
Oracle® Tuxedo Message Queue (OTMQ)
Programming Guide
12c Release 1 (12.1.1)

June 2012

Oracle® Tuxedo Message Queue (OTMQ) Programming Guide, 12c Release 1 (12.1.1)

Copyright © 2012 Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure
and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you
may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any
part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law
for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors,
please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs
installed on the hardware, and/or documentation, delivered to U.S. Government end users are "commercial computer software"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use,
duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any
programs installed on the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to
the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not developed
or intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If
you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe,
backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any
damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective
owners.

This software or hardware and documentation may provide access to or information on content, products, and services from third
parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect
to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or
damages incurred due to your access to or use of third-party content, products, or services.

Oracle Tuxedo Message Queue Programming Guide
Programmer Tasks . 1

Sending and Receiving Messages . 2

Using Filters. 8

Filter Type . 8

Simple Filter . 8

Compound Filter . 9

Filter Format. 9

Simple Filter . 9

Compound Filter . 11

Using Publish/Subscribe . 13

Sending Broadcast Messages . 14

Receiving Broadcast Messages . 14

Subscribing to Receive Broadcast Messages . 14

Subscribing to Receive Selected Broadcast Messages . 15

Subscription Acknowledgement . 17

Reading Broadcast Messages . 17

Unsubscribing Receiving Broadcast Messages. 17

Using Recoverable Messaging . 18

Choosing a Message Delivery Mode . 19

Choosing Recoverable or Non-recoverable Delivery Mode 20

Choosing an Undeliverable Message Action . 23

How to Send a Recoverable Message . 24

How to Receive a Recoverable Message . 25

Using UMAs for Exception Processing . 25

Using Discard UMA . 25

Using the Return-to-Sender UMA . 26
Oracle Tuxedo Message Queue Programming Guide iii

Using the SAF UMA. 26

Using the Dead Letter Queue UMA . 26

Using the Dead Letter Journal. 27

The DIP and UMA Support List . 29

Using Naming . 30

Naming Service . 31

Name Scope . 31

Name Space . 31

Process Level Name Space . 31

Local Name Space. 31

Global Name Space. 32

Attaching and Locating Queues . 33

Static and Dynamic Binding of Queue Aliases . 34

Using WS SAF . 35

Building Applications . 36
Oracle Tuxedo Message Queue Programming Guide iv

Oracle Tuxedo Message Queue Programming Guide v

vi Oracle Tuxedo Message Queue Programming Guide

Oracle Tuxedo Message Queue
Programming Guide
This chapter contains the following topics:

Programmer Tasks

Sending and Receiving Messages

Using Filters

Using Publish/Subscribe

Using Recoverable Messaging

Using Naming

Using WS SAF

Building Applications

Programmer Tasks
Oracle Tuxedo Message Queue (OTMQ) provides the following features to Oracle Tuxedo
application programmers:

A set of application programming interfaces to enqueue messages for subsequent process.
The queuing service guarantees to execute the enqueue request successfully. A serial of
application programming interfaces are provided to dequeue messages in synchronous or
asynchronous way.
Oracle Tuxedo Message Queue Programming Guide 1

Orac le Tuxedo Message Queue P rogramming Gu ide
The application program can use the same application programming interface as P2P
messaging to do publish/subscribe operations. For more information, see Using
Publish/Subscribe.

Besides the message order pre-defined for one queue, the application program can filter the
messages being dequeued from the queue by setting filters. For more information, see
Using Filters.

The application program can choose to ensure message delivery to the target queue. For
more information, see Using Recoverable Messaging.

Also the OTMQ supports flexible way to bind queue name and alias, which allows the
programmer to decouple the programming and the configurations of queues. For more
information, see Using Naming.

Sending and Receiving Messages
OTMQ provides the basic queuing features.

Application should first attach to a queue using tpqattach(3c) before using queuing
features and other advanced features provided by OTMQ.

For message sending, application calls standard enqueue API tpenqplus(3c) with
specified block, DIP and UMA, to determine whether messaging is synchronous or
asynchronous, recoverable or not, and action to take when delivery failed as shown in
Listing 1.

Listing 1 Synchronous OTMQ Queue and Enqueue Message Attachment

#define MSG_CLAS_EXAMPLES 2000
#define MSG_TYPE_CLIENT_REQ 1

TPQCTL ctl;
Q_ATTACH_CTL qattachctl;
char q_space[16] = "QSPACE";
char q_name[128] = "myqueue1";
long flags;

/* join the application */
if (tpinit(NULL) == -1)
2 Oracle Tuxedo Message Queue Programming Guide

Sending and Rece iv ing Messages
{
 (void) fprintf(stderr, "failed to join application: %s\n",
 tpstrerror(tperrno));
 exit(1);
}

memset(&qattachctl, 0x0, sizeof(qattachctl));
qattachctl.attachmode = TMQ_ATTACH_BY_NAME;
qattachctl.qtype = TMQ_ATTACH_PQ;
qattachctl.namespace_list = NULL;
qattachctl.namespace_list_len = 0;
qattachctl.timeout = 30;

memset(&ctl, 0x0, sizeof(ctl));
ctl.flags |= OTMQ;
flags = TPNOTRAN;

if (tpqattach(q_space, q_name, &ctl, &qattachctl, flags) == -1)
{

 (void) fprintf(stderr, "failed to attach q[%s.%s]: %s\n", q_space,
 q_name, tpstrerror(tperrno));
 (void) tpterm();
 exit(1);
}

/* get request buffer */
if ((reqstr = tpalloc("STRING", NULL, len)) == NULL)
{
 (void) fprintf(stderr, "unable to allocate STRING buffer: %s",
 tpstrerror(tperrno));
 exit(1);
}

ctl.msg_class = MSG_CLAS_EXAMPLES; /* user defined message class */
ctl.msg_type = MSG_TYPE_CLIENT_REQ; /* user defined message type */
ctl.block = OTMQ_DEL_WF; /* use synchronous way */
ctl.DIP = OTMQ_DIP_MEM; /* interest point */
Oracle Tuxedo Message Queue Programming Guide 3

Orac le Tuxedo Message Queue P rogramming Gu ide
ctl.uma = OTMQ_UMA_RTS; /* undelivered message action - return

to sender */
ctl.timeout = 30;

/* enqueue the message into the destination queue */
if (tpenqplus(target_qspace, target_qname, &ctl, reqstr, 0, 0) == -1)
{
 (void) fprintf(stderr, "Failure to enqueue %s\n",

 tpstrerror(tperrno)); if (tperrno == TPEDIAGNOSTIC)

 {
 (void) fprintf(stderr, "Diagnostic code=[%d]\t",

 ctl.diagnostic);
}
 tpfree((char *) reqstr);
 (void) tpterm();
 exit(1);
}

/* detach from queue */
/* tpqdetach() */
…

For synchronous message receiving, application calls standard dequeue API tpdeqplus(3c)
as shown in Listing 2.

