Oracle® Tuxedo Message Queue (OTMQ)
Programming Guide
12c Release 1 (12.1.1)

June 2012

ORACLE

Oracle® Tuxedo Message Queue (OTMQ) Programming Guide, 12c Release 1 (12.1.1)
Copyright © 2012 Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure
and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you
may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any
part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law
for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors,
please report them to usin writing.

If thisis software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs
installed on the hardware, and/or documentation, delivered to U.S. Government end users are "commercial computer software”
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use,
duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any
programs installed on the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to
the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general usein avariety of information management applications. It is not developed
or intended for use in any inherently dangerous applications, including applications that may create arisk of persona injury. If
you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe,
backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any
damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective
owners.

This software or hardware and documentation may provide access to or information on content, products, and services from third
parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect
to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or
damagesincurred due to your access to or use of third-party content, products, or services.

Oracle Tuxedo Message Queue Programming Guide

Programmer Tasks.t 1
Sending and ReCaiVINg MESSAgES oottt et 2
USiNg FIITErS. . .o 8
e Ty e oo 8
Simple Filter ... 8
Compound Filtero 9

Filter FOrmat.o e 9
Simple Filter ... 9
Compound Filter 1

Using Publish/Subscribeo 13
Sending Broadcast MeSSageso oot 14
Receiving Broadcast MESSAgES oo v ittt 14
Subscribing to Receive Broadcast Messageso oo i ii i 14
Subscribing to Receive Selected Broadcast Messages oo vo oL 15
Subscription Acknowledgement 17

Reading Broadcast MEeSSageS oo v i i 17
Unsubscribing Receiving Broadcast Messages. ooo it 17

Using Recoverable Messagingo v vttt 18
Choosing aMessage Delivery Modeo 19
Choosing Recoverable or Non-recoverable Delivery Mode. 20
Choosing an Undeliverable Message Action, 23

How to Send aRecoverable Messaget 24
How to Receive aRecoverableMessage 25
Using UMASsfor EXCeption Processing . . .« .. oo v v e e e e 25
Using Discard UMA .. . 25

Using the Return-to-Sender UMA o e 26

Oracle Tuxedo Message Queue Programming Guide iii

Usingthe SAF UM A o e e e 26

Using the Dead Letter Queue UMA e 26
UsingtheDead Letter Journal.ttt 27
TheDIPand UMA Support List. ... e 29
USINGNAMING . . oot e e e e e e 30
NaMING SEIVICE . . oot e e 31
NaIME S0P . . . ottt e e 31
NaME SPECE . . . oot 31
ProcessLevel Name Space. 31

Local Name SPaCe. oottt 31

Global Name Space.o oo 32
Attaching and Locating QUEUESo i vt e 33
Static and Dynamic Binding of Queue Aliases 34
USING WS SAF o 35
Building AppliCations oo 36

Oracle Tuxedo Message Queue Programming Guide iv

Oracle Tuxedo Message Queue Programming Guide

vi

Oracle Tuxedo Message Queue Programming Guide

Oracle Tuxedo Message Queue
Programming Guide

This chapter contains the following topics:
e Programmer Tasks
e Sending and Receiving Messages
e Using Filters
e Using Publish/Subscribe
e Using Recoverable Messaging
e Using Naming
e Using WS SAF

e Building Applications

Programmer Tasks

Oracle Tuxedo Message Queue (OTMQ) provides the following features to Oracle Tuxedo
application programmers:

e A set of application programming interfaces to enqueue messages for subsequent process.
The queuing service guarantees to execute the enqueue request successfully. A serial of
application programming interfaces are provided to dequeue messages in synchronous or
asynchronous way.

Oracle Tuxedo Message Queue Programming Guide

Oracle Tuxedo Message Queue Programming Guide

e The application program can use the same application programming interface as P2P
messaging to do publish/subscribe operations. For more information, see Using
Publish/Subscribe.

e Besides the message order pre-defined for one queue, the application program can filter the
messages being dequeued from the queue by setting filters. For more information, see
Using Filters.

e The application program can choose to ensure message delivery to the target queue. For
more information, see Using Recoverable Messaging.

e Also the OTMQ supports flexible way to bind queue name and alias, which allowsthe
programmer to decouple the programming and the configurations of queues. For more
information, see Using Naming.

Sending and Receiving Messages

OTMQ provides the basic queuing features.

e Application should first attach to a queue using tpgattach (3c) before using queuing
features and other advanced features provided by OTMQ.

e For message sending, application calls standard enqueue APl tpengplus (3c) with
specified block, DIP and UMA, to determine whether messaging is synchronous or
asynchronous, recoverable or not, and action to take when delivery failed as shown in
Listing 1.

Listing 1 Synchronous OTMQ Queue and Enqueue Message Attachment

#define MSG_CLAS_EXAMPLES 2000
#define MSG_TYPE_CLIENT_REQ 1
TPQCTL ctl;

Q_ATTACH_CTL gattachctl;

char g space[l6] = "QSPACE";

char g name[128] = "mygqueuel";

long flags;

/* join the application */
if (tpinit(NULL) == -1)

2 Oracle Tuxedo Message Queue Programming Guide

Sending and Receiving Messages

(void) fprintf (stderr, "failed to join application: %s\n",
tpstrerror (tperrno)) ;
exit (1) ;

memset (&gattachctl, 0x0, sizeof (gattachctl));
gattachctl.attachmode = TMQ_ATTACH_BY_NAME;
gattachctl.gtype = TMQ_ATTACH_PQ;
gattachctl.namespace_list = NULL;

gattachctl .namespace_list_len = 0;

gattachctl.timeout = 30;

memset (&ctl, 0x0, sizeof(ctl));
ctl.flags |= OTMQ;
flags = TPNOTRAN;

if (tpgattach(g_space, g name, &ctl, &gattachctl, flags) == -1)
{

(void) fprintf(stderr, "failed to attach gl[%s.%s]l: %s\n", g _space,
g_name, tpstrerror (tperrno));

(void) tpterm() ;

exit (1) ;

/* get request buffer */
if ((regstr = tpalloc("STRING", NULL, len)) == NULL)
{
(void) fprintf (stderr, "unable to allocate STRING buffer: %s",
tpstrerror (tperrno)) ;

exit(1l);

ctl.msg _class = MSG_CLAS_EXAMPLES; /* user defined message class */
ctl.msg_type = MSG_TYPE CLIENT _REQ; /* user defined message type */
ctl.block = OTMQ_DEL_WF; /* use synchronous way */
ctl.DIP = OTMQ_DIP_MEM; /* interest point */

Oracle Tuxedo Message Queue Programming Guide

Oracle Tuxedo Message Queue Programming Guide

ctl.uma = OTMQ_UMA_RTS; /* undelivered message action - return
to sender */
ctl.timeout = 30;

/* enqueue the message into the destination queue */
if (tpengplus (target_gspace, target_gname, &ctl, regstr, 0, 0) == -1)
{

(void) fprintf(stderr, "Failure to enqueue %s\n",

tpstrerror (tperrno)); if (tperrno == TPEDIAGNOSTIC)

{
(void) fprintf (stderr, "Diagnostic code=[%d]\t",

ctl.diagnostic) ;

tpfree((char *) regstr);
(void) tpterm() ;
exit(1l);

/* detach from queue */
/* tpagdetach() */

e For synchronous message receiving, application calls standard dequeue API tpdeqplus(3c)
asshown in Listing 2.

