
Endeca® Platform Services
Content Adapter Developer's Guide

Version 6.1.1 • December 2011

Contents

Preface...7
About this guide..7
Who should use this guide..7
Conventions used in this guide...7
Contacting Endeca Customer Support...8

Chapter 1: About the Content Adapter Development Kit........................9
About the Content Adapter Development Kit..9
About Java manipulators..9

When to use Java or record manipulators in your pipeline..10
Implementing a Java manipulator..11
Example of a Java manipulator..11

About content adapters...11
When to use content adapters...12
Implementing a content adapter..13

About record adapters..13
About Perl manipulators..13
About record manipulators..14

Chapter 2: Installing the Content Adapter Development Kit................17
About installing the CADK..17
CADK system requirements...17
CADK directory structure reference..17

Chapter 3: Writing Content Adapters and Java Manipulators..............19
About the content adapter framework...19

CADK core classes..19
About writing a content adapter..20
About writing a Java manipulator..21
About compiling and building with Ant..21
Compiling and building with Java commands...22

Chapter 4: Running a Content Adapter and a Java Manipulator..........25
Prerequisites...25
Creating a record adapter to harness your content adapter...25
Deploying a Java manipulator in the Forge pipeline...26
About using other pipeline components for additional processing..27
Running the pipeline...28

Appendix A: Sample Content Adapter and Java Manipulator Code....29
MBoxAdapter.java example..29
SampleJavaManipulator.java example..33

Appendix B: Error Handling in the Content Adapter Development Kit.37
Error handling in the CADK..37
Logging messages..38

Log levels reference...38
Debugging Java manipulators...39
Passing JVM arguments to Forge...40

iii

Copyright and disclaimer

Product specifications are subject to change without notice and do not represent a commitment on
the part of Endeca Technologies, Inc. The software described in this document is furnished under a
license agreement.The software may not be reverse engineered, decompiled, or otherwise manipulated
for purposes of obtaining the source code. The software may be used or copied only in accordance
with the terms of the license agreement. It is against the law to copy the software on any medium
except as specifically allowed in the license agreement.

No part of this document may be reproduced or transmitted in any form or by any means, electronic
or mechanical, including photocopying and recording, for any purpose without the express written
permission of Endeca Technologies, Inc.

Copyright © 2003-2011 Endeca Technologies, Inc. All rights reserved. Printed in USA.

Portions of this document and the software are subject to third-party rights, including:

Corda PopChart® and Corda Builder™ Copyright © 1996-2005 Corda Technologies, Inc.

Outside In® Search Export Copyright © 2011 Oracle. All rights reserved.

Rosette® Linguistics Platform Copyright © 2000-2011 Basis Technology Corp. All rights reserved.

Teragram Language Identification Software Copyright © 1997-2005 Teragram Corporation. All rights
reserved.

Trademarks

Endeca, the Endeca logo, Guided Navigation, MDEX Engine, Find/Analyze/Understand, Guided
Summarization, Every Day Discovery, Find Analyze and Understand Information in Ways Never Before
Possible, Endeca Latitude, Endeca InFront, Endeca Profind, Endeca Navigation Engine, Don't Stop
at Search, and other Endeca product names referenced herein are registered trademarks or trademarks
of Endeca Technologies, Inc. in the United States and other jurisdictions. All other product names,
company names, marks, logos, and symbols are trademarks of their respective owners.

The software may be covered by one or more of the following patents: US Patent 7035864, US Patent
7062483, US Patent 7325201, US Patent 7428528, US Patent 7567957, US Patent 7617184, US
Patent 7856454, US Patent 7912823, US Patent 8005643, US Patent 8019752, US Patent 8024327,
US Patent 8051073, US Patent 8051084, Australian Standard Patent 2001268095, Republic of Korea
Patent 0797232, Chinese Patent for Invention CN10461159C, Hong Kong Patent HK1072114, European
Patent EP1459206, European Patent EP1502205B1, and other patents pending.

v

Preface

Endeca® InFront enables businesses to deliver targeted experiences for any customer, every time, in
any channel. Utilizing all underlying product data and content, businesses are able to influence customer
behavior regardless of where or how customers choose to engage — online, in-store, or on-the-go.
And with integrated analytics and agile business-user tools, InFront solutions help businesses adapt
to changing market needs, influence customer behavior across channels, and dynamically manage a
relevant and targeted experience for every customer, every time.

InFront Workbench with Experience Manager provides a single, flexible platform to create, deliver,
and manage content-rich, multichannel customer experiences. Experience Manager allows non-technical
users to control how, where, when, and what type of content is presented in response to any search,
category selection, or facet refinement.

At the core of InFront is the Endeca MDEX Engine,™ a hybrid search-analytical database specifically
designed for high-performance exploration and discovery. InFront Integrator provides a set of extensible
mechanisms to bring both structured data and unstructured content into the MDEX Engine from a
variety of source systems. InFront Assembler dynamically assembles content from any resource and
seamlessly combines it with results from the MDEX Engine.

These components — along with additional modules for SEO, Social, and Mobile channel support —
make up the core of Endeca InFront, a customer experience management platform focused on delivering
the most relevant, targeted, and optimized experience for every customer, at every step, across all
customer touch points.

About this guide
This guide covers the Content Adapter Development Kit and related API elements.

It describes how to use the Content Adapter Development Kit to:

• Easily create direct connections between enterprise content sources and the Endeca Information
Transformation Layer (ITL).

• Create the means for transforming records in the Endeca ITL.

Who should use this guide
This guide is intended for Java developers who create Java manipulators and content adapters for
use with the Endeca Information Access Platform, and pipeline developers who implement these Java
manipulators and content adapters.

Conventions used in this guide
This guide uses the following typographical conventions:

Code examples, inline references to code elements, file names, and user input are set in monospace
font. In the case of long lines of code, or when inline monospace text occurs at the end of a line, the
following symbol is used to show that the content continues on to the next line: ¬

When copying and pasting such examples, ensure that any occurrences of the symbol and the
corresponding line break are deleted and any remaining space is closed up.

Contacting Endeca Customer Support
The Endeca Support Center provides registered users with important information regarding Endeca
software, implementation questions, product and solution help, training and professional services
consultation as well as overall news and updates from Endeca.

You can contact Endeca Standard Customer Support through the Support section of the Endeca
Developer Network (EDeN) at http://eden.endeca.com.

Endeca ConfidentialEndeca® Platform Services Content Adapter Developer's Guide

| Preface8

http://eden.endeca.com

Chapter 1

About the Content Adapter Development
Kit

This section introduces the Content Adapter Development Kit (CADK) and describes content adapters,
Java manipulators, record adapters, and Perl manipulators.The documentation provided here assumes
that you are comfortable programming in Java.

About the Content Adapter Development Kit
The CADK API is a collection of Java classes that provides developers with a flexible mechanism for
adding content adapters and Java manipulators to the pipeline.

You can use different methods to prepare, change or clean your data, and to efficiently manipulate
records as part of Forge data processing. The CADK lets you create your own ways of transforming
both the incoming data, and the records themselves.

With the CADK API, you can create:

• Content adapters in Java, in order to transform the incoming source data.

Note: The kit contains a sample content adapter.

• Java manipulators to modify the records that have already been preprocessed by existing
components in your pipeline. For example, you can add properties to the records, or modify them
in other ways.

About Java manipulators
A Java manipulator is your own code in Java that takes records from any number of pipeline components
in Forge or, optionally, your source data, and changes it according to your processing requirements.
A Java manipulator can then write any records you choose to its output.

