
Endeca® Content Assembler API
Developer's Guide for the RAD Toolkit for ASP.NET

Version 2.1.2 • December 2011





Contents

Preface.............................................................................................................................7
About this guide............................................................................................................................................7
Who should use this guide............................................................................................................................7
Conventions used in this guide.....................................................................................................................8
Contacting Endeca Customer Support.........................................................................................................8

Chapter 1: Introduction to the Content Assembler API..........................9
Overview of the Content Assembler API ......................................................................................................9

Content Assembler API components...................................................................................................10
Overview of the Content Assembler reference application.........................................................................11

About handling dynamic content.........................................................................................................11
The reference application model for dynamic content.........................................................................12
List of reference application cartridges................................................................................................13
Connecting to a different MDEX Engine..............................................................................................15
About skinning the reference application.............................................................................................15

Chapter 2: Working with the Content Assembler API...........................17
Writing applications with the Content Assembler API ................................................................................17

About using the Content Assembler with the RAD Toolkit for ASP.NET .............................................17
Creating a ContentNavigationDataSource control ..............................................................................17
About implementing custom trigger conditions....................................................................................18
About content XML validation..............................................................................................................21

Building cartridges to render template-based content................................................................................21
About working with content items........................................................................................................21
Using the Content Assembler reference application controls..............................................................22
Writing user controls to render dynamic content ................................................................................22
About rendering customized navigation refinements...........................................................................24
About rendering customized results lists.............................................................................................24
About customized results.....................................................................................................................25
About rendering record lists.................................................................................................................26
Generating see-all links.......................................................................................................................27
About the DynamicContentPlaceHolder..............................................................................................28
Using the DynamicContentPlaceHolder to render pages....................................................................28
Using the DynamicContentPlaceHolder to render cartridge content...................................................29

About using the RAD Toolkit for ASP.NET server controls with the Content Assembler.............................30
Using the Content Assembler API for programmatic querying ..................................................................32

Chapter 3: Extending the Content Assembler with Tag Handlers........35
About tag handlers in the Content Assembler............................................................................................35
Scenarios for extending Page Builder and the Content Assembler............................................................36
Life cycle of a Content Assembler query....................................................................................................37
Class overview............................................................................................................................................38
Implementing the tag handler interface.......................................................................................................39

Resources managed by the ContentContext object............................................................................39
About invoking other tag handlers.......................................................................................................40

Integrating a tag handler into the Content Assembler.................................................................................41
Registering a tag handler....................................................................................................................42
Standard tag handlers in the Content Assembler................................................................................42

About the sample tag handler.....................................................................................................................43
Installing the sample tag handler.........................................................................................................44

About extending the Content Assembler to validate custom XML..............................................................45

iii





Copyright and disclaimer

Product specifications are subject to change without notice and do not represent a commitment on
the part of Endeca Technologies, Inc. The software described in this document is furnished under a
license agreement.The software may not be reverse engineered, decompiled, or otherwise manipulated
for purposes of obtaining the source code. The software may be used or copied only in accordance
with the terms of the license agreement. It is against the law to copy the software on any medium
except as specifically allowed in the license agreement.

No part of this document may be reproduced or transmitted in any form or by any means, electronic
or mechanical, including photocopying and recording, for any purpose without the express written
permission of Endeca Technologies, Inc.

Copyright © 2003-2011 Endeca Technologies, Inc. All rights reserved. Printed in USA.

Portions of this document and the software are subject to third-party rights, including:

Corda PopChart® and Corda Builder™ Copyright © 1996-2005 Corda Technologies, Inc.

Outside In® Search Export Copyright © 2011 Oracle. All rights reserved.

Rosette® Linguistics Platform Copyright © 2000-2011 Basis Technology Corp. All rights reserved.

Teragram Language Identification Software Copyright © 1997-2005 Teragram Corporation. All rights
reserved.

Trademarks

Endeca, the Endeca logo, Guided Navigation, MDEX Engine, Find/Analyze/Understand, Guided
Summarization, Every Day Discovery, Find Analyze and Understand Information in Ways Never Before
Possible, Endeca Latitude, Endeca InFront, Endeca Profind, Endeca Navigation Engine, Don't Stop
at Search, and other Endeca product names referenced herein are registered trademarks or trademarks
of Endeca Technologies, Inc. in the United States and other jurisdictions. All other product names,
company names, marks, logos, and symbols are trademarks of their respective owners.

The software may be covered by one or more of the following patents: US Patent 7035864, US Patent
7062483, US Patent 7325201, US Patent 7428528, US Patent 7567957, US Patent 7617184, US
Patent 7856454, US Patent 7912823, US Patent 8005643, US Patent 8019752, US Patent 8024327,
US Patent 8051073, US Patent 8051084, Australian Standard Patent 2001268095, Republic of Korea
Patent 0797232, Chinese Patent for Invention CN10461159C, Hong Kong Patent HK1072114, European
Patent EP1459206, European Patent EP1502205B1, and other patents pending.

v





Preface

Endeca® InFront enables businesses to deliver targeted experiences for any customer, every time, in
any channel. Utilizing all underlying product data and content, businesses are able to influence customer
behavior regardless of where or how customers choose to engage — online, in-store, or on-the-go.
And with integrated analytics and agile business-user tools, InFront solutions help businesses adapt
to changing market needs, influence customer behavior across channels, and dynamically manage a
relevant and targeted experience for every customer, every time.

InFront Workbench with Experience Manager provides a single, flexible platform to create, deliver,
and manage content-rich, multichannel customer experiences. Experience Manager allows non-technical
users to control how, where, when, and what type of content is presented in response to any search,
category selection, or facet refinement.

At the core of InFront is the Endeca MDEX Engine,™ a hybrid search-analytical database specifically
designed for high-performance exploration and discovery. InFront Integrator provides a set of extensible
mechanisms to bring both structured data and unstructured content into the MDEX Engine from a
variety of source systems. InFront Assembler dynamically assembles content from any resource and
seamlessly combines it with results from the MDEX Engine.

These components — along with additional modules for SEO, Social, and Mobile channel support —
make up the core of Endeca InFront, a customer experience management platform focused on delivering
the most relevant, targeted, and optimized experience for every customer, at every step, across all
customer touch points.

About this guide
This guide describes the major tasks involved in developing an Endeca application using the Content
Assembler API for the RAD Toolkit for ASP.NET.

This guide assumes that you have read the Endeca Commerce Suite Getting Started Guide and that
you are familiar with Endeca’s terminology and basic concepts.

This guide covers only the features of the Content Assembler API for the RAD Toolkit for ASP.NET,
and is not a replacement for the available material documenting other Endeca products and features.
For a list of recommended reading, please refer to the section "Who should use this guide."

Who should use this guide
This guide is intended for developers who are building Endeca applications using the Content Assembler
API for the RAD Toolkit for ASP.NET.

If you are a new user of the Endeca Information Access Platform or the Endeca Commerce Suite and
you are not familiar with developing Endeca applications, Endeca recommends reading the following
guides prior to this one:

1. Endeca Commerce Suite Getting Started Guide
2. Endeca Basic Development Guide
3. Endeca Advanced Development Guide



4. Endeca RAD Toolkit for ASP.NET Developer's Guide
5. Page Builder Developer's Guide

If you are an existing user of the Endeca Information Access Platform or the Endeca Commerce Suite
and you are familiar with developing Endeca applications, Endeca recommends reading the following
guides prior to this one:

1. Endeca Commerce Suite Getting Started Guide
2. Endeca RAD Toolkit for ASP.NET Developer's Guide
3. Page Builder Developer's Guide

Remember:  All documentation is available on the Endeca Developer Network (EDeN) at
http://eden.endeca.com.

Conventions used in this guide
This guide uses the following typographical conventions:

Code examples, inline references to code elements, file names, and user input are set in monospace
font. In the case of long lines of code, or when inline monospace text occurs at the end of a line, the
following symbol is used to show that the content continues on to the next line: ¬

When copying and pasting such examples, ensure that any occurrences of the symbol and the
corresponding line break are deleted and any remaining space is closed up.

Contacting Endeca Customer Support
The Endeca Support Center provides registered users with important information regarding Endeca
software, implementation questions, product and solution help, training and professional services
consultation as well as overall news and updates from Endeca.

You can contact Endeca Standard Customer Support through the Support section of the Endeca
Developer Network (EDeN) at http://eden.endeca.com.

Endeca ConfidentialEndeca® Content Assembler API    Developer's Guide for the RAD Toolkit for ASP.NET

| Preface8

http://eden.endeca.com
http://eden.endeca.com


Chapter 1

Introduction to the Content Assembler API

This section provides an overview of the Content Assembler API for the RAD Toolkit for ASP.NET and
the associated reference application.

Overview of the Content Assembler API
The Content Assembler API for the RAD Toolkit for ASP.NET extends the Endeca RAD Toolkit for
ASP.NET to enable access to dynamic page content and is used in conjunction with other Endeca
APIs to build configurable Web applications.

The Content Assembler API is designed primarily for search and navigation queries and returns
dynamic content if any dynamic pages are triggered by those queries. The Content Assembler API
uses the RAD Toolkit for ASP.NET to query the MDEX Engine and provides convenient methods for
accessing the content tree that is returned as part of the query results. This content tree reflects the
page configuration created by a content administrator in the Page Builder.The tree may contain results
from additional queries executed by the Content Assembler that are used to populate page sections
based on the configuration returned for the initial query.

Because the Content Assembler uses classes from the RAD Toolkit for ASP.NET such as Naviga¬
tionDataSource and NavigationCommand, all queries to the MDEX Engine can be sent through



the Content Assembler API.You can use regular RAD Toolkit methods to access and process query
results. Note that only search or navigation queries that trigger a dynamic page return a content tree.

In addition, an Endeca application built with the Content Assembler API can also use the URL
Optimization API, available as part of the optional Search Engine Optimization Module. The URL
Optimization API also works with the RAD Toolkit for ASP.NET to enable developers to create
application links using directory-style URLs with embedded keyword metadata.

Applications built on top of the MDEX Engine version 6.1 or later can also leverage the MDEX API
through XQuery, available as part of the Advanced Query Module. There is no explicit support for
XQuery within the current version of the Content Assembler; that is, the Content Assembler does not
use the MDEX API through XQuery to process queries to the MDEX Engine. However, XQuery for
Endeca enables developers to extend MDEX Engine functionality through custom XQuery modules.

Content Assembler API components
The Content Assembler API for the RAD Toolkit for ASP.NET provides some additional classes and
controls for accessing and rendering dynamic page content.

