the problem, clean and rebuild your cartridges, and make sure all related cartridges are deployed. If you still have metadata errors, it may mean that you have errors in your data. In this case you will have to use Design Studio to re-validate your model. See "Cleaning and Rebuilding Cartridges Prior to Deployment".	
Automating the cartridge build and deployment is accomplished by creating a process that builds and deploys a cartridge outside of the Design Studio environment, and then scheduling that process to run using a batch file. You can automate the cartridge build and deployment for development, test, and production environments.	
For more information, see the discussion of working with automated builds in Design Studio System Administrator's Guide.	
Cartridges can be maintained between releases of OSM. If you have cartridges built in a prior release, you must clean and rebuild the cartridge in the new version of Design Studio before it can be deployed to the new version of OSM.	
For example, OSM 7.0 is released with Design Studio 3.0. You build several cartridges in Design Studio 3.0 that you deploy to your OSM 7.0 environment. Later, you upgrade to OSM 7.n, which is released with Design Studio 3.n. The cartridges you created in Design Studio 3.0 can be imported into Design Studio 3.n, cleaned, rebuilt, and deployed to your OSM 7.n environment.	
Cartridges can be maintained between patches of OSM by cleaning and rebuilding the cartridge in the current version of Design Studio, which would not change with a patch (this would only change with a new release of OSM). Not every patch requires this maintenance; it depends on whether the changes in the patch affect cartridge content.	
Orchestration plan generation requires a specific order template structure which you must model at design time.	
This is a multi-instance node that OSM populates with a set of order items generated off the in-bound message. The children of this structure must exactly match the set of order item properties defined on the Order Item specification editor in Design Studio.	
The OracleComms_OSM_CommonDataDictionary model project contains predefined base data elements for control data. It is recommended that you use the data schema of this model project to add the ControlData/OrderItem data element to the order item specification Order Template tab.	
See the Design Studio Help for instructions on modeling the ControlData/OrderItem structure.	
This is a multi-instance node that OSM populates with the set of order components generated by executing the decomposition rules through an orchestration sequence. OrderComponentName must be defined for each order component included in a product specification's orchestration plan. This section of the ControlData represents all of the order components in the orchestration plan. If you use the OracleComms_OSM_CommonDataDictionary model project, Design Studio automatically generates data (OrderComponentName) and adds it to the ControlData/Functions structure for each order component that is associated to the product specification that is part of the orchestration plan.	
Each order component is assigned a unique key, which is stored in componentKey. OSM generates a key by concatenating the names of the order components traversed through the orchestration stages. An example componentKey name would be FulfillBilling.MobileBillingSystem.WholeOrderGranularity. The Order Component specification editor's Component ID tab can be used to customize an order component's name. The component ID can be used to implement processing granularity, as an example. In BundleGranularity, a component ID string would be generated for each order item based on the bundle that it belongs to. OSM then groups order items by component ID into order components.	
OSM populates the calculatedStartDate (dateTime type) and duration (string type) nodes for each ControlData/Function. With calculatedStartDate and duration per Function, both central order management and service order management solutions can use these values as the requested delivery date for the order line in a downstream system. based on the modeling done in the Order Component Specification entity, the date does affect the runtime behavior of the order component. If there is a Duration Value associated with a dependency, it is used in the order component start date calculation since this value is relative value to the orchestration dependency.	
OSM populates the multi-instance orderItem node with the set of order items that have been decomposed into this order component. The order items are accessed through orderItemRef, which is a reference node to ControlData/OrderItem. A reference node is used to point to the actual storage location of the order item so that updates to the order item data are reflected in all order components the order item is referenced from.	
Fulfillment state processing requires specific structures and data elements inside the order template. The specific locations of the data can be changed using XML catalog: the default locations are presented here. See "About XML Catalogs" for more information about using XML catalogs in OSM. See "Sample XQuery for Changing Default Data Locations" for more information about changing the default data locations.	
External fulfillment state information is populated for order components. Write the automation code so that it populates the information in the correct place.	
The default location for external fulfillment state information is ControlData/OrderItem/OrderComponentName/ExternalFulfillmentState.	
OSM populates the order fulfillment state based on the configuration in the order fulfillment state composition rule set. For more information about order fulfillment state composition, see OSM Concepts.	
The default location for OSM to populate the order fulfillment state is ControlData/OrderFulfillmentState. The Data Dictionary contains a root-level OrderFulfillmentState element. For cartridges created in a pre-7.2 version of OSM, drag the root-level OrderFulfillmentState element into the ControlData node on the order. For new cartridges, the element will get added automatically to the order template as a child of ControlData.	
OSM populates the order item fulfillment state based on the configuration in the order item fulfillment state composition rule set. For more information about order item fulfillment state composition, see OSM Concepts.	
The default location for OSM to populate the order item fulfillment state is ControlData/OrderItem/OrderItemFulfillmentState. The Data Dictionary contains a root-level OrderItemFulfillmentState element. For order items in cartridges created in a pre-7.2 version of OSM, drag the root-level OrderItemFulfillmentState element into the ControlData/OrderItem node on the order. For new cartridges and order items, the element will get added automatically to the order template as a child of ControlData/OrderItem.	
If points of no return have been configured using fulfillment states, OSM populates the point of no return when processing the order item fulfillment state composition rules. For more information about points of no return, see OSM Concepts.	
The default location for OSM to populate the point of no return value is ControlData/OrderItem/PointOfNoReturn.	
You can set initial values for order item fulfillment states and points of no return, so that these values will appear on the order before any processing takes place. See "Sample XQuery for Changing Default Data Locations" for more information about setting these values.	
To change the default locations and set initial values for point of no return and order item fulfillment state, include an XQuery file in the XML catalog. To use the defaults, do not provide a file.	
To include your custom XQuery file in the cartridge, include a line similar to the following in the XML catalog file for your cartridge:	
For more information about using XML catalogs, see "About XML Catalogs".	
If you choose to configure a custom file, you should include all of the functions, even those for defaults you are not changing. This will clarify the configuration and assist in maintenance activities. The purpose of each function is indicated in comments in the file. For all values that specify order template locations (for example /OrderLifeCycleManagement), begin the value with a forward slash, as shown below.	
Define the orchestration data on the entity that best reflects its structure, rather than defining all of the data on the order specification. Design Studio generates the order level order template by aggregating the order template definitions for the order item specifications and order components with any data defined at the order level.	
You should define data at the level where it is needed:	
The OracleComms_OSM_CommonDataDictionary model project contains predefined base data elements for control data. It is recommended that you use the data schema of this model project to add the ControlData/OrderItem base data element to the order item specification Order Template tab.	
If you use the OracleComms_OSM_CommonDataDictionary model project (recommended) and your orchestration entities are preconfigured correctly, Design Studio automatically generates this structure on the order template of the order component and the order template of the order.	
Using this method supports:	
Custom files can be created and written in Design Studio. This can be done by creating a cartridge and adding custom Java, JavaScript, XSLT, XSD, or XML files to the cartridge. In the Java perspective Package Explorer view, you can create package structures and custom files as needed.	
OSM JAR files are not automatically pulled into the project library list within Design Studio; depending on what the custom files reference, you may need to update the project library list to include external JAR files.	
Custom files added to a cartridge are deployed to the OSM server as part of the cartridge.	
For information on Ant, and how it is used in OSM development, see "Apache Ant". This section describes how to install and configure Ant.	
To install Ant:	
The File Download window appears.	
The Save As window appears.	
The Ant installation directory, for example, apache-ant-1.8.1, is created by the extraction, and the contents of the ZIP file are placed within this directory.	
To configure Ant:	
The System Properties window appears.	
The Environment Variables window appears.	
The New System Variables window appears.	
Note: If you installed WebLogic Server, this variable may already be defined. If so, ensure that it is set to the correct value.	
The New System Variables window appears.	
The Edit System Variables window appears.	
For example, C:\apache-ant-1.8.1.	
The Edit System Variables window appears.	
For example, C:\apache-ant-1.8.1\bin.	
For example, C:\WebLogic\jdk160_11\bin.	
The Environment Variables window appears.	
The System Properties window appears.	
XML Catalogs are logical structures that act like address books or directories. XML Catalogs contain entries that indicate a placeholder location and then provide the path to the location to be used. At run time, when OSM processes a URI you specify as part of the OSM data model, OSM first attempts to resolve the URI against the XML Catalogs you specified. Based on the mapping defined in the XML Catalogs, OSM can update the URI to adapt to different environments by resolving the location of the URI in your data model with the location it is mapped to in the XML Catalog. For example:	
See the OASIS Web page:	
http://www.oasis-open.org/committees/entity/spec-2001-08-06.html	
for more information on XML Catalogs and valid XML Catalog entries.	
See "Using XML Catalogs in OSM" for information on how you can use XML Catalogs in your OSM development.	
In Design Studio, you model behaviors such as business rules and other model components, which OSM uses at run time to satisfy your business requirements for order processing. The model components used at run time to manage and fulfill orders are referred to as OSM resources and are often contained in resource files. Examples of resource files include XQuery files, XSLT files, custom JAR files, third-party JAR files, and XML files such as a product class mapping file. There can be a large quantity of resources and some of those resources must reference each other. Resources in OSM can be referenced through URI locators in your data model.	
A resource must reside on some physical location on a system. Each system has its own unique directory structure. If you use static values or constants to indicate the location of a resource when defining the URI locator for that resource in your data model, the resource will not be accessible if you deploy your cartridge to other systems where the resource is in a different directory. Thus, using static values to indicate the location of a resource limits the portability of your cartridge solution to other systems or run-time environments. XML Catalogs solve this problem by redirecting the URI defined in your data model to the URI where the resource actually resides in whichever run-time environment you deploy your cartridge. XML Catalogs provide a redirection from a URI to another URI. By redirecting the resource URI locators, XML Catalogs serve to insulate your cartridge solution from environment configuration.	
At run time, when OSM processes a URI you specify as part of the OSM data model, OSM first attempts to resolve the URI against the XML Catalogs you specified. Based on the mapping defined in the XML Catalogs, OSM updates the URI to adapt to the environment by resolving the location of the URI in your data model with the new URI you mapped for it in the XML Catalogs.	
OSM processes XML Catalogs in the order you specify them, as follows:	
XML Catalogs specified in your OSM cartridge projects are packaged as part of the cartridges and deployed to the OSM server. The XML Catalog manages only the resource files in the resources folder of your cartridge project. When you deploy a cartridge with XML Catalog support enabled, the contents of the resources folder are loaded into a virtual file system. Those resources are available through URI redirection to any other deployed cartridges. XML Catalogs can be defined in any cartridge, and those defined in one cartridge can reference resources in other cartridges. All of the XML Catalogs deployed on the OSM server are stored in memory and rebuilt each time the metadata refreshes. If there are conflicting XML Catalog entries, the latest entry loaded overwrites the earlier entry. See "Defining rewriteURI Entries in XML Catalogs" for information on how to avoid conflicting entries.	
XML Catalogs specified on the OSM server are defined in the oms-config.xml file and are loaded ahead of the XML Catalogs specified in OSM cartridge projects. XML Catalogs defined on the server are global in scope, applying to all cartridges. XML Catalogs specified on the OSM server override the URI mapping of XML Catalogs in cartridge projects. URIs mapped in oms-config.xml are resolved for each specific environment. For example, a cartridge developer can specify an XML Catalog in oms-config.xml to point certain URIs defined in the data model to her own local Design Studio workspace, allowing her to change the contents of the resources locally and test the changes without having to redeploy the entire cartridge. Because OSM uses XML Catalogs that are specified on the OSM server to resolve URIs to be environment specific, XML Catalogs specified in OSM cartridge projects should not reference URI locations that are environment specific (such as drive letters).	
Following are some examples of data OSM looks up from resource files at run time that you could use the XML catalog to redefine:	
See "Specifying XML Catalogs for OSM" for instructions on how to specify XML Catalogs.	
You can use the XML Catalog as a tool to perform cartridge versioning, to shorten development cycles, to allow for cartridge extensibility, and to insulate test and production environments from development-specific environments. See "Examples of Using XML Catalogs" for examples of these uses of the XML Catalog.	
You can specify a common resources cartridge project that contains all of the shared resources across multiple cartridge projects. Defining the XML Catalog in this common resources cartridge consolidates the XML Catalog entries in one file which makes it easy to identify and eliminate conflicting catalog entries. See "Resource Packaging Considerations for Using XML Catalogs" for information on how you can package your resources when using XML Catalogs.	
You can use any valid XML Catalog entry in your XML Catalog, but the rewriteURI entry is the most useful for OSM. See "Defining rewriteURI Entries in XML Catalogs" for information on defining rewriteURI entries for OSM.	
You can specify a common resources cartridge project that contains all of the shared resources across multiple cartridge projects. Defining the XML Catalog in this common resources cartridge consolidates the XML Catalog entries in one file which makes it easy to identify and eliminate conflicting catalog entries. When you specify a common resources cartridge project in this way, other projects with model entities that reference the shared resources do not need to have an XML Catalog defined.	
When you define resource properties in Design Studio, you can indicate to retrieve the resource by expression, file, or URI. XML Catalogs apply only to the URI option.	
Consider the following when making your decision on which option to choose:	
Figure 3-5 shows the Expression, File, and URI options in the XQuery tab of a Design Studio editor:	
Oracle recommends you package resources in the following ways:	
Another reason to package resources in a common resource cartridge is when you need to change those resources frequently and they are used by a large cartridge that has automation and model entities that take a long time to build, package, and deploy. By packaging resources that change frequently in a common resources cartridge, you avoid having to rebuild the larger cartridge each time you change the resources.	
This section describes how to define a rewriteURI entry in the XML Catalog for OSM. See "Using XML Catalogs in OSM" for general information about XML Catalogs and how they work with OSM.	
You can use any valid XML Catalog entry in your XML Catalog, but the rewriteURI entry is the most commonly used entry for OSM. OSM uses the rewriteURI entry to replace the starting string of a URI (such as a URL) with an alternative string. For example, OSM could replace http://somewhere.org/something at run time with http://myhost/something.	
During data modeling, you can define a URI locator (such as a URL) to access a resource as part of the OSM data model by using the XQuery and XSLT tabs of various Design Studio editors. For example, in the Order Recognition Rule editor you specify a URI to denote that the XQuery configuration for the recognition rule is hosted in a remote URI location such as http://osm_server/AIARecognitionRule.xqy. You can use the XML Catalog for any of the URIs you specify in the Design Studio editors. OSM uses the rewriteURI entry of the XML Catalog to update URIs you defined in your data model to adapt to different environments.	
OSM replaces the starting string of a URI/URL with an alternative string as specified by the rewriteURI entry in the XML Catalog. For example, for this rewriteURI entry:	
when OSM processes a URI that starts with http://example.org/somewhere, it replaces that starting string with http://192.0.2.0/foo. A URI you define in Design Studio as http://example.org/somewhere/myfolder/myfile.txt resolves as http://192.0.2.0/foo/myfolder/myfile.txt at run time.	
Note: The uriStartString and the rewritePrefix attributes can be any valid URI: they do not have to be an IP address or host name.	
uriStartString is set to the start of the resource URI you defined in Design Studio and rewritePrefix is set to the string OSM replaces uriStartString with after you deploy the cartridge.	
To reference resources packaged inside of an OSM cartridge, you can use the OSM model scheme ("osmmodel") rather than the traditional URI schemes (HTTP, FTP, and so on) to define the URI. For example, for this rewriteURI entry:	
when OSM processes a URI that starts with http://example.org/somewhere, it replaces that starting string with osmmodel:///MyCartridge/1.0.0/resources. A URI you defined in Design Studio as http://example.org/somewhere/myfolder/myfile.txt is resolved as osmmodel:///MyCartridge/1.0.0/resources/myfolder/myfile.txt.	
This allows you to leverage the contents of the resources directory in each OSM cartridge at run time.	
The format of an OSM model schema URI is:	
osmmodel:///CartridgeName/CartridgeVersion/resources	
where:	
The default cartridge version uses the value default.	
Note: See "Using XML Catalogs to Support Cartridge Versioning" for more information on cartridge versioning.	
To enable cartridges to refer to resources contained in other cartridges in a non-version specific way, you refer to the default cartridge version. To refer to the default cartridge version, use the OSM model schema URI:	
osmmodel:///cartridge_name/default/resources	
See "Using XML Catalogs to Support Cartridge Versioning" for information on how the XML Catalog supports cartridge versioning.	
Important: To guarantee the correct resource is located, ensure that resources are always uniquely identifiable to a single catalog entry.	
When defining XML Catalog entries, do not define mappings that can be satisfied by more than one entry. The following example shows two rewriteURI entries that can be used by OSM at run time to resolve the same URI locator in two different ways:	
Using the preceding rewriteURI entries, OSM can resolve the URI locator http://oracle.communications.ordermanagement.sample.centralom.resources/com/foo.xml as	
osmmodel:///CommonResourcesCartridge/1.0.0/resources/com/foo.xml or osmmodel:///CommonResourcesCartridge/1.0.0/resources/comMapping /com/foo.xml.	
You specify XML Catalogs for an OSM cartridge project in the cartridgeProject\xmlCatalogs\core\ directory (where cartridgeProject is the root of the project directory). In this directory, you create your XML Catalog file (you can use any filename such as core.xml or catalog.xml) and define your catalog entries within it. Design Studio automatically generates a template XML Catalog file cartridgeProject\xmlCatalogs\core\xmlCatalogCoreTemplate.xml.	
You specify XML Catalogs on the OSM server in the OSM configuration entry oracle.communications.ordermanagement.util.net.CatalogUriResolver.DefaultXmlCatalogsUris. By specifying XML Catalog files on the OSM server, you can operationally modify how OSM resolves URIs without changing the contents of a cartridge. See "Using XML Catalogs in OSM" for information on how OSM resolves URIs based on the XML Catalogs you specify on the OSM server.	
To specify XML Catalogs on the OSM server:	
See the chapter on configuring OSM with oms-config.xml in OSM System Administrator's Guide for detailed instructions on accessing and modifying the oms-config.xml file.	
Important: The XML Catalog entries you specify are applied system wide. Ensure that resources are uniquely identifiable to a single catalog entry so that the correct resource can be located.	
Note: This configuration defines the XML Catalog entries inline in the oms-config.xml configuration file.	
XML Catalog support is enabled by default for all cartridges and is required to be enabled.	
If your target run-time software version is OSM 7.0.2 or earlier, you can disable XML Catalog support for a cartridge (or re-enable it) by using the cartridge model variable XML_CATALOG_SUPPORT. For information on disabling or re-enabling XML Catalog support for a cartridge, see the Design Studio Help.	
This section provides the following examples of how you can use the XML Catalog:	
Cartridge versioning requires that different versions of resources be loaded correctly. If you have version 1.0 and version 2.0 of an OSM solution deployed, you might have version-specific XQuery or JAR files that need to be used depending on which OSM solution you are using. To ensure the correct version is loaded, you encode the version in the URI locator for the resource. However, if you had to encode a version identifier in each URI locator, you would need to update hundreds of URIs every time you changed a version number. Using a cartridge model variable to externalize the version number is a way to manage the version number in one place. You use %{MODEL_VARIABLE_NAME} in the URI locators and set the value for MODEL_VARIABLE_NAME once in the cartridge editor Model Variables tab. OSM can then search and replace all instances of %{MODEL_VARIABLE_NAME} when the model is deployed to the server.	
Multiple cartridge versions must reference their own versioned set of resources. If you have a cartridge that uses a URI to reference XQuery resources, a new version of that cartridge must use new versions of the XQuery resources. Deploying the old version and new version of that cartridge on the run-time environment during the same time period poses a problem because the URI is global and is mapped to a single destination. Using cartridge versioning, you can point to a version-specific resource directory for the old and new version of the cartridge (rather than encoding version-specific information in the URIs).	
To allow multiple cartridge versions to refer to their own set of resources by using the XML Catalog, follow these high-level steps:	
For example, CARTRIDGE_VERSION = 2.5	
Example: Use the model variable in the URI locator http://company.com/%{CARTRIDGE_VERSION}/xquery/myFile.xqy	
Example:	
Tip: When the XML Catalog is specified and enabled, resources located through a URI locator are loaded based on the rewriteURI configuration.	
OSM uses the cartridge model variable value to update all entities that use the model variable. For example, OSM updates order recognition rules, URI resources, XSLT resources, and XQuery resources that use %{MODEL_VARIABLE_NAME} with the cartridge version value.	
Note: Be sure to update all XML Catalog URL instances.	
To shorten development cycle times that involve numerous coding, building, deployment, and test cycles, you can use the XML Catalog to load resources from a development file system. By using the XML Catalog in this way, you can test changes to resources located within the cartridge without needing to rebuild and repackage the cartridge. Rebuilding and repackaging can be slow and CPU intensive because Design Studio needs to rebuild the deployment EAR file before any changes can be tested. By redirecting the URIs to a local resource, you can change XQuery, XSLT, XML, or Java code and immediately test the changes without having to rebuild, repackage, and redeploy (Java code would still need to be rebuilt but not repackaged and redeployed).	
For example, use the XML Catalog to instruct OSM to load resources:	
Locate resources on the file system instead of from within the cartridge PAR file so that configuration changes made to a resource are picked up by the run-time environment without having to rebuild and redeploy the cartridge. After testing is complete, the URI is redirected to load resources from the cartridge PAR file.	
To redirect the URI so that OSM loads resources from the development file system:	
OSM loads all resources that start with http://example.org/somewhere from the file system located on localhost at /dev/env1/mycartridge/resources.	
To redirect the URI so that OSM loads resources from the cartridge PAR file after testing is complete, change the preceding configuration to:	
OSM loads all resources that start with http://example.org/somewhere from the cartridge PAR file.	
The XML Catalog supports resource extensibility in a cartridge solution because URIs can be easily rewritten to change the location from which resources are loaded. The XML Catalog allows you to redirect the cartridge solution to use customized resources different from the ones that were originally provided by the cartridge solution.	
To insulate test and production environments from development-specific environments, you can use the XML Catalog. When you develop your code, you can set your XML Catalog to point to local resources on your file system on your laptop. Assume you have an automated test environment that runs daily tests on certain cartridges that use resources on the testing box. In production, you would use the XML Catalog to point resources to your production machines. Note that in this example the resources are not bundled inside of the cartridges.	
This chapter describes Oracle Communications Order and Service Management (OSM) Web Services, which provides the primary interface for in-bound order operations such as creating or canceling an order.	
Web services support interoperable machine-to-machine interaction over a network. Web services are Web APIs that can be accessed over a network, such as the Internet, and run on a remote system hosting the requested services, as is the case with OSM. Web service interfaces are described by the Web service definition language (WSDL).	
WSDL is an XML-based language that is used in combination with simple object access protocol (SOAP) and XML Schema to provide Web services over the Internet. A client program connecting to a Web service can read the WSDL to determine what operations are available on the server. Any special data types used are embedded in the WSDL file in the form of XML Schema. The client can then use SOAP to actually call one of the operations defined in the WSDL.	
The OSM Web Services provide the primary interface for in-bound order operations such as creating, updating, or canceling an order. Web Services are typically initiated from Customer Relationship Management (CRM) systems and other order sources that need to create and manage orders in OSM. OSM Web Services use the SOAP standard.	
The OSM Web Service operations are defined in WSDL files. The operations are listed below, and grouped by WSDL file.	