Listing 2 Synchronous Message Dequeue

char qspacename[16] = "QSPACE";
char qname[128] = "myqueue2";

/* call tpinit to join the application */
/* tpinit() */
…
/* attach to the queue to dequeue message from, then do the dequeue action */
4 Oracle Tuxedo Message Queue Programming Guide

Sending and Rece iv ing Messages
/* tpqattach() */
…

memset(&ctl, 0x0, sizeof(ctl));
ctl.flags |= OTMQ;
flags = TPNOTRAN;

/* get request buffer, allocate a buffer to store the dequeued message */
len = 100;
if ((reqstr = tpalloc("STRING", NULL, len)) == NULL)
{
 (void) fprintf(stderr, "unable to allocate STRING buffer: %s",
 tpstrerror(tperrno));
 (void) tpterm();
 exit(1);
}

/* dequeue the message from the queue */
ctl.timeout = 30;
if (tpdeqplus(qspacename, qname, &ctl, &reqstr, &len, 0) == -1)
{
 if (tperrno == TPEDIAGNOSTIC)
 {
 (void) fprintf(stderr, "Diagnostic code=[%d]\t",

 ctl.diagnostic);
 } else
 {
 (void) fprintf(stderr, "Failure to dequeue %s\n",

 tpstrerror(tperrno));
 }
 tpfree((char *) reqstr);
 (void) tpterm();
 exit(1);
}

/* detach from queue */
Oracle Tuxedo Message Queue Programming Guide 5

Orac le Tuxedo Message Queue P rogramming Gu ide
/* tpqdetach() */
…

For asynchronous message receiving, application calls tpqgetmsga(3c)as shown in
Listing 3.

Listing 3 Asynchonous Dequeue Message

/* first define the user action to be done when message arrive */
int gotMessage = 0;

int msgAction(long * flag)
{
 printf("Get asynchronous message [%s],flag=0x%X\n",reqstr,flag);
 gotMessage = 1;

}

int main(int argc, char **argv)
{
 char qspacename[16] = "QSPACE";
 char qname[128] = "myqueue1";

...

 /* join the application */
 /* tpinit() */
 …
 /* attach to the queue to dequeue message from */
 /* tpqattach() */
 …
 memset(&qctl,0,sizeof(qctl));
 qctl.flags |= OTMQ;
 qctl.filter_idx = -1; /* no message filter designated, get the first

 available message in queue */

 size_user_data=100;
6 Oracle Tuxedo Message Queue Programming Guide

Sending and Rece iv ing Messages
 if(tpqgetmsga(qspacename,
 qname,
 (TPQCTL *)&qctl,
 (char **)&reqstr,
 (long *)&size_user_data,
 (long *)&msgAction,
 (long *)0,
 (long *)0,
 TPNOTIME) != 0)
 {
 /* print out the error message string or diagnostic code */
 …
 tpfree((char *) reqstr);
 (void) tpterm();
 exit(1);
 }

 /* continue to do other actions, when message arrived in queue,
 * user action "msgAction" will be called */

 …

}

If received message requires confirmation, application calls tpqconfirmmsg(3c) to
confirm receipt of the message as shown in Listing 4.

Listing 4 Explicit Confirmation for a Dequeued message

/* join the application */
/* tpinit() */
…
/* attach to the queue to dequeue message from, then do the dequeue action */

/* tpqattach() */
…
/* dequeue message */
/* tpdeqplus() */
Oracle Tuxedo Message Queue Programming Guide 7

Orac le Tuxedo Message Queue P rogramming Gu ide
…
/* check the message delivery status stored in TPQCTL */
if(ctl.status_block.del_psb_status == OTMQ__CONFIRMREQ)
{
 /* This is a message need to be confirmed explicitly,

 * use the dequeued message sequence to confirm */

 if(tpqconfirmmsg(ctl.seq_number, 0) < 0)

 {

 /* print out the error message string or diagnostic code */

 …

 tpfree((char *) reqstr);

 (void) tpterm();

 exit(1);

 }

}

Using Filters
OTMQ provides message filter which allows user to retrieve message that matching the selection
criteria defined by the message filter. Application can designate message filter when calling
standard dequeue API tpdeqplus(3c), or when calling subscription API tpqsubscribe(3c).

Filter Type
OTMQ supports two types of message filter: simple filter and compound filter. Simple filter has
lifecycle of only one-time operation (dequeue or subscription). While the compound filter can be
pre-defined and re-used in the subsequent dequeue operations.

Simple Filter
Filter per subscription

Message filter can be specified when subscribing the user broadcast message. It only
impacts the messages retrieved according to this subscription.
8 Oracle Tuxedo Message Queue Programming Guide

F i l t e r Fo rmat
Filter per operation

Message filter can be specified when executing a tpdeqplus/tpdequeue. It only impacts the
result of this operation itself. For simple filter use, you must set filter_idx=-1 and
flags|=TPQGETBYFILTER, otherwise it reports an error.

Compound Filter
Filter per queue

Message filter can be defined or canceled via a pair of APIs: tpqsetselect
/tpqcancelselect. Once a filter is defined, the user can use it in a serial of dequeue or
subscription operations.

Filter Format
Different types of message filter have different kinds of format. Following sections describe the
selection criteria that can be specified for the simple filter or the compound filter.

Simple Filter
For simple filter, it consists of one of the following selection criteria:

Default Selection

Enables application to read messages from the queue based on the order in which they
arrived. Applications using default selection will read the next pending message from the
message queue. Messages are stored by pre-defined queue orders (FIFO, LIFO, priority,
etc.).

Selection by Message Attribute

Enables the application to select messages based on the message type, message class or
message priority, etc.

Table 1 shows how the selection criteria can be defined as select mode and value pairs.
Oracle Tuxedo Message Queue Programming Guide 9

Orac le Tuxedo Message Queue P rogramming Gu ide
Listing 5 Dequeue Message with Simple Message Filter

#define MSG_CLAS_EXAMPLES 2000
#define MSG_TYPE_CLIENT_REQ 1

TPQCTL ctl;

Table 1 Select Mode

Selection Mode Selection Variable Mode Description

OTMQ_PQ_TYPE Message type value Selects the first pending message from the
attached Primary Queue (PQ) that matches the
message type value being specified in the
selection variable.

TPQCTL->flags must set
OTMQ|TPQGETBYFILTER|TPQGETBYMS
GTYPE

OTMQ_PQ_CLASS Message class value Selects the first pending message from the
attached Primary Queue (PQ) that matches the
message class value being specified in the
selection variable.

TPQCTL->flags must set
OTMQ|TPQGETBYFILTER|TPQGETBYMS
GCLASS

OTMQ_PQ_PRI • Integer value between
0 and 99

• OTMQ_PRI_ANY
• OTMQ_PRI_P0
• OTMQ_PRI_P1

Selects the first pending message with a priority
equal to an integer between 0 and 99 inclusive
(or equal to the selection variable value) from
the attached Primary Queue (PQ). Specifying
the direct integer value is the preferred method
of selecting message by priority

Using OTMQ_PRI_ANY enables the reading
of any pending messages of all priorities.

Using OTMQ_PRI_P0 enables the application
to retrieve pending messages of priority 0 only.

