
Endeca® MDEX Engine
Advanced Development Guide
Version 6.2.1 • December 2011

Contents
Preface...9
About this guide...9
Who should use this guide..9
Conventions used in this guide...9
Contacting Endeca Customer Support..10

Part I: Advanced Record Features..11

Chapter 1: Controlling Record Values with the Select Feature............13
About the Select feature...13
Configuring the Select feature...14
URL query parameters for Select..14
Selecting keys in the application..14

Chapter 2: Using the Endeca Query Language......................................17
About the Endeca Query Language...17
Endeca Query Language syntax..18
Making Endeca Query Language requests..21
Record Relationship Navigation queries..22
Dimension value queries..26
Record search queries...29
Range filter queries..32
Dimension search queries...34
Endeca Query Language interaction with other features...35
Endeca Query Language per-query statistics log..39
Creating an Endeca Query Language pipeline..42

Chapter 3: Record Filters...45
About record filters...45
Record filter syntax..45
Enabling properties for use in record filters...48
Data configuration for file-based filters..48
Record filter result caching...49
URL query parameters for record filters...49
Record filter performance impact...50

Chapter 4: Bulk Export of Records...53
About the bulk export feature...53
Configuring the bulk export feature..53
Using URL query parameters for bulk export...53
Setting the number of bulk records to return..54
Retrieving the bulk-format records...55
Performance impact for bulk export records..56

Part II: Advanced Search Features..59

Chapter 5: Implementing Spelling Correction and Did You Mean........61
About Spelling Correction and Did You Mean..61
Spelling modes...62
Disabling spelling correction on individual queries..62
Spelling dictionaries created by Dgidx...64
Configuring spelling in Developer Studio...64
Modifying the dictionary file ...65
About the admin?op=updateaspell operation..66

iii

Enabling language-specific spelling correction..66
Dgidx flags for Spelling Correction...67
Dgraph flags for enabling Spelling Correction and DYM...67
URL query parameters for Spelling Correction and DYM..68
Spelling Correction and DYM API methods...69
Dgraph tuning flags for Spelling Correction and Did You Mean...72
How dimension search treats number of results..75
Troubleshooting Spelling Correction and Did You Mean...75
Performance impact for Spelling Correction and Did You Mean..77
About compiling the Aspell dictionary..77
About word-break analysis...79

Chapter 6: Using Stemming and Thesaurus..81
Overview of Stemming and Thesaurus..81
About the Stemming feature..81
About the Thesaurus feature...87
Dgidx and Dgraph flags for the Thesaurus..90
Interactions with other search features..90
Performance impact of Stemming and Thesaurus...92

Chapter 7: Using Automatic Phrasing..93
About Automatic Phrasing..93
Using Automatic Phrasing with Spelling Correction and DYM...94
Adding phrases to a project...95
Presentation API development for Automatic Phrasing...97
Tips and troubleshooting for Automatic Phrasing..101

Chapter 8: Relevance Ranking..103
About the Relevance Ranking feature...103
Relevance Ranking modules...103
Relevance Ranking strategies...114
Implementing relevance ranking..114
Controlling relevance ranking at the query level..118
Relevance Ranking sample scenarios...122
Recommended strategies..125
Performance impact of Relevance Ranking...127

Part III: Understanding and Debugging Query Results.......................129

Chapter 9: Using Why Match...131
About the Why Match feature..131
Enabling Why Match..131
Why Match API..131
Why Match property format..132
Why Match performance impact..133

Chapter 10: Using Word Interpretation...135
About the Word Interpretation feature..135
Implementing Word Interpretation..135
Word Interpretation API methods...135
Troubleshooting Word Interpretation..137

Chapter 11: Using Why Rank...139
About the Why Rank feature..139
Enabling Why Rank..139
Why Rank API..139
Why Rank property format...140
Result information for relevance ranking modules...141
Why Rank performance impact..142

Endeca® MDEX Engineiv

Chapter 12: Using Why Precedence Rule Fired...................................143
About the Why Precedence Rule Fired feature...143
Enabling Why Precedence Rule Fired...143
Why Precedence Rule Fired API...143
Why Precedence Rule Fired property format...144
Performance impact of Why Precedence Rule Fired...146

Part IV: Content Spotlighting and Merchandizing...............................147

Chapter 13: Promoting Records with Dynamic Business Rules........149
...149
Using dynamic business rules to promote records..149
Suggested workflow for using Endeca tools to promote records...154
Building the supporting constructs for a business rule...155
Grouping rules..157
Creating rules...158
Controlling rules when triggers and targets share dimension values...163
Working with keyword redirects...165
Presenting rule and keyword redirect results in a Web application...165
Filtering dynamic business rules..171
Performance impact of dynamic business rules..172
Using an Agraph and dynamic business rules...172
Applying relevance ranking to rule results...173
About overloading Supplement objects...173

Chapter 14: Implementing User Profiles...175
About user profiles...175
Profile-based trigger scenario..175
User profile query parameters...176
API objects and method calls...176
Performance impact of user profiles..177

Part V: Other Features..179

Chapter 15: Using the Aggregated MDEX Engine...............................181
About the Aggregated MDEX Engine..181
Overview of distributed query processing..181
Guidance about when to use an Agraph..183
Agraph implementation steps..184
Agraph limitations...186
Agraph performance impact...186

Chapter 16: Using Internationalized Data...189
Using internationalized data with your Endeca application..189
Configuring Forge to identify languages..189
Configuring Dgidx to process internationalized data..190
Configuring the MDEX Engine with language identifiers for source data..190
About a Chinese segmentation auxiliary dictionary...197
Setting encoding in the front-end application...199
Viewing IAP logs..200

Chapter 17: Coremetrics Integration...201
Working with Coremetrics..201
Using the integration module...201

Appendix A: Suggested Stop Words..203
About stop words...203
List of suggested stop words...203

v

Contents

Appendix B: Dgidx Character Mapping..205
Diacritical Character to ASCII Character Mapping..205

Endeca® MDEX Enginevi

Copyright and disclaimer

Product specifications are subject to change without notice and do not represent a commitment on
the part of Endeca Technologies, Inc. The software described in this document is furnished under a
license agreement. The software may not be reverse engineered, decompiled, or otherwise manipulated
for purposes of obtaining the source code. The software may be used or copied only in accordance
with the terms of the license agreement. It is against the law to copy the software on any medium
except as specifically allowed in the license agreement.

No part of this document may be reproduced or transmitted in any form or by any means, electronic
or mechanical, including photocopying and recording, for any purpose without the express written
permission of Endeca Technologies, Inc.

Copyright © 2003-2011 Endeca Technologies, Inc. All rights reserved. Printed in USA.

Portions of this document and the software are subject to third-party rights, including:

Corda PopChart® and Corda Builder™ Copyright © 1996-2005 Corda Technologies, Inc.

Outside In® Search Export Copyright © 2011 Oracle. All rights reserved.

Rosette® Linguistics Platform Copyright © 2000-2011 Basis Technology Corp. All rights reserved.

Teragram Language Identification Software Copyright © 1997-2005 Teragram Corporation. All rights
reserved.

Trademarks

Endeca, the Endeca logo, Guided Navigation, MDEX Engine, Find/Analyze/Understand, Guided
Summarization, Every Day Discovery, Find Analyze and Understand Information in Ways Never Before
Possible, Endeca Latitude, Endeca InFront, Endeca Profind, Endeca Navigation Engine, Don't Stop
at Search, and other Endeca product names referenced herein are registered trademarks or trademarks
of Endeca Technologies, Inc. in the United States and other jurisdictions. All other product names,
company names, marks, logos, and symbols are trademarks of their respective owners.

The software may be covered by one or more of the following patents: US Patent 7035864, US Patent
7062483, US Patent 7325201, US Patent 7428528, US Patent 7567957, US Patent 7617184, US
Patent 7856454, US Patent 7912823, US Patent 8005643, US Patent 8019752, US Patent 8024327,
US Patent 8051073, US Patent 8051084, Australian Standard Patent 2001268095, Republic of Korea
Patent 0797232, Chinese Patent for Invention CN10461159C, Hong Kong Patent HK1072114, European
Patent EP1459206, European Patent EP1502205B1, and other patents pending.

vii

Preface

Endeca® InFront enables businesses to deliver targeted experiences for any customer, every time, in
any channel. Utilizing all underlying product data and content, businesses are able to influence customer
behavior regardless of where or how customers choose to engage — online, in-store, or on-the-go.
And with integrated analytics and agile business-user tools, InFront solutions help businesses adapt
to changing market needs, influence customer behavior across channels, and dynamically manage a
relevant and targeted experience for every customer, every time.

InFront Workbench with Experience Manager provides a single, flexible platform to create, deliver,
and manage content-rich, multichannel customer experiences. Experience Manager allows non-technical
users to control how, where, when, and what type of content is presented in response to any search,
category selection, or facet refinement.

At the core of InFront is the Endeca MDEX Engine,™ a hybrid search-analytical database specifically
designed for high-performance exploration and discovery. InFront Integrator provides a set of extensible
mechanisms to bring both structured data and unstructured content into the MDEX Engine from a
variety of source systems. InFront Assembler dynamically assembles content from any resource and
seamlessly combines it with results from the MDEX Engine.

These components — along with additional modules for SEO, Social, and Mobile channel support —
make up the core of Endeca InFront, a customer experience management platform focused on delivering
the most relevant, targeted, and optimized experience for every customer, at every step, across all
customer touch points.

About this guide
This guide describes the advanced tasks involved in developing an Endeca application.

It assumes that you have read the Endeca Concepts Guide and the Endeca Getting Started Guide
and are familiar with the Endeca terminology and basic concepts.

For basic development tasks, see the Basic Development Guide.

Who should use this guide
This guide is intended for developers who are building applications based on the Endeca Information
Access Platform and would like to use advanced features.

Conventions used in this guide
This guide uses the following typographical conventions:

Code examples, inline references to code elements, file names, and user input are set in monospace
font. In the case of long lines of code, or when inline monospace text occurs at the end of a line, the
following symbol is used to show that the content continues on to the next line: ¬

When copying and pasting such examples, ensure that any occurrences of the symbol and the
corresponding line break are deleted and any remaining space is closed up.

Contacting Endeca Customer Support
The Endeca Support Center provides registered users with important information regarding Endeca
software, implementation questions, product and solution help, training and professional services
consultation as well as overall news and updates from Endeca.

You can contact Endeca Standard Customer Support through the Support section of the Endeca
Developer Network (EDeN) at http://eden.endeca.com.

Endeca ConfidentialEndeca® MDEX Engine Advanced Development Guide

| Preface10

http://eden.endeca.com

Part 1

Advanced Record Features

• Controlling Record Values with the Select Feature
• Using the Endeca Query Language
• Record Filters
• Bulk Export of Records

Chapter 1

Controlling Record Values with the Select
Feature

This section describes how to use the Select feature for selecting specific keys (Endeca properties
and/or dimensions) from the data so that only a subset of values is returned for Endeca records in a
query result set.

About the Select feature
Your application can return record sets based on specific keys.

A set of Endeca records is returned with every navigation query result. By default, each record includes
the values from all the keys (properties and dimensions) that have record page and record list attributes.
These attributes are set with the Show with Record (for record page) and Show with Record List
(for record list) checkboxes, as configured in Developer Studio.

However, if you do not want all the key values, you can control the characteristics of the records
returned by navigation queries by using the Select feature.

The Select feature allows you to select specific keys (Endeca properties and/or dimensions) from the
data so that only a subset of values will be transferred for Endeca records in a query result set. The
Select functionality allows the application developer to determine these keys dynamically, instead of
at Dgraph or Agraph startup. This selection will override the default record page and record list fields.

A Web application that does not make use of all of the properties and dimension values on a record
can be more efficient by only requesting the values that it will use. The ability to limit what fields are
returned is useful for exporting bulk-format records and other scenarios. For example, if a record has
properties that correspond to the same data in a number of languages, the application can retrieve
only the properties that correspond to the current language. Or, the application may render the record
list using tabs to display different sets of data columns (e.g., one tab to view customer details and
another to view order details without always returning the data needed to populate both tabs).

This functionality prevents the transferring of unneeded properties and dimension values when they
will not be used by the front-end Web application. It therefore makes the application more efficient
because the unneeded data does not take up network bandwidth and memory on the application
server.

The Select feature can also be used to specifically request fields that are not transferred by default.

Configuring the Select feature
No system configuration is required for the Select feature.

In other words, no instance configuration is required in Developer Studio and no Dgidx or Dgraph/Agraph
flags are required to enable selection of properties and dimensions. Any existing property or dimension
can be selected.

URL query parameters for Select
There is no Select-specific URL query parameter.

A query for selected fields is the same as any valid navigation query. Therefore, the Navigation
parameter (N) is required for the request

Selecting keys in the application
With the Select feature, the Web application can specify which properties and dimensions should be
returned for the result record set from the navigation query.

The specific selection method used by the application depends on whether you have a Java or .NET
implementation.

Java selection method
Use the ENEQuery.setSelection() method for Java implementations.

For Java-based implementations, you set the selection list on the ENEQuery object with the
setSelection() method, which has this syntax:
ENEQuery.setSelection(FieldList selectFields)

where selectFields is a list of property or dimension names that should be returned with each record.
You can populate the FieldList object with string names (such as "P_WineType") or with Property
or Dimension objects. In the case of objects, the FieldList.addField() method will automatically
extract the string name from the object and add it to the FieldList object.

During development, you can use the ENEQuery.getSelection() method (which returns a
FieldList object) to check which fields are set.

The FieldList object will contain a list of Endeca property and/or dimension names for the query.
For details on the methods of the FieldList class, see the Endeca Javadocs for the Presentation
API.

Note: The setSelection() and getSelection() methods are also available in the
UrlENEQuery class.

Java Select example

The following is a simple Java example of setting an Endeca property and dimension for a navigation
query. When the ENEQueryResults object is returned, it will have a list of records that have been

Endeca ConfidentialEndeca® MDEX Engine Advanced Development Guide

Controlling Record Values with the Select Feature | Configuring the Select feature14

tagged with the P_WineType property and the Designation dimension. You extract the records as
with any record query.

// Create a query
ENEQuery usq = new UrlENEQuery(request.getQueryString(),"UTF-8");
// Create an empty selection list
FieldList fList = new FieldList();
// Add an Endeca property to the list
fList.addField("P_WineType");
// Add an Endeca dimension to the list
fList.addField("Designation");
// Add the selection list to the query
usq.setSelection(fList);
// Make the MDEX Engine query
ENEQueryResults qr = nec.query(usq);

.NET selection property
Use the ENEQuery.Selection() property for Java implementations.

In a .NET application, the ENEQuery.Selection property is used to get and set the FieldList
object. You can add properties or dimensions to the FieldList object with the FieldList.AddField
property.

Note: The Selection property is also available in the UrlENEQuery class.

.NET selection example

The following is a C# example of setting an Endeca property and dimension for a navigation query.

// Create a query
ENEQuery usq = new UrlENEQuery(queryString, "UTF-8");
// Create an empty selection list
FieldList fList = new FieldList();
// Add an Endeca property to the list
int i = fList.AddField("P_WineType");
// Add an Endeca dimension to the list
i = fList.AddField("Designation");
// Add the selection list to the query
usq.Selection = fList;
// Make the MDEX Engine query
ENEQueryResults qr = nec.query(usq);

Endeca® MDEX Engine Advanced Development GuideEndeca Confidential

15Controlling Record Values with the Select Feature | Selecting keys in the application

Chapter 2

Using the Endeca Query Language

This section describes how to use the Endeca Query Language, which allows you to create various
types of record filters when making navigation queries for record search.

About the Endeca Query Language
The Endeca Query Language (EQL) contains a rich syntax that allows an application to build dynamic,
complex filters that define arbitrary subsets of the total record set and restrict search and navigation
results to those subsets.

Besides record search, these filters can also be used for dimension search. EQL is available as a core
feature of the Endeca IAP with the capabilities listed in the next section, “Basic filtering capabilities”.
In addition, Record Relationship Navigation (RRN) (described in the topic “Record Relationship
Navigation module”) is available as an optional module that extends the MDEX Engine capability.

Note: EQL is not supported by the Aggregated MDEX Engine (Agraph).

Basic filtering capabilities
You can use EQL to create an expression that can filter on different features.

These include:

• Dimension values
• Specific property values
• A defined range of property values (range filtering)
• A defined range of geocode property values (geospatial filtering)
• Text entered by the user (record search)

The language also supports standard Boolean operators (and, or, and not) to compose complex
expressions. In addition, EQL requests can be combined with other Endeca features, such as spelling
auto-correction, Did You Mean suggestions, and the sorting parameters (Ns and Nrk). Details on
these interactions are provided in “Endeca Query Language and other features.”

Record Relationship Navigation module
The Record Relationship Navigation (RRN) module is an optional module that is intended for use with
complex relational data.

Only customers entitled to the new module can pose queries that join records at query time and
navigate based on the connected relationships.

This module is intended for sites that have different types of records, in which properties in one record
type have values that ultimately refer to properties in another record type. For example, an Author
record type can have an author_bookref property with the ID of a Book record type. In this case, you
can leave the records uncombined (when the pipeline is run) and then have the MDEX Engine apply
a relationship filter among the record types with an RRN request.

Among the benefits of query-time relationship filters are:

• Reduced memory footprint: With no need to combine different types of records in the pipeline, this
will reduce the memory footprint of the MDEX Engine, allowing more data to fit into a single engine.

• Reduced application complexity: With the MDEX Engine handling the data relationships, custom
application logic will be greatly simplified.

• Improved performance: RRN improves query performance by removing the need to query the
MDEX Engine multiple times, thereby reducing the data being transferred over the network.

For details on constructing these types of requests, see “Record Relationship Navigation queries.”

Endeca Query Language syntax
The following EBNF grammar describes the syntax for EQL filter expressions.

RecordPath ::= Collection "(" ")" "/" RecordStep
Collection ::= FnPrefix? "collection"
FnPrefix ::= "fn" ":"
RecordStep ::= "record" Predicate?
Predicate ::= "[" Expr "]"
Expr ::= OrExpr
OrExpr ::= AndExpr ("or" AndExpr)*
AndExpr ::= NotExpr ("and" NotExpr)*
NotExpr ::= PrimaryExpr | (FnPrefix? "not" "(" Expr ")")
PrimaryExpr ::= ParenExpr | TestExpr
ParenExpr ::= "(" Expr ")"
TestExpr ::= ComparisonExpr | FunctionCall
FunctionCall ::= TrueFunction | FalseFunction | MatchesFunction
TrueFunction ::= FnPrefix? "true" "(" ")"
FalseFunction ::= FnPrefix? "false" "(" ")"
MatchesFunction ::= "endeca" ":" "matches" "(" "." ","
 StringLiteral "," StringLiteral ("," StringLiteral (","
 StringLiteral ("," (TrueFunction | FalseFunction))?)?)?
 ")"
ComparisonExpr ::= LiteralComparison | JoinComparison
 | RangeComparison | GeospatialComparison
 | DimensionComparison
EqualityOperator ::= "=" | "!="
LiteralComparison ::= PropertyKey EqualityOperator Literal
JoinComparison ::= PropertyKey "=" PropertyPath
RangeComparison ::= PropertyKey RangeOperator NumericLiteral
GeospatialComparison ::= "endeca" ":" "distance" "("
 PropertyKey "," "endeca" ":" "geocode" "(" NumericLiteral ","
 NumericLiteral ")" ")" (">" | "<") NumericLiteral

Endeca ConfidentialEndeca® MDEX Engine Advanced Development Guide

Using the Endeca Query Language | Endeca Query Language syntax18

DimensionComparison ::= DimensionKey EqualityOperator
 (DimValById | DimValPath) "//" "id"
DimValById ::= "endeca" ":" "dval-by-id" "(" IntegerLiteral ")"
DimValPath ::= Collection "(" "" "dimensions" "" ")"
 ("/" DValStep)*
DValStep ::= ("*" | "dval") "[" "name" "=" StringLiteral "]"
DimensionKey ::= NCName
PropertyPath ::= RecordPath "/" PropertyKey
PropertyKey ::= NCName
RangeOperator ::= "<" | "<=" | ">" | ">="
Literal ::= NumericLiteral | StringLiteral
NumericLiteral ::= IntegerLiteral | DecimalLiteral
StringLiteral ::= '"' ('""' | [^"])* '"'
IntegerLiteral ::= [0-9]+
DecimalLiteral ::= ([0-9]+ "." [0-9]*) | ("." [0-9]+)

The EBNF uses these notations:

• + means 1 or more instances of a component
• ? means 0 or 1 instances
• * means 0 or more instances

The EBNF uses the same Basic EBNF notation as the W3C specification of XML, located at this URL:
http://www.w3.org/TR/xml/#sec-notation

Also, note these important items about the syntax:

• Keywords are case sensitive. For example, “endeca:matches” must be specified in lower case,
as must the and and or operators.

• The names of keywords are not reserved words across the Endeca namespace. For example, if
you have a property named collection, its name will not conflict with the name of the
collection() function.

• To use the double-quote character as a literal character (that is, for inclusion in a string literal), it
must be escaped by prepending it with a double-quote character.

These and other aspects of EQL will be discussed further in later sections of this section.

Negation operators
EQL provides two negation operators.

As the EBNF grammar shows, EQL provides two negation operators:

• The not operator
• The != operator

An example of the not operator is:
collection()/record[not(Recordtype = "author")]

An example of the != operator is:
collection()/record[Recordtype != "author"]

Although both operators look like they work the same, each in fact may return a different record set.
Using the above two sample queries:

• The not operator example returns any record which does not have a Recordtype property with
value "author" (including records which have no Recordtype properties at all).

• The != operator returns only records which have non-"author" Recordtype property values. This
operator excludes records which have no Recordtype properties.

Endeca® MDEX Engine Advanced Development GuideEndeca Confidential

19Using the Endeca Query Language | Endeca Query Language syntax

http://www.w3.org/TR/xml/#sec-notation

The small (but noticeable) difference in the result sets may be a useful distinction for your application.

Using negation on properties

EQL supports filtering by the absence of assignments on records. By using the not operator, you can
filter down to the set of records which do not have a specific property assignment.

For example:
collection()/record[author_id]

returns all records with the "author_id" property, while:
collection()/record[not (author_id)]

returns all records without the "author_id" property.

NCName format for properties and dimensions
With a few exceptions (noted when applicable), the names of Endeca properties and dimensions used
in EQL requests must be in an NCName format.

(This restriction does not apply to the names of non-root dimension values or to the names of search
interfaces.) The names are also case sensitive when used in EQL requests.

The NCName format is defined in the W3C document Namespaces in XML 1.0 (Second Edition),
located at this URL: http://www.w3.org/TR/REC-xml-names/#NT-NCName

As defined in the W3C document, an NCName must start with either a letter or an underscore (but
keep in mind that the W3C definition of Letter includes many non-Latin characters). If the name has
more than one character, it must be followed by any combination of letters, digits, periods, dashes,
underscores, combining characters, and extenders. (See the W3C document for definitions of combining
characters and extenders.) The NCName cannot have colons or white space.

Take care when creating property names in Developer Studio, because that tool allows you to create
names that do not follow the NCName rules. For example, you can create property names that begin
with digits and contain colons and white space. Any names which do not comply with NCName
formatting will generate a warning when running your pipeline.

The property must also be explicitly enabled for use with record filters (not required for record search
queries). Dimension values are automatically enabled for use in record filtering expressions, and
therefore do not require any special configuration.

URL query parameters for the Endeca Query Language
The MDEX Engine URL query parameters listed in this topic are available to control the use of EQL
requests.

• Nrs - The Nrs parameter specifies an EQL request that restricts the results of a navigation query.
This parameter links to the Java ENEQuery.setNavRecordStructureExpr()method and the
.NET ENEQuery.NavRecordStructureExpr property. The Nrs parameter has a dependency
on the N parameter, because a navigation query is being performed.

• Ars - The Ars parameter specifies an EQL request that restricts the results of an aggregated
record query. This parameter links to the Java ENEQuery.setAggrERecStructureExpr()
method and the .NET ENEQuery.AggrERecStructureExpr property. The Ars parameter has
a dependency on the A parameter, because an aggregated record query is being performed.

Endeca ConfidentialEndeca® MDEX Engine Advanced Development Guide

Using the Endeca Query Language | Endeca Query Language syntax20

http://www.w3.org/TR/REC-xml-names/#NT-NCName

• Drs - The Drs parameter specifies an EQL request that restricts the set of records considered for
a dimension search. Only dimension values represented on at least one record satisfying the filter
are returned as search results. This parameter links to the Java
ENEQuery.setDimSearchNavRecordStructureExpr()method and the .NETENEQuery.Dim¬
SearchNavRecordStructureExpr property. The Drs parameter has a dependency on the D
parameter.

These parameters (including the EQL expression) must be URL-encoded. For example, this query:
collection()/record[Recordtype = "author"]

should be issued in this URL-encoded format:
collection%28%29/record%5BRecordtype%20%3D%20%22author%22%5D

However, the examples in this chapter are not URL-encoded, in order to make them easier to
understand.

Making Endeca Query Language requests
The collection() function is used to query the MDEX Engine for a set (that is, a collection) of
Endeca records, based on an expression that defines the records you want.

EQL allows you to make the following types of requests, all of which begin with the collection()
function:

• Property value query
• Record Relationship Navigation query
• Dimension value query
• Record search query
• Range filter query

The basic syntax for the collection() function is:
fn:collection()/record[expression]

The fn: prefix is optional, and for the sake of brevity will not be used in the examples in this chapter.
The /record step indicates that Endeca records are being selected. The expression argument
(which is called the predicate) is an EQL expression that filters the total record set to the subset that
you want. The predicate can contain one or more collection() functions (multiple functions are
nested).

Issuing the collection() function without a predicate (that is, without an expression) returns the
total record set because the query is not filtering the records. This query is therefore the same as
issuing only an N=0 navigation query, which is a root navigation request.

The following sample query illustrates the use of the collection() function with the Nrs parameter:
controller.jsp?N=0&Nrs=collection()/record[book_id = 8492]

Because EQL is a filtering language, it does not have a built-in sorting option. Therefore, an EQL
request returns the record set using the MDEX Engine default sort order. You can, however, append
a URL sorting parameter, such as the Ns parameter or the Nrk, Nrt, Nrr, and Nrm set of parameters.
For more information on the interaction with other Endeca features, see “Endeca Query Language
and other features.”

Endeca® MDEX Engine Advanced Development GuideEndeca Confidential

21Using the Endeca Query Language | Making Endeca Query Language requests

Property value queries
Property value queries (also called literal comparison queries) return those records that have a property
whose value on the records is equal to a specified literal value.

The syntax for this type of query is:
collection()/record[propertyName = literalValue]

where:

• propertyName is the NCName of an Endeca property that is enabled for record filters. Dimension
names are not supported for this type of query.

• literalValue is a number (either integer or floating point) or a quoted string literal. Numbers
are not quoted. For a record to be returned, the value of literalValue must exactly match the
value of propertyName, including the case of the value for quoted string literals. Wildcards are
not supported, even if the property has been enabled for wildcard search.

Because it is a predicate, the expression must be enclosed within square brackets. Expressions can
be nested.

Note that you can use one of the negation operators described in the "Negation operators" topic.

Examples

The first example illustrates a simple property comparison query:
collection()/record[Recordtype = "author"]

This query returns all records that have a property named Recordtype whose value is “author”.
If a Recordtype property on a record has another value (such as “editor”), then that record is
filtered out and not returned.

The second example illustrates how to use the and operator:
collection()/record[author_nationality = "english"
 and author_deceased = "true"]

This query returns all Author records for English writers who are deceased.

Record Relationship Navigation queries
EQL allows you to issue a request against normalized records, using record-to-record relationship
filter expressions. These types of requests are called Record Relationship Navigation (RRN) queries.

If you have different record types in your source data, you can keep the records uncombined by using
a Switch join in your pipeline. Then, by issuing an RRN query, the MDEX Engine can apply a relationship
filter to the records at query time. Depending on how you have tagged the properties on the records,
an RRN query can return records of only one type or of multiple types.

For example, assume that you want to have three record types (Author records, Book records, and
Editor records). To define the record type, all the records have a property named Recordtype (the
actual name does not matter). Author records have this property set to “author”, Book records
have it set to “book”, and Editor records use a value of “editor”. In your pipeline, you use a
Switch join to leave those records uncombined. You can then filter Book records via relationship filters
with Author and Editor records, but the returned records (and their dimension refinements) will be
Book records only. This means that any other query parameters apply only to the record type that is
returned.

Endeca ConfidentialEndeca® MDEX Engine Advanced Development Guide

Using the Endeca Query Language | Record Relationship Navigation queries22

Note: You must configure the MDEX Engine in order to enable RRN. This capability is an
optional module that extends the MDEX Engine. Endeca customers who are entitled by their
license to use RRN can find instructions on the Endeca Support site. Contact your Endeca
representative if you need to obtain an RRN license.

Record Relationship Navigation query syntax
This topic describes the syntax for RRN queries.

The basic syntax for an RRN query is:
collection()/record[propertyKey1 = recordPath/propertyKey2]

where:

• propertyKey1 is the NCName of an Endeca property on a record type to be filtered. The resulting
records will have this property.

• recordPath is one or more collection()/record functions.
• propertyKey2 is the NCName of an Endeca property on another record type that will be compared

to propertyKey1. Records that satisfy the comparison will be added to the returned set of records.

The forward slash (/) character is required between recordPath and propertyKey2 because
propertyKey2 is a property step.

There are two ways to differentiate RRN queries from other types of EQL requests:

• RRN queries have a collection()/record function on the right side of the comparison operator
in the predicate.

• They include a property step.

The following example illustrates a basic relationship filter query:
collection()/record[author_bookref =
 collection()/record[book_year = "1843"]/book_id]

In this example, the author_bookref is a property of Author records, which means that Author
records are returned. These records are filtered by the book_year and book_id properties of the
Book records. The author_bookref property is a reference to the book_id property (which is being
used as the property step). Therefore, the query returns Author records for authors who wrote books
that were published in 1843. There is an inner collection()/record function (which uses
book_year as its property key) on the right side of the comparison expression.

The above query example is shown in a linear format. The query can also be made in a structured
format, such as the following:
collection()/record
[
 author_bookref = collection()/record
 [
 book_year = "1843"
]
 /book_id
]

This structured format will be used for most of the following examples, as it makes it easier to parse
the query.

Relationship filter expressions work from the inside out (that is, the inner expressions are performed
before the outer ones). In this example, the MDEX Engine first processes the Book records to come

Endeca® MDEX Engine Advanced Development GuideEndeca Confidential

23Using the Endeca Query Language | Record Relationship Navigation queries

up with a set of Book records that have the book_year property set to “1843”. Then the book_id
property values of the Book records provide a list of IDs that are used as indices to filter the Author
records (that is, as comparisons to the author_bookref property).

Record Relationship Navigation query examples
This topic contains examples of RRN queries.

The following examples assume that you have three record types in your source data: Author records,
Book records, and Editor records. While all records have several properties, the Author and Book
records have these properties that establish a relationship between the record types:

• Author records have an author_bookref property that references the book_id property of
Book records. In addition, Author records have an author_editorref property that references
the editor_id property of an Editor record.

• Book records have a book_authorref property that references the author_id property of
Author records.

Using these cross-record reference properties, an RRN query can apply relationship filters between
the record types.

RRN relationship filter examples
These examples illustrate how to build relationship filter queries.

The user may first issue a query for Editor records for an editor named Jane Smith who works in
the city of Boston:

collection()/record
[
 editor_name = "Jane Smith"
 and
 editor_city = "Boston"
]

The query is then modified for Author records:

collection()/record
[
 author_editorref = collection()/record
 [
 editor_name = "Jane Smith"
 and
 editor_city = "Boston"
]
 /editor_id
]

The query returns all Author records filtered by the results of the Editor records. That is, the Author
records are filtered by the editor_id property of the Editor records (which are referenced by the
author_editorref property in the Author records).

The next example query returns books by American authors:

collection()/record
[
 book_authorref = collection()/record
 [

Endeca ConfidentialEndeca® MDEX Engine Advanced Development Guide

Using the Endeca Query Language | Record Relationship Navigation queries24

 author_nationality = "american"
]
 /author_id
]

The next example query returns all books by authors who are still alive:

collection()/record
[
 book_authorref = collection()/record
 [
 author_deceased ="false"
]
 /author_id
]

The next example query combines the two previous examples, and also illustrates the use of the or
operator. Both inner collection()/record functions use the author_id property value results
as indices for the Book records.

collection()/record
[
 book_authorref = collection()/record
 [
 author_nationality = "american"
]
 /author_id
 or
 book_authorref = collection()/record
 [
 author_deceased="false"
]
 /author_id
]

The next example query returns the books written by authors who have had those books published in
a hard-cover format.

collection()/record
[
 book_authorref=collection()/record
 [
 author_bookref=collection()/record
 [
 book_cover = "hard"
]
 /book_id
]
 /author_id
]

The next query example extends the previous one by returning the books written by authors who have
published hard-cover books and have worked with an editor named "Jane Smith". The query also
shows how to apply relationship filters among all three record types.

collection()/record
[
 book_authorref=collection()/record
 [
 author_bookref=collection()/record
 [
 book_cover="hard"

Endeca® MDEX Engine Advanced Development GuideEndeca Confidential

25Using the Endeca Query Language | Record Relationship Navigation queries

]
 /book_id
 and
 author_editorref=collection()/record
 [
 editor_name="Jane Smith"
]
 /editor_id
]
 /author_id
]

In the final example, this powerful query returns all books written by the author of a play titled "The
Island Princess" (which was written by English playwright John Fletcher) and also all books that were
written by authors who co-wrote books with Fletcher. The result set will include plays that were written
either by Fletcher or by anyone who has ever co-authored a play with Fletcher.

collection()/record
[
 book_authorref = collection()/record
 [
 author_bookref = collection()/record
 [
 book_authorref = collection()/record
 [
 author_bookref = collection()/record
 [
 book_title = "The Island Princess"
]
 /book_id
]
 /author_id
]
 /book_id
]
 /author_id
]

Dimension value queries
Dimension value queries allow you to filter records by dimension values. The dimension value used
for filtering can be any dimension value in a flat dimension or in a dimension hierarchy.

Rules for the naming format of the dimension value are as follows:

• For a root dimension value (which has the same name as the dimension), the name must be in
the NCName format.

• For a non-root dimension value (such as a leaf), the name does not have to be in the NCName
format.

There are two syntaxes for using dimension values to filter records, depending on whether you are
specifying a dimension value path or an explicit dimension value node.

Endeca ConfidentialEndeca® MDEX Engine Advanced Development Guide

Using the Endeca Query Language | Dimension value queries26

Querying with dimension value paths
The syntax described in this topic specifies a dimension value path to the collection()/record
function.

The path can specify just the root dimension value, or it can traverse part or all of a dimension hierarchy.
The query will return all records that are tagged with the specified dimension value and with descendants
(if any) of that dimension value.

Use the following steps to construct a dimension value path:

1. The path must start with the NCName of the dimension from which the dimension values will be
filtered. The dimension name is not quoted and is case sensitive:[dimName = collection("di¬
mensions")

2. It must then be followed by a slash-separated step specifier that uses the dval keyword (or the *
keyword, both are interchangeable) and the name of the root dimension value, which is the same
name as the dimension name. The name is case sensitive and must be within double quotes:
/dval[name = "dvalName"] or /*[name = "dvalName"].

3. Optionally, you can use one or more slash-separated step specifiers to specify a path to a dimension
value descendant. These step specifiers use the same syntax as described in the previous step.
Names of descendant dimension values do not have to be in the NCName format.

4. The dimension value path must be terminated with //id. The //id path terminator specifies that
the path be extended to any descendants of the last specified dvalName dimension value. The
resulting syntax is: collection()/record[dimName = collection("dimen¬
sions")/dval[name = "dvalName"]//id.

Note that you can use one of the negation operators described in the "Negation operators" topic.

Query examples using dimension value paths
The examples in this topic illustrate how to construct dimension value paths using EQL syntax rules.

The examples use the Genre dimension, which has this hierarchy:

Genre
 Fiction
 Classic
 Literature
 Science-fiction
 Non-fiction

The Fiction dimension value has two descendants (Classic and Science-fiction), while the Non-fiction
dimension value has no descendants (that is, it is a leaf dimension value).

The first example query is made against the dimension named Genre (the dimName argument). It
uses one step specifier for the root dimension value (also named Genre). The query returns all records
that are tagged with the Genre dimension value, including all its descendants (such as the Classic
dimension value).

collection()/record
[
 Genre = collection("dimensions")/dval[name="Genre"]//id
]

The next example query uses two step specifiers in the predicate. The dimension value path begins
with the dimension name (Genre), followed by the root dimension value name (also Genre), and finally
the Fiction child dimension value. The query returns all records that are tagged with the Fiction
dimension value, including its three descendants (Classic, Literature, and Science-fiction). Records

Endeca® MDEX Engine Advanced Development GuideEndeca Confidential

27Using the Endeca Query Language | Dimension value queries

tagged only with the Non-fiction dimension value are not returned because it is not a descendant of
Fiction.

collection()/record
[
 Genre = collection("dimensions")/dval[name="Genre"]
 /dval[name="Fiction"]//id
]

The next example query uses three step specifiers to drill down to the Classic dimension value, which
is a descendant of Fiction. The query returns all records that are tagged with the Classic dimension
value or its Literature descendant. The example also shows the use of * (instead of dval) in the step
specifier.

collection()/record
[
 Genre =collection("dimensions")/*[name="Genre"]
 /*[name="Fiction"]/*[name="Classic"]//id
]

The final example shows how you can use the or operator to specify two dimension value paths. The
query returns records tagged with either the Science-fiction or Non-fiction dimension values. Using
the and operator in place of the or operator here would return records tagged with both the
Science-fiction and Non-fiction dimension values.

collection()/record
[
 Genre = collection("dimensions")/dval[name="Genre"]
 /dval[name="Fiction"]/dval[name="Science-fiction"]//id
 or
 Genre = collection("dimensions")/dval[name="Genre"]
 /dval[name="Non-fiction"]//id
]

Querying with dimension value IDs
You can also query dimension value paths using the numerical ID of a dimension value, rather than
its name.

In this case, the query returns records that are tagged with this dimension value and all of its
descendants (if any). This syntax does not use the "dimensions" argument to the collection()
function, but it does use the endeca:dval-by-id() helper function, as follows:
collection()/record[dimName = endeca:dval-by-id(dimValId)//id]

where:

• dimName is the NCName of the dimension from which the dimension values are filtered. The
dimension name is not quoted and is case sensitive.

• dimValId is the ID of the dimension value on the records that you want returned. dimValId can
be any dimension value in the dimension and is not quoted.

• //id is the path terminator that specifies that the path be extended to any descendants of dim¬
ValId.

You can also use the and or or operators, as shown in the second example below. You can also use
one of the negation operators described in the "Negation operators" topic.

Endeca ConfidentialEndeca® MDEX Engine Advanced Development Guide

Using the Endeca Query Language | Dimension value queries28

Examples

The first query example selects records that are tagged with either the dimension value whose ID is
9 or its descendants.

collection()/record
[
 Genre = endeca:dval-by-id(9)//id
]

The next query example uses an or operator to select records that are tagged with either dimension
value 8 (or its descendants) or dimension value 11 (or its descendants).

collection()/record
[
 Genre = endeca:dval-by-id(8)//id
 or
 Genre = endeca:dval-by-id(11)//id
]

Record search queries
The endeca:matches() function allows a user to perform a keyword search against specific properties
or dimension values assigned to records. (Record search queries are also called text search queries.)

The resulting records that have matching properties or dimension values are returned, along with any
valid refinement dimension values. The search operation returns results that contain text matching all
user search terms (that is, the search is conjunctive by default). To perform a less restrictive search,
use the matchMode argument to specify a match mode other than MatchAll mode. Wildcard terms
(using the * character) can be specified if the search interface or property is configured for wildcards
in Developer Studio.

Note the following about record search queries:

• The text search is case insensitive, including phrase search.
• Properties must be enabled for record search (in Developer Studio). Records with properties that

are not enabled for record search will not be returned in this type of query.
• For wildcard terms, properties must be enabled for wildcard search.

The syntax for a record search query is:
collection()/record[endeca:matches(., "searchKey", "searchTerm", "matchMode",
 "languageId", autoPhrase)]

The meanings of the arguments are as follows:

MeaningArgument

Required. The period is currently the only valid option. The period is the
XPath context item, which is the node currently being considered (that is, the

.

node to apply the function to). In effect, the context item is the record to
search.

Required. The name of an Endeca property or search interface which will be
evaluated for the search. The name must be specified within a set of double

searchKey

quotes. Property names must use the NCName format and must be enabled

Endeca® MDEX Engine Advanced Development GuideEndeca Confidential

29Using the Endeca Query Language | Record search queries

MeaningArgument

for record search. Search interface names do not have to use the NCName
format.

Required. The term to search for (which may contain multiple words or
phrases). Specify the search term within a pair of double quotes. Phrase

searchTerm

searches within searchTerm must be enclosed within two pairs of double
quotes in addition to the pair enclosing the entire searchTerm entry. (This
is because a pair of double quotes is the XPath escape sequence for a single
double quote character within a string literal.)

For example, in "Melville ""Moby Dick"" hardcover", the phrase "Moby Dick"
is enclosed in two pairs of double quotes: these yield a single escaped pair
which indicates a phrase search for these words. In another example, """Tiny
Tim""", the outermost pair of double quotes delimits the full searchTerm
value, while the two inner pairs yield a single escaped pair to indicate a phrase
search.

Note: To enable EQL parsing, use straight double-quote characters
for double quotes (rather than typographer’s double quotes, which the
EQL parser does not accept).

Optional. A match mode (also called a search mode) that specifies how
restrictive the match should be. The match mode must be specified within a
set of double quotes.

matchMode

The valid match modes are all (MatchAll mode; perform a conjunctive
search by matching all user search terms; this is the default), partial
(MatchPartial mode; match some of the search terms), any (MatchAny mode;
results need match only a single search term), allpartial (MatchAllPartial
mode; first use MatchAll mode and, if no results are returned, then use
MatchPartial mode), allany (MatchAllAny mode; first use MatchAll mode
and, if no results are returned, then use MatchAny mode), and partialmax
(MatchPartialMax mode; first use MatchAll mode and, if no results are
returned, then return results matching all but one term, and so on). For details
on match modes, see the Basic Development Guide.

Note: MatchBoolean is not supported, because EQL has its own
powerful set of query composition features such as the and, or, and
not operators.

Optional. A per-query language ID, such as “fr” for French. The ID must be
specified within a set of double quotes. For a list of valid language IDs, see

languageId

the topic “Using language identifiers." The default language ID is the default
for the MDEX Engine.

Optional. A TrueFunction or FalseFunction that sets the option for
automatic-phrasing query re-write. The default is false(), which disables

autoPhrase

automatic phrasing. Specifying true() enables automatic phrasing, which

Endeca ConfidentialEndeca® MDEX Engine Advanced Development Guide

Using the Endeca Query Language | Record search queries30

MeaningArgument

instructs the MDEX Engine to compute a phrasing alternative for a query and
then rewrite the query using that phrase. For details on automatic phrasing
(including adding phrases to the project with Developer Studio), see the topic
“Using automatic phrasing."

Record search query examples
This topic contains examples of record search queries.

The first query example searches for the name jane against the editor_name property of any record.
Because they are not specified, these defaults are used for the other arguments: MatchAll mode,
language ID is the MDEX Engine default, and automatic phrasing is disabled.

collection()/record
[
 endeca:matches(.,"editor_name","jane")
]

The next query example is identical to the first one, except that the wildcard term ja* is used for the
search term. If the editor_name property is wildcard-enabled, this search returns records in which
the value of the property has a value that begins with ja (such as “Jane” or “James”).

collection()/record
[
 endeca:matches(.,"editor_name","ja*")
]

The next query example searches for four individual terms against the "description" property of any
records. The partialmax argument specifies that the MatchPartialMax match mode be used for the
search. The language ID is English (as specified by the "en" argument) and automatic phrasing is
disabled (because the default setting is used). Because the MatchPartialMax match mode is specified,
MatchAll results are returned if they exist. If no such results exist, then results matching all but one
terms are returned; otherwise, results matching all but two terms are returned; and so forth.

collection()/record
[
 endeca:matches(.,"description",
 "sailor seafaring ship ocean","partialmax","en")
]

The next query example illustrates a phrase search. Any phrase term must be within a pair of double
quotes, as in the example ""Tiny Tim"". This is because a pair of double quotes is the XPath escape
sequence for a single double-quote character within a string literal. Thus, if the entire search term is
a single phrase, there are three sets of quotes, as in the example. For more information on how phrase
searches are handled by the MDEX Engine, see the Basic Development Guide.

collection()/record
[
 endeca:matches(.,"description","""Tiny Tim""")
]

Endeca® MDEX Engine Advanced Development GuideEndeca Confidential

31Using the Endeca Query Language | Record search queries

In the final query example, the use of the true() function enables the automatic phrasing option.
This example assumes that phrases have been added to the project with Developer Studio or Endeca
Workbench. The example also illustrates the use of the MatchAll match mode.

collection()/record
[
 endeca:matches(.,"description","story of","all","en",true())
]

Range filter queries
The EQL range filter functionality allows a user, at request time, to specify either a literal value or a
geocode value to limit the records returned for the query.

The remaining refinement dimension values for the records in the result set are also returned. The
literal value expressions are called basic range queries and the geocode value expressions are
geospatial range queries.

Note: Do not confuse EQL range filters with the range filters implemented by the Nf parameter.
Although both types of range filters are similar in nature, EQL range filters are implemented
differently, as described below.

Supported property types for range filters
EQL range filters can be applied only to Endeca properties of certain types.

The following types are supported:

• Integer (for basic range filters)
• Floating point (for basic range filters)
• DateTime (for basic range filters)
• Geocode (for geospatial range filters)

No special configuration is required for these properties. However, the property name must follow the
NCName format. No Dgidx flags are necessary to enable range filters, as the range filter computational
work is done at request-time. Likewise, no Dgraph flags are needed to enable EQL range filters.

Basic range filter syntax
This topic describes the syntax for EQL range filters.

The syntax for a basic range filter query is:
collection()/record[propName rangeOp numLiteral]

where:

• propName is the name (in an NCName format) of an Endeca property of type Integer or Floating
point.

• rangeOp is a range (relational) operator from the table below.
• numLiteral is a numerical literal value used for the comparison by the range operator.

The property value of propName must be numeric in order that a successful comparison be made
against the numLiteral argument. The supported range operators are the following:

Endeca ConfidentialEndeca® MDEX Engine Advanced Development Guide

Using the Endeca Query Language | Range filter queries32

MeaningOperator

Less than. The value of the property is less than the numeric literal.<

Less than or equal to. The value of the property is less than the numeric
literal or equal to the numerical literal.

<=

Greater than or equal to. The value of the property is greater than the
numeric literal or equal to the numerical literal.

>

Greater than. The value of the property is greater than the numeric literal.>=

Range filter query examples
This topic contains examples of basic range filter queries.

The first query example uses the > operator to return any record that has an author_id property
whose value is greater than 100.

collection()/record
[
 author_id > 100
]

The next query example uses the >= operator to return Book records whose book_id property value
is less than or equal to 99. The example also shows the use of the and operator.

collection()/record
[
 Recordtype = "book"
 and
 book_id <= 99
]

The last query example shows an RRN query that uses a range filter expression in its predicate. Based
on a relationship filter applied to the Book and Author records, the query returns Book records (which
have the book_authorref property) of authors whose books have been edited by an editor whose
ID is less than or equal to 12.

collection()/record
[
 book_authorref = collection()/record
 [
 author_editorref <= 12
]
/author_id
]

Geospatial range filter syntax
Geospatial range filter queries will filter records based on the distance of a geocode property from a
given reference point.