OrderManagement.wsdl	
OrderManagementDiag.wsdl	
These services can be accessed using HTTP, HTTPS, or JMS as the transport protocol. JMS is a reliable, asynchronous messaging transport with guaranteed delivery while HTTP is synchronous and less reliable.	
All Web Service requests are validated by the server based on the rules defined in the schema files. If a validation error is encountered, the server returns a fault message detailing the validation error so it can be resolved.	
OSM Web Services are part of the OSM installation. The OSM WSDL files and supporting schema files (XSD files) are located in the OSM_home/SDK/WebService/wsdl directory.	
Alternatively, you can access the OSM WSDL by entering the following in your Web browser after you have installed, configured, and deployed the OSM server:	
http://server:port/OrderManagement/webservice?WSDL	
where server is the specific server on which the application is deployed and port is the port on which the application listens. Users who access the WSDL this way must be configured in the WebLogic console with usernames and passwords and must belong to the group OMS_ws_api.	
OSM Web Services use the SOAP standard message format, which includes a header and a body.	
OSM Web Services require that security related information be provided in the message header. The user name and password for the Web Service authorized user must be included in each request using the elements <wsse:UserName> and <wsse:PasswordText>, as shown in Example 4-1.	
Example 4-1 Message Header	
The message body contains the data payload. The data payload varies depending on the specific request, as shown in Example 4-2.	
Example 4-2 Message Body	
Response messages include a data payload containing the result of the method call.	
Test OSM Web Services with software such as SoapUI or HermesJMS. Information on such open source test software is available on the internet.	
Note: With OSM 7.2, the context-root for OSM applications changed to /OrderManagement. OSM redirects requests specifying the old URIs to the current ones. However, soapUI 2.5.1 does not correctly handle redirects. soapUI3.x or above correctly handles redirects.	
Note: If you are using soapUI for testing in a clustered WebLogic environment, enable preemptive authentication in soapUI by selecting Preferences, then HTTP Settings, then Authenticate Preemptively.Without this, soapUI sends requests without authentication. The request is rejected and then resent with authentication. Because of OSM's load balancing approach in a clustered WebLogic environment, the second request is sent to a different managed server, distorting load balancing. For example, if a cluster has only two managed servers and you employ round-robin load balancing, all authenticated requests will be sent to the same managed server.	
Regardless of the software used to test OSM Web Services, you must ensure the clocks are synchronized between the test client and the server hosting the Web services. The synchronization can be done manually, or by using Network Time Protocol (NTP). The following errors are encountered if the clocks are not synchronized:	
Note: Starting with OSM 7.2, order IDs are allocated in blocks. For OSM running on a standalone database, there is no visible impact. However, if OSM is running on an Oracle RAC database, Order IDs are assigned from different blocks, one for each Oracle RAC instance. This means that when orders are submitted, the Order IDs may not be sequential.	
Several of the OSM Web Service operations initiate a transition from one order state to another. For example, CancelOrder initiates a transition from either an in progress or suspended order state to the cancelling order state. Any transition that occurs within a Web Service operation is described in the Expected Outcome section for that particular operation as described in "About OSM Web Service Operations". To learn more about order states and their transitions, see OSM Concepts.	
Your OSM installation provides a Web Service sample that demonstrates how OSM web services are called. The sample is available in the OSM_home/SDK/Samples/Web Services directory. The sample includes both HTTP and JMS clients, and demonstrates the use of the web service operations:	
The GetOrder and UpdateOrder operations depend on the order ID that is provided in the CreateOrderBySpecification response. Before you can run the sample, you must configure it to reflect your environment. See the ReadMe.txt file for detailed instructions on configuring, building, and running the sample.	
The remaining sections of this chapter describes each Web Service operation, and includes the following information per operation:	
The parameters defined by each Web Service are not provided in this documentation because the information is available in the XSD files provided with your OSM installation. For information on determining the input and output parameters for any given Web Service, see "Navigating WSDL and XSD Files".	
The possible fault types that each Web Service may throw is not provided in this documentation because the information is available in the WSDL files provided with your OSM installation. For information on determining the fault types that any given Web Service may throw, see "Navigating WSDL and XSD Files".	
Request and response examples for each Web Service is not provided in this documentation. However, several request and response examples are provided, which you can parlay to other Web Services. See "Request and Response Examples", which also provides information on how to generate XML examples for any given Web Service operation.	
This section describes Web service operations used for order management. This includes creating, retrieving, updating and cancelling an order. Order management operations are defined in the OrderManagementWS.wsdl file.	
Each operation lists preconditions that must exist for a successful invocation of the Web Service operation. However, the following preconditions are common to all operations, so they are listed here rather than repeated for each operation:	
This operation creates a service order.	
Preconditions	
Expected Outcome	
The order is created and processing begins. If the newly created order is matched against an existing order (based on the key defined on the order's specification), then this new order is an amendment to an existing order, and information regarding the amended order and status of the amendment is returned.	
If the newly created order is not an amendment, the order is transitioned to the open.running.in_progress state by specifying StartOrder=true	
.	
Alternate Outcome with Start Order Set to False	
The order is created but processing does not begin. The order is in the open.not_running.not_started state. The order can be further updated and started through the UpdateOrder operation.	
Attachments	
You can add attachments through the createOrderBySpecification operation. Attachments are added by populating the Remark	
element, which provides a place to define a text remark as well as an attachment. The attachment is added by populating the Attachment	
element, which is a child element of Remark	
. Within the Attachment	
element, you can define a sequence of file names and their corresponding file types. For additional information, see the OrderManagementWS.xsd file, which defines these elements.	
Reference Nodes	
Reference nodes are pointers to values contained in different data nodes, and they enable you to create information once and reuse it in multiple locations in your data model. You set up reference nodes at order creation time.	
To set up reference nodes in an order, when creating the order, you must explicitly give the referred-to field an index, and then refer to it with {#} in the reference. For an example that demonstrates how to set up reference nodes at order creation time as part of coding the automation plug-ins that call the CreateOrderBySpecification Web service operation, see "Request Example - Setting Up Reference Nodes".	
This operation creates a new order.	
Preconditions	
Expected Outcome	
The order is created and processing begins. The order is transitioned to the open.running.in_progress state by specifying StartOrder=true	
.	
This operation finds a set of orders that match all the conditions defined in the select clause. The Select	
element specifies the information returned in the results. Results can contain a combination of flexible headers and task data. The calling user must belong to a role with permissions to view the order. If the user does not have the permission, no data is returned.	
Note: Flexible Headers are user defined columns which are displayed while viewing order details. Flexible headers are set by OSM administrators. See OSM XML API Developer's Guide for more details on Queries and Flexible Headers.	
Generally the path of a flexible header is /<WebService>/<ElementGroup>/<FlexibleHeader>. Note that /<WebService> is preceded by a single slash (/). A double slash (//) or no slash will yield different results. See OSM XML API Developer's Guide for details on how to query and retrieve orders that include available flexible headers using the XML API.	
Preconditions	
Expected Outcome	
Order data that meets specified selection criteria is returned in the specified sequence and is viewed through the specified filter.	
This operation retrieves an order. A summary of the order is returned, along with the detailed order data based on a specified order view template. See also"GetOrder Examples".	
Parameters	
The identification of the order to be retrieved.	
The name of the view (query task) used to determine the order data that is returned. You must associate the task data you want to return to a role in the Oracle Communications Design Studio Order editor Permissions Query Task sub tab and set a query task with the data to be returned as the Default query task.	
The following parameters are optional:	
Controls how remarks and attachments are returned.	
Set to true if remarks and associated attachments should be returned.	
If RetrieveRemarks is set to true, zero or more filters (FileNameMatch, MinSize, MaxSize, Format) may control how attachments are returned. Attachment filters are processed in the order they are provided. If no filters are provided, then no attachments are returned.	
Preconditions	
Expected Outcome	
The order summary and detail are returned. If the order contains any remarks or attachments, they are returned based on the filters set on the request.	
This operation allows order data to be updated, and allows orders that have been created but not started (in the open.not_running.not_started state) to be started.	
The updateOrder operation defines different ways to update the order:	
For samples of updateOrder, see OSM_home/SDK/Samples/WebService. You must use the OSM installer to install the SDK sample files.	
Preconditions	
Note: These preconditions apply if the order is in the not_started state. You can update the order data when the order is running, if the order life-cycle policy permissions allow it for the task you want to update.You must associate the task data you want to update to a role in the Design Studio Order editor Permissions Query Task sub tab and set a query task with the required data as the Default query task. You can associate only one role per task in the Order editor. The user specified in the UpdateOrder header must be a member of this role.	
Expected Outcome	
The order's data is updated successfully but remains in the open.not_running.not_started state. The order can be further updated or started by additional calls to the UpdateOrder operation.	
Attachments	
You can add attachments through the updateOrder operation. Attachments are added by populating the Remark	
element, which provides a place to define a text remark as well as an attachment. The attachment is added by populating the Attachment	
element, which is a child element of Remark	
. Within the Attachment	
element, you can define a sequence of file names and their corresponding file types. For additional information, see the OrderManagementWS.xsd file, which defines these elements.	
This operation suspends an order thereby preventing work items associated with the order from being processed. A suspended order must be resumed before its associated work items can once again be processed.	
Preconditions	
Expected Outcome	
The order is successfully transitioned to the open.not_running.suspended state. Users are restricted from processing work items associated with the suspended order.	
Alternate Outcome with Grace Period	
The order enters into a grace period that allows all work items that are currently accepted to be processed. During the grace period, the current order state remains open.running.in_progress and the target state is set to open.not_running.suspended. The order will complete the transition to the open.not_running.suspended state when all accepted work items for the order are completed or the grace period expires, whichever comes first. New work items cannot be accepted during the grace period.	
The grace period may be configured on the order state policy and/or specified on this call.	
This operation resumes an order that is currently suspended or cancelled so that work items associated with the order are allowed to be processed.	
Preconditions	
Expected Outcome	
The order is successfully transitioned to the open.running.in_progress or open.not_running.not_started state. Authorized users may process work items associated with the specified order.	
This operation cancels an order. All outstanding work items associated with the order are deleted, and all complete work items associated with the order are compensated (undone).	
Preconditions	
Expected Outcome	
The order is successfully transitioned to the open.running.compensating.cancelling state. Incomplete work items associated with the order are deleted. Completed work items associated with the specified order are compensated. Once compensation completes, the order is transitioned to open.not_running.cancelled.	
Alternate Outcome with Grace Period	
The order enters into a grace period that allows all work items that are currently accepted to be processed. During the grace period, the current order state remains at its current value (open.running.in_progress or open.not_running.suspended) and the target order state is set to open.running.compensating.cancelling. The order will complete the transition to the open.running.compensating.cancelling state when all accepted work items for the order are completed or the grace period expires, whichever comes first. New work items cannot be accepted during the grace period. The grace period may be configured on the order life-cycle policy and/or specified on this call.	
This operation aborts an order, and aborts all work items associated with the order. Authorization for this transaction is controlled by the order life-cycle policy associated with the order's specification. See the ABORT_ORDER transaction in orderStatePolicy.xsd.	
Preconditions	
Expected Outcome	
The order is successfully transitioned to the closed.aborted state. Users are restricted from processing the aborted order.	
This operation fails an order. A failure must be resolved before the order can proceed any further. Authorization for this transaction is controlled by the order life-cycle policy associated with the order's specification. See the FAIL_ORDER transaction in orderStatePolicy.xsd.	
Preconditions	
Expected Outcome	
The order is successfully transitioned to the open.not_running.failed state. Users are restricted from processing work items associated with the failed order.	
Alternate Outcome With Grace Period	
The order enters into a grace period that allows all work items that are currently accepted to be processed. During the grace period, the current order state remains open.running.in_progress and the target state is set to open.not_running.failed. The order will complete the transition to the open.not_running.failed state when all accepted work items for the order are completed or the grace period expires, whichever comes first. New work items cannot be accepted during the grace period. The grace period may be configured on the order state policy or specified on this call.	
This operation transits an order that is currently failed back to its state prior to entering the current failed state. Authorization for this transaction is controlled by the order life-cycle policy associated with the order's specification. See the MANAGE_ORDER_FALLOUT transaction in orderStatePolicy.xsd.	
Preconditions	
Expected Outcome	
The order is successfully transitioned to its previous state.	
This section describes Web service operations used for diagnosing problem orders. This includes getting order process history, compensation history and compensation details. Order diagnoses operations are defined in the OrderManagementDiag.wsdl.wsdl file	
This operation returns process history perspective of an order. The different kinds of process history perspectives are:	
When a task is "redo" compensated, the "redo" compensator replaces the task in all subsequent process history perspectives. When a task is "undone," it is not included into any subsequent process history perspectives. Tasks that are compensated in the compensation context that the process history is requested for are included in the response and their compensation details are provided.	
Use the GetOrderCompensations operation to retrieve information about order compensations, including their IDs. See "GetOrderCompensations".	
Preconditions	
Expected Outcome	
The process history perspective for the order is returned.	
This operation retrieves the history of all compensations for an order. For each compensation, the data returned includes the type of compensation, submission date, start date (optional), and completion date (optional).	
Preconditions	
Expected Outcome	
The order compensation plan information is returned as a set of compensation tasks, along with the compensation dependencies between them.	
This operation retrieves compensation plan details for an order. For each compensation plan, the data returned includes the type of compensation, active compensation task information, pending compensation task information , and the state transition history for compensation tasks.	
Preconditions	
Expected Outcome	
The order compensation plan information is returned.	
This section describes how to navigate the WSDL and XSD files to determine the input parameters, responses, and fault types that a given Web Service operation defines. The information is presented through an example that is applicable to all operations.	
Example 4-3 is an excerpt from the OrderManagementWS.wsdl file that shows how a typical Web Service operation is defined.	
Example 4-3 WSDL Operation Definition	
The WSDL file defines each operation in the same manner, which provides the following information:	
The WSDL file tells you what request goes with what response, and what exceptions the request may throw. Each Web Service operation defines a request and a response, which are the input and output parameters. The request and response structures are defined in the corresponding XSD file. For example, the CreateOrderBySpecification operation is defined in the OrderManagmentWS.wsdl file, and the corresponding XSD file is OrderManagementWS.xsd.	
This section describes how to navigate the XSD files. The request and response structures defined in the XSD are used by the Web Service operations as input and output parameters. This section provides graphics of the XSD in various states of expansion. You can view the XSD using any XML application, such as XMLSpy.	
XMLSpy offers several ways to view XML files. XSD files containing large structures can be very difficult to read. The examples provided in this section show how to view XSD files using the Schema/WSDL Design view, which allows you to view the top level structures and then expand and collapse them as needed. Viewing the XML structure in this manner automatically pulls in any referenced structures, removing the need to scroll around to locate them.	
Note: If you are using an application other than XMLSpy to view XML files, your views of the XSD may differ from the examples used in this section.	
Determining Input Parameters (Request)	
Figure 4-1 shows a portion of the OrderManagmentWS.xsd file in the Schema/WSDL Design view, as it appears when first opened. This is the top level of the view, which lists all simpleType, complexType, and elements that are defined in the file.	
From the top level, clicking the grey box located to the left of any element or complexType expands the structure. Continuing with the example, Figure 4-2 shows the result of clicking the grey box located to the left of CreateOrderBySpecification.	
From this level, you can see that CreateOrderBySpecification defines CreateOrderBySpecificationRequestType, but you cannot see what CreateOrderBySpecificationRequestType actually defines. Clicking the "+" located within the CreateOrderBySpecificationRequestType structure box expands the structure. Figure 4-3 and Figure 4-4 show the result of this action.	
From this level, you can see that CreateOrderBySpecificationRequestType defines:	
However, you cannot see what the Specification, Data, or Remark structures define. As with the previous level, you can expand any of these structures by clicking the "+" located to the right of the structure name. Clicking the "+" located within the Data and Remark structure box expands the structures. Figure 4-5 shows the result of this action.	
Expanding the Specification, Data, and Remark structures shows additional defined structures and fields. In this example, note that the structure defined under the Data structure (OrderDataType any) is a structure that is defined in Design Studio. For example, you may define five different order templates, so the structure under the Data structure varies depending on the order type. The order-specific data in the request is validated by the server through the creation task view.	
Note: To collapse any of the structures at any level, click "-" located near the structure name. You can also collapse all structures and return to the top level by clicking the collapse button, located in the upper left corner as shown in Figure 4-3, "Further Expanded Structure". The collapse button is only visible in the upper left corner, so you must scroll all the way up and all the way to the left to see it.	
Determining Output Parameters (Response)	
You can expand the response structure defined for an operation. Figure 4-6 shows the top level of the OrderManagementWS.xsd file in Schema/WSDL Design view. Continuing with our example, expand CreateOrderBySpecificationResponse to determine the expected response.	
Figure 4-7 shows the expected response defined by CreateOrderBySpecificationResponse, which can be expanded even further.	
Determining Fault Types	
You can expand the fault names defined for the operation. Continuing with the CreateOrderBySpecification example, InvalidOrderSpecificationFault, TransactionNotAllowedFault, and InvalidOrderDataFault are all defined as top level structures in the OrderManagementWS.xsd file.	
This section provides sample XML requests and sample XML responses. Sample XML for any Web Service operation can be generated from the XSD using any XML application such as XMLSpy.	
To generate a sample XML file using XMLSpy:	
The Select a Root Element dialogue box opens, which lists all root elements defined in the XSD, such as CreateOrder, CreateOrderResponse, FindOrder, FindOrderResponse, and so on.	
The Generate Sample XML File dialogue box appears, which provides a few selection options such as generating non-mandatory elements and attributes, the number of structures to generate for structures that are defined as a sequence, and whether or not to populate the XML with data.	
The generated XML displays within a new file, Untitled.xml.	
Generating XML in this manner does not generate the SOAP header and body. However, the SOAP header and body can be manually inserted into the generated XML.	
This section provides a request example and a response example for the CreateOrderBySpecification operation.	
Request Example	
Example 4-4 CreateOrderBySpecificationRequest	
Response Example	
Example 4-5 CreateOrderBySpecificationResponse	
Request Example - Setting Up Reference Nodes	
This example demonstrates how to set up reference nodes in the task data of the creation task when you code the CreateOrderBySpecification call in your XQuery or XSLT or Java automation plug-ins.	
Note: A creation task is selected for an order in the Order Editor Details tab of Design Studio. In this example, the name of the creation task (for which the CreateOrderBySpecification call requires the order data) is in the parameter<ord:View>ReferenceDebugCreationTask</ord:View> .	
When creating the order you must explicitly give the referred-to field an index, and then refer to it with {#} in the reference. You assign the index and code it when you write your automation plug-in code (XQuery/XSLT/Java code).	
In this example, <LineItem index="1">	
is the index value you defined to this LineItem instance in your automation plug-in code. The index value must be unique within this CreateOrderBySpecification order data; this allows you to refer to this instance later as <LineItem_refNode>{1}</LineItem_refNode>	
to point to a single data node location in the order template at order creation time.	
Example 4-6 CreateOrderBySpecificationRequest - Setting Up Reference Nodes	
This section provides a request example and a response example for the GetOrder operation.	
Request Example	
Example 4-7 GetOrderRequest	
Response Example	
Example 4-8 GetOrderReponse	
This section provides request examples and a response example for the UpdateOrder operation.	
Request Examples	
Example 4-9 UpdateOrderRequest	
Example 4-10 UpdateOrderRequest: Update nodes	
Example 4-11 UpdateOrderRequest: Data change	
Response Example	
Example 4-12 UpdateOrderResponse	
This section provides a request example and a response example for the SuspendOrder operation.	
Request Example	
Example 4-13 SuspendOrderRequest	
Response Example	
Example 4-14 SuspendOrderResponse	
This section provides a request example and a response example for the ResumeOrder operation.	
Request Example	
Example 4-15 ResumeOrderRequest	
Response Example	
Example 4-16 ResumeOrderResponse	
This section provides a request example and a response example for the CancelOrder operation.	
Request Example	
Example 4-17 CancelOrderRequest	
Response Example	
Example 4-18 CancelOrderResponse	
This chapter describes the Oracle Communications Order and Service Management (OSM) automation, which enables you to configure and automatically run automated tasks and notifications.	
The OSM automation framework provides the primary interface for outbound operations that interact with external systems for automated order fulfillment. The automation framework carries out the actions required by automated tasks that are required to fulfill an order. For example, you can model an automated task that requests a telephone number from an inventory system. You can also create notifications that trigger automations. See OSM Concepts for information about automated tasks and notifications.	
To run automated tasks, you write automation plug-ins. The automation plug-ins are run by the automation framework.	
An automation plug-in can be a:	
The automation framework is supported by the following plug-ins:	
You can define additional custom plug-ins. See the Oracle Communications Design Studio Help and "About Custom Automation Plug-ins" for more information.	
Figure 5-1 shows the flow of an automated task and an automated notification, and how they call their corresponding automation plug-in. Design Studio provides the ability to map a specific automated task (Task A) to a specific automation plug-in (Automation Plug-in A), or a specific automated notification (Notification B) to a specific automation plug-in (Automation Plug-in B). This is called automation mapping. The mappings are saved to a cartridge, which is then deployed to the OSM server. OSM processes the automated tasks and automated notifications, which then trigger the mapped automation plug-ins.	
When an automated task or automated notification is triggered, OSM creates a JMS message (1) and sends it to an internal message queue (2). The internal message queue is created with your OSM installation, and the automation framework subscribes to this internal message queue (3). The automation framework picks up the message (4), processes the automated task or automated notification (5) and, using the automation mappings that were defined in Design Studio and deployed to the OSM server, determines which automation plug-in to call (6).	
Automation mapping is the process of mapping automated tasks and notifications to plug-ins. When you create or examine an automated task or notification in Design Studio, you bring up the Add Automation dialog box to create or select a plug-in for the task or notification and give it a name.	
If you are creating a plug-in, you will give it a name and an Automation Type. There are two basic types of built-in automation plug-ins: Sender and Automator. Select the Automator type if the plug-in will receive data and perform some work. Select the Sender type if the plug-in will receive data, perform some work, then send data to external systems.	
You will also set the Event Type, which specifies whether the new plug-in receives data internally from OSM or from an external systems. The choices are as follows:	
You do not have this choice when defining an automation for an automated notification. Automated notifications are always defined as internal event receivers because, as the name implies, notifications are used to notify OSM users or other areas of the OSM system of some happening within OSM. That is why notifications do not receive messages from external systems; the information with which to notify always originates within OSM.	
The new plug-in appears in the Automation list. Once you add a plug-in to the your automated task, you define the plug-in properties. See the Design Studio Help for further information.	
The automation mapping involves defining other information as well, as described in this section. Collectively, this definition is called Automation in Design Studio.	
Automation plug-ins that are external event receivers (send requests to external systems and process responses from external systems in reply to those requests) listen for responses (JMS messages) from external systems on an external message queue (JMS queue). In some cases you are required to specify filter criteria, defined in Design Studio as a message property selector, which OSM uses to identify the automation plug-in to call for each JMS message on the JMS queue. The external system must echo back the filter criteria information by extracting and reinserting it into its response.	
Each automation task can have one or more external event receivers listening on the JMS queue. If the automation task has only one external event receiver, and you are using the Optimized build-and-deploy mode to build and deploy cartridges, you are not required to specify a message property selector. In this case, automation tasks can share the same JMS queue without the need for filter criteria. If the automation task has more than one external event receiver listening on the same JMS queue, you are required to specify a message property selector.	