Using OTMQ_PRI_P1 enables the strict
retrieval of pending messages with a priority of
1.
10 Oracle Tuxedo Message Queue Programming Guide

F i l t e r Fo rmat
….
/* join the application */
/* tpinit() */
…

/* attach to the Qspace */
/* tpqattach() */
…

/* select by message attributes */
ctl.flags |= TPQGETBYMSGCLASS;
ctl.msg_class = MSG_CLAS_EXAMPLES;
ctl.flags |= TMQGETBYMSGTYPE;
ctl.msg_type = MSG_TYPE_CLIENT_REQ;
ctl.flags |= TPQGETBYPRIORITY;
ctl.priority = 50;
…
/* call tpdeqplus to dequeue a message with
* message class is "MSG_CLAS_EXAMPLES",
* message type is "MSG_TYPE_CLIENT_REQ" and
* message priority is 50 */
if (tpdeqplus(qspacename, qname, &ctl, &reqstr, &len, 0) == -1)
{
 /* deal with failed scenario */
 ……
}
…
/* detach from Qspace */
/* tpqdetach() */
…

Compound Filter
The compound filter allows application to define complex selection criteria for message
reception. The selection criteria array can specifies the queues to search, the priority order of
message reception, two comparison keys for range checking, and an order key to determine the
order in which messages are selected from the queue.
Oracle Tuxedo Message Queue Programming Guide 11

Orac le Tuxedo Message Queue P rogramming Gu ide
Application calls tpqsetselect(3c) function first to define a filter and gets an index handle as
return, which can be used later in the standard dequeue API to retrieve messages.

Also the application can call tpqcancelselect(3c) to cancel the compound filter defined
before as shown in Listing 6.

Listing 6 Dequeue Message Using Compund Message Filter

char qspacename[16] = "QSPACE";
char qname[128] = "myqueue1";
char src_qname[128] = "from_que";
TPQctl ctl;
selection_array_component_tp selection_array;
short num_masks = 1;
int index_handle = -1;

/* join the application */
/* tpinit() */

/* attach to the Qspace */
/* tpqattach() */

/* set complex filter to dequeue message with specific message class,
 * and from specific queue*/

memset(&selection_array, 0x0, sizeof(selection_array));
selection_array.key_1_offset = OTMQ_CLASS;
selection_array.key_1_size = 4;
selection_array.key_1_value = MSG_CLAS_EXAMPLES;
selection_array.key_1_oper = OTMQ_OPER_EQ;
selection_array.key_2_offset = OTMQ_SOURCE;
selection_array.key_2_size = 4;
selection_array.key_value_qspace = qspacename;
selection_array.key_value_queue = src_qname;
selection_array.key_2_oper = OTMQ_OPER_EQ;

if(tpqsetselect(&selection_array, &num_masks, &index_handle) == -1)
{
12 Oracle Tuxedo Message Queue Programming Guide

Us ing Publ i sh /Subscr ibe
 /* deal with failed scenario */
 …
}

ctl.filter_idx = index_handle; /* using the filter to dequeue */

if(tpdeqplus(qspacename, qname, &ctl, &reqstr, &len, 0) == -1)
{
 /* deal with failed scenario */
 …
}

/* need to cancel the filter using the index */
if(tpqcancelselect(&index_handle)== -1)
{
 /* deal with failed scenario */
 …
}

/* detach from Qspace */
/* tpqdetach() */
…

For more information, see tpqsetselect(3c) and tpqcancelselect(3c) in the Oracle
Tuxedo Message Queue Reference Guide.

Using Publish/Subscribe
The publisher broadcast a message by sending the message to a special "topic". Each topic
represents a broadcast stream. A broadcast stream is the set of target queues registered to receive
messages directed to a particular topic. The subscriber should register first for a topic to receive
the specific broadcasting messages.

The OTMQ Message Queue Manager Server is responsible for maintaining lists of user processes
that are interested in the specific topic. In addition, the server is responsible for maintaining the
various user definable rules (also known as pub/sub filter) that can be used to selectively extract
messages from the broadcast stream that are set by the application using the tpqsubscribe(3c).
Oracle Tuxedo Message Queue Programming Guide 13

Orac le Tuxedo Message Queue P rogramming Gu ide
A publisher can send a broadcast message using tpqpublish(3c), and a subscriber can retrieve
the subscribed message from its attached queue.

Sending Broadcast Messages
To broadcast a message, a publisher program directs the message to the topic that identifies the
broadcast stream to use for message distribution. When the application issues the
tpqpublish(3c) function, OTMQ Message Queue Manager Server deals with the
tpqpublish(3c) call and transparently redirects the message to all corresponding recipients.

OTMQ Message Queue Manager Server delivers only one copy of each message on the broadcast
stream to each target queue, regardless of how many selection matches are made by separate
subscription rule entries.

Broadcast messages cannot be stored for automatic message recovery.

Receiving Broadcast Messages
To receive broadcast messages, applications use a standard API tpqsubscribe(3c) to register
for receipt with the local or remote OTMQ Message Queue Manager Server.

The following topics describe:

Subscribing to Receive Broadcast Messages

Subscribing to Receive Selected Broadcast Messages

Subscription Acknowledgement

Reading Broadcast Messages

Unsubscribing Receiving Broadcast Messages

Subscribing to Receive Broadcast Messages
To receive broadcast messages, an application registers a queue with a broadcast stream (topic)
that managed by the OTMQ Message Queue Manager Server.

The receiver/subscribing applications register for broadcast messages using the function
tpqsubscribe(3c). The registration contains the string formatted topic plus any selection
criteria (filter) related to messages that the application wishes to receive.

The application subscribe the broadcast messages using the function tpqsubscribe(3c)
supplied with the following information:
14 Oracle Tuxedo Message Queue Programming Guide

Rece iv ing Broadcast Messages
The topic: the broadcast stream that wants to subscribe

The target: the target OTMQ Message Queue Manager Server, and the special flag which
means Pub/Sub service.

The source: the queue name which the requesting application is attaching.

Subscribing to Receive Selected Broadcast Messages
Use the message filter of tpqsubscribe(3c) to register for selective reception of broadcast
messages. This subscription request registers a target queue to receive a copy of all messages on
a broadcast stream that meet a single selection rule.

Filter is a string containing a Boolean filter rule that must be evaluated successfully before the
OTMQ Message Queue Server distributing the broadcast messages to the subscriber. Filter rules
are specific to the types buffers to which they are applied. For messages of string type, the filter
rule is a regular expression. For messages of FML buffers, the filter rule is a string that can be
passed to the FML Boolean compiler (see Tuxedo ATMI FML function Fboolco).

Table 2 shows how the Filter Regular Expression Rules can be defined.

Table 2 Regular Expression Rules

Rule Matching Text

character Itself (character is any ASCII character except the special ones mentioned below).

\ character Itself except as follows:

\\-newline

\\t-tab

\\b-backspace

\\r-carriage return

\\f-formfeed

\ special-character Its un-special self. The special characters are . * + ? | () [{ and \\.

-Any character except the end-of-line character (usually newline or NULL).

^-Beginning of the line.

