
Endeca® Content Assembler API
Developer's Guide for Java

Version 2.1.1 • December 2011

Contents

Preface...7
About this guide..7
Who should use this guide..7
Conventions used in this guide...8
Contacting Endeca Customer Support...8

Chapter 1: Introduction to the Content Assembler API..........................9
Overview of the Content Assembler API...9

API class model overview..10
Overview of the Content Assembler reference application...11

About handling dynamic content...12
The reference application model for dynamic content...12
List of reference application cartridges..13
Connecting to a different MDEX Engine..14
About skinning the reference application...15

Chapter 2: Working with the Content Assembler API...........................17
Writing applications with the Content Assembler API...17

Importing API packages..17
Creating a ContentManager..17
Executing a content query and retrieving the results...18
About implementing custom trigger conditions..19

Building cartridges to render template-based content..21
About working with content items..21
Rendering section content...22
About rendering customized navigation refinements...24
About rendering customized results lists...24
About customized results...25
About rendering record lists...26
Generating see-all links...26
Using dynamic includes to render page content..27

Chapter 3: Extending the Content Assembler with Tag Handlers........29
About tag handlers in the Content Assembler..29
Scenarios for extending Page Builder and the Content Assembler..30
Life cycle of a Content Assembler query..31
Class overview..32
Implementing the tag handler interface...33

Resources managed by the ContentContext object..33
About invoking other tag handlers...34

Integrating a tag handler into the Content Assembler...35
About working with handler maps..36
Standard tag handlers in the Content Assembler..37

About the sample tag handler...37
Installing the sample tag handler...38

About extending the Content Assembler to validate custom XML..39

iii

Copyright and disclaimer

Product specifications are subject to change without notice and do not represent a commitment on
the part of Endeca Technologies, Inc. The software described in this document is furnished under a
license agreement.The software may not be reverse engineered, decompiled, or otherwise manipulated
for purposes of obtaining the source code. The software may be used or copied only in accordance
with the terms of the license agreement. It is against the law to copy the software on any medium
except as specifically allowed in the license agreement.

No part of this document may be reproduced or transmitted in any form or by any means, electronic
or mechanical, including photocopying and recording, for any purpose without the express written
permission of Endeca Technologies, Inc.

Copyright © 2003-2011 Endeca Technologies, Inc. All rights reserved. Printed in USA.

Portions of this document and the software are subject to third-party rights, including:

Corda PopChart® and Corda Builder™ Copyright © 1996-2005 Corda Technologies, Inc.

Outside In® Search Export Copyright © 2011 Oracle. All rights reserved.

Rosette® Linguistics Platform Copyright © 2000-2011 Basis Technology Corp. All rights reserved.

Teragram Language Identification Software Copyright © 1997-2005 Teragram Corporation. All rights
reserved.

Trademarks

Endeca, the Endeca logo, Guided Navigation, MDEX Engine, Find/Analyze/Understand, Guided
Summarization, Every Day Discovery, Find Analyze and Understand Information in Ways Never Before
Possible, Endeca Latitude, Endeca InFront, Endeca Profind, Endeca Navigation Engine, Don't Stop
at Search, and other Endeca product names referenced herein are registered trademarks or trademarks
of Endeca Technologies, Inc. in the United States and other jurisdictions. All other product names,
company names, marks, logos, and symbols are trademarks of their respective owners.

The software may be covered by one or more of the following patents: US Patent 7035864, US Patent
7062483, US Patent 7325201, US Patent 7428528, US Patent 7567957, US Patent 7617184, US
Patent 7856454, US Patent 7912823, US Patent 8005643, US Patent 8019752, US Patent 8024327,
US Patent 8051073, US Patent 8051084, Australian Standard Patent 2001268095, Republic of Korea
Patent 0797232, Chinese Patent for Invention CN10461159C, Hong Kong Patent HK1072114, European
Patent EP1459206, European Patent EP1502205B1, and other patents pending.

v

Preface

Endeca® InFront enables businesses to deliver targeted experiences for any customer, every time, in
any channel. Utilizing all underlying product data and content, businesses are able to influence customer
behavior regardless of where or how customers choose to engage — online, in-store, or on-the-go.
And with integrated analytics and agile business-user tools, InFront solutions help businesses adapt
to changing market needs, influence customer behavior across channels, and dynamically manage a
relevant and targeted experience for every customer, every time.

InFront Workbench with Experience Manager provides a single, flexible platform to create, deliver,
and manage content-rich, multichannel customer experiences. Experience Manager allows non-technical
users to control how, where, when, and what type of content is presented in response to any search,
category selection, or facet refinement.

At the core of InFront is the Endeca MDEX Engine,™ a hybrid search-analytical database specifically
designed for high-performance exploration and discovery. InFront Integrator provides a set of extensible
mechanisms to bring both structured data and unstructured content into the MDEX Engine from a
variety of source systems. InFront Assembler dynamically assembles content from any resource and
seamlessly combines it with results from the MDEX Engine.

These components — along with additional modules for SEO, Social, and Mobile channel support —
make up the core of Endeca InFront, a customer experience management platform focused on delivering
the most relevant, targeted, and optimized experience for every customer, at every step, across all
customer touch points.

About this guide
This guide describes the major tasks involved in developing an Endeca application using the Content
Assembler API for Java.

This guide assumes that you have read the Endeca Commerce Suite Getting Started Guide or Endeca
Publishing Suite Getting Started Guide and that you are familiar with Endeca’s terminology and basic
concepts.

This guide covers only the features of the Content Assembler API for Java, and is not a replacement
for the available material documenting other Endeca products and features. For a list of recommended
reading, please refer to the section "Who should use this guide."

Who should use this guide
This guide is intended for developers who are building Endeca applications using the Content Assembler
API for Java.

If you are a new user of the Endeca Commerce Suite or Endeca Publishing Suite and you are not
familiar with developing Endeca applications, Endeca recommends reading the following guides prior
to this one:

1. Endeca Commerce Suite Getting Started Guide or Endeca Publishing Suite Getting Started Guide
2. Endeca Basic Development Guide

3. Endeca Advanced Development Guide
4. Page Builder Developer's Guide

If you are an existing user of the Endeca Commerce Suite or Endeca Publishing Suite and you are
familiar with developing Endeca applications, Endeca recommends reading the following guides prior
to this one:

1. Endeca Commerce Suite Getting Started Guide or Endeca Publishing Suite Getting Started Guide
2. Page Builder Developer's Guide

Remember: All documentation is available on the Endeca Developer Network (EDeN) at
http://eden.endeca.com.

Conventions used in this guide
This guide uses the following typographical conventions:

Code examples, inline references to code elements, file names, and user input are set in monospace
font. In the case of long lines of code, or when inline monospace text occurs at the end of a line, the
following symbol is used to show that the content continues on to the next line: ¬

When copying and pasting such examples, ensure that any occurrences of the symbol and the
corresponding line break are deleted and any remaining space is closed up.

Contacting Endeca Customer Support
The Endeca Support Center provides registered users with important information regarding Endeca
software, implementation questions, product and solution help, training and professional services
consultation as well as overall news and updates from Endeca.

You can contact Endeca Standard Customer Support through the Support section of the Endeca
Developer Network (EDeN) at http://eden.endeca.com.

Endeca ConfidentialEndeca® Content Assembler API Developer's Guide for Java

| Preface8

http://eden.endeca.com
http://eden.endeca.com

Chapter 1

Introduction to the Content Assembler API

This section provides an overview of the Content Assembler API for Java and the associated reference
application.

Overview of the Content Assembler API
The Content Assembler API for Java is used in conjunction with the Presentation API for Java and
other Endeca APIs to build configurable Web applications.

The Content Assembler API is designed primarily for search and navigation queries and returns
dynamic content if any dynamic pages are triggered by those queries. The Content Assembler API
uses the Presentation API for Java to query the MDEX Engine and provides convenient methods for
accessing the content tree that is returned as part of the query results. This content tree reflects the
page configuration created by a content administrator in the Page Builder.The tree may contain results
from additional queries executed by the Content Assembler that are used to populate page sections
based on the configuration returned for the initial query.

Because the Content Assembler uses the ENEQuery and ENEConnection objects from the
Presentation API, all queries to the MDEX Engine can be sent through the Content Assembler API. It
is also possible to access the ENEQueryResults object through the Content Assembler API and use
the Presentation API methods to process query results. Note that only search or navigation queries

that trigger a dynamic page return a content tree. All other types of queries, including record queries
or dimension search queries, return a null content tree.

In addition, an Endeca application built with the Content Assembler API can also use the URL
Optimization API, available as part of the optional Search Engine Optimization Module. The URL
Optimization API also works with the Presentation API to enable developers to create application links
using directory-style URLs with embedded keyword metadata.