Note: You must also specify a message property selector if you do either of the following:	
For information on how OSM processes plug-ins according to the build-and-deploy mode you set, see "About Dispatch Modes for Automation Plug-ins". For information on message property selector filter criteria, see the Design Studio Help.	
After you have defined the automated task or automated notification, and defined the automation for it, a successful build of the project automatically generates the automationMap.xml file:	
If you are deploying a cartridge outside Design Studio, for example using OSM's cartridge management tools, the first time you upgrade a cartridge from a pre-OSM 7.0.3 version to a version of OSM that is 7.0.3 or later, you need to update the automationMap.xml manually. You need to add two elements to each <taskAutomator> element:	
These elements are required because of changes to the automationMap.xsd.	
If you are upgrading a pre-OSM 7.0.3 cartridge created in Design Studio, to a version that is 7.0.3 or later, no manual change is required.	
Appendix A, "AutomationMap.xml File" provides numerous examples of generated XML for automations defined for automated tasks and automated notifications. The information is not included in this chapter because Oracle recommends that when defining the automation, you take the defaults and allow the project build to generate the automationMap.xml file. The information in the appendix is provided for in-depth understanding of the file should you need to modify it for some rare, obscure business reason.	
For automations defined as internal event receivers, the automationMap.xml generates the <mnemonic>	
element. This value of this element varies as described in Table 5-1.	
The String value of the mnemonic element cannot exceed a length of fifty characters. If the length is greater than fifty, the following build error is encountered:	
Exception caught assembling plug-ins: "Parse/validation of automation map cartridgeName/cartridgeBuild/automation/automationMap.xml using schema cartridgeName/customAutomation/automationMap.xsd failed: Invalid text fiftyPlusMnemonicValue in element: mnemonic."	
Table 5-1 Mnemonic Values	
Automated Task or Automated Notification	<mnemonic> value
---	---
Automated task	taskName
Order milestone-based event notification	The <mnemonic> element is not generated for order milestone-based event notifications.
Task state-based event notification (task Events tab)	taskName
Task state-based event notification (process Events tab)	processName_eventName
Task status-based event notification	processName_eventName
Order data changed event notification	orderName_eventNotificationName
Order jeopardy notification	orderName_jeopardyName
Task jeopardy notification	taskName_jeopardyName
Correlation is a property that associates an incoming external system message with an outbound OSM message previously sent to initiate communication with the external system.	
Correlation uses the correlation ID parameter, which is configured in the outbound message at the OSM side, to retrieve the JMSCorrelationID of the incoming message. OSM compares the JMSCorrelationID with the correlation ID and associates the two messages if the respective values match.	
Note: No correlation configuration is required at the external system that sends the response message.	
Correlation is of two types: Message Property and XML Body correlation.	
In Message Property correlation, you specify a message header as the correlation ID in the outbound OSM message. For example:	
outboundMessage:setJMSCorrelationID($outboundMessage, $corrID)	
You can also specify additional message header properties in the outbound message. For example:	
outboundMessage:setStringProperty($outboundMessage, $HEADER1, $corrID)	
By default, Message Property correlation uses JMSCorrelationID as the correlation ID.	
The XML Body correlation uses an XPath expression to retrieve the correlation ID from the body of the XML message.	
There is a special consideration when managing intercommunication between orders, and by extension cartridges that are deployed in the same domain. This situation can occur whenever there are two or more cartridges deployed in the same OSM server that need to communicate with each other.	
The automation sender in the child cartridge needs to use the correlation ID specified by the parent order's task. By default, OSM uses the JMSCorrelationID property in the message header as the correlation ID. However, if both parent and child task senders use the same JMSCorrelationID property as the correlation ID, there is a potential situation where duplicate entries will exist in the OSM database with the same correlation ID, resulting in an error when the parent receiver tries to look up an automation context.	
The design guideline to handle this is as follows:	
When you build and deploy your OSM cartridges in Design Studio, you can configure a build-and-deploy mode for automation plug-ins included in the cartridge. Design Studio uses the build-and-deploy mode to build and deploy the automation components OSM requires to process the automation plug-ins in the mode you prefer. A dispatch mode setting on the OSM server works in conjunction with the build-and-deploy mode configured in Design Studio in certain cases. The build-and-deploy mode configured in Design Studio controls building and deploying the automation components required for each mode while the dispatch mode setting on the server controls specifying the preferred mode OSM uses at run-time.	
The Optimized dispatch mode runs all automation plug-ins inside the oms.ear file. Running all automation plug-ins in oms.ear improves the performance of processing of automated tasks and improves the performance of build and deployment of cartridges with automated tasks; it is the default mode for OSM 7.0.3. The Legacy dispatch mode runs each automation plug-in included in a cartridge in its own EAR file and is the dispatch mode used for OSM 7.0.2 and earlier releases; this method of building and deploying automation plug-ins is now referred to as the Legacy mode but it is simply the manner in which automation plug-ins were deployed and executed prior to OSM 7.0.3. Oracle recommends moving automation plug-ins to Optimized mode and to use Legacy mode only if necessary (for example, if there is a fundamental incompatibility with class libraries). To use Optimized mode, you must upgrade your cartridges from OSM 7.0.2 and earlier.	
Tip: The build-and-deploy mode you set for automation plug-ins in Design Studio indicates whether you want the plug-ins to be able to run within the oms.ear file or not. The dispatch mode on the OSM server indicates the ability for OSM to invoke an automation plug-in that is running within the bounds of the oms.ear file. If you want the server dispatch mode setting to take precedence, set the Design Studio build-and-deploy mode to Both.	
Figure 5-2 illustrates that when automation plug-ins are built and deployed using Legacy mode, internal event receiver type plug-ins are contained within a J2EE application (.ear file) that is distinct from the OSM application (oms.ear file).	
Figure 5-3 illustrates that when automation plug-ins are built and deployed using Optimized mode, internal event receiver type plug-ins run within the OSM application. Therefore, internal dispatch automation plug-ins no longer require their own J2EE application. The figure also illustrates that with Optimized mode, the business logic of external event receiver type plug-ins is also run within the OSM application and only the automation framework of external event receiver type plug-ins requires its own J2EE application to listen on the external message queue.	
External event receiver type automation plug-ins always require their own J2EE application in order to listen on a JMS destination. When you use Optimized mode, all of the business logic for external event receiver type plug–in J2EE applications is executed within the OSM application and they need to be rebuilt only when the JNDI name of the JMS destination changes.	
External event receiver type automation plug-ins are made up of both:	
When you use Legacy mode, the J2EE application of an external event receiver type automation plug-in contains both the automation framework and the business logic for handling the incoming message.	
When you use Optimized mode, the J2EE application of an external event receiver type automation plug-in contains only the minimum amount of automation framework infrastructure that allows it to listen on the external message queue and forward the message to the core OSM application logic. This means the business logic of the automation plug-in is now executed within the OSM application which enables it to more efficiently interact with the core OSM application logic. The automation framework acts primarily to forward the message to OSM. By containing the business logic within the OSM application, the only time you need to rebuild an external event receiver type automation plug-in is when you decide to use a different external message queue (when the JNDI name of the JMS destination changes).	
Oracle recommends moving automation plug-ins to use the Optimized dispatch mode. For information on upgrading your cartridges to use the Optimized mode, see the upgrade impacts section of the OSM Installation Guide.	
You can set the automation plug-in build-and-deploy mode for all cartridges in the same workspace or for individual cartridges.	
By setting the Both (Allow server preference to decide) build-and-deploy mode, Design Studio builds and deploys the automation components required to process the automation plug-in in both Optimized and Legacy modes. In this case, OSM uses the dispatch mode defined on the OSM server to process the automation plug-in. For information on how to set the dispatch mode on the OSM server, see "Setting Dispatch Modes for Automation Plug-ins".	
Table 5-2 summarizes the dispatch mode OSM uses at runtime based on how the automation plug-in build-and-deploy mode and the OSM server dispatch mode are set:	
Table 5-2 Truth Table for Dispatch Mode Used at Run Time	
Automation Plug-in Build-and-Deploy Mode	OSM Server Dispatch Mode
---	---
Optimized	Legacy
Optimized	Internal
Legacy	Legacy
Legacy	Internal
Both	Legacy
Both	Internal
For information on setting automation plug-in build-and-deploy modes, see "Setting Dispatch Modes for Automation Plug-ins" and the Design Studio Help.	
You set a build-and-deploy mode for automation plug-ins included in your OSM cartridges in Design Studio. See "About Dispatch Modes for Automation Plug-ins" for a description of build-and-deploy modes. You can set a build-and-deploy mode for all cartridges and for individual cartridges. For instructions on setting build-and-deploy modes for OSM cartridges, see the topic on defining automation plug-in build-and-deploy modes in the Design Studio Help.	
You set a server dispatch mode on the OSM server in the OSM configuration entry com.mslv.oms.automation.AutomationDispatcher.DefaultAutomationPluginDispatch. By setting a server dispatch mode on the OSM server, you indicate your preferred mode for OSM to invoke automation plug-ins if the build-and-deploy mode is set to Both (Allow server preference to decide). Based on the combined configuration of the build-and-deploy mode and the server dispatch mode, OSM determines the run-time behavior of automation plug-ins. See Table 5-2 for a truth table that shows the dispatch mode OSM uses at run time based on how the automation plug-in build-and-deploy mode and the OSM server dispatch mode are set.	
To set the OSM server dispatch mode for processing automation plug-ins:	
com.mslv.oms.automation.AutomationDispatcher.DefaultAutomationPluginDispatch	
See the chapter on configuring OSM with oms-config.xml in OSM System Administrator's Guide for detailed instructions on accessing and modifying the oms-config.xml file.	
For information on how OSM processes automation plug-ins based on the build-and-deploy modes you set for the cartridge and the dispatch mode you set for the OSM server, see "About Dispatch Modes for Automation Plug-ins".	
All custom automation plug-in Java source files must reside in the cartridgeName/src directory. You can create subdirectories within the src directory as needed. When you compile the source file, the resultant Java class file is placed in the cartridgeName/out directory. Any subdirectories you created within the src directory are reflected in the out directory.	
All custom automation plug-ins must extend one of the following automation classes, located in the OSM_home/SDK/automation/automationdeploy_bin/automation_plugins.jar file:	
The custom automation plug-in can directly or indirectly extend AbstractAutomator or AbstractSendAutomator: If needed, there can be one or more layers of inheritance between AbstractAutomator or AbstractSendAutomator, and the automation plug-in.	
These classes are hierarchically related. AbstractAutomator is the parent of AbstractSendAutomator as shown in Figure 5-4. Both classes reside in the com.mslv.automation.plugin package.	
The AbstractAutomator can receive information, either from OSM or from an external system. The AbstractSendAutomator inherits this ability, so it can also receive information from OSM or from an external system; however, it can also send information. If the custom automation plug-in you are writing is to send a message, it should extend the AbstractSendAutomator class; otherwise, it should extend the AbstractAutomator class.	
AbstractAutomator and AbstractSendAutomator each define abstract methods which require child classes to define those methods. The custom automation plug-in must define a specific method, depending on which Java class the custom automation plug-in extends:	
By defining one of these methods in a custom automation plug-in, when an automated task or automated notification is triggered, OSM can process the automation mapping and call the method, knowing it is defined for the class name provided in the automation mapping.	
The inputXML argument is a java.lang.String object. The custom automation plug-in does not need to include an import statement for this object because it is included in the hierarchy from which the custom automation is extending.	
The inputXML argument is the input data in XML document form that can be parsed to access the individual pieces of data. If the automation is defined as an internal event receiver, the XML document defines OSM order data. If the automation is defined as an external event receiver, the XML document defines data from an external source. In either case, you need to know the expected XML definition in order to write the code to parse the data.	
Data is not stored at the element for a given XML tag; it is stored at its child, so the approach for retrieving order data is not obvious. A command to retrieve order data looks like this:	
The automationContext argument is a com.mslv.automation.oms.AutomationContext object. The custom automation plug-in does not need to include an import statement for this object because it is included in the hierarchy from which the custom automation is extending.	
The AutomationContext object is part of a class hierarchy, as shown in Figure 5-5. The AutomationContext object is, either directly or indirectly, the parent class to all other context object classes in the automation framework. (OrderContext and NotificationContext are no longer used, but remain as part of the relational hierarchy.)	
The context object passed to the automation plug-in method as an argument differs depending on the OSM event that triggers the automation plug-in, as shown in Table 5-3.	
All context objects are located in the OSM_home/SDK/automation/automationdeploy_bin/automation_plugins.jar file. All context objects are defined in the same package: com.mslv.automation.oms.	
Table 5-3 Context Objects Passed To Plug-in	
Automation Plug-in Trigger	Design Studio Definition Location
---	---
Automated task	Task editor, Automation tab
Order milestone-based event notification	Order editor, Events tab
Task state-based event notification	Task editor, Events tab
Task state-based event notification	Process editor, Events tab on Properties view of a task in the process
Task status-based event notification	Process editor, Events tab on Properties view of a status in the process
Order data changed event notification	Order editor, Notifications tab
Order jeopardy notification	Order editor, Jeopardy tab
Task jeopardy notification	Task editor, Jeopardy tab
Casting the Argument	
Within the custom plug-in, it is up to you to know which context object to expect as an argument, and then cast the AutomationContext object to the appropriate child context object.	
For example, in code below, the expected context object is TaskContext, and automationContext is the name of the AutomationContext object argument.	
After the AutomationContext object is cast to the appropriate context object, all methods on the context object are available to the custom plug-in.	
The outboundMessage argument is a javax.jms.TextMessage object. The custom automation plug-in does not need to include an import statement for this object because it is included in the hierarchy from which the custom automation is extending.	
The outboundMessage argument is defined only for the makeRequest method; it is not defined for the run method. The makeRequest method is defined for classes that extend AbstractSendAutomator, which automatically send a message to an external system. You can write custom code that populates outboundMessage, which is sent to the external message queue defined by the automation definition. You do not have to write custom code to connect to the external system or send the message; OSM automation handles the connection and the message upon completion of the makeRequest method.	
Because custom automation plug-ins run inside a J2EE container, JDBC services are readily available.	
To use JDBC from a plug-in, you must create a data source through the WebLogic console. The data source contains all the connection information for your proprietary database, such as host names, user names, passwords, number of connections, and so on.	
For information on setting up data sources in WebLogic, see the overview of WebLogic Server applications development in the Oracle WebLogic documentation.	
The following code illustrates how to connect to a proprietary database from OSM and perform a "SELECT *".	
Line two, the lookup, uses the JNDI name of the data source as a parameter.	
To access the XML APIs from within a custom automation plug-in, API users must belong to a WebLogic group that provides privilege to access the APIs. For accessing the XML APIs from within a custom automation plug-in, that WebLogic group is OSM_automation. So, to access the APIs from within a custom automation plug-in, the API user must belong to the WebLogic group OSM_automation.	
See the Design Studio Help for further information regarding the Run As field, which defines the user of the automation.	
You must include the following JAR files in your project library list for the custom automation plug-in to compile:	
Warning: The version of the automation_plugins.jar that you reference to compile the custom automation plug-in must be the same version that resides in the cartridge osmlib directory. To verify this, check the date and size of each file. If they are different, use the version that came with the OSM installation. To do so, copy the automation_plugins.jar file from the OSM_home/SDK/automation/automationdeploy_bin directory to the osmlib directory of your cartridge. After the file is copied to the cartridge, clean and rebuild the cartridge.	
Depending on the content of the custom automation plug-in, you may also need to include additional JAR files.	
To include a JAR file in the project library list:	
The Properties for CartridgeName window opens.	
The Jar Selection window opens.	
Note: There is a difference between the terms custom automation plug-in and Custom Automation Plug-in: The former is a custom Java class, the latter is a Design Studio entity.	
For every custom automation plug-in you write, you must define a corresponding Custom Automation Plug-in entity in Design Studio. The Custom Automation Plug-in editor associates a Java class representing the custom automation plug-in to the Custom Automation Plug-in Design Studio entity. For example, if you create MyCustomPlugin.java and compile it, the result is MyCustomPlugin.class. You then create a new Custom Automation Plug-in entity, and populate the fields defined on the editor:	
The Custom Automation Plug-in editor also defines the XML Template field.	
You must provide XML that defines the implementation for your custom automation plug-in. This is done through the <implement>	
element, as shown in Example 5-1. The <implement>	
element is defined in the cartridgeName/customAutomation/automationMap.xsd file, which is available with the creation of an OSM cartridge, as described in "Package Explorer View of a Cartridge".	
Example 5-1 XML Template	
You must also provide the corresponding schema file that defines the rules for the XML that you entered in the XML Template field. The schema file name in this example is helloWorld.xsd, shown on the third line of Example 5-1. The content of helloWorld.xsd is shown in Example 5-2.	
Example 5-2 Schema for XML Template	
The schema files you create must reside in the cartridgeName/customAutomation directory.	
Note: The generated automationMap.xml file includes the<implement> element for predefined automation plug-ins, but not for custom automation plug-ins. For additional examples of the implement element, see Appendix A, "AutomationMap.xml File". When looking at the examples, note that the sub-elements defined for the	
Automated tasks and the automation plug-ins they trigger can handle asynchronous or synchronous communication. Automated notifications and the automation plug-ins they trigger can handle asynchronous communication only, as described in the first two sections; that is because an automated notification can not be defined as external event receiver, so it can not process a response as described in the last two sections.	
You can define an automation as an internal event receiver that extends AbstractAutomator. In this scenario, the input data is coming from OSM and not being sent anywhere, so there is no communication with an external system. The automation plug-in may perform some internal calculation, or just complete the task.	
This scenario is shown in Figure 5-1, "Automation Flow", at the beginning of this chapter. In the figure, Automation Plug-ins A and B are internal event receivers/automators.	
You can define an automation as an internal event receiver that extends AbstractSendAutomator. In this scenario, the input data is coming from OSM and being sent to an external system. The automation plug-in sends an asynchronous "fire-and-forget" message. That is, it completes the task and sends a message to an external system, but does not expect a response back from the external system.	
This scenario is shown Figure 5-6, which builds upon Figure 5-1, "Automation Flow". In the figure, Automation Plug-in A is an internal event receiver/sender.	
You can define an automated task that defines two automation plug-ins:	
This scenario is shown Figure 5-7, which builds upon Figure 5-6. In the figure, Automation Plug-in A-1 is an internal event receiver/sender, and Automation Plug-in A-2 is an external event receiver/automator.	
You can define an automated task that defines multiple automation plug-ins:	
This scenario is shown Figure 5-8, which builds upon Figure 5-7. In the figure, Automation Plug-in A-1 an internal event receiver/sender, Automation Plug-in A-2 is an external event receiver/sender, and Automation Plug-in A-3 is an external event receiver/automator.	
There can be multiple exchanges in such a scenario; this is just an example. After some number of messages back and forth, the final automation must be an external event receiver that extends AbstractAutomator, to complete the task. This example shows communication with two different external systems; however, steps 13-18 could continue communications with External System X, rather than with External System Y.	
The OSM installation provides several predefined automation plug-ins, as described in the following sections. The sections are presented in the order that the predefined automation plug-ins display within Design Studio, on the Add Automation window Automation Type list field.	
All of the predefined automation plug-ins are part of the automation class hierarchy; they extend, either directly or indirectly, the AbstractAutomator class, as shown in Figure 5-9.	
Note: The XSLT Automator predefined automation plug-in Java class is XSLTReceiver. The XQuery Automator predefined automation plug-in Java class is XQueryReceiver. The presentation in Design Studio was changed to remove confusion. The names receiver and sender imply that one receives and one sends, which is not true: Both receive. The sender just has the added ability to send a message.	
The XSLT Sender predefined automation plug-in provides a way to transform data and send it to an external system using JMS, with you supplying the extensible stylesheet language transformation (XSLT).	
When defining the automation on the Add Automation window, select XSLT Sender from the Automation Type list field.	
For an automation defined as an internal event receiver, the XSLT must transform the OSM input data to SystemY data, where SystemY is the external system that the automation is sending the transformed data to.	
For an automation defined as an external event receiver, the XSLT must transform SystemX data to SystemY data, where SystemX is the external system that the automation is receiving input data from, and SystemY is the external system that the automation is sending the transformed data to.	
XSLT Tab	
Selecting XSLT Sender from the Automation Type list field results in XSLT tab being present on the Properties view for the automation. The XSLT tab is where you specify your XSLT file so the predefined automation plug-in can access it. You can specify your XSLT file in one of three ways by choosing the appropriate radio button:	
Note: Oracle recommends that you choose Bundle in for production mode because it pulls the XSLT files into the PAR file. As a result, you can deploy the EAR file (which contains the PAR file) to any server and, at run time, the application can locate the XSLT files. If you choose Absolute Path or URL for production mode, you can deploy the EAR file to any server but are responsible for ensuring the XSLT files reside in the specified location on the server.Conversely, Absolute Path or URL are optimal for testing mode because they do not require a rebuild and redeploy to pick up changes to the XSLT.	
The XSLTSender class can cache the associated XSLT file, incurring minimal overhead on each invocation. When the automation is defined to cache the XSLT, the implementation detects at runtime whether the XSLT source has changed by checking the URL modification time and the XSLT is automatically reloaded if required. You can configure caching through the Maximum Number in Cache and Cache Timeout fields.	
You can set exceptions for the XSLT processing by setting the Exception field. For automations defined on a task, the Exception list field provides the values of success and failure, which are task statuses. If you define additional task statuses, they also appear in the list. (The Exception field is not applicable for automations defined on an order.)	
Oracle uses Saxon as the transformer factory to process XSLT. You can specify use of a different transformer factory by specifying a value for the Transformer Factory field.	
Note: Oracle recommends that you use the default Saxon transformer factory.	
Routing Tab	
The Routing tab consists of two sub-tabs: To and Reply To. Both sub-tabs define the same set of fields. The To sub-tab defines where the outbound message is being routed to, and the Reply To sub-tab defines where the in-bound message (replying to the outbound message) is being routed to.	
When the XSLT transformer is called, it is passed references to the following named parameters that may be used from within the XSLT:	
XSLTSender does not automatically complete the associated task after successful processing. If the task needs to be completed, the XSLT must include a call to	
as shown in Example 5-3:	
Example 5-3 XSLT Java Call	
As the XSLT author, you must ensure that the context parameter provided to the automation plug-in, and so to your XSLT, is an instance of TaskContext or TaskNotificationContext. This implementation attempts to complete the associated task, if applicable, on processing failure, using the exception status defined in the AutomationMap.xml file.	
The following high level-steps describe how to set up the XSLT Sender predefined automation plug-in:	
The XSLT Automator predefined automation plug-in provides a way to transform data or update OSM with the transformed data, with you supplying the extensible stylesheet language transformation (XSLT).	
When defining the automation on the Add Automation window, select XSLT Automator from the Automation Type list field.	
For an automation defined as an internal event receiver, the scenario is not very plausible because your corresponding XSLT would not need to transform OSM data to OSM data. However, you can write XSLT that executes Java rather than transforms data, so it is possible to define an XSLT Automator as an internal event receiver, but you can accomplish the same thing by writing a custom automation plug-in. The decision on which to use is based on the complexity of the Java code: If it is fairly short and simple, it may be quicker to use the predefined automation plug-in and just write the XSLT, as opposed to writing the custom automation plug-in.	