$-End-of-line character.
Oracle Tuxedo Message Queue Programming Guide 15

Orac le Tuxedo Message Queue P rogramming Gu ide
There are three levels of precedence. In order of decreasing binding strength they are:

catenation closure (*,+,?,{...})

catenation

alternation (|)

As indicated above, parentheses are used to give explicit precedence.

[class] any character in the class denoted by a sequence of characters and/or ranges. A
range is given by the construct character-character. For example, the character
class, [a-zA-Z0-9_], will match any alphameric character or "_". To be included in
the class, a hyphen, "-", must be escaped (preceded by a "\\") or appear first or last
in the class. A literal "]" must be escaped or appear first in the class. A literal "^"
must be escaped if it appears first in the class.

[^ class] Any character in the complement of the class with respect to the ASCII character
set, excluding the end-of-line character.

RE RE The sequence. (catenation)

RE | RE Either the left RE or the right RE. (left to right alternation)

RE * Zero or more occurrences of RE.

RE + One or more occurrences of RE.

RE ? Zero or one occurrences of RE.

RE { n } n occurrences of RE. n must be between 0 and 255, inclusive.

RE { m, n } m through n occurrences of RE, inclusive. A missing m is taken to be zero. A
missing n denotes m or more occurrences of RE.

(RE) Explicit precedence/grouping.

(RE) $ n The text matching RE is copied into the nth user buffer. n may be 0 through 9. User
buffers are cleared before matching begins and loaded only if the entire pattern is
matched.

Table 2 Regular Expression Rules

Rule Matching Text
16 Oracle Tuxedo Message Queue Programming Guide

Rece iv ing Broadcast Messages
Subscription Acknowledgement
The tpqsubscribe(3c) returns a subscription handle back to the subscriber. This handle
should be used to unsubscribe the specific subscription.

Reading Broadcast Messages
When a message is sent to a broadcast stream, the OTMQ Message Queue Manager Server will
determine which applications have registered to receive that kind of message. Then it
automatically sends these messages to the distribution of all matching applications. The receiving
application reads the broadcast message from its target queue using the standard dequeue
functions. The source queue address of the sender is also provided to the receiving application in
the message.

Unsubscribing Receiving Broadcast Messages
An application can withdraw subscribing messages from a broadcast stream by calling the
tpqunsubscribe(3c). This action removes the subscription entry from the internal registration
tables as shown in Listing 7

Listing 7 Subscribe and Unsubscribe Messages

TPEVCTL evctl;
long evt_handle = 0L ; /* Event Subscription handles */
…
/* join the application */
/* tpinit() */
…

/* attach to the Qspace */
/* tpqattach() */
…
evctl.flags = TPEVQUEUE ;
(void)strcpy (evctl.name1, "QSPACE") ;
(void)strcpy (evctl.name1, "myqueue1") ;
evctl.qctl.flags |= OTMQ;

/* Subscribe */
Oracle Tuxedo Message Queue Programming Guide 17

Orac le Tuxedo Message Queue P rogramming Gu ide
evt_handle = tpqsubscribe ("TMQ:QNOT:QSPACE:mytopic",
 NULL,&evctl,TPSIGRSTRT) ;

if (evt_handle == -1L) {
 /* deal with failed scenario */
 …

}
…
/* dequeue subscribed message */
if(tpdeqplus(qspacename, qname, &ctl, &reqstr, &len, 0) == -1)
{
 /* deal with failed scenario */
 …

}

/* Unsubscribe to the subscribed topic */
if (tpqunsubscribe (evt_handle, TPSIGRSTRT) == -1)
{
 /* deal with failed scenario */
 …
}

For more information, see tpqsubscribe(3c) and tpqunsubscribe(3c) in the Oracle Tuxedo
Message Queue Reference Guide

Using Recoverable Messaging
Applications send messages using the OTMQ standard enqueue function tpenqplus(3c) and
one of two types of delivery modes: recoverable or non-recoverable. If a message is sent as
non-recoverable, the message is lost if it cannot be delivered to the target queue unless the
application incorporates an error recovery procedure. If the message is sent as recoverable,
OTMQ Message Queue Manager Server and Offline Trade Driver can automatically guarantee
delivery to the target queue in spite of system, process, and network failures.

To ensure guaranteed delivery, the OTMQ Message Queue Manager Server writes recoverable
messages to nonvolatile storage on the sender or receiver system. Then, if a message cannot be
18 Oracle Tuxedo Message Queue Programming Guide

Choos ing a Message De l i ve ry Mode
delivered due to an error condition, the OTMQ Offline Trade Driver attempts redelivery of the
message by reading it from the recovery journal and redelivering the message to the target queue
until delivery is confirmed.

Application developers determine which messages should be sent as recoverable depending upon
the needs of the application. Because recoverable messaging requires the extra step of storing the
messages on disk, it requires additional processing time and power. To maximize performance,
recoverable messaging should only be used when it is critical to application processing.

The OTMQ recoverable messaging feature offers the following benefits:

Reduces development time by eliminating the need for designing applications to recover
messages that cannot be delivered.

Prevents applications from losing data when applications, systems, or network links fail.

Simplifies the implementation of an event-driven store and forward capability in networked
applications.

OTMQ also offers error recovery features for non-recoverable messages such as the dead letter
queue (DLQ) and the ability to return a message to the sender if the message cannot be delivered.
This topic describes all of the OTMQ delivery modes to enable you to understand the right choice
for your application.

This section contains the following topics

Choosing a Message Delivery Mode

How to Send a Recoverable Message

How to Receive a Recoverable Message

Using UMAs for Exception Processing

Choosing a Message Delivery Mode
The choice between recoverable and non-recoverable delivery is based upon the needs of the
application. To determine the appropriate method for sending a message, the application
developer decides:

Does the application need to know if the message arrived at the target queue?

If notification is required, how far must the message get before the sender program
receives notification that the message has arrived?
Oracle Tuxedo Message Queue Programming Guide 19

Orac le Tuxedo Message Queue P rogramming Gu ide
Should the application wait for notification or should it continue processing and receive
notification through an asynchronous acknowledgment message?

If the message is designated as recoverable, does the application need to know if the
message has been stored by the recovery system?

If the message is designated as recoverable, what should happen if it cannot be stored by
the recovery system?

The delivery mode specified in tpenqplus(3c) function determines:

Whether the message is sent as recoverable or non-recoverable

Whether a blocking or non-blocking mode is selected

Whether the sender program receives notification and how it is received

The point in the message flow at which the notification is sent

OTMQ uses message recovery journals to store messages that are designated as recoverable. The
message recovery journal on the local system is called the store and forward (SAF). The message
recovery journal on the remote system is called the destination queue file (DQF). If a recoverable
message cannot be delivered, it is stored in either the SAF or DQF queue and is automatically
re-sent once communication with the target group is restored.

OTMQ uses auxiliary journals to provide additional message recovery capabilities. The dead
letter queue (DLQ) is a memory-based queue for storing undeliverable messages. The dead letter
journal (DLJ) provides disk storage for messages that could not be stored for automatic recovery.
Undelivered messages stored in the DLQ or DLJ can be retrieved under user or application
control by using OTMQ's Journal API tpqreadjrn(3c).

The post confirmation journal (PCJ) stores successfully confirmed recoverable messages.

