Defining General OptionsDefining Installation OptionsInstallation Options - MainInstallation Options - MessagesInstallation Options - AlgorithmsInstallation Options - Accessible ModulesInstallation Options - Installed ProductsSupport For Different LanguagesUser LanguageAdditional TopicsDefining LanguagesDefining CountriesCountry - MainCountry - StatesDefining Currency CodesDefining Time ZonesDesigning Time ZonesSetting Up Time ZonesSetting Up Seasonal Time ShiftDefining Geographic TypesDefining Work CalendarDefining Display ProfilesDefining Phone TypesSetting Up Characteristic Types & ValuesThere Are Four Types Of CharacteristicsSearching By Characteristic ValuesCharacteristic Type - MainCharacteristic Type - Characteristic EntitiesSetting Up Foreign Key Reference InformationInformation Description Is Dynamically DerivedNavigation Information Is Dynamically DerivedForeign Key Reference - MainDefining Feature ConfigurationsFeature Configuration - MainFeature Configuration - MessagesDefining Master ConfigurationsSetting Up Master ConfigurationsMaster ConfigurationMaster Configuration DetailsMiscellaneous TopicsModule ConfigurationMenu Item SuppressionMenu SuppressionTurn Off A Function ModuleGlobal Context OverviewSystem Data Naming ConventionBase Product System DataImplementation System DataCaching OverviewServer CacheClient CacheDebug ModeSystem Date Override
Defining Security & User OptionsThe Big Picture of Application SecurityApplication SecurityImporting LDAP Users and User GroupsAction Level SecurityField Level SecurityEncryption and MaskingIdentify the Fields to Be MaskedCreate a Security Type For Each Logical FieldCreate An Algorithm For Each Security TypeCreate A Feature Configuration For Each Secured ElementGrant Access Rights To The User GroupsAdditional Masking InformationThe Base Package Controls One User, One User Group, And Many Application ServicesHow To Copy User Groups From The Demonstration DatabaseIf You Work In A Non-English LanguageOne Time Only - Set Up A DB Process To Copy User groupsRun The Copy User Groups DB ProcessThe Big Picture of Row SecurityAccess Groups, Data Access Roles and UsersDefining Application ServicesApplication Service - MainApplication Service - Application SecurityDefining Security TypesSecurity Type - MainDefining User GroupsUser Group - MainUser Group - Application ServicesUser Group - UsersDefining Access GroupsDefining Data Access RolesData Access Role - MainData Access Role - Access GroupDefining Users
User Interface ToolsDefining Menu OptionsMenu - MainMenu - Menu ItemsThe Big Picture of System MessagesDefining System MessagesMessage - MainMessage - DetailsThe Big Picture of Portals and ZonesPortals Are Made Up of ZonesZones May Appear Collapsed When a Page OpensChanging Portal PreferencesZones Appear By DefaultGranting Access to ZonesZone Type vs. ZoneFixed Zones versus Configurable ZonesThere Are Three Types of PortalsCommon Characteristics of Stand-Alone PortalsPutting Portals on MenusGranting Access to A PortalPortal HierarchiesCustom Look and Feel OptionsUser InterfaceUI Map HelpSetting Up Portals and ZonesDefining Zone TypesDefining ZonesZone - MainZone - PortalZone How To GuideDefining Context-Sensitive ZonesDefining PortalsDefining Display IconsDefining Navigation KeysNavigation Key TypesNavigation Key vs. Navigation OptionThe Flexibility of Navigation KeysLinking to External LocationsOverriding Navigation KeysMaintaining Navigation KeyDefining Navigation OptionsNavigation Option - MainNavigation Option - TreeDefining COBOL Program OptionsCOBOL Program - Main
Database ToolsDefining Environment Reference OptionsDefining Table OptionsTable - MainTable - Table FieldTable - ConstraintsTable - Referred by ConstraintsDefining Field OptionsField - MainField - Tables Using FieldDefining Maintenance Object OptionsMaintenance Object - MainMaintenance Object - OptionsMaintenance Object - AlgorithmsMaintenance Object - Maintenance Object TreeDefining Database Process OptionsDatabase Process - MainDatabase Process - DB Process TreeDefining Database Process Instruction OptionsDatabase Process Instruction - MainDatabase Process Instruction - DB Process Instruction TreeDefining Look Up OptionsLookup - MainDefining Extendable LookupsExtendable LookupsThe Big Picture Of Audit TrailsCaptured InformationHow Auditing WorksThe Audit Trail FileHow To Enable AuditingTurn On Auditing For a TableSpecify The Fields and Actions To Be AuditedAudit QueriesAudit Query by UserAudit Query by Table / Field / KeyBundlingAbout BundlingSequencing of Objects in a BundleRecursive Key ReferencesOwner Flags on Bundled EntitiesConfiguring Maintenance Objects for BundlingMaking Maintenance Objects Eligible for BundlingAdding a Foreign Key ReferenceCreating a Physical Business ObjectCreating a Bundling Add Business ObjectAdding the Current Bundle ZoneAdding a Customized Entity Search Query Zone to the Bundle Export PortalWorking with BundlesCreating Export BundlesCreating and Applying Import BundlesEditing Export BundlesEditing Import BundlesRevision ControlAbout Revision ControlTurning On Revision ControlConfiguring Maintenance Objects for Revision ControlWorking with Revision ControlChecking Out an ObjectChecking In an ObjectReverting ChangesForcing a Check In or RestoreDeleting an ObjectRestoring an ObjectWorking with Revision HistorySearching for Revision History
To Do ListsThe Big Picture of To Do ListsTo Do Entries Reference A To Do TypeTo Do Entries Reference A RoleTo Do Entries Can Be Rerouted (Or Suppressed) Based On Message NumberThe Priority Of A To Do EntryWorking On A To Do EntryLaunching Scripts When A To Do Is SelectedTo Do Entries Have LogsHow Are To Do Entries Created?To Do Entries Created By Background ProcessesTo Do Entries Created By AlgorithmsTo Do Entries Created Via an XAI ServiceTo Do Entries Created ManuallyThe Lifecycle Of A To Do EntryLinking Additional Information To A To Do EntryImplementing Additional To Do Entry Business RulesTo Do Entries May Be Routed Out Of The SystemPeriodically Purging To Do EntriesSetting Up To Do OptionsInstallation OptionsTo Do Information May Be Formatted By An AlgorithmSet Additional Information Before A To Do Is CreatedControl Central AlertsNext Assignment AlgorithmMessagesFeature ConfigurationDefining To Do RolesTo Do Role - MainTo Do Role - To Do TypesDefining To Do TypesTo Do Type - MainTo Do Type - RolesTo Do Type - Sort KeysTo Do Type - Drill KeysTo Do Type - Message OverridesTo Do Type - To Do CharacteristicsTo Do Type - AlgorithmsList of System To Do TypesImplementing The To Do Entries
Defining Background ProcessesThe Big Picture of Background ProcessesBackground Processing ConceptsParameters Supplied To Background ProcessesOverride Maximum Errors in Batch Process ParameterExtra ParametersProcessing ErrorsSystem Background ProcessesSubmitting Batch JobsTechnical Implementation Of Online Batch SubmissionParallel Background ProcessesOptimal Thread CountHow to Re-extract InformationHow to Submit Batch JobsHow to Track Batch JobsHow to Restart Failed Jobs and ProcessesDefining Batch ControlsThe Big Picture of RequestsRequest Type Defines ParametersPreviewing and Submitting a RequestTo Do Summary EmailExploring Request Data RelationshipsDefining a New RequestSetting Up Request TypesMaintaining Requests
Defining AlgorithmsThe Big Picture Of AlgorithmsAlgorithm Type Versus AlgorithmHow To Add A New AlgorithmMinimizing The Impact Of Future UpgradesSetting Up Algorithm TypesList of Algorithm TypesSetting Up Algorithms
Defining Script OptionsThe Big Picture Of ScriptsScripts Are Business Process-OrientedA Script Is Composed Of StepsDesigning And Developing ScriptsA Script May Declare Data AreasDesigning Generic ScriptsSecuring Script ExecutionYou Can Import Sample Scripts From The Demonstration DatabaseThe Big Picture Of BPA ScriptsHow To Invoke ScriptsDeveloping and Debugging Your BPA ScriptsLaunching A Script From A MenuLaunching A Script When Starting The SystemExecuting A Script When A To Do Entry Is SelectedThe Big Picture Of Script Eligibility RulesScript Eligibility Rules Are Not Strictly EnforcedYou Can Mark A Script As Always EligibleYou Can Mark A Script As Never EligibleCriteria Groups versus Eligibility CriteriaDefining Logical CriteriaExamples Of Script Eligibility RulesExamples of BPA ScriptsSet Up / Change Customer Web Self-Service PasswordCreate A Trouble Order Without An AccountAdd A New Person To An AccountReprint A Bill - Long VersionReprint A Bill - Short VersionPayment ExtensionsThe Big Picture Of Server-Based ScriptsPlug-In ScriptsA Plug-In Script's APISetting Up Plug-In ScriptsService ScriptsA Service Script's APIInvoking Service ScriptsDebugging Server-Based ScriptsHow To Copy A Script From The Demonstration DatabaseIf You Work In A Non-English LanguageOne Time Only - Set Up A DB Process To Copy ScriptsRun The Copy Scripts DB ProcessMaintaining ScriptsScript - MainScript - StepHow To Set Up Each Step TypeAdditional TopicsScript - Data AreaScript - SchemaScript - EligibilityMerging ScriptsScript MergeResequencing StepsRemoving a Step from ScriptAdding a Step to a ScriptRemoving an Uncommitted Step from a ScriptMaintaining FunctionsFunction - MainFunction - Send FieldsFunction - Receive Fields
Application ViewerApplication Viewer ToolbarData Dictionary ButtonPhysical and Logical ButtonsCollapse ButtonAttributes and Schema ButtonMaintenance Object ButtonGroup and Ungroup List ButtonsAlgorithm ButtonBatch Control ButtonTo Do Type ButtonDescription and Code ButtonsCobol Source ButtonLoad Source ButtonUsed By and Uses ButtonsService XML ButtonSelect Service ButtonJava Docs ButtonClassic ButtonPreferences ButtonHelp ButtonAbout ButtonSlider IconData DictionaryUsing the Data Dictionary List PanelPrimary And Foreign KeysField Descriptions ShownUsing the Data Dictionary Detail PanelRelated Tables ViewTable Detail ViewColumn Detail ViewMaintenance Object ViewerUsing the Maintenance Object List PanelUsing the Maintenance Object Detail PanelAlgorithm ViewerUsing the Algorithm Viewer List PanelUsing the Algorithm Plug-In Spot Detail PanelUsing the Algorithm Type Detail PanelUsing the Algorithm Detail PanelBatch Control ViewerUsing the Batch Control Viewer List PanelUsing the Batch Control Detail PanelTo Do Type ViewerUsing the To Do Type Viewer List PanelUsing the To Do Type Detail PanelSource Code ViewerUsing the Source Code Viewer List PanelUsing the Source Code Viewer Detail PanelService XML ViewerUsing the Service XML Viewer Overview PanelUsing the Service XML Viewer Detail PanelJava Docs ViewerUsing the Java Docs Viewer List PanelUsing the Java Package Detail PanelUsing the Java Interface / Class Detail PanelApplication Viewer PreferencesApplication Viewer Stand-Alone OperationStand-Alone Configuration OptionsExample Application Viewer ConfigurationApplication Viewer Generation
Defining and Designing ReportsThe Big Picture Of ReportsIntegration with BI Publisher and Business Objects EnterpriseReports Must Be Multi-LanguageRequesting Reports from The SystemOverview of the Data - BI PublisherOverview of the Data - Business Objects EnterpriseHow To Request ReportsViewing ReportsConfiguring The System To Enable ReportsConfiguring BI Publisher ReportsConfigure the System to Invoke BI Publisher Real-timeBatch Scheduling in BI PublisherConfiguring Business Objects Enterprise ReportsConfigure the System to Invoke Business Objects Enterprise Real-timeBatch Scheduling in Business Objects EnterpriseDefining Reporting OptionsDefining Report DefinitionsReport Definition - MainReport Definition - LabelsReport Definition - ParametersSample Reports Supplied with the ProductHow to Use a Sample Report Provided with the SystemSteps Performed at Installation TimeHow To Copy A Report Definition From The Demonstration DatabaseSubreports Used with Crystal ReportsDisplay Company Logo and TitleFormat Report InformationLabelsHow To Define A New ReportUse a Sample Report as a Starting PointPublishing Reports in BI PublisherBI Publisher Database AccessVerify BI Publisher User Access RightsPublishing Reports in Business Objects EnterpriseBusiness Objects Enterprise Database AccessVerify Parameter DefinitionVerify Business Objects Enterprise User Access RightsDesigning Your Report DefinitionDesigning Main Report Definition ValuesDesigning Characteristic TypesDesigning ParametersDesigning Validation AlgorithmsDesigning Application ServicesDesigning Labels
External Application IntegrationWeb Service IntegrationUnderstanding Web Service AdaptersSetting Up Web Service AdaptersWeb Service Adapter QueryWeb Service Adapter PortalXML Application IntegrationThe Big Picture Of XAIXAI ArchitectureXML Background TopicsInbound MessagesOutgoing MessagesDesigning Your XAI EnvironmentInstallationDesigning XAI Inbound ServicesDesigning XML SchemasDesigning XSL TransformationsDesigning Your Registry OptionsHow To Design Outgoing MessagesSchema EditorOpening the Schema EditorSchema Editor WindowValidating a SchemaRegistering a ServiceTesting a SchemaSystem Wide Functions for Schema EditorSetting Up Your XAI EnvironmentXAI ClassXAI Envelope HandlerSetting Up Your RegistryXAI Route TypeDefining Outbound Message TypesExternal SystemsMaintaining Your XAI EnvironmentXAI SubmissionXAI Dynamic SubmissionAdditional XAI ToolsServer TraceHow ToHow to Build the XML Request DocumentStructure of an XML Response DocumentHow To Create XML SchemasHow to Publish an XAI ServiceTesting a Schema Using the Schema EditorHow To Create Code Description AttributeHow To Create a Private AttributeHow To Create an XSL TransformationHow an Email Message is ConstructedHow to Refresh the Runtime Copy of the RegistrySiebel Integration
Importing Users and GroupsHow Does LDAP Import Work?Invoking The Import ProcessProcessing LDAP Import RequestsSetting Up Your System For LDAP ImportDefining a JNDI Server That Points to the LDAP ServerMapping Between LDAP Objects And Base Security ObjectsMapping an LDAP Entry to a Base ObjectMapping LDAP Entry Attributes to Base Object AttributesDescribing Linked ObjectsExample XML MappingIncluding Your LDAP Import Mapping in the Parameter Information FilesLDAP Import
Configuration Lab (ConfigLab)The Big Picture of ConfigLabSame Word, Two MeaningsPushing and Pulling Data Is Implemented Via ComparingThe Compare Process Is Controlled By MetadataMaintenance Objects Are Composed of TablesDatabase Processes Define The Maintenance Objects To CompareDB Process Instructions Limit Which Objects Are ComparedA Batch Control Must ExistThe Comparison Process Creates Root ObjectsApplying Approved Changes To The Target EnvironmentHow To Compare Objects In Two DatabasesHow To Copy Sample DB Processes From The Demonstration DatabaseIf You Work In A Non-English LanguageSetup A DB Process To Perform The CopyRun CL-COPDB and CL-APPCHEnvironment ManagementTwo Types Of EnvironmentsRegistering EnvironmentsDeregistering ConfigLab EnvironmentsReregistering ConfigLab EnvironmentsDatabase UsersDatabase RelationshipsConfigLab Database RelationshipsCompare Target Database RelationshipsHow To Register a ConfigLab EnvironmentOracle (EnvSetup)DB2 (EnvSetup)MS SQL Server (EnvSetup)Difference QueryDifference Query - MainDifference Query - Difference QueryRoot ObjectRoot Object - MainRoot Object - Data DifferencesRoot Object - Root Object TreeRoot Object Exception
Archiving and PurgingThe Big Picture of Archiving and PurgingStoring Archived DataHow to Run ArcSetup UtilityMaintaining Data IntegrityMaintaining Normal System OperationAge of DataStatus Of DataKeys and RelationshipsAggregate SummariesMetadata and Archive/Purge ProceduresTable Constraints Define RelationshipsMaintenance Objects Group TablesDatabase Processes Group Maintenance Objects For A PurposeDB Process Instructions Drive The ProcessArchive EngineArchive and Purge ProceduresArcSetup PreprocessingStep 1 - Create Primary Archive Root ObjectsStep 2 - Build Child Archive Root Objects for Primary Archive Root ObjectsStep 3 - Recursive Integrity CheckStep 4 - Move or Delete Production DataArcSetup Post ProcessingLifecycle of an Archive Root ObjectDeveloping Archive and Purge ProceduresConfigure MetadataDesign and Develop Criteria Algorithms and Table RulesDesign and Develop Processing AlgorithmsDesign and Develop Archive Copy Processing AlgorithmsSample Archive and Purge DB ProcessesHow To Register an Archive EnvironmentEnvSetup Registration ScriptArcSetupPre-Archive TasksPost-Archive TasksExecuting ArcSetupPerformance Tuning Tips For ArchiveHow To Copy Samples From The Demonstration DatabaseIf You Work In A Non-English LanguageSet Up A DB Process To Perform The CopyRun The Background ProcessesSet Up Archive Adjustment TypeManaging Archive Environments
Configuration ToolsBusiness ObjectsThe Big Picture of Business ObjectsWhat Is A Business Object?A Business Object Has PropertiesA Business Object May Define Business RulesBusiness Object InheritanceEach Business Object Can Have A Different LifecycleGranting Access To Business ObjectsDefining Business ObjectsBusiness Object - MainBusiness Object - SchemaBusiness Object - AlgorithmsBusiness Object - LifecycleBusiness Object - SummaryMaintaining Status ReasonsBusiness ServicesDefining Business ServicesBusiness Service - MainBusiness Service - SchemaUser Interface (UI) MapsDefining UI MapsUI Map - MainUI Map - SchemaMaintaining Managed ContentManaged Content - MainManaged Content - SchemaData AreasDefining Data AreasData Area - MainData Area - SchemaSchema ViewerBusiness Event Log
Configuring FactsFact Is A Generic EntityFact's Business Object Controls EverythingFact Supports A Log
Oracle Utilities Application Framework Administration Guide
Copyright © 2000, 2011, Oracle and/or its affiliates. All rights reserved.
This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.
The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.
If this software or related documentation is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable:
U.S. GOVERNMENT RIGHTS
Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software License (December 2007). Oracle America, Inc., 500 Oracle Parkway, Redwood City, CA 94065.
This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications which may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.
Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.
This software or hardware and documentation may provide access to or information on content, products and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third party content, products and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third party content, products or services.
The topics in this section describe how to administer the Oracle Utilities Application Framework.
This section describes control tables that are used throughout your product.
The topics in this section describe the various installation options that control various aspects of the system.
Select Admin Menu > Installation Options > Installation Options - Framework to define system wide installation options.
Description of Page
The Environment ID is a unique universal identifier of this instance of the system. When the system is installed, the environment id is populated with a six digit random number. While it is highly unlikely that multiple installs of the system at a given implementation would have the same environment ID, it is the obligation of the implementers to ensure that the environment ID is unique across all installed product environments.
System Owner will be Customer Modification.
The Admin Menu Order controls how the various control tables are grouped on the Admin Menu.
The Language should be set to the language in which you work.
The Currency Code is the default currency code for transactions in the product.
If your product supports characteristics on its objects, define the date to be used as the Characteristic Default Date on objects without an implicit start date. The date you enter in this field will default when new characteristics are added to these objects (and the default date can be overridden by the user).
Active Owner displays the owner of newly added system data (system data is data like algorithm types, zone types, To Do types, etc.). This will be Customer Modification unless you are working within a development region.
Country and Time Zone represent the default country and time zone that should be used throughout the application.
Turn on Seasonal Time Shift if your company requires seasonal time shift information to be defined.
Select Admin Menu > Installation Options > Installation Options - Framework and the Messages tab to review or enter messages that will appear throughout the application when a given event occurs.
The Message collection contains messages that are used in various parts of the system. For each message, define the Installation Message Type and Installation Message Text. The following table describes how the various Message Types are used in the system.
Message Type	How The Message Is Used
Company Title for Reports | This message appears as a title line on the sample reports provided with the system. Generally it is your company name. It is only used if you have installed reporting functionality and are using the sample reports (or have designed your reports to use this message). |
Select Admin Menu > Installation Options > Installation Options - Framework and the Algorithms tab to review or enter the algorithms that should be evoked when a given event occurs.
The grid contains Algorithms that control important functions in the system. You must define the following for each algorithm:
The following table describes each System Event.
System Event | Optional / Required | Description |
---|---|---|
Geocoding Service | Optional | Algorithms of this type use Oracle Locator to retrieve latitude and longitude coordinates using address information. Click here to see the algorithm types available for this system event. |
Global Context | Optional | Algorithms of this type are called whenever the value of one of the global context fields is changed. Algorithms of this type are responsible for populating other global context values based on the new value of the field that was changed. Refer to Global Context Overview for more information. Click here to see the algorithm types available for this system event. |
Next To Do Assignment | Optional | This type of algorithm is used to find the next To Do entry a user should work on. It is called from the Current To Do dashboard zone when the user ask for the next assignment. Click here to see the algorithm types available for this system event. |
Reporting Tool | Optional | If your installation has integrated with a third party reporting tool, you may wish to allow your users to submit reports on-line using report submission or to review report history online. This algorithm is used by the two on-line reporting pages to properly invoke the reporting tool from within the system. Click here to see the algorithm types available for this system event. |
SMS Receive Service | Optional | This type of algorithm is used to provide SMS receive service. Only one algorithm of this type should be plugged in. Click here to see the algorithm types available for this system event. |
SMS Send Service | Optional | This type of algorithm is used to provide SMS send service. If your installation has integrated with a third-party SMS service, you may want to override this with your own implementation. Only one algorithm of this type should be plugged in. Click here to see the algorithm types available for this system event. |
To Do Information | Optional | We use the term To Do information to describe the basic information that appears throughout the system to describe a To Do entry. Plug an algorithm into this spot to override the system default "To Do information". Click here to see the algorithm types available for this system event. |
To Do Pre-creation | Optional | These types of algorithms are called when a To Do entry is being added. Click here to see the algorithm types available for this system event. |
Select Admin Menu > Installation Options - Framework Installation Options - Framework and the Accessible Modules tab to view the list of accessible modules.
Description of Page
This page displays the full list of the application's function modules. A Turned Off indication appears adjacent to a module that is not accessible based on your system's module configuration setup.
Select Admin Menu > Installation Options > Installation Options - Framework and the Installed Products tab to view a read only summary of the products that are installed in the application version that you are logged into.
Description of Page
The Product Name indicates the name of the "products" that are installed. The collection should include Framework, an entry for your specific product and an entry for Customer Release.
Release ID shows the current release of the application that is installed. This field is used by the system to ensure that the software that executes on your application server is consistent with the release level of the database. If your implementation of the product has developed implementation-specific transactions, you can populate the Release Id for the Customer Release entry to define the latest release of implementation-specific logic that has been applied to this environment. In order for this to work, your implementation team should populate this field as part of their upgrade scripts.
The Release ID Suffix, Build Number and Patch Number further describe the details of your specific product release.
The Display column indicates the product whose name and release information should be displayed in the title bar. Only one product sets this value to Yes.
Owner indicates if this entry is owned by the base package or by your implementation (Customer Modification).
Product Type indicates if the product is a Parallel Application. A parallel application is one that is independent of, and does not conflict with, other parallel applications. Multiple parallel applications can be installed in the same database and application server.
The system provides support for multiple languages in a single environment. System users can use the system in their preferred language, as long as a translation into that language has been provided. By default, a user sees the system in their default language (which is defined on their user record). Also note, if enabled, users can use the Switch Language Zone to switch to another supported language real time.
The following steps are required to support a new language.
Language based descriptions can be copied using a supplied batch process, NEWLANG.
Your product may support additional uses for language. For example, in Oracle Utilities Customer Care and Billing, you can define each customer's language. This allows you to send bills and other correspondence in each customer's preferred language. For more information, navigate to the index entry Languages, Customer Language.
A language code exists for every language spoken by your users. The system uses this code to supply information to users in their respective language. Select Admin Menu > Language to define a language.
Description of Page
Enter a unique Language Code and Description for the language.
Turn on Language Enable if the system should add a row for this language whenever a row is added in another language. For example, if you add a new currency code, the system will create language specific record for each language that has been enabled. You would only enable multiple languages if you have users who work in multiple languages.
The following two fields control how the contents of grids and search results are sorted by the Java virtual machine (JVM) on your web server:
The following are examples of valid locales:
In addition, the Java collation API can take a Collator Strength parameter. This parameter controls whether, for example, upper and lower-case characters are considered equivalent, or how accented characters are sorted. Valid values for collator strength are PRIMARY, SECONDARY, TERTIARY, and IDENTICAL. If you leave this field blank, Java will use its default value for the language. We'd like to stress that the impact of each value depends on the language.
Please see http://java.sun.com/j2se/1.3/docs/guide/intl/locale.doc.html for more information about the collator strength for your language.
Display Order indicates if this language is written Left to Right or Right to Left.
Owner indicates if this language is owned by the base package or by your implementation (Customer Modification). The system sets the owner to Customer Modification when you add a language. This information is display-only.
Where Used
Follow this link to open the data dictionary where you can view the tables that reference CI_LANGUAGE.
Note that all administrative control tables and system metadata that contain language-specific columns (e.g., a description) reference a language code.
In addition, other tables may reference the language as a specific column. For example, on the User record you indicate the preferred language of the user.
The topics in this section describe how to maintain countries.
To add or review Country definitions choose Admin Menu > Country.
The Main page is used to customize the fields and field descriptions that will be displayed everywhere addresses are used in the system. This ensures that the all addresses conform to the customary address format and conventions of the particular country you have defined.
Description of Page
Enter a unique Country and Description for the country.
The address fields that appear in the Main page are localization options that are used to customize address formats so that they conform to address requirements around the world. By turning on an address field, you make that field available everywhere addresses for this country are used in the system. You can enter your own descriptions for the labels that suffix each switch; these labels will appear wherever addresses are maintained in the system.
Where Used
Follow this link to open the data dictionary where you can view the tables that reference CI_COUNTRY.
To maintain the states located in a country, choose Admin Menu > Country and navigate to the State page.
Description of Page
For any country where you have enabled the State switch, use the State collection to define the valid states in the Country.
The currency page allows you to define display options related to currency codes that are used by your system. Use Admin Menu > Currency Code to define the currency codes in which financial information is denominated.
Description of Page
Enter a unique Currency and Description for the currency.
Use Currency Symbol to define the character that prefixes currency amounts in the system (e.g., $ for U.S. dollars).
Enter the number of Decimals that will appear in the notation for the currency. For example, there are two decimal positions for Australian dollars ($5.00), but no decimal positions in the Italian lira (500 L).
The Currency Position indicates whether the currency symbol should be displayed as a Prefix or a Suffix to the currency amount. For example, the US Dollar symbol is a prefix before the amount ($5.00) and the French franc symbol is a suffix after the amount (200.00FF).
Where Used
Follow this link to open the data dictionary where you can view the tables that reference CI_CURRENCY_CD.
The following topics describe how to design and set up time zones.
It is recommended that all time sensitive data is stored in the time of the base time zone as defined on the installation options. This will prevent any confusion when analyzing data and will ensure that your algorithms do not have to perform any shifting of data that may be stored in different time zones.
The Time Zone entity is used to define all the time zones where your customers may operate. It is used by interfaces to help ensure data is stored correctly in the base time zone.
When designing your time zones, the first thing to determine is the base time zone. For an example, let's assume that your company's main office is in the US Central time zone. First, you need to define this time zone and define the seasonal time shift whose schedule it follows.
When designing your time zones, the first thing to determine is the base time zone. If, for example, your company's main office and all customers are located in the US Central time zone, you would first you need to define this time zone as well as the labels for standard time (default) and daylight savings time (shifted). Because (in this example) all business occurs in the US Central time zone, no other time zone entries are required:
Time Zone | Time Zone Name | Default Label | Shifted Label |
---|---|---|---|
USCentral | US/Central | CST | CDT |
Once this is done you can link the time zone code to the installation option as the base time zone. Refer to Installation Options - Main for more information.
If your company does business beyond your local time zone, then you can define the other time zones where you may have customers or other systems with which you exchange data. Let's use the US time zones as an example. We'll define time zones for Eastern, Mountain, Pacific, and one for Arizona (which doesn't observe daylight savings time):
Time Zone | Time Zone Name | Default Label | Shifted Label |
---|---|---|---|
USCentral | US/Central | CST | CDT |
USEastern | US/Eastern | EST | EDT |
USMountain | US/Mountain | MST | MDT |
USArizona | US/Arizona | AST | |
USPacific | US/Pacific | PST | PDT |
All time sensitive data will be stored according to the base Time Zone defined on the installation record. The time zone table is used to define other time zones necessary for the application. When data being entered into the system is related to a time zone other than that defined on the installation record, the time zone information may be used by integration/interface logic to convert the data into the base time zone for storage on the database.
Open Admin Menu > Time Zone to define the time zones and their relation to the base time.
Description of Page
Enter a unique Time Zone and Description for the time zone.
Select the Time Zone Name from the list of Olson time zone values.
Indicate the Shift in Minutes that this time zone differs from the base time zone defined on the Installation Options (for Customer Care and Billing - Interval Billing applications only).
Indicate the Seasonal Time Shift applicable for this time zone (for Customer Care and Billing - Interval Billing applications only).
Default Time Zone Label is used to identify displayed and input times for non-shifted time. For example, the US/Central label would be CST. If specified, this label must be different from the Default Time Zone Label.
Shifted Time Zone Label is used to identify displayed and input times when time is shifted (typically by daylight savings time). For example, the US/Central label would be CDT.
Where Used
Follow this link to open the data dictionary where you can view the tables that reference CI_TIME_ZONE.
Open Admin Menu > Seasonal Time Shift to define the seasonal time shift schedule.
Description of Page
Enter a unique Seasonal Time Shift code and Description for the seasonal time shift.
The Collection defines the Effective Date/Time (in standard time) that a time zone may shift in and out of standard time. If time is changed from standard time on the effective date/time, enter the Shift in Minutes that the time changes from standard time (usually 60). If the time is changed back to standard time on the effective date/time, enter a Shift in Minutes of 0.
Where Used
Follow this link to open the data dictionary where you can view the tables that reference CI_SEAS_TM_SHIFT.
If your company uses geographic coordinates for dispatching or geographic information system integration, you need to setup a geographic (coordinate) type for each type of geographic coordinate you capture on your premises and/or service points (geographic coordinates can be defined on both premises and service points).
To define geographic types, open Admin Menu > Geographic Type .
Description of Page
Enter an easily recognizable Geographic Type code and Description.
Define the algorithm used to validate the Validation Format Algorithm. If an algorithm is specified, the system will validate that the geographic location entered on the premise and/or service point for the geographic type is in the format as defined in the algorithm. If you require validation, you must set up this algorithm in the system.
Click here to see the algorithm types available for this plug-in spot.
Where Used
Follow this link to open the data dictionary where you can view the tables that reference CI_GEO_TYPE.
Workday calendars are used to ensure system-calculated dates fall on a workday. Select Admin Menu > Work Calendar to define a workday calendar.
Description of Page
The information on this transaction is used to define the days of the week on which your organization works.
Enter a unique Work Calendar and Description.
Turn on (check) the days of the week that are considered normal business days for your organization.
Use the collection to define the Holiday Date, Holiday Start Date, Holiday End Date, and Holiday Name for each company holiday. Holiday Start Date and Holiday End Date define the date and time that the holiday begins and ends. For example, your organization might begin a holiday at 5:00 p.m. on the day before the actual holiday.
Where Used
Follow this link to open the data dictionary where you can view the tables that reference CI_CAL_WORK.
When you set up your users, you reference a display profile. A user's display profile controls how dates, times, and numbers displayed. Choose Admin Menu > Display Profile to maintain display profiles.
Description of Page
Enter a unique Display Profile ID and Description to identify the profile.
Enter a Date Format. This affects how users view dates and how entered dates are parsed. This is a "free format" field with some rules.
Here are some examples of date formats.
Format | Displayed / entered as |
---|---|
MM-dd-yyyy | 04-09-2001 |
d/M/yyyy | 9/4/2001 |
yy.MM.dd | 01.04.09 |
MM-dd-y | 04-09-01 - in this case you could also enter the date as 04-09-2001 |
Enter a Time Format. This is a "free format" display with some rules.
Here are some examples of time formats.
Format | Displayed / entered as |
---|---|
hh:mma | 09:34PM (can be entered as 09:34p) |
hh:mm:ss | 21:34:00 |
h:m:s | 9:34:0 |
There are several options for displaying Numbers. Select the character you use as the Decimal Symbol (" ." or " ,"), the symbol that separates the integer and decimal parts of a number. Select the character you use as the Group Symbol (" ,", " .", None or Space), i.e., the symbol used to separate 1000s. Select an option for the Negative Format, which dictates how negative values are displayed: ‑9.9, (9.9), or 9.9-.
Currency values can have a different Negative Format from other numbers: -s9.9, (s9.9), or s9.9-, where the "s" represents the currency symbol.
Where Used
Follow this link to open the data dictionary where you can view the tables that reference CI_DISP_PROF.
Phone types define the format for entering and displaying phone numbers.
To add or review phone types, choose Admin Menu > Phone Type .
Description of Page
Enter a unique Phone Type and Description for each type of phone number you support.
Select an appropriate Phone Number Format Algorithm for each Phone Type. This algorithm controls the format for entry and display of phone numbers. Click here to see the algorithm types available for this plug-in spot.
Use Phone Type Flag to define if this type of phone number is a Fax number. Defining which phone type is used for facsimile transmittal is only pertinent if your product supports routing of information via fax. For example, in Oracle Utilities Customer Care and Billing, the system may be configured to fax a bill to a customer.
Where Used
Follow this link to open the data dictionary where you can view the tables that reference CI_PHONE_TYPE.
If you need to introduce additional fields to objects that were delivered with minimal fields, you can add a characteristic type for each field you want to capture. Using the characteristic type approach allows you to add new fields to objects without changing the database. There are some pages in the system that support a generic list of characteristics. For those pages, no changes are required for users to view and maintain characteristics. Other pages are business object oriented pages and their maintenance and display are controlled by the UI maps defined for the business objects. In those pages the display / maintenance of the characteristics are driven by the design of the business object and its maps.
The topics in this section describe how to setup a characteristic type.
Every characteristic referenced on an object references a characteristic type. The characteristic type controls the validity of the information entered by a user when they enter the characteristic's values. For example, if you have a characteristic type on user called "skills", the information you setup on this characteristic type controls the valid values that may be specified by a user when defining another user's skills.
When you setup a characteristic type, you must classify it as one of the following categories:
Before you can create a characteristic of this type, information about the table that contains the valid values must be defined on the foreign key reference table.
The referenced table does not have to be a table within the system.
Not all entities that support characteristics support foreign key characteristics. Refer to the data dictionary to identify the entities that include the foreign key characteristic columns.
Not all entities that support characteristics support searching by characteristics. Refer to the data dictionary to identify the characteristic collections that include the search characteristic column.
For the base searches that provide a generic option to search by characteristic type and value, you can restrict the characteristic types that can be used to search for an entity. For example, imagine you use a characteristic to define a "jurisdiction" associated with a To Do for reporting purposes. If your company operates within a very small number of jurisdictions, you wouldn't want to allow searching for a To Do by jurisdiction, as a large number of To Do entries would be returned.
A flag on the characteristic type allows an administrator to indicate if searching by this characteristic type is allowed or not allowed.
To define a characteristic type, open Admin Menu > Characteristic Type.
Description of Page
Enter an easily recognizable Characteristic Type and Description for the characteristic type. Owner indicates if this characteristic type is owned by the base package or by your implementation (Customer Modification).
Use Type of Char Value to classify this characteristic type using one of the following options (refer to There Are Four Types Of Characteristics for more information):
Use the Allow Search by Char Val to indicate if searching for an entity by this characteristic type is Allowed or Not Allowed. Refer to Searching by Characteristic Values for more information.
Where Used
Use the Data Dictionary to view the tables that reference CI_CHAR_TYPE.
To define the entities (objects) on which a given characteristic type can be defined, open Admin Menu > Characteristic Type and navigate to the Characteristic Entities tab.
Description of Page
Use the Characteristic Entity collection to define the entities on which the characteristic type can be used. Owner indicates if this is owned by the base package or by your implementation (Customer Modification).
A Foreign Key Reference defines the necessary information needed to reference an entity in certain table.
You need to set up this control table if you need to validate a foreign key value against a corresponding table. For example, if a schema element is associated with an FK Reference the system validates the element's value against the corresponding table. Refer to Configuration Tools to learn more about schema-based objects. Another example is characteristics whose valid values are defined in another table (i.e., you use "foreign key reference" characteristic types). Refer to There Are Four Types Of Characteristics for a description of characteristics of this type.
A FK Reference is used not just for validation purposes. It also used to display the standard information description of the reference entity as well as provide navigation information to its maintenance transaction. Info descriptions appear throughout the UI, for example, whenever an account is displayed on a page, a description of the account appears.
The above is possible as a result of information you define when you set up a foreign key reference for the table in question. The following points describe what you should know before you can setup a foreign key reference for a table.
Typically a FK Reference is defined for a maintenance object's primary table. In this case the system dynamically derives the standard information associated with a specific referenced entity as follows:
Typically a FK Reference is defined for a maintenance object's primary table. In this case the system dynamically derives the actual transaction to navigate to for a given referenced entity as follows:
To setup a foreign key reference, open Admin > Foreign Key Reference .
Description of Page
Enter an easily recognizable FK (foreign key) Reference code and Description for the table.
Enter the name of the Table whose primary key is referenced. After selecting a Table, the columns in the table's primary key are displayed adjacent to Table PK Sequence.
Use Navigation Option to define the page to which the user will be transferred when they press the go to button or hyperlink associated with the referenced entity. Refer to Navigation Information Is Dynamically Derived for more information on how this is used.
The Info Program Type indicates whether the default program that returns the standard information description is written in COBOL or Java.
Refer to Information Description Is Dynamically Derived for more information on the info program is used.
Use Context Menu Name to specify the context menu that appears to the left of the value.
Use Search Navigation Key to define the search page that will be opened when a user searches for valid values. This is only applicable for characteristics and column references.
Use Search Type to define the default set of search criteria used by the Search Navigation Key's search page.
Use Search Tooltip to define a label that describes the Search Navigation Key's search page.
Where Used
Follow this link to open the data dictionary where you can view the tables that reference CI_FK_REF.
A limited number of the system's features are configured by populating options on a "feature configuration". For example, if your implementation uses Oracle Utilities Customer Care and Billing's batch scheduler, you must populate a variety of options on the batch scheduler's feature configuration.
The administration documentation for each feature defines the impact of each option. The topics below simply describe how to use this transaction in a generic way.
You can create features to control features that you develop for your implementation. To do this:
To define your feature configuration, open Admin Menu > Feature Configuration .
Description of Page
Enter an easily recognizable Feature Name code.
Indicate the Feature Type for this configuration. For example, if you were setting up the options for the batch scheduler, you'd select Batch Scheduler.
The Options grid allows you to configure the feature. To do this, select the Option Type and define its Value. Set the Sequence to 1 unless the option may have more than value. Detailed Description may display additional information on the option type.
If the feature exists to interface with an external system, you can use this page to define the mapping between error and warning codes in the external system and our system.
Open this page using Admin Menu > Feature Configuration and navigate to the Messages tab.
Description of Page
For each message that may be received from an external system, define the Feature Message Category and Feature Message Code to identify the message.
A corresponding message must be defined in the system message tables. For each message identify the Message Category and Message Number. For each new message, the Message Category defaults to 90000 (because an implementation's messages should be added into this category or greater so as to avoid collisions during upgrades).
A master configuration enables an implementation to capture various types of information in the system.
For example, a master configuration exists in the base product that captures the mapping between Hijri and Gregorian dates. Given this, users are able to switch between Gregorian and Hijri date formats by changing the display profile on their user record.
Master Configurations can be bundled for export to other environments.
To set up a master configuration, open Admin Menu > Master Configuration.
The topics in this section describe the base-package zones that appear on the Master Configuration portal.
The Master Configuration List zone lists every category of master configuration.
The Master Configuration Details zone contains display-only information about a master configuration.
This zone appears when a master configuration has been broadcast from the Master Configuration zone.
Please see the zone's help text for information about this zone's fields.
The following sections describe miscellaneous system wide topics.
The system provides the ability to simplify the user interface based on functionality areas practiced by your organization.
Menu items and other user interface elements are associated with function modules. By default, all function modules are accessible. If a function module is not applicable to your business you may turn it off. Refer to Turn Off A Function Module for more information on how to turn off a module.
If a function module is made non-accessible, i.e. turned off, its related elements are suppressed from the user interface. In addition the system may validate that related functionality is not accessed. This also means that turning off the wrong module may cause any of the following to occur:
To correct the above situation, simply remove the module from the turned off list thus making it accessible again.
Your module configuration setup is displayed on the installations record.
The following points describe how your module configuration can suppress menu items.
In addition to the above Menu Item Suppression logic, the following points describe how your module configuration can suppress an entire menu.
The base package is provided with a Module Configuration Feature Configuration that allows your organization to turn off base package function modules.
To turn off any of the base package function modules add a Turned Off option to this feature configuration referencing that module. Refer to the MODULE_FLG lookup field for the complete list of the application's function modules.
Any module not referenced on this feature configuration is considered turned on, i.e. accessible. To turn on a module, simply remove its corresponding Turned Off option from this feature configuration.
You may view your module configuration setup on the installation options page.
The framework web application provides each product the ability to nominate certain fields to act as a "global context" within the web application. These fields are known as global context fields. For example, in Oracle Utilities Customer Care and Billing, the global context fields are typically Account ID, Person ID and Premise ID. The values of these fields may be populated as a result of searching or displaying objects that use these fields in their keys. If you navigate to the Bill page and display a bill, the global context is refreshed with the Account ID associated with that bill. The global context for Person ID and Premise ID are refreshed with data associated with that account.
Changing the values of the global context typically cause data displayed in zones on the dashboard to be refreshed to show information relevant to the current values of these global context fields.
When the value of one of the global context fields changes, an algorithm plugged into the installation record is responsible for populating the remaining global context values accordingly. Refer to your specific product for more information about the base algorithm that is provided for that product.
There are several maintenance objects in the system that include owner flag in one or more if its tables. We refer to the data in these tables as "system data". Some examples of system data tables include Algorithm Type, Batch Control, Business Object and Script. Implementations may introduce records to the same tables. The owner flag for records created by an implementation is set to CM (for customer modification), however the owner flag is not part of the primary key for any of the system data tables. As a result, the base product provides the following guidelines for defining the primary key in system data tables to avoid any naming conflict.
For any table that includes the owner flag, the base product will follow a naming convention for any new data that is owned by the base product. The primary key for records introduced by the product is prefixed with x1- where x1 is the value of the owner flag. For example, if a new background process is introduced to the framework product, the batch code name is prefixed with F1-.
For most system data, the remainder of the primary key is all in capital case. An exception is schema oriented records. For business objects, business services, scripts, data areas and UI maps, the product follows the general rule of using CapitalCase after the product owner prefix. For example, F1-AddToDoEntry is the name of a base product business service.
Please note that this standard is followed for all new records introduced by the base product. However, there are base product entries in many of these system data tables that were introduced before the naming convention was adopted. That data does not follow the naming convention described above.
When new system data is introduced for your implementation you must consider the naming convention for the primary key. The product recommends prefixing records with CM, which is the value of the owner flag in your environment. This is consistent with the base product naming convention. This convention allows your implementation to use the CM packaging tool in the Software Development Kit as delivered. The extract file provided with the tool selects system data records with an owner flag of CM AND with a CM prefix.
Also note that owner flag may be introduced to an existing table in a new release. When this happens, the CM packaging tool is also updated to include these new system data tables. Your implementation will have existing records in those tables that probably do not follow any naming convention. After an upgrade to such a release, if you want to include this data in the CM packaging tool, you must customize the extract file for the tables in question.
A great deal of information in the system changes infrequently. In order to avoid accessing the database every time this type of information is required by an end-user, the system maintains a cache of static information on the web server. In addition to the web server's cache, information is also cached on each user's browser.
The cache is populated the first time any user accesses a page that contains cached information. For example, consider a control table whose contents appear in a dropdown on various pages. When a user opens one of these pages, the system verifies that the list of records exists in the cache. If so, it uses the values in the cache. If not, it accesses the database to retrieve the records and saves them in the cache. In other words, the records for this control table are put into the cache the first time they are used by any user. The next user who opens one of these pages will have the records for this control table retrieved from the cache (thus obviating the database access).
The following points describe the type of data that is cached on the web server:
The contents of the cache are cleared whenever the web server is "bounced". This means that fresh values are retrieved from the database after the application server software is restarted.
If you change the database after the cache is built and the information you changed is kept in the cache, users may continue to see the old values. If you don't want to bounce your web server, you can issue one of the following commands in your browser's URL to immediately clear the contents of the cache (a separate command exists for each type of data that is held in the cache):
For example, assume the following:
You would issue the following command in your browser's address bar: http://CD-Production:7500/flushDropdownCache.jsp?language=ENG. Notice that the command replaces the typical cis.jsp that appears after the port number (this is because these commands are simply different JSP pages that are being executed on the web server).
In addition to the web server's cache, information is also cached on each user's browser. After clearing the cache that's maintained on the web server, you must also clear the cache that's maintained on your client's browser. To do this, follow the following steps:
Your implementation team can execute the system using a special mode when they are configuring the application. To enable this mode, enter ?debug=true at the end of the URL that you use to access the application. For example, if the standard URL was http://CD-Production:7500/cis.jsp, you'd enter http://CD-Production:7500/cis.jsp?debug=true to enable configuration mode.
When in this mode certain debugging oriented tools become available right below the main tool bar.
Other parts of the system may show additional configuration oriented icons when in this mode. For example, explorer zones may provide additional tools to assist in debugging zone configuration. These icons are described in the context of where they appear.
Also, in debug mode drop down lists in data explorer and UI map zones will contain the code for each item in addition to the item's display string.
The system provides a way to override the system date used for online operations.
Under the General System Configuration Feature Configuration, the System Override Date Option Type holds the date the application will use as the system date instead of retrieving the same from the database. This feature can be especially useful in running tests that require the system date to be progressed over a period of time.
The system date override feature is also available at the user level.
The contents of this section describe how to maintain a user's access rights.
The contents of this section provide background information about application security.
The system restricts access to its transactions as follows:
If your organization uses Lightweight Directory Access Protocol (LDAP), you can import your existing LDAP users and groups into the system. Once imported, all user and group functions are available. You can import all users, a group of users, or a single user. You can resynchronize your LDAP users and groups at any time.
For information on how to set up your system to import users and groups from an LDAP store as well as how to do the import, refer to Importing Users and Groups.
When you grant a user group access to an application service, you must indicate the actions to which they have access.
Sometimes transaction and action security is not sufficient. There are situations where you may need to restrict access based on the values of data. For example, in Oracle Utilities Customer Care and Billing you might want to prevent certain users from completing a bill for more than $10,000. This is referred to as "field level security".
Field level security can be complex and idiosyncratic. Implementing field level security always requires some programming by your implementation group. This programming involves the introduction of the specific field-level logic into the respective application service(s).
Even though the validation of a user's field-level security rights requires programming, the definition of a user's access rights is performed using the same transactions used to define transaction / action level security. This is achieved as follows:
Highest value grants highest security. The system expects the highest authorization level value to represent highest security level. Moreover, authorization level is an alphanumeric field so care should be taken to ensure that it's set up correctly.