For an automation defined as an external event receiver, your corresponding XSLT must transform SystemX data to OSM data, where SystemX is the external system that the automation is receiving input data from. You can also specify to update OSM with the transformed data.	
XSLT Tab	
Selecting XSLT Automator from the Automation Type list field results in XSLT tab being present on the Properties view for the automation. The XSLT tab is where you specify your XSLT so the predefined automation plug-in can access it. You can specify your XSLT in one of three ways by choosing the appropriate radio button:	
Note: Oracle recommends that you choose Bundle in for production mode and Absolute Path or URL for testing mode.	
The XSLTReceiver class can cache the associated XSLT file, incurring minimal overhead on each invocation. When the automation is defined to cache the XSLT, the implementation detects at runtime whether the XSLT source has changed by checking the URL modification time; the XSLT is automatically reloaded if required. You can configure caching through the Maximum Number in Cache and Cache Timeout fields.	
You can set exceptions for the XSLT processing by setting the Exception field. For automations defined on a task, the Exception list field provides the values of success and failure, which are task statuses. If you define additional task statuses, they also appear in the list. (The Exception field is not applicable for automations defined on an order.)	
Oracle uses Saxon as the transformer factory to process XSLTs. You can specify to use a different transformer factory by specifying a value for the Transformer Factory field.	
Note: Oracle recommends that you use the default Saxon transformer factory.	
When XSLT Automator is selected from the Automation Type list, the XSLT tab also includes the Update Order check box, which is not present when XSLT Sender is selected from the Automation Type list. If the check box is selected, XSLTReceiver updates OSM with the transformed order data. If the check box is deselected, XSLTReceiver just transforms the data; it does not update OSM with the transformed data.	
When the XSLT transformer is called, it is passed references to the following named parameters that may be used from within the XSLT:	
XSLTReceiver does not automatically complete the associated task after successful processing. If the task needs to be completed, the XSLT must include a call to	
as shown in Example 5-3, "XSLT Java Call".	
As the XSLT author, you must ensure that the context parameter provided to the automation plug-in, and so to your XSLT, is an instance of TaskContext or TaskNotificationContext. This implementation attempts to complete the associated task, if applicable, on processing failure, using the exception status defined in the AutomationMap.xml file.	
The following high-steps describe how to set up the XSLT Automator predefined automation plug-in:	
The XQuery Sender predefined automation plug-in provides a way to extract and manipulate XML data and send it to an external system using JMS, with you supplying the XML query (XQuery).	
When defining the automation on the Add Automation window, select XQuery Sender from the Automation Type list field.	
For an automation defined as an internal event receiver, your corresponding XQuery can manipulate OSM data and send it to SystemY, where SystemY is the external system that the automation is sending the manipulated data to.	
For an automation defined as an external event receiver, your corresponding XQuery can manipulate SystemX data and send it to SystemY, where SystemX is the external system that the automation is receiving input data from, and SystemY is the external system that the automation is sending the manipulated data to.	
XQuery Tab	
Selecting XQuery Sender from the Automation Type list field results in XQuery tab being present on the Properties view for the automation. The XQuery tab is where you specify your XQuery file so the predefined automation plug-in can access it. You can specify your XQuery file in one of three ways by choosing the appropriate radio button:	
Note: Oracle recommends that you choose Bundle in for production mode and Absolute Path or URL for testing mode.	
The XQuerySender class can cache the associated XQuery file, incurring minimal overhead on each invocation. When the automation is defined to cache the XQuery, the implementation detects at runtime whether the XQuery source has changed by checking the URL modification time; the XQuery is automatically reloaded if required. You can configure caching through the Maximum Number in Cache and Cache Timeout fields.	
You can set exceptions for the XSLT processing by setting the Exception field. For automations defined on a task, the Exception list field provides the values of success and failure, which are task statuses. If you define additional task statuses, they also appear in the list. (The Exception field is not applicable for automations defined on an order.)	
Routing Tab	
The Routing tab consists of two sub-tabs: To and Reply To. Both sub-tabs define the same set of fields. The To sub-tab defines where the outbound message is being routed to, and the ReplyTo sub-tab defines where the in-bound message (replying to the outbound message) is being routed to.	
When the XQuery processor is called, it is passed references to the following named parameters that may be used from within the XQuery:	
XQuerySender does not automatically complete the associated task after successful processing. If the task needs to be completed, the XQuery must include a call to	
as shown in Example 5-3, "XSLT Java Call".	
As the XQuery author, you must ensure that the context parameter provided to the automation plug-in, and so to your XQuery, is an instance of TaskContext or TaskNotificationContext. This implementation attempts to complete the associated task, if applicable, on processing failure, using the exception status defined in the AutomationMap.xml file.	
The following high-steps describe how to set up the XQuery Sender predefined automation plug-in:	
The XQuery Automator predefined automation plug-in provides a way to manipulate data or update OSM with the manipulated data, with you supplying the XML Query (XQuery).	
When defining the automation on the Add Automation window, select XQuery Automator from the Automation Type list field.	
For an automation defined as an internal event receiver, your corresponding XQuery can manipulate the OSM input data or specify to update OSM with the manipulated data.	
For an automation defined as an external event receiver, your corresponding XQuery can manipulate the SystemX input data, where SystemX is the external system that the automation is receiving input data from. You can also specify to update OSM with the manipulated data.	
XQuery Tab	
Selecting XQuery Automator from the Automation Type list field results in XQuery tab being present on the Properties view for the automation. The XQuery tab is where you specify your XQuery so the predefined automation plug-in can access it. You can specify your XQuery in one of three ways by choosing the appropriate radio button:	
The XQueryReceiver class can cache the associated XQuery file, incurring minimal overhead on each invocation. When the automation is defined to cache the XQuery, the implementation detects at runtime whether the XQuery source has changed by checking the URL modification time; the XQuery is automatically reloaded if required. You can configure caching through the Maximum Number in Cache and Cache Timeout fields.	
You can set exceptions for the XSLT processing by setting the Exception field. For automations defined on a task, the Exception list field provides the values of success and failure, which are task statuses. If you define additional task statuses, they also appear in the list. (The Exception field is not applicable for automations defined on an order.)	
When XQuery Automator is selected from the Automation Type list, the XQuery tab also includes the Update Order check box, which is not present when XQuery Sender is selected from the Automation Type list. If the check box is selected, XQueryReceiver updates OSM with the manipulated data. If the check box is deselected, XQueryReceiver just manipulates the data; it does not update OSM with the manipulated data.	
When the XQuery transformer is called, it is passed references to the following named parameters that may be used from within the XQuery:	
XQueryReceiver does not automatically complete the associated task after successful processing. If the task needs to be completed, the XQuery must include a call to	
as shown in Example 5-3, "XSLT Java Call".	
As the XQuery author, you must ensure that the context parameter provided to the automation plug-in, and so to your XQuery, is an instance of TaskContext or TaskNotificationContext. This implementation attempts to complete the associated task, if applicable, on processing failure, using the exception status defined in the AutomationMap.xml file.	
The following high-steps describe how to set up the XQuery Automator predefined automation plug-in:	
During the fulfillment process, an order may fail (also known as fallout) for reasons such as insufficient data or incorrect data. You may have to revise the order data to fix the fallout. If there are multiple revisions on the order, you may need access to previous versions of it so you can provide the information required to roll back the order to the corresponding successful state rather than rolling it back to the previous successful state.	
Using GetOrder's TaskExecutionHistory and OrderChangeID elements, you can obtain the order data for all the revisions happened on an order and use the relevant data in the fulfillment process according to your needs. The GetOrder.Response and GetOrder.Request XML APIs also include these elements and are included with OSM Automation plug-ins.	
For example, consider an order which has been revised three times. You can obtain order data of all the three revisions and use the required data for the fulfillment.	
See OSM XML API Developer's Guide for more information about these elements.	
Use the GetOrder function to retrieve the TaskExecutionHistory element which returns an OrderChangeID associated with each historical perspective.	
The following sample code snippet provides the syntax for the GetOrder function:	
In the example above, the OrderChangeID specifies the revision to look for and roll back. An OrderChangeID with a value 0 indicates that it is the original base order with no revisions.	
Note: The OSM installation provides samples of the DatabasePlugin predefined automation plug-in, located in the SDK/Samples/DatabasePlugin directory.	
The DatabasePlugin class is a predefined automation plug-in that provides a way to interact with external databases, with you supplying the SQL and stored procedures to query and update a database. The automation plug-in can also be configured to update OSM with data returned from an external database.	
DatabasePlugin is slightly different from the previously described predefined automation plug-ins, in that the input is not accessed through a file. Rather, the input is accessed through the XML Template field on the Custom Automation Plug-in editor. Because this predefined automation plug-in requires the use of the XML Template field, it must be defined as a Custom Automation Plug-in. As a result, DatabasePlugin does not appear in the Automation Type list field on the Add Automation window like the other predefined automation plug-ins do.	
To define the Custom Automation Plug-in for the DatabasePlugin predefined automation plug-in, set the Class field by selecting DatabasePlugin. The DatabasePlugin.class is located in the OSM_home/SDK/automation/automationdeploy_bin/automation_plugins.jar file, which comes with your OSM installation.	
XML Template	
The XML Template field consists of one or more statements defined under the root <implementation>	
element. A statement may update the database, or update OSM order data, or both. All statements share the following characteristics:	
OUT	
parameter. bind paths	
. SQL statements are specified by the <sql>	
element and stored procedure statements are specified by the <call>	
element. The format of the call	
element is expected to be of the form {? = call <procedure-name>[<arg1>, <arg2>, ...]}	
or {call <procedure-name>[<arg1>,<arg2>, ...]}	
. Parameters are declared with the?	
character.	
Example 5-4 and Example 5-5 show the SQL statement and the stored procedure call.	
Example 5-4 SQL Statement	
Example 5-5 Stored Procedure Call	
Transaction Element	
The <transaction>	
element allows statements to be grouped. All statements contained in a <transaction>	
element will be run as part of a single database transaction. If a statement is defined outside of the <transaction>	
element, it is auto-committed immediately after the statement completes. The available configuration parameters are:	
Note: Do not configure the data source to support global transactions. The plug-in instance is called under an enclosing transaction, making this option illegal.	
READ_COMMITTED	
, READ_UNCOMMITTED	
, REPEATABLE_READ	
, and SERIALIZABLE	
. READ_UNCOMMITTED	
and REPEATABLE_READ	
are not supported by Oracle. FORWARD_ONLY, SCROLL_SENSITIVE, and SCROLL_INSENSITIVE.	
The SCROLL	
values apply only when more than one ResultSet	
definition is defined for the same result set. Example 5-6 Transaction Definition	
Bind Path	
The <bind path>	
element provides a way to correlate outbound parameter values and in-bound result set column values. Instances of this result column will be bound to instances of the specified parameter at the specified path; after which their paths may diverge. This attribute is only relevant when a parameter's path includes a multi-instance group element.	
Consider the sample OSM order data shown in Example 5-7 and the corresponding plug-in configuration in Example 5-8.	
Example 5-7 OSM Order Data	
Example 5-8 Plug-in Definition Using a Bind Path	
The emp	
bind path selects the second employee (with name of Mary	
). This bind path is used as the basis for the parameter selection and the corresponding result set column value, ensuring the job	
field that gets updated is the job	
corresponding with the employee	
named Mary	
.	
Parameter	
The <parameter>	
element defines how values are bound to the SQL parameter declarations. Parameters must be defined in the order of the corresponding declarations.	
OSMParameterType	
Specifies a parameter, the value of which will be bound to a <sql>	
or <call>	
statement. Parameters are processed in the order they are declared. The available parameter configuration attributes are:	
bindPathRef	
and/or path	
provide the value that will be set on the SQL parameter; type	
provides the data type of the value; mode	
specifies whether the parameter is a stored procedure IN	
, OUT	
, or INOUT	
parameter. Each attribute is described in more detail in the sections that follow.	
bindPathRef: This is the ID value of a bind path defined elsewhere on the statement. Either bindPathRef	
, path	
, or both may be specified. The value bound to the SQL parameter depends on the result of the evaluation of the bind path's XPath expression, as described in the table.	
Table 5-4 Bind Path Evaluation Behavior	
XPath Result	Behavior
---	---
null	If path is not specified, the SQL parameter is set to null. If path is specified, the SQL parameter is set based on the path evaluation as described below.
Node-set	If path is not specified, the SQL parameter is set according to the following algorithm: The first node encountered in the node-set is selected. If the node is an XML element, the text contained directly under the element is selected as a If the node is an XML attribute, the value of the attribute is selected as a Otherwise, the node itself (as a Java Object) is selected. The parameter value is set using the selected data based on the parameter's type (see Table 5-6, "OSM Data Type to SQL Data Type Mapping").
Object	The parameter value is set using the selected data based on the parameter's type (see Table 5-6, "OSM Data Type to SQL Data Type Mapping").
path: The XPath selector in the path	
attribute is evaluated against the plug-in's input data in order to determine the SQL parameter's value. The context node against which the path	
expression is evaluated depends on the format of the input data and whether or not bindPathRef	
evaluated to a node-set	
of XML Elements	
. If the bindPathRef	
evaluated to a node-set	
of Elements	
, the first encountered Element	
is used as the context node for the path	
expression. If the input is an OSM GetOrder.Response	
document, the context node is the _root	
element of the document. Otherwise, the context node is the document root element. The value bound to the SQL parameter depends on the result of the evaluation of the path	
's XPath expression, as described in Table 5-5.	
Table 5-5 Path Expression Evaluation Behavior	
XPath Result	Behavior
---	---
null	The SQL parameter is set to null.
Node-set	The SQL parameter is set according to the following algorithm: The first node encountered in the node-set is selected. If the node is an XML If the node is an XML Otherwise, the node itself (as a java The parameter value is set using the selected data based on the parameter's type (see Table 5-6).
Object	The parameter value is set using the selected data based on the parameter's type (see Table 5-6).
type: Specifies the data type of the parameter, which are OSM specific.Valid values are: boolean, currency, date, dateTime, numeric, phone	
, and text	
.	
Table 5-6 shows the SQL data type that will be used to set the SQL parameter based on the specified type and the Java class of the parameter value.	
Table 5-6 OSM Data Type to SQL Data Type Mapping	
type Attribute Value	SQL Data TypeFoot 1
---	---
Boolean	Boolean
currency	double
numeric	double
date	date
dateTime	timestamp
phone	string
text	string
Footnote 1 where the parameter is set as java.sql.PreparedStatement.setXXX(#, value)	
Footnote 2 If the class of the parameter is directly assignable to the SQL data type, it is not first evaluated as a String. For example, if the type attribute value is numeric	
and the class of the parameter value is java.lang.Number	
, no String evaluation is required.	
mode: Specifies the mode of the parameter. Valid values are IN, OUT,	
and INOUT.	
Applicable only if the statement is a prepared statement, that is, defined with <call>	
.	
Exception	
The exception statement specifies the behavior that the plug-in should exhibit when a particular Java exception is caught during processing. Exceptions can be ignored or they can complete the associated task with a particular exit status.	
If the exception is an instance of java.sql.SQLException, behavior may be further constrained to exceptions that have a particular error code or SQL state value. Exception handlers are evaluated in document order; that is, the first exception handler that matches the thrown exception will be used. If no exception handler exists for a thrown exception, it will be wrapped in a com.mslv.oms.automation.plugin.JDBCPluginException	
and re-thrown.	
The Database Plug-in must be associated with a JDBC data source that:	
When creating the JDBC data source:	
Deselect the Supports Global Transactions check box. (This check box defaults to being selected, so you must deselect it.)	
Exception	
If you create a JDBC data source that uses an XA database drive or that supports global transactions, the DatabasePlugin implementation throws the exception shown in Example 5-9.	
Example 5-9 Exception	
Automated tasks and the automation plug-ins they trigger can handle synchronous or asynchronous communication. This topic was presented in the section on custom automation plug-ins, and is also applicable to predefined automation plug-ins. See "Asynchronous and Synchronous Communication".	
Building and deploying an automation plug-in is a matter of building and deploying the cartridge that defines the automation plug-in. See "Packaging and Building a Cartridge" and "Deploying a Cartridge".	
You can also automate and build the deploy of an automation plug-in by automating the build and deploy of the cartridge that defines the automation plug-in. See "Automating the Cartridge Build and Deployment".	
If you encounter a problem when attempting to run an automation, you must verify that you are not using multiple versions of the automation_plugins.jar file. You do this by checking that the date and size of the file are the same in the following locations:	
If the two versions of the file are not the same, use the version from the OSM installation:	
Note: When the versions of the automation_plugins.jar file are not the same, you may also encounter a marshalling error when deploying the cartridge, prior to attempting to run the automation. The marshalling error, which states that it cannot find thegetProductBuildVersion() method, displays on the WebLogic console; it does not display in Design Studio when deploying the cartridge. If you encounter this error, the resolution is the same. Follow the steps described above.	
If you are upgrading from a previous release of OSM, and the previous release included automation plug-ins (custom or predefined), the same steps that are required to define a new automation plug-in are required to define the existing automation plug-in in the new release, with the exception of writing of the actual custom Java code.	
For example, if the previous release included the automation plug-in genericPlugin, to upgrade genericPlugin in the new release you need to:	
If genericPlugin is a custom automation plug-in, you can reuse the custom Java code by placing the Java source file in the cartridge src directory, compiling it, and selecting the class when defining the Custom Automation Plug-in. If genericPlugin is a predefined automation plug-in, you can select the predefined class when defining the automation, and reuse your XSLT or XQuery files by copying them into the cartridge resource directory.	
This section provides various examples of common usage for a custom automation plug-ins.	
This example shows the minimal amount of code required for a custom automation plug-in to run. This example assumes that it is triggered by an automated task.	
Example 5-10 Basic Custom Automation Plug-in	
Note: You can use the TaskContext object to do many things, such as complete the task, suspend it, and so on.	
For the automation framework to call a custom automation plug-in, the plug-in must extend either the AbstractAutomator class or the AbstractSendAutomator class. Both classes reside in the com.mslv.automation.plugin package.	
Line 01 defines the package where the custom automation plug-in resides.	
Lines 03-05 are import statements required for this custom automation plug-in.	
Line 07 defines the arbitrary class name, MyPlugin, which extends AbstractAutomator.	
Lines 08-09 define the required run method, as dictated by the parent class, AbstractAutomator.	
Line 11 casts the AutomationContext object to the TaskContext object. This example assumes that the custom automation plug-in is triggered by an automated task, so the code is expecting the context input an argument to be an instance of the TaskContext object.	
Line 12 calls a method on the TaskContext object to retrieve the task name.	
Line 13 prints out the retrieved task name.	
This example shows the minimal amount of code required for a custom automation plug-in that sends data to run. This example assumes that it is triggered by an automated task.	
Example 5-11 Basic Custom Automation Plug-in Send	
Note: You can use the TaskContext object to do many things, such as complete the task, suspend it, and so on.	
For the automation framework to call a custom automation plug-in, the plug-in must extend either the AbstractAutomator class or the AbstractSendAutomator class. Both classes reside in the com.mslv.automation.plugin package.	
Line 01 defines the package where the custom automation plug-in resides.	
Lines 03-06 are import statements required for this custom automation plug-in.	
Line 08 defines the arbitrary class name, MyPlugin, which extends AbstractSendAutomator.	
Lines 09-11 define the required makeRequest method, as dictated by the parent class, AbstractSendAutomator.	
Line 13 casts the AutomationContext object to the TaskContext object. This example assumes that the custom automation plug-in is triggered by an automated task, so the code can expect that the context input argument is an instance of the TaskContext object.	
Line 14 calls a method on the TaskContext object to retrieve the task name.	
Line 15 sets the text for the outbound message, which is sent to the external message queue defined by the automation definition. The custom code does not establish a connection to an external system or send the message; the automation framework handles the connection and sends the message upon completion of the makeRequest method.	
This example shows a custom automation plug-in that updates the OSM task status. This example assumes that the automation definition is an external event receiver that is receiving a message from ASAP, and that it is triggered by an automated task.	
Example 5-12 Updating OSM Task Status	
Note: The automation framework keeps track of the order ID and the order history ID of the task that triggered the automation. Regarding line 14, there are two ways you can get the Order History ID:	
In most cases, these return the same order history ID. However, if you use automation to handle task events, the order history ID obtained from:	
For the automation framework to call a custom automation plug-in, the plug-in must extend either the AbstractAutomator class or the AbstractSendAutomator class. Both classes reside in the com.mslv.automation.plugin package.	
Line 01 defines the package where the custom automation plug-in resides.	
Lines 03-05 are import statements required for this custom automation plug-in.	
Line 07 defines the arbitrary class name, AsapResponseHandler, which extends AbstractAutomator. The name reflects that this example is an external event receiver, receiving information from ASAP.	
Lines 08-09 define the required run method, as dictated by the parent class, AbstractAutomator.	
Line 11 casts the AutomationContext object to the TaskContext object. This example assumes that the custom automation plug-in is triggered by an automated task, so the code can expect that the context input argument is an instance of the TaskContext object.	
Line 12 calls a method on the TaskContext object to retrieve the task name.	
Lines 13-14 logs the information regarding the response that the plug-in is handling. AtmFrameCatalogLogger is available to this plug-in based on the package in which the plug-in resides.	
Line 15 updates the task status by calling a method on the TaskContext object.	
You use OrderDataUpdate XML elements to pass data add, modify and delete data nodes in an order.	
OrderDataUpdate elements can be passed as a parameter to updateOrderData(). XSL translations whose results are passed to setUpdateOrder() must be in OrderDataUpdate format. See the OSM Javadocs for details on both methods. You can also pass OrderDataUpdate format elements to the DataChange Web Service (see the SDK schema OrderManagementWS.xsd) and UpdateOrder.request XML API call (see the SDK schema oms-xmlapi.xsd).	
For update and delete operations on multi-instance nodes, you must specify the order node index as it exists in the input XML. Specify the order node index as "[@index='index_value']" where index_value is the order node index.	
The example below shows how to specify the addition of an order node with OrderDataUpdate. The path attribute identifies the parent node under which to add the element:	
Example 5-13 Adding an Order Node with OrderDataUpdate	
The example below shows a combined update and delete operation on a multi-instance node using OrderDataUpdate. In Delete attributes, the path attribute identifies the data to delete. In Update attributes, the path attribute identifies the data to update. Indexes are required on Update and Delete attributes when modifying multi-instance nodes. Note how the order node index values are specified in the Update and Delete attributes.	
Example 5-14 Modifying Multi-Instance Order Nodes with OrderDataUpdate	
The example below shows a combined update and delete operation on single-instance node using OrderDataUpdate:	
Example 5-15 Updating and Deleting Order Nodes with OrderDataUpdate	
See "Updating OSM With Data Received From an External System" for an example in which OrderDataUpdate XML data is created dynamically within Java code and passed to UpdateOrderData().	
The schema for OrderDataUpdate is as follows:	
If an automated task sends data to an external system and the external system sends a response back, you may need to update OSM with the data received from the external system. This example shows how to update data in OSM. The code is an example of updating OSM with data received from UIM when calling the server extension FRDemo.AssignFacilities.	
Example 5-16 Updating OSM Data	
Line 25 displays where OSM data is updated, using XML input to describe which data nodes to update.	
Lines 38-87 builds the OrderDataUpdate XML string to update the data in OSM using data garnered by parsing the UIM XML. See "Using OrderDataUpdate Elements to Pass Order Modification Data".	