Endeca® MDEX Engine Advanced Development GuideEndeca Confidential

33Using the Endeca Query Language | Range filter queries

The reference point is a latitude/longitude pair of floating-point values that are arguments to the
endeca:geocode() function. These queries are triggered by the endeca:distance() function,
which in turn uses the endeca:geocode() function as one of two arguments in its predicate. The
syntax for a geospatial range query is:
collection()/record[endeca:distance(geoPropName,
endeca:geocode(latValue,lonValue)) rangeOp distLimit]

where:

• geoPropName is the name (in NCName format) of an Endeca geocode property.
• latValue is the latitude of the location in either an integer or a floating point value. Positive values

indicate north latitude and negative values indicate south latitude.
• lonValue is the longitude of the location either an integer or a floating point value. Positive values

indicate east longitude and negative values indicate west longitude.
• rangeOp is either the < (less than) or > (greater than) operator. These range operators specify

that the distance from the geocode property to the reference point is either less (<) or greater (>)
than the given distance limit (the distLimit argument).

• distLimit is a numerical literal value used for the comparison by the range operator. Distance
limits are always expressed in kilometers.

When the geospatial filter query is made, the records are filtered by the distance from the geocode
property to the geocode reference point (the latitude/longitude pair of values).

For example, Endeca’s main office is located at 42.365615 north latitude, 71.075647 west longitude.
Assuming a geocode property named Location, a geospatial filter query would look like this:

collection()/record
[
 endeca:distance(Location,
 endeca:geocode(42.365615,-71.075647)) < 10
]

The query returns only those records whose location (as specified in the Location property) is less
than 10 kilometers from Endeca’s main office.

Dimension search queries
The Drs URL query parameter sets an EQL filter for a dimension search.

This filter restricts the scope of the records that will be considered for a dimension search. Only
dimension values represented on at least one record satisfying the filter are returned as search results.
For details on how dimension search works, see the Basic Development Guide.

Note the following about the Drs parameter:

• The syntax of Drs is identical to that of the Nrs parameter.
• Drs is dependent on the D parameter.

Because the Drs syntax is identical to that of Nrs, you can use the various EQL requests that are
documented earlier in this section.

The following example illustrates a dimension search query using an EQL filter:
N=0&D=novel&Drs=collection()/record[author_deceased = "false"]

Endeca ConfidentialEndeca® MDEX Engine Advanced Development Guide

Using the Endeca Query Language | Dimension search queries34

The query uses the D parameter to specify novel as the search term, while the Drs parameter sets a
filter for records in which the author_deceased property is set to false (that is, records of deceased
authors).

Endeca Query Language interaction with other features
Because EQL is a filtering language, it does not contain functionality to perform actions such as
triggering Content Spotlighting, sorting, or relevance ranking.

However, EQL is compatible with other query parameters to provide these features for queries. A brief
summary of these interactions is:

• Nrs is freely composable with the N, Ntt, Nr, and Nf filtering parameters. EQL filtering can be
conceptualized as occurring after record filtering in terms of side-effects such as spelling
auto-correction. This means that a record search within EQL, using the endeca:matches()
function, cannot auto-correct to a spelling suggestion outside of the record filter.

• Ordering and relevance ranking parameters (Ns, Nrk, Nrt, Nrr, Nrm) are composable with EQL
filters or other types of filters. The Nrk, Nrt, Nrr, and Nrm relevance ranking parameters take
precedence over a relevance ranking declaration with the Ntt and Ntx parameters.

The following table provides an overview of these interactions. The sections after the table provide
more information.

Parameter interactionWhy use this
parameter rather than
Nrs?

Similar function in
EQL?

Parameter

The results of Nrs are
intersected with the
results of N.

Use N to trigger Content
Spotlighting and
refinement generation.

Yes. Dimension filtering
can be done in EQL.

N

Nr is a pre-filter. Only
the records that pass

Use Nr for security
reasons or to explicitly

Yes. EQL can filter on
properties or
dimensions.

Nr

this filter are even
considered in Nrs.

exclude certain records
from being considered
in the rest of the query
(e.g., for spelling
suggestions).

Similar to N , the results
of Nrs are intersected

Use Ntt/Ntk to trigger
Content Spotlighting, as
record search within Nrs

Yes. EQL provides the
ability to do record
search.

Ntt, Ntk

with the results of
Ntt/Ntk.does not trigger it. Use

Ntt/Ntk with Nty for
DYM spelling
suggestions. (Nrs
record search does
support autocorrection,
but not DYM.)

Endeca® MDEX Engine Advanced Development GuideEndeca Confidential

35Using the Endeca Query Language | Endeca Query Language interaction with other features

Parameter interactionWhy use this
parameter rather than
Nrs?

Similar function in
EQL?

Parameter

Similar to N, the results
of Nrs are intersected
with the results of Nf.

No reason to do so. EQL
actually provides greater
flexibility because range
filters within Nrs can be

Yes. EQL provides the
ability to do range
filtering.

Nf

OR’ed, whereas Nf
range filters cannot.
Similar to N, the results
of Nrs are intersected
with the results of Nf.

As long as the property
specified in Ns exists on

N/ANo. EQL does not have
the ability to sort results.

Ns

the records being
returned, the Ns
parameter will sort the
results.

As long as the
dimensions specified in

N/ANo. EQL does not have
the ability to expose
dimensions.

Ne

Ne exist on the records
being returned, the Ne
parameter will expose
those dimensions.

This set of parameters
allow the ability to apply

N/ANo. EQL does not
provide the ability to

Nrk, Nrt, Nrr, Nrm

relevance ranking torelevance rank the
results. results even if record

search does not exist.

The Nrc parameter lets
you modify refinement

N/ANo. EQL does not
provide the ability to
modify refinement
configuration.

Nrc

configuration at query
time (for dynamic
ranking, statistics, and
so on).

N parameter interaction
The Nrs parameter has a dependency on the N parameter.

This means that you must use N=0 if no navigation filter is intended. Note, however, that the presence
of the N parameter does not affect Nrs (for example, for such actions as spelling correction and
automatic phrasing).

Endeca ConfidentialEndeca® MDEX Engine Advanced Development Guide

Using the Endeca Query Language | Endeca Query Language interaction with other features36

If the N parameter is used with one or more dimension value IDs, it can trigger Content Spotlighting,
since dimension filtering within Nrs does not trigger it. The resulting record set will be an intersection
of both filters. In this case, the dimension value IDs specified by the N parameter must belong to
dimensions that exist for the records being returned by Nrs.

For example, if the N parameter is filtering on Author Location but the Nrs parameter is returning only
Book records, then this intersection will result in zero records. In addition, during a query the Nrs
parameter does not trigger refinement generation for multi-select and hierarchical dimensions, while
N does. Therefore, because Nrs is ignored for purposes of refinement generation while N plays a key
role, the N parameter should be used instead of Nrs for parts of the query.

Nr record filter interactions
The Nr parameter sets a record filter for a navigation query.

When used with an EQL request, the Nr parameter acts as a prefilter. That is, it restricts the set of
records that are visible to the Nrs parameter. Because it is a prefilter, the Nr parameter is especially
useful as a security filter to control the records that a user can see. It is also useful to explicitly exclude
certain records from being considered in the rest of the query (for example, for spelling suggestions).

When using the Nr parameter, keep in mind that only the records that pass the Nr filter are even
considered in Nrs. For example, if you have Book records and Author records, both of these record
types would have to pass the Nr record filter logic in order for the Nrs parameter to determine
relationships between Books and Authors.

Nf range filter interactions
The Nf parameter enables range filter functionality.

Unlike a record filter, the Nf parameter does not act as a prefilter. Instead, when used with the Nrs
parameter, the resulting record set will be an intersection of the results of the Nf and Nrs parameters.
That is, an Nf range filter and an EQL filter together form an AND Boolean request. For more information
on range filters, see “Using Range Filters” in the Basic Development Guide.

Ntk and Ntt record search interaction
Ntk and Ntt are a set of parameters used for record search which act as a filter (not a prefilter).

Therefore, when used with the Nrs parameter, the resulting record set will be an intersection of the
results of the Nrs parameter and the Ntk/Ntt parameters. There are two main advantages of using
these parameters with the Nrs parameter:

• The Ntk/Ntt parameters can trigger Content Spotlighting, whereas the Nrs parameter cannot.
• The Ntk/Ntt parameters can return auxiliary information (such as DYM spelling suggestions and

supplemental objects), whereas the Nrs parameter cannot.

In addition, you can use other parameters that depend on Ntk, such as the Ntx parameter to specify
a match mode or a relevance ranking strategy. For details on the Ntk, Ntt, and Ntx parameters, see
the Basic Development Guide.

Endeca® MDEX Engine Advanced Development GuideEndeca Confidential

37Using the Endeca Query Language | Endeca Query Language interaction with other features

Ns sorting interaction
You can append the Ns parameter to an EQL request to sort the returned record set by a property of
the records.

To do so, use the following syntax:
Ns=sort-key-name[|order]

The Ns parameter specifies the property or dimension by which to sort the records, and an optional
list of directions in which to sort. For example, this query:
Nrs=collection()/records[book_authorref = collection()
 /records[author_nationality = "american"]
 /author_id]&Ns=book_year

returns all books written by American authors and sorts the records by the year in which the book was
written (the book_year property). You can also add the optional order parameter to Ns to control the
order in which the property is sorted (0 is for an ascending sort while 1 is descending). The default
sort order for a property is ascending. For example, the above query returns the records in ascending
order (from the earliest year to the latest), while the following Ns syntax uses a descending sort order:
Ns=book_year|1

For more details on how to specify a sort order, see “Sorting Endeca Records” in the Basic Development
Guide.

Nrk relevance ranking interaction
The Nrk, Nrt, Nrr, and Nrm set of parameters can be used to order the records of an EQL request,
via a specified relevance ranking strategy.

The following is an example of using these parameters:
Nrs=collection()/record[Recordtype = "book"]
 &Nrk=All&Nrt=novel&Nrr=maxfield&Nrm=matchall

The sample query returns all Book records (that is, all records that are tagged with the Recordtype
property set to “book”). The record set is ordered with the Maxfield relevance ranking module (specified
via Nrr), which uses the word novel (specified via Nrt). The search interface is specified via the Nrk
parameter.

The Nrk, Nrt, Nrr, and Nrm parameters take precedence over the Ntk, Ntt, and Ntx parameters.
That is, if both sets of parameters are used in a query, the relevance ranking strategy specified by the
Nrr parameter will be used to order the records. For more information on these parameters, see the
topic “Using the Nrk, Nrt, Nrr, and Nrm parameters."

Ne exposed refinements interaction
The Ne parameter specifies which dimension (out of all valid dimensions returned in an EQL request)
should return actual refinement dimension values.

The behavior of the Ne parameter is the same for EQL request as for other types of navigation queries.

The following example shows the Ne parameter being specified with an EQL text search:
Nrs=collection()/record[endeca:matches(.,"description",
 "story","partialmax")]&Ne=6

Endeca ConfidentialEndeca® MDEX Engine Advanced Development Guide

Using the Endeca Query Language | Endeca Query Language interaction with other features38

In the query, 6 is the root dimension value ID for the Genre dimension. The query will return all
dimensions for records in which the term story appears in the description property, as well as the
refinement dimension values for the Genre dimension.

Spelling auto-correction and Did You Mean interaction
Spelling auto-correction for dimension search and record search automatically computes alternate
spellings for user query terms that are misspelled.

The Did You Mean (DYM) feature provides the user with explicit alternative suggestions for a keyword
search. Both features are fully explained in the "Implementing Spelling Correction and Did You Mean"
section.

Both DYM and spelling auto-correction work normally when the Ntt parameter is used with Nrs. For
example, in the following query:
Nrs=collection()/record[Recordtype = "book"]
 &Ntk=description&Ntt=storye&Ntx=mode+matchall

the misspelled term storye is auto-corrected to story (assuming that the MDEX Engine was started
with the --spl flag).

If DYM is enabled instead of auto-correction (using the --dym flag), then the Nty=1 parameter can
be used in the query:
Nrs=collection()/record[Recordtype = "book"]
 &Ntk=description&Ntt=storye&Ntx=mode+matchall&Nty=1

In this case, no records are returned (assuming that the misspelled term storye is not in the data set),
but the term story is returned as a DYM suggestion.

If both spelling auto-correction and DYM are enabled, the spelling auto-correction feature will take
precedence. However, for a full text search with the endeca:matches() function, the spelling
auto-correction feature will work, but the DYM feature is not supported. For example, in this query:
collection()/record
[
 endeca:matches(.,"description","storye")
]

the misspelled term storye is auto-corrected to story if auto-correction is enabled. If DYM is enabled
but auto-correction is not, then no records are returned (again assuming that the misspelled term
storye is not in the data set).

Endeca Analytics interaction
The Endeca Analytics API can be used to request analytics operations based on the results of a
navigation query.

The analytics operations will work the same way as with navigation queries that do not use EQL.

Endeca Query Language per-query statistics log
The MDEX Engine can log information about the processing time of an EQL request.

Endeca® MDEX Engine Advanced Development GuideEndeca Confidential

39Using the Endeca Query Language | Endeca Query Language per-query statistics log

The log entry is at the level of a time breakdown across the stages of query processing (including
relationship filters). This information will help you to identify and tune time-consuming queries.

Note: Only EQL requests produce statistics for this log. Therefore, you should enable this log
only if you are using EQL.

Implementing the per-query statistics log
The EQL per-query statistics log is turned off by default.

You can specify its creation by using the Dgraph --log_stats flag:
--log_stats path

The path argument sets the path and filename for the log.

This argument must be a filename, not a directory. If the file cannot be opened, no logging will be
performed. The log file uses an XML format, as shown in the following example that shows a log entry
for this simple query:
fn:collection()/record[author_nationality = "english"]

To read the file, you can open it with a text editor, such as TextPad.

<?xml version="1.0" encoding="UTF-8"?>
<Queries>
<Query xmlns="endeca:stats">

 <EndecaQueryLanguage>
 <Stats>
 <RecordPath query_string="fn:collection()/record[author_nationality
= "english"]">
 <StatInfo number_of_records="2">
 <TimeInfo>
 <Descendant unit="ms">0.47705078125</Descendant>
 <Self unit="ms">0.194580078125</Self>
 <Total unit="ms">0.671630859375</Total>
 </TimeInfo>
 </StatInfo>
 <Predicate query_string="[author_nationality = "english"]">

 <StatInfo number_of_records="2">
 <TimeInfo>
 <Descendant unit="ms">0.287841796875</Descendant>
 <Self unit="ms">0.189208984375</Self>
 <Total unit="ms">0.47705078125</Total>
 </TimeInfo>
 </StatInfo>
 <PropertyComparison query_string="author_nationality = "en¬
glish"">
 <StatInfo number_of_records="2">
 <TimeInfo>
 <Descendant unit="ms">0.001953125</Descendant>
 <Self unit="ms">0.285888671875</Self>
 <Total unit="ms">0.287841796875</Total>
 </TimeInfo>
 </StatInfo>
 <StringLiteral query_string=""english"">
 <StatInfo number_of_records="0">
 <TimeInfo>

Endeca ConfidentialEndeca® MDEX Engine Advanced Development Guide

Using the Endeca Query Language | Endeca Query Language per-query statistics log40

 <Descendant unit="ms">0</Descendant>
 <Self unit="ms">0.001953125</Self>
 <Total unit="ms">0.001953125</Total>
 </TimeInfo>
 </StatInfo>
 </StringLiteral>
 </PropertyComparison>
 </Predicate>
 </RecordPath>
 </Stats>
 </EndecaQueryLanguage>

</Query>
</Queries>

Parts of the log file

The following table describes the meanings of the elements and attributes.

DescriptionElement/Attribute

Encapsulates the statistics for a given query (that
is, each query will have its own Query node).

Query

The record path of a collection() function.RecordPath

Lists the time spent processing the predicate part
of a query.

Predicate

Lists the time spent processing an expression part
of an query, such as PropertyComparison

otherNodes

(property or range filter query), StringLiteral
(property value query), MatchesExpr (text search
query), and DValComparison (dimension value
query).

For RecordPath, this attribute lists the full query
that was issued. For the other elements, it lists the

query_string

part of the query for which statistics in that element
are given.

Returns the number of records which satisfy the
query_string in a given node.

number_of_records

Encapsulates the TimeInfo and CacheInfo
information.

StatInfo

Encapsulates time-related information about the
node.

TimeInfo

The time, in milliseconds, spent in the descendants
of a given node.

Descendant

The total amount of time, in milliseconds, spent in
this node.

Self

The total amount of time, in milliseconds, spent in
this node and its descendants.

Total

Encapsulates information about cache hits, misses,
and insertions. Cache is checked only when a

CacheInfo

Endeca® MDEX Engine Advanced Development GuideEndeca Confidential

41Using the Endeca Query Language | Endeca Query Language per-query statistics log

DescriptionElement/Attribute

combined relationship filter and range comparison
is made.

Setting the logging threshold for queries
You can set the threshold above which statistics information for a query will be logged.

You do this by using the Dgraph --log-stats-thresh flag. Note that this flag is dependent on the
--log_stats flag.

The syntax of the threshold flag is:
--log_stats_thresh value

The value argument is in milliseconds (1000 milliseconds = 1 second). However, the value can be
specified in seconds by adding a trailing s to the number.

For example, this:
--log_stats_thresh 1s

is the same as:
--log_stat_thresh 1000

If the total execution time for an Endeca Query Language request (not the expression execution time)
is above this threshold, per-query performance information will be logged. The default for the threshold
is 1 minute (60000 milliseconds). That is, if you use the --log_stats flag but not the
--log_stats_thresh flag, a value of 1 minute will be used as the threshold for the queries.

Creating an Endeca Query Language pipeline
This section provides information on configuring the pipeline for an application that implements EQL.

Also included are requirements for the Endeca properties and dimensions.

Creating the dimensions and properties
Before an Endeca property can be used in EQL requests, the property must be configured appropriately.

The details are as follows:

• One or more of the following must be true of the property:

• It is explicitly enabled for use with record filters.
• It is specified as a rollup key.
• It is specified as a record spec.
• It has one of the following types: double, integer, geocode, datetime, duration, or time.

• The property name must be in the NCName format, as explained in the topic “NCName format for
properties and dimensions.”

• If you want to allow wildcard terms for record searches, the property must be enabled for wildcard
search.

Endeca ConfidentialEndeca® MDEX Engine Advanced Development Guide

Using the Endeca Query Language | Creating an Endeca Query Language pipeline42

To enable a property for record filters, open the property in the Developer Studio Property editor and
check the “Enable for record filters” attribute.

Use the Property editor’s Search tab to configure the property for record search and wildcard search.
To use dimensions in Endeca Query Language queries:

• All dimensions are automatically enabled for use in EQL record filter expressions, and therefore
do not need to be enabled for record filters.

• Dimension names (and therefore the names of root dimension values) must be in the NCName
format. Names of non-root dimension values, however, do not have to be in the NCName format.

If you are using a search interface with EQL requests, the name of the search interface does not have
be an NCName.

Configuring the pipeline for Switch joins
With one exception, the pipeline used for an application that implements EQL does not have any
special configuration requirements.

The exception is if you purchased the RRN module and will be using it to apply relationship filters at
query time. In this case, you will probably be using a Switch join in the pipeline. Note that using a
Switch join is not mandatory for RRN queries, but you will use one if you want to keep different record
types uncombined.

For example, the pipeline used in the application that provides the sample queries (for other sections
of this chapter) assumes that the data set has three types of records. The pipeline looks like this in
Developer Studio’s Pipeline Diagram:

Endeca® MDEX Engine Advanced Development GuideEndeca Confidential

43Using the Endeca Query Language | Creating an Endeca Query Language pipeline

The pipeline has three record adapters to load the three record types (Book records, Author records,
and Editor records). These are standard record adapters and do not require any special configuration.

The record assembler (named Switch) is used to implement a Switch join on the three sets of records.
The Sources tab is where you add the record sources for the record assembler, which are the three
record adapters:

The record assembler will process all the records from the three record adapters. However, the records
are never compared or combined. Because the three record types are not combined, you can use
RRN queries to apply relationship filters. For more information on these types of queries, see the topic
“Record Relationship Navigation queries."

Running the Endeca Query Language pipeline
No special configuration is needed for running an EQL pipeline.

You can run the pipeline with either the Endeca Application Controller (EAC) or control scripts. See
the Endeca Application Controller Guide for details on provisioning your application. For information
on using control scripts, see the Endeca Control System Guide.

Endeca ConfidentialEndeca® MDEX Engine Advanced Development Guide

Using the Endeca Query Language | Creating an Endeca Query Language pipeline44

Chapter 3

Record Filters

This section describes how to implement record filters in your Endeca application.

About record filters
Record filters allow an Endeca application to define arbitrary subsets of the total record set and
dynamically restrict search and navigation results to these subsets.

For example, the catalog might be filtered to a subset of records appropriate to the specific end user
or user role. The records might be restricted to contain only those visible to the current user based on
security policies. Or, an application might allow end users to define their own custom record lists (that
is, the set of parts related to a specific project) and then restrict search and navigation based on a
selected list. Record filters enable these and many other application features that depend on applying
Endeca search and navigation to dynamically defined and selected subsets of the data.

If you specify a record filter, whether for security, custom catalogs, or any other reason, it is applied
before any search processing. The result is that the search query is performed as if the data set only
contained records allowed by the record filter.

Record filters support Boolean syntax using property values and dimension values as base predicates
and standard Boolean operators (AND, OR, and NOT) to compose complex expressions. For example,
a filter can consist of a list of part number property values joined in a multi-way OR expression. Or, a
filter might consist of a complex nested expression of ANDs, ORs, and NOTs on dimension IDs and
property values.

Filter expressions can be saved and loaded from XML files, or passed directly as part of an MDEX
Engine query. In either case, when a filter is selected, the set of visible records is restricted to those
matching the filter expression. For example, record search queries will not return records outside the
selected subset, and refinement dimension values are restricted to lead only to records contained
within the subset.

Finally, it is important to keep in mind that record filters are case-sensitive.

Record filter syntax
Record filters are specified with query-based or file-based expressions.

Record filters can be specified directly within an MDEX Engine query. For example, the complete
Boolean expression representing the desired record subset can be passed directly in an application
URL.

In some cases, however, filter expressions require persistence (in the case where the application
allows the end user to define and save custom part lists) or may grow too large to be passed
conveniently as part of the query (in the case where a filter list containing thousands of part numbers).
To handle cases such as these, the MDEX Engine also supports file-based filter expressions.

File-based filter expressions are simply files stored in a defined location containing XML representations
of filter expressions. This section describes both the MDEX Engine query and XML syntaxes for filter
expressions.

Query-level syntax
The query-level syntax supports prefix-oriented Boolean functions (AND, OR, and NOT), colon-separated
paths for dimension values and property values, and numeric dimension value IDs.

The following BNF grammar describes the syntax for query-level filter expressions:

<filter> ::= <and-expr>
 | <or-expr>
 | <not-expr>
 | <filter-expr>
 | <literal>
<and-expr> ::= AND(<filter-list>)
<or-expr> ::= OR(<filter-list>)
<not-expr> ::= NOT(<filter>)
<filter-expr> ::= FILTER(<string>)
<filter-list> ::= <filter>
 | <filter>,<filter-list>
<literal> ::= <pval>
 | <dval-id>
 | <dval-path>
<pval> ::= <prop-key>:<prop-value>
<prop-key> ::= <string>
<prop-value> ::= <string>
<dval-path> ::= <string>
 | <string>:<dval-path>
<dval-id> ::= <unsigned-int>
<string> ::= any character string

The following five special reserved characters must be prepended with an escape character (\) for
inclusion in a string:
() , : \

Using the FILTER operator

Aside from nested Boolean operations, a key aspect of query filter expressions is the ability to refer
to file-based filter expressions using the FILTER operator. For example, if a filter is stored in a file
called MyFilter, that filter can be selected as follows:
FILTER(MyFilter)

FILTER operators can be combined with normal Boolean operators to compose filter operations, as
in this example:
AND(FILTER(MyFilter),NOT(Manufacturer:Sony))

Endeca ConfidentialEndeca® MDEX Engine Advanced Development Guide

Record Filters | Record filter syntax46

The expression selects records that are satisfied by the expression contained in the file MyFilter but
that are not assigned the value Sony to the Manufacturer property.

Example of a query-level filter expression

The following example illustrates a basic filter expression that uses nested Boolean operations:
OR(AND(Manufacturer:Sony,1001),
 AND(Manufacturer:Aiwa,NOT(1002)), Manufacturer:Denon)

This expression will match the set of records satisfying any of the following statements:

• Value for the Manufacturer property is Sony and record assigned dimension value is 1001.
• Value for Manufacturer is Aiwa and record is not assigned dimension value 1002.
• Value for Manufacturer property is Denon.

XML syntax for file-based record filter expressions
The syntax for file-based record filter expressions closely mirrors the query level syntax, with some
differences.

The file-based differences from the query-level syntax are:

• In place of the AND, OR, NOT, and FILTER operators, the FILTER_AND, FILTER_OR,
FILTER_NOT, and FILTER_NAME XML elements are used, respectively.

• In place of the property and dimension value syntax used for query expressions, the PROP,
DVAL_ID, and DVAL_PATH elements are used. Note that the DVAL_PATH element’s PATH
attribute requires that paths for dimension values and property values be separated by colons, not
forward slashes.

• Instead of parentheses to enclose operand lists, normal XML element nesting (implicit in the
locations of element start and end tags) is used.

The full DTD for XML file-based record filter expressions is provided in the filter.dtd file packaged
with the Endeca software release.

Examples of file-based filter expressions

As an example, the following query-level expression:
OR(AND(Manufacturer:Sony,1001),
 AND(Manufacturer:Aiwa,NOT(1002)), Manufacturer:Denon)

is represented as a file-based expression using the following XML syntax:
<FILTER>
 <FILTER_OR>
 <FILTER_AND>
 <PROP NAME="Manufacturer"><PVAL>Sony</PVAL></PROP>
 <DVAL_ID ID="1001"/>
 </FILTER_AND>
 <FILTER_AND>
 <PROP NAME="Manufacturer"><PVAL>Aiwa</PVAL></PROP>
 <FILTER_NOT>
 <DVAL_ID ID="1002"/>
 </FILTER_NOT>
 </FILTER_AND>
 <PROP NAME="Manufacturer"><PVAL>Denon</PVAL></PROP>
 </FILTER_OR>
</FILTER>

Endeca® MDEX Engine Advanced Development GuideEndeca Confidential

47Record Filters | Record filter syntax

Just as file-based expressions can be composed with query expressions, file expressions can also be
composed within other file expressions. For example, the following query expression:
AND(FILTER(MyFilter),NOT(Manufacturer:Sony))

can be represented as a file-based expression using the following XML:
<FILTER>
 <FILTER_AND>
 <FILTER_NAME NAME="MyFilter"/>
 <FILTER_NOT>
 <PROP NAME="Manufacturer"><PVAL>Sony</PVAL></PROP>
 </FILTER_NOT>
 </FILTER_AND>
</FILTER>

Enabling properties for use in record filters
Endeca Properties must be explicitly enabled for use in record filters.

Note that all dimension values are automatically enabled for use in record filter expressions.

To enable a property for use with record filters:

1. In Developer Studio, open the Properties view.
2. Double-click on the Endeca property that you want to configure.

The property is opened in the Property editor.
3. Check the Enable for record filters option, as in the following example.

4. Click OK to save your changes.

Data configuration for file-based filters
To use file-based filter expressions in an application, you must create a directory to contain record
filter files in the same location where the MDEX Engine index data will reside.

Endeca ConfidentialEndeca® MDEX Engine Advanced Development Guide

Record Filters | Enabling properties for use in record filters48

The name of this directory must be:
<index_prefix>.fcl

For example, if the MDEX Engine index data resides in the directory:
/usr/local/endeca/my_app/data/partition0/dgidx_output/

and the index data prefix is:
/usr/local/endeca/my_app/data/partition0/dgidx_output/index

then the directory created to contain record filter files must be:
/usr/local/endeca/my_app/data/partition0/dgidx_output/index.fcl

Record filters that are needed by the application should be stored in this directory, which is searched
automatically when record filters are selected in an MDEX Engine query. For example, if in the above
case you create a filter file with the path:
/usr/local/endeca/my_app/data/partition0/dgidx_output/index.fcl/MyFilter

then the filter expression stored in this file will be used when the query refers to the filter MyFilter.

For example, the URL query:
N=0&Nr=FILTER(MyFilter)

will use this file filter.

Record filter result caching
The MDEX Engine caches the results of file-based record filter evaluations for re-use.

The cached results are used on subsequent MDEX Engine queries as part of the global dynamic
cache. The cache replacement policy is to discard least recently-used (LRU) entries.

Note: The MDEX Engine only caches the results of file-based record filters, because these are
generally more costly to evaluate due to XML-parsing overhead.

URL query parameters for record filters
Three MDEX Engine URL query parameters are available to control the use of record filters.

The URL query parameters are as follows:

DescriptionParameter

Links to the Java ENEQuery.setNavRecordFilter() method and the .NET
ENEQuery.NavRecordFilter property. The Nr parameter can be used to specify
a record filter expression that will restrict the results of a navigation query.

Nr

Links to the Java ENEQuery.setAggrERecNavRecordFilter() method and the
.NET ENEQuery.AggrERecNavRecordFilter property. The Ar parameter can be

Ar

used to specify a record filter expression that will restrict the records contained in an
aggregated-record result returned by the MDEX Engine.

Endeca® MDEX Engine Advanced Development GuideEndeca Confidential

49Record Filters | Record filter result caching

DescriptionParameter

Links to the Java ENEQuery.setDimSearchNavRecordFilter() method and the
.NET ENEQuery.DimSearchNavRecordFilter property. The Dr parameter can

Dr

be used to specify a record filter expression that will restrict the universe of records
considered for a dimension search. Only dimension values represented on at least one
record satisfying the specified filter will be returned as search results.

Using the Nr query parameter

You can use the Nr parameter to perform a record query search so that only results tagged with a
specified dimension value are returned. For example, say you have a dimension tree that looks like
this, where Sku is the dimension root and 123, 456, and 789 are leaf dimension values:
Sku
 123
 456
 789
 ...

To perform a record query search so that results tagged with any of these dimension values is returned,
use the following:
Nr=OR(sku:123,OR(sku:456),OR(sku:789))

To perform a record query search so that only results tagged with the dimension value 123 are returned,
use the following:
Nr=sku:123

Examples of record filter query parameters
<application>?N=0&Nr=FILTER(MyFilter)

<application>?A=2496&An=0&Ar=OR(10001,20099)

<application>?D=Hawaii&Dn=0&Dr=NOT(Subject:Travel)

Record filter performance impact
Record filters can have an impact in some areas.

The evaluation of record filter expressions is based on the same indexing technology that supports
navigation queries in the MDEX Engine. Because of this, there is no additional memory or indexing
cost associated with using navigation dimension values in record filters.

Because expression evaluation is based on composition of indexed information, most expressions of
moderate size (that is, tens of terms/operators) do not add significantly to request processing time.

Furthermore, because the MDEX Engine caches the results of file-based record filter operations on
an LRU (least recently used) basis, the costs of expression evaluation are typically only incurred on
the first use of a file-based filter during a navigation session. However, some expected uses of record
filters have known performance bounds, which are described below.

Record filters can impact the following areas:

• Spelling auto-correction and spelling Did You Mean
• Memory cost

Endeca ConfidentialEndeca® MDEX Engine Advanced Development Guide

Record Filters | Record filter performance impact50

• Expression evaluation

Interaction with spelling auto-correction and spelling DYM
Record filters impose an extra cost on spelling auto-correction and spelling Did You Mean.

Memory cost
The use of properties in record filters incurs a memory cost.

The evaluation of record filter dimension value expressions is based on the same indexing technology
that supports navigation queries in the Dgraph. Because of this, there is no additional memory or
indexing cost associated with using navigation dimension values in record filters. When using property
values in record filter expressions, additional memory and indexing cost is incurred because properties
are not normally indexed for navigation.

This feature is controlled in Developer Studio by the Enable for record filters setting on the Property
editor.

Expression evaluation
Expression evaluation of large OR filters and large scale negation can impose a performance impact
on the system.

Because expression evaluation is based on composition of indexed information, most expressions of
moderate size (that is, tens of terms and operators) do not add significantly to request processing time.
Furthermore, because the Dgraph caches the results of record filter operations, the costs of expression
evaluation are typically only incurred on the first use of a filter during a navigation session. However,
some expected uses of record filters have known performance bounds, which are described in the
following two sections.

Large OR filters

One common use of record filters is the specification of lists of individual records to identify data subsets
(for example, custom part lists for individual customers, culled from a superset of parts for all customers).

The total cost of processing records can be broken down into two main parts: the parsing cost and the
evaluation cost. For large expressions such as these, which will commonly be stored as file-based
filters, XML parsing performance dominates total processing cost.

XML parsing cost is linear in the size of the filter expression, but incurs a much higher unit cost than
actual expression evaluation. Though lightweight, expression evaluation exhibits non-linear slowdown
as the size of the expression grows.

OR expressions with a small number of operands perform linearly in the number of results, even for
large result sets. While the expression evaluation cost is reasonable into the low millions of records
for large OR expressions, parsing costs relative to total query execution time can become too large,
even for smaller numbers of records.

Part lists beyond approximately one hundred thousand records generally result in unacceptable
performance (10 seconds or more load time, depending on hardware platform). Lists with over one
million records can take a minute or more to load, depending on hardware. Because results are cached,
load time is generally only an issue on the first use of a filter during a session. However, long load
times can cause other Dgraph requests to be delayed and should generally be avoided.

Endeca® MDEX Engine Advanced Development GuideEndeca Confidential

51Record Filters | Record filter performance impact

Large-scale negation

In most common cases, where the NOT operator is used in conjunction with other positive expressions
(that is, AND with a positive property value), the cost of negation does not add significantly to the cost
of expression evaluation.

However, the costs associated with less typical, large-scale negation operations can be significant.
For example, while still sub-second, top-level negation filtering (such as "NOT availability=FALSE")
of a record set in the millions does not allow high throughput (generally less than 10 operations per
second).

If possible, attempt to rephrase expressions to avoid the top-level use of NOT in Boolean expressions.
For example, in the case where you want to list only available products, the expression
"availability=TRUE" will yield better performance than "NOT availability=FALSE".

Endeca ConfidentialEndeca® MDEX Engine Advanced Development Guide

Record Filters | Record filter performance impact52

Chapter 4

Bulk Export of Records

This section describes the bulk export feature.

About the bulk export feature
The bulk export feature allows your application to perform a navigation query for a large number of
records.

Each record in the resulting record set is returned from the MDEX Engine in a bulk-export-ready,
gzipped format. The records can then be exported to external tools, such as a Microsoft Excel or a
CSV (comma separated value) file.

Applications are typically limited in the number of records that can be requested by the memory
requirements of the front-end application server. The bulk export feature adds a means of delaying
parsing and ERec or AggrERec object instantiation, which allows front-end applications to handle
requests for large numbers of records.

Configuring the bulk export feature
Endeca properties and dimensions must be configured for bulk export.

Endeca properties and/or dimensions that will be included in a result set for bulk exporting must be
configured in Developer Studio with theShowwith Record List checkbox enabled. When this checkbox
is set, the property or dimension will appear in the record list display.

No Dgidx or Dgraph flags are necessary to enable the bulk exporting of records. Any property or
dimension that has the Show with Record List attribute is available to be exported.

Using URL query parameters for bulk export
A query for bulk export records is the same as any valid navigation query.

Therefore, the Navigation parameter (N) is required for the request. No other URL query parameters
are mandatory.

Setting the number of bulk records to return
By using members from the ENEQuery class, you can set the number of bulk-format records to be
returned by the MDEX Engine.

When creating the navigation query, the application can specify the number of Endeca records or
aggregated records that should be returned in a bulk format with these Java and .NET calls:

• The Java ENEQuery.setNavNumBulkERecs() method and the .NET
ENEQuery.NavNumBulkERecs property set the maximum number of Endeca records (ERec
objects) to be returned in a bulk format from a navigation query.

• The Java ENEQuery.setNavNumBulkAggrERecs() method and the .NET
ENEQuery.NavNumBulkAggrERecs property set the maximum number of aggregated Endeca
records (AggrERec objects) to be returned in bulk format from a navigation query.

The MAX_BULK_ERECS_AVAILABLE constant can be used with either call to specify that all of the
records that match the query should be exported; for example:
// Java example:
usq.setNavNumBulkERecs(MAX_BULK_ERECS_AVAILABLE);

// .NET example:
usq.NavNumBulkERecs = MAX_BULK_ERECS_AVAILABLE;

To find out how many records will be returned for a bulk-record navigation query, use these calls:

• The Java ENEQuery.getNavNumBulkERecs() method and the .NET
ENEQuery.NavNumBulkERecs property are for Endeca records.

• The Java ENEQuery.getNavNumBulkAggrERecs() method and the .NET
ENEQuery.NavNumBulkAggrERecs property are for aggregated Endeca records.

Note that all of the above calls are also available in the UrlENEQuery class.

The following examples set the maximum number of bulk-format records to 5,000 for a navigation
query.

Java example
// Set MDEX Engine connection
ENEConnection nec = new HttpENEConnection(eneHost,enePort);
// Create a query
ENEQuery usq = new UrlENEQuery(request.getQueryString(), "UTF-8");
// Specify the maximum number of records to be returned
usq.setNavNumBulkERecs(5000);
// Make the query to the MDEX Engine
ENEQueryResults qr = nec.query(usq);

.NET example
// Set Navigation Engine connection
HttpENEConnection nec = new HttpENEConnection(ENEHost, ENEPort);
// Create a query
String queryString = Request.Url.Query.Substring(1);
ENEQuery usq = new UrlENEQuery(queryString, "UTF-8");
// Specify the maximum number of records to be returned
usq.NavNumBulkERecs = 5000;
// Make the request to the Navigation Engine
ENEQueryResults qr = nec.Query(usq);

Endeca ConfidentialEndeca® MDEX Engine Advanced Development Guide

Bulk Export of Records | Setting the number of bulk records to return54

Retrieving the bulk-format records
By using members from the Navigation class, you can retrieve the returned set of bulk-format records
from the Navigation query object.

The list of Endeca records is returned from the MDEX Engine inside the standard Navigation object.
The records are returned compressed in a gzipped format. The format is not directly exposed to the
application developer; the developer only has access to the bulk data through the methods from the
language being used. Note that the retrieval method depends on whether you have a Java or .NET
implementation.

It is up to the front-end application developer to determine what to do with the retrieved records. For
example, you can display each record’s property and/or dimension values, as described in this guide.
You can also write code to properly format the property and dimension values for export to an external
file, such as a Microsoft Excel file or a CSV file.

Using Java Bulk Export methods
In a Java-based implementation, the list of Endeca records is returned as a standard Java Iterator
object.

To access the bulk-record Iterator object, use one of these methods:

• Navigation.getBulkERecIter() returns an Iterator object containing the list of Endeca
bulk-format records (ERec objects).

• Navigation.getBulkAggrERecIter() returns an Iterator object containing the list of
aggregated Endeca bulk-format records (AggrERec objects).

The Iterator class provides access to the bulk-exported records. The Iterator.next() method
will gunzip the next result record and materialize the per-record object. The methods in the Iterator
class that allow access to the exported records are the following:

• Iterator.hasNext() returns true if the iterator has more records.
• Iterator.next() returns the next record in the iteration. The record is returned as either an
ERec or AggrERec object, depending on which Navigation method was used to retrieve the
iterator.

The following Java code fragment shows how to set the maximum number of bulk-format records to
5,000 and then obtain a record list and iterate through the list.

// Create a query
ENEQuery usq = new UrlENEQuery(request.getQueryString(), "UTF-8");
// Specify the maximum number of bulk export records
// to be returned
usq.setNavNumBulkERecs(5000);
// Make the query to the MDEX Engine
ENEQueryResults qr = nec.query(usq);
// Verify we have a Navigation object before doing anything.
if (qr.containsNavigation()) {
 // Get the Navigation object
 Navigation nav = ENEQueryResults.getNavigation();
 // Get the Iterator object that has the ERecs
 Iterator bulkRecs = nav.getBulkERecIter();
 // Loop through the record list
 while (bulkRecs.hasNext()) {
 // Get a record, which will be gunzipped
 ERec record = (ERec)bulkRecs.next();

Endeca® MDEX Engine Advanced Development GuideEndeca Confidential

55Bulk Export of Records | Retrieving the bulk-format records

 // Display its properties or format the record for export
 ...
 }
}

Using .NET bulk export methods
In a .NET application, the list of Endeca records is returned as an Endeca ERecEnumerator object.

To retrieve the ERecEnumerator object, use the Navigation.BulkAggrERecEnumerator or
Navigation.BulkERecEnumerator property.

The following .NET code sample shows how to set the maximum number of bulk-format records to
5000, obtain the record list, and iterate through the collection. After the ERecEnumerator object is
created, an enumerator is positioned before the first element of the collection, and the first call to
MoveNext() moves the enumerator over the first element of the collection. After the end of the
collection is passed, subsequent calls to MoveNext() return false. The Current property will gunzip
the current result record in the collection and materialize the per-record object.

// Create a query
ENEQuery usq = new UrlENEQuery(queryString, "UTF-8");
// Set max number of returned bulk-format records
usq.NavNumBulkERecs = 5000;
// Make the query to the Navigation Engine
ENEQueryResults qr = nec.Query(usq);
// First verify we have a Navigation object.
if (qr.ContainsNavigation()) {
 // Get the Navigation object
 Navigation nav = ENEQueryResults.Navigation;
 // Get the ERecEnumerator object that has the ERecs
 ERecEnumerator bulkRecs = nav.BulkERecEnumerator;
 // Loop through the record list
 while (bulkRecs.MoveNext()) {
 // Get a record, which will be gunzipped
 ERec record = (ERec)bulkRecs.Current;
 // Display its properties or format for export
 ...
 }
}

Performance impact for bulk export records
The bulk export feature can reduce memory usage in your application.

Unneeded overhead is typically experienced when exporting records from an MDEX Engine without
the Bulk Export feature. Currently, the front-end converts the on-wire representation of all the records
into objects in the API language, which is not appropriate for bulk export given the memory footprint
that results from multiplying a large number of records by the relatively high overhead of the Endeca
record object format. For export, converting all of the result records to API language objects at once
requires an unacceptable amount of application server memory.

Reducing the per-record memory overhead allows you to output a large number of records from existing
applications. Without this feature, applications that want to export large amounts of data are required

Endeca ConfidentialEndeca® MDEX Engine Advanced Development Guide

Bulk Export of Records | Performance impact for bulk export records56

to split up the task and deal with a few records at a time to avoid running out of memory in the application
server’s threads. This division of exports adds query processing overhead to the MDEX Engine which
reduces system throughput and slows down the export process.

In addition, the compressed format of bulk-export records further reduces the application's memory
usage.

Endeca® MDEX Engine Advanced Development GuideEndeca Confidential

57Bulk Export of Records | Performance impact for bulk export records

Part 2

Advanced Search Features

• Implementing Spelling Correction and Did You Mean
• Using Stemming and Thesaurus
• Using Automatic Phrasing
• Relevance Ranking

Chapter 5

Implementing Spelling Correction and Did
You Mean

This section describes the tasks involved in implementing the Spelling Correction and Did You Mean
features of the Endeca MDEX Engine.

About Spelling Correction and Did You Mean
The Spelling Correction and Did You Mean features of the Endeca MDEX Engine enable search
queries to return expected results when the spelling used in query terms does not match the spelling
used in the result text (that is, when the user misspells search terms).

Spelling Correction operates by computing alternate spellings for user query terms, evaluating the
likelihood that these alternate spellings are the best interpretation, and then using the best alternate
spell-corrected query forms to return extra search results. For example, a user might search for records
containing the text Abrham Lincoln. With spelling correction enabled, the Endeca MDEX Engine will
return the expected results: those containing the text Abraham Lincoln.

Did You Mean (DYM) functionality allows an application to provide the user with explicit alternative
suggestions for a keyword search. For example, if a user searches for valle in the sample wine data,
he or she will get six results. The terms valley and vale, however, are much more prevalent (2,414
results and 20 results respectively.) When this feature is enabled, the MDEX Engine will respond with
the six results for valle, but will also suggest that valley or vale may be what the end-user actually
intended. If multiple suggestions are returned, they will be sorted and presented according to the
closeness of the match.

The Endeca MDEX Engine supports two complementary forms of Spelling Correction:

• Auto-correction for record search and dimension search.
• Explicit spelling suggestions for record search (the "Did you mean?" dialog box).

Either or both features can be used in a single application, and all are supported by the same underlying
spelling engine and Spelling Correction modules.

The behavior of Endeca spelling correction features is application-aware, because the spelling dictionary
for a given data set is derived directly from the indexed source text, populated with the words found
in all searchable dimension values and properties. For example, in a set of records containing computer
equipment, a search for graphi might spell-correct to graphics. In a different data set for sporting
equipment, the same search might spell-correct to graphite.

Endeca Spelling Correction features include a number of tuning parameters to control performance,
behavior, and result presentation. This section describes the steps necessary to enable spelling
correction for record and/or dimension search, and provides a reference to the tuning parameters
provided to allow applications to obtain various behavior and performance trade-offs from the spelling
engine.

Spelling modes
Endeca spelling features compute contextual suggestions at the full query level.

That is, suggestions may include one or more corrected query terms, which can depend on context
such as other words used in the query. To determine these full query suggestions, the MDEX Engine
relies on low-level spelling modules to compute single-word suggestions, that is, words similar to a
given user query term and contained within the application-specific dictionary.

Aspell and Espell spelling modules

The MDEX Engine supports two internal spelling modules, either or both of which can be used by an
application:

• Aspell is the default module. It supports sound-alike corrections (using English phonetic rules).
It does not support corrections to non-alphabetic/non-ASCII terms (such as café, 1234, or A&M).

• Espell is a non-phonetic module. It supports non-phonetic (edit-distance-based) correction of
any term.

Generally, applications that only need to correct normal English words can enable just the default
Aspell module. Applications that need to correct international words, or other non-English/non-word
terms (such as part numbers) should enable the Espell module.

In certain cases (such as an English-language application that also needs to correct part numbers),
both Aspell and Espell can be enabled.

Supported spelling modes

Module selection is performed at index time through the selection of a spelling mode. The supported
spelling modes are (the options below represent command line options you can specify to Dgidx):

• aspell – Use only the Aspell module. This is the default mode.
• espell – Use only the Espell module.
• aspell_OR_espell – Use both modules, segmenting the dictionary so that Aspell is loaded with

all ASCII alphabetic words and Espell is loaded with other terms. Consult Aspell when attempting
to correct ASCII alphabetic words; consult Espell to correct other words.

• aspell_AND_espell – Use both modules, each loaded with the full application dictionary. Consult
both modules to correct any word, selecting the best suggestions from the union of the results.

• disable – Disable the Spelling Correction feature.

Disabling spelling correction on individual queries
This topic describes how to disable spelling correction and DYM suggestions on individual queries.