Applications built on top of the MDEX Engine version 6.1 or later can also leverage the MDEX API
through XQuery, available as part of the Advanced Query Module. There is no explicit support for
XQuery within the current version of the Content Assembler; that is, the Content Assembler does not
use the MDEX API through XQuery to process queries to the MDEX Engine. However, XQuery for
Endeca enables developers to extend MDEX Engine functionality through custom XQuery modules.

API class model overview
The Content Assembler API consists of three packages, com.endeca.content, com.endeca.con¬
tent.ene, and com.endeca.content.assembler.

The com.endeca.content package contains the core classes and interfaces for the Content
Assembler API:

DescriptionClass

A service for creating and managing dynamic content queries.ContentManager

An object used for executing content queries.ContentQuery

An object containing the results of an executed ContentQuery.ContentResults

A single content item from an instance of a ContentResult
object.

ContentItem

A list of content items which includes two additional properties:
the type of the items and the maximum number of content items
allowed.

ContentItemList

A property value contained within a ContentItem object.Property

Provides convenience methods for constructing ContentExcep¬
tion instances.

ContentExceptionFactory

Represents an exception when interacting with the Content
Assembler API.

ContentException

Indicates that the specified query is invalid and cannot be
executed.

InvalidQueryException

Represents an unrecoverable exception while initializing a content
assembler

InitializationException

The com.endeca.content.ene package contains an implementation of the Content Assembler
API that uses the Presentation API.

DescriptionClass

An implementation of the ContentManager interface that
creates an ENEContentQuery.

ENEContentManager

Endeca ConfidentialEndeca® Content Assembler API Developer's Guide for Java

Introduction to the Content Assembler API | Overview of the Content Assembler API10

DescriptionClass

An object used for executing content queries based on a
com.endeca.navigation.ENEQuery.

ENEContentQuery

An object containing the results of an executed ENEContent¬
Query, including the ENEQueryResults object returned for
the query.

ENEContentResults

A property whose value is either an ERecList or an AggrERe¬
cList, depending on whether an aggregation key is present.

RecordListProperty

Also contains the ENEQuery that was used to generate the
record list and the corresponding ENEQueryResults.
Information associated with the ENEQuery and the ENEQueryRe¬
sults objects can be used to create a "see-all" query link for
the ERecList.

This interface represents the subset of Navigation necessary
to build a record list from the results. The results contained in

NavigationRecords

instances of this interface do not necessarily match the results
that are contained in the root ENEQueryResults.getNaviga¬
tion().

In addition to these packages, the com.endeca.content.assembler package provides access to
core Content Assembler functionality that you can use to extend the Content Assembler. For more
information, see "Extending the Content Assembler with Tag Handlers" in this guide.

Related Links
Extending the Content Assembler with Tag Handlers on page 29

The Content Assembler uses tag handlers to transform content XML into an object
representation of a dynamic page. Tag handlers can be written by the Endeca community
(including Endeca Professional Services, partners, or customers) in order to customize or
extend the Content Assembler to process custom content XML and integrate with third-party
systems.

Overview of the Content Assembler reference application
The Content Assembler reference front-end application demonstrates best practices for using the
Content Assembler API to develop dynamic applications.

The Content Assembler reference application and sample project is designed to show a typical approach
to building cartridges -- that is, templates and their associated rendering code -- and demonstrate how
the configuration specified by the content administrator in the Page Builder can affect the display of
content in the front-end application.The templates and application code are based on UI best practices
developed by Endeca specifically for Guided Navigation applications.

Unlike other Endeca reference applications, the Content Assembler reference application is not intended
as a general-purpose data navigator. In order to show realistic examples of cartridge development,
the reference application is closely tied to the sample wine data project that is provided with the Content
Assembler. For this reason, it is not intended as a generic preview application for the Page Builder in
Endeca Workbench.

The reference application may be used as a starting point for your own application code.You can
customize it to suit your data and business requirements and extend its functionality as needed.

Endeca® Content Assembler API Developer's Guide for JavaEndeca Confidential

11Introduction to the Content Assembler API | Overview of the Content Assembler reference application

About handling dynamic content
Your application should contain logic to iterate through the content tree returned by the Content
Assembler and pass the embedded content items to the appropriate code for rendering.

Recall that the structure of the templates you provide in the Page Builder determines the structure of
the content in the page configuration. Templates enable you to specify <ContentItem> or <Con¬
tentItemList> elements that serve as place holders for the content configured by the content
administrator. The diagram below shows an example of a fully configured dynamic page.

In this example, each orange dot represents a content item while the gray dots (such as Header and
LeftColumn) represent content item lists.You can use both content items and content item lists in your
templates, but generally only content items are actually rendered.

Because the template dictates the number and type of properties in a content item, you can write
rendering code that is closely tailored to handle the content items based on a particular template.
There are several ways that you can then match the content items in the content tree to the appropriate
rendering code, for example:

• inspecting the TemplateId of the content item
• using a naming convention based on the template id
• using a string property in the template that specifies the name of the class to use for rendering

content items based on the template

Content Assembler reference application for Java uses a mapping between the template id and the
rendering code, specified in the templateconfig.properties file.

The reference application model for dynamic content
In the Java Content Assembler reference application, the controller servlet and the custom car¬
tridges:include JSP tag manage the logic of finding the appropriate control to handle each content
item.

Endeca ConfidentialEndeca® Content Assembler API Developer's Guide for Java

Introduction to the Content Assembler API | Overview of the Content Assembler reference application12

The controller servlet loads the mapping of content template ids to the corresponding rendering code.
This mapping is defined in the templateconfig.properties located in the /WEB-INF/classes
subdirectory of your Content Assembler reference application. In a typical installation this is:
C:\Endeca\ContentAssemblerAPIs\Java\version\reference\ContentAssemblerRefApp\WEB-INF\classes.

The mapping is loaded into a java.util.Properties object and added as an attribute on the
servlet context. This Properties object is then accessed by
/WEB-INF/tags/cartridges/include.tag.

The following example from the templateconfig.properties file shows the format of the mapping
used by the controller between the template id and the path to the JSP designed to render cartridges
based on that template.

ThreeColumnNavigationPage=/layout/ThreeColumnNavigationPage.jsp
ImageSiteBanner=/cartridges/Image.jsp
Breadcrumbs=/cartridges/Breadcrumbs.jsp
GuidedNavigation=/cartridges/GuidedNavigation.jsp
ResultsList=/cartridges/ResultsList.jsp
SearchBar=/cartridges/SearchBar.jsp
ImageBox=/cartridges/Image.jsp
ThreeRecordBox=/cartridges/ThreeRecordBox.jsp
TextBox=/cartridges/Text.jsp
TextBanner=/cartridges/Text.jsp
DimensionSearchResults=/cartridges/DimensionSearchResults.jsp
ImageBanner=/cartridges/Image.jsp
OneRecordBanner=/cartridges/OneRecordBanner.jsp
ThreeRecordBanner=/cartridges/ThreeRecordBanner.jsp
SearchAdjustments=/cartridges/SearchAdjustments.jsp

The cartridges:include custom JSP tag is defined by the include.tag file, located in
/WEB-INF/tags/cartridges directory in the reference application folder. This tag dynamically
loads the renderer to handle nested cartridge content based on the template id and the mapping
specified in the java.util.Properties object.

Note that the same code may be used to handle more than one template, if the properties defined in
the templates are sufficiently similar.

List of reference application cartridges
The reference application includes sample cartridges that enable configuration of a variety of front-end
features.

For implementation details, refer to the templates (located in your reference application deployment
at [appDir]/config/page_builder_templates) and the rendering code (located in
ContentAssemblerAPIs/Java/version/reference/ContentAssemblerRefApp/cartridges).

DescriptionRendering codeTemplate name

Displays the site banner image with an
optional link.

Image.jspFullWidthContent-
ImageSiteBanner

Displays the search bar.SearchBar.jspFullWidthContent-
SearchBar

Displays dimension search results. Content
administrators can configure whether or not

DimensionSearchRe¬
sults.jsp

MainColumnContent-
DimensionSearchResults

to display compound dimension search
results.

Endeca® Content Assembler API Developer's Guide for JavaEndeca Confidential

13Introduction to the Content Assembler API | Overview of the Content Assembler reference application

DescriptionRendering codeTemplate name

Displays an image banner with an optional
link.

Image.jspMainColumnContent-
ImageBanner

Displays one record spotlight with an
image.

OneRecordBanner.jspMainColumnContent-
OneRecordBanner

Displays search and navigation results in
a list view.

ResultsList.jspMainColumnContent-
ResultsList

Displays search adjustment messaging
such as Did You Mean or spelling
correction.