"Encryption" refers to encrypting data stored in a database using an encryption key.
Only users whose database access user ID has the appropriate encryption key can retrieve decrypted information. Please refer to your database's encryption guidelines for how to encrypt data.
"Masking" refers to overwriting all or part of a decrypted field value with a masking character before it is presented to a user (or an external system) without the appropriate security access. For example, an implementation can mask the first 12 digits of a credit card number with an asterisk for users who do not have security rights to see credit card numbers.
Multiple masking rules. The system allows different masking rules to be applied to different fields. For example, a credit card number can be masked differently than a social security number. In addition, some user groups may be allowed to see certain fields unmasked.
Masking happens after decryption. It is obvious, but worth emphasizing, that only decrypted data can be masked. This means that if a user does not have authority to retrieve decrypted data then masking is not relevant because the data to be masked would be encrypted.
The topics in this section describe how to mask field values.
Your implementation should list every field on every page and XAI service request that requires masking
Primary keys cannot be masked. A field defined as a unique identifier of a row cannot be configured for masking. Masking a field that is part of the primary key causes a problem when attempting to update the record. This restriction also applies to elements that are part of a "list" in a CLOB on a maintenance object. One or more elements in the list must be defined as a primary identifier of the list. Be sure that primary key elements in the list are not ones that require masking.
Masking applies to strings. Only fields with a data type of String can be masked.
List members that contain different "types". Consider a page with a list that contains a person's phone numbers. You can set up the system so that a person's home phone has different masking rules than their work number. If your implementation has this type of requirement, the list of masked fields should contain an entry for each masking rule.
Examine the list of masked fields and look for "logical fields".
In the above example, there is a single "logical field" associated with the three secured elements: the social security number.
You should link all of the security types to an application service of your choosing. We recommend linking every masking-oriented security type to a single application service (e.g., CM_MASK) as it makes granting access easier.
A masking algorithm must be created for each security type.
These algorithms determine if a user has the rights to view a given field unmasked, and, if not, how the field should be masked.
Create a feature configuration with a Feature Type of Data Masking.
Then add an option for every field that you defined in Identify The Fields To Be Masked.
Each field's option value will have an Option Type of Field Masking and a Value that references the respective algorithm defined above. In addition, the Value will contain mnemonics that differ depending on how the field is retrieved. For example, a field retrieved via a business object call has a different mnemonics than a field retrieved via a page service call. Refer to the Detailed Description of the Field Masking option on the Feature Configuration page for the mnemonic values required for each type of field.
For each security type, identify which users can see its data unmasked and which users can only see its data masked.
If the masked and unmasked users fit into existing user groups, no additional user groups are necessary. Otherwise, create new user groups for the masked and unmasked users.
After the user groups for each security type are defined, link each user group to the application service defined above. When a user group is linked to the application service, you will define the authorization level for each security type linked to the application service. If a user group's users should see the security type's field values unmasked, set the authorization level to 2; otherwise set it to 1. Refer to User Group - Application Services for the transaction used to link a user group to an application service.
The following points provide additional information to assist in your masking configuration:
When the system is initially installed, the following information is setup:
When you receive an upgrade:
Your product's demonstration database may contain sample user groups. These user groups reference logical groups of application services. For example, the "case management user group" references the "case management" application services.
You may find that these sample user groups closely match the user groups needed by your implementation. If this proves true, you should copy these user groups from the demonstration database. This will save you time as you won't have to set up the each such group's application services (but you'll still need to link your users to the appropriate user groups). The topics in this section describe how to copy user groups from the demonstration database.
The demonstration database is installed in English only. If you work in a non-English language, you must execute the NEWLANG background process on the demonstration database before using it as a Compare Source supporting environment. If you work in a supported language, you should apply the language package to the demonstration database as well.
If you don't execute NEWLANG on the demonstration database, any objects copied from the demonstration database will not have language rows for the language in which you work and therefore you won't be able to see the information in the target environment.
You need a "copy user group" database process (DB process) setup in the target database (e.g., your implementation's database). This DB process has a single instruction that references the user group maintenance object (MO). This instruction should have a table rule with an override condition that selects the user groups in question. For example, the override condition #SC_USER_GROUP.USR_GRP_ID LIKE 'CI_%' is used on the DB process that copies user groups prefixed with CI_. The demonstration database contains such a DB process; it's called CI_COPUG. In order to copy user groups from the demonstration database, you must first copy this DB process from the demonstration database.
You can copy the CI_COPUG DB process from the demonstration database by submitting the CL-COPDB background process in your target database. When you submit this process, you must supply it with an environment reference that points to the demonstration database. If you don't have an environment reference configured in your target database that references the demonstration database, you must have your technical staff execute a registration script that sets up this environment reference. Refer to Registering ConfigLab Environments for more information.
CL-COPDB is initially delivered ready to copy every DB process that is prefixed with CI_ from the source database (there are numerous sample DB processes in the demonstration database and this process copies them all). If you only want to copy the CI_COPUG DB process, add a table rule to the primary instruction of the CL-COPDB database process to only copy the CI_COPUG DB process. The remainder of this section assumes you have added this table rule.
When the CL-COPDB process runs, it highlights differences between the "copy user groups" DB process in your source database and the target database. The first time you run this process, it creates a root object in the target database to indicate the CI_COPUG DB process will be added to your target database. You can use the Difference Query to review these root objects and approve or reject them.
After you've approved the root object(s), submit the CL-APPCH batch process to change your target database. You must supply the CL-APPCH process with two parameters:
After you have populated the "copy user groups" DB process in your target database, you can override its table rule to edit the list of user groups that will be copied. You need only do this if you don't need all of the user groups that are defined in these DB processes (but it never hurts to have too many user groups as they won't be used unless you link users to them).
At this point, you're ready to submit the background process identified on your "copy user group" DB processes. This background process highlights the differences between the user groups in the demonstration database and the target database (the target database is the environment in which you submit the background process).
When you submit one of the DB processes defined above, you must supply it with an environment reference that points to the source database (i.e., the demonstration database).
When the process runs, it simply highlights differences between the user groups in the source database and the target database. It creates a root object in the target database for every user group that is not the same in the two environments (actually, it only concerns itself with user group that match the criteria on the DB process's table rule described above). You can use the Difference Query to review these root objects and approve or reject them.
After you've approved the root object(s) associated with the user groups that you want copied, submit the CL-APPCH batch process to cause your target database to be changed. You must supply the CL-APPCH process with two parameters:
Some products allow you to limit a user's access to specific rows. For example, in Oracle Utilities Customer Care and Billing, row level security prevents users without appropriate rights from accessing specific accounts.
By granting a user access rights to an account, you are actually granting the user access rights to the account's bills, payment, adjustments, orders, etc.
The topics in this section describe basic row level security objects.
We'll use an example from Oracle Utilities Customer Care and Billing to describe how access groups and roles are used to restrict access to accounts. The following diagram illustrates the objects involved with account security:
An Access Group defines a group of Accounts that have the same type of security restrictions. A Data Access Role defines a group of Users that have the same access rights (in respect of access to accounts). When you grant a data access role rights to an access group, you are giving all users in the data access role rights to all accounts in the access group.
The following points summarize the data relationships involved with account security:
If you use row level security, setting up your access roles and groups can be easy or challenging - it all depends on your organization's requirements. Refer to the product's Administration Guide - Implementing Account Security for several case studies. These case studies provide examples of how different requirements can be implemented using these concepts.
An application service exists for every transaction in the system. Please refer to Application Security for a description of how application services are used when you grant user groups access rights transactions.
Select Admin Menu > Application Service to define an application service.
Description of Page
Enter a unique Application Service code and Description for the application service.
Indicate the application service's various Access Modes (i.e., actions). Refer to Action Level Security for more information about the significance of these fields.
Where Used
Follow this link to view the tables that reference the Application Service table in the data dictionary schema viewer.
Where Used
Follow this link to open the data dictionary where you can view the tables that reference SC_APP_SERVICE.
Use the Application Security portal to set up security for an application service.
Open this page using Admin Menu > Application Service , and then navigate to the Application Security tab.
This section describes the available zones on this page.
Application Service Details zone. The Application Service Details zone contains display-only information about the selected application service, including the Access Modes for the application service and its security type.
Security types are used to define the types of field level security.
Select Admin Menu > Security Type to define your security types.
Description of Page
Enter a unique Security Type and Description.
Use the Authorization Level grid to define the different authorization levels recognized for this security type. Enter an Authorization Level Number and its Description.
Use the Application Services grid to define the application service(s) to which this security type is applicable. If this application service is already associated with user groups, you must update each user group to define their respective security level. This is performed using User Group - Application Service.
Where Used
Follow this link to open the data dictionary where you can view the tables that reference CI_SC_TYPE.
A user group is a group of users who have the same degree of security access. Think of a user group as a "role"; associated with a role are:
Select Admin Menu > User Group to view the application services to which a user has access.
Description of Page
Enter a unique User Group code and Description for the user group.
Owner indicates if this user group is owned by the base package or by your implementation (Customer Modification). The system sets the owner to Customer Modification when you add a user group. This information is display-only.
The Application Services grid displays the various application services to which users in this group have access. Please note the following in respect of this grid:
Where Used
Follow this link to open the data dictionary where you can view the tables that reference SC_USER_GROUP.
Select Admin Menu > User Group and navigate to the Application Services tab to maintain a user group's access rights to an application service.
Description of Page
The Application Service scroll contains the application services to which the User Group has access.
To add additional application services to this user group, click the + icon and specify the following:
Define the Access Modes that users in this group have to the Application Service. When a new application service is added, the system will default all potential Access Modes associate with the Application Service. You need only remove those modes that are not relevant for the User Group. Refer to Action Level Security for more information about access modes.
If you require additional security options, often referred to as "field level" security, then you use Security Type Code and assign an Authorization Level to each. When a new application service is added, the system will display a message indicating how many security types are associated with this application service. Use the search to define each Security Type Code and indicate the appropriate Authorization Level for this user group. Refer to Field Level Security for more information about security types.
Select Admin Menu > User Group and navigate to the Users tab to maintain the users in a user group.
Description of Page
The scroll area contains the users who are part of this user group.
The following fields are included for each user:
Access groups control which groups of users (referred to as Data Access Roles) have rights to accounts (or other objects) associated with the access group. Select Admin Menu > Access Group to define your access groups.
Description of Page
Enter a unique Access Group code and Description for the data access group.
Use the Data Access Role collection to define the data access roles whose users have access to the access group's accounts (or other objects). Keep in mind that when you add a Data Access Role to an Access Group, you are granting all users who belong to this role access to all of the accounts (or other objects) linked to the access groups. Refer to Access Groups, Data Access Roles and Users for more information.
Where Used
Follow this link to open the data dictionary where you can view the tables that reference CI_ACC_GRP.
The data access role transaction is used to define two things:
Select Admin Menu > Data Access Role to define the users who belong to a data access role.
Description of Page
Enter a unique Data Access Role code and Description for the data access role.
The scroll area contains the Users who belong to this role. A user's data access roles play a part in determining the accounts (or other objects) whose data they can access. Refer to Access Groups, Data Access Roles and Users for more information.
To add additional users to this data access role, press the + button and specify the following:
Where Used
Follow this link to open the data dictionary where you can view the tables that reference CI_DAR.
Select Admin Menu > Data Access Role and navigate to the Access Groups tab to define the access groups whose accounts (or other objects) may be accessed by the users in this data access role.
Description of Page
Use the Access Group collection to define the access groups whose objects can be accessed by this role's users. Keep in mind that when you add an Access Group to a Data Access Role, you are granting all users who belong to this role access to all of the accounts (or other objects) linked to the access groups. Refer to Access Groups, Data Access Roles and Users for more information.
The user maintenance transaction is used to define a user's user groups, data access roles, portal preferences, default values, and To Do roles. To access the user maintenance transaction, select Admin Menu > User .
The user maintenance transaction is the same transaction invoked when the user clicks on the preferences button; the only difference is that when the user transaction is invoked from the Administration menu, all input fields are updatable. When the transaction is invoked from the My Preferences Button, many fields are protected to prevent end-users from changing important profile information. Please see the User Preferences page for a description of this transaction.
Where Used
Follow this link to open the data dictionary where you can view the tables that reference SC_USER.
This section describes tools that impact many aspects of the user interface.
The contents of this section describe how you can add and change menus and Context Menus.
This transaction is used to define / change any menu in the system. Navigate to this page using Admin Menu > Menu .
Description of Page
Enter a meaningful, unique Menu Name.
Owner indicates if this menu line is owned by the base package or by your implementation (Customer Modification). The system sets the owner to Customer Modification when you add a menu line. This information is display-only.
The Flush Menu button is used to flush the cached menu items so you can see any modified or newly created menus. Refer to Caching Overview for more information.
Menu Type defines how the menu is used. You have the following options:
Long Label is only enabled for Admin and Main menus. It contains the text displayed to identify the menu when the menu button is clicked.
Menu Bar Description is only enabled for Admin and Main menus. It contains the text displayed to identify the menu in the menu bar.
Sequence is only enabled for Admin and Main menus. It controls the order of the menu in the list of menus that appears when the menu button is clicked.
The grid contains a summary of the menu's lines. Refer to the description of Menu Items for how to add items to a menu line.
After a menu has lines (these are maintained on the main tab), you use this page to maintain a menu line's items.
Each menu line can contain one or two menu items. The line's items control what happens when a user selects an option on the menu.
There are two types of menu items: one type causes a transaction to be invoked when it's selected; the other type causes a submenu to appear. For example,
If you want to display an existing menu line's items:
If you want to add a new line to an existing menu line:
Description of Page
Menu Name is the name of the menu on which the line appears. Menu Line ID is the unique identifier of the line on the menu. Owner indicates if this menu is owned by the base package or by your implementation (Customer Modification). This information is display-only.
The Menu Line Items scroll contains the line's menu items. The following points describe how to maintain a line's items:
All error, warning and informational messages that are displayed in the system are maintained on the message table. Every message is identified by a combination of two fields:
Every message has two components: a brief text message and a long description. On the Main tab, you can only maintain the brief message. If you need to update a message's long description, you must display the message on the Details tab.
The contents of this section describe how to maintain messages that appear throughout the system.
Select Admin Menu > Message to maintain a message category and its messages.
Description of Page
To add a new message category, enter a Message Category number and Description.
To update a message, you must first display its Message Category. You can optionally start the message grid at a Starting Message Number.
To override the message text or long description of messages owned by the base package, click on the message's go to button. When clicked, the system takes you to the Details tab on which you can enter your implementation's override text.
The following points describe how to maintain messages owned by your implementation:
Please note - the system merges whatever values are supplied to it. Therefore, if a programmer supplies a premise address as the second merge parameter in the above message, this address is merged into the message (rather than the customer's name).
Where Used
Follow this link to open the data dictionary where you can view the tables that reference CI_MSG.
Select Admin Menu > Message and navigate to the Details tab to define detailed information about a message.
Description of Page
The Message Collection scroll contains an entry for every message in the grid on the Main tab. It's helpful to categorize messages into two categories when describing the fields on this page:
For base-package messages, you can use this page as follows:
For implementation-specific messages, you can use this page as follows:
Use Message Text to define the message.
You can use the % n notation within the message text to cause field values to be substituted into a message. For example, the message text The %1 non-cash deposit for %2 expires on %3 will have the values of three fields merged into it before it is displayed to the user (%1 is the type of non-cash deposit, %2 is the name of the customer, and %3 is the expiration date of the non-cash deposit).
A portal is a page that is comprised of one or more information zones. Good examples of portals are those used by most of us when we setup Yahoo, MSNBC, etc. for our own personal use. For example, in Yahoo, we can indicate we want our portal to show zones containing our stock portfolio, the news headlines, and the local weather.
In your application, there are several pages that are made up of information zones. And, just like in Yahoo, users can indicate which of these zones they want to see on each of the portal pages (and the order in which they appear).
The contents of this section describe how portals have been implemented in the system. Please see the specific product documentation for information describing specific portals.
A "portal" is a page that contains one or more "zones" where each zone contains data of some sort. You define the number and type of zones that can appear on a portal to match your implementation's requirements.
Note that not all zones must belong to a portal. Some zones exist that are used solely for internal processing by the application. Also, zones used for pop-up help may not be linked to a portal.
When a portal opens, some or all of its zones may be collapsed (i.e., minimized) or open (i.e., the zone's content is visible). To view the information in a collapsed zone, click the zone button .
Many portals supplied by the base product define several zone-oriented functions on the portal page and may not be changed by an individual user. However, some portals are configured to allow users to define their preferences. A user's Portal Preferences control several zone-oriented functions:
You can optionally configure the system to define portal preferences on one or more "template" users. If you link a template user to a "real" user, the real user's preferences are inherited from the "template" user and the "real" user cannot change their preferences. Some implementations opt to work this way to enforce a standard look and feel throughout a user community.
If you don't do this, each user can change how their portals are organized and this may be exactly how you want to work.
When you add a zone to a portal, and the portal has been configured to show on portal preferences, the system assumes all users with access rights to the zone's application service should see it. This means that users don't have to change their portal preferences in order to see newly added zones. If a user wants to suppress or reposition a zone, they must change their portal preferences (if their portal preferences are not defined on a "template" user).
An application service is associated with each zone. A user must be granted access rights to the respective application service in order to see a zone on a portal page.
Please note the following in respect of how application security impacts a user's zones:
There are two meta-data objects that control how a zone is built: Zone Type and Zone (where a zone type can have one or more zones):
Some zone types are shipped with pre-configured zones that are linked to base-package portals. For example, the base package is shipped with a Favorite Links zone that is linked to the Dashboard portal. For these zones, your implementation simply needs to define your users' portal preferences and security rights. Please note, you cannot change how these zones behave because their zone parameter values are owned by the base-package.
Other zone types have been designed to allow your implementation to control how their zones look and behave. For example, the Timeline zone type allows your implementation to set up one or more timeline zones where each zone is configured to show specific events. Follow these steps to introduce a configurable zone:
Please note that virtually every zone type supports implementation-specific zones.
There are three broad classes of portals:
There is only one dashboard portal. This portal and several zones are delivered as part of the base-package. Your implementation can add additional zones to this portal. Please contact customer support if you need to add zones to the dashboard portal.
The topics that follow describe common characteristics of stand-alone portals. If you require information about adding or changing Dashboard or Tab Page portals, please contact customer support.
A stand-alone portal should appear as a menu item on one of your menus. The following points provide how to do this:
An application service is associated with each stand-alone portal. A user must be granted access rights to the respective application service in order to see a portal.
Please note the following in respect of how application security impacts a user's zones:
It is possible to create hierarchies of stand-alone portals. The following illustration shows three very simple Oracle Utilities Business Intelligence stand-alone portals:
While each of the portals shown above can be opened independently, the sample zones shown on the High-level Portal have been set up to have hyperlinks. When these hyperlinks are clicked, different portals are opened. The destination portals have been configured to have zones that show more detailed information about the data shown on the high-level objects. For example:
There is no limit to the number of levels of portals you can have.
The default look and feel of the application can be customized via feature configuration and cascading style sheets. The base package is provided with a Custom Look And Feel Feature Configuration type. You may want to set up a feature configuration of this type to define style sheet and UI Map help options.
The base package allows for the conditional inclusion of customer styles into the system style set. The custom style may override any style provided by the base package. The style sheet may also include new styles for use in customer zone definitions. Use the Style Sheet option on the Custom Look And Feel Feature Configuration to define your custom style sheet.
A tool tip can be used to display additional help information to the user. This applies to section elements as well as individual elements on a map zone or UI Map. Refer to the tips context sensitive zone associated with the UI Map page for more information. The Custom Look And Feel Feature Configuration provides options to control the following:
The topics in this section describe how to set up portals and zones. Please refer to the The Big Picture of Portals and Zones for background information.
Select Admin Menu > Zone Type to maintain zone types.
Two types of parameters are specified when defining a zone type:
Description of Page
Specify an easily recognizable Zone Type code and Description. Use the Long Description to describe in detail what the zone type does.
Owner indicates if this zone type is owned by the base package or by your implementation (Customer Modification). The system sets the owner to Customer Modification when you add a zone type. This information is display-only.
Java Class Name is the Java class responsible for building the zone using the parameters defined below. The following points describe the fields that are defined for each parameter:
Where Used
Follow this link to open the data dictionary where you can view the tables that reference CI_ZONE_HDL.
The contents of this section describe how to maintain zones.
Select Admin Menu > Zone to maintain a zone.
Description of Page
Specify an easily recognizable Zone identifier and Description.
Owner indicates if this zone is owned by the base package or by your implementation (Customer Modification). The system sets the owner to Customer Modification when you add a zone. This information is display-only.
Zone Type identifies the zone type that defines how the zone functions. The zone type's Long Description is displayed below.
Application Service is the application service that is used to provide security for the zone. Refer to Granting Access To Zones for more information.
The Width defines if the zone occupies the Full width of the portal or only Half.
If the zone type supports help text, you can use Zone Help Text to describe the zone to the end-users. For example, all Oracle Utilities Business Intelligence zone types can display help text when the zone's help button is clicked. However help text cannot be displayed on Dashboard zones. Please refer to the section on zone help text for more information on how you can use HTML and cascading style sheets to format the help text.
Use Override Zone Help Text to override the existing embedded help text for this zone.
The grid contains the zone's parameter values. The Zone Type controls the list of parameters. The grid contains the following fields:
Where Used
Follow this link to open the data dictionary where you can view the tables that reference CI_ZONE.
Select Admin Menu > Zone and navigate to the Portal tab to define the portals on which a zone appears.
Description of Page
The scroll area contains the portals on which the zone appears.
To add a zone to a portal, press the + button and specify the Portal. Refer to Zones Appear By Default for how newly added zones are shown to users.
The topics in this section provide tips and techniques to assist you in setting up your zones.
The steps necessary to add a new zone depend on the zone's zone type. For example, if you want to add a new zone that references one of the Oracle Utilities Business Intelligence zone types, no programming is necessary (you simply add a new zone using the above transaction the zone's parameters).
However, if you need to add a new zone with an idiosyncratic service or user interface, you must involve a programmer. Let's use an example to help clarify what you can do versus what a programmer must do. Assume that you want to add a new account characteristics zone to Oracle Utilities Customer Care and Billing. To do this you must:
If you want to create more complex zones, you have two options:
Some zone types support a button that allows a user to see zone-specific help text. For example, many Oracle Utilities Business Intelligence zones support this functionality.
If your zone types support help text, you can define this text on the zone page.
You can use HTML tags in the zone help text. The following is an example of help text that contains a variety of HTML tags:
This zone summarizes revenue in 4 periods:

The above would cause the word revenue to be bold and blue:
The following are other useful HTML tags:
Please refer to an HTML reference manual or website for more examples.
You can also use "spans" to customize the look of the contents of a text string. For example, your text string could be revenue. This would make the word "revenue" appear as large, bold, Courier text. Please refer to a Cascading Style Sheets (CSS) reference manual or website for more examples.
The following is an example of help text using a variety of HTML tags:

This zone summarizes revenue in 4 periods:

- The 1st period is under your control. You simply select the desired Period, above <i>(you may need to click the down arrow to expose the filter section)</i>

- The 2nd period is the period before the 1st period

- The 3rd period is the same as the 1st period, but in the previous year

- The 4th period is the period before the 3rd period

The traffic light's color is determined as follows:

- The ratio of the 1st and 3rd period is calculated

- If this value is between 80 and 100, yellow is shown

- If this value is < 80, red is shown

- If this value is > 100, green is shown

- If the value of the 3rd period is 0, no color is shown

Embedded Help is the help text that is available to users on the fields of the application.
You can use the Embedded Help portal to create or override the help text that appears on the fields in a UI Map. Open this page using Admin > Embedded Help.
Description of Page
Use the UI Map Search zone to search for the UI Map. You can search by UI Map name, Description, Business Object name, or Business Object Description. The Business Object search filters will only display UI maps that are defined on a business object’s options.
A context-sensitive zone allows you to associate a zone with a specific user-interface transaction. A context-sensitive zone appears at the top of the Dashboard when a user accesses a page for which the zone is specified as the context. For example, if you create an Account Characteristics zone and add it as a context-sensitive zone to the Account Maintenance page it appears in the Dashboard whenever a user accesses the Account Maintenance page.
Select Admin Menu > Context Sensitive Zone to maintain context-sensitive zones.
Description of Page
The Navigation Key is a unique identifier of a tab page within the system. Owner indicates if this navigation key is owned by the base package or by your implementation (Customer Modification).
The grid contains the list of context-sensitive zones and the sequence in which they appear in the dashboard for the selected navigation key. The grid contains the following fields:
Where Used
A context-sensitive zone displays at the top of the Dashboard whenever a user accesses the transaction for with the zone is specified.
This transaction is used to define / change portals. Navigate to this page using Admin Menu > Portal .
Description of Page
Enter a meaningful and unique Portal code and Description. Please be aware that for stand-alone portals, the Description is the portal page's title (i.e., the end-users will see this title whenever they open the portal).
Owner indicates if this portal is owned by the base package or by your implementation (Customer Modification). The system sets the owner to Customer Modification when you add a portal. This information is display-only.
Type flag indicates whether the portal is a Standalone Portal, a Tab Page Portal or the Dashboard. Refer to There Are Three Types of Portals for more information.
The following fields are only enabled for Standalone Portals:
Refer to Putting Portals on Menus for more information.
The grid contains a list of zones that are available in the portal. Click + to add a new zone to the portal. Click - to remove a zone from the portal. The grid displays the following fields:
Where Used
Follow this link to open the data dictionary where you can view the tables that reference CI_PORTAL.
Icons are used to assist users in identifying different types of objects or instructions. A limited number of control tables allow administrative users to select an icon when they are configuring the system. Select Admin Menu > Display Icon Reference to maintain the population of icons available for selection.
Description of Page
Each icon requires the following information:
Where Used
Follow this link to open the data dictionary where you can view the tables that reference CI_DISP_ICON.
Each location to which a user can navigate (e.g., transactions, tab pages, tab menus, online help links, etc.) is identified by a navigation key. A navigation key is a logical identifier for a URL.
There are two types of navigation keys:
The system has two entities that work in conjunction with each other to specify how navigation works:
Navigation keys provide a great deal of functionality to your users. Use navigation keys to:
Refer to the Tool Suite Guide for more information on developing program components.
If you want to include links to external systems or locations from within the system, you need to:
Your implementation may choose to design a program component (e.g., a maintenance transaction or search page) to replace a component provided by the system. When doing this, the new navigation key must indicate that it is overriding the system navigation key. As a result, any menu entry or navigation options that reference this overridden navigation key automatically navigates to the custom component.
For example, if you have a custom On-line Batch Submission page and would like users to use this page rather than the one provided by the system, setting up an override navigation key ensures that if a user chooses to navigate to the On-line Batch Submission from the main menu or from a context menu, the user is brought to the custom On-line Batch Submission page.
To create an override navigation key, you need to:
Refer to the Tool Suite Guide for more information about developing your own program components.
Select Admin Menu > Navigation Key to maintain navigation keys.
Description of Page
The Navigation Key is a unique name of the navigation key for internal use. Try to use a name that is easily recognizable.
Owner indicates if this navigation key is owned by the base package or by your implementation (Customer Modification). This information is display-only.
For URL Location, you can select from the following options:
Program Component ID is the name of the program component identified by the key (for system navigation keys). The program component ID can also be used to specify the transaction with which an online help link is associated.
Overridden Navigation Key is the name of the navigation key that the current navigation key is overriding (if Override (External) or Override (System) is selected for the URL Location). Refer to Overriding Navigation Keys for more information.
URL Override is the specific URL for the navigation key (external navigation keys only). The URL can be relative to the product web server or fully qualified.
Open Window Options allows you to specify options (e.g., width and height) for opening a browser window for an external navigation key. (External navigation keys always launch in a new browser window.) You can use any valid features available in the Window.open() JavaScript method. The string should be formatted the same way that it would be for the features argument (e.g., height=600,width=800,resizeable=yes,scrollbars=yes,toolbar=no). Refer to a JavaScript reference book for a complete list of available features.
Application Service is the application service that is used to secure access to transactions associated with External navigation keys. If a user has access to the specified application service, the user can navigate to the URL defined on the navigation key. Refer to The Big Picture of Application Security for more information.
The grid displays menu items that reference the navigation key (actually, it shows menu items that reference navigations options that, in turn, reference the navigation key).
Where Used
Follow this link to open the data dictionary where you can view the tables that reference CI_MD_NAV.
Every time a user navigates to a transaction, the system retrieves a navigation option to determine which transaction should open. For example,
Many navigation options are shipped with the base package and cannot be modified as these options support core functionality. As part of your implementation, you will probably add additional navigation options to support your specific business processes. For example,
The topics in this section describe how to maintain navigation options.
Select Admin Menu > Navigation Option to define a navigation option.
Description of Page
Enter a unique Navigation Option code and Description.
The Flush System Login Info button is used to flush the cached navigation options so you can use any modified navigation options. Refer to Caching Overview for more information.
Owner indicates if this navigation option is owned by the base package or by your implementation (Customer Modification). This field is display-only. The system sets the owner to Customer Modification when you add a navigation option.
Use Navigation Option Type to define if the navigation option navigates to a Transaction or launches a BPA Script.
For navigation option types of Transaction , enter the related information:
Define the Search Transaction if you want to open a search window to retrieve an object before the target transaction opens. Select the appropriate Search Type to define which search method should be used. The options in the drop down correspond with the sections in the search (where Main is the first section, Alternate is the 2nd section, Alternate 2 is the 3rd section, etc.). You should execute the search window in order to determine what each section does.
When you select a Search Type, the system defaults the related fields in Context Fields. This means the system will try to pre-populate the search transaction with these field values when the search first opens. Keep in mind that if a search is populated with field values the search is automatically triggered and, if only one object is found that matches the search criteria, it is selected and the search window closes.
For navigation option types of script , indicate the Script to launch. You can use the Context Fields at the bottom of the page if you want to transfer the contents of specific fields to temporary storage variables available to the script. The script engine creates temporary storage variables with names that match the Context Field names.
The Go To Tooltip is used to specify the label associated with the tool tip that appears when hovering over a Go To object. Refer to the Usage grid below.
The Usage grid defines the objects on which this navigation option is used:
The Context Fields grid contains the names of the fields whose contents will be passed to the Target Transaction or Script. The system retrieves the values of these fields from the "current" page and transfers them to the target transaction or to the script's temporary storage. Turn on Key Field for each context field that makes up the unique identifier when navigating to a transaction in Change Mode.
Where Used
Follow this link to open the data dictionary where you can view the tables that reference CI_NAV_OPT.
This page contains a tree that shows how a navigation option is used. Select Admin Menu > Navigation Option and navigate to the Tree tab to view this page.
Description of Page
The tree shows every menu item, favorite link, and tree node that references the navigation option. This information is provided to make you aware of the ramifications of changing a navigation option.
The topics in this section describe the transaction that allows you to define the metadata for COBOL programs within the current environment's database.
Use this transaction to define COBOL program user exits for your system. Navigate to this page using Admin Menu > COBOL Program .
Description of Page
The following describes fields that are relevant to defining the user exit code that a COBOL Program should use:
Program Component ID represents the internal ID that is given to the COBOL program component.
Prog Com Name is the physical name of the COBOL program component.
Short Comments provides a short description of the COBOL program component.
Template is the template used to generate the COBOL program component.
Specify User Exit Program if you have written user exit code for this COBOL program component.
This section describes a variety of database tools that are supplied with the your product.
An environment reference is used to track a supporting environment's purpose relative to the current environment within the application. An environment is an instance of your product database and runtime programs. Environment references specify roles that describe how the supporting environment is used.
Select Admin Menu > Environment Reference to view environments and their use within the application.
Description of Page
Some fields on this page are protected as only the registration utility may change them. The following describes fields you may change and fields that may be relevant to Archiving and Configuration Lab:
Environment Reference is the name of the supporting environment reference.
Enter a Description and Long Description for the environment reference.
Use Environment Role to specify how the supporting environment that is represented by the environment reference is to be used. The valid values are:
The Environment ID associates the environment reference with its environment's universal identifier within the application. This universal identifier is on the Installation Options of the target environment.
Use Name Prefix to specify how the current environment accesses tables in the supporting environment described by the environment reference. The prefix replaces the C in the table name. For instance, assuming the current environment is production, the production environment accesses the CI_ACCT table in the ConfigLab as ZI_ACCT.
The topics in this section describe the transaction that allows you to define metadata for the application's tables.
Select Admin Menu > Table to view information about a table, define the fields whose changes should be audited, and to override a field's label on a specific table.
Description of Page
Description contains a brief description of the table.
System Table defines if the table holds rows that are owned by the base-package.
Enable Referential Integrity defines if the system performs referential integrity validation when rows in this table are deleted.
Data Group ID is used for internal purposes.
Table Usage defines how the table is used in the application. In the current release, only tables that are part of Oracle Utilities Business Intelligence make use of this field.
Table Type defines if the table is a View or a physical Table.
Date / Time Data Type defines if the system shows times on this table in Local Legal Time or in Standard Time (Local Legal Time is the time as adjusted for daylight savings).
Audit Table is the name of the table on which this table's audit logs are stored. Refer to The Audit Trail File for more information.
Use Audit Program Type to define if the audit program is written in Java or COBOL.
Audit Program is the name of the program that is executed to store an audit log. Refer to Turn On Auditing For a Table for more information.
Upgrade controls what happens to the rows in this table when the system is upgraded to a new release:
Data Conversion Role controls if / how the table is used by the conversion tool:
A Language Table is specified when fields containing descriptions are kept in a child table. The child table keeps a separate record for each language for which a description is translated.
Enable Data Dictionary defines if the table is to be included in the Data Dictionary application viewer.
A Key Table is specified when the prime-key is assigned by the system. This table holds the identity of the prime keys allocated to both live and archived rows.
Type of Key specifies how prime key values are generated when records are added to the table:
Inherited Key Prefix Length defines the number of most significant digits used from a parent record's primary key value to be used as the prefix for a child record's key value. This is only specified when the Type of Key is System-generated and the high-order values of the table's key is inherited from the parent table.
Caching Regime determines if the table’s values should be cached when they are accessed by a batch process. The default value is Not Cached. You should select Cached for Batch if you know the values in the table will not change during the course of a batch job. For example, currency codes will not change during a batch process. Caching a table's values will reduce unnecessary SQL calls and improve performance.
Key Validation determines if and when keys are checked for uniqueness. The default value is Always Check Uniqueness. Select Check Uniqueness Online Only when the database constructs the keys in the table, such as in log tables. Select Never Perform Uniqueness Checking when you know that the database constructs the keys in the table and that users cannot add rows directly to the table, such as in log parameter tables. This will reduce unnecessary SQL calls and improve performance.
Help URL is the link to the user documentation that describes this table.
Special Notes contains any notes or special information about the table.
The grid contains an entry for every field on the table. Drilling down on the field takes you to the Table Field tab where you may modify certain attributes. The following fields may also be modified from the grid: Description, Override Label, Audit Delete, Audit Insert and Audit Update. Refer to the Table Field tab for descriptions of these fields.
Select Admin Menu > Table and navigate to the Table Field tab to define the fields whose changes should be audited and to override a field's label on a specific table (note, you can also maintain a subset of this information in the grid on the Main tab).
Description of Page
Many fields on this page are protected as only the product development group may change them. The following describes fields you may change for records that are part of the base product. Fields containing information that may be of interest are also described.
Turn on Audit Delete if an audit record should be stored for this field when a row is deleted. Refer to How To Enable Auditing for more information.
Turn on Audit Insert if an audit record should be stored for this field when a row is added. Refer to How To Enable Auditing for more information.
Turn on Audit Update if an audit record should be stored for this field when it is changed. Refer to How To Enable Auditing for more information.
The Label column only contains a value if the base-product indicates a value other than the field's label should be shown on the various pages in the system. The field's label is shown above, adjacent to the field's code.
The Override Label is provided in case you want to override the base-package's label. If specified, it will be displayed throughout the application.
Special Notes contains any notes or special information about the table.
Field Usage defines how the field is used in the application. In the current release, only tables that are part of Oracle Utilities Business Intelligence make use of this field.
Select Admin Menu > Table and navigate to the Constraints tab to view the constraints defined on the table.
Description of Page
The fields on this page are protected as only the product development group may change them.
This page represents a collection of constraints defined for the table. A constraint is a field (or set of fields) that represents the unique identifier of a given record stored in the table or a field (or set of fields) that represents a given record's relationship to another record in the system.
Constraint ID is a unique identifier of the constraint.
Owner indicates if this is owned by the base package or by your implementation (Customer Modification)
Constraint Type Flag defines how the constraint is used in the system:
When Enable Referential Integrity is checked, the system validates the integrity of the constraint when a row in the table is modified.
Referring Constraint Owner indicates if this is owned by the base package or by your implementation (Customer Modification).
Referring Constraint ID is the Primary Key constraint of another table whose records are referenced by records stored in this table.
Referring Constraint Table displays the table on which the Referring Constraint ID is defined. You can use the adjacent go-to button to open the table.
Additional Conditional SQL Text is only specified when the constraint is a Conditional Foreign Key. The SQL represents the condition under which the foreign key represents a relationship to the referring constraint table.
The Constraint Field grid at the bottom of the page is for maintaining the field or set of fields that make up this constraint.
Field is the name of the table's field that is a component of the constraint.
Sequence The rank of the field as a component of the constraint.
The Referring Constraint Field grid at the bottom of the page displays the field or set of fields that make up the Primary key constraint of the referring constraint.
Field is the name of the table's field that is a component of the referring constraint.
Sequence is the rank of the field as a component of the referring constraint.
Select Admin Menu > Table and navigate to the Referred By Constraints tab to view the constraints defined on other tables that reference the Primary Key constraint of this table.
Description of Page
This page is used to display the collection of constraints defined on other tables that reference the table.
Referred By Constraint Id is the unique identifier of the constraint defined on another table.
Referred By Constraint Owner indicates if this constraint is owned by the base package or by your implementation (Customer Modification).
Prime Key Constraint Id is the Primary Key constraint of the current table.
Prime Key Owner indicates if this prime key is owned by the base package or by your implementation (Customer Modification).
Referred By Constraint Table is the table on which Referred By Constraint Idis defined.
When Enable Referential Integrity is checked, the system validates the integrity of the constraint when a row in the table is modified.
The grid at the bottom of the page displays the Field and Sequence for the fields that make up the constraint defined on the other table.
The topics in this section describe the transaction that can be used to view information about a field and to change the name of a field on the various pages in the system.
Open this page using Admin Menu > Field.
Description of Page
Many fields on this page are protected as only the product development group may change them. The following describes fields you may change for records that are part of the base product. Fields containing information that may be of interest are also described.
Field Name uniquely identifies this field.
Owner indicates if this field is owned by the base package or by your implementation (Customer Modification). The system sets the owner to Customer Modification when you add a field.
This information is display-only.
Base Field
Data Type indicates if the field will hold Character, Date, DateTime, Number, Time, or Varchar2 data.
Ext Data Type
Precision defines the length of the field. In the case of variable length fields, it is the maximum length possible.
Scale
Sign
Level 88 Cpybk
Description contains the label of the field. This is the label of the field that appears on the various pages on which the field is displayed. Note, the field's label can be overridden for a specific table (by specifying an Override Label on the table / field information).
Java Field Name
Override Label
Check Work Field if the field does not represent a database table column.
Help Text is used to provide field level embedded help to this field. If the field is displayed on a user interface that supports display of embedded help, this text may be displayed.
Use Override Help Text to override the existing embedded help text for this field.
Special Notes contains any notes or special information about the field.
Select Admin Menu > Field and navigate to the Tables Using Field tab to view the tables that contain a field.
Description of Page
The grid on this page contains the Tables that reference the Field. You can use the adjacent go to button to open the Table Maintenance transaction.
A maintenance object is a group of tables maintained together within the system.
Select Admin Menu > Maintenance Object to view information about a maintenance object.
Description of Page
Most maintenance objects are provided with the base package. An implementation can introduce custom maintenance objects when needed. Most fields may not be changed if owned by the base package.
Enter a unique Maintenance Object name and Description. Owner indicates if this business object is owned by the base package or by your implementation (Customer Modification).
Program Com ID is the name of the program used to call the maintenance object's page program for validating constraints when objects are archived, purged, or compared. Refer to Archiving and ConfigLab for more information.
Service Name is the name of the internal service associated with the maintenance object.
The grid displays the following for each table defined under the maintenance object:
Click the View XML hyperlink to view the XML document associated with the maintenance object service in the Service XML Viewer.
Use this page to maintain a maintenance object's options. Open this page using Admin Menu > Maintenance Object and then navigate to the Options tab.
Description of Page
The optionsgrid allows you to configure the maintenance object to support extensible options. Select the Option Type drop-down to define its Value. Detailed Description may display additional information on the option type. Set the Sequence to 1 unless the option can have more than one value. Owner indicates if this is owned by the base package or by your implementation (Customer Modification).
You can add new option types. Your implementation may want to add additional maintenance option types. For example, your implementation may have plug-in driven logic that would benefit from a new option. To do that, add your new values to the customizable lookup field MAINT_OBJ_OPT_FLG.
Use this page to maintain a maintenance object's algorithms. Open this page using Admin Menu > Maintenance Object and then navigate to the Algorithms tab.
Description of Page
The Algorithms grid contains algorithms that control important functions for instances of this maintenance object. You must define the following for each algorithm:
The following table describes each System Event.
System Event | Optional / Required | Description |
---|---|---|
Determine BO | Optional | Algorithm of this type is used to determine the Business Object associated with an instance of the maintenance object. It is necessary to plug in such an algorithm on a Maintenance Object to enable the business object rules functionality. The system invokes a single algorithm of this type. If more than one algorithm is plugged-in the system invokes the one with the greatest sequence number. Click here to see the algorithm types available for this system event. |
Information | Optional | We use the term "Maintenance Object Information" to describe the basic information that appears throughout the system to describe an instance of the maintenance object. The data that appears in this information description is constructed using this algorithm. The system invokes a single algorithm of this type. If more than one algorithm is plugged-in the system invokes the one with the greatest sequence number. Click here to see the algorithm types available for this system event. |
Transition | Optional | The system calls algorithms of this type upon each successful state transition of a business object as well as when it is first created. These are typically used to record the transition on the maintenance object's log. Note that some base maintenance objects are already shipped with an automatic logging of state transitions. In this case you may use these algorithms to override the base logging functionality with your own. Click here to see the algorithm types available for this system event. |
Transition Error | Optional | The system calls this type of algorithm when a state transition fails and the business object should be saved in its latest successful state. The algorithm is responsible for logging the transition error somewhere, typically on the maintenance object's log. Notice that in this case, the caller does NOT get an error back but rather the call ends successfully and the exception is recorded somewhere, as per the plug-in logic. The system invokes a single algorithm of this type. If more than one algorithm is plugged-in the system invokes the one with the greatest sequence number. Click here to see the algorithm types available for this system event. |
You can navigate to the Maintenance Object Tree to see an overview of the tables and table relationships associated with the maintenance objects.
Description of Page
This page is dedicated to a tree that shows the maintenance object's tables as well as business objects, if you have defined any. You can use this tree to both view high-level information about these objects and to transfer to the respective page in which an object is maintained.
The topics in this section describe the transaction that can be used to maintain database processes used to perform Archive Engine operations such as archive and purge and ConfigLab operations like compare.
Select Admin Menu > DB Process to set up database processes used with ConfigLab and ConfigLab and Archive Engine.
Use DB Process to specify the name of the database process.
Description and Long Description contain descriptions of the database process.
Use Status to specify if the database process is Active or Inactive.
Use DB Process Type to specify if the DB process is used for Archive, Compare, or Purge.
Use Batch Control to specify the batch control associated with the DB process.
The grid at the bottom shows all of the DB process instructions for the DB process. Note that each DB process instruction is linked to a maintenance object.
To the left of the Seq column information about the instruction is displayed as hypertext. Clicking on the hypertext brings you to the DB instruction. The following grid describes the text that may appear:
Text | When Text Appears |
---|---|
Rule(s) & Algorithm(s) | Displays when the instruction has at least one rule and at least one algorithm. |
Rule(s) | Displays when the instruction has at least one rule and no algorithms. |
Algorithm(s) | Displays when the instruction has at least one algorithm and no rules. |
Instruction | Displays when the instruction has no rules or algorithms. |
The following fields display for each instruction.
You can navigate to the DB Process Tree to see an overview of the database process, associated maintenance objects, and instruction algorithms.
Description of Page
This page is dedicated to a tree that shows the DB process instructions and instruction algorithms associated with the database process. You can use this tree to both view high-level information about these objects and to transfer to the respective page in which an object is maintained.
A DB process instruction represents a single maintenance object as part of a DB process.
Select Admin Menu > DB Instruction to define DB process instructions for a given DB process.
Description of Page
DB Process Instruction contains a concatenation of basic information about the DB Process instruction. This information only appears after the DB process instruction has been added to the database. The adjacent up and down arrows cause the DB process instruction immediately before or after this DB process instruction to be displayed.
DB Process specifies the name of the database process to which this DB process instruction belongs.
Click View SQL to display the resulting select statement used as the basis for building root objects or archive root objects when the DB process is executed.
Process Sequence is a unique identifier for the DB process instruction under the DB process.
Enter a Description of the DB process instruction.
Maintenance Object specifies the maintenance object associated with the DB process instruction.
Instruction Role identifies the DB process instruction as Primary or Child. If Child is specified, specify parent process sequence and a linkage constraint referring to a table defined on the parent instruction's maintenance object.
Parent Seq is the process sequence of the parent DB process instruction on which the DB process instruction is dependent.
Linkage Constraint ID specifies how maintenance objects of the DB process instruction and its parent are linked. This is a constraint on a table defined under the DB process instruction's maintenance object. This constraint references a table defined under the maintenance object that belongs to the DB process instruction specified by parent process sequence. The Constraint Owner indicates whether the constraint is Base Product or a Customer Modification.
The Instruction Algorithms grid shows the algorithms associated with the DB process instruction. These algorithms are used as criteria for root object exclusion when a DB process is executed, or they may execute special processing required to maintain normal system operation after the DB process has been executed.
The following table describes each System Event.
System Event | Description |
---|---|
Apply Changes Processing | Click here to see the algorithm types available for this system event. |
Archive Copy Data | For information about this system event refer to Archiving Data to Flat Files. Click here to see the algorithm types available for this system event. |
Archive Criteria | For information about this system event refer to Criteria Algorithms Exclude Records. Click here to see the algorithm types available for this system event. |
Archive Processing | For information about this system event refer to Processing Algorithms Perform Extra Processing. Click here to see the algorithm types available for this system event. |
Compare Criteria | For information about this system event refer to Criteria Algorithms Also Define Which Objects To Compare. Click here to see the algorithm types available for this system event. |
Purge Criteria | For information about this system event refer to Criteria Algorithms Exclude Records. Click here to see the algorithm types available for this system event. |
Purge Processing | For information about this system event refer to Processing Algorithms Perform Extra Processing. Click here to see the algorithm types available for this system event. |
Sync Criteria | For information about this system event refer to Criteria Algorithms Also Define Which Objects To Compare. Click here to see the algorithm types available for this system event. |
Sync Processing | Click here to see the algorithm types available for this system event. |
The Table Rules grid shows the table rules associated with the DB process instruction. Similar to criteria algorithms specified above, table rules can exclude a subset of records from being processed when the DB process is executed.
The condition specified is incorporated into the WHERE clause of the dynamic SQL used to create root objects.
You can navigate to the DB Process Instruction Tree to see an overview of the database process instruction, associated maintenance objects, instruction algorithms for the current DB process instruction and recursive child DB process instructions.