The structure of the XML document to update OSM data is as follows:	
This example illustrates adding a data node (Add path), updating a data node (Update path), and deleting a data node (Delete path).	
The code from lines 38-86 differs for every order template and every external system. This code represents the translation step where you convert the data from the format of an external system to the format that OSM expects.	
Line 48 specifies a mandatory parameter. If set to true, the following rules apply:	
Note: If you add a mandatory field, but do not include a value, AddMandatory will not add a default value and the request will generate an error-error code 200.	
When a new Provision Network task arrives in the "Received" state, run the class com.mslv.oms.sample.atm_frameObjectelplug-in, and send the data Object the JMS queue com/mslv/Objectel/RequestQueue	
.	
Note: When you run the ATM-frame plug-in assembly, you will receive a number of warnings from the EJB compiler (ejbc) similar to those shown below. These messages can be safely ignored.EJB Deployment: <EJB name> has a class <class name> that is in the classpath. This class should only be located in the ejb-jar file.	
Automation simplifies the process of sending messages to external systems. The automation framework does the following:	
An OSM event that is sent to an external system follows this process flow:	
This example shows a custom automation plug-in that sends data to an external system.	
Example 5-17 Sending Data to an External System	
Line 20 generates an output XML string. In this example it is hard coded. In a business case you would use business logic to transform OSM data into what the external system expects.	
Line 21 sets the output data.	
This code does not establish a connection to an external system or send a message. After the data is set in the code, the message is automatically sent upon exit of the makeRequest method.	
In Message Property Correlation, the following steps describe how responses from external systems are handled.	
This example shows a custom automation plug-in that handles and processes response messages from an external system.	
Example 5-18 Handling Responses from an External System	
Line 07: This automation plug-in does not need to send JMS messages to any system, so it extends AbstractAutomator.	
Line 13: This plug-in is intended to process Task automation responses, so it casts the Context to a TaskContext.	
Line 15: Automator completes the task.	
This example shows what the external system is expected to do for the message property correlation to work.	
Example 5-19 What the External System Does	
Lines 09-10 show how the external system chooses which JMS destination to send the reply to.	
Line 16 shows the external system setting a property that identifies the nature of the JMS message. This implies that the automation was defined with a message property selector select statement that matches these parameters.	
Line 17 shows the external system echoing the correlation information onto the reply message. This implies that the automation was defined to correlate based on JMSCorrelationID.	
This chapter describes the Oracle Communications Order and Service Management (OSM) Security Callback feature, which allows you to generate an audit trail log of users before they gain access to order data that is deemed to be sensitive.	
OSM provides a callback interface that is designed to intercept order access from the following functions:	
The callback is called before sensitive order data is about to be retrieved or displayed to a user. The normal security authorization for the call being made remains in place and runs before this callback interface.	
The security callback interface (contained in the com.mslv.osm.security Java package) is implemented by a registered custom class which calls the defined method (single order or result set) and passes information about the order which has been exposed to the user. In the single order or result set method, the custom class can be passed either a single order or a result, depending on which interface it is invoked. For example, if you select multiple orders in a worklist, the security callback would be passed a result set of orders.	
For more information about the security callback interface, install the OSM SDK and extract the OSM_Home/SDK/osm7.x.y.z-javadocs.zip OSM Java docs (where OSM_Home is the directory in which the OSM software is installed and x.y.z are the software release, patch, and build numbers). See OSM Installation Guide for more information about installing the OSM SDK.	
You can find the following sample in the installation's SDK/Samples/SecurityCallback directory.	
Complete the following steps to configure your callback implementation.	
OrderViewAccessProvider	
. OSM provides the osmcommon.jar file, which includes the callback interface and exception OrderViewAccessException	
. The JAR file can be obtained by unpacking the oms.ear file.	
See the chapter on configuring OSM with oms-config.xml in OSM System Administrator's Guide for detailed instructions on accessing and modifying the oms-config.xml file.	
This chapter describes the Oracle Communications Order and Service Management (OSM) Custom Menu and Action feature, which allows you to configure custom menu items and actions that are called from the context menu of the Task Web client Worklist and Query Result pages.	
A custom menu action calls customer-specific business logic, for example, enabling a print job of tasks in the Worklist. The custom business logic can easily interact with the OSM server through the XML API.	
You define custom menu items and actions using a model in an XML file. Actions are defined globally across all cartridges, and may be called for any task or group of tasks. The action is available to all users. Actions that call the XML API are done within the Web client session, so access privileges to the API are based on the Web client user's workgroup privileges.	
Additionally, API users must belong to a WebLogic group that provides privilege to access the APIs. For custom menu and action items, that WebLogic group is OMS_xml_api. So, to access the APIs through custom menu items and actions, the API user must belong to the WebLogic group OMS_xml_api.	
The metadata definition for custom menu action is supported through a standalone configuration file that is loaded and run at runtime. The OSM Administrator application (or an Ant task in the Cartridge Development Kit) can be used to trigger a reload of the configuration file.	
The name and location of the custom menu action file is defined in the oms-config.xml file.	
A working model, which includes a sample configuration file, Javascript file, and ReadMe, is available in the OSM_home/SDK/Samples/CustomMenuAndAction directory.	
The definition of the model must follow the XML schema menuAction.xsd located in the OSM_home/SDK/XMLImportExport directory. The action	
and menuItem	
elements are described below.	
Table 7-1 lists the action elements.	
Table 7-1 Action Elements	
Element	Description
---	---
name	The name of the action referenced by the menu item.
xsi:type	There are three types of actions: javascriptActionType - Defines a Javascript function as part of the <implementation> element. The function may be embedded directly in the element, in which case it should not be wrapped in a function name () {} construction, or it may be located in an external file which can be called from the <implementation> element. orderContextActionType - Similar to javascriptActionType, can make use of Javascripts in the same way. In addition, has an object named orderContext which is accessible from within the Javascript. Refer to this object as part of the function. If the function is defined in an external file and the <implementation> contains a call to that function, pass orderContext as a parameter to the function. uriActionType - Forwards you to the supplied URI, which opens in a new window in the browser. The URI is supplied as part of the <implementation> element.
description	The description of the action that appears on the context menu when no menu item description is supplied.
hint	The tool tip associated with the action.
icon	The icon associated with the action. Icons must be packed as part of the oms.ear file (oms.ear/oms.war/images).
implementation	The implementation of the action, e.g. Javascript function, orderContext, URI. May also contain a href, which is a URI pointing to a Javascript file.
uri	The path to a local directory, Web page address, or any point of content.
An orderContextActionType action is supplied with an object named orderContext. This object contains an array of orders which, in turn, contains information about the orders for which the action was called. Table 7-2 shows the method calls that can be made on the orderContext and order objects.	
Table 7-2 orderContext and Orders	
Object	Methods
---	---
orderContext	getOrders()
order	getOrderId()
order	getOrderHistId()
order	getOrderTypeId()
order	getOrderSourceId()
order	getState()
The function, callXmlApi()	
, makes it easier for action implementations to call the XML API. The function takes the XML API request document as an argument and returns the response XML document.	
This section provides some samples of the different types of actions that you can configure in your custom action and menu XML file.	
Table 7-3 Menu Item Elements	
Attribute	Description
---	---
name	The name of the menu item (internal reference only).
description	The description of the menu item that appears on the context menu.
enabled	Can be set to true() or false() when used in conjunction with an XPath to other fields. Not supported in this version.
visible	Can be set to true() or false() when used in conjunction with an XPath to other fields. Not supported in this version.
displayStyle	The display style of the menu item on the context menu, either icon, or text, or both. References the action icon and/or description.
action	Reference to the action being called.
Once you have defined the elements in your configuration file, you must set up the environment before running the file. There are three methods for doing this:	
To configure your environment, you must perform the steps in "Setting Up the oms-config.xml File" and only one of the following sections:	
All three methods of environment configuration require that you set up the oms-config.xml file. There are two ways of managing this file:	
For the file system path method, you must edit the oms-config.xml file for each environment where the absolute path to the file is different. For the XML Catalog methods you should only need to perform this procedure once.	
See OSM System Administrator's Guide for more information about editing the oms-config.xml file.	
Update the <oms-parameter-value>	
tag. The value you use here depends on the environment configuration method you are using.	
where cartridge_name and cartridge_version represent the name and version of the cartridge where you are planning to include the custom files, and filename.xml is the file with your XML model (for example, custom_menu_action_model.xml).	
where example.org/somewhere represents a namespace you are using as a convention to refer to this file and filename.xml is the file with your XML model (for example, custom_menu_action_model.xml).	
You must perform the procedure below for each server environment.	
implementation href	
in the file. Then change the value to the correct location for the current environment. oms-config.xml	
changes to your environment. You must perform the procedure below for each Design Studio environment.	
implementation href	
in the file. Then change the value to the correct location for the current environment. disable	
for the cartridge. To check this, open the cartridge definition file, and click on the Cartridge Management Variables tab. By default, XML_CATALOG_SUPPORT is enabled, so if there is no entry in the Cartridge Management Variables table for that parameter, no change is needed. If there is an entry and it is set to disable	
, remove the entry and save the cartridge definition file. Copy your custom configuration XML file and any files that it references to the location you configured in step 2 of "Setting Up the oms-config.xml File". In the example, you would copy the files to the resources directory for your cartridge.	
oms-config.xml	
changes to your environment. You must perform the procedure below for each Design Studio environment. You must perform steps 4-7 whenever you change the location of the files.	
implementation href	
in the file. Then change the value to the correct location for the current environment. disable	
for the cartridge. To check this, open the cartridge definition file, and click on the Cartridge Management Variables tab. By default, XML_CATALOG_SUPPORT is enabled, so if there is no entry in the Cartridge Management Variables table for that parameter, no change is needed. If there is an entry and it is set to disable	
, remove the entry and save the cartridge definition file. Copy your custom configuration XML file and any files that it references to a location of your choice, either inside or outside of the cartridge directory structure.	
.xml	
. where specified_namespace_string refers to the string you specified in step 2 of "Setting Up the oms-config.xml File" and file_location refers to the location where you copied your custom configuration files.	
For example, if you have copied the files to a location inside your cartridge directory structure, you would add a line similar to this:	
If you have copied the files to some location outside the Design Studio file structure, you would add a line similar to this:	
Build and deploy the cartridge.	
oms-config.xml	
changes to your environment. The context menu displays the new menu items, positioned at the bottom of the menu.	
This chapter describes how to use data providers to retrieve data when modeling orders in Oracle Communications Order and Service Management (OSM).	
An Oracle Communications Design Studio data provider is an instantiation of adapter (which is a Java class) that can retrieve data in an XML format from external systems. Data Providers are used when defining Data Instance behaviors. Design Studio provides several built-in Data Providers to retrieve external XML instances from specific sources such as an Objectel server extension or a SOAP Web service. Additionally, you can create your own custom Data Provider (see "Custom Data Providers" for more information).	
In Design Studio, the Data Provider editor Settings tab (Figure 8-1) allows you to set the Data Provider type using Provider Type. Types of Data Providers include:	
When you select any of the above choices other than a custom data provider, the Provider Class field becomes disabled and is populated with the OSM implementation of the adapter. When you select Custom, the Provider Class field is enabled because you must supply the class name of the custom adapter that you write. See "Custom Data Providers" for detailed information.	
Data providers, both built-in and custom, can take parameters as input, as shown in the Interface tab (Figure 8-2). Parameter names are free-form text, but are dictated by the data provider's expected input. An asterisk (*) appears next to mandatory parameters, and each parameter's corresponding value can be specified as either XPath 1.0 or XQuery 1.0. In addition to the functions provided by the XPath 1.0 or XQuery 1.0 standards, OSM provides a custom function, instance(string)	
that allows the output of one data provider to be used as the input of another. The parameters required by each of the built-in data providers is documented in the sections that follow.	
For instructions on how to define these data providers in Studio, including field-level detail, see the Design Studio Help.	
To use a Data Provider, you include a data element in the order template, define a behavior for it and use an XPath expression to access the Data Provider and extract the data that you wish to display in the data element.	
For example, the following XPath illustrates how to call a Web service provider instance named "DataInstance" and return the value of the "my_element" view data element.	
For XQuery, you would use vf:instance()	
.	
In most cases, a data provider references order data from an external source, another behavior, or as static values defined within the data provider. In addition to these options, you can also add explicit parameter values from within an XQuery or XPath that augment or override the parameters defined in the OSM data dictionary.	
For example, the following variable can be declared with parameters that have not been defined within the OSM data dictionary from within an XQuery:	
You can call a data instance function using a sequence of parameters declared in the variable above. For example:	
You can call a data instance function using parameters passed as parameters on the function one by one. For example:	
You can call a data instance function using parameters passed as parameters on the function one by one and include two parameters. For example:	
This adapter provides a reliable transport call into Objectel. Although JMS is an asynchronous protocol, the Objectel adapter itself is not. While JMS simplifies transaction management, recovery, offline capabilities, and security, these benefits are not relevant when considered within the context of a behavior. The JMS adapter utilizes additional resources in the application server in the form of temporary JMS destinations to which Objectel sends the response. These can be expensive if an order has many adapters being called concurrently. It is not recommended to use this adapter in this scenario.	
objectel:extensionName	
Description: the name of the Objectel server extension to call.	
Mandatory/Optional: Mandatory	
objectel:jmsFactory	
Description: the name of the JMS factory to be used to access Objectel's JMS queue.	
Mandatory/Optional: Optional	
Default value - com.oracle.objectel.XMLJMS.QueueConnectionFactory	
objectel:queue	
Description: The name of the Objectel receive queue.	
Mandatory/Optional: Optional	
Default value: - com.oracle.objectel.XMLJMS.QueueConnectionFactory	
objectel:allowErrorResponse	
Description: an optional Boolean parameter name that if specified controls what happens if Objectel returns an error response. If this parameter is set to false (default), an error response from Objectel triggers an exception to be thrown which is in turn displayed as a constraint violation. If this parameter is set to true, the error response is returned by the ObjectelAdapter as a valid instance. This allows another Constraint behavior to apply to that same instance and display an error message accordingly. The benefit of using the default (false) is that you do not have to write an additional behavior to display a default error message. The constraint violation message looks like an exception with a stack trace, but shows the error description returned by Objectel at the top of the message. The benefit of setting this parameter to true is that you have greater control over when the error is shown, at what severity, and what message is displayed.	
This adapter lets you use order data from any OSM order as an external instance. This is useful for using related order data from other orders within OSM.	
oms:OrderID	
Description: The order ID of the order to be retrieved.	
Mandatory/Optional: Mandatory	
oms:View	
Description: The view to use when retrieving order data.	
Mandatory/Optional: This is required if the OMS:OrderHistID is not supplied.	
oms:OrderHistID	
Description: The order history ID to use when retrieving order data.	
Mandatory/Optional: This is required if OMS:View is not supplied.	
To add a new Data Provider which uses the Order adapter:	
The new Order Data Provider is added to the Design Studio project.	
The definition of GetOrderResponse is located in the order management Web service schema at osm_home\SDK\XMLSchema\GetOrder.xsd.	
For more information, see the discussion on Data Providers in the Design Studio Help. Also, see "Accessing Data through Data Providers".	
This adapter retrieves an external Java property file with a given name from the classpath. The format of the XML instance returned by this adapter is specified as:	
This adapter lets you access Web services from OSM or an external Web service server, using the HTTP protocol. You can call SOAP Web services from OSM or an external Web service server and use the responses within behaviors.	
Note: If you need to configure a proxy server to access the internet, add the following parameters to the OSM WebLogic server startup script:JAVA_OPTIONS="${JAVA_OPTIONS} -Dhttp.proxyHost=ip_address -Dhttp.proxyPort=port where ip_address and port are the IP address and port of the proxy server.	
For Web service calls specific to OSM, use the Web service adapter. See "Web Service".	
For general Web services calls, use the Soap adapter.	
soap.endpoint	
Description: Specifies the URL to which the SOAP request will be sent.	
Mandatory/Optional: Mandatory	
soap.action	
Description: Contains the URI that identifies the intent of the message.	
Mandatory/Optional: Optional	
soap.envelope	
Description: Specifies the root element of a SOAP message.	
Mandatory/Optional: Mandatory, if the soap.body	
parameter is not defined.	
soap.body	
Description: Contains the SOAP message intended for the endpoint. If the SOAP body node is not included in the soap.body	
content, it will be added by the SOAPAdapter.	
Mandatory/Optional: Mandatory, if the soap.envelope	
parameter is not defined.	
soap.header	
Description: Contains XML data that affects the way the application-specific content is processed by the message provider. If the SOAP header node is not included in the soap.header	
content, it will be added by the SOAPAdapter.	
Mandatory/Optional: Optional	
oms:credentials.username	
Description: Specifies an authentication user name.	
Mandatory/Optional: Optional	
oms:credentials.password	
: An optional authentication parameter Description: Specifies an authentication password.	
Mandatory/Optional: Optional	
oms:credentials.scope.host	
: An optional authentication parameter Description: Specifies an authentication host parameter.	
Mandatory/Optional: Optional	
soap.allowErrorResponse	
: Description: When set to true, the adapter returns SOAP fault messages to the calling behavior; otherwise, the adapter throws an exception when a SOAP fault response is returned.	
Mandatory/Optional: Mandatory	
The following is an example of a SOAP body, which would be populated in the soap.body	
parameter.	
The following is an example of a SOAP envelope, which would be populated in the soap.envelope	
parameter.	
This adapter lets you use an attachment from any OSM order as an external instance. It is useful for using related-order-data from other orders within OSM.	
This adapter lets you use an XML file accessible from any URL as an external instance. It is useful for integrating external XML data located in a file system, FTP site, from HTTP, or in a Java JAR file.	
This adapter validates a provided XML instance document according to a user-defined schema. The document may be provided either as a URL or as an element. The schema may also be provided as a URL or as an element. The returned document conforms to the element specified by http://xmlns.oracle.com/communications/ordermanagement#ValidationResult	
.	
This adapter lets OSM query any JDBC database, then use the results within a behavior. This adapter is particularly useful for acquiring information stored in an external database.	
oms:dataSource	
Description: The JNDI name of the data source providing the database connection information. For example <code>'mslv/oms/oms1/internal/jdbc/DataSource'	
. The data source must be defined through the WebLogic server console.	
Mandatory/Optional: Mandatory	
oms:sql	
Description: The SQL that is sent to the database. To run a SQL stored procedure, this parameter must comply with the format specified by:	
http://java.sun.com/j2se/1.4.2/docs/api/java/sql/CallableStatement.html	
Mandatory/Optional: Mandatory	
in:1 . . . in:n	
Description: 1 to n additional optional input parameters may be supplied that are bound to parameters defined in the oms:sql value.	
Mandatory/Optional: Optional	
out:1 . . . out:n	
Description: 1 to n additional optional output parameters that are used when calling SQL stored procedures that have output parameters defined. The parameter value specifies the SQL type name of the parameter, and must be defined at:	
http://java.sun.com/j2se/1.4.2/docs/api/java/sql/Types.html	
Mandatory/Optional: Optional	
This external instance adapter lets you invoke the GetOrder and FindOrder OSM Web service operations. The adapter acts as a wrapper around OSM's Web service API for these two Web services, allowing these operations to be called from external instances.	
For other Web service calls, use the SOAP adapter. See "SOAP"	
soap.request	
Description: Set this parameter to one of the following:	
Mandatory/Optional: Mandatory	
See "GetOrder" and "FindOrder" for more information on these Web service transactions.	
To add a new Data Provider which uses the Web Service adapter:	
The new Web Service Data Provider is added to the Design Studio project.	
You can optionally specify the request as an XPath instance instead by setting the Default Value to XPath and entering the request XPath code in the Default Value edit box.	
Definitions of FindOrderResponse and GetOrderResponse declarations are located in the order management Web service schema at osm_home\SDK\WebService\wsdl\OrderManagementWS.xsd.	
For more information, see the discussion on Data Providers in the Design Studio Help.	
The following is a soap.request XQuery example for a Web services Data Provider. You can also specify the input as a SOAP envelope or a SOAP Body.	
To use the Data Provider, include a data element in the order template, define a behavior for it, and use an XPath expression to access the Data Provider and extract the data to display in the data element. See "Accessing Data through Data Providers".	
Whenever the Web Service adapter is called through a Data Provider, GetOrderRequest is executed and a response returned. If logging is set to debug for the OrderAdapter, a message similar to the one below is displayed on the WebLogic Administration console:	
In addition to the built-in data providers described in previous sections, Design Studio supports custom data providers. You can develop a custom data provider class in a project in Design Studio as part of a solution. This provider class must implement the com.mslv.oms.view.rule.ExternalInstanceAdapter	
interface. This interface is documented in the Javadoc distribution found in the OSM SDK.	
The implementation class can be made available to the OSM run time system in two ways:	
The ExternalInstanceAdapter.retrieveInstance(ViewRuleContext, Map)	
method provides a Map of name/value pairs of arguments defined in the data provider's Design Studio definition and their corresponding values for an invocation of an instance of this class. The com.mslv.oms.view.rule.adapter.AbstractAdapter	
class provides a number of methods to assist in extracting properly type cast parameter values from that Map. AbstractAdapter	
is included in the automation_plugins.jar	
archive found in the osmLib directory of a Design Studio OSM project, as well as in the automation/automationdeploy_bin subdirectory of an OSM SDK installation.	
Custom data providers, like built-in providers, support input parameters. The following examples illustrate how to access those parameters.	
Example 1 (incorrect usage)	
String stringParamValue = (String) parameters.get(MY_STRING_PARAM);	
The value returned by parameters.get(...)	
may not be a String, resulting in a ClassCastException	
.	
Example 2 (incorrect usage)	
String stringParamValue = parameters.get(MY_STRING_PARAM).toString();	
The parameters.get()	
call may return a null value resulting in a null pointer exception. Also, the value returned may be an XML DOM fragment, requiring a more sophisticated mechanism for value extraction than simply calling toString()	
.	
Example 3 (correct usage)	
String stringParamValue = = getStringParam(parameters, MY_STRING_PARAM);	
The getStringParam(Map, String)	
call automatically performs the appropriate conversion to coerce a parameter value into a String	
. This method is intended for extracting a required parameter value. If a value for MY_STRING_PARAM	
was not provided, or if the value cannot be coerced into a String	
, a BadParameterException	
is thrown. To retrieve optional parameter values, use getStringParam(Map, String, String)	
instead; see Example 4.	
Example 4 (correct usage)	
String stringParamValue = getStringParam(parameters, MY_STRING_PARAM, "a default value");	
The MY_STRING_PARAM	
parameter is retrieved as an optional parameter. If a value for MY_STRING_PARAM	
is provided, it is returned, otherwise, "a default value" is returned.The AbstractAdapter	
class also provides similar methods to extract boolean, numeric, and XML DOM Node parameter values:	
boolean booleanParamValue = getBooleanParam(parameters, MY_BOOLEAN_PARAM	
); int intParamValue = getIntParam(parameters, MY_NUMBER_PARAM);	
Node nodeParamValue = getNodeParam(parameters, MY_NODE_PARAM);	
The following code snippet illustrates a simple custom data provider class:	
This chapter provides information on localizing the Oracle Communications Order and Service Management (OSM) Web clients. Localization is the process of changing a user interface (UI) from the original language in which it was written to another language. This chapter also provides information for customizing regional settings across all OSM applications. This chapter is intended for service professionals developing a custom installation for their clients.	