SearchAdjustments.jspMainColumnContent-
SearchAdjustments

Displays promotional text with a title and
an optional link.

Text.jspMainColumnContent-
TextBanner

Displays a three record spotlight banner.ThreeRecordBanner.jspMainColumnContent-
ThreeRecordBanner

Displays breadcrumbs appropriate to the
current refinement state.

Breadcrumbs.jspSidebarItem-
Breadcrumbs

Displays Endeca Guided Navigation with
configurable display of dimensions.

GuidedNavigation.jspSidebarItem-
GuidedNavigation

Displays an image with an optional link.Image.jspSidebarItem-ImageBox

Displays promotional text with a title and
an optional link.

Text.jspSidebarItem-TextBox

Displays a three record spotlight box.ThreeRecordBox.jspSidebarItem-
ThreeRecordBox

Note: The JSP files in the reference application apply HTML escaping to the strings specified
by the content administrator in the Page Builder. If you want to allow content administrators to
enter HTML-formatted text in the Page Builder, create a separate cartridge with rendering code
that does not escape HTML strings.

The reference application also includes a page template named
PageTemplate-ThreeColumnNavigationPage, which controls the overall page content and
ThreeColumnNavigationPage.jsp (located in
ContentAssemblerAPIs/Java/version/reference/ContentAssemblerRefApp/layout),
which controls the overall rendering of the page.

Connecting to a different MDEX Engine
By default the Content Assembler reference application attempts to connect to an MDEX Engine
running on localhost port 15000 (the default port in the sample wine deployment). If you are running
the MDEX Engine on a different host or port, you can update the configuration in the web.xml file.

To specify a different MDEX Engine host or port:

1. Navigate to the WEB-INF subdirectory of your Content Assembler reference application. In a typical
installation, this is:
C:\Endeca\ContentAssemblerAPIs\Java\2.0.0\reference\ContentAssemblerRefApp\WEB-INF.

Endeca ConfidentialEndeca® Content Assembler API Developer's Guide for Java

Introduction to the Content Assembler API | Overview of the Content Assembler reference application14

2. Open the web.xml file and locate the following section:

 <env-entry>
 <description>
 Hostname or IP address of the MDEX engine
 </description>
 <env-entry-name>MDEXHost</env-entry-name>
 <env-entry-type>java.lang.String</env-entry-type>
 <env-entry-value>localhost</env-entry-value>
 </env-entry>

 <env-entry>
 <description>
 Port on which the MDEX engine is listening
 </description>
 <env-entry-name>MDEXPort</env-entry-name>
 <env-entry-type>java.lang.String</env-entry-type>
 <env-entry-value>15000</env-entry-value>
 </env-entry>

3. To change the host name of the MDEX Engine server, update the value of the MDEXHost parameter.

4. To change the port of the MDEX Engine server, update the value of the MDEXPort parameter.

5. Save and close the file.

6. Restart the Endeca Tools Service.

About skinning the reference application
The styling of the reference application is implemented through external CSS style sheets, which can
be easily customized.

The style sheets are located in the reference/ContentAssemblerRefApp/css directory of your
Content Assembler API installation. In a typical installation, this is
C:\Endeca\ContentAssemblerAPIs\Java\version\reference\ContentAssemblerRefApp\css
(on Windows) or
/usr/local/endeca/ContentAssemblerAPIs/Java/version/reference/ContentAssemblerRefApp/css
(on UNIX).

Each cartridge component (or type of component) in the reference application has a corresponding
style sheet that controls the appearance of that component.

Endeca® Content Assembler API Developer's Guide for JavaEndeca Confidential

15Introduction to the Content Assembler API | Overview of the Content Assembler reference application

Chapter 2

Working with the Content Assembler API

This section provides information on writing dynamic applications in Java with the Endeca Content
Assembler API.

Writing applications with the Content Assembler API
This section describes how to use the Content Assembler API for Java to query the MDEX Engine.

The Content Assembler API is used in conjunction with the Presentation API for Java; it does not
replace the Presentation API. Queries submitted using the Content Assembler API must contain valid
ENEQuery and ENEConnection objects from the Presentation API.

Importing API packages
There are three API packages that you must import.

• com.endeca.content contains the core classes and interfaces for the Content Assembler API.
• com.endeca.content.ene contains a ContentManager implementation for the Endeca

Presentation API.
• com.endeca.navigation is the Endeca Presentation API and contains all implementation-specific

classes and interfaces.

To import the necessary classes:

Add the following lines at the top of your code:

import com.endeca.content.*;
import com.endeca.content.ene.*;
import com.endeca.navigation.*;

Creating a ContentManager
You use a ContentManager to create a ContentQuery object and obtain ContentResults.

Note: The ContentManager should be scoped at a global or application level.You should not
create new ContentManager instances for each request or query. A ContentManager instance
is threadsafe.

To create a ContentManager:

1. Create a new ENEContentManager.

 ENEContentManager contentManager = new ENEContentManager();

2. Optionally, you can enable XML validation of page configurations:

 contentManager.setValidating(true);

Note: Validation can be useful in a testing environment for debugging purposes, particularly
if templates are changing often. Because of the performance impact of validating content
XML, this option should never be used in production. XML validation requires Java 1.5 or
later, and is disabled by default.

Executing a content query and retrieving the results
A ContentQuery object sends dynamic content queries to the Endeca MDEX engine.

ContentQuery objects are created using the ContentManager.createQuery() method.

To execute a content query and retrieve content results:

Add code similar to the following example:

// Create a ContentQuery.
ENEContentQuery query = (ENEContentQuery)contentManager.createQuery();

// Configure the ContentQuery.
query.setENEQuery(new UrlENEQuery(request.getQueryString(), encoding));
query.setENEConnection(new HttpENEConnection(eneHost, enePort));

// Set the rule zone for the query. In most cases you only need one
// zone for all your landing pages. Using multiple zones can enable
// you to provide different perspectives on the same navigation state
// within your application.
query.setRuleZone("NavigationPageZone");

// Execute the query.
ENEContentResults results = query.execute();

// Get the root content item.
ContentItem content = results.getContent();

// Optionally, get the ENEQueryResults object.
ENEQueryResults eneResults = results.getENEQueryResults();

Note: This example uses an ENEContentManager to create an ENEContentQuery that
returns ENEContentResults -- these are specific implementations of the Content Assembler
API that use the standard Presentation API. For an example that uses the Endeca URL
Optimization API, please refer to the Content Assembler reference application's
ContentQueryHandler.java located in the \reference\ContentAssembler¬
RefApp\WEB-INF\classes\com\endeca\content\reference directory of your Content
Assembler API installation.

Endeca ConfidentialEndeca® Content Assembler API Developer's Guide for Java

Working with the Content Assembler API | Writing applications with the Content Assembler API18

This guide describes how to work with ContentItem objects returned by the ContentAssembler API.
For information about how to work with ENEQueryResults objects, see the Endeca Basic Development
Guide.

About implementing custom trigger conditions
Because the Content Assembler API retrieves page content based on Endeca's dynamic business
rules functionality, pages can only be triggered on record-filtering dimension values, specific search
terms, a date range, or a single user profile identifier.

These limitations can make it difficult to handle certain scenarios such as the following:

• Search results pages. Dynamic pages are generally configured to display based on a navigation
trigger. This means however that the page for a particular location displays even if a user has
entered a search term on your Web site from that location. For example, you may have set up a
highly branded page to display as your site's home page (at location N=0) that does not include
any record results. This page displays even if a user has performed a search from the home page
location, unless a page has been configured specifically to trigger on that search term.

• Record offset pages. There is no simple way to explicitly trigger different content for the first page
of record results (at offset=0) and for subsequent pages, with different page configurations specified
by the content administrator in the Page Builder.

• Alternate views on the same navigation state. Use cases include A/B testing or toggling between
a product details view and a customer reviews view. By default, the Content Assembler API returns
a single content tree representing a dynamic page for any given navigation state or trigger condition.

There are various approaches that can be used to handle these use cases:

• Filtering landing pages based on rule properties
• Using hidden dimensions
• Using multiple rule zones
• Using multiple user profiles

Any of these strategies can be applied to the scenarios listed above. They can also be used to
implement other custom trigger conditions that you may require. Which approach you use depends
on the scenario you are trying to address and the specifics of your application. For guidance on selecting
the appropriate option (or combination of options) and assistance with implementation, contact your
Endeca representative.

About filtering landing pages based on rule properties

If you specify custom rule properties in a page template, you can use those properties to exclude
certain landing pages from consideration by the MDEX Engine on a per-query basis.

Filtering based on rule properties can enable your application to implement more fine-grained trigger
functionality than is available in the Page Builder.