Listing 2 Synchronous Message Dequeue

char gspacename[16] = "QSPACE";

char gname[128] = "mygqueuel2";

/* call tpinit to join the application */
/* tpinit() */

/* attach to the queue to dequeue message from, then do the dequeue action */

Oracle Tuxedo Message Queue Programming Guide

Sending and Receiving Messages

/* tpgattach() */

memset (&ctl, 0x0, sizeof(ctl));
ctl.flags |= OTMQ;
flags = TPNOTRAN;

/* get request buffer, allocate a buffer to store the dequeued message */
len = 100;
if ((regstr = tpalloc("STRING", NULL, len)) == NULL)
{
(void) fprintf (stderr, "unable to allocate STRING buffer: %s",
tpstrerror (tperrno)) ;
(void) tpterm() ;
exit (1) ;

/* dequeue the message from the gqueue */

ctl.timeout = 30;

if (tpdegplus (gspacename, gname, &ctl, ®str, &len, 0) == -1)
{

if (tperrno == TPEDIAGNOSTIC)

{

(void) fprintf(stderr, "Diagnostic code=[%d]\t",
ctl.diagnostic);

} else

{
(void) fprintf (stderr, "Failure to dequeue %s\n",

tpstrerror (tperrno)) ;

}

tpfree((char *) regstr);
(void) tpterm() ;

exit (1) ;

/* detach from queue */

Oracle Tuxedo Message Queue Programming Guide 5

Oracle Tuxedo Message Queue Programming Guide

/* tpagdetach() */

e For asynchronous message receiving, application calls tpagetmsga (3c) asshown in
Listing 3.

Listing 3 Asynchonous Dequeue Message

/* first define the user action to be done when message arrive */

int gotMessage = 0;

int msgAction(long * flag)
{
printf ("Get asynchronous message [%s],flag=0x%X\n",regstr, flag);

gotMessage = 1;

int main(int argc, char **argv)
{
char gspacename[l16] = "QSPACE";

char gname[128] = "myqueuel";

/* join the application */
/* tpinit() */

/* attach to the queue to dequeue message from */
/* tpgattach() */

memset (&gctl, 0,sizeof (gctl)) ;
gctl.flags |= OTMQ;
gctl.filter_idx = -1; /* no message filter designated, get the first

available message in queue */

size_user_data=100;

6 Oracle Tuxedo Message Queue Programming Guide

Sending and Receiving Messages

if (tpggetmsga (gspacename,
gname,

(TPQCTL *)&qgctl,

(char **)®str,

(long *)&size_user_data,

(long *)&msgAction,

(long *)O0,

()0,

TPNOTIME) 1= 0)

long *

/* print out the error message string or diagnostic code */

tpfree((char *) regstr);
(void) tpterm() ;
exit(1l);

}

/* continue to do other actions, when message arrived in queue,
* user action "msgAction" will be called */

o If received message requires confirmation, application calls tpgconfirmmsg (3c) to
confirm receipt of the message as shown in Listing 4.

Listing 4 Explicit Confirmation for a Dequeued message

/* join the application */
/* tpinit() */

/* attach to the queue to dequeue message from, then do the dequeue action */

/* tpgattach() */

/* dequeue message */
/* tpdegplus() */

Oracle Tuxedo Message Queue Programming Guide 7

Oracle Tuxedo Message Queue Programming Guide

/* check the message delivery status stored in TPQCTL */
if(ctl.status_block.del_psb_status == OTMQ__ CONFIRMREQ)
{

/* This is a message need to be confirmed explicitly,
* use the dequeued message sequence to confirm */
if (tpgconfirmmsg (ctl.seq number, 0) < 0)

{

/* print out the error message string or diagnostic code */

tpfree((char *) regstr);
(void) tpterm();

exit (1) ;

Using Filters

OTMQ provides messagefilter which allows user to retrieve message that matching the selection
criteriadefined by the message filter. Application can designate message filter when calling
standard dequeue API tpdeagplus (3c), or when calling subscription APl tpgsubscribe (3c).

Filter Type

OTMQ supportstwo types of message filter: ssimple filter and compound filter. Simple filter has
lifecycle of only one-time operation (degqueue or subscription). While the compound filter can be
pre-defined and re-used in the subsequent dequeue operations.

Simple Filter
o Filter per subscription

Message filter can be specified when subscribing the user broadcast message. It only
impacts the messages retrieved according to this subscription.

8 Oracle Tuxedo Message Queue Programming Guide

Filter Format

e Filter per operation

Message filter can be specified when executing a tpdegplus/tpdequeue. It only impacts the
result of this operation itself. For simple filter use, you must set filter_idx=-1 and
flags | =TPQGETBYFILTER, Otherwise it reports an error.

Compound Filter
o Filter per queue

Message filter can be defined or canceled viaapair of APIS. tpgsetselect
/tpgcancelselect. Once afilter is defined, the user can useit in aserial of dequeue or
subscription operations.

Filter Format

Different types of message filter have different kinds of format. Following sections describe the
selection criteria that can be specified for the simple filter or the compound filter.

Simple Filter
For simplefilter, it consists of one of the following selection criteria:
e Default Selection

Enables application to read messages from the queue based on the order in which they
arrived. Applications using default selection will read the next pending message from the
message queue. Messages are stored by pre-defined queue orders (FIFO, LIFO, priority,
etc.).

e Selection by Message Attribute

Enables the application to select messages based on the message type, message class or
message priority, etc.
Table 1 shows how the selection criteria can be defined as select mode and value pairs.

Oracle Tuxedo Message Queue Programming Guide 9

Oracle Tuxedo Message Queue Programming Guide

Table 1 Select Mode

Selection Mode Selection Variable

Mode Description

OTMQ _PQ TYPE Message type value

Selects the first pending message from the
attached Primary Queue (PQ) that matches the
message type value being specified in the
selection variable.

TPQCTL->flags must set
OTMQ|TPQGETBYFILTER[TPQGETBYMS
GTYPE

OTMQ _PQ CLASS Message class value

Selects the first pending message from the
attached Primary Queue (PQ) that matches the
message class value being specified in the
selection variable.