If the OTMQ message recovery system is unable to store the message, the undeliverable message
action (UMA) is taken. Some UMAs enable the message to be recovered at a later time under user
or application control.

Choosing Recoverable or Non-recoverable Delivery Mode
The delivery mode consists of two components, the block type (block) and the delivery interest
point (DIP). Specify the block and DIP in the TPQCTL structure.

block - indicates how the sender program wants to receive information about the delivery
of the message. You can either wait for the operation to complete (WF), or receive
20 Oracle Tuxedo Message Queue Programming Guide

Choos ing a Message De l i ve ry Mode
notification in an asynchronous message (AK), or choose not to receive notification (NN)
at all.

DIP - determines whether the message is designated as recoverable. When the message
reaches the delivery interest point, a notification message is sent (if requested) and the call
returns control to the sender program or OTMQ Message Queue Manager Server delivers
the asynchronous acknowledgment message.

Non-recoverable delivery interest points enable the sender program to receive notification when
the message is stored in the target queue (MEM), when the message is read from the target queue
(DEQ), or when the message is read from the target queue and explicitly confirmed by the
receiver program using the tpqconfirmmsg(3c) function (ACK).

When a recoverable delivery interest point is selected, the message is stored on disk for automatic
recovery. Recoverable delivery interest points enable the sender program to store the message in
the local recovery journal (SAF), store the message in the remote recovery journal (DQF), or
store the message in the remote recovery journal and receive notification when the message is
confirmed by the target application (CONF).

OTMQ does not support all possible combinations of block type and delivery interest points.
Table 3 lists the valid delivery modes and their meanings.

Table 3 Delivery Modes

Delivery Mode Description

(Recoverable Delivery Modes)

block = OTMQ_DEL_AK

DIP = OTMQ_DIP_CONF

Send acknowledgment message when the message recovery system confirms
message delivery from the remote recovery journal.

block = OTMQ_DEL_AK

DIP = OTMQ_DIP_DQF

Send acknowledgment message when the message is stored in the remote recovery
journal.

block = OTMQ_DEL_AK

DIP = OTMQ_DIP_SAF

Send acknowledgment message when the message is stored in the local recovery
journal.

block = OTMQ_DEL_NN

DIP = OTMQ_DIP_DQF

Deliver message to the remote recovery journal but do not block and do not send
notification.

block = OTMQ_DEL_NN

DIP = OTMQ_DIP_SAF

Deliver message to the local recovery journal but do not block and do not send
notification.
Oracle Tuxedo Message Queue Programming Guide 21

Orac le Tuxedo Message Queue P rogramming Gu ide
Non-recoverable message delivery is the fastest and most efficient way to send messages. Use
non-recoverable delivery modes if:

High messaging rates are required by the application (hundreds or thousands of messages
per second).

block = OTMQ_DEL_WF

DIP = OTMQ_DIP_CONF

Block until the message is stored in the remote recovery journal and confirmed by
the target application.

block = OTMQ_DEL_WF

DIP = OTMQ_DIP_DQF

Block until the message is stored in the remote recovery journal.

block = OTMQ_DEL_WF

DIP = OTMQ_DIP_SAF

Block until the message is stored in the local recovery journal.

(Non-Recoverable Delivery Modes)

block = OTMQ_DEL_AK

DIP = OTMQ_DIP_ACK

Send acknowledgment message when the receiver program explicitly confirms
delivery using tpqconfirmmsg(3c).

block = OTMQ_DEL_AK

DIP = OTMQ_DIP_DEQ

Send acknowledgment message when the message is removed from the target
queue.

block = OTMQ_DEL_AK

DIP = OTMQ_DIP_MEM

Send acknowledgment message when the message is stored in the target queue.

block = OTMQ_DEL_NN

DIP = OTMQ_DIP_MEM

Deliver message to the target queue but do not block and do not send notification.

block = OTMQ_DEL_WF

DIP = OTMQ_DIP_ACK

Block until the receiver program explicitly confirms delivery using
tpqconfirmmsg(3c)

block = OTMQ_DEL_WF

DIP = OTMQ_DIP_DEQ

Block until the message is removed from the target queue.

block = OTMQ_DEL_WF

DIP = OTMQ_DIP_MEM

Block until the message is stored in the target queue.

Table 3 Delivery Modes

Delivery Mode Description
22 Oracle Tuxedo Message Queue Programming Guide

Choos ing a Message De l i ve ry Mode
The message content has a finite lifetime; therefore, the value of the information is stale if
not received and processed quickly.

The message is sent locally between two applications in the same message queuing group
that tightly cooperate in the processing of an event.

The message is a control message that causes a component of an application to change
state.

Recoverable message delivery is the safest way to send a message; however, it adds significant
processing overhead because each message must be stored before it is sent. Use recoverable
delivery modes if:

It is useful to know that the message has arrived; however, the sender does not need to
know the state of the receiver.

The message content should not be lost by the application system.

The application can tolerate the increased system load and slower messaging rate caused
by sending the message

Choosing an Undeliverable Message Action
Using the tpenqplus(3c) function in conjunction with the delivery argument, you can use the
UMA argument to specify what should happen to the message if it cannot be delivered to the
delivery interest point.

With non-recoverable messaging, the UMA indicates the action to be taken if the message cannot
be stored in target queue. If a UMA is not specified, OTMQ will take the default action of
discarding the message.

With recoverable messaging, the UMA indicates the action to be taken if the message cannot be
stored in either the SAF or DQF queues. You must specify a UMA with recoverable delivery
modes because your application must perform the exception processing when the message cannot
be guaranteed for delivery by OTMQ Message Queue Manager Server.

With recoverable messaging, the UMA may be taken when:

OTMQ is unable to write to the local SAF queue where the message is designated to be
recoverable.

The cross-group connection to the remote target group is down and the message designated
as recoverable on the remote node (DQF) cannot be stored.

The system resources used by the message recovery system are exhausted.
Oracle Tuxedo Message Queue Programming Guide 23

Orac le Tuxedo Message Queue P rogramming Gu ide
Table 4 lists the five valid UMAs.

How to Send a Recoverable Message
To send a recoverable message, use the tpenqplus(3c) function supplying the appropriate
block type, DIP and UMA in the TPQCTL structure.

In addition, the application should:

Specify a timeout value when sending recoverable messages with blocking delivery modes.

Verify the delivery outcome of a send operation from PSB in TPQCTL structure. If the
message was failed to be stored by the OTMQ Message Queue Manager Server, the
application must check to make sure that the UMA was successfully executed.

The message flow for sending a recoverable message is:

The application sends a message using tpenqplus(3c) function and with the appropriate
block, DIP and UMA arguments.

The OTMQ Message Queue Manager Server first writes the message to the recovery
journal queue on the local (SAF) or remote system (DQF) depending upon the delivery
mode specified.

If the sender is blocked, it continues processing once the message reaches the delivery
interest point. If the sender requests notification, it received an acknowledgement message
once the message reaches the delivery interest point.

For more information, see tpenqplus() in the Oracle Tuxedo Message Queue Reference Guide.