Because the rule properties for a dynamic page are set based on the properties specified within the
<RuleInfo> element in the page template, the content administrator must have set up a page intended
for a particular trigger condition based on a template with the appropriate property.You can provide
information in the template id (for example, ThreeColumnPage-Search) or description to help
the content administrator select the appropriate template.

For the purposes of priority, pages based on templates with custom rule properties should be treated
as if they have more specific trigger conditions than the same page with no such properties. (In general,
pages with more specific triggering conditions should have higher priority than more generic pages.)

Endeca® Content Assembler API Developer's Guide for JavaEndeca Confidential

19Working with the Content Assembler API | Writing applications with the Content Assembler API

Because the Page Builder preview functionality cannot replicate your custom logic for filtering pages,
the preview status messages may be misleading when you exclude certain pages from consideration.
However, if your preview application includes the appropriate logic, the correct page displays in the
preview pane even if the status messages indicate that a different page fired.

Use case: Search results

You can enable more robust handling of search results pages by creating a template that specifies a
custom rule property with a key such as search_results and a value of true. The content
administrator can then create search results pages based on this template.You can add logic to your
application to consider these pages only for search queries (that is, queries that include Ntt and Ntk
parameters). If there are no search parameters present, you can augment the query with a filter such
as Nmrf=not(search_results:true) before you pass it to the MDEX Engine via the Content
Assembler API.

For more information about working with rule properties, see "Promoting records with dynamic business
rules" in the Advanced Development Guide.

About using hidden dimensions to trigger landing pages

You can create specialized dimensions in your application to expose additional trigger conditions.

This approach involves some additional work in your data pipeline to apply the dimension values to
the records. Once this is done, the content administrator can select the trigger condition in the Page
Builder using the same process as any navigation state.

Use case: Record offset

You can enable different landing pages based on record offset by creating a dimension such as Offset
with dimension values such as First Page and Next Pages. During the ITL process, apply both the
Offset > First Page and Offset > Next Pages dimension values to all records.The content administrator
can then set up pages for each trigger condition.

You can add logic to your application to augment the navigation filter (N parameter) based on the
record offset value (the No parameter).

For more information about working with dimensions, see the Forge Guide, Basic Development Guide,
and the Endeca Developer Studio Help.

About using multiple rule zones for landing pages

Using multiple zones can enable you to provide different perspectives on the same navigation state
within your application.

Because the zone for a page is set based on the zone attribute of the <RuleInfo> element in the
page template, the content administrator must have set up a page intended for a particular display
condition based on a template that uses the appropriate zone.You can provide information in the
template id or description to help the content administrator select the appropriate template for
each case.

Because the Page Builder preview functionality does not limit the query to a single zone, the preview
status messages may be misleading when you use multiple zones. However, if your preview application
includes the appropriate logic, the correct page should display in the preview pane even if the status
messages indicate that more than one page fired.

Endeca ConfidentialEndeca® Content Assembler API Developer's Guide for Java

Working with the Content Assembler API | Writing applications with the Content Assembler API20

Also note that although the Content Assembler API only retrieves the content tree from a specific zone,
the results from all zones with triggered content are returned as part of the query response, so excessive
use of multiple zones may lead to a noticeable increase in the size of the query response.

Use case: A/B testing

You can enable A/B testing scenarios by setting up different zones such as Control, VariableA,
VariableB, and so on.You then create different templates for each zone, and the content administrator
can create pages based on the different templates.

Your front-end application can set the zone for the content query based on various conditions for which
you want to expose different views on the data.

For more information about setting up rule zones for landing pages, see the Page Builder Developer's
Guide.

About using multiple user profiles for custom trigger conditions

You can use the user profile functionality to provide different views on the same navigation states.

You can set up specialized user profiles to enable content administrators to set up different pages in
the Page Builder for different scenarios. However, if you are already using user profiles for other
purposes, this usage may interfere with other user profile triggers.

Use case: Different front-end sites backed by the same data

You can present different views on the same data by creating different user profiles in Developer
Studio such as SiteAUser and SiteBUser. In the Page Builder, the content administrator can set the
user profile to use for each page.

You can add logic to your application to add the appropriate user profile to the query by using the
ENEQuery.setProfiles() method.

For more information about setting up user profiles, see the Endeca Developer Studio Help. For more
information about working with user profiles, see "Implementing User Profiles" in the Advanced
Development Guide.

Building cartridges to render template-based content
Cartridges consist of cartridge templates and their associated rendering code, allowing you to separate
the structure of dynamic page content from its presentation.

Building a front-end application based on cartridges involves the following tasks:

• Writing code to render content items based on each template.
• When rendering content items that contain nested content items, include code to dynamically call

the appropriate code that is designed to render the nested content.

About working with content items
The ContentResults.getContent() method returns the root ContentItem object that contains
dynamic page content.

Endeca® Content Assembler API Developer's Guide for JavaEndeca Confidential

21Working with the Content Assembler API | Building cartridges to render template-based content

The ContentItem class provides several methods that allow you to iterate over the content properties.
However, because the properties are defined by the template on which a content item is based, you
can access the content properties directly based on the property name attribute defined in the template.

You pass the property name as a String to the ContentItem.getProperty() method, which
returns a Property object. A Property can contain any type of object returned by the MDEX Engine.
The type of object depends on the property elements specified in the template. Common object types
include:

• String

• ERecList

• ContentItem

• ContentItemList

• NavigationRefinements

• ENEQueryResults

Typically, you access a specific property value using ContentItem.getProperty("name").get¬
Value() and cast it to the appropriate object type.

For more details about ContentItem methods, see the Endeca API Reference for the Content
Assembler API for Java.

Rendering section content
Because a template defines the number and types of properties in a content item, you can write
rendering code that is tailored to render the content driven by a specific template. This combination
of a template and its renderer forms a cartridge.

Note: The following examples use Java Server Pages syntax for convenience. The Content
Assembler API for Java is not limited to use in Java Server Pages applications and can be used
with any Java application framework.

For example, if you have the following properties defined in a section template:

<ContentTemplate xmlns="http://endeca.com/schema/content-template/2008"
type="SidebarItem" id="TextBox">
<!-- additional elements not shown in this example -->

 <ContentItem>
 <Name>New Text Box</Name>
 <Property name="title">
 <String/>
 </Property>
 <Property name="body">
 <String/>
 </Property>
 <Property name="link_text">
 <String/>
 </Property>
 <Property name="link_href">
 <String/>
 </Property>
 </ContentItem>
<!-- additional elements not shown in this example -->

</ContentTemplate>

To render content based on this template:

Endeca ConfidentialEndeca® Content Assembler API Developer's Guide for Java

Working with the Content Assembler API | Building cartridges to render template-based content22

1. Access the configured values from the ContentItem for the properties defined in the template.

<%
// Retrieve the appropriate ContentItem
ContentItem contentItem = (ContentItem)request.getAttribute("contentItem");

// Get the banner title from the ContentItem
String title = (String)contentItem.getProperty("title").getValue();

// Get the banner body from the ContentItem
String body = (String)contentItem.getProperty("body").getValue();

// Get the link text from the ContentItem
String textlink = (String)contentItem.getProperty("link_text").getValue();

// Get the link URL string from the ContentItem
String href = (String)contentItem.getProperty("link_href").getValue();
%>

2. Add code to render the page based on the design from the creative team, using the values specified
in the ContentItem object.

 <div class="TextBanner">
 <div class="Title"><%= title %></div>
 <div class="Body"><%= body %></div>
 <div class="Link"><a href="<%= href %>"><%= textlink
%></div>
 </div>

The following example shows a content item list property in a page template and how the corresponding
rendering code can display the results.

If the template (PageTemplate-ThreeColumnNavigationPage.xml) includes the following:

<ContentTemplate xmlns="http://endeca.com/schema/content-template/2008"
type="PageTemplate" id="ThreeColumnNavigationPage">
<!-- additional elements deleted from this example -->

 <ContentItem>
 <Name>New Three-Column Navigation Page</Name>
 <Property name="LeftColumn">
 <ContentItemList type="SidebarItem" />
 </Property>
<!-- additional elements deleted from this example -->
 </ContentItem>
<!-- additional elements deleted from this example -->
</ContentTemplate>

The associated rendering code (ThreeColumnNavigationPage.jsp) may look similar to the
following:

<%
// Get the root content Item. Here contentResults is the
// ENEContentResults object.
ContentItem contentItem = contentResults.getContent();

%>
<html>
<body>
 <!-- Rendering code omitted -->
 <div id="LeftColumn">
 <%

Endeca® Content Assembler API Developer's Guide for JavaEndeca Confidential

23Working with the Content Assembler API | Building cartridges to render template-based content

 // Get the ContentItemList off the ContentItem
 ContentItemList leftColumnItems = (ContentItemList)contentItem.getProper¬
ty("LeftColumn").getValue();

 Iterator i = leftColumnItems.iterator();

 while (i.hasNext()) {
 ContentItem item = (ContentItem)i.next();
 %>
 <!-- Access the appropriate content item properties for rendering
 this content item. Use the method of your choice to dynamically include

 rendering code that corresponds to each content item. -->
 <%

 }
 %>
 </div>
 <!-- Rendering code omitted -->
</body>
</html>

About rendering customized navigation refinements
Rendering customized navigation refinements requires accessing the configured DimensionList
values from the ContentItem for the NavigationRefinements properties defined in the template.