TPQCTL->flags must set
OTMQ|TPQGETBYFILTER[TPQGETBYMS
GCLASS

OTMQ_PQ PRI * Integer value between

0and 99
« OTMQ_PRI_ANY
« OTMQ PRI_PO
« OTMQ PRI_P1

Selectsthefirst pending message with apriority
equal to an integer between 0 and 99 inclusive
(or equal to the selection variable value) from
the attached Primary Queue (PQ). Specifying
the direct integer value is the preferred method
of selecting message by priority

Using OTMQ_PRI_ANY enables the reading
of any pending messages of all priorities.
Using OTMQ_PRI_PO enables the application
to retrieve pending messages of priority O only.
Using OTMQ_PRI_P1 enablesthe strict
retrieval of pending messages with apriority of
1

10

Listing 5 Dequeue Message with Simple Message Filter

#define MSG_CLAS_EXAMPLES
#define MSG_TYPE_CLIENT_REQ

TPQCTL ctl;

Oracle Tuxedo Message Queue Programming Guide

2000

1

Filter Format

/* join the application */
/* tpinit() */

/* attach to the Qspace */
/* tpgattach() */

/* select by message attributes */
ctl.flags |= TPQGETBYMSGCLASS;
ctl.msg_class = MSG_CLAS_EXAMPLES;
ctl.flags |= TMQGETBYMSGTYPE;
ctl.msg_type = MSG_TYPE_CLIENT_ REQ;
ctl.flags | = TPQGETBYPRIORITY;
ctl.priority = 50;

/* call tpdegplus to dequeue a message with

* message class is "MSG_CLAS_EXAMPLES",

* message type is "MSG_TYPE_CLIENT_REQ" and

* message priority is 50 */

if (tpdegplus (gspacename, gname, &ctl, ®str, &len, 0) == -1)
{

/* deal with failed scenario */

/* detach from Qspace */
/* tpagdetach() */

Compound Filter

The compound filter allows application to define complex selection criteria for message
reception. The selection criteriaarray can specifies the queues to search, the priority order of
message reception, two comparison keys for range checking, and an order key to determine the
order in which messages are selected from the queue.

Oracle Tuxedo Message Queue Programming Guide 11

Oracle Tuxedo Message Queue Programming Guide

12

Application calls tpgsetselect (3c) function first to define afilter and gets an index handle as
return, which can be used later in the standard degqueue API to retrieve messages.

Also the application can call tpgcancelselect (3c) to cancel the compound filter defined
before as shown in Listing 6.

Listing 6 Dequeue Message Using Compund Message Filter

char gspacename[l16] = "QSPACE";
char gname[128] = "myqueuel";
char src_gname[128] = "from_gue";

TPQctl ctl;
selection_array_component_tp selection_array;
short num_masks = 1;

int index_handle = -1;

/* join the application */
/* tpinit() */

/* attach to the Qspace */
/* tpgattach() */

/* set complex filter to dequeue message with specific message class,

* and from specific queue*/

memset (&selection_array, 0x0, sizeof(selection_array));
selection_array.key_ 1 offset = OTMQ_CLASS;
selection_array.key 1 _size = 4;
selection_array.key_1_value = MSG_CLAS_EXAMPLES;
selection_array.key_1_oper = OTMQ_ OPER_EQ;
selection_array.key 2 _offset = OTMQ_SOURCE;
selection_array.key_2_size = 4;
selection_array.key_value_gspace = gspacename;
selection_array.key_value_gueue = src_dgname;

selection_array.key_ 2_oper = OTMQ_ OPER_EQ;

if (tpgsetselect (&selection_array, &num_masks, &index_handle) == -1)

{

Oracle Tuxedo Message Queue Programming Guide

Using Publish/Subscribe

/* deal with failed scenario */

ctl.filter_idx = index_handle; /* using the filter to dequeue */

if (tpdegplus (gspacename, gname, &ctl, ®str, &len, 0) == -1)
{
/* deal with failed scenario */

/* need to cancel the filter using the index */
if (tpgcancelselect (&index_handle)== -1)
{

/* deal with failed scenario */

/* detach from Qspace */
/* tpgdetach() */

For more information, See tpgsetselect (3¢) and tpgcancelselect (3¢) inthe Oracle
Tuxedo Message Queue Reference Guide.

Using Publish/Subscribe

The publisher broadcast a message by sending the message to a special "topic". Each topic
represents abroadcast stream. A broadcast stream isthe set of target queues registered to receive
messages directed to a particular topic. The subscriber should register first for atopic to receive
the specific broadcasting messages.

The OTMQ M essage Queue Manager Server isresponsiblefor maintaining listsof user processes
that are interested in the specific topic. In addition, the server is responsible for maintaining the
various user definable rules (also known as pub/sub filter) that can be used to selectively extract
messages from the broadcast stream that are set by the application using the tpgsubscribe (3c).

Oracle Tuxedo Message Queue Programming Guide 13

Oracle Tuxedo Message Queue Programming Guide

14

A publisher can send abroadcast message using tpgpublish (3c), and asubscriber can retrieve
the subscribed message from its attached queue.

Sending Broadcast Messages

To broadcast a message, a publisher program directs the message to the topic that identifies the
broadcast stream to use for message distribution. When the application issues the

tpgpublish (3c) function, OTMQ Message Queue Manager Server deals with the
tpgpublish (3c) call and transparently redirects the message to al corresponding recipients.

OTMQ Message Queue Manager Server deliversonly one copy of each message on the broadcast
stream to each target queue, regardless of how many selection matches are made by separate
subscription rule entries.

Broadcast messages cannot be stored for automatic message recovery.

Receiving Broadcast Messages

To receive broadcast messages, applications use astandard APl tpgsubscribe (3c) toregister
for receipt with the local or remote OTMQ Message Queue Manager Server.

The following topics describe:

e Subscribing to Receive Broadcast M essages

Subscribing to Receive Selected Broadcast Messages

Subscription Acknowledgement

Reading Broadcast M essages
e Unsubscribing Receiving Broadcast Messages

Subscribing to Receive Broadcast Messages

To receive broadcast messages, an application registers a queue with a broadcast stream (topic)
that managed by the OTMQ Message Queue Manager Server.

The receiver/subscribing applications register for broadcast messages using the function
tpgsubscribe (3c). The registration contains the string formatted topic plus any selection
criteria (filter) related to messages that the application wishes to receive.

The application subscribe the broadcast messages using the function tpgsubscribe (3c¢)
supplied with the following information:

Oracle Tuxedo Message Queue Programming Guide

Receiving Broadcast Messages

e Thetopic: the broadcast stream that wants to subscribe

e Thetarget: the target OTMQ Message Queue Manager Server, and the special flag which
means Pub/Sub service.

e The source: the queue name which the requesting application is attaching.

Subscribing to Receive Selected Broadcast Messages

Use the message filter of tpgsubscribe (3c) to register for selective reception of broadcast
messages. This subscription request registers atarget queue to receive acopy of all messageson
abroadcast stream that meet a single selection rule.

Filter isastring containing a Boolean filter rule that must be evaluated successfully before the
OTMQ Message Queue Server distributing the broadcast messagesto the subscriber. Filter rules
are specific to the types buffers to which they are applied. For messages of string type, thefilter
ruleisaregular expression. For messages of FML buffers, thefilter rule is astring that can be
passed to the FML Boolean compiler (see Tuxedo ATMI FML function Fboolco).

Table 2 shows how the Filter Regular Expression Rules can be defined.

Table 2 Regular Expression Rules

Rule Matching Text
character Itself (character isany ASCII character except the special ones mentioned below).
\ character Itself except asfollows:
\\-newline
\\t-tab
\\b-backspace
\\r-carriage return
\\f-formfeed
\ special-character Itsun-specia self. The specia charactersare . * + 2 | () [{and\\.

-Any character except the end-of-line character (usually newline or NULL).
~-Beginning of theline.
$-End-of-line character.