The Content Assembler API includes the following additions to the RAD Toolkit for ASP.NET:

Endeca.Data.Content namespace

DescriptionClass or Interface

Defines a content item that represents the dynamic page content
configured in the Page Builder. Content items contain a

IContentItem

collection of IProperty objects that may include child content
items.

A list of content items.IContentItemList

Represents a property defined in the template and configured
by the content administrator.

IProperty

Endeca.Data.Content.Navigation namespace

DescriptionClass or Interface

Generates content item objects from a RAD Toolkit for ASP.NET
NavigationCommand and NavigationResult.

NavigationContentItemCreator

Used for rendering results lists from a NavigationRecords
property that has been configured in the Page Builder, including
custom sort, relevance ranking, and records-per-page behavior.

INavigationRecords

Used for rendering results lists from a RecordList property
that has been configured in the Page Builder, including
information to create "see-all" links.

IRecordListProperty

The ContentNavigationDataSource control

The Content Assembler API includes a new server control. The ContentNavigationDataSource
extends the NavigationDataSource control to enable access to dynamic page content.

Endeca ConfidentialEndeca® Content Assembler API    Developer's Guide for the RAD Toolkit for ASP.NET

Introduction to the Content Assembler API | Overview of the Content Assembler API10



Reference application controls

In addition, the following utility controls are included (along with full source code) in the Content
Assembler reference application:

• The DynamicContentPlaceHolder dynamically loads other user controls in order to render
template-based content.

• The IContentControl interface defines a content item-aware user control for rendering section
content.

Endeca.Data.Content.Assembler namespace

In addition to the components listed above, the classes in this namespace provide access to core
Content Assembler functionality that you can use to extend the Content Assembler. For more
information, see "Extending the Content Assembler with Tag Handlers" in this guide.

Overview of the Content Assembler reference application
The Content Assembler reference front-end application demonstrates best practices for using the
Content Assembler API to develop configurable applications.

The Content Assembler reference application and sample project is designed to show a typical approach
to building cartridges -- that is, templates and their associated rendering code -- and demonstrate how
the configuration specified by the content administrator in the Page Builder can affect the display of
content in the front-end application.The templates and application code are based on UI best practices
developed by Endeca specifically for Guided Navigation applications.

Unlike other Endeca reference applications, the Content Assembler reference application is not intended
as a general-purpose data navigator. In order to show realistic examples of cartridge development,
the reference application is closely tied to the sample wine data project that is provided with the Content
Assembler. For this reason, it is not intended as a generic preview application for the Page Builder in
Endeca Workbench.

The reference application may be used as a starting point for your own application code.You can
customize it to suit your data and business requirements and extend its functionality as needed.

About handling dynamic content
Your application should contain logic to iterate through the content tree returned by the Content
Assembler and pass the embedded content items to the appropriate code for rendering.

Recall that the structure of the templates you provide in the Page Builder determines the structure of
the content in the page configuration. Templates enable you to specify <ContentItem> or <Con¬
tentItemList> elements that serve as place holders for the content configured by the content
administrator. The diagram below shows an example of a fully configured dynamic page.

Endeca® Content Assembler API    Developer's Guide for the RAD Toolkit for ASP.NETEndeca Confidential

11Introduction to the Content Assembler API | Overview of the Content Assembler reference application



In this example, each orange dot represents a content item while the gray dots (such as Header and
LeftColumn) represent content item lists.You can use both content items and content item lists in your
templates, but generally only content items are actually rendered.

Because the template dictates the number and type of properties in a content item, you can write
rendering code that is closely tailored to handle the content items based on a particular template.
There are several ways that you can then match the content items in the content tree to the appropriate
rendering code, for example:

• inspecting the TemplateId of the content item
• using a naming convention based on the template id
• using a string property in the template that specifies the name of the class to use for rendering

content items based on the template

Content Assembler reference application for the RAD Toolkit for ASP.NET uses a mapping between
the template id and the rendering code, specified in the site's Web.config file.

The reference application model for dynamic content
In the Content Assembler reference application for the RAD Toolkit for ASP.NET, the DynamicCon¬
tentPlaceHolder manages the logic of finding the appropriate control to handle each content item.

The DynamicContentPlaceHolder is a data-bound control that automatically loads a user control
to handle nested cartridge content based on the template id and the mapping specified in the site's
Web.config file.

The following example from Web.config shows the format of the mapping that is used by the Dy¬
namicContentPlaceHolder between the template id and the path to the class designed to render
cartridges based on that template.

Endeca ConfidentialEndeca® Content Assembler API    Developer's Guide for the RAD Toolkit for ASP.NET

Introduction to the Content Assembler API | Overview of the Content Assembler reference application12



The class specified here is the class that is initially loaded to handle the content item. In some cases,
the content is then passed to another class for the actual rendering. See GuidedNavigation.ascx
and ResultsList.ascx for examples.

<configuration>
  <configSections>
<!- additional elements not shown in this example -->
    <sectionGroup name="content.config" 
      type="ContentRef.Config.ContentConfigSectionGroup">
      <section name="templateHandlers" 
        type="ContentRef.Config.TemplateHandlersSection"/>
    </sectionGroup>
  </configSections>
<!- additional elements not shown in this example -->
  <content.config>
    <templateHandlers>
      <add templateId="Breadcrumbs" handlerPath="~/Resources/ContentCon¬
trols/Navigation/Breadcrumbs.ascx" />
      <add templateId="GuidedNavigation" handlerPath="~/Resources/Content¬
Controls/Navigation/GuidedNavigation.ascx" />
      <add templateId="ImageBox" handlerPath="~/Resources/ContentControls/Ba¬
sics/Image.ascx" />
      <add templateId="ThreeRecordBox" handlerPath="~/Resources/ContentCon¬
trols/Spotlights/ThreeRecordBox.ascx" />
      <add templateId="TextBox" handlerPath="~/Resources/ContentControls/Ba¬
sics/Text.ascx" />
      <add templateId="SearchAdjustments" handlerPath="~/Resources/Content¬
Controls/Search/SearchAdjustments.ascx" />
      <add templateId="DimensionSearchResults" handlerPath="~/Resources/Con¬
tentControls/Search/DimensionSearchResults.ascx" />
      <add templateId="ImageBanner" handlerPath="~/Resources/ContentCon¬
trols/Basics/Image.ascx" />
      <add templateId="OneRecordBanner" handlerPath="~/Resources/Content¬
Controls/Spotlights/OneRecordBanner.ascx" />
      <add templateId="ResultsList" handlerPath="~/Resources/ContentCon¬
trols/Records/ResultsList.ascx" />
      <add templateId="TextBanner" handlerPath="~/Resources/ContentCon¬
trols/Basics/Text.ascx" />
      <add templateId="ThreeRecordBanner" handlerPath="~/Resources/Content¬
Controls/Spotlights/ThreeRecordBanner.ascx" />
      <add templateId="ImageSiteBanner" handlerPath="~/Resources/Content¬
Controls/Basics/Image.ascx" />
      <add templateId="SearchBar" handlerPath="~/Resources/ContentCon¬
trols/Search/SearchBar.ascx" />
      <add templateId="ThreeColumnNavigationPage" handlerPath="~/Re¬
sources/ContentControls/Pages/ThreeColumnNavigationPage.ascx" />
    </templateHandlers>
  </content.config>
<!- additional elements not shown in this example -->
</configuration>

Note that the same code may be used to handle more than one template, if the properties defined in
the templates are sufficiently similar.

List of reference application cartridges
The reference application includes sample cartridges that enable configuration of a variety of front-end
features.

Endeca® Content Assembler API    Developer's Guide for the RAD Toolkit for ASP.NETEndeca Confidential

13Introduction to the Content Assembler API | Overview of the Content Assembler reference application



For implementation details, refer to the templates (located in your reference application deployment
at [appDir]\config\page_builder_templates) and the rendering code (located in
C:\Endeca\ContentAssemblerAPIs\RAD Toolkit for
ASP.NET\version\reference\ContentAssemblerRefApp\Resources\ContentControls).

DescriptionRendering codeTemplate name

Displays the site banner image with an
optional link.

Basics\Image.ascxFullWidthContent-
ImageSiteBanner

Displays the search bar.Search\SearchBar.ascxFullWidthContent-
SearchBar

Displays dimension search results. Content
administrators can configure whether or not

Search\Dimension¬
SearchResults.ascx

MainColumnContent-
DimensionSearchResults

to display compound dimension search
results.

Displays an image banner with an optional
link.

Basics\Image.ascxMainColumnContent-
ImageBanner

Displays one record spotlight with an
image.

Spotlights\OneRecord¬
Banner.ascx

MainColumnContent-
OneRecordBanner

Displays search and navigation results in
a list view.

Records\Result¬
sList.ascx

MainColumnContent-
ResultsList

Displays search adjustment messaging
such as Did You Mean or spelling
correction.

Search\SearchAdjust¬
ments.ascx

MainColumnContent-
SearchAdjustments

Displays promotional text with a title and
an optional link.

Basics\Text.ascxMainColumnContent-
TextBanner

Displays a three record spotlight banner.Spotlights\ThreeRe¬
cordBanner.ascx

MainColumnContent-
ThreeRecordBanner

Displays breadcrumbs appropriate to the
current refinement state.

Navigation\Bread¬
crumbs.ascx

SidebarItem-
Breadcrumbs

Displays Endeca Guided Navigation with
configurable display of dimensions.

Nsvigation\GuidedNav¬
igation.ascx

SidebarItem-
GuidedNavigation

Displays an image with an optional link.Basics\Image.ascxSidebarItem-ImageBox

Displays promotional text with a title and
an optional link.

Basics\Text.ascxSidebarItem-TextBox

Displays a three record spotlight box.Spotlights\ThreeRe¬
cordBox.ascx

SidebarItem-
ThreeRecordBox

Note: Text.ascx in the reference application applies HTML escaping to the strings specified
by the content administrator in the Page Builder. If you want to allow content administrators to
enter HTML-formatted text in the Page Builder, create a separate cartridge with rendering code
that does not escape HTML strings.

The reference application also includes a page template named
PageTemplate-ThreeColumnNavigationPage, which controls the overall page content and
ThreeColumnNavigationPage.ascx (located in C:\Endeca\ContentAssemblerAPIs\RAD

Endeca ConfidentialEndeca® Content Assembler API    Developer's Guide for the RAD Toolkit for ASP.NET

Introduction to the Content Assembler API | Overview of the Content Assembler reference application14



Toolkit for
ASP.NET\2.0.0\reference\ContentAssemblerRefApp\Resources\ContentControls\Pages),
which controls the overall rendering of the page.