Description of Page
This page is dedicated to a tree that shows the database process instruction, associated maintenance objects, instruction algorithms for the current DB process instruction and recursive child DB process instructions. You can use this tree to both view high-level information about these objects and to transfer to the respective page in which an object is maintained.
Some special fields have values that are defined by the base-package development group. For example:
We call these types of fields "lookup fields" (because we have to "look up" the descriptions on the "look up" table when they are displayed on a transaction).
The two examples described above represent the two different types of lookup fields.
We differentiate between these two types of lookups because the first type of lookup field (e.g., navigation usage option) controls logic in the system and if you change the valid values, the system will not work and if you add valid values, they will not be used by any system logic. For the second type of lookup field (e.g., access mode), your implementation may define additional values to be used by your customer modifications.
Select Admin Menu > Look Up to maintain lookup values.
Description of Page
Field Name is the name of the field whose lookup values are maintained in the grid. If you need to add a new lookup field, you must first add a Field with an extended data type of Flag.
Owner indicates if this lookup field is owned by the base package or by your implementation (Customer Modification). This information is display-only.
Custom switch is used to indicate whether you are allowed to add valid values for a lookup field whose owner is not Customer Modification.
This field is always protected for system owned lookup fields because you may not change a field from customizable to non-customizable (or vice versa).
Java Field Name indicates the name of the field as it is referenced in Java code.
The grid contains the look up values for a specific field. The following fields may be modified:
Field Value is the unique identifier of the lookup value. If you add a new value, it must begin with an X or Y (in order to allow future upgrades to differentiate between your implementation-specific values and base-package values).
Description is the name of the lookup value that appears on the various transactions in the system
Java Value Name indicates the unique identifier of the lookup value as it is referenced in Java code.
Status indicates if the value is Active or Inactive. The system does not allow Inactive values to be used (the reason we allow Inactive values is to support historical data that references a value that is no longer valid).
Detailed Description is the detailed description for a lookup value, which is provided in certain cases.
Override Description is provided if your implementation wishes to override the description of the value provided by the product.
Owner indicates if this lookup value is owned by the base package or by your implementation (Customer Modification). The system sets the owner to Customer Modification when you add lookup values to a field. This information is display-only.
There are also situations when more than just a description is needed for each valid value. For example, what if the value has both a description and a list containing different options based on existing conditions, such as the type of To Do to create based on an activity's service class?
In these situations, extendable lookups can be used to store these types of values. You use the Extendable Lookup portal to create and maintain extendable lookups.
Open this page using Admin > Extendable Lookup.
Description of Page
In the Extendable Lookup Search zone you can search for lookup values by either Business Object or Description. Click Refresh to view the search results.
The topics in this section describe auditing, enabling auditing for fields, and auditing queries that you can use to view audit records.
When auditing is enabled for a field, the following information is recorded when the field is changed, added and/or deleted (depending on the actions that you are auditing for that field):
You enable auditing on a table in the table's meta-data by specifying the name of the table in which to insert the audit information (the audit table) and the name of the program responsible for inserting the data (the audit trail insert program). Then you define the fields you want to audit by turning on each field's audit switch in the table's field meta-data. You can audit fields for delete, insert and update actions.
Once auditing is enabled for fields in a table, the respective row maintenance program for the table assembles the list of changed fields and calls the audit trail insert program (CIPZADTA is supplied with the base package). If any of the changed fields are marked for audit, CIPZADTA inserts audit rows into the audit table (CI_AUDIT is the audit table supplied with the base package).
Audit log records are inserted in the audit tables you define. The base product contains a single such table (called CI_AUDIT). However, the audit insert program (CIPZADTA) is designed to allow you to use multiple audit tables.
If you want to segregate audit information into multiple tables, you must create these tables. Use the following guidelines when creating new audit tables (that use the CIPZADTA audit insert program):
Enabling audits is a two-step process:
The following topics describe this process.
In order to tell the system which fields to audit, you must know the name of the table on which the field is located. You must specify the audit table and the audit trail insert program for a table in the table's meta-data.
To enable auditing for a table:
The system only audits actions (insert, update and delete) made to fields that you want audited.
To specify the fields and actions to be audited:
There are two queries that can be used to access the audit information.
This transaction is used to view changes made by a user that are stored on a given Audit Trail File.
Navigate to this page by selecting Admin Menu > Audit Query By User.
Description of Page
To use this transaction:
Information on this query is initially displayed in reverse chronological order.
The following information is displayed in the grid:
This transaction is used to view audited changes made to a given table.
This transaction can be used in several different ways:
Navigate to this page by selecting Admin Menu > Audit Query By Table/Field/Key
Description of Page
To use this transaction:
Information on this query is initially displayed in reverse chronological order by field.
The following information is displayed in the grid:
The topics in this section describe the bundling features in the application.
Bundling is the process of grouping entities for export or import from one environment to another.
For example, you might export a set of business objects and service scripts from a development environment and import them into a QA environment for testing. The group of entities is referred to as a bundle. You create export bundles in the source environment; you create import bundles in the target environment.
Working with bundles involves the following tasks:
Bundle entities are added or updated to the target environment in the sequence defined in the bundle
You can specify the sequence when you define the export bundle or when you import the bundle to the target environment.
Recursive foreign keys result when one object has a foreign key reference to another object that in turn has a foreign key reference to the first object.
For example, a zone has foreign keys to its portals, which have foreign keys to their zones. If the objects you want to bundle have recursive relationships, you must create a 'bundling add' business object that has only the minimal number of elements needed to add the entity. A bundling add business object for a zone contains only the zone code and description, with no references to its portals. In the same way, a bundling add business object for a portal defines only its code and description.
When you apply the bundle, the system initially adds the maintenance object based on the elements defined in the bundling add business object. Before committing the bundle, the system updates the maintenance object with the complete set of elements based on its physical business object.
The owner flag of the entities in an import bundle must match the owner flag of the target environment.
If you need to import objects that your source environment does not own, you must replace the owner flag in the import bundle with the owner flag of the target environment.
All base package meta-data objects are pre-configured to support bundling. All other objects must be manually configured.
If a base package maintenance object is pre-configured for bundling, the Eligible For Bundling option will be set to "Y" on the Options tab for the maintenance object.
To configure other objects for bundling, review the configuration tasks below and complete all those that apply:
Complete this configuration task... | for... |
---|---|
Make maintenance objects eligible for bundling | All objects to be included in the bundle |
Add a foreign key reference | All objects to be included in the bundle |
Create a physical business object | All objects to be included in the bundle |
Create a bundling add business object | Objects with recursive foreign key references |
Add the Current Bundle zone | All objects, if you want the Current Bundle zone to appear on the maintenance object's dashboard. This is not required by the bundling process. |
Create a custom Entity Search zone and add it to the Bundle Export portal | All objects, if you want them to be searchable in the Bundle Export portal. This is not required by the bundling process. |
The "Eligible For Bundling" maintenance object option must be set to "Y" for all bundled objects.
Each maintenance object in a bundle must have a foreign key reference. Bundling zones use the foreign key reference to display the standard information string for the maintenance object.
Each maintenance object in a bundle must have a physical business object. The physical business object's schema represents the complete physical structure of the maintenance object, and includes elements for all fields in the maintenance object's tables. The bundling process uses this schema to generate the XML for the import bundle.
If the objects to be bundled have recursive foreign key references, you must create a bundling add business object to avoid problems with referential integrity.
If you want the Current Bundle zone to appear on the maintenance object's dashboard, you must add the Current Bundle zone as a context-sensitive zone for the maintenance object.
If you want the maintenance object to be searchable in the Bundle Export portal, you must first create an entity-specific query zone to search for the maintenance object. Then you must create a customized entity search zone that references this new query zone. Finally, you must add the customized entity search zone to the Bundle Export portal.
Use the Bundle Export portal to create an export bundle. The export bundle contains a list of entities to be exported from the source environment. When you are ready to import the objects, use the Bundle Import portal to import the objects to the target environment.
An export bundle contains a list of entities that can be imported into another environment.
Import bundles define a group of entities to be added or updated in the target environment.
Before you create an import bundle, you must have already created an export bundle, added entities, and set the bundle's state to Bundled.
To create an import bundle and apply it to the target environment:
You can add or remove entities from an export bundle when it is in Pending state. You can also change the sequence of entities.
To edit to an export bundle that has already been bundled, you must change the bundle state by selecting the Back to Pending button on the Bundle Export portal.
You can remove entities from an import when it is in Pending state. You can also change the sequence of entities and edit the generated XML.
The topics in this section describe the revision control features in the application.
Revision control creates a history of a maintenance object as users make changes to it.
If revision control is enabled for an object you must check out the object to change it. While the object is checked out no one else can work on it. You can revert all changes made since checking out an object, reinstate an older version of an object, recover a deleted object, and force a check in of an object if someone else has it checked out.
Many of the maintenance objects used as configuration tools are already configured for revision control, but it is turned off by default. For example, business objects, algorithms, data areas, UI maps, and scripts are pre-configured for revision control.
Revision control is turned off by default for maintenance objects that are configured for revision control.
Most configuration tool maintenance objects are pre-configured for revision control. You can configure other maintenance objects for revision control, as well.
You use two zones in the dashboard to work with revision controlled objects when revision control is turned on .
The Revision Control zone gives you several options for managing the revision of the currently displayed object. This zone also shows when the object was last revised and by whom. This information is linked to the Revision History portal which lists all of the versions of the object.
The Checked Out zone lists all of the objects that you currently have checked out. Clicking on an object listed in this zone will take you to the page for that object. The zone is collapsed if you have no objects checked out.
You must check out a revision controlled object in order to change it.
An object must have revision control turned on before you can check it out.
You must check in a revision controlled object in order to create a new version of it. Checking in an object also allows others to check it out.
Reverting changes will undo any changes you made since you checked out an object.
You can force a check in if an object is checked out by another user and that person is not available to check it in.
You must have proper access rights to force a check in or restore.
If revision control is turned on for an object, you must use the Revision Control zone to delete it.
The object must be checked in before it can be deleted.
You can restore an older version of either a current object or a deleted object.
An object must be checked in before an older version can be restored.
The Revision History portal lists information about each version of a revision controlled object.
You can navigate to the Revision History portal from either a link in the Revision Control dashboard zone or by going to the Revision History Search portal on the Admin Menu. If you want to find the Revision History for a deleted object, you must search for the object using the Revision History Search portal.
You can restore a previous version of the object by clicking Restore in the row for the version that you want to restore.
You can see the details of each version by clicking the broadcast icon for that version.
You can use the Revision History Search portal to find the revision records for an object.
Certain events that occur within the system will trigger messages describing work that requires attention. For example, if a bill segment has an error, the system generates a To Do message to alert the person responsible for correcting such errors.
Each type of message represents a To Do list. For example, there are To Do lists for bill segment errors, payment errors, accounts without bill cycles, etc.
We refer to each message as a To Do Entry. Each To Do entry is assigned a specific To Do Role. The role defines the users who may work on the entry. A To Do entry has a To Do log that maintains record of the progress on the To Do entry. For example, the To Do log indicates when the To Do entry was created, when it was assigned to a user and to whom it was assigned, and when and by whom it was completed.
The topics below provide more information about To Do configuration.
Every To Do entry references a To Do type. The To Do type controls the following functions:
Every To Do entry references a role. The role defines the users who may be assigned to Open entries.
The permissible roles that may be assigned to a To Do entry are defined on the entry's To Do type. After an entry is created, its role may be changed to any role defined as valid for the entry's To Do type.
An entry's initial role is assigned by the background process or algorithm that creates the entry. Because you can create your own processes and algorithms, there are an infinite number of ways to default an entry's role. However, the base package processes and algorithms use the following mechanisms to default an entry's role:
Consider the To Do type used to highlight bill segments that are in error. To Do entries of this type reference the specific bill segment error number so that the error message can be shown when the Bill Segments in Error To Do list is displayed.
If you want specific types of errors to be routed to specific users, you can indicate such on the To Do type. For example, if certain bill segment errors are always resolved by a given rate specialist, you can indicate such on the To Do type. You do this by updating the To Do type's message overrides. On this page you specify the message category / number of the error and indicate the To Do role of the user(s) who should work on such errors. Once the To Do type is updated, all new To Do entries of this type that reference the message number are routed to the desired role.
Obviously, you would only reroute those To Do types that handle many different types of messages. In other words, if the To Do type already references a specific message category / number rerouting is not applicable.
We do not supply documentation of every possible message that can be handled by a given To Do type. The best way to build each To Do type's reroute list is during the pre-production period when you're testing the system. During this period, compile a list of the messages that should be routed to specific roles and add them to the To Do type.
Keep in mind that if a message number / category is not referenced on a To Do type's reroute information, the entry is routed as described under To Do Entries Reference A Role.
Some To Do entries may be more urgent to resolve than others. A To Do entry is associated with a priority level representing its relative processing order compared to other entries.
Priority level is initially assigned as follows:
A user may manually override a To Do entry's priority at any time. Notice that once a To Do entry's priority is overridden, Calculate Priority plug-ins are no longer called so as to not override the value explicitly set by the user.
A user can drill down on a To Do entry. When a user drills down on an entry, the user is transferred to the transaction associated with the entry. For example, if a user drills down on a bill segment error entry, the user is taken to the Bill Segment - Main page. Obviously, the page to which the user is taken differs depending on the type of entry.
It is also possible to configure the To Do type to launch a script when a user drills down on an entry rather than taking the user to a transaction. The script would walk the user through the steps required to resolve the To Do entry. Refer to Launching Scripts When A To Do Is Selected for more information.
After finishing work on an entry, the user can mark it as Complete. Completed entries do not appear on the To Do list queries (but they are retained on the database for audit purposes). If the user cannot resolve the problem, the user can forward the To Do to another user.
Users can complete many To Do entries without assistance. However, you can set up the system to launch a script when a user selects a To Do entry. For example, consider a To Do entry that highlights a bill that's in error due to an invalid mailing address. You can set up the system to execute a script when this To Do entry is selected by a user. This script might prompt the user to first correct the customer's default mailing address and then re-complete the bill.
A script is linked to a To Do type based on its message number using the To Do type's message overrides. Refer to Executing A Script When A To Do Is Selected for more information.
Each To Do entry has a To Do log that maintains a record of the To Do's progress in the system. For example, the To Do log indicates when the To Do entry was created, when it was assigned to a user and to whom it was assigned, and when and by whom it was completed. Users can view the log to see who assigned them a particular To Do and whether any work has already been done on the To Do.
A log entry is created for all actions that can be taken on a To Do entry. Log entries are created for the following events:
A To Do Entry may be created in the following ways:
For any base product process (background process, algorithm, XAI service, etc) that includes logic to create a To Do entry, the system supplies a sample To Do type that may be used. Although the To Do types provided by the product are system data, the following information related to each To Do type may be customized for an implementation and is not overwritten during an upgrade:
There are different types of To Do entries created by background processes:
There are To Do entries that are created by system background processes whose main purpose is to create To Do entries based on a given condition. For these background processes, the To Do Type indicates the creation background process.
A system background process may create a To Do entry when an error is detected during object-specific processing and it is not possible to create an exception record. (I.e., either no exception record exists for the process or the error is not related to the entity reported in the exception record.)
For these background processes, the To Do Type must reference the creation background process. To have the system create To Do entries for some or all of the errors generated by one of these processes, you must do the following:
If you do not populate the creation background process, the errors are written to the batch run tree.
There are some system background processes that create a To Do entry when the process detects a specific condition that a user should investigate. For each background process, the To Do type is an input parameter to the process. The system provides To Do types for each base package background process that may create a To Do entry.
There are To Do entries that are created by algorithm types supplied with the base package. The system supplies a To Do Type for each of these To Do entries that you may use.
If you want to take advantage of these types of entries for system algorithm types, you must do the following:
There are some XAI services supplied with the base package that create To Do entries. The system provides a To Do type for each base package XAI service that may create a To Do entry.
XAI services do not have parameters where a To Do type can be plugged in. As a result, each service must be designed to determine the To Do type appropriately. You may choose to use a feature configuration option to define the To Do type. Refer to the documentation for the base package services that create a To Do entry to determine how the To Do type is determined.
You must set up manual To Do entry types if you want your users to be able to create To Do entries online. Users may create a manual To Do entry as a reminder to themselves to complete a task. Online To Do entries may also be used like electronic help tickets in the system. For example, if a user is having a problem starting service, the user can create a To Do that describes the problem. The To Do can be assigned to a help resolution group that could either resolve the problem or send the To Do back to the initiating user with information describing how to resolve the problem.
If you want to take advantage of manual To Do entries, create a To Do type and specify the following information.
On the Main tab:
On the Roles tab:
On the Sort Keys tab:
When a user adds a manual To Do entry, the system creates an entry with three sort key values. (Sort keys may be used on the To Do list page to sort the entries in a different order.) The To Do type should be set up to reference the sort keys as follows:
Sequence | Description |
---|---|
1 | Created by user ID |
2 | Created by user name |
3 | Subject |
We recommend that the keys have an Ascending sort order and that the Subject is made the default sort key.
On the Drill Keys tab:
When a user adds a manual To Do entry, it is created with a drill key value equal to the To Do entry's ID. When the user clicks the Go To button next to the message in the To Do list, the system uses the drill down application service (defined on the main tab) and the drill key to display the associated To Do entry.
The To Do type should be set up with a drill key that reference the To Do entry table and the To Do entry ID:
Sequence | Table | Field |
---|---|---|
1 | CI_TD_ENTRY | TD_ENTRY_ID |
The following state transition diagram will be useful in understanding the lifecycle of a To Do entry.
A To Do entry is typically created in the Open state. Entries of this type can be viewed by all users belonging to the entry's role. Refer to How Are To Do Entries Created? for information about how entries are created.
An Open entry becomes Being Worked On when it is assigned to a specific user or when a user proactively assumes responsibility for the entry. While an entry is Being Worked On, it is visible on the To Do Summary page only by the user who is assigned to it.
A Being Worked On entry may be forwarded to a different user or role. If the entry is forwarded to a role, it becomes Open again.
When an entry becomes Complete, it is no longer visible in the To Do list queries (but it remains on the database for audit purposes). There are two ways an entry can become Complete:
Additional information may be linked to a To Do entry using characteristics. For example, when creating a manual To Do entry, a user may define the account related to the To Do.
When creating an automatic To Do entry, the program that generates the To Do may link related data to the To Do using characteristics. Use system algorithm to link related entities. For manually created To Dos, the valid characteristic types that may be linked to the To Do entry must be defined on the To Do type for that To Do entry.
If your To Do entries reference characteristics that are related to your global context data, you may want to configure an control central alert algorithm to display an alert if a related entry is Open or Being Worked On.
If your business practice calls for additional validation rules or processing steps to take place after a To Do Entry is created or updated, you may want to take advantage of the To Do Post Processing plug-ins defined on To Do type.
For example, you may want to validate that To Do entries are only assigned to users with the proper skill levels needed to resolve them. Refer to F1-VAL-SKILL for a sample algorithm handling such validation.
A To Do type can be configured so that its entries are interfaced to another system.
For example, a given To Do type can be configured to create an email message whenever a new To Do entry is created. The following points describe how to do this:
Please note that most products contain example External Routing algorithm types that can be used as a basis for your own.
See F1ER to see the algorithm types available for this system event.
Completed To Do entries should be periodically purged from the system by executing the TD-PURGE background process. This background process offers you the following choices:
We want to stress that there is no system constraint as to the number of Completed To Do entries that may exist. You can retain these entries for as long as you desire. However, you will eventually end up with a very large number of Completed entries and these entries will cause the various To Do background processes to degrade over time. Therefore, you should periodically purge Completed To Do entries as they exist only to satisfy auditing and reporting needs.
The topics in this section describe how to set up To Do management options.
The following section describes configuration setup on the installation options.
A To Do Information algorithm may be plugged in on the installation record to format the standard To Do information that appears throughout the system. This algorithm may be further overridden by a corresponding plug-in on the To Do Type.
A To Do Pre-creation algorithm may be plugged in on the installation record to set additional information for a To Do entry before it is created.
For example, Oracle Utilities Customer Care and Billing provides an algorithm that attempts to link (using characteristics) a related person, account, premise, service agreement or service point to a To Do entry based on its drill key value. Note, before you can set up this algorithm, you must define the characteristic types that you'll use to hold each of these entities.
Another example from Oracle Utilities Customer Care and Billing is that it provides an algorithm to determine a To Do role based on account management group and division information.
If your To Do entries reference characteristics that related to your global context data, you may want to configure an alert algorithm plugged into the installation options to display an alert if the entry is Open or Being Worked On.
For example, Oracle Utilities Customer Care and Billing provides an alert algorithm that displays an alert when a To Do in this status exists for the account, person or premise displayed in the current context. Refer to Linking Additional Information To A To Do Entry for more information.
If your organization opts to use the next assignment feature supported by the Current To Do dashboard zone, you need to plug-in a Next To Do Assignment algorithm into the installation options to determine the next To Do entry the user should work on. Make sure you provide users with security access rights to the zone's next assignment action.
You need only set up new messages if you use algorithms to create To Do entries or prefer different messages than those associated with the base package's To Do types.
The base package is provided with a generic Activity Queue Management Feature Configuration type. You may want to set up a feature configuration of this type to define any To Do management related options supporting business rules specific to your organization.
For example, the base package provides the following plug-ins to demonstrate a business practice where To Do entries are only assigned to users with the proper skill levels to work on them.
You must set up such an Activity Queue Management feature configuration if you want to use any of the above base package plug-ins.
The following points describe the various Option Types provided with the base package:
This section describes the control table used to maintain To Do roles.
The Main notebook page is used to define basic information about a To Do role.
To maintain this information, select Admin Menu, To Do Role and navigate to the Main page.
Description of Page
Enter a unique To Do Role and Description for the To Do role.
The grid contains the ID of each User that may view and work on entries assigned to this role. The First Name and Last Name associated with the user is displayed adjacent.
Where Used
Follow this link to view the tables that reference CI_ROLE in the data dictionary schema viewer.
In addition, a role may be defined as a parameter of an algorithm.
The To Do Types page defines the To Do types that may be viewed and worked on by users belonging to a given To Do role.
To maintain this information, select Admin Menu, To Do Role and navigate to the To Do Types page.
Description of Page
Enter the ID of each To Do Type whose entries may be viewed and worked on by the role.
Use As Default is a display-only field that indicates if the role is assigned to newly created entries of this type. You may define the default role for a given To Do type on the To Do Type maintenance page.
This section describes the control table used to maintain To Do types.
The Main notebook page is used to define basic information about a To Do type.
To maintain this information, select Admin Menu, To Do Type and navigate to the Main page.
Description of Page
Enter a unique To Do Type and Description for the To Do type.
Owner indicates if this entry is owned by the base package or by your implementation (Customer Modification).
Use the Detailed Description to provide further details related to the To Do Type.
Enter the default Priority of To Do entries of this type in respect of other To Do types. Refer to The Priority Of A To Do Entry for more information.
For To Do Type Usage, select Automatic if To Dos of this type are created by the system (i.e., a background process or algorithm). Select Manual if a user can create a To Do of this type online.
Define the Navigation Option for the page into which the user is transferred when drilling down on a To Do entry of this type.
Use Creation Process to define the background process, if any, that is used to manage (i.e., create and perhaps complete) entries of this type. A Creation Process need only be specified for those To Do types whose entries are created by a background process. Refer to To Do Entries Created By Background Processes for more information.
Use Routing Process to define the background process that is used to download entries of a given type to an external system, if any. A Routing Process need only be specified for those To Do types whose entries are routed to an external system (e.g., an Email system or an auto-dialer). Refer to To Do Entries May Be Routed Out Of The System for more information.
Use Message Category and Message Number to define the message associated with this To Do type's entries. Note: this message will only be used if the process that creates the To Do entry does not supply a specific message number. For example, the process that creates To Do entries that highlight bill segments that are in error would not use this message; rather, the entries are marked with the message associated with the bill segment's error.
Use the characteristics collection to define a Characteristic Type and Characteristic Value common to all To Do entries of this type. You may enter more than one characteristic row for the same characteristic type, each associated with a unique Sequence number. If not specified, the system defaults it to the next sequence number for the characteristic type.
Where Used
Follow this link to view the tables that reference CI_TD_TYPE in the data dictionary schema viewer.
The Roles page defines the roles who may view and work on entries of a given To Do type.
To maintain this information, select Admin Menu, To Do Type and navigate to the Roles page.
Description of Page
Enter each To Do Role that may view and work on entries of a given type. Turn on Use as Default if the role should be assigned to newly created entries of this type. Only one role may be defined as the default per To Do type.
The Sort Keys page defines the various ways a To Do list's entries may be sorted. For example, when you look at the bill segment error To Do List, you have the option of sorting the entries in error number order, account name order, or in customer class order.
To maintain this information, select Admin Menu, To Do Type and navigate to the Sort Keys page.
Description of Page
The following fields display for each sort key.
Sequence The unique ID of the sort key.
Description The description of the sort key that appears on the To Do list.
Use as Default Turn this switch on for the default sort key (the one that is initially used when a user opens a To Do list). Only one sort key may be defined as the default per To Do type.
Sort Order Select whether the To Do entries should be sorted in Ascending or Descending order when this sort key is used.
Owner Indicates if this entry is owned by the base package or by your implementation (Customer Modification).
The Drill Keys page defines the keys passed to the application service (defined on the Main page) when you drill down on an entry of a given type.
To maintain this information, select Admin Menu, To Do Type and navigate to the Drill Keys page.
Description of Page
Navigation Option shows the page into which the user is transferred when drilling down on a To Do entry of this type.
The following fields display for each drill key.
Sequence The unique ID of the drill key.
Table and Field The table and field passed to the application service when you drill down on an entry of a given type.
Owner Indicates if this entry is owned by the base package or by your implementation (Customer Modification).
The Message Overrides page is used if you want To Do entries that reference a given message category / number to be routed to a specific To Do role (or suppressed altogether) or if you want to associate a script to a given message category / number.
To maintain this information, select Admin Menu, To Do Type and navigate to the Message Overrides page.
Description of Page
The following fields display for each override.
Message Category and Number The identity of the message to be overridden.
Exclude To Do Entry Turn on this switch if a To Do entry of this type that references the adjacent Message Category and Number should NOT be created.
Override Role Specify the role to which a To Do entry of this type that references the adjacent Message Category and Number should be addressed. This field is protected if Exclude To Do Entry is on (you can't reroute an entry to a specific role if it's going to be excluded).
Script Indicate the script that you would like to execute when a user drills down on a To Do entry of this type that references the adjacent Message Category and Number. This field is protected if Exclude To Do Entry is on. Refer to Working On A To Do Entry for more information.
The To Do Characteristics page defines characteristics that can be defined for To Do entries of this type.
To maintain this information, select Admin Menu, To Do Type and navigate to the To Do Characteristics page.
Turn on the Required switch if the Characteristic Type must be defined on To Do entries of this type.
Enter a Characteristic Value to use as the default for a given Characteristic Type when the Default switch is turned on. Use Sequence to control the order in which characteristics are defaulted.
The To Do Algorithms page defines the algorithms that should be executed for a given To Do type.
To maintain this information, select Admin Menu, To Do Type and navigate to the Algorithms page.
Description of Page
The grid contains Algorithms that control important To Do functions. If you haven't already done so, you must set up the appropriate algorithms in your system. You must define the following for each algorithm:
The following table describes each System Event.
System Event | Optional / Required | Description |
---|---|---|
Calculate Priority | Optional | Algorithms of this type may be used to calculate a To Do entry's priority. They are called initially when a To Do entry is created and each time it gets updated so long as the To Do entry's priority has not been manually overridden. Once overridden, these algorithms are not called anymore. Note that it is not the responsibility of the algorithms to actually update the To Do entry with the calculated priority value but rather only return the calculated value. The system carries out the update as necessary. If more than one algorithm is plugged-in the system calls them one by one until the first to return a calculated priority. Click here to see the algorithm types available for this system event. |
External Routing | Optional | Algorithms of this type may be used to route a To Do entry to an external system. The base package F1-TDEER background process invokes the algorithms for every To Do entry that its type references the process as the Routing Process and that the entry was not already routed. The background process marks an entry as routed by updating it with the batch control's current run number. If more than one algorithm is plugged-in the batch process calls them one by one until the first to indicate the To Do entry was routed. Click here to see the algorithm types available for this system event. |
To Do Information | Optional | We use the term "To Do information" to describe the basic information that appears throughout the system to describe a To Do entry. The data that appears in "To Do information" is constructed using this algorithm. Plug an algorithm into this spot to override the "To Do information" algorithm on installation options or the system default "To Do information" if no such algorithm is defined on installation options. Click here to see the algorithm types available for this system event. |
To Do Post-Processing | Optional | Algorithms of this type may be used to validate and/or further process a To Do entry that has been added or updated. Click here to see the algorithm types available for this system event. |
To enable the To Do entries listed above, you must configure the system as follows:
This section describes how to set up the background processes that perform many important functions throughout your product such as:
There are also batch processes that will apply to your specific source application. Please refer to the documentation section that applies to your source application for more information.
The topics in this section provide background information about a variety of background process issues.
While the system uses a third-party party scheduler to secure and execute its background processes, there are additional issues that you should be familiar with:
The following diagram illustrates the relationships that exist for batch control records.
Results of each batch run can be viewed using the Batch Run Tree page.
All background processes receive the following parameters.
Each of the batch processes has, as part of its run parameters, a preset constant that determines how many errors that batch process may encounter before it is required to abort the run. A user can override this constant with an optional additional parameter (MAX-ERRORS). If a user chooses not to enter a value for the parameter, the process uses its own preset constant.
The input value must be an integer that is greater than or equal to zero. The maximum valid value for this parameter is 999,999,999,999,999.
The syntax for entering this additional parameter when submitting the batch process is "MAX-ERRORS=PARM VALUE", where the PARM VALUE is the desired value (e.g., MAX-ERRORS=50).
A limited number of background processes receive additional parameters. When a process receives additional parameters, they are documented adjacent to the respective batch process description in the following sections in the Extra Parameters column.
The syntax for entering these parameters when submitting the batch process is "PARM-NAME=PARM VALUE", where PARM-NAME is the name of the parameter as it is documented below for each batch process and the PARM VALUE is the desired value. For example, if the documentation indicates that the extra parameter for a particular batch process is ADD-WORK-DAYS, with possible values of Y and N, and you want to pass a value of N, enter the following when prompted: ADD-WORK-DAYS=N.
Some of the system background processes use extra parameters to indicate a File Path and/or File Name for an input file or an output file. For example, most extract processes use File Path and File Name parameter to indicate where to place the output file.
When supplying a FILE-PATH variable, the directory specified in the FILE-PATH must already exist and must grant write access to the administrator account for the product. You may need to verify a proper location with your systems administrator.
The syntax of the FILE-PATH depends on the platform used for the product application server. Contact your system administrator for verification. For example, if the platform is UNIX, use forward slashes and be sure to put a trailing slash, for example /spltemp/filepath/.
When a background process detects an error, the error may or may not be related to a specific object that is being processed. For example, if the program finds an error during batch parameter validation, this error is not object-specific. However, if the program finds an error while processing a specific bill, this error is object-specific. The system reports errors in one of the following ways:
Most batch jobs are submitted via a batch scheduler. Your organization may use a third party batch scheduler or may use the batch scheduling functionality provided with the system.
In addition, you can manually submit your adhoc background processes or submit a special run for one of your scheduled background processes using the online batch job submission page.
This section provides information about batch jobs are processed via the online batch submission.
A PERL program runs in the background looking for Pending batch jobs and then executes them. When a batch job is executed, a batch run is created. The batch run keeps track of the overall status of the various parallel threads and it manages restart logic should the run fail. The following flowchart provides a schematic of this logic:
When a Pending batch job is detected by the PERL program, the following takes place:
When the batch program executes, its first thread has the responsibility of creating an In Progress batch run (assuming this is not a restarted run).
When all threads of a batch program complete, a common routine is called. The following flowchart provides a schematic of this routine's logic:
The following points summarize important concepts illustrated in the flowchart:
Usage of online batch submission requires that your system administrator create a job in the operating system to periodically execute the PERL program described above. The topics in this section describe how to do this for the Windows and Unix operating systems.
The configuration of the Periodic polling under Windows is documented in the Windows installation guide in the "Configuring Batch Submission to Run Via a Job Scheduler" section.
The configuration of the Periodic polling under UNIX is documented in the installation guide in the "Configuring cdxcronbatch.sh to Run Via a Job Scheduler" section.
Many processes have been designed to run in parallel in order to speed execution. For example, the billing process in Oracle Utilities Customer Care and Billing can be executed so that bills are produced in multiple "threads" (and multiple threads can execute at the same time).
By default the system distributes the data for the multiple threads using the primary key of the main table of the process. For example, if you are running BILLING in Oracle Utilities Customer Care and Billing with multiple threads, the batch process distributes the accounts across the multiple threads. The Account ID is 10 digits long so if you run it with 4 threads, the records are processed as follows:
Note that the multi-threading logic relies on the fact that primary keys for master and transaction data are typically system generated random keys.
Running a background process in multiple threads is almost always faster than running it in a single thread. The trick is determining the number of threads that is optimal for each process.
This is a rule of thumb because each process is different and is dependent on the data in your database. Also, your hardware configuration (i.e., number of processors, speed of your disk drives, speed of the network between the database server and the application server) has an impact on the optimal number of threads. Please follow these guidelines to determine the optimal number of threads for each background process:
Another way to achieve similar results is to start out with a small number of threads and increase the number of threads until you have maximized throughput. The definition of "throughput" may differ for each process but can be generalized as a simple count of the records processed in the batch run tree. For example, in the Billing background process in Oracle Utilities Customer Care and Billing, throughput is the number of bills processed per minute. If you opt to use this method, we recommend you graph a curve of throughput vs. number of threads. The graph should display a curve that is steep at first but then flattens as more threads are added. Eventually adding more threads will cause the throughput to decline. Through this type of analysis you can determine the optimum number of threads to execute for any given process.
If you need to recreate the records associated with an historical execution of an extract process, you can - simply supply the desired batch number when you request the batch process.
You can manually submit your adhoc background processes or submit a special run for one of your scheduled background processes.
You can track batch jobs using the batch process pages, which show the execution status of batch processes. For a specified batch control id and run id, the tree shows each thread, the run-instances of each thread, and any messages (informational, warnings, and errors) that might have occurred during the run.
Every process in the system can be easily restarted if it fails (after fixing the cause of the failure). All you have to do is resubmit the failed job; the system handles the restart.
The system is delivered with all necessary batch controls. If you introduce a new background process, open Admin Menu > Batch Control to define the related batch control record. Refer to Background Processing Concepts for more information.
Description of Page
Enter an easily recognizable Batch Process and Description for each batch process.
Owner indicates if this batch control is owned by the base package or by your implementation (Customer Modification). The system sets the owner to Customer Modification when you add a batch control. This information is display-only.
Use the Detailed Description to describe the functionality of the batch process in detail.
Use Batch Control Type to define the batch process as either Timed or Not Timed. A Timed batch process will be automatically initialized on a regular basis. A Not Timed process needs to be run manually or through a scheduler.
Use Batch Control Category to categorize the process for documentation purposes.
Use Program Type to define if the batch process program is written in Java or COBOL.
Use Program Name to define the program associated with your batch process:
The Last Update Timestamp, Last Update Instance and Next Batch Nbr are used for audit purposes.
Turn on Accumulate All Instances to control how this batch control is displayed in theBatch Run Tree . If checked, the run statistics (i.e., "Records Processed" and "Records in Error") for a thread are to be accumulated from all the instances of the thread. This would include the original thread instance, as well as any restarted instances. If this is not turned on, only the ending (last) thread instance's statistics are used as the thread's statistics. This may be preferred for certain types of batch processes where the accumulation would create inaccurate thread statistics, such as those that process flat files and, therefore, always start at the beginning, even in the case of a restart.
The parameter collection is used to define additional parameters required for a particular background process. The following fields should be defined for each parameter:
Sequence. Defines the relative position of the parameter.
Parameter Name. The name of the parameter as defined in System Background Processes.
Description. A description of the parameter.
Detailed Description. A more detailed description of the parameter.
Required. Indicate whether or not this is a required parameter.
Parameter Value. Enter a default value, if applicable.
Owner Indicates if this batch process is owned by the base package or by your implementation (Customer Modification). The system sets the owner to Customer Modification when you add a batch process. This information is display-only.
Requests enable an implementer to design an ad-hoc batch process using the configuration tools.
An example of such a process might be to send an email to a group of users that summarizes the To Do entries that are assigned to them. This is just one example. The request enables many types of diverse processing.
For each type of process that your implementation wants, you must configure a request type to capture the appropriate parameters needed by the process.
To submit a new request, go to Main Menu > Batch, Request + . You must select the appropriate request type and then enter the desired parameter values, if applicable.
When a request is saved, the job is not immediately submitted for real time processing. The record is saved with the status Pending and a monitor process for this record's business object is responsible for transitioning the record to Complete.
As long as the record is still Pending, it may be edited to adjust the parameters. The preview logic described above may be repeated when editing a record.
The actual work of the request, such as generating an email, is performed when transitioning to Complete (using an enter processing algorithm for the business object).
The base product includes a sample request process that sends an email to users that have incomplete To Dos older than a specified number of days.
For an XAI method you will need to create an XAI Sender in your email configuration. For a batch method a batch program will need to be defined. For a real-time method the response XSL should be properly defined.
To design a new ad-hoc batch job that users can submit via Request, first create a new Request Type business object. The base product BO for request type, F1-TodoSumEmailTyp, may be used as a sample.
Use the Request Type portal to define the parameters to capture when submitting a request. Open this page using Admin Menu > Request Type .
This topic describes the base-package zones that appear on the Request Type portal.
Use the Request transaction to view and maintain pending or historic requests.
Open this page using Main Menu > Batch > Request . This topic describes the base-package portals and zones on this page.
Request Query. Use the query portal to search for an existing request. Once a request is selected, you are brought to the maintenance portal to view and maintain the selected record.
In this section, we describe how to set up the user-defined algorithms that perform many important functions including:
Many functions in the system are performed using a user-defined algorithm. For example, when a CSR requests a customer's recommended deposit amount, the system calls the deposit recommendation algorithm. This algorithm calculates the recommended deposit amount and returns it to the caller.
So how does the system know which algorithm to call? When you set up the system's control tables, you define which algorithm to use for each component-driven function. You do this on the control table that governs each respective function. For example:
The topics in this section provide background information about a variety of algorithm issues.
You have to differentiate between the type of algorithm and the algorithm itself.
Before you can add a new algorithm, you must determine if you can use one of the sample algorithm types supplied with the system. Refer to List of Algorithm Types for a complete list of algorithm types.
If you can use one of the sample algorithm types, simply add the algorithm and then reference it on the respective control table. Refer to Setting Up Algorithms for how to do this.
If you have to add a new algorithm type, you may have to involve a programmer. Let's use an example to help clarify what you can do versus what a programmer must do. Assume that you require an additional geographic type validation algorithm. To create your own algorithm type you must:
The system has been designed to use algorithms so an implementation can introduce their own logic in a way that's 100% upgradeable (without the need to retrofit logic). The following points describe strong recommendations about how to construct new algorithm type programs so that you won't have to make program changes during future upgrades:
The system is supplied with samples of every type of algorithm used by the system. If you need to introduce a new type of algorithm, open Admin Menu > Algorithm Type .
Description of Page
Enter an easily recognizable Algorithm Type and Description.
Owner indicates if this algorithm type is owned by the base package or by your implementation (Customer Modification). The system sets the owner to Customer Modification when you add an algorithm type. This information is display-only.
Enter a Long Description that describes, in detail, what algorithms of this type do.
Use Algorithm Entity to define where algorithms of this type can be "plugged in".
Use Program Type to define if the algorithm's program is written in COBOL, Java or Plug-In Script.
Use Program Name to define the program to be invoked when algorithms of this type are executed:
Use the Parameter Types grid to define the types of parameters that algorithms of this type use. The following fields should be defined for each parameter:
Where Used
An Algorithm references an Algorithm Type. Refer to Setting Up Algorithms for more information.
If you need to introduce a new algorithm, open Admin Menu > Algorithm . Refer to The Big Picture Of Algorithms for more information.
Description of Page
Enter an easily recognizable Algorithm Code and Description of the algorithm. Owner indicates if this algorithm is owned by the base package or by your implementation (Customer Modification).
Reference the Algorithm Type associated with this algorithm. This field is not modifiable if there are parameters linked to the algorithm (defined in the following collection).
Define the Value of each Parameter supplied to the algorithm in the Effective-Dated scroll. Note that the Algorithm Type controls the number and type of parameters.
Where Used
Every control table that controls component-driven functions references one or more algorithms. Refer to the description of Algorithm Entity under Setting Up Algorithm Types for a list of all such control tables.
We use the term "script" to define processing rules that your implementation sets up to control both front-end and back-end processing:
The topics in this section describe how to configure your scripts.
This section describes features and functions that are shared by both BPA scripts and server-based scripts.
To create a script, you must analyze the steps used to implement a given business process. For example, you could create a "stop auto pay" BPA script that:
After you understand the business process, you can set up a script to mimic these steps. If the business process is straightforward (e.g., users always perform the same steps), the script configuration will be straightforward. If the business process has several logic branches, the composition of the script may be more challenging.
A script contains one or more steps. For example, a "stop auto pay" BPA script might have three steps:
Each step references a step type. The step type controls what happens when a step executes. It might be helpful to think of a script as a macro and each step as a "line of code" in the macro. Each step's step type controls the function that is executed when the step is performed.
Constructing a script is similar to writing a computer program. We recommend that you follow the approach outlined below when you construct scripts:
Both BPA and server-based scripts may have one or more data areas:
Various step types involve referencing the script's data areas as well as support the ability to compare and move data to and from field elements residing in the data areas.
An Edit Data step supports the syntax to dynamically declare data areas as part of the step itself. This technique eliminates the need to statically declare a data area. Refer to Designing Generic Scripts for an example of when this technique may be useful.
Scripts may be designed to encapsulate an overall procedure common across different business objects.
For example, BPA scripts may implement a standard procedure to maintain business entities in which the first step obtains the entity's data, the second step presents its associated UI map to the user for update, and the last step updates the entity. Notice that in this case the only difference from one object to another is the data to capture. Rather than designing a dedicated BPA script with static data areas and invocation steps for each business object, you can design a single generic script that dynamically invokes a business object and its associated UI map.
This functionality is available only within an Edit Data step. With this technique, the name of the schema-based object is held in a variable or an XPath schema location and is used to both declare and invoke the object.
The system supports the ability to secure the execution of scripts by associating the script with an Application Service. Refer to The Big Picture of Application Security for more information. Application security is optional and applies to service scripts and user-invocable BPA scripts only. If a script is not associated with an application service, all users may execute the script. Otherwise, only users that have Execute access to the application service may execute the script.
Because each implementation has different business processes, each implementation will have different scripts. Sample scripts are supplied in the demonstration database that is delivered with your product. If you'd like to import any of these samples into your implementation refer to How to Copy a Script from the Demonstration Database for the details.
Users may require instructions in order to perform certain tasks. The business process assistant allows you to set up scripts that step a user through your business processes. For example, you might want to create scripts to help users do the following:
Users execute these scripts via the business process assistant (BPA). Users can also define their favorite BPA scripts in their user preferences. By doing this, a user can execute a script by pressing an accelerator key (Ctrl + Shift + a number).
Don't think of these scripts as merely a training tool. BPA scripts can also reduce the time it takes to perform common tasks. For example, you can write a script that reduces the "number of clicks" required to add a new person to an existing account.
The topics in this section describe background topics relevant to BPA scripts.
Refer to Initiating Scripts for a description of how end-users initiate scripts.
You may find it helpful to categorize the step types into two groups: those that involve some type of activity in the script area, and those that don't. The following step types cause activity in the script area: Height, Display text, Prompt user, Input data, Input Map, Set focus to a field. The rest of the step types are procedural and involve no user interaction. For debugging purposes, you can instruct the system to display text in the script area for the latter step types. Also note, for debugging purposes, you can display an entire data area (or a portion thereof) in the script area by entering %+...+% where ... is the name of the node whose element(s) should be displayed.
Please see the Examples of BPA Scripts for ideas that you can use when you create your own BPA scripts.
You can create menu items that launch BPA scripts rather than open a page. To do this, create a navigation option that references your script and then add a menu item that references the navigation option.
If the navigation option is referenced on a context menu and the navigation option has a "context field", a temporary storage variable will be created and populated with the unique identifier of the object in context. For example, if you add a "script" navigation option to the bill context menu and this navigation option has a context field of BILL_ID, the system will create a temporary storage variable called BILL_ID and populate it with the respective bill id when the menu item is selected.
You can set the system to launch a script upon startup.
For example, imagine that through an interactive voice response system, a customer has keyed in their account ID and has indicated that they would like to stop an automatic payment. At the point when the IVR system determines that the customer must speak to a user, the interface can be configured to launch the application. When launched it passes the script name and account ID. It can also pass a navigation option to automatically load the appropriate page (if this information is not part of the script).
To do this, parameters are appended to the standard system URL. The following parameters may be supplied:
Parameters are added to the standard system URL by appending a question mark (?) to the end and then adding the "key=value" pair. If you require more than one parameter, use an ampersand (&) to separate each key=value pair.
For example, the following URLs are possible ways to launch the StopAutoPay script at startup, assuming your standard URL for launching the system is http://system-server:1234/cis.jsp:
It doesn't matter in which order the parameters are provided. The system processes them in the correct order. For example, the following examples are processed by the system in the same way:
These parameters are kept in a common area accessible by any script for the duration of the session. To use these parameters on a script you may reference the corresponding %PARM-<name> global variables. In this example, after the system is launched any script may have access to the above account ID parameter value by means of the %PARM-ACCT_ID global variable. Also note, these parameters are also loaded into temporary storage (to continue the example, there'd also be a temporary storage variable called ACCT_ID that holds the passed value).
The system creates To Do entries to highlight tasks that require attention (e.g., records in error). Users can complete many of these tasks without assistance. However, you can set up the system to automatically launch a script when a user selects a To Do entry. For example, consider a To Do entry that highlights a bill that's in error due to an invalid mailing address. You can set up the system to execute a script when this To Do entry is selected by a user. This script might prompt the user to first correct the customer's default mailing address and then re-complete the bill.
The following points provide background information to help you understand how to implement this functionality:
You can configure eligibility criteria on the scripts to limit the scripts that a user sees in the script search. For example, you could indicate a script should only appear on the script menu if the user belongs to the level 1 customer service representative group. You may also indicate that a script should only appear if the data a user is viewing has certain criteria. For example, if you are using Oracle Utilities Customer Care and Billing, you can indicate that a script should only appear if the current account's customer class is residential. By doing this, you avoid presenting the user with scripts that aren't applicable to the current data in context or the user's role.
The topics in this section describe eligibility rules.
The script search gives a user a choice of seeing all scripts or only scripts that are eligible (given the current data in context and their user profile). This means that it's possible for a script that isn't eligible for the given context data / user to be executed via this search. In other words, the system does not strictly enforce a script's eligibility rules.
It might be more helpful to think of eligibility rules as "highlight conditions". These "highlight conditions" simply control whether the script appears in the script search when a user indicates they only want to see eligible scripts.
If you don't want to configure eligibility rules, you don't have to. Simply indicate that the script is always eligible.
If you have scripts that you do not want a user to select from the script menu, indicate that it is never eligible. An example of a script that you wouldn't want a user to select from the menu is one that is launched when a To Do entry is selected. These types of scripts most likely rely on data linked to the selected To Do entry. As a result, a user should only launch scripts of this type from the To Do entry and not from the script menu.