You may discover that it is desirable to disable spelling correction in order to reduce the cost of running
some queries in performance-sensitive applications. For example:

Endeca ConfidentialEndeca® MDEX Engine Advanced Development Guide

Implementing Spelling Correction and Did You Mean | Spelling modes62

• Queries where the MDEX Engine needs to perform matching on a very large number of terms all
of which need to be ranked for spelling correction suggestions.

• Queries using terms derived directly from the raw data. For example, if your end users are searching
for terms that are unique to their field, it may be desirable to disable spelling correction suggestions
for those terms.

To disable spelling correction for a particular query:

Use a query configuration option, spell, with a parameter nospell.
This option has the following characteristics:

• Works for both record and dimension search, on both the Dgraph and the Agraph.
• Disables both Aspell and Espell spelling correction modes.
• Disables spelling correction and DYM suggestions.
• Requires spelling to be enabled in Dgidx or in the Dgraph. Otherwise, this option has no effect.
• Requires that you provide a nospell parameter to it. Providing a parameter other than nospell

results in a warning in the error log, and spelling correction proceeds as if the option were not
provided to the MDEX Engine.

• Reduces the performance cost of a particular query. You can include this option in your front-end
application for particular queries if you observe that disabling spelling correction is beneficial
for increasing performance of your application overall. However, there is no need to modify
your existing application if you don't observe a performance penalty from using spelling
correction.

Examples

In the presentation API, use the spell+nospell option with Ntx and Dx parameters.

For example, to disable spelling correction for a dimension search query for "blue suede shoes",
change the query from this syntax:
D=blue+suede+shoes&Dx=mode+matchallpartial

To the following syntax:
D=blue+suede+shoes&Dx=mode+matchallpartial+spell+nospell

Endeca® MDEX Engine Advanced Development GuideEndeca Confidential

63Implementing Spelling Correction and Did You Mean | Disabling spelling correction on individual queries

In the Dgraph URL, specify the spell+nospell value to the opts parameter. For example, change
this type of query from this syntax:
/search?terms=blue+suede+shoes&opts=mode+matchallpartial

To the following syntax:
/search?terms=blue+suede+shoes&opts=mode+matchallpartial+spell+nospell

In the Java Presentation API, you can disable spelling for a specific query as shown in this example:
ENEQuery nequery = new ENEQuery();
nequery.setDimSearchTerms("blue suede shoes");
nequery.setDimSearchOpts("spell nospell");

In the .NET API, you can disable spelling for a specific query as shown in this example:
ENEQuery nequery = new ENEQuery();
nequery.DimSearchTerms = "blue suede shoes";
nequery.DimSearchOpts = "spell nospell";

Spelling dictionaries created by Dgidx
No index configuration setup is strictly necessary to enable spelling correction.

By default, all words contained in searchable dimensions and properties will be considered as possible
spell correction recommendations. But in practice, to achieve the best possible spelling correction
behavior and performance, it is typically necessary to configure bounds on the list of words available
for spelling correction, commonly known as the dictionary.

The application-specific spelling dictionary is created by Dgidx. As Dgidx creates search indexes of
property and dimension value text, it accumulates lists of words available for spelling correction into
the following files:

• <db_prefix>.worddat (for the Aspell module)

Note: The <db_prefix>.worddat file for the Aspell module is also reloaded into the
MDEX Engine each time you run the admin?op=updateaspell administrative command.
This command lets you make updates to the Aspell spelling dictionary without stopping and
restarting the Dgraph.

• <db_prefix>.worddatn_default (for the Espell module)

where <db_prefix> is the output index prefix.

These files contain application-specific dictionary words separated by new-line characters. Duplicate
words listed in these files are ignored.

These files are automatically compiled by the Dgidx during the indexing operation.

Configuring spelling in Developer Studio
You can set constraints for the spelling dictionaries in Developer Studio.

By default, Dgidx adds all words contained in dimensions or properties enabled for search to the
dictionary (limiting the Aspell dictionary to only contain ASCII/alphabetic terms). However, because

Endeca ConfidentialEndeca® MDEX Engine Advanced Development Guide

Implementing Spelling Correction and Did You Mean | Spelling dictionaries created by Dgidx64

performance of spelling correction in the MDEX Engine depends heavily on the size of the dictionary,
you can set constraints on the contents of the dictionary. These configuration settings are useful for
improving the performance of spell-corrected search operations at runtime.

These configuration options can be used to tune and improve the types of spelling corrections produced
by the MDEX Engine. For example, setting the minimum number of word occurrences can direct the
attention of the spelling correction algorithm away from infrequent terms and towards more popular
(frequently occurring) terms, which might be deemed more likely to correspond to intended user search
terms.

To configure spelling dictionary entries:

1. In the Project Explorer, expand Search Configuration.
2. Double-click Spelling to display the Spelling editor.

3. You can separately configure entries in the dictionary based for dimension search and record
search. Therefore, select either the Dimension Search tab or the Record Search tab.
In this example, the Dimension Search tab is selected.

4. Set the constraints for adding words to the spelling dictionary:
DescriptionField

Sets the minimum number of times the word must appear in
your source data before the word should be included in the
spelling dictionary.

it occurs at least n times

Sets the minimum (n1) and maximum (n2) lengths of a word
for inclusion in the dictionary.

and is between n1 and n2
characters long

5. If desired, select the other tab and set the constraints for that type of search.
6. Click OK.
7. Choose Save from the File menu to save the project changes.

Modifying the dictionary file
You can modify or replace the Aspell dictionary file. Use the admin?op=updateaspell operation
for the Dgraph which causes updates to the Aspell dictionary file.

While the dictionary files automatically generated by Dgidx are generally adequate for most applications
(especially when using a reasonable value for the minimum number of word occurrences), additional

Endeca® MDEX Engine Advanced Development GuideEndeca Confidential

65Implementing Spelling Correction and Did You Mean | Modifying the dictionary file

improvements in application-specific spelling behavior can be achieved through modification or
replacement of the automatic dictionary file (Aspell module only).

For example, in applications with a specific set of technical terminology that requires focused spelling
correction, you can replace the automatic dictionary with a manually-generated list of technical terms
combined with a simple list of common words (such as /usr/dict/words on many UNIX systems).

About the admin?op=updateaspell operation
The admin?op=updateaspell administrative operation lets you rebuild the aspell dictionary for
spelling correction from the data corpus without stopping and restarting the MDEX Engine.

The admin?op=updateaspell operation performs the following actions:

• Crawls the text search index for all terms
• Compiles a text version of the aspell word list
• Converts this word list to the binary format required by aspell
• Causes the Dgraph to finish processing all existing preceding queries and temporarily stop

processing incoming queries
• Replaces the previous binary format word list with the updated binary format word list
• Reloads the aspell spelling dictionary
• Causes the Dgraph to resume processing queries waiting in the queue

The Dgraph applies the updated settings without needing to restart.

Only one admin?op=updateaspell operation can be processed at a time.

The admin?op=updateaspell operation returns output similar to the following in the Dgraph error
log:

...
aspell update ran successfully.
...

Note: If you start the Dgraph with the -v flag, the output also contains a line similar to the
following:
Time taken for updateaspell, including wait time on any
previous updateaspell, was 290.378174 ms.

Agraph support

The admin?op=updateaspell is not supported in the Agraph.

Enabling language-specific spelling correction
If your application involves multiple languages, you may want to enable language-specific spelling
correction.

For information on how to enable this feature, see the "Using Internationalized Data" section.

Related Links

Endeca ConfidentialEndeca® MDEX Engine Advanced Development Guide

Implementing Spelling Correction and Did You Mean | About the admin?op=updateaspell operation66

Using internationalized data with your Endeca application on page 189
The Endeca suite of products supports the Unicode Standard version 4.0. Support for the
Unicode Standard allows the Endeca MDEX Engine to process and serve data in virtually
any of the world’s languages and scripts.

Dgidx flags for Spelling Correction
The spelling mode can be selected using the Dgidx --spellmode flag.

The default spelling mode is aspell, which enables only the Aspell module.

The full set of supported spelling modes is:

• --spellmode aspell

• --spellmode espell

• --spellmode aspell_OR_espell

• --spellmode aspell_AND_espell

• --spellmode disable

Behaviors for these modes are described in the "Spelling modes" topic. If a spelling mode that includes
use of the Espell module is enabled, an additional Dgidx flag, --spellnum, can be used to control
the contents of the Espell dictionary.

The default is to disable --spellnum. With this flag enabled, the Espell dictionary will be allowed to
contain non-word terms. A word term is one that contains only ASCII alphabetic characters and
ISO-Latin1 word characters listed in Appendix C of the Endeca Basic Development Guide. In default
mode, non-word terms are not allowed in the Espell dictionary.

Note: Auto-correct should be relatively conservative. You only want the engine to complete the
correction when there is a high degree of confidence. For more aggressive suggestions, it is
best to use Did You Mean.

Related Links
Spelling modes on page 62

Endeca spelling features compute contextual suggestions at the full query level.

Dgraph flags for enabling Spelling Correction and DYM
Four Dgraph flags enable the use of the Spelling Correction and DYM features. You can also use the
admin?op=updateaspell operation on the Dgraph to update the Aspell spelling dictionary while
running partial updates (without having to stop and restart the MDEX Engine).

Dgraph --spellpath flag

To enable use of spelling features in the MDEX Engine, you must first use the --spellpath flag to
specify the path to the directory containing the spelling support files.

If you are using the Endeca Application Controller to provision and run the Dgraph, then this flag is
set automatically. By default, the Dgraph component looks for the Aspell spelling support files in its
input directory (that is, the Dgidx output directory). If you want to specify an alternative location, you

Endeca® MDEX Engine Advanced Development GuideEndeca Confidential

67Implementing Spelling Correction and Did You Mean | Dgidx flags for Spelling Correction

can do so using the spellPath element in the WSDL, or by specifying arguments to the Dgraph in
Endeca Workbench.

If you need to, you can specify the --spellpath parameter yourself. The value of the --spellpath
parameter typically matches the value specified for --out on the dgwordlist program.

Note the following about the --spellpath flag:

• The directory passed to the --spellpath flag must be an absolute path. Paths relative to the
current working directory are not allowed. This directory must have write permissions enabled for
the user starting the MDEX Engine process.

• The --spellpath option on the MDEX Engine is required for spelling features to be enabled,
but this flag does not activate any spelling features on its own. Additional flags are required to
enable actual spelling correction in the MDEX Engine.

Additional Dgraph flags to enable spelling correction

The following MDEX Engine flags enable the supported spelling features. Any or all of these options
can be specified in combination, because they control independent features.

Spelling featureDgraph flag

Enables automatic spelling correction (autosuggest) for record and
dimension searches.

--spl

Enables explicit spelling suggestions (Did You Mean) for record search
operations

--dym

Sets the maximum number (num) of variants to be considered when
computing any spelling correction (autosuggest). The default value is 32.

--spell_bdgt num

If --spl and --dym are both specified, explicit spelling suggestions are guaranteed not to reuse
suggestions already consumed by automatic spelling correction (autosuggest). For example, the MDEX
Engine will not explicitly suggest "Did you mean 'Chardonnay'?" if it has already automatically included
record search results matching Chardonnay.

Spelling corrections generated by the MDEX Engine are determined by considering alternate versions
of the user query. The computation and scoring of alternate queries takes time and can decrease
performance, especially in the case of search queries with many terms. To limit the amount of spelling
work performed for any single search query, use the --spell_bdgt flag to place a maximum on the
number of variants considered for all spelling and Did You Mean corrections.

For information on other spelling-related flags, see the Dgraph Flags topic in the Endeca IAP
Administrator's Guide.

URL query parameters for Spelling Correction and DYM
DYM suggestions are enabled by the Nty parameter.

No special URL query parameters are required for the dimension search and record search
auto-correction features (--spl options). These features automatically engage when appropriate,
given configuration settings and the user’s query.

Endeca ConfidentialEndeca® MDEX Engine Advanced Development Guide

Implementing Spelling Correction and Did You Mean | URL query parameters for Spelling Correction
and DYM

68

Note:

To disable spelling correction on individual queries, you can use the Ntx and Dx parameters
with the spell+nospell option specified.

Did You Mean suggestions for record search require the use of the Nty=1 URL query parameter. For
example:
<application>?N=0&Ntk=Description&Ntt=sony&Nty=1

Setting Nty=0 (or omitting the Nty parameter) prevents Did You Mean suggestions from being returned.
This allows an application to control the generation of suggestions after click-through from a previous
suggestion.

Spelling Correction and DYM API methods
There are no modifications that are strictly necessary in the Presentation API code to support spelling
correction. However, there are API calls that return information about automatic spelling correction
and DYM objects.

Spelling corrected results for both dimension search and record search operations are returned as
normal search results.

Note: You can disable spelling correction suggestions (autosuggest), auto-correct suggestions
and DYM suggestions on individual queries using the"spell nospell" option innequery.set¬
DimSearchOpts parameter of the ENEQuery method (Java), or in nequery.DimSearchOpts
property (.NET). For more information, see the topic on disabling spelling correction on individual
queries.

Optionally, applications can display information about automatic spelling corrections or Did You Mean
suggestions for dimension or record search operations using the automatically-generated
ESearchReport objects returned by the MDEX Engine.

For example, consider the following query, which performs two record search operations (a search for
cdd in the AllText search interface and a search for sny in the Manufacturer search interface):
<application>?N=0&Ntk=AllText|Manufacturer&Ntt=cdd|sny&Nty=1

The Java Navigation.getESearchReports() method and the .NET
Navigation.ESearchReports property return a list of two ESearchReport objects that provides
access to the information listed in the following two tables.

Returned valueESearchReport Java method

AllTextgetKey()

CddgetTerms()

MatchAllgetSearchMode()

MatchAllgetMatchedMode()

122getNumMatchingResults()

CdgetAutoSuggestions().get(0).getTerms()

CcdgetDYMSuggestions().get(0).getTerms()

Endeca® MDEX Engine Advanced Development GuideEndeca Confidential

69Implementing Spelling Correction and Did You Mean | Spelling Correction and DYM API methods

Returned valueESearchReport Java method

6getDYMSuggestions().get(0).getNumMatchingResults()

CdpgetDYMSuggestions().get(1).getTerms()

7getDYMSuggestions().get(1).getNumMatchingResults()

ManufacturergetKey()

SnygetTerms()

MatchAllgetSearchMode()

MatchAllgetMatchedMode()

121getNumMatchingResults()

SonygetAutoSuggestions().get(0).getTerms()

Returned valueESearchReport .NET property

AllTextKey

CddTerms

MatchAllSearchMode

MatchAllMatchedMode

122NumMatchingResults

CdAutoSuggestions[(0)].Terms

CcdDYMSuggestions[(0)].Terms

6DYMSuggestions[(0)].NumMatchingResults

CdpDYMSuggestions[(1)].Terms

7DYMSuggestions[(1)].NumMatchingResults

ManufacturerKey

SnyTerms

MatchAllSearchMode

MatchAllMatchedMode

121NumMatchingResults

SonyAutoSuggestions[(0)].Terms

Note that the auto-correct spelling corrections and the explicit Did You Mean suggestions are grouped
with related record search operations. (In this case, cd is the spelling correction for cdd and sony is
the spelling correction for sny.)

Java example of displaying autocorrect messages
// Get the Map of ESearchReport objects
Map recSrchRpts = nav.getESearchReports();
if (recSrchRpts.size() > 0) {
 // Get the user’s search key
 String searchKey = request.getParameter("Ntk");

Endeca ConfidentialEndeca® MDEX Engine Advanced Development Guide

Implementing Spelling Correction and Did You Mean | Spelling Correction and DYM API methods70

 if (searchKey != null) {
 if (recSrchRpts.containsKey(searchKey)) {
 // Get the ERecSearchReport for the search key
 ESearchReport srchRpt = (ESearchReport)recSrchRpts.get(searchKey);
 // Get the List of auto-correct values
 List autoCorrectList = srchRpt.getAutoSuggestions();
 // If the list contains Auto Suggestion objects,
 // print the value of the first corrected term
 if (autoCorrectList.size() > 0) {
 // Get the Auto Suggestion object
 ESearchAutoSuggestion autoSug = (ESearchAutoSuggestion)autoCor¬
rectList.get(0);
 // Display autocorrect message
 %>Corrected to <%= autoSug.getTerms() %>
 }
 }
 }
}

.NET example of displaying autocorrect messages
// Get the Dictionary of ESearchReport objects
IDictionary recSrchRpts = nav.ESearchReports;
// Get the user’s search key
String searchKey = Request.QueryString["Ntk"];
if (searchKey != null) {
 if (recSrchRpts.Contains(searchKey)) {
 // Get the first Search Report object
 IDictionaryEnumerator ide = recSrchRpts.GetEnumerator();
 ide.MoveNext();
 ESearchReport searchReport = (ESearchReport)ide.Value;
 // Get the List of auto-correct objects
 IList autoCorrectList = searchReport.AutoSuggestions;
 // If the list contains Auto Suggestion objects,
 // print the value of the first corrected term
 if (autoCorrectList.Count > 0) {
 // Get the Auto Suggestion object
 ESearchAutoSuggestion autoSug = (ESearchAutoSuggestion)autoCor¬
rectList[0];
 // Display autocorrect message
 %>Corrected to <%= autoSug.Terms %>
 }
 }
}

Java example of creating links for Did You Mean suggestions
// Get the Map of ESearchReport objects
Map dymRecSrchRpts = nav.getESearchReports();
if (dymRecSrchRpts.size() > 0) {
 // Get the user's search key
 String searchKey = request.getParameter("Ntk");
 if (searchKey != null) {
 if (dymRecSrchRpts.containsKey(searchKey)) {
 // Get the ERecSearchReport for the user's search key
 ESearchReport searchReport = (ESearchReport) dymRec¬
SrchRpts.get(searchKey);
 // Get the List of Did You Mean objects
 List dymList = searchReport.getDYMSuggestions();

Endeca® MDEX Engine Advanced Development GuideEndeca Confidential

71Implementing Spelling Correction and Did You Mean | Spelling Correction and DYM API methods

 // If the list contains Did You Mean objects, provide a
 // link to search on the first suggested term
 if (dymList.size() > 0) {
 // Get the Did You Mean object
 ESearchDYMSuggestion dymSug = (ESearchDYMSuggestion)dymList.get(0);

 String sug_val = dymSug.getTerms();
 if (sug_val != null){
 // Display didyoumean link
 %>Did You Mean: <%= sug_val %>
 }
 }
 }
 }
}

.NET example of creating links for Did You Mean suggestions
dd
// Get the Dictionary of ESearchReport objects
IDictionary dymRecSrchRpts = nav.ESearchReports;
// Get the user’s search key
String dymSearchKey = Request.QueryString["Ntk"];
if (dymSearchKey != null) {
 if (dymRecSrchRpts.Contains(dymSearchKey)) {
 // Get the first Search Report object
 IDictionaryEnumerator ide = dymRecSrchRpts.GetEnumerator();
 ide.MoveNext();
 ESearchReport searchReport = (ESearchReport)ide.Value;
 // Get the List of DYM objects
 IList dymList = searchReport.DYMSuggestions;
 // If the list contains DYM objects, print the value
 // of the first suggested term
 if (dymList.Count > 0) {
 // Get the DYM object
 ESearchDYMSuggestion dymSug = (ESearchDYMSuggestion)dymList[0];
 String sug_val = dymSug.Terms;
 String sug_num = dymSug.NumMatchingResults.ToString();
 // Display DYM message
 if (sug_val != null){
 %>Did You Mean: <%= sug_val %>
 }
 }
 }
}

Dgraph tuning flags for Spelling Correction and Did You
Mean

The MDEX Engine provides a number of advanced tuning options that allow you to achieve various
performance and behavioral effects in the Spelling Correction feature.

An explanation of these tuning parameters relies on an understanding of the internal process used by
the MDEX Engine to generate spelling suggestions.

Endeca ConfidentialEndeca® MDEX Engine Advanced Development Guide

Implementing Spelling Correction and Did You Mean | Dgraph tuning flags for Spelling Correction and
Did You Mean

72

At a high level, the spelling engine performs the following steps to generate alternate spelling
suggestions for a given query:

1. If the user query generates more than a certain number of hits, then do not generate suggestions.
This threshold number of hits is the hthresh parameter.

2. For each word in the user’s search query, compute the N most similar words in the data set from
a spelling similarity perspective (N words are computed for each user query term). This number is
set internally and is not user-configurable.

3. For each word in the user’s search query, from the set of N most similar spelling words determined
in step 2, pick the M most likely replacement words (where M<=N), based on a scoring process that
combines factors such as spelling similarity and word frequency (number of hits). This narrows the
set of possible spelling replacements for each user query word to M. This number is set internally
and is not user-configurable.

4. Consider combinations of these replacements for the user query words, limiting consideration to
only combinations that gain more than a threshold percentage number of hits relative to the user’s
original query, without reducing the number of query terms matched. This gain threshold percent
is set internally and is not user-configurable.

5. Scoring each such alternate query using a combination of factors such as spelling similarity of
words used and the number of hits generated by the query, select the K best queries and use them
as suggestions. K (the maximum number of replacement queries to generate) is called the nsug
parameter.

6. Finally, consider alternate queries computed by changing the word divisions in the user’s query,
with the word-break analysis feature. Using the same scoring technique and limits on suggested
queries described in steps 4 and 5, include alternate word-break queries in the final suggestion
set.

User-configurable parameters

The following table summarizes the user-configurable parameters described in the above process:

DescriptionParameter

Specifies the threshold number of hits at or above which spelling suggestions
will not be generated. That is, above this threshold, the spelling feature is

hthresh

disabled, allowing correctly spelled queries to return only actual
(non-spell-corrected) results. Results that don’t match all query terms don’t count
toward the hthresh threshold. For example, if you have a 1000 results which
are all partial matches (they match only a proper subset of the query terms) and
hthresh is set to 1, then spelling correction will still engage because you have
0 full matches. Note that the case where results only match a proper subset of
the query terms can only occur when the match mode is set appropriately to
allow such partial matches (matchany, matchpartial, matchpartialmax,
and so on).

Specifies the maximum number of alternate spelling queries to generate for a
single user search query.

nsug

Specifies the threshold spelling similarity score for words considered by the
spelling correction engine. Scores are based on a scale where 100 points

sthresh

corresponds approximately to an edit distance of 1. The cost associated with
correcting a query term is higher if the term corresponds to an actual word in
the data. That is, correcting modem to model is considered a more significant
edit than correcting modek to model, if modem occurs as a word in the data but
modek does not. The threshold applies to the entire query; for multi-word queries,
the edit scores associated with correcting multiple words are added together,

Endeca® MDEX Engine Advanced Development GuideEndeca Confidential

73Implementing Spelling Correction and Did You Mean | Dgraph tuning flags for Spelling Correction and
Did You Mean

DescriptionParameter

and the sum cannot exceed the threshold. For details on the interaction of the
--spl_sthresh and --dym_sthresh settings, see the section below.

Specifies that cross-property matches are considered valid when scoring
replacement queries. By default, hits that result from applying some queries

glom

terms to one text field on a record and other terms to a different text field are
not counted. In some cases, these results are desirable and should be considered
when computing spelling suggestions.

Specifies that the word-break analysis portion of the spelling correction process
described above is disabled.

nobrk

Each of these parameters can be specified independently for each of the spelling correction features:

• For record and dimension search auto-correct, the --spl_ prefix is used (for example,
--spl_nsug). The flag --spl by itself enables auto-suggest spelling corrections for record search
and dimension search.

• For explicit suggestions, the --dym_ prefix is used (for example, --dym_nsug). The flag --dym
by itself enables Did You Mean explicit query spelling suggestions for record search queries.

• For parameters that apply to all of the above, the --spell_ prefix is used.

For additional configuration of the word-break analysis feature (beyond disabling it with
--spell_nobrk), use the following --wb_ flags:

• --wb_noibrk disables the insertion of breaks in word-break analysis.
• --wb_norbrk disables the removal of breaks in word-break analysis.
• --wb_maxbrks specifies the maximum number of word breaks to be added to or removed from

a query. The default is one.
• --wb_minbrklen specifies the minimum length of a new term created by word-break analysis.

The default is two.

Summary of the Spelling Correction and Did You Mean options

The following table summarizes the complete set of options:

Available Dgraph flagsFeature

--spl, --spl_hthresh, --spl_nsug, --spl_sthreshRecord Search and Dimension
Search

--dym, --dym_hthresh, --dym_nsug, --dym_sthreshDid You Mean

--spell_glom

Note that the --spell_glom option does not apply to dimension search,
because cross-property matching is inherently incompatible with the

Record Search and Did You
Mean

dimension search feature. Dimension search matches always
represent a single dimension value.

--spell_nobrk, --wb_noibrk, --wb_norbrk, --wb_maxbrks,
--wb_minbrklen

Record Search, Dimension
Search, and Did You Mean

Note: Terms that appear in the corpus more than 2×max(spl_hthresh, dym_hthresh) are never
corrected, because such terms are unlikely to be misspelled.

Endeca ConfidentialEndeca® MDEX Engine Advanced Development Guide

Implementing Spelling Correction and Did You Mean | Dgraph tuning flags for Spelling Correction and
Did You Mean

74

Interaction of --spl_sthresh and --dym_sthresh

The --spl_sthresh and --dym_sthresh flags are used to set the threshold spelling correction
score for words used by the auto-correct or DYM engines, respectively. This is the threshold at which
the engine will consider the suggestion. Words that qualify have a score below a given threshold. The
higher the edit distance for a term, the higher the score. The default for --spl_sthresh is 125, and
the default for --dym_sthresh is 175.

Based on these default values, if a particular suggestion has a score of 100, it can be used for either
DYM or auto-correct, and if it has a score of 200, it is not used by either. If the suggested word has a
score better (that is, lower) than the default DYM threshold of 175, but not good enough (that is, higher)
than the default auto-correct threshold of 125, it qualifies only for DYM.

A higher value for either of these settings generally results in more suggestions being generated for
a misspelled word. In an example query against the sample wine data, changing the --dym_sthresh
value from 175 to 225 increased the number of terms considered for DYM from one to ten. However,
raising scores too high could result in a lot of noise. That is to say, it is generally a good thing if nonsense
strings used as search terms receive neither auto-correct nor DYM suggestions.

Related Links
About word-break analysis on page 79

Word-break analysis allows the Spelling Correction feature to consider alternate queries
computed by changing the word divisions in the user’s query.

How dimension search treats number of results
Dimension search results may vary if spelling correction is performed.

An important note applies to the options and behavior associated with dimension search spelling
correction: in situations where the number of results is evaluated by an option or in the scoring of
words or queries performed by the spelling engine, dimension search uses an alternate definition of
number of results. Instead of using the simple number of hits returned to the user as this value (which
is perfectly reasonable in the case of record search), dimension search instead uses the number of
records associated with the set of dimension value search results computed for a given query.

In other words, dimension search follows an additional level of indirection to weight the dimension
value results computed by spelling suggestion queries according to the number of records that these
dimension values would lead to if selected in a navigation query. This alternate definition of number
or results allows consistent behavior between spelling corrections computed for dimension and record
search operations when given the same query terms.

Troubleshooting Spelling Correction and Did You Mean
This topic provides some corrective solutions for spelling correction problems.

If spell-corrected results are not returned for words with expected spell-corrected options in the data,
check the potential problems described in this topic.

When debugging spelling behavior, pay close attention to the errors of the Dgraph on startup, at which
point problems in spelling configuration are typically reported.

Endeca® MDEX Engine Advanced Development GuideEndeca Confidential

75Implementing Spelling Correction and Did You Mean | How dimension search treats number of results

Did You Mean and stop words interaction

Did You Mean can in some cases correct a word to one on the stop words list.

Did You Mean and query configuration

If a record search query produces Did You Mean options, each DYM query has the same configuration
as the initial record search query. For example, if the record search query had Allow cross field
matches set to On Failure, then the DYM query also runs with cross field matching set to On Failure.

Interaction of Aspell, Espell and DYM

This section is relevant to you if you are using aspell_AND_espell mode with DYM enabled. It
describes the interaction of both spelling modes with DYM and explains why in some instances,
suggestions that should have been found by Aspell or Espell are not considered by DYM. In other
words, you may observe that in some instances user-entered words with misspellings in them do not
return DYM suggestions, if the aspell_AND_espell mode is used.

The following statements describe the reasons behind this behavior in more detail:

• Both spelling modes, Aspell or Espell, work by generating a list of suggestion results. These
suggestions are weighted based on the lowest score, according to a scoring algorithm.

• Aspell and Espell generate scores based on different scoring algorithms (described below in this
section).

• When both modes are used, as is the case with aspell_AND_espell, DYM uses the union of
the scored suggestions provided by each spelling mode, and keeps the top 10 terms from the
combined list, based on the lowest scores.

• As a result, some suggestions found by Espell (that could have been relevant) do not pass the
scoring criteria in the combined list, and are thus not considered by DYM.

• The following statements discuss how scores are calculated for each of the spelling engines (Aspell
and Espell):

• For information on the GNU Aspell scoring algorithm, see the documentation for this open
source product.

• The Espell scoring algorithm uses the following formula:
(85 - num_matching_characters_in_prefix)* edit_distance

The parameter edit_distance specifies a regular Levenshtein distance (see the Internet
for more information). In edit_distance, character swaps, insertions and deletions count
as an edit distance of 1.

The num_matching_characters_in_prefix is a number of all matching characters before
a mismatch occurs. For example, for the term "java", this number is 2 (matching "j" and "a");
for the term "jsva", this number is 1 (matching only "j").

The directory specified for the --spellpath flag
• The directory specified in the --spellpath flag to the MDEX Engine must be an absolute path.

If a relative path is used, an error message is sent to the standard error output in the format:
[Warning] OptiSpell couldn't open pwli file
"<--spell param>/<db_prefix>-aspell.pwli"
'Permission denied'

• The directory specified for the --spellpath flag must either be writable or already contain a valid
.pwli file that contains an absolute path to the spelldat binary dictionary file. Check the

Endeca ConfidentialEndeca® MDEX Engine Advanced Development Guide

Implementing Spelling Correction and Did You Mean | Troubleshooting Spelling Correction and Did
You Mean

76

permissions on this directory. If the directory is not writable or does not contain a valid .pwli file,
an error is issued as in the previous example.

Did You Mean and Agraph interaction

If you are using Did You Mean with the Agraph, be aware that the counts returned by the MDEX Engine
for the Did You Mean supplemental results are not exact. Instead, the counts represent the minimum
number of resulting records (and not the exact number of records). That is, there might be additional
matching records that do not get returned. If you would like to provide higher accuracy, adjust the
--dym_hthresh and --dym_nsug parameters in order to obtain more supplemental information,
and modify the front-end application to display only the top results. (Note that the supplemental
information returned by the Agraph for Did You Mean in this case still does not guarantee exact counts
and provides the minimum possible counts.)

Performance impact for Spelling Correction and Did You
Mean

Spelling correction performance is impacted by the size of the dictionary in use.

Spell-corrected keyword searches with many words, in systems with very large dictionaries, can take
a disproportionately long time to process relative to other MDEX Engine requests. Those searches
can cause requests that immediately follow such a search to wait while the spelling recommendations
are being sought and considered.

Because of this, it is important to carefully analyze the performance of the system together with
application requirements prior to production application deployment.

Consider also whether performance could be improved if you disable spelling correction on individual
queries. For information on disabling spelling correction on individual queries, see the topic in this
guide.

Related Links
Disabling spelling correction on individual queries on page 62

This topic describes how to disable spelling correction and DYM suggestions on individual
queries.

About compiling the Aspell dictionary
The Aspell dictionary must be compiled before it can used by the MDEX Engine.

The Espell dictionary is automatically compiled at index time, and requires no further processing. But
if the selected spelling mode includes use of the Aspell module, the Aspell dictionary must be compiled.
If you are manually compiling this file, perform this step after indexing but before starting the MDEX
Engine.

Compilation transforms the text-based dictionary into a binary dictionary file suitable for use by Aspell
module in the MDEX Engine. This indexed form of the dictionary is contained in a file with a name of
the form <dbPath>-aspell.spelldat.

Use one of the following ways to compile the dictionary file:

Endeca® MDEX Engine Advanced Development GuideEndeca Confidential

77Implementing Spelling Correction and Did You Mean | Performance impact for Spelling Correction and
Did You Mean

• Automatically, by running the admin?op=updateaspell administrative operation. For information
about this operation, see the topic in this section.

• Manually, by running the dgwordlist utility script.
• Automatically, by letting the Endeca Application Controller create them implicitly in the Dgidx

component.

Related Links
About the admin?op=updateaspell operation on page 66

The admin?op=updateaspell administrative operation lets you rebuild the aspell dictionary
for spelling correction from the data corpus without stopping and restarting the MDEX Engine.

Compiling the dictionary manually on page 78
The dgwordlist utility script is provided to compile the Aspell dictionary.

Compiling the dictionary with EAC on page 79
The Dgidx component contains a run-aspell setting that specifies Aspell as the spelling
correction mode for the implementation.

Compiling the dictionary manually
The dgwordlist utility script is provided to compile the Aspell dictionary.

To manually compile the text-based worddat dictionary into the binary spelldat dictionary, you
must use the utility script dgwordlist (on UNIX; on Windows, it is dgwordlist.exe).

The usage for dgwordlist is:
dgwordlist [--out <output_dir>] [--aspell <aspell_location>]
 [--datfiles <aspell_dat_files_location>] [--help]
 [--version] <dbPath>

DescriptionArgument for
dgwordlist

Specifies the directory where the resulting binary spelldat dictionary file is
placed. If not specified, this defaults to the same directory where the input index
files reside (<dbPath>).

--out

Deprecated.

If you specify this flag, it is ignored. The dgwordlist utility no longer needs
to know the location of the Aspell dictionary indexing program.

--aspell

In previous releases, this flag specified the location of Aspell. This parameter
could also be omitted if aspell (or aspell.exe on Windows) was in the
current path.

Specifies the input directory location containing the spelling support files. These
support files contain information such as language and character set

--datfiles

configuration (these files end with .map or .dat extensions). If not specified,
this defaults to the same directory where the input index files reside (<dbPath>).

Specifies a prefix path to the input index data, including the text-based worddat
dictionary file. This should match the index prefix given to Dgidx.

<dbPath>

Prints the version information and exits.--version

Prints the command usage and exits.--help

Endeca ConfidentialEndeca® MDEX Engine Advanced Development Guide

Implementing Spelling Correction and Did You Mean | About compiling the Aspell dictionary78

In typical operational configurations, the binary spelldat dictionary file created by dgwordlist and
the .map and/or .dat files located in the --datfiles directory are placed in the same directory as
the indexed data prior to starting the MDEX Engine.

Example of running dgwordlist
$ cp /usr/local/endeca/6.1.3/lib/aspell/* ./final_output
$ /usr/local/endeca/6.1.3/bin/dgwordlist
/usr/local/endeca/6.1.3/bin/aspell ./final_output/wine
Creating "./final_output/wine-aspell.spelldat"

Related Links
About the admin?op=updateaspell operation on page 66

The admin?op=updateaspell administrative operation lets you rebuild the aspell dictionary
for spelling correction from the data corpus without stopping and restarting the MDEX Engine.

Compiling the dictionary with EAC
The Dgidx component contains a run-aspell setting that specifies Aspell as the spelling correction
mode for the implementation.

The default value of run-aspell is true; that is, it compiles the dictionary file for you by default and
copies the Aspell files into its output directory, where the Dgraph can access them.

If you do not want the spelling dictionary to be created, you must set run-aspell to false in the Dgidx
component. You can change this setting either by directly editing your Endeca Application Controller
provisioning file, or by editing the arguments for the Dgidx component located in Endeca Workbench
on the EAC Administration Console page.

Related Links
About the admin?op=updateaspell operation on page 66

The admin?op=updateaspell administrative operation lets you rebuild the aspell dictionary
for spelling correction from the data corpus without stopping and restarting the MDEX Engine.

About word-break analysis
Word-break analysis allows the Spelling Correction feature to consider alternate queries computed
by changing the word divisions in the user’s query.

For example, if the query is Back Street Boys, word-break analysis could instruct the MDEX Engine
to consider the alternate Backstreet Boys.

When word-break analysis is applied to a query, it requires that the substrings that the term is broken
up into appear in the data in succession.

For example, starting with the query box17, word-break analysis would find box 17, as well as box-17,
assuming that the hyphen (-) has not been specified as a search character. However, it would not find
17 old boxes, because the target terms do not appear in order.

Disabling word-break analysis
You can disable the word-break analysis feature with a Dgraph flag.

Endeca® MDEX Engine Advanced Development GuideEndeca Confidential

79Implementing Spelling Correction and Did You Mean | About word-break analysis

Word-break analysis is enabled by default, as are its associated parameters. You can disable word-break
analysis by starting the MDEX Engine with the --spell_nobrk flag.

Word-break analysis configuration parameters
You configure the details of word-break analysis with four Dgraph flags.

Keep in mind that word-break analysis must be enabled in order for these flags to have any effect.

The four Dgraph flags are as follows:

• To control the maximum number of word breaks to be added to or removed from a query, use the
--wb_maxbrks flag. The default is one.

• To specify the minimum length for a new term created by word-break analysis, use the
--wb_minbrklen flag. The default is two.

• To disable the ability of word-break analysis to remove breaks from the original term, use the
--wb_norbrk flag.

• To disable the ability of word-break analysis to add breaks to the original term, use the
--wb_noibrk flag.

Performance impact of word-break analysis
The performance impact of word-break analysis can be considerable, depending on your data.

Seemingly small deviations from default values (such as increasing the value of --wb_maxbrks from
one to two) can have a significant impact, because they greatly increase the workload on the MDEX
Engine. Endeca suggests that you tune this feature carefully and test its impact thoroughly before
exposing it in a production environment.

Endeca ConfidentialEndeca® MDEX Engine Advanced Development Guide

Implementing Spelling Correction and Did You Mean | About word-break analysis80

Chapter 6

Using Stemming and Thesaurus

This section describes the tasks involved in implementing the Stemming and Thesaurus features of
the Endeca MDEX Engine.

Overview of Stemming and Thesaurus
The Endeca MDEX Engine supports Stemming and Thesaurus features that allow keyword search
queries to match text containing alternate forms of the query terms or phrases.

The definitions of these features are as follows:

• The Stemming feature allows the system to consider alternate forms of individual words as
equivalent for the purpose of search query matching. For example, it is often desirable for singular
nouns to match their plural equivalents in the searchable text, and vice versa.

• The Thesaurus feature allows the system to return matches for related concepts to words or
phrases contained in user queries. For example, a thesaurus entry may allow searches for Mark
Twain to match text containing the phrase Samuel Clemens.

Both the Thesaurus and Stemming features rely on defining equivalent textual forms that are used to
match user queries to searchable text data. Because these features are based on similar concepts,
and because they are typically configured to operate in conjunction to achieve desired query matching
effects, both features and their interactions are discussed in one section.

About the Stemming feature
The Stemming feature broadens search results to include root words and variants of root words.

Stemming is intended to allow words with a common root form (such as the singular and plural forms
of nouns) to be considered interchangeable in search operations. For example, search results for the
word shirt will include the derivation shirts, while a search for shirts will also include its word root shirt.

Stemming equivalences are defined among single words. For example, stemming is used to produce
an equivalence between the words automobile and automobiles (because the first word is the stem
form of the second), but not to define an equivalence between the words vehicle and automobile (this
type of concept-level mapping is done via the Thesaurus feature).

Stemming equivalences are strictly two-way (that is, all-to-all). For example, if there is a stemming
entry for the word truck, then searches for truck will always return matches for both the singular form

(truck) and its plural form (trucks), and searches for truckswill also return matches for truck. In contrast,
the Thesaurus feature supports one-way mappings in addition to two-way mappings.

Note: The Endeca stemming implementation does not include decompounding. Decompounding
is the ability to decompose a compound word (such as kindergarten) into its single word
components (kinder and garten) and then find occurrences based on the smaller words.

Types of stemming matches and sort order
Stemming can produce one of three match types.

If stemming is enabled, a search on a given term (T) will produce one or more of these results:

• Literal matches: Any occurrence of T always produce a match.
• Stem form matches: Matches occur on the stem form of T (assuming that T is not a stem form).

For example, if T is children, then child (the stem form) also matches.
• Inflected form matches: Matches occur on all inflected forms of the stem form of T. For example,

if T is the verb ran (as in Jane ran in the Boston Marathon), then matches include the stem form
(run) and inflected forms (such as runs and running). (Note that although this example is in English,
stemming for inflected verb forms is not supported for English; see below for support details).

The order of the returned results depends on the sorting configuration:

• If relevance ranking is enabled and the Interpreted (interp) module is used, literal matches will
always have higher priority than stem form and inflected form matches.

• If relevance ranking is not enabled but you have set a record sort order, the results will come back
in that sort order.

• If relevance ranking is not enabled and there is no record sort order, the order of the results is
completely arbitrary.

Differences in language support
The stemming implementation differs as follows:

• For Chinese (both Simplified and Traditional), Japanese, and Korean, stemming is performed on
all relevant parts of speech, including nouns and verbs.

• For English, only nouns are stemmed.
• For the other supported languages (Dutch, German, Portuguese, and so on), nouns and adjectives

are stemmed.

Enabling default stemming
Stemming is enabled in Developer Studio.

To enable stemming for one or more languages in your project:

1. Open the project in Developer Studio.
2. In the Project Explorer, expand Search Configuration.
3. Double-click Stemming to display the Stemming editor.

Endeca ConfidentialEndeca® MDEX Engine Advanced Development Guide

Using Stemming and Thesaurus | About the Stemming feature82

4. Check one or more of the language check boxes on the list.
5. Click OK.

To disable stemming, use the above procedure, but uncheck the languages for which you do not want
stemming.

Supplementing the default stemming dictionaries
You can supplement the default stemming dictionaries by specifying the --stemming-updates flag
to Dgidx and providing an XML file of custom stemming changes. The stemming update file may include
additions and deletions. Dgidx processes the file by adding and deleting entries in the stemming
dictionary file.

The default stemming dictionary files are stored in Endeca\MDEX\version\conf\stemming (on
Windows) and usr/local/endeca/MDEX/version/conf/stemming (on UNIX).

For most supported languages, the stemming directory contains two types of stemming dictionaries
per language. One dictionary (<RFC 3066 Language Code>_word_forms_collection.xml)
contains stemming entries that support accented characters for the particular <RFC 3066 Language
Code>.

The other dictionary (<RFC 3066 Language Code>-x-folded_word_forms_collection.xml)
contains stemming entries where all accented characters have been folded down (removed) for the
particular <language_code>. If present, this is the stemming dictionary that is used if you specify
--diacritic-folding. For details about --diacritic-folding, see Mapping accented
characters to unaccented characters on page 190.

Adding entries to a stemming dictionary

To illustrate the XML you add the stemming update file, it is helpful to treat each operation (adding
and deleting) as a separate use-case and show the required XML for each operation.

You specify stemming entries to add within a <ADD_WORD_FORMS> element and its sub-element
<WORD_FORMS_COLLECTION>. For example, the following XML adds apple and its stemmed variant
apples to the stemming dictionary:
<!DOCTYPE WORD_FORMS_COLLECTION SYSTEM "word_forms_collection_updates.dtd">
<WORD_FORMS_COLLECTION_UPDATES>
 <ADD_WORD_FORMS>
 <WORD_FORMS_COLLECTION>

Endeca® MDEX Engine Advanced Development GuideEndeca Confidential

83Using Stemming and Thesaurus | About the Stemming feature

 <WORD_FORMS>
 <WORD_FORM>apple</WORD_FORM>
 <WORD_FORM>apples</WORD_FORM>
 </WORD_FORMS>
 </WORD_FORMS_COLLECTION>
 </ADD_WORD_FORMS>
</WORD_FORMS_COLLECTION_UPDATES>

Deleting entries from a stemming dictionary

You specify stemming entries to delete in a <REMOVE_WORD_FORMS_KEYS> element. All word forms
that correspond to that key are deleted. For example, the following XML deletes aalborg and all of
its stemmed variants from the stemming dictionary:
<!DOCTYPE WORD_FORMS_COLLECTION SYSTEM "word_forms_collection_updates.dtd">
<WORD_FORMS_COLLECTION_UPDATES>
 <REMOVE_WORD_FORMS_KEYS>
 <WORD_FORM>aalborg</WORD_FORM>
 </REMOVE_WORD_FORMS_KEYS>
</WORD_FORMS_COLLECTION_UPDATES>

Combining deletes and adds

You can also specify a combination of deletes and then adds. Deletes are processed first and then
adds are processed. For example, the following XML removes aachen and then adds it and several
stemmed variants of it.
<!DOCTYPE WORD_FORMS_COLLECTION SYSTEM "word_forms_collection_updates.dtd">
<WORD_FORMS_COLLECTION_UPDATES>
 <REMOVE_WORD_FORMS_KEYS>
 <WORD_FORM>aachen</WORD_FORM>
 </REMOVE_WORD_FORMS_KEYS>
 <ADD_WORD_FORMS>
 <WORD_FORMS_COLLECTION>
 <WORD_FORMS>
 <WORD_FORM>aachen</WORD_FORM>
 <WORD_FORM>aachens</WORD_FORM>
 <WORD_FORM>aachenes</WORD_FORM>
 </WORD_FORMS>
 </WORD_FORMS_COLLECTION>
 </ADD_WORD_FORMS>
</WORD_FORMS_COLLECTION_UPDATES>

Syntax of the stemming update file name

The syntax of the stemming update file name must be as follows:

user_specified.RFC 3066 Language Code.xml

where

• user_specified is any string that is relevant to your application or stemming dictionary, for
example myAppStemmingChanges.

• RFC 3066 Language Code is a two-character language code, of the stemming dictionary you
want to update, for example,en or en-us. See ISO 639-1 for the full list of two-character codes
and RFC 3066 for the two-character sub tag for region.

Endeca ConfidentialEndeca® MDEX Engine Advanced Development Guide

Using Stemming and Thesaurus | About the Stemming feature84

Processing the update file

To process the stemming update file, you specify the --stemming-updates flag to Dgidx and specify
the XML file of stemming updates.

For example:
dgidx --stemming-updates myAppStemmingChanges.en.xml

Conflicts during updates

When Dgidx merges the changes in an update file into the stemming dictionary, there may be conflicts
in cases where the variant for one root in the stemming dictionary is the same as a variant for another
root in the update file. Any duplicate variants of different root words constitute a conflict.

In this case, Dgidx throws a warning about conflicting variants and rejects the variant that was specified
in the update file.

Adding a custom stemming dictionary
If your application requires a stemming language that is not available in the Stemming editor of
Developer Studio, you can create and add a custom stemming dictionary. A custom stemming dictionary
is available in addition to any stemming selections you may have enabled in Developer Studio. For
example, you can enable English and Dutch, and then add an additional custom stemming dictionary
for Swahili.

Although you can create any number of custom stemming dictionaries, only one custom stemming
dictionary can be loaded into the MDEX Engine. You indicate which custom stemming dictionary to
load with the --lang flag to Dgidx.

To add a custom stemming dictionary:

1. Create a custom dictionary file with stemming entries. For sample XML, see the XML schema of
any default stemming dictionary stored in <install path>\MDEX\<version>\conf\stemming.
For example, this simplified file contains one term and one stemmed variant:
<?xml version="1.0"?>

<!DOCTYPE WORD_FORMS_COLLECTION SYSTEM "word_forms_collection.dtd">

<WORD_FORMS_COLLECTION>

<WORD_FORMS>

<WORD_FORM>swahiliterm</WORD_FORM>

<WORD_FORM>swahiliterms</WORD_FORM>

</WORD_FORMS>

</WORD_FORMS_COLLECTION>

2. Once you have created the custom stemming dictionary, save the XML file with one of the following
name formats:

• If the dictionary contains unaccented characters and you use the Dgidx flag --diacritic-
folding, save the file as <RFC 3066 Language
Code>-x-folded_word_forms_collection.xml.