Oracle Tuxedo Message Queue Programming Guide 15

Oracle Tuxedo Message Queue Programming Guide

Table 2 Regular Expression Rules

Rule Matching Text

[class] any character in the class denoted by a sequence of characters and/or ranges. A
range is given by the construct character-character. For example, the character
class, [azA-Z0-9_], will match any alphameric character or"_". Tobeincluded in
the class, ahyphen, "-", must be escaped (preceded by a"\\") or appear first or last
inthe class. A literal "]" must be escaped or appear first in the class. A literal "
must be escaped if it appearsfirst in the class.

[~ class] Any character in the complement of the class with respect to the ASCII character
set, excluding the end-of-line character.

RE RE The sequence. (catenation)

RE | RE Either the left RE or the right RE. (left to right alternation)

RE * Zero or more occurrences of RE.

RE + One or more occurrences of RE.

RE ? Zero or one occurrences of RE.

RE{ n} n occurrences of RE. n must be between 0 and 255, inclusive.

RE{m,n} m through n occurrences of RE, inclusive. A missing m is taken to be zero. A
missing n denotes m or more occurrences of RE.

(RE) Explicit precedence/grouping.

(RE)$n Thetext matching RE is copied into the nth user buffer. n may be 0 through 9. User

buffers are cleared before matching begins and loaded only if the entire patternis
matched.

There are three levels of precedence. In order of decreasing binding strength they are:

e catenation closure (*,+,?2{...})

e catenation

e alternation (])

Asindicated above, parentheses are used to give explicit precedence.

16 Oracle Tuxedo Message Queue Programming Guide

Receiving Broadcast Messages

Subscription Acknowledgement

The tpgsubscribe (3c) returns asubscription handle back to the subscriber. This handle
should be used to unsubscribe the specific subscription.

Reading Broadcast Messages

When amessage is sent to a broadcast stream, the OTMQ Message Queue Manager Server will
determine which applications have registered to receive that kind of message. Then it
automatically sendsthese messagesto the distribution of all matching applications. Thereceiving
application reads the broadcast message from its target queue using the standard dequeue
functions. The source queue address of the sender is also provided to the receiving application in

the message.

Unsubscribing Receiving Broadcast Messages

An application can withdraw subscribing messages from a broadcast stream by calling the
tpqgunsubscribe (3¢). Thisaction removes the subscription entry from theinternal registration
tables as shownin Listing 7

Listing 7 Subscribe and Unsubscribe Messages

TPEVCTL evctl;
long evt_handle = 0L ; /* Event Subscription handles */

/* join the application */

/* tpinit() */

/* attach to the Qspace */

/* tpgattach() */

evctl.flags = TPEVQUEUE ;

(void) strcpy (evctl.namel, "QSPACE")
(void) strcpy (evctl.namel, "myqueuel")

evctl.gctl.flags |= OTMQ;

/* Subscribe */

Oracle Tuxedo Message Queue Programming Guide 17

Oracle Tuxedo Message Queue Programming Guide

evt_handle = tpgsubscribe ("TMQ:QNOT:QSPACE:mytopic",
NULL, &evctl, TPSIGRSTRT) ;

if (evt_handle == -1L) {

/* deal with failed scenario */

/* dequeue subscribed message */
if (tpdegplus (gspacename, gname, &ctl, ®str, &len, 0) == -1)
{

/* deal with failed scenario */

/* Unsubscribe to the subscribed topic */
if (tpgunsubscribe (evt_handle, TPSIGRSTRT) == -1)
{

/* deal with failed scenario */

For more information, see tpgsubscribe(3c) and tpgunsubscribe(3c) in the Oracle Tuxedo
Message Queue Reference Guide

Using Recoverable Messaging

18

Applications send messages using the OTMQ standard enqueue function tpengplus (3¢) and
one of two types of delivery modes: recoverable or non-recoverable. If amessageis sent as
non-recoverable, the messageislost if it cannot be delivered to the target queue unless the
application incorporates an error recovery procedure. If the message is sent as recoverable,
OTMQ Message Queue Manager Server and Offline Trade Driver can automatically guarantee
delivery to the target queue in spite of system, process, and network failures.

To ensure guaranteed delivery, the OTMQ Message Queue Manager Server writes recoverable
messages to nonvolatile storage on the sender or receiver system. Then, if a message cannot be

Oracle Tuxedo Message Queue Programming Guide

Choosing a Message Delivery Mode

delivered due to an error condition, the OTMQ Offline Trade Driver attempts redelivery of the
message by reading it from the recovery journal and redelivering the message to the target queue
until delivery is confirmed.

Application devel opers determine which messages shoul d be sent asrecoverable depending upon
the needs of the application. Because recoverable messaging requiresthe extrastep of storing the
messages on disk, it requires additional processing time and power. To maximize performance,
recoverable messaging should only be used when it is critical to application processing.

The OTMQ recoverable messaging feature offers the following benefits:

e Reduces development time by eliminating the need for designing applications to recover
messages that cannot be delivered.

e Prevents applications from losing data when applications, systems, or network links fail.

e Simplifies the implementation of an event-driven store and forward capability in networked
applications.

OTMQ also offers error recovery features for non-recoverable messages such as the dead letter

gueue (DL Q) and the ability to return amessage to the sender if the message cannot be delivered.
Thistopic describesall of the OTMQ delivery modesto enable you to understand the right choice
for your application.

This section contains the following topics
e Choosing a Message Delivery Mode
e How to Send a Recoverable Message
e How to Receive a Recoverable Message

e Using UMASsfor Exception Processing

Choosing a Message Delivery Mode

The choice between recoverable and non-recoverable delivery is based upon the needs of the
application. To determine the appropriate method for sending a message, the application
developer decides:

e Does the application need to know if the message arrived at the target queue?

o |f notification is required, how far must the message get before the sender program
receives notification that the message has arrived?

Oracle Tuxedo Message Queue Programming Guide 19

Oracle Tuxedo Message Queue Programming Guide

20

e Should the application wait for notification or should it continue processing and receive
notification through an asynchronous acknowledgment message?

o |If the message is designated as recoverable, does the application need to know if the
message has been stored by the recovery system?

o |If the message is designated as recoverable, what should happen if it cannot be stored by
the recovery system?

The delivery mode specified in tpengplus (3¢) function determines:
e Whether the message is sent as recoverable or non-recoverable
e Whether a blocking or non-blocking mode is selected
e Whether the sender program receives notification and how it isreceived

e The point in the message flow at which the notification is sent

OTMQ uses message recovery journalsto store messages that are designated asrecoverable. The
message recovery journal on thelocal systemiscalled the store and forward (SAF). The message
recovery journal onthe remote system is called the destination queuefile (DQF). If arecoverable
message cannot be delivered, it is stored in either the SAF or DQF queue and is automatically
re-sent once communication with the target group is restored.

OTMQ uses auxiliary journals to provide additional message recovery capabilities. The dead
letter queue (DL Q) isamemory-based queue for storing undeliverable messages. The dead letter
journal (DLJ) providesdisk storage for messages that could not be stored for automatic recovery.
Undelivered messages stored in the DLQ or DLJ can be retrieved under user or application
control by using OTMQ's Journal APl tpgreadjrn(3c).