Connecting to a different MDEX Engine
By default the Content Assembler reference application attempts to connect to an MDEX Engine
running on localhost port 15000 (the default port in the sample wine deployment). If you are running
the MDEX Engine on a different host or port, you can update the configuration in the site's Web.config
file.

To specify a different MDEX Engine host or port:

1. Navigate to the location of the Content Assembler reference application. In a typical installation,
this is: C:\Endeca\ContentAssemblerAPIs\RAD Toolkit for
ASP.NET\2.0.0\reference\ContentAssemblerRefApp.

2. Open the Web.config file and locate the following section:

 <endeca>
<!- additional elements not shown in this example -->
  <servers>
   <clear/>
   <add name="Local" hostName="localhost" port="15000" certificatePath=""/>

      </servers>
 </endeca>

3. To change the host name of the MDEX Engine server, update the value of the hostName parameter.

4. To change the port of the MDEX Engine server, update the value of the port parameter.

5. Save and close the file.

6. Restart IIS.

About skinning the reference application
The styling of the reference application is implemented through external CSS style sheets, which can
be easily customized.

The style sheets are located in the reference/ContentAssemblerRefApp/css directory of your
Content Assembler API installation. In a typical installation, this is
C:\Endeca\ContentAssemblerAPIs\RAD Toolkit for
ASP.NET\version\reference\ContentAssemblerRefApp\css.

Each cartridge component (or type of component) in the reference application has a corresponding
style sheet that controls the appearance of that component.

Endeca® Content Assembler API    Developer's Guide for the RAD Toolkit for ASP.NETEndeca Confidential

15Introduction to the Content Assembler API | Overview of the Content Assembler reference application





Chapter 2

Working with the Content Assembler API

This section provides information on working with the Endeca Content Assembler API classes and
server controls.

Writing applications with the Content Assembler API
This section describes how to use the Content Assembler API for the RAD Toolkit for ASP.NET to
query the MDEX Engine and access dynamic page content.

About using the Content Assembler with the RAD Toolkit for ASP.NET
The Content Assembler API is used in conjunction with the RAD Toolkit for ASP.NET.

Use a ContentNavigationDataSource in place of a NavigationDataSource to access content
results from the Content Assembler in addition to MDEX Engine record data.

If you are using the RAD API for programmatic querying, you can access content items from the results
of a NavigationCommand. The Content Assembler is not intended for use with records detail,
dimension search, or metadata queries.

Creating a ContentNavigationDataSource control
You create and configure a ContentNavigationDataSource control in order to provide dynamic page
content and MDEX Engine records to other controls in your Web site.

The ContentNavigationDataSource provides the same design time functionality to populate the other
controls (e.g. user interface controls) with Endeca record properties as a NavigationDataSource,
with the addition of the content items returned by the Content Assembler.

Note:  For more information about configuring NavigationDataSource controls, see the Endeca
RAD Toolkit for ASP.NET Developer's Guide.

To create and configure an Endeca ContentNavigationDataSource control:

1. Open your Web site in Visual Studio.

2. In the Toolbox window, expand the Endeca RAD Toolkit tab.

3. Drag the ContentNavigationDataSource on to the Design tab of your Web page.



4. From the smart tag, check Preview Endeca data to populate other controls you add later with
representative data from the MDEX Engine.

5. From the smart tag, select Configure Data Source....

6. On the Choose Endeca server screen, specify the host and port on which the MDEX Engine is
running.

7. At this point, you can either click Finish to finish configuring the data source, or you can click Next
to continue through the wizard and configure optional data source parameters and specify optional
Analytics query information. Adding data source parameters makes them available to other controls
on the page.

8. In the Properties window of Visual Studio, modify the properties for the data source control if
necessary. Many of the properties are set when you run the Configure Data Source... wizard.

a) Specify a value for the ContentRuleZone property. This property is required and corresponds
to the zone that is specified on the template for the dynamic pages that you want to access with
this data source.

In most cases you only need one zone for all your landing pages. Using multiple zones can
enable you to provide different perspectives on the same navigation state within your application.

The code generated on the Source tab is similar to the following:

<cc1:ContentNavigationDataSource
     ID="ContentNavigationDS1" 
     runat="server"
     MdexPort="7900"
     MdexHostName="smith-690" 
     ContentRuleZone="NavigationPageZone"
     ContentValidation="false">
   <PermanentRefinementConfigs>
      <end:RefinementConfig DimensionValueId="3">
      </end:RefinementConfig>
   </PermanentRefinementConfigs>
</cc1:ContentNavigationDataSource>

About implementing custom trigger conditions
Because the Content Assembler API retrieves page content based on Endeca's dynamic business
rules functionality, pages can only be triggered on record-filtering dimension values, specific search
terms, a date range, or a single user profile identifier.

These limitations can make it difficult to handle certain scenarios such as the following:

• Search results pages. Dynamic pages are generally configured to display based on a navigation
trigger. This means however that the page for a particular location displays even if a user has
entered a search term on your Web site from that location. For example, you may have set up a
highly branded page to display as your site's home page (at location N=0) that does not include
any record results. This page displays even if a user has performed a search from the home page
location, unless a page has been configured specifically to trigger on that search term.

• Record offset pages. There is no simple way to explicitly trigger different content for the first page
of record results (at offset=0) and for subsequent pages, with different page configurations specified
by the content administrator in the Page Builder.

• Alternate views on the same navigation state. Use cases include A/B testing or toggling between
a product details view and a customer reviews view. By default, the Content Assembler API returns
a single content tree representing a dynamic page for any given navigation state or trigger condition.

Endeca ConfidentialEndeca® Content Assembler API    Developer's Guide for the RAD Toolkit for ASP.NET

Working with the Content Assembler API | Writing applications with the Content Assembler API18



There are various approaches that can be used to handle these use cases:

• Filtering landing pages based on rule properties
• Using hidden dimensions
• Using multiple rule zones
• Using multiple user profiles

Any of these strategies can be applied to the scenarios listed above. They can also be used to
implement other custom trigger conditions that you may require. Which approach you use depends
on the scenario you are trying to address and the specifics of your application. For guidance on selecting
the appropriate option (or combination of options) and assistance with implementation, contact your
Endeca representative.

About filtering landing pages based on rule properties

If you specify custom rule properties in a page template, you can use those properties to exclude
certain landing pages from consideration by the MDEX Engine on a per-query basis.

Filtering based on rule properties can enable your application to implement more fine-grained trigger
functionality than is available in the Page Builder.

Because the rule properties for a dynamic page are set based on the properties specified within the
<RuleInfo> element in the page template, the content administrator must have set up a page intended
for a particular trigger condition based on a template with the appropriate property.You can provide
information in the template id (for example, ThreeColumnPage-Search) or description to help
the content administrator select the appropriate template.

For the purposes of priority, pages based on templates with custom rule properties should be treated
as if they have more specific trigger conditions than the same page with no such properties. (In general,
pages with more specific triggering conditions should have higher priority than more generic pages.)

Because the Page Builder preview functionality cannot replicate your custom logic for filtering pages,
the preview status messages may be misleading when you exclude certain pages from consideration.
However, if your preview application includes the appropriate logic, the correct page displays in the
preview pane even if the status messages indicate that a different page fired.

Use case: Search results

You can enable more robust handling of search results pages by creating a template that specifies a
custom rule property with a key such as search_results and a value of true. The content
administrator can then create search results pages based on this template.You can add logic to your
application to consider these pages only for search queries (that is, queries that include Ntt and Ntk
parameters). If there are no search parameters present, you can augment the query with a filter such
as Nmrf=not(search_results:true) before you pass it to the MDEX Engine via the Content
Assembler API.

For more information about working with rule properties, see "Promoting records with dynamic business
rules" in the Advanced Development Guide.

About using hidden dimensions to trigger landing pages

You can create specialized dimensions in your application to expose additional trigger conditions.

This approach involves some additional work in your data pipeline to apply the dimension values to
the records. Once this is done, the content administrator can select the trigger condition in the Page
Builder using the same process as any navigation state.

Endeca® Content Assembler API    Developer's Guide for the RAD Toolkit for ASP.NETEndeca Confidential

19Working with the Content Assembler API | Writing applications with the Content Assembler API



Use case: Record offset

You can enable different landing pages based on record offset by creating a dimension such as Offset
with dimension values such as First Page and Next Pages. During the ITL process, apply both the
Offset > First Page and Offset > Next Pages dimension values to all records.The content administrator
can then set up pages for each trigger condition.

You can add logic to your application to augment the navigation filter (N parameter) based on the
record offset value (the No parameter).

For more information about working with dimensions, see the Forge Guide, Basic Development Guide,
and the Endeca Developer Studio Help.

About using multiple rule zones for landing pages

Using multiple zones can enable you to provide different perspectives on the same navigation state
within your application.

Because the zone for a page is set based on the zone attribute of the <RuleInfo> element in the
page template, the content administrator must have set up a page intended for a particular display
condition based on a template that uses the appropriate zone.You can provide information in the
template id or description to help the content administrator select the appropriate template for
each case.

Because the Page Builder preview functionality does not limit the query to a single zone, the preview
status messages may be misleading when you use multiple zones. However, if your preview application
includes the appropriate logic, the correct page should display in the preview pane even if the status
messages indicate that more than one page fired.

Also note that although the Content Assembler API only retrieves the content tree from a specific zone,
the results from all zones with triggered content are returned as part of the query response, so excessive
use of multiple zones may lead to a noticeable increase in the size of the query response.

Use case: A/B testing

You can enable A/B testing scenarios by setting up different zones such as Control, VariableA,
VariableB, and so on.You then create different templates for each zone, and the content administrator
can create pages based on the different templates.

Your front-end application can set the zone for the content query based on various conditions for which
you want to expose different views on the data.

For more information about setting up rule zones for landing pages, see the Page Builder Developer's
Guide.

About using multiple user profiles for custom trigger conditions

You can use the user profile functionality to provide different views on the same navigation states.

You can set up specialized user profiles to enable content administrators to set up different pages in
the Page Builder for different scenarios. However, if you are already using user profiles for other
purposes, this usage may interfere with other user profile triggers.

Use case: Different front-end sites backed by the same data

You can present different views on the same data by creating different user profiles in Developer
Studio such as SiteAUser and SiteBUser. In the Page Builder, the content administrator can set the
user profile to use for each page.

Endeca ConfidentialEndeca® Content Assembler API    Developer's Guide for the RAD Toolkit for ASP.NET

Working with the Content Assembler API | Writing applications with the Content Assembler API20



You can add logic to your application to add the appropriate user profile to the query by setting Navi¬
gationCommand.UserProfiles in the query.