Endeca® MDEX Engine Advanced Development GuideEndeca Confidential

85Using Stemming and Thesaurus | About the Stemming feature

• If the dictionary contains accented characters and you are not using the Dgidx flag --diacrit¬
ic-folding, save the file as <RFC 3066 Language
Code>_word_forms_collection.xml.

For example, the XML above would be saved as sw_word_forms_collection.xml where sw
is the ISO639-1 language code for Swahili.

3. Place the XML file in <install path>\MDEX\<version>\conf\stemming\custom.
4. Specify the --lang flag to Dgidx with a <lang id> argument that matches the language code

of the custom stemming dictionary file.
In the example above that uses a Swahili (sw) dictionary, you would specify:
dgidx --lang sw

Replacing a default stemming dictionary with a custom stemming
dictionary

Rather than supplement a default stemming dictionary, you may chose to entirely replace a default
stemming dictionary with a custom a stemming dictionary.

To replace a default stemming dictionary with a custom stemming dictionary:

1. Create a custom dictionary file with stemming entries. For example XML, see the XML schema of
any default stemming dictionary stored in <install path>\MDEX\<version>\conf\stemming.
For example, this simplified English stemming dictionary contains one term and one stemmed
variant:
<?xml version="1.0"?>

<!DOCTYPE WORD_FORMS_COLLECTION SYSTEM "word_forms_collection.dtd">

<WORD_FORMS_COLLECTION>

<WORD_FORMS>

<WORD_FORM>car</WORD_FORM>

<WORD_FORM>cars</WORD_FORM>

</WORD_FORMS>

</WORD_FORMS_COLLECTION>

2. Once you have created the custom stemming dictionary, save the XML file with one of the following
name formats:

• If the dictionary contains unaccented characters and you use the Dgidx flag --diacritic-
folding, save the file as <RFC 3066 Language
Code>-x-folded_word_forms_collection.xml.

• If the dictionary contains accented characters and you are not using the Dgidx flag --diacrit¬
ic-folding, save the file as <RFC 3066 Language
Code>_word_forms_collection.xml.

For example, the XML above would be saved as en_word_forms_collection.xml where en
is the ISO639-1 code for English.

3. Place the XML file in <install path>\MDEX\<version>\conf\stemming\custom.

Endeca ConfidentialEndeca® MDEX Engine Advanced Development Guide

Using Stemming and Thesaurus | About the Stemming feature86

4. Open your project in Developer Studio.
5. In the Project Explorer, expand Search Configuration.
6. Double-click Stemming to display the Stemming editor.
7. Un-check the language you want to replace.
8. Click OK.
9. Specify the --lang flag to Dgidx with a <lang id> argument that matches the language code

of the custom stemming dictionary file.
In the example above that uses an English (en) dictionary, you would specify:
dgidx --lang en

About the Thesaurus feature
The Thesaurus feature allows you to configure rules for matching queries to text containing equivalent
words or concepts.

The thesaurus is intended for specifying concept-level mappings between words and phrases. Even
a modest number of well-thought-out thesaurus entries can greatly improve your users’ search
experience.

The Thesaurus feature is a higher level than the Stemming feature, because thesaurus matching and
query expansion respects stemming equivalences, whereas the stemming module is unaware of
thesaurus equivalences.

For example, if you define a thesaurus entry mapping the words automobile and car, and there is a
stemming equivalence between car and cars, then a search for automobile will return matches for
automobile, car, and cars. The same results will also be returned for the queries car and cars.

The thesaurus supports specifying multi-word equivalences. For example, an equivalence might specify
that the phrase Mark Twain is interchangeable with the phrase Samuel Clemens. It is also possible to
mix the number of words in the phrase-forms for a single equivalence. For example, you can specify
that wine opener is equivalent to corkscrew.

Multi-word equivalences are matched on a phrase basis. For example, if a thesaurus equivalence
betweenwine opener and corkscrew is defined, then a search for corkscrewwill match the text stainless
steel wine opener, but will not match the text an effective opener for wine casks.

Thesaurus equivalences can be either one-way or two-way:

• One-way mapping specifies only one direction of equivalence. That is, one "From" term is mapped
to one or more "To" terms, but none of the "To" terms are mapped to the "From" term. Only one
"From" term can be specified.

For example, assume you define a one-way mapping from the phrase red wine to the phrases
merlot and cabernet sauvignon. This one-way mapping ensures that a search for red wine also
returns any matches containing the more specific terms merlot or cabernet sauvignon. But you
avoid returning matches for the more general phrase red wine when the user specifically searches
for either merlot or cabernet sauvignon.

• Two-way (or all-to-all) mapping means that the direction of a word mapping is equivalent between
the words. For example, a two-way mapping between stove, range, and oven means that a search
for one of these words will return all results matching any of these words (that is, the mapping
marks the forms as strictly interchangeable).

Endeca® MDEX Engine Advanced Development GuideEndeca Confidential

87Using Stemming and Thesaurus | About the Thesaurus feature

When you define a two-way mapping, you do not specify a "From" term. Instead, you specify two
or more "To" terms.

Unlike the Stemming module, the Thesaurus feature lets you define multiple equivalences for a single
word or phrase. These multiple equivalences are considered independent and non-transitive.

For example, we might define one equivalence between football andNFL, and another between football
and soccer. With these two equivalences, a search for NFL will return hits for NFL and hits for football,
a search for soccer will return hits for soccer and football, and a search for football will return all of the
hits for football, NFL, and soccer. However, searches for NFL will not return hits for soccer (and vice
versa).

This non-transitive nature of the thesaurus is useful for defining equivalences containing ambiguous
terms such as football. The word football is sometimes used interchangeably with soccer, but in other
cases football refers to American football, which is played professionally in the NFL. In other words,
the term football is ambiguous.

When you define equivalences for ambiguous terms, you do not want their specific meanings to overlap
into one another. People searching for soccer do not want hits for NFL, but they may want at least
some of the hits associated with the more general term football.

Thesaurus entries are essentially used to produce alternate forms of the user query, which in turn are
used to produce additional query results. As a rule, the MDEX Engine will expand the user query into
the maximum possible set of alternate queries based on the available thesaurus entries.

This behavior is particularly important in the presence of overlapping thesaurus forms. For example,
suppose that you define an equivalence between red wine and vino rosso, and a second equivalence
between wine opener and corkscrew. The query red wine opener might match the thesaurus entries
in two different ways: red wine could be mapped to vino rosso based on the first entry; or wine opener
could be mapped to corkscrew based on the second entry.

Using the maximal-expansion rule, this issue is resolved by expanding to all possible queries. In other
words, the MDEX Engine returns hits for all of the queries: red wine opener, vino rosso opener, and
red corkscrew.

Adding thesaurus entries
Thesaurus entries are added in Developer Studio.

To add a one-way or two-way thesaurus entry:

1. Open the project in Developer Studio.
2. In the Project Explorer, expand Search Configuration.
3. Double-click Thesaurus to display the Thesaurus view.

Endeca ConfidentialEndeca® MDEX Engine Advanced Development Guide

Using Stemming and Thesaurus | About the Thesaurus feature88

4. Click New and select either One Way or Two Way.
5. Configure the entry in the Thesaurus Entry dialog:

• For a one-way entry: type in one term in the "From" field, add one or more "To" terms, and click
OK.

• For a two-way entry: add two or more "To" terms and click OK.

6. Save the project.

The Thesaurus view also allows you to modify and delete existing thesaurus entries.

Troubleshooting the thesaurus
The following thesaurus clean-up rules should be observed to avoid performance problems related to
expensive and non-useful thesaurus search query expansions.

• Do not create a two-way thesaurus entry for a word with multiple meanings. For example, khaki
can refer to a color as well as to a style of pants. If you create a two-way thesaurus entry for khaki
= pants, then a user’s search for khaki towels could return irrelevant results for pants.

• Do not create a two-way thesaurus entry between a general and several more-specific terms, such
as:
top = shirt = sweater = vest

This increases the number of results the user has to go through while reducing the overall accuracy
of the items returned. In this instance, better results are attained by creating individual one-way
thesaurus entries between the general term top and each of the more-specific terms.

• A thesaurus entry should never include a term that is a substring of another term in the entry.

For example, consider the two-way equivalency:
Adam and Eve = Eve

If users type Eve, they get results for Eve or (Adam and Eve) (that is, the same results they would
have gotten for Eve without the thesaurus). If users type Adam and Eve, they get results for (Adam
and Eve) or Eve, causing the Adam and part of the query to be ignored.

• Stop words such as and or the should not be used in single-word thesaurus forms. For example,
if the has been configured as a stop word, an equivalency between thee and the is not useful.

You can use stop words in multi-word thesaurus forms, because multi-word thesaurus forms are
handled as phrases. In phrases, a stop word is treated as a literal word and not a stop word.

Endeca® MDEX Engine Advanced Development GuideEndeca Confidential

89Using Stemming and Thesaurus | About the Thesaurus feature

• Avoid multi-word thesaurus forms where single-word forms are appropriate. In particular, avoid
multi-word forms that are not phrases that users are likely to type, or to which phrase expansion
is likely to provide relevant additional results.

For example, the two-way thesaurus entry:
Aethelstan, King Of England (D. 939) = Athelstan, King Of England (D.
939)

should be replaced with the single-word form:
Aethelstan = Athelstan

• Thesaurus forms should not use non-searchable characters. For example, the one-way thesaurus
entry:
Pikes Peak -> Pike’s Peak

should be used only if the apostrophe (') is enabled as a search character.

Dgidx and Dgraph flags for the Thesaurus
No Dgidx flags are needed to configure the Thesaurus features.

Thesaurus entries are automatically enabled for use during text indexing and during MDEX Engine
search query processing. In addition, there is no MDEX Engine configuration necessary to configure
thesaurus information.

The Dgraph --thesaurus_cutoff flag can be used to tune performance associated with thesaurus
expansion. By default, this flag is set to 3, meaning that if a search query contains more than 3 words
that appear in "From" entries, none of the query terms are expanded.

No Presentation API development is necessary to use the Thesaurus feature.

Interactions with other search features
As core features of the MDEX Engine search subsystem, Stemming and the Thesaurus have interactions
with other search features.

The following sections describe the types of interactions between the various search features.

Search characters

The search character set configured for the application dictates the set of available characters for
stemming and thesaurus entries. By default, only alphanumeric ASCII characters may be used in
stemming and thesaurus entries. Additional punctuation and other special characters may be enabled
for use in stemming and thesaurus entries by adding these characters to the search character set.

The MDEX Engine matches user query terms to thesaurus forms using the following rule: all
alphanumeric and search characters must match against the stemming and thesaurus forms exactly;
other characters in the user search query are treated as word delimiters. For details on search
characters, see the Endeca Basic Development Guide.

Endeca ConfidentialEndeca® MDEX Engine Advanced Development Guide

Using Stemming and Thesaurus | Dgidx and Dgraph flags for the Thesaurus90

Spelling

Spelling correction is a closely-related feature to stemming and thesaurus functionality, because
spelling auto-correction essentially provides an additional mechanism for computing alternate versions
of the user query. In the MDEX Engine, spelling is handled as a higher-level feature than stemming
and thesaurus. That is, spelling correction considers only the raw form of the user query when producing
alternate query forms.

Alternate spell-corrected queries are then subject to all of the normal stemming and thesaurus
processing. For example, if the user enters the query telvision and this query is spell-corrected to
television, the results will also include results for the alternate forms televisions, tv, and tvs.

Note that in some cases, the Thesaurus feature is used as a replacement or in addition to the system's
standard spelling correction features. In general, this technique is discouraged. The vast majority of
actual misspelled user queries can be handled correctly by the Spelling Correction subsystem. But in
some rare cases, the Spelling Correction feature cannot correct a particular misspelled query of interest;
in these cases it is common to add a thesaurus entry to handle the correction. If at all possible, such
entries should be avoided as they can lead to undesirable feature interactions.

Stop words

Stop words are words configured to be ignored by the MDEX Engine search query engine. A stop
word list typically includes words that occur too frequently in the data to be useful (for example, the
word bottle in a wine data set), as well as words that are too general (such as clothing in an apparel-only
data set).

If the is marked as a stopword, then a query for the computer will match to text containing the word
computer, but possibly missing the word the.

Stop words are not currently expanded by the stemming and thesaurus equivalence set. For example,
suppose you mark item as a stopword and also include a thesaurus equivalence between the words
item and items. This will not automatically mark the word items as a stopword; such expansions must
be applied manually.

Stop words are respected when matching thesaurus entries to user queries. For example, suppose
you define an equivalence between Muhammad Ali and Cassius Clay and also mark M as a stopword
(it is not uncommon to mark all or most single letter words as stopwords). In this case, a query for
Cassius M. Clay would match the thesaurus entry and return results for Muhammad Ali as expected.

Phrase search

A phrase search is a search query that contains one or more multi-word phrases enclosed in quotation
marks. The words inside phrase-query terms are interpreted strictly literally and are not subject to
stemming or thesaurus processing. For example, if you define a thesaurus equivalence between
Jennifer Lopez and JLo, normal (unquoted) searches for Jennifer Lopezwill also return results for JLo,
but a quoted phrase search for "Jennifer Lopez" will not return the additional JLo results.

Relevance Ranking

It is typically desirable to return results for the actual user query ahead of results for stemming and/or
thesaurus transformed versions of the query. This type of result ordering is supported by the Relevance
Ranking modules. The module that is affected by thesaurus expansion and stemming is Interp. The
module that is not affected by thesaurus and stemming is Freq.

Endeca® MDEX Engine Advanced Development GuideEndeca Confidential

91Using Stemming and Thesaurus | Interactions with other search features

Performance impact of Stemming and Thesaurus
Stemming and thesaurus equivalences generally add little or no time to data processing and indexing,
and introduce little space overhead (beyond the space required to store the raw string forms of the
equivalences).

In terms of online processing, both features will expand the set of results for typical user queries. While
this generally slows search performance (search operations require an amount of time that grows
linearly with the number of results), typically these additional results are a required part of the application
behavior and cannot be avoided.

The overhead involved in matching the user query to thesaurus and stemming forms is generally low,
but could slow performance in cases where a large thesaurus (tens of thousands of entries) is asked
to process long search queries (dozens of terms). Typical applications exhibit neither extremely large
thesauri nor very long user search queries.

Because matching for stemming entries is performed on a single-word basis, the cost for
stemming-oriented query expansion does not grow with the size of the stemming database or with the
length of the query. However, the stemming performance of a specific language is affected by the
degree to which the language is inflected. For example, German words are much more inflected than
English ones, and a query term can expand into a much larger set of compound words of which its
stem is a component.

Endeca ConfidentialEndeca® MDEX Engine Advanced Development Guide

Using Stemming and Thesaurus | Performance impact of Stemming and Thesaurus92

Chapter 7

Using Automatic Phrasing

This section describes the tasks involved in implementing the Automatic Phrasing feature of the Endeca
MDEX Engine.

About Automatic Phrasing
When an application user provides individual search terms in a query, the Automatic Phrasing feature
groups those individual terms into a search phrase and returns query results for the phrase.

Automatic Phrasing is similar to placing quotation marks around search terms before submitting them
in a query. For example "my search terms" is the phrased version of the query my search terms.
However, Automatic Phrasing removes the need for application users to place quotation marks around
search phrases to get phrased results.

The result of Automatic Phrasing is that a Web application can process a more restricted query and
therefore return fewer and more focused search results. This feature is available only for record search.

The Automatic Phrasing feature works by:

1. Comparing individual search terms in a query to a list of application-specific search phrases. The
list of search phrases are stored in a project’s phrase dictionary.

2. Grouping the search terms into search phrases.
3. Returning query results that are either based on the automatically-phrased query, or returning

results based on the original unphrased query along with automatically-phrased Did You Mean
(DYM) alternatives.

Implementation scenarios

Step 3 above suggests the two typical implementation scenarios to choose from when using Automatic
Phrasing:

• Process an automatically-phrased form of the query and suggest the original unphrased query as
a DYM alternative.

In this scenario, the Automatic Phrasing feature rewrites the original query’s search terms into a
phrased query before processing it. If you are also using DYM, you can display the unphrased
alternative so the user can opt-out of Automatic Phrasing and select their original query, if desired.

For example, an application user searches a wine catalog for the unquoted terms low tannin. The
MDEX Engine compares the search terms against the phrase dictionary, finds a phrase entry for
"low tannin", and processes the phrased query as "low tannin". The MDEX Engine returns 3 records

for the phrased query "low tannin" rather than 16 records for the user’s original unphrased query
low tannin. However, the Web application also presents a "Did you mean low tannin?" option, so
the user may opt-out of Automatic Phrasing, if desired.

• Process the original query and suggest an automatically-phrased form of the query as a DYM
alternative.

In this scenario, the Automatic Phrasing feature processes the unphrased query as entered and
determines if a phrased form of the query exists. If a phrased form is available, the Web application
displays an automatically-phrased alternative as a Did You Mean option. The user can opt-in to
Automatic Phrasing, if desired.

For example, an application user searches a wine catalog for the unquoted terms low tannin. The
MDEX Engine returns 16 records for the user’s unphrased query low tannin. The Web application
also presents a Did you mean "low tannin"? option so the user may opt-in to Automatic Phrasing,
if desired.

Tasks for implementation

There are two tasks to implement Automatic Phrasing:

• Add phrases to your project using Developer Studio.
• Add Presentation API code to your Web application to support either of the two implementation

scenarios described above.

Using Automatic Phrasing with Spelling Correction and
DYM

You should enable the MDEX Engine for both Spelling Correction and Did You Mean.

If you want spelling corrected automatic phrases, the Spelling Correction feature ensures search terms
are corrected before the terms are automatically phrased. The DYM feature provides users the choice
to opt-in or opt-out of Automatic Phrasing.

The Endeca MDEX Engine applies spelling correction to a query before automatically phrasing the
terms. This processing order means, for example, if a user misspells the query as Napa Valle, the
MDEX Engine first spell corrects it to Napa Valley and then automatically phrases to "Napa Valley".
Without Spelling Correction enabled, Automatic Phrasing would typically not find a matching phrase
in the phrase dictionary.

If you implement Automatic Phrasing to rewrite the query using an automatic phrase, then enabling
DYM allows users a way to opt-out of Automatic Phrasing if they want to. On the other hand, if you
implement Automatic Phrasing to process the original query and suggest automatically-phrased
alternatives, then enabling DYM allows users to take advantage of automatically-phrased alternatives
as follow-up queries.

Automatic Phrasing and query expansion

Once individual search terms in a query are grouped as a phrase, the phrase is not subject to thesaurus
expansion or stemming by the MDEX Engine.

Endeca ConfidentialEndeca® MDEX Engine Advanced Development Guide

Using Automatic Phrasing | Using Automatic Phrasing with Spelling Correction and DYM94

Adding phrases to a project
This section describes the two methods of adding phrases to your project.

There are two ways to include phrases in your Developer Studio project:

• Import phrases from an XML file.
• Choose dimension names and extract phrases from the dimension values.

After you add phrases and update your instance configuration, the MDEX Engine builds the phrase
dictionary. You cannot view the phrases in Developer Studio. However, after adding phrases and
saving your project, you can examine the phrases contained in a project’s phrase dictionary by using
a text editor to open the phrases.xml project file. Directly modifying phrases.xml is not supported.

Importing phrases from an XML file
You import an XML file of phrases using the Import Phrases dialog box in Developer Studio.

The import phrases XML file must conform to phrase_import.dtd, found in the Endeca MDEX
Engine conf/dtd directory. Here is a simple example of a phrase file that conforms to
phrase_import.dtd:
<?xml version="1.0" encoding="UTF-8" standalone="no" ?>
<!DOCTYPE PHRASE_IMPORT SYSTEM "phrase_import.dtd">
<PHRASE_IMPORT>
 <PHRASE>Napa Valley</PHRASE>
 <PHRASE>low tannin</PHRASE>
</PHRASE_IMPORT>

To import phrases from an XML file:

1. Create the phrases XML file, using the format in the example above. You can create the file in any
way you like. For example, you can type phrases into the file using an XML editor, or you can
perform an XSLT transform on a phrase file in another format, and so on.
To maintain naming consistency with other Endeca project files and their corresponding DTD files,
you may choose to name your file phrase_import.xml.

2. Open your project in Developer Studio.
3. In the Project Explorer, expand Search Configuration.
4. Double-click Automatic Phrasing to display the Automatic Phrasing editor.
5. Click the Import Phrases... button.
6. In the Import Phrases dialog box, either type the path to your phrases file or click the Browse button

to locate the file.

7. Click OK on the Import Phrases dialog box.
The Messages pane displays the number of phrases read in from the XML file.

8. Click OK on the Automatic Phrasing dialog box.

Endeca® MDEX Engine Advanced Development GuideEndeca Confidential

95Using Automatic Phrasing | Adding phrases to a project

9. Select Save from the File menu.

The project's phrases.xml configuration file is updated with the new phrases.

Keep in mind that if you import a newer version of an import_phrases.xml file, the most recent
import overwrites phrases from any previous import. All phrases you want to import should be contained
in a single XML file.

Extracting phrases from dimension names
Using Developer Studio, you can add phrases to your project based on the dimension values of any
dimension you choose.

The MDEX Engine adds each multi-term dimension value in a selected dimension to the phrase
dictionary. Single-term dimension values are not included. For example, if you import a WineType
dimension from a wine catalog, the MDEX Engine creates a phrase entry for multi-term names such
as "Pinot Noir" but not for single-term names such as "Merlot".

To extract phrases from dimension names:

1. Open your project in Developer Studio.
2. In the Project Explorer, expand Search Configuration.
3. Double-click Automatic Phrasing to display the Automatic Phrasing editor.
4. Select a dimension from the All dimensions panel and add it to the Selected dimensions panel

by clicking Add. The editor should look like this example:

5. If desired, repeat step 4 to add more dimensions.
6. Click OK on the Automatic Phrasing dialog box.
7. Select Save from the File menu.

The project's phrases.xml configuration file is updated with the dimension names. Note that imported
phrases are not overwritten by this procedure.

Endeca ConfidentialEndeca® MDEX Engine Advanced Development Guide

Using Automatic Phrasing | Adding phrases to a project96

Adding search characters
If you have phrases that include punctuation, add those punctuation marks as search characters.

Adding the punctuation marks ensures that the MDEX Engine includes the punctuation when tokenizing
the query, and therefore the MDEX Engine can match search terms with punctuation to phrases with
punctuation. For details on using search characters, see the Endeca Basic Development Guide.

For example, suppose you add phrases based on a Winery dimension, and consequently the Winery
name "Anderson & Brothers" exists in your phrase dictionary. You should create a search character
for the ampersand (&).

Presentation API development for Automatic Phrasing
The ENEQuery class has calls that handle Automatic Phrasing.

The Automatic Phrasing feature requires that the MDEX Engine compute whether an automatic phrase
is available for a particular query’s search terms.

The MDEX Engine computes the available phrases when setting the Java
setNavERecSearchComputeAlternativePhrasings() method and the .NET
NavERecSearchComputeAlternativePhrasings property to true in the ENEQuery object.

You can then optionally submit the phrased query to the MDEX Engine, instead of the user’s original
query, by calling the Java setNavERecSearchRewriteQueryToAnAlternativePhrasing()
method or the .NET NavERecSearchRewriteQueryToAnAlternativePhrasing property with
a value of true.

You can also call these methods by sending the necessary URL query parameters to the MDEX Engine
via the URLENEQuery class, as shown in the next section.

When the MDEX Engine returns query results, your Web application displays whether the results were
spell corrected, automatically phrased, or have DYM alternatives. Each of these Web application tasks
are described in the sections below.

URL query parameters for Automatic Phrasing
Automatic Phrasing has two associated URL query parameters: Ntpc and Ntpr.

Both Ntpc and Ntpr are Boolean parameters that are enabled by setting to 1 and disabled by setting
to 0.

The Ntpc parameter

Adding the Ntpc=1 parameter instructs the MDEX Engine to compute phrasing alternatives for a
query. Using this parameter alone, the MDEX Engine processes the original query and not any of the
automatic phrasings computed by the MDEX Engine.

Here is an example URL that processes a user’s query napa valley without phrasing and provides an
alternative automatic phrasing, Did you mean "napa valley"?:
<application>?N=0&Ntk=All&Ntt=napa%20valley&Nty=1&Ntpc=1

If you omit Ntpc=1 or set Ntpc=0, then automatic phrasing is disabled.

Endeca® MDEX Engine Advanced Development GuideEndeca Confidential

97Using Automatic Phrasing | Presentation API development for Automatic Phrasing

The Ntpr parameter

The Ntpr parameter instructs the MDEX Engine to rewrite the query using the available automatic
phrase computed by Ntpc. The Ntpr parameter depends on the presence of Ntpc=1.

Here is an example URL that automatically phrases the user’s query napa valley to "napa valley" and
processes the phrased query. The Web application may also provide an unphrased alternative, so
users can submit their original unphrased query (for example, "Did you mean napa valley?"):
<application>?N=0&Ntk=All&Ntt=napa%20valley&Nty=1&Ntpc=1&Ntpr=1

If you omit Ntpr=1 or set Ntpr=0, then the query is not re-written using an automatic phrasing
alternative. You can omit Ntpr=1 and still use the Ntpc=1 parameter to compute an available
alternative for display as a DYM option.

Displaying spell-corrected and auto-phrased messages
To display messages for spell-corrected and automatically-phrased queries, your Web application
code should be similar to these examples.

Java example
// Get the Map of ESearchReport objects
Map recSrchRpts = nav.getESearchReports();
if (recSrchRpts.size() > 0) {
 // Get the user’s search key
 String searchKey = request.getParameter("Ntk");
 if (searchKey != null) {
 if (recSrchRpts.containsKey(searchKey)) {
 // Get the ERecSearchReport for the search key
 ESearchReport srchRpt = (ESearchReport)recSrchRpts.get(searchKey);
 // Get the List of auto-correct values
 List autoCorrectList = searchReport.getAutoSuggestions();
 // If the list contains Auto Suggestion objects,
 // print the value of the first corrected term
 if (autoCorrectList.size() > 0) {
 // Get the Auto Suggestion object
 ESearchAutoSuggestion autoSug =
 (ESearchAutoSuggestion)autoCorrectList.get(0);
 // Display appropriate autocorrect message
 if (autoSug.didSuggestionIncludeSpellingCorrection() &&
 !autoSug.didSuggestionIncludeAutomaticPhrasing()) {
 %>Spelling corrected to <%= autoSug.getTerms() %> <%
 }
 else if
 (autoSug.didSuggestionIncludeSpellingCorrection() &&
 autoSug.didSuggestionIncludeAutomaticPhrasing()) {
 %>Spelling corrected and then phrased
 to <%= autoSug.getTerms() %> <%
 }
 else if
 (!autoSug.didSuggestionIncludeSpellingCorrection() &&
 autoSug.didSuggestionIncludeAutomaticPhrasing()) {
 %>Phrased to <%= autoSug.getTerms() %> <%
 }
 }
 }
 }
}

Endeca ConfidentialEndeca® MDEX Engine Advanced Development Guide

Using Automatic Phrasing | Presentation API development for Automatic Phrasing98

.NET example
// Get the Dictionary of ESearchReport objects
IDictionary recSrchRpts = nav.ESearchReports;
// Get the user’s search key
String searchKey = Request.QueryString["Ntk"];
if (searchKey != null) {
 if (recSrchRpts.Contains(searchKey)) {
 // Get the first Search Report object
 IDictionaryEnumerator ide = recSrchRpts.GetEnumerator();
 ide.MoveNext();
 ESearchReport searchReport = (ESearchReport)ide.Value;
 // Get the List of auto correct objects
 IList autoCorrectList = searchReport.AutoSuggestions;
 // If the list contains auto correct objects,
 // print the value of the first corrected term
 if (autoCorrectList.Count > 0) {
 // Get the Auto Suggestion object
 ESearchAutoSuggestion autoSug =
 (ESearchAutoSuggestion)autoCorrectList[0];
 // Display appropriate autocorrect message
 if (autoSug.GetDidSuggestionIncludeSpellingCorrection()
 && !autoSug.GetDidSuggestionIncludeAutomaticPhrasing()) {
 %>Spelling corrected to <%= autoSug %>
 else if
 (autoSug.GetDidSuggestionIncludeSpellingCorrection() &&
 autoSug.GetDidSuggestionIncludeAutomaticPhrasing()) {
 %>Spelling corrected and phrased to <%= autoSug.getTerms() %>
 <%
 }
 else if
 (!autoSug.GetDidSuggestionIncludeSpellingCorrection()
 && autoSug.GetDidSuggestionIncludeAutomaticPhrasing()) {
 %>Phrased to <%= autoSug.getTerms() %> <%
 }
 }
 }
}

Displaying DYM alternatives
To create a link for each Did You Mean alternative, your Web application code should look similar to
these examples.

Note that it is important to display all the DYM alternatives (rather than just the first DYM alternative)
because the user’s desired query may not be the first alternative in the list of returned DYM options.

Java example
// Get the Map of ESearchReport objects
Map dymRecSrchRpts = nav.getESearchReports();
if (dymRecSrchRpts.size() > 0) {
 // Get the user's search key
 String searchKey = request.getParameter("Ntk");
 if (searchKey != null) {
 if (dymRecSrchRpts.containsKey(searchKey)) {
 // Get the ERecSearchReport for the user's search key
 ESearchReport searchReport =
 (ESearchReport) dymRecSrchRpts.get(searchKey);

Endeca® MDEX Engine Advanced Development GuideEndeca Confidential

99Using Automatic Phrasing | Presentation API development for Automatic Phrasing

 // Get the List of Did You Mean objects
 List dymList = searchReport.getDYMSuggestions();
 if (dymList.size() > 0) {
 // Get all Did You Mean objects to display
 // each available DYM alternative.
 for (int i=0, size = dymList.size(); i<size; i++) {
 ESearchDYMSuggestion dymSug =
 (ESearchDYMSuggestion)dymList.get(i);
 String sug_val = dymSug.getTerms();
 String sug_num =
 String.valueOf(dymSug.getNumMatchingResults());
 String sug_sid = (String)request.getAttribute("sid");
 if(sug_val != null){
 ...
 // Adjust URL parameters to create new search query
 UrlGen urlg = new UrlGen(request.getQueryString(), "UTF-8");
 urlg.removeParam("Ntt");
 urlg.addParam("Ntt", sug_val);
 urlg.removeParam("Ntpc");
 urlg.addParam("Ntpc", "1");
 urlg.removeParam("Ntpr");
 urlg.addParam("Ntpr", "0");
 String url = CONTROLLER+"?"+urlg;
 // Display Did You Mean link for each DYM alternative
 %>Did You Mean <a href="<%=url%>">
 <%= sug_val %><%
 }
 }
 }
 }
 }
}

.NET example
// Get the Dictionary of ESearchReport objects
IDictionary dymRecSrchRpts = nav.ESearchReports;
// Get the user's search key
String dymSearchKey = Request.QueryString["Ntk"];
if (dymSearchKey != null) {
 if (dymRecSrchRpts.Contains(dymSearchKey)) {
 // Get the first Search Report object
 IDictionaryEnumerator ide = dymRecSrchRpts.GetEnumerator();
 ide.MoveNext();
 ESearchReport searchReport = (ESearchReport)ide.Value;
 // Get the List of Did You Mean objects
 IList dymList = searchReport.DYMSuggestions;
 if (dymList.Count > 0) {
 //Get each Did You Mean suggestion object
 for (int i=0, size = dymList.size(); i<size; i++) {
 ESearchDYMSuggestion dymSug =
 (ESearchDYMSuggestion)dymList.get(i);
 String sug_val = dymSug.Terms;
 String sug_num = dymSug.NumMatchingResults.ToString();
 // Adjust URL parameters to create new search query
 UrlGen urlg = new UrlGen(Request.Url.Query.Substring(1),"UTF-8");
 urlg.RemoveParam("Ntt");
 urlg.AddParam("Ntt", sug_val);
 urlg.RemoveParam("Ntpc");
 urlg.AddParam("Ntpc", "1");

Endeca ConfidentialEndeca® MDEX Engine Advanced Development Guide

Using Automatic Phrasing | Presentation API development for Automatic Phrasing100

 urlg.RemoveParam("Ntpr");
 urlg.AddParam("Ntpr", "0");
 urlg.AddParam("sid",Request.QueryString["sid"]);
 String url = Application["CONTROLLER"].ToString()+"?"+urlg;
 // Display Did You Mean message and link
 // for each DYM option
 %>Did You Mean <a href="<%= url %>">
 <%= sug_val %>?<%
 }
 }
 }
}

Tips and troubleshooting for Automatic Phrasing
The following sections provide tips and troubleshooting guidance about using the Automatic Phrasing
feature.

Examining how a phrased query was processed

If automatically-phrased query results are not what you expected, you can run the Dgraph with the
--wordinterp flag to show how the MDEX Engine processed the query.

Single-word phrases

You can include a single word in your phrases_import.xml file and treat the word as a phrase in
your project. This may be useful if you do not want stemming or thesaurus expansion applied to
single-word query terms. You cannot include single word phrases by extracting them from dimension
values using the Phrases dialog box. They have to be imported from your phrases_import.xml
file.

Extending user phrases

The MDEX Engine does not extend phrases a user provides to match a phrase in the phrase dictionary.
For example, if a user provides the query A "BC" D and "BCD" is in the phrase dictionary, the MDEX
Engine does not extend the user’s original phrasing of "BC" to "BCD".

Term order is significant in phrases

Phrases are matched only if search terms are provided in the same exact order and with the same
exact terms as the phrase in the phrase dictionary. For example, if "weekend bag" is in the phrase
dictionary, the MDEX Engine does not automatically phrase the search terms weekend getaway bag
or bag, weekend to match weekend bag.

Possible dead ends

If an application automatically phrases search terms, it is possible a query may not produce results
when it seemingly should have. Specifically, one way in which a dead-end query can occur is when a
search phrase is displayed as a DYM link with results and navigation state filtering excludes the results.

For example, suppose a car sales application is set up to process a user’s original query and display
any automatic phrase alternatives as DYM options. Further suppose a user navigates to Cars > Less
than $15,000 and then provides the search terms luxury package. The search terms match the phrase
"luxury package" in the phrase dictionary.

Endeca® MDEX Engine Advanced Development GuideEndeca Confidential

101Using Automatic Phrasing | Tips and troubleshooting for Automatic Phrasing

The user receives query results for Cars > Less than $15,000 and results that matched some
occurrences of the terms luxury and package. However, if the user clicks the Did you mean "luxury
package"? link, then no results are available because the navigation state Cars > Less than $15,000
excludes them. For details about how processing order affects queries, see the Endeca Basic
Development Guide.

Endeca ConfidentialEndeca® MDEX Engine Advanced Development Guide

Using Automatic Phrasing | Tips and troubleshooting for Automatic Phrasing102

Chapter 8

Relevance Ranking

This section describes the tasks involved in implementing the Relevance Ranking feature of the Endeca
MDEX Engine.

About the Relevance Ranking feature
Relevance Ranking controls the order in which search results are displayed to the end user of an
Endeca application.

You configure the Relevance Ranking feature to display the most important search results earliest to
the user, because application users are often unwilling to page through large result sets.

Relevance ranking can be used to independently control the result ordering for both record search
and dimension search queries. However, while relevance ranking for record search can be configured
with Developer Studio, relevance ranking for dimension search cannot. (You assign relevance ranking
for dimension search via the RELRANK_STRATEGY attribute of dimsearch_config.xml, or at query
time by specifying the Dx and Dk parameters of the UrlENEQuery.)

The importance of a search result is generally an application-specific concept. The Relevance Ranking
feature provides a flexible, configurable set of result ranking modules. These modules can be used in
combinations (called ranking strategies) to produce a wide range of relevance ranking effects. Because
Relevance Ranking is a complex and powerful feature, Endeca provides recommended strategies that
you can use as a point of departure for further development. For details, see the "Recommended
strategies" topic.

Related Links
Recommended strategies on page 125

This section provides some recommended strategies that depend on the implementation
type.

Relevance Ranking modules
Relevance Ranking modules are the building blocks from which you build the relevance ranking
strategies that you actually apply to your search interfaces.

This section describes the available set of Relevance Ranking modules and their scoring behaviors.

Note: Some modules are listed in the Developer Studio interface by their abbreviated spellings,
such as "Interp" for Interpreted.

Exact
The Exact module provides a finer grained (but more computationally expensive) alternative to the
Phrase module.

The Exact module groups results into three strata based on how well they match the query string:

• The highest stratum contains results whose complete text matches the user’s query exactly.
• The middle stratum contains results that contain the user’s query as a subphrase.
• The lowest stratum contains other hits (such as normal conjunctive matches). Any match that

would not be a match without query expansion lands in the lowest stratum. Also in this stratum
are records that do not contain relevance ranking terms (such as those specified in the Nrr query
parameter).

Note: The Exact module is computationally expensive, especially on large text fields. It is
intended for use only on small text fields (such as dimension values or small property values
like part IDs). This module should not be used with large or offline documents (such as FILE or
ENCODED_FILE properties). Use of this module in these cases will result in very poor
performance and/or application failures due to request timeouts. The Phrase module, with and
without approximation turned on, does similar but less sophisticated ranking that can be used
as a higher performance substitute.

Field
The Field module ranks documents based on the search interface field with the highest priority in which
it matched.

Only the best field in which a match occurs is considered. The Field module is often used in relevance
ranking strategies for catalog applications, because the category or product name is typically a good
match. Field assigns a score to each result based on the static rank of the dimension or property
member or members of the search interface that caused the document to match the query. In Developer
Studio, static field ranks are assigned based on the order in which members of a search interface are
listed in the Search Interfaces view. The first (left-most) member has the highest rank.

By default, matches caused by cross-field matching are assigned a score of zero. The score for
cross-field matches can be set explicitly in Developer Studio by moving the <<CROSS_FIELD>>
indicator up or down in the Selected Members list of the Search Interface editor. The
<<CROSS_FIELD>> indicator is available only for search interfaces that have the Field module and
are configured to support cross-field matches. All non-zero ranks must be non-equal and only their
order matters.

For example, a search interface might contain both Title and DocumentContent properties, where hits
on Title are considered more important than hits on DocumentContent (which in turn are considered
more important than <<CROSS_FIELD>> matches). Such a ranking is implemented by assigning the
highest rank to Title, the next highest rank to DocumentContent, and setting the <<CROSS_FIELD>>
indicator at the bottom of the Selected Members list in the Search Interface editor.

Endeca ConfidentialEndeca® MDEX Engine Advanced Development Guide

Relevance Ranking | Relevance Ranking modules104

Note: The Field module is only valid for record search operations. This module assigns a score
of zero to all results for other types of search requests. In addition, Field treats all matches the
same, whether or not they are due to query expansion.

First
Designed primarily for use with unstructured data, the First module ranks documents by how close
the query terms are to the beginning of the document.

The First module groups its results into variably-sized strata. The strata are not the same size, because
while the first word is probably more relevant than the tenth word, the 301st is probably not so much
more relevant than the 310th word. This module takes advantage of the fact that the closer something
is to the beginning of a document, the more likely it is to be relevant.

The First module works as follows:

• When the query has a single term, First’s behavior is straight-forward: it retrieves the first absolute
position of the word in the document, then calculates which stratum contains that position. The
score for this document is based upon that stratum; earlier strata are better than later strata.

• When the query has multiple terms, First behaves as follows: The first absolute position for each
of the query terms is determined, and then the median position of these positions is calculated.
This median is treated as the position of this query in the document and can be used with
stratification as described in the single word case.

• With query expansion (using stemming, spelling correction, or the thesaurus), the First module
treats expanded terms as if they occurred in the source query. For example, the phrase glucose
intolerence would be corrected to glucose intolerance (with intolerence spell-corrected to
intolerance). First then continues as it does in the non-expansion case. The first position of each
term is computed and the median of these is taken.

• In a partially matched query, where only some of the query terms cause a document to match,
First behaves as if the intersection of terms that occur in the document and terms that occur in the
original query were the entire query. For example, if the query cat bird dog is partially matched to
a document on the terms cat and bird, then the document is scored as if the query were cat bird.
If no terms match, then the document is scored in the lowest strata.

• The First relevance ranking module is supported for wildcard queries.

Note: The First module does not work with Boolean searches and cross-field matching. It assigns
all such matches a score of zero.

Frequency
The Frequency (Freq) module provides result scoring based on the frequency (number of occurrences)
of the user’s query terms in the result text.

Results with more occurrences of the user search terms are considered more relevant.

The score produced by the Freq module for a result record is the sum of the frequencies of all user
search terms in all fields (properties or dimensions in the search interface in question) that match a
sufficient number of terms. The number of terms depends on the match mode, such as all terms in a
MatchAll query, a sufficient number of terms in a MatchPartial query, and so on. Cross-field match
records are assigned a score of zero. Total scores are capped at 1024; in other words, if the sum of
frequencies of the user search terms in all matching fields is greater than or equal to 1024, the record
gets a score of 1024 from the Freq module.

Endeca® MDEX Engine Advanced Development GuideEndeca Confidential

105Relevance Ranking | Relevance Ranking modules

For example, suppose we have the following record:
{Title="test record", Abstract="this is a test", Text="one test this is"}

A MatchAll search for test this would cause Freq to assign a score of 4, since this and test occur a
total of 4 times in the fields that match all search terms (Abstract and Text, in this case). The number
of phrase occurrences (just one in the Text field) doesn't matter, only the sum of the individual word
occurrences. Also note that the occurrence of test in the Title field does not contribute to the score,
since that field did not match all of the terms.

A MatchAll search for one recordwould hit this record, assuming that cross field matching was enabled.
But the record would get a score of zero from Freq, because no single field matches all of the terms.
Freq ignores matches due to query expansion (that is, such matches are given a rank of 0).

Glom
The Glom module ranks single-field matches ahead of cross-field matches and also ahead of
non-matches (records that do not contain the search term).

This module serves as a useful tie-breaker function in combination with the Maximum Field module.
It is only useful in conjunction with record search operations. If you want a strategy that ranks single-field
matches first, cross-field matches second, and no matches third, then use the Glom module followed
by the Nterms (Number of Terms) module.

Note: Glom treats all matches the same, whether or not they are due to query expansion.

Glom interaction with search modes

The Glom module considers a single-field match to be one in which a single field has enough terms
to satisfy the conditions of the match mode. For this reason, in MatchAny search mode, cross-field
matches are impossible, because a single term is sufficient to create a match. Every match is considered
to be a single-field match, even if there were several search terms.

For MatchPartial search mode, if the required number of matches is two, the Glom module considers
a record to be a single-field match if it has at least one field that contains two or more or the search
terms. You cannot rank results based on how many terms match within a single field.

For more information about search modes, see the Endeca Basic Development Guide.

Interpreted
Interpreted (Interp) is a general-purpose module that assigns a score to each result record based on
the query processing techniques used to obtain the match.

Matching techniques considered include partial matching, cross-attribute matching, spelling correction,
thesaurus, and stemming matching.

Specifically, the Interpreted module ranks results as follows:

1. All non-partial matches are ranked ahead of all partial matches. For more information, see "Using
Search Modes" in the Endeca Basic Development Guide.

2. Within the above strata, all single-field matches are ranked ahead of all cross-field matches. For
more information, see "About Search Interfaces" in the Endeca Basic Development Guide.

3. Within the above strata, all non-spelling-corrected matches are ranked above all spelling-corrected
matches. See the topic "Using Spelling Correction and Did You Mean" for more information.

Endeca ConfidentialEndeca® MDEX Engine Advanced Development Guide

Relevance Ranking | Relevance Ranking modules106

4. Within the above strata, all thesaurus matches are ranked below all non-thesaurus matches. See
the topic "Using Stemming and Thesaurus" for more information.

5. Within the above strata, all stemming matches are ranked below all non-stemming matches. See
"Using Stemming and Thesaurus" for more information.

Note: Because the Interpreted module comprises the matching techniques of the Spell, Glom,
Stem, and Thesaurus modules, there is no need to add them to your strategy individually as well
if you are using Interpreted.

Related Links
About Spelling Correction and Did You Mean on page 61

The Spelling Correction and Did You Mean features of the Endeca MDEX Engine enable
search queries to return expected results when the spelling used in query terms does not
match the spelling used in the result text (that is, when the user misspells search terms).

Overview of Stemming and Thesaurus on page 81
The Endeca MDEX Engine supports Stemming and Thesaurus features that allow keyword
search queries to match text containing alternate forms of the query terms or phrases.

Maximum Field
The Maximum Field (Maxfield) module behaves identically to the Field module, except in how it scores
cross-field matches.

Unlike Field, which assigns a static score to cross-field matches, Maximum Field selects the score of
the highest-ranked field that contributed to the match.

Note the following:

• Because Maximum Field defines the score for cross-field matches dynamically, it does not make
use of the <<CROSS_FIELD>> indicator set in the Search Interface editor.

• Maximum Field is only valid for record search operations. This module assigns a score of zero to
all results for other types of search requests.

• Maximum Field treats all matches the same, whether or not they are due to query expansion.

Number of Fields
The Number of Fields (Numfields) module ranks results based on the number of fields in the associated
search interface in which a match occurs.

Note that we are counting whole-field rather than cross-field matches. Therefore, a result that matches
two fields matches each field completely, while a cross-field match typically does not match any field
completely.

Note: Numfields treats all matches the same, whether or not they are due to query expansion.
The Numfields module is only useful in conjunction with record search operations.

Number of Terms
The Number of Terms (or Nterms) module ranks matches according to how many query terms they
match.

Endeca® MDEX Engine Advanced Development GuideEndeca Confidential

107Relevance Ranking | Relevance Ranking modules

For example, in a three-word query, results that match all three words will be ranked above results
that match only two, which will be ranked above results that match only one, which will be ranked
above results that had no matches.

Note the following:

• The Nterms module is only applicable to search modes where results can vary in how many query
terms they match. These include MatchAny, MatchPartial, MatchAllAny, and MatchAllPartial. For
details on these search modes, see the Endeca Basic Development Guide .

• Nterms treats all matches the same, whether or not they are due to query expansion.

Phrase
The Phrase module states that results containing the user’s query as an exact phrase, or a subset of
the exact phrase, should be considered more relevant than matches simply containing the user’s
search terms scattered throughout the text.

Records that have the phrase are ranked higher than records which do not contain the phrase.

Configuring the Phrase module
The Phrase module has a variety of options that you use to customize its behavior.

The Phrase options are:

• Rank based on length of subphrases
• Use approximate subphrase/phrase matching
• Apply spell correction, thesaurus, and stemming

When you add the Phrase module in the Relevance Ranking Modules editor, you are presented with
the following editor that allows you to set these options.

Ranking based on length of subphrases
When you configure the Phrase module, you have the option of enabling subphrasing.

Subphrasing ranks results based on the length of their subphrase matches. In other words, results
that match three terms are considered more relevant than results that match two terms, and so on.

A subphrase is defined as a contiguous subset of the query terms the user entered, in the order that
he or she entered them. For example, the query "fax cover sheets" contains the subphrases "fax",
"cover", "sheets", "fax cover", "cover sheets", and "fax cover sheets", but not "fax sheets".

Content contained inside nested quotes in a phrase is treated as one term. For example, consider the
following phrase:
the question is "to be or not to be"

The quoted text ("to be or not to be") is treated as one query term, so this example consists of four
query terms even though it has a total of nine words.