Localization is the process of customizing the OSM system for use in a specific market and language. This process includes translating the user interface and documentation, as well as adapting time, date, number formats, and punctuation conventions. It may also include editing or creating new icon graphics.	
Note: Oracle recommends that you have an experienced localization professional perform the documentation translation and coding localization.	
This chapter describes how to:	
Note: After you run any migration script such as upgrading an installation, you must reapply any customization done to the database.	
Localizing OSM involves the following high-level steps.	
Note: These steps assume you have followed the directions specified in the OSM Installation Guide, which include:	
Set the environment variable PATH to JDK_home/bin, then from a command prompt run the command:	
The uncompressed files are organized into the directories shown in Figure 9-1, "Uncompressed Files".	
OMS/main/model/calendar/_table/_data:	
OMS/main/model/cartridge/_table/_data:	
OMS/main/model/notification/_table/_data:	
OMS/main/model/ordertemplate/_table/_data:	
OMS/main/model/process/_table/_data:	
OMS/main/model/rule/_table/_data:	
OMS/main/model/user/preference/_table/_data:	
OMS/main/model/user/privilege/_table/_data:	
OMS/main/model/utility/_table/_data:	
After you have localized the XML files, open a command prompt console, navigate to the directory that contains the JAR file, and run the command:	
The installer localizes the schema using your JAR file.	
After the database information has been localized and the product has been installed, you can customize the OSM Web clients to suit the needs of the target locale. For more information, see "Localizing the Task Web Client" and "Localizing the Order Management Web Client".	
If you localized OSM, you must also localize the XML Import/Export application. Localizing the XML Import/Export application involves the following high-level steps:	
Set the environment variable PATH to JDK_home/bin, then from a command prompt run the command:	
To localize the default_data.sql file, you must understand the relationship between the data that was localized in the XML files from the omsmodel_l10n.jar file, and the insert scripts defined in the default_data.sql file. The following example provides that understanding:	
Suppose om_state.xml of omsmodel_l10n.jar is localized. The localization corresponds to the INSERT statements of the table OM_STATE defined in default_data.sql in the om_state.xml file. For example, if the <state_description>	
of <state_mnemonic>received</state_mnemonic>	
is localized as <state_description>TEMP_received</state_description>	
, in default_data.sql the INSERT statement that is inserting received state in the OM_STATE table must be localized to:	
[INSERT INTO OM_STATE (STATE_ID, STATE_MNEMONIC, STATE_CATEGORY_ID, STATE_DESCRIPTION,STATE_ICON_ID, CARTRIDGE_ID) VALUES (1, 'received', 1, 'TEMP_received', 0, 0);]	
Following this example, all fields that are localized in the XML files of omsmodel_l10n.jar must also be localized in default_data.sql.	
After you have localized the sql/default_data.sql file, open a command prompt, navigate to the directory that contains the JAR file, and run the command:	
Localizing the Encoding Element	
To support localization, the <encoding>	
element in the config.xml file determines the appropriate language. For information on the config.xml file, see OSM System Administrator's Guide.	
ISO-8859-2	
</encoding> The process of localization also involves the support for different locales, character set encoding, and localization of settings.	
Locales are linguistic regions that share spelling conventions. A locale consists of a language code, followed by an optional country code, followed by an optional variant code. For example, "en_US" specifies English in the United States, while "en_GB" specifies English in Great Britain.	
Operating systems such as Windows, Linux, Oracle Solaris, and HP-UX support the locale model and provide facilities to properly read and format locale-specific information. Additionally, newer programming languages such as Java provide similar facilities to support localization.	
However, HTML does not support localization or have solutions for date or time issues. The localization of HTML requires support from the OSM server and Javascript code sent to the browser.	
Characters in an HTML file are stored as numeric values with a range from 0 to 255. When a Web browser displays a character symbol, it uses the numeric value to find the correct symbol to display. The set of symbols displayed for each number is known as a character set. As 256 numbers is insufficient to describe all possible characters that may need to be displayed in all languages, you must specify what character set the browser is to use when it displays an HTML page.	
By default, HTML uses the ISO-8859-1 character set, which can display all characters needed for Western European Languages. When you create HTML pages using other character sets (such as ISO-8859-2 for Eastern European Languages), you must use the corresponding encoding.	
OSM supports localized Windows regional settings: All number, currency, date, and time formats displayed in the OSM Administrator application come from the Windows regional settings.	
You can also localize regional settings through the OSM properties file. See "OSM Localization Resource Bundles" for more information on how to do this.	
For more information on Windows regional settings, see the Microsoft Windows documentation.	
Oracle's National Language Support (NLS) architecture allows you to store, process, and retrieve data in native languages. It ensures that database utilities and error messages, sort order, date, time, monetary, numeric, and calendar conventions automatically adapt to the native language and locale.	
OSM stores its text data in CHAR and VARCHAR2 columns in an Oracle database. The database character set determines what languages can be represented in the database. So, you must install OSM in an Oracle database with a character set that meets your language requirements.	
You can specify a character set when creating a database using the CHARACTER SET clause of the CREATE DATABASE statement. A complete list of character sets supported by Oracle is included in the Oracle documentation.	
You can use the v$nls_parameters view to determine the existing database character set.	
OSM does not use the NCHAR, NVARCHAR2, or NCLOB data types and so has no specific requirements for the alternate character set for the database.	
To determine the existing character set:	
Information similar to the following is returned:	
You can use the CHARACTER SET clause of the ALTER DATABASE statement to change the character set for an existing database.	
Note: You must have SYSDBA system privileges.	
To change the character set:	
SQL*Plus STARTUP RESTRICT	
command. Note: The source character set must be a strict subset of the target character set.	
For the OSM Administrator application to support localization, the Oracle NLS parameters must be configured properly in Windows XP.	
On UNIX, the Oracle NLS parameters are configured as environment variables. On Windows XP, the Oracle NLS parameters are configured as registry entries under HKEY_LOCAL_MACHINE/SOFTWARE/ORACLE.	
Use the NLS_LANG parameter to set the language, territory, and character set used for the database.	
The NLS_LANG parameter has three components: language, territory, and charset, in the form:	
Each component controls the operation of a subset of the NLS features.	
You can localize OSM database error messages by editing the error message text in the om_errors.xml file.	
This file is located in your OSM_home/ Database/dbinstall/install/OMS/main/model/utility/_table/_data directory.	
To edit these error messages, open the file using an XML or text editor and replace the "error_message" text with the target language text. Table 9-1 lists all of the error messages in the om_errors.xml file.	
Note: After you have localized this file, make sure you provide an updated copy to Oracle Global Support to assist you in any issues that may arise.	
Table 9-1 OSM Error Messages	
Error Codes	Error Message
---	---
-20001	Order satisfied no rule. Cannot start process.
-20002	Order status and order state have not been changed.
-20004	Starting position for the process is not defined. Call support.
-20005	There is no creation task. Call support.
-20006	Workflow thread does not exist. The order may have been moved by another user. Refresh your worklist and try again.
-20007	Order is locked. Try again later.
-20008	Current history detail record not found for the order. Call support.
-20009	Cannot remove node, which has children.
-20011	Order to be updated is currently locked by another user.
-20012	Order not found.
-20014	Rule to be evaluated is not found. Call support.
-20015	System data is protected.
-20016	Value cannot be null.
-20017	Rule cannot be evaluated.
-20020	Operation affected too many rows.
-20022	Access denied: not enough privileges.
-20023	You cannot accept this order thread.
-20025	There are too many instances for the order node.
-20026	There are too few instances for the order node.
-20027	Parent order node does not exist.
-20028	Rule engine has already been started.
-20029	Rule engine has not been started.
-20030	Invalid process definition.
-20031	Order node cannot be found. Call support.
-20038	Mandatory check failed.
-20040	Order view for task cannot be found.
-20041	Process position cannot be found. Call support.
-20044	Reporting status cannot be found. Call support.
-20049	Status is not valid for task.
-20050	View node cannot be found.
-20051	Notification cannot be found.
-20054	Notification history cannot be found.
-20055	Notification is not active.
-20056	Time interval is not valid.
-20043	Jump record does not exist.
-20059	Error processing notification.
-20060	Node information does not match any node in the database.
-20061	New parent node information is not valid.
-20062	Remark cannot be found.
-20063	The remark cannot be changed.
-20064	Attachment cannot be found.
-20065	No orders are stored in the system.
-20067	No orders satisfy the purge criteria.
-20068	The wrong task has been supplied for the order.
-20069	Invalid state transition.
-20070	Invalid order type.
-20071	Invalid order source.
-20072	Invalid process status.
-20073	Invalid state.
-20074	State is not valid for task.
-20075	Task not found.
-20076	Stop date/time must be greater than start date/time.
-20077	Shift violates schedule boundary.
-20078	Please change the shift boundaries not to overlap any existing shift.
-20079	Exception shift not found.
-20080	Parent region is not found.
-20081	Cannot remove region, which has child regions.
-20082	Cannot remove region, which is attached to workgroup.
-20083	Cannot move to the next task. Cannot calculate expected completion time. Schedule is too short. Ask OSM administrator to extend the calendar.
-20084	Cannot move to the next task. Cannot calculate expected completion time. Cannot find the schedule.
-20085	Invalid parameter when you call internal function.
-20086	DST start/stop date is not correctly specified in om_workgroup table.
-20087	Can not find workgroup during the building of DST date.
-20088	Invalid calendar DST start/stop day of the month in the workgroup settings
-20089	Incorrect value in DST week settings in the workgroup definition
-20090	Missing parameter "oms_timezone" in OM_PARAMETER table
-20091	The node is used as a coordinator node for this thread.
-20092	Parameter Stop Date must be greater than Current System Date
-20093	Parameter Completion Date Before should be less than Current System Date
-20094	Calendar can be generated only workgroup by workgroup not for all workgroups at once
-20095	Parent thread is not found.
-20096	Partition boundary is too low. Increase the value of NEXT RANGE PARTITION BOUNDARY parameter.
-20097	Specific view is not assigned to a workgroup
-20098	Specific task is not assigned to workgroup.
-20099	JMS message does not exists.
-20103	Event type is not recognized. Call support.
-20104	Increase value of job_queue_processes parameter in the init*.ora file.
-20105	Job type is not valid. Call support.
-20106	Minimum running jobs should be greater than 0
-20107	It can be only one notification job running at the same.
-20108	Task list is empty.
-20109	Specified pooler id is invalid.
-20110	Invalid type/source combination. Call support.
-20112	Cartridge already exists.
-20113	Cartridge can not be dropped. There are pending orders found.
-20114	Oracle runtime error.
-20121	Cannot modify cartridge - automation component is referring it.
-20122	Order type does not exist.
-20123	Order source does not exist.
-20124	Parent order not found for target node.
-20125	Cannot migrate the order header because it has activities in the source cartridge.
-20126	Character to number conversion error.
-20127	Unable to drop cartridge. There are pending orders referencing current cartridge.
-20128	Unable to drop cartridge. Drop oldest cartridge first.
-20129	Migration of schedule based tasks is not supported.
-20142	Operation is not allowed.
-20143	Summary extend date is invalid for existing summary interval.
Application server strings are used in Java business application code in the OSM UI. These strings can be found in the om_server_strings.xml file in your OSM_home/Database/dbinstall/install/OMS/main/model/utility/_table/_data directory.	
To edit these strings, open an XML or text editor and replace the "description" text with the target language text.	
Note: After you localize this file, make sure you provide an updated copy to Oracle Global Support, so that they can assist you with any future issues that may arise.	
The strings shown in Table 9-2 are representative of the types of information displayed in the Worklist, Query, and Notifications views. For a full listing, see the om_server_strings.xml file.	
Table 9-2 Server Strings	
Class	Key
---	---
order_history	NODEINST
order_history	FITEREDNODE
fixed_header]date_pos_started
fixed_header]expected_duration
fixed_header]expected_start_date
fixed_header]order_creation_date
fixed_header]ord_compl_date_expected
fixed_header]order_seq_id
fixed_header]order_source
fixed_header]order_state
fixed_header]order_type
fixed_header]process_description
fixed_header]reference_number
fixed_header]reporting_status
fixed_header]requested_delivery_date
fixed_header]task_description
fixed_header]user
notification_ fixed_header	_NOTIFICATION_ DESC
notification_ fixed_header	_NOTIFICATION_ TYPE
notification_ fixed_header	_PRIORITY
notification_ fixed_header	_TIMESTAMP
GUIMessage	ALT
fixed_header]completion_date_expected_at_task
fixed_header]ord_completion_date
fixed_header]num_remarks
fixed_header]order_hist_seq_id
This section lists the process definition data used in OSM database tables. The data is contained in various files located in your OSM_home/Database/dbinstall/install/OMS/main/model directory.	
To edit these tables, open the file using an XML or text editor and replace the "description" text with the target language text.	
Note: Do not localize the column names. Column names are not externally visible, and are necessary for the internal operation of OSM.	
After you localize any of these files, make sure you provide an updated copy to Oracle Global Support, so they can assist you with any future issues that may arise.	
Table 9-3 lists the application functions defined for OSM. The file is located in your OSM_home/Database/dbinstall/install/OMS/main/model/user/privelege/_table/_data directory. Localize the values in the right column.	
Table 9-3 om_application_function	
app_function_mnemonic	app_function_description
---	---
reference_number_modification	Reference Number Modification
priority_modification	Order Priority Modification
online_reports	Online Reports
worklist_viewer	Worklist Viewer
task_assignment	Task Assignment
exception_processing	Exception Processing
search_viewer	Search Viewer
create_versioned_orders	Create Versioned Orders
Table 9-4 lists the attribute types used by OSM. The file is located in your OSM_home/Database/dbinstall/install/OMS/main/model/ordertemplate/_table/_data directory. Localize the values in the description column.	
The data dictionary contains one element, which is a dictionary element for the root node in the OSM master order template. This file is located in your OSM_home/Database/dbinstall/install/OMS/main/model/ordertemplate/_table/_data directory. Localize the text that appears in the business_name column.	
This file is located in your OSM_home/Database/dbinstall/install/OMS/main/model/ordertemplate/_table/_data directory. Localize the text that appears in the remarks_type_description column.	
This file is located in your OSM_home/Database/dbinstall/install/OMS/main/model/ordertemplate/_table/_data directory. Localize the text that appears in the order_type_category_descr column.	
This file is located in your OSM_home/Database/dbinstall/install/OMS/main/model/process/_table/_data directory. Localize the text that appears in the process_id_description column.	
Table 9-8 om_process	
Database Column	Value
---	---
process_id_description	Creation Process N/A
This file is located in your OSM_home/Database/dbinstall/install/OMS/main/model/process/_table/_data directory. Localize the text that appears in the process_status_description column.	
Table 9-9 om_process_status	
Database Column	Value
---	---
process_status_description	Possible values are:
This file is located in your OSM_home/Database/dbinstall/install/OMS/main/model/user/privelege/_table/_data directory. Localize the text that appears in the responsibility_description column.	
This file is located in your OSM_home/Database/dbinstall/install/OMS/main/model/rule/_table/_data directory. Localize the text that appears in the rule_description and rule_comment columns.	
Null Rule is the rule that always evaluates to true.	
Table 9-11 om_rule_def	
Database Column	Value
---	---
rule_description	Null Rule
rule_comment	Null Rule
This file is located in your OSM_home/Database/dbinstall/install/OMS/main/model/process/_table/_data directory. Localize the text that appears in the state_description column.	
Table 9-12 om_state	
Database Column	Value
---	---
state_description	Possible values are:
This file is located in your OSM_home/Database/dbinstall/install/OMS/main/model/process/_table/_data directory. Localize the text that appears in the state_category_description column.	
Table 9-13 om_state_category	
Database Column	Value
---	---
state_category_description	Possible values are:
This file is located in your OSM_home/Database/dbinstall/install/OMS/main/model/process/_table/_data directory. Localize the text that appears in the status_category_description column.	
Table 9-14 om_status_category	
Database Column	Value
---	---
status_category_description	Possible values are:
file is located in your OSM_home/Database/dbinstall/install/OMS/main/model/process/_table/_data directory. Localize the text that appears in the task_description column.	
Table 9-15 om_task	
Database Column	Value
---	---
task_description	Possible values are:
This section lists the generic user preferences in the OSM database tables. The file is located in your OSM_home/Database/dbinstall/install/OMS/main/model/user/preference/_table/_data directory.	
To edit these tables, open the file using an XML or text editor and replace the description text with the target language text.	
Note: You must only localize the description values and not the column names. Column names are not externally visible, and are necessary for the internal operation of OSM.	
After you localize this file, make sure you provide an updated copy to Oracle Global Support, so they can assist you with any future issues that may arise.	
Localize the text that appears in the description column.	
Table 9-17 om_generic_mnemonic	
CLASS Column	Description
---	---
worklist_filter	Possible values are:
colour	Possible values are:
order_list	Possible values are:
user_attr	Possible values are:
dynamic_filter	Possible values are:
login_screen	Possible values are:
You can localize the following Task Web client items:
Note: Before you can make any changes to the OSM UI, you must unpack the oms.ear file. See "Unpacking the oms.ear Application File" for more information. |
The Task Web client is a Web-based application that provides information dynamically and a set of interactions that the end-user can perform on this information. The information appears as HTML pages, but server-side technologies produce the HTML output and provide user interaction.
For information on the Task Web client architecture, see OSM Task Web Client User's Guide.
The Task Web client uses the Java language, which has built-in support for localization of dates and times, as well as string sorting capabilities. The Task Web client uses the locale of the operating system upon which it runs in order to determine regional date and time settings.
When a user connects to OSM using their web browser, the OSM server attempts to determine their preferred locale. If no customization can be found for their preferred locale, the default locale (English) appears.
All modern Web-browsers support an "Accept-Language" header which indicates your locale preferences. Multiple language preferences can be specified, however OSM uses the top one listed to locate localization resources.
Before you can perform any customization of the OSM UI, you must unpack the oms.ear application file. This gives you access to configuration files and directories that otherwise are compressed within oms.ear.
To do this, run unpackOMS.bat
, which is located in your OSM_home/SDK/Customization directory.
To run unpackOMS.bat
:
set JAVA_HOME=C:\WebLogic\jdk160_11
. unpackOMS.bat
. This creates the following subdirectories in the Customization directory: Localization files are located in the resources directory. For information on the localizable resources contained in this directory, see "OSM Localization Resource Bundles".
For your changes to take effect, ensure you run packOMS.bat
, and copy the new oms.ear file to the WebLogic server domain's applications directory.
To run packOMS.bat
:
set JAVA_HOME=C:\WebLogic\jdk160_11
. packOMS.bat
. This creates a new oms.ear file that includes your changes. unpackOMS.bat
:", above. After OSM is unpacked (see"Unpacking the oms.ear Application File"), the localizable resources are contained in the directories:
The resources directory contains the localizable resource files for the Task Web client. The files in this directory, and their configuration, are described in this section ("Localizing the Task Web Client"). The xliff directory contains the localizable resource files for the Order Management Web client. The files in this directory, and their configuration, are described in "Localizing the Order Management Web Client".
The resources directory contains the resources.properties file. This file contains all localizable strings and image references. Several other properties files are included in the resources directory as samples, such as:
To create a new localization, create a new resources.properties file with the name resources_locale.properties, where locale is a locale code. For example, resources_ja.properties for Japan. For each parameter in the resources.properties file, you can provide a replacement value in the new locale. If a replacement value is not provided, the default value is used.
To differentiate between 2:00:00 pm EST and 2:00:00 pm CST, modify the resource.properties file by changing the format.datetime.input setting to include time zone.
To specify this, you must:
format.datetime.input=MM/dd/yy hh:mm:ss a
format.datetime.display=MM/dd/yy hh:mm:ss a
Table 9-18 Localizing Data Formats
Data Formats | Description |
---|---|
format.encoding | Character set encoding used in browser communication |
format.currency | Mask used for currency display and validation |
format.date.input | Mask used for date display and validation in input fields |
format.date.display | Mask used for date display in tables |
format.datetime.input | Mask used for datetime display and validation in input fields |
format.datetime.display | Mask used for datetime display in tables |
format.am | String for AM field in web calendar |
format.pm | String for PM field in web calendar |
You must edit the mask.date and mask.time properties together. You cannot edit one property and leave the other one empty.
The available values for the properties include the following.
Table 9-19 Properties Values
Symbol | Meaning | Presentation | Example |
---|---|---|---|
y | year | Number | 2005 |
M | month in year | Text & Number | July & 07 |
d | day in month | Number | 10 |
h | hour in am/pm (1~12) | Number | 12 |
H | hour in day (0~23) | Number | 0 |
m | minute in hour | Number | 30 |
s | second in minute | Number | 55 |
E | day in week | Text | Tuesday |
D | day in year | Number | 189 |
w | week in year | Number | 27 |
a | am/pm marker | Text | PM |
' | escape for text | Delimiter | N/A |
'' | single quote | Literal | ' |
The available values for the mask.currency include the following.
Table 9-20 Mask Currency Values
Symbol | Meaning | Presentation |
---|---|---|
| zeros show as absent | Number |
0 | zeros show as 0 | Number |
, | the locale-specific grouping separator | Text |
- | the locale-specific negative prefix | Text |
; | separates positive number format from optional negative number | Text |
' | escape for text | Delimiter |
other | all other symbols appear as entered | Text |
You must change the on-window text of the HTML pages produced by the OSM UI, and, if necessary, indicate the character set encoding.
If text and error messages (that is, messages in the resource file that begin with "text" or "error"), contain parameterized values, for example: {0}, {1}, {2}, and so on, ensure the localized message uses the same parameterized values.
Image references consist of two parameters:
All images that display in the Task Web client are contained in the oms.ear file, in the oms.war file. You can insert new images anywhere inside oms.war as long as your reference the correct location in the locale's resource.properties file. Oracle recommends that you create a directory for each localization and name the directory images_locale, where locale is a code for the location.
By default, the Task Web client date and time calendar assumes Sunday is the first day of the week. To change the default first day of the week, edit the calendar.js file and follow the instructions provided.
Note: When displaying lists, the OSM Administrator application always displays Sunday as the first day of the week. |
You can customize the Gantt chart's width, height, and property panel width by modifying the following properties in the GanttChart.jsp file:
var chartMaximumWidth = 1024;
var chartMaximumHeight = 1000;
var propertyPanelWidth = 200;
The Task Web client displays boolean data element values in drop-down lists in several views. You can change the Boolean data element values the Task Web client displays by editing the OSM_home/SDK/Customization/resources/resources /resources.properties file.
To change Task Web Client boolean data elements:
For example:
You can change the number of records displayed in the Worklist view from the default by editing the oms-config.xml file.
See the chapter on configuring OSM with oms-config.xml in OSM System Administrator's Guide for detailed instructions on accessing and modifying the oms-config.xml file.
To change the number of records displayed in the Worklist view:
<oms-parameter-value>
tag with the new value You can edit or replace the icon graphics that appear in the OSM UI. To do this, replace the graphical content of the existing icon files with your own, customized graphics.
When creating or editing an icon graphic, ensure you maintain the file name. For example, if you replace the graphical content of the about.gif file, ensure you name the resulting file about.gif.
It is recommended that you only customize or replace existing icon graphics if the original graphic introduces ambiguities or errors when you localize the OSM UI.