Table 4 UMAs

UMA Description

OTMQ_UMA_DISC Discard - the message is deleted.

OTMQ_UMA_RTS Return to sender - the message is delivered to the sender's response queue.

OTMQ_UMA_SAF Store and forward - the message is written to the message recovery journal on the
sender system.

OTMQ_UMA_DLQ Dead letter queue - the message is written to the dead letter queue.

OTMQ_UMA_DLJ Dead letter journal - the message is written to the DLJ.
24 Oracle Tuxedo Message Queue Programming Guide

../ref/index.html

How to Rece ive a Recoverab le Message
How to Receive a Recoverable Message
To receive a recoverable message, use the tpdeqplus(3c) function. When a recoverable
message is delivered to the target queue, the application must perform the following:

Confirm message receipt, which allows the Offline Trade Driver (TuxMQFWD(5)) to delete
the message being stored in the recovery journal queue before delivery.

Check for duplicate messages via return code. Duplicate messages may be sent by the
Offline Trade Driver if the application didn't confirm message receipt in time. For more
information, see tpdeqplus(3c) in the Oracle Tuxedo Message Queue Reference Guide.

The message flow for receipt of a recoverable message is as follows:

A message is read from the message recovery journal queue by the Offline Trade Driver
and sent to the target queue of the receiver.

The receiver reads the message by calling tpdeqplus(3c) function.

If the queue is configured for explicit confirmation, the receiver should call the
tpqconfirmmsg(3c) function to acknowledge receipt of the recoverable message using
the message sequence number assigned by the OTMQ Message Manager Server when the
message was sent. If the queue is configured for implicit confirmation, the acknowledge
message will be sent by tpdeqplus(3c) automatically after the recoverable message is
dequeued successfully. For more information, see tmqadmin(1) in the Oracle Tuxedo
Message Queue Reference Guide.

The tpqconfirmmsg(3c) function sends acknowledge notification to the Offline Trade
Driver to notify the successful message delivery, which allows the Offline Trade Driver to
remove the message from the message recovery journal queues.

Using UMAs for Exception Processing

Using Discard UMA
When the DISC UMA is used, the message is discarded if it cannot be delivered to the delivery
interest point specified in the delivery mode argument. The DISC UMA is used when the sender
program will handle each exception as it occurs. OTMQ can discard the undeliverable message
because the message content is still available in the context of the sender program.
Oracle Tuxedo Message Queue Programming Guide 25

Orac le Tuxedo Message Queue P rogramming Gu ide
Using the Return-to-Sender UMA
When the RTS UMA is used, the message is redirected to the response queue of the sender
program if it cannot be delivered to the delivery interest point specified in the delivery mode
argument. The RTS UMA is used when the sender program does not want to process each
exception as it occurs. Instead, the sender program redirects undeliverable messages to its main
input stream for error handling.

The advantage of using the RTS UMA is that the sender program attaches to one queue and acts
upon each message as it is read. The sender program must read the PSB status delivery value of
each message to determine if the message is new or an undeliverable message. Messages that
could not be stored by the message recovery system and require error handling have a return
status of OTMQ__MSGUNDEL.

Using the SAF UMA
When the SAF UMA is used, the message is stored in the local journal queue if the message
recovery system is unable to store it in the remote journal queue. The SAF UMA can be used with
recoverable delivery interest points of DQF and CONF; however, it does not work with the
WF_SAF delivery mode.

Use of the SAF UMA helps to manage the flow control between the sender and receiver systems.
If the message cannot be written to the remote journal queue due to insufficient resources or a
cross-group link failure, the message will be written to the local journal queue.

Note: SAF here means nearly the same as "SAF" DIP. Once message cannot be delivered, store
message into SAF queue.

Using the Dead Letter Queue UMA
When the DLQ UMA is used, the message is redirected to the dead letter queue if it cannot be
delivered to the delivery interest point specified in the delivery mode argument. The DLQ UMA
is used when the sender program wants to centralize error handling for undeliverable messages
in a designated queue while allowing each message to be handled separately.

A dead letter queue is part of the standard group configuration for each OTMQ message queuing
group. It provides memory-based storage of all undeliverable messages for the group that could
not be stored for automatic recovery. The dead letter queue is defined as queue number 96 It is
created automatically by tmqadmin(1) qspacecreate command.

To use the dead letter queue, the sender program calls the tpenqplus(3c) function specifying
the appropriate delivery argument and using OTMQ_UMA_DLQ as the UMA argument. Any
26 Oracle Tuxedo Message Queue Programming Guide

Using UMAs fo r Except ion P rocess ing
messages that cannot be delivered to the receiver program are written to the dead letter queue of
the sender's group. An application program can use tpqreadjrn(3c) function to retrieve
undelivered messages and use the tpenqplus(3c) function to attempt redelivery.

An advantage of using the dead letter queue is the ability to recover undeliverable messages on a
one-by-one basis. The sender program or another process within the application can attach to the
DLQ and handle error recovery for each undeliverable message. A disadvantage of using the dead
letter queue is the lack of disk storage for undelivered messages. A system failure on the sending
node will cause all undelivered messages in the dead letter queue to be lost.

Using the Dead Letter Journal
When the DLJ UMA is used, the message is written to an auxiliary journal, queue number is 196
(the dead letter journal) if it cannot be delivered to the delivery interest point specified in the
delivery mode argument. This UMA can only be used for recoverable messages. The DLJ UMA
is used when the sender program needs to centralize error handling procedures and the application
can support the resending of many messages from DLJ queue at a delayed interval. Storing
undeliverable messages in DLJ queue ensures that they will not be lost if the system goes down,
and allows redelivery attempts under user or application control.

The dead letter journal provides disk storage for messages that could not be stored for automatic
recovery. It is created automatically by tmqadmin(1) qspacecreate command.

To use the dead letter journal, the sender program uses the tpenqplus(3c) function specifying
the appropriate delivery argument and OTMQ_UMA_DLJ as the UMA argument. Any messages
that cannot be stored by the message recovery system are written to the dead letter journal of the
sender's group. An application program can use tpqreadjrn(3c) function to retrieve
undelivered messages and use the tpenqplus(3c) function to attempt redelivery as shown in
Listing 8.

Listing 8 Using UMA with Undelivered Message Example

TPQCTL ctl;
int type;
…

/* join the application */
/* tpinit() */

/* attach to the QSpace */
Oracle Tuxedo Message Queue Programming Guide 27

Orac le Tuxedo Message Queue P rogramming Gu ide
/* tpqattach() */

/* get request buffer */
if ((reqstr = tpalloc("STRING", NULL, len)) == NULL)
{
 (void) fprintf(stderr, "unable to allocate STRING buffer: %s",
 tpstrerror(tperrno));
 exit(1);
}

ctl.block = OTMQ_DEL_WF; /* use synchronous way */
ctl.DIP = OTMQ_DIP_SAF; /* interest point */
ctl.uma = OTMQ_UMA_DLJ; /* undelivered message action - Dead

Letter Journal*/

/* enqueue the message into the destination queue */
if (tpenqplus(target_qspace, target_qname, &ctl, reqstr, 0, 0) == -1)
{
 /* deal with failed scenario */
 …
}
…
…
/* done other works, handle failed message in DLJ before exit */
ctl.flags |=OTMQ;
ctl.flags |= TPQREADJRN;
type = DLJ_HANDLE;
if (tpqreadjrn(myqspace, myqueue, &ctl, &rcv_buf, &len, 0) == -1)
{
 /* deal with failed scenario */
 …
}

/* enqueue the failed message again */
if (tpenqplus(target_qspace, target_qname, &ctl, rcv_buf, 0, 0) == -1)
{
 /* deal with failed scenario */
 …
28 Oracle Tuxedo Message Queue Programming Guide

Using UMAs fo r Except ion P rocess ing
}
…
/* detach from the Qspace */
/* tpqdetach() */
…

The DIP and UMA Support List
Table 5 lists the valid delivery modes and UMA combinations.