For example, a Java manipulator can write the “transformed” records into its output, so that the records
can be passed to the next pipeline component in Forge.

Java manipulators are the most generic way of modifying your data and records in the pipeline. In
other words, content adapters represent a specific case of Java manipulators.You create Java
manipulators with the Content Adapter Development Kit API.

A Java manipulator has the following characteristics:

• It adheres to the Adapter interface provided with the CADK. It uses the interface described in the
Content Adapter API (Javadoc), and requires you to import all the Java classes supplied with the
Content Adapter Development Kit.

• It can have any number of inputs. It can take either source data, or, most importantly, it can take
the records from record adapters or other components in the pipeline, and transform them further,
according to your needs.

• It can have only one output. Do not emit empty records from your Java manipulator, that is record
objects with no PVal objects specified. This can cause Forge to abort processing after acquiring
the empty record.

• It has a simplified debugging mechanism.You import the JVM java.util.logging.Logger
into your Java manipulator code.You can then make calls to the Logger object in different parts
of your code to print the logging messages that are logged in the Forge log.

• It can transform your records in any way you want; it isn't limited to just changing Pval values.

When to use Java or record manipulators in your pipeline
This section provides an overview of pipeline components and helps you identify when to use them.

Once the source data passes through a record adapter, or, optionally, through your own content
adapter, it gets turned into Endeca records. The records may need to be modified further, within the
Forge pipeline.

For example, you may determine that some properties of your records must be cleaned or changed.

For the purpose of changing the records, the Endeca software offers a variety of methods:

• Java manipulators—Java manipulators are the most generic way of cleaning or changing your
records in the pipeline; they use Java classes to specify the records transformations you need.

• Record manipulators—Record manipulators contain expressions, which are evaluated against
each record as it flows through the pipeline. When Forge evaluates an expression, it may change
the current record. The changes take a variety of forms, from adjustments of property values to
creation of new data.

• Perl manipulators—Perl manipulators use Perl to manipulate source records as part of Forge’s
data processing.You can use a Perl manipulator to add, remove, and reformat properties, join
record sources, and other such tasks.

You can use any one of these methods, based on your preferences. Use the following guidelines to
decide which type of manipulator you need:

• If you prefer to use Java, use Java manipulators for adding, removing or changing properties of
your records. Create Java manipulators with the CADK in cases when your records require any
further transformations, after passing through other pipeline components, such as record and
content adapters.

• If you prefer to use Perl, use Perl manipulators to perform your source record management tasks.
• If you prefer to use Data Foundry expressions and would rather edit XML expressions directly

within the files (or within the Expressions Editor in Developer Studio) use record manipulators
to transform your records.

In general, record manipulators are far more limiting than Java manipulators, in what they let you do
with them. On the other hand, transforming records with record manipulators is faster than using Java
manipulators, which in turn are faster than Perl manipulators.

Endeca ConfidentialEndeca® Platform Services Content Adapter Developer's Guide

About the Content Adapter Development Kit | About Java manipulators10

Implementing a Java manipulator
This section provides a high-level overview of the process for implementing a Java manipulator.

To implement a Java manipulator, follow these steps:

1. Install the Endeca Platform Services package, which includes the CADK.

2. Write the Java manipulator, using the CADK Java classes, and compile it into a JAR file.

3. Deploy the Java manipulator that you created in a Forge pipeline, by configuring the Java manipulator
as a pipeline component in Developer Studio, and then run Forge.

Related Links
About writing a Java manipulator on page 21

To write a Java manipulator you use a collection of Java classes from the CADK. Ensure that
all Java manipulators that you write adhere to the com.endeca.edf.adapter.Adapter
interface defined in the CADK.

Running a Content Adapter and a Java Manipulator on page 25
This chapter describes how you run your content adapter and Java manipulator in a Forge
pipeline. To run your content adapter, you use a record adapter that you create in Developer
Studio. To run your Java manipulator, you use a Java manipulator pipeline component that
you create in Developer Studio.

Example of a Java manipulator
This example outlines the behavior of a sample Java manipulator.

The Java manipulator SampleJavaManipulator.java looks for a record property specified by the
SourceProp pass through. If it finds that property, it creates a new property, specified by the
TargetProp pass through, by copying the value of the source property into the target. It uses the
first arbitrary source value if multiple source values exist. Next, the code emits all records to the next
component in the pipeline, regardless of whether the property for the record was transformed.

Related Links
SampleJavaManipulator.java example on page 33

SampleJavaManipulator.java is a working sample manipulator that you can use as a
shell code for writing your own Java manipulators.

About content adapters
A content adapter is a custom record adapter that you write in Java in order to extract data from a
data source and load it into Forge.

You need your own content adapter in cases when you cannot use any of the standard record adapters
for data extraction. For instance, you may decide to create your own content adapter if your data is in
the format that is not supported by any of the record adapters shipped with the Endeca software.

Content adapters extract data from other formats. Adding your own content adapters results in improved
integration with a wider variety of enterprise content sources.

For example, if you want to access Lotus Notes data, you could write and compile a NotesAdapter,
and then deploy it in a Forge pipeline by harnessing it in a record adapter. The content adapter code
parses the source data, allowing the record adapter to feed the parsed data into the pipeline.

Endeca® Platform Services Content Adapter Developer's GuideEndeca Confidential

11About the Content Adapter Development Kit | About content adapters

The illustration below shows how enterprise data is transformed into Endeca records using the content
adapter:

When to use content adapters
When you are building your Endeca implementation, you need to determine how you can import your
source data, and whether a content adapter is necessary.

In general, regardless of the format of your source data, you need to first load it into the Data Foundry
by using a record adapter. After the data is loaded through the record adapter, it can be processed
further by Forge and indexed by Dgidx.

The Endeca software is packaged with predefined record adapters. The record adapters provide the
build-in facility for processing data from many formats, including delimited, XML, binary, and others.

To decide whether you need a content adapter:

1. Determine if any of the standard record adapters can handle your source data. For information on
record adapters, see the Endeca Forge Guide and the Developer Studio Help. If you can use a
record adapter, import your source data with it.

2. If the format of your source data cannot be handled by any of the predefined record adapters
shipped with Endeca, create your own content adapter in Java to process your data, using the
CADK.

Note: Instead of a content adapter that will transform your source data, you can create a Java
manipulator for the same purpose, since Java manipulators are a general version of the content
adapters.

Here is how content adapters differ from Java manipulators:

• Content adapters cannot take any Forge components as an input. They can only read data from
multiple external sources. (You need a separate content adapter for each data source).

• Java manipulators can read in source data as well, but the main purpose of Java manipulators is
to process records that already exist within the pipeline in Forge.

To summarize, Java manipulators can take either source data, or records that have already been
passed through record adapters or manipulators, and transform the records further. Content adapters
can only transform source data.

Endeca ConfidentialEndeca® Platform Services Content Adapter Developer's Guide

About the Content Adapter Development Kit | About content adapters12

Implementing a content adapter
This section provides a high-level overview of the process for implementing a content adapter.

To implement a content adapter, follow these steps:

1. Install the Endeca Platform Services package, which includes the CADK.

2. Write the content adapter, using the content adapter Java classes, and compile it with adapter.jar.

3. Once you write a content adapter, you deploy it in a Forge pipeline by using the Developer Studio
user interface, and then run Forge.