Endeca ConfidentialEndeca® MDEX Engine Advanced Development Guide

Relevance Ranking | Relevance Ranking modules108

When subphrasing is not enabled, results are ranked into two strata: those that matched the entire
phrase and those that did not.

Using approximate matching
Approximate matching provides higher-performance matching, as compared to the standard Phrase
module, with somewhat less exact results.

With approximate matching enabled, the Phrase module looks at a limited number of positions in each
result that a phrase match could possibly exist, rather than all the positions. Only this limited number
of possible occurrences is considered, regardless of whether there are later occurrences that are
better, more relevant matches.

The approximate setting is appropriate in cases where the runtime performance of the standard Phrase
module is inadequate because of large result contents and/or high site load.

Applying spelling correction, thesaurus, and stemming
Applying spelling correction, thesaurus, and stemming adjustments to the original phrase is generically
known as query expansion.

With query expansion enabled, the Phrase module ranks results that match a phrase’s expanded
forms in the same stratum as results that match the original phrase.

Consider the following example:

• A thesaurus entry exists that expands "US" to "United States".
• The user queries for "US government".

The query "US government" is expanded to "United States government" for matching purposes, but
the Phrase module gives a score of two to any results matching "United States government" because
the original, unexpanded version of the query, "US government", only had two terms.

Summary of Phrase option interactions
The three configuration settings for the Phrase module can be used in a variety of combinations for
different effects.

The following matrix describes the behavior of each combination.

DescriptionExpansionApproximateSubphrase

Default. Ranks results into two strata: those that match the
user’s query as a whole phrase, and those that do not.

OffOffOff

Ranks results into two strata: those that match the original, or
an extended version, of the query as a whole phrase, and those
that do not.

OnOffOff

Ranks results into two strata: those that match the original query
as a whole phrase, and those that do not. Look only at the first
possible phrase match within each record.

OffOnOff

Ranks results into two strata: those that match the original, or
an extended version, of the query as a whole phrase, and those

OnOnOff

that do not. Look only at the first possible phrase match within
each record.

Ranks results into N strata where N equals the length of the
query and each result’s score equals the length of its matched
subphrase.

OffOffOn

Ranks results into N strata where N equals the length of the
query and each result’s score equals the length of its matched

OnOffOn

Endeca® MDEX Engine Advanced Development GuideEndeca Confidential

109Relevance Ranking | Relevance Ranking modules

DescriptionExpansionApproximateSubphrase

subphrase. Extend subphrases to facilitate matching but rank
based on the length of the original subphrase (before
extension).

Note: This combination can have a negative performance
impact on query throughput.

Ranks results into N strata where N equals the length of the
query and each result’s score equals the length of its matched

OffOnOn

subphrase. Look only at the first possible phrase match within
each record.

Ranks results into N strata where N equals the length of the
query and each result’s score equals the length of its matched

OnOnOn

subphrase. Expand the query to facilitate matching but rank
based on the length of the original subphrase (before
extension). Look only at the first possible phrase match within
each record.

Note: You should only use one Phrase module in any given search interface and set all of your
options in it.

Effect of search modes on Phrase behavior
Endeca provides a variety of search modes to facilitate matching during search (MatchAny, MatchAll,
MatchPartial, and so on).

These modes only determine which results match a user’s query, they have no effect on how the
results are ranked after the matches have been found. Therefore, the Phrase module works as described
in this section, regardless of search mode. The one exception to this rule is MatchBoolean. Phrase,
like the other relevance ranking modules, is never applied to the results of MatchBoolean queries.

Results with multiple matches
If a single result has multiple subphrase matches, either within the same field or in several different
fields, the result is slotted into a stratum based on the length of the longest subphrase match.

Stop words and Phrase behavior
When using the Phrase module, stop words are always treated like non-stop word terms and stratified
accordingly.

For example, the query “raining cats and dogs” will result in a rank of two for a result containing “fat
cats and hungry dogs” and a rank of three for a result containing “fat cats and dogs” (this example
assumes subphrase is enabled).

Cross-field matches and Phrase behavior
An entire phrase, or subphrase, must appear in a single field in order for it to be considered a match.

(In other words, matches created by concatenating fields are not considered by the Phrase module.)

Endeca ConfidentialEndeca® MDEX Engine Advanced Development Guide

Relevance Ranking | Relevance Ranking modules110

Treatment of wildcards with the Phrase module
The Phrase module translates each wildcard in a query into a generic placeholder for a single term.

For example, the query “sparkling w* wine” becomes “sparkling * wine” during phrase relevance ranking,
where “*” indicates a single term. This generic wildcard replacement causes slightly different behavior
depending on whether subphrasing is enabled.

When subphrasing is not enabled, all results that match the generic version of the wildcard phrase
exactly are still placed into the first stratum. It is important, however, to understand what constitutes
a matching result from the Phrase module’s point of view.

Consider the search query “sparkling w* wine” with the MatchAny mode enabled. In MatchAny mode,
search results only need to contain one of the requested terms to be valid, so a list of search results
for this query could contain phrases that look like this:

sparkling white wine
sparkling refreshing wine
sparkling wet wine
sparkling soda
wine cooler

When phrase relevance ranking is applied to these search results, the Phrase module looks for matches
to “sparkling * wine” not “sparkling w* wine.” Therefore, there are three results—”sparkling white wine,”
“sparkling refreshing wine,” and “sparkling wet wine”—that are considered phrase matches for the
purposes of ranking. These results are placed in the first stratum. The other two results are placed in
the second stratum.

When subphrasing is enabled, the behavior becomes a bit more complex. Again, we have to remember
that wildcards become generic placeholders and match any single term in a result. This means that
any subphrase that is adjacent to a wildcard will, by definition, match at least one additional term (the
wildcard). Because of this behavior, subphrases break down differently. The subphrases for “cold
sparkling w* wine” break down into the following (note that w* changes to *):

cold
sparkling *
* wine
cold sparkling *
sparkling * wine
cold sparkling * wine

Notice that the subphrases “sparkling,” “wine,” and “cold sparkling” are not included in this list. Because
these subphrases are adjacent to the wildcard, we know that the subphrases will match at least one
additional term. Therefore, these subphrases are subsumed by the “sparkling *”, “* wine”, and “cold
sparkling *” subphrases.

Like regular subphrase, stratification is based on the number of terms in the subphrase, and the
wildcard placeholders are counted toward the length of the subphrase. To continue the example above,
results that contain “cold” get a score of one, results that contain “sparkling *” get a score of two, and
so on. Again, this is the case even if the matching result phrases are different, for example, “sparkling
white” and “sparkling soda.”

Finally, it is important to note that, while the wildcard can be replaced by any term, a term must still
exist. In other words, search results that contain the phrase “sparkling wine” are not acceptable matches
for the phrase “sparkling * wine” because there is no term to substitute for the wildcard. Conversely,
the phrase “sparkling cold white wine” is also not a match because each wildcard can be replaced by
one, and only one, term. Even when wildcards are present, results must contain the correct number
of terms, in the correct order, for them to be considered phrase matches by the Phrase module.

Endeca® MDEX Engine Advanced Development GuideEndeca Confidential

111Relevance Ranking | Relevance Ranking modules

Notes about the Phrase module
Keep the following points in mind when using the Phrase module.

• If a query contains only one word, then that word constitutes the entire phrase and all of the
matching results will be put into one stratum (score = 1). However, the module can rank the results
into two strata: one for records that contain the phrase and a lower-ranking stratum for records
that do not contain the phrase.

• Because of the way hyphenated words are positionally indexed, Endeca recommends that you
enable subphrase if your results contain hyphenated words.

Proximity
Designed primarily for use with unstructured data, the Proximity module ranks how close the query
terms are to each other in a document by counting the number of intervening words.

Like the First module, this module groups its results into variable sized strata, because the difference
in significance of an interval of one word and one of two words is usually greater than the difference
in significance of an interval of 21 words and 22. If no terms match, the document is placed in the
lowest stratum.

Single words and phrases get assigned to the best stratum because there are no intervening words.
When the query has multiple terms, Proximity behaves as follows:

1. All of the absolute positions for each of the query terms are computed.
2. The smallest range that includes at least one instance of each of the query terms is calculated.

This range’s length is given in number of words. The score for each document is the strata that
contains the difference of the range’s length and the number of terms in the query; smaller differences
are better than larger differences.

Under query expansion (that is, stemming, spelling correction, and the thesaurus), the expanded terms
are treated as if they were in the query, so the proximity metric is computed using the locations of the
expanded terms in the matching document.

For example, if a user searches for big cats and a document contains the sentence, "Big Bird likes his
cat" (stemming takes cats to cat), then the proximity metric is computed just as if the sentence were,
"Big Bird likes his cats."

Proximity scores partially matched queries as if the query only contained the matching terms. For
example, if a user searches for cat dog fish and a document is partially matched that contains only
cat and fish, then the document is scored as if the query cat fish had been entered.

Note: Proximity does not work with Boolean searches, cross-field matching, or wildcard search.
It assigns all such matches a score of zero.

Spell
The Spell module ranks spelling-corrected matches below other kinds of matches.

Spell assigns a rank of 0 to matches from spelling correction, and a rank of 1 from all other sources.
That is, it ignores all other sorts of query expansion.

Endeca ConfidentialEndeca® MDEX Engine Advanced Development Guide

Relevance Ranking | Relevance Ranking modules112

Static
The Static module assigns a static or constant data-specific value to each search result, depending
on the type of search operation performed and depending on optional parameters that can be passed
to the module.

For record search operations, the first parameter to the module specifies a property, which will define
the sort order assigned by the module. The second parameter can be specified as ascending or
descending to indicate the sort order to use for the specified property.

For example, using the module Static(Availability,descending) would sort result records
in descending order with respect to their assignments from the Availability property. Using the module
Static(Title,ascending) would sort result records in ascending order by their Title property
assignments.

In a catalog application, setting the static module by Price, descending leads to more expensive
products being displayed first.

For dimension search, the first parameter can be specified as nbins, depth, or rank:

• Specifying nbins causes the static module to sort result dimension values by the number of
associated records in the full data set.

• Specifying depth causes the static module to sort result dimension values by their depth in the
dimension hierarchy.

• Specifying rank causes dimension values to be sorted by the ranks assigned to them for the
application.

Note: The Static module is not compatible with the Agraph. Static treats all matches the same,
whether or not they are due to query expansion.

Stratify
The Stratify module is used to boost or bury records in the result set.

The Stratify module takes one or more EQL (Endeca Query Language) expressions and groups results
into strata, based on how well they match the record search (with the Ntx parameter). Records are
placed in the stratum associated with the first EQL expression they match. The first stratum is the
highest ranked, the next stratum is next-highest ranked, and so forth. If an asterisk is specified instead
of an EQL expression, unmatched records are placed in the corresponding stratum.

The Stratify module can also be used for record boost and bury sort operations. In this usage, you
must specify Endeca.stratify as the name for the Ns parameter.

The Stratify module is the basic component of the record boost and bury feature, which is described
in the Basic Development Guide.

Stem
The Stem module ranks matches due to stemming below other kinds of matches.

Stem assigns a rank of 0 to matches from stemming, and a rank of 1 from all other sources. That is,
it ignores all other sorts of query expansion.

Endeca® MDEX Engine Advanced Development GuideEndeca Confidential

113Relevance Ranking | Relevance Ranking modules

Thesaurus
The Thesaurus module ranks matches due to thesaurus entries below other sorts of matches.

Thesaurus assigns a rank of 0 to matches from the thesaurus, and a rank of 1 from all other sources.
That is, it ignores all other sorts of query expansion.

Weighted Frequency
Like the Frequency module, the Weighted Frequency (Wfreq) module scores results based on the
frequency of user query terms in the result.

Additionally, the Weighted Frequency module weights the individual query term frequencies for each
result by the information content (overall frequency in the complete data set) of each query term. Less
frequent query terms (that is, terms that would result in fewer search results) are weighted more heavily
than more frequently occurring terms.

Note: The Weighted Frequency module ignores matches due to query expansion (that is, such
matches are given a rank of 0).

Relevance Ranking strategies
Relevance Ranking modules define the primitive search result ordering functions provided by the
MDEX Engine. These primitive modules can be combined to compose more complex ordering behaviors
called Relevance Ranking strategies.

You may also define and apply a strategy that consists of a single module, rather than a group of
modules.

A Relevance Ranking strategy is essentially an ordered list of relevance ranking modules and (in a
URL relevance ranking string) references to other relevance ranking strategies. The scores assigned
by a strategy are composed from the scores assigned by its constituent modules. This composite
score is constructed so that records are first ordered by the first module. After that, ties are broken by
the subsequent modules in order. If any ties remain after all modules have run, the ties are resolved
by the default sort. If after that any ties still remain, the order of records is determined by the system.

Relevance Ranking strategies are used in two main contexts in the MDEX Engine:

• In Developer Studio, you apply Relevance Ranking to a search interface via the Search Interface
editor and the Relevance Ranking Modules editor, both of which are documented in Developer
Studio online help.

• At the MDEX Engine query level, Relevance Ranking strategies can be selected to override the
default specified for the selected search interface. This allows Relevance Ranking behavior to be
fully customized on a per-query basis. For details, see the "URL query parameters for relevance
ranking" topic.

Implementing relevance ranking
Developer Studio allows you to create and control relevance ranking for record search.

Endeca ConfidentialEndeca® MDEX Engine Advanced Development Guide

Relevance Ranking | Relevance Ranking strategies114

You can apply record search relevance ranking as you are creating a search interface, or afterwards.
A search interface is a named group of at least one dimension and/or property. You create search
interfaces so you can apply behavior like relevance ranking across a group. For more information
about search interfaces, see "About Search Interfaces" in the Endeca Basic Development Guide.

Adding a Static module
Keep the following in mind when you add a Static module to the ranking strategy.

The Static module is the only one that you can add multiple times. The interface prevents the addition
of multiple instances of the other modules. In addition, adding a Static module launches the Edit Static
Relevance Rank Module editor. Use this editor to add the required parameters (dimension or property
name and sort order).

Ranking order for Field and Maximum Field modules
The Field and Maximum Field modules ranks results based on which member property or dimension
of the selected search interface caused the match.

Higher relevance-ranked values correspond to greater importance. This behavior means that the Field
and Maximum Field modules will score results caused by higher-ranked properties and dimensions
ahead of those caused by lower-ranked properties and dimensions.

To change the relevance ranking behavior for these modules, you would move the search interface
members to the appropriate position in the Search Interface editor’s Selected Members list, using the
Up and Down arrows.

Cross-field matching for the Field module
For search interfaces that allow cross-field matches and have a Field module, you can configure the
static score assigned to cross-field matches by the Field module on an individual search interface.

You might do this if you considered cross-field matches better than description-only matches.

Such a search interface would appear similar to this example in the Search Interface editor:

Endeca® MDEX Engine Advanced Development GuideEndeca Confidential

115Relevance Ranking | Implementing relevance ranking

In the example, note the presence of the <<CROSS-FIELD>> indicator in the Selected Members list.
This indicator is present only in search interfaces with Always or On Failure cross-field matches and
a ranking strategy that includes a Field module.

How relevance ranking score ties between search interfaces are resolved
In the case of multiple search interfaces and relevance ranking score ties, ties are broken based on
the relevance ranking sort strategy of the search interface with the highest relevance ranking score
for a given record.

If two different records belong to different search interfaces, the record from the search interface
specified earlier in the query comes first.

Implementing relevance ranking strategies for dimension search
There is no MDEX Engine configuration necessary to configure a relevance ranking strategy for record
search.

To define the relevance ranking strategy for dimension search operations, modify the
RELRANK_STRATEGY attribute of dimsearch_config.xml. This attribute specifies the name of
a relevance ranking strategy for dimension search. The content of this attribute should be a relevance
ranking string, as in the following examples:
exact,static(rank,descending)
interp,exact

For details on the format of the relevance ranking string, see the "URL query parameters for relevance
ranking" topic.

The default ranking strategy for dimension search operations, which is applied if you do not make any
changes to it, is:
interp,exact,static

The default ranking strategy for record search operations is no strategy. That is, unless you explicitly
establish a relevance ranking strategy, none is used.

Related Links
URL query parameters for relevance ranking on page 120

URL query parameters allow you to communicate with the Presentation API from your client
browser.

Flag impact of using Relevance Ranking with an Agraph
If you are using Relevance Ranking with an Agraph deployment, keep in mind the following point.

Dgraphs that are configured for relevance ranking automatically enable the --stat-brel flag when
sent a query from an Agraph. For details on the Agraph, see the "Using the Aggregated MDEX Engine"
topic.

Note: Relevance Ranking for dimension search is not supported in an Agraph.

Endeca ConfidentialEndeca® MDEX Engine Advanced Development Guide

Relevance Ranking | Implementing relevance ranking116

Retrieving the relevance ranking for records
The Dgraph --stat-brel flag creates a dynamic property on each record named DGraph.BinRel¬
evanceRank. The value of this property reflects the relevance rank assigned to a record in full text
search.

The Java ERec.getProperties() method and the .NET ERec.Properties property return a list
of properties (PropertyMap object) associated with the record. At this point, calling the Java
PropertyMap.get()method or the .NET PropertyMap object with the DGraph.BinRelevanceR¬
ank argument returns the value of the property.

The following code samples show how to retrieve the DGraph.BinRelevanceRank for a given record.

Java example
// get the record list from the navigation object
ERecList recs = nav.getERecs();
// loop over record list
for (int i=0; i<recs.size(); i++) {
 // get individual record
 ERec rec = (ERec)recs.get(i);
 // get property map for record
 PropertyMap propsMap = rec.getProperties();
 // Check for a non-null relevance rank property
 if (propsMap.get("DGraph.BinRelevanceRank") != null) {
 String rankNum =
 (String)propsMap.get("DGraph.BinRelevanceRank");
 %>Relevance ranking for this record:
 <%= rankNum %>
 <%
 } // end of if
} // end of for loop iteration

.NET example
// get the record list from the navigation object
ERecList recs = nav.ERecs;
// loop over record list
for (int i=0; i<recs.Count; i++) {
 // get individual record
 ERec rec = (ERec)recs[i];
 // get property map for record
 PropertyMap propsMap = rec.Properties;
 // Check for a non-null relevance rank property
 String rankNum = "";
 if (propsMap["DGraph.BinRelevanceRank"] != null) {
 rankNum = (String)propsMap["DGraph.BinRelevanceRank"];
 %>Relevance ranking for this record:
 <%= rankNum %>
 <%
 } // end of if
} // end of for loop iteration

Interpreting the values of DGraph.BinRelevanceRank

The MDEX Engine sorts records for relevance ranking using a more granular algorithm than the number
you retrieve with DGraph.BinRelevanceRank.

Endeca® MDEX Engine Advanced Development GuideEndeca Confidential

117Relevance Ranking | Implementing relevance ranking

If, for example, you need to interpret the values of the DGraph.BinRelevanceRank property for two
different records, it is helpful to know that while these values roughly represent the sorting used for
relevance-ranked records, they are not as precise as the internal sorting numbers the MDEX Engine
actually uses to sort the records.

For example, you may see the same DGraph.BinRelevanceRank value for two records that are
sorted slightly differently. When interpreting the results of DGraph.BinRelevanceRank for two
different records, consider these values as providing rough guidance only on whether one record has
a significantly higher relevance rank than the other. However, if the value of DGraph.BinRelevanceR¬
ank is the same, this does not mean that the records are sorted the same, since the underlying sorting
mechanism in the MDEX Engine is more precise. It is important to note that the MDEX Engine always
returns consistent results and consistently interprets tie breaks in sorting, if they occur.

Note: If you are using the Agraph, the MDEX Engine does not utilize its more precise mechanism
for sorting relevance-ranked results and relies directly on the values you can retrieve with
DGraph.BinRelevanceRank. While for the Agraph the sorting mechanism is less granular
than the one used for the Dgraph, the MDEX Engine returns consistent results, resolving tie
breaks in a consistent way.

Controlling relevance ranking at the query level
At the MDEX Engine query level, relevance ranking strategies can be selected to override the default
specified for the selected search interface.

This allows relevance ranking behavior to be fully customized on a per-query basis. MDEX Engine
URL relevance ranking strategy strings must contain one or more relevance ranking module names.
Module names can be any of these pre-defined modules:

• exact
• field (useful for record search only)
• first
• freq
• glom (useful for record search only)
• interp
• maxfield (useful for record search only)
• nterms
• numfields (useful for record search only)
• phrase (for details on using phrase, see the section below)
• proximity
• spell
• stem
• thesaurus
• static (for details on using static, see the section below)
• wfreq

Module names are delimited by comma (,) characters. No other stray characters (such as spaces) are
allowed. Module names are listed in descending order of priority.

Endeca ConfidentialEndeca® MDEX Engine Advanced Development Guide

Relevance Ranking | Controlling relevance ranking at the query level118

Exact module, First module, Nterms module, and Proximity module details

The Exact, First, Nterms, and Proximity modules can take one parameter named considerField¬
Ranks. If specified, the considerFieldRanks parameter indicates that the module should further
sort records according to field ranking scores, after the records have been sorted according to the
standard behavior of the module.

For example, if you specify exact without the parameter in a query, records that are an exact match
are sorted into a strata that is higher than non-exact matches. Within each strata, the records are only
sorted according to the default sort order or a specified sort key.

If you add the considerFieldRanks parameter to URL query syntax and specify exact(consid¬
erFieldRanks), the records within each strata are sorted so that those with higher field ranking
scores are more relevant than those with lower field ranking scores within the same strata.

Freq module and Numfields module details

The Freq module and also the Numfields module can take one parameter named considerField¬
Ranks. If specified, the considerFieldRanks parameter indicates that the module should further
sort records according to ranking scores that are calculated across multiple fields, after the records
have been sorted according to the standard behavior of the module. For these modules, cross-field
matches are weighted such that matches in higher ranked fields contribute more than matches in lower
ranked fields.

Phrase module details

The Phrase module can take up to four parameters:

• approximate - enables approximate matching.
• considerFieldRanks - enables further sorting according to the field rank score of the match.

If specified, the considerFieldRanks parameter indicates that the module should further sort
records according to field ranking scores, after the records have been sorted according to the
standard behavior of the module.

• query_expansion - enables query expansion.
• subphrase - enables subphrase matching

The presence of a parameter indicates that the feature should be enabled, and the parameters can
be in any order. For example: phrase(subphrase,approximate,query_expansion)

Static module details

The Static module takes two parameters. For record search, the first parameter is a property or
dimension to use for assigning static scores (based on sort order) and the second is the sort order:
ascending (ascend is an accepted abbreviation) or descending (or descend). The default is ascending.
The parameters must be a comma-separated list enclosed in parentheses. For example: stat¬
ic(Price,ascending)

For dimension search, the first parameter can be specified as nbins, depth, or rank:

• Specifying nbins causes the static module to sort result dimension values by the number of
associated records in the full data set.

• Depth causes the static module to sort result dimension values by their depth in the dimension
hierarchy.

• Rank causes dimension values to be sorted by the ranks assigned to them for the application. In
cases when there are ties, (for example, if you specify nbins and the number of associated records
is the same), the system ranks dimension search results based on the dimension value IDs.

Endeca® MDEX Engine Advanced Development GuideEndeca Confidential

119Relevance Ranking | Controlling relevance ranking at the query level

Valid relevance ranking strings

The following are examples of valid relevance ranking strategy strings:

• exact

• exact(considerFieldRanks)

• field,phrase,interp

• static(Price,ascending)

• static(Availability,descending),exact,static(Price,ascending)

• field,MyStrategy,exact (assuming that MyStrategy is the name of a valid search interface
with a relevance ranking strategy)

• phrase(approximate,subphrase)

URL query parameters for relevance ranking
URL query parameters allow you to communicate with the Presentation API from your client browser.

There are two sets of URL query parameters that allow you to specify relevance ranking modules that
will order the returned record set:

• Dk, Dx, and Ntx parameters.
• Nrk, Nrt, and Nrr parameters.

These parameters must be specified together. These sets of URL parameters are described in the
following two sections.

Using the Dk, Dx, and Ntx parameters
This topic describes the use of query parameters with relevance ranking.

The following query parameters affect relevance ranking:

Dk=<0|1>
Dx=rel+strategy
Ntx=rel+strategy

For the Dx and Ntx parameters, the rel option sets the relevance ranking strategy. For a list of valid
module names to use in the strategy, see the "Controlling relevance ranking at the query level" topic.

Relevance ranking for record search operations is automatic. Results are returned in descending order
of relevance as long as a relevance ranking strategy is enabled (either in the URL or as the default
for the selected search interface) and if the user has not selected an explicit record sort operation in
the record search request. If the user has requested an explicit sort ordering, relevance rank ordering
for results does not apply.

For dimension search operations, relevance ranking is enabled by the Dk parameter. The value of this
(optional) parameter can be set to zero or one:

• If the value is set to one, the dimension search results will be returned in relevance-ranked order
• If the value is set to zero, the results will be returned in their default order

The default value if the parameter is omitted is zero (that is, relevance ranking is not enabled).

Endeca ConfidentialEndeca® MDEX Engine Advanced Development Guide

Relevance Ranking | Controlling relevance ranking at the query level120

For both dimension search and record search operations, the relevance ranking strategy used for the
current request can be selected using the search option URL parameters (Dx and Ntx) as in the
following examples:

<application>?D=mark+twain&Dk=1
&Dx=rel+exact,static(rank,descending)

<application>?N=0&Ntk=All&Ntt=polo+shirt
&Ntx=mode+matchany+rel+MyStrategy

The second example assumes that MyStrategy was defined in Developer Studio, and is specified via
the rel option (which sets the relevance ranking option. The example also uses the mode option (which
requests "match any word" query matching).

Using URL-defined strategies (as in the first example) can be especially useful during development,
when you want to compare the results of multiple strategies quickly. Once you have determined what
strategy works best, you can define the strategy in a search interface in Developer Studio.

Related Links
Controlling relevance ranking at the query level on page 118

At the MDEX Engine query level, relevance ranking strategies can be selected to override
the default specified for the selected search interface.

Using the Nrk, Nrt, Nrr, and Nrm parameters
You can use the following set of parameters to order the records of a record search via a specified
relevance ranking strategy.

The parameters are:
Nrk=search-interface
Nrt=relrank-terms
Nrr=relrank-strategy
Nrm=relrank-matchmode

All of these parameters must be specified together. None of the parameters allow the use of a pipe
character (|) to specify multiple sets of arguments.

Note: The parameters discussed here are not supported for use with the Aggregated MDEX
Engine (Agraph).

The definition of the parameters is as follows:

• Nrk sets the search interface to use in the navigation query for a record search. Only search
interfaces can be specified; Endeca properties and dimensions cannot be used. Note that the
search interface does not need to have a relevance ranking strategy defined in it.

• Nrt sets one or more terms that will be used by the relevance ranking module to order the records.
For multiple terms, each term is delimited by a plus (+) sign. Note that these relevance ranking
terms can be different from the search terms (as set by the Ntt parameter, for example).

• Nrr sets the relevance ranking strategy to be used to rank the results of the record search. For a
list of valid module names to use in the relrank-strategy argument, see the "Controlling relevance
ranking at the query level" topic.

• Nrm sets the relevance ranking match mode to be used to rank the results of the record search.
With the exception of MatchBoolean, all of the search mode values listed in "Using Search Modes"
(in the Endeca Basic Development Guide) are valid for use with the Nrm parameter. Attempting
to use MatchBoolean with the Nrm parameter will cause the record search results to be returned
without relevance ranking and a warning to be issued to the Dgraph log.

Endeca® MDEX Engine Advanced Development GuideEndeca Confidential

121Relevance Ranking | Controlling relevance ranking at the query level

All four parameters link to the Java ENEQuery.setNavRelRankERecRank() method and the .NET
ENEQuery.NavRelRankERecRank property. Note that these parameters have a dependency on the
N parameter, because a navigation query is being performed.

Because the Nrt parameter lets you specify relevance ranking terms (and not search terms), you
have the freedom to perform a record search based on one set of terms (for example, merlot and
2003) and then have the record set ordered by another set of terms (for example, pear). This behavior
is different from that of the Ntx parameter, which uses the terms of the Ntt parameter to order the
record set (in other words, the same set of search terms are also used to perform relevance ranking).

The following is an example of using these parameters:
<application>?N=0&Ntk=P_Description&Ntt=sonoma
&Nrk=All&Nrt=citrus&Nrr=maxfield&Nrm=matchall

In the example, a record search is first performed for the word sonoma against the P_Description
property. Then Nrk specifies that the search interface named All be used. Nrr specifies that the
Maxfield relevance ranking module use the word citrus (specified via Nrt) as the term by which the
records are ordered, using the match mode specified by Nrm.

Note: The Nrk, Nrt, Nrr, and Nrm parameters take precedence over the Ntk, Ntt, and Ntx
parameters. That is, if both sets of parameters are used in a query, the relevance ranking strategy
specified by the Nrr parameter will be used to order the records.

Related Links
Controlling relevance ranking at the query level on page 118

At the MDEX Engine query level, relevance ranking strategies can be selected to override
the default specified for the selected search interface.

Using relevance ranking methods
Because relevance ranking only affects the order of results (and not the content of results), there are
no special objects or rendering techniques associated with relevance ranking.

Remember, though, that this ordering can have significant impact on how quickly results are rendered.

Relevance Ranking sample scenarios
This section contains two examples of relevance ranking behavior to further illustrate the capabilities
of this feature.

In the first example, we first look at the effects of various relevance ranking strategies on a small
sample data set that supports record search, examining the range of possible result orderings possible
using only a limited set of ranking modules.

In the second example, we look at how adding a simple relevance ranking strategy can affect user
results in the reference implementation.

Note: These extremely simple scenarios are provided for illustrative purposes only. For more
realistic examples, see the "Recommended strategies" topic. Also note that in many relevance
ranking scenarios you can set considerFieldRanks for tie breaking. This setting is not useful
for Dimension search because all searchable dimension value synonyms are in the same field.

Endeca ConfidentialEndeca® MDEX Engine Advanced Development Guide

Relevance Ranking | Relevance Ranking sample scenarios122

Related Links
Recommended strategies on page 125

This section provides some recommended strategies that depend on the implementation
type.

Example 1: Using a small data set
This scenario shows the effects of various relevance ranking strategies on a small data set.

This example illustrates the richness of relevance ranking tuning possible with the modular Endeca
relevance ranking system: using two modules on a data set of three records, we found that all four
possible combinations of the modules into strategies resulted in different orderings, all of which were
different from the default ordering.

The example uses the following example record set:

Author propertyTitle propertyRecord

Mark Twain and other authorsGreat Short Stories1

William Lyon PhelpsMark Twain2

Mark TwainTom Sawyer3

Creating the search interface in Developer Studio

In Endeca Developer Studio, we have defined a search interface named Books that contains both Title
and Author properties. The relevance rank is determined by the order in which the dimensions or
properties appear in the Selected Members list.

Assume that we have not defined an explicit default sort order for the records, in which case their
default order is determined by the system.

Without relevance ranking

Suppose that the user enters a record search query against the Books search interface forMark Twain.
All three of the records are matches, because each record has at least one searchable property value
containing at least one occurrence of both the words Mark and Twain. But in what order should the
results be presented to the application user? Without relevance ranking enabled, the results are
returned in their default order: 1, 2, 3.

If relevance ranking were enabled, the order depends on the relevance ranking strategy selected.

With an Exact ranking strategy

Suppose we have selected the Exact relevance ranking strategy, either by assigning this as the default
strategy for the Books search interface in Developer Studio or by using URL-level search options.

In this case, the order of results would be based only on whether results were Exact, Phrase, or other
matches. Because records 2 and 3 have properties whose complete values exactly match the user
query Mark Twain, these results would be returned ahead of record 1, with the tie being broken by the
default sort set by the system (remember that we have not defined a default sort).

Endeca® MDEX Engine Advanced Development GuideEndeca Confidential

123Relevance Ranking | Relevance Ranking sample scenarios

With an Exact ranking strategy and the considerFieldRanks parameter

Suppose we have selected the Exact relevance ranking strategy and also specified the consider¬
FieldRanks parameter in the query URL. Also, suppose that the Title property has a higher field rank
value than Author for any search matches.

In this case, the order of results would be based only on whether results were Exact, Phrase, or other
matches. Because records 2 and 3 have properties whose complete values exactly match the user
queryMark Twain, these results would be returned ahead of record 1. And further, because we specified
considerFieldRanks, record 2 would be returned ahead of record 3.

With a Field ranking strategy

Now, assume that we have selected the Field relevance ranking strategy.

The order of results would be based only on which property caused the match, with Author matches
being prioritized over Title matches. Because records 1 and 3 match on Author, these are returned
ahead of record 2 (again, with ties broken by the default sort imposed by the system).

With a Field,Exact ranking strategy

Now, consider using a combination of these two strategies: Field,Exact.

In this case, the primary sort is determined by the first module, Field, which again dictates that records
1 and 3 should be returned ahead of record 2. But in this case, the Field tie between records 1 and 3
is resolved by the Exact module, which prioritizes record 3 ahead of record 1. Thus, the order of results
returned is: 3, 1, 2.

With an Exact,Field ranking strategy

Finally, consider combining the same two modules but in a different priority order: Exact,Field.

In this case, the primary sort is determined by the Exact module, which again prioritizes records 2 and
3 ahead of record 1. In this case, the Exact tie between records 2 and 3 is resolved by the Field module,
which orders record 3 ahead of record 2 because record 3 is an Author match. Thus, the order of
results returned is: 3, 2, 1.

Example 2: UI reference implementation
This scenario shows how adding a relevance ranking module can change the order of the returned
records.

This example, which is somewhat more realistically scaled, uses the sample wine data in the UI
reference implementation. It demonstrates how relevance ranking can affect the results displayed to
your users.

In this scenario, we use the thesaurus and relevance ranking features to enable end users’ access to
Flavor results similar to the one they searched on, while still seeing exact matches first.

First, in Developer Studio, we establish the following two-way thesaurus entries:
{ cab : cabernet }
{ cinnamon : spice : nutmeg }
{ tangy : tart : sour : vinegary }
{ dusty : earthy }

Before applying these thesaurus equivalencies, if we search on the Dusty flavor, 83 records are
returned, and if we search on the Earthy flavor, 3,814 records are returned.

Endeca ConfidentialEndeca® MDEX Engine Advanced Development Guide

Relevance Ranking | Relevance Ranking sample scenarios124

After applying these thesaurus equivalencies, if we search on the Dusty property, results for both Dusty
and Earthy are returned. (Because some records are flagged with both the Dusty and Earthy descriptors,
the number of records is not an exact total of the two.)

Relevant propertyWine (by order returned)

EarthyA Tribute Sonoma Mountain

EarthyAgainst the Wall California

DustyAglianico Irpinia Rubrato

EarthyAglianico Sannio

Because the application is sorting on Name in ascending order, the Dusty and Earthy results are
intermingled. That is, the first two results are for Earthy and the third is for Dusty, even though we
searched on Dusty, because the two Earthy records came before the Dusty one when the records
were sorted in alphabetical order.

Now, suppose that while we want our users to see the synonymous entries, we want records that
exactly match the search term Dusty to be returned first. We therefore would use the Interpreted
ranking module to ensure that outcome.

Relevant propertyWine (by order returned)

DustyAglianico Irpinia Rubrato

DustyBandol Cuvee Speciale La Miguoa

DustyBeaujolais-Villages Reserve du Chateau de
Montmelas

DustyBeauzeaux Winemaker’s Collection Napa Valley

With the Interpreted ranking strategy, the results are different. When we search on Dusty, we see the
records that matched for Dusty sorted in alphabetical order, followed by those that matched for Earthy.
The wine Aglianico Irpinia Rubrato, which was returned third in the previous example, is now returned
first.

Recommended strategies
This section provides some recommended strategies that depend on the implementation type.

Relevance ranking behavior is complex and powerful and requires careful, iterative development.
Typically, selection of the ideal relevance ranking strategy for a given application depends on extensive
experimentation during application development. The set of possible result ranking strategies is
extremely rich, and because setting ranking strategies is highly dependent on the quantity and type
of data you are working with, a strategy that works well in one situation could be unsatisfactory in
another.

For this reason, Endeca provides recommended strategies for different types of implementations and
suggests that you use them as a point of departure in creating your own strategies. The following
sections describe recommended general strategies for each product in detail.

Note: These recommendations are not meant to overrule custom strategies developed for your
application by Endeca Professional Services.

Endeca® MDEX Engine Advanced Development GuideEndeca Confidential

125Relevance Ranking | Recommended strategies

Testing your strategies

When testing your own strategies, it is a good idea to try searching on diverse examples: single word
terms, multi-word terms that you know are an exact match for records in your data, and multi-word
terms that contain additional words as well as the ones in your data. In this way you will see the full
range of relevance ranking effects.

Recommended strategy for retail catalog data
This topic describes a good starting strategy to try if you are a retailer working with a catalog data set.

The strategy assumes the following:

• The search mode is MatchAllPartial. By using this mode, you ensure that a user’s search would
return a two-words-out-of-five match as well as a four-words-out-of-five match, just at a lower
priority.

• The strategy is based on a search interface with members such as Category, Name, and Description,
in that order. The order is significant because a match on the first member ranks more highly than
a cross-field match or match on the second or third member. (For details, see "About Search
Interfaces" in the Endeca Basic Development Guide.)

The strategy is as follows:

• NTerms
• MaxField
• Glom
• Exact
• Static

The modules in this strategy work like this:

1. NTerms, the first module, ensures that in a multi-word search, the more words that match the better.
2. Next, MaxField puts cross-field matches as high in priority as possible, to the point where they

could tie with non-cross-field matches.
3. The next module, Glom, decomposes cross-field matches, effectively breaking any ties resulting

from MaxField. Together, MaxField and Glom provide the proper ordering, depending upon what
matched.

4. Applying the Exact module means that an exact match in a highly-ranked member of the search
interface is placed higher than a partial or cross-field match.

5. Optionally, the Static module can be used to sort remaining ties by criteria such as Price or
SalesRank.

Recommended strategy for document repositories
This topic describes a good starting strategy to try if you are working with a document repository.

The strategy assumes the following:

• The search mode is MatchAllPartial. By using this mode, you ensure that a user’s search would
return a two-words-out-of-five match as well as a four-words-out-of-five match, just at a lower
priority.

• The strategy is based on a search interface with members such as Title, Summary, and
DocumentText, in that order. The order is significant because a match on the first member ranks
more highly than a cross-field match or match on the second or third member.

Endeca ConfidentialEndeca® MDEX Engine Advanced Development Guide

Relevance Ranking | Recommended strategies126

The strategy is as follows:

• NTerms
• MaxField
• Glom
• Phrase (with or without approximate matching enabled)
• Static

The modules in this strategy work like this:

1. NTerms, the first module, ensures that in a multi-word search, the more words that match the better.
2. Next, MaxField puts cross-field matches as high in priority as possible, to the point where they

could tie with non-cross-field matches.
3. The next module, Glom, decomposes cross-field matches, effectively breaking any ties resulting

from MaxField. Together, MaxField and Glom provide the proper ordering, depending upon what
matched.

4. Applying the Phrase module ensures that results containing the user’s query as an exact phrase
are given a higher priority than matching containing the user’s search terms sprinkled throughout
the text.

5. Optionally, the Static module can be used to sort the remaining ties by criteria such as ReleaseDate
or Popularity.

Performance impact of Relevance Ranking
Relevance ranking can impose a significant computational cost in the context of affected search
operations (that is, operations where relevance ranking is actually enabled).

You can minimize the performance impact of relevance ranking in your implementation by making
module substitutions when appropriate, and by ordering the modules you do select sensibly within
your relevance ranking strategy.

Making module substitutions
Because of the linear cost of relevance ranking in the size of the result set, the actual cost of relevance
ranking depends heavily on the set of ranking modules used.

In general, modules that do not perform text evaluation introduce significantly lower computational
costs than text-matching-oriented modules.

Although the relative cost of the various ranking modules is dependent on the nature of your data and
the number of records, the modules can be roughly grouped into four tiers:

• Exact is very computationally expensive.
• Proximity, Phrase with Subphrase or Query Expansion options specified, and First are all high-cost

modules, presented in the order of decreasing cost.
• WFreq can also be costly in some situations.
• The remaining modules (Static, Phrase with no options specified, Freq, Spell, Glom, Nterms, Interp,

Numfields, Maxfields and Field) are generally relatively cheap.

In order to maximize the performance of your relevance ranking strategy, consider a less expensive
way to get similar results. For example, replacing Exact with Phrase may improve performance in
some cases with relatively little impact on results.

Endeca® MDEX Engine Advanced Development GuideEndeca Confidential

127Relevance Ranking | Performance impact of Relevance Ranking

Note: Choose the set of modules used for relevance ranking most carefully when the data set
is large or contains large/offline file content that is used for search operations.

Ordering modules sensibly
Relevance ranking modules are only evaluated as needed.

When higher-priority ranking modules determine the order of records, lower-priority modules do not
need to be calculated. This can have a dramatic impact on performance when higher-cost modules
have a lower priority than a lower-cost module.

While you have the freedom to order modules as you like, for best performance, make sure that the
cheaper modules are placed before the more expensive ones in your strategy.

Endeca ConfidentialEndeca® MDEX Engine Advanced Development Guide

Relevance Ranking | Performance impact of Relevance Ranking128

Part 3

Understanding and Debugging Query
Results

• Using Why Match
• Using Word Interpretation
• Using Why Rank
• Using Why Precedence Rule Fired

Chapter 9

Using Why Match

This section describes the tasks involved in implementing the Why Match feature of the Endeca MDEX
Engine.

About the Why Match feature
The Why Match functionality allows an application developer to debug queries by examining which
property value of a record matched a record search query and why it matched.

With Why Match enabled in an application, records returned as part of a record search query are
augmented with extra dynamically generated properties that provide information about which record
properties were involved in search matching.

Enabling Why Match
You enable Why Match on a per-query basis using the Nx (Navigation Search Options) query parameter.
No Developer Studio configuration or Dgraph flags are required to enable this feature.

However, because Why Match applies only to record search navigation requests, dynamically-generated
properties only appear in records that are the result of a record search navigation query. Records in
non-search navigation results do not contain Why Match properties.

Why Match API
The MDEX Engine returns match information for each record as a DGraph.WhyMatch property in the
search results.

The following code samples show how to extract and display the DGraph.WhyMatch property from
a record.

Java example
// Retrieve properties from record
PropertyMap propsMap = rec.getProperties();
// Get the WhyMatch property value
String wm = (String) propsMap.get("DGraph.WhyMatch");

// Display the WM value if one exists
if (wm != null) {
 %>This record matched on <%= wm %>
 <%
}

.NET example
// Retrieve properties from record
PropertyMap propsMap = rec.Properties;
// Get the WhyMatch property value
String wm = propsMap["DGraph.WhyMatch"].ToString();
// Display the WM value if one exists
if (wm != null) {
 %>This record matched on <%= wm %>
 <%
}

Why Match property format
The DGraph.WhyMatch property value has a three-part format that is made up of a list of fields where
the terms matched, a list of the terms that matched, and several possible query expansions that may
have been applied to the during processing.

The DGraph.WhyMatch property is returned as a JSON object with the following format: :
[{fields: [<FieldName>, <FieldName>, ...], terms:[
 {term:<TermName>, expansions:[{type:<TypeName>},
 {type:<TypeName>}, ...]},
 {term:<TermName>, expansions:[{type:<TypeName>},
 {type:<TypeName>}, ...]}]}
 ...]

where the supported expansion types (i.e. the <TypeName> values) are as follows:

• Stemming – returned results based on the stemming dictionaries available in the MDEX Engine.
• Thesaurus – returned augmented results based on thesaurus entries added in Developer Studio

or Endeca Workbench.
• Spell-corrected – returned spell-corrected results using application-specific dictionary words.

The availability of these values depends on which search features have been enabled in the MDEX
Engine.

For example, suppose there is a matchpartial query for "nueve uno firefighter" that produces a
single-field match in "Spanish", a cross-field match in Spanish and English (i.e. "one" appears in English
via thesaurus from uno), and firefighter is not in any field. The following DGraph.WhyMatch property
value is returned:
[{fields:[Spanish], terms:[{term:neuve,expansions:[]},
 {term:uno,expansions:[]}]},
 {fields:[Spanish,English], terms:[{term:neuve,expansions:[]},
 {term:uno, expansions:[{type:The¬
saurus}]}]}]

Endeca ConfidentialEndeca® MDEX Engine Advanced Development Guide

Using Why Match | Why Match property format132

Why Match performance impact
The response times for MDEX Engine requests that include Why Match properties are more expensive
than requests without this feature. The performance cost increases as the number of records returned
with the DGraph.WhyMatch property increases.

This feature is intended for development environments to record matching. The feature is not intended
for production environments and is not particularly optimized for performance.

Endeca® MDEX Engine Advanced Development GuideEndeca Confidential

133Using Why Match | Why Match performance impact

Chapter 10

Using Word Interpretation

This section describes the tasks involved in implementing the Word Interpretation feature of the Endeca
MDEX Engine.

About the Word Interpretation feature
The Word Interpretation feature reports word or phrase substitutions made during text search processing.

The Word Interpretation feature is particularly useful for highlighting variants of search keywords that
appear in displayed search results. These variants may result from stemming, thesaurus expansion,
or spelling correction.

Implementing Word Interpretation
The --wordinterp flag to the Dgraph command must be set to enable the Word Interpretation
feature.

The Word Interpretation feature does not require any work in Developer Studio. There are no Dgidx
flags necessary to enable this feature, nor are there any MDEX Engine URL query parameters.

Word Interpretation API methods
The MDEX Engine returns word interpretation match information in ESearchReport objects.

This word interpretation information is useful for highlighting or informing users about query expansion.

The Java ESearchReport.getWordInterps() method and the .NET
ESearchReport.WordInterps property return the set of word interpretations used in the current
text search. Each word interpretation is a key/value pair corresponding to the original search term and
its interpretation by the MDEX Engine.

In this thesaurus example, assume that you have added the following one-way thesaurus entry:
cab > cabernet

If a search for the term cab finds a match for cabernet, a single word interpretation will be returned
with this key/value pair:
Key="cab" Value="cabernet"

When there are multiple substitutions for a given word or phrase, they are comma-separated; for
example:
Key="cell phone" Value="mobile phone, wireless phone"

In this Automatic Phrasing example, a search for the terms Napa Valley are automatically phrased to
"Napa Valley". A key/value word interpretation is returned with the original search terms as the key
and the phrased terms in double quotes as the value.
Key=Napa Valley Value="Napa Valley"

The following code snippets show how to retrieve word interpretation match information.