Table 5 DIP and UMA Support List

UMA

Delivery Mode SAF DLJ DLQ RTS DISC

block = OTMQ_DEL_NN

DIP = OTMQ_DIP_MEM

N N Y Y Y

block = OTMQ_DEL_WF

DIP = OTMQ_DIP_MEM

N N Y Y Y

block = OTMQ_DEL_AK

DIP = OTMQ_DIP_MEM

N N Y Y Y

block = OTMQ_DEL_AK

DIP = OTMQ_DIP_DEQ

N N Y Y Y

block = OTMQ_DEL_WF

DIP = OTMQ_DIP_ACK

N N Y Y Y

block = OTMQ_DEL _AK

DIP = OTMQ_DIP_ACK

N N Y Y Y

block = OTMQ_DEL _WF

DIP = OTMQ_DIP_DEQ

N N Y Y Y

block = OTMQ_DEL _AK

DIP = OTMQ_DIP_SAF

N Y Y Y Y
Oracle Tuxedo Message Queue Programming Guide 29

Orac le Tuxedo Message Queue P rogramming Gu ide
Using Naming
In OTMQ configuration, each message queue gets a name when created, and also can get an alias
at runtime. Naming is a powerful feature that enables OTMQ applications to identify message
queues by name/alias whether they reside on the local system or on another system.

Application developers use the OTMQ naming feature to separate their applications from the
underlying OTMQ environment configuration. By referring to message queues by name/alias in
the applications, developers do not have to modify their applications code when the OTMQ
environment configuration changes.

The user must configure TMQ_NA(5) server in UBB to take advantage of the naming service.

block = OTMQ_DEL _WF

DIP = OTMQ_DIP_SAF

N Y Y Y Y

block = OTMQ_DEL _NN

DIP = OTMQ_DIP_SAF

N Y Y Y Y

block = OTMQ_DEL _AK

DIP = OTMQ_DIP_CONF

Y Y Y Y Y

block = OTMQ_DEL _WF

DIP = OTMQ_DIP_CONF

Y Y Y Y Y

block = OTMQ_DEL _NN

DIP = OTMQ_DIP_DQF

Y Y Y Y Y

block = OTMQ_DEL _WF

DIP = OTMQ_DIP_DQF

Y Y Y Y Y

block = OTMQ_DEL _AK

DIP = OTMQ_DIP_DQF

Y Y Y Y Y

Table 5 DIP and UMA Support List

UMA
30 Oracle Tuxedo Message Queue Programming Guide

Naming Serv i ce
Naming Service
Naming service is provided by the OTMQ Naming Server. It can access and manage both the
local namespace and global namespace for the runtime queue lookup when an application refers
to a queue by alias, or dynamic binding a queue alias to a specified queue name. OTMQ Naming
Server provides two services: one for the local scope alias lookup (Local Naming Service),
another for the global's (Global Naming Service).

Name Scope
When a name or alias is defined for message queue, it is assigned a name scope. Queue name or
alias can have a local (intra-qspace) or global (inter-qspace) scope. A local alias can be used by
applications running in the same queue space in which the alias was defined. A global alias can
be used by any applications.

Name Space
A name space is the repository where message queue alias and their associated message queue
address (queue space and queue name) are stored. OTMQ Naming Server must look up the alias
in the name space to find its associated actual queue address in order to send a message to the
named queue.

OTMQ Naming Server uses three levels of name spaces: process, local (qspace-wide) and global
(cross qspace wide). When OTMQ Naming Server start up, the local scope alias will be stored in
local name space. The global scope alias will be stored in global name space. The process name
space is an application cache used to improve performance. The alias can be cached at different
level name space, user can bypass caching when using tpqlocate(3c) if they prefer accuracy
over performance.

Process Level Name Space
When application attaches to the OTMQ, application automatically creates the empty process
name space. When this process locates/binds an alias for the first time, it is cached in the process
name space.

Local Name Space
When OTMQ Naming Server starts up, it automatically creates the local name space. Also local
scope queue alias defined by applications will be cached in the local name space.
Oracle Tuxedo Message Queue Programming Guide 31

Orac le Tuxedo Message Queue P rogramming Gu ide
Global Name Space
To create the global name space, use a flat file system by creating the directory in which the
OTMQ naming service will maintain the name space.

To use global naming, you must create a global namespace on the nodes on which the Naming
Server runs. OTMQ allows user to configure at most two global naming services (primary and
backup). To enable the backup naming service to take responsibility when the primary one is
down, all the global naming services must be configured to use the same global name space.
Therefore, when configured naming services run on different systems, they must use a shared file
system.

After creating the name space, you must set the DMQNS_DEVICE environment variable to specify
a device name for the name space because access to the name space for global naming is system
dependent. Therefore, when a global naming service is configured, it must be told what device
name to be used when it accesses this name space. This is done by setting the environment
variable DMQNS_DEVICE as follows:

For Windows NT, it should be set to a drive letter followed by a colon (for example, c:> o
a full qualified share name (e.g. \\machine\share)

For UNIX, it should be set to a file system specification (for example, / or /usr or
/mnt/dmqns)

Note: this environment variable need only be set for the OTMQ Naming Server which provides
the naming services. To use the global naming service, at least some portion of the global
namespace file path must be specified. For example on UNIX, you can define it as
"/u/mydir".

When an application refers to a queue by alias using the tpqlocate(3c) or the tpqbind(3c)
functions, it can specify the alias as one of the following:

unqualified name: The application uses only the queue alias such as "widgets" and does not
specify the path. The naming service automatically prefixes the name with the value of the
environment variable DMQNS_DEVICE. Furthermore, it prefix the value of the environment
variable DMQNS_DEFAULTPATH begins with a "/". For example, if the DMQNS_DEVICE
environment variable is set to "dev" and the DMQNS_DEFAULTPATH is set to
"/inventory", the naming service would search for the name "widgets" in:
/dev/inventory/widgets

partially qualified name: The application specifies the queue alias and a portion of the path
name. The naming service automatically prefixes the pathname and queue alias with the
device specified as the DMQNS_DEVICE environment variable and the setting of the
DMQNS_DEFAULTPATH environment variable. For example, if the DMQNS_DEVICE
32 Oracle Tuxedo Message Queue Programming Guide

At tach ing and Locat ing Queues
environment variable is set to "/dev" and the DMQNS_DEFAULTPATH is set to
"/inventory", the naming service would search for the name "test/widgets" in:
/dev/inventory/test/widgets.

fully qualified name: The application specifies that the alias is a fully qualified name using
"/" as the first character of the name. When the first character of a name begins with "/",
the naming service does not prefix any information to the name other than the device name
specified by the DMQNS_DEVICE environment variable. This means that a fully qualified
name includes the full path name and queue name. For example, if the DMQNS_DEVICE
environment variable is set to "dev" and the DMQNS_DEFAULTPATH is set to
"/inventory", the naming service will search for the name "/production/test/widgets" in:
/dev/production/test/widgets. Listing 9 shows a global namespace file example.