Related Links
About writing a content adapter on page 20

To write a content adapter you use a collection of Java classes from the CADK, and ensure
that your content adapter method adheres to the Adapter interface defined in the CADK.

Running a Content Adapter and a Java Manipulator on page 25
This chapter describes how you run your content adapter and Java manipulator in a Forge
pipeline. To run your content adapter, you use a record adapter that you create in Developer
Studio. To run your Java manipulator, you use a Java manipulator pipeline component that
you create in Developer Studio.

About record adapters
Record adapters are standard methods for manipulating the source data and loading it into the pipeline.
Standard record adapters are packaged with the Endeca software and accommodate a number of
formats.

Record adapters let you load and save records in a variety of formats, including delimited, binary,
ODBC (Windows only), JDBC, and Microsoft Exchange. Each record adapter format has its own set
of attributes.

Use record adapters for the following purposes:

• You need at least one record adapter to read in the source records.The configuration of the record
adapter depends on the data format of the source data. If the format of your source data has a
matching standard record adapter, use it for your source data. If the standard record adapters
cannot handle the format of your source data, write your own content adapter.

• Use record adapters specifically for changing the incoming source data, and not the records within
the pipeline. If you want to change the records themselves, you can use any of the following
methods: Perl manipulators, record manipulators or Java manipulators.

• You can use many record adapters in your pipeline: you transform data in each format through its
own record adapter.

Note: For detailed information about record adapters, see the Endeca Forge Guide.

About Perl manipulators
Perl manipulators use Perl to efficiently manipulate source records as part of Forge data processing.
If you prefer to use Perl instead of Java, you can create a Perl manipulator to add, remove, and reformat
properties, join record sources, and other such tasks.

Endeca® Platform Services Content Adapter Developer's GuideEndeca Confidential

13About the Content Adapter Development Kit | About record adapters

Note: For detailed information about Perl manipulators, see the Developer Studio Help.

Here is the code that appears in the Expressions editor of the record manipulator; it represents a
Perl manipulator:

<EXPRESSION LABEL="" NAME="PERL" TYPE="VOID" URL="">
<EXPRBODY>
<![CDATA[#extract fields from date:
 my @dates = get_props_by_name("Message Date");

 foreach $date (@dates) {
 my $value = $date->value();
 $value =~ /(\w{3}) (\w{3}) (\d\d) (\d\d):(\d\d):\d\d (\d{4})/;
 add_props(new Zinc::PropVal("Message Date (Weekday)", $1));
 add_props(new Zinc::PropVal("Message Date (Month)", $2));
 add_props(new Zinc::PropVal("Message Date (Day)", $3));
 add_props(new Zinc::PropVal("Message Time (Hour)", $4));
 add_props(new Zinc::PropVal("Message Time (Minute)", $5));
 add_props(new Zinc::PropVal("Message Date (Year)", $6));
 }

 remove_props("Message Date");

 #extract information about sender from X-Yahoo-ProfData:
 my @senderInfos = get_props_by_name("X-Yahoo-ProfData");
 foreach $senderInfo (@senderInfos) {
 my $value = $senderInfo->value();

 if($value =~ /(\d*)\/(\w)\/(.*)/) {
 add_props(new Zinc::PropVal("Sender Age", $1));
 add_props(new Zinc::PropVal("Sender Location", $3));

 my $sex;
 if($2 eq "M") {
 $sex = "male";
 }else{
 $sex = "female";
 }
 add_props(new Zinc::PropVal("Sender Gender", $sex));
 }
 }
 #copy subject to "P_Name", the default display key :
 my @subjects = get_props_by_name("Subject");

 foreach $subject (@subjects) {
 add_props(new Zinc::PropVal("P_Name", $subject->value()));
 }]]>
</EXPRBODY>
</EXPRESSION>

About record manipulators
Record manipulators are installed with Endeca and handle a variety of source data formats. Use them
for transforming the records and loading them into the pipeline.

Endeca ConfidentialEndeca® Platform Services Content Adapter Developer's Guide

About the Content Adapter Development Kit | About record manipulators14

Record manipulators contain XML expressions which Forge compares with each record as it flows
through the pipeline. When Forge evaluates an expression, it may change the current record. The
changes take a variety of forms, from adjustments of property values to creation of new data.

The CADK reference implementation pipeline contains a record manipulator that transforms properties
such as the message data and email subject line into Endeca properties.

Record manipulators are similar to Java manipulators in what they do (transform records in the pipeline).
The differences between Java manipulators and record manipulators are as follows:

• When you create record manipulators, you add Data Foundry expressions.You modify files directly,
by using either Perl or XML expressions, within the Expression editor of the Developer Studio.
(Alternatively, you can reference your external Perl code in a Perl manipulator).

• When you create Java manipulators, you have a cleaner way of creating your own methods for
changing the records, using a family of Java API classes in the CADK designed for this purpose.
You write your own Java code and then incorporate it as a Java manipulator in your pipeline.

Note: For detailed information about record manipulators and expressions used for them, see
the Data Foundry Expression Reference and the Endeca Forge Guide.

Endeca® Platform Services Content Adapter Developer's GuideEndeca Confidential

15About the Content Adapter Development Kit | About record manipulators

Chapter 2

Installing the Content Adapter Development
Kit

This section describes how to set up the CADK.

About installing the CADK
The CADK is installed by default as part of the Endeca Platform Services.

Note: The Endeca Platform Services Installation Guide contains detailed instructions on how
to install this package. The guide also explains how to uninstall the Endeca Platform Services
components.

CADK system requirements
The CADK runs on the same machine as the rest of the Endeca Platform Services components, and
has two specific requirements in addition to those required by Platform Services.

Note: For details on the Endeca Platform Services component requirements, see the Endeca
Platform Services Installation Guide.

In particular, the CADK has these requirements:

• The machine you are running the CADK on must have the Java 2 Platform Standard Edition 5.0
(aka JDK 1.5) or 6.0 (aka JDK 1.6) installed.You will have the correct version of JDK with the
Platform Services default installation, because it includes a suitable version of the JDK in the
$ENDECA_ROOT/j2sdk directory.

• If you intend to use the build script provided with the CADK, you must have Apache Ant version
1.5.4 or later installed.

CADK directory structure reference
The CADK is installed in the $ENDECA_ROOT/cadk directory on UNIX platforms
(%ENDECA_ROOT%\cadk on Windows). It has the following directory structure:

DetailsDirectory

The directory to which the reference implementation Java class is written when
you compile using Ant. Also contains the source code for the sample MBox¬
Adapter content adapter.

src

A directory that contains adapter.jar.lib

A directory that contains sample content adapter code, as well as the compiled
version.

reference

This Ant build file, along with the directory structure, makes it possible for you
to compile and JAR the reference implementation’s example content adapter or
Java manipulator from the command line in the installation directory.

build.xml

You can copy this file and the associated directory structure to another location
to use as a template when you build your own Java manipulator or content
adapter. However, for the sake of stability, we recommend that you do not develop
your own Java manipulators or content adapters within the Endeca directory
structure.

Endeca ConfidentialEndeca® Platform Services Content Adapter Developer's Guide

Installing the Content Adapter Development Kit | CADK directory structure reference18

Chapter 3

Writing Content Adapters and Java
Manipulators

This chapter describes how you write, compile, and build a Java manipulator and a content adapter
(in Java), using the reference implementation as an example.

About the content adapter framework
This section provides a high-level overview of the content adapter framework.