For more information about setting up user profiles, see the Endeca Developer Studio Help. For more
information about working with user profiles, see "Implementing User Profiles" in the Advanced
Development Guide.

About content XML validation
You can enable XML validation of page configurations by setting the ContentValidation property of
the ContentNavigationDataSource to true.

Validation can be useful in a testing environment for debugging purposes, particularly if templates are
changing often. Because of the performance impact of validating content XML, this option should never
be used in production. XML validation is disabled in the ContentNavigationDataSource by default.

Building cartridges to render template-based content
Cartridges consist of cartridge templates and their associated rendering code, allowing you to separate
the structure of dynamic page content from its presentation.

Building an ASP.NET application based on cartridges involves the following tasks:

• Writing user controls to render content items based on each template.
• For controls that render content items that contain nested content items, adding logic to load the

appropriate user control to render the nested content.

The examples in this section use the DynamicContentPlaceHolder and the IContentControl
that are included as part of the reference application.You can adapt the entire reference application,
or simply use these controls as a starting point for writing applications to render dynamic page content
and extend them with further functionality as needed.

About working with content items
You can access the IContentItem that contains dynamic page content from a ContentNaviga¬
tionDataSource.

An IContentItem contains a KeyedCollection of IProperty objects. An IProperty can contain
any type of object returned by the MDEX Engine.The type of object depends on the property elements
specified in the template. Common object types include:

• bool

• string

• IContentItem

• IContentItemList

• INavigationRecords

• ReadOnlyCollection<Record>

Because the properties are defined by the template on which a content item is based, you can access
the content properties directly based on the property name defined in the template. Typically, you
access a specific property value using ContentItem.Properties["name"].Value and cast it to
the appropriate object type.

Endeca® Content Assembler API    Developer's Guide for the RAD Toolkit for ASP.NETEndeca Confidential

21Working with the Content Assembler API | Building cartridges to render template-based content



Using the Content Assembler reference application controls
The DynamicContentPlaceHolder and the IContentControl work together to allow you to
dynamically load user controls to render page content.

These controls are included as part of the reference application.You can use these controls as
components in your own custom applications and extend them with further functionality as needed.

To use the reference application controls in your application:

1. Open Windows explorer and navigate to the reference application directory. In a typical installation
this is C:\Endeca\ContentAssemblerAPIs\RAD Toolkit for
ASP.NET\version\reference\ContentAssemblerRefApp\

2. Navigate to the App_Code subdirectory.

3. Copy the following files to a directory of your choice within your Web site directory structure:

• ContentPathManager.cs

• DynamicContentPlaceHolder.cs

• IContentControl.cs

• Config\ContentConfigSectionGroup.cs

• Config\TemplateHandler.cs

• Config\TemplateHandlersSection.cs

When using a DynamicContentPlaceHolder, you must add the following line to your code:

<%@ Register TagPrefix="end" Namespace="ContentRef" %>

If you modify the code and change the namespace of your custom DynamicContentPlaceHolder,
update this line accordingly.

Writing user controls to render dynamic content
User controls designed to render template-based content must implement the IContentControl
interface. This allows a DynamicContentPlaceHolder to load this control and pass a reference to
the content item it should render.

To create user control to render dynamic content:

1. Add the following includes at the top of your code:

using System.Web.UI;
using Endeca.Data.Content;

2. Implement the IContentControl interface.
This example shows the code-behind for a basic implementation:

   public partial class ContentUserControl : UserControl, IContentControl

   {

      public IContentItem ContentItem
      {
         get
         {
            return contentItem;
         }

         set

Endeca ConfidentialEndeca® Content Assembler API    Developer's Guide for the RAD Toolkit for ASP.NET

Working with the Content Assembler API | Building cartridges to render template-based content22



         {
            contentItem = value;
         }
      }

      private IContentItem contentItem;
   }

3. In the in-line code, access the properties of the content item for rendering.

For example, if you have the following properties defined in a cartridge template:

<ContentTemplate xmlns="http://endeca.com/schema/content-template/2008"
 type="SidebarItem" id="TextBox">
<!-- additional elements not shown in this example -->

  <ContentItem>
    <Name>New Text Box</Name>
    <Property name="title">
      <String/>
    </Property>
    <Property name="body">
      <String/>
    </Property>
    <Property name="link_text">
      <String/>
    </Property>
    <Property name="link_href">
      <String/>
    </Property>
  </ContentItem>
<!-- additional elements not shown in this example -->

</ContentTemplate>

The code to render content items based on this template could look like the following:

<div class="TextBanner">
  <div class="Title"><%# (string)ContentItem.Properties["title"].Value 
%></div>
  <div class="Body"><%# (string)ContentItem.Properties["body"].Value 
%></div>
  <div class="Link">
    <a href="<%# (string)ContentItem.Properties["link_href"].Value %>">
      <%# (string)ContentItem.Properties["link_text"].Value %>
    </a>
  </div>
</div>

The following example shows a content item list property in a page template and how the corresponding
rendering code can display the results.

If the template (PageTemplate-ThreeColumnNavigationPage.xml) includes the following:

<ContentTemplate xmlns="http://endeca.com/schema/content-template/2008" 
type="PageTemplate" id="ThreeColumnNavigationPage">
<!-- additional elements deleted from this example -->

  <ContentItem>
    <Name>New Three-Column Navigation Page</Name>
    <Property name="left_column">
      <ContentItemList type="SidebarItem" />
    </Property>
<!-- additional elements deleted from this example -->

Endeca® Content Assembler API    Developer's Guide for the RAD Toolkit for ASP.NETEndeca Confidential

23Working with the Content Assembler API | Building cartridges to render template-based content



  </ContentItem>
<!-- additional elements deleted from this example -->
</ContentTemplate>

The associated rendering code (ThreeColumnNavigationPage.ascx) may look similar to the
following:

<div id="LeftColumn">
  <asp:Repeater runat="server" DataSource='<%#ContentItem.Proper¬
ties["left_column"].Value %>'>
    <ItemTemplate>
      <!-- Dynamically include rendering code for each content item in the
 list. -->
      <end:DynamicContentPlaceHolder runat="server" ContentItem='<%# Con¬
tainer.DataItem %>' />
    </ItemTemplate>
  </asp:Repeater>
</div>

About rendering customized navigation refinements
User controls designed to render customized navigation refinements must implement the IContent¬
Control interface to access the configured DimensionList values.

For example:

DimensionStatesResult refinements = (DimensionStatesResult)ContentItem.Prop¬
erties["refinements"].Value;

This code is equivalent to using the DimensionStatesResult from a ContentNavigationData¬
Source or a NavigationCommand, except that the dimensions returned reflect the content
administrator's configuration specified in the Page Builder.

Note:  If you have precedence rules defined in your application, they still apply to the customized
DimensionList. This means that if the landing page definition specifies certain dimensions
for display that should not display for that navigation state (whether it is due to precedence rules
or because it is not a valid refinement), those invalid dimensions are not included in the Dimen¬
sionList object.

The Content Assembler reference application provides a sample Endeca Guided Navigation cartridge
(including rendering code) that uses a navigation refinements property.

About rendering customized results lists
If you enable content administrators to customize the display of record results, the results object
returned by the Content Assembler API is different from the object returned by the RAD Toolkit for
ASP.NET.

Recall that you can specify a <NavigationRecords> property in a template with a <Navigation¬
RecordsEditor> that enables a content administrator to specify sort order, relevance ranking, and
the number of records to display per page.

Endeca ConfidentialEndeca® Content Assembler API    Developer's Guide for the RAD Toolkit for ASP.NET

Working with the Content Assembler API | Building cartridges to render template-based content24



To render the customized navigation results, retrieve the list of records from the navigation records
property, which is of type INavigationRecords. For example:

INavigationRecords navRecs =
   (INavigationRecords) ContentItem.Properties["navigation_records"].Value;
ReadOnlyCollection<Record> recs = navRecs.RecordsResult.Records;

This code is equivalent to using the RecordsResult from a ContentNavigationDataSource or
a NavigationCommand, except that the records returned reflect the content administrator's
configuration specified in the Page Builder.

You can also use members of the INavigationRecords object as a data source. The Content
Assembler reference application provides a sample cartridge for rendering results lists, including
sample code for using members of INavigationRecords as a data source. Refer to the
MainColumnContent-ResultsList.xml template and the ResultsSet.ascx and
RecordsControl.ascx classes for more details.

The INavigationRecords object also exposes the following members with values based on the
modified query that is used to retrieve the customized results:

• ActiveSorts

• AggregateRecordsResult

• AggregationKey

• AggregationKeys

• RecordsResult

• SortKeys

When working with customized results lists, you must use the INavigationRecords members,
rather than the NavigationResults from the main ContentNavigationDataSource.

For example, when rendering a pager component for a customized record list, you should use
navRecs.RecordsResult.RecordsPerPage because the content administrator may have specified
a different number of records per page from the main query (which is reflected in NavigationRe¬
sults.RecordsResult.RecordsPerPage).

For further details, refer to the Endeca API Reference for the Content Assembler API for the RAD
Toolkit for ASP.NET.

About customized results
The Content Assembler handles sort order, relevance ranking, and records-per-page customization
slightly differently than the RAD Toolkit for ASP.NET. See the sections below for details about how
the Content Assembler handles each configuration option.

The Content Assembler performs an additional query in order to retrieve the customized record results
from the MDEX Engine. If no custom behavior was specified in the Page Builder, no additional query
is made.

Sort order

The sort order specified by the content administrator in the Page Builder is used as a default. End
users of the Web application can override this setting if you enable a control for users to specify sort
order.

Endeca® Content Assembler API    Developer's Guide for the RAD Toolkit for ASP.NETEndeca Confidential

25Working with the Content Assembler API | Building cartridges to render template-based content



Relevance ranking

If the content administrator specifies both a sort order and a relevance ranking strategy for a single
landing page and the query that triggers the page contains a search, the Content Assembler passes
only the relevance ranking strategy on to the query to retrieve the customized navigation records. If
no search is present, both the sort order and the relevance ranking strategy are passed on to the
second query. In this case, the sort order overrides the relevance ranking.

The relevance ranking strategy specified by the content administrator for a landing page always
overrides any other relevance ranking setting (whether it is coded as default behavior in the application
or -- less typically -- specified by an end user).

Records per page

The NavigationRecordsEditor provides an optional interface for the content administrator to
specify the number of records to return per page for a given navigation state.

The case where a content administrator has configured a value for records per page and an end user
also specifies a value can lead to undefined and unexpected behaviors. For this reason, if you enable
configuration of records-per-page display in the Page Builder, it is not recommended that you enable
a control for end users to specify records per page in the application.