Java example
// Get the Map of ESearchReport objects
Map recSrchRpts = nav.getESearchReports();
if (recSrchRpts.size() > 0) {
 // Get the user’s search key
 String searchKey = request.getParameter("Ntk");
 if (searchKey != null) {
 if (recSrchRpts.containsKey(searchKey)) {
 // Get the ERecSearchReport for the search key
 ESearchReport searchReport = (ESearchReport)rec¬
SrchRpts.get(searchKey);
 // Get the PropertyMap of word interpretations
 PropertyMap wordMap = searchReport.getWordInterps();
 // Get property iterator
 Iterator props = wordMap.entrySet().iterator();
 // Loop over properties
 while (props.hasNext()) {
 // Get individual property
 Property prop = (Property)props.next();
 String propKey = (String)prop.getKey();
 String propVal = (String)prop.getValue();
 // Display word interpretation information
 %><tr>
 <td>Original term: <%= propKey %></td>
 <td>Interpreted as: <%= propVal %></td>
 </tr><%
 }
 }
 }
}

.NET example
// Get the Dictionary of ESearchReport objects
IDictionary recSrchRpts = nav.ESearchReports;
// Get the user’s search key
String searchKey = Request.QueryString["Ntk"];
if (searchKey != null) {
 if (recSrchRpts.Contains(searchKey)) {
 // Get the first Search Report object
 IDictionaryEnumerator ide = recSrchRpts.GetEnumerator();
 ide.MoveNext();
 ESearchReport searchReport = (ESearchReport)ide.Value;

Endeca ConfidentialEndeca® MDEX Engine Advanced Development Guide

Using Word Interpretation | Word Interpretation API methods136

 // Get the PropertyMap of word interperations
 PropertyMap wordMap = searchReport.WordInterps;
 // Get property iterator
 System.Collections.IList props = wordMap.EntrySet;
 // Loop over properties
 for (int j =0; j < props.Count; j++) {
 // Get individual property
 Property prop = (Property)props[j];
 String propKey = prop.Key.ToString();
 String propVal = prop.Value.ToString();
 // Display word interpretation information
 %><tr>
 <td>Original term: <%= propKey %></td>
 <td>Interpreted as: <%= propVal %></td>
 </tr><%
 }
 }
}

Troubleshooting Word Interpretation
This topic provides some corrective solutions for word interpretation problems.

The tokenization used for substitutions depends on the configuration of search characters. If word
interpretation is to be used to facilitate highlighting variants of search keywords that appear in displayed
search results, then the application should consider that words or phrases appearing in substitutions
may not include white space, punctuation, or other configured search characters.

Endeca® MDEX Engine Advanced Development GuideEndeca Confidential

137Using Word Interpretation | Troubleshooting Word Interpretation

Chapter 11

Using Why Rank

This section describes the tasks involved in implementing the Why Rank feature of the Endeca MDEX
Engine.

About the Why Rank feature
The Why Rank feature returns information that describes which relevance ranking modules were
evaluated during a query and describes how query results were ranked. This information allows an
application developer to debug relevance ranking behavior.

With Why Rank enabled in an application, the MDEX Engine returns records that are augmented with
additional dynamically generated properties. The MDEX Engine also a returns summary information
(in a Supplement object) about relevance ranking for a query. The properties provide information
that describe which relevance ranking modules ordered the results and indicate why a particular record
was ranked in the way that it was.

Enabling Why Rank
You enable Why Rank on a per-query basis using the Nx (Navigation Search Options) query parameter
or the Dx (Dimension Search Options) query parameter. No Developer Studio configuration or Dgraph
flags are required to enable this feature.

Why Rank API
The MDEX Engine returns relevance ranking information as a DGraph.WhyRank property on each
record in the search results. The MDEX Engine also returns summary information for all record results
in a Supplement object. (Note that the information available in a Supplement object is not available
if you are using the MAX API.)

Per record match information

The following code samples show how to extract and display the DGraph.WhyMatch property from
a record.

Java example
// Retrieve properties from record
PropertyMap propsMap = rec.getProperties();

// Get the WhyRank property value
String wr = (String) propsMap.get("DGraph.WhyRank");

// Display the WR value if one exists
if (wr != null) {
 %>This record was ranked by <%= wr %>
 <%
}

.NET example
// Retrieve properties from record
PropertyMap propsMap = rec.Properties;

// Get the WhyRank property value
String wr = propsMap["DGraph.WhyRank"].ToString();

// Display the WR value if one exists
if (wr != null) {
 %>This record was ranked by <%= wr %>
 <%
}

Summary match information

The Supplement object contains a "Why Summaries" property whose value is general summary
information for ranking of all the records returned in a query. This information includes the number of
relevance ranking modules that were evaluated, the number of strata per module, processing time per
module, and so on.

Why Rank property format
The DGraph.WhyRank property value has a multi-part format that is made up of a list of relevance
ranking modules that were evaluated and strata information for each module. Strata information includes
the evaluation time, rank, description, records per strata, and so on.

The DGraph.WhyRank property is returned as a JSON object with the following format:
[
 { "<RankerName>" : { "evaluationTime" : "<number>", "stratumRank" :
"<number>", "stratumDesc" : "<Description>", "rankedField" : "<FieldName>"
 }},
 ...
]

where the <RankerName> values are any of supported relevance ranking modules. The specific
number of <RankerName> values depends on the relevance ranking modules you enabled in the
MDEX Engine and how many of them were used to evaluate the current record.

Note: If a query produces only one record in a result set, the DGraph.WhyRank property is
empty because no relevance ranking was applied.

Endeca ConfidentialEndeca® MDEX Engine Advanced Development Guide

Using Why Rank | Why Rank property format140

Here is an example of a query and a DGraph.WhyRank property from a record in the result set.
Suppose there is a query submitted to an MDEX Engine using the following query parameters:
N=0&Ntk=NoEssay&Ntt=one+two&Ntx=rel+phrase(considerFieldRanks)&Nx=whyrank.
The query produces a result set where one of the records contains the following DGraph.WhyRank
property:
<Property Key="DGraph.WhyRank" Value="[{ "phrase" : { "evaluationTime" :
"0", "stratumRank" : "20", "stratumDesc" : "phrase match", "rankedField" :
 "English" }}]">

Result information for relevance ranking modules
In addition to the basic reporting properties that are common to each DGraph.WhyRank property,
there are also optional reporting properties that may be included in DGraph.WhyRank depending on
the relevance ranking module.

The basic reporting properties in DGraph.WhyRank that are common to all relevance ranking modules
include:

• evaluationTime - the time spent evaluating this relevance ranking module.
• stratumRank - a value indicating which stratum a record is placed in.
• stratumDesc - the description of the relevance ranking module (often, the name of the module,

or a description of options for the module).

The following table lists the optional reporting properties that are specific to each relevance ranking
module.

Additional DGraph.WhyRank PropertiesRelevance Rank
Module Name

rankedField - field name for the highest ranked exact or subphrase match
described in stratumDesc.

Exact

rankedField - field name for the highest ranked field match.Field

rankedField - field name of the highest ranked field described in stra¬
tumDesc.

First

perFieldCount - field-by-field count of occurrences in the format "<X1> in
<field1-name>, <X2> in <field2-name>, ...".

Freq

None.Glom

rankedField - field name of the highest ranked field described in stra¬
tumDesc.

Interp

rankedField - field name of the highest ranked field described in stra¬
tumDesc.

MaxFields

None.NTerms

fieldsMatched - if considerFieldRanks is enabled for the module,
then fieldsMatched is a comma-separated list of: <field-name> + "(" +

NumFields

<field-rank> + ")". Otherwise, fieldsMatched is a comma-separated list
of the field names that matched.

rankedField - field name of the highest ranked field (if a phrase match).Phrase

Endeca® MDEX Engine Advanced Development GuideEndeca Confidential

141Using Why Rank | Result information for relevance ranking modules

Additional DGraph.WhyRank PropertiesRelevance Rank
Module Name

rankedField - field name of the highest ranked field (if a field match).Proximity

rankedField - field name of a field match that is not a spell corrected match.Spell

Static • fieldCompared - name of field sorted by. If there are multiple fields,
names are pipe '|' delimited.

• directionCompared - direction ("ascending" or "descending") of the
sort. If there are multiple fields, directions are pipe '|' delimited

• fieldType - corresponding field type ("integer", "dimension", "string",
etc). If there are multiple fields, types are '|' delimited.

Note: The Static module does not return either the evaluationTime
or the stratumRank properties.

None.Stratify

rankedField - field name of a field match that is not a stemmed match.Stem

rankedField - field name of a field match that is not a thesaurus matchThesaurus

None.WeightedFreq

Why Rank performance impact
The response times for MDEX Engine requests that include Why Rank properties are more expensive
than requests without this feature. The performance cost increases as the number of records returned
with the DGraph.WhyRank property increases.

This feature is intended for development environments to troubleshoot relevance ranking. The feature
is not intended for production environments and is not particularly optimized for performance.

Endeca ConfidentialEndeca® MDEX Engine Advanced Development Guide

Using Why Rank | Why Rank performance impact142

Chapter 12

Using Why Precedence Rule Fired

This section describes the tasks involved in implementing the Why Precedence Rule Fired feature of
the Endeca MDEX Engine.

About the Why Precedence Rule Fired feature
The Why Precedence Rule Fired feature returns information that explains why a precedence rule fired.
This information allows an application developer to debug how dimensions are displayed using
precedence rules.

With the feature enabled in an application, the root dimension values that the MDEX Engine returns
are augmented with additional dynamically generated properties. The properties provide information
that describe how the precedence rule was triggered (explicitly or implicitly), which dimension ID and
name triggered the precedence rule, and the type of precedence rule (standard, leaf, or default).

Enabling Why Precedence Rule Fired
You enable Why Precedence Rule Fired on a per-query basis using the Nx (Navigation Search Options)
query parameter. No Developer Studio configuration or Dgraph flags are required to enable this feature.

Why Precedence Rule Fired API
The MDEX Engine returns information about why a precedence rule fired as a DGraph.WhyPrece¬
denceRuleFired property on each root dimension value.

The following code samples show how to extract and display the DGraph.WhyPrecedenceRuleFired
property from a root dimension value.

Java example
// Retrieve the results object.
Navigation result = results.getNavigation();

// Retrieve the refinements.
DimensionList l = result.getRefinementDimensions();

// Retrieve the dimension with ID 80000.
Dimension d = l.getDimension(800000);

// Retrieve the root dval for the dimension.
DimVal root = d.getRoot();
PropertyMap propsMap = root.getProperties();

// Get the WhyPrecedenceRuleFired property value
String wprf = (String) propsMap.get("DGraph.WhyPrecedenceRuleFired");

// Display the value if one exists
if (wprf != null) {

 //Do something
}

.NET example
// Retrieve the results object.
Navigation result = results.Navigation;

// Retrieve the refinements.
DimensionList l = result.RefinementDimensions;

// Retrieve the dimension with ID 80000.
Dimension d = l.GetDimension(800000);

// Retrieve the root dval for the dimension.
DimVal root = d.Root;
PropertyMap propsMap = root.Properties;

// Get the WhyPrecedenceRuleFired property value
String wprf = propsMap["DGraph.WhyPrecedenceRuleFired"].ToString();

// Display the value if one exists
if (wprf != null) {

 //Do something
}

Why Precedence Rule Fired property format
The DGraph.WhyPrecedenceRuleFired property value has a multi-part format that is made up of
a list of trigger reasons and trigger values that were evaluated for each precedence rule.

The DGraph.WhyPrecedenceRuleFired property is returned as a JSON object with the following
format:
[
 { "triggerReason" : "<Reason>", "triggerDimensionValues" : ["<DimensionID>,
 ... "], "ruleType" : "<Type>", "sourceDimension" : "<DimensionName>",
 "sourceDimensionValue" : "<DimensionID>" },
 ...
]

Endeca ConfidentialEndeca® MDEX Engine Advanced Development Guide

Using Why Precedence Rule Fired | Why Precedence Rule Fired property format144

The following table describes the reporting values in the DGraph.WhyPrecedenceRuleFired
property. The specific reporting values depend on the precedence rules in the MDEX Engine and how
many rules the MDEX Engine evaluated for the current set of available refinement dimensions.

DescriptionReporting Value

The triggerReason can have any of the following values:<Reason>

• explicit - The precedence rule triggered because a user
explicitly selected a trigger dimension value in a navigation
query. The triggerDimensionValues is a list of dimension
IDs that triggered the rule.

• explicitSelection - The precedence rule triggered because
an user explicitly selected a target dimension value, and there
are more refinements available. The triggerDimensionVa¬
lues is a list of dimension IDs that triggered the rule.

• implicit - The precedence rule triggered because a user
implicitly selected a trigger dimension value. For example, it is
implicit because a user could select a dimension value that
resulted from a text search rather selecting a refinement from
a navigation query. The triggerDimensionValues is a list
of dimension IDs that triggered the rule.

• implicitSelection - The precedence rule triggered because
a user implicitly selected a target dimension value, and there
are more refinements available.

• default - The precedence rule triggered because it is a default
rule that is set up to always trigger. (Forge creates default rules
during automatic property mapping.)

The triggerDimensionValues is followed by a list of integers
representing the dimension IDs.

<DimensionID>

The ruleType can have any of the following values:<Type>

• standard - Standard precedence rules display the target
dimension if the source dimension value or its descendants are
in the navigation state.

• leaf - Leaf precedence rules display the target dimension only
after leaf descendants of the source dimension value have been
selected.

A string representing the name of the dimension.<DimensionName>

The DGraph.WhyPrecedenceRuleFired property may contain any number of triggerReason
reporting values. However, there is one exception in the case where the value of triggerReason is
default. In that case, there would be a single triggerReason value.

Here is an example query that contains at least the following two URL query parameters:
N=310002&Nx=whyprecedencerulefired. The value of 310002 is the dimension value ID that
triggers a precedence rule for dimension 300000. The query produces a result with a root dimension
value that contains the following DGraph.WhyPrecedenceRuleFired property:
<Dimension Id=300000 Name=Number of Digits>
 <Root>
 <DimVal Name="Number of Digits" Id=300000>
 <PropertyList Size=1>

Endeca® MDEX Engine Advanced Development GuideEndeca Confidential

145Using Why Precedence Rule Fired | Why Precedence Rule Fired property format

 <Property Key="DGraph.WhyPrecedenceRuleFired" Value="[{
"triggerReason" : "explicitSelection", "triggerDimensionValues" : [310002]
 }]">

Performance impact of Why Precedence Rule Fired
The Why Precedence Rule Fired feature is intended for a production environment. The response times
for MDEX Engine requests that include DGraph.WhyPrecedenceRuleFired properties are slightly
more expensive than requests without this feature. In general, the feature adds performance throughput
costs that are typically observed to be less than 5%.

Endeca ConfidentialEndeca® MDEX Engine Advanced Development Guide

Using Why Precedence Rule Fired | Performance impact of Why Precedence Rule Fired146

Part 4

Content Spotlighting and Merchandizing

• Promoting Records with Dynamic Business Rules
• Implementing User Profiles

Chapter 13

PromotingRecordswith Dynamic Business
Rules

This section describes how to use dynamic business rules for promoting contextually relevant records
to application users as they search and navigate within a data set.

Note: This information pertains to applications using the dynamic business rules feature as
configured in Developer Studio and Rule Manager.

• If your application is based on Workbench 2 with Page Builder, read the Page Builder
Developer's Guide and the Content Assembler Developer's Guide.

• If your application is based on Workbench 3 with Experience Manager, read the InFront
Developer's Guide.

Using dynamic business rules to promote records
The rules and their supporting constructs define when to promote records, which records may be
promoted, and also indicate how to display the records to application users.

This feature can be referred to in two ways, depending on the nature of your data:

• In a retail catalog application, this activity is called merchandising, because the Endeca records
you promote often represent product data.

• In a document repository, this activity is called content spotlighting, because the Endeca records
you promote often represent some type of document (HTML, DOC, TXT, XLS, and so on).

You implement merchandising and content spotlighting using dynamic business rules. Here is a simple
merchandising example using a wine data set:

1. An application user enters a query with the search term Bordeaux.
2. This search term triggers a rule that is set up to promote wines tagged as Best Buys.
3. In addition to returning standard query results for term Bordeaux, the rule instructs the MDEX

Engine to dynamically generate a subset of records that are tagged with both the Best Buy and
Bordeaux properties.

4. The Web application displays the standard query results that match Bordeaux, as well as some
number of the rule results in an area of the screen set aside for “Best Buy” records. These are the
promoted records.

Note: For the sake of simplicity, this document uses “promoting records” to generically describe
both merchandising and content spotlighting.

Comparing dynamic business rules to content management publishing
Endeca’s record promotion works differently from traditional content management systems (CMS),
where you select an individual record for promotion, place it on a template or page, and then publish
it to a Web site.

Endeca’s record promotion is dynamic, or rule based. In rule-based record promotion, a dynamic
business rule specifies how to query for records to promote, and not necessarily what the specific
records are.

This means that, as your users navigate or search, they continue to see relevant results, because
appropriate rules are in place. Also, as records in your data set change, new and relevant records are
returned by the same dynamic business rule. The rule remains the same, even though the promoted
records may change.

In a traditional CMS scenario, if Wine A is “Recommended,” it is identified as such and published onto
a static page. If you need to update the list of recommended wines to remove Wine A and add Wine
B to the static page, you must manually remove Wine A, add Wine B, and publish the changes.

With Endeca’s dynamic record promotion, the effect is much broader and requires much less
maintenance. A rule is created to promote wines tagged as “Recommended,” and the search results
page is designed to render promoted wines. In this scenario, a rule promotes recommended Wine A
on any number of pages in the result set. In addition, removing Wine A and adding Wine B is simply
a matter of updating the source data to reflect that Wine B is now included and tagged as
“Recommended.” After making this change, the same rule can promote Wine B on any number of
pages in the result set, without adjusting or modifying the rule or the pages.

Dynamic business rule constructs
Two constructs make up a dynamic business rule: a trigger and a target.

A trigger is a set of conditions that must exist in a query for a rule to fire. A single trigger may include
a combination of dimension values and keywords. A single dynamic business rule may have one or
more triggers. When a user’s query contains a condition that triggers a rule, the MDEX Engine evaluates
the rule and returns a set of records that are candidates for promotion to application users.

A target specifies which records are eligible for promotion to application users. A target may include
dimension values, custom properties, and featured records. For example, dimension values in a trigger
are used to identify a set of records that are candidates for promotion to application users.

Three additional constructs support rules:

• Zone—specifies a collection of rules to ensure that rule results are produced in case a single rule
does not provide a result.

• Style—specifies the minimum and maximum number of records a rule can return. A style also
specifies any property templates associated with a rule. Rule properties are key/value pairs that
are typically used to return supplementary information with promoted record pages. For example,
a property key might be set to “SpecialOffer” and its value set to “BannerAd.gif”. A rule’s style is
passed back along with the rule’s results, to the Web application. The Web application uses the
style as an indicator for how to render the rule’s results. The code to render the rule’s results is
part of the Web application, not the style itself.

Endeca ConfidentialEndeca® MDEX Engine Advanced Development Guide

Promoting Records with Dynamic Business Rules | Using dynamic business rules to promote records150

• Rule Group —provides a means to logically organize large numbers of rules into categories. This
organization facilitates editing by multiple business users.

The core of a dynamic business rule is its trigger and target values. The target identifies a set of records
that are candidates for promotion to application users. The zone and style settings associated with a
rule work together to restrict the candidates to a smaller subset of records that the Web application
then promotes.

Query rules and results
Once you implement dynamic business rules in your application, each query a user makes is compared
to each rule to determine if the query triggers a rule.

If a user's query triggers a rule, the MDEX Engine returns several types of results:

• Standard record results for the query.
• Promoted records specified by the triggered rule’s target.
• Any rule properties specified for the rule.

Two examples of promoting records
The following sections explain two examples of using dynamic business rules to promote Endeca
records.

The first example shows how a single rule provides merchandising results when an application user
navigates to a dimension value in a data set. The scope of the merchandising coverage is somewhat
limited by using just one rule.

The second example builds on the first by providing more broad merchandising coverage. In this
example, an application user triggers two additional dynamic business rules by navigating to the root
dimension value for the application. These two additional rules ensure that merchandising results are
always presented to application users.

An example with one rule promoting records
This example illustrates the "Recommended Chardonnays" rule.

This simple example demonstrates a basic record promotion scenario where an application user
navigates to Wine_Type > White, and a dynamic business rule called “Recommended Chardonnays”
promotes chardonnays that have been tagged as Highly Recommended. From a merchandising
perspective, the marketing assumption is that users who are interested in white wines are also likely
to be interested in highly recommended chardonnays.

The “Recommended Chardonnays” rule is set up as follows: The rule’s trigger, which specifies when
to promote records, is the dimension value Wine_Type > White. The rule’s target, which specifies
which records to promote, is a combination of two dimension values, Wine_Type > White > Chardonnay
and Designation > Highly Recommended. The style associated with this rule is configured to provide
a minimum of at least one promoted record and a maximum of exactly one record. The zone associated
with this rule is configured to allow only one rule to produce rule results.

The “Recommended Chardonnays” rule is set up as follows:

• The rule’s trigger, which specifies when to promote records, is the dimension value Wine_Type >
White.

Endeca® MDEX Engine Advanced Development GuideEndeca Confidential

151Promoting Records with Dynamic Business Rules | Using dynamic business rules to promote records

• The rule’s target, which specifies which records to promote, is a combination of two dimension
values, Wine_Type > White > Chardonnay and Designation > Highly Recommended.

• The style associated with this rule is configured to provide a minimum of at least one promoted
record and a maximum of exactly one record.

• The zone associated with this rule is configured to allow only one rule to produce rule results.

When an application user navigates to Wine_Type > White in the application, the rule is triggered. The
MDEX Engine evaluates the rule and returns promoted records from the combination of the Chardonnay
and Highly Recommended dimension values. There may be a number of records that match these
two dimension values, so zone and style settings restrict the number of records actually promoted to
one.

The promoted record, along with the user’s query and standard query results, are called out in the
following graphic:

Endeca ConfidentialEndeca® MDEX Engine Advanced Development Guide

Promoting Records with Dynamic Business Rules | Using dynamic business rules to promote records152

An example with three rules
The following example expands on the previous one by adding two rules called “Best Buys” and “Highly
Recommended” to the rule to promote highly recommended chardonnays.

These rules promote wines tagged with a Best Buy property and a Highly Recommended property,
respectively. Together, the three rules promote records to expose a broader set of potential wine
purchases.

The “Best Buys” rule is set up as follows:

• The rule’s trigger is set to the Web application’s root dimension value. In other words, the trigger
always applies.

• The rule’s target is the dimension value named Best Buy.
• The style associated with this rule is configured to provide a minimum of four promoted records

and a maximum of eight records.
• The zone associated with this rule is configured to allow only one rule to produce rule results.

The “Highly Recommended” rule is set up as follows:

• The rule’s trigger is set to the Web application’s root dimension value. In other words, the trigger
always applies.

• The rule’s target is the dimension value named Highly Recommended.
• The style associated with this rule is configured to provide a minimum of at least one promoted

record and a maximum of three records.
• There is the only rule associated with the zone, so no other rules are available to produce results;

for details on how zones can be used when more rules are available, see the topic “Ensuring
promoted records are always produced."

When an application user navigates to Wine_Type > White, the “Recommended Chardonnays” rule
fires and provides rule results as described in “An example with one rule promoting records”. In addition,
the Highly Recommended and Best Buys rules also fire and provide results because their triggers
always apply to any navigation query. The promoted records for each of the three rules, along with
the user’s query and standard query results, are called out in the following graphic:

Endeca® MDEX Engine Advanced Development GuideEndeca Confidential

153Promoting Records with Dynamic Business Rules | Using dynamic business rules to promote records

Suggested workflow for using Endeca tools to promote
records

You can build dynamic business rules and their constructs in Developer Studio.

In addition, business users can use Endeca Workbench to perform any of the following rule-related
tasks:

Endeca ConfidentialEndeca® MDEX Engine Advanced Development Guide

Promoting Records with Dynamic Business Rules | Suggested workflow for using Endeca tools to
promote records

154

• Create a new dynamic business rule.
• Modify an existing rule.
• Test a rule to a preview application and preview its results.

Because either tool can modify a project, the tasks involved in promoting records require coordination
between the pipeline developer and the business user. The recommended workflow is as follows:

1. A pipeline developer uses Developer Studio in a development environment to create the supporting
constructs (zones, styles, rule groups, and so on) for rule and perhaps small number of dynamic
business rules as placeholders or test rules.

2. An application developer creates the Web application including rendering code for each style.
3. The pipeline developer makes the project available to business users by sending the configuration

to Endeca Workbench (with the option Set instance configuration).
4. A business user starts Endeca Workbench to access the project, create new rules, modify rules,

and test the rules as necessary.

For general information about using Endeca tools and sharing projects, see the Endeca Workbench
Administrator’s Guide.

Note: Any changes to the constructs that support rules such as changes to zones, styles, rule
groups, and property templates have to be performed in Endeca Developer Studio.

Incremental implementation of business rules
Because this is a complex features to implement, the best approach for developing your dynamic
business rules is to adopt an incremental approach as you and business users of Endeca Workbench
coordinate tasks.

It is also helpful to define the purpose of each dynamic business rule in the abstract (before implementing
it in Developer Studio or Endeca Workbench) so that everyone knows what to expect when the rule
is implemented. If rules are only loosely defined when implemented, they may have unexpected side
effects.

Begin with a single, simple business rule to become familiar with the core functionality. Later, you can
add more advanced elements, along with additional rules, rule groups, zones, and styles. As you build
the complexity of how you promote records, you will have to coordinate the tasks you do in Developer
Studio (for example, zone and style definitions) with the work that is done in Endeca Workbench.

Building the supporting constructs for a business rule
The records identified by a rule’s target are candidates for promotion and may or may not all be
promoted in a Web application. It is a combination of zone and style settings that work together to
effectively restrict which rule results are actually promoted to application users.

A zone identifies a collection of rules to ensure at least one rule always produces records to promote.
A style controls the minimum and maximum number of results to display, defines any property templates,
and indicates how to display the rule results to the Web application. The following topics describe zone
and style usage in detail.

Endeca® MDEX Engine Advanced Development GuideEndeca Confidential

155Promoting Records with Dynamic Business Rules | Building the supporting constructs for a business
rule

Ensuring promoted records are always produced
You ensure promoted records are always produced by creating a zone in Developer Studio to associate
with a number of dynamic business rules.

A zone is a logical collection of rules that allows you to have multiple rules available, in case a single
rule does not produce a result. The rules in a zone ensure that the screen space dedicated to displaying
promoted records is always populated. A zone has a rule limit that dictates how many rules may
successfully return rule results.

For example, if three rules are assigned to a certain zone but the “Rule limit” is set to one, only the
first rule to successfully provide rule results is evaluated. Any remaining rules in the zone are ignored.

Creating styles for dynamic business rules
You create a style in the Styles view of Endeca Developer Studio.

A style serves three functions:

• It controls the minimum and maximum number of records that may be promoted by a rule
• It defines property templates, which facilitate consistent property usage between pipeline developers

and business users of Endeca Workbench
• It indicates to a Web application which rendering code should be used to display a rule’s results

Using styles to control the number of promoted records
Styles can be used to affect the number of promoted records in two scenarios.

The first case is when a rule produces less than the minimum number of records. For example, if the
“Best Buys” rule produces only two records to promote and that rule is assigned a style that has
Minimum Records set to three, the rule does not return any results.

The second case is when a rule produces more than the maximum. For example, if the “Best Buys”
rule produces 20 records, and the Maximum Records value for that rule’s style is five, only the first
five records are returned. If a rule produces a set of records that fall between the minimum and maximum
settings, the style has no effect on the rule’s results.

Performance and the maximum records setting
The Maximum Records setting for a style prevents dynamic business rules from returning a large set
of matching records, potentially overloading the network, memory, and page size limits for a query.

For example, if Maximum Records is set to 1000, then 1000 records could potentially be returned with
each query, causing significant performance degradation.

Ensuring consistent property usage with property templates
Rule properties are key/value pairs typically used to return supplementary information with promoted
record pages.

For example, a property key might be set to "SpecialOffer" and its value set to "BannerAd.gif".

As Endeca Workbench users and Developer Studio users share a project with rule properties, it is
easy for a key to be mis-typed. If this happens, then the supplementary information represented by a
property does not get promoted correctly in a Web application. To address this, you can optionally
create property templates for a style. Property templates ensure that property keys are used consistently
when pipeline developers and Endeca Workbench users share project development tasks.

Endeca ConfidentialEndeca® MDEX Engine Advanced Development Guide

Promoting Records with Dynamic Business Rules | Building the supporting constructs for a business
rule

156

If you add a property template to a style in Endeca Developer Studio, that template is visible in Endeca
Workbench in the form of a pre-defined property key with an empty value. Endeca Workbench users
are allowed to add a value for the key when editing any rule that uses the template’s associated style.
Endeca Workbench users are not allowed to edit the key itself.

Furthermore, pipeline developers can restrict Endeca Workbench users to creating new properties
based only on property templates, thereby minimizing potential mistakes or conflicts with property
keys. For example, a pipeline developer can add a property template called “WeeklyBannerAd” and
then make the project available to Endeca Workbench users. Once the project is loaded in Endeca
Workbench, a property template is available with a populated key called "WeeklyBannerAd" and an
empty value. The Endeca Workbench user provides the property value. In this way, property templates
reduce simple project-sharing mistakes such as creating a similar, but not identical property called
"weeklybannerad".

Note: Property templates are associated with styles in Developer Studio, not rules. Therefore,
they are not available for use on the Properties tab of the Rule editor.

Using styles to indicate how to display promoted records
You indicate how to display promoted records to users by creating a style to associate with each rule
and by creating application-level rendering code for the style.

You create a style in Developer Studio. You create rendering code in your Web application. This section
describes how to create styles. Information about rendering code will be described later in the topic
“Adding Web application code to render rule results." A style has a name and an optional title. Either
the name or title can be displayed in the Web application.

When the MDEX Engine returns rule results to your application, the engine also passes the name and
title values to your application. The name uniquely identifies the style. The title does not need to be
unique, so it is often more flexible to display the title if you use the same title for many dimension value
targets. For example, the title “On Sale” may commonly be used. Without application-level rendering
code that uses the specific style or title values, the style and title are meaningless. Both require
application-level rendering code in an application.

Grouping rules
Rule groups complement zones and styles in supporting dynamic business rules.

Rule groups serve two functions:

• They provide a means to logically organize rules into categories to facilitate creating and editing
rules.

• They allow multiple users to access dynamic business rule simultaneously.

A rule group provides a means to organize a large number of rules into smaller logical categories,
which usually affect distinct (non-overlapping) parts of a Web site.

For example, a retail application might organize rules that affect the electronics and jewelry portions
of a Web site into a group for Electronics Rules and another group for Jewelry Rules. A rule group
also enables multiple business users to access rule groups simultaneously. Each Endeca Workbench
user can access a single rule group at a time. Once a user selects a rule group, Endeca Workbench
prevents other users from editing that group until the user returns to the selection list or closes the
browser window.

Endeca® MDEX Engine Advanced Development GuideEndeca Confidential

157Promoting Records with Dynamic Business Rules | Grouping rules

Prioritizing rule groups
In the same way that you can modify the priority of a rule within a group, you can also modify the
priority of a rule group with respect to other rule groups.

The MDEX Engine evaluates rules first by group order, as shown in the Rules view of Developer Studio
or Endeca Workbench, and then by their order within a given group.

For example, if Group_B is ordered before Group_A, the rules in Group_B will be evaluated first,
followed by the rules in Group_A. Rule evaluation proceeds in this way until a zone’s Rule Limit value
is satisfied. This relationship is shown in the graphic below. In it, suppose zone 1 has a Rule Limit
setting of 2. Because of the order of group B is before group A, rules 1 and 2 satisfy the Rule Limit
rather than rules 4 and 5.

Group B
 Rule 1, Zone 1
 Rule 2, Zone 1
 Rule 3, Zone 2
Group A
 Rule 4, Zone 1
 Rule 5, Zone 1
 Rule 6, Zone 2

If you want to further prioritize the rules within a particular rule group, see the topic “Prioritizing rules."

Interaction between rules and rule groups
When creating or editing rule groups, keep in mind the following interactions between rules and rule
groups.

• Rules may be moved from one rule group to another. However a rule can appear in only one group.
• A rule group may be empty (that is, it does not have to contain rules).
• The order of rule groups with respect to other rule groups may be changed.

Creating rules
After you have created your zones and styles, you can start creating the rules themselves.

An application has at least one rule group by default. Developer Studio groups all rules in this default
group. As mentioned in the topic “Suggested workflow using Endeca tools to promote records," a
developer usually creates the preliminary rules and the other constructs in Developer Studio, and then
hands off the project to a business user to fine tune the rules and created additional rules in Endeca
Workbench. However, the business user can use Endeca Workbench to perform any of the tasks
described in the following sections that are related to creating a rule. For details, see Endeca Workbench
Help.

Specifying when to promote records
You indicate when to promote records by specifying a trigger on the Triggers tab of the Rule editor.

A trigger can be made up of any combination of dimension values and keywords or phrases that identify
when the MDEX Engine fires a dynamic business rule.

Endeca ConfidentialEndeca® MDEX Engine Advanced Development Guide

Promoting Records with Dynamic Business Rules | Creating rules158

Note: A phrase represents terms surrounded in quotes.

If a user’s query contains the dimension values you specify in a trigger, the MDEX Engine fires that
rule. For example, in a wine data set, you could set up a rule that is triggered when a user clicks Red.
If the user clicks White, the MDEX Engine does not fire the rule. If the user clicks Red, the MDEX
Engine fires the rule and returns any promoted records.

If a user’s query contains the keyword or phrase you specify in a trigger, the MDEX Engine fires that
rule. Keywords in a trigger require that the zone associated with the rule have “Valid for search” enabled
on the Zone editor in Developer Studio. Keywords in a trigger also require a match mode that specifies
how the query keyword should match in order to fire the rule. There are three match modes:

• Phrase—A user’s query must match all of the words of the keyword value, in the same order, for
the rule to fire.

• All—A user’s query must match all of the keywords in a trigger, without regard for order, for the
rule to fire.

• Exact—A user’s query must exactly match the keyword or words for the rule to fire. Unlike the
other two modes, a user’s query must exactly match the keywords in the number of words and
cannot be a superset of the keywords.

Note: All modes allow the rule to fire if the spelling auto-correction and auto-phrasing, and/or
stemming corrections of a user's query match the keywords or the phrase (terms surrounded in
quotes).

In addition to triggers, a user profile can also be associated with a rule to restrict when to promote
records. A user-profile is a label, such as premium_subscriber, that identifies an application user. If a
user who has such a profile makes a query, the query triggers the associated rule. For more information,
see the topic “Implementing User Profiles."

Multiple triggers
A rule may have any number of triggers. Adding more than one trigger to a rule is very useful if you
want to promote the same records from multiple locations in your application.

Each trigger can describe a different location where a user's query can trigger a rule; however, the
rule promotes records from a single target location.

Global triggers
Triggers can also be empty (no specified dimension values or keywords) on the Triggers tab.

In this case, there are two options to determine when an empty trigger fires a rule:

• Applies everywhere—Any navigation query and any keyword search in the application triggers the
rule.

• Applies only at root—Any navigation query and any keyword search from the root dimension value
only (N=0) triggers the rule.

Specifying a time trigger to promote records
You can further control when to promote records with time triggers.

Endeca® MDEX Engine Advanced Development GuideEndeca Confidential

159Promoting Records with Dynamic Business Rules | Creating rules

A time trigger is a date/time value that you specify on the Time Trigger tab of the Rule editor. A time
trigger specified on this tab indicates the time at which to start the rule’s trigger and the time at which
the trigger ends. Any matching query that occurs between these two values triggers the rule.

A time trigger is useful if you want to promote records for a particular period of time. For example, you
might create a rule called “This Weekend Only Sale” whose time trigger starts Friday at midnight and
expires on Sunday at 6 p.m. Only a start time value is required for a time trigger. If you do not specify
an expiration time, the rule can be triggered indefinitely.

Previewing the results of a time trigger
You can test a time trigger using the Preview feature which is available on the Rule Manager page of
Endeca Workbench.

In Endeca Workbench, you can specify a preview time that allows you to preview the results of dynamic
business rules as if it were the preview time, rather than the time indicated by the system clock. Once
you set a preview time and trigger a rule, you can examine the results to ensure the rule promotes the
records that you expected it to. The Preview feature is available to Endeca Workbench users who
have Approve, Edit, or View permissions.

Note that temporarily setting the MDEX Engine with a preview time affects only dynamic business
rules. The preview time change does not affect any other aspect of the engine, nor does the preview
time affect any scheduled updates between now and then, changes to thesaurus entries, changes to
automatic phrasing, changes to keyword redirects, and so on. For example, setting the preview time
a week ahead does not return records scheduled to be updated between now and a week ahead.

The MDEX Engine supports the use of a parameter called the merchandising preview time parameter
as a way to test the results of dynamic business rules that have time triggers. Setting a preview time
with the parameter affects only the query that uses the parameter. All other queries are unaffected.

You set a preview time in the MDEX Engine using the Java setNavMerchPreviewTime() method or
the .NET NavMerchPreviewTime property in the ENEQuery object. This call requires a string value
as input. The format requirement of the string is described in the topic “MDEX Engine URL query
parameters for promoting records and testing time triggers.”

You can also set this method by sending the necessary URL query parameters to the MDEX Engine
via the UrlENEQuery class. For details, see “MDEX Engine URL query parameters for promoting
records and testing time triggers”.

Related Links
MDEX Engine URL query parameters for promoting records and testing time triggers on page 166

The MDEX Engine evaluates dynamic business rules and keyword redirects only for navigation
queries.

Synchronizing time zone settings
The start time and expiration time values do not specify time zones.

The server clock that runs your Web application identifies the time zone for the start and expiration
times. If your application is distributed on multiple servers, you must synchronize the server clocks to
ensure the time triggers are coordinated.

Endeca ConfidentialEndeca® MDEX Engine Advanced Development Guide

Promoting Records with Dynamic Business Rules | Creating rules160

Specifying which records to promote
You indicate which records to promote by specifying a target on the Target tab of the Rule editor.

A target is a collection of one or more dimension values. These dimension values identify a set of
records that are all candidates for promotion. Zone and style settings further control the specific records
that are actually promoted to a user.

Adding custom properties to a rule
You can optionally promote custom properties by creating key/value pairs on the Properties tab of the
Rule editor.

Rule properties are typically used to return supplementary information with promoted record pages.
Properties could specify editorial copy, point to rule-specific images, and so on. For example, a property
name might be set to “SpecialOffer” and its value set to “BannerAd.gif.” You can add multiple properties
to a dynamic business rule. These properties are accessed with the same method calls used to access
system-defined properties that are included in a rule’s results, such as a rule’s zone and style.

For details, see “Adding Web application code to extract rule and keyword redirect results”.

Related Links
Adding Web application code to extract rule and keyword redirect results on page 166

You must add code to your Web application that extracts rule results or keyword redirect
results from the Supplement objects that the MDEX Engine returns.

Adding static records in rule results
In addition to defining a rule’s dimension value targets and custom properties, you can optionally
specify any number of static records to promote.

These static records are called featured records, and you specify them on the Featured Records tab
of the Rule editor. You access featured records in your Web application using the same methods you
use to access dynamically generated records. For details, see the topic “Adding Web application code
to extract rule and keyword redirect results." The MDEX Engine treats featured records differently than
dynamically generated records. In particular, featured records are not subject to any of the following:

• Record order sorting by sort key
• Uniqueness constraints
• Maximum record limits

Order of featured records
The General tab of the Rule editor allows you to specify a sort order for dynamically generated records
that the MDEX Engine returns.

This sort order does not apply to featured records. Featured records are returned in a Supplement
object in the same order that you specified them on the Featured Records tab. The featured records
occur at the beginning of the record list for the rule’s results and are followed by any dynamically
generated records. The dynamically generated records are sorted according to your specified sort
options.

Endeca® MDEX Engine Advanced Development GuideEndeca Confidential

161Promoting Records with Dynamic Business Rules | Creating rules

No uniqueness constraints
The Zones editor allows you to indicate whether rule results are unique (across zones) by a specified
property or dimension value.

This uniqueness constraint does not apply to featured records even if uniqueness is enabled for
dynamically generated rule results. For example, if you enabled “Color” to be the unique property for
record results and you have two dynamically generated records with “Blue” as property value, then
the MDEX Engine excludes the second record as a duplicate. On the other hand, if you have the same
scenario but the two records are featured results not dynamically generated results, the MDEX Engine
returns both records.

No maximum record limits
The style associated with a rule allows you to set a maximum number of records that the MDEX Engine
may return as rule results.

This Maximum Records value does not apply to featured records. For example, if the Maximum Records
value is set to three and you specify five featured records, the MDEX Engine returns all five records.
Also, the MDEX Engine returns featured records before dynamically generated records, and the
featured records count toward the maximum limit. Consequently, the number of featured records could
restrict the number of dynamically generated rule results.

Sorting rules in the Rules view
The dynamic business rules you create in Developer Studio appear in the Rules view.

To make rules easier to find and work with, they can be sorted by name (in alphabetical ascending or
descending order) or by priority. The procedure described below changes the way rules are sorted in
Rules view only. Sorting does not affect the priority used when processing the rules. Prioritizing rules
in Developer Studio is described in the topic “Prioritizing rules."

Prioritizing rules
In addition to sorting rules by name or priority, you can also modify a rule’s priority in the Rules view
of Developer Studio.

Priority is indicated by a rule’s position in the Rules view, relative to the position of other rules when
you have sorted the rules by priority. You modify the relative priority of a rule by moving it up or down
in the Rules view.

A rule’s priority affects the order in which the MDEX Engine evaluates the rule. The MDEX Engine
evaluates rules that are higher in the Rules view before those that are positioned lower. By increasing
the priority of a rule, you increase the likelihood that the rule is triggered before another, and in turn,
increase the likelihood that the rule promotes records before others. It is important to consider rule
priority in conjunction with the settings you specify in the Zone editor.

For example, suppose a zone has “Rule limit” set to three. If you have ten rules available for the zone,
the MDEX Engine evaluates the rules, in the order they appear in the Rules view, and returns results
from only the first three that have valid results. In addition, the “Shuffle rules” check box on the Zone
editor overrides the priority order you specify in the Rules view. When you check “Shuffle rules”, the
MDEX Engine randomly evaluates the rules associated with a zone. If you set up rule groups, you can
modify the priority of a rule within a group and modify the priority of a group with respect to other
groups. For details, see “Prioritizing rule groups”.

Endeca ConfidentialEndeca® MDEX Engine Advanced Development Guide

Promoting Records with Dynamic Business Rules | Creating rules162

Related Links
Prioritizing rule groups on page 158

In the same way that you can modify the priority of a rule within a group, you can also modify
the priority of a rule group with respect to other rule groups.

Controlling ruleswhen triggers and targets share dimension
values

The self-pivot feature controls business rules where the trigger and target of the business rule contain
one or more identical dimension values.

When enabled, self-pivot allows a business rule to fire even if the user navigates to a location which
explicitly contains a dimension value already in the rule target. For example, if a rule is defined as:

TargetTrigger

Price < $10(No location specified -- this rule applies
everywhere)

Region > Napa

And a user navigates to Wine Type > Red, Region > Napa, the rule still fires, despite the fact that the
user is already viewing a results list for wines from the Napa region.

When self-pivot is disabled for a rule, the rule does not fire if its targets contain the same dimension
values as the user's navigation state. For example, if a rule is defined as:

TargetTrigger

Price < $10(No location specified -- this rule applies
everywhere)

Region > Napa

And a user navigates to Wine Type > Red, Region > Napa, the rule does not fire because the user is
already viewing a results list for wines from the Napa region.

Setting self-pivot to false does not necessarily remove all duplicates from search and merchandising
results. For example, if a rule is defined as:

TargetTrigger

Price > $10-$20Wine Type > Red

And a user navigates to Wine Type > Red, the user’s navigation state does not include a dimension
value from the target and the rule fires. However, because the results list contains all red wines including
those in the $10-$20 range, it is still possible to get duplicate results in the merchandising and search
results list.

Self-pivot is enabled by default for each new rule created in Endeca Workbench, and the option is not
displayed in Endeca Workbench. However, you can change the default and set the check box to display
on the Triggers tab of the Rule Manager page in Endeca Workbench. Once the check box is available,
you can change self-pivot settings separately for each rule. The option is still available for rules created
or modified in Developer Studio; changing the default setting does not affect Developer Studio behavior.

Endeca® MDEX Engine Advanced Development GuideEndeca Confidential

163Promoting Records with Dynamic Business Rules | Controlling rules when triggers and targets share
dimension values

Changing the default self-pivot setting when running the Endeca HTTP
service from the command line

Self-pivot is enabled by default for each new rule created in Endeca Workbench, and the option is not
displayed in Endeca Workbench.

In order to change the default behavior, you must set a Java parameter. Once the parameter is set
(regardless of the value given for the default) the self-pivot check box displays on the Triggers tab of
the Rule Manager page in Endeca Workbench. Previously existing rules are not affected by this change,
and this procedure does not affect the behavior of Developer Studio.

To change the default self-pivot setting when running the Endeca HTTP service from the command
line:

1. Stop the Endeca Tools Service.
2. Navigate to %ENDECA_TOOLS_ROOT%\server\bin (on Windows) or

$ENDECA_TOOLS_ROOT/server/bin (on UNIX).
3. Open the setenv.bat file (on Windows) or setenv.sh (on UNIX).
4. Below "set JAVA_OPTS" add:

• (On Windows) CATALINA_OPTS=-Dself-pivot-default=true
• (On UNIX) CATALINA_OPTS=-Dself-pivot-default=true export CATALINA_OPTS

To set the default value as disabled, use: -Dself-pivot-default=false
5. Save and close the file.
6. Run %ENDECA_TOOLS_ROOT%\server\bin\setenv.bat (on Windows) or

$ENDECA_TOOLS_ROOT/server/bin/setenv.sh (on UNIX).

The self-pivot check box is now exposed on the Triggers tab of the Rule Manager page in Endeca
Workbench. The check box defaults to the value specified in the setenv file.

Changing the default self-pivot setting when running the Endeca Tools
Service as a Windows service

Self-pivot is enabled by default for each new rule created in Endeca Workbench, and the option is not
displayed in Endeca Workbench.

In order to change the default behavior, you must set a Java parameter. Once the parameter is set
(regardless of the value given for the default) the self-pivot check box displays on the Triggers tab of
the Rule Manager page in Endeca Workbench. Previously existing rules are not affected by this change,
and this procedure does not affect the behavior of Developer Studio.

To enable self-pivot when running the Endeca Tools Service as a Windows service:

1. Stop the Endeca Tools Service.
2. Run the Registry Editor: go to Start > Run and type regedit.
3. Navigate to HKEY_LOCAL_MACHINE > SOFTWARE > Apache Software Foundation > Procrun

version > EndecaHTTPService > Parameters > Java.
4. Right click Options.
5. Choose Modify. The Edit Multi-String dialog box displays.
6. Choose Modify. The Edit Multi-String dialog box displays.

(To set the default value as disabled, use: -Dself-pivot-default=false.)

Endeca ConfidentialEndeca® MDEX Engine Advanced Development Guide

Promoting Records with Dynamic Business Rules | Controlling rules when triggers and targets share
dimension values

164

7. Click OK.
8. Start the Endeca Tools Service.

The self-pivot check box is now exposed on the Triggers tab of the Rule Manager page in Endeca
Workbench. The check box defaults to the value specified in the Registry Editor.

Working with keyword redirects
Conceptually, keyword redirects are similar to dynamic business rules in that both have trigger and
target values.

However, keyword redirects are used to redirect a user's search to a Web page (that is, a URL).

The trigger of a keyword redirect is one or more search terms; the target of a keyword redirect is a
URL. If a user searches with a search term that triggers the keyword redirect, then the redirect URL
displays in the application. For example, you can create a keyword trigger of "delivery" and a redirect
URL of http://shipping.acme.com. Or you might create a keyword redirect with a keyword trigger of
"stores" and a redirect URL of http://www.acme.com/store_finder.htm.