For example:

ContentItem contentItem = (ContentItem)request.getAttribute("contentItem");

DimensionList orderedDimensions = (DimensionList)contentItem.getProperty("re¬
finements").getValue();

This code is the equivalent of getting the DimensionList by using Navigation.getRefinement¬
Dimensions(), except that the dimensions returned reflect the content administrator's configuration
specified in the Page Builder.

Note: If you have precedence rules defined in your application, they still apply to the customized
DimensionList. This means that if the landing page definition specifies certain dimensions
for display that should not display for that navigation state (whether it is due to precedence rules
or because it is not a valid refinement), those invalid dimensions are not included in the Dimen¬
sionList object.

The Content Assembler reference application provides a sample Endeca Guided Navigation cartridge
(including rendering code) that uses a NavigationRefinements property.

About rendering customized results lists
If you enable content administrators to customize the display of record results, the results object
returned by the Content Assembler API is different from the object returned by the Presentation API.

Recall that you can specify a <NavigationRecords> property in a template with a <Navigation¬
RecordsEditor> that enables a content administrator to specify sort order, relevance ranking, and
the number of records to display per page.

Endeca ConfidentialEndeca® Content Assembler API Developer's Guide for Java

Working with the Content Assembler API | Building cartridges to render template-based content24

To render the customized navigation results, retrieve the list of records from the navigation records
property, which is of type NavigationRecords. For example:

ContentItem contentItem = (ContentItem)
 request.getAttribute("contentItem");
NavigationRecords navRecs = (NavigationRecords)
 contentItem.getProperty("navigation_records").getValue();
ERecList recs = navRecs.getERecs();

This code is equivalent to calling ENEQueryResults.getERecs(), except that the records returned
reflect the content administrator's configuration specified in the Page Builder.

The NavigationRecords object also exposes methods to access the number of records per page
(and aggregated records per page) that were specified in the modified query used to retrieve the
customized results. When working with customized results lists, use the NavigationRecords
methods, rather than the analogous ENEQuery methods.

For example, when rendering a pager component for a customized record list, you should use
navRecs.getERecsPerPage() because the content administrator may have specified a different
number of records per page from the main query (which is reflected in ENEQuery.getNavNu¬
mERecs()).

For further details, refer to the Endeca API Reference for the Content Assembler API for Java.

About customized results
The Content Assembler handles sort order, relevance ranking, and records-per-page customization
slightly differently than the Java Presentation API. See the sections below for details about how the
Content Assembler handles each configuration option.

The Content Assembler performs an additional query in order to retrieve the customized record results
from the MDEX Engine. If no custom behavior was specified in the Page Builder, no additional query
is made.

Sort order

The sort order specified by the content administrator in the Page Builder is used as a default. End
users of the Web application can override this setting if you enable a control for users to specify sort
order.

Relevance ranking

If the content administrator specifies both a sort order and a relevance ranking strategy for a single
landing page and the query that triggers the page contains a search, the Content Assembler passes
only the relevance ranking strategy on to the query to retrieve the customized navigation records. If
no search is present, both the sort order and the relevance ranking strategy are passed on to the
second query. In this case, the sort order overrides the relevance ranking.

The relevance ranking strategy specified by the content administrator for a landing page always
overrides any other relevance ranking setting (whether it is coded as default behavior in the application
or -- less typically -- specified by an end user).

Records per page

The NavigationRecordsEditor provides an optional interface for the content administrator to
specify the number of records to return per page for a given navigation state.

Endeca® Content Assembler API Developer's Guide for JavaEndeca Confidential

25Working with the Content Assembler API | Building cartridges to render template-based content

The case where a content administrator has configured a value for records per page and an end user
also specifies a value can lead to undefined and unexpected behaviors. For this reason, if you enable
configuration of records-per-page display in the Page Builder, it is not recommended that you enable
a control for end users to specify records per page in the application.

About rendering record lists
Record list properties represent the results of supplemental queries, for example, to populate promotions
or Content Spotlighting cartridges.

Properties containing record list values are returned as instances of RecordListProperty, which
is a sub-interface of Property. Content administrators can designate either specific records or a
navigation query that returns records for spotlighting. A RecordListProperty that is configured to
display specific featured records always returns an ERecList.

Note: When a cartridge is configured to display specific featured records and any of the specified
record IDs are invalid, the Content Assembler API for Java returns null for that RecordList¬
Property value.

A RecordListProperty that is populated with an ENEQuery returns either an ERecList or an
AggrERecList, depending on whether the ENEQuery that triggered a landing page has the
NavRollupKey property set.

If you use rollup keys for aggregated records in your application, then you must check the type of list
being returned for any RecordListProperty in one of two ways:

• Check the type of the object returned by the record list Property.getValue() to determine
whether it is an ERecList or an AggrERecList.

• Cast the Property to a RecordListProperty, and check the boolean value of containsAg¬
gregatedRecords().

If you prefer to render records rather than aggregated records for a Content Spotlighting cartridge on
a page with a rollup key, you can render a representative record from the list of constituent records.
For example, for each aggregated record, the application can retrieve the representative record as
follows:

 ERec rec = aggrERec.getRepresentative();

where aggrERec is the AggrERec object.

The Content Assembler reference application provides several sample spotlight cartridges that
demonstrate how to render a record list property.

Generating see-all links
You can provide front-end users with a "see-all" link to display the full results set of a record query or
a navigation query that was used to populate a spotlight cartridge.

The RecordListProperty interface has additional public fields for the corresponding ENEQuery
and ENEQueryResults objects that aid in creating see-all links.

To create a see-all link:

Endeca ConfidentialEndeca® Content Assembler API Developer's Guide for Java

Working with the Content Assembler API | Building cartridges to render template-based content26

1. Use the ContentItem getProperty() method to retrieve the record list Property object off a
ContentItem:

Property property = contentItem.getProperty("products");

ENEQuery eneQuery = null;

if (property instanceof ERecListProperty) {

 //Cast the Property to ERecListProperty

 ERecListProperty erecListProperty = (ERecListProperty)property;

 ENEQuery eneQuery = erecListProperty.getENEQuery();

}

2. Use the ENEQuery object to create a URL link to the target record set:

if (null !=eneQuery) && eneQuery.containsNavQuery()) {
 String url = UrlENEQuery.toQueryString(eneQuery, request.getCharac¬
terEncoding());

}

Note: See-all links can only be created if the record list is generated using a navigation
query. See-all links cannot be generated for result lists that are returned from record queries.

If you plan to construct URLs using the UrlFormatter object from the URL Optimization API, please
refer to the URL Optimization API for Java Developer's Guide for more information.To see an example
cartridge that uses a UrlFormatter, refer to the ThreeRecordBanner.jsp file located in the
cartridges directory of your Content Assembler reference application installation directory.

Using dynamic includes to render page content
If you are using JavaServer Pages technology, you can use the RequestDispatcher functionality
from the Java Servlet API to dynamically include rendering code to handle cartridge content.

The following example assumes that the templateIDToRenderer object is a java.util.Proper¬
ties object that contains a mapping of template ID to rendering code for each of the cartridge and
page templates. This template ID to rendering code mapping is loaded from an external file.

<ContentTemplate xmlns="http://endeca.com/schema/content-template/2008"
type="PageTemplate" id="ThreeColumnNavigationPage">
<!-- additional elements not shown in this example -->

 <ContentItem>
 <Name>New Three-Column Navigation Page</Name>
 <Property name="Header">
 <ContentItemList type="FullWidthContent"/>
 </Property>
<!-- additional properties not shown in this example -->
 <Property name="Footer">
 <ContentItem type="FullWidthContent"/>
 </Property>
 </ContentItem>
<!-- additional elements not shown in this example -->

</ContentTemplate>

Endeca® Content Assembler API Developer's Guide for JavaEndeca Confidential

27Working with the Content Assembler API | Building cartridges to render template-based content

You may choose not to use an external mapping file to match a template to its associated rendering
code. Alternatives include constructing the name of the relevant JSP file programmatically based on
properties such as the type and id of the template, or specifying the JSP code that is intended to
render a template via a hidden property.