About rendering record lists
Record list properties represent the results of supplemental queries, for example, to populate promotions
or Content Spotlighting cartridges.

Properties containing record list values are returned as instances of IRecordListProperty, which
is a sub-interface of IProperty. Content administrators can designate either specific records or a
navigation query that returns records for spotlighting. An IRecordListProperty that is configured
to display specific featured records always returns a ReadOnlyCollection<Record>.

Note: When a cartridge is configured to display specific featured records and any of the specified
record IDs are invalid, the Content Assembler API for the RAD Toolkit for ASP.NET returns only
the records that have valid IDs.

An IRecordListProperty that is populated with a NavigationCommand returns either a ReadOn¬
lyCollection<Record> or a ReadOnlyCollection<AggregateRecord>, depending on whether
the NavigationCommand that triggered a landing page has the AggregationKey property set.

If you use rollup keys for aggregated records in your application, then you must check the type of list
being returned for any IRecordListProperty in one of two ways:

• Check the type of the record list IProperty.Value to determine whether it is a ReadOnlyCol¬
lection<AggregateRecord> or a ReadOnlyCollection<Record>.

• Cast the IProperty to an IRecordListProperty, and check the bool value of the Contain¬
sAggregateRecords property.

Based on the type of list returned, your application must handle records or aggregated records as
appropriate.

If you prefer to render records rather than aggregated records for a Content Spotlighting cartridge on
a page with a rollup key, you can render a representative record from the list of constituent records.
For example, for each aggregated record, the application can retrieve the first constituent record in
the list as follows:

  Record record = aggregateRecord.Records[0];

Endeca ConfidentialEndeca® Content Assembler API    Developer's Guide for the RAD Toolkit for ASP.NET

Working with the Content Assembler API | Building cartridges to render template-based content26



where aggregateRecord is the AggregateRecord object.

The Content Assembler reference application provides several sample spotlight cartridges that
demonstrate how to render a record list property.

Generating see-all links
You can provide front-end users with a "see-all" link to display the full results set of a navigation query
that was used to populate a spotlight cartridge.

The IRecordListProperty interface has additional public properties for the corresponding Navi¬
gationCommand object that aids in creating see-all links.

Note:  See-all links cannot be generated for record lists that are returned from record queries.
The NavigationCommand object is null when a record query is used to specify the record list.

In URL-based RAD.NET applications, the NavigationCommand object can be serialized using the
RAD.NET CommandSerialization class that uses the application CommandSerialization¬
Provider. The serialized command can then be used when forming the see-all link URL.

To create a see-all link:

1. Retrieve the record list IProperty object off an IContentItem.

IProperty property = contentItem.Properties["products"];
NavigationCommand navigationCommand = null;
if (property is IRecordListProperty) {

   //Cast the Property to IRecordListProperty
   IRecordListProperty recListProperty = (IRecordListProperty)property;

   navigationCommand = recListProperty.NavCommand;

}

2. Check that the NavigationCommand is not null, then use the CommandSerialization class
to serialize the command.

//Check that the navigationCommand is not null:

if (navigationCommand != null) {

   String serializedCommand = CommandSerialization.Serialize(navigation¬
Command);

}

The serialized command can then be used to generate the link URL.

If you plan to construct URLs using the UrlManager object from the RAD Toolkit for ASP.NET, please
refer to the RAD Toolkit for ASP.NET Developer's Guide for more information. To see an example
cartridge that uses a UrlManager, refer to the ThreeRecordBannerSpotlightControl.ascx.cs
file located in the Resources\UserControls directory of your Content Assembler reference
application installation directory.

Endeca® Content Assembler API    Developer's Guide for the RAD Toolkit for ASP.NETEndeca Confidential

27Working with the Content Assembler API | Building cartridges to render template-based content



About the DynamicContentPlaceHolder
You use a DynamicContentPlaceHolder when rendering dynamic pages or any cartridges that
have nested content items within them.

The DynamicContentPlaceHolder is a data-bound control that automatically loads a user control
to handle nested cartridge content. Using the DynamicContentPlaceHolder class to render a
dynamic page, you would have a generic page that includes a ContentNavigationDataSource
and a single DynamicContentPlaceHolder to load the code that handles the actual rendering of
the page.

Related Links
Using the DynamicContentPlaceHolder to render pages on page 28

Because a content administrator chooses which template drives a page, you need to be able
to dynamically load the appropriate code to render them.

Using the DynamicContentPlaceHolder to render cartridge content on page 29
When working with content items that contain nested content items, you can use a Dynamic¬
ContentPlaceHolder to load the appropriate user control to render the nested content.

Using the DynamicContentPlaceHolder to render pages
Because a content administrator chooses which template drives a page, you need to be able to
dynamically load the appropriate code to render them.

Typically, you will have a generic page that includes a ContentNavigationDataSource and a
single DynamicContentPlaceHolder to load the code that handles the actual rendering of the
page.

To render pages based on different templates:

1. Add and configure a ContentNavigationDataSource control.

2. Add a DynamicContentPlaceHolder and set the following properties:

ValueProperty

The ID of the ContentNavigationDataSource to use.DataSourceID

The string "ContentItem".DataMember

The following example shows a simple ContentNavigationDataSource and a DynamicContent¬
PlaceHolder that loads the appropriate code to render dynamic page content.

<%@ Register TagPrefix="end" Namespace="ContentRef" %>

   <end:DynamicContentPlaceHolder
     ID="content"
     runat="server"
     DataSourceID="dsNav"
     DataMember="ContentItem" />

   <end:ContentNavigationDataSource 
      ID="dsNav" 
      runat="server"  
      MdexHostName='<%$ EndecaConfig:Servers.Servers["Local"].HostName %>'

Endeca ConfidentialEndeca® Content Assembler API    Developer's Guide for the RAD Toolkit for ASP.NET

Working with the Content Assembler API | Building cartridges to render template-based content28



      MdexPort='<%$ EndecaConfig:Servers.Servers["Local"].Port %>'
      ContentRuleZone="NavigationPageZone" 
      EnableExposeAllRefinements="true" />

Related Links
Using the DynamicContentPlaceHolder to render cartridge content on page 29

When working with content items that contain nested content items, you can use a Dynamic¬
ContentPlaceHolder to load the appropriate user control to render the nested content.

About the DynamicContentPlaceHolder on page 28
You use a DynamicContentPlaceHolder when rendering dynamic pages or any cartridges
that have nested content items within them.

Using the DynamicContentPlaceHolder to render cartridge content
When working with content items that contain nested content items, you can use a DynamicContent¬
PlaceHolder to load the appropriate user control to render the nested content.

The DynamicContentPlaceHolder loads the control to render cartridges in the same way as it
loads the appropriate control to render dynamic pages. The only difference is that you do not need to
specify a DataSourceID or DataMember, as you are setting the data source via the ContentItem
property.

To use the DynamicContentPlaceHolder to render cartridge content:

1. Add a DynamicContentPlaceHolder and set the following property:

ValueProperty

The ContentItem object that the loaded control should
render.

ContentItem

2. Repeat the previous step for each nested content item that the current content item can contain.
For example, if your template defines sections called LeftColumn, CenterColumn, and Right¬
Column, you would add three DynamicContentPlaceHolder controls, one to handle each
nested content item.

The following example shows a page template and the corresponding user control that uses a Dynam¬
icContentPlaceHolder to render cartridge content:

If the template (PageTemplate-ThreeColumnNavigationPage.xml) includes the following:

<ContentTemplate xmlns="http://endeca.com/schema/content-template/2008" 
type="PageTemplate" id="ThreeColumnNavigationPage">
<!-- additional elements removed from this example -->

  <ContentItem>
    <Name>New Three-Column Navigation Page</Name>

<!-- additional properties removed from this example -->
    <Property name="left_column">
      <ContentItemList type="SidebarItem" />
    </Property>
    <Property name="center_column">
      <ContentItemList type="MainColumnContent" />
    </Property>
    <Property name="right_column">
      <ContentItemList type="SidebarItem" />

Endeca® Content Assembler API    Developer's Guide for the RAD Toolkit for ASP.NETEndeca Confidential

29Working with the Content Assembler API | Building cartridges to render template-based content



    </Property>
<!-- additional elements removed from this example -->

</ContentTemplate>

The code for the associated user control (ThreeColumnNavigationPage.ascx) may look similar
to the following:

<%@ Register TagPrefix="end" Namespace="ContentRef" %>

<div class="LeftColumn">
  <asp:Repeater runat="server" DataSource='<%#ContentItem.Proper¬
ties["left_column"].Value %>'>
    <ItemTemplate>
       <end:DynamicContentPlaceHolder runat="server" ContentItem='<%# Con¬
tainer.DataItem %>' />
    </ItemTemplate>
  </asp:Repeater>
</div>

<div id="CenterColumn">
    <div id="CenterContent">
    <asp:Repeater runat="server" DataSource='<%#ContentItem.Properties["cen¬
ter_column"].Value %>'>
      <ItemTemplate>
        <end:DynamicContentPlaceHolder runat="server" ContentItem='<%# 
Container.DataItem %>' />
      </ItemTemplate>
  </asp:Repeater>
</div>

<div id="RightColumn">
    <div id="CenterContent">
    <asp:Repeater runat="server" DataSource='<%#ContentItem.Proper¬
ties["right_column"].Value %>'>
      <ItemTemplate>
        <end:DynamicContentPlaceHolder runat="server" ContentItem='<%# 
Container.DataItem %>' />
      </ItemTemplate>
  </asp:Repeater>
</div>

Related Links
Using the DynamicContentPlaceHolder to render pages on page 28

Because a content administrator chooses which template drives a page, you need to be able
to dynamically load the appropriate code to render them.

About the DynamicContentPlaceHolder on page 28
You use a DynamicContentPlaceHolder when rendering dynamic pages or any cartridges
that have nested content items within them.

About using the RAD Toolkit for ASP.NET server controls
with the Content Assembler

If you prefer not to use user controls similar to those in the Content Assembler reference application
to render certain Endeca features, you can use the RAD Toolkit for ASP.NET server controls. In this

Endeca ConfidentialEndeca® Content Assembler API    Developer's Guide for the RAD Toolkit for ASP.NET

Working with the Content Assembler API | About using the RAD Toolkit for ASP.NET server controls
with the Content Assembler

30



case, the way in which the data sources are passed to the server controls is slightly different from the
way it is normally done in the RAD Toolkit for ASP.NET.

To use server controls to render features on landing pages that may have customized navigation
refinements or results lists, you can use a content item member as a data source. The DataSource
is used to render the feature, while the NavigationDataSourceID represents the overall navigation
state for the page to generate URLs for any follow-on queries.