Before we provide concrete examples of eligibility criteria, we need to explain two concepts: Criteria Groups and Eligibility Criteria. A script's criteria groups control whether a user is eligible to choose a script. At a high level, it works like this:
We'll use the following example from Oracle Utilities Customer Care and Billing to help illustrate these points. Assume a script is only eligible if:
This script requires two eligibility groups because it has two distinct conditions:
If either condition is true, the script is eligible.
You would need to set the following criteria groups in order to support this requirement:
Group No. | Group Description | If Group is True | If Group is False |
---|---|---|---|
1 | Customer has electric service and the user belongs to user group A, B or C | Eligible | Check next group |
2 | Customer has gas service and the user belongs to user group X, Y or A | Eligible | Ineligible |
The following criteria are required for each of the above groups:
Group 1: Customer has electric service and the user belongs to user group A, B or C | ||||
---|---|---|---|---|
Seq | Logical Criteria | If Eligibility Criteria is True | If Eligibility Criteria is False | If Insufficient Data |
10 | Customer has electric service | Check next condition | Group is false | Group is false |
20 | User belongs to user group A, B or C | Group is true | Group is false | Group is false |
Group 2: Customer has gas service and the user belongs to user group X, Y or A | ||||
---|---|---|---|---|
Seq | Logical Criteria | If Eligibility Criteria is True | If Eligibility Criteria is False | If Insufficient Data |
10 | Customer has gas service | Check next condition | Group is false | Group is false |
20 | User belongs to user group X, Y or A | Group is true | Group is false | Group is false |
The next section describes how you might configure the specific logical criteria in each of the groups.
When you set up an eligibility criterion, you must define two things:
You have the following choices in respect of identifying the field to be compared :
You have the following choices in respect of identifying the comparison method:
The Examples Of Script Eligibility Rules provide examples to help you understand this design.
The topics in this section provide examples about how to set up script eligibility rules.
A script that is only eligible for senior citizens has the following eligibility rules:
These rules require only one eligibility group on the script. It would look as follows:
Group No. | Group Description | If Group is True | If Group is False |
---|---|---|---|
1 | Residential and Senior Citizen | Eligible | Ineligible |
The following criteria will be required for this group:
Group 1: Residential, Calif, Senior | |||||
---|---|---|---|---|---|
Seq | Field to Compare | Comparison Method | If True | If False | If Insufficient Data |
10 | Algorithm: retrieve account's customer class | = R | Check next condition | Group is false | Group is false |
30 | Person characteristic: Date of Birth | Algorithm: True if senior | Group is true | Group is false | Group is false |
The first criterion is easy; it calls an algorithm that retrieves a field on the current account. This value, in turn, is compared to a given value. If the comparison results in a True value, the next condition is checked. If the comparison doesn't result in a True value, the Group is false (and, the group indicates that if the group is false, the script isn't eligible). Refer to SECF-ACCTFLD in the product documentation for an example of an algorithm type that retrieves a field value from an account.
The last criterion contains a time span comparison. Time span comparisons are used to compare a date to something. In our example, we have to determine the age of the customer based on their birth date. If the resultant age is > 65, they are considered a senior citizen. To pull this off, you can take advantage of a comparison algorithm supplied with the base script as described below.
You'll notice that if a value of True is returned by the True if senior algorithm, the group is true (and we've set up the group to indicate a true group means the script is eligible).
Imagine a script that is only eligible if the current customer has gas service and the user belongs to user groups A, B or C. This script would need the following eligibility rules:
These rules require only one eligibility group on the script. It would looks as follows:
Group No. | Group Description | If Group is True | If Group is False |
---|---|---|---|
1 | Has gas service and user is part of user group A, B or C | Eligible | Ineligible |
The following criteria are required for this group:
Group 1: Has gas service and user is part of user group A, B or C | |||||
---|---|---|---|---|---|
Seq | Field to Compare | Comparison Method | If True | If False | If Insufficient Data |
10 | Algorithm: check if customer has gas service | = True | Check next condition | Group is false | Group is false |
20 | Algorithm: check if user belongs to user group A, B or C | = True | Group is true | Group is false | Group is false |
Both criteria are similar - they call an algorithm that performs a logical comparison. These algorithms are a bit counter intuitive (but understanding them provides you with another way to implement complex eligibility criteria):
The first criterion works as follows:
The second criterion works similarly:
The topics that follow provide examples of BPA scripts related to several business processes. Use the information in this section to form an intuitive understanding of scripts. After attaining this understanding, you'll be ready to design your own scripts.
The following is an example of the steps necessary to implement a script that transfers a user to the page on which they can set up / change a customer's web self-service password.
Step No. | Step Type | Text Displayed In Script Area | Additional Information On The Step |
---|---|---|---|
10 | Perform script | Press OK after the dashboard contains the person in question | Subscript: CI_FINDCUST Note, this step performs a script that contains the steps that ask the user to find the customer on control central. |
20 | Move data | Source Field Type: Predefined Value Source Field Value: %CONTEXT-PERSONID (note, this is a global variable that contains the ID of the current person) Destination Field Type: Page Data Model Destination Field Name: PER_ID | |
30 | Navigate to a page | Navigation Option: Person - Web Self Service (update) | |
40 | Set focus to a field | Press continue after changing the customer's self service values and saving the changes | Destination Field Name: WEB_PASSWD |
50 | Perform script | Subscript: CI_SAVECHECK Note, this step checks if the user remembered to save their changes | |
60 | Display text | Script complete |
Note the following about this script:
The following is an example of the steps necessary to implement a script that creates a trouble order when the user does not know the customer. We have assumed the following about such trouble orders:
Step No | Step Type | Text Displayed In Script Area | Additional Information On The Step |
---|---|---|---|
10 | Navigate to a page | Navigation Option: Customer Contact - Main (add) Note, we use characteristics to define the trouble order's symptom and danger level. Rather than hardcode these characteristic types and values in the script, we take advantage of the fact that a customer contact type can have default characteristics. These values default onto a customer contact when a customer contact type is populated. Defaulting only occurs when a User Interface Field is populated (as opposed to when a Page Data Model field is populated when no defaulting takes place). In order to populate a User Interface Field, the user must be positioned on the page on which the field is located. And this is why this script initially transfers the user to the Main tab on the customer contact page. If we didn't need to take advantage of defaulting, this script could have navigated to the Characteristics tab (the fields on the other tabs could have been populated even when the Characteristics tab is given focus by simply defining them as Page Data Model fields). We mention this as any page you can avoid navigating to will speed up the execution of the script. | |
20 | Input data | Please describe the problem | Destination Field Type: User Interface Field Destination Field Name: DESCR254 |
30 | Move data | Source Field Type: Predefined Value Source Field Value: 1234567890 (note, this is the ID of the "dummy" person under which this type of customer contact is stored) Destination Field Type: User Interface Field Destination Field Name: PER_ID | |
40 | Move data | Source Field Type: Predefined Value Source Field Value: TRUE Destination Field Type: Page Data Model Destination Field Name: W_CC_STATUS_SW (Note, this is a switch on Customer Contact - Main that a user turns on if they want to indicate a customer contact is open). When you move TRUE to a switch, it turns it on. When you move FALSE to a switch, it turns it off. | |
50 | Move data | Source Field Type: Predefined Value Source Field Value: TO (note, this is the customer class code for this customer contact) Destination Field Type: User Interface Field Destination Field Name: CC_CL_CD | |
60 | Move data | Source Field Type: Predefined Value Source Field Value: NOACCT (note, this is the customer contact type for this customer contact) Destination Field Type: User Interface Field (note, it's important to use this field type rather the Page Data Model. This is because we want the characteristics associated with this customer contact type to default onto the Characteristics tab page and defaulting only happens when User Interface Fields are populated) Destination Field Name: CC_TYPE_CD | |
70 | Move data | Source Field Type: Predefined Value Source Field Value: Generated by trouble order without account script Destination Field Type: User Interface Field Destination Field Name: CC_LOG:0$CC_LOG_CONTENT | |
80 | Move data | Source Field Type: Predefined Value Source Field Value: 20 (note, this is the flag value for Send to Role) Destination Field Type: User Interface Field Destination Field Name: CC_LOG:0$CC_REMINDER_FLG | |
90 | Move data | Source Field Type: Predefined Value Source Field Value: TOWOACCT (note, this is the To Do role that will receive the To Do entry informing them of this trouble order) Destination Field Type: User Interface Field Destination Field Name: CC_LOG:0$ROLE_ID | |
100 | Move data | Source Field Type: Predefined Value Source Field Value: %CURRENT-DATE Destination Field Type: User Interface Field Destination Field Name: CC_LOG:0$TRIGGER_DT | |
110 | Navigate to a page | Navigation Option: Customer Contact - Characteristics (update) | |
120 | Set focus to a field | Press <i>Continue</i> after confirming the characteristic values and saving the customer contact | Destination Field Name: CC_CHAR:0$CHAR_TYPE_CD |
130 | Move data | Source Field Type: Predefined Value Source Field Name: %SAVE-REQUIRED Destination Field Type: Temporary Storage Destination Field Name: SAVE_NEEDED | |
140 | Conditional Branch | Compare Field Type: Temporary Storage Compare Field Name: SAVE_NEEDED Condition: = Comparison Field Type: Predefined Value Comparison Field Name: FALSE If TRUE, Go To Step: 160 If FALSE, Go To Step: 140 | |
150 | Set focus to a field | You have not saved this information! Press <i>Continue</i> after saving. | Destination Field Name: IM_SAVE (note, this positions the cursor on the save button) |
160 | Go to a step | Next step: 120 | |
170 | Display text | Script complete | |
180 | Height | Script Window Height: 0 Height Unit: Pixels |
Note the following about this script:
The following is an example of the steps necessary to implement a script that adds a new person to an existing account. This is a sophisticated script as it contains examples of populating scrolls and grids as well as using multiple transactions to implement a business process.
Step No | Step Type | Text Displayed In Script Area | Additional Information On The Step |
---|---|---|---|
5 | Label | Identify the correct account | |
10 | Prompt user | Is the existing account currently displayed in the dashboard? | Prompt Type: Button(s) First Prompt Value - Text: Yes, Next Step: 40 Second Prompt Value - Text: No, Next Step: 20 |
20 | Navigate to a page | Navigation Option: Control Central - Main | |
30 | Set focus to a field | Press <i>Continue</i> after you've selected the customer (note, see How To Use HTML Tags And Spans In Text for more information about the <i> notation) | Destination Field Name: ENTITY_NAME |
40 | Move data | Source Field Type: Predefined Value Source Field Value: %CONTEXT-ACCOUNTID (note, this is a global variable that contains the ID of the current account) Destination Field Type: Temporary Storage Destination Field Name: SAVED_ACCT_ID | |
50 | Conditional Branch | Compare Field Type: Temporary Storage Compare Field Name: SAVED_ACCT_ID Condition: = Comparison Field Type: Predefined Value Comparison Field Name: %BLANK If TRUE, Go To Step: 60 If FALSE, Go To Step: 80 | |
60 | Display text | Please select a customer, the dashboard isn't populated with an account (note, see How To Use HTML Tags And Spans In Text for more information about the notation) | |
70 | Go to a step | Next step: 20 | |
80 | Display text | You will be adding a new customer to account %SAVED_ACCT_ID | |
85 | Label | Enter the Person's name and primary ID | |
90 | Navigate to a page | Navigation Option: Person -Main (add) | |
100 | Move data | Source Field Type: Predefined Value Source Field Value: FALSE Destination Field Type: Page Data Model Destination Field Name: ADD_ACCT_SW (Note, this is a switch on Person - Main that a user turns on if they want to both add a person AND an account when they save the new person - we don't want to add an account when we add the new person so we set it to FALSE (i.e., we turn the switch off.) | |
110 | Input data | Enter the new person's name in the format "Last Name,First Name" (e.g., Smith,Patricia) | Destination Field Type: User Interface Field Destination Field Name: PER_NAME:0$ENTITY_NAME |
120 | Input data | Enter the new person's Social Security Number in the format 999-99-9999 | Destination Field Type: User Interface Field Destination Field Name: PER_IDENTIFIER:0$PER_ID_NBR Note, this step works because the identifier type was defaulted from the installation record and therefore this step only requires the user to enter the person's social security number. Also note, the user doesn't have to enter the SSN in the format shown because this step populates a User Interface Field, which automatically applies the formatting for the respective ID type. |
125 | Label | Enter one or more phone numbers | |
130 | Prompt user | Would you like to define a phone number? | Prompt Type: Button(s) First Prompt Value - Text: Home Phone (default) Next Step: 140 Second Prompt Value - Text: Business Phone, Next Step: 180 Third Prompt Value - Text: Finished Entering Phone Numbers, Next Step: 220 |
140 | Press a button | Button Name: PER_PHONE:0$pPhones_ADD_BUTTON (note, this causes the add button to be pressed for the first row in the phone grid) | |
150 | Move data | Source Field Type: Predefined Value Source Field Value: HOME Destination Field Type: User Interface Field (Note, we used this data type rather than Page Data Model because we want to trigger the defaulting that takes place when a phone type is selected on the user interface (i.e., the phone format is shown on the page)). Destination Field Name: PER_PHONE:x$PHONE_TYPE_CD Note, the "x" notation indicates the current row in the array will be populated. | |
160 | Input data | Enter the new person's home phone number in the format (415) 345-2392 | Destination Field Type: User Interface Field Destination Field Name: PER_PHONE:x$PHONE Note, because a User Interface Field is populated, the default logic associated with this field will be triggered. The default logic for this field formats the input phone number using the algorithm defined on the phone type. This means the user doesn't have to enter the phone number in the designated format, they could enter all numbers and let the system format it. |
170 | Go to a step | Next step: 130 (this loops to ask them if they want to add another phone number) | |
180 | Press a button | Button Name: PER_PHONE:0$pPhones_ADD_BUTTON (this causes the add button to be pressed for the first row in the phone grid) | |
190 | Move data | Source Field Type: Predefined Value Source Field Name: not applicable Source Field Value: BUSN Destination Field Type: User Interface Field Destination Field Name: PER_PHONE:x$PHONE_TYPE_CD (Note, the "x" notation indicates the current row in the array will be populated) | |
200 | Input data | Enter the new person's business phone number in the format (415) 345-2392 | Destination Field Type: User Interface Field Destination Field Name: PER_PHONE:x$PHONE |
210 | Go to a step | Next step: 130 (this loops to ask them if they want to add another phone number) | |
220 | Press a button | Button Name: PER_PHONE:0$pPhones_DEL_BUTTON (Note, this removes the blank row from the person phone grid so we don't get a validation error) | |
225 | Label | Enter the Person's correspondence info | |
230 | Navigate to a page | Navigation Option: Person -Correspondence Info (update) | |
240 | Set focus to a field | Press <i>Continue</i> after defining correspondence information for the new person (if any). Don't forget to SAVE the new person (note, see How To Use HTML Tags And Spans In Text for more information about the <i> and notations) | Destination Field Name: OVRD_MAIL_NAME1 |
250 | Conditional Branch | Compare Field Type: Page Data Model Compare Field Name: PER_ID Condition: = Comparison Field Type: Predefined Value Comparison Field Name: %BLANK If TRUE, Go To Step: 260 If FALSE, Go To Step: 280 | |
260 | Display text | The new person hasn't been added, please press the save button to add the new person | |
270 | Go to a step | Next step: 240 | |
275 | Label | Store person, navigate to account page and link to account | |
280 | Move data | Source Field Type: Page Data Model Source Field Name: PER_ID Destination Field Type: Temporary Storage Destination Field Name: NEW_PERSON_ID Note, we are saving the person ID as we'll need to populate it on the account / person information later in the script. | |
290 | Move data | Source Field Type: Temporary Storage Source Field Name: SAVED_ACCT_ID Destination Field Type: Page Data Model Destination Field Name: ACCT_ID Note, this step is done in anticipation of the following step that transfers the user to the account page. This step simply moves the account ID saved above to some place on the page. The name of the receiving field is important; it must be the same as one of the fields defined on the Navigation Option used to transfer to the destination transaction (this navigation option is defined on the next step). To find the appropriate field name for any transaction, display the navigation option in question. | |
300 | Navigate to a page | Navigation Option: Account - Persons (update) | |
310 | Press a button | Button Name: IM_Sect2_AddButton | |
320 | Move data | Source Field Type: Temporary Storage Source Field Name: NEW_PERSON_ID Destination Field Type: User Interface Field Destination Field Name: ACCT_PER$PER_ID | |
330 | Set focus to a field | Press <i>Continue</i> after defining the new person's relationship type. Don't forget to SAVE the changes to the account | Destination Field Name: ACCT_PER$ACCT_REL_TYPE_CD |
340 | Move data | Source Field Type: Predefined Value Source Field Name: %SAVE-REQUIRED Destination Field Type: Temporary Storage Destination Field Name: SAVE_NEEDED | |
350 | Conditional Branch | Compare Field Type: Temporary Storage Compare Field Name: SAVE_NEEDED Condition: = Comparison Field Type: Predefined Value Comparison Field Name: FALSE If TRUE, Go To Step: 380 If FALSE, Go To Step: 360 | |
360 | Set focus to a field | You have not saved this information! Press <i>Continue</i> after saving. | Destination Field Name: IM_SAVE (note, this positions the cursor on the save button) |
370 | Go to a step | Next step: 340 | |
380 | Display text | Script complete | |
390 | Height | Script Window Height: 0 Height Unit: Pixels |
Note the following about this script:
The following is an example of a script that causes a bill to be reprinted. This script prompts the user to select a bill and then sets up a new bill routing to cause it to be reprinted. This script contains examples of:
We have also supplied an alternate version of this script that has fewer steps (see Reprint A Bill - Short Version). Take the time to contrast these two versions before you decide how to construct your scripts.
Step No. | Step Type | Text Displayed In Script Area | Additional Information On The Step |
---|---|---|---|
5 | Label | Identify the correct account | |
10 | Prompt user | Is the customer associated with the bill currently displayed in the dashboard? | Prompt Type: Button(s) First Prompt Value - Text: Yes (default turned on), Next Step: 40 Second Prompt Value - Text: No, Next Step: 20 |
20 | Navigate to a page | Navigation Option: Control Central - Main | |
30 | Set focus to a field | Press <i>Continue</i> after you've selected the customer | Destination Field Name: ENTITY_NAME |
40 | Move data | Source Field Type: Predefined Value Source Field Value: %CONTEXT-ACCOUNTID (note, this is a global variable that contains the ID of the current account) Destination Field Type: Temporary Storage Destination Field Name: SAVED_ID | |
50 | Conditional Branch | Compare Field Type: Temporary Storage Compare Field Name: SAVED_ID Condition: = Comparison Field Type: Predefined Value Comparison Field Name: %BLANK If TRUE, Go To Step: 60 If FALSE, Go To Step: 90 | |
60 | Display text | The dashboard isn't populated with an account. Please select a customer before continuing. | |
70 | Go to a step | Next step: 20 | |
75 | Label | Navigate to Bill Routing page and select desired bill | |
90 | Move data | Source Field Type: Temporary Storage Source Field Name: SAVED_ID Destination Field Type: Page Data Model Destination Field Name: ACCT_ID Note, this step is done in anticipation of a subsequent step that transfers the user to the bill page. This step simply moves the account ID saved above to some place on the page. The name of the receiving field is important; it must be the same as one of the fields defined on the Navigation Option used to transfer to the destination transaction (this navigation option is defined on the next step). To find the appropriate field name for any transaction, display the navigation option in question. | |
100 | Navigate to a page | Navigation Option: Bill - Routing (update) | |
110 | Prompt user | Press OK after a bill has been selected | Prompt Type: Button(s) First Prompt Value - Text: OK, Next Step: 120 |
115 | Label | User should confirm the bill routing details and Save. | |
120 | Move data | Source Field Type: Page Data Model Source Field Name: ENDING_BAL Destination Field Type: Temporary Storage Destination Field Name: ENDING_BALANCE | |
130 | Move data | Source Field Type: Page Data Model Source Field Name: COMPLETE_DTTM Destination Field Type: Temporary Storage Destination Field Name: COMPLETION_DTTM | |
140 | Press a button | Button Name: IM_ScrollCtrl_addBtn | |
150 | Set focus to a field | This bill for %ENDING_BALANCE was completed on %COMPLETION_DTTM.
Please confirm / change the name and address of the bill. | Destination Field Name: BILL_RTGS$ENTITY_NAME1 |
160 | Set focus to a field | Press the Save button (Alt+S) to save the bill routing information | Destination Field Name: IM_SAVE |
165 | Label | Verify Save | |
170 | Move data | Source Field Type: Predefined Value Source Field Name: %SAVE-REQUIRED Destination Field Type: Temporary Storage Destination Field Name: SAVE_NEEDED | |
180 | Conditional Branch | Compare Field Type: Temporary Storage Compare Field Name: SAVE_NEEDED Condition: = Comparison Field Type: Predefined Value Comparison Field Name: FALSE If TRUE, Go To Step: 210 If FALSE, Go To Step: 190 | |
190 | Set focus to a field | You have not saved this information! Press <i>Continue</i> after saving. | Destination Field Name: IM_SAVE (note, this positions the cursor on the save button) |
200 | Go to a step | Next step: 170 | |
205 | Label | Display confirmation | |
210 | Move data | Source Field Type: Page Data Model Source Field Name: BILL_RTG$BATCH_CD Destination Field Type: Temporary Storage Destination Field Name: BATCH_CODE | |
220 | Display text | Script complete. The bill will be sent to the recipient the next time the %BATCH_CODE process executes |
The following is an example of a script that causes a bill to be reprinted. This script prompts the user to select a bill and then sets up a new bill routing to cause it to be reprinted. This script is an alternate version of Reprint A Bill - Long Version. Take the time to contrast these two versions before you decide how to construct your scripts.
Step No | Step Type | Text Displayed In Script Area | Additional Information On The Step |
---|---|---|---|
5 | Label | Prompt user for account whose bill should be reprinted. | |
10 | Prompt user | Select an option and then press Continue | Prompt Type: Dropdown First Prompt Value - Text: View bills for the customer in the dashboard (default turned on), Next Step: 20 Second Prompt Value - Text: View bills for a different customer, Next Step: 40 |
20 | Move data | Source Field Type: Predefined Value Source Field Value: %CONTEXT-ACCOUNTID (note, this is a global variable that contains the ID of the current account) Destination Field Type: Page Data Model Destination Field Name: ACCT_ID Note, this step is done in anticipation of step 50, which transfers the user to the bill page. This step simply moves the account ID saved above to some place on the page. The name of the destination field is important; it must be the same as one of the fields defined on the Navigation Option used to transfer to the destination transaction (this navigation option is defined on step 50). To find the appropriate field name for any transaction, display the navigation option in question. | |
30 | Go to a step | Next step: 50 | |
40 | Move data | Source Field Type: Predefined Value Source Field Value: %BLANK (note, this is a global variable that contains the a blank value) Destination Field Type: Page Data Model Destination Field Name: ACCT_ID Note, this step is done in anticipation of the following step that transfers the user to the bill page. This step simply resets the account ID that will be passed to the bill search page. The name of the destination field is important; it must be the same as one of the fields defined on the Navigation Option used to transfer to the destination transaction (this navigation option is defined on the next step). To find the appropriate field name for any transaction, display the navigation option in question. | |
45 | Label | Navigate to Bill Routing page and select desired bill | |
50 | Navigate to a page | Navigation Option: Bill - Routing (update) | |
60 | Prompt user | Press OK after a bill has been selected | Prompt Type: Button(s) First Prompt Value - Text: OK, Next Step: 70 |
65 | Label | User should confirm the bill routing details and Save. | |
70 | Move data | Source Field Type: Page Data Model Source Field Name: ENDING_BAL Destination Field Type: Temporary Storage Destination Field Name: ENDING_BALANCE | |
80 | Move data | Source Field Type: Page Data Model Source Field Name: COMPLETE_DTTM Destination Field Type: Temporary Storage Destination Field Name: COMPLETION_DTTM | |
90 | Press a button | Button Name: IM_ScrollCtrl_addBtn | |
100 | Set focus to a field | This bill for %ENDING_BALANCE was completed on %COMPLETION_DTTM.
Please confirm / change the name and address of the bill. | Destination Field Name: BILL_RTGS$ENTITY_NAME1 |
110 | Set focus to a field | Press the Save button (Alt+S) to save the bill routing information | Destination Field Name: IM_SAVE |
115 | Label | Verify Save | |
120 | Move data | Source Field Type: Predefined Value Source Field Name: %SAVE-REQUIRED Destination Field Type: Temporary Storage Destination Field Name: SAVE_NEEDED | |
130 | Conditional Branch | Compare Field Type: Temporary Storage Compare Field Name: SAVE_NEEDED Condition: = Comparison Field Type: Predefined Value Comparison Field Name: FALSE If TRUE, Go To Step: 160 If FALSE, Go To Step: 140 | |
140 | Set focus to a field | You have not saved this information! Press <i>Continue</i> after saving. | Destination Field Name: IM_SAVE (note, this positions the cursor on the save button) |
150 | Go to a step | Next step: 120 | |
205 | Label | Display confirmation | |
160 | Move data | Source Field Type: Page Data Model Source Field Name: BILL_RTG$BATCH_CD Destination Field Type: Temporary Storage Destination Field Name: BATCH_CODE | |
170 | Display text | Script complete. The bill will be sent to the recipient the next time the %BATCH_CODE process executes |
The following is an example of a script that guides a user through the payment plan options. This script executes the following rules:
Step No | Step Type | Text Displayed In Script Area | Additional Information On The Step |
---|---|---|---|
10 | Perform script | Subscript: CI_FINDCUST Note, this step performs a script that contains the steps that ask the user to find the customer on control central. | |
20 | Invoke function | Function: GETCCCR (retrieves an account's customer class and credit rating) If Successful, Go To Step: 40 If Error, Go To Step: 30 Send Field: Temporary Storage / SAVED_ACCT_ID Receive Field 1: Temporary Storage / CUST_CL_CD Receive Field 2: Temporary Storage / TOT_CR_RATING_PTS Note, this step invokes a function that returns the account's credit rating and customer class. | |
30 | Transfer control | Subscript: CI_FUNCERR Note, this step transfers control to a script that displays the error information and stops. | |
40 | Mathematical operation | Base Field Type: Temporary Storage > Base Field Name: TOT_CR_RATING_PTS Math Operation: + Math Field Type: Predefined Value Math Field Value: 0 Note, this step converts the credit rating held in string into a number so that it can be used in later mathematical operations that compare the credit rating to threshold values. | |
50 | Conditional Branch | Compare Field Type: Page Data Model Compare Field Name: CUST_CL_CD Condition: = Comparison Field Type: Predefined Value Comparison Field Name: R If TRUE, Go To Step: 110 If FALSE, Go To Step: 250 | |
60 | Conditional Branch | Compare Field Type: Page Data Model Compare Field Name: TOT_CR_RATING_PTS Condition: <= Comparison Field Type: Predefined Value Comparison Field Name: 600 If TRUE, Go To Step: 120 If FALSE, Go To Step: 140 | |
70 | Label | Residential Customer, Credit Rating <= 601 | |
120 | Display Text | This customer's credit rating is less than or equal to 600 and therefore payment is due immediately (no payment extensions are possible) | |
130 | Go to a step | Next step: 400 | |
140 | Prompt user | Choose between extending the date on which the system will examine this customer's debt OR adding a payment arrangement | Prompt Type: Button(s) First Prompt Value - Text: Extend collection date (default value), Next Step: 150 Second Prompt Value - Text: Setup a payment arrangement, Next Step: 180 |
145 | Label | Postpone the credit review date | |
150 | Navigate to a page | Navigation Option: Account - C&C (update) | |
151 | Move data | Source Field Type: Predefined Value Source Field Value: %CURRENT-DATE Destination Field Type: User Interface Field Destination Field Name: POSTPONE_CR_RVW_DT Note, the next step will add 5 days to this field value (thus setting the review date to 5 days in the future). | |
152 | Mathematical operation | Base Field Type: User Interface Field Base Field Name: POSTPONE_CR_RVW_DT Math Operation: + Math Field Type: Predefined Value Math Field Value: 5 days | |
160 | Set focus to a field | Please review the new credit review date and then save the change | Destination Field Name: POSTPONE_CR_RVW_DT |
170 | Go to a step | Next step: 400 | |
175 | Label | Create payment arrangement. | |
180 | Navigate to a page | Navigation Option: Payment Arrangement - Main (add) | |
190 | Set focus to a field | Select the debt to be transferred to the payment arrangement. You do this by turning on the checkboxes adjacent to the Arrears Amounts FOR EACH CANDIDATE SA IN THE SCROLL | Destination Field Name: SA_ARREARS:x$CHECKED_FOR_PA_SW |
200 | Set focus to a field | Press <i>Continue</i> after you've considered the debt on each service agreement in the scroll | Destination Field Name: IM_SectArrow_RtArrow |
209 | Move data | Source Field Type: Predefined Value Source Field Value: 6 Destination Field Type: User Interface Field Destination Field Name: INSTALLMENT Note, this step defaults a value of 6 in the Installments field. Because we used the User Interface Field type, the payment amount is automatically calculated for the user as this is the default logic for this field on this page. If we'd used a field type of Page Data Model, the default logic would not execute. | |
210 | Set focus to a field | Select the number of installments (a value of 6 was defaulted) | Destination Field Name: INSTALLMENT |
220 | Move data | Source Field Type: Predefined Value Source Field Value: CA Destination Field Type: User Interface Field Destination Field Name: CIS_DIVISION | |
225 | Set focus to a field | Specify an SA Type for the payment arrangement | Destination Field Name: SA_TYPE_CD |
230 | Set focus to a field | Press the Create button to create a new payment arrangement service agreement and transfer the selected debt to it | Destination Field Name: CREATE_SW |
240 | Go to a step | Next step: 400 | |
245 | Label | Non-residential customer with credit rating less than or equal to 700 must pay now. If the CR is over 700, choose between extending date and creating a pay plan. | |
250 | Conditional Branch | Compare Field Type: Page Data Model Compare Field Name: TOT_CR_RATING_PTS Condition: <= Comparison Field Type: Predefined Value Comparison Field Name: 700 If TRUE, Go To Step: 260 If FALSE, Go To Step: 280 | |
260 | Display Text | This customer's credit rating is less than or equal to 700 and therefore payment is due immediately (no pay plan is possible) | |
270 | Go to a step | Next step: 400 | |
280 | Prompt user | You can choose between extending the date on which the system will examine this customer's debt OR creating a pay plan | Prompt Type: Button(s) First Prompt Value - Text: Extend collection date, Next Step: 290 Second Prompt Value - Text: Setup a pay plan, Next Step: 320 |
285 | Label | Postpone the credit review date | |
290 | Navigate to a page | Navigation Option: Account - C&C (update) | |
300 | Set focus to a field | Please enter the new credit review date (set it up to 5 days in the future) and then save the change | Destination Field Name: POSTPONE_CR_RVW_DT |
310 | Go to a step | Next step: 400 | |
315 | Label | Add a payment plan | |
320 | Navigate to a page | Navigation Option: Pay Plan - Main (add) | |
330 | Set focus to a field | Select the Pay Plan Type | Destination Field Name: PP_TYPE_CD |
340 | Prompt User | Who is responsible for making these payments? | Prompt Type: Button(s) First Prompt Value - Text: Customer, Next Step: 370 Second Prompt Value - Text: Third party, Next Step: 350 |
350 | Move data | Source Field Type: Predefined Value Source Field Value: TRUE (note, this is how you turn a checkbox on) Destination Field Type: User Interface Field Destination Field Name: THRD_PTY_SW | |
360 | Set focus to a field | Select the Pay Plan Type | Destination Field Name: THRD_PTY_PAYOR_CD |
370 | Set focus to a field | Select a Pay Method | Destination Field Name: PAY_METH_CD |
380 | Set focus to a field | Enter one or more scheduled payments. The Total Amount of the scheduled payments should cover the customer's Delinquent Debt if you want the pay plan to protect the customer from additional credit and collection activity. | Destination Field Name: PPS:x$PP_SCHED_DT |
390 | Set focus to a field | Press the Save button (Alt+S) to save the pay plan | Destination Field Name: IM_SAVE |
395 | Label | Confirm save | |
400 | Move data | Source Field Type: Predefined Value Source Field Name: %SAVE-REQUIRED Destination Field Type: Temporary Storage Destination Field Name: SAVE_NEEDED | |
410 | Conditional Branch | Compare Field Type: Temporary Storage Compare Field Name: SAVE_NEEDED Condition: = Comparison Field Type: Predefined Value Comparison Field Name: FALSE If TRUE, Go To Step: 440 If FALSE, Go To Step: 420 | |
420 | Set focus to a field | You have not saved this information! Press <i>Continue</i> after saving. | Destination Field Name: IM_SAVE (note, this positions the cursor on the save button) |
430 | Go to a step | Next step: 400 | |
440 | Navigate to a page | Navigation Option: Control Central - Pay Pan (update) | |
450 | Display text | Script complete, please confirm the customer's credit and collection's information |
Server-based scripts allow an implementation to configure backend business processes. The system supports two types of server-based scripts, Plug-In scripts and Service scripts.
The topics in this section describe background topics relevant to server-based scripts.
Rather than write a java program for a plug-in spot, you can create a plug-in using the scripting "language". In essence, this is the only difference between a program-based plug-in and a script-based one. Obviously, this is a significant difference as it allows you to implement plug-ins without programming (and compilers).
The following topics describe basic concepts related to plug-in scripts.
Like program-based plug-ins, plug-in scripts:
The best way to understand a plug-in script's API is to use the View Plug-In Script Data Area hyperlink on Script - Data Area to view its parameters data area schema.
Notice the two groups: soft and hard. If you are familiar with plug-in spots, you'll recognize these as the classic soft and hard parameters:
You can write plug-in scripts for all plug-in spots that have been Java-enabled. The following points describe how to implement a plug-in script:
BPA scripts run on the client's browser and guide the end-users through business processes. Service scripts run on the application server and perform server-based processing for BPA scripts, zones and more. You may want to think of a service script as a common routine that is set up via the scripting (rather than programming).
The following topics describe basic concepts related to service scripts.
As with any common routine, a service script must declare its input / output parameters (i.e., its API). A service script's API is defined on its schema.
Any type of script may invoke a service script:
Map zones may be configured to invoke service scripts to obtain the data to be displayed. Refer to Map Zones for more information.
XAI incoming messages support interaction with service scripts allowing the outside world to interact directly with a service script.
You can also invoke a service script from a Java class.
The server can create log entries to help you debug your server scripts. These logs are only created if you do the following:
The logs contain a great deal of information including the contents of the referenced data area for Move data, Invoke business object, Invoke business service and Invoke service script steps.
You can view the contents of the logs by pressing the Show User Log button appears at the top of the browser.
Please note that all log entries for your user ID are shown (so don't share user id's!).
The demonstration database contains several sample scripts. The topics in this section describe how to copy any / all of the demonstration scripts to your implementation's database.
The demonstration database is installed in English only. If you work in a non-English language, you must execute the NEWLANG background process on the demonstration database before using it as a Compare Source environment. If you work in a supported language, you should apply the language package to the demonstration database as well.
If you don't execute NEWLANG on the demonstration database, any objects copied from the demonstration database will not have language rows for the language in which you work and therefore you won't be able to see the information in the target environment.
You need a "copy scripts" database process (DB process) configured in the target database (e.g.,, your implementation's database). This DB process must have the following instructions:
The demonstration database contains such a DB process; it's called CI_COPSC. In order to copy scripts from the demonstration database, you must first copy this DB process from the demonstration database.
You can copy the CI_COPSC DB process from the demonstration database by submitting the CL-COPDB background process in your target database. When you submit this process, you must supply it with an environment reference that points to the demonstration database. If you don't have an environment reference configured in your target database that references the demonstration database, you must have your technical staff execute a registration script that sets up this environment reference. Refer to Registering ConfigLab Environments for more information.
CL-COPDB is initially delivered ready to copy every DB process that is prefixed with CI_ from the source database (there are numerous sample DB processes in the demonstration database and this process copies them all). If you only want to copy the CI_COPSC DB process, add a table rule to the primary instruction of the CL-COPDB database process to only copy the CI_COPSC DB process. The remainder of this section assumes you have added this table rule.
When the CL-COPDB process runs, it highlights differences between the "copy scripts" DB process in your source database and the target database. The first time you run this process, it creates a root object in the target database to indicate the CI_COPSC DB process will be added to your target database. You can use the Difference Query to review these root objects and approve or reject them.
After you've approved the root object(s), submit the CL-APPCH batch process to change your target database. You must supply the CL-APPCH process with two parameters:
After you have a "copy scripts" DB process in the target database, you should add a table rule to its primary instruction to define which script(s) to copy from the demonstration database. For example, if you want to copy a single script called CI_WSS, you'd have a table rule that looks as follows
If you do not introduce this table rule to the primary instruction of the DB process, ALL scripts in the demonstration database will be copied to the target database (and this may be exactly what you want to do).
At this point, you're ready to submit the background process identified on your "copy scripts" DB process. This background process highlights the differences between the scripts in the demonstration database and the target database (the target database is the environment in which you submit the background process).
When you submit the CI_COPSC background process, you must supply it with an environment reference that points to the source database (i.e., the demonstration database).
When the CI_COPSC process runs, it simply highlights differences between the scripts in your source database and the target database. It creates a root object in the target database for every script that is not the same in the two environments (actually, it only concerns itself with scripts that match the criteria on the table rule described above). You can use the Difference Query to review these root objects and approve or reject them.
After you've approved the root object(s) associated with the script(s) that you want copied, submit the CL-APPCH batch process to cause your target database to be changed. You must supply the CL-APPCH process with two parameters:
The script maintenance transaction is used to maintain your scripts. The topics in this section describe how to use this transaction.
Use this page to define basic information about a script. Open this page using Admin Menu > Script.
Description of Page
Enter a unique Script code and Description for the script. Owner indicates if the script is owned by the base package or by your implementation (Customer Modification).
Script Type indicates if this is a BPA Script, Plug-In Script or Service Script. Refer to The Big Picture Of BPA Scripts and The Big Picture Of Server Based Scripts for more information.
Accessibility Option appears only for BPA scripts. Set this value to Accessible from Script Menu for any script that may be launched as a stand-alone script. Scripts with this configuration may be linked to a navigation option so that they may be invoked from a menu and may be configured by a user as a favorite script. Set this value to Not Accessible from Script Menu for any script that cannot be launched on its own. For example, any script that is a invoked as a sub-script from another script should have this setting. In addition, any script that is designed to be launched from within a specific portal where certain data is provided to the script should include this setting.
Enter an Application Service if the execution of the script should be secured. Refer to Securing Script Execution for more information.
Algorithm Entity appears only for plug-in scripts. Use this field to define the algorithm entity into which this script can be plugged in.
Business Object appears only for business object related plug-in scripts. Enter the Business Object whose elements are to be referenced by the plug-in script.
Script Engine Version defines the version of the XML Path Language (XPath) to be used for the script.
Click on the View Script Schema to view the script's data areas on the schema viewer window.
The tree summarizes the script's steps. You can use the hyperlink to transfer you to the Step tab with the corresponding step displayed.
Use this page to add or update a script's steps. Open this page using Admin Menu > Script and then navigate to the Step tab.
Description of Page
The Steps accordion contains an entry for every step linked to the script. When a script is initially displayed, its steps are collapsed. To see a step's details, simply click on the step's summary bar. You can re-click the bar to collapse the step's details. Please see accordions for the details of other features you can use to save time.
Select the Step Type that corresponds with the step. Refer to How To Set Up Each Step Type for an overview of the step types.
Step Sequence defines the relative position of this step in respect of the other steps. The position is important because it defines the order in which the step is executed. You should only change a Step Sequence if you need to reposition this step. But take care; if you change the Step Sequence and the step is referenced on other steps, you'll have to change all of the referencing steps.
Display Step is only enabled on BPA scripts for step types that typically don't cause information to be displayed in the script area (i.e., step types like Conditional Branch, Go to a step, Height, etc). If you turn on this switch, information about the step is displayed in the script area to help you debug the script.
Display Icon controls the icon that prefixes the Text that's displayed in the script area. Using an icon on a step is optional. This field is only applicable to BPA scripts.
Text is the information that displays in the script area when the step executes. You need only define text for steps that cause something to display in the script area.
The other fields on this page are dependent on the Step Type. The topics that follow briefly describe each step type's fields and provide additional information about steps.
Click on the View Script Schema hyperlink to view the script's data areas. Doing this opens the schema viewer window.
The View Script As Text hyperlink appears for server-based scripts only. Click on this link to view on a separate window the internal scripting commands underlying your script steps. The presented script syntax is completely valid within edit data steps.
The contents of this section describe how to set up each type of step.
The contents of this section describe common step types applicable to all script types.
Conditional branch steps allow you to conditionally jump to a different step based on logical criteria. For example, you could jump to a different step in a script if the customer is residential as opposed to commercial. In addition, several fields are required for Conditional Branch steps:
Compare Field Type and Compare Field Name define the first operand in the comparison. The Field Type defines where the field is located. The Field Name defines the name of the field. The following points describe each field type:
Condition defines the comparison criteria:
Comparison Field Type, Comparison Field Name and Comparison Value define what you're comparing the first operand to. The following points describe each field type:
The above fields allow you to perform a comparison that results in a value of TRUE or FALSE. The remaining fields control the step to which control is passed given the value:
Edit data steps provide a free format region where you can specify commands to control your script processing.
In general, the syntax available within edit data mimics the commands available within the explicit step types. However, there are a few commands that are available only within edit data. For example, the two structured commands: For, and If.
For server-based scripts, you may find it useful to create a few explicit step types and then use the View Script as Text hyperlink on the Script - Step page to better understand the edit data syntax.
Additional field required for Edit data steps:
Enter your scripting commands in the Edit Data Text field.
Go to steps allow you to jump to a step other than the next step. Additional fields required for Go To steps:
Next Step defines the step to which the script should jump.
Invoke business object steps allow you to interact with a business object in order to obtain or maintain its information.
The following additional fields are required for Invoke business object steps:
Use Warning Level to indicate whether warnings should be suppressed and if not, how they should be presented to the user. By default, warnings are suppressed. If Warn As Popup is used, the warning is displayed using the standard popup dialog. If Warn As Error is used processing is directed to the If Error, Go To step. This field is only applicable to BPA scripts.
Group Name references the data area to be passed to and from the server when communicating with the Business Object. Indicate the Action to be performed on the object when invoked. Valid values are Add, Delete, Fast Add (No Read), Fast Update (No Read), Read, Replace, Update.
The business object call will either be successful or return an error. The next two fields only appear when the call is issued from a BPA script, to determine the step to which control is passed given the outcome of the call.
If Success, Go To defines the step that is executed if the call is successful. This field is only applicable to BPA scripts.
If Error, Go To defines the step that is executed if the call returns on error. Please note that the error information is held in global variables. This field is only applicable to BPA scripts.
Invoke business service steps allow you to interact with a business service.
The following additional fields are required for Invoke business service steps:
Use Warning Level to indicate whether warnings should be suppressed and if not, how they should be presented to the user. By default, warnings are suppressed. If Warn As Popup is used, the warning is displayed using the standard popup dialog. If Warn As Error is used processing is directed to the If Error, Go To step. This field is only applicable to BPA scripts.
Group Name references the data area to be passed to and from the server when the Business Service is invoked.
The business service call will either be successful or return an error. The next two fields only appear when the call is issued from a BPA script, to determine the step to which control is passed given the outcome of the call.
If Success, Go To defines the step that is executed if the call is successful. This field is only applicable to BPA scripts.
If Error, Go To defines the step that is executed if the call returns on error. Please note that the error information is held in global variables. This field is only applicable to BPA scripts.
Invoke service script steps allow you to execute a service script.
The following additional fields are required for Invoke service script steps:
Use Warning Level to indicate whether warnings should be suppressed and if not, how they should be presented to the user. By default, warnings are suppressed. If Warn As Popup is used, the warning is displayed using the standard popup dialog. If Warn As Error is used processing is directed to the If Error, Go To step. This field is only applicable to BPA scripts.
Group Name references the data area to be passed to and from the server when the Service Script is invoked.
The service script call will either be successful or return an error. The next two fields only appear when the call is issued from a BPA script to determine the step to which control is passed given the outcome of the call.
If Success, Go To defines the step that is executed if the call is successful. This field is only applicable to BPA scripts.
If Error, Go To defines the step that is executed if the call returns on error. Please note that the error information is held in global variables. This field is only applicable to BPA scripts.
Label steps allow you to describe what the next step(s) are doing. Steps of this type are helpful to the script administrators when reviewing or modifying the steps in a script, especially when a script has many steps. When designing a script, the label steps enable you to provide a heading for common steps that belong together. The script tree displays steps of this type in a different color (green) so that they stand out from other steps.
There are no additional fields for Label steps.
Move data steps allow you to move data (from a source to a destination). The following additional fields are required for Move data steps:
Source Field Type, Source Field Name and Source Field Value define what you're moving. The following points describe each field type:
Destination Field Type and Destination Field Name define where the source field will be moved. The Field Type defines where the field is located. The Field Name defines the name of the field. The following points describe each field type:
Terminate steps cause a server-based script to end processing successfully or issue an error.
The following additional fields are required for Terminate steps:
Error indicates whether an error should be thrown or not. If error, Error Data Text must be specified, indicating the error message and any message substitution parameters. Refer to the tips zone associated with the Script page for the actual syntax of initiating an error message.
The contents of this section describe step types that are only applicable to BPA scripts.
Display text steps cause a text string to be displayed in the script area. Steps of this type can be used to provide the user with guidance when manual actions are necessary. In addition, they can be used to provide confirmation of the completion of tasks.
The information you enter in the Text field is displayed in the script area when the step is executed.
The text string can contain substitution variables and HTML formatting commands. Also note that for debugging purposes, you can display an entire data area (or a portion thereof) by entering %+...+% where ... is the name of the node whose element(s) should be displayed.
Height steps are used to change the height of the script area to be larger or smaller than the standard size.
The following additional fields are required for Height steps:
Script Window Height defines the number of Pixels or the Percentage (according to the Height Unit) that the script window height should be adjusted. The percentage indicates the percentage of the visible screen area that the script area uses. For example, a percentage value of 100 means that the script area will use the entire area.
Input data steps cause the user to be prompted to populate an input field in the script area. The input value can be saved in a field on a page or in temporary storage. A Continue button always appears adjacent to the input field. You may configure steps of this type to display one or more buttons in addition to the Continue button. For example, you may want to provide the ability for the user to return to a previous step to fix incorrect information. The user may click on any of these buttons when ready for the script to continue.
The following additional fields are required for Input Data steps:
Destination Field Type and Destination Field Name define where the input field will be saved. The Field Type defines where the field is located. The Field Name defines the name of the field. The following points describe each field type:
The Prompt Values grid may be used to define additional buttons. A separate button is displayed in the script area for each entry in this grid.
Invoke function steps are used to retrieve or update data independent of the page currently being displayed. For example, if you design a script that takes different paths based on the customer's customer class, you could invoke a function to retrieve the customer's customer class. Doing this is much more efficient than the alternative of transferring to the account page and retrieving the customer class from the Main page.
The following additional fields are required for Invoke Function steps:
Function defines the name of the function. The function's Long Description is displayed below.
When a function is invoked, it will either be successful or return an error. The next two fields control the step to which control is passed given the outcome of the function call:
The Send Fields grid defines the fields whose values are sent to the function and whose field value source is not Defined On The Function. For example, if the function receives an account ID, you must define the name of the field in the script that holds the account ID.
The Receive Fields grid defines the fields that hold the values returned from the function. For example, if the function returns an account's customer class and credit rating, you must set up two fields in this grid.
Invoke map steps are used to invoke a UI Map to display, capture and update data using an HTML form. You may configure steps of this type to display one or more buttons in addition to the Continue button. For example, you may want to provide the ability for the user to return to a previous step to fix incorrect information. The user may click on any of these buttons when ready for the script to continue.