You organize keyword redirects into keyword redirect groups in the same way and for the same reasons
that you organize dynamic business rules into rule groups. Groups provide logical organization and
multi-user access in Endeca Workbench. For details about how groups work, see the topic “Grouping
rules." You can create keyword redirects in both Developer Studio and Endeca Workbench. For details,
see the Endeca Developer Studio Help and the Endeca Workbench Help.

Displaying keyword redirects in your web application requires application coding that is very similar
to the coding required to display rule results. The MDEX Engine returns keyword redirect information
(the URL to display) to the web application in a Supplement object just like dynamic business rule
results. The Supplement object contains a DGraph.KeywordRedirectUrl property whose value is the
redirect URL. The application developer chooses what to display from the Supplement object by
rendering the DGraph.KeywordRedirectUrl property rather than rendering merchandising results. In
this way, the application developer codes the redirect URL to take precedence over merchandising
results.

Presenting rule and keyword redirect results in a Web
application

The MDEX Engine returns rule results keyword redirect results to a Web application in a Supplement
object.

To display these results to Web application users, an application developer writes code that extracts
the results from the Supplement object and displays the results in the application.

Before explaining how these tasks are accomplished, it is helpful to briefly describe the process from
the point at which a user makes a query to the point when an application displays the rule results:

1. A user submits a query that triggers a dynamic business rule or keyword redirect.
2. When a query triggers a rule or keyword redirect, the MDEX Engine evaluates the it and returns

rule results in a single Supplement object per rule or per keyword redirect.
3. Web application code extracts the results from the Supplement object.
4. Custom rendering code in your application defines how to display the rule or keyword redirect

results.

Endeca® MDEX Engine Advanced Development GuideEndeca Confidential

165Promoting Records with Dynamic Business Rules | Working with keyword redirects

The following sections describe query parameter requirements and application and rendering code
requirements.

MDEX Engine URL query parameters for promoting records and testing
time triggers

The MDEX Engine evaluates dynamic business rules and keyword redirects only for navigation queries.

This evaluation also occurs with variations of navigation queries, such as record search, range filters,
and so on. Dynamic business rules are not evaluated for record, aggregated record, or dimension
search queries. Therefore, a query must include a navigation parameter (N) in order to potentially
trigger a rule. No other specific query parameters are required.

To preview the results of a rule with a time trigger, you add the merchandising preview time parameter
(Nmpt) and provide a string value that represents the time at which you want to preview the application.
The format of the date/time value should correspond to the following W3C format:

YYYY-MM-DDTHH:MM

The letter T is a separator between the day value and the hour value. Time zone information is omitted.
Here is an example URL that sets the date/time to October 15, 2008 at 6 p.m.:

/controller.jsp?N=0&Nmpt=2008-10-15T18:00&Ne=1000

Note: The merchandising preview time parameter supports string values that occur after midnight,
January 1, 1970 and before January 19, 2038. Values outside this range (either before or after
the range) are ignored. Also, values that are invalid for any reason are ignored.

AddingWeb application code to extract rule and keyword redirect results
You must add code to your Web application that extracts rule results or keyword redirect results from
the Supplement objects that the MDEX Engine returns.

Supplement objects are children of the Navigation object and are accessed via the Java
getSupplements() method or the .NET Supplements property for the Navigation object. The Java
getSupplements() method and the .NET Supplements property return a SupplementList object that
contains some number of Supplement objects. For example, the following sample code gets all
Supplement objects from the Navigation object.

Java example
// Get Supplement list from Navigation object
SupplementList sups = nav.getSupplements();
// Loop over the Supplement list
for (int i=0; i<sups.size(); i++) {
 // Get individual Supplement
 Supplement sup = (Supplement)sups.get(i);
...
}

.NET example
// Get Supplement list from Navigation object
SupplementList sups = nav.Supplements;
// Loop over the Supplement list
for (int i=0; i<sups.Count; i++) {

Endeca ConfidentialEndeca® MDEX Engine Advanced Development Guide

Promoting Records with Dynamic Business Rules | Presenting rule and keyword redirect results in a
Web application

166

 // Get individual Supplement
 Supplement sup = (Supplement)sups[i];
...
}

Composition of the Supplement object
Each Supplement object may contain three types of data: records, navigation references, and properties.

• Records—Each dynamic business rule’s Supplement object has one or more records attached to
it. These records are structurally identical to the records found in navigation record results. These
code snippets get all records from a Supplement object. See the sample code sections below for
more detail.
// Java example:
// Get record list from a Supplement
ERecList supRecs = sup.getERecs();
// Loop over the ERecList and get each record
for (int j=0; j<supRecs.size(); j++) {
 ERec rec = (ERec)supRecs.get(j);
...
}

//.NET example:
// Get record list from a Supplement
ERecList supRecs = sup.ERecs;
// Loop over the ERecList and get each record
for (int j=0; j<supRecs.Count; j++) {
 ERec rec = (ERec)supRecs[j];
...
}

• Navigation reference—Each Supplement object also contains a single reference to a navigation
query. This navigation reference is a collection of dimension values. These dimension values
create a navigation query that may be used to direct a user to a new location (usually the full result
set that the promoted records were sampled from.) This is useful if you want to create a link from
the rule’s title that displays the full result set of promoted records. These code snippets get the
navigation reference from a Supplement object. See the sample code sections below for more
detail.
// Java example:
// Get navigation reference list
NavigationRefsList refs = sup.getNavigationRefs();
// Loop over the references
for (int j=0; j<refs.size(); j++) {
 DimValList ref = (DimValList)refs.get(j);
 // Loop over dimension vals for each nav reference
 for (int k=0; k<ref.size(); k++) {
 DimVal val = (DimVal)ref.get(k);
 ...
 }
}

// .NET example:
// Get navigation reference list
NavigationRefsList refs = sup.NavigationRefs;
// Loop over the references
for (int j=0; j<refs.Count; j++) {

Endeca® MDEX Engine Advanced Development GuideEndeca Confidential

167Promoting Records with Dynamic Business Rules | Presenting rule and keyword redirect results in a
Web application

 DimValList dimref = (DimValList)refs[j];
 // Loop over dimension vals for each nav reference
 for (int k=0; k<dimref.Count; k++) {
 DimVal val = (DimVal)dimref[k];
 ...
 }
}

• Properties—Each Supplement object contains multiple properties, and each property consists of
a key/value pair. Properties are rule-specific, and are used to specify the style, zone, title, a redirect
URL and so on. These code snippets get all the properties from a Supplement object. See the
sample code sections below for more detail.
// Java example:
// Get property map from the Supplement
PropertyMap propsMap = sup.getProperties();
Iterator props = propsMap.entrySet().iterator();
// Loop over properties
while (props.hasNext()) {
 // Get individual property
 Property prop = (Property)props.next();
 ...
}

// .NET example:
// Get property map from the Supplement
PropertyMap propsMap2 = sup.Properties;
System.Collections.IList props = propsMap2.EntrySet;
// Loop over properties
for (int j =0; j < props.Count; j++) {
 // Get individual property
 Property prop = (Property)props[j];
 ...
}

Properties in a business rule's Supplement object
There are a number of important properties for each business rule’s Supplement object.

They include the following:

• Title—The title of a rule as specified on the Name field of the Rule editor.
• Style—The name of the style associated with the rule, as specified in the Style drop-down list of

the Rule editor’s General tab, or if the object represents a keyword redirect, the style is an empty
string.

• Style Title—The title of the style (different than the name of the style) associated with the rule, as
specified in the Title field on the Style editor.

• Zone—The name of the zone the rule is associated with, as specified by the Zone drop-down list
of the Rule editor’s General tab. If the object represents a keyword redirect, the zone is an empty
string.

• DGraph.KeywordRedirectUrl—The string representing the URL redirect link for a keyword.
• DGraph.SeeAlsoMerchId—The rule ID. This ID is system-defined, not user-defined.
• DGraph.SeeAlsoPivotCount—This count specifies the total number of matching records that were

available when evaluating the target for this rule. This count is likely to be greater than the actual
number of records returned with the Supplement object, since only the top N records are returned
for a given business rule style.

Endeca ConfidentialEndeca® MDEX Engine Advanced Development Guide

Promoting Records with Dynamic Business Rules | Presenting rule and keyword redirect results in a
Web application

168

• DGraph.SeeAlsoMerchSort—If a sort order has been specified for a rule, the property or dimension
name of the sort key is listed in this property.

• DGraph.SeeAlsoMerchSortOrder—If a sort key is specified, the sort direction applied for the key
is also listed.

In addition to the properties listed above, you can create custom properties that on the Properties tab
of the Rule editor. Custom properties also appear in a Supplement object. For details, see the topic
“Adding custom properties to a rule."

Extracting rule results from Supplement objects
You can use the following sample code to assist you in extracting rule results from Supplement objects.

Java example
<% SupplementList sl = nav.getSupplements();
for (int i=0; i < sl.size(); i++) {
 // Get Supplement object
 Supplement sup = (Supplement)sl.get(i);
 // Get properties
 PropertyMap supPropMap = sup.getProperties();
 String sProp=null;
 // Check if object is merchandising or
 // content spotlighting result
 if ((supPropMap.get("DGraph.SeeAlsoMerchId") != null) &&
 (supPropMap.get("Style") != null) &&
 (supPropMap.get("Zone") != null)) {
 boolean hasMerch = true;
 // Get record list
 ERecList recs = sup.getERecs();
 for (int j=0; j < recs.Size(); j++) {
 // Get record
 ERec rec = (ERec)recs.get(j);
 // Get record Properties
 PropertyMap recPropsMap = rec.getProperties();
 // Get value of property (e.g. Name) from current record
 sProp =(String)recPropsMap.get("Name");
 }
 // Set target link using first Navigation Reference
 NavigationRefsList nrl = sup.getNavigationRefs();
 DimValList dvl = (DimValList)nrl.get(0);
 // Loop over dimension values to build new target query
 StringBuffer sbNavParam = new StringBuffer ();
 for (int j=0; j < dvl.size(); j++) {
 DimVal dv = (DimVal)dvl.get(j)
 // Add delimiter and id
 sbNavParam.append(dv.getId());
 sbNavParam.append(" ");
 // Get specific rule properties
 String style = (String)supPropMap.get("Style");
 String title = (String)supPropMap.get("Title");
 String zone = (String)supPropMap.get("Zone");
 // This is an example of a custom Property Template
 // defined in the Style
 String customText = (String)supPropMap.get("CustomText");
 Test output in JSP page
 %>%=sProp %>
<%
 %>Navigation:<%=sbNavParam.toString()%>
<%
 %>Style:<%=style%>
<%

Endeca® MDEX Engine Advanced Development GuideEndeca Confidential

169Promoting Records with Dynamic Business Rules | Presenting rule and keyword redirect results in a
Web application

 %>Title:<%=title%>
<%
 %>Zone:<%=zone%>
<%
 %>Text:<%=customText%>
<%
 }
}
%>

.NET example
// Get supplement list
SupplementList sups = nav.Supplements;
// Loop over Supplement objects
for (int i=0; i<sups.Count; i++) {
 // Get Supplement object
 Supplement sup = (Supplement)merchList[i];
 // Get properties
 PropertyMap supPropMap = sup.Properties;
 // Check if Supplement object is merchandising
 // or content spotlighting
 if ((supPropMap["DGraph.SeeAlsoMerchId"] != null) &&
 (supPropMap["Style"] != null) &&
 (supPropMap["Zone"] != null) &&
 (Request.QueryString["hideMerch"] == null)) {
 // Get Record List
 ERecList supRecs = sup.ERecs;
 // Loop over records
 for (int j=0; j<supRecs.Count; j++) {
 // Get record
 ERec rec = (ERec)supRecs[j];
 // Get property map for record
 PropertyMap propsMap = rec.Properties;
 // Get value of name prop from current record
 String name = (String)propsMap["Name"];
 }
 // Set target link using first navigation reference
 NavigationRefsList nrl = sup.NavigationRefs;
 DimValList dvl = (DimValList)nrl[0];
 // Loop over dimension values to build new target query
 String newNavParam;
 for (int k=0; k<dvl.Count; k++) {
 DimVal dv = (DimVal)dvl[k];
 // Add delimiter and id
 newNavParam += " "+dv.Id;
 }
 // Get specific rule properties
 String style = supPropMap["Style"];
 String title = supPropMap["Title"];
 String zone = supPropMap["Zone"];
 String customText = supPropMap["CustomText"];
 }
}

Adding Web application code to render rule results
In addition to Web application code that extracts rule results from Supplement objects, you must also
add application code to render the rule results on screen.

Endeca ConfidentialEndeca® MDEX Engine Advanced Development Guide

Promoting Records with Dynamic Business Rules | Presenting rule and keyword redirect results in a
Web application

170

(Rendering is the process of converting the rule results into displayable elements in your Web application
pages.) Rendering rule results is a Web application-specific development task. The reference
implementations come with three arbitrary styles of rendering business rule results, but most applications
require their own custom development that is typically keyed on the Title, Style, Zone, and other custom
properties. For details, see the topic “Adding Web application code to extract rule and keyword redirect
results."

Filtering dynamic business rules
Dynamic business rule filters allow an Endeca application to define arbitrary subsets of dynamic
business rules and restrict merchandising results to only the records that can be promoted by these
subsets.

If you filter for a particular subset of dynamic business rules, only those rules are active and available
in the Dgraph to fire in response to user queries. Rule filters support Boolean syntax using property
names, property values, rule IDs, and standard Boolean operators (AND, OR, and NOT) to compose
complex combinations of property names, property values, and rule IDs.

For example, a rule filter can consist of a list of workflow approval states in a multi-way OR expression.
Such a filter could filter rules that have a workflow state of pending OR approved. You specify a rule
filter using the Java ENEQuery.setNavMerchRuleFilter() method and the .NET
ENEQuery.NavMerchRuleFilter property, and you pass the filter directly to the Dgraph as part of an
MDEX Engine query.

Rule filter syntax
The syntax for rule filters supports prefix-oriented Boolean operators (AND, OR, and NOT) and uses
comma-separated name/value pairs to specify properties and numeric rule IDs. The wildcard operator
(*) is also supported.

Here are the syntax requirements for specifying rule filters:

• The following special characters cannot be a part of a property name or value: () : , *
• Property names are separated from property values with a colon (:). The example <applica¬
tion>?N=0&Nmrf=state:approved filters for rules where state property has a value of approved.

• Name/value pairs are separated from other name/value pairs by a comma. The example <appli¬
cation>?N=0&Nmrf=or(state:pending,state:approved) filters for rules where state
property is either approved or pending.

• Rule IDs are specified by their numeric value. The example <application>?N=0&Nmrf=5 filters
for a rule whose ID is 5.

• Multiple rule IDs, just like multiple name/value pairs, are also separated by a comma. The example
<application>?N=0&Nmrf=or(1,5,8) filters for rules where the value of the rule ID is either
1, 5, or 8.

• Boolean operators (AND, OR, and NOT) are available to compose complex combinations of
property names, property values, and rule IDs. The example<application>?N=0&Nmrf=and(im¬
age_path:/common/images/book.jpg,alt_text:*) filters for rules where the value of the
image_path property is book.jpg and alt_text contains any value including null.

• Wildcard operators can substitute for any property value (not property name). The example <ap¬
plication>?N=0&Nmrf=and(not(state:*),not(alt_text:*)) filters for rules that contain
no value for both the state property and alt_text property.

Endeca® MDEX Engine Advanced Development GuideEndeca Confidential

171Promoting Records with Dynamic Business Rules | Filtering dynamic business rules

Additional Boolean usage information
• Boolean operators are not case-sensitive.
• Boolean operators are reserved words, so property names or values such as "and," "or," and "not"

are not valid in rule filters. However, properties can contain any superset of the Boolean operators
such as "andrew", "bread and butter", or "not yellow".

• Although the Boolean operators in rule filters are not case-sensitive, property names and values
in the filter are case sensitive.

MDEX URL query parameters for rule filters
The Nmrf query parameter controls the use of a rule filter.

Nmrf links to the Java ENEQuery.setNavMerchRuleFilter() method and the .NET
ENEQuery.NavMerchRuleFilter property. The Nmrf parameter specifies the rule filter syntax that
restricts which rules can promote records for a navigation query.

Performance impact of dynamic business rules
Dynamic business rules require very little data processing or indexing, so they do not impact Forge
performance, Dgidx performance, or the MDEX Engine memory footprint.

However, because the MDEX Engine evaluates dynamic business rules at query time, rules affect the
response-time performance of the MDEX Engine. The larger the number of rules, the longer the
evaluation and response time. Evaluating more than twenty rules per query can have a noticeable
effect on response time. For this reason, you should monitor and limit the number of rules that the
MDEX Engine evaluates for each query.

In addition to large numbers of rules slowing performance, query response time is also slower if the
MDEX Engine returns a large number of records. You can minimize this issue by setting a low value
for the Maximum Records setting in the Style editor for a rule.

Rules without explicit triggers
Dynamic business rules without explicit triggers also affect response time performance because the
MDEX Engine evaluates the rules for every navigation query.

Using an Agraph and dynamic business rules
To implement dynamic business rules when you are using the Agraph, keep in mind the following
points.

Using dynamic business rules with the Agraph affects performance if you are using zones configured
with “Unique by this dimension/property” and combined with a high setting for the maximum number
of records or a large numbers of rules. To avoid response time problems, you may need to reduce the
number of rules, reduce the maximum records that can be returned, or abandon uniqueness.

Endeca ConfidentialEndeca® MDEX Engine Advanced Development Guide

Promoting Records with Dynamic Business Rules | Performance impact of dynamic business rules172

If you update your Dgraphs with dynamic business rule changes using Developer Studio or Endeca
Workbench, and a request comes to the Agraph while the update is in progress, the Agraph might
issue an error similar to the following:
All Dgraphs should have the same number of merchandising
rules. Please review your merchandising configuration.

As long as the Agraph is running in the Endeca Application Controller environment, the Agraph is
automatically restarted. No data is lost. However, end-users will not receive a response to requests
made during this short time.

This problem has little overall impact on the system, because business rule updates are quick and
infrequent. Nevertheless, Endeca recommends that you shut down the Agraph during business rule
updates. To shut down the Agraph, go to a CMD prompt on Windows or a shell prompt on UNIX and
type:
GET 'http://HOST:PORT/admin?op=exit'

where HOST is machine running the Agraph and PORT is the port number of the Agraph. GET is a
Perl utility, so be sure the Perl binaries are in your system path variable.

Applying relevance ranking to rule results
In some cases, it is a good idea to apply relevance ranking to a rule’s results.

For example, if a user performs a record search for Mondavi, the results in the Highly Rated rule can
be ordered according to their relevance ranking score for the term Mondavi. In order to create this
effect, there are three requirements:

• The navigation query that is triggering the rule must contain record search parameters (Ntt and
Ntk). Likewise, the zone that the rule is assigned to must be identified as Valid for search.
(Otherwise, the rule will not be triggered.)

• The rule’s target must be marked to Augment Navigation State.
• The rule must not have any sort parameters specified. If the rule has an explicit sort parameter,

that parameter overrides relevance ranking. Sort parameters for a rule are set on the General tab
of the Rule editor.

If these three requirements are met, then the relevance ranking rules specified with MDEX Engine
startup options are used to rank specific business rules when triggered with a record search request
(a keyword trigger).

About overloading Supplement objects
Recall that dynamic business rule results are returned to an application in Supplement objects.

Each rule that returns results does so via a single Supplement object for that rule. However, not all
Supplement objects contain rule results.

Supplement objects are also used to support “Did You Mean” suggestions, record search reports, and
so on. In other words, a Supplement object can act as a container for a variety of features in an
application. One Supplement object instance cannot contain results for two features. For example,
one Supplement object cannot contain both rule results and also “Did You Mean” suggestions. For
that reason, if you combine dynamic business rules with these additional features, you should check
each Supplement object for specific properties such as DGraph.SeeAlsoMerchId to identify which
Supplement object contains rule results.

Endeca® MDEX Engine Advanced Development GuideEndeca Confidential

173Promoting Records with Dynamic Business Rules | Applying relevance ranking to rule results

Chapter 14

Implementing User Profiles

This section describes how to create user profiles that can be used in your Endeca application.

About user profiles
A user profile is a character-string-typed name that identifies a class of end users.

User profiles enable applications built on the Endeca Information Access Platform to tailor the content
displayed to an end user based on that user’s identity.

User profiles can be used to trigger dynamic business rules, where such rules are optionally constructed
with an additional trigger attribute corresponding to a user profile. The Endeca IAP can accept
information about the end user, and use that information to trigger pre-configured rules and behaviors.

You set up user profiles in Developer Studio. Both Developer Studio and Endeca Workbench allow a
user profile to be associated with a business rule’s trigger.

This feature discusses how you create user profiles and then implement them as dynamic business
rule triggers. Before reading further, make sure you are comfortable with the information in the
"Promoting Records with Dynamic Business Rules" section.

Note: Each business rule is allowed to have at most one user profile trigger.

Related Links
Promoting Records with Dynamic Business Rules on page 149

This section describes how to use dynamic business rules for promoting contextually relevant
records to application users as they search and navigate within a data set.

Profile-based trigger scenario
This topic shows how a dynamic business rule would utilize a user profile.

In the following scenario, an online clothing retailer wants to set up a dynamic business rule that says:
"For young women who are browsing stretch t-shirts, also recommend cropped pants." We follow the
shopping experience of a customer named Jane.

In order to set up this rule, a few configuration steps are necessary:

1. In Endeca Developer Studio, the retailer creates a user profile called young_woman, which
corresponds to the set of customers who are female and are between the ages of 16 and 25.

2. In Endeca Workbench, a dynamic business rule that uses the profile as a trigger is created, as
shown below. No complex Boolean logic programming is necessary here. The business user simply
selects a user profile from a set of available profiles to create the business rule.
young_woman X DVAL(stretch t-shirt) => DVAL(cropped pants)

3. In the Web application that’s driving the customer’s experience, there needs to be logic that identifies
the user and tests to see if he or she meets the requirements to be classified as a young_woman.
Alternatively, the profile young_woman may already be stored along with Jane’s information (such
as age, address, and income) in a database or LDAP server.

The user’s experience would go something like this:

1. Jane accesses the clothing retailer’s Web site and is identified by a cookie on her computer. By
looking up a few database tables, the application knows that it has interacted with her before. The
database indicates that she is 19 years old and female.

At this point, the database may also indicate the user profiles that she belongs to: young_woman,
r_and_b_music_fan, college_student. Alternatively, the application logic may test against
her information to see which profiles she belongs to, as follows: "Jane is between 16 and 25 years
old and she is female, so she belongs in the young_woman profile."

2. As Jane is browsing the site, the Endeca MDEX Engine is driving her catalog experience. As each
query is being sent to the Endeca MDEX Engine, it is augmented with user profile information. Here
is some sample Java code:
profileSet.add("young_woman");
eneQuery.setProfiles(profileSet);

3. As Jane clicks on a stretch t-shirt link, the Endeca MDEX Engine realizes that a dynamic business
rule has been triggered: young_woman X DVAL(stretch t-shirt). Therefore, it returns a
cropped pants record in one of the dynamic business rule zones.

4. Jane sees a picture of cropped pants in a box labeled, "You also might like..."

User profile query parameters
There are no URL MDEX query parameters associated with user profiles.

In many live application scenarios, the URL query is exposed to the end user, and it is usually not
appropriate for end users to see or change the user profiles with which they have been tagged.

API objects and method calls
These Java and .NET code samples demonstrate how to implement user profiles in the Web application.

In the following code samples, the application recognizes the end user as Jane Smith, looks up some
database tables and determines that she is 19 years old, female, a college student and likes R&B
music. These characteristics map to the following Endeca user profiles created in Endeca Developer
Studio:

• young_woman

• r_and_b_music_fan

Endeca ConfidentialEndeca® MDEX Engine Advanced Development Guide

Implementing User Profiles | User profile query parameters176

• college_student

User profiles can be any string. The user profiles supplied to ENEQuery must exactly match those
configured in Endeca Developer Studio.

Java example of implementing user profiles
// User profiles can be any string. The user profiles must
// exactly match those configured in Developer Studio.
// Add this import statement at the top of your file:
// import java.util.*;
Set profiles = new HashSet();
// Collect all the profiles into a single Set object.
profiles.add("young_woman");
profiles.add("r_and_b_music_fan");
profiles.add("college_student");
// Augment the query with the profile information.
eneQuery.setProfiles(profiles);

.NET example of implementing user profiles
// Make sure you have the following statement at the top
// of your file:
// using System.Collections.Specialized;
StringCollection profiles = new StringCollection();
// Collect all the profiles into a single StringCollection object.
profiles.Add("young_woman");
profiles.Add("r_and_b_music_fan");
profiles.Add("college_student");
// Augment the query with the profile information.
eneQuery.Profiles = profiles;

Performance impact of user profiles
An application using this feature may experience additional memory costs due to user profiles being
set in an ENEQuery object.

In addition, the application may require additional Java ENEConnection.query() or .NET
HttpENEConnection.Query() response time, because the MDEX Engine must do additional work
to receive profile information and check if business rules fire. However, in typical application scenarios
that set one to five user profile strings of at most 20 characters in the ENEQuery object, the performance
impact is insignificant.

Endeca® MDEX Engine Advanced Development GuideEndeca Confidential

177Implementing User Profiles | Performance impact of user profiles

Part 5

Other Features

• Using the Aggregated MDEX Engine
• Using Internationalized Data
• Coremetrics Integration

Chapter 15

Using the Aggregated MDEX Engine

This section describes how to create a distributed Endeca implementation using the Aggregated MDEX
Engine.

About the Aggregated MDEX Engine
A distributed Endeca configuration requires a program called the Agraph, which typically resides on
a separate machine.

Agraph is the process name of the Aggregated MDEX Engine in the same way that Dgraph is the
process name of the MDEX Engine.

The Agraph program is responsible for receiving requests from clients, forwarding the requests to the
distributed Dgraphs, and coordinating the results. From the perspective of the Endeca Presentation
API, the Agraph program behaves identically to a Dgraph program.

Implementing the Agraph allows application users to search and navigate very large data sets. An
Agraph implementation enables scalable search and navigation by partitioning a very large data set
into multiple Dgraphs running in parallel. The Agraph sends an application user’s query to each Dgraph,
then coordinates the results from each, and sends a single reply back to the application user.

This document assumes you have read the MDEX Engine overview chapter in the Basic Development
Guide and that you can create, provision, and run an Endeca implementation using a single Dgraph.

Overview of distributed query processing
You can scale the MDEX Engine to accommodate a large data set by distributing the MDEX Engine
across multiple processors that are then coordinated by an Aggregated MDEX Engine.

In this type of distributed environment, you configure a Developer Studio project to partition your
Endeca records into subsets of records—as many partitioned subsets as you need to process all your
source data. Each subset of Endeca records is typically referred to as a partition. Each processor runs
an instance of the Dgraph program by loading one partition and maintaining a portion of the total MDEX
Engine indices in its main memory.

Such a distributed configuration requires an additional program called the Agraph (Aggregated MDEX
Engine). The Agraph program receives requests from clients, forwards the requests to the distributed
MDEX Engines, and coordinates the results. An Agraph can coordinate as many child Dgraphs as are
necessary for your data set.

Agraph query processing
From the perspective of the Endeca Presentation API, the Agraph program behaves identically to a
Dgraph program.

When an Aggregated MDEX Engine receives a request, it sends the request to all of the distributed
MDEX Engines. Each MDEX Engine processes the request and returns its results to the Aggregated
MDEX Engine which aggregates the results into a single response and returns that response to the
client, via the Endeca Presentation API.

In the following illustration, one Agraph coordinates three Dgraphs.

Information Transformation Layer processing
This topic describes the offline processing that the Endeca Information Transformation Layer
components perform to create Agraph partitions.

For a full explanation about how Data Foundry processing works for a single Dgraph implementation,
see the Endeca Forge Guide.

To summarize, the Information Transformation Layer architecture to process source data for a single
partition, running in a single MDEX Engine, looks like this:

In an Agraph implementation, the Information Transformation Layer processing is very similar. However,
multiple Information Transformation Layer components (namely Dgidx and Agidx) run in parallel to
process each partition’s data. The architecture to process an Agraph implementation with three partitions
looks like this:

Endeca ConfidentialEndeca® MDEX Engine Advanced Development Guide

Using the Aggregated MDEX Engine | Overview of distributed query processing182

When you run a project with three partitions, as shown above, the following occurs:

1. Forge reads in the source data. (Assume Forge has access to source data as shown in the diagram
with a single MDEX Engine.)

2. data as shown in the diagram with a single MDEX Engine.)

Forge enables parallel processing by producing Endeca records in any number of partitions. You
specify the number of partitions in the Agraph tab of the Indexer adapter or the Update adapter.

The Data Foundry starts a Dgidx process for each partition that Forge created. The Dgidx processes
can run on one or multiple machines, depending on the desired allocation of computation resources.

Each Dgidx process creates a set of MDEX Engine indices for its corresponding partition.

After all the Dgidx processes complete, the Agidx program runs to create an index specific to the
Agraph. This index contains information about each partition’s indices.

Each MDEX Engine (Dgraph) starts and loads the index for its corresponding partition.

After all Dgraphs start, the Agraph starts and loads its index, which contains information about each
child index of the Dgraph.

Guidance about when to use an Agraph
An Agraph implementation is necessary when you have a set of Endeca records large enough that
the performance of a single Dgraph process degrades beyond acceptable limits.

In a 32-bit implementation, the limiting factor is generally the amount of RAM available per machine.
If a single Dgraph cannot store the entire set of Endeca indices in RAM at once, then converting to
either an Agraph or a 64-bit implementation is necessary.

In a 64-bit implementation, it is generally possible to install enough RAM to hold the entire set of Endeca
indices for all but the largest sets of source data. The limiting factor for a 64-bit implementation is the
performance of the Dgraph, Dgidx, and Forge processes. The larger the set of Endeca indices, the
longer they take to perform their operations. The decision to implement an Agraph then becomes a
matter of priority for your application. If query and update speed is crucial to your application, an Agraph
would be the appropriate solution. If the simplicity of your application is more important, increasing the
RAM installed on a single Dgraph server would be the appropriate solution. Due to the complexity of
the factors involved in making this decision, it is recommended that you contact Customer Solutions
for assistance specific to your individual application.

Endeca® MDEX Engine Advanced Development GuideEndeca Confidential

183Using the Aggregated MDEX Engine | Guidance about when to use an Agraph

For more information on performance and considerations on when an Agraph is needed, see the
Endeca Performance Tuning Guide.

Agraph implementation steps
This section describes the necessary tasks to implement an Agraph.

The tasks are:

1. Modify the project for Agraph partitions.
2. Provision the Agraph implementation.
3. Run the Agraph implementation.
4. Connecting to the Agraph via the Presentation API.

Modifying the project for Agraph partitions
The first step in implementing an Agraph in the Endeca IAP is to configure the Agraph tab of the
project’s indexer adapter or, if you are working on a partial update pipeline, the Agraph tab of the
update adapter.

The Agraph tab serves the following functions:

• Enables Agraph support
• Specifies the number of Agraph partitions (Dgraphs) in your implementation
• Identifies an optional partition property

The partition property field identifies the property by which records are assigned to each partition. This
field is read-only. The partition property field can display one of three possibilities:

• A rollup property – If you have a rollup property enabled in your project, the rollup property also
functions as the partition property. Forge assigns all records that can be aggregated by the rollup
property to the same partition. For example, suppose "Year" is the rollup property and "Year" can
have any number of rollup values such as 2002, 2003, 2004, and so on. Forge assigns all records
tagged with a particular year’s value to the same partition. This means that all records tagged with
2002 are in the same partition; all records tagged with 2003 are in the same partition, and so on.

• A record spec property – If you do not have a roll up property but do have a record spec property
enabled in your project, the record spec property functions as the partition property. Records are
assigned evenly across all partitions according to the record spec property. This allocation provides
equally sized partitions.

• An empty field (no property displays) – If you have not enabled a rollup property or record spec
property, the partition property field is empty. With no partition property, Forge assigns records to
each partition according to a round-robin strategy. This strategy also provides equally sized
partitions.

Provisioning an Agraph implementation
In addition to modifying your project to support Dgraph partitioning, you must also provision your
Endeca implementation.

Provisioning informs the Endeca Application Controller about the systems allocated to run the Forge,
Dgidx, Agidx, Dgraph, and Agraph components. You can provision using Endeca Workbench, eaccmd,
or the custom Web services interface. This section describes how to provision using Endeca Workbench.

Endeca ConfidentialEndeca® MDEX Engine Advanced Development Guide

Using the Aggregated MDEX Engine | Agraph implementation steps184

In a production environment, the Agraph and each Dgraph should run on its own processor. Your
servers may have one or more processors. For example, you can set up a three Dgraph/one Agraph
environment on a quad processor server. In a development environment, where optimal performance
is less critical, the Agraph can run on one of the processors running a Dgraph.

An Agraph implementation requires a minimum of two replicas (mirrors) to provide full application
uptime during partial updates. The second replica is necessary so one replica’s Agraph can go offline
during a partial update. The second replica can continue to receive and reply to user requests during
the downtime of the first replica.

To provision an Agraph implementation in Endeca Workbench:

1. Open Internet Explorer, start Endeca Workbench, and log in. If you have any questions about how
to use Endeca Workbench, see the Endeca Workbench Administrator’s Guide. (This procedure
assumes you know how to provision an Endeca implementation and focuses on the issues specific
to provisioning an Agraph implementation.)

2. Select the EAC Administration Console page from the EAC Administration section.
3. On the Hosts tab, add each host that runs a Dgraph or Agraph, including host machines that run

Dgraph or Agraph replicas. See the Endeca Workbench help for details on each field to configure
this host.

4. In the Hosts tab, add as many Dgidx components as you have Dgraph components. In other words,
the number of Dgidx components must correspond to the value of Number of Agraph partitions
in your indexer adapter.

5. In the Hosts tab, add at least one Aggregated Indexer (Agidx) component. The input for an
Aggregated Indexer is the output from each Indexer. In the Hosts tab, add as many MDEX Engines
(Dgraphs) as you have Agraph partitions and replicas for those partitions. (You specified the number
of Agraph partitions in Modifying the Project for Agraph Partitions.) For example, if you have
three Dgraphs and two replicas, you need a total of six MDEX Engines.

6. In the Hosts tab, add as many Agraphs as you need to support your desired number of Dgraphs
and the required number of replicas. An Agraph can support any number of Dgraphs.

You can now run your Agraph.

Running an Agraph implementation
After saving your provisioning changes, you can start a baseline update.

The baseline update processes your source data and runs all the components shown on the EAC
Administration page including starting all Dgraphs and the Agraph for each replica.

To run the Agraph:

Write an EAC script or web service that runs a baseline update including all necessary Forge
instances, Dgidx instances, Agidx, Draph instances, and the Agraph.
See the Endeca Application Controller Guide for details about how to write an EAC Script or web
service.

Agraph Presentation API development
No additional development is needed in the Presentation API to support the Agraph.

The Agraph can be treated just like a Dgraph.

Endeca® MDEX Engine Advanced Development GuideEndeca Confidential

185Using the Aggregated MDEX Engine | Agraph implementation steps

Note however that when you set a connection to the MDEX Engine, your application should connect
to the Agraph, not one of its child Dgraphs. For example, in Java, this connection might look like the
following:
// Set connection to Agraph
ENEConnection nec = new HttpENEConnection("engine.endeca.com", "9001");

where engine.endeca.com is the Agraph host and 9001 is the Agraph port.

Agraph limitations
There are some Endeca features that are not supported by the Agraph.

The following features cannot be used with the Agraph:

• Relevance ranking for dimension search is not supported in an Agraph. In addition, the Static
relevance ranking module is not supported in an Agraph. See the section "Using Relevance
Ranking" for information on configuring Dgraphs in an Agraph deployment to support relevance
ranking for record search.

• The aggregated record counts beneath a given refinement (which you can obtain in the Dgraph
using the --stat-abins flag), are not supported by the Agraph. That is, the --stat-abins
flag is not supported by the Agraph.This means that refinement ranking of aggregated records is
not possible in the Agraph (because for this ranking, the MDEX Engine needs to know the
aggregated record counts beneath a given refinement).

• If you are aggregating records in your application, you must specify only one property by which to
aggregate the records. Specify the property by enabling the Rollup check box on General tab of
the Property editor.

• Dgraphs return results ordered without counts but the Agraph cannot reasonably combine them.
The Dgraph performs sampling (that is, returns records counts in order.)

• Counts returned by the MDEX Engine for the Did You Mean supplemental results are not exact.
Instead, the counts represent the minimum number of resulting records (and not the exact number
of records). That is, there might be additional matching records that do not get returned. If you
would like to provide higher accuracy, adjust the --dym_hthresh and --dym_nsug parameters
in order to obtain more supplemental information, and modify the front-end application to display
only the top results. (Note that the supplemental information returned by the Agraph for Did You
Mean in this case still does not guarantee exact counts and provides the minimum possible counts.)

• If dynamically-ranked refinements are enabled but refinement counts are not enabled, you cannot
rely upon the Agraph’s dynamic refinement sorting results, because the Agraph does not aggregate
dynamically ranked refinements from numerous Dgraphs in a predictable manner.

Related Links
About the Relevance Ranking feature on page 103

Relevance Ranking controls the order in which search results are displayed to the end user
of an Endeca application.

Agraph performance impact
Ideally, the Agraph speeds up both Dgidx indexing and MDEX Engine request processing by a factor
of the number of partitions.

Endeca ConfidentialEndeca® MDEX Engine Advanced Development Guide

Using the Aggregated MDEX Engine | Agraph limitations186

The indexing speed-up is close to this ideal, assuming that the Dgidx processes do not have to compete
for computation or disk resources.

Assuming each Dgraph is running on its own processor as recommended, the MDEX Engine achieves
close to the ideal speed-up for handling expensive requests, especially analytics requests. For smaller
requests, the overhead of the Agraph tends to nullify the benefits of processing a query in parallel.

Endeca® MDEX Engine Advanced Development GuideEndeca Confidential

187Using the Aggregated MDEX Engine | Agraph performance impact

Chapter 16

Using Internationalized Data

This section describes how to include internationalized data in an Endeca application.

Using internationalized data with your Endeca application
The Endeca suite of products supports the Unicode Standard version 4.0. Support for the Unicode
Standard allows the Endeca MDEX Engine to process and serve data in virtually any of the world’s
languages and scripts.

The Endeca components (Forge, Dgidx, and the Dgraph) can be configured to process internationalized
data when it is provided in a native encoding.

The section makes the following assumptions:

• If working with Chinese, you are familiar with the encoding and character sets (Traditional versus
Simplified, Big5, GBK, and so on).

• If working with Chinese or Japanese, you know that these languages do not use white space to
delimit words.

• If working with Japanese, you are familiar with the shift_jis variants and how the same character
can be represent either the Yen symbol or the backslash character.

(For more information about the Unicode Standard and character encodings, see http://unicode.org.)

Installation of the Supplemental Language Pack
The Supplemental Language Pack is installed automatically with the Endeca MDEX Engine installation.
The installed Supplemental Language Pack software includes support for Japanese, Chinese, and
Korean dictionary files.

Configuring Forge to identify languages
The following topics describe how to configure Forge to identify the language of the source data.

Specifying the encoding of source data
You must specify the encoding of incoming source data in order for Forge to process it correctly.

http://unicode.org

The format of the source data determines how you specify the encoding value.

To specify the encoding of source data:

• If the format is Delimited, Vertical, Fixed-width, Exchange, ODBC, JDBC Adapter, or Custom
Adapter, specify the encoding in the Encoding field of the Record Adapter editor in Developer
Studio, for example, UTF-8, Latin1, etc.. For a list of valid source data encodings, see the ICU
Converter Explorer at http://demo.icu-project.org/icu-bin/convexp?s=ALL

• If the format is XML, specify the encoding in the DOCTYPE declaration of the XML source data
document. The Encoding value are ignored.

• If the format is Binary, no specification is required. The Encoding value is ignored because encoding
only applies to text-based files.

Configuring Dgidx to process internationalized data
The following topics describe how to configure Dgidx for character mapping and language sorting
(collation).

Mapping accented characters to unaccented characters
Dgidx supports mapping Latin1, Latin extended-A, and Windows CP1252 international characters to
their simple ASCII equivalents during indexing.

Specifying the --diacritic-folding flag on Dgidx maps accented characters to simple ASCII
equivalents. This allows the Dgraph to match Anglicized search queries such as cafe against result
text containing international characters (accented) such as café.

Configuring the MDEX Engine with language identifiers for
source data

The following topics describe how to specify language identifiers for the MDEX Engine and how to
configure language-specific spelling correction.

When using internationalized data, keep in mind that the MDEX Engine does not support bi-directional
languages like Arabic and Hebrew.

How to supply a language ID

You can supply a language ID for source data using one of these methods:

• A global language ID can be used if all or most of your text is in a single language.
• A per-record language ID should be used if the language varies on a per-record basis.
• A per-dimension/property language ID should be used if the language varies on a per-dimension

basis.
• A per-query language ID should be used in your front-end application if the language varies on a

per-query basis.

The following topics describe these methods of specifying the language ID for your data.

Endeca ConfidentialEndeca® MDEX Engine Advanced Development Guide

Using Internationalized Data | Configuring Dgidx to process internationalized data190

http://demo.icu-project.org/icu-bin/convexp?s=ALL

About language identifiers
American English (en) is the default language of the MDEX Engine.

If your application contains text in non-English languages, you should specify the language of the text
to the MDEX Engine, so that it can correctly perform language-specific operations.

You use a language ID to identify a language. Language IDs must be specified as a valid RFC-3066
or ISO-639 code, such as the following examples:

• da – Danish
• de – German
• el – Greek
• en – English (United States)
• en-GB – English (United Kingdom)
• es – Spanish
• fr – French
• it – Italian
• ja – Japanese
• ko – Korean
• nl – Dutch
• pt – Portuguese
• zh – Chinese
• zh-CN – Chinese (simplified)
• zh-TW – Chinese (traditional)

A list of the ISO-639 codes is available at:

http://www.w3.org/WAI/ER/IG/ert/iso639.htm

About language collations
During both indexing and query processing, the text of a language is collated (sorted) according to a
collation setting. You specify the collation setting as an argument to the --lang flag.

There are two primary types of collations--the endeca collation and the standard collation.

The endeca collation sorts text with lower case before upper case and does not account for character
accents and punctuation. For example, the endeca collation sorts text as follows:

0 < 1 < ... < 9 < a < A < b < B < ... < z < Z

In applications where English is the global language, the endeca collation performs better during
indexing and query processing than the standard collation primarily because the endeca collation
is optimized for unaccented languages. In applications with other languages, the collation results for
accented characters may not be what is expected. (There may be cases where an application has
text with accented characters and you choose the endeca collation for performance reasons.) The
endeca collation is the default collation.

The standard collation sorts data according to the International Components for Unicode (ICU)
standard for the language you specify with --lang <lang id>. For details about standard collation
for a particular language, see the Unicode Common Locale Data Repository at
http://cldr.unicode.org/.

Endeca® MDEX Engine Advanced Development GuideEndeca Confidential

191Using Internationalized Data | Configuring the MDEX Engine with language identifiers for source data

http://www.w3.org/WAI/ER/IG/ert/iso639.htm

In applications that include internationalized data, the standard collation is typically the more
appropriate choice because it accounts for character accents during sorting.

In addition to the endeca and standard collations, there are two other language-specific ICU collations
supported by Dgidx and the Dgraph:

• de-u-co-phonebk (A German collation that sorts according to phone book order rather than by
dictionary order.)

• es-u-co-trad (A Spanish collation that sorts the ch and ll characters in the traditional order
rather than the standard order.)

Specifying a global language ID and collation order
If most of the text in an application is in a single language, you can specify a global language ID by
providing the --lang flag and a <lang-id> argument to the Dgidx and Dgraph components. The
MDEX Engine treats all text as being in the language specified by <lang-id>, unless you tag text
with a more specific language ID (that is, per-record, per-dimension, or per-query language IDs). The
<lang-id> defaults to en (US English) if left unspecified.

For example, to indicate that text is English (United Kingdom), specify: --lang en-GB.

In addition to specifying a language identifier, you can also specify an optional collation order using
an argument to the --lang flag. A collation is specified in the form:

--lang <lang-id>-u-co-<collation>, where:

• <lang-id> is the language id and may also include a sub-tag. If unspecified, the value of <lang-
id> is en (US English).

• -u is a separator value between the language identifier portion of the argument and the collation
identifier portion of the argument.

• -co is a key that indicates a collation value follows.
• -<collation> is the collation type of either endeca, standard, or in some cases, other

language-specific ICU collations such as phonebk or trad. If unspecified, the value of <colla¬
tion> is endeca (that is en-u-co-endeca).

For example, --lang de-u-co-phonebk instructs Dgidx and the Dgraph to treat all the text as
German and collate the text in phonebook order.

Specifying a per-record language ID
If your application data is organized so that all the data in a record is in a single language but different
records are in different languages, you should use a per-record language ID.

This scenario is common in applications that use the Content Acquisition System, because in those
applications each record represents an entire document which is usually all in a single language, while
different documents may be in different languages.

To specify a per-record language ID:

1. Using Developer Studio, add a record manipulator to the pipeline.
2. In the record manipulator, specify an ID_LANGUAGE expression that adds a property or dimension

named Endeca.Document.Language to your records. This is the default name of the property
created by the ID_LANGUAGE expression in Forge, so use of that expression automatically creates
a per-record language ID.
The value of the property or dimension should be a valid RFC-3066 or ISO-639 language ID.

Endeca ConfidentialEndeca® MDEX Engine Advanced Development Guide

Using Internationalized Data | Configuring the MDEX Engine with language identifiers for source data192

Specifying a per-dimension/property language ID
Use per-dimension/property language IDs if your application tends to have mixed-language records
and the languages are segregated into different dimensions or properties.

For example, your data may have an English property called Description and a Spanish property called
Descripción. In this case, because an individual record can have both English and Spanish text, a
per-property language ID would be more appropriate than a per-record language ID.

You can specify a per-dimension/property language ID in Developer Studio with the Property or
Dimension editors.

To configure a language ID for a property or dimension:

1. In the Project tab of Developer Studio, double-click either Properties (to open the Properties view)
or Dimensions (to open the Dimensions view).

2. From the appropriate view, select a property or dimension and click Edit.
3. From the General tab of the Property or Dimension editor, select a language from the Language

drop-down.
4. Click OK.
5. From the File menu, choose Save.

The following example shows the Property editor with a property called Descripción. The language for
the property is set to Spanish:

Specifying a per-query language ID
You can use Presentation API calls to specify the language of record queries.

The ENEQuery and UrlENEQuery classes in the Endeca Presentation API have a Java
setLanguageId() method and a .NET LanguageId property, which you use to tell the MDEX
Engine what language record (full-text) queries are in. If you have enabled the language-specific
spelling correction feature, a per-query language ID will enable the MDEX Engine to select the
appropriate dictionary for a given query.

If no per-query language ID is specified, the MDEX Engine uses the global language ID, which defaults
to "en" (US English) if not set specifically.

Endeca® MDEX Engine Advanced Development GuideEndeca Confidential

193Using Internationalized Data | Configuring the MDEX Engine with language identifiers for source data

For details on the ENEQuery and UrlENEQuery class members, see the Endeca Javadocs or the
Endeca API Guide for .NET.

The following code snippets show how to set French (using its language code of "fr") as the language
of any text portion of the query (such as search terms).