Some simple cartridges, such as image hotspots or sub-sections of other cartridges, may be rendered
by their parent cartridge code. In these cases you do not need to use this procedure.

To render dynamic pages using a RequestDispatcher:

1. Import the RequestDispatcher class:

import javax.servlet.RequestDispatcher;

2. For each nested ContentItem, use a RequestDispatcher to dynamically include the appropriate
code to render the content. For example:

ContentItem pageContent = contentRequest.getContent();
Properties templateIdToRenderer = (Properties)application.getAttribute("tem¬
plateIdToRenderer");

// Render the Header ContentItemList
ContentItemList header = (ContentItemList)pageContent.getProperty("Head¬
er").getValue();
Iterator i = leftColumnItems.iterator();

 while (i.hasNext()) {
 ContentItem item = (ContentItem)i.next();
 if(null != item) {
 String jspPath = (String)templateIdToRenderer.getProperty(item.get¬
TemplateId());
 RequestDispatcher dispatcher = request.getRequestDispatcher(jspPath);

 // pass the ContentItem object to be rendered
 request.setAttribute("LocalContentItem", item);
 dispatcher.include(request, response);

 }
 }

// Render the Footer ContentItem
ContentItem footer = (ContentItem)pageContent.getProperty("Footer").get¬
Value();
if(null != footer) {
 String jspPath = (String)templateIdToRenderer.getProperty(footer.get¬
TemplateId());
 RequestDispatcher dispatcher = request.getRequestDispatcher(jspPath);
 // pass the ContentItem object to be rendered
 request.setAttribute("LocalContentItem", footer);
 dispatcher.include(request, response);

}

Note: For more details about using the RequestDispatcher, see Sun's Java Servlet API
documentation.

Endeca ConfidentialEndeca® Content Assembler API Developer's Guide for Java

Working with the Content Assembler API | Building cartridges to render template-based content28

Chapter 3

Extending the Content Assembler with Tag
Handlers

The Content Assembler uses tag handlers to transform content XML into an object representation of
a dynamic page.Tag handlers can be written by the Endeca community (including Endeca Professional
Services, partners, or customers) in order to customize or extend the Content Assembler to process
custom content XML and integrate with third-party systems.

About tag handlers in the Content Assembler
A tag handler enables you to define your own processing logic for the content that is configured by
content administrators in Page Builder.

When your application queries the MDEX Engine using the Content Assembler API, the corresponding
landing page configuration is returned as part of the response in the form of content XML.The Content
Assembler processes this XML, executing additional queries as needed, and returns a tree of Con¬
tentItem objects and their associated properties.

Each of the standard property types in Page Builder is represented by an element in XML, such as
<String>, <RecordList>, or <ContentItem>. For each of the standard types, the Content
Assembler has a standard tag handler associated with that element that processes the element into
a Java object.

You can take advantage of the same mechanism to write a tag handler that processes a specific
element in the content XML and returns a native Java object to the application. Community tag handlers
process elements outside of the Endeca content XML namespaces (that is, http://ende¬
ca.com/schema/content/2008 and http://endeca.com/schema/content-tags/2008).
These elements may be either pass-through XML defined in the template or custom XML generated
by a community editor. For more information about pass-through XML and community editors, refer
to the Page Builder Developer's Guide.

The combination of custom XML and a community tag handler enables you to extend the query
processing logic in the Content Assembler — for example, by executing additional queries against the
MDEX Engine, or interfacing with a third-party system to return data — before returning the results to
the application. Use cases for community tag handlers include the following:

• Given some XML that specifies a rollup key for a navigation query or aggregated record query,
pass this key with the query to the MDEX Engine to return records for Content Spotlighting.

• Implement A/B testing for Content Spotlighting by executing different queries to the MDEX Engine
for identical requests.The results of the queries are then transparently passed on to the applicaton.

• Query a third-party source for information to display on a product detail page. Examples include
RSS feeds, content stored in another repository (such as a CMS), inventory information, or a
recommendation engine.

It is not necessary to implement a tag handler to use custom XML. If no tag handler is registered to
handle a particular element, the Content Assembler passes the XML through to the application as an
org.w3c.dom.Element, which can then be handled by your rendering logic. A tag handler provides
a mechanism to encapsulate any processing you need to do for a particular element and abstract this
processing from the rendering code.

Scenarios for extending Page Builder and the Content
Assembler

You can use either community editors on their own, community tag handlers on their own, or both of
them in combination to extend the functionality of Page Builder.

Following are some common scenarios and their implications for community editors or tag handlers:

Use community tag handler?Use community editor?Scenario

NoNoInclude application-specific
information in the template as a
pass-through XML property.

The Content Assembler returns
the XML to the rendering code
for your application.

If content administrators do not
need to modify the configuration
of a property on a per-page
basis, you do not need to write a
specialized editor.

Example: Information that the
application uses to render the
cartridge, but is of no interest to
the content administrator.

YesNoInclude external configuration in
the template as a pass-through
XML property.

The Content Assembler uses the
information contained in the XML

If content administrators do not
need to modify the content of a

to query a third-party system, andproperty on a per-page basis, youExample: Hard-coded
configuration for a third-party returns the results to the

rendering code.
do not need to write a specialized
editor.system that applies to any page

that uses this template.

NoYesProvide a new interface for
content administrators to

The community editor outputs
standard Endeca content XML,

This editor is bound to a standard
property. (In the example, the

configure existing Page Builder
properties.

which is processed by theeditor modifies a <RecordList>
property.)Example: A variation of the

record selector dialog box that
standard tag handler for record
lists. No additional work is
necessary.enables content administrators

to browse for featured records,
instead of entering a record ID.

Endeca ConfidentialEndeca® Content Assembler API Developer's Guide for Java

Extending the Content Assembler with Tag Handlers | Scenarios for extending Page Builder and the
Content Assembler

30

Use community tag handler?Use community editor?Scenario

There are two options:YesProvide an interface to configure
functionality that is not supported
by Page Builder out-of-the-box.

NoThe editor provides a specialized
interface for selecting data to

The Content Assembler returns
the XML to the application's

populate a cartridge. The
configuration is saved as a
custom XML property.

Example: An editor that enables
content administrators to specify
reviews to display for a particular
navigation state, including

rendering code, which can then
fetch the reviews from the CMS
where they are stored.

number of reviews, sort order,
and additional filtering options. Yes (preferred)

The Content Assembler fetches
the reviews from the CMS before
returning the content results to
the rendering code for your
application.

Similarly, you can use a tag
handler and community editor to
send customized queries to an
MDEX Engine and return results
to the rendering code.

Life cycle of a Content Assembler query
This section describes the sequence of events that occur when the Content Assembler processes a
query.

Recall that the application sends a query through the Content Assembler by specifying an ENEQuery,
a host and port for an MDEX Engine, and a zone from which to retrieve the content results.

ENEContentQuery query = (ENEContentQuery)contentManager.createQuery();

query.setENEQuery(new UrlENEQuery(request.getQueryString(), encoding));
query.setENEConnection(new HttpENEConnection(eneHost, enePort));
query.setRuleZone("NavigationPageZone");

ENEContentResults results = query.execute();

The following sequence of events occurs when the query is executed:

1. The Content Assembler sends the query to the MDEX Engine and retrieves the ContentResource
from the query results.

This is the content XML (stored in the properties of the first rule returned in the specified zone) that
represents the landing page configuration created in Page Builder.

2. The Content Assembler calls ContentAssembler.assemble().

This method marshals the ContentResource into an org.w3c.dom.Element, then calls Con¬
tentAssembler.evaluate(), passing in a ContentContext that contains the relevant
resources for the ContentQuery and the Element representing the root ContentItem.

Endeca® Content Assembler API Developer's Guide for JavaEndeca Confidential

31Extending the Content Assembler with Tag Handlers | Life cycle of a Content Assembler query

3. ContentAssembler.evaluate() calls the evaluate() method of the appropriate tag handler
(in the case of the root element, this is com.endeca.content.assembler.tags.ContentItem¬
Tag). This method takes two arguments: the current ContentContext, and the Element to be
evaluated.

4. The tag handler marshals the Element into a Java object.

As part of the evaluate() method, the tag handler may execute additional queries against an
MDEX Engine or a third-party system. The Content Assembler also provides a mechanism for a
tag handler to invoke additional tag handlers.

For example, ContentItemTag invokes PropertyTag, which in turn invokes tag handlers for
specific property types to populate the property values.

When the Content Assembler has finished processing the root ContentItem element including all
its children, it has transformed the content XML tree into a tree of ContentItem objects with properties
and nested ContentItem objects. This object tree is then returned to the application for rendering.