The content adapter framework is a collection of Java classes that you use to create a Java manipulator
or a content adapter that adheres to the Adapter interface defined in the CADK. Later, you will be
able to execute the Java manipulator, or the content adapter that is harnessed in a record adapter, in
a Forge pipeline.

Classes relevant to the Adapter interface are documented in the CADK Javadoc, which you can
obtain from the Endeca Developer Network (EDeN) at http://eden.endeca.com.

Related Links
Sample Content Adapter and Java Manipulator Code on page 29

This section contains the code for the MBoxAdapter.java content adapter, which is included
as part of the CADK. It also contains the code for the SampleJavaManipulator.java
Java manipulator.

CADK core classes
This section provides a brief overview of the CADK core classes.

Note: For detailed information, see the CADK Javadoc.

DetailsClass

The Adapter interface is a set of classes and methods to which your Java
code must adhere. In other words, any Java manipulator that you write must
implement the Adapter interface.

Adapter interface

Contains configuration information handed to the Adapter class via the
execute method. The configuration data AdapterConfig contains is

AdapterConfig class

http://eden.endeca.com

DetailsClass

essentially a multimap of name-value pairs, where a given name may have
one or more values associated with it.

Used by a Java manipulator or a content adapter to emit records. In the
case of a Java manipulator, this class represents your “connection” to Forge.

AdapterHandler class

The Java manipulator gets records from the AdapterHandler and emits
records to it.You can also use the AdapterHandler to obtain information
about Forge state, and to obtain the configuration from Forge.

A name/value pair, a collection of which constitutes an Endeca record.PVal class

A collection of data in the format of PVals (that is, name/value pairs).Record class

Represents all exceptions thrown by Adapter-related classes. Specific
exceptions are either inherited from this class or are accessible via Java’s
chained exception facility.

AdapterException
class

About writing a content adapter
To write a content adapter you use a collection of Java classes from the CADK, and ensure that your
content adapter method adheres to the Adapter interface defined in the CADK.

A typical content adapter works as follows:

• The configuration information for the content adapter is passed through in the corresponding record
adapter. The content adapter uses this information to connect to a data source. For example, in
the CADK reference implementation, the source data file’s name and location are passed through.

• The configuration information that is passed through in the record adapter is used to construct an
AdapterConfig object.

• The AdapterConfig object is then handed to the com.endeca.edf.adapter.Adapter object’s
Adapter.execute method.

• AdapterHandler, meanwhile, is used to emit the records that Forge will process. A record created
by the content adapter is processed by calling emit on the AdapterHandler parameter passed
to Adapter.execute. Records emitted in this way flow from the record adapter (that is used for
harnessing the content adapter) to the next pipeline component.

For example, the CADK reference implementation contains MBoxAdapter.java, which is a basic
example of a content adapter. This content adapter connects to a data source, extracts properties
from it and then constructs Endeca records with properties extracted from that source. In particular,
this content adapter reads email messages from an mbox file and converts each message to an
Endeca record.

Each record is processed by calling the emit method on the given adapter handler. The emitted
records flow from the record adapter harnessing this content adapter to the next pipeline component.

Related Links
Running a Content Adapter and a Java Manipulator on page 25

This chapter describes how you run your content adapter and Java manipulator in a Forge
pipeline. To run your content adapter, you use a record adapter that you create in Developer
Studio. To run your Java manipulator, you use a Java manipulator pipeline component that
you create in Developer Studio.

Endeca ConfidentialEndeca® Platform Services Content Adapter Developer's Guide

Writing Content Adapters and Java Manipulators | About writing a content adapter20

About writing a Java manipulator
To write a Java manipulator you use a collection of Java classes from the CADK. Ensure that all Java
manipulators that you write adhere to the com.endeca.edf.adapter.Adapter interface defined
in the CADK.

A typical Java manipulator works as follows:

• It implements the com.endeca.edf.adapter.Adapter interface. This enables your Java
manipulator to be understood by Forge.

• It imports the Java classes from the CADK. It also imports the java.util.logging.Logger
from the JVM.

• It defines its own logging by using the JVM Logger class. Defining logging is optional, although
it is recommended.

• It specifies zero or more pass throughs. The pass through mechanism lets you specify arbitrary,
key-value configuration pairs in the pipeline using the Developer Studio, and use those pairs in
the Java manipulator. For example, the name and value pairs that you specify may “represent”
the record properties that will be changed with your Java manipulator method.The AdapterConfig
class defines a list of methods that you can use to conveniently handle the pass throughs.

You can make the manipulator issue an error if a property that you wanted specified was not
specified, or you can assign the pass through some default value.

• It takes inputs from one or more pipeline components, such as record adapters or other pipeline
components.You can use the getRecord and getNumInputs methods on the AdapterHandler
class for this task. For example, the getNumInputs method returns the number of record inputs
that are used by the Java manipulator.

• Next, the code defines a loop within which your Java code for cleaning or changing the records
runs.

• Once you are done changing or cleaning each record, use the emit method of the
AdapterHandler class to send the records to the next step in the pipeline (by passing the records
to the AdapterExecute class).

About compiling and building with Ant
You can use Apache Ant to compile and build your Java manipulator or content adapter, or you can
use Java commands.

In the example that follows, you compile and build the reference application (MBoxAdapter.java)
in the CADK directory. However, you should develop your own Java manipulator or content adapter
outside of the Endeca directory structure. This ensures that your work is not inadvertently removed
when you make changes to your Endeca software.

The simplest way to compile and build the reference implementation Java manipulator or content
adapter is to run ant from the CADK directory. This builds reference-adapter.jar and places it
in an install directory that Ant creates.

The name reference-adapter.jar can be changed by building with the jarname flag, for example:

ant -Djarname=MyNamedAdapter.jar

Similarly, the install location can be changed by building with the installpath flag, for example:

ant -Dinstallpath=my-install-path

Endeca® Platform Services Content Adapter Developer's GuideEndeca Confidential

21Writing Content Adapters and Java Manipulators | About writing a Java manipulator

Note: Ant relies on both build.xml settings and a particular directory structure. When you
are ready to develop your own Java manipulator or content adapter, you can set up a similar
directory structure for your own work and copy and modify build.xml appropriately.

Compiling and building with Java commands
You can use Apache Ant to compile and build your Java manipulator or content adapter. Alternatively,
you can compile and build the project in separate steps, using Java commands.

For example, to compile the MBoxAdapter.java provided with the reference implementation:

Note: The instructions for creating JAR files for Java manipulators are the same.

1. Compile the MBoxAdapter with javac and the adapter.jar provided with the CADK in the class
path (using a version of javac corresponding to the Java virtual machine version). For example:

javac -classpath $ENDECA_ROOT/cadk/lib/adapter.jar MBoxAdapter.java

2. Create a JAR file from the class files generated by javac, as follows:

jar cf reference-adapter.jar MBoxAdapter.class

3. If you are compiling a content adapter, enter the path of the JAR file in the path specified in the
Java properties class path text box on the Record Adapter editor General tab, on every machine
on which Forge will run.

If the JAR file is not found, Forge terminates and logs an error that the content adapter class could
not be located similar to the following:

ERR: [Edf]: (AdapterRunner): Adapter class not found:
MBoxAdapter

WRN: [Adapter Input]: RecordAdapter 'Adapter Input':
file 'INPUT' is empty or does not exist.

ERR: [Edf]: Forge failed with 1 error and 1 warning.