The post confirmation journal (PCJ) stores successfully confirmed recoverable messages.

If the OTM Q message recovery system is unableto store the message, the undeliverable message
action (UMA) istaken. Some UMAs enabl e the message to be recovered at alater time under user
or application control.

Choosing Recoverable or Non-recoverable Delivery Mode

The delivery mode consists of two components, the block type (block) and the delivery interest
point (DIP). Specify the block and DIP in the TPQCTL structure.

e block - indicates how the sender program wants to receive information about the delivery
of the message. You can either wait for the operation to complete (WF), or receive

Oracle Tuxedo Message Queue Programming Guide

Choosing a Message Delivery Mode

notification in an asynchronous message (AK), or choose not to receive notification (NN)

at all.

e DIP - determines whether the message is designated as recoverable. When the message
reaches the delivery interest point, a notification message is sent (if requested) and the call
returns control to the sender program or OTMQ Message Queue Manager Server delivers
the asynchronous acknowledgment message.

Non-recoverable delivery interest points enable the sender program to receive notification when
the message is stored in the target queue (MEM), when the message is read from the target queue
(DEQ), or when the message is read from the target queue and explicitly confirmed by the
receiver program using the tpgconfirmmsg(3c) function (ACK).

When arecoverabledelivery interest point is selected, the messageis stored on disk for automatic
recovery. Recoverable delivery interest points enable the sender program to store the messagein
the local recovery journal (SAF), store the message in the remote recovery journal (DQF), or
store the message in the remote recovery journal and receive notification when the messageis
confirmed by the target application (CONF).

OTMQ does not support all possible combinations of block type and delivery interest points.
Table 3liststhe valid delivery modes and their meanings.

Table 3 Delivery Modes

Delivery Mode

Description

(Recoverable Delivery Modes)

block = OTMQ_DEL_AK
DIP= OTMQ_DIP_CONF

Send acknowledgment message when the message recovery system confirms
message delivery from the remote recovery journal.

block = OTMQ_DEL_AK
DIP= OTMQ _DIP_DQF

Send acknowledgment message when the messageis stored in the remote recovery
journal.

block = OTMQ_DEL_AK
DIP= OTMQ_DIP_SAF

Send acknowledgment message when the message is stored in the local recovery
journal.

block = OTMQ_DEL_NN
DIP= OTMQ _DIP_DQF

Deliver message to the remote recovery journal but do not block and do not send
notification.

block = OTMQ_DEL_NN
DIP= OTMQ_DIP_SAF

Deliver message to the local recovery journal but do not block and do not send
notification.

Oracle Tuxedo Message Queue Programming Guide 21

Oracle Tuxedo Message Queue Programming Guide

Table 3 Delivery Modes

Delivery Mode Description

block = OTMQ_DEL_WF Block until the message is stored in the remote recovery journal and confirmed by
DIP=0TMQ DIP CONF thetarget application.

block = OTMQ_DEL_WF Block until the message is stored in the remote recovery journal.
DIP=0OTMQ DIP DQF

block = OTMQ_DEL_WF Block until the message is stored in the local recovery journal.
DIP=0OTMQ DIP SAF

(Non-Recoverable Delivery M odes)

block = OTMQ_DEL_AK Send acknowledgment message when the receiver program explicitly confirms
DIP= OTMQ DIP_ACK delivery using tpgconfirmmsg(3c).

block = OTMQ_DEL_AK Send acknowledgment message when the message is removed from the target
DIP=OTMQ DIP DEQ du&vé

block = OTMQ_DEL_AK Send acknowledgment message when the message is stored in the target queue.
DIP=0TMQ_DIP_MEM

block =OTMQ_DEL_NN Deliver message to the target queue but do not block and do not send notification.
DIP=0TMQ_DIP_MEM

block = OTMQ_DEL_WF Block until the receiver program explicitly confirms delivery using
DIP=0OTMQ DIP_ACK tpgeconfirmmsg(3c)

block = OTMQ_DEL_WF Block until the message is removed from the target queue.
DIP=0TMQ_DIP_DEQ

block = OTMQ_DEL_WF Block until the message is stored in the target queue.
DIP=0TMQ_DIP_MEM

Non-recoverable message delivery isthe fastest and most efficient way to send messages. Use
non-recoverable delivery modesif:

e High messaging rates are required by the application (hundreds or thousands of messages
per second).

22 Oracle Tuxedo Message Queue Programming Guide

Choosing a Message Delivery Mode

e The message content has afinite lifetime; therefore, the value of the information is stale if
not received and processed quickly.

e The message is sent locally between two applications in the same message queuing group
that tightly cooperate in the processing of an event.

e The message is a control message that causes a component of an application to change
state.

Recoverable message delivery isthe safest way to send a message; however, it adds significant
processing overhead because each message must be stored before it is sent. Use recoverable
delivery modes if:

e It isuseful to know that the message has arrived; however, the sender does not need to
know the state of the receiver.

e The message content should not be lost by the application system.

e The application can tolerate the increased system load and slower messaging rate caused
by sending the message

Choosing an Undeliverable Message Action

Using the tpengplus (3c) function in conjunction with the delivery argument, you can use the
UMA argument to specify what should happen to the message if it cannot be delivered to the
delivery interest point.

With non-recoverable messaging, the UMA indicates the action to be taken if the message cannot
be stored in target queue. If aUMA is not specified, OTMQ will take the default action of
discarding the message.

With recoverable messaging, the UMA indicates the action to be taken if the message cannot be
stored in either the SAF or DQF queues. Y ou must specify a UMA with recoverable delivery
modes because your application must perform the exception processing when the message cannot
be guaranteed for delivery by OTMQ Message Queue Manager Server.

With recoverable messaging, the UMA may be taken when:

e OTMQ isunableto writeto thelocal SAF queue where the message is designated to be
recoverable.

e The cross-group connection to the remote target group is down and the message designated
as recoverable on the remote node (DQF) cannot be stored.

e The system resources used by the message recovery system are exhausted.

Oracle Tuxedo Message Queue Programming Guide 23

Oracle Tuxedo Message Queue Programming Guide

Table 4 liststhe five valid UMAS.

Table 4 UMAs
UMA Description
OTMQ_UMA _DISC Discard - the message is del eted.
OTMQ_UMA_RTS Return to sender - the message is delivered to the sender's response queue.
OTMQ_UMA_SAF Store and forward - the message is written to the message recovery journal on the
sender system.
OTMQ_UMA DLQ Dead letter queue - the message is written to the dead letter queue.
OTMQ_UMA DLJ Dead letter journal - the message is written to the DLJ.

How to Send a Recoverable Message

To send arecoverable message, use the tpengplus (3¢) function supplying the appropriate
block type, DIP and UMA inthe TPQCTL structure.

In addition, the application should:
e Specify atimeout value when sending recoverable messages with blocking delivery modes.

o Verify the delivery outcome of a send operation from PSB in TPQCTL structure. If the
message was failed to be stored by the OTMQ Message Queue Manager Server, the
application must check to make sure that the UMA was successfully executed.