Guided Navigation

The following is a typical example in the RAD Toolkit for ASP.NET:

<cc1:GuidedNavigation
  ID="GuidedNavigation1"
  runat="server" 
  DataSourceID="dsNav">
</cc1:GuidedNavigation>

The same example with the Content Assembler:

<cc1:GuidedNavigation 
   ID="guidedNavigationServerControl" 
   runat="server" 
   DataSource='<%# new object[] {ContentItem.Properties["refinements"].Value}
 %>'
   NavigationDataSourceID="dsNav">
   <DimensionStateGroupTemplate></DimensionStateGroupTemplate>
</cc1:GuidedNavigation>

Note: The default behavior of the server control renders dimensions arranged by dimension
groups. By specifying an empty DimensionStateGroupTemplate you suppress the display
of dimension group names in cases where a content administrator may have customized the
display of dimensions.

Breadcrumbs

Breadcrumbs server controls work with the Content Assembler without any changes, as in this example:

<cc1:Breadcrumbs
   ID="breadcrumbsServerControl" runat="server"
   DataSourceID="dsNav"
   RemoveImageUrl="<%~/images/x.gif%>" />

Pager

The following is a typical example in the RAD Toolkit for ASP.NET:

<cc1:Pager 
   ID="topPaging1"
   runat="server"
   DataSourceID="dsNav" />

The same example with the Content Assembler:

<cc1:Pager 
   ID="topPaging1"
   runat="server"
   ItemsType='<%# getPagerItemsType() %>'

Endeca® Content Assembler API    Developer's Guide for the RAD Toolkit for ASP.NETEndeca Confidential

31Working with the Content Assembler API | About using the RAD Toolkit for ASP.NET server controls
with the Content Assembler



   DataSource='<%# getRecordsResult() %>'
   NavigationDataSourceID="dsNav" />

In addition, the following two methods need to be defined in the code behind:

protected PagerItemsType getPagerItemsType()
      {
         INavigationRecords records = 
(INavigationRecords)ContentItem.Properties["navigation_records"].Value;
         if (!String.IsNullOrEmpty(records.AggregationKey))
         {
            return PagerItemsType.AggregateRecords;
         }
         return PagerItemsType.Records;
      }

      protected object getRecordsResult()
      {
         INavigationRecords records = (INavigationRecords)ContentItem.Prop¬
erties["navigation_records"].Value;
         object result = records.RecordsResult;
         if (!String.IsNullOrEmpty(records.AggregationKey))
         {
            result = records.AggregateRecordsResult;
         }
         return new object[] { result };
      }

Tag cloud

The following is a typical example in the RAD Toolkit for ASP.NET:

<cc1:TagCloud
  ID="tagcloud"
  runat="server"
  DataSourceID="dsNav"
  DimensionId="8">
</cc1:TagCloud>

The same example with the Content Assembler:

<cc1:TagCloud
  ID="tagcloud"
  runat="server"
  NavigationDataSourceID="dsNav"
  DataSource='<%# new object[] {ContentItem.Properties["refinements"].Value}
 %>'
  DimensionId="8">
</cc1:TagCloud>

Using the Content Assembler API for programmatic
querying

This example code connects to an MDEX Engine, creates and executes a NavigationCommand,
and retrieves the root content item for a query.

To retrieve content results from a NavigationCommand:

Endeca ConfidentialEndeca® Content Assembler API    Developer's Guide for the RAD Toolkit for ASP.NET

Working with the Content Assembler API | Using the Content Assembler API for programmatic querying32



1. Add the following includes at the top of your code:

using System.Collections.ObjectModel;
using System.Collections.Generic;
using Endeca.Data;
using Endeca.Data.Provider;
using Endeca.Data.Provider.PresentationApi;
using Endeca.Data.Content;
using Endeca.Data.Content.Navigation;

2. Create and execute a NavigationCommand.

// A PresentationApiConnection is an EndecaConnection that uses 
// the Presentation API as a transport.
// Future EndecaConnections can use XQuery or other transport mechanisms
PresentationApiConnection conn =
  new PresentationApiConnection("localhost", 8000);

// A NavigationCommand represents a query to the engine that requests 
// everything except record/aggregate record details and single/compound
// dimension search
NavigationCommand cmd = new NavigationCommand(conn);

// ... additional code not shown to set Navigation Command values ...

// NavigationResult contains Records, AggregateRecords, Dimensions, 
// Breadcrumbs, Analytics, BusinessRules, MetaData, and Supplemental 
// Objects.
NavigationResult res = cmd.Execute();

3. Get the root content item.

IContentItem contentItem = NavigationContentItemCreator.Create(cmd, 
  res, "NavigationPageZone", false)

In the Create() method, the third parameter is the content rule zone and the final parameter
controls content XML validation. Validation should never be enabled in a production environment.

For more details on using the RAD API for programmatic querying, see the Endeca RAD Toolkit for
ASP.NET Developer's Guide.

Endeca® Content Assembler API    Developer's Guide for the RAD Toolkit for ASP.NETEndeca Confidential

33Working with the Content Assembler API | Using the Content Assembler API for programmatic querying





Chapter 3

Extending the Content Assembler with Tag
Handlers

The Content Assembler uses tag handlers to transform content XML into an object representation of
a dynamic page.Tag handlers can be written by the Endeca community (including Endeca Professional
Services, partners, or customers) in order to customize or extend the Content Assembler to process
custom content XML and integrate with third-party systems.

About tag handlers in the Content Assembler
A tag handler enables you to define your own processing logic for the content that is configured by
content administrators in Page Builder.

When your application queries the MDEX Engine using the Content Assembler API, the corresponding
landing page configuration is returned as part of the response in the form of content XML.The Content
Assembler processes this XML, executing additional queries as needed, and returns a tree of ICon¬
tentItem objects and their associated properties.

Each of the standard property types in Page Builder is represented by an element in XML, such as
<String>, <RecordList>, or <ContentItem>. For each of the standard types, the Content
Assembler has a standard tag handler associated with that element that processes the element into
an object.

You can take advantage of the same mechanism to write a tag handler that processes a specific
element in the content XML and returns objects to the application. Community tag handlers process
elements outside of the Endeca content XML namespaces (that is, http://endeca.com/schema/con¬
tent/2008 and http://endeca.com/schema/content-tags/2008). These elements may be
either pass-through XML defined in the template or custom XML generated by a community editor.
For more information on pass-through XML and community editors, refer to the Page Builder Developer's
Guide.

The combination of custom XML and a community tag handler enables you to extend the query
processing logic in the Content Assembler — for example, by executing additional queries against the
MDEX Engine, or interfacing with a third-party system to return data — before returning the results to
the application. Use cases for community tag handlers include the following:

• Given some XML that specifies a rollup key for a navigation query or aggregated record query,
pass this key with the query to the MDEX Engine to return records for Content Spotlighting.

• Implement A/B testing for Content Spotlighting by executing different queries to the MDEX Engine
for identical requests.The results of the queries are then transparently passed on to the applicaton.



• Query a third-party source for information to display on a product detail page. Examples include
RSS feeds, content stored in another repository (such as a CMS), inventory information, or a
recommendation engine.

It is not necessary to implement a tag handler to use custom XML. If no tag handler is registered to
handle a particular element, the Content Assembler passes the XML through to the application as a
string, which can then be parsed into XML and handled by your rendering logic. A tag handler
provides a mechanism to encapsulate any processing you need to do for a particular element and
abstract this processing from the rendering code.

Scenarios for extending Page Builder and the Content
Assembler

You can use either community editors on their own, community tag handlers on their own, or both of
them in combination to extend the functionality of Page Builder.

Following are some common scenarios and their implications for community editors or tag handlers:

Use community tag handler?Use community editor?Scenario

NoNoInclude application-specific
information in the template as a
pass-through XML property.

The Content Assembler returns
the XML to the rendering code
for your application.

If content administrators do not
need to modify the configuration
of a property on a per-page
basis, you do not need to write a
specialized editor.

Example: Information that the
application uses to render the
cartridge, but is of no interest to
the content administrator.

YesNoInclude external configuration in
the template as a pass-through
XML property.

The Content Assembler uses the
information contained in the XML

If content administrators do not
need to modify the content of a

to query a third-party system, andproperty on a per-page basis, youExample: Hard-coded
configuration for a third-party returns the results to the

rendering code.
do not need to write a specialized
editor.system that applies to any page

that uses this template.

NoYesProvide a new interface for
content administrators to

The community editor outputs
standard Endeca content XML,

This editor is bound to a standard
property. (In the example, the

configure existing Page Builder
properties.

which is processed by theeditor modifies a <RecordList>
property.)Example: A variation of the

record selector dialog box that
standard tag handler for record
lists. No additional work is
necessary.enables content administrators

to browse for featured records,
instead of entering a record ID.

Endeca ConfidentialEndeca® Content Assembler API    Developer's Guide for the RAD Toolkit for ASP.NET

Extending the Content Assembler with Tag Handlers |  Scenarios for extending Page Builder and the
Content Assembler

36



Use community tag handler?Use community editor?Scenario

There are two options:YesProvide an interface to configure
functionality that is not supported
by Page Builder out-of-the-box.

NoThe editor provides a specialized
interface for selecting data to

The Content Assembler returns
the XML to the application's

populate a cartridge. The
configuration is saved as a
custom XML property.

Example: An editor that enables
content administrators to specify
reviews to display for a particular
navigation state, including

rendering code, which can then
fetch the reviews from the CMS
where they are stored.

number of reviews, sort order,
and additional filtering options. Yes (preferred)

The Content Assembler fetches
the reviews from the CMS before
returning the content results to
the rendering code for your
application.

Similarly, you can use a tag
handler and community editor to
send customized queries to an
MDEX Engine and return results
to the rendering code.

Life cycle of a Content Assembler query
This section describes the sequence of events that occur when the Content Assembler processes a
query.

The following sequence of events occurs when the query is executed:

1. The Content Assembler sends the query to the MDEX Engine and retrieves the ContentResource
from the query results.

This is the content XML that represents the landing page configuration created in Page Builder.
The content XML is retrieved from the properties of the first rule returned in the zone that you
specified when you configured the ContentNavigationDataSource.

2. The Content Assembler calls ContentAssembler.Assemble().

This method creates an XmlReader that reads the ContentResource, then calls ContentAssem¬
bler.Evaluate(), passing in a ContentContext that contains the relevant resources for the
current query and the XmlReader that provides access to the content XML.

3. ContentAssembler.Evaluate() calls the Evaluate() method of the appropriate tag handler
(in the case of the root element, this is Endeca.Data.Content.Assembler.TagHandlers.Con¬
tentItemTagHandler).