The following additional fields are required for Invoke map steps:
Group Name references the data area to be passed to and from the server when rendering the HTML form associated with the Map.
Use Target Area to designate where the map will be presented.
The Returned Values grid contains a row for every action button defined on the map.
Mathematical operation steps allow you to perform arithmetic on fields. You can also use this type of step to add and subtract days from dates. For example, you could calculate a date 7 days in the future and then use this value as the customer's next credit review date. The following additional fields are required for Mathematical Operation steps:
Base Field Type and Base Field Name define the field on which the mathematical operation will be performed. The Field Type defines where the field is located. The Field Name defines the name of the field. The following points describe each field type:
Math Operation controls the math function to be applied to the Base Field. You can specify +, -, /, and *. Note, if the base field is a date, you can only use + or -.
Math Field Type, Math Field Name and Math Field Value define the field that contains the value to be added, subtracted, divided, or multiplied. The following points describe each field type:
Navigate to a page steps cause a new page (or tab within the existing page) to be displayed in the object display area. Steps of this type are a precursor to doing anything on the page. The following additional field is required for Navigate to a page steps:
Navigation Option defines the transaction, tab, access mode (add or change) and any context fields that are passed to the transaction in change mode. For example, if you want a script to navigate to Person - Characteristics for the current person being displayed in the dashboard, you must set up an appropriate navigation option. Refer to Defining Navigation Options for more information.
Perform script steps cause another BPA script to be performed. After the performed script completes, control is returned to the next step in the original script. You might want to think of the scripts referred to on steps of this type as "subroutines". This functionality allows you to encapsulate common logic in reusable BPA scripts that can be called from other BPA scripts. This simplifies maintenance over the long term.
The following additional field is required for Perform script steps:
Subscript is the name of the script that is performed.
Press a button steps cause a button to be pressed in the object display area or in the button bar. For example, you could use this type of step to add a new row to a person's characteristic (and then you could use a Move Data step to populate the newly added row with a given char type and value). The following additional fields are required for Press a button steps:
Button Name is the name of the button to be pressed. This button must reside on the currently displayed tab page (or in the action bar at the top of the page). Refer to How To Find The Name Of A Button for more information.
Prompt user steps cause the user to be presented with a menu of options. The options can be presented using either buttons or in the contents of a drop down. You can also use steps of this type to pause a script while the user checks something out (and when the user is ready to continue with the script, they are instructed to click a prompt button). The following additional fields are required for Prompt User steps:
Prompt Type controls if the prompt shown in the script area is in the form of Button(s) or a Dropdown. Note, if you use a Dropdown, a Continue button appears adjacent to the dropdown in the script area when the step executes. The user clicks the Continue button when they are ready for the script to continue.
The Prompt Values grid contains a row for every value that can be selected by a user. Note, if you use a Prompt Type of Button(s), a separate button is displayed in the script area for each entry in this grid.
Set focus to a field steps cause the cursor to be placed in a specific field on a page. A Continue button always appears in the script area when this type of step executes. The user may click the Continue button when they are ready for the script to continue. You may configure steps of this type to display one or more buttons in addition to the Continue button. For example, you may want to provide the ability for the user to return to a previous step to fix incorrect information. The user may click on any of these buttons when ready for the script to continue.
The following additional fields are required for Set focus to a field steps:
Destination Field Name defines the field on which focus should be placed. This field must reside on the currently displayed tab page. Refer to How To Find The Name Of User Interface Fields for instructions on how to find the appropriate Field Name.
The Prompt Values grid may be used to define additional buttons. A separate button is displayed in the script area for each entry in this grid.
Transfer control steps cause the current BPA script to terminate and the control to pass to another BPA script. You might want to construct a BPA script with steps of this type when the script has several potential logic paths and you want to segregate each logic path into a separate BPA script (for ease of maintenance).
The following additional fields are required for Transfer control steps:
Subscript is the name of the script to which control is transferred.
The contents of this section provide additional information about steps.
Follow these steps to find the name of a field that resides on a page:
The field names that you'll reference in your scripts are defined on the left side of the HTML (e.g., ENTITY_NAME, ACCT_ID, CUST_CL_CD, etc.).
The names of fields that reside in scrolls are in a slightly different format. The following is an example of the HTML for the persons scroll that appears on Account - Person. Notice that the fields in the scroll are prefixed with the name of the scroll plus a $ sign. For example, the person's ID is called ACCT_PER$PER_ID.
The names of fields that reside in grids are in a slightly different format. The following is an example of the HTML for the names grid that appears on Person - Main. Notice that the fields in the grid are prefixed with the name of the grid plus a :x$. For example, the person's name is called PER_NAME:x$ENTITY_NAME. When you reference such a field in your script, you have the following choices:
You find the name of a Page Data Model field in the same way described under How To Find The Name Of User Interface Fields. The only restriction is that you cannot refer to hidden / derived fields. However, you can refer to ANY of the object's fields regardless of the tab page on which they appear. For example, if you position the object display area to the Main tab of the Account transaction, you can reference fields that reside on all of the tab pages.
If you want a Press a button step to press a button in the button bar, use one of the following names:
Follow these steps to find the name of other buttons that reside in the object display area:
You can substitute field values into a step's text string. You do this by prefixing the field name whose value should be substituted in the string with a %. For example, the message, "On %COMPLETION_DTTM this bill was completed, it's ending balance was %ENDING_BALANCE" contains two substitution variables (the bill's completion date / time and the bill's ending balance).
To substitute the value of an element from a data area you need to reference its XPath location as follows: %=XPath=%. If you want to substitute the whole XML node, not just the value, you need to reference it as follows %+XPath+%.
Only fields linked to the current To Do and fields that reside in temporary storage and global variables can be substituted into a text string.
You can also substitute field values into the verbiage displayed in prompts using the same technique.
You can use HTML tags in a step's text string. For example, the word "Continue" will be italicized in the following text string "Press<i>Continue</i> after you've selected the customer" (the <i> and </i> are the HTML tags used to indicate that the surrounded text should be italicized).
The following are other useful HTML tags:
Please refer to an HTML reference manual or website for more examples.
You can also use "spans" to customize the look of the contents of a text string. For example, your text string could be "Press Continue after you've selected the customer". This would make the word "Continue" appear as large, bold, Courier text. Please refer to a Cascading Style Sheets (CSS) reference manual or website for more examples.
Some steps can reference fields called Predefined Values. For example, if you want to compare an input value to the letter "Y", the letter Y would be defined as a Predefined Value's field value.
Special constants are used for fields defined as switches. When you move TRUE to a switch, it turns it on. When you move FALSE to a switch, it turns it off.
You can use a global variable as a Predefined Value. For example, if you wanted to move the current date to a field, you'd indicate you wanted to move a Predefined Value named %CURRENT_DATE.
As described above, some steps can reference fields called Predefined Values. In addition to referencing an ad hoc constant value (e.g., the letter Y), you can also reference a global variable in such a field value. A global variable is used when you want to reference system data. The following global variables exist:
In addition, if an Invoke Function step returns an error, the following global variables contain information about the error:
Input Data and Move Data steps can create fields in temporary storage. You specify the name of the temporary storage field in the step's Field Name. The name of the field must NOT begin with % and must not be named the same as the global variables. Besides this restriction, you can use any Field Name that's acceptable to JavaScript (i.e., you can name a field in temporary storage almost anything). Keep in mind that field names are case-sensitive.
Before we discuss how to work with dates in your scripts, we need to point out that there are two types of date fields: date-only and date-time. Date-only fields only contain a date. Date-time fields contain both a date and a time. The following topics describe how to work with dates on the various step types.
If you intend to use a Move data step to populate a date-time field, please be aware of the following:
If you intend to use a Move data step to populate a date-only field, please be aware of the following:
If you intend to use a Mathematical operation step to calculate a date, you can reference both date-only and date-time fields. This is because mathematical operations are only performed against the date portion of date-time fields.
Mathematical operations are limited to adding or subtracting days, months and years to / from a date.
If you intend to use an Input data step on a date-time field, please be aware of the following:
If you intend to use an Input data step to populate a date-only field, please be aware of the following:
As described under Executing A Script When A To Do Entry Is Selected, you can set up the system to automatically launch a script when a user selects a To Do entry. These types of scripts invariably need to access data that resides on the selected To Do entry. The following points describe the type of information that resides on To Do entries:
You can access this information in the following types of steps:
A To Do entry's sort key values are accessed by using a Field Type of Current To Do Information and a Field Name of SORTKEY[index]. Note, you can find an entry's potential sort keys by displaying the entry's To Do type and navigating to the Sort Keys tab. If you want to reference the first sort key, use an index value of 1. If you want to use the second sort key, use an index value of 2 (and so on).
A To Do entry's drill key values are accessed by using a Field Type of Current To Do Information and a Field Name of DRILLKEY[index]. Note, you can find an entry's potential drill keys by displaying the entry's To Do type and navigating to the Drill Keys tab. If you want to use the first drill key, use an index value of 1. If you want to use the second drill key, use an index value of 2 (and so on).
A To Do entry's message parameters are accessed by using a Field Type of Current To Do Information and a Field Value of MSGPARM[index]. Note, because a To Do type can have an unlimited number of messages and each message can have different parameters, finding an entry's message parameters requires some digging. The easiest way to determine these values is to display the To Do entry on To Do maintenance. On this page, you will find the entry's message category/number adjacent to the description. Once you know these values, display the message category/number on Message Maintenance. You'll find the message typically contains one or more %n notations (one for each message parameter). For example, the message text The %1 non-cash deposit for %2 expires on %3 has three message parameters. You then need to deduce what each of the message parameters are. You do this by comparing the message on the To Do entry with the base message (it should be fairly intuitive as to what each message parameter is). If we continue using our example, %1 is the non-cash deposit type, %2 is the account name, and %3 is the expiration date. You can access these in your scripts by using appropriate index value in MSGPARM[index].
A To Do entry's unique ID is accessed by using a Field Type of Current To Do Information and a Field Value of TD_ENTRY_ID.
In addition, any of the above fields can be substituted into a text string or prompt. Simply prefix the To Do field name with a % as you would fields in temporary storage. For example, assume you want your script to display the following text in the script area: "ABC Supply does not have a bill cycle" (where ABC Supply is the account's name). If the first sort key linked to the To Do entry contains the account's name, you'd enter a text string of %SORTKEY[1] does not have a bill cycle.
Various step types involve referencing field elements residing in the script's data areas. To reference an element in a data area you need to provide its absolute XPath notation starting from the data area name. For example, use "CaseLogAdd/caseID" to reference a top-level "caseID" element in a script data area called "CaseLogAdd".
You don't have to type in long XPath notions. Use the View Script Schema hyperlink provided on the Script - Step tab page to launch the script's data areas schema.
Doing this opens the schema viewer window where you can:
You can also use the View Data Area, View Service Script Data Area, or View Plug-In Script Data Area links on Script - Data Area to the same effect. These open up the schema viewer for a specific data area respectively.
Use this page to define the data areas used to pass information to and from the server or any other data area describing your temporary storage. Open this page using Admin Menu > Script and then navigate to the Data Area tab.
Description of Page
The grid contains the script's data areas declaration. For steps that invoke an object that is associated with a schema, you must declare the associated schema as a data area for your script. In addition, if you have defined one or more data areas to describe the script's temporary storage, you need to declare them too. The following bullets provide a brief description of each field on a script data area:
The View Service Script Data Area link appears for service scripts only. Use this link to view the script's parameters data area schema in the schema viewer window.
The View Plug-In Script Data Area link appears for plug-in scripts only. Use this link to view the script's parameters data area schema in the schema viewer window.
Use this page to define the data elements passed to and from a service script. Open this page using Admin Menu > Script and then navigate to the Schema tab.
Description of Page
The contents of this section describe the zones that are available on this portal page.
The General Information zone displays the script name and description.
The Schema Editor zone allows you to edit the service script's parameters schema. The purpose of the schema is to describe the input and output parameters used when invoking the script.
The Schema Usage Tree zone summarizes all cross-references to this schema. These may be other schemas including this schema in their structure definition, scripts and XAI Inbound Services. For each type of referencing entity, the tree displays a summary node showing a total count of referencing items. The summary node appears if at least one referencing item exists. Expand the node to list the referencing items and use their description to navigate to their corresponding pages.
Use this page to define a script's eligibility rules. Open this page using Admin Menu > Script and then navigate to the Eligibility tab.
Description of Page
Use the Eligibility Option to indicate whether the script is Always Eligible, Never Eligible or to Apply Eligibility Criteria. The remaining fields on the page are only visible if the option is Apply Eligibility Criteria.
The Eligibility Criteria Group scroll contains one entry for each group of eligibility criteria. The following fields may be defined for each group:
The grid that follows contains the script's eligibility criteria. Think of each row as an "if statement" that can result in the related eligibility group being true or false. For example, you might have a row that indicates the script is eligible if the current account in context belongs to the residential customer class. The following bullets provide a brief description of each field on an eligibility criterion. Please refer to Defining Logical Criteria for several examples of how this information can be used.
Use the Script Merge page to modify an existing script by copying steps from other scripts. The following points summarize the many diverse functions available on the Script Merge transaction:
Open Admin Menu > Script Merge to open this page.
Description of Page
For Original Script, select the target script for merging steps.
For Merge From Script, select the template script from which to copy the steps.
The left portion of the page displays any existing steps for the Original Script. The right portion of the page displays the existing steps for the Merge From Script.
You can use the Copy All button to copy all the steps from the Merge From script to the Original script. If you use Copy All, the steps are added to the end of the original script.
Each time you save the changes, the system renumbers the steps in the original script using the Start From Sequence Number and Increment By.
Merge Type indicates Original for steps that have already been saved in the original script or Merge for steps that have been merged, but not yet saved. The Sequence, Step Type and Description for each step are displayed.
The topics that follow describe how to perform common maintenance tasks:
If you need to resequence the steps:
The steps are given new sequence numbers according to their order in the grid.
If you want to remove a record linked to the Original script, click the "-" button to the left of the record.
For example, to remove the Navigate to a page step, use the "-".
After removal, the grid displays:
You can move any of the steps from the Merge From script to the original script by clicking the left arrow adjacent to the desired step. Once a record is moved it disappears from the Merge From information and appears in the Original information with the word Merge in the Merge Type column.
For example, to copy the Prompt user step, click the left arrow.
The step is moved to the left portion of the page.
If you have moved a row to the original script by mistake, you can remove it by clicking the right arrow adjacent to the appropriate record.
Invoke function steps are used to retrieve or update data independent of the page currently being displayed. For example, if you design a script that takes different paths based on the customer's customer class, you could invoke a function to retrieve the customer's customer class. Doing this is much more efficient than the alternative of transferring to the account page and retrieving the customer class from the Main page.
An Invoke function step retrieves or updates the relevant data by executing a service (on the server). These types of steps do not refer to the service directly. Rather, they reference a "function" and the function, in turn, references the application service. This means that before your scripts can invoke application services, you must set up functions.
The topics in this section describe how to set up a function.
Use this page to define basic information about a function. Open this page using Admin Menu > Function .
Description of Page
Enter a unique Function code and Description for the function.
Use the Long Description to describe, in detail, what the function does.
Define the Internal Service that the function invokes.
Click the View XML hyperlink to view the XML document used to pass data to and from the service. Doing this causes the XML document to be displayed in the Application Viewer.
The tree summarizes the following:
Use this page to add or update the fields sent to the service. Open this page using Admin Menu > Function and then navigate to the Send Fields tab.
Description of Page
Use Sequence to define the order of the Send Fields.
Enter a unique Function Field Name and Description for each field sent to the application service. Feel free to enter Comments to describe how the field is used by the service.
Use Field Value Source to define the source of the field value in the XML document sent to the service:
Regardless of the Field Value Source, use XML Population Logic to define the XPath expression used to populate the field's value in the XML document sent to the service.
Use this page to add or update the fields received from the service. Open this page using Admin Menu > Function and then navigate to the Receive Fields tab.
Description of Page
Use Sequence to define the order of the Receive Fields.
Enter a unique Function Field Name and Description for each field received from the service. Feel free to enter Comments to describe the potential values returned from the service.
Turn on Required if the invoker must use the field.
Regardless of the Field Value Source, use XML Population Logic to define the XPath expression used to retrieve the field's value from the XML document received from the service.
The Application Viewer allows you to explore meta-data driven relationships and other deliverable files online.
To open the application viewer from within your application, navigate to Admin Menu > Application Viewer . The application viewer may also be launched from other locations for example when viewing a section of the online help files that contain hypertext for a table name, clicking on that hypertext brings you to the definition of that table in the data dictionary.
The Tool Bar provides the main controls for using the Application Viewer. Each button is described below.
The Data Dictionary button switches to the Data Dictionary application.
The Physical button changes the display in the List Panel from a logical name view to a physical name view. Note that the Tables are subsequently sorted by the physical name and therefore may not be in the same order as the logical name view. Once clicked, this button toggles to the Logical button.
The Logical button changes the display in the List Panel from a physical name view to a logical name view. Note that the Tables are subsequently sorted by the logical name and therefore may not be in the same order as the physical name view. Once clicked, this button toggles to the Physical button.
These buttons are only available in the Data Dictionary.
The Collapse button closes any expanded components on the list panel so that the child items are no longer displayed.
This button is only available in the Data Dictionary viewer.
The Attributes button changes the display in the Detail Panel from a related tables view to an attribute view. Once clicked, this button toggles to the Schema button.
The Schema button changes the display in the Detail Panel from an attribute view to a related tables view. Once clicked, this button toggles to the Attributes button. Note that only tables have this view available. Columns are always displayed in an attribute view.
These buttons are only available in the Data Dictionary.
The Maint. Object button switches to the Maintenance Object viewer application.
The Group List button groups the list of maintenance objects by the function modules they are associated with. A maintenance object may appear in multiple groups if it is part of more than one module. Once clicked, this button toggles to the Ungroup List button.
The Ungroup List lists the maintenance objects in alphabetical order. Once clicked, this button toggles to the Group List button.
These buttons are only available in the Maintenance Object viewer.
The Algorithm button switches to the Algorithm viewer application.
The Batch Control button switches to the Batch Control viewer application.
The To Do Type button switches to the To Do Type viewer application.
The Description button changes the display in the List Panel to Description (Code) from Code (Description). Note that the list is subsequently sorted by the description. Once clicked, this button toggles to the Code button.
The Code button changes the display in the List Panel to Code (Description) from Description (Code). Note that the list is subsequently sorted by the Code. Once clicked, this button toggles to the Description button.
These buttons are only available in the Batch Control and To Do Type viewers.
The Cobol Source button switches to the Source Code viewer. This button is not available when you are already in the Source Code viewer.
You are prompted to enter the name of the source file you want to view. The name of the source code file should be entered without the extension.
The Load Source button loads another source file that you specify. This button is only available in the Source Code viewer.
You are prompted to enter the name of the source file you want to view. The name of the source code file should be entered without the extension.
The Used By switches the tree in the list panel to a child-parent view. The source file is used by the files listed in the tree. Once clicked, this button toggles to the Uses button.
The Uses button switches the tree in the list panel to a parent-child view. The source file uses the files listed in the tree. Once clicked, this button toggles to the Used By button.
These buttons are only available in the Source Code viewer.
The Service XML button switches to the Service XML viewer. This button is not available when you are already in the Service XML viewer.
You are prompted to enter the name of the service XML file you want to view. The name of the service XML file should be entered without the extension.
The Select Service button loads another service XML file that you specify. This button is only available in the Service XML viewer.
You are prompted to enter the name of the service XML file you want to view. The name of the service XML file should be entered without the extension.
The Java Docs button switches to the Java Docs viewer.
This button is only available in the Java Docs viewer.
The Classic button launches the classic Javadocs viewer on a separate window. If you are more comfortable with that look you can use this viewer instead.
The Preferences button allows you to set optional switches used by the Application Viewer. Refer to Application Viewer Preferences for more information.
The Help button opens the Application Viewer help system. You used this button to access this information.
The About button opens a window that shows when was each Application Viewer data component recently built.
Data for all application viewer components may be regenerated to incorporate up-to-date implementation-specific information. Refer to Application Viewer Generation for further details.
This "slider" icon allows you to resize the list panel and detail panel to your preferred proportions.
The data dictionary is an interactive tool that allows you to browse the database schema and to graphically view relationships between tables in the system.
To open the data dictionary, click the Data Dictionary button. You can also open the data dictionary by clicking the name of a table in other parts of the application viewer or in the online help documentation.
The list panel displays a list of tables and their columns. The list panel can list the table names by either their logical names or their physical names. Click the appropriate button on the tool bar to switch between the two views. The list is displayed in alphabetical order, so the order may not be the same in both views. Both views function in a similar manner.
In the list panel, you can navigate using the following options:
The columns in the list panel may display key information as well as the column name:
If you hover your cursor over an icon, the tool tip indicates the key type.
The language-specific, logical name of each field is shown adjacent to the physical column name in the data dictionary. You can enter an override label for a table / field's to be used throughout the system as the field's logical name. Here too it is the override label that is shown.
The Data Dictionary detail panel displays the details of the selected item. There are three main displays for the Detail Panel:
The Related Tables view displays information about the table's parent tables and child tables. Click the Schema button in the tool bar to switch to related tables view.
In the related tables view, you can navigate using the following options:
The table detail view displays information about the selected table. Click Attributes (in the toolbar) to switch to the table detail view.
In the table detail view, you can navigate using the following options:
Click on a column name in the list panel to switch to the column detail view. The Column Detail view displays information about the selected column.
In the column detail view, you can navigate using the following options:
If the selected column is a lookup field its valid values are also listed. Notice that you can enter an override description for lookup values. In this case the override description is shown.
The maintenance object viewer is an interactive tool that allows you to view a schematic diagram of a maintenance object. A maintenance object is a group of tables that are maintained as a unit.
To open the Maintenance Object Viewer, click the Maint. Object button in the application viewer or click a maintenance object icon in the Data Dictionary.
The list panel displays a list of maintenance objects. The list panel can also group the maintenance objects by their function module. Click the appropriate button on the tool bar to switch between the grouped and ungrouped lists. The grouped list may include a maintenance object more than once (if it is included in more than one module).
In the list panel, you can navigate using the following options:
The Maintenance Object detail panel displays a schematic of the selected maintenance object.
In the detail panel, you can navigate using the following options:
The algorithm viewer is an interactive tool that allows you to view algorithm types (grouped by their plug-in spot) and their related algorithms.
To open the Algorithm Viewer, click the Algorithm button in the application viewer. The Algorithm viewer may also be opened from certain locations in the online help documentation.
The list panel displays a list of algorithm types and their related algorithms, grouped by their plug-in spot.
In the list panel, you can navigate using the following options:
The Algorithm plug-in spot detail panel displays further information about the selected plug-in spot.
The Algorithm Type detail panel displays further information about the selected algorithm type.
In the Algorithm Type detail panel, you can navigate using the following options:
The Algorithm detail panel displays further information about the selected algorithm.
The batch control viewer is an interactive tool that allows you to view batch controls.
To open the Batch Control Viewer, click the Batch Control button in the application viewer. The Batch Control viewer may also be opened from certain locations in the online help documentation.
The list panel displays a list of batch controls. The list panel can display the list of batch controls sorted by their code or sorted by their description. Click the appropriate button on the tool bar to switch between sorting by the code and description.
In the list panel, you can click the batch control to display information about the batch control in the detail panel.
The batch control detail panel displays further information about the selected batch control.
In the batch control detail panel, you can navigate using the following options:
The to do type viewer is an interactive tool that allows you to view to do types defined in the system.
To open the To Do Type Viewer, click the To Do Type button in the application viewer. The To Do Type viewer may also be opened from certain locations in the online help documentation.
The list panel displays a list of To Do types. The list panel can display the list of To Do types sorted by their code or sorted by their description. Click the appropriate button on the tool bar to switch between sorting by the code and description.
In the list panel, you can click the To Do type to display information about the To Do type in the detail panel.
The To Do type detail panel displays further information about the selected To Do type.
In the To Do type detail panel, you can navigate using the following options:
The source code viewer is an interactive tool that allows you to browse the source code of modules that execute on the application server. It currently supports Cobol modules only.
There are many ways to access the source code viewer:
The list panel displays a tree of Program Sections, Copybooks, SQL Includes, Programs, and SQL statements that are used by the selected source file. You can change the listed items types using Application Viewer Preferences.
The list panel can list the source code's children (source code that the file uses) or the parents (source code that uses the file). Click the appropriate >button on the tool bar to switch between the two views.
In the list panel, you can navigate using the following options:
The detail panel displays the source code of the selected file.
You can navigate using the following options:
The service XML viewer is an interactive tool that allows you to browse the XML files of service programs that execute on the application server.
You can access the service XML viewer as follows:
The overview panel displays a high level nodes and list names structure of the XML document.
In the overview panel, you can click on any node item to position the detail panel to view that item.
The detail panel displays nodes and attributes of the selected XML file.
You can click on the xpath button to view the XML path that should be used to reference the selected node in the XML document. The box at the top of the overview panel changes to display this information.
The Java Docs viewer is an interactive tool that allows you to browse Java documentation files (Javadocs) for Java classes that execute on the application server.
To open the Java Docs viewer from within the application viewer, click the Java Docs button. Additionally, the algorithm viewer allows you to view the Javadocs of an algorithm program written in Java.
The list panel displays a tree of Java packages where each package may be expanded to list the Java interfaces classes it includes.
In the list panel, you can navigate using the following options:
The list details panel designates the interfaces and the classes as follows:
If you hover the cursor over the icon, the tool tip indicates whether it's an interface or a class.
The package detail panel displays a summary of the various Java classes that are included in the selected Java package.
Click the Java class name to display information about the Java class in the detail panel.
The detail panel displays Java documentation information about the selected Java interface or class.
You can navigate using hyperlinks to other locations in the current detail panel or to view the details of other Java interfaces / classes.
This panel displays Optional Switches that can be used to affect the behavior of the Application Viewer.
When you are using a product that includes the source code viewer, the preferences panel includes Source Tree Icon Display options. These options are used to suppress the display of certain icons from the Source Tree. This is used to (for example) hide the copybooks from the display. Select the items that you want view in the source tree and click OK.
The Available Languages allows you to select the language in which the labels and buttons are displayed. Select your desired language and click OK.
You can run the Application Viewer as a stand-alone application (i.e., you do not need to launch it from the online application environment). To run it as a stand-alone application, you should copy the Application Viewer files (all files in the appViewer directory) and the online help files (all files in the help directory) to the server on which you want to run the Application Viewer.
To start the application viewer in stand-alone mode, launch the appViewer.html file (located in the appViewer directory).
You can configure the Application Viewer for stand-alone operation by modifying options in a configuration file. The Application Viewer comes with a default configuration file called config_default.xml (located in the appViewer\config directory). Create a copy of the default configuration file and rename it to config.xml. Modify the options described in the following table to suit the needs of your installation.
Option | Description |
---|---|
defaultLanguage | The default language used when the application viewer is started. Available values are those marked as language enabled on the language page. |
defaultView | The default view then the application viewer is started. Available values include: - Data Dictionary - Source Viewer |
dataDictionary | Whether the Data Dictionary is available or not: - Y - N |
sourceCode | Whether the Source Code Viewer is available or not: - Y - N |
baseHelpLocation | The location of the stand-alone online help in relation to the application viewer. Specify the directory structure relative to the location of the directory in which the Application Viewer files are located. Note that this is the directory in which the language subdirectories for the online help are located. The default location is: ../help |
appViewerHelp | The default help topic that is launched when the Help button is clicked in the Application Viewer. Specify a help file and anchor that is under the appropriate language directory under the baseHelpLocation. The default is: Framework/Admin/91AppViewer.html#SPLINKApplication_Viewer |
The following excerpt shows an example Application Viewer configuration.
<?xml version="1.0" encoding="UTF-8" ?>
<configuration>
<option id="defaultLanguage">PTB</option>
<option id="defaultView">Data Dictionary</option>
<option id="dataDictionary">Y</option>
<option id="sourceCode">Y</option>
<option id="baseHelpLocation">../help</option>
<option id="appViewerHelp">Framework/Admin/91AppViewer.html#SPLINKApplication_Viewer</option>
</configuration>
The Application Viewer is initially delivered with COBOL source and service XML information only.
The other components of the application viewer are generated on site.
These processes have been introduced so that you can more easily incorporate your implementation-specific information into the application viewer.
To keep the information shown in the application viewer current it is important to execute these background processes after you introduce changes to the corresponding system data.
This section describes how to configure your third party reporting tool and how to define your reports in the system to enable users to submit reports online.
The topics in this section describe the approach for designing and defining your system reports.
Your DBMS, your product, and BI Publisher or Business Objects Enterprise / Crystal Reports can work together to produce reports. You may choose to use a different reporting tool, but this may not be a trivial effort. This section provides high-level information about some of the business requirements that are being solved with the reporting solution.
The system supports a multi-language implementation and the reporting solution for the system must also support a multi-language implementation.
In order to provide the above functionality, the third party reporting tool must do the following:
Although reports are rendered in your reporting tool, users must be able to request ad-hoc reports from within the system (assuming users have the appropriate security access).
The following diagram provides an overview of where data is stored for your reports for integration with BI Publisher.
The DBMS contains the SQL used to retrieve the data on your reports (residing in database functions).
The following diagram provides an overview of where data is stored for your reports for integration with Business Objects Enterprise.
The application contains:
Business Objects Enterprise contains:
The DBMS contains the SQL used to retrieve the data on your reports (residing in stored procedures).
A user may request an ad hoc report from within your product:
The reporting tools' scheduler creates reports (as per your schedule)
A user can request an ad-hoc report from within the reporting tool
As described above, ad-hoc reports requested from within your product are displayed immediately after they are generated in a new browser window
Crystal's report repository can be used to retrieve historical versions of a report. The Report History page allows users to open the Crystal's report execution history page and request a view of this report.
This section contains topics specific about configuring the product to interoperate with BI Publisher.
The base product provides an installation algorithm plug-in spot called Reporting Tool. This plug-in spot should contain an algorithm that invokes the third party reporting tool real-time.
For BI Publisher, the system provides an algorithm type called F1-BIPR-INV, which invokes BI Publisher.
These algorithms rely on information defined in the Reporting Options table: the reporting server, reporting folder and the user name and password for accessing the reporting tool. The values in the reporting options should have been set up when the system was installed. Contact your system administrator if there are any problems with the values defined on the reporting options.
To use the algorithm types to invoke BI Publisher, perform the following steps:
For many of your reports, you probably want the report to be produced on a regular basis according to a scheduler. The reporting solution relies on the BI Publisher software to provide the batch scheduler functionality. Refer to BI Publisher documentation for details about configuring the batch scheduler.
This section contains topics specific about configuring the product to interoperate with Business Objects Enterprise.
The base product provides an installation algorithm plug-in spot called Reporting Tool. This plug-in spot should contain an algorithm that invokes the third party reporting tool real-time.
For Business Objects Enterprise, the system provides an algorithm type called RPTE-INV, which invokes Business Objects Enterprise.
These algorithms rely on information defined in the Reporting Options table: the reporting server, reporting folder and the user name and password for accessing the reporting tool. The values in the reporting options should have been set up when the system was installed. Contact your system administrator if there are any problems with the values defined on the reporting options.
To use the algorithm types to invoke one of the reporting tools, perform the following steps:
For many of your reports, you probably want the report to be produced on a regular basis according to a scheduler. The reporting solution relies on the Business Objects Enterprise software to provide the batch scheduler functionality. Refer to Business Objects Enterprise documentation for details about configuring the batch scheduler.
The product provides a report history page to display report instances that were produced via the batch scheduler and are stored in a repository. The report history page relies on the reporting tool algorithm to invoke Business Objects Enterprise and display the historic instances for the selected report.
The reporting options are provided as a mechanism for defining information needed by your reporting solution. The base product uses the reporting options to define information needed to access the reporting tool from within the system using the algorithm defined on the installation option.
Navigate to this page using Admin Menu > Reporting Options.
Description of page
The following information must be defined to interface with BI Publisher real-time. Contact your system administrator to report any problems with the settings defined here.
Reporting Folder Defines the shared folder where reports are stored.
For Business Objects Enterprise, defines the name of the virtual directory on the server where Java Service pages (JSP) are located. The reporting tool algorithm uses this information to construct the URL to launch the reporting tool. The reporting tool algorithm assumes that a JSP named "logon.jsp" is located there.
Reporting Server Defines the URL of the web application where the reporting tool is installed. For example, using BI Publisher, the format is: http://<BI Publisher Server>:<port>.
Reporting Tool User ID Not applicable when integrating with BI Publisher.
For Business Objects Enterprise, defines the user id to use when logging in.
Reporting Tool Password Not applicable when integrating with BI Publisher.
For Business Objects Enterprise, defines the password to use when logging in.
Where Used
This information is used by the reporting tool algorithm on the installation option to invoke the reporting tool software.
Implementations may use reporting options to record other information needed for their reporting tool.
For each report supplied by your installation, use the report definition page to define various attributes of the report.
Navigate to this page using Admin Menu > Report Definition.
Description of page
Enter an easily recognizable Report Code and Description for each report. Use the External Reference ID to define the identifier for this report in your external reporting tool.
Define an application service to enable users to request submission of this report online or to view report history for this report. Once you define an application service for each report, use application security to define which users may access this report.
If you have more than one parameter defined for your report and you wish to perform cross-validation for more than one parameter, provide an appropriate Validation Algorithm. Click here to see the algorithm types available for this system event.
Enter a Long Description to more fully describe the functionality of this report. This information is displayed to the user when attempting to submit the report online or when viewing history for this report.
For BI Publisher, if you want to use one of the sample reports provided by the system, but with a different layout, indicate the layout to use for the report in the Customer Specific Font/ Layout fieldand BI Publisher uses this information instead. The name for base report layout is <report code>_Base. For example, a base layout for CI_VACANT is named CI_VACANT_Base.
For Business Objects Enterprise, the Report Font and Report Font Size are used to control the display of the report information. If you wish to use one of the sample reports provided by the system, but wish to use a different font and font size, indicate your Customer Specific Font in the Customer Specific Font/ Layout field and Business Objects Enterprise uses this information instead.
Navigate to this page using Admin Menu > Report Definition and go to the Labels tab.
Description of Page
In order to provide multi-language capability for each report, the labels used for the report must support multiple language definitions. For each label used by your report, indicate a unique Sequence and the Field used to define the Label. The label defined here should be the same label that is defined in your report layout defined in the external reporting tool.
When rendering an image of the report, the external reporting tool retrieves the appropriate label based on the language used for the report.
Navigate to this page using Admin Menu > Report Definition and go to the Parameters tab .
Description of Page
The Parameters scroll contains one entry for every parameter defined for the report. To modify a parameter, simply move to a field and change its value. To add another parameter, click + to insert a row and then fill in the information for each field. The following fields display:
Parameter Code The identifier of the parameter. This must correspond to the parameter definition in the reporting tool.
Required Turn on this switch if the user must supply a value for the parameter when submitting the report.
Sort Sequence Indicate the sort sequence for this parameter. This sequence must match the parameter order defined in the reporting tool's report. It is also used when displaying the list of parameters on the report submission page.
Characteristic Type Indicate the characteristic type used to define this parameter.
Default Value Use this field to define a default value for this parameter. Default values are displayed to the user when the report is chosen on the report submission page.
Description Define a brief description of the parameter. This description is used when displaying the parameter on the report submission page.
Long Description Define a detailed description of the parameter. This description is used on the report submission page when the user requests more information for a given parameter.
The system provides several sample reports that may be used by your organization as they are or as a starting point for creating a new report. The following sections provide an overview of the sample reports along with instructions on how to use one of the sample reports in your implementation environment.
If you would like to use any of the sample reports, you need to perform some steps to be able to execute them in an implementation environment. This section walks you through the steps needed.
The Installation Guide provides instructions for setting up and configuring your product and reporting tool to use the sample reports provided with the system. The following steps are described there.
Contact your system administrator to verify that the above steps have occurred.
In order to use one of the sample reports in your product, you must define the metadata for each report. The demonstration database contains the report definition and all its related data for each sample report. The topics in this section describe how to copy any / all of the report definitions from the demonstration database to your implementation's database.
The demonstration database is installed in English only. If you work in a non-English language, you must execute the NEWLANG background process on the demonstration database before using it as a Compare Source supporting environment. If you work in a supported language, you should apply the language package to the demonstration database as well.
If you don't execute NEWLANG on the demonstration database, any objects copied from the demonstration database will not have language rows for the language in which you work and therefore you won't be able to see the information in the target environment.
You need a "copy reports" database process (DB process) setup in the target database (i.e., your implementation's database). This DB process must have the following instructions:
The demonstration database contains a DB process that performs these steps (it's called CI_COPRP). In order to copy reports from the demonstration database, you must first copy this DB process.
You can copy the CI_COPRP DB process from the demonstration database by submitting the CL-COPDB background process in your target database. When you submit this process, you must supply it with an environment reference that points to the demonstration database. If you don't have an environment reference setup in your target database that references the demonstration database, you must have your technical staff execute a registration script that sets up this environment reference. Refer to Registering ConfigLab Environments for more information about this installation script.
CL-COPDB is initially delivered ready to copy every DB process that is prefixed with CI_ from the source database (there are numerous sample DB processes in the demonstration database and this process copies them all). If you only want to copy the CI_COPRP DB process, add a table rule to the primary instruction of the CL-COPDB database process to only copy the CI_COPRP DB process. The remainder of this section assumes you have added this table rule.
When the CL-COPDB process runs, it highlights differences between the "copy reports" DB process in your source database and the target database. The first time you run this process, it creates a root object in the target database to indicate the CI_COPRP DB process will be added to your target database. You can use the Difference Query to review these root objects and approve or reject them.
After you've approved the root object(s), submit the CL-APPCH batch process to change your target database. You must supply the CL-APPCH process with two parameters:
After you have a "copy reports" DB process in the target database, you should add a table rule to its primary instruction to define which report(s) to copy from the demonstration database. For example, if you want to copy a single report called CI_MTREAD, you'd have a table rule that looks as follows:
If you do not introduce this table rule to the primary instruction of the DB process, ALL reports in the demonstration database will be copied to the target database (and this may be exactly what you want to do).
At this point, you're ready to submit the background process identified on your "copy reports" DB process. This background process highlights the differences between the reports in the demonstration database and the target database (the target database is the environment in which you submit the background process).
When you submit the CI_COPRP background process, you must supply it with an environment reference that points to the source database (i.e., the demonstration database).
When the CI_COPRP process runs, it simply highlights differences between the reports in your source database and the target database. It creates a root object in the target database for every report that is not the same in the two environments (actually, it only concerns itself with reports that match the criteria on the table rule described above). You can use the Difference Query to review these root objects and approve or reject them.
After you've approved the root object(s) associated with the report(s) that you want copied, submit the CL-APPCH batch process to cause your target database to be changed. You must supply the CL-APPCH process with two parameters:
In order for a user to submit a report using the online report submission or to view report history, the user must have access to the report through the application security. Reports that you have copied from the demonstration database reference an application service (whose name matches the report name). If you plan to use one of the reports in the demonstration database with no changes, you must configure your system to enable access to this application service for the appropriate user groups. The access mode must be defined as Submit/View Report.
The sample reports supplied with the system use several common subreports. Subreports are used in Crystal Reports to retrieve common data such as, labels and your company title. They are shared for all reports and may be reused for customer reports. Implementers may also use these subreports when designing new reports.
The subreport CIZCOMP receives the user id as a parameter and calls the stored procedure CIZCOMP . It retrieves the company's title in the user's language from the appropriate installation message record.
The subreport CIZINST defines shared variables that are used for formatting fields in the main report. It calls the stored procedure CIZINST . This subreport receives the user id and report code as parameters. It retrieves the font and font size from the report definition . It retrieves the format date/time and number format from the user's display profile . Finally, it retrieves the currency from the installation record and retrieves the currency symbol and position from the currency's record.
The subreport CIZLABEL keeps all labels used in the main report. It calls the stored procedure CIZLBALL with the user ID as a parameter. This stored procedure returns all labels defined for all reports. The subreport selects labels specified for the current report and sets shared variables L001...L100 to store the labels. If more than 100 labels are required for a new report, the version of the CIZLABEL subreport used for the new report should be changed to add additional shared variables.
When you have finished designing and coding your new report in your reporting tool, you must do the following in order for it to be usable:
Please refer to the documentation for BI Publisher for more information about publishing a report in this system. The remaining topics in this section provide information about settings needed to ensure that the report is accessible using BI Publisher.
When publishing a report in BI Publisher, you are asked for database logon information. The logon user name and password must be the user name and password that has access to the database functions related to this report in your database.
To verify the user's access rights to folders in BI Publisher:
For more information, refer to the "Understanding Users and Roles" section in the Oracle Business Intelligence Publisher User's Guide.
Please refer to the documentation for Business Objects Enterprise for more information about publishing a report in this system. The remaining topics in this section provide information about settings needed to ensure that the report is accessible using Business Objects Enterprise.
When publishing a report in Business Objects Enterprise, you are asked for database logon information. The logon user name and password must be the user name and password that has access to the stored procedures related to this report in your database.
This section describes how to verify parameter definitions in the Crystal Management Console (CMC).
To verify the access rights for a user in CMC:
When adding a new report, you must define it in the system to allow users to request ad-hoc reports from on-line and to take advantage of the multi-language provisions in the system. The following topics illustrate the steps to take to correctly configure your report definition.
Refer to field description section of the report definition main page for information about defining general information about the report.
For the validation algorithm, preliminary steps are required. Refer to Designing Validation Algorithms for more information.
For the application service, preliminary steps are required. Refer to Designing Application Services for more information.
The parameter tab on the report definition page uses characteristic types to define the report parameters. For each report parameter that you plan to use, you must define a characteristic type.
You do not need a unique characteristic type for each report parameter. For example, if Start Date and End Date are parameters your report, only one Report Date characteristic type needs to be defined. This characteristic type would be used on both date parameters.
Each characteristic type to be used as a report parameter must indicate a characteristic entity of Report.
To illustrate the characteristic type definitions, let's look at the sample report Tax Payables Analysis. It needs the following parameters: From Date, To Date, GL Account Type Characteristic Type and Account Type value.
To support the required parameters, the following characteristic types are needed.
Char Type | Description | Type | Valid Values | Char Entities |
---|---|---|---|---|
CI_DATE | Date Parameter | Ad-hoc | (Uses validation algorithm to validate proper date entry) | Report |
CI_CHTYP | Characteristic Type | FK Reference | CHAR_TYP | Report |
CI_GLTY | GL Account Type | Pre-defined | A- Asset, E- Expense, LM- Liability/miscellaneous, LT- Liability/taxes, R-Revenue | Distribution Code, Report |
Highlights for some of the above settings:
Your report definition parameters collection must define a unique parameter entry for each parameter sent to the reporting tool. The sequence of your parameters must match the sequence defined in your reporting tool.
Continuing with the Tax Payables Analysis report as an example, let's look at the parameter definitions.
Parameter Code | Description | Char Type | Default Value |
---|---|---|---|
P_FROM_DT | From Date | CI_DATE | N/a |
P_TO_DT | To Date | CI_DATE | N/a |
P_CHAR_TYPE | Account Type Characteristic | CI_CHTYP | CI_GLTY |
P_TAX_ACCTY_CHAR | Account Type Char Value for Tax Related GL Account | CI_GLTY | LT-Liability/taxes |
Highlights for some of the above settings:
When designing your report definition, determine if cross validation should occur for your collection of parameters. In the Tax Payables Analysis report, there are two date parameters. Each date parameter uses the characteristic type validation algorithm to ensure that a valid date is entered. However, perhaps additional validation is needed to ensure that the start date is prior to the end date. To do this, a validation algorithm must be designed and defined on the report definition.
The system provides a sample algorithm RPTV-DT that validates that two separate date parameters do not overlap. This algorithm should be used by the Tax Payables Analysis report.
If you identify additional validation algorithm, create a new algorithm type. Create an algorithm for that algorithm type with the appropriate parameter values. Plug in the new validation algorithm to the appropriate report definition.
Application services are required in order to allow a user to submit a report on-line or to view history for a report. Define an application service for each report and define the user groups that should have submit/view access to this report.
Update report definition to reference this application service.
The system supports the rendering of a report in the language of the user. In order to support a report in multiple languages, the verbiage used in the report must be defined in a table that supports multiple languages. Some examples of verbiage in a report include the title, the labels and column headings and text such as "End of Report".
The system uses the field table to define its labels.
For each label or other type of verbiage used by your report, define a field to store the text used for the verbiage.
Update the report definition to define the fields applicable for this report in the Labels tab.
If your installation supports multiple languages, you must define the description applicable for each supported language.
This section describes mechanisms provided in the product that enable an implementation to configure the system to communicate with an external application.
The system provides tools to communicate with an external system using certain types of web services. The following topics describe the system functionality provided.
The system provides tools to communicate with an external system using certain types of web services. The base product provides a configuration object called Web Service Adapter that provides the following functionality:
The configuration of a Web Service Adapter starts by identifying the WSDL (the web service description language document used to define the interface) provided by the external system. The following steps describe the base product functionality provided to allow a user to import a WSDL.
At this point, a web service adapter record is created in pending status. The next step is to generate the request and response data areas for the operations configured as active.
Each active operation for the web service adapter requires a pair of data areas, request and response, that represent the request and response XML messages for the operation.
The base product provides steps to generate the data areas as follows:
The generated data areas provide the API for the implementer to use when implementing the web service call in an appropriate algorithm or service in the system. The data areas contain the appropriate mapping from the elements that the implementer works with in the code that invokes the web services and the WSDL definitions.
To facilitate the generation of the request and response data areas, the base product invokes a special business service used to create the appropriate mapping. The business service is defined as a BO option on the Web Service Adapter business object. This allows an implementation to provide a custom business service to further enhance the request and response mapping where appropriate.
Generated data areas. It is possible to edit and modify the generated data areas after they are created. An implementer can change element names or remove unneeded elements if desired. Manually changing the generated data areas must be done only when absolutely necessary. The system is not able to validate manual changes. Issues with the data areas would only be detected at run time.
The business objects provided by the base package for web service adapters include a simple lifecycle of pending and active. Configure the web service adapter and its data areas while in pending status and activate it when it is ready to be implemented in the appropriate system functionality.
To make a call to a web service using a web service adapter, the system has provided a Web Service Dispatcher business service (F1-InvokeWebService) to submit a web service call. The calling program is responsible for retrieving all the information to correctly populate the request data required by the web service call before invoking the business service.
Refer to the detailed description of the business service for more information.
Use the Web Service Adapter portal to define the configuration needed to communicate with an external system using a web service call. Open this page using Admin Menu > Web Service Adapter .
This topic describes the base-package zones that appear on the Web Service Adapter portal.
Use the query portal to search for an existing web service adapter. Once a web service adapter is selected, you are brought to the maintenance portal to view and maintain the selected record.
This page appears when viewing the detail of a specific web service adapter.
The Web Service Adapter main page contains a zone that includes display-only information about the web service along with the actions that are available for maintaining a web service adapter.
Please see the zone's help text for information about this zone's fields. Refer to Understanding Web Service Adapters for information about common web service adapter functionality.
This page contains a standard log zone.
This section describes the XML Application Integration (XAI) utility, which enables you to configure your system to receive information from and to send information to external applications using Extensible Markup Language (XML) documents.
The XML Application Integration (XAI) module provides the tools and infrastructure that businesses require for integrating their applications with your product. The integration your product with other systems across organizational boundaries or business is made possible, regardless of the platforms or operating system used. XAI provides an integration platform that enables the following:
XAI exposes system business objects as a set of XML based web services. The service can be invoked via different methods, e.g., Hypertext Transfer Protocol (HTTP) or Java Message Service (JMS). Consequently, any application or tool that can send and receive XML documents can now access the rich set of system business objects. Business-to-Business (B2B) or Business-to-Consumer (B2C) integration with other enterprise applications as well as the setup of web portals is made very simple and straightforward.