Listing 9 Global Namespace File Example

PrimaryQ_1 0.0 L
myqueue1 0.0 G
MRQ13_1 1.13 L
SQ14_2 0.0 G

Attaching and Locating Queues
An application must attach to a queue using the tpqattach(3c) function before reading
message from or sending message to a queue. It can identify the queue by its alias or its name.
When sending a message, the target queue is always identified by its name. An application can
directly use the queue name or it can use the tpqlocate(3c) function to derive the queue name
from its alias.Listing 10 shows locating queue example.

Listing 10 Locating Queue Example

static char q_space[16] = "QSPACE";
static char q_name[128] = "myqueue1";
…
Q_NAME_CTL name_ctl;
long scope = NAME_SCOPE_P;

Oracle Tuxedo Message Queue Programming Guide 33

Orac le Tuxedo Message Queue P rogramming Gu ide
/* join the application */
/* tpinit() */

/* attach to the QSpace */
/* tpqattach() */

/* locate queue named "Primary_queue" */
name_ctl.pName = "Primary_queue";
wait_mode = OTMQ_WF_RESP; /* use synchronous way to get response */

if(tpqlocate(q_space, &name_ctl, 0, NULL, &scope, wait_mode, 0) == -1)
{
 /* deal with failed scenario */
 …
}

Static and Dynamic Binding of Queue Aliases
OTMQ offers two approaches to associating a queue alias with a queue address: static and
dynamic.

Static binding refers to associating a queue name with a queue alias using the name space file. To
enable such association, you can specify the name space file when creating the queue space; or
you can stop the Naming Server, then update the queue space to specify a name space file, then
restart the Naming Server again. For more information, see tmqadmin(1) in the Oracle Tuxedo
Message Queue Reference Guide.

Dynamic binding refers to the use of tpqbind(3c) to associate a queue alias to a queue name at
application runtime. The queue alias will not be bound to a specific queue name until the
tpqbind(3c) successfully return. To modify such association, the application must first unbind
the queue alias from the specific queue name using tpqbind(3c), and use the same API to
associate another queue alias to the queue name again. When the application detach from the
queue or exit the queue space, the Naming Server will unbind the association for this application
automatically. shows a dynamic binding queue example.
34 Oracle Tuxedo Message Queue Programming Guide

Using WS SAF
Listing 11 Dynamic Binding Queue Example

static char q_space[16] = "QSPACE";
static char q_name[128] = "myqueue1";

…
Q_NAME_CTL name_ctl;
long scope = NAME_SCOPE_G;

name_ctl.pName = "Primary_queue";
name_ctl.pGroup = q_space;
name_ctl.pQueue = q_name;

bind_time_out = 30;

if(tpqbind(q_space, &name_ctl, &scope, bind_time_out) == -1)
{
 /* deal with failed scenario */
 …
}

For more information, see tpqlocate(3c) and tpqbind(3c) in the Oracle Tuxedo Message Queue
Reference Guide.

Using WS SAF
In WS mode, OTMQ messages that are sent using a recoverable delivery mode are written to the
local store-and-forward (SAF) journal (tmqsaf.jrn) when the connection to the server system
is not available.

When the feature is enabled, messages sent using the following reliable delivery modes are saved
to the journal:

OTMQ_DIP_MEM & OTMQ_DEL_WF (using OTMQ_UMA_SAF)

OTMQ_DIP_DQF & OTMQ_DEL_WF

OTMQ_DIP_DQF & OTMQ_DEL_AK

OTMQ_DIP_SAF & OTMQ_DEL_WF
Oracle Tuxedo Message Queue Programming Guide 35

Orac le Tuxedo Message Queue P rogramming Gu ide
OTMQ_DIP_SAF & OTMQ_DEL_AK

OTMQ WS configuration options allow the SAF journal to be configured as follows:

A fixed-size file that does not reuse disk blocks

A fixed-size file that reuses (cycles) disk blocks

A dynamic file that grows indefinitely until no more disk blocks are available

These options allow you to determine how disk resources are used for message journals. Journal
files that grow indefinitely periodically allocate an extent of disk blocks as needed to store
messages. When all messages are sent from the SAF and the journal is empty, the disk blocks
used by the journal are freed and the journal file is removed. Journal file size is in units of disk
block size (4096 bytes).

Building Applications
As counterparts of Tuxedo buildclient(1) and buildserver(1) commands, OTMQ provides
buildqclient(1) and buildqserver(1).

buildqclient(1) is used to construct an OTMQ client module. The command combines the
supplied files with the standard Oracle Tuxedo ATMI libraries and OTMQ libraries to form a
load module.

buildqserver(1) is used to construct an OTMQ server load module. The command combines
the supplied files with the standard server main routine, the standard Oracle Tuxedo ATMI
libraries and OTMQ libraries to form a load module.

For more information, see buildqclient(1) and buildqserver(1) in the Oracle Tuxedo Message
Queue Reference Guide.
36 Oracle Tuxedo Message Queue Programming Guide

	Oracle® Tuxedo Message Queue (OTMQ)
	12c Release 1 (12.1.1)

	Oracle® Tuxedo Message Queue (OTMQ) Programming Guide, 12c Release 1 (12.1.1)
	Programmer Tasks
	Sending and Receiving Messages
	Using Filters
	Filter Type
	Simple Filter
	Compound Filter

	Filter Format
	Simple Filter
	Compound Filter

	Using Publish/Subscribe
	Sending Broadcast Messages
	Receiving Broadcast Messages
	Subscribing to Receive Broadcast Messages
	Subscribing to Receive Selected Broadcast Messages
	Subscription Acknowledgement
	Reading Broadcast Messages
	Unsubscribing Receiving Broadcast Messages

	Using Recoverable Messaging
	Choosing a Message Delivery Mode
	Choosing Recoverable or Non-recoverable Delivery Mode
	Choosing an Undeliverable Message Action

	How to Send a Recoverable Message
	How to Receive a Recoverable Message
	Using UMAs for Exception Processing
	Using Discard UMA
	Using the Return-to-Sender UMA
	Using the SAF UMA
	Using the Dead Letter Queue UMA
	Using the Dead Letter Journal
	The DIP and UMA Support List

	Using Naming
	Naming Service
	Name Scope
	Name Space
	Process Level Name Space
	Local Name Space
	Global Name Space

	Attaching and Locating Queues
	Static and Dynamic Binding of Queue Aliases

	Using WS SAF
	Building Applications