Forge inserts any logs from the custom adapter’s logger into the Forge log files, specifying that the
messages came from the content adapter.

4. If you are compiling a Java manipulator, enter the path of the JAR file in the path specified in the
Class path field on the Java Manipulator editor General tab, on every machine on which Forge
will run.

Related Links
Error Handling in the Content Adapter Development Kit on page 37

This section discusses how errors should be handled in the CADK.

Deploying a Java manipulator in the Forge pipeline on page 26
You use Developer Studio to configure a Java manipulator for transforming and producing
records. A single Java manipulator can take records from several record servers.

Running a Content Adapter and a Java Manipulator on page 25
This chapter describes how you run your content adapter and Java manipulator in a Forge
pipeline. To run your content adapter, you use a record adapter that you create in Developer

Endeca ConfidentialEndeca® Platform Services Content Adapter Developer's Guide

Writing Content Adapters and Java Manipulators | Compiling and building with Java commands22

Studio. To run your Java manipulator, you use a Java manipulator pipeline component that
you create in Developer Studio.

Endeca® Platform Services Content Adapter Developer's GuideEndeca Confidential

23Writing Content Adapters and Java Manipulators | Compiling and building with Java commands

Chapter 4

Running a Content Adapter and a Java
Manipulator

This chapter describes how you run your content adapter and Java manipulator in a Forge pipeline.
To run your content adapter, you use a record adapter that you create in Developer Studio. To run
your Java manipulator, you use a Java manipulator pipeline component that you create in Developer
Studio.

Prerequisites
If you have not been doing your content adapter or Java manipulator development on a machine
running the Endeca Information Access Platform, you will need to move the JAR file before continuing.

This chapter assumes that you have been doing your content adapter or Java manipulator development
on a machine running the Endeca Information Access Platform. If this is not the case, you need to
move the JAR file for your content adapter or Java manipulator to a machine running the Endeca
Information Access Platform.

Creating a record adapter to harness your content adapter
When you create a record adapter for loading data, you specify Input as the direction of data flow,
along with the format and location of the source data.

Record adapters read and write record data. The record adapter describes where the data is located,
the format, and various aspects of processing. Each file of source data requires its own record adapter.

To access your content adapter through a record adapter, follow these steps:

1. In Developer Studio, open the project that will contain the content adapter.

2. In the Project Explorer, double-click Pipeline Diagram.

3. In the Pipeline Diagram editor, click New > Record > Adapter.
The Record Adapter editor opens.

4. In the Name text box, type a unique name for this record adapter. (In the example, we use
LoadData.)

5. In the General tab, do the following:

a) In the Direction frame, choose Input.

b) In the Format list, choose Custom Adapter.

c) In the Java properties frame, enter information according to the following requirements:

• Java home must point to a version 1.5.0 or greater install of the JDK.
• Class specifies the fully-qualified name of the adapter class, such as com.acme.MyAdapter.
• Class path specifies the absolute path to a JAR file (or a set of JAR files, separated by

colons ‘:’ on UNIX and semi-colons ‘;’ on Windows) containing the classes required by the
content adapter.

6. In the Pass Throughs tab, enter elements that become name-value pairs in the AdapterConfig
given to the content adapter via the Adapter.execute method. In most cases this configuration
is used to initialize the content adapter by connecting to a data source.

Deploying a Java manipulator in the Forge pipeline
You use Developer Studio to configure a Java manipulator for transforming and producing records. A
single Java manipulator can take records from several record servers.

Java manipulators read records from multiple inputs, transform specific properties of the records, and
write the results to a records output that can be passed to another component in the pipeline. A Java
manipulator is not limited to changing properties on existing records. It can produce records in any
form you choose.

Typically, the records that the Java manipulator takes as inputs come from one or more record servers,
such as record adapters that already exist in your pipeline.

When you create a Java manipulator, you specify the Java class used for cleaning or changing the
record properties, configuration pass throughs for the manipulator (typically these are the properties
in the records that will be transformed), and the record sources that the Java manipulator should take
as its input.

To deploy your Java manipulator in the pipeline:

1. In Developer Studio, open the project that will contain the Java manipulator. In the Project Explorer,
double-click Pipeline Diagram, and then click New > Java Manipulator.
The New Java Manipulator editor displays.

2. In the Name field, enter a name for your Java manipulator. The name must be unique among the
pipeline components.

Endeca ConfidentialEndeca® Platform Services Content Adapter Developer's Guide

Running a Content Adapter and a Java Manipulator | Deploying a Java manipulator in the Forge pipeline26

3. (Optional) Under the General tab, in the Java home field, specify the location of the Java Runtime
Engine (JRE).

If you do not specify this attribute, Forge obtains the location of the JRE by using the attribute
specified to the Forge, the --javaHome flag. If it is not available, Forge uses the
ENDECA_ROOT/j2sdk directory, which is installed as part of the Endeca Platform Services package.
As a final fallback, Forge uses the JAVA_HOME environment variable.

4. Under the General tab, in the Class field, specify the name of the Java class that will be used by
this Java manipulator. This is the class that you built with the CADK.

For example, use this class for the sample Java manipulator:

com.endeca.soleng.javamanipulator.SampleJavaManipulator

5. (Optional) Under the General tab, in the Class path field, specify the absolute path to the JAR file
that contains the class specified by the Class attribute.

The JAR file must contain the class and all other classes it depends on. If you do not specify this
attribute, the Java manipulator uses the default class path of ENDECA_ROOT/lib/java. If you
use this attribute, the specified class path is prefixed to the default classpath.

For example, you can specify this class path for the
SampleJavaManipulator.jar:lib\SampleJavaManipulator.jar

Note: When running your pipeline, you can override the Java home and Class path settings
using command-line options.

6. Under the Sources tab, specify which record servers in the pipeline are providing records to your
Java manipulator.You can specify multiple record sources.

Important: Make sure that the record servers (such as record adapters) are configured in
the required order for processing. Developer Studio arranges the record servers in alphabetical
order for processing by Forge; therefore, you may have to rename them so that they are
processed by Forge in the order that your Java manipulator expects them.

7. Under the Pass Throughs tab, specify any pass through arguments that your Java manipulator
expects. For example, you can specify the properties of the records that you want to be cleaned
or changed by your Java manipulator. Enter the name and value pair for each record property that
you will be using as your pass through.

8. (Optional) Use the Comment tab to describe your Java manipulator.

9. Click OK.
The Java manipulator is added to the Forge pipeline.

About using other pipeline components for additional
processing

Depending upon your requirements, you may want to add another pipeline component, such as a Java
manipulator, a record manipulator, or a Perl manipulator to your pipeline.

Related Links
When to use Java or record manipulators in your pipeline on page 10

Endeca® Platform Services Content Adapter Developer's GuideEndeca Confidential

27Running a Content Adapter and a Java Manipulator | About using other pipeline components for
additional processing

This section provides an overview of pipeline components and helps you identify when to
use them.

Running the pipeline
You can run the pipeline through Forge using the EAC Admin Console page, a control script, or the
command line.

After you add your content record adapter or your Java manipulator and do any additional requisite
pipeline editing, it is time to run the pipeline through Forge.

Note: See the Endeca Application Controller Guide for information on the EAC.

To do this:

Run the pipeline using either of the following methods:

• In the Endeca Application Controller (EAC) environment, start the Forge component in Endeca
Workbench, using the EAC Admin Console page.