Class overview
The com.endeca.content.assembler package contains the classes and interfaces that make up
the core Content Assembler implementation and enable extension of Content Assembler functionality
through tag handlers.

DescriptionClass

The byte representation of the content XML
returned in the MDEX query results.

ContentResource

The ContentAssembler marshals this into an
XML Element object for processing by tag
handlers.

Used internally to fetch a ContentResource
object.

ContentResourceLocator

For each ContentManager, there is a single
ContentResourceLocator; therefore, there
should be a single ContentResourceLocator
across the entire application.

Transforms a specific element in the content XML
into an object.

TagHandler

The Content Assembler ships with several standard
tag handlers.You can implement your own tag
handlers to process custom XML elements.

Used to transform a ContentResource into an
object model representation of its content item.

ContentAssembler

For each ContentManager, there is a single
ContentAssembler; therefore, there should be

Endeca ConfidentialEndeca® Content Assembler API Developer's Guide for Java

Extending the Content Assembler with Tag Handlers | Class overview32

DescriptionClass

a single ContentAssembler across the entire
application.

Provides access to resources that are shared
across tag handlers.

ContentContext

Related Links
Resources managed by the ContentContext object on page 33

The ContentContext object provides access to resources that are shared across tag
handlers.

Implementing the tag handler interface
A tag handler takes an element in the content XML and transforms it into a Java object. In the typical
use case, you write a tag handler to return the value of a particular property.

Your tag handler can do as much or as little processing during the course of marshaling XML into
objects, including executing one or more queries to an MDEX Engine or another third-party system.

Important:

All tag handlers are instantiated when the application's ContentManager is created, and then
reused for each element that the Content Assembler processes. Because multiple invocations
of a tag handler may be executed concurrently, tag handlers must be reentrant.

For performance reasons, tag handlers should not contain large blocks of synchronized code.

To implement the tag handler interface:

1. Include the following import statements in your code:

import com.endeca.content.assembler.*;
import com.endeca.content.ContentException;
import org.w3c.dom.Element;

2. Implement the evaluate() method.

This method takes an XML element to process and a ContentContext, and returns an Object
to the tag handler that invoked it (typically, a PropertyTag handler).

Note: Java 1.5 provides improved facilities for working with XML. If you are using Java 1.4, you
may want to use a third-party library that provides similar XML functionality or write your own
implementation of some of these utility classes.

Resources managed by the ContentContext object
The ContentContext object provides access to resources that are shared across tag handlers.

A new ContentContext is instantiated for each ContentQuery. The ContentContext class
provides the following methods:

Endeca® Content Assembler API Developer's Guide for JavaEndeca Confidential

33Extending the Content Assembler with Tag Handlers | Implementing the tag handler interface

DescriptionMethod

Returns a reference to the active ContentAssembler.getContentAssembler()

You can use the ContentAssembler to invoke additional tag
handlers by calling its evaluate() method.

Returns the name of the Property on which processing has most
recently begun.

getLocalPropertyName()

This property is set by the PropertyTag handler when it begins
to process a <Property> element.

Returns a reference to the stack of ContentItem objects currently
being assembled.

getContentItemStack()

When the ContentItemTag handler begins to process a <Con¬
tentItem> element, it adds the ContentItem to this stack. The
tag handler pops the ContentItem from the stack when it is done.

Note: Other tag handlers should not modify the content item
stack.

Returns a reference to the active ContentResourceLocator.getContentResourceLoca¬
tor()

Typically, you do not need to use the ContentResourceLocator
unless you want to retrieve a ContentResource from a zone other
than the one that you passed to the ContentQuery.You can pass
a ContentResource to the ContentAssembler.assemble()
method to transform the content XML into a ContentItem object
(which may contain other ContentItem objects).

Provides access to the ContentResource objects being
assembled.getContentResources() or

getContentResourceS¬
tack()

Typically, there is only one ContentResource for any given
ContentQuery, and you do not need to access it directly. Rather,
tag handlers work on the XML that is passed through the evalu¬
ate() method.

Related Links
Class overview on page 32

The com.endeca.content.assembler package contains the classes and interfaces that
make up the core Content Assembler implementation and enable extension of Content
Assembler functionality through tag handlers.

About invoking other tag handlers
You can write tag handlers that invoke other tag handlers (either standard tag handlers or other
community tag handlers).

Endeca ConfidentialEndeca® Content Assembler API Developer's Guide for Java

Extending the Content Assembler with Tag Handlers | Implementing the tag handler interface34

You invoke another tag handler by calling ContentAssembler.evaluate() and passing in the
element to be processed, along with a reference to the current ContentContext.

 final ContentAssembler contentAssembler = pContentContext
 .getContentAssembler();
 return contentAssembler.evaluate(pContentContext, childElement);

The ContentAssembler.evaluate() method identifies the appropriate tag handler for the element,
if one exists, and calls its evaluate() method. It is important that you pass a child element, rather
than the current element being processed by your tag handler, to the ContentAssembler.evalu¬
ate() method, otherwise the ContentAssembler would invoke the same tag handler with the same
element in an infinite loop.

It is not necessary to invoke other tag handlers from within your own tag handler, even if you have
nested elements within your custom XML.There are two cases in which this may be especially useful.

Multiple combinations of valid child elements

You may have optional elements or different possible combinations of elements within your custom
XML. In such a case, rather than adding logic to check for each element that your tag handler may
have to process, you can write separate tag handlers for each possible child element. The parent tag
handler can simply iterate through the child elements and call ContentAssembler.evaluate()
on each child.

For example, the standard RecordList element can contain either a RecordQuery (for featured
records) or a NavQuery (for dynamic records). The RecordListTag handler invokes either the
RecordQueryTag handler or the NavQueryTag handler to perform a query against the MDEX Engine
that returns the records for a Content Spotlighting cartridge.

Same element nested under more than one parent

Your use of custom XML within your application may produce a structure similar the following:

<Property>
 <TagA>
 <TagC/>
 </TagA>
</Property>
<Property>
 <TagB>
 <TagC/>
 </TagB>
</Property>

In this case, you can write separate tag handlers for <TagA> and <TagB> that each invoke a third
handler for <TagC>. This ensures consistent handling of <TagC> regardless of its parent element.

Integrating a tag handler into the Content Assembler
The Content Assembler provides a simple interface for registering tag handlers.

This procedure assumes that you have already written a tag handler class that implements com.en¬
deca.content.assembler.TagHandler.

To integrate a tag handler with the Content Assembler for Java:

1. Associate the tag handler class with an element in the content XML by writing a handler map.

Endeca® Content Assembler API Developer's Guide for JavaEndeca Confidential

35Extending the Content Assembler with Tag Handlers | Integrating a tag handler into the Content
Assembler

2. Package the tag handler and its handler map in a Java archive (JAR) or a Web archive (WAR).

The handler map must be located in META-INF/tmgr/handler-map.xml within the tag handler
package.

3. Install the tag handler.

• For a Java archive: Add the tag handler JAR to your application server's classpath.
• For a Web archive: Add the tag handler WAR to the WEB-INF/classes directory of your

application.

4. Restart the application server.

In order for the Content Assembler to make use of the new tag handler, the content XML must contain
the element that the tag handler is intended to process.You can achieve this in one of the following
ways:

• Specify pass-through XML in a page template or cartridge template.
• Specify a custom property type in a template and bind it to an editor that generates custom XML.

About working with handler maps
You associate a tag handler with the element that it is intended to process by creating a file named
handler-map.xml. Each handler map contains a registry of tag handlers identified by a fully qualified
XML element name.

At initialization time, the Content Assembler loads and merges all classpath resources named
META-INF/tmgr/handler-map.xml. A handler map may contain one or more <tag> elements in
the following format:

 <handler-map>
 <tag name="Integer"
 namespace="http://endeca.com/sample-schema/2010"
 class="com.endeca.content.assembler.tags.sample.IntegerTag"/>
 </handler-map>

As the Content Assembler processes the content XML that represents a landing page, it invokes the
appropriate tag handler for each element. In the sample content XML excerpt below, the Content
Assembler would call the evaluate() method of the com.endeca.content.assembler.tags.sam¬
ple.IntegerTag handler to process the <Integer> element. In this case, it returns a Property
object with an Integer value of 17.

 <ContentItem type="PageTemplate">
 <TemplateId>IntegerTagSample</TemplateId>
 <Name>Integer demo</Name>
 <Property name="humbug">
 <Integer xmlns="http://endeca.com/sample-schema/2010">17</Integer>
 </Property>
 </ContentItem>

Note: Tag handlers are loaded by the Content Assembler in classpath order. To avoid conflicts
between tag handlers, ensure that each element specified in a handler map has a unique QName
across your entire application.