The message flow for sending a recoverable messageis:

e The application sends a message using tpengplus(3c) function and with the appropriate
block, DIP and UMA arguments.

e The OTMQ Message Queue Manager Server first writes the message to the recovery
journal queue on the local (SAF) or remote system (DQF) depending upon the delivery
mode specified.

o |f the sender is blocked, it continues processing once the message reaches the delivery
interest point. If the sender requests notification, it received an acknowledgement message
once the message reaches the delivery interest point.

For more information, see tpengplus () inthe Oracle Tuxedo Message Queue Reference Guide.

24 Oracle Tuxedo Message Queue Programming Guide

../ref/index.html

How to Receive a Recoverable Message

How to Receive a Recoverable Message

To receive arecoverable message, use the tpdegplus (3c¢) function. When arecoverable
message is delivered to the target queue, the application must perform the following:

e Confirm message receipt, which alows the Offline Trade Driver (TuxMorFwD (5)) to delete
the message being stored in the recovery journal queue before delivery.

e Check for duplicate messages viareturn code. Duplicate messages may be sent by the
Offline Trade Driver if the application didn't confirm message receipt in time. For more
information, see tpdegplus (3c) inthe Oracle Tuxedo Message Queue Reference Guide.

The message flow for receipt of arecoverable messageis asfollows:

e A message is read from the message recovery journa queue by the Offline Trade Driver
and sent to the target queue of the receiver.

e The receiver reads the message by calling tpdegplus(3c) function.

o If the queueis configured for explicit confirmation, the receiver should call the
tpgconfirmmsg (3c) function to acknowledge receipt of the recoverable message using
the message sequence number assigned by the OTMQ Message Manager Server when the
message was sent. If the queue is configured for implicit confirmation, the acknowledge
message will be sent by tpdegplus (3c¢) automatically after the recoverable messageis
dequeued successfully. For more information, see tmgadmin (1) in the Oracle Tuxedo
Message Queue Reference Guide.

e The tpgconfirmmsg (3c) function sends acknowledge notification to the Offline Trade
Driver to notify the successful message delivery, which allows the Offline Trade Driver to
remove the message from the message recovery journa queues.

Using UMAs for Exception Processing

Using Discard UMA

When the DISC UMA is used, the message is discarded if it cannot be delivered to the delivery
interest point specified in the delivery mode argument. The DISC UMA is used when the sender
program will handle each exception asit occurs. OTMQ can discard the undeliverable message
because the message content is still available in the context of the sender program.

Oracle Tuxedo Message Queue Programming Guide 25

Oracle Tuxedo Message Queue Programming Guide

26

Using the Return-to-Sender UMA

When the RTS UMA is used, the message is redirected to the response queue of the sender
program if it cannot be delivered to the delivery interest point specified in the delivery mode
argument. The RTS UMA is used when the sender program does not want to process each
exception asit occurs. Instead, the sender program redirects undeliverable messages to its main
input stream for error handling.

The advantage of using the RTS UMA isthat the sender program attaches to one queue and acts
upon each message as it is read. The sender program must read the PSB status delivery value of
each message to determine if the message is new or an undeliverable message. Messages that
could not be stored by the message recovery system and require error handling have areturn
status of OTMQ__ MSGUNDEL .

Using the SAF UMA

When the SAF UMA is used, the message is stored in the local journal queue if the message
recovery systemisunableto storeit in theremotejournal queue. The SAF UMA can be used with
recoverable delivery interest points of DQF and CONF; however, it does not work with the
WF_SAF delivery mode.

Use of the SAF UMA hel psto manage the flow control between the sender and receiver systems.
If the message cannot be written to the remote journal queue due to insufficient resources or a
cross-group link failure, the message will be written to the local journal queue.

Note: SAF here means nearly the same as"SAF" DIP. Once message cannot be delivered, store
message into SAF queue.

Using the Dead Letter Queue UMA

When the DLQ UMA is used, the message is redirected to the dead letter queue if it cannot be
delivered to the delivery interest point specified in the delivery mode argument. The DLQ UMA
is used when the sender program wants to centralize error handling for undeliverable messages
in adesignated queue while allowing each message to be handled separately.

A dead letter queueis part of the standard group configuration for each OTMQ message queuing
group. It provides memory-based storage of all undeliverable messages for the group that could
not be stored for automatic recovery. The dead letter queue is defined as queue number 96 It is
created automatically by tmgadmin (1) gspacecreate command.

To use the dead letter queue, the sender program calls the tpengplus (3¢) function specifying
the appropriate delivery argument and using OTMQ_UMA_DLQ asthe UMA argument. Any

Oracle Tuxedo Message Queue Programming Guide

Using UMAs for Exception Processing

messages that cannot be delivered to the receiver program are written to the dead letter queue of
the sender's group. An application program can use tpgreadjrn (3c) function to retrieve
undelivered messages and use the tpengplus (3c) function to attempt redelivery.

An advantage of using the dead |etter queueisthe ability to recover undeliverable messageson a
one-by-one basis. The sender program or another process within the application can attach to the
DLQ and handleerror recovery for each undeliverable message. A disadvantage of using the dead
letter queueisthelack of disk storage for undelivered messages. A system failure on the sending
node will cause al undelivered messages in the dead letter queue to be lost.

Using the Dead Letter Journal

When the DLJUMA isused, the message iswritten to an auxiliary journal, queue number is 196
(the dead letter journd) if it cannot be delivered to the delivery interest point specified in the
delivery mode argument. This UMA can only be used for recoverable messages. The DLJUMA
isused when the sender program needsto centralize error handling proceduresand the application
can support the resending of many messages from DLJ queue at a delayed interval. Storing
undeliverable messages in DL J queue ensures that they will not belost if the system goes down,
and allows redelivery attempts under user or application control.

The dead letter journal provides disk storage for messages that could not be stored for automatic
recovery. It is created automatically by tmgadmin (1) gspacecreate command.

To use the dead | etter journal, the sender program uses the tpengplus (3¢) function specifying
the appropriate delivery argument and OTMQ_UMA_DL Jasthe UMA argument. Any messages
that cannot be stored by the message recovery system are written to the dead | etter journal of the
sender's group. An application program can use tpgreadjrn (3c) function to retrieve
undelivered messages and use the tpengplus (3c) function to attempt redelivery as shown in
Listing 8.