• Run the CADK pipeline in Forge with a command line similar to the following examples:

Windows

%ENDECA_ROOT%\bin\forge -vw --javaClasspath
%ENDECA_ROOT%\cadk\reference\sample_cadk_data\
adapters\MBoxAdapter.jar
--javaHome C:\jdk1.5.0_05 Pipeline.epx

UNIX

$ENDECA_ROOT/bin/forge -vw --javaClasspath
$ENDECA_ROOT/cadk/reference/sample_cadk_data/
adapters/MBoxAdapter.jar
--javaHome /usr/local/jdk1.5.0_05 Pipeline.epx

Upon successful completion, Forge produces binary output to the location specified in the pipeline’s
output record adapter.

Endeca ConfidentialEndeca® Platform Services Content Adapter Developer's Guide

Running a Content Adapter and a Java Manipulator | Running the pipeline28

Appendix A

Sample Content Adapter and Java
Manipulator Code

This section contains the code for the MBoxAdapter.java content adapter, which is included as part
of the CADK. It also contains the code for the SampleJavaManipulator.java Java manipulator.

MBoxAdapter.java example
MBoxAdapter.java is a basic example of a content adapter. It reads email messages from an mbox
file and converts each message into an Endeca record.

Each record is processed by calling the emit method on the given adapter handler. Records emitted
in this way flow from the record adapter harnessing the content adapter to the next pipeline component.

//Some standard java classes we'll need:
import java.lang.String;
import java.lang.reflect.Array;

import java.util.logging.Logger;
import java.util.regex.*;

import java.io.BufferedReader;
import java.io.FileReader;
import java.io.IOException;

//Endeca classes to import:
import com.endeca.edf.adapter.Adapter;
import com.endeca.edf.adapter.AdapterConfig;
import com.endeca.edf.adapter.AdapterHandler;
import com.endeca.edf.adapter.AdapterException;
import com.endeca.edf.adapter.Record;
import com.endeca.edf.adapter.PVal;

/**
 * This is a simple example content adapter which reads email messages
 * from an mbox file and converts each message to an Endeca record.
 *
 * To compile this class type:
 *
 * javac -classpath $ENDECA_ROOT/lib/java/adapter.jar MBoxAdapter.java
 */
public class MBoxAdapter implements Adapter

{
 //Constants:

 //Enumeration of the property names we'll use:
 private static String PROP_NAME_SENDER = "Sender";
 private static String PROP_NAME_DATE = "Message Date";
 private static String PROP_NAME_SENDER_INFO = "Sender Info";
 private static String PROP_NAME_BODY = "Body";

 /**
 * This is the logger for our adapter. Forge will insert any logs from
 * this logger into its log files, specifying that they came from
 * "MBox Adapter".
 */
 private static Logger log = Logger.getLogger("MBox Adapter");

 /**
 * This regular expression will be used to extract fields from the From
 * line of each message. It matches the word "From" followed by a
 * space, followed by a sequence of non-whitespace characters which
 * constitute the sender, followed by some whitespace and a string of
 * exactly 24 characters which consitutes the date and possibly followed
 * by a string of characters containing other information about the
 * sender.
 */
 private static Pattern fromLineRegex
 = Pattern.compile("From (\\S*)\\s*(.{24})(.*)");

 /**********************************
 * Adapter Interface Implementation
 **********************************/

 public void execute(AdapterConfig config, AdapterHandler handler)
 throws AdapterException
 {
 //First process the configuration passed to this adapter by forge:

 //Get the paths of the mbox files to process:
 String[] mboxFiles = config.get("MBOX");

 //Check to make sure at least one file was specified:
 if(mboxFiles == null)
 throw new AdapterException("You must specify at least one filename.");

 //Now that we have processed the configuration, we're ready to

 //Loop over each of the files to parse:
 int nFiles = Array.getLength(mboxFiles);
 for(int n=0; n<nFiles; n++) {
 try{
 //Open the current file:
 BufferedReader reader
 = new BufferedReader(new FileReader(mboxFiles[n]));

 //process the current file:

 //The first line of each message should look like
 //"From <sender> <date> <more info>":
 String curFromLine = reader.readLine();

 if(curFromLine == null) {

Endeca ConfidentialEndeca® Platform Services Content Adapter Developer's Guide

Sample Content Adapter and Java Manipulator Code | MBoxAdapter.java example30

 log.warning("mbox file '" + mboxFiles[n] + "' was empty.");
 continue; //Continue on to next file.
 }

 //Loop over the messages in the file:
 while(curFromLine != null) {
 //Report our progress:
 log.info("Processing message: " + curFromLine + "...");

 //Extract fields from the from line:

 Matcher matcher = fromLineRegex.matcher(curFromLine);

 if(!matcher.matches()) {
 log.warning("Invalid From line syntax in file '"
 + mboxFiles[n] + "': " + curFromLine);
 break; //Abort this file.
 }

 String sender = matcher.group(1);
 String date = matcher.group(2);
 String senderInfo = matcher.group(3);

 //Create a new Record for this message and add the from line
 //fields as properties:
 Record record = new Record();

 record.add(new PVal(PROP_NAME_SENDER, sender));
 record.add(new PVal(PROP_NAME_DATE, date));

 if(!senderInfo.equals(""))
 record.add(new PVal(PROP_NAME_SENDER_INFO, senderInfo));

 processHeaders(reader, record); //process the message headers.

 //The rest of the message is the message body. This method will
 //read that in, add it to the record and return the From line of
 //the next message, if any:
 curFromLine = processBody(reader, record);

 handler.emit(record); //Emit the completed record.
 }

 reader.close(); //close the current file.
 }catch(IOException e) {
 //There was a problem processing the current file, but maybe the
 //others will work; we'll log an error and continue:
 log.severe("Error processing mbox file '" + mboxFiles[n] + "': "
 + e.getMessage());
 }
 }
 }

 /***************************
 * MBoxAdapter Implementation
 ***************************/

 /**
 * This method extracts all of the header fields from an mbox message
 * and adds them to the specified record.
 *

Endeca® Platform Services Content Adapter Developer's GuideEndeca Confidential

31Sample Content Adapter and Java Manipulator Code | MBoxAdapter.java example

 * @param reader BufferedReader to extract headers from
 * @param record Record to add header properties to
 *
 * @throws IOException
 */
 private void processHeaders(BufferedReader reader, Record record)
 throws IOException
 {
 //Loop until we reach a blank line, which indicates the end of the
 //headers, or we reach the end of the input stream:
 while(true) {
 String line = reader.readLine();

 if(line == null)
 break;

 if(line.equals(""))
 break;

 //Each header has the form "Name: value". Extract the name and
 //value from the current header:
 int colonPos = line.indexOf(':');

 if(colonPos == -1) {
 log.warning("Invalid message header format. Expected a colon in "
 + "the line '" + line + "'");
 continue; //Move on to next header.
 }

 record.add(new PVal(line.substring(0, colonPos)
 , line.substring(colonPos + 1)));
 }
 }

 /**
 * Beginning at the current position of the reader, this method reads
 * in a message body until it reaches a blank line followed by a "From"
 * line indicating the start of the next message, or the stream runs out
 * of data. Once it is done reading in the body, it adds the body text
 * to the specified record as a property, and returns the "From" line of
 * the next message, if any.
 *
 * @param reader Reader to read body from
 * @param record Record to add body to
 *
 * @return The "From" line of the next message in the reader stream, or
 * <code>null</code> if there are no more messages
 *
 * @throws IOException
 */
 private String processBody(BufferedReader reader, Record record)
 throws IOException
 {
 String body = "";
 String fromLine = null;

 while(true) {
 String line = reader.readLine();

 if(line == null)
 break;

Endeca ConfidentialEndeca® Platform Services Content Adapter Developer's Guide

Sample Content Adapter and Java Manipulator Code | MBoxAdapter.java example32

 if(line.equals("")) {
 fromLine = reader.readLine();

 if(fromLine == null)
 break;

 //If the line begins with "From " then it is a From line:
 if(fromLine.regionMatches(true, 0, "From ", 0, 5))
 break; //A new message was found.