All of the OSM icon files are located in your OSM_home/SDK/Customization/osm-war/images directory.
As with the Task Web client, all language-specific text exposed by the Order Management Web client is localizable. Also, as with the Task Web client, you must unpack the oms.ear application file to access the resource bundle files. However, the location, number, and format of the bundle files differs:
Visit the following Web site to learn about the XLIFF standard:
http://docs.oasis-open.org/xliff/xliff-core/xliff-core.html
Example 9-1 shows a simple XLIFF example.
Example 9-1 XLIFF
This file specifies a single localizable token ("MESSAGE") as well as the text with which to replace the token ("Hello world!") for the specified language ("en", which is English). The note
element provides a description of the context in which the token is used. As with the resources_languageCode.properties file, an XLIFF file may contain parameters. However, unlike the numeric parameters in resources_languageCode.properties, the parameters in the Order Management Web client XLIFF files are named. For example, <source>
Change Reference for Order {ORDER_ID}</source>
. Building on Example 9-1, the XLIFF file might look like Example 9-2.
Example 9-2 XLIFF with <source>
As with the resources_languageCode.properties file, each XLIFF file is localized by creating a new file with the language code and (optionally) country code appended. Building on Example 9-2, "XLIFF with <source>", if the contents are found in a default bundle file named applicationBundle.xlf, a version localized to the French language would be named applicationBundle_fr.xlf, as shown in Example 9-3.
Example 9-3 XLIFF Language set to French
For more information about the faces.config.xml file, see Oracle Fusion Middleware Web User Interface Developer's Guide for Oracle Application Development Framework.
Example 9-4 shows an example faces.config.xml with the language set to French and English.
Example 9-4 faces.config.xml Language set to French and English
You can specify the default and supported locales using <default-locale>locale</default-locale> and <supported-locale>locale</supported-locale> respectively where locale is the locale you want to register with.
As with the Task Web client, after the file is localized (in this case, multiple files are localized), the application must be reassembled using the packOMS.bat utility.
To change the Order Management Web Client logo image and text, do the following:
For example:
For example:
where custom_name is the text associated splash.jpg and custom_name2 is the text associated with splash.bmp.
This chapter describes how to use XPath functions when modeling orders in Oracle Communications Order and Service Management (OSM).
The XPath language provides for a core library of functions that deal with:
The following are some examples of XPath functions:
count(/journal/article[author/last="Jones"])
/journal/article[starts-with(author/last,"Mc")]
In addition to the core XPath functions defined by the XPath standard, a number of extended functions are also supported with OSM. These extended functions provide additional functionality that is useful to create behaviors, but does not conform to the XPath standard.
Note: OSM supports XPath 1.0. |
The XPath function library is divided into four groups, each of which is described in more detail, below:
The following describes the Node Set functions.
Returns the index of the last item of the current node set.
Example - /journal/article[last()]
Returns the index of the current item in the current node set.
Example - /journal/article[position()<3]
Returns the number of items in the argument node set.
Example - count(/journal/article)
Returns the elements with the ID specified.
Example - id("article.1")/author/last
Returns the non-namespace portion of the node name of either a node set passed as a parameter or the current node in the current node set.
Example - local-name(/wj:journal)
Example - /journal/*[local-name()= "article"]
Returns the namespace URI of the node name of either a node set passed as a parameter or the current node in the current node set.
Example - namespace-uri(/wj:journal)
Example - /journal/*:*[namespace-uri()="http://werken.com/werken-journal/"]
Returns the complete textual node name of either a node set passed as a parameter or the current node in the current node set.
Example - name(/journal)
Example - [name()="soap:Envelope"]
Returns the node set resulting from the Xpath expression defined by the provided argument. Allows XPath expressions to be dynamically created. The argument is converted to a string as if by a call to the string function.
Example - evaluate('/GetOrder.Response/*')
Returns the node set that matches a regular expression pattern.
Example - match('GetOrder.Response/*, 'blur[f]+le[0-9]')
Returns the content of the named XML instance.
Note: This function is only available to XPath expressions within behaviors. |
The argument is converted to a string as if by a call to the string function. This string, along with the user's preferred language is matched against instance elements that are within scope of the containing document. If a match is located this function returns a node-set containing the content of the root element node (also called the document element node) of the referenced instance data. In all other cases, an exception is thrown and an error is displayed.
Example: For instance data corresponding to the following XML:
The following expression selects the firstName node (assuming the logged-in the user's preferred language is English, or that English is the default system language).
Note: The instance function returns an element node, effectively replacing the left most location step from the path:
|
The following describes the String functions.
Converts an object (possibly the current context node) to its string value.
Example - /journal/article/author[string()='Jones']
Concatenates two or more strings together.
Example - concat(author/salutation, ' ', author/last)
Determines if the first argument starts with the second argument string.
Example - /journal/article[starts-with(title, 'Advanced')]
Determines if the first argument contains the second argument string.
Example - /journal/article[contains(title, 'XPath')]
Retrieves the substring of the first argument that occurs before the first occurrence of the second argument string.
Example - substring-before(/journal/article[1]/date, '/')
Retrieves the substring of the first argument that occurs after the first occurrence of the second argument string.
Example - substring-after(/journal/article[1]/date, '/')
Retrieves the substring of the first argument starting at the index of the second number argument, for the length of the optional third argument.
Example - substring('Jones', 3)
Determines the length of a string, or the current context node coerced to a string.
Example - /journal/article[string-length(author/last) > 9]
Retrieves the string argument or context node with all space normalized, trimming white space from the ends and compressing consecutive white space elements to a single space.
Example - normalize-space(/journal/article[1]/content)
Retrieves the first string argument augmented so that characters that occur in the second string argument are replaced by the character from the third argument in the same position.
Example - translate('bob', 'abc', 'ZXY')='XoX'
Retrieves the string argument or context node with all characters converted to lower case.
Example - lower-case('Foo')='foo'
The following describes the Boolean functions.
Converts the argument to a Boolean value.
Example - boolean(/journal/article/author/last[.='Jones'])
Negates the boolean value.
Example - not(/journal/article/author/last[.='Jones'])
The following describes the Number functions.
Converts the argument or context node to a number value.
Example - /journal[number(year)=2003]
Returns the largest integer that is not greater than the number argument.
Example - floor(100.5)=100
Returns the smallest integer that is not less than the number argument.
Example - ceiling(100.5)=101
Returns the arithmetic average of the string-values conversion of each node in the argument node-set to a number. The sum is computed with sum()
, and divided with div()
by the value computed with count()
. If the parameter is an empty node-set, the return value is NaN.
Example - avg(/journal/article/author/age)
Returns the minimum value that results from converting the string-values of each node in argument node-set to a number. The minimum is determined with the < operator. If the parameter is an empty node-set, or if any of the nodes evaluate to NaN, the return value is NaN.
Example - min(/journal/article/author/age)
Returns the maximum value that results from converting the string-values of each node in argument node-set to a number. The maximum is determined with the < operator. If the parameter is an empty node-set, or if any of the nodes evaluate to NaN, the return value is NaN.
Example - max(/journal/article/author/age)
Complete XPath reference information is available at the World Wide Web Consortium web site (http://www.w3.org/TR/xpath/
). The abbreviated XPath highlights below are reproduced with permission from Mulberry Technologies, Inc. http://www.mulberrytech.com
Table 10-1 Abbreviated Syntax for Location Paths
Abbreviation | Syntax |
---|---|
(nothing) | child:: |
@ | attribute:: |
// | /descendant-or-self::node()/ |
. | self::node() |
.. | parent::node() |
/ | Node tree root |
Table 10-2 Object Types
Type | Values |
---|---|
boolean | True or False |
number | Floating-point number |
string | UCS characters |
node-set | Set of nodes selected by a path |
XPath core functions:
OSM Behavior XPath Functions:
This chapter describes an example of a competitive local exchange carrier (CLEC) using Oracle Communications Order and Service Management (OSM) to provision a POTS customer using unbundled local loop.
Figure 11-1 depicts a sample OSM process. An independent local exchange carrier (ILEC) customer wants to replace an ILEC service with a CLEC POTS service. These are typically residential or small office, a home office (SOHO) customer with a small number of phone lines, (a larger business customer would generally have equipment installed at the customer premise to support a large number of connections and use higher bandwidth connections from the CLEC central office (CLEC CO) to customer site). The CLEC CO contains the switch to be used for connection to the customer. This example assumes that the CLEC also has existing presence and capacity at the ILEC CO that currently serves the customer.
The CLEC uses the ILEC local loop that connects the ILEC CO to the customer. The CLEC uses Digital Loop Carrier (DLC) technology that uses a higher bandwidth connection (typically 1 or more DS-1 connections, DS-3, and so on) from the CLEC switch to the DLC equipment (at the ILEC CO) that provides individual DS-0 ports for connection to the copper loop to the customer.
The following diagrams show a graphical representation of the OSM process flow described in this document. The symbols used are described in the legend. The tasks are arranged to identify which group is performing the task, Customer Care or OSM. The task numbers correspond to the section that describes the task.
Figure 11-2 OSM Process Flow
The following sections describe the tasks that make up the process of providing a new CLEC customer with a POTS service.
Before starting the process, information must be gathered from the customer. This is typically done by a Customer Service Representative (CSR) or Sales person. The information is generally entered into an order entry system by the CSR.
The Order Entry System also assigns an order number for the customer order that must be used to reference the activities taking place in the Integrated Suite components. The customer may order more than one service that requires separate processing. These must be identified and service processes started as necessary to implement the required services. In this case assume that the only service requested is POTS, and that only a single line is contained within each order initiated in the suite (OSM).
In this example, each task that is described, contains the following sections:
The data format is described as A/N (Alpha/Numeric), or N (Numeric) with the number of characters, fixed format types such as Date or Phone, or Lookup, where a lookup table is used to set the value.
The source of data is the task that generated the data, or, within the generating task description.
To begin activities, an order must be entered into OSM or there must be an interface between the Order Entry System (OES) and OSM that allows the information to be automatically passed into OSM.
Enter the data into OSM and initiate the process. Otherwise, the data is entered automatically into OSM, from OES, and the process is initiated.
Table 11-1 Output Data for Initiate Order
OSM Business Name | Description | Format | Source |
---|---|---|---|
OSM Order ID | OSM assigned order number | 9 A/N | OSM |
Customer Order Number | The order number assigned by the order entry system | 12 A/N | OES |
Table 11-2 Output Data: Customer Details Group
OSM Business Name | Description | Format | Source |
---|---|---|---|
Customer Name | Customer name | 30 A/N | OES - Customer |
Customer ID Number | Assigned by OE system | 12 A/N | OES |
Table 11-3 Output Data: Service Address Group
OSM Business Name | Description | Format | Source |
---|---|---|---|
Street address | Street address number | 40 A/N | OES - Customer |
City | City name | 25 A/N | OES - Customer |
State or Prov Code | State abbreviation | 2 A | OES - Customer |
Zip or Postal Code | Postal code | 10 A/N | OES - Customer |
Additional Description | Additional address description | 50 A/N | OES - Customer |
Table 11-4 Output Data: Contact Details Group
OSM Business Name | Description | Format | Source |
---|---|---|---|
Contact Name | A contact in case a problem is encountered | 30 A/N | OES - Customer |
Contact Phone Number | Contact phone number | Phone number | OES - Customer |
Contact Cell Phone | Contact cell phone | Phone number | OES - Customer |
Table 11-5 Output Data: Service Details Group
OSM Business Name | Description | Format | Source |
---|---|---|---|
Existing phone number | Existing phone number | Phone number | OES - Customer |
Port Existing Number? | Port existing number | Lookup[Y - Yes N - No] | OES - Customer |
New Number | If required, blank otherwise | Phone number | OES - Number Assignment System |
Current Access Provider | Current provider of local phone service [name or code number] | 20 A/N | OES - Customer |
Current Account number | Customer account number with ILEC | C20 A/N | OES - Customer |
ILEC CO CLLI | Location code of ILEC CO where local loop terminates (blank if not known) | 11 A/N | OES |
LD Provider | Long distance provider (to set PIC in switch) [code number] | 6 A/N | OES - Customer |
Service Type | Business/Residential POTS [service code] | Lookup[B - Business R - Residential] | OES - Customer |
Priority | Expedite/Normal | Lookup[E - Expedite N - Normal] | OES - Customer |
Due Date | Required in service date | Date | OES - Customer |
Table 11-6 Output Data: Service Feature Group
OSM Business Name | Description | Format | Source |
---|---|---|---|
Service Feature 1.12 | Features required (as detailed below) | 12 entries, each consisting of: Feature identifier: LookupFeature parameter 1:12 A/NFeature Parameter 2:12 A/N | OES - Customer |
Table 11-7 Feature List
Feature Name | Description | Lookup Code | Feature Parameter 1 | Feature Parameter 2 |
---|---|---|---|---|
Three way calling | Allows a customer to add a third party to and existing conversation without operator assistance | 3WC | Not Used | Not Used |
Call Waiting | Informs a busy station user by a burst of tone that another call is waiting. The busy station may answer the new call by placing the original call on hold and flashing the switch hook or going on hook. | CW | Not Used | Not Used |
Call Forwarding -Variable | Calls to the line are forwarded to another network address when this feature is subscribed to and the customer has activated it. An access code and the forwarding number is dialed to activate the feature. | CFV | Call Forward DN The number to which the call is forwarded | Call Forward Rings Interval (Number of seconds of ringing before call is forwarded) |
Call Forwarding - Busy | When the subscriber line is busy, the call is forwarded to a designated line. | CFB | Call Forward DN The number to which the call is forwarded | Call Forward Rings Interval (Number of seconds of ringing before call is forwarded) |
Call Forwarding - Don't Answer | When the subscriber does not answer, calls are forwarded to designated number. | CFD | Call Forward DN The number to which the call is forwarded | Call Forward Rings Interval (Number of seconds of ringing before call is forwarded) |
Remote activation of call forwarding | Allows a subscriber with CFV to activate/deactivate the feature from a line other than their own. | CFR | Remote Activation Pin (Pin to access this feature from a remote location) | Not Used |
Customer Changeable Speed Calling - 1 Digit | Allows the customer to maintain the list, short | SC1 | List Size | Not Used |
Customer Changeable Speed Calling - 2 Digit | Allows the customer to maintain the list, long | SC2 | List Size | Not Used |
Caller ID - Number | Shows calling numbers on display. | CNU | Not Used | Not Used |
Caller ID - Name | Gives the Caller Id feature with Name | CNA | Not Used | Not Used |
Caller ID - Blocking (Call Blocking) | Blocks outgoing call information | CBL | Not Used | Not Used |
Additional data may be gathered in the OES concerning the customer that is not required in the suite unless OSM is performing some order entry functions. This information may include information such as customer billing address, additional contacts and phone numbers, pricing information, and so on.
The following sections describe ILEC CO CLLI Identifiers.
The ILEC CO, which is connected to the customer, is generally determined using the NPA-NXX portion of the customer's telephone number or by the Postal or Zip code. The purpose of this task is to identify the ILEC CO if it was not provided in the order information.
This task interacts with UIM to perform the necessary functions to locate and assign a port for the required service.
Assignment Details
Table 11-9 Output Data for Assign Port Task
OSM Business Name | Description | Format |
---|---|---|
No Presence | No presence at ILEC CO | Lookup[1 - True 0 - False] |
No Capacity | No ports available | Lookup[1 - True 0 - False] |
Port OE or LEN | ID of port assigned | 40 A/N |
Termination Point | Identifier of IDF port where port is terminated | 40 A/N |
Switch ID | Identifier of the switch controlling the port | 11 A/N |
Switch LRN | LRN of the switch for LNP | Phone number |
Success: The"Send LSR to ILEC" task runs.
Problem: The"Notify Customer of Delay" task runs.
This task deals with notifying a customer of an order delay.
This task deals with cancelling orders.
The following sections describe the parameters which require engineering intervention.
To acquire the use of the local loop, local service request (LSR) forms must be sent to the ILEC. There are a number of possible forms that may be used depending on the type of request. For an unbundled loop request, three forms must be sent to the ILEC, the LSR, EU, and LS as described below. Some of the data required to fill the forms is available from OSM and some data is provided by the person filling the forms.
A response to the LSR request and the LSR Confirmation (LSC), is returned by the ILEC.
LSR Details Group
Table 11-14 Output Data for Receive LSR Confirmation Task
OSM Business Name | Description | Format | Source |
---|---|---|---|
LSR Number | Local Service Request Number (provider) | 18 A/N | LSC Field # 6 |
Provider Order Number | Order Number (provider) | 20 A/N | LSC Field # 7 |
Confirmation Date | Confirmation Date Sent | Date | LSC Field # 11 |
Provider Rep | Provider Contact Representative | 15 A/N | LSC Field # 12 |
Provider Rep. Phone | Telephone Number (of provider's rep) | Phone number | LSC Field # 15 |
Provider Due Date | Due Date | Date | LSC Field # 19 |
Provider Estimated Date | Estimated Due Date | Date | LSC Field # 28 |
Cut over time | Frame Due Time (cutover time) | 10 A/N | LSC Field # 18 |
Provider Bill Date | Effective Bill Date | Date | LSC Field # 20 |
LSR Problem Identifier | Reason Code | 2 A/N | LSC Field # 26 |
LSR Problem Detail | Reason Code Jeopardy Detail | 60 A/N | LSC Field # 27 |
Provider Designer | Network Service Provider (NSP) Design/Engineering Contact | 15 A/N | LSC Field # 31 |
Provider Designer Phone | Telephone Number | Phone number | LSC Field # 32 |
Provider Circuit ID (ECCKT) | Exchange Company Circuit ID | 41 A/N | LSC Field # 48 |
Provider Loop Order Number | Loop Order Number | 20 A/N | LSC Field # 56 |
LSR Problem: The "Handle LSR Problem" task runs.
Success: The "Send LNP Porting Request" task runs.
The following sections describe handling LSR problems.
The following sections describe the rule task that determines whether LNP is required.
If the Port Existing Number is Y, complete the task with a True status. Otherwise, complete the task with a False status.
Table 11-15 Output Data for LNP Required Task
OSM Business Name | Description | Format | Source |
---|---|---|---|
Port existing number? | Port existing phone number | Lookup[Y - Yes N - No] | Initiate order |
True: The "Send LNP Porting Request" task runs.
False: The "Activate Port and Services on CLEC Switch" runs.
If the LNP is available and required, a porting request is generated and sent to the NPAC (Number Portability Accounting Center).
A response to the LNP request is returned by the NPAC.
LNP Details Group
Table 11-17 Output Data for Receive LNP Confirmation Task
OSM Business Name | Description | Format |
---|---|---|
LNP Reference Number | LNP request reference number from NPAC | 18 A/N |
LNP Confirmation Date | Confirmation date Received | Date |
LNP Problem: The "Handle LNP Problem" task runs.
Success: The "Activate Port and Services on CLEC Switch" task runs.
The following sections describe handling LNP problems.
The required switch activations are performed.
Activation Details Group
Table 11-18 Output Data for Activate Port and Services on CLEC Switch Task
OSM Business Name | Description | Format |
---|---|---|
Activation Date | Date activation was completed | Date |
Activation Error Info | Activation error returned from ASAP or IP Service Activator | 60 A/N |
Success: The "Check for Loop Availability" task runs.
Activation Failed: The "Handle Activation Problem" task runs.
The following sections describe handling activation problems.
When the loop is due to be switched over to the ILEC, it may be done within a time span of many hours. In order to minimize interruption to the customer and ensure that the changeover is successfully completed, the line is checked for connection beginning at the earliest time the changeover is expected.
The following sections describe updating UIM.
The following sections describe sending notices to NPAC.
The following sections describe updating other systems.
Notify Customer Service that the order is complete.
The following sections describe the port configuration data.
The following is a summary of all OSM data elements organized by groups as used in OSM. If a group name is indented, the group is a subgroup of the previous group. The Process defined in OSM is Phone Line Activation and the order template is POTS/Order Entry. Views are defined to match the groups.
Table 11-23 OSM Data Summary
OSM Business Name | Description | Format | Source Task |
---|---|---|---|
OSM Order ID | OSM assigned order number | 9 A/N | OSM |
Customer Order Number | The order number assigned by the order entry system | 12 A/N | Initiate Order |
Table 11-24 OSM Data Summary: Customer Details Group
OSM Business Name | Description | Format | Source Task |
---|---|---|---|
Customer Name | Customer name | 30 A/N | Initiate Order |
Customer ID Number | Assigned by OE system | 12 A/N | Initiate Order |
Table 11-25 OSM Data Summary: Service Address Group
OSM Business Name | Description | Format | Source Task |
---|---|---|---|
Service Address:Street address | Service Address:Street address | 40 A/N | Initiate Order |
City | City | 25 A/N | Initiate Order |
State or Prov Code | State or Prov Code | 2 A | Initiate Order |
Zip or Postal Code | Zip or Postal Code | 10 A/N | Initiate Order |
Additional Description | Additional Description | 50 A/N | Initiate Order |
Table 11-26 OSM Data Summary: Contact Details Group
OSM Business Name | Description | Format | Source Task |
---|---|---|---|
Contact Name | A contact in case a problem is encountered | 30 A/N | Initiate Order |
Contact Phone Number | Contact Phone Number | Phone | Initiate Order |
Contact Cell Phone | Contact Cell Phone | Phone | Initiate Order |
Table 11-27 OSM Data Summary: Service Details Group
OSM Business Name | Description | Format | Source Task |
---|---|---|---|
Existing phone number | Existing phone number | Phone | Initiate Order |
Port existing number? | Port existing number? | Lookup[Y - Yes N - No] | Initiate Order |
New Number | New Number | 12 A/N | Initiate Order |
Current Access Provider | Current provider of local phone service [name or code number] | 20 A/N | Initiate Order |
Current Account number | Customer account number with ILEC | 20 A/N | Initiate Order |
ILEC CO CLLI | Location code of ILEC CO where local loop terminates | 11 A/N | Initiate Order/Identify ILEC CO |
LD Provider | Long distance provider (to set PIC in switch) [code number] | 6 A/N | Initiate Order |
Service Type | Business/Residential POTS [service code] | Lookup[B - Business R - Residential] | Initiate Order |
Priority | Expedite/Normal | Lookup[E - Expedite N - Normal] | Initiate Order |
Due date | Required in service date | Date | Initiate Order |
Updated Due Date | Revised Required in service date | Date | Notify Customer of Delay |
Table 11-28 OSM Data Summary: Service Features Group
OSM Business Name | Description | Format | Source Task |
---|---|---|---|
Service Feature 1.12 | Features required | Up to 12 entries, each consisting of: Feature identifier: Lookup [see definition below]Feature parameter 1:12 A/NFeature Parameter 2:12 A/N | Initiate Order |
Table 11-29 OSM Data Summary: Assignment Details Group
OSM Business Name | Description | Format | Source Task |
---|---|---|---|
No Presence | No presence at ILEC CO | Lookup [0 - False 1 - True] | Assign Port |
No Capacity | Insufficient port capacity | Lookup [0 - False 1 - True] | Assign Port |
Engineering Complete Date | Engineering Complete Date | Date | Wait for Engineering |
Port OE or LEN | ID of port assigned | 40 A/N | Assign Port |
Termination Point | Identifier of IDF port where port is terminated | 40 A/N | Assign Port |
Switch ID | Identifier of the switch controlling the port | 11 A/N | Assign Port |
Switch LRN | LRN of the switch for LNP | Phone | Assign Port |
Table 11-30 OSM Data Summary: LSR Details Group
OSM Business Name | Description | Format | Source Task |
---|---|---|---|
LSR Sent Date | Date that LSR was sent to ILEC | Date | Send LSR |
LSR Number | Local Service Request Number (provider) | 18 A/N | Receive LSR Confirmation |
Provider Order Number | Order Number (provider) | 20 A/N | Receive LSR Confirmation |
Confirmation Date | Confirmation Date Sent | Date | Receive LSR Confirmation |
Provider Rep | Provider Contact Representative | 15 A/N | Receive LSR Confirmation |
Provider Rep. Phone | Telephone Number (of provider's rep) | Phone | Receive LSR Confirmation |
Provider Due Date | Due Date | Date | Receive LSR Confirmation |
Provider Estimated Date | Estimated Due Date | Date | Receive LSR Confirmation |
Cutover time | Frame Due Time (cutover time) | 10 A/N | Receive LSR Confirmation |
Provider Bill Date | Effective Bill Date | Date | Receive LSR Confirmation |
LSR Problem Identifier | Reason Code | 2 A/N | Receive LSR Confirmation |
LSR Problem Detail | Reason Code Jeopardy Detail | 60 A/N | Receive LSR Confirmation |
Provider Designer | Network Service Provider (NSP) Design/Engineering Contact | 15 A/N | Receive LSR Confirmation |
Provider Designer Phone | Telephone Number | Phone | Receive LSR Confirmation |
Provider Circuit ID (ECCKT) | Exchange Company Circuit ID | 41 A/N | Receive LSR Confirmation |
Provider Loop Order Number | Loop Order Number | 20 A/N | Receive LSR Confirmation |
Table 11-31 OSM Data Summary: LNP Details Group
OSM Business Name | Description | Format | Source Task |
---|---|---|---|
LNP Sent Date | Date that LNP request was sent to NPAC | Date | Send LNP |
LNP Reference Number | LNP request reference number from NPAC | 18 A/N | Receive LNP Confirmation |
LNP Confirmation Date | Confirmation Received date | Date | Receive LNP Confirmation |
Table 11-32 OSM Data Summary: Activation Details Group
OSM Business Name | Description | Format | Source Task |
---|---|---|---|
Activation Date | Date activation was completed | Date | Activate Port. |
Activation error info | Activation error returned from ASAP or IP Service Activator | 60 A/N | Activate Port. |
Table 11-33 OSM Data Summary: Completion Details Group
OSM Business Name | Description | Format | Source Task |
---|---|---|---|
Loop Available Date | Date loop was found to be available | Date | Check for Loop Availability |
LNP Activation Date | LNP activation sent date | Date | Send Activation Notice to NPAC |
System Update Completion Date | System Update Completion Date | Date | Update Other Systems |
Order Completion Date | Order Completion Date | Date | Order Complete |
Table 11-34 OSM Data Summary: Cancellation Details Group
OSM Business Name | Description | Format | Source Task |
---|---|---|---|
Cancellation Date | Cancellation Date | Date | Cancel Order |
Reason for Cancellation | Reason for Cancellation | 160 A/N | Cancel Order |
Table 11-35 lists the feature identifier lookup definitions.