The XAI architecture contains 3 major components:
The core server component is responsible for receiving XML requests, executing the service and returning the response to the requester.
The following diagram shows the XAI tool operating on a web server and providing integration between the system business objects and various external applications.
The core is built in Java, using a layered, scalable architecture. The basic transport protocol supported by the core is SOAP/HTTP.
The XAI core server provides a Java servlet to process requests through HTTP. You may also use other messaging mechanisms such as message queuing, publish/subscribe or a staging table. The multi-purpose listener processes the messages.
The Multi Purpose Listener (MPL) is a multi-threaded Java server that constantly reads XML requests from various external and internal data sources, such as a Java Message Service (JMS) message queue, a JMS topic or system staging tables.
The MPL can be used to process inbound messages (those sent by an external application to invoke a system service), or outgoing messages (those sent by your product to external applications). The MPL uses different receivers to process messages from different data sources.
A receiver is implemented using 3 distinct layers:
This layer deals with polling various locations to determine if new records, files or incoming requests exist. The various locations include:
A separate receiver is defined to read requests from each of these locations. When the MPL server starts, it looks for all defined active receivers in the XAI Receiver table, and for each receiver it starts a thread that constantly fetches messages from the message source.
Once a request message is read, it is passed to an execution thread that implements the execution layer. Each receiver references an Executer that is responsible for executing the request.
A single MPL server may only run one of each of the above staging table receivers for a given JDBC connection. To enhance the performance of the processing of the staging tables, you may define multiple MPL servers where each one runs the active receivers defined in the receiver table.
To ensure that each staging table receiver processes its own set of records in the staging table, the receiver selects a set number of records (specified as XAI option Number of Records an MPL Receiver Will Process At a Time) and marks those records with the IP address and port number of the MPL.
The execution layer sends the XML request to the XAI core server and waits for a response.
The executer is invoked and is passed in an XAI Inbound Service that specifies an XML request schema and an adapter. Adapters tell XAI what to do with a request. The adapters point to a specific Java class that renders a service.
For example you can configure an Adapter to invoke any published application object (by pointing it to the appropriate java class). This adapter accesses system objects through the page service. You can think of an adapter as a plug-in component.
Once the executer processes the request and a response is received, it is transferred to the next layer, the response layer.
The response layer is responsible for "responding" to the execution. The responses are handled by invoking an appropriate sender defined on the receiver's response information. Each sender defined in the system knows how to process its response. For example:
The XAI Client component is the set of online control tables and tools used to manage your XAI environment.
The Schema Editor is a tool used to create and maintain XAI schemas.
The Registry is a term used to refer to all the tables required to "register" a service in the system. It includes the XAI Inbound Service and a set of control tables defining various options.
The Trace Viewer is installed with your XAI client tools and is used to view traces created on the XAI server.
The following section introduces some background information related to XML.
At the core of XAI are XML web services based on XML schemas. XML schemas define the structure of XML documents and are the infrastructure of e-business solutions. They are used to bridge business applications and enable transaction automation for e-commerce applications. Industry standard schemas document common vocabularies and grammars, enhancing collaboration and standardization. Validating XML processors utilize XML schemas to ensure that the right information is made available to the right user or application.
The system exposes its application objects as XML schemas that define the interface to system services. Every service (e.g., CreatePerson or AccountFinancialHistory) is defined using a pair of schemas: the Request Schema and the Response Schema. The request and response schema can be identical.
The Request Schema defines the XML document structure describing the "inputs" for a service.
The Response Schema defines the XML document structure describing the "outputs" of a service.
To facilitate the process of exposing business objects as XML schemas, we use the Schema Editor, a graphical tool to create, import and maintain schemas. The Schema Editor provides automated wizards to import schemas residing in existing data structures and documents. The Schema Editor can import schemas from the following sources: system business objects, ODBC data sources, sequential files.
Before the XAI tool can use a service, it must be registered or published.
XSL Transformations (XSLT) is a language used to transform an XML document into another XML document or another document format such as HTML. It is part of the Extensible Stylesheet Language (XSL) family of recommendations for defining XML document transformation and presentation. It is defined by the World Wide Web Consortium (W3C) and is widely accepted as the standard for XML transformations. Several tools are available on the market to generate XSLT scripts to transform an XML document defined by a source schema to an XML document defined by a target schema.
In XAI you can use XSL to:
SOAP stands for Simple Object Access Protocol. The SOAP "Envelope" is the wrapping element of the whole request document that may be used by messages going through the XAI tool.
The following diagram shows a simple XML request using the SOAP standard.
The XML Path Language (XPath) is an expression language used by XSLT to access or refer to parts of an XML document. It is part of the XSL recommendations maintained by the W3C. XPath provides the syntax for performing basic queries upon your XML document data. It works by utilizing the ability to work with XML documents as hierarchically structured data sets.
In the following XML document, some examples of XPath references are:
In the XAI tool, XPath is used to construct outgoing messages.
XAI server security supports the basic HTTP authentication mechanism as well as web service security (WS-Security) to authenticate the user requesting service. When authenticating using WS-Security, the SOAP header contains the authenticating information.
The base package provides two XAI server URLs, one that uses basic HTTP authentication ('/classicxai') and another that supports both methods ('/xaiserver'). Regardless of which authentication method is practiced, it is the latter you should expose as your main XAI server. The main XAI servlet gathers authentication information from the incoming request (HTTP or SOAP header) and further calls the internal ("classic") servlet for processing.
The "classic" XAI server security uses the basic HTTP authentication mechanism to authenticate the user requesting service. It assumes the requester has been authenticated on the Web server running the XAI servlet using the standard HTTP (or HTTPS) basic authentication mechanism. The authenticated user-id is passed to the application server, which is responsible for enforcing application security. This requires the system administrator to enable basic authentication for the Web server running the XAI servlet. To enable HTTP basic authentication, the XAI server '/classicxai' should be defined as a url-pattern in the web resource collection in the web.xml file. When the XAI server is not enabled for basic authentication, it transfers the user-id specified on the Default User XAI option to the application server.
By default, the system would always attempt to further authenticate using SOAP header information. This is true even if the request has already been authenticated via the Web server. Use the Enforce SOAP Authentication XAI Option to override this behavior so that a request that has been authenticated already by the Web server does not require further authentication by the system.
If SOAP authentication information is not provided, the system attempts to authenticate this time using information on the HTTP header. You can force the system to solely use SOAP authentication using the Attempt Classic Authentication XAI Option.
Currently the system only supports the standard Username Token Profile SOAP authentication method where "Username", "Password" and "Encoding" information is used to authenticate the sender's credentials. The following is an example of a Username Token Profile in a SOAP header:
By default both user and password are authenticated. You can use the System Authentication Profile XAI Option to change this.
Inbound messages are XML messages sent by an external application to invoke a system service. Inbound messages can be sent one at a time or in batches of several messages in a file. Third party integration points can import web services for inbound service calls. The standard method of doing this is by publishing a WSDL (Web Service Definition Language) definition for each exposed service.
Synchronous service requests are sent using the HTTP protocol to the XAI servlet, which runs under a web application server such as WebLogic.
Invoking a service is not much different from sending a regular HTTP request. Here the HTTP request contains the XML as a parameter. The XAI server handling requests via the HTTP protocol is implemented using a Java servlet running on the web server.
Microsoft Visual Basic/C Example
Microsoft provides an easy way to send XML requests over HTTP. To send and receive XML data over HTTP, use the Microsoft XMLHTTP object
set xmlhttp = createObject("Microsoft.XMLHTTP")
xmlhttp.Open "POST", http://Localhost:6000/xaiserver, false
xmlhttp.Send XMLRequest
XMLResponse = xmlhttp.ResponseText
Here http://localhost:6000/xaiserver is the URL of the XAI server. XMLRequest contains the XML request to be processed by XAI and XMLResponse contains the XML response document created by the XAI runtime.
Java Example
Java provides a very simple way to send a request over HTTP. The following example shows how a request can be sent to XAI from an application running under the same WebLogic server as the one XAI runs. In this example, we use the "dom4j " interface to parse the XML document.
import com.splwg.xai.external.*;
import org.dom4j.*;
String xml;
xml = "<XML request>";
XAIHTTPCallForWebLogic httpCall = new XAIHTTPCallForWebLogic();
String httpResponse = httpCall.callXAIServer(xml);
Document document = DocumentHelper.parseText(httpResponse);
Various types of receivers running under the MPL server (rather than the XAI server) handle asynchronous inbound messages from several sources.
Requests may be received via the following:
The response is returned to the JMS queue/topic or to the staging table.
The following diagram shows the flow for asynchronous inbound messages.
Java Message Services (JMS) is a standard Java 2 Platform, Enterprise Edition (J2EE) protocol to send/receive asynchronous messages using a queue or topic message protocol.
XML messages may be received and sent via JMS using either a JMS Queue or JMS Topic. In order to access a JMS provider such as MQSeries, TIBCO or WebLogic, the MPL must first connect to the appropriate server using a JMS Connection.
The following diagram depicts a message sent and received through a JMS Queue.
JMS Queues are used to receive and send messages using the message queue protocol. Products that support this protocol include MQSeries.
The following describes events that take place when a JMS queue is used:
The MPL uses a JNDI server to locate the queue resource.
JMS Topics are used to send and receive messages using the publish/subscribe messaging model. Products that support this protocol include TIBCO, MQSeries and WebLogic.
The MPL uses a JNDI server to locate the topic resource.
The system provides a staging table, where an interface can store XML requests to perform a service in the system.
Some external systems interfacing with the system are not able to produce XML request messages. Or you may have external systems that produce XML messages but the messages are sent in a batch rather than real time. The system provides the capability to read an external data source containing multiple records, map the data to an XML request and store the request on the XAI upload staging table. These records may be in XML requests, sequential input files or database tables.
The XAI upload staging table may be populated in one of the following ways:
Once the XML requests are in the staging table, the Staging Upload Receiver reads the requests from the XAI upload staging table and invokes the XAI server (via the executer) with the appropriate XAI inbound service. Inbound service records typically point to the core adapter used to invoke system services.
The staging upload sender handles "responses" to the execution of the message in XAI upload staging. If the execution is successful, the sender updates the status of the upload staging record to complete. If the execution is unsuccessful, the sender updates the status to error and creates a record in the XAI upload exception table.
The staging control table is used to indicate to XAI that there is a file or table with a collection of records to be uploaded. The special Staging Control Receiver periodically reads the staging control table to process new records.
The XAI staging control table may be populated in one of the following ways:
The Staging Control Receiver processes staging control records and invokes XAI (via the executer) to execute the request. The executer uses the appropriate adapter to generate records in the XAI Upload Staging table - one for reach record in the file or table.
The diagram below illustrates the information used by the staging control receiver to load data onto the staging table from a sequential input file.
The staging control adapter does the actual work. It reads the individual records in the input file and applies the XSL transformation script indicated on the XAI inbound service record to the input data to produce an XML request in the XAI upload staging table.
In some cases, a process may populate records directly into the XML staging upload table. An example of such a process is the XML File Receiver. In this case, a staging control record is also created and used to group together the staging upload records.
The staging control contains information needed to process a group of staging upload records:
In some cases, a collection of messages uploaded together in a file must be processed in the order the messages are received. For example, if messages to add a person and add an account for this person are received together, the message to add the person must be processed before the message to add the account.
If messages received in a file must be processed sequentially, turn on the Sequential Execution switch on the staging control record. When the staging control receiver creates records in the XML upload table, the identifier of each record is built as a concatenation of the staging control record and a sequential number. If your staging control record indicates that the XML upload records should be processed in sequential order, the records are processed in primary ID order.
If you have defined a receiver to periodically search for files and populate records in the staging control table, you may turn on the Sequential Execution switch on the receiver. This ensures that records processed as a result of this receiver are executed in sequential order.
If your staging control accesses the data from a database table, you have the capability of defining the selection criteria. XAI inbound services that reference the CISStagingUpload adapter may contain a collection of fields that are used in an SQL WHERE clause. When adding a new XAI Staging Control record, you can define the values for the WHERE clause.
For example, imagine that you have a work management system where new premises are defined. Rather than waiting for this system to "push" new data to you, you design the interface to have the system "pull" the new data by looking directly at the "new property" database table.
The Request XML for your XAI service contains SQL statements used to access the data. You could define a Staging Control Parameter of "Add Date". When creating your staging control, you may enter a parameter value of today's date. When this record is processed, it only retrieves new properties from this work management table whose Add Date is today.
The following example shows part of the Request XML schema for an XAI Service that SELECTs premises based on postal code.
The postal code value to substitute into the WHERE clause is defined on the individual XML Staging Control records.
Before the staging control receiver invokes the executer, it changes its status to complete, assuming that there will be no problems. If the executer detects an error condition, the staging control sender updates the status of the staging control record to error and removes any XAI upload staging records that may have been created.
For messages that are processed using the staging upload table, application errors that prevent XAI from successfully processing the message cause the staging record to be marked in error and highlighted via a To Do entry.
For messages that are not processed via staging upload, your implementation should consider what should happen to application errors. If the origin of the message is able to handle an immediate error returned by XAI, then no special configuration is needed. An example of this is an HTTP call to our system where the originator of the message is waiting for a real-time response.
Otherwise, for messages where errors should not be returned to the originator, but should be highlighted in this system for resolution, be sure to mark the Post Error switch on the XAI inbound service. When this switch is turned on and an application error is received by XAI when processing the message an XAI upload staging record is created (along with a staging control record) and marked in error.
For example, if a message is received via a JMS queue, application errors that prevent XAI from processing the message should not be returned to the queue because there is no logic to route the error to the sending system.
It is possible for your various systems to be integrated with each other using a hub. The hub is implemented using an Enterprise Application Integration (EAI) tool provided by a third party vendor. Most hubs support HTTP and/or JMS and can work with XML schemas or document type definitions (DTDs).
Messages may be sent in batch files, or may be retrieved from a database. In all cases, the system needs to be able to read the file and identify each individual message in order to create an XML request that can be processed by the XAI server. Once each individual message is identified, a request is stored on the XAI Staging Upload table for later execution.
It is possible for you to receive a file containing a collection of XML messages. The system identifies each separate message within the file and creates an entry for each message on the XAI upload staging table. It also creates a staging control record to group together each newly created XAI upload record. This staging control is created in Complete status and is not processed by the staging control receiver.
Since external applications may send messages in a format unknown to XAI, the system needs a mechanism for identifying the messages and mapping them to an XAI service.
First the system associates the entire XML file with an XAI Group. You can think of the XAI Group as a categorization of the collection of messages. For example, you may have a separate XAI Group for each third party who sends you a collection of XML messages.
The system uses an XPath and XPath value to identify the correct XAI Group for the XML file.
After identifying the appropriate group to which an XML file belongs, the system takes each message in the file and applies the appropriate XSL transformation to the message to produce a record on the upload staging table.
To process the messages in a file, the system needs to know how to identify each message in a file containing multiple messages. A file may use the same root element for each message or different root elements for different types of messages. For each XAI group, you must indicate the root element(s) that identifies a message by defining one or more attachments. Each attachment defines a root element, which tells the system when a new message begins.
Once the system has identified each separate message in the file, it must determine the correct XSL transformation script to apply. Once again the system uses an XPath and XPath value to identify the correct XSL to apply. For each XAI group, you define one XAI rule for every possible type of message you may receive in the file. Each XAI rule defines an XPath, XPath value and XSL transformation script.
Note you may assign a priority to each of your rules. The rules for more common messages may be assigned a higher priority. This enhances performance by ensuring that rules for more common messages are processed before rules for less common messages.
You may receive messages in a sequential input file, such as a comma-delimited file.
The following steps should be performed when configuring the system to enable data to be uploaded from an input file into the staging upload table:
1. Create an XML Schema that describes the records in the sequential input file.
2. Create the XSLT transformation that maps a record in the input file to an XML service request in your product.
3. Create an XAI service representing the batch process that loads the input file into the staging table.
4. If desired, create a new file scan receiver, which waits for an input file to appear in a particular directory. (If you do not take this step, then you need to create a staging control when you want a file to be processed.)
It is possible for you to define an interface where inbound messages are retrieved by reading records in a database table.
The following steps should be performed when configuring the system to enable data to be uploaded from a database table into the staging upload table:
Refer to Importing Users and Groups for information about using XAI to import user and user group definitions from a Lightweight Directory Access Protocol (LDAP) store.
Web Service Definition Language (WSDL) is a language for describing how to interface with XML-based services. It acts as a "user's manual" for Web services, defining how service providers and requesters communicate with each other about Web services.
The base package provides the ability to publish a WSDL definition for each service exposed as an XAI Inbound Service. In addition, it is possible to request a catalog of all the XAI Inbound Services and a link to each WSDL. To view the catalog, launch a new browser session and enter the URL http://$host:$port/XAIApp/xaiserver?WSDL where $host and $port are replaced by the appropriate values for the current environment.
"Outgoing messages" is the term used to describe messages that are initiated by our system and sent to an external system. Messages may be sent real time or near real time. The system provides two mechanisms for communicating messages to external systems.
The following sections describe the outbound messages mechanism in more detail.
This section describes the capability to send outgoing messages from the system to another application in "near real time" using Outbound Messages and XAI. The process is referred to as "near real time" because an appropriate MPL receiver is continuously checking for new records in the outbound message table for processing.
For each outbound message that your implementation must initiate you define a business object for the outbound message maintenance object. Using the business object's schema definition, you define the fields that make up the XML source field. These are the fields that make up the basis for the XML message (prior to XSL transformation).
For each external system that may receive this message, you configure the appropriate message XSL and routing information.
Because the outbound message type is associated with a business object, your implementation can easily create outbound message records from a script using the Invoke business object step type. Such a script would
The remaining points describe how the outbound message record is further processed.
The outbound message receiver processes records in the outbound message table that have a processing method flag equal to XAI and a status of pending and changes the status to in progress. The receiver then retrieves the message XSL and the XAI sender defined for the external system / outbound message type.
It applies the message XSL (if supplied). If the option to validate outbound message schemas is turned on, the schema validation is performed.
Refer to Outbound Message Error Handling for information about error handling.
If no errors are received, control is turned over to the outbound message sender for routing.
The outbound message receiver processes outbound message records based on their status. The following diagram describes the lifecycle of an XAI type outbound message.
The outbound message sender is responsible for routing the message to the XAI sender determined by the receiver. If the routing is successful the outbound message status is marked complete. If the routing is unsuccessful, the status is marked in error.
Refer to Outbound Message Error Handling for information about error handling.
If the outbound message receiver or the outbound message sender detects an error while attempting to process the outbound message, it marks the message in error, captures the error message and its parameter values and creates a To Do entry using the To Do type specified in the XAI option To Do Type for Outbound Message Errors.
A separate background process F1-DTDOM is responsible for completing To Do entries for outbound messages no longer in Error.
Your implementation may be required to send messages to the same destination as a single XML file with multiple messages include. The following points describe this logic:
The outbound messages that are generated by the system should be well formed and valid so that they do not cause any issues in the external system. To ensure this validity you may configure the system to validate messages before they are routed to their destination.
You may turn on or off this validation checking using an XAI option Schema Validation Flag.
If a system error is received by the MPL when attempting to route the message to a sender, (using the outbound message method or the NDS message method), the system marks the appropriate table in error. This is true even if the reason for the error is that the connection to the sender is unavailable. When the connection is restored, a user must change the status of the appropriate record to pending (for outbound messages) or retry (for NDS messages) in order for the message to be resent.
Alternatively, you can configure your system to attempt to automatically resend the message. This section describes the logic available for auto resend. To enable automatic resend, you must set the flag Automatically Attempt Resending to Unavailable Senders on XAI option appropriately.
If an error is received by the MPL when it attempts to invoke a sender and the auto resend option is on, the system does not mark the record in error. It continues to attempt sending messages to the sender until the number of errors has reached a predefined maximum error number (defined as an XAI option). When the maximum is reached, the sender is marked as unavailable and an MPL log entry is created. The MPL ignores messages for unavailable senders.
The system tries to resend messages to this sender the moment the sender is reset to be available. The following points describe how a sender becomes available:
The system supports the ability to make web service calls, i.e. sending real time messages, to an external system. The configuration of real time messages is similar to the configuration of near real-time ones, with the following exceptions:
Just like near real-time messages, you can easily create outbound message records from a script. When a real time message is added, the system immediately routes it to the external system. If the external system provided a response message back, the system captures the response on the outbound message. If the outbound message type for the external system is associated with a response XSL it is applied to transform the response. In this case the system captures the raw response as well on the outbound message.
Any error (that can be trapped) causes the outbound message to be in a state of Error. It is the responsibility of the calling process to check upon the state of the outbound message and take a programmatic action. When the outbound message state is changed back to Pending the message will be retried.
The base package provides a business service called "Outbound Message Dispatcher (F1-OutmsgDispatcher)" that further facilitates making web service calls, allowing the calling script to configure the following behavior:
Refer to the description of the business service for a better understanding on how it works.
This section guides you through the steps required to design the tables that control your XAI processing.
The XAI server is installed with default configuration. This section describes how you may customize the XAI server configuration.
Startup parameters are defined in two parameters files
Both files store the parameters as XML files with the following elements (sections):
The XAI tool accesses XAI registry information through the standard system programs. The <Source> section in the XAIParameterInfo.xml file tells XAI the user ID for accessing the registry information. It contains the following attributes:
Attribute Name | Description |
---|---|
Source Type | This should be set to CorDaptix, which tells XAI to access the registry through the standard access to system programs. |
CorDaptixUser | The user ID to use when accessing the registry data. |
The <Source> section in the MPLParameterInfo.xml file defines the database connection information used to connect to the database storing the XAI table information. It contains the following attributes:
Attribute Name | Description |
---|---|
Source Type | Defines the source of the data, for example ORACLE or DB2. |
jdbcURL | The URL used to connect to the product database. For example: jdbc:oracle:thin:@//server-name:1234/DBNAME |
databaseUser | The Oracle User Id used to connect to the database. For example: sysuser |
databaseUserPassword | The Oracle password used to connect to the database. For example: sysuserpassword |
When defining values for fields in certain control tables in the registry, you may reference substitution variables that point to the <ParameterVariables> section of the installation files. Substitution variables provide for dynamic substitution of values based on parameters provided at server startup.
To specify a substitution parameter in a string value you enter the name of the substitution parameter enclosed with @.
For example if you have a field in the XAI control tables that should contain the URL for the XAI HTTP servlet, you could enter the value in the following way: http://@HOST@:@PORT@/xaiserver.
In the parameters section, define the appropriate values for these parameters, for example:
At run time, the system builds the URL as http://localhost:8001/xaiserver.
Every substitution parameter is defined using an <ParameterVariable> element with the following attributes:
Attribute Name | Description |
---|---|
Name | The name of the substitution parameter |
Value | The value to replace an occurrence of the substitution parameter in an XAI control table field |
The <AdHocParameters> section is used to provide registry definitions that override the existing ones. Unlike the <ParameterVariables> section, a whole registry object definition can be specified in this section. When the XAI server starts, it first reads the registry definitions from the database and then it reads the <AdhocParameters> section. If it finds an object definition in this section, it uses it to replace the one read from the database.
Attribute Name | Description |
---|---|
Object Name | The object name may be one of the following objects: Option Receiver Sender |
Object Attributes | The attributes of the object. Each object type has it own set of attributes: |
'Option' object attributes | |
name | The option flag. Must be defined in the OPTION_FLG table |
value | The value for that option |
'Receiver' object attributes | |
name | The receiver ID |
Class | The JMS provider. May be 'MQ' |
TargetClient | The client type writing/reading to the JMS queue/topic. May be 'JMS' or 'MQ'. Only relevant for interfacing with MQSeries |
JMSProvider | The JMS provider. May be 'MQ' |
TargetClient | The client type writing/reading to the JMS queue/topic. May be 'JMS' or 'MQ'. Only relevant for interfacing with MQSeries |
Executer | The XAI Executer ID for this receiver |
'Sender' object attributes | |
Class | The JMS provider. May be 'MQ' |
JMSProvider | The JMS provider. May be 'MQ' |
TargetClient | The client type writing/reading to the JMS queue/topic. May be 'JMS' or 'MQ'. Only relevant for interfacing with MQSeries |
When designing your XAI environment, you should first identify the services that you would like to perform. Determining your services facilitates your design for the other registry options.
To design your inbound services,
You need XML schemas for the services you designed in Designing XAI Inbound Services.
For each message, identify what service you need to invoke and what action you need to perform. If you have multiple actions that you may need to perform for the same service, you may choose to create a single generic XML schema or you may choose to create multiple schemas, which are more specific. For generic messages, the transaction type, indicating the action to perform would be passed in on the XML request document to indicate what must be done. For more specific messages, you may be able to indicate the transaction type directly on the schema and it would not need to be overwritten at run time.
You need to create a response schema for each request schema. It is possible for you to use the same schema for both functions.
You need an XSL transformation script for each service you designed in Designing XAI Inbound Services, where you determined a transformation is necessary. In addition, you need XSLT scripts for your outgoing messages. Each sender, which receives a message, probably requires a transformation of the message into a local format. Refer to How To Design Outgoing Messages for more information.
For each message requiring transformation, determine the format used by the external system. In most cases, it is not the same format recognized by the system. For each case, you must create an XSL transformation, which maps the message format from the external format to one expected by your product or from your product format to one expected by the external system.
When identifying the required XSL transformations, remember to take into consideration the data that is processed by the staging control table. This service reads data stored in a file or database table and uses the Record XSL to map the individual records to an individual service request.
The XAI registry is a set of control tables that is used to store service definitions as well as various system information required by the XAI and MPL servers. The following sections describe each table in the registry.
The XAI tool, including receivers and senders, uses a Java Name Directory Interface (JNDI) server to locate resources on the network. JDBC connections, JMS connections, JMS queues and JMS topics should be defined on the JNDI server. In addition, adapters that need to access your product information reference the JNDI server to determine where your product is running.
Design your JNDI server values as follows:
The product is shipped with a JNDI server running under the same Weblogic server used for the system.
When defining the URL, you may use substitution parameters such as those shown in the example below. XAI uses the parameter variables section of your start up parameters to build the appropriate URL. Refer to Installation for more information
JNDI Server | Description | Provider URL |
---|---|---|
WLJNDI | Weblogic JNDI Server | t3://@WLHOST@:@WLPORT@ |
ACTDIR | Active Directory Server | ldap://@LDAPHOST@:@LDAPPORT@ |
If you need to access a database table to process your messages, XAI needs to know the location of the database and how to access it. If the tables are located in the same database used for the system (defined in your Installation), then you do not need to enter any extra JDBC Connections. If you need to access data that lives in another database, design the additional JDBC Connections and determine the type of connection and connection information.
If you are using JMS to send and receive messages, then you must define a JMS Connection to indicate the JNDI server to use to locate these resources. For each JMS connection defined, the MPL server creates a pool of connections that are later shared by multiple threads.
If your business uses JMS Queues to send and receive messages, then you need to add an entry on the XAI JMS Queue page, defining the JNDI server and Queue Name.
If your business uses JMS Topics to send and receive messages, then you need to add an entry on the XAI JMS Topic page, defining the JNDI server and Topic Name.
The Formats section of the registry is used to define data formats. Data formats can be used in schema definitions to specify data transformations. To determine what data formats you need to define for your XAI environment, you must review the expected format of data that you will be exchanging and determine whether or not data transformation is required.
The following sections describe the four different types of formats and some guidelines in their use.
Date formats may be specified using any valid Java format supported by the java.text.SimpleDateFormat class.
To specify the time format use a time pattern string. For patterns, all ASCII letters are reserved. The following usage is defined:
Symbol | Meaning | Presentation | Example |
---|---|---|---|
G | era designator | Text | AD |
y | year | Number | 1996 |
M | month in year | Text & Number | July & 07 |
d | day in month | Number | 10 |
h | hour in am/pm (1~12) | Number | 12 |
H | hour in day (0~23) | Number | 0 |
m | minute in hour | Number | 30 |
s | second in minute | Number | 55 |
S | millisecond | Number | 978 |
E | day in week | Text | Tuesday |
D | day in year | Number | 189 |
F | day of week in month | Number | 2 (2 nd Wed in July) |
w | week in year | Number | 27 |
W | week in month | Number | 2 |
a | am/pm marker | Text | PM |
k | hour in day (1~24) | Number | 24 |
K | hour in am/pm (0~11) | Number | 0 |
z | time zone | Text | Pacific Standard Time |
' | escape for text | Delimiter | |
'' | single quote | Literal | ' |
Currency formats are used to specify formatting for elements representing currencies. They may include the following:
Symbol | Meaning |
---|---|
| number place holder |
, | thousands separator |
. | decimal point |
$ | currency sign |
For example to define the currency format for US dollar, indicate: $#,#.00
Phone formats can be used to specify formats for telephone numbers. The supported format specification is limited to the following format characters:
Symbol | Meaning |
---|---|
0 | number place holder |
\0 | 0 |
Any other character appearing in the formatting expression is a placeholder for that character. To specify the '0' character, use '\0'.
Phone Format Example: (000) 000-0000
Text formats are used to specify formats for character string attributes. The following expressions are supported:
Symbol | Meaning |
---|---|
\cUpperCase | Translate the string to upper case. |
\cLowerCase | Translate the string to lower case. |
\cProperCase | Translate the string to proper case. The first character of every word is translated to uppercase. The remaining characters are translated to lowercase. |
The product provides a set of adapters to process your XML requests. The adapters point to a specific Java class that renders a service. If you find that you need to use a protocol, which is not supported by the adapters provided, you will need to add a new XAI Class (which points to a Java class) and a new XAI Adapter. It is recommended that your implementers contact customer support. The following adapter classes are provided.
The executer is responsible for executing messages received through a message receiver. The product provides an executer, which uses the XAI server; however the architecture allows for implementing additional execution classes. If you require a different executer and therefore a different execution class, it is recommended that your implementers contact customer support.
XAI senders are responsible for define outgoing message destinations and for " responding" to the XAI executer.
For each sender, you must reference an appropriate XAI class. The information in this section describes the sender classes that are provided with the system.
You must create senders to "respond" to the various staging table receivers in the system.
Next, design the senders for "responses" to other receivers, for example the JMS queue receiver or JMS topic receiver. The system provides XAI classes to use for these senders. Use the class JMSSENDER for a JMS queue sender and TPCSNDR for a JMS topic sender.
Finally, review all your outgoing messages and determine the mechanism for communicating with the target system for each message.
The topics below describe configuration required for senders that route a message via an HTTP sender, a flat file sender or an email sender.
An HTTP sender is one that sends messages to an HTTP server using the HTTP protocol. HTTP senders should reference an XAI Class of HTTPSNDR.
Various parameters are required to establish a session with the target HTTP server. You specify these parameters by defining a collection of context values for the sender. A set of context types related to HTTP variables is provided with the product. The following section describes the context types and where appropriate, indicates valid values.
Before defining the HTTP sender, you need to find out how the HTTP server on the other side expects to receive the request, and in particular, to answer the following questions:
Context Type | Description | Values |
---|---|---|
HTTP URL1 - URL9 | Used to construct the URL of the target HTTP server. Since the URL may be long and complex, you can break it into smaller parts, each defined by a separate context record. The MPL server builds the full URL by concatenating the values in URL1 through URL9. You may use substitution variables when entering values for URL parts. | |
HTTP Method | The HTTP method used to send the message. | POST or GET |
HTTP Proxy Host | If connecting to the remote system requires using an HTTP Proxy, then this context field can be used to configure the HTTP Proxy Host. If the Proxy Host is set, the Sender class must use the value specified to connect to the remote system via a proxy. | |
HTTP Proxy Port | If connecting to the remote system requires using an HTTP Proxy, then this context field can be used to configure the HTTP Proxy Port. If the Proxy Port is set, the Sender class must use the value specified to connect to the remote system via a proxy. If the HTTP Proxy Host is not set, HTTP Proxy Port is ignored and the connection will be made directly to the remote system. | |
HTTP Transport Method | Specifies the type of the message. You can either send the message or send and wait for a response. | Send or sendReceive |
HTTP Form Data | Used when the message is in the format of an HTML Form (Content-Type: application/x-www-form-urlencoded). This context specifies the form parameters (data) that should be passed in the HTTP message. Since a form may have multiple parameters, you should add a context record for each form parameter. The value of a form parameter takes the format of x=y where x is the form parameter name and y is its value. If y contains the string @XMLMSG@ (case sensitive) then this string is replaced by the content of the service response XML message. If a context record of this type is defined for a sender, the sender uses the HTML Form message format to send the message even if @XMLMSG@ is not specified in one of the context records. If a context record of this type is not defined for a sender, then the XML is sent with Content-Type: text/plain. When using POST it is put in the HTTP message body. Always required when using the GET method. If you are using the GET method and do not specify a Form Data context record, no message is transferred to the HTTP server. The MPL server builds formData by concatenating the individual parts. You may use substitution variables when entering values for Form Data. | |
HTTP Login User | The HTTP server may require authentication. Add a context record of this type to specify the login user to use. | |
HTTP Login Password | The HTTP server may require authentication. Add a context record of this type to specify the login password to use. | |
HTTP Header | Sometimes the HTTP server on the other side may require the addition of HTTP headers to the message. For each HTTP header that has to be specified you should add a context record with a value having the following format x:y where x is the header name and y is the value for the header | |
Character Encoding | Indicates if the message should be encoded. The sender will add to the HTTP's content type header the string ;charset=x where x is the value of this context and when sending the message it will encode the data in that encoding. | UTF-8 or UTF-16 |
Example 1
This is an example of an HTTP sender definition that connects to an external HTTP Inbound Server. The HTTP server on the other side expects a POST with some form parameters and the XML message specified in the SWEExtData form parameter. Note that @XMLMSG@ is used for the SWEExtData form parameter.
Context Type | Context Value |
---|---|
HTTP URL1 | http://<Web Server>/esales/start.swe |
HTTP Method | POST |
HTTP Transport Method | sendReceive |
HTTP Form Data | SWEExtSource=<Source Name> |
HTTP Form Data | SWEExtCmd=<Execute> |
HTTP Form Data | SWEExtData=@XMLMSG@ |
HTTP Form Data | UserName=SADMIN |
HTTP Form Data | Password=SADMIN |
Example 2
This is an example of an HTTP sender definition that connects to a third party web service.
Context Type | Context Value |
---|---|
HTTP Header | Content-Type:text/xml |
HTTP Header | SOAPAction:http://mwm.splwg.com/WebServices/Submit |
HTTP Method | POST |
HTTP Transport Method | sendReceive |
HTTP URL1 | http://10.10.17.138/SPLMWMService |
HTTP URL2 | /SPLMWMService.asmx |
This sender is used when you want XML messages to be written to a flat file. For example, it can be used in the notification download process to write a response message to a flat file. Flat file senders should reference an XAI Class of FLATFILESNDR. In addition, the following context records should be defined for senders of this type.
Context Type | Description | Values |
---|---|---|
Flat file output directory | Directory in the file system where to write the file | |
Flat file filename pattern | The name of the output file. The file name may be a literal constant, or generated dynamically. To create a dynamic filename use <file name>$$ID, where $$ID is replaced at run time by the ID of the NDS message that triggered the response message. If no file name is defined for the sender, the XAI server generates a file name with the following format 'XAI$$ID.xai'. | |
Append data to file | This parameter controls whether the content of the response message is appended to an existing file, or a new file is created (possibly replacing an existing one). | YES or NO |
Character Encoding | Indicates if the message should be sent with character encoding. The sender will write the content of the file with encoding specified in the context value. If no value is specified, the sender uses the default Java system encoding, which is determined according to the operating system locale. | UTF-8 or UTF-16 |
The email sender allows for XML messages to be sent as email messages through an SMTP server. It can be used in notification download processes to send a response as an email message. The email sender supports standard email functionality such as "CCs" and attachments.
The content of the email message is controlled by the XSL script defined in the XAI route type of the NDS message. The XSL script has access to all context records of the NDS message as well as the input XAI message that was created by processing the NDS.
An email sender must point to the XAI Class EMAILSENDER. In addition, the following context records should be defined for senders of this type.
Context Type | Description | Values |
---|---|---|
SMTP Host name | The SMTP server host name. | |
SMTP Username | The user ID used to access the SMTP server. | |
SMTP Password | The password used to access the SMTP server. |
XAI groups are used by the system to process an XML file containing multiple messages to be uploaded into the system. One or more groups may be defined for an XML file receiver.
When setting up your XAI environment, identify the interfaces that require uploading an XML file containing multiple XML messages into the system through XAI.
First you need to categorize the XML files that you may receive. Define an XAI Group for each logical categorization. For example, you may want to define a separate XAI Group for each third party who may send you a collection of XML messages. Or, if all third party service providers send direct access messages in a standard format, you may want to define a single XAI Group for direct access messages.
For each group, you need to identify the root elements that indicate when a new message is starting. This collection of unique root elements for a group is called the attachments.
For each group, you must identify every possible message that may be sent. For every message, define an XAI Rule. The rule indicates the XSL transformation script to be executed along with the XPath and XPath value that the system uses to identify each message.
Receivers define small pieces of code that wait for requests to be received through various sources. Each receiver references an XAI class where the small piece of code is defined. The following receiver classes are provided:
Multiple receivers may be defined for these receiver classes. For example, the XML file receiver defines the scan directory. If you have multiple directories that contain files to be uploaded, define a receiver for each directory.
All types of receivers reference an XAI Class and XAI Executer. If you require a new XAI Class or Executer because you use a protocol that is not currently supported, it is recommended that your implementers contact customer support.
Once a request has been sent for execution to the XAI server (via the executer), the response layer processes the response. For some receivers, a response may not be applicable. For example, a file scan receiver reads flat files in a given directory and posts records to the XAI staging control table. Responses are not applicable for this type of receiver.
The response may be conditional on the outcome of the request and may be sent to more than one destination (sender). To design your receiver responses, determine the conditions under which a response should be sent for each request processed by each receiver:
Once you determine when to send a response, you must determine where to send the response. Responses for different conditions may be sent to different XAI Senders or to the same XAI Sender.
The following receivers are needed to poll the various system staging tables.
For all the above receivers, if you need to access multiple environments, simply create receivers for each JDBC connection. Note that you should not add more than one of each of the above receivers pointing to the same JDBC connection. To improve performance for a single JDBC connection you may configure multiple MPL servers.
If you need to receive messages through a JMS compatible queue, you need to define a JMS Queue receiver. When designing a JMS Queue receiver you first need to design a JMS Connection and a JMS Queue.
If you would like to post responses back to the JMS queue, you may create an XAI sender to send the response to the JMS queue.
If you need to receive messages through a JMS Topic using the publish/subscribe model, you need to define a JMS Topic receiver, which receives messages published under a specific topic. When designing a JMS Topic receiver you first need to design a JMS Connection and a JMS Topic.
If you would like to post responses through a JMS Topic using the publish/subscribe model, you may create an XAI sender to send the response to the JMS topic.
The file scan receiver constantly looks in a given directory for files with a given pattern. When it finds a matching file, it creates a record in the staging control table to upload the contents of the file into the upload staging table.
When setting up your XAI environment, identify the interfaces that require uploading a file from a directory into the system through XAI. For each unique file, define a file scan receiver. For each receiver record, indicate the Scan Directory, where new files will be placed, the Scan File, which is the naming pattern to look for and the XAI Inbound Service to use for mapping the data into a system service.
In addition, if you want to specify a character encoding, the following Context record should be defined.
Context Type | Description | Values |
---|---|---|
Character Encoding | Indicates that the message is character encoded. When the receiver creates a staging control entry for a file, it will add ?enc=?x to the name of the file in the table where x is the value of this parameter. Refer to Sequential Input File for more information. | UTF-8 or UTF-16 |
The XML file receiver constantly looks in a given directory for XML files with a given pattern. When it finds a matching file, it goes through steps to identify each separate message in the file, determine the appropriate XSL transformation and create a record in the staging upload table.
When setting up your XAI environment, identify the interfaces, which require uploading an XML file containing multiple XML messages into the system through XAI. For each unique file, define an XML file receiver. For each receiver record, indicate the Scan Directory, where new files will be placed, the Scan File, which is the naming pattern to look for and the collection of XAI groups. XAI groups are used by the system to identify each separate message in the file and to determine the appropriate XSL transformation for each message.
The following sections walk you through configuring your system to communicate messages to external systems based on how your implementation communicates.
The following sections describe the setup required when using outbound messages to communicate with an external system. The configuration walks you through the steps to configure a single external system and all its messages.
For each outbound message that must be sent to an external system, create a business object for the outbound message maintenance object. Using the business object's schema definition, your implementation defines the fields that make up the XML source field. These are the fields that are the basis for the XML message. XSL transformations may be applied to this XML source to produce the XML message.
Once you have your business object and schema, define an outbound message type for each unique outbound message.
When messages are routed to an external system via XAI, each message must be associated with an XAI Sender, which tells the system how to send the message.
Define an external system and configure the valid outgoing messages and their method of communication (XAI, Batch, or Real Time). Refer to Batch Message Processing for more information. Refer to Real Time Messages for more information.
Refer to the documentation for your product to find out if NDS messaging is supported.
The Schema Editor is a Graphical User Interface (GUI) tool to create XML schemas. The tool provides wizards to generate schemas from various sources.
After launching the schema editor, you are asked to connect to a database. On the Connect dialog:
After connecting, the schema editor appears.
Use the File/Open dialogue to select a schema from the schema directory. Refer to The Options Menu for information about setting the default schema directory.
The schema editor allows you to modify individual elements and attributes of a given schema.
Description of Page
Refer to System Wide Functions for Schema Editor for information about the various menu options available for the schema editor.
Service Name Enter the name of the service to be created in the service name text box. This is the name of the first element under the Body element in the XML document.
Adapter The adapter used to process services using this schema.
Internal Service Name If the schema is for an adapter that should invoke a system service, this is the internal name of the service.
Transaction Type Select the transaction type performed by the service. The available values are Read, Add, Change, Update, Delete, List and Search.
Left Panel
The left panel of the schema editor displays a tree view of the hierarchical elements in the schema. The (+) expands a node, the (-) collapses a node.
Right Panel
The following attributes appear on the right panel of the Schema Editor. Some fields cannot be modified in the schema editor. The field description indicates when the field is protected.
Tag Name The XML element tag name. This field is protected, but you may modify this attribute to give the element a self-explanatory name by right-clicking on the element name in the left tree-view.
MetaInfo Name Maps the element to a fully qualified field name in the service, for example PER_ID. This field is protected.
Internal Type This property is populated automatically when you generate the schema from your product. The values further define elements and attributes. The values are page, pageBody, list, listHeader, listBody, searchHeader, codeTableDesc, Private. The values of codeTableDesc and Private are used to define special types of attributes. Refer to How to Create Code Description Attribute and How to Create a Private Attribute for more information.
Private attribute A field that does not exist on the server side, but one that you still want to have in the schema. Refer to How to Create a Private Attribute for more information.
Description A description of this field.
Content The element type. This field is only available for elements. Possible values are eltOnly- element may contain only other elements and no text, TextOnly- element may only contain text.
Search Type Services, which perform a Search, may allow searching based on different criteria. The values are taken from the system meta information when the schema is generated. The possible values are Main, Alternate1, Alternate2, Alternate3, Alternate4, Alternate5 and Alternate6.
Is Part of Primary Key Used to indicate to the XAI server whether or not this field makes up part of the primary key of the record. The values are taken from the metadata information when the schema is generated. Value may be true or false.
Min Occurs This field is available for elements only and is used for repeating elements. It defines the minimum number of occurrences for an element. Value may be 0 or 1.
Schema Max Occurs This field is available for elements only and is used for repeating elements. It defines the maximum number of occurrences for an element. Value may be 0, 1 or *.
Limit Number of occurrences This field is available for elements only and is used for repeating elements. If the Schema Max Occurs field has been set to '*', define the number of max occurrences here.
XML Data Type The data type for the attribute. Possible values are number, string, decimal, date, dateTime, and boolean.
Server Data Type Indicates the data type of this attribute on the server. This field is protected.
Server Format The format expected by the service. At runtime, XAI converts the Tag format to the Service Format before executing the request. Formats are defined in XAI Format.
Tag Format The format used to format an element/attribute in the schemas. Formats are defined in XAI Format.
Min Length Use this property to define the minimum length of the attribute, if applicable.
Max Length Use this property to define the maximum length of the attribute, if applicable.
Precision This is used for decimal attributes to define the maximum number of digits.
Scale This field is used for decimal attributes to define the number of digits at the right of the decimal point.
Required A value of Y indicates that the element must appear in XML document. A value of N indicates that the element is optional.
Default value Default value to be used for Request schema, when the element is not supplied as part of the XML request document.
Fixed Value Fixed value to be used for Request schema. This value is used regardless of the value supplied in the request document.
Code Table Field This property is used for attributes that are descriptions of a code table, where the description is not automatically returned by the system service. Use this property to indicate the code whose description should be retrieved by the XAI server. Refer to How to Create Code Description Attribute for more information.
Code Table Program This property is used for attributes that are descriptions of a code table, where the description is not automatically returned by the system service. Use this field to indicate the program that XAI should call to access the description for the Code Table Field. Refer to How to Create Code Description Attribute for more information.
Creating a Schema
Usually you do not create schemas from scratch; rather you use Schema Creation Wizards to import existing data structure definitions from a variety of data sources:
Once a schema is created based on the existing data structure, it is displayed in a TreeView on the left panel. Once the imported schema has been edited, it serves as the basis for creating the request and response schemas. When imported, the schema exposes all fields defined in the service. You may want to remove some attributes/elements from the request or response schema.
1. Save the Schema as a Request schema with an appropriate name, for example PersonInfoRequestSchema.xml
2. To create the Response schema, which is identical to the request schema, use the Save As Response menu option. This renames the top element of the schema to ServiceNameResponse, for example PersonInfoResponse and save the schema under a different name i.e. PersonInfoResponseSchema.xml. Note that if the request and response schemas are identical then one schema may be used for both and there is no need to create separate schemas.
3. Read in the Request Schema (File/Open) and modify its structure. Depending on the service type, you'll have to modify the contents of the Request Schema. This is usually required when the service is an "Info" service, which requires very few input elements. In such cases you'll delete most of the elements on the schema and only leave the necessary elements required to invoke the service. For example: in the PersonInfo request, you only need the PersonId and the Company elements in the request schema.
4. Read in the Response Schema (File/Open) and Modify its structure. Depending on the service type, you'll want to modify the contents of the Response Schema. This is usually required when the service is an "Add" or "Delete" service, which returns very few input elements. In such cases you'll delete most of the elements on the response schema and only leaves the necessary elements required by the requester of the service.
Adding an Element/Attribute
Usually, you won't have to add element or attributes to a schema. However if the schema already exists and you want to add an element/attribute, you can follow this procedure. Be aware that any element/attribute added here must also exist on the xml metainfo.
Removing Elements/Attributes
When generating a schema using one of the wizards, the generated schema may contain information that you do not want to publish as part of the service, or is not required for a particular service. You can remove elements/attributes from the schema, and though these elements/attributes may still exist on the service they are not seen by the XAI service using this schema. To remove an element or attribute:
Renaming an Element
To rename an element:
Although a schema is validated against the metainfo xml file when it is read into the editor or before it is saved, you can perform the validation at any time while the schema is being edited. To validate a schema, click on the Toolbar "Validate" button . If the schema fails to validate the schema errors dialog is displayed.
When the editor fails to validate a schema against the xml metainfo file, it pops up a dialog that lists the errors found in the schema definition. These errors may be of two types:
The Correct All button can be used to correct all fields that have data types that do not match the one in the XML metainfo file.