Java example of setting a per-query language ID
// Create an MDEX Engine query
ENEQuery usq = new UrlENEQuery(request.getQueryString(),"UTF-8");
// Set French as the language for the query
usq.setLanguageId("fr");
// Set other query attributes
...
// Make the request to the MDEX Engine
ENEQueryResults qr = nec.query(usq);

.NET example of setting a per-query language ID
// Create a query
String queryString = Request.Url.Query.Substring(1);
ENEQuery usq = new UrlENEQuery(queryString, "UTF-8");
// Set French as the language for the query
usq.LanguageId = "fr";
// Set other query attributes
...
// Make the request to the Navigation Engine
ENEQueryResults qr = nec.Query(usq);

Performance issues to consider when running ID_LANGUAGE
Language identification requires a balance between accuracy and performance. This balance on the
application requirements and the data.

• To increase accuracy, raise the number of bytes in the LANG_ID_BYTES attribute in the
ID_LANGUAGE expression.

• To increase performance, either reduce the number of bytes, or, if possible, use a different approach
to determine the language. For example, if the languages are already segmented by folder, then
a conditional ADD_PROP expression can be used to create the language property on each record,
avoiding the LANGUAGE_ID expression altogether.

If the Web server being crawled provides incorrect encoding information, you can remove the encoding
property (which typically is the Endeca.Document.Encoding property) before the parse phase. In
this case, the PARSE_DOC expression attempts to detect the encoding. If the encoding for all
documents being crawled is known in advance, an expression could add the correct encoding to each
record before the parse expression.

Forge language support table
With the ID_LANGUAGE expression, Forge can identify the language and encoding pairs listed in the
following table.

Language/EncodingLanguage/EncodingLanguage/EncodingLanguage/Encoding

POLISH Latin2
ISO-8859-2 (Latin 2)

ITALIAN ISO-8859-1
ISO-8859-1 (Latin 1)

ESTONIAN Latin4
ISO-8859-4 (Latin 4)

ARABIC CP1256
Microsoft Code Page
1256

Endeca ConfidentialEndeca® MDEX Engine Advanced Development Guide

Using Internationalized Data | Configuring the MDEX Engine with language identifiers for source data194

Language/EncodingLanguage/EncodingLanguage/EncodingLanguage/Encoding

POLISH Latin2 Microsoft
Code Page 1250

ITALIAN UTF-8 Unicode
UTF-8

ESTONIAN Latin4
Microsoft Code Page
1257

ARABIC UTF-8 Unicode
UTF-8

POLISH UTF-8 Unicode
UTF-8

JAPANESE ASCII
JIS-Roman

ESTONIAN UTF-8
Unicode UTF-8

CATALAN ASCII ASCII

PORTUGUESE ASCII
ASCII

JAPANESE CP932
Microsoft Code Page
932

FINNISH ASCII ASCIICATALAN CP1252
Microsoft Code Page
1252

PORTUGUESE CP1252
Microsoft Code Page
1252

JAPANESE EUC-JP
EUC-JP

FINNISH CP1252
Microsoft Code Page
1252

CATALAN ISO-8859-1
ISO-8859-1 (Latin 1)

PORTUGUESE
ISO-8859-1 ISO-8859-1
(Latin 1)

JAPANESE JIS DEC
Kanji

FINNISH ISO-8859-1
ISO-8859-1 (Latin 1)

CATALAN UTF-8
Unicode UTF-8

PORTUGUESE UTF-8
Unicode UTF-8

JAPANESE JIS
ISO-2022-JP

FINNISH UTF-8 Unicode
UTF-8

CHINESE ASCII
CNS-Roman

ROMANIAN Latin2
ISO-8859-2 (Latin 2)

JAPANESE JIS JIS X
0201-1976

FRENCH ASCII ASCIICHINESE ASCII
GB-Roman

ROMANIAN Latin2
Microsoft Code Page
1250

JAPANESE JIS JIS X
0201-1997

FRENCH CP1252
Microsoft Code Page
1252

CHINESE BIG5 Big Five

ROMANIAN UTF-8
Unicode UTF-8

JAPANESE JIS JIS X
0208-1983

FRENCH ISO-8859-1
ISO-8859-1 (Latin 1)

CHINESE BIG5-CP950
Microsoft Code Page
950

RUSSIAN CP1251
Microsoft Code Page
1251

JAPANESE JIS JIS X
0208-1990

FRENCH UTF-8
Unicode UTF-8

CHINESE CNS CNS
11643-1986

RUSSIAN ISO-8859-5
ISO-8859-5

JAPANESE JIS JIS X
0212-1983

GERMAN ASCII ASCIICHINESE GB
GB2312-80

RUSSIAN KOI8R KOI
8-R

JAPANESE JIS JIS X
0212-1990

GERMAN CP1252
Microsoft Code Page
1252

CHINESE EUC-CN
EUC-CN

RUSSIAN UTF-8
Unicode UTF-8

JAPANESE SJS
Shift-JIS

GERMAN ISO-8859-1
ISO-8859-1 (Latin 1)

CHINESE EUC DEC
Hanzi Encoding

SLOVAK Latin2
ISO-8859-2 (Latin 2)

JAPANESE Unicode
Unicode UCS-2

GERMAN UTF-8
Unicode UTF-8

CHINESE Unicode
Unicode UCS-2

SLOVAK UTF-8 Unicode
UTF-8

JAPANESE Unicode
Unicode UTF-8

GREEK Greek
ISO-8859-7

CHINESE Unicode
Unicode UTF-8

SPANISH ASCII ASCIIKOREAN ASCII
KS-Roman

GREEK Greek Microsoft
Code Page 1253

CZECH Latin2
ISO-8859-2 (Latin 2)

SPANISH CP1252
Microsoft Code Page
1252

KOREAN KSC EUC-KRGREEK UTF-8 Unicode
UTF-8

CZECH Latin2 Microsoft
Code Page 1250

Endeca® MDEX Engine Advanced Development GuideEndeca Confidential

195Using Internationalized Data | Configuring the MDEX Engine with language identifiers for source data

Language/EncodingLanguage/EncodingLanguage/EncodingLanguage/Encoding

SPANISH ISO-8859-1
ISO-8859-1 (Latin 1)

KOREAN KSC KS C
5861-1992

HEBREW Hebrew
ISO-8859-8

CZECH UTF-8 Unicode
UTF-8

SPANISH UTF-8
Unicode UTF-8

KOREAN Unicode
Unicode UCS-2

HEBREW Hebrew
Microsoft Code Page
1255

DANISH ASCII ASCII

SWEDISH ASCII ASCIIKOREAN Unicode
Unicode UTF-8

HEBREW UTF-8
Unicode UTF-8

DANISH CP1252
Microsoft Code Page
1252

SWEDISH ISO-8859-1
ISO-8859-1 (Latin 1)

LATVIAN Latin4
ISO-8859-4

HUNGARIAN Latin2
ISO-8859-2 (Latin 2)

DANISH ISO-8859-1
ISO-8859-1 (Latin 1)

SWEDISH CP1252
Microsoft Code Page
1252

LATVIAN Latin4
Microsoft Code Page
1257

HUNGARIAN Latin2
Microsoft Code Page
1250

DANISH UTF-8 Unicode
UTF-8

SWEDISH UTF-8
Unicode UTF-8

LITHUANIAN Latin4
ISO-8859-4

HUNGARIAN UTF-8
Unicode UTF-8

DUTCH ASCII ASCII

THAI CP874 Microsoft
Code Page 874

LITHUANIAN Latin4
Microsoft Code Page
1257

ICELANDIC ASCII
ASCII

DUTCH CP1252
Microsoft Code Page
1252

THAI UTF-8 Unicode
UTF-8

LITHUANIAN UTF-8
Unicode UTF-8

ICELANDIC ISO-8859-1
ISO-8859-1 (Latin 1)

DUTCH ISO-8859-1
ISO-8859-1 (Latin 1)

TURKISH CP1254
Microsoft Code Page
1254

NORWEGIAN ASCII
ASCII

ICELANDIC CP1252
Microsoft Code Page
1252

DUTCH UTF-8 Unicode
UTF-8

TURKISH UTF-8
Unicode UTF-8

NORWEGIAN CP1252
Microsoft Code Page
1252

ICELANDIC UTF-8
Unicode UTF-8

ENGLISH ASCII ASCII

NORWEGIAN
ISO-8859-1 ISO-8859-1
(Latin 1)

ITALIAN ASCII ASCIIENGLISH CP1252
Microsoft Code Page
1252

NORWEGIAN UTF-8
Unicode UTF-8

ITALIAN CP1252
Microsoft Code Page
1252

ENGLISH ISO-8859-1
ISO-8859-1 (Latin 1)

Configuring language-specific spelling correction
You can enable language-specific spelling correction to prevent queries in one language from being
spell-corrected to words in a different language.

This feature works by creating separate dictionaries for each language. The dictionaries are generated
from the source data and therefore require that the source data be tagged with a language ID. You
should also use a per-query language ID, so that the MDEX Engine can select the appropriate dictionary
for a given query.

Endeca ConfidentialEndeca® MDEX Engine Advanced Development Guide

Using Internationalized Data | Configuring the MDEX Engine with language identifiers for source data196

Note: The language-specific spelling correction feature uses the Espell language engine, which
is part of the base product. The Aspell language engine only supports English, and so it is not
supported for this feature.

To enable the language-specific spelling correction feature:

1. Using a text editor to create a db_prefix.spell_config.xml file (where db_prefix is the prefix
for your instance implementation). Note that you cannot create this file in Developer Studio. Add
the following text to the file:
<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE SPELL_CONFIG SYSTEM "spell_config.dtd">
<SPELL_CONFIG>
 <SPELL_ENGINE>
 <DICT_PER_LANGUAGE>
 <ESPELL/>
 </DICT_PER_LANGUAGE>
 </SPELL_ENGINE>
</SPELL_CONFIG>

2. Place the file in the directory where the project XML files reside.
3. Run a baseline update and restart the MDEX Engine with the new configuration file.

For more information about the structure of a spell_config.xml file, see the spell_config.dtd
in the Endeca MDEX Engine conf/dtd directory.

If a spell_config.xml file exists, it overrides the use of these parameters to the Dgidx --spellmode
option:

• espell

• aspell

• aspell_OR_espell

• aspell_AND_espell

About a Chinese segmentation auxiliary dictionary
If your application makes Chinese-language queries, you can add an auxiliary Chinese segmentation
dictionary.

The Endeca Supplemental Language Pack contains the main Chinese segmentation directory that is
used by the MDEX Engine by default to tokenize Chinese queries. For information on installing the
Endeca Language Pack, see the MDEX Engine Installation Guide.

In addition to the main Chinese segmentation dictionary, you can put together an auxiliary Chinese
segmentation dictionary. In other words, if searches for Chinese terms that you know exist in your data
are not producing the expected results, you can supplement the standard Chinese segmentation
dictionary by creating your own auxiliary dictionary (also called a user dictionary).

You can create one or more auxiliary dictionaries of any size after you install the Endeca Language
Pack. The auxiliary dictionaries do not need to be sorted.

The auxiliary dictionary that you create must be a UTF-8 encoded file containing a list of character
sequences that you may need, in addition to those provided by the main dictionary.

Endeca® MDEX Engine Advanced Development GuideEndeca Confidential

197Using Internationalized Data | About a Chinese segmentation auxiliary dictionary

If you create an auxiliary Chinese segmentation dictionary, the MDEX Engine treats the words in it as
separate tokens during query parsing. For example, neologisms may be missing from the standard
dictionary. These neologisms use existing Chinese characters to represent new words for specific
domains, such as the medical, technical, and popular culture domains; you can add them to your own
auxiliary segmentation dictionary and point the MDEX Engine to refer to this dictionary when parsing
queries.

Use the following rules when creating your own auxiliary dictionary:

• An auxiliary dictionary can contain Simplified and Traditional Chinese.
• Each word in the dictionary must be on a separate line followed by a carriage return.
• The dictionary file must be UTF-8 encoded.

Creating an auxiliary dictionary
To create an auxiliary dictionary:

1. Use any text editor that supports UTF-8 characters and enables you to edit Chinese characters.
2. In the editor, create a UTF-8 encoded file in which you can list supplemental Chinese words, in

Simplified and Traditional Chinese.
3. Add words to the dictionary. The list of words should consist of character sequences that you may

need, in addition to those provided by the main dictionary. Start each word on a separate line,
followed by a carriage return.
If you add comments to the file, they must begin with a pound sign (#). You can have blank lines
in this file.

4. Save your dictionary file under the filename (such as zh_supplemental.utf8) in the
%ENDECA_MDEX_ROOT%\conf\basis directory on Windows or in
$ENDECA_MDEX_ROOT/conf/basis on UNIX.

5. Familiarized yourself with how the location of the main Chinese segmentation dictionary is configured.
The location is specified in the cla-options.xml file, which is located in the
%ENDECA_MDEX_ROOT%\conf\basis directory on Windows ($ENDECA_MDEX_ROOT/conf/basis
on UNIX). The default version of this file looks similar to the following example. Note that the
dictionarypath element specifies the path name of the main dictionary file, which is in the
data/basis/dicts directory that is created by the MDEX Engine installer.
<?xml version="1.0" encoding="utf-8" standalone="no"?>
<!DOCTYPE claconfig SYSTEM "claconfig.dtd">
<claconfig>
 <dictionarypath>
 <env name="root"/>/data/basis/dicts/zh_lex_%e.bin
 </dictionarypath>
 <posdictionarypath>
 <env name="root"/>/data/basis/dicts/zh_pos_<env name="endian"/>.bin
 </posdictionarypath>
 <readingdictionarypath>
 <env name="root"/>/data/basis/dicts/zh_reading_%e.bin
 </readingdictionarypath>
 <stopwordspath>
 <env name="root"/>/data/basis/dicts/zh_stop.utf8
 </stopwordspath>
</claconfig>

6. After you create your auxiliary dictionary, edit the cla-options.xml file and specify the path
name of the auxiliary dictionary with a dictionarypath element. For example, if the filename of your

Endeca ConfidentialEndeca® MDEX Engine Advanced Development Guide

Using Internationalized Data | About a Chinese segmentation auxiliary dictionary198

auxiliary dictionary is zh_supplemental.utf8 and it is located in the data/basis/dicts
directory, the modified file will look like this:
dd
<claconfig>
 <dictionarypath>
 <env name="root"/>/data/basis/dicts/zh_lex_%e.bin
 </dictionarypath>
 <dictionarypath>
 <env name="root"/>/data/basis/dicts/zh_supplemental.utf8
 </dictionarypath>
...
 <stopwordspath>
 <env name="root"/>/data/basis/dicts/zh_stop.utf8
 </stopwordspath>
</claconfig>

7. Save the cla-options.xml file.

After editing the cla-options.xml file, you should re-index your data (because changing the
tokenization behavior will change which words are found and indexed by Dgidx), and restart the MDEX
Engine.

Setting encoding in the front-end application
If you are including internationalized data in your Endeca application, you should be aware of these
encoding requirements.

Setting the encoding for URLs

The UrlENEQuery and UrlGen classes require that you specify a character encoding so that they
can properly decode URLs. For example, a URL containing %E5%8D%83 refers to the Chinese character
for "thousand" if using the UTF-8 encoding, but refers to three accented European letters if using the
windows-1252 encoding. For details on these classes, see the Endeca Presentation API Reference
(Javadoc) or the Endeca API Guide for .NET.

The following code snippets show how to instantiate a UrlGen object using the UTF-8 character
encoding set.

Java example:
// Create request to select refinement value
UrlGen urlg = new UrlGen(request.getQueryString(), "UTF-8");

.NET example:
// Create request to select refinement value
UrlGen urlg = new UrlGen(Request.Url.Query.Substring(1), "UTF-8");

Setting the page encoding

Your application should choose a suitable output encoding for the pages it produces. For example, a
multi-lingual European site might choose the windows-1252 encoding, while a Chinese site might
choose GB2312 or Big5. If you need to support all languages, we recommend using the UTF-8 encoding.

Endeca® MDEX Engine Advanced Development GuideEndeca Confidential

199Using Internationalized Data | Setting encoding in the front-end application

Viewing IAP logs
Log messages output by the IAP binaries are in the UTF-8 encoding.

These IAP binaries include Forge, Dgidx, and Dgraph.

Most common UNIX/Linux shells and terminal programs are not set up to display UTF-8 by default
and will therefore display some valid characters as question marks (?). If you find unexpected question
marks in the data, first validate that it is not simply a display issue. Try the od command on Linux, or
use a UTF-8 compatible display.

Endeca ConfidentialEndeca® MDEX Engine Advanced Development Guide

Using Internationalized Data | Viewing IAP logs200

Chapter 17

Coremetrics Integration

This section describes how the Endeca MDEX Engine integrates with the Coremetrics Online Analytics
software.

Working with Coremetrics
Endeca offers integration with the Coremetrics Online Analytics product through an integration module
that is packaged with the Endeca reference library.

The integration module contains the code required to capture search terms information and enable
the Coremetrics On-Site Search Intelligence report. Coremetrics integration is offered for both the JSP
and ASP.NET versions of the UI reference implementation.

All of the reference implementations assume that the code supplied by Coremetrics is located in the
/coremetrics directory at the root of your application server. If you have installed Coremetrics in
another directory, or are using a different version of Coremetrics, you will have to modify the coremetrics
include statement in the integration module. In addition, the reference implementations are set up to
point to the Coremetrics test server. In order to enable Coremetrics integration for production, you
must add a cmSetProduction() call above the cmCreatePageviewTag() call in the integration
module.

Using the integration module
The JSP and ASP .NET reference implementations have a module that contains the logic for when to
include the Coremetrics tags.

The integration code is in the following files:

• In the JSP reference, the integration code is in the coremetrics.jsp file.
• In the ASP.NET reference, the integration code is in the coremetrics.aspx file.

The reference implementation also has a commented-out include statement. Uncomment the statement
to enable the Coremetrics code.

• In the JSP reference, the include statement is in the nav.jsp file.
• In the ASP.NET reference, the include statement is in the controller.aspx file.

Appendix A

Suggested Stop Words

About stop words
Stop words are words that are set to be ignored by the Endeca MDEX Engine.

Typically, common words (like the) are included in the stop word list. In addition, the stop word list can
include the extraneous words contained in a typical question, allowing the query to focus on what the
user is really searching for.

Stop words are counted in any search mode that calculates results based on number of matching
terms. However, the Endeca MDEX Engine reduces the minimum term match and maximum word
omit requirement by the number of stop words contained in the query.

Note: Did you mean can in some cases correct a word to one on the stop words list.

Note: The --diacritic-folding flag removes accent characters from stop words and
prevents accented stop words from being returned in query results. For example, if für is a stop
word, and you specify the --diacritic-folding flag, then that flag treats the stop word as
fur. Any queries that search for fur will not return results.

List of suggested stop words
The following table provides a list of words that are commonly added to the stop word list; you may
find it useful as a point of departure when you configure a list for your application.

In addition to some or all of the words listed below, you might want to add terms that are prevalent in
your data set. For example, if your data consists of lists of books, you might want to add the word book
itself to the stop word list, since a search on that word would return an impracticably large set of records.

whenmedoa

wherenotfindabout

whyorforabove

withoverfroman

youshowhaveand

yourthehowany

underIare

whatiscan

Endeca ConfidentialEndeca® MDEX Engine Advanced Development Guide

Suggested Stop Words | List of suggested stop words204

Appendix B

Dgidx Character Mapping

This section lists the character mappings performed by Dgidx.

Diacritical Character to ASCII Character Mapping
The --diacritic-folding flag on Dgidx maps accented characters to their simple ASCII equivalent
as listed in the table below (characters not listed are not affected by the --diacritic-folding
option).

Note that capital characters are mapped to lower case equivalents because Endeca search indexing
is always case-folded.

DescriptionASCII map
character

ISO Latin 1
character

ISO Latin1 decimal
code

Capital A, grave accentaÀ192

Capital A, acute accentaÁ193

Capital A, circumflex accentaÂ194

Capital A, tildeaÃ195

Capital A, dieresis or umlaut markaÄ196

Capital A, ringaÅ197

Capital AE diphthongaÆ198

Capital C, cedillacÇ199

Capital E, grave accenteÈ200

Capital E, acute accenteÉ201

Capital E, circumflex accenteÊ202

Capital E, dieresis or umlaut markeË203

Capital I, grave accentiÌ204

Capital I, acute accentiÍ205

Capital I, circumflex accentiÎ206

Capital I, dieresis or umlaut markiÏ207

DescriptionASCII map
character

ISO Latin 1
character

ISO Latin1 decimal
code

Capital Eth, IcelandiceÐ208

Capital N, tildenÑ209

Capital O, grave accentoÒ210

Capital O, acute accentoÓ211

Capital O, circumflex accentoÔ212

Capital O, tildeoÕ213

Capital O, dieresis or umlaut markoÖ214

Capital O, slashoØ216

Capital U, grave accentuÙ217

Capital U, acute accentuÚ218

Capital U, circumflex accentuÛ219

Capital U, dieresis or umlaut markuÜ220

Capital Y, acute accentyÝ221

Capital thorn, IcelandicpÞ222

Small sharp s, Germansß223

Small a, grave accentaà224

Small a, acute accentaá225

Small a, circumflex accentaâ226

Small a, tildeaã227

Small a, dieresis or umlaut markaä228

Small a, ringaå229

Small ae diphthongaæ230

Small c, cedillacç231

Small e, grave accenteè232

Small e, acute accenteé233

Small e, circumflex accenteê234

Small e, dieresis or umlaut markeë235

Small i, grave accentiì236

Small i, acute accentií237

Small i, circumflex accentiî238

Small i, dieresis or umlaut markiï239

Small eth, Icelandiceð240

Small n, tildenñ241

Endeca ConfidentialEndeca® MDEX Engine Advanced Development Guide

Dgidx Character Mapping | Diacritical Character to ASCII Character Mapping206

DescriptionASCII map
character

ISO Latin 1
character

ISO Latin1 decimal
code

Small o, grave accentoò242

Small o, acute accentoó243

Small o, circumflex accentoô244

Small o, tildeoõ245

Small o, dieresis or umlaut markoö246

Small o, slashoø248

Small u, grave accentuù249

Small u, acute accentuú250

Small u, circumflex accentuû251

Small u, dieresis or umlaut markuü252

Small y, acute accentyý253

Small thorn, Icelandicpþ254

Small y, dieresis or umlaut markyÿ255

DescriptionASCII map
character

ISO Latin 1
Extended A
character

ISO Latin1
Extended A
decimal code

Capital A, macron accentaĀ256

Small a, macron accentaā257

Capital A, breve accentaĂ258

Small a, breve accentaă259

Capital A, ogonek accentaĄ260

Small a, ogonek accentaą261

Capital C, acute accentcĆ262

Small c, acute accentcć263

Capital C, circumflex accentcĈ264

Small c, circumflex accentcĉ265

Capital C, dot accentcĊ266

Small c, dot accentcċ267

Capital C, caron accentcČ268

Small c, caron accentcč269

Capital D, caron accentdĎ270

Small d, caron accentdď271

Capital D, with stroke accentdĐ272

Endeca® MDEX Engine Advanced Development GuideEndeca Confidential

207Dgidx Character Mapping | Diacritical Character to ASCII Character Mapping

DescriptionASCII map
character

ISO Latin 1
Extended A
character

ISO Latin1
Extended A
decimal code

Small d, with stroke accentdđ273

Capital E, macron accenteĒ274

Small e, macron accenteē275

Capital E, breve accenteĔ276

Small e, breve accenteĕ277

Capital E, dot accenteĖ278

Small e, dot accenteė279

Capital E, ogonek accenteĘ280

Small e, ogonek accenteę281

Capital E, caron accenteĚ282

Small e, caron accenteě283

Capital G, circumflex accentgĜ284

Small g, circumflex accentgĝ285

Capital G, breve accentgĞ286

Small g, breve accentgğ287

Capital G, dot accentgĠ288

Small g, dot accentgġ289

Capital G, cedilla accentgĢ290

Small g, cedilla accentgģ291

Capital H, circumflex accenthĤ292

Small h, circumflex accenthĥ293

Capital H, with stroke accenthĦ294

Small h, with stroke accenthħ295

Capital I, tilde accentiĨ296

Small I, tilde accentiĩ297

Capital I, macron accentiĪ298

Small i, macron accentiī299

Capital I, breve accentiĬ300

Small i, breve accentiĭ301

Capital I, ogonek accentiĮ302

Small i, ogonek accentiį303

Capital I, dot accentiİ304

Endeca ConfidentialEndeca® MDEX Engine Advanced Development Guide

Dgidx Character Mapping | Diacritical Character to ASCII Character Mapping208

DescriptionASCII map
character

ISO Latin 1
Extended A
character

ISO Latin1
Extended A
decimal code

Small dotless iiı305

Capital ligature IJiĲ306

Small ligature IJiĳ307

Capital J, circumflex accentjĴ308

Small j, circumflex accentjĵ309

Capital K, cedilla accentkĶ310

Small k, cedilla accentkķ311

Small Krakĸ312

Capital L, acute accentlĹ313

Small l, acute accentlĺ314

Capital L, cedilla accentlĻ315

Small l, cedilla accentlļ316

Capital L, caron accentlĽ317

Small L, caron accentlľ318

Capital L, middle dot accentlĿ319

Small l, middle dot accentlŀ320

Capital L, with stroke accentlŁ321

Small l, with stroke accentlł322

Capital N, acute accentnŃ323

Small n, acute accentnń324

Capital N, cedilla accentnŅ325

Small n, cedilla accentnņ326

Capital N, caron accentnŇ327

Small n, caron accentnň328

Small N, preceded by apostrophenŉ329

Capital EngnŊ330

Small Engnŋ331

Capital O, macron accentoŌ332

Small o, macron accentoō333

Capital O, breve accentoŎ334

Small o, breve accentoŏ335

Capital O, with double acute accentoŐ336

Endeca® MDEX Engine Advanced Development GuideEndeca Confidential

209Dgidx Character Mapping | Diacritical Character to ASCII Character Mapping

DescriptionASCII map
character

ISO Latin 1
Extended A
character

ISO Latin1
Extended A
decimal code

Small O, with double acute accentoő337

Capital Ligature OEoŒ338

Small Ligature OEoœ339

Capital R, acute accentrŔ340

Small R, acute accentrŕ341

Capital R, cedilla accentrŖ342

Small r, cedilla accentrŗ343

Capital R, caron accentrŘ344

Small r, caron accentrř345

Capital S, acute accentsŚ346

Small s, acute accentsś347

Capital S, circumflex accentsŜ348

Small s, circumflex accentsŝ349

Capital S, cedilla accentsŞ350

Small s, cedilla accentsş351

Capital S, caron accentsŠ352

Small s, caron accentsš353

Capital T, cedilla accenttŢ354

Small t, cedilla accenttţ355

Capital T, caron accenttŤ356

Small t, caron accenttť357

Capital T, with stroke accenttŦ358

Small t, with stroke accenttŧ359

Capital U, tilde accentuŨ360

Small u, tilde accentuũ361

Capital U, macron accentuŪ362

Small u, macron accentuū363

Capital U, breve accentuŬ364

Small u, breve accentuŭ365

Capital U with ring aboveuŮ366

Small u with ring aboveuů367

Capital U, double acute accentuŰ368

Endeca ConfidentialEndeca® MDEX Engine Advanced Development Guide

Dgidx Character Mapping | Diacritical Character to ASCII Character Mapping210

DescriptionASCII map
character

ISO Latin 1
Extended A
character

ISO Latin1
Extended A
decimal code

Small u, double acute accentuű369

Capital U, ogonek accentuŲ370

Small u, ogonek accentuų371

Capital W, circumflex accentwŴ372

Small w, circumflex accentwŵ373

Capital Y, circumflex accentyŶ374

Small y, circumflex accentyŷ375

Capital Y, diaeresis accentyŸ376

Capital Z, acute accentzŹ377

Small z, acute accentzź378

Capital Z, dot accentzŻ379

Small Z, dot accentzż380

Capital Z, caron accentzŽ381

Small z, caron accentzž382

Small long ssſ383

Endeca® MDEX Engine Advanced Development GuideEndeca Confidential

211Dgidx Character Mapping | Diacritical Character to ASCII Character Mapping

Index

A
adding

custom properties to a rule 161
static records in rule results 161
static records to business rule results 161

Agraph
using with business rules 172
feature limitations 186
introduced 181
mirroring 185
performance impact 187
provisioning 184
query processing 182
running with EAC 185
use of partitions 181

Ar (Aggregated Record Filter) parameter 49
Aspell dictionary

about 62
compiling with dgwordlist 78
compiling with EAC 79
modifying 66
updateaspell admin operation 66

aspell_AND_espell and Did You Mean interaction 76
Automatic Phrasing

about 93
API methods 97
extracting phrases from dimensions 96
importing phrases 95
troubleshooting 101
URL query parameters 97
use with Spelling Correction and DYM 94
using punctuation 97

B
basic filtering capabilities of EQL 17
Boolean syntax for record filters 45
bulk export of records

configuration 53
introduced 53
objects and method calls 54
performance impact 56
URL query parameters 53

business rules
about triggers 158
adding code to render results 171
adding custom properties to 161
and relevance ranking 173
and the Agraph 172
building supporting constructs for 155
controlling triggers and targets 163
creating 158

business rules (continued)
filtering 171
global triggers 159
incremental adoption 155
interaction between rules and rule groups 158
keyword redirects 165
multiple triggers 159
order of featured records 161
overloading the Supplement object 173
performance impact of 172
presenting results in your Web application 165
previewing time triggers 160
prioritizing 162
properties in a Supplement object 168
record limits 162
rule filter syntax 171
rule groups 157
rules without explicit triggers 172
self-pivot 163
sorting 162
specifying which records to promote 161
styles 156
Supplement object 167
synchronizing time zones 160
the Maximum Record setting 156
time triggers 160
uniqueness constraints 162
using property templates 156
using styles to control number of promoted records
156
using styles to indicate display 157

C
caching for record filters 49
changing

self-pivot from the command line 164
self-pivot when running as a Windows service 164

Chinese auxiliary dictionary
about 197
creating 198

collation, language 191
content spotlighting, about 149
Coremetrics integration 201
creating styles for business rules 156

D
Dgidx

Diacritical character to ASCII character mapping 205
DGraph.WhyPrecedenceRuleFired property 143
DGraph.WhyRank property 131, 139
dgwordlist utility for Aspell dictionary 78

Diacritical character to ASCII character mapping, Dgidx
205
dictionaries created by Dgidx 64
Did You Mean feature, See Spelling Correction and DYM
dimension search results from spelling corrections 75
dimension values used with rule triggers and targets 163
disabling

spelling correction, per query 62
Dr (Dimension Record Filter) parameter 50
dynamic business rules

compared to content management publishing 150
constructs 150
query rules and results 151
single-rule example 151
using 149

E
Endeca Analytics and EQL 39
Endeca Application Controller

compiling Aspell dictionary 79
running an Agraph 185

Endeca Query Language
about 17
and dimension value IDs 28
and dimension value paths 27
and range filter queries 32
and record search queries 29
and RRN queries 22
basic filtering capabilities 17
basic range filter syntax 32
creating the pipeline 42
dimension search queries 34
dimension value queries 26
Endeca Analytics interaction 39
geospatial range filter syntax 34
implementing the per-query statistics log 40
interaction with other features 35
making requests 21
N parameter interaction 36
NCName format with 20
Ne exposed refinements interaction 38
Nf range filter interactions 37
Nr record filter interactions 37
Nrk relevance ranking interaction 38
Ns sorting interaction 38
Ntk and Ntt record search interaction 37
per-query statistics log 40
pipeline dimensions and properties 42
pipeline Switch joins 43
property value queries 22
range filter query examples 33
record search query examples 31
RRN module 18
running the pipeline 44
setting the logging threshold 42
supported property types for range filters 32
syntax 19
URL query parameters for 20

Endeca Query Language (continued)
spelling correction and DYM interaction 39

ERecEnumerator class 56
Espell module 62
expression evaluation of record filters 51
extracting

rule results from a Supplement object 169
rules and keyword redirect results 166

F
filtering business rules 171
Forge encoding for internationalized data 190

I
incremental adoption of business rules 155
internationalized data

about 189
creating a Chinese auxiliary dictionary 197
Forge encoding 190
language identification 191
language-specific spelling corrections 196
page encoding 199
per-query language ID 193
performance impact 194
Supplemental Language Pack 189
URL encoding 199

K
key-based record sets

about 13
URL query parameters 14

keyword redirects 165
presenting results 165

L
language IDs

per-dimension 193
per-property 193
per-query language ID 193

large OR filter performance impact 51

M
MDEX Engine

distribution across multiple processors 181
language identification 191
spelling correction flags 67

memory costs of record filters 51
merchandising, about 149

N
N parameter interaction with EQL 36
NCName format and EQL 20

Endeca® MDEX Engine214

Index

Ne exposed refinements interaction with EQL 38
Nf range filter interactions with EQL 37
Nr (Record Filter) parameter 49
Nr record filter interactions with EQL 37
Nrk relevance ranking interaction with EQL 38
Ns sorting interaction with EQL 38
Ntk and Ntt record search interaction with EQL 37

O
one-way thesaurus entries 87
order of featured business rule records 161

P
per-dimension language ID 193
per-property language ID 193
per-query language ID 193
per-query statistics log for EQL 40
performance impact of business rules 172
pipeline for EQL, creating 42
prioritizing

business rule groups 158
business rules 162

promoting business rules with property templates 156
promoting records

building business rules 155
constructs behind 150
ensuring records are always produced 156
example with three rules 153
examples 151
incremental adoption of business rules 155
keyword redirects 165
query rules and results 151
rule groups 157
single-rule example 151
suggested workflow 154
Supplement object 167
targets 161
time triggers 160
URL query parameters for 166
using styles to indicate display 157
using styles to limit the number of promoted records
156

property templates for business rules 156
property value queries for EQL 22

Q
query expansion, configuring 109
query processing

Agraph 182

R
record filters

about 45
caching in MDEX Engine 49

record filters (continued)
data configuration 49
enabling properties for use 48
expression evaluation 51
large scale negation 52
memory cost 51
performance impact 50
query syntax 46
syntax 46
URL query parameters 49

record limits for business rules 162
Record Relationship Navigation filters 24
Record Relationship Navigation module 18
Record Relationship Navigation queries 22

examples 24
syntax for 23

relevance ranking
resolving tied scores 116

Relevance Ranking
and business rules 173
about 103
Exact module 104
Field module 104
First module 105
Frequency module 105
Glom module 106
Interpreted module 106
list of modules 104
Maximum Field module 107
Number of Fields module 107
Number of Terms module 108
performance impact 127
Phrase module 108
Proximity module 112
recommended strategies 125
sample scenarios 122
Spell module 112
Static module 113
Stem module 113
Stratify module 113
Thesaurus module 114
URL query parameters 120
Weighted Frequency module 114

requests, making EQL 21
rule filters

URL query parameters for 172
syntax for business rules 171

rule groups
for business rules 157
interaction with rules 158
prioritizing 158

rule triggers 158
global 159
multiple 159
previewing time 160
time 160

rules
adding custom properties to 161
adding static records to results 161
creating 158

215

Index

rules (continued)
presenting results 165
specifying which records to promote 161
synchronizing time zones 160

S
Select feature for record sets 13
self-pivot

changing as a Windows service 164
changing from the command line 164
in business rules 163

sorting business rules 162
spelling correction

disabling per query 62
Spelling Correction and DYM

about 61
API methods 69
Aspell and Espell modules 62
compiling Aspell dictionary manually 78
compiling Aspell dictionary with EAC 79
configuring in Developer Studio 65
Dgidx flags 67
Dgraph flags 67
language-specific corrections 196
modifying Aspell dictionary 66
performance impact 77
supported spelling modes 62
troubleshooting 75
URL query parameters 68
use with Automatic Phrasing 94
using word-break analysis 79
with EQL 39

stemming and thesaurus
about 81
about the thesaurus 87
adding thesaurus entries 88
enabling stemming 82
interaction with other features 90
performance impact 92
sort order of stemmed results 82
troubleshooting the thesaurus 89

stop words
about 203
list of suggested 203
and Did You Mean 76

styles
for business rules 156
the Maximum Record setting 156
using to control number of promoted records 156
using to indicate display 157

suggested workflow for promoting records 154
Supplement object 167

extracting rule results from 169
overloading 173
properties for a business rule 168

synchronizing business rule time zones 160
syntax

for EQL 19

syntax (continued)
record filters 46

T
targets

about 161
controlling 163

thesaurus, See stemming and thesaurus
triggers

about 158
controlling 163
global 159
multiple 159
previewing time 160
rules without explicit 172
time 160
URL query parameters for testing 166

two-way thesaurus entries 88

U
Unicode Standard in Endeca applications 189
uniqueness constraints for business rules 162
URL encoding for internationalized data 199
URL query parameters

for business rule filters 172
for EQL 20
for promoting records 166
for testing time triggers 166
Automatic Phrasing 97
bulk export of records 53
key-based record sets 14
record filters 49
relevance ranking 120

user profiles
about 175
API objects and calls 177
Developer Studio configuration 175
performance impact 177
scenario 175

W
Web application

adding code for keyword redirect results 166
adding code to extract business rules 166
adding code to render business rule results 171

Web page encoding for internationalized data 199
Why Match

about 131
URL query parameters 131

Why Precedence Rule Fired
about 143
format of Dgraph property 143
URL query parameters 143

Why Rank
about 139
format of Dgraph property 131, 139

Endeca® MDEX Engine216

Index

Why Rank (continued)
URL query parameters 139

Word Interpretation
about 135
API methods 135
implementing 135
troubleshooting 137

word-break analysis
about 79
configuration flags 80
disabling 80
performance impact 80

217

Index

	Contents
	Preface
	About this guide
	Who should use this guide
	Conventions used in this guide
	Contacting Endeca Customer Support

	Advanced Record Features
	Controlling Record Values with the Select Feature
	About the Select feature
	Configuring the Select feature
	URL query parameters for Select
	Selecting keys in the application
	Java selection method
	.NET selection property

	Using the Endeca Query Language
	About the Endeca Query Language
	Basic filtering capabilities
	Record Relationship Navigation module

	Endeca Query Language syntax
	Negation operators
	NCName format for properties and dimensions
	URL query parameters for the Endeca Query Language

	Making Endeca Query Language requests
	Property value queries

	Record Relationship Navigation queries
	Record Relationship Navigation query syntax
	Record Relationship Navigation query examples
	RRN relationship filter examples

	Dimension value queries
	Querying with dimension value paths
	Query examples using dimension value paths
	Querying with dimension value IDs

	Record search queries
	Record search query examples

	Range filter queries
	Supported property types for range filters
	Basic range filter syntax
	Range filter query examples
	Geospatial range filter syntax

	Dimension search queries
	Endeca Query Language interaction with other features
	N parameter interaction
	Nr record filter interactions
	Nf range filter interactions
	Ntk and Ntt record search interaction
	Ns sorting interaction
	Nrk relevance ranking interaction
	Ne exposed refinements interaction
	Spelling auto-correction and Did You Mean interaction
	Endeca Analytics interaction

	Endeca Query Language per-query statistics log
	Implementing the per-query statistics log
	Setting the logging threshold for queries

	Creating an Endeca Query Language pipeline
	Creating the dimensions and properties
	Configuring the pipeline for Switch joins
	Running the Endeca Query Language pipeline

	Record Filters
	About record filters
	Record filter syntax
	Query-level syntax
	XML syntax for file-based record filter expressions

	Enabling properties for use in record filters
	Data configuration for file-based filters
	Record filter result caching
	URL query parameters for record filters
	Record filter performance impact
	Interaction with spelling auto-correction and spelling DYM
	Memory cost
	Expression evaluation

	Bulk Export of Records
	About the bulk export feature
	Configuring the bulk export feature
	Using URL query parameters for bulk export
	Setting the number of bulk records to return
	Retrieving the bulk-format records
	Using Java Bulk Export methods
	Using .NET bulk export methods

	Performance impact for bulk export records

	Advanced Search Features
	Implementing Spelling Correction and Did You Mean
	About Spelling Correction and Did You Mean
	Spelling modes
	Disabling spelling correction on individual queries
	Spelling dictionaries created by Dgidx
	Configuring spelling in Developer Studio
	Modifying the dictionary file
	About the admin?op=updateaspell operation
	Enabling language-specific spelling correction
	Dgidx flags for Spelling Correction
	Dgraph flags for enabling Spelling Correction and DYM
	URL query parameters for Spelling Correction and DYM
	Spelling Correction and DYM API methods
	Dgraph tuning flags for Spelling Correction and Did You Mean
	How dimension search treats number of results
	Troubleshooting Spelling Correction and Did You Mean
	Performance impact for Spelling Correction and Did You Mean
	About compiling the Aspell dictionary
	Compiling the dictionary manually
	Compiling the dictionary with EAC

	About word-break analysis
	Disabling word-break analysis
	Word-break analysis configuration parameters
	Performance impact of word-break analysis

	Using Stemming and Thesaurus
	Overview of Stemming and Thesaurus
	About the Stemming feature
	Types of stemming matches and sort order
	Differences in language support
	Enabling default stemming
	Supplementing the default stemming dictionaries
	Adding a custom stemming dictionary
	Replacing a default stemming dictionary with a custom stemming dictionary

	About the Thesaurus feature
	Adding thesaurus entries
	Troubleshooting the thesaurus

	Dgidx and Dgraph flags for the Thesaurus
	Interactions with other search features
	Performance impact of Stemming and Thesaurus

	Using Automatic Phrasing
	About Automatic Phrasing
	Using Automatic Phrasing with Spelling Correction and DYM
	Adding phrases to a project
	Importing phrases from an XML file
	Extracting phrases from dimension names
	Adding search characters

	Presentation API development for Automatic Phrasing
	URL query parameters for Automatic Phrasing
	Displaying spell-corrected and auto-phrased messages
	Displaying DYM alternatives

	Tips and troubleshooting for Automatic Phrasing

	Relevance Ranking
	About the Relevance Ranking feature
	Relevance Ranking modules
	Exact
	Field
	First
	Frequency
	Glom
	Interpreted
	Maximum Field
	Number of Fields
	Number of Terms
	Phrase
	Configuring the Phrase module
	Ranking based on length of subphrases
	Using approximate matching
	Applying spelling correction, thesaurus, and stemming
	Summary of Phrase option interactions

	Effect of search modes on Phrase behavior
	Results with multiple matches
	Stop words and Phrase behavior
	Cross-field matches and Phrase behavior
	Treatment of wildcards with the Phrase module
	Notes about the Phrase module

	Proximity
	Spell
	Static
	Stratify
	Stem
	Thesaurus
	Weighted Frequency

	Relevance Ranking strategies
	Implementing relevance ranking
	Adding a Static module
	Ranking order for Field and Maximum Field modules
	Cross-field matching for the Field module
	How relevance ranking score ties between search interfaces are resolved
	Implementing relevance ranking strategies for dimension search
	Flag impact of using Relevance Ranking with an Agraph
	Retrieving the relevance ranking for records

	Controlling relevance ranking at the query level
	URL query parameters for relevance ranking
	Using the Dk, Dx, and Ntx parameters
	Using the Nrk, Nrt, Nrr, and Nrm parameters

	Using relevance ranking methods

	Relevance Ranking sample scenarios
	Example 1: Using a small data set
	Example 2: UI reference implementation

	Recommended strategies
	Recommended strategy for retail catalog data
	Recommended strategy for document repositories

	Performance impact of Relevance Ranking
	Making module substitutions
	Ordering modules sensibly

	Understanding and Debugging Query Results
	Using Why Match
	About the Why Match feature
	Enabling Why Match
	Why Match API
	Why Match property format
	Why Match performance impact

	Using Word Interpretation
	About the Word Interpretation feature
	Implementing Word Interpretation
	Word Interpretation API methods
	Troubleshooting Word Interpretation

	Using Why Rank
	About the Why Rank feature
	Enabling Why Rank
	Why Rank API
	Why Rank property format
	Result information for relevance ranking modules
	Why Rank performance impact

	Using Why Precedence Rule Fired
	About the Why Precedence Rule Fired feature
	Enabling Why Precedence Rule Fired
	Why Precedence Rule Fired API
	Why Precedence Rule Fired property format
	Performance impact of Why Precedence Rule Fired

	Content Spotlighting and Merchandizing
	Promoting Records with Dynamic Business Rules
	
	Using dynamic business rules to promote records
	Comparing dynamic business rules to content management publishing
	Dynamic business rule constructs
	Query rules and results
	Two examples of promoting records
	An example with one rule promoting records
	An example with three rules

	Suggested workflow for using Endeca tools to promote records
	Incremental implementation of business rules

	Building the supporting constructs for a business rule
	Ensuring promoted records are always produced
	Creating styles for dynamic business rules
	Using styles to control the number of promoted records
	Performance and the maximum records setting
	Ensuring consistent property usage with property templates
	Using styles to indicate how to display promoted records

	Grouping rules
	Prioritizing rule groups
	Interaction between rules and rule groups

	Creating rules
	Specifying when to promote records
	Multiple triggers
	Global triggers
	Specifying a time trigger to promote records
	Previewing the results of a time trigger
	Synchronizing time zone settings
	Specifying which records to promote
	Adding custom properties to a rule
	Adding static records in rule results
	Order of featured records
	No uniqueness constraints
	No maximum record limits
	Sorting rules in the Rules view
	Prioritizing rules

	Controlling rules when triggers and targets share dimension values
	Changing the default self-pivot setting when running the Endeca HTTP service from the command line
	Changing the default self-pivot setting when running the Endeca Tools Service as a Windows service

	Working with keyword redirects
	Presenting rule and keyword redirect results in a Web application
	MDEX Engine URL query parameters for promoting records and testing time triggers
	Adding Web application code to extract rule and keyword redirect results
	Composition of the Supplement object
	Properties in a business rule's Supplement object
	Extracting rule results from Supplement objects
	Adding Web application code to render rule results

	Filtering dynamic business rules
	Rule filter syntax
	MDEX URL query parameters for rule filters

	Performance impact of dynamic business rules
	Rules without explicit triggers

	Using an Agraph and dynamic business rules
	Applying relevance ranking to rule results
	About overloading Supplement objects

	Implementing User Profiles
	About user profiles
	Profile-based trigger scenario
	User profile query parameters
	API objects and method calls
	Performance impact of user profiles

	Other Features
	Using the Aggregated MDEX Engine
	About the Aggregated MDEX Engine
	Overview of distributed query processing
	Agraph query processing
	Information Transformation Layer processing

	Guidance about when to use an Agraph
	Agraph implementation steps
	Modifying the project for Agraph partitions
	Provisioning an Agraph implementation
	Running an Agraph implementation
	Agraph Presentation API development

	Agraph limitations
	Agraph performance impact

	Using Internationalized Data
	Using internationalized data with your Endeca application
	Installation of the Supplemental Language Pack

	Configuring Forge to identify languages
	Specifying the encoding of source data

	Configuring Dgidx to process internationalized data
	Mapping accented characters to unaccented characters

	Configuring the MDEX Engine with language identifiers for source data
	About language identifiers
	About language collations
	Specifying a global language ID and collation order
	Specifying a per-record language ID
	Specifying a per-dimension/property language ID
	Specifying a per-query language ID
	Performance issues to consider when running ID_LANGUAGE
	Forge language support table

	Configuring language-specific spelling correction

	About a Chinese segmentation auxiliary dictionary
	Creating an auxiliary dictionary

	Setting encoding in the front-end application
	Viewing IAP logs

	Coremetrics Integration
	Working with Coremetrics
	Using the integration module

	Suggested Stop Words
	About stop words
	List of suggested stop words

	Dgidx Character Mapping
	Diacritical Character to ASCII Character Mapping

	Index