Endeca ConfidentialEndeca® Content Assembler API Developer's Guide for Java

Extending the Content Assembler with Tag Handlers | Integrating a tag handler into the Content
Assembler

36

Standard tag handlers in the Content Assembler
The Content Assembler API package includes a handler map that defines the tag handlers associated
with the standard property types.

The handler map defines the following handlers for the Page Builder content types:

Tag handler implementationXML element

com.endeca.content.assem¬
bler.tags.BooleanTag

http://endeca.com/schema/con¬
tent/2008:Boolean

com.endeca.content.assembler.tags.Con¬
tentItemTag

http://endeca.com/schema/con¬
tent/2008:ContentItem

com.endeca.content.assembler.tags.Con¬
tentItemListTag

http://endeca.com/schema/con¬
tent/2008:ContentItemList

com.endeca.content.ene.tags.Dimension¬
ListTag

http://endeca.com/schema/content-
tags/2008:DimensionList

com.endeca.content.ene.tags.Naviga¬
tionRecordsTag

http://endeca.com/schema/content-
tags/2008:NavigationRecords

com.endeca.content.ene.tags.Naviga¬
tionRefinementsTag

http://endeca.com/schema/content-
tags/2008:NavigationRefinements

com.endeca.content.ene.tags.NavQuery¬
Tag

http://endeca.com/schema/content-
tags/2008:NavQuery

com.endeca.content.assem¬
bler.tags.PropertyTag

http://endeca.com/schema/con¬
tent/2008:Property

com.endeca.content.assem¬
bler.tags.RecordListTag

http://endeca.com/schema/con¬
tent/2008:RecordList

com.endeca.content.ene.tags.Record¬
QueryTag

http://endeca.com/schema/content-
tags/2008:RecordQuery

com.endeca.content.assem¬
bler.tags.StringTag

http://endeca.com/schema/con¬
tent/2008:String

com.endeca.content.ene.tags.Supple¬
mentTag

http://endeca.com/schema/content-
tags/2008:Supplement

About the sample tag handler
The Content Assembler API package includes a sample tag handler implementation.

The sample is located in ContentAssemblerAPIs/Java/version/reference/tag_handlers
and includes the following:

DescriptionFile

A sample tag handler that transforms the contents
of an <Integer> element into an Integer object.

endeca-content-version-samples.jar

Endeca® Content Assembler API Developer's Guide for JavaEndeca Confidential

37Extending the Content Assembler with Tag Handlers | About the sample tag handler

DescriptionFile

A sample page template that contains an <Inte¬
ger> property.

PageTemplate-IntegerTagSample.xml

The sample package is intended to demonstrate the integration points between tag handlers and the
Content Assembler. It does not include any rendering code for the reference application to make use
of the Integer property returned by the Content Assembler.

Note: The sample tag handler does not support Java 1.4.

Accessing the source and configuration files

You can unpack the sample tag handler JAR to access the source code and associated configuration
files. The JAR package includes:

DescriptionFile

The compiled IntegerTag handler.com/endeca/content/assembler/tags/sam¬
ple/IntegerTag.class

The handler map associating the IntegerTag
handler with the <Integer> element.

META-INF/tmgr/handler-map.xml

The schema map enabling Content Assembler
validation of the <Integer> element.

META-INF/tmgr/schema-map.xml

The schema for the <Integer> element within
the http://endeca.com/sample-
schema/2010 namespace.

META-INF/schema/sample.xsd

The source code for the IntegerTag handler.src/com/endeca/content/assem¬
bler/tags/sample/IntegerTag.java

Installing the sample tag handler
The sample tag handler is provided as a Java archive along with a simple page template that defines
an <Integer> property with a default value.

To install the sample tag handler:

1. Add the sample tag handler JAR to your application server's classpath.

The sample JAR includes the requisite handler map for registering the tag handler with the Content
Assembler. No additional configuration is necessary.

2. Restart your application server.

3. Copy the sample template to your local templates directory and upload it using the emgr_update
utility. For example:

emgr_update --action set_templates --host localhost:8006
--app_name My_application --dir /apps/endeca/templates/

The template does not define any editors associated with the integer property. The <Integer>
element is treated as pass-through XML.

Endeca ConfidentialEndeca® Content Assembler API Developer's Guide for Java

Extending the Content Assembler with Tag Handlers | About the sample tag handler38

About extending the Content Assembler to validate custom
XML

You can configure the Content Assembler to validate content XML, including custom XML.

Recall that you can enable XML validation in the ContentManager as follows:

 // create the global content manager
 ENEContentManager contentManager = new ENEContentManager();
 // enable runtime validation of XML
 contentManager.setValidating(true);

If validation is enabled, the Content Assembler performs schema validation as it processes the content
XML. By default, the Content Assembler validates any elements within the Endeca content XML
namespaces (http://endeca.com/schema/content/2008 and http://ende¬
ca.com/schema/content-tags/2008) that are defined in the associated schemas.

You can specify additional schemas that the Content Assembler uses to validate content XML by
creating a schema map. As with the handler map, the Content Assembler loads and merges all classpath
resources named META-INF/tmgr/schema-map.xml at initialization time. A schema map may
contain one or more <entry> elements in the following format:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE properties SYSTEM "http://java.sun.com/dtd/properties.dtd">
<properties>
 <entry key="http://endeca.com/sample-schema/2010">/META-INF/schema/sam¬
ple.xsd</entry>
</properties>

At runtime, the Content Assembler matches the namespace of each element in the content XML
against the namespaces defined in any META-INF/tmgr/schema-map.xml resource. If the associated
schema file defines the element being processed, the Content Assembler validates that element against
the schema.

Note: Validation can be useful in a testing environment for debugging purposes, particularly if
you are working with a community editor that generates custom XML. Because of the performance
impact of validating content XML, this option should never be used in production. XML validation
requires Java 1.5 or later, and is disabled by default.

Endeca® Content Assembler API Developer's Guide for JavaEndeca Confidential

39Extending the Content Assembler with Tag Handlers | About extending the Content Assembler to
validate custom XML

Index

C

cartridges
building 21
rendering code 22
using dynamic includes 27

class overview
com.endeca.content 10
com.endeca.content.assembler 32
com.endeca.content.ene 10
ContentContext object 33

community editors
scenarios 30

community tag handlers
scenarios 30

Content Assembler API for Java
required package imports 17

content items
and Content Assembler API 22

content properties
accessing 22

content query
executing 18
results 18

ContentManager class 17
ContentQuery class 18
custom results lists

additional considerations 25
custom trigger conditions

filtering based on rule properties 19
overview 19
using hidden dimensions 20
with rule zones 20
with user profiles 21

D

dynamic content 12

E

Endeca Content Assembler API
dynamic content 12
overview 9

Endeca Content Assembler reference application
cartridges 13
CSS 15
host, changing 14
overview 11
port, changing 14
skinning 15
templates 13

S

see-all links 26

T

tag handlers
about 29
handler maps 36
implementing 33
in life cycle of Content Assembler query 31
integrating with Content Assembler 35
invoking from other tag handlers 35
list of standard tag handlers 37
sample 37, 38

X

XML validation 17
extending 39

	Contents
	Preface
	About this guide
	Who should use this guide
	Conventions used in this guide
	Contacting Endeca Customer Support

	Introduction to the Content Assembler API
	Overview of the Content Assembler API
	API class model overview

	Overview of the Content Assembler reference application
	About handling dynamic content
	The reference application model for dynamic content
	List of reference application cartridges
	Connecting to a different MDEX Engine
	About skinning the reference application

	Working with the Content Assembler API
	Writing applications with the Content Assembler API
	Importing API packages
	Creating a ContentManager
	Executing a content query and retrieving the results
	About implementing custom trigger conditions
	About filtering landing pages based on rule properties
	About using hidden dimensions to trigger landing pages
	About using multiple rule zones for landing pages
	About using multiple user profiles for custom trigger conditions

	Building cartridges to render template-based content
	About working with content items
	Rendering section content
	About rendering customized navigation refinements
	About rendering customized results lists
	About customized results
	About rendering record lists
	Generating see-all links
	Using dynamic includes to render page content

	Extending the Content Assembler with Tag Handlers
	About tag handlers in the Content Assembler
	Scenarios for extending Page Builder and the Content Assembler
	Life cycle of a Content Assembler query
	Class overview
	Implementing the tag handler interface
	Resources managed by the ContentContext object
	About invoking other tag handlers

	Integrating a tag handler into the Content Assembler
	About working with handler maps
	Standard tag handlers in the Content Assembler

	About the sample tag handler
	Installing the sample tag handler

	About extending the Content Assembler to validate custom XML

	Index