If you Exit without correcting the errors, the schema displays with the mismatch information highlighted in red.
Before a service can be used it must be defined in the XAI Inbound Service table in the XAI registry. A service can be registered in the XAI registry directly from the schema editor. Go to the menu item 'Register Service' in the 'Schemas' menu. The Register service UI page appears. Fill in the required fields.
The schema editor provides a testing option. Refer to Testing a Schema Using the Schema Editor for more information.
Because the schema editor is in an application outside of the standard products, this section introduces some general functions related to the application.
Use the File menu to open existing schemas and to save a schema to a file.
Connect
Connects to the database.
Open - Loading an existing schema into the editor
You can read an existing schema into the editor.
1. Click on the Open toolbar button or select the File/Open menu option.
2. A file selection dialog is shown. Select the schema file name.
3. The editor first validates the schema against the xml metainfo file. If it fails to validate it shows the Schema Validation Errors dialog.
Save
Save the current schema to a file. Using the current file name.
To save a Schema, click on the Save tool bar button, or select the File/Save menu option. When you save a schema, the editor first attempts to validate the schema. If it fails to validate it against the XML Metainfo file, you are prompted to save it with inconsistency errors or to return to the editor.
Save As
Save the current schema to a file. Use a different file name.
Save As Response
Save a copy of the current schema to a file as a response schema. Use a different file name.
Use the view menu to perform actions on the Tree View nodes or to view errors. The following menu options are available:
Expand All
Expand all nodes in the Tree View
Collapse All
Collapse all nodes in the Tree View
Expand Branch
Expand the selected node and all the node's children
Search (Ctrl+F)
Find a node with a node name containing a given string
Search Again (F3)
Find the next node with containing the search string
View Schema Errors
Display the Schema Validation Errors dialog.
Web Browser
Display the current schema definition on a web browser page
Use the Schemas menu to create, test, validate and register schemas.
Siebel Integration Object
Use this option when you are ready to export a Siebel Integration Object definition created based on an XAI schema.
Siebel VBC
Use this option when you are ready to export a Siebel VBC definition created based on a schema.
Always Save As W3C
Turn on this option to save schemas in W3C format by default instead of XDR format.
Always Save As DTD
Turn on this option to save schemas in DTD format by default instead of XDR format.
Preferences
The following options may be set on the preferences dialog (Select Options and then Preferences):
Schemas tools can be invoked from the Schema Editor Tools menu.
Converting Schemas to a W3C compatible schema
Schemas generated in the Microsoft BizTalk-compatible format (XDR format) may be saved in a format compatible with the October 2000, W3C XML schema standard. To save a schema in a W3C format:
Converting Schemas to a DTD
Schemas generated in the Microsoft BizTalk-compatible format (XDR format) may be saved as a DTD.
Validating multiple schemas
The schema validation tool can be used to validate the correctness of an XAI schema when compared to the metainfo xml definition used to generate the schema. For each validated schema, the validation tool scans the list of elements/attributes and compares them with those defined in the XML metainfo file. Select Validate Schemas in the Tools menu.
This section describes the control tables available to administer your XAI environment.
The XAI Classes are references to actual Java classes. The XAI Class defines the Java class used to implement Receivers, Senders, Adapters and Executers. This information is provided with the system and does not need to be modified for a specific installation.
To view an XAI class, open Admin Menu, XAI Class.
Description of Page
The XAI Class and Description are unique identifiers of the XAI Class. The Class Definition indicates the Java class, implementing the adapter, receiver, sender or executer.
Owner indicates if this XAI class is owned by the base package or by your implementation (Customer Modification). The system sets the owner to Customer Modification when you add an XAI class. This information is display-only.
Where Used
Follow this link to open the data dictionary where you can view the tables that reference CI_XAI_CLASS.
To view your envelope handlers, open Admin Menu, XAI Envelope Handler. This information is provided with the system and does not need to be modified for a specific installation.
Description of Page
Enter a unique XAI Envelope Handler ID and Description.
Indicate whether the Envelope Type is Default (no SOAP environment) , Siebel Integration Message, Siebel VBC or SOAP Envelope.
When the envelope type is SOAP Envelope, indicate the Envelope URI.
Owner indicates if this XAI envelope handler is owned by the base package or by your implementation (Customer Modification). The system sets the owner to Customer Modification when you add an XAI envelope handler. This information is display-only.
The following section describes the control tables that are logically considered part of the XAI Registry.
The XAI Options page defines various system settings used by the XAI and MPL servers. The settings here may be overridden by the AdHoc Parameters section of the XAIParameterInfo.xml or MPLParameterInfo.xml. To define options for your environment, open Admin Menu, XAI Option.
Description of Page
Define the following information for your XAI and MPL servers.
Option | Description | MPL / XAI Option Name |
---|---|---|
Automatically Attempt Resend to Unavailable Sender (Y/N) | Set to Y if you wish to enable Automatic Resend. Set to N if you wish to log errors when the system fails to send an outgoing message. | shouldAutoResend |
Default Email Sender | This is the default XAI Sender used for sending e-mails when no explicit XAI Sender is specified. | defaultEmailSender |
Default Response Character Encoding | Determines the character encoding to be used when a response is sent. For example, you may specify UTF-8 or UTF-16. If no value is specified then the default is UTF-8. If no special encoding should be done, then enter the value none. | defaultResponseEncoding |
Default User | The default user is used by XAI to access your product when no other user is explicitly specified. Refer to Server Security for more information. Additionally, the Default User is used for MPL transactions where there is no facility to provide a User ID. For example, no facility exists to provide a user id when reading messages from a JMS Queue. In these messaging scenarios, the system will use the Default User for authorization purposes. | defaultUser |
Email Attachment File Location | This is the default location of e-mail attachment files. If not specified, the e-mail service provided with the product assumes a full path is provided with each attachment file. | emailAttachmentFileLocation |
Email XSL File Location | This is the default location of e-mail XSL files. If not specified, the e-mail service provided with the product assumes a full path is provided to an XSL file as part of an e-mail request. | emailXSLFileLocation |
JDBC Connection Pool Max size | The MPL uses a pool of JDBC connections to connect to the database. This option determines the maximum number of JDBC connections that can be opened in the pool. The default value is 100. | JDBCConnPoolMaxSize |
Maximum Errors for a Sender | This value is required if you have enabled Automatic Resend. It defines how many errors you receive from a sender when attempting to send an outgoing message before you mark the sender unavailable. | maxSendingErrors |
Messages JDBC Connection | Specifies the JDBC connection that XAI uses to read the text for its messages. | messagesJDBCConnection |
Messages Language | The default language to use for the messages. | language |
MPL Administrator Port | The port number to be used for receiving MPL operator commands. | adminPort |
MPL HTTP Server Authentication Method | This setting, along with the MPL HTTP Server User and Password are used to secure commands received by your MPL (such as those issued via XAI Command) through HTTP. Currently only BASIC authentication is supported. | MPLHTTPAuthMethod |
MPL HTTP Server Password | This setting, along with the MPL HTTP Server Authentication Method and User are used to secure commands received by your MPL (such as those issued via XAI Command) through HTTP. The password should be in encrypted form, using the same encryption that is used for the database password. . | MPLHTTPAuthPassword |
MPL HTTP Server User | This setting, along with the MPL HTTP Server Authentication Method and Password are used to secure commands received by your MPL (such as those issued via XAI Command) through HTTP. | MPLHTTPAuthUser |
MPL Log File | The MPL Log File setting is used to specify the name of the file where MPL log information is to be written. The log contains technical information about the operation of the MPL. | MPLLogFile |
MPL Trace File | The MPL Trace File setting is used to specify the name of the file where MPL trace information is to be written. | MPLTraceFile |
MPL Trace Type | The MPL Trace Type is used to enable or disable tracing of the MPL. The possible values are FULL- All trace messages are written to the log file and NOLOG- No information is written to the log file. | MPLTraceType |
Outbound Message Schema Location | Enter the full path of the virtual directory where valid W3C schemas are stored if your implementation wants to validate outbound message schemas. For example: http:/localhost/cisxai/schemas. | xaiOuboundSchemaLoc |
Privileged Users | Comma separated list of users that are allowed to specify an effective User or effective User Id via framework custom SOAP Headers. | superUsers |
Records MPL Receiver Will Process At a Time | If your implementation has configured multiple MPL servers, indicate the number of records that each MPL receiver should process. | Not currently used |
Schema Directory | The full path of the virtual directory where XML schemas are stored. For example: http:/localhost/cisxai/schemas. If this option is not specified, the XAI uses the current directory, from where it is being run, to locate schemas. | schemaDir |
Schema Validation Flag | Enter Y to turn on schema validation for outbound messages. Enter N to turn this off. | xaiSchemaValidationCheck |
Send SOAP Fault as HTTP 500 | Enter Y to ensure that a SOAP error is reported as an HTTP 500 "internal server error". | sendErrorAsHttp500 |
Sender Retry Seconds | This value is required if you have enabled Automatic Resend. It defines how many seconds to wait after marking a sender unavailable before you mark the sender available again (and retry sending messages to it). | senderWaitTime |
System Error JDBC Connection | When a request fails to execute due to a system error, the MPL retries its execution several times. The MPL registers the system error in a table and uses this table for the retries. This setting specifies the JDBC connection required to access this table. Only enter a value in this field if it is different from the database environment used to read the XAI registry. | systemErrorTableJDBCConnection |
System Error Max Retry | When a request fails to execute due to a system error, the MPL retries its execution several times until a maximum number of retries is reached. This option specifies the maximum number of retries. | systemErrorMaxRetries |
System Error Retry Interval | When a request fails to execute due to a system error, the MPL retries its execution several times. This option specifies the number of seconds the MPL server waits between retries. | systemErrorRetryInterval |
Thread Pool Initial Size | The MPL uses a thread of pools to enhance performance. The MPL starts with a minimum number of threads and grows/shrinks the pool based on the MPL system load. This option specifies the initial number of threads in the thread pool. The minimum number of threads is 12. | threadPoolInitialSize |
Thread Pool Max Size | This option specifies the maximum number of threads in the thread pool. | threadPoolMaxSize |
Thread Pool Non Activity Time | This option specifies how long a thread in the pool may be inactive before it is timed out and released from the pool. | poolNoneActivityTime |
To Do Type for Inbound JMS Message Errors | To Do type for inbound JMS message errors. The inbound message processor uses this To Do type when creating To Do entries for inbound JMS messages that cannot be successfully processed. The system provides the To Do type F1-INJMS that may be used here. | toDoTypeforInboundJMSMessageErrors |
To Do Type for Outbound Message Errors | To Do type for outbound message errors. The outbound message receiver uses this To Do type when creating To Do entries for outbound messages that cannot be successfully processed. The system provides the To Do type F1-OUTMS that may be used here. | outboundErrorTodo |
WSDL Service Address Location | Specifies the SOAP address location that XAI uses in creating a WSDL. If no value is present, the XAI's URL is used. | wsdlAddressLocation |
XAI Authentication Password | The multi-purpose listener uses this field in combination with the XAI Authentication User when attempting to communicate with the XAI server over HTTP, which is running on a secured servlet and requires authentication. | HTTPBasicAuthPassword |
XAI Authentication User | The multi-purpose listener uses this field in combination with the XAI Authentication Password when attempting to communicate with the XAI server over HTTP, which is running on a secured servlet and requires authentication. | HTTPBasicAuthUser |
XAI Trace File | The full path name for the file, where the XML messages should be written. For example: c:\inetpub\wwwroot\cisxai\xai.log. | traceFile |
XAI Trace Type | Use this option to specify the level of logging. The possible values are FULL- All XML messages are written to the log file and NOLOG- No information is written to the log file. Fastpath: Refer to Server Trace for more information about tracing. | traceType |
XSL Directory | The full path of the virtual directory where XSL transformation scripts are located. XSL transformation scripts can be defined for each service. By default, this is the same directory as the schemas directory. | XSLDir |
Where Used
Used by the XAI tool to obtain various required settings and locations.
To define a new JNDI Server, open Admin Menu, XAI JNDI Server.
Description of Page
Enter a unique XAI JNDI Server and Description.
Indicate the Provider URL, which is the URL of the JNDI server .
Indicate the Initial Context Factory, which is a Java class name used by the JNDI server provider to create JNDI context objects.
Where Used
Follow this link to open the data dictionary where you can view the tables that reference CI_XAI_JNDI_SVR.
To enter or view an XAI JDBC Connection, open Admin Menu, XAI JDBC Connection.
Description of Page
Enter a unique XAI JDBC Connection and Description.
Use the Connection Type to indicate how the JDBC connects to a database. The following connection types are valid:
For connection types of Oracle or DB2, use the JDBC URL to indicate URL of the database connection to be initialized at XAI/MPL startup time. Indicate the Database User and Database Password required for accessing the database. The JDBC connection URL can either be a Type 2 or a Type 4. For example:
For a connection type of Determined by parameter file, indicate the parameter substitutions, which should be accessed from the parameter file for the JDBC URL, database user and database password, for example, @JDBCURL@, @DBUSER@ and @DBENCPASS@.
When the connection type is JNDI, indicate the XAI JNDI Server and the JNDI Data Source name as defined in the JNDI.
Where Used
Follow this link to open the data dictionary where you can view the tables that reference CI_XAI_JDBC_CON.
To define a JMS Connection, open Admin Menu, XAI JMS Connection.
Description of Page
Enter a unique XAI JMS Connection and Description.
Indicate the XAI JNDI Server to be used. Refer to XAI JNDI Server for more information.
Use the JNDI Connection Factory to indicate the lookup keyword in the JNDI server used to locate the JMS connection.
Where Used
Follow this link to open the data dictionary where you can view the tables that reference CI_XAI_JMS_CON.
To define your JMS Queue values, open Admin Menu, XAI JMS Queue.
Description of Page
Enter a unique XAI JMS Queue and Description.
Enter the Queue Name as defined in the JNDI server. This is the JNDI lookup name identifying the queue.
Use the Target Client Flag to indicate whether or not the target client is JMS or MQ.
Select the XAI JNDI Server where the queue is defined. Refer to XAI JNDI Server for more information.
Where Used
Follow this link to open the data dictionary where you can view the tables that reference CI_XAI_JMS_Q.
To define your JMS Topic values, open Admin Menu, XAI JMS Topic.
Description of Page
Enter a unique XAI JMS Topic and Description.
Select the XAI JNDI Server where the topic is defined. Refer to XAI JNDI Server for more information.
Enter the Topic Name as defined in the JNDI server. This is the JNDI lookup name identifying the topic.
Where Used
Follow this link to open the data dictionary where you can view the tables that reference CI_XAI_JMS_TPC.
Open Admin Menu, XAI Format to define the various formats.
Description of Page
For each new format, specify a unique XAI Format name and Description.
Indicate whether the Format Type is a Currency formatting string, a Date/Time formatting string, a Phone formatting string or a Text formatting string.
Finally, indicate the Format Expression, which defines the formatting pattern to be applied.
Owner indicates if this format is owned by the base package or by your implementation (Customer Modification). The system sets the owner to Customer Modification when you add an XAI format. This information is display-only.
Where Used
Follow this link to open the data dictionary where you can view the tables that reference CI_XAI_FORMAT.
To define a new adapter, open Admin Menu, XAI Adapter.
Description of Page
Indicate a unique Adapter Name and Description.
Indicate the XAI Class , which is the name of the Java class, implementing the adapter. The class should be one that is defined for an adapter. The adapter classes provided with the product are BASEADA- Core Adapter, BUSINESSADA- Business Requests Adapter, LDAPIMPRTADA- LDAP Adapter, SIEBELADA- Siebel XML Gateway Adapter, STGUPADA- Staging Upload Adapter, XAICMNDADA- XAI Command Adapter.
The following fields are not applicable for the BusinessAdapter adapter.
Use the XAI JNDI Server to indicate the name of the WebLogic JNDI server running your product. Refer to XAI JNDI Server for more information.
Indicate the Default User to be passed to your product server when this adapter is executed.
The Default Date format and the Default DTTM (date / time) Format specify date and date/time formats to use when a schema does not explicitly indicate formats.
Owner indicates if this XAI adapter is owned by the base package or by your implementation (Customer Modification). The system sets the owner to Customer Modification when you add an XAI adapter. This information is display-only.
Where Used
Follow this link to open the data dictionary where you can view the tables that reference CI_XAI_ADAPTER.
To define a new Executer, open Admin Menu, XAI Executer.
Description of Page
Enter a unique Executer ID and Description.
Indicate the XAI Class for this executer. The class should be one that is defined for an executer. The executer class provided with the product is XAIURLEXEC- XAI Executer.
Indicate the appropriate Executer URL.
Owner indicates if this XAI executer is owned by the base package or by your implementation (Customer Modification). The system sets the owner to Customer Modification when you add an XAI executer. This information is display-only.
Where Used
Follow this link to open the data dictionary where you can view the tables that reference CI_XAI_EXECUTER.
To define a new sender, open Admin Menu, XAI Sender.
Description of Page
Enter a unique XAI Sender and Description.
Use Invocation Type to define whether the sender is a Real-time sender or called by MPL to route near real-time messages. The default is MPL.
Indicate the XAI Class for this sender. The class should be one that is defined for a sender. The sender classes are DWNSTGSNDR- Download Staging sender, EMAILSENDER- Email sender, FLATFILESNDR- Flat file sender, HTTPSNDR- HTTP sender, JMSSENDER- JMS Queue sender, STGSENDER- Staging Upload sender, TPCSNDR- JMS Topic sender and UPLDERRHNDLR- Upload Error Handler.
Indicate whether or not this sender is currently Active.
Indicate whether the MSG Encoding is ANSI message encoding or UTF-8 message encoding.
If the XAI Class is JMSSENDER or TPCSNDR indicate the appropriate XAI JMS Connection
If the XAI Class is JMSSENDER, use the XAI JMS Queue to define where the response is to be sent.
If the XAI Class is TPCSNDR, use the XAI JMS Topic to define where the response is to be sent.
If the XAI class for this sender is STGSENDER indicate the XAI JDBC Connection.
The sender may require context information to define additional information needed by XAI to successfully send outgoing messages. Open Admin Menu, XAI Sender and navigate to the Context tab.
Description of Page
Define the Context Type and Context Value, which contain parameters for senders when more information is required. For example, flat file senders need to indicate the file path and name. Email senders need to indicate a server, user name and password.
Where Used
Follow this link to open the data dictionary where you can view the tables that reference CI_XAI_SENDER.
XAI groups are used to process XML files, which contain a collection of XML messages to be uploaded in batch.
To define your XAI groups, open Admin Menu > XAI Group .
Description of Page
Enter a unique Group and Description for the XAI Group.
Indicate the Parser used for this group. Possible values are Dom Parser and StAX Parser.
Indicate the XPath and XPath Value, which an XML file receiver uses to identify which group a given XML file belongs to.
Open Admin Menu > XAI Group and navigate to the Attachments tab to define attachments for your group.
Description of Page
For each entry in the attachments collection, indicate the Sequence and the Root Element. Use Include Elements to indicate if Parent elements should be included along with the current element when applying the XAI rules.
Open Admin Menu > XAI Group and navigate to the Rules tab to define rules for your group.
Description of Page
For each entry in the rules collection, indicate the Sequence, the Priority, the XPath name and XPath Value and the XSL File Name.
Where Used
Follow this link to open the data dictionary where you can view the tables that reference CI_XAI_RGRP.
To define your XAI receivers, open Admin Menu > XAI Receiver .
Description of Page
Enter a unique Receiver ID and Description for the XAI Receiver.
Indicate the XAI Class for this receiver. The class should be one that is defined for a receiver. The receiver classes are DWNSTGRCVR- Download Staging receiver, FILESCANRCVR- Upload Files from a directory, JMSRCVR- JMS Queue receiver, OUTMSGRCVR- Outbound Message receiver, STGCTLRCVR- Staging Control receiver, STGRCVR- Staging Upload Receiver and TPCRCVR- JMS Topic receiver, XMLFILERCVR- XML File receiver.
Indicate whether or not this receiver is currently Active.
Identify the Executer ID. Select the XAILOCAL executer if the XAI class for this receiver is STGCTLRCVR. Select the BYPASSXAI executer if the XAI class for this receiver is OUTMSGRCVR. For all other receivers select the XAIURL executer. For more information, refer to XAI Executer.
Indicate whether the MSG Encoding is ANSI message encoding or UTF-8 message encoding.
The Read Interval indicates the number of seconds between read cycles.
Start At Time and Duration are not currently in use.
If the XAI class for this receiver is FILESCANRCVR, STGRCVR, STGCTLRCVR or XMLFILERCVR, indicate the XAI JDBC Connection.
Turn on Sequential Execution if the received requests should be processed in sequential order (instead of multithreaded). If this value is turned on then XAI staging control records created by this receiver are marked for sequential execution.
JMS Information
The following information is only available if the XAI Class is JMSRCVR or TPCRCVR.
Indicate the appropriate XAI JMS Connection
Indicate the appropriate XAI JMS Queue.
Indicate the appropriate and XAI JMS Topic.
File Information
The following information is only available if the XAI Class is FILESCANRCVR or XMLFILERCVR.
Use the Scan Directory to indicate where to look for new files.
In Scan File,indicate the file pattern. All files with names matching the pattern are uploaded into the staging upload table. For each file found, a record in the staging control table is created.
The following information is only available if the XAI Class is FILESCANRCVR.
Use the XAI In Service Name to indicate how the records in the file are mapped and how they are transformed to match a system service request structure.
Open Admin Menu > XAI Receiver and navigate to the Context tab to define context for your receiver.
Description of Page
The Context collection enables you to define a collection of Context Types and Context Values defining. Use this collection when you need to store an attribute of a receiver that is not catered for in the current table.
Open Admin Menu > XAI Receiver and navigate to the Response tab to define where to send responses to requests made by this receiver. Refer to Designing Responses for a Receiver for more information.
Description of Page
The response collection enables you to define the destination (XAI Sender) where responses to a request may be sent under various circumstances (Event). The events currently defined with the product are All events, Message executed OK, Application Error, System Error.
Open Admin Menu > XAI Receiver and navigate to the Groups tab to the valid XAI groups for an XML file receiver.
Description of Page
This collection is only available if the XAI Class is XMLFILERCVR.
For each entry in the Group collection, indicate the Priority and the Group. Refer to XAI Groups for more information about defining groups.
Where Used
Receivers are used by the XAI server and by the MPL server to process messages sent to the system from various sources.
This transaction defines services available in the system. These include user interface services as well as stand-alone XAI services. A service may be invoked by XAI and as such may be referenced by an XAI Inbound Service. Use this transaction to introduce a new stand-alone XAI service.
Select Admin Menu > Service Program to maintain service programs.
Description of Page
Define a Service Name for your new service.
Owner indicates if this service is owned by the base package or by your implementation (Customer Modification). The system sets the owner to Customer Modification when you add a service. This information is display-only.
Description describes the service.
Service Type indicates whether the service is a Java Based Service or a Cobol Based Service.
This Program Component grid shows the list of program user interface components associated with the service. For a stand-alone XAI service this list is optional.
Where Used
Follow this link to open the data dictionary where you can view the tables that reference CI_MD_SVC.
The XAI Inbound Services section in the registry is the main section of the registry. It is used to define the service characteristics. Basically, a service is defined by an Adapter responsible for executing the service, a pair of XML schemas and connection attributes. The Adapter defines the interface with the target application server, while the schemas define the structure of the request XML document expected by the service and the structure of the response XML document generated by the service.
To create or update an inbound service, open Admin Menu > XAI Inbound Service .
Description of Page
Define a unique XAI In Service Name. This information is used in the system to identify the service. The service name is also the first XML element after the <Body> element in the XML request/response document. The system generates a unique XAI Service ID, which serves as the primary key.
Owner indicates if this XAI inbound service is owned by the base package or by your implementation (Customer Modification). The system sets the owner to Customer Modification when you add an XAI inbound service. This information is display-only.
Indicate the Adapter, which defines the interface with the target application server.
If adapter for this service should invoke a system service, then indicate the appropriate Service Name.
If adapter is the base package Business Adapter then Service Name does not appear. Instead, use Schema Type to indicate the type of object this service invokes and Schema Name to reference the object to invoke. Using this adapter, you may set up service to invoke business objects, business services and service scripts.
Use the Description and Long Description to describe the service.
Check the Active switch if this service is enabled and available for execution. If this switch is unchecked, then the service is defined in the registry, but not yet available for public use.
Check the Post Error switch to support inbound message error handling for messages that are not processed via the staging upload table.
Check the Trace switch if you would like the trace to be on for this particular service. If the general trace option is not activated, you can force a trace for a particular service.
When the Debug switch is checked, debug information is generated on the XAI console when this service is executed. The debug information can be useful to resolve problems.
Schema Definitions
The next two properties define the request and response XML schemas. The schemas were created using the Schema Editor and are SOAP compatible. The schema XML files are expected to be stored in the Schemas Directory on the Web server running the XAI server.
The Request Schema is the XML schema defining the service request. The request sent to the server must adhere to the schema definition.
The Response Schema is the XML schema defining the service response. The response generated by the XAI server corresponds to the response schema definition.
The same service may perform several actions on a business object. Use the Transaction Type to define the default action performed by a service. The transaction type can be provided when invoking a service, by dynamically specifying a transaction type attribute on the Service element of the XML request. This field may take the following values: Read, Add, Change, Update, Delete, List and Search.
Services, which perform a Search, may allow searching based on different criteria. When the Transaction Type value is Search, use the Search Type to define the default search criteria. The possible values are Main, Alternate1, Alternate2, Alternate3, Alternate4, Alternate5 and Alternate6.
XSL Transformation Definitions
Sometimes, the XML request document does not conform to the request schema, or the response document expected by the service requestor is not the one generated by the adapter. In such cases the request and/or the response documents must be transformed. The XAI server supports transformation through XSL transformation scripts. Transformation scripts may be applied to the request before it is passed to the adapter or applied to the response document before it is sent to the service requestor.
The Request XSL is the name of the XSL transformation to be applied to the request document before processing it. The transformation is usually required when the incoming document does not correspond to the XAI service request schema therefore it has to be transformed before it can be processed by the adapter.
The Response XSL is the name of the XSL transformation to be applied to the response document when the requester of the service expects the response to have a different XML document structure than the one defined by the response schema for the service.
Click the WSDL URL hyperlink to launch a separate window that contains the WSDL definition for the inbound service. Note that the server name and port number for the URL are built using a setting in the common properties file using the XAI HTTP Caller URL setting.
Refer to WSDL Catalog for information on how to obtain the WSDL catalog for all XAI Inbound Services.
The staging tab is used to define parameters for services that use the Staging Upload adapter.
Open Admin Menu > XAI Inbound Service and navigate to the Staging tab to define attributes for your upload staging adapters.
Description of Page
Indicate the Staging File Type to be processed by the staging upload service. Possible values are Comma Delimited file, Database Extract and Sequential file.
The format of the records in the input file are not in an XML format and do not correspond to an XAI service schema. As a result, the input record must be transformed into an XML message that conforms to an XAI service request schema. Enter the Record XSL, which indicates the XSL transformation script used to transform the input record into the appropriate XML message.
For sequential files and Comma delimited files, indicate the Input File Name to be processed.
When the service takes its input from a Database extract, indicate the JDBC Connection used to connect to the database that contains the input data.
Use the Interface Name to provide a description of the interface being implemented through this service.
This tab enables you to define parameters that are used as selection criteria by the DB Extract staging upload service.
Open Admin Menu, XAI Inbound Service and navigate to the Parameters tab.
Description of Page
The Parameters that were defined under the Request element in the schema are displayed here. They are used to drive the extraction process. This tab only displays the list of parameters. The values for these parameters can later be entered when the control record to invoke this service is created.
Owner indicates if this XAI inbound service is owned by the base package or by your implementation (Customer Modification). The system sets the owner to Customer Modification when you add an XAI inbound service. This information is display-only.
Where Used
Follow this link to open the data dictionary where you can view the tables that reference CI_XAI_IN_SVC.
Refer to the documentation for your product to find out if XAI Route Type is supported.
Use this page to define basic information about an outbound message type. Open this page using Admin Menu > Outbound Message Type.
Description of Page
Enter a unique Outbound Message Type and Description. Use the Detailed Description to describe the outbound message type in detail.
Indicate the Business Object that defines business rules and the schema for outbound messages of this type.
Indicate the relative Priority for processing outbound message records of this type with respect to other types.
This bottom of this page contains a tree that shows the various objects linked to the outbound message type. You can use this tree to both view high-level information about these objects and to transfer to the respective page in which an object is maintained.
Where Used
Follow this link to open the data dictionary where you can view the tables that reference F1_OUTMSG_TYPE.
Use this page to define an external system and define the configuration for communication between your system and the external system.
Open this page using Admin Menu > External System.
Description of Page
Enter a unique External System and Description.
Use the field Our Name In Their System to specify the identity of your organization (i.e., your external system identifier) in the external system.
If this external system sends inbound communications through notification upload staging, the type of workflow process that is created is controlled by the sender's W/F (Workflow) Process Profile.
If you send notifications to this external system, select a Notification DL (download) Profile that is used to define the configuration of the outgoing messages.
Set Usage to Template External System for external systems whose outbound message type configuration is inherited by other external systems.
If the outbound message type configuration should be inherited from a template external system, define the Template External System. If this field is specified, the outbound message type collection displays the data defined for the template system as display-only.
The Outbound Message Type accordion contains an entry for every type of outbound message defined for this external system. For each type of outbound message identify its Outbound Message Type.
Define the Processing Method for messages of this type. If the value is XAI, indicate the appropriate XAI Sender. If the value is Batch, indicate the appropriate Batch Control.
The Message XSL is the schema used to transform information from the format produced by the system to a format understood by the sender, who receives a message of this type.
Enter the file name of the appropriate W3C Schema if you want to validate the message built for outbound messages for this external system / outbound message type prior to being routed to their destination. Refer to Outbound Message Schema Validation for more information.
Response XSL will have the same search service as is used for the existing Message XSL field. This field will only be displayed when the processing method is Real-time. Refer to Outgoing Messages for more information on how it is used.
If you are viewing an external system whose usage is a Template External System, use this page to view the other external systems that reference this one. Open this page using Admin Menu > External System and then navigate to the Template Use tab.
Description of Page
The tree shows every external system that references this external system as its template.
This section describes various tools provided to enable your XAI administrators to more easily maintain your XAI environment.
This page exists for testing purposes. It allows you to create an XML request document and submit it to the system, to ensure that the XML has been built correctly.
To submit an XML document for testing, navigate to Admin Menu > XAI Submission and navigate to the main tab.
Description of Page
This page is used to test XML schemas, which are defined for the XAI tool. Enter an appropriate XML document in the XML Request field. Typically, you define the XML schema using the schema editor in the XAI application. Then you would copy and paste the document here, then modify the schema to enter actual data for testing purposes.
When you have entered the document, choose Save to submit this document to the system. Note that this request information is not saved anywhere. It simply calls the system with the appropriate service name and executes the XML request.
Navigate to the Response tab to view the response.
To view the response to a XML document for testing, navigate to the response tab.
Description of Page
After choosing Save on the main tab to submit a test for an XML request, the response to your request is displayed in the XML Response text box.
This page exists for testing purposes. It is similar to the XML Submission page, but it dynamically builds your XML document based on a selected XAI service and data that you enter.
To create and submit an XML document for testing, navigate to Admin Menu > XAI Dynamic Submission and navigate to the main tab.
Description of Page
Select the XAI In Service Name, which identifies the XAI Inbound Service called by the XAI tool to load/update the system data. After selecting, click Load UI. This button causes the system to read the XML schema associated with the service and build the screen with the associated prompts and fields, which enables a user to enter data.
Select the Transaction Type associated with this XML request. The valid values are Add, Change, Delete, List, Read, Search and Update. This information is built into the XML request document.
Set the Trace option to yes to request level tracing to be executed inside the XAI tool . This results in information written to a file, which may be useful in debugging.
The bottom portion of the screen contains field prompts and input fields for the data associated with the XML request linked to this service. The system dynamically builds this portion of the page by reading the XML Request associated with the service. You can enter data in the displayed fields.
Enter values in the appropriate fields. You need to have some knowledge of what information is needed based on the service and transaction type. For example, if your service is accessing the account record and you want to read the record, you only need to provide the account id. However, if your transaction type is add, you need to fill in all the fields necessary for adding an account. If you have not entered values correctly, you receive an error in the Response.
When finished entering values in the fields, click Show XML to see the XML request built based on the schema and the values of the fields entered.
If everything looks OK, click Submit to execute the XML request. Note that this request information is not saved anywhere. It simply calls the system with the appropriate service name and executes the XML request.
You are brought to the Response tab, where you may view the response.
To view the response to the XML document submitted for testing, navigate to the response tab.
Description of Page
After choosing Submit on the main tab to submit a test for the XML request built dynamically, the response to your request is displayed in the XML Response text box.
This section introduces some additional tools to help you maintain your XAI environment.
The service export page allows you to export the definition of an XAI Inbound Service to a file. This function may be helpful if you need to copy the definition of this service to a separate environment. To export a service, open Admin Menu, XAI Service Export.
Description of Page
Upon entry into this page, you are provided with the current list of XAI In bound Services and their Description s. Use the XAI In Service Name search field to find the XAI service that you would like to export.
Use the Export? column to indicate which XAI service(s) you would like to export. Once you have selected your services, choose Save.
You are presented with the standard File Download dialogue where you can open or save the file.
The service import page allows you to import the definition of an XAI Inbound Service from a file into the XAI service table. This function may be helpful if you need to copy in the definition of this service from a separate environment. To import a service, open Admin Menu, XAI Service Import.
Description of Page
Upon initial entry into this page, you are provided with an input field, where you can enter the file name to import. Click Browse to search for the desired file in a directory.
Once the file is identified, click Read File, to read in the contents of the file.
Once the file has been read in, the list of XAI services found defined within the file is displayed in the Import grid, identified by their XAI In Service Name and Description. In the Import? column, indicate which services to import.
If a service with this service name already exists in the table, you must check the Overwrite Existing switch in order to indicate that the imported file information should replace the current service. An XAI Inbound Service that is provided as part of the system (i.e., with an owner of Base Product) may not be overwritten.
Click Save to proceed with the import. If any problems are found, information is displayed in the Message Text column.
Use the XAI Command page to send commands to the XAI and MPL server. To execute a command, open Admin Menu, XAI Command.
Description of Page
The following operator commands may be sent to the XAI server. For each of these commands, you may check Also Sent to MPL URL, in which case, the command is also sent to the MPL server. You need to indicate the URL of the MPL server.
Display Registry Use this command to display the current registry information that the XAI instance is running with.
Refresh Code and Description This is related to an attribute in the schema editor where you may indicate that the description of a control table code should be returned along with the code itself. This information is kept in cache memory in the server. As a result, changes made to descriptions have no effect on the runtime server. This command clears the cache of control table codes and descriptions accessed by the server. Refer to How to Create Code Description Attribute for more information.
Refresh Registry The registry contents are kept in cache memory in the server. As a result, making changes to the registry control tables has no effect on the runtime server. Use this command to refresh the contents of the registry cache with the new values in the registry control tables. The command reloads all registry control table data into the server.
Refresh Schema Schema definitions are stored in cache memory on the XAI server. As a result, modifying a schema definition has no effect on the runtime server. To refresh schema definitions, use the Refresh Schemas command.
Refresh Service Service definitions are stored in cache memory on the XAI server. As a result, modifying an XAI inbound service definition has no effect on the runtime server. To refresh service definitions, use the Refresh Service command. You are prompted to indicate which service to refresh.
Refresh XSL XSL Transformation script definitions are stored in cache memory on the XAI server. As a result, modifying an XSL transformation definition has no effect on the runtime server. To refresh XSL transformation definitions, use the Refresh XSL command.
Trace On Use this command to start the XAI server trace.
Trace Off Use this command to stop the XAI server trace.
XAI Trace Clear Use this command to clear the contents of the trace file.
XAI Trace Swap Use this command to rename the current trace file by appending the date and time to the end. A new trace file is then created with the name as defined in the XAI option page.
The following operator commands can be sent to the MPL server. You must set the URL of the MPL server first.
MPL Refresh Executer Executer definitions are stored in cache memory. As a result, adding or modifying executer definitions has no effect on the runtime server. Use this command to refresh executer definitions. You are prompted to indicate the executer to refresh.
MPL Refresh Receiver Receiver definitions are stored in cache memory. As a result, adding or modifying receiver definitions has no effect on the runtime server. Use this command to refresh receiver definitions. You are prompted to indicate the receiver to refresh.
MPL Refresh Sender Sender definitions are stored in cache memory. As a result, adding or modifying sender definitions has no effect on the runtime server. Use this command to refresh sender definitions. You are prompted to indicate the sender to refresh.
MPL Start Receiver Use this command to start a particular receiver. You are prompted to indicate the receiver to start.
MPL Stop Use this command to stop all MPL activity. It stops all receivers and waits for all executers and senders to complete.
MPL Stop Receiver Use this command to stop a particular receiver. You are prompted to indicate the receiver to stop.
MPL Trace On Use this command to start the MPL server trace.
MPL Trace Off Use this command to stop the MPL server trace.
When you have chosen the appropriate command and indicated any extra information, click Send Command to send the command to the server(s).
If you have sent a command to the XAI Server, then the bottom portion of the screen displays the response in the XAI Response. If you have sent a command to the MPL Server, then the bottom portion of the screen displays the response in the MPL Response. If you have sent a command to both servers, the bottom portion of the screen displays both responses.
The MPL Exception table is used by the MPL to keep information about requests that resulted in a system error. These are errors that occurred inside the MPL. For example, if the MPL fails to send a request to XAI (maybe WebLogic is down), this is a system error, which would be logged in the MPL exception table.
There are errors that are defined recoverable. This means that the MPL will retry the action that failed, according to the parameters it received.
The XAI server traces every request and response. The requests/responses are written to a trace file on the server. The trace file may be viewed using the Trace Viewer.
The log starts automatically based on definitions in the XAI Options in the traceType and traceFile options. To manually start the trace:
Use the Trace Viewer utility to view the log file. The Trace Viewer is installed when you install the XAI client tools. It can be found in the XAI program group under Start/Programs.
When the Trace Viewer starts, select a trace file to view. A trace file may be opened in one of two ways:
Description of Page
Once a trace file is opened, it displays a list of all the requests on the left side including the Service Name, the Start Time and the End Time.
To display the XML contained in the request and response entries for a displayed request, select a request entry.
Filtering Options
Since the trace file may contain a very large number of messages, the trace viewer limits the number of messages that can be displayed. It does that by displaying messages traced within the last x number of Minutes, Hours or Days.
Use the Max Messages to limit the number of messages displayed.
To view only errors in the trace, check the Show only Errors option.
The First Message Found field indicates the date and time of the earliest entry in the trace file.
Viewing as Text
To view the trace file as text rather than viewing each entry in its XML format, use the View, As Text menu option. The contents of the trace file are displayed in text format in a separate window.
Use the View, Statistics menu item to view the statistic page, which displays performance statistics about the XAI services that were executed in the XAI trace file.
For each type of XAI Service and transaction type, it displays the following information based on the requests traced in the XAI trace file:
To display a Duration Chart for a particular service, check the Service. A chart such as the one below is displayed.
To execute a service, an application sends an XML request document over HTTP or to one of the XAI defined receivers. The request document must be built according to the request schema defined for that service. In addition, it is recommended that request documents adhere to the SOAP protocol. For these cases, a SOAP envelope must wrap the request document.
A request document contains the following elements:
SOAP-ENV:Envelope
SOAP-ENV:Body
Inbound Service Name
Service Element
[Service Header]
[Service Details]
The Service Header and the Service Details elements are optional (unless specified otherwise in the request schema) but at least one of the service header or details element must appear in the request. For retrieval service, usually the Header is enough, for maintenance service the Details element is enough. All other elements are mandatory.
The following XML document shows a simple request adhering to the SOAP standard.
<SOAP-ENV:Envelope xmlns:SOAP-ENV="urn:schemas-xmlsoap-org:envelope">
<SOAP-ENV:Header>
<Sender>
<Credential domain="NetworkUserId">
<Identity>admin@company.com</Identity>
<SharedSecret>welcome</SharedSecret>
</Credential>
</Sender>
</SOAP-ENV:Header>
<SOAP-ENV:Body>
<PersonInfo>
<PersonService>
<PersonHeader PersonID="0726118368"/>
</PersonService>
</PersonInfo>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>
The soap envelope is the wrapping element of the whole request document.
The root of the request document is always the SOAP-ENV:Envelope element. The namespace attribute (xmlns=...) must be the same as the one defined in the SOAP Envelope Handler in the XAI Envelope Handler page.
Example for SOAP 1.0
<SOAP-ENV:Envelope xmlns:SOAP-ENV="urn:schemas-xmlsoap-org:envelope">
Example for SOAP 1.1
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
The Envelope element may optionally be followed by the 'Header' element, which may contain the following optional elements:
The SoapActionVersion element
Multiple versions of a schema may exist for the same service. The SoapActionVersion element in the header defines which version of the schema is to be used for the service.
For example, if the service requires a request schema name AccountRequestSchema and the version element on the soap header is <SoapActionVersion>1.2</SoapActionVersion>, then the server attempts to use a schema with the name AccountRequestSchema.V1.2.xml.
When the version element is not present in the request, the server uses the default version as defined for that service in the XAI Inbound Service page.
The CorrelationId element
The CorrelationId element can be used by the sender to match an XML response to an XML request. When a CorrelationId is specified in the header of the request document, the XAI server copies this CorrelationId header element as is into the XML response document.
The Body element (<SOAP-ENV:Body>) contains the Service information itself. The content of the Body element is an XML document based on the service request schema.
Service Name
The first element following the Body element must be the XAI service name. (i.e. CISPersonInfo). We refer to this element as the XAI Service Element. The XAI server uses the tag name to locate the service in the XAI Inbound Service.
Transaction Type
The service element may contain the optional attribute transactionType. For services that represent page maintenance services in the system, the transaction type (Read, Add, Update, Change, Delete) is defined in the XAI Inbound Service. An optional attribute may be specified in the first element to override the transaction type of the service. This allows using the same service definition to perform various transaction types.
Example 1. This service is used to perform an add of a record.
<SOAP-ENV:Envelope>
<SOAP-ENV:Body>
<Account transactionType='Add'>
......
</Account>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>
Example 2. This service is used to perform an update to a record.
<SOAP-ENV:Envelope>
<SOAP-ENV:Body>
<Account transactionType='Update'>
......
</Account>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>
Search Type
Search services may provide one or more type of searches, each using a different set of search fields. The default search type (MAIN, ALT, ALT1-ALT9) is defined in the XAI Inbound Service. However you may want to use various search types for the same service. To do so, you specify the searchType attribute on the service name element of the request.
For example the CDxAccountSearch service, provides the ability to search for accounts by AccountID (the MAIN search type) or to search accounts using an EntityName (the ALT searchType). The service is defined in the XAI Inbound Service as using the default searchType=MAIN.
Example. The following request searches by account ID
<SOAP-ENV:Envelope xmlns:SOAP-ENV="urn:schemas-xmlsoap-org:envelope">
<SOAP-ENV:Body>
<AccountSearch searchType="MAIN">
<Account>
<AccountHeader AccountID="0726118368"/>
</AccountHeader>
</Account>
</AccountSearch>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>
This one searches by EntityName.
<SOAP-ENV:Envelope xmlns:SOAP-ENV="urn:schemas-xmlsoap-org:envelope">
<SOAP-ENV:Body>
<AccountSearch searchType="ALT">
<Account>
<AccountHeader EntityName="Brazil"/>
</AccountHeader>
</Account>
</AccountSearch>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>
Trace
Traces are available at multiple levels in XAI.
System Level - All requests/responses are traced.
Service Level - All request/responses of a particular service type are traced.
Request Level - Trace only this request.
The trace attribute in the service element may be used to activate tracing for a particular request. This is useful if the XAI server trace option was not set and you want to trace a particular request without tracing all other requests. The trace attribute may take yes/no values.
Example:
<SOAP-ENV:Envelope>
<SOAP-ENV:Body>
<Account transactionType='UPDATE' trace='yes'>
......
</Account>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>
Delete Unspecified Rows
The attribute deleteUnspecifiedRows, may be used on the list elements in request documents, to delete all rows in the list that were not referenced explicitly in the request. This attribute is applicable to services executed with transactionType='UPDT'. This is useful when one wants to replace all rows in a list with a new set of rows without having to explicitly reference all existing rows in the list. This attribute may take the following values:
Following the Body element is the Main service element. This might be a page, list or search element.
For page services, following the main service element, there is one header element and one detail element. The header element only contains attributes. The details element may contain attributes and nested lists.
<SOAP-ENV:Body>
<Account>
<AccountHeader>
<AccountDetails>
<AccountPersons>
<AccountDebtClasses>
<AccountDetails>
</Account>
</SOAP-ENV:Body>
For list or search services, following the main service element, there is one header element and one row element. The header element only contains attributes. The row element may contain attributes and nested lists.
<SOAP-ENV:Body>
<AccountFinancialHistory>
<AccountFinancialHistoryHeader>
<AccountFinancialHistoryRow>
</AccountFinancialHistory>
</SOAP-ENV:Body>
Constructing XML requests for the system is not different than doing it for other adapters, however the following guideline should be followed when constructing XML requests containing lists.
Requests to access system Page services contain the following elements:
To read a page, build a request that only contains the page header and use transactionType='READ'.
To add or update a page service, the page details element is mandatory. Underlying elements may also be required depending on the service.
Page services may contain Lists hanging off the service details element. I.e. the account maintenance service contains several lists under the service details element.
Some request schemas may contain lists. Actions such as Add, Delete, and Update may be performed on list items (rows). An action on a list item is specified using the "rowAction" attribute on a list item. The rowAction attribute may take the following values:
Row Action | Description |
---|---|
Add | Add the row to the list. |
Change | Change the row. The row to be updated is identified using the attributes that have been defined in the schema as primary key fields. |
UpAdd | The row to be updated is identified using the attributes that have been defined in the schema as primary key fields. If the row can be found then it is updated, if not it is added to the list. |
Delete | Delete the row. The row to be deleted is identified using the attributes that have been defined in the schema as primary key fields. |
The following attributes can be specified in the List element:
getAllRows: By default XAI retrieves all rows that can fit in the buffer. However you may want to limit the number of rows that are returned.
To limit the number of rows specify: getAllRows='false' as an attribute in the List element.
DeleteUnspecifiedRows: Sometimes you want to replace all rows in a list with a new set of rows (not necessarily the same number of rows). Instead of having to read the list first, delete the unnecessary rows one by one and then add the new one, XAI provide an attribute that first deletes all rows in the list and then applies the rows that were explicitly specified in the list.
List services can only retrieve data and therefore are much simpler. To build a request for a list service, you only have to provide the list header (with the required attributes).
Search services are very similar to list services, except that you can apply various search criteria using the searchType attribute on the service element.
When the service executes successfully, the SOAP envelope is returned as is. The response Body is built according to the response schema.
The XML document that is returned to the requester is as follows:
When an error occurs while executing a service, the XML document returned as the response is built according to the SOAP fault protocol. The first element following the Body element is the <Fault> element. The detail element contains detailed explanation of the error.
This section explains how to create different types of schemas.
This section explains how to create an XML schema for a system service.
In the Schema Editor, select the Schemas/Create/Service menu option. The 'Generate Schema for a Service' Dialog Box appears. Fill in the following fields:
Service Name Enter the name of the service to be created in the service name text box. This is the name of the first element under the Body element in the XML document. Clicking on the selection button at the right of this text box displays a selection list of available services in the system. The selection list is built out of the metadata tables in the system.