Table 11-35 Feature Identifier Lookup Definition
Code | Definition |
---|---|
3WC | Three way calling |
CW | Call Waiting |
CFV | Call Forward Variable |
CFB | Call Forward Busy |
CFD | Call Forward Don't Answer |
CFR | Call Forward Remote |
SC1 | Speed Call 1 Digit |
SC2 | Speed Call 2 Digit |
CNU | Caller ID Number |
CNA | Caller ID Name |
CBL | Caller ID Block |
This appendix provides examples of the generated automationMap.xml file for Oracle Communications Order and Service Management (OSM).
After you have defined the automated task or automated notification, and defined the automation for it, a successful build of the project automatically generates the automationMap.xml file. The file is placed in the cartridgeName/cartridgeBuild/automation directory, which is only visible from the Java perspective.
This file is a direct result of the automation definition, as shown in the following examples. The field names, and the data defaulted or entered for the field, on the various tabs of the Properties window directly relate the XML elements and attributes, and their data values, defined in the automationMap.xml file.
This section provides various examples of generated automationMap.xml files. The examples include predefined and custom automations defined for automated tasks. In the XML, an automated task is defined by the <taskAutomator>
element.
This example reflects an automated task with an automation defined as XSLTSender, and as an internal event receiver. Specifics of the automation definition include:
Example A-1 XSLTSender Internal Event Receiver
<pluginJndiName>
and <ejbName>
are based on the EJB Name field, located on the Properties view Details tab. <className>
is based on the Action field selection, located on the Add Automation window. <runAs>
is based on the Run As field, located on the Properties view Details tab. <receive>
type is based on the External Event Receiver check box, located on the Add Automation window. Because this example defines an internal event receiver, the elements are based on information defined on the Properties view Internal Event Receiver tab. (<mnemonic>
is based on the task name.) <implement>
type is based on the automation plug-in you are implementing. Because this example implements XSLTSender, the <to>
and <sendNullMessage>
elements are generated. These elements are not present when the implementation is for an automator. <script>
elements are based on information defined on the Properties view XSLT tab. This tab is present only when the automation is XSLTSender or XSLTAutomator. This example reflects an automated task with an automation defined as XSLTSender, and as an external event receiver. Specifics of the automation definition include:
Example A-2 XSLTSender External Event Receiver
<receive>
type is based on the External Event Receiver check box, located on the Add Automation window. Because this example defines an external event receiver, the elements are based on information defined on the Properties view External Event Receiver tab. <implement>
type is based on the automation plug-in you are implementing. Because this example implements XSLTSender, the <to>
and <sendNullMessage>
elements are generated. These elements are not present when the implementation is for an automator. The <script>
elements are based on information defined on the Properties view XSLT tab. This tab is present only when the automation is XSLTSender or XSLTAutomator. This example reflects an automated task with an automation defined as XSLTAutomator, and as an internal event receiver. Specifics of the automation definition include:
Example A-3 XSLTAutomator Internal Event Receiver
<className>
is based on the Action field selection, located on the Add Automation window. (XSLTReceiver is the name of the class that represents XSLTAutomator. The name presentation in Oracle Communications Design Studio was intentional to avoid confusion: XSLTAutomator and XSLTSender both receive data, but in addition, XSLTSender can send a message.) <receive>
type is based on the External Event Receiver check box, located on the Add Automation window. Because this example defines an internal event receiver, the elements are based on information defined on the Properties view Internal Event Receiver tab. (<mnemonic>
is based on the task name.) <implement>
type is based on the automation plug-in you are implementing. Because this example implements XSLTAutomator, the <to>
and <sendNullMessage>
elements are not generated. These elements are present when the implementation is for a sender. The <script>
elements are based on information defined on the Properties view XSLT tab. This tab is present only when the automation is XSLTSender or XSLTAutomator. This example reflects an automated task with an automation defined as XSLTAutomator, and as an external event receiver. Specifics of the automation definition include:
Example A-4 XSLTAutomator External Event Receiver
<className>
is based on the Action field selection, located on the Add Automation window. (XSLTReceiver is the name of the class that represents XSLTAutomator. The name presentation in Design Studio was intentional to avoid confusion: XSLTAutomator and XSLTSender both receive data, but in addition, XSLTSender can send a message.) <receive>
type is based on the External Event Receiver check box, located on the Add Automation window. Because this example defines an external event receiver, the elements are based on information defined on the Properties view External Event Receiver tab. <implement>
type is based on the automation plug-in you are implementing. Because this example implements XSLTAutomator, the <to>
and <sendNullMessage>
elements are not generated. These elements are present when the implementation is for a sender. <script>
elements are based on information defined on the Properties view XSLT tab. This tab is present only when the automation is XSLTSender or XSLTAutomator. This example reflects an automated task with an automation defined as a custom automation plug-in, and as an internal event receiver. Specifics of the automation definition include:
Example A-5 Custom Automation Internal Event Receiver
<receive>
type is based on the External Event Receiver check box, located on the Add Automation window. Because this example defines an internal event receiver, the elements are based on information defined on the Properties view Internal Event Receiver tab. (<mnemonic>
is based on the task name.) <implement>
element is not generated. You are required to define this element in the XML Template field, located on the Custom Automation Plugin window. This example reflects an automated task with an automation defined as a custom automation plug-in, and as an external event receiver. Specifics of the automation definition include:
Example A-6 Custom Automation External Event Receiver
<receive>
type is based on the External Event Receiver check box, located on the Add Automation window. Because this example defines an external event receiver, the elements are based on information defined on the Properties view External Event Receiver tab. <implement>
element is not generated. You are required to define this element in the XML Template field, located on the Custom Automation Plugin window. This section provides various examples of generated automationMap.xml files. The examples include predefined and custom automations defined for automated notifications. In the XML, an automated notification is defined by the <notificaitonAutomator>
element.
Automated notifications can only be defined as internal event receivers so there are no examples of external event receivers in this section. The examples are similar: The main differences are:
<ejbName>
is based on the Design Studio entity for which the notification is defined. As a result, the value varies because different types of notifications are defined on different Design Studio entities. <event>
type is based on the type of notification. As a result, the value differs based on the type of notification, which in turn dictates the <event>
subelements that are generated. This example reflects an order milestone-based notification with an automation defined as a custom automation plug-in. Specifics of the automation definition include:
Example A-7 Order Milestone-Based
This example reflects a task state-based notification with an automation defined as a custom automation plug-in. Specifics of the automation definition include:
Example A-8 Task State-Based Notification / Task Event Tab
This example reflects another task state-based notification with an automation defined as a custom automation plug-in. Specifics of the automation definition include:
Example A-9 State-Based Notification / Process Event Tab
This example reflects an task status-based notification with an automation defined as a custom automation plug-in. Specifics of the automation definition include:
Example A-10 Task Status-Based Notification
This example reflects an order data changed notification with an automation defined as a custom automation plug-in. Specifics of the automation definition include:
Example A-11 Order Data Changed Notification
This example reflects an order jeopardy notification with an automation defined as a custom automation plug-in. Specifics of the automation definition include:
Example A-12 Order Jeopardy Notification
This example reflects a task jeopardy notification with an automation defined as a custom automation plug-in. Specifics of the automation definition include:
Example A-13 Task Jeopardy Notification
Design Studio also generates a separate XML file per Design Studio entity that defines an automation. Entity-specific XML files are also placed in the cartridgeName/cartridgeBuild/automation directory within the cartridge, which is only visible from the Java perspective; the directory path and files are not visible from the Studio Design perspective.
The entity-specific XML file names are dependent upon the Design Studio entity name that defines the automation and upon the type of event, resulting in the file name being DesignStudioEntityName_EventType.xml. For a task event, EventType is represented as "automation" in the file name, and for a notification event, EventType is represented as "notification_automation" in the file name.
For example, a Design Studio entity named MyAutomatedTask that defines a task event generates a file named MyAutomatedTask_automation.xml. Similarly, a Design Studio entity named MyOrder that defines an order notification event generates a file named MyOrder_notification_automation.xml.
If multiple task events are defined per Design Studio entity, one XML file that defines all the task events defined for the entity is generated. If multiple notification events are defined per Design Studio entity, one XML file that defines all the notification events defined for the entity is generated.
The automationMap.xml file is a cumulative collection of the contents of these entity-specific XML files, which can be helpful if you should need to determine which mapping is which.
This appendix provides steps to define a basic automation in Oracle Communications Design Studio, starting with a new cartridge and finishing with triggering the automation in Oracle Communications Order and Service Management (OSM) following deployment of the cartridge to the OSM server. The information is presented in the form of high-level steps. For specific instructions on how to perform each individual step, see the Design Studio Platform Help and the Design Studio Modeling OSM Processes Help.
The steps presented in this appendix assume that you have the following applications installed:
This section describes creating a new cartridge in Design Studio and compiling the project, prior to defining the automation. This section provides information that is used regardless of the automation example.
The creation of a new cartridge results in the creation of an Order entity of the same name within the cartridge. For example, if you create a new cartridge cartridgeName, an Order entity is created within the cartridge named cartridgeNameOrder. On the Order editor Details tab, three fields must be defined:
Until these fields are defined, the following errors are present for an order:
The following steps walk you through creating a cartridge to resolve these errors:
You may see the errors listed above.
You must create a role first because every entity you create requires that permissions be set, which is done by assigning a role.
Create an Order Life-cycle Policy.
Create a Process.
Create a Manual Task.
This can be done by defining elements in the Data Dictionary and adding them to the order template, or by importing an order template. For purposes of understanding a basic automation, you may just want to define a few fields, such as name, address, city, state.
Upon successful build, the Problems view shows that all errors are resolved.
At this point, you have a cartridge that defines an order within a project that compiles.
This example is using an automated task to trigger the automation, so this section describes the high-level steps for defining an automated task:
Note: An automation can also be triggered by a notification. |
This section describes the high-level steps for writing a basic custom automation plug-in:
The resultant compiled class file now resides in the cartridgeName/out directory.
This section describes the high-level steps for creating a Custom Automation Plug-in that is the Design Studio entity representation of your custom automation plug-in.
<implement>
element. See Appendix A, "AutomationMap.xml File" for examples of defined <implement>
elements. This section describes the high-level steps for defining the automation, which maps your automated task to your Custom Automation Plug-in.
This section describes the high-level steps for defining the process, which must include your automated task in order for the task to be initiated and trigger your automation.
For the project to compile, and for your automation to run, your process must define a Start node, your automated task, an End node, and statuses between the three.
After you have completed these steps, you must build the cartridge project. A successful build of the project results in the generation of the automationMap.xml file.
This section describes the high-level steps for deploying the cartridge to the OSM server, including what must be done prior to deployment. For more information, see the Design Studio Help topic about packaging and deploying OSM cartridges.
The final step is to trigger the automation from within OSM; this can only occur after the cartridge is successfully deployed to the OSM server.
This results in the order starting to process. The order process you defined, which includes the automated task you defined, starts processing: First, the creation task runs.
(This example defined the creation task as a manual task, so you must manually complete the creation task.)
When the creation task is completed, the next task defined in the process is created, which is your automated task. The creation of the automated task sets the task state to Received, which triggers your automation to run.
The following pages contain a quick reference for Oracle Communications Order and Service Management (OSM) behaviors which you can print and keep as a work aid.
For comprehensive information on behaviors, see OSM Concepts.
Table C-1 provides an overview of the OSM behaviors
Table C-1 Behavior Type Overview
Behavior Type Name | Order | Synopsis | Default | Applies To | Parent/Child Inheritance |
---|---|---|---|---|---|
Calculate Behavior | 1st | Calculates the value of the data instance node. | None | All value nodes. | Does not inherit. |
Style Behavior: Appearance Facet | 2nd | Specifies the appearance of a data instance node:
| Data type specific.For Boolean type fields: CompactFor Lookup type fields: Minimal | Boolean and Lookup type value nodes. Nodes with Lookup behaviors that have only one displayed column. | Does not inherit. not inherit. |
Style Behavior: CSS Style Facet | 2nd | Specifies the HTML CSS style attributes of the data instance node and label. | None | All value and group nodes. | Does not inherit. |
Style Behavior: CSS Class Facet | 2nd | Specifies the HTML CSS Class name of the data instance node and label. | None | All value and group nodes. | Does not inherit. |
Style Behavior: Newline Facet | 2nd | Specifies whether a line-break is inserted before the node causing it to be displayed at the start of a new line. | False | All value nodes. | Does not inherit. |
Style Behavior: Secret Facet | 2nd | Ensures unauthorized users are now allowed to view the contents of nodes containing sensitive information. | True | All value nodes except for modifiable (read/write) lookups and boolean values. | Does not inherit. |
Style Behavior: Layout Facet | 2nd | Specifies the organization of a group's child nodes into tabbed pages. | None | All group nodes. | Does not inherit. |
Style Behavior: Location Facet | 2nd | Specifies the tabbed page that this group will be placed in. | None | All group nodes. | Does not inherit. |
Information Behavior | 3rd | Specifies the label, hint, and help information for the data instance node. | None | All value and group nodes. | Does not inherit. |
Relevant Behavior | 4th | Indicates whether the data instance node is currently relevant. Data instance nodes with this property evaluating to false are not displayed in the view. If this property is False, other behaviors for this node are not evaluated. | True | All value and group nodes. | If any ancestor node evaluates to false, this value is treated as false. Otherwise, the local value is used. |
Lookup Behavior | 5th | Specifies a set of dynamic generated choices for the data instance node. | Static lookup values (if any) specified in the OSM Model data dictionary. | All value nodes that are of type lookup, number, or text. | Does not inherit. |
Constraint Behavior: Attachment Facet | 6th | Specifies a condition that needs to be satisfied for the associated order attachment content to be considered valid. NOTE: This facet is only supported through programmatic behavior implementations. | True | Attachment nodes. | Does not inherit. |
Read Only Behavior | 7th | Describes whether the value is restricted from changing. This behavior overrides the static read-only value specified in the OSM Model View Node. | Default specified by the static read-only value on the OSM Model View Node. | All value and group nodes. | If any ancestor node evaluates to true, this value is treated as true. Otherwise, the local value is used. |
Event Behavior | 8th | Specifies an action to perform when a given event occurs. | None | Value nodes. | Does not inherit. |
Constraint Behavior | N/A | Specifies a condition that needs to be satisfied for the associated data instance node to be considered valid. If the condition is not satisfied (evaluates to false), then messages are displayed to the user. | True | All value and group nodes. | Does not inherit. |
Data Instance Behavior | N/A | Defines a container in which instances can be declared. It has no affect on the user interface display of the element for which the behavior is defined. | None | All elements and structures | Children. (Applies to element relationships within a structure. This is different than the inheritance of behaviors between the data dictionary, order, and task levels. |
This section describes the syntax for declaring common behavior elements.
This section describes the syntax for declaring behaviors in OSM XML model.
Table C-2 provides an overview of the built-in and custom data providers. See "Using Data Providers to Retrieve Data" for details.
Table C-2 Data Provider Overview
Data Provider | Synopsis | Parameter |
---|---|---|
Custom | Uses data provided by a custom-defined Java class. | Implementation-defined |
JDBC | Lets OSM query any JDBC database, then use the results within a behavior. | oms:dataSource, oms:sql, in:1 . . . in:n?, out:1 . . . out:n? |
Objectel | Uses results of an Objectel Server Extension as an instance. | obj:extensionName, obj:jmsFactory?, obj:queue?, obj:allowErrorResponse?. Other parameters passed to Objectel |
Order | Uses data from any OSM order as an external instance. | oms:OrderID, oms:View | oms:OrderHistID |
Property File | Retrieves an external Java property file with a given name from the classpath. | oms:url |
SOAP | Lets you open up OSM to web services, using the HTTP protocol. | soap.endpoint, soap.action?, soap.envelope, soap.body, soap.header?, oms:credentials.username?, oms:credentials.password?, oms:credentials.scope.host?, soap.allowErrorResponse |
XML Attachment | Uses an XML attachment from any OSM order as an instance. | oms:OrderID, oms:FileName |
XML File | Uses an XML file from any URL as an instance. | oms:url |
XML Validation | Validates a provided XML instance document according to a user-defined schema. The document may be either a URL or an element. The schema may also be a URL or an element. | document, schema |
Table C-3 provides an overview of the programmatic behavior implementation.
Table C-3 Programmatic Behavior Implementation Overview
Rule Type Name | Java Interface | Method Names | Parameter Types | Return Types |
---|---|---|---|---|
Calculate Rule | com.mslv.oms.view.CalculateRule | calculate_<mnemonic> | com.mslv.oms.view.rule.ViewRuleContext org.w3c.dom.Node | Any Java primitive or descendent of java.lang.Object |
Style Rule: Appearance Facet | com.mslv.oms.view.StyleRule | appearance_<mnemonic> | com.mslv.oms.view.rule.ViewRuleContext org.w3c.dom.Node | int NOTE: Return value must be one of FULL_APPEARANCE,COMPACT_APPEARANCE, MINIMAL_APPEARANCE defined on the StyleRule interface |
Style Rule: CSS Style Facet | com.mslv.oms.view.StyleRule | style_<mnemonic> styleForLabel_<mnemonic> | com.mslv.oms.view.rule.ViewRuleContext org.w3c.dom.Node | java.util.Map<String, String> |
Style Rule: CSS Class Facet | com.mslv.oms.view.StyleRule | cssClass_<mnemonic> cssClassForLabel_<mnemonic> | com.mslv.oms.view.rule.ViewRuleContext org.w3c.dom.Node | String |
Style Rule: Newline Facet | com.mslv.oms.view.StyleRule | newline_<mnemonic> | com.mslv.oms.view.rule.ViewRuleContext org.w3c.dom.Node | boolean |
Style Rule: Secret Facet | com.mslv.oms.view.StyleRule | secret_<mnemonic> | com.mslv.oms.view.rule.ViewRuleContext org.w3c.dom.Node | boolean |
Information Rule | com.mslv.oms.view.InformationRule | information_<mnemonic> | com.mslv.oms.view.rule.ViewRuleContext org.w3c.dom.Node | java.util.Map<String, String> |
Relevant Rule | com.mslv.oms.view.RelevantRule | relevant_<mnemonic> | com.mslv.oms.view.rule.ViewRuleContext org.w3c.dom.Node | boolean |
Lookup Rule | com.mslv.oms.view.LookupRule | lookup_<mnemonic> | com.mslv.oms.view.rule.ViewRuleContext org.w3c.dom.Node | String[] String[][] java.util.Map<Object,Object> java.util.Collection<Object> |
Constraint Rule | com.mslv.oms.view.ConstraintRule | constraint_<mnemonic> | com.mslv.oms.view.rule.ConstraintContext org.w3c.dom.Node | String[] com.mslv.oms.view.rule.ConstraintResult com.mslv.oms.view.rule. ConstraintResult[] java.util.List<com.mslv.oms.view.rule. ConstraintResult> |
Constraint Rule Attachment Facet | com.mslv.oms.view.ConstraintRule | constraint_attachment | com.mslv.oms.view.rule.ConstraintContext org.w3c.dom.Node java.io.InputStream | String[] com.mslv.oms.view.rule.ConstraintResult com.mslv.oms.view.rule. ConstraintResult[] java.util.List<com.mslv.oms.view.rule. ConstraintResult> |
Read Only Rule | com.mslv.oms.view.ReadOnlyRule | readonly_<mnemonic | com.mslv.oms.view.rule.ViewRuleContext org.w3c.dom.Node | boolean |
Event Rule | com.mslv.oms.view.EventRule | event_<mnemonic> | com.mslv.oms.view.rule.ViewRuleContext org.w3c.dom.Node | java.util.Map<String, String> NOTE: Map key must be EventRule.VALUE_CHANGED_EVENT. Map value must be one of EventRule.REFRESH_ACTION or EventRule.SAVE_ACTION |
Copyright © 1994-2014, Oracle and/or its affiliates. All rights reserved.
Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.
Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.
This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.
The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.
If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable:
U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.
This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.
This software or hardware and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.
If this document is in preproduction status:
This documentation is in preproduction status and is intended for demonstration and preliminary use only. It may not be specific to the hardware on which you are using the software. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to this documentation and will not be responsible for any loss, costs, or damages incurred due to the use of this documentation.