This method takes two arguments: the current ContentContext, and an XmlReader positioned
at the element to be evaluated.

4. The tag handler marshals the XML element into an object.

Endeca® Content Assembler API    Developer's Guide for the RAD Toolkit for ASP.NETEndeca Confidential

37Extending the Content Assembler with Tag Handlers | Life cycle of a Content Assembler query



As part of the Evaluate() method, the tag handler may execute additional queries against an
MDEX Engine or a third-party system. The Content Assembler also provides a mechanism for a
tag handler to invoke additional tag handlers.

For example, ContentItemTagHandler invokes PropertyTagHandler, which in turn invokes
tag handlers for specific property types to populate the property values.

When the Content Assembler has finished processing the content XML, it has transformed the XML
tree into a tree of IContentItem objects with properties and nested IContentItem objects. This
object tree is then returned to the application for rendering.

Class overview
The Endeca.Data.Content.Assembler namespace contains the classes and interfaces that make
up the core Content Assembler implementation and enable extension of Content Assembler functionality
through tag handlers.

DescriptionClass

Used to transform an IContentResource into an object
model representation of its content item.

ContentAssembler

Provides access to resources that are shared across tag
handlers.

ContentContext

The byte representation of the content XML returned in the
MDEX query results.

IContentResource

The ContentAssembler creates an XmlReader to read
an IContentResource in order to enable tag handlers to
process the content XML.

Used internally to fetch an IContentResource object.IContentResourceLocator

Transforms a specific element in the content XML into an
object.

ITagHandler

The Content Assembler ships with several standard tag
handlers.You can implement your own tag handlers to
process custom XML elements.

Related Links
Resources managed by the ContentContext object on page 39

The ContentContext object provides access to resources that are shared across tag
handlers.

Endeca ConfidentialEndeca® Content Assembler API    Developer's Guide for the RAD Toolkit for ASP.NET

Extending the Content Assembler with Tag Handlers | Class overview38



Implementing the tag handler interface
A tag handler takes an element in the content XML and transforms it into an object. In the typical use
case, you write a tag handler to return the value of a particular property.

Your tag handler can do as much or as little processing as desired during the course of marshaling
XML into objects, including executing one or more queries to an MDEX Engine or another third-party
system.

Important:

All tag handlers are instantiated once, then reused for each element that the Content Assembler
processes. Because multiple invocations of a tag handler may be executed concurrently, tag
handlers must be reentrant.

For performance reasons, tag handlers should not contain large blocks of synchronized code.

To implement the tag handler interface:

1. Add the the following includes at the top of your code:

using System;
using System.Xml;
using Endeca.Data.Content;
using Endeca.Data.Content.Assembler;

2. Specify the element name and namespace that the tag handler is intended to process by defining
the appropriate properties. For example:

  public string TagName { get { return "Integer"; } }
  public string TagNamespace { get { return "http://endeca.com/sample-
schema/2010"; } }

Note: To avoid conflicts between tag handlers, ensure that each tag handler processes an
element that has a unique qualified name.

3. Implement the Evaluate() method.

This method takes an XmlReader positioned at the XML element to process and a ContentCon¬
text, and returns an Object to the tag handler that invoked it (typically, a PropertyTagHandler).

Resources managed by the ContentContext object
The ContentContext object provides access to resources that are shared across tag handlers.

A new ContentContext is instantiated for each search or navigation query executed by a Content¬
NavigationDataSource. The ContentContext class includes the following properties:

DescriptionProperty

A reference to the active ContentAssembler.ContentAssembler

You can use the ContentAssembler to invoke additional
tag handlers by calling its Evaluate() method.

Endeca® Content Assembler API    Developer's Guide for the RAD Toolkit for ASP.NETEndeca Confidential

39Extending the Content Assembler with Tag Handlers | Implementing the tag handler interface



DescriptionProperty

Returns the name of the IProperty on which processing
has most recently begun.

LocalPropertyName

This property is set by the PropertyTagHandler when it
begins to process a <Property> element.

A reference to the stack of IContentItem objects currently
being assembled.

ContentItems

When the ContentItemTagHandler begins to process a
<ContentItem> element, it adds the IContentItem to
this stack. The tag handler pops the IContentItem from
the stack when it is done.

Note:  Other tag handlers should not modify the content
item stack.

A reference to the active ContentResourceLocator.ContentResourceLocator

Typically, you do not need to use the ContentResource¬
Locator unless you want to retrieve a ContentResource
from a zone other than the one that you specified on the
ContentNavigationDataSource.You can pass a Con¬
tentResource to the ContentAssembler.Assemble()
method to transform the content XML into an IContentItem
object (which may contain other IContentItem objects).

Provides access to the ContentResource objects being
assembled.ContentResources or

ContentResourceStack Typically, there is only one ContentResource for any given
query, and you do not need to access it directly. Rather, tag
handlers work on the XML that is passed through the Eval¬
uate() method.

Related Links
Class overview on page 38

The Endeca.Data.Content.Assembler namespace contains the classes and interfaces
that make up the core Content Assembler implementation and enable extension of Content
Assembler functionality through tag handlers.

About invoking other tag handlers
You can write tag handlers that invoke other tag handlers (either standard tag handlers or other
community tag handlers).

Endeca ConfidentialEndeca® Content Assembler API    Developer's Guide for the RAD Toolkit for ASP.NET

Extending the Content Assembler with Tag Handlers | Implementing the tag handler interface40



You invoke another tag handler by calling ContentAssembler.Evaluate() and passing in an
XmlReader positioned at the element to be processed, along with a reference to the current Content¬
Context.

  return pContext.ContentAssembler.Evaluate( pContext, pReader );

The ContentAssembler.Evaluate() method identifies the appropriate tag handler for the element,
if one exists, and calls its Evaluate() method.

It is not necessary to invoke other tag handlers from within your own tag handler, even if you have
nested elements within your custom XML.There are two cases in which this may be especially useful.

Multiple combinations of valid child elements

You may have optional elements or different possible combinations of elements within your custom
XML. In such a case, rather than adding logic to check for each element that your tag handler may
have to process, you can write separate tag handlers for each possible child element. The parent tag
handler can simply iterate through the child elements and call ContentAssembler.Evaluate()
on each child.

For example, the standard RecordList element can contain either a RecordQuery (for featured
records) or a NavQuery (for dynamic records). The RecordListTagHandler invokes either the
RecordQueryTagHandler or the NavQueryTagHandler to perform a query against the MDEX
Engine that returns the records for a Content Spotlighting cartridge.

Same element nested under more than one parent

Your use of custom XML within your application may produce a structure similar the following:

<Property>
  <TagA>
    <TagC/>
  </TagA>
</Property>
<Property>
  <TagB>
    <TagC/>
  </TagB>
</Property>

In this case, you can write separate tag handlers for <TagA> and <TagB> that each invoke a third
handler for <TagC>. This ensures consistent handling of <TagC> regardless of its parent element.

Integrating a tag handler into the Content Assembler
The Content Assembler API provides a simple interface for registering tag handlers.

This procedure assumes that you have already written a tag handler class that implements Endeca.Da¬
ta.Content.Assembler.ITagHandler.

To integrate a tag handler with the Content Assembler for the RAD Toolkit for ASP.NET:

1. Register your tag handler by updating your application configuration.You can specify the
configuration in the app.config or Web.config file for your application.

2. Package the tag handler as an assembly (DLL).

3. Install the tag handler by copying the assembly into the \bin directory of your application.

Endeca® Content Assembler API    Developer's Guide for the RAD Toolkit for ASP.NETEndeca Confidential

41Extending the Content Assembler with Tag Handlers | Integrating a tag handler into the Content
Assembler



4. Restart IIS.

In order for the Content Assembler to make use of the new tag handler, the content XML must contain
the element that the tag handler is intended to process.You can achieve this in one of the following
ways:

• Specify pass-through XML in a page template or cartridge template.
• Specify a custom property type in a template and bind it to an editor that generates custom XML.

Registering a tag handler
You register a tag handler by specifying it in your application's app.config or Web.config file.

To register a tag handler:

1. Open the app.config or Web.config file for your application.

2. Define the tag handler configuration section as in the following example:

<configSections>
  <sectionGroup name="endeca.content" 
    type="Endeca.Data.Content.Configuration.EndecaContentSectionGroup,
    Endeca.Data.Content, Version=2.1.0.0, Culture=neutral, 
    PublicKeyToken=6d02be8724ca751c" >
    <section name="tagHandlers" 
      type="Endeca.Data.Content.Configuration.TagHandlersSection, 
      Endeca.Data.Content, Version=2.1.0.0, Culture=neutral, 
      PublicKeyToken=6d02be8724ca751c" />
  </sectionGroup>
</configSections>

3. Specify the assembly-qualified type name for each tag handler as in the following example:

<endeca.content>
  <tagHandlers>
    <add handlerType="Endeca.Data.Content.Sample.IntegerTagHandler, 
      Endeca.Data.Content.Sample" />
  </tagHandlers>
</endeca.content> 

As the Content Assembler processes the content XML that represents a landing page, it invokes the
appropriate tag handler for each element. In the sample content XML excerpt below, the Content
Assembler would call the Evaluate() method of the Endeca.Data.Content.Sample.Inte¬
gerTagHandler handler to process the <Integer> element. In this case, it returns an IProperty
object with an int value of 17.

  <ContentItem type="PageTemplate">
    <TemplateId>IntegerTagSample</TemplateId>
    <Name>Integer demo</Name>
    <Property name="humbug">
      <Integer xmlns="http://endeca.com/sample-schema/2010">17</Integer>
    </Property>
  </ContentItem>

Standard tag handlers in the Content Assembler
The Content Assembler API package includes several tag handlers associated with the standard
property types.