 //not a from line...
 line += fromLine;
 fromLine = null;
 }

 body += line; //Append line to body.
 }

 //Add the body to the record:
 record.add(new PVal(PROP_NAME_BODY, body));
 return fromLine;
 }
}

SampleJavaManipulator.java example
SampleJavaManipulator.java is a working sample manipulator that you can use as a shell code
for writing your own Java manipulators.

This sample shows you how to use the com.endeca.edf.adapter.Adapter interface and its
classes and methods in order to:

• Acquire multiple record sources, by using getRecord and getNumInputs methods of
AdapterHandler.

• Specify which properties you want to modify via pass throughs, by using AdapterConfig.
• Enable logging and debugging, by using the JVM java.util.logging.Logger class.
• Prepare records for future processing in the pipeline, by using the emit method of the
AdapterHandler.

This Java manipulator looks for a record property specified by the SourceProp pass through. If it
finds that property, it creates a new property, specified by the TargetProp pass through by copying
the value of the source property into the target. It uses the first arbitrary source value if multiple values
exist. Next, the code emits all records to the next component in the pipeline, regardless of whether
the property for the record was transformed.

package com.endeca.soleng.javamanipulator;
import java.util.logging.Logger;
import java.util.logging.Level;

import com.endeca.edf.adapter.Adapter;
import com.endeca.edf.adapter.AdapterConfig;
import com.endeca.edf.adapter.AdapterException;
import com.endeca.edf.adapter.AdapterHandler;
import com.endeca.edf.adapter.PVal;
import com.endeca.edf.adapter.Record;

Endeca® Platform Services Content Adapter Developer's GuideEndeca Confidential

33Sample Content Adapter and Java Manipulator Code | SampleJavaManipulator.java example

/**
*
 * This is a sample Java Manipulator; you can use this code as a shell for
 writing your own manipulators.
 * This manipulator looks for a property specified by the "SourceProp" pass
 through. If it finds that property it creates a new property, specified
by the "TargetProp" pass through,
 * copying the source's value into the target.
 * It will use the first arbitrary source value if multiple values exist.

 *
 */
public class SampleJavaManipulator implements Adapter
{
// all Java Manipulators must implement com.endeca.edf.adapter.Adapter

 // define constants for our passthrough names
 private static final String PASSTHROUGH_SOURCEPROP = "SourceProp";
 private static final String PASSTHROUGH_TARGETPROP = "TargetProp";

 // grab a logger from java.util.logging so we can write to the Forge logs

 private Logger logger = Logger.getLogger(this.getClass().getName());

 // because they implement Adapter, all Java Manipulators must have this
 // execute(AdapterConfig, AdapterHandler) method
 public void execute(AdapterConfig config, AdapterHandler handler)
 throws AdapterException
 {
 // read passthrough values from the config object;
 // the config object contains all our configuration.
 String sourceprop = config.first(PASSTHROUGH_SOURCEPROP);
 String targetprop = config.first(PASSTHROUGH_TARGETPROP);

 // validate passthrough values
 if (sourceprop == null)
 throw new AdapterException(PASSTHROUGH_SOURCEPROP + " passthrough not
specified; aborting");

 if (targetprop == null)
 throw new AdapterException(PASSTHROUGH_TARGETPROP + " passthrough not
specified; aborting");

 // loop through all input sources of this manipulator
 for (int inp = 0; inp != handler.getNumInputs(); inp++)
 {

 // create this flag for testing in our while loop, below
 boolean hasMoreRecords = true;
 long currentRecord = 0;

 // loop through all of the records for the current input
 while(hasMoreRecords)
 {

 // get the records, one by one, from the current input source.
 Record rec = handler.getRecord(inp);

 // when we are out of records, the last record will be null.
 if (rec != null)

Endeca ConfidentialEndeca® Platform Services Content Adapter Developer's Guide

Sample Content Adapter and Java Manipulator Code | SampleJavaManipulator.java example34

 {
 ++currentRecord;
 String sourcepropValue = null; // placeholder for our source property

 // each record is a collection of properties.
 // loop through the properties to find the one we want.
 // if we are looking for multiple different properties of a single
 // record, it may be more efficient to stuff them into a Map.
 for (PVal prop : rec)
 {
 if (prop.getName().equals(sourceprop))
 {
 // we found the property we are looking for. Save its value.
 sourcepropValue = prop.getValue();
 break;
 }
 }

 // If we found the sourceprop, copy its
 // value into another prop, add the new prop to the
 // record, and write to the Forge log.
 if (sourcepropValue != null)
 {
 rec.add(new PVal(targetprop,sourcepropValue));
 if (logger.isLoggable(Level.INFO))
 logger.info("Input source: " + inp + "; Record " + currentRecord +
": found " + sourceprop + "=\"" + sourcepropValue + "\", copying to " +
targetprop);

 }

 // we must emit() each record we want to pass out of this
 // manipulator into the next downstream component (e.g. PropertyMapper)

 handler.emit(rec);
 } else {
 hasMoreRecords = false;
 }
 }
 }
 }
}

Endeca® Platform Services Content Adapter Developer's GuideEndeca Confidential

35Sample Content Adapter and Java Manipulator Code | SampleJavaManipulator.java example

Appendix B

Error Handling in the Content Adapter
Development Kit

This section discusses how errors should be handled in the CADK.

Error handling in the CADK
To handle errors and enable logging in the CADK, use the following recommendations:

• A Java manipulator or a content adapter that you create should be implemented to throw an
AdapterException if an error (such as failing to connect to a data source) occurs. Forge logs
the message portion of the exception with a log level of error. If a Java manipulator or a content
adapter simply wants to quit without issuing an error in Forge, it should return from the execute
method.

• Never implement a Java manipulator or a content adapter to call System.exit.
• The AdapterHandler may throw an AdapterException, which, in general, should not be

caught by a Java manipulator or a content adapter. However, in some cases it may be necessary
to catch this exception (usually for the purpose of formatting the error message).

Catching and re-throwing the message is acceptable. If you are doing so, it is important to note
that the AdapterHandler throws a sub-class of AdapterException,
ShutdownRequestAdapterException, which is used to signal that Forge will not process any
more records. This can happen under several scenarios, the most common of which occurs when
Forge is run with the -n flag.

If the ShutdownRequestAdapterException is caught and an AdapterException is thrown
in its place, Forge logs an error message. Normally this is not the desired effect. To avoid this, a
content adapter’s try ... catch block should be similar to the following:

try {
 ...
 adapterHandler.emit(record);
}
catch (ShutdownRequestAdapterException e) {
 throw e;
}
catch (AdapterException e) {
 throw new
AdapterException(reformat(e.getMessage()));
}

A try ... catch block of this form does not log an error message in Forge if the
ShutdownRequestAdapter Exception is thrown by the AdapterHandler.

• In general, once the AdapterHandler throws an exception, further calls to
AdapterHandler.emit are likely to trigger additional exceptions.