Listing 8 Using UMA with Undelivered Message Example

TPQCTL ctl;
int type;

/* join the application */
/* tpinit() */

/* attach to the QSpace */

Oracle Tuxedo Message Queue Programming Guide 27

Oracle Tuxedo Message Queue Programming Guide

/* tpgattach() */

/* get request buffer */
if ((regstr = tpalloc("STRING", NULL, len)) == NULL)
{
(void) fprintf (stderr, "unable to allocate STRING buffer: %s",

tpstrerror (tperrno)) ;

exit (1) ;
}
ctl.block = OTMQ_DEL_WF; /* use synchronous way */
ctl.DIP = OTMQ DIP_SAF; /* interest point */
ctl.uma = OTMQ_UMA_DLJ; /* undelivered message action - Dead

Letter Journal*/

/* enqueue the message into the destination queue */
if (tpengplus (target_gspace, target_gname, &ctl, regstr, 0, 0) == -1)
{

/* deal with failed scenario */

/* done other works, handle failed message in DLJ before exit */
ctl.flags |=0TMQ;

ctl.flags |= TPQREADJRN;

type = DLJ_HANDLE;

if (tpgreadjrn (mygspace, myqueue, &ctl, &rcv_buf, &len, 0) == -1)
{

/* deal with failed scenario */

/* enqueue the failed message again */
if (tpengplus (target_gspace, target_gname, &ctl, rcv_buf, 0, 0) == -1)

{
/* deal with failed scenario */

28 Oracle Tuxedo Message Queue Programming Guide

/* detach from the Qspace */

/* tpagdetach() */

Using UMAs for Exception Processing

The DIP and UMA Support List

Table 5 lists the valid delivery modes and UMA combinations.

Table 5 DIP and UMA Support List

UMA

Delivery Mode SAF DLJ DLQ RTS DISC
block=OTMQ DEL_NN N N Y Y Y
DIP= OTMQ_DIP_MEM

block = OTMQ_DEL_WF N N Y Y Y
DIP= OTMQ_DIP_MEM

block = OTMQ DEL_AK N N Y Y Y
DIP= OTMQ_DIP_MEM

block = OTMQ DEL_AK N N Y Y Y
DIP= OTMQ DIP_DEQ

block = OTMQ_DEL_WF N N Y Y Y
DIP= OTMQ_DIP_ACK

block=OTMQ DEL _AK N N Y Y Y
DIP= OTMQ_DIP_ACK

block =OTMQ DEL_WF N N Y Y Y
DIP= OTMQ DIP_DEQ

block=OTMQ DEL _AK N Y Y Y Y

DIP= OTMQ DIP_SAF

Oracle Tuxedo Message Queue Programming Guide

29

Oracle Tuxedo Message Queue Programming Guide

Table 5 DIP and UMA Support List

UMA

block =OTMQ DEL _WF N Y Y Y Y
DIP= OTMQ DIP_SAF

block=OTMQ DEL NN N Y Y Y Y
DIP= OTMQ DIP_SAF

block = OTMQ DEL _AK Y Y Y Y Y
DIP= OTMQ_DIP_CONF

block = OTMQ DEL _WF Y Y Y Y Y
DIP= OTMQ_DIP_CONF

block=OTMQ DEL NN Y Y Y Y Y
DIP= OTMQ _DIP_DQF

block = OTMQ DEL _WF Y Y Y Y Y
DIP= OTMQ _DIP_DQF

block = OTMQ DEL _AK Y Y Y Y Y

DIP= OTMQ _DIP_DQF

Using Naming

30

In OTMQ configuration, each message queue gets aname when created, and also can get an dlias
at runtime. Naming is a powerful feature that enables OTMQ applications to identify message
gueues by name/alias whether they reside on the local system or on another system.

Application developers use the OTMQ naming feature to separate their applications from the
underlying OTMQ environment configuration. By referring to message queues by name/aliasin
the applications, developers do not have to modify their applications code when the OTMQ
environment configuration changes.

The user must configure TMo_Na (5) server in UBB to take advantage of the naming service.

Oracle Tuxedo Message Queue Programming Guide

Naming Service

Naming Service

Naming serviceis provided by the OTMQ Naming Server. It can access and manage both the
local namespace and global namespace for the runtime queue lookup when an application refers
to aqueue by alias, or dynamic binding aqueue aliasto a specified queue name. OTMQ Naming
Server provides two services: one for the local scope alias lookup (Local Naming Service),
another for the global's (Global Naming Service).

Name Scope

When aname or aliasis defined for message queue, it is assigned a name scope. Queue name or
alias can have alocal (intra-gspace) or global (inter-gspace) scope. A local alias can be used by
applications running in the same queue space in which the alias was defined. A global alias can
be used by any applications.

Name Space

A name space is the repository where message queue alias and their associated message queue
address (queue space and queue name) are stored. OTMQ Naming Server must look up the alias
in the name space to find its associated actual queue addressin order to send a message to the
named queue.

OTMQ Naming Server usesthree levels of name spaces. process, local (gspace-wide) and global
(cross gspace wide). When OTMQ Naming Server start up, the local scope aliaswill be stored in
local name space. The global scope aliaswill be stored in global name space. The process name
space is an application cache used to improve performance. The alias can be cached at different
level name space, user can bypass caching when using tpglocate (3c) if they prefer accuracy
over performance.

Process Level Name Space

When application attaches to the OTMQ, application automatically creates the empty process
name space. When this process locates/binds an aliasfor the first time, it is cached in the process
name space.

Local Name Space

When OTMQ Naming Server starts up, it automatically createsthe local name space. Also local
scope queue dias defined by applications will be cached in the local name space.

Oracle Tuxedo Message Queue Programming Guide 31

Oracle Tuxedo Message Queue Programming Guide

32

Global Name Space

To create the global name space, use aflat file system by creating the directory in which the
OTMQ naming service will maintain the name space.

To use global naming, you must create a global namespace on the nodes on which the Naming
Server runs. OTMQ allows user to configure at most two global naming services (primary and
backup). To enable the backup naming service to take responsibility when the primary oneis
down, all the global naming services must be configured to use the same global name space.
Therefore, when configured naming servicesrun on different systems, they must use ashared file
system.

After creating the name space, you must set the pmoNs_DEVICE environment variable to specify
adevice name for the name space because access to the name space for global naming is system
dependent. Therefore, when a global naming service is configured, it must be told what device
name to be used when it accesses this name space. Thisis done by setting the environment
variable pMoNs_DEVICE asfollows:

e For Windows NT, it should be set to adrive letter followed by a colon (for example, ¢:> 0
afull qualified share name (e.g. \\machine\share)

e For UNIX, it should be set to afile system specification (for example, / or /usr or
/mnt /dmgns)

Note: thisenvironment variable need only be set for the OTMQ Naming Server which provides
the naming services. To usethe global naming service, at least some portion of the global
namespace file path must be specified. For example on UNIX, you can define it as
"/u/mydir".

When an application refers to a queue by aliasusing the tpglocate (3c) or the tpgbind (3¢)
functions, it can specify the alias as one of the following:

e unqualified name: The application uses only the queue alias such as "widgets' and does not
specify the path. The naming service automatically prefixes the name with the value of the
environment variable bmMons_DEvICE. Furthermore, it prefix the value of the environment
variable DMOQNS_DEFAULTPATH beginswith a"/". For example, if the bMoNs_DEVICE
environment variableis set to "dev" and the DMQNS DEFAULTPATH isset to
"/inventory", the naming service would search for the name "widgets" in:
/dev/inventory/widgets

e partially qualified name: The application specifies the queue alias and a portion of the path
name. The naming service automatically prefixes the pathname and queue alias with the
device specified as the pmons_pEvVICE environment variable and the setting of the
DMQONS DEFAULTPATH environment variable. For example, if the bMoNS_DEVICE

Oracle Tuxedo Message Queue Programming Guide

Attaching and Locating Queues

environment variableis set to "/dev" and the DMQNS DEFAULTPATH is set to
"/inventory", the naming service would search for the name "test /widgets" in:

/dev/inventory/test/widgets.

o fully qualified name: The application specifies that the aliasis a fully qualified name using
"I" asthefirst character of the name. When the first character of a name beginswith "/",
the naming service does not prefix any information to the name other than the device name
specified by the pMoNs_DEvVICE environment variable. This meansthat afully qualified
name includes the full path name and queue name. For example, if the DMONS_DEVICE
environment variableis set to "dev" and the DMQNS DEFAULTPATH isset to
"/inventory", the naming service will search for the name "/production/test/widgets" in:
/dev/production/test/widgets. Listing 9 shows a global namespace file example.