Endeca ConfidentialEndeca® Content Assembler API    Developer's Guide for the RAD Toolkit for ASP.NET

Extending the Content Assembler with Tag Handlers | Integrating a tag handler into the Content
Assembler

42



The following handlers are provided for the standard Page Builder content types:

Tag handler implementationXML element

Endeca.Data.Content.Assembler.TagHan¬
dlers.BooleanTagHandler

http://endeca.com/schema/con¬
tent/2008:Boolean

Endeca.Data.Content.Assembler.TagHan¬
dlers.ContentItemTagHandler

http://endeca.com/schema/con¬
tent/2008:ContentItem

Endeca.Data.Content.Assembler.TagHan¬
dlers.ContentItemListTagHandler

http://endeca.com/schema/con¬
tent/2008:ContentItemList

Endeca.Data.Content.Navigation.TagHan¬
dlers.DimensionListTagHandler

http://endeca.com/schema/content-
tags/2008:DimensionList

Endeca.Data.Content.Navigation.TagHan¬
dlers.NavigationRecordsTagHandler

http://endeca.com/schema/content-
tags/2008:NavigationRecords

Endeca.Data.Content.Navigation.TagHan¬
dlers.NavigationRefinementsTagHandler

http://endeca.com/schema/content-
tags/2008:NavigationRefinements

Endeca.Data.Content.Navigation.TagHan¬
dlers.NavigationResultTagHandler

http://endeca.com/schema/content-
tags/2008:NavigationResult

Endeca.Data.Content.Navigation.TagHan¬
dlers.NavQueryTagHandler

http://endeca.com/schema/content-
tags/2008:NavQuery

Endeca.Data.Content.Assembler.TagHan¬
dlers.PropertyTagHandler

http://endeca.com/schema/con¬
tent/2008:Property

Endeca.Data.Content.Navigation.TagHan¬
dlers.RecordListTagHandler

http://endeca.com/schema/con¬
tent/2008:RecordList

Endeca.Data.Content.Navigation.TagHan¬
dlers.RecordQueryTagHandler

http://endeca.com/schema/content-
tags/2008:RecordQuery

Endeca.Data.Content.Navigation.TagHan¬
dlers.SortTagHandler

http://endeca.com/schema/content-
tags/2008:Sort

Endeca.Data.Content.Assembler.TagHan¬
dlers.StringTagHandler

http://endeca.com/schema/con¬
tent/2008:String

Endeca.Data.Content.Navigation.TagHan¬
dlers.SupplementTagHandler

http://endeca.com/schema/content-
tags/2008:Supplement

About the sample tag handler
The Content Assembler API package includes a sample tag handler implementation.

The sample is located in ContentAssemblerAPIs\RAD Toolkit for
ASP.NET\version\reference\tag_handlers and includes the following:

DescriptionFile

Contains a sample tag handler that transforms the
contents of an <Integer> element into an int.

Endeca.Data.Content.Sample.dll

The source code for the IntegerTagHandler.IntegerTagHandler.cs

Endeca® Content Assembler API    Developer's Guide for the RAD Toolkit for ASP.NETEndeca Confidential

43Extending the Content Assembler with Tag Handlers | About the sample tag handler



DescriptionFile

A sample page template that contains an <Inte¬
ger> property.

PageTemplate-IntegerTagSample.xml

The sample package is intended to demonstrate the integration points between tag handlers and the
Content Assembler. It does not include any rendering code for the reference application to make use
of the integer property returned by the Content Assembler.

Installing the sample tag handler
The sample tag handler is provided as an assembly along with a simple page template that defines
an <Integer> property with a default value.

To install the sample tag handler:

1. Register the tag handler by editing the app.config or Web.config file for your application.

a) Define the config section as follows:

<configSections>
  <sectionGroup name="endeca.content" 
    type="Endeca.Data.Content.Configuration.EndecaContentSectionGroup,

    Endeca.Data.Content, Version=2.1.0.0, Culture=neutral, 
    PublicKeyToken=6d02be8724ca751c" >
    <section name="tagHandlers" 
      type="Endeca.Data.Content.Configuration.TagHandlersSection, 
      Endeca.Data.Content, Version=2.1.0.0, Culture=neutral, 
      PublicKeyToken=6d02be8724ca751c" />
  </sectionGroup>
</configSections>

b) Specify the tag handler as follows:

<endeca.content>
  <tagHandlers>
    <add handlerType="Endeca.Data.Content.Sample.IntegerTagHandler, 
      Endeca.Data.Content.Sample" />
  </tagHandlers>
</endeca.content> 

2. Copy the assembly into the \bin directory of your application.

3. Restart IIS.

4. Copy the sample template to your local templates directory and upload it using the emgr_update
utility. For example:

emgr_update.bat --action set_templates --host localhost:8006 
--app_name My_application --dir c:\endeca-app\templates\

The template does not define any editors associated with the integer property. The <Integer>
element is treated as pass-through XML.

Endeca ConfidentialEndeca® Content Assembler API    Developer's Guide for the RAD Toolkit for ASP.NET

Extending the Content Assembler with Tag Handlers | About the sample tag handler44



About extending the Content Assembler to validate custom
XML

You can configure the Content Assembler to validate content XML, including custom XML.

Recall that you can enable XML validation in Content Assembler by setting the ContentValidation
property of the ContentNavigationDataSource to true.

If validation is enabled, the Content Assembler performs schema validation as it processes the content
XML. By default, the Content Assembler validates any elements within the Endeca content XML
namespaces (http://endeca.com/schema/content/2008 and http://ende¬
ca.com/schema/content-tags/2008) that are defined in the associated schemas.

You can specify additional schemas that the Content Assembler uses to validate content XML by
editing the application configuration.You can specify additional schemas in either the Web.config
or the app.config file, as in the following example:

<!--specify the config section as follows; the tagHandlers section should
     already have been added to specify the tag handlers themselves-->
<configSections>
  <sectionGroup name="endeca.content" 
    type="Endeca.Data.Content.Configuration.EndecaContentSectionGroup, 
    Endeca.Data.Content, Version=2.1.0.0, Culture=neutral, 
    PublicKeyToken=6d02be8724ca751c" >
    <section name="tagHandlers" 
      type="Endeca.Data.Content.Configuration.TagHandlersSection, 
      Endeca.Data.Content, Version=2.1.0.0, Culture=neutral, 
      PublicKeyToken=6d02be8724ca751c" />

<section name="schemas" 
      type="Endeca.Data.Content.Configuration.SchemasSection, 
      Endeca.Data.Content, Version=2.1.0.0, Culture=neutral, 
      PublicKeyToken=6d02be8724ca751c" />
  </sectionGroup>
</configSections>

<!-- additional elements not included in this example -->

<endeca.content>
  <tagHandlers>
    <add handlerType="Endeca.Data.Content.Sample.IntegerTagHandler, 
      Endeca.Data.Content.Sample" />
  </tagHandlers>
<!-- specify additional schemas as in the following example -->
  <schemas>

<add namespace="http://endeca.com/sample-schema/2010" 
      uri="Endeca.Data.Content.Sample.Resources.integer_tag_handler.xsd" 
      assembly="Endeca.Data.Content.Sample"/>
  </schemas>
</endeca.content>

At runtime, the Content Assembler matches the namespace of each element in the content XML
against the namespaces defined in the configuration file. If the associated schema file defines the
element being processed, the Content Assembler validates that element against the schema.

Note: Validation can be useful in a testing environment for debugging purposes, particularly if
you are working with a community editor that generates custom XML. Because of the performance

Endeca® Content Assembler API    Developer's Guide for the RAD Toolkit for ASP.NETEndeca Confidential

45Extending the Content Assembler with Tag Handlers | About extending the Content Assembler to
validate custom XML



impact of validating content XML, this option should never be used in production. XML validation
is disabled in the ContentNavigationDataSource by default.

Endeca ConfidentialEndeca® Content Assembler API    Developer's Guide for the RAD Toolkit for ASP.NET

Extending the Content Assembler with Tag Handlers | About extending the Content Assembler to
validate custom XML

46



Index

C

cartridges
and user controls 22
building 21
rendering code 22
rendering custom navigation refinements 24
rendering custom results lists 24

class overview
com.endeca.content.assembler 38
ContentContext object 39

community editors
scenarios 36

community tag handlers
scenarios 36

Content Assembler API
and RAD API 32
components 10

Content Assembler API for the RAD Toolkit for ASP.NET
and the RAD Toolkit for ASP.NET 17

Content Assembler reference application controls, using
22
content items and Content Assembler API 21
content properties, accessing 21
content query

and content XML validation 21
executing 32
results 32

ContentNavigationDataSource and content XML
validation 21
ContentNavigationDataSourceControl 17
custom navigation refinements, rendering 24
custom results lists

additional considerations 25
rendering 24

custom trigger conditions
filtering based on rule properties 19
overview 18
using hidden dimensions 19
with rule zones 20
with user profiles 20

D

dynamic content 11
DynamicContentPlaceHolder 22

introduced 28
using 28, 29

E

Endeca Content Assembler API
dynamic content 11
overview 9

Endeca Content Assembler reference application
cartridges 14
CSS 15
host, changing 15
overview 11
port, changing 15
skinning 15
templates 14

I

IContentControl 22

R

RAD Toolkit for ASP.NET server controls 31

S

see-all links 27
server controls 31

T

tag handlers
about 35
implementing 39
in life cycle of Content Assembler query 37
integrating with Content Assembler 41
invoking from other tag handlers 41
list of standard tag handlers 43
registering 42
sample 43, 44

X

XML validation
extending 45




	Contents
	Preface
	About this guide
	Who should use this guide
	Conventions used in this guide
	Contacting Endeca Customer Support

	Introduction to the Content Assembler API
	Overview of the Content Assembler API
	Content Assembler API components

	Overview of the Content Assembler reference application
	About handling dynamic content
	The reference application model for dynamic content
	List of reference application cartridges
	Connecting to a different MDEX Engine
	About skinning the reference application


	Working with the Content Assembler API
	Writing applications with the Content Assembler API
	About using the Content Assembler with the RAD Toolkit for ASP.NET
	Creating a ContentNavigationDataSource control
	About implementing custom trigger conditions
	About filtering landing pages based on rule properties
	About using hidden dimensions to trigger landing pages
	About using multiple rule zones for landing pages
	About using multiple user profiles for custom trigger conditions

	About content XML validation

	Building cartridges to render template-based content
	About working with content items
	Using the Content Assembler reference application controls
	Writing user controls to render dynamic content
	About rendering customized navigation refinements
	About rendering customized results lists
	About customized results
	About rendering record lists
	Generating see-all links
	About the DynamicContentPlaceHolder
	Using the DynamicContentPlaceHolder to render pages
	Using the DynamicContentPlaceHolder to render cartridge content

	About using the RAD Toolkit for ASP.NET server controls with the Content Assembler
	Using the Content Assembler API for programmatic querying

	Extending the Content Assembler with Tag Handlers
	About tag handlers in the Content Assembler
	Scenarios for extending Page Builder and the Content Assembler
	Life cycle of a Content Assembler query
	Class overview
	Implementing the tag handler interface
	Resources managed by the ContentContext object
	About invoking other tag handlers

	Integrating a tag handler into the Content Assembler
	Registering a tag handler
	Standard tag handlers in the Content Assembler

	About the sample tag handler
	Installing the sample tag handler

	About extending the Content Assembler to validate custom XML

	Index