Logging messages
You can write error messages to a java.util.logging.Logger object in order to have them
display in Forge's logs.

To log messages, use these recommendations:

1. Import the JVM java.util.logging.Logger into your Java manipulator code, and define your
own logging object.

2. Write log messages you want displayed in Forge’s logs to your java.util.logging.Logger
object.

This is generally done when implementing logging and debugging messages for Java manipulators
and content adapters.

Note: Do not use System.out or System.err for logging because messages written to
either of these streams are not displayed in Forge’s logs.

For example, The MBoxPlugin content adapter logs informative messages to a static
java.util.logging.Logger class. In this case, the Logger is named MBox Adapter; logger
names should normally be based on the package name or class name of the logged component.

Messages written to this logger are displayed in the Forge log, provided Forge is run with the
appropriate verbosity (in this case -vi or lower; for details on Forge’s verbosity levels, see the flag
reference in the Endeca Forge Guide). Adapter log messages appear in the Forge logs with the name
of the logger in parenthesis.

In the case of MBoxPlugin, messages appear as follows when Forge is run with the -vi command
line argument:

...
INF: [Edf]: (AdapterRunner): Adapter class: MBoxPlugin
INF: [Edf]: (MBoxPlugin): Creating <n> records.
...
INF: [Edf]: (MBoxPlugin): Finished!
...

The AdapterRunner log message declares the content adapter that was loaded.

Log levels reference
The log levels in java.util.logging.Logger map roughly to those in Forge, as the following table
shows:

For more information about Forge logging, see “The Forge Logging System” in the Endeca Forge
Guide.

Endeca ConfidentialEndeca® Platform Services Content Adapter Developer's Guide

Error Handling in the Content Adapter Development Kit | Logging messages38

Forgejava.util.logging.Level

ERRORSEVERE

WARNWARNING

INFOINFO

INFOCONFIG

DEBUGFINE

DEBUGFINER

TRACEFINEST

Debugging Java manipulators
You can use the Forge log and JVM Logger class to help debug your Java manipulators.

Use the following features to assist you in debugging Java manipulators:

1. Import the JVM java.util.logging.Logger class, so that you can use its severe, warning,
info, config, fine, finer and finest methods in your Java manipulator code to print log
messages to the Forge log file.

Here is the relevant code from the sample that enables logging:

Note: Do not use System.out or System.err for logging because messages written to
either of these streams are not displayed in Forge logs.

//import the logging API that comes with JVM.
import java.util.logging.Logger;
...
//Define the logger
Logger log = Logger.getLogger(this.getClass().getName());

The Logger class has several methods which can be used to log messages of different severity
levels. An example of one of these from the sample is the line:

//Print a message using the log to your console, letting you know that
forge has entered the TextCleaner javamanipulator
log.info("Inside the TextCleaner adapter");

2. View the Forge log to locate the command that was used to call a specific JVM running your Java
manipulator.

In general, any messages that are printed using the JVM Logger class are automatically picked
up by the Forge logging system and output into the Forge log file.

Endeca® Platform Services Content Adapter Developer's GuideEndeca Confidential

39Error Handling in the Content Adapter Development Kit | Debugging Java manipulators

The name of the log file is Edf.Pipeline.RecordPipeline.JavaManipula¬
tor.<JM_NAME>.log. It is located in the Forge working directory. In the log file name, JM_NAME
is the name of your Java manipulator.

Note: Once an error or warning occurs in the Java processing, it gets passed to the Forge
processing console and is displayed and logged in the Edf.Pipeline.Record¬
Pipeline.JavaManipulator.<JM_NAME>.log file.

In addition to the Java manipulator logging, for cases in which logging does not catch all relevant
information, you can insert additional components to your pipeline, or create an additional pipeline.

For example, you can insert an output record adapter in the pipeline, after the Java manipulator, to
write the records to a file that you can examine.

Or, you can create an additional simple pipeline. This pipeline can write the records emitted by the
Java manipulator that you are debugging into an XML file.The pipeline will contain two items: the Java
manipulator that you are testing, and an XML output record manipulator that writes all records produced
by the test Java manipulator to an XML output file.

Passing JVM arguments to Forge
You can use the --javaArgument flag with Forge to pass VM arguments to the JVM running the
Java manipulator.

To pass VM arguments with the --javaArgument flag:

1. From Endeca Workbench, access the EAC Admin Console page.

2. On the Components tab, select the Forge component.

3. Use the --javaArgument flag to pass the desired VM arguments.

For example, the following string sets a 2 GB max heap for the JVM:

--javaArgument -Xmx2g

Endeca ConfidentialEndeca® Platform Services Content Adapter Developer's Guide

Error Handling in the Content Adapter Development Kit | Passing JVM arguments to Forge40

Index

A

adding a Java manipulator to the pipeline 26
Ant, compiling and building with 21

C

CADK
about 9
compiling and building

with Java commands 22
compiling and building with Ant 21
core classes 19
directory structure 18
error handling 37
error logging 38
framework overview 19
system requirements 17

code example of a Java manipulator 33
compiling and building

with Ant 21
with Java commands 22

content adapter
about 11
compiling 21
error handling 37
implementation process overview 13
when to use 12
writing code for 20

creating a record adapter 25

D

deciding which type of manipulator to use 10
Developer Studio, specifying Java properties in 25
directory structure of the CADK 18

E

error handling 37
error log levels 38
example code 29

content adapter 29
Java manipulator 11

J

Java code sample for content adapter 29
Java commands, compiling and building with 22

Java manipulator
about 9
compiling 21
deploying in the pipeline 26
error handling 37
error logging 38
example 33
high-level implementation steps 11
logging and debugging 39
testing and debugging 39
writing code for 21

L

logging for Java manipulators 39

M

manipulators to use, deciding which 10

P

Perl manipulators, about
code sample 14

pipeline
overview of componenets used for processing 27
record adapters 25
running 28

R

record adapters, about 13
record manipulators

about 15

S

sample adapter code 29
sample Java manipulator code 33
system requirements 17

W

what is the CADK 12
writing code for a content adapter 20
writing code for Java manipulators 21

	Contents
	Preface
	About this guide
	Who should use this guide
	Conventions used in this guide
	Contacting Endeca Customer Support

	About the Content Adapter Development Kit
	About the Content Adapter Development Kit
	About Java manipulators
	When to use Java or record manipulators in your pipeline
	Implementing a Java manipulator
	Example of a Java manipulator

	About content adapters
	When to use content adapters
	Implementing a content adapter

	About record adapters
	About Perl manipulators
	About record manipulators

	Installing the Content Adapter Development Kit
	About installing the CADK
	CADK system requirements
	CADK directory structure reference

	Writing Content Adapters and Java Manipulators
	About the content adapter framework
	CADK core classes

	About writing a content adapter
	About writing a Java manipulator
	About compiling and building with Ant
	Compiling and building with Java commands

	Running a Content Adapter and a Java Manipulator
	Prerequisites
	Creating a record adapter to harness your content adapter
	Deploying a Java manipulator in the Forge pipeline
	About using other pipeline components for additional processing
	Running the pipeline

	Sample Content Adapter and Java Manipulator Code
	MBoxAdapter.java example
	SampleJavaManipulator.java example

	Error Handling in the Content Adapter Development Kit
	Error handling in the CADK
	Logging messages
	Log levels reference

	Debugging Java manipulators
	Passing JVM arguments to Forge

	Index