Listing 9 Global Namespace File Example

PrimaryQ_1 0.0 L
myqueuel 0.0 G
MRQ13_1 1.13 L
SQ14_2 0.0 G

Attaching and Locating Queues

An application must attach to a queue using the tpgattach (3¢) function before reading
message from or sending message to a queue. It can identify the queue by its alias or its name.
When sending a message, the target queue is always identified by its name. An application can
directly usethe queue name or it can usethe tpglocate (3c) function to derive the queue name
fromitsaias.Listing 10 shows locating queue example.

Listing 10 Locating Queue Example

static char g_space[l6] = "QSPACE";

static char g name[128] = "myqueuel";

Q_NAME_CTL name_ctl;
long scope = NAME_SCOPE_P;

Oracle Tuxedo Message Queue Programming Guide 33

Oracle Tuxedo Message Queue Programming Guide

34

/* join the application */
/* tpinit() */

/* attach to the QSpace */
/* tpgattach() */

/* locate queue named "Primary_queue" */
name_ctl.pName = "Primary_gueue";

wait_mode = OTMQ_WF_RESP; /* use synchronous way to get response */

if (tpglocate (g _space, &name_ctl, 0, NULL, &scope, wait_mode, 0) == -1)
{

/* deal with failed scenario */

Static and Dynamic Binding of Queue Aliases

OTMAQ offers two approaches to associating a queue alias with a queue address: static and
dynamic.

Static binding refersto associating aqueue name with aqueue alias using the name spacefile. To
enable such association, you can specify the name space file when creating the queue space; or

you can stop the Naming Server, then update the queue space to specify a name space file, then
restart the Naming Server again. For moreinformation, see tmgadmin (1) in the Oracle Tuxedo
Message Queue Reference Guide.

Dynamic binding refersto the use of tpgbind (3c) to associate aqueue aliasto aqueue name at
application runtime. The queue alias will not be bound to a specific queue name until the
tpabind (3c) successfully return. To modify such association, the application must first unbind
the queue alias from the specific queue name using tpgbind (3¢), and use the same API to
associate another queue alias to the queue name again. When the application detach from the
gueue or exit the queue space, the Naming Server will unbind the association for this application
automatically. shows a dynamic binding queue example.

Oracle Tuxedo Message Queue Programming Guide

Using WS SAF

Listing 11 Dynamic Binding Queue Example

static char g space[l6] = "QSPACE";

static char g name[128] = "myqueuel";

Q_NAME_CTL name_ctl;
long scope = NAME_SCOPE_G;

name_ctl.pName = "Primary_queue";
name_ctl.pGroup = g_space;

name_ctl.pQueue = g _name;

bind_time_out = 30;

if (tpgbind(g_space, &name_ctl, &scope, bind_time_out) == -1)

{
/* deal with failed scenario */

For more information, see tpglocate(3c) and tpgbind(3c) in the Oracle Tuxedo Message Queue
Reference Guide.

Using WS SAF

In WS mode, OTM Q messages that are sent using arecoverable delivery mode are written to the
local store-and-forward (SAF) journa (tmgsaf . jrn) when the connection to the server system
isnot available.
When thefeature is enabled, messages sent using the following reliable delivery modes are saved
to the journal:
OTMQ_DIP_MEM & OTMQ DEL_WF (using OTMQ_UMA_SAF)
OTMQ_DIP_DQF & OTMQ_DEL_WF
OTMQ_DIP_DQF & OTMQ_DEIL_AK
&

OTMQ_DIP_SAF OTMQ_DEL_WF

Oracle Tuxedo Message Queue Programming Guide 35

Oracle Tuxedo Message Queue Programming Guide

OTMQ_DIP_SAF & OTMQ_DEL_AK

OTMQ WS configuration options allow the SAF journal to be configured as follows:
A fixed-sizefile that does not reuse disk blocks
A fixed-sizefile that reuses (cycles) disk blocks
A dynamic file that grows indefinitely until no more disk blocks are available

These options alow you to determine how disk resources are used for message journals. Journal
filesthat grow indefinitely periodicaly allocate an extent of disk blocks as needed to store
messages. When all messages are sent from the SAF and the journal is empty, the disk blocks
used by the journal are freed and the journal file is removed. Journal file sizeisin units of disk
block size (4096 bytes).

Building Applications

36

As counterparts of Tuxedo buildclient(1) and buildserver(1) commands, OTMQ provides
buildgclient (1) and buildgserver (1).

buildgclient (1) isused to construct an OTMQ client module. The command combines the
supplied files with the standard Oracle Tuxedo ATMI librariesand OTMQ librariesto form a
load module.

buildgserver (1) isused to construct an OTMQ server load module. The command combines
the supplied files with the standard server main routine, the standard Oracle Tuxedo ATMI
librariesand OTMQ libraries to form aload module.

For more information, see buildgclient(1) and buildgserver(1) in the Oracle Tuxedo Message
Queue Reference Guide.

Oracle Tuxedo Message Queue Programming Guide

	Oracle® Tuxedo Message Queue (OTMQ)
	12c Release 1 (12.1.1)

	Oracle® Tuxedo Message Queue (OTMQ) Programming Guide, 12c Release 1 (12.1.1)
	Programmer Tasks
	Sending and Receiving Messages
	Using Filters
	Filter Type
	Simple Filter
	Compound Filter

	Filter Format
	Simple Filter
	Compound Filter

	Using Publish/Subscribe
	Sending Broadcast Messages
	Receiving Broadcast Messages
	Subscribing to Receive Broadcast Messages
	Subscribing to Receive Selected Broadcast Messages
	Subscription Acknowledgement
	Reading Broadcast Messages
	Unsubscribing Receiving Broadcast Messages

	Using Recoverable Messaging
	Choosing a Message Delivery Mode
	Choosing Recoverable or Non-recoverable Delivery Mode
	Choosing an Undeliverable Message Action

	How to Send a Recoverable Message
	How to Receive a Recoverable Message
	Using UMAs for Exception Processing
	Using Discard UMA
	Using the Return-to-Sender UMA
	Using the SAF UMA
	Using the Dead Letter Queue UMA
	Using the Dead Letter Journal
	The DIP and UMA Support List

	Using Naming
	Naming Service
	Name Scope
	Name Space
	Process Level Name Space
	Local Name Space
	Global Name Space

	Attaching and Locating Queues
	Static and Dynamic Binding of Queue Aliases

	Using WS SAF
	Building Applications