MetaInfo Directory/File The product uses XML MetaInfo files internally to describe a service. The Schema Editor uses this file to convert it to a valid XML Schema. Enter the name of the XML file defining the service. This file is used to generate the XML schema for the service.
Transaction Type Select the transaction type performed by the service. The available values are Read, Add, Change, Update, Delete, List and Search.
To generate the Schema, click OK.
Often it is required to create an XSL transformation between two XML documents, one representing an XAI service and the other a document in another application. Although XSL scripts can be written manually (very tedious and erroneous process), we recommend using mapping tools such as the Microsoft BizTalk Mapper to create transformation scripts. The BizTalk Mapper requires XML schemas in order to graphically design the transformation. While schemas for system services are available, schemas might not be available for the other XML document. Provided that you have an instance of the other XML document, the Schema Editor can be used to generate a schema based on that instance.
To create a schema based on any XML document:
The input data file may be:
To create a schema for a file described by a COBOL Copybook, you use the Import COBOL copybook Wizard in the Schema Editor.
Example:
If the Cobol copybook looks like:
06 ACCT-ID PIC X(10)
06 MTR_ID PIC X(08)
06 MTR_READ PIC 9(10)
06 MTR_READ_DT PIC 9(8)
Then the generated Schema looks like this:
To create a schema for a comma-delimited file, use the Import CSV Wizard in the Schema Editor.
Use the DB extract, when the data to be loaded on the staging table resides on a relational database.
Consider the following example: You have account information on a legacy system and you want to migrate that data into the system. The legacy system has an ACCOUNTS tables and an ACCOUNT_PERSON table. You want to migrate all ACCOUNTS in the legacy system, which have a given Customer Class. You want to be able to upload data each time with various Customer Class values. Therefore the first SQL statement retrieves data from the ACCOUNTS table and uses external criteria for the customer class. The second SQL statement retrieves data from the ACCOUNT_PERSONS table and uses the ACCOUNT_ID from the main record set.
To create a schema for a database extract, use the Import Database extract Wizard in the Schema Editor.
You can now save the schema by clicking Save.
The system is distributed with a limited number of XAI inbound services. However implementers may want to access system services that were not published with the base product. The following section provides a quick guide for publishing system business object as an XML based Web service.
The first step is to select the system business object to be exposed as an XML based message. The following section describes how a business object is selected.
In your product, business objects are implemented as services. For each service, there exists a metadata definition of its input and output data called the "metainfo" file. While this metadata is most commonly used to construct the content of online pages, another use of this metadata is XAI, which can expose the same underlying service as an XML service. A tool exists that makes this possible. The Schema Editor reads the metainfo file corresponding to a service and generates an XML schema document describing the structure of the service when exposed as an XML service.
If the system does not provide a service that meets your needs, your implementation must define its own page service.
Once the business object has been identified, we have to expose it as a pair of request/response XML schemas. The XML schemas are the foundation of the product APIs. They define both the structure of the documents that are exchanged between a service requester and the system and the internal mapping between the XML documents and the implementation of the business object in the system
Every service is defined by a pair of XML Schemas: the request and response schemas. The schemas contain additional information that maps the XML elements to the service. The request/response schemas are usually different, but in some cases may be the same schema.
The request schema defines the XML document structure describing the "inputs" required by a service. Inputs may consist of a single element such as Person ID to implement the PersonInfo service or multiple elements that describe a Person to implement the PersonAdd service.
The response schema defines the XML document structure describing the "outputs" of a service. The XML elements that are defined in the response schema are the ones that are returned to the service requester upon execution of the service.
For a service to be available, it must be registered by creating an XAI Inbound Service record. The XAI inbound service is used at run time to determine how a request is to be processed. The inbound service contains various parameters that control the execution of the service.
The following section explains how to test a schema using the 'Test Schema' option in the schema editor Tools menu. Use this option when a schema is being edited.
You need to create an 'instance' XML document (a document with test data plugged in) based on the schema. The Test schema dialog provides the tools to create the instance, edit it, execute it and save it for future use.
Creating the request document
The first thing you have to do when you invoke the Test Schema Dialog is to create an initial instance of the request document, based on the schema currently being edited.
1. Select the transactionType: The transaction type combo displays a list of possible transactions for this service, depending on the service type (page, list or search).
2. When the transaction type is SRCH and more than one search type is available, the search type combo displays the list of available search types for this service, based on the schema definition. You must choose the search option. The combo on the right shows which fields are required by each search type.
3. Click Create. A tree representation of the request instance is displayed on the left TreeView.
Viewing/Editing the request instance
The tree view only displays elements of the request document. To display the list of attributes for an element, click that element. The attributes are displayed on the grid on the right. You may modify the value directly on the grid. If you need to enter a long textual value, click the button "..." at the right of the attribute.
By default the editor provides predefined values for 'commonly' used attributes such as AccountID, PersonID, PremiseID, BillID and SAID for an account shipped on the demo database. You may change them directly on the grid.
The request can be viewed on the tree or as text on a browser page. Use the toggle toolbar button to switch between modes.
Saving the request instance
To save a request instance, click Save. A save dialog box is displayed.
Executing the request
Once you've finished editing the request, you can execute it (send it using HTTP to the XAI servlet).
1. Enter the URL address of the XAI servlet. It appears at the right of the Execute button.
2. Click Execute to send the request.
3. The response is displayed on the Response tab.
Viewing the response
The response received as a result of executing the request, is displayed on the 'response' tab. It can be shown in a tree mode, similar to the request, or on a Web browser page. Use the toggle toolbar button to switch between modes.
Saving the response
You can save the response to an XML file.
1. Click Save to File.
2. Select a file name from the file dialog
Many product tables contain fields that represent codes in a control table. Sometime the service contains the description for the code as well. This occurs if the user interface associated with the service uses a go look button to provide help in entering a valid value for that field. If the user interface associated with the service uses a dropdown list box as a mechanism for entering a valid value, then the description of the code is not included in the system service.
For the cases when the description of the code is not included in the system service, you may use special logic provided by the schema editor to include a description, if needed.
Private attributes are attributes in your schema that do not correspond to any attributes in the system service. The schema editor ignores private attributes when validating a schema against a system service. The XAI server ignores private attributes when accessing system services.
To create a private attribute:
When the service data schema is different from an external data schema received from or being sent to an external system, we must map the data in the external schema to the service schema. To achieve this task we use a mapping tool.
In the following example, we are using the Microsoft BizTalk Mapper to create an XSL Transformation (XSLT) script that describes the transformation; however, other transformation tools available on the market can be used. This example assumes that there is a file with customer contact information to be uploaded into the Oracle Utilities Customer Care and Billing customer contact table. It assumes that XML schemas for the input file and for the customer contact service already exist.
This XSL transformation script is now available for use as the Record XSL on the XAI Inbound Service - Staging page.
XAI W3C schemas (.xsd) use a namespace to qualify the elements in the schema. Each schema has a target namespace named after the service name. For example, if the service name is CDxAccountMaintenance then the target namespace for the schema would be: http://splwg.com/CDxAccountMaintenance.xsd.
When using an XSL transformation with system W3C schemas (.xsd), the XSL transformation needs to explicitly qualify the elements in the schema with the schema namespace. Following is an example:
You may configure your system to use notification download tables to interface outgoing messages via XAI. When creating notification download staging records, you may use the context collection to define extra information about the NDS.
Context variables are exposed to the XSL transformation script as script parameters. Each context variable can be referred to using a parameter name having the same name as the context variable. The following XSL example shows how it is done for creating an email, but the same concept can be used for any XSL script used in a route type. In this example XPER and OHAD are context variables of the notification download record.
<xsl:stylesheet xmlns:xsl='http://www.w3.org/1999/XSL/Transform' xmlns:msxsl='urn:schemas-microsoft-com:xslt' xmlns:var='urn:var' xmlns:user='urn:user' exclude-result-prefixes='msxsl var user' version='1.0'>
<xsl:output method='xml' omit-xml-declaration='yes' />
<xsl:param name="XPER"></xsl:param>
<xsl:param name="OHAD"></xsl:param>
<xsl:template match='/'>
<xsl:apply-templates select='CDxPersonMaintenance'/>
</xsl:template>
<xsl:template match='CDxPersonMaintenance'>
<EmailMessage>
<To>
<InternetAddress address="ohad_anyone@splwg.com" personal="à äã ùðé" charset="Windows-1255" />
<InternetAddress1>
<!-- Connection from source node "EmailID" to destination node "address" -->
<xsl:attribute name='address'><xsl:value-of select='CDxPersonMaintenanceService/CDxPersonMaintenanceDetails/@EmailID'/></xsl:attribute>
</InternetAddress1>
</To>
<BCC1><InternetAddress address="ohad_anyone@splwg.com" /></BCC1>
<Subject charset="Windows-1255">
<!-- Connection from source node "EntityName" to destination node "Subject" -->
<xsl:value-of select='CDxPersonMaintenanceService/CDxPersonMaintenanceDetails/@EntityName'/>
Mark Brazil
</Subject>
<MessageText charset="Windows-1255">
<!-- Connection from source node "Description" to destination node "MessageText" -->
<xsl:value-of select='CDxPersonMaintenanceService/CDxPersonMaintenanceDetails/@Description'/>
<xsl:value-of select="$XPER"/>
<xsl:value-of select="$OHAD"/>
This is text of the email message.
</MessageText>
<Attachment1 fileName="d:\cdx\test\test.pdf" contentId="fl3">
</Attachment1>
</EmailMessage>
</xsl:template>
</xsl:stylesheet>
You may define an email sender in order to send notification download staging (NDS) record information by email to a destination. This section describes how the email is constructed.
An Email may consist of the following parts:
The following diagram describes the method by which the system constructs an email message.
As explained above, the registry is read into cache memory when the XAI server starts. If the registry is modified and you want to immediately apply the changes on a running server, you have to manually refresh the registry.
To manually refresh the registry:
The system offers an out of the box solution for integration with Siebel. In addition, XAI provides tools for an easy integration with Siebel EAI.
The Schema Editor provides several tools to facilitate the integration with Siebel. The following sections describe the available features.
Siebel Virtual Business Components (VBC) can use the Siebel XML Gateway service to access objects in other applications. The XAI server provides a special adapter, that automatically maps Siebel XML Gateway messages to XAI messages and vice versa. The automatic mapping works, provided that the Siebel VBC is defined based on an XAI schema definition. To facilitate the definition of Siebel VBC and to minimize errors, the schema editor can be used to generate a VBC definition, which can be directly imported into the Siebel Repository. Once the VBC is defined in the Siebel repository, it can be used to build Siebel applets.
Note that VBC have some structural limitations and therefore cannot be used to represent all types of XAI services. VBC can only map a flat structure and therefore are a better fit for accessing search and list services. They are not very good for accessing complex hierarchical XAI services such as page maintenance services. In the case of page maintenance services, only the first level of the page details is accessible through the VBC; any lists underneath the first level are not accessible.
The process of creating a VBC, which maps an XAI service, is as follow:
Siebel Integration Objects are used within the Siebel EAI to integrate Siebel with other applications. To facilitate the integration with Siebel, the Schema Editor can be used to create Siebel Integration Object definitions based on an XAI schema. This feature saves both time and errors.
The process of creating an Integration Object that maps an XAI service is as follow:
If your organization uses Lightweight Directory Access Protocol (LDAP), you can import your existing LDAP users and groups into Framework. Once imported, all user and group functions are available. You can resynchronize your LDAP users and groups at any time.
This section describes how to set up your system to import users and groups from an LDAP store as well as how to do the import.
The LDAP import process uses a special XAI service (LDAP Import) that reads the information from the LDAP store and creates the appropriate security entries by calling standard XAI services to maintain users and groups. The entire import process may be more appropriately called synchronize because groups, users, and the connections between them are synchronized between the LDAP store and your product.
The staging control receiver invokes the LDAP Import service when it encounters a pending record on the XAI staging control table with a service ID of LDAPImport. To create a pending LDAP import staging control record, use the LDAP Import page to select the users or groups to be imported and click Synchronize. The LDAP Import page populates all necessary request parameters when creating the staging control record.
The LDAP import service calls the LDAP Import Adapter, which performs the following actions:
The XML upload staging receiver processes the upload records in sequential order (based on the upload staging ID).
In order to set up your system for LDAP import, you must:
The system is pre-configured for all other XAI components that are necessary for running LDAP Import, including:
XAI uses Java Name Directory Interface (JNDI) servers to locate resources that are needed by XAI. To use LDAP Import, you must define a JNDI server that points to the LDAP server where the users and groups you want to import are located.
An LDAP store consists of multiple entries. Each entry represents an object in the directory that is identified by a Distinguished Name (DN) and may contain one or more attributes. In a typical LDAP store there is usually an entry for users and an entry for groups. The connection between users and groups may be implemented in two different ways:
The mapping between LDAP security objects and base security objects is stored in an XML document that can be processed by the XAI service. As part of setting up your system for LDAP import, you need to define this mapping. The base package comes with a sample mapping file that can be used when your LDAP store is a Microsoft Active Directory Server (ADS). You can use this file as the basis for creating your own mapping file if you are using a different LDAP store (e.g., Novell Directory Server).
Attribute mappings are defined in the XML parameter information file under the LDAPImportAdapter section. Note that the mapping itself is in an external file that is included in the XML parameter information file.
The XML structure:
Each LDAP entry is mapped to a base product object (User or Group) using an <LDAPEntry> element that has the following attributes:
Attribute | Description |
---|---|
name | The name of the LDAP entry: - Group - User |
baseDN | The base distinguished name in LDAP for this entry. |
cdxEntity | The name of the base product entity to which the LDAP entry is mapped: - User - UserGroup |
searchFilter | An LDAP search filter that is used to locate LDAP entries. A %searchParm% string in that filter is replaced by the value from the user or group search on the LDAP Import page. |
Scope | Sets the scope of the search. Valid values are: - onelevel (the value normally used) - subtree |
Each attribute in the LDAP entry is mapped to attributes in the base object using an <LDAPCDXAttrMappings> section under the LDAP entry. Each <LDAPCDXAttrMapping> element has the following attributes:
Attribute | Description |
---|---|
ldapAttr | The name of the LDAP attribute to be mapped. |
cdxName | The name of the base product attribute to be mapped. Note this is the name of the attribute in the XAI schema for the User or Group maintenance services. |
javaClass | The name of a Java class to be called. To provide more flexibility in attribute mappings, especially when there is not a simple one to one attribute mapping, you can derive the value of a base product attribute by calling a method in a Java class. The Java class gets the LDAP entry as input and implement its own logic for computing the value of the attribute. The class should implement the ICDXValueObtainer interface whose source can be found in the cm_templates directory. The class should be available to both the defaultWebApplication and the XAIApp. |
idParm | When the javaClass attribute is specified, the IdParm attribute contains a parameter value that is passed to the Java class method. |
format | When the javaClass attribute is specified, the format attribute contains a parameter value that is passed to the Java class method. |
default | The default value that will be assigned to the CDx attribute when one of the following occurs: - The LDAP attribute contains a null or empty value - The LDAP attribute does not exist or is not specified. - The Java class method returns a null or empty value. Default values are applied only when creating a new entity and are not applied to updated entities. |
When mapping the user entity you need to describe how the groups the user belongs to are retrieved. When mapping the group entity you need to describe how the users contained in the group are retrieved. The link information is required when displaying the list of objects that is affected by the import.
Linked objects are described using the <LDAPEntryLinks> section under the LDAP entry. LDAP provides two methods to retrieve the linked objects:
Each <LDAPEntryLink> element has the following attributes:
Attribute | Description |
---|---|
linkedToLDAPEntity | The name of the linked entity (User or Group). Use User when describing the Group entity. Use Group when describing the User entity. |
linkingLDAPAttr | The multiple-value attribute name on the LDAP entity that contains the linked entity. |
linkingSearchFilter | The search filter to be applied to retrieve the list of linked objects, for example: (&(objectClass=group)(memberOf=%attr%)) The search filter may contain the string % attr % that acts as a substitution string and is replaced at run time by the value of the attribute named "attr" of the imported entity. If the LDAP entry you are describing is a Group and the string is %name%, it is replaced by the value of the "name" attribute of the group you are importing. If the LDAP entry you are describing is a User and the string is %dn%, it is replaced by the "dn" attribute of the User you are importing. |
linkingSearchScope | Sets the scope of the search. Valid values are: - onelevel (the value normally used) - subtree |
The following XML excerpt describes a mapping to the Microsoft ADS. The example makes the following assumptions:
<LDAPEntries>
<LDAPEntry name=" User" baseDN=" CN=Users,DC=splwg,DC=com" cdxEntity=" user" searchFilter=" (&(objectClass=user)(name=%searchParm%))">
<LDAPCDXAttrMappings>
<LDAPCDXAttrMapping ldapAttr=" name" cdxName=" User" />
<LDAPCDXAttrMapping cdxName=" LanguageCode" default=" ENG" />
<LDAPCDXAttrMapping cdxName=" FirstName" default=" fn1" />
<LDAPCDXAttrMapping cdxName=" LastName" default=" fn2" />
<LDAPCDXAttrMapping cdxName=" DisplayProfileCode" default=" NORTHAM" />
<LDAPCDXAttrMapping cdxName=" ToDoEntries" default=" 1" />
<LDAPCDXAttrMapping cdxName=" TD_ENTRY_AGE_DAYS2" default=" 12" />
</LDAPCDXAttrMappings>
<LDAPEntryLinks>
<LDAPEntryLink linkedToLDAPEntity=" Group" linkingLDAPAttr=" memberOf" />
</LDAPEntryLinks>
</LDAPEntry>
<LDAPEntry name=" Group" baseDN=" CN=Users,DC=splwg,DC=com" cdxEntity=" userGroup" searchFilter=" (&(objectClass=group)(name=%searchParm%))">
<LDAPCDXAttrMappings>
<LDAPCDXAttrMapping ldapAttr=" name" cdxName=" UserGroup" />
<LDAPCDXAttrMapping ldapAttr=" description" cdxName=" Description" default=" Unknown" />
</LDAPCDXAttrMappings>
<LDAPEntryLinks>
<LDAPEntryLink linkedToLDAPEntity=" User" linkingSearchFilter=" (&(objectClass=user)(memberOf=%distinguishedName%))" linkingSearchScope=" onelevel" />
</LDAPEntryLinks>
</LDAPEntry>
</LDAPEntries>
After you have defined your LDAP mapping in an XML file, you need to include it in the <AdHocParameters> sections of the XAI Parameter Information file (XAIParmameterInfo.xml) and the MPL Parameter Information (MPLParameterInfo.xml) file. The definitions are made to the LDAPImport adapter under an <Adapters> section that you add.
The following example shows an excerpt from the parameter information files:
<AdHocParameters>
<Adapters>
<Adapter name=" LDAPImport" maxReturnedResults=" 300">
<?XAI includeURL= file:///c:\Cdx\Product\Servers\MAIN_PROD_ORA\cisdomain\xai\ldapdef.xml?>
</Adapter>
</Adapters>
</AdHocParameters>
In the example above, the mapping file is called ldapdef.xml.
The maxReturnedResults attribute limits the number of LDAP entries the adapter returns for the search request. This limit is only applicable to the LDAP Import user interface. The import process itself is not affected by this parameter.
Open Admin Menu > LDAP Import to import users and groups into the system.
Description of Page
Enter the LDAP JNDI server that should be used to connect to the LDAP server from which you want to import users or groups. Refer to Defining a JNDI Server for more information.
If the LDAP server from which you are importing users or groups requires authentication, specify an LDAP User and LDAP Password for the server.
From the LDAP Entity drop-down list, select either User or User Group depending on whether you want to import users or groups from the LDAP server.
Select the name of the User or Group that you want to import. (The label of this field changes depending on the LDAP Entity you selected.) You can use the search button to search for a list of users or groups that exist in the LDAP store.
After all fields have been specified, click the Find icon to return a list of all the objects contained in the selected user or group. If a user is specified, all the groups to which the user belongs are displayed in the grid. If a group is specified, all the users that belong to the group are displayed in the grid.
Click the Synchronize button to import the specified user or group and its linked objects (shown in the grid).
The LDAP Import service creates the configuration parameters on the XML staging control table and the XAI Staging Control page opens to let you view the status of your request.
In order to implement new business practices, users change configuration data. The best way to confirm the system will work as desired is to test the changes using production data before the changes are promoted to production. The Configuration Lab (or ConfigLab) tools exist to support this methodology. Specifically, the ConfigLab tools allow you to:
The ConfigLab tools have many uses in addition to testing configuration data and promoting the changes to production. For example, the following points describe several ways users of Oracle Utilities Customer Care and Billing can use the ConfigLab tools:
In sum - the ConfigLab tools can be used to compare and promote data between any two databases.
The topics that follow describe how to use the ConfigLab.
The topics in this section describe major concepts that will facilitate your use of the ConfigLab.
We use the term Configuration Lab (or ConfigLab) to describe two different things:
The following points describe potential uses of the ConfigLab tools:
While the above tasks are very different, they are all implemented using the same philosophy. The following points describe this philosophy:
You do not write programs to compare data in two databases. Rather, you set up meta-data to define the objects you want to compare. After this set up is complete, you execute background processes to compare the desired object and, if desired, promote the differences.
The following topics describe the meta-data that you set up to define what to compare.
A maintenance object is meta-data that defines a group of tables that make up a logical entity. Maintenance object meta-data exists for every object in the system. For example, there is a maintenance object called USER . This maintenance object's tables hold the information about your users.
When you submit a background process to compare the tables in two databases, you don't tell the process about the individual tables. Rather, you define the maintenance objects that you want compared and the system uses the maintenance object meta-data to determine the physical tables to compare (note, this is not 100% true, please see Database Processes Define The MOs To Compare for the complete story).
Please notice that the USER maintenance object has a single Primary table and multiple Child tables. This is true of virtually every maintenance object in the system (i.e., all MO's have a single Primary table and 0 to many Child tables). Each instance of a given maintenance object has a single row on the Primary table, and zero or more rows on each Child table.
The base package is shipped with all maintenance object and table meta-data populated. You will not have to change this meta-data unless your implementation has introduced new tables.
A database process (DB process) is meta-data that defines the group of maintenance objects to compare. To be exact, a DB process defines the maintenance objects whose tables are compared by a comparison background process.
A DB process has 1 or more maintenance objects; the number depends on what you want compared. For example:
When you link a maintenance object to a DB process, the system assumes that you want to compare EVERY row in every table defined on the maintenance object. If this is what you want to do, then you are finished with the DB process configuration tasks. However, if you want to compare a subset of the rows on these tables, the next section describes additional configuration tasks that must be performed.
A maintenance object specified on a DB process is referred to as DB process instruction (because it contains "instructions" governing the tables AND rows to be compared).
When you create an instruction (i.e., when you link a maintenance object to a DB process), you must define the type of instruction:
An example will help explain the difference. The following DB process is used to compare business process scripts. This DB process has a single Primary instruction (SCRIPT) and many Child instructions (one for each foreign key referenced on the script maintenance object).
Notice that each Child is linked to a Primary instruction. This means that when the system compares a script, it will also compare the child objects referenced on each script.
If you did not indicate these were Child instructions (i.e., they were marked as Primary instructions), the system would compare every Display Icon , Algorithm , Navigation Option and Function in the system; even those not referenced on a script. In other words, Child instructions limit the child object that are compared to those related to its Primary maintenance object.
The following topics describe advanced DB process instruction concepts.
If a DB process instruction has no table rules, every instance of the object will be compared when the compare process runs (and this might be exactly what you want to do). However, assume you only want to compare business process scripts whose prime key starts with CI_ . To do this, you need a "table rule" on the DB process instruction associated with the SCRIPT maintenance object. Table rules contain SQL snippets that are incorporated into the WHERE clause into the SQL statement used to select objects. For example, the following table rule will limit the selection of scripts to that that start with CI_.
Table rules may be specified on any DB process instruction for any table within the related maintenance object. However, most of the time, they are only specified on a Primary DB process instruction's Primary table.
When the background process selects objects to compare, you can optionally have it call a plug-in to further restrict which objects are compared (table rules are the first level of restriction). We refer to these algorithms as "criteria algorithms".
Criteria algorithms are specified on DB process instructions (just as the table rules are). You'd only need a criteria algorithm if the criteria could not be composed using an SQL statement (if you could compose the criteria using an SQL statement, you'd put this SQL in a table rule).
The comparison process passes criteria algorithms the primary key value of the selected maintenance object. These algorithms simply return a Yes or No value depending on program logic that determines whether the object should be compared. These algorithms are usually defined on a Primary DB process instruction, but there is no restriction.
A DB Process instruction can have from 0 to many Apply Changes Processing algorithms. These algorithms perform extra processing when the approved differences are applied to the target database (by running the Apply Changes (CL-APPCH) background process). For example, if you were transferring Batch Control objects to production from a test environment, you could use an Apply Changes Processing algorithm to set each batch control's run number to the next available value in production (rather than use the last run number in the test environment). When the Apply Changes executes, it simply passes the primary key of each changed object to the algorithm(s). The algorithm can then update the object's data as desired and these changes are committed when the maintenance object is committed to the target environment.
A DB process must reference a batch control. This batch job is submitted when you want to compare the maintenance objects defined in the DB process.
By convention, we recommend that you name the batch control the same as the DB process. For example, a DB Process CI_COPSC (Copy Scripts) references a batch control CI_COPSC . This naming convention is not required; it's recommended to simplify the administration of the batch controls.
To create a new batch control, you must duplicate the batch control CL-COPDB provided in the base product, because aside from the batch code and description, all the settings for the new batch control must match the base one.
When you submit the batch control defined on the DB process, "root objects" are created. A root object is a record that a difference exists between a maintenance object in the source environment and the target environment.
This diagram shows the state transition of root objects:
As described above, you submit a background process to compare the maintenance objects in two environments. This background process creates a "root object" record for every difference between the two environments. You can approve or reject any root object; rejecting a root object means the related difference will not be applied to the target environment.
When the root objects are in the desired state, you submit the Apply Changes (CL-APPCH) background process. This process applies all approved root objects to the target environment. If you've defined processing algorithms on the DB process's instructions, it will execute these as the changes are applied to the target environment.
The above sections provided background information about comparing objects in two environments; the following section reiterates this information in step-by-step instructions:
Your product's demonstration database contains sample database processes. These database processes reference logical groups of maintenance objects that many customers compare. For example, the "control table" database process references every maintenance object that holds configuration data.
You may find that these sample database processes closely match your needs. If this proves true, you should copy these from the demonstration database. This will save you time as you won't have to set up the each database process. The topics in this section describe how to copy database processes from the demonstration database.
The demonstration database is installed in English only. If you work in a non-English language, you must execute the NEWLANG background process on the demonstration database before using it as a Compare Source supporting environment. If you work in a supported language, you should apply the language package to the demonstration database as well.
If you don't execute NEWLANG on the demonstration database, any objects copied from the demonstration database will not have language rows for the language in which you work and therefore you won't be able to see the information in the target environment.
The base package provides a DB process called CL-COPDB . This DB process copies the sample DB processes. This is confusing because you are configuring a DB process in one environment that copies DB processes from another.
This DB process has an instruction that references the database process maintenance object (MO). This instruction has a table rule with an override condition that selects the all database processes that are prefixed with CI_ from the source database (there are numerous sample DB processes in the demonstration database and this process copies them all). If you only want to copy a single DB process, update the table rule to only copy the desired DB process.
Note that the DB Process includes additional instructions to copy any algorithms used by the DB process instructions and the associated background processes for each DB process.
After configuring the table rule on the DB processes instruction, submit the CL-COPDB background process in your target database. When you submit this process, you must supply it with an environment reference that points to the demonstration database. If you don't have an environment reference configured in your target database that references the demonstration database, you must have your technical staff execute a registration script that sets up this environment reference. Refer to Registering ConfigLab Environments for more information.
When the CL-COPDB process runs, it highlights differences between the DB process in the demonstration database and your target database. You can use the Difference Query to review these root objects and approve or reject them.
After you've approved the root object(s), submit the CL-APPCH batch process to change your target database. You must supply the CL-APPCH process with two parameters:
When you want to compare maintenance objects in two environments, you submit a background process in the "target" environment. When you submit this job, you must define the "source" environment. This environment's data will be compared against the target environment's data. You identify the source environment by supplying an "environment reference code" to the background process.
You must run a utility to create an environment reference as this utility sets up many database synonyms (the comparison process uses these synonyms to access the data in this environment). The topics in this section describe how environment references are created and managed.
When you run the utility that creates an environment reference, you must define the type of environment:
You must run a utility to create an environment reference. Your implementation's database administrator should execute this utility because it performs functions that require administrative access. The following points summarize what this utility does:
You should deregister environments that you no longer plan to compare. When you deregister an environment, the remote table synonyms are removed and the environment reference status is changed to inactive.
If you deregistered an environment and you need to compare maintenance objects in that environment again, you must reregister it. You must also reregister an environment if you apply a single fix or upgrade that makes a database change.
When you reregister an environment, the environment reference status is changed to active and the remote table synonyms are updated accordingly.
When you install any Framework product, you define a user as the owner of the database schema objects. We'll call this database user SPLADM . To use ConfigLab tools, you need to define two additional database users in each environment's database:
If an environment will be accessed by the ConfigLab tools (either as a source or a target), you must define database relationships between the two environments.
The DB2 version of the registration utility grants the privileges to individual remote host schema objects, the Oracle registration utility relies on the privileges associated with database links, whereas the MS SQL Server registration utility doesn't grant any privileges, rather uses fully qualified object name.
The topics in this section describe these database relationships.
Prior to registering a ConfigLab environment, the following database relationships must be configured by your implementation's database administrator:
The following topics describe these database links.
The diagram above shows how a database relationship allows the CISUSER database user defined in the target environment to access database objects in the ConfigLab environment's database.
Remember that when you register an environment as a ConfigLab , there is a database relationship from the CISUSER schema in the ConfigLab environment database that points to the CISUSER schema in the target environment. This database relationship allows a subset of tables (i.e., the system-generated key tables) to access the target environment's CISUSER schema when generating a key value for a new record.
When a system-generated key value is assigned, the key value is also kept in the table's corresponding "key table" (see Defining Table Options). Key tables store the environment identifier along with the key value.
The key table in the target environment holds the key values of rows in its own environment plus the key values of rows in the ConfigLab environment. This ensures that system-generated keys added in the ConfigLab are not used in the target environment.
Prior to registering a Compare Source environment, the following database relationships must be configured by your implementation's database administrator to match the diagram below:
Notice that there is no database relationship originating from the Compare Source schema back to the target environment's schema. This is because random keys added in a Compare Source are not kept in the target environment's key table (because the system does not guarantee unique keys between a Compare Source and a target environment).
The diagram below shows how the script table in a Compare Source environment's database is accessed by the target environment using a remote table synonym, prefixed with "R" in this case:
A database administrator must execute the environment registration utility, as administrative access is required. This utility is also used to deregister and reregister environments.
The registration utility may be executed from any workstation configured to connect to both the supported environment database and the ConfigLab environment database.
In this example, we describe how to register a ConfigLab (the same principles apply for Compare Source and Sync Target). We'll call the supported environment database "CDXPROD" and the ConfigLab environment database "CDXCLAB".
A sample file oracle-compare-source.bat is provided with an example for a Compare Source registration.
You may specify the following parameters on the command line. If parameters are not supplied, the registration utility prompts for them:
-s CDXCLAB,CISADM,{application schema owner password},CISUSER,CISREAD
-r CDXPROD,CISADM,{application schema owner password},CISUSER,CISREAD
-a I
-t CLAB
-e PROD-CONFIGLAB
-n L
-d Production ConfigLab
-x CDXPRODCISUSER-CDXCLABCISUSER
-y CDXCLABCISUSER-CDXPRODCISUSER
-c {Oracle database character set}
-u
-o owner flag value
-l {log file name}
The registration utility may be executed from any workstation configured to connect to both the production environment database and the ConfigLab environment database.
In this example, we describe how to register a ConfigLab environment. We'll call the supported environment database "CDXPROD" and the ConfigLab environment database "CDXCLAB".
A sample file DB2-compare-source.bat is provided with an example for a Compare Source registration.
You may specify the following parameters on the command line. If parameters are not supplied, the registration utility prompts for them:
-s CDXCLAB,{sysadm user},{sysadm user password},CISADM,CISUSER
-r CDXPROD,{sysadm user},{sysadm user password},CISADM,CISUSER
-a I
-t CLAB
-e PROD-CONFIGLAB
-n A
-d Production ConfigLab
-u
-o owner flag value
-l {log file name}
The registration utility may be executed from any workstation configured to connect to both the production environment database and the ConfigLab environment database.
In this example, we describe how to register a ConfigLab environment. We'll call the supported environment database "CDXPROD" and the ConfigLab environment database "CDXCLAB".
A sample file MS SQL Server-compare-source.bat is provided with an example for a Compare Source >registration.
Database security will need to be setup for the utility to register.
Example:
CDXPROD - The database already has a user-id. CDXPRODUSER defined and security has been generated for this user.
CDXCLAB - The database already has a user-id. CDXCLABUSER defined and security has been generated for this user.
For the utility to register database CDXCLAB in database CDXPROD, additional security needs to run.
In database CDXCLAB, add the user CDXPRODUSER:
Generate security for the user CDXPRODUSER in database CDXCLAB.
Add an ODBC connection on the database server, called CDXCLAB, with login id sa connecting to CDXCLAB.
Add an ODBC connection on the database server, called CDXPROD with login id sa connecting to CDXPROD.
You may specify the following parameters on the command line. If parameters are not supplied, the registration utility prompts for them:
Application schema owner database user
-s CDXCLAB,{sa user password},SF-PDNT-032,CDXCLAB,dbo
Application schema owner database user
-r CDXPROD,{sa user password},SF-PDNT-022,CDXPROD,dbo
When you submit the batch job associated with a comparison DB process, the process saves the differences on the database. We refer to each difference as a "root object". The topics in this section describe the query used to view these differences.
Use Admin Menu > Difference Query to view a summary of the differences between the maintenance objects in two environments.
Description of Page
Batch Control , Batch Number , and Batch Business Date is the batch run that compared the maintenance objects.
DB Process is the DB process that defines the maintenance objects that were compared.
Environment Reference is the name of the environment whose data was compared against the data in the current environment.
The grid contains a summary of the comparison results:
The summary is further categorized based on the promotion status of the difference. Distinct summary lines are shown for each status value - All , Approved , Complete , Error , Initial , Pending , Rejected.
The area above the grid allows you to filter the items that appear in the grid:
Don't forget to click the search button after changing the filters.
The following points describe each column in the grid:
Click Approve All to set the status of all root objects associated with the Batch Control and Batch Number to Approved.
Click Reject All to set the status of all root objects associated with the Batch Control and Batch Number to Rejected.
The Main tab provides a summary of the differences in the maintenance objects. This tab shows the details of every maintenance object. Use Admin Menu > Difference Query and navigate to the 2 nd tab to view this information.
Description of Page
Please see the Main tab for a description of the fields in the first section. The following points describe the remaining fields:
Don't forget to click the search button after changing the filters.
Click Select All to select all root objects currently displayed in the grid.
Click Clear All to unselect all root objects currently displayed in the grid.
The grid displays the root objects that correspond to the criteria specified in the filter. The following points describe each column:
Click Approve to set the status of selected root objects to Approved.
Click Reject to set the status of selected root objects to Rejected.
When you submit the batch job associated with a comparison DB process, the process saves the differences on the database. We refer to each difference as a "root object". The topics in this section describe the transaction that shows the details of a root object.
Use Admin Menu > Root Object to view the prime key root objects.
Description of Page
Root Object displays the description of the maintenance object related to the root object including:
Root Object is the unique identifier of the root object.
Maintenance Object displays the code and description of the root object's maintenance object.
Environment Reference displays the code and description of the environment that was the source environment of the comparison.
Action displays the action assigned to the root object by the comparison process.
Status displays the status assigned to the root object. This field is updateable for root objects in approved , rejected , and error status for the most recent batch run related to the Compare DB process.
Batch Control and Batch Number describe the batch run of the Compare DB process used to create the root object.
The first grid at the bottom of the page describes the components that make up the value of the Primary key of the maintenance object:
Field. The name of a given field that is part of the Primary key constraint for the record's table.
Description . The description of the field.
PK Value . Displays the PK field's value.
Constraint Id. Displays the Primary key constraint associated with the record's table.
Sequence Displays the order in which the record's field is displayed as part of the Primary key constraint.
The second grid describes the DB process instructions that are associated with the root object (as a difference could be highlighted by multiple DB process instructions).
DB process. The name of the Compare DB process used to create the root object.
Process Sequence. Along with DB Process , this represents the reference to the DB process instruction that specifies the root object's maintenance object.
Primary Root . The identifier for the root object that groups this root object together with other root objects for processing when changes are applied.
Maintenance Object Description.
This is the description of the maintenance object associated with the Primary Root object.
Level Nbr. An internal level number assigned to the root instruction during the compare.
Root Instruction. The unique identifier of the root instruction.
The Main tab provides a summary of the root object. This tab shows the details of tables that will be changed if the root object is approved (and the apply changes background process is run). Use Admin Menu > Root Object and navigate to the Data Differences tab to view this information.
Description of Page
Table and Description. The identity of the table that will be changed
PK Value. The row's primary key.
Statement Type. May be Insert , Update , or Delete . This defines the type of SQL statement to be used to change this environment.
SQL. The actual SQL statement to be used to apply changes to the data in the current environment.
Suppress. Check this box if the SQL statement should not be executed when the Apply Changes process runs.
This tab provides an alternate view of the information shown on the Data Differences tab. Use Admin Menu, Root Object and navigate to the Root Object Tree tab to view this information.
Description of Page
This page displays a tree that shows the details of tables that will be changed if the root object is approved (and the apply changes background process is run).
After executing the background process to apply changes to data based on root objects created by a Compare DB process, any errors that occur as part of applying the changes are written to the root object exception table.
To view the messages associated with the exception records, schedule the TD-CLERR background process. This process generates a To Do entry for every record in the root object exception table.
After correcting the cause of the error, navigate to Root Object and change the status to approved or rejected , and run CL-APPCH again.
The term archiving describes the process of moving selected data from production to an archive environment while maintaining the referential integrity of the overall application.
The term purging describes the process of deleting data from production without storing the data in another environment. Similar to archiving, the purge process must not affect the referential integrity of the application.
The Archiving Engine refers to the tools and infrastructure that are required for archiving and purging production data. The concepts for archiving and purging are very similar, except that purged production data is not transferred to an archive database.
As time passes, the amount of data stored in the production database grows. Some tables can become very large and retain seldom-accessed data in the production database. Extremely large volumes of data may impede system performance.
In order to reduce the amount of raw data stored in the production database, a subset of records in the production database can be moved to an archive database, or a purged from the system.
Archiving and purging keeps the volume of data in the production database at a manageable level without compromising the system's ability to perform normal operations.
When you archive, you move data out of the production environment's database to an alternate Framework environment's database. You can still view archived data along with production data in the alternate environment.
The utility may be executed from any workstation configured to connect to both the production environment database and the archiving environment database.
In this example, we describe how to setup an Archive environment. We'll call the production environment database "ENVPROD" and the Archive environment database "ENVARCH".
-d ENVPROD,manager,CISADM,CISREAD
-a B
-p CIARC_BI
-l {log file Name}
Think of the product as an application that is not bound to a single database instance. To understand ConfigLab concepts, you must think of the product as a collection of environments. An environment is an installed version of the product database, application server and web server.
There is only one environment in the application whose database contains production data. Let's call this the production environment. Other environments exist to support the production environment in various ways. There is no logical limit to the number of supporting environments that may exist within the application.
The environments supporting production are categorized into environment roles based on their function.
An Archive environment is a repository for data that is removed from production.
ConfigLab, Compare Source, and Sync Target environment roles are discussed in Configuration Lab.
The following illustration depicts a production environment with multiple supporting environments:
Archive environments must be registered before they can be utilized. Registering an archive environment involves running an environment registration utility, specifying information about both production and the archive environment being registered. Your implementation's database administrator must execute the registration utility as the utility performs functions on the database that require administrative access.
When using Oracle as your database, you have the choice of configuring the archive database to be in the same Oracle instance (recommended) or a separate Oracle instance. For other databases, separate database instances are required.
The following summarizes the functions performed by the registration utility:
If you no longer want use a given environment for archive processing, you should deregister it using the registration utility. Deregistering an environment removes the remote table synonyms that were added when the environment was registered and it changes the environment reference status to inactive.
If you had previously deregistered an environment reference and you wish to make that environment available for archive processing again, you must reregister it using the registration utility. You must also reregister an environment after upgrading or applying a single fix. Reregistering an environment updates the environment reference status to active if it was previously inactive and it creates/drops/updates the remote table synonyms.
When an environment is installed initially, a database user is defined as the owner of all the application database schema objects. We'll call this database user CISADM. To use the archive engine, two additional database users are necessary for each environment's database:
Prior to registering an Archive environment, the following database relationships must be configured by your implementation's database administrator to match the diagram below:
Notice that the database relationship originating from the production environment's CISUSER database schema references the CISUSER schema in the archive environment's database. A database relationship originating from the archive environment's CISREAD database schema references the CISREAD schema in the production environment's database.
Archive database processes that are run from the production environment move data into a given archive environment. When the process populates tables in an archive environment's database, the CISUSER to CISUSER database relationship is used.
So that archived data may be viewed along with production data in an archive environment, the registration script creates super views of application tables by defining a union of the production database tables with a given archive environment's corresponding database tables. These super views replace the "CI_" synonyms normally defined under the CISREAD schema in the archive environment. When a user logs onto an archive environment and maneuvers around the system, the data presented is from the super views. To accomplish this, synonyms from CISUSER in the archive environment database tables are unioned with the CISREAD production database synonyms over the CISREAD to CISREAD database relationship. The super views are read only, of course.
As mentioned previously, most entities in a given archive database are accessed using a super view when accessing an archive environment's data under its CISREAD schema. This implies that an application server and web server must be installed and configured to reference the CISREAD schema, not the CISUSER schema. Refer to Managing Archive Environments for more information.
Within the CISREAD schema, certain tables are not presented from super views:
Referential integrity of the production database must be maintained after archiving or purging. Imagine if bill records were purged and bill segment records were not. Some bill segment records would reference non-existent bill records in the production database. To effectively archive or purge production data without causing system problems, it is important to understand the system's data model.
Archiving or purging production data requires analysis of table dependencies. When choosing data to archive, a primary production maintenance object is selected. All of the table relationships related to the maintenance object must be analyzed. Rules for handling different table relationships during archiving or purging are necessary.
Often parent-child relationships exist between tables. To avoid repeating groups of data stored on one table, a child table is used to store the repeating information. Records on a child table cannot exist without a related parent record. Child tables have identifying relationships with parent tables.
Records on a parent table should be archived or purged along with related records on all child tables. This ensures that child records are not orphaned. This axiom is recursive, as child tables may have child tables of their own.
Suppose that you want to archive meter read data. For each CI_MR (meter read) record that is archived, the related child records in CI_REG_READ (register reading) and CI_MR_REM (meter read remark) tables should also be archived. The following illustrates how register reading records and meter read remark records are related to a parent meter read record.
Parent-child is not the only way tables may be related. To minimize database storage requirements, attributes related to a specific entity exist on a single table. Generally tables do not redundantly store data that already exists on another table. Instead, a reference to the table is used. These tables have non-identifying relationships.
Consider a field activity step for reading a meter. The field activity step table does not store the date and time the meter was read, as this information is kept on the meter read table. The field activity step merely contains a reference to the meter read.
Special consideration must be taken to manage non-identifying relationships during the archiving or purging of production data. Most of the time, the best solution is to use non-identifying relationships as exclusion criteria, but there are exceptions where it is acceptable to allow foreign key references to archived data.
Let's take a look at this from an archive and purge perspective separately:
While references to foreign keys outside of the environment's database are sometimes valid, it is still good practice to minimize their occurrences. If you examine the sample archive processes, you will notice that care has been taken to reduce the number of foreign keys that reference archived data.
When a system-generated key value is assigned to a record, the system also stores the key value in a key table that corresponds to the record's database table (see Defining Table Options). Key tables store the universal environment identifier along with the key values.
When data is moved from production to archive, the archived records' related key table records are not deleted from the production database. The key table records are instead updated with the universal environment identifier of the target archive environment. This prevents the system from re-using an archived key value. For example, since field activity steps are allowed to reference archived meter reads, the key values of the archived meter reads cannot be assigned to new meter reads.
If the production system encounters a foreign key reference to a record that is not in the current environment's database, it will look up the key value on the record's associated key table to see if the underlying data has been archived. The existence of the key value on the key table satisfies application level referential integrity, because the key of the archived data is still present in the production database. Even though the key is displayed, the description of the object is blank, and any go-to functionality that is normally associated with the key is disabled.
To minimize the number of inter-database foreign key references, it is desirable to archive sets of production data in a specific order. Suppose that you wanted to archive meter read data. The CI_BSEG_READ (bill segment read detail) table contains non-identifying relationships to the CI_MR (meter read) table. Almost every meter read record is referenced on a bill segment read detail record.
Using the sample process for archiving meter reads alone would result in very few meter reads being archived because the sample meter read archiving processes would not allow dangling intra-database foreign key references from bill segment read to register reading. Performing a bill archive prior to performing a meter read archive alleviates this problem.
Cannot Archive Most Meter Reads
Archive Bills First
Now Archive Meter Reads
In addition to maintaining referential integrity of the production database, the archiving or purging processes must ensure that critical data is not archived or purged along with non-critical data stored on the same tables. It is important to understand system functionality and business processes to determine impact of archiving or purging production data.
Generally age is a factor in determining which production data to archive or purge. It makes sense to archive or purge older data that is accessed less often than recently added data. When a set of production data is chosen for archive or purge, consider how much of the data is still relevant to maintain normal operations.
Many tables include a status field or state-identifying switch. These fields are used to track the state transition of a system entity. The system often keys processing or validation off of these status fields. Usually records are added in an initial state, and over time the state changes, eventually reaching some final status. Think of a service agreement moving from Pending Start to Active to Pending Stop to Stopped to Closed. Records that store data related to system entities controlled by state should generally not be archived or purged unless the system entity is in a final status.
Archiving configuration data that is based on user-defined keys can be problematic. Since configuration tables' keys are user-defined (not system-generated), they do not have associated key tables. This means that if you archive configuration data, the system does not validate that the key has been used once it has been moved to an archive environment's database.
Remember that one of the features of an archive environment is that it provides you the ability to use the application to view both production and archived data at the same time. By logging into an archive environment whose application server points to the CISREAD schema, the data is presented from super views of both production and archive. If data related to a user-defined key were re-used in production, the super view in archive would contain two records with the same key value, and the effect on the archive environment would be unpredictable. You should consider carefully whether you want to archive data based on user-defined keys.
Archiving or purging records from a production data table could affect balances and quantities that are calculated from details. There are various ways to handle these situations, and each situation must be treated individually.
There are very few cases where calculated or stored aggregate summaries exist in the system. The sample archive procedures deal with the most complex instances of aggregate summaries that exist in the system, which are those that deal with financial data.
There are different ways of dealing with aggregate summaries, and they may be used in combination:
You configure archive and purge processes using metadata. It is important to understand the following metadata objects in order to configure an archive or purge process.
Tables are the metadata that correspond to database tables where records of data are stored in the application. The relationships between tables within the application are defined using constraints.
Unless your implementation has defined custom tables, you are not required to configure tables and constraints used in archiving and purging. All of the table and constraint metadata is populated when the system is installed. The information on tables and constraints is provided as background to make the archiving and purging functions easier to understand.
Constraints are examined during an archive or purge process to ensure that referential integrity is maintained. Intra-database foreign key references are not allowed to "dangle" after any purge or after data based on non-system-generated keys is archived.
Below is an illustration of a foreign key constraint defined on the CI_BSEG_READ table. This represents one of the bill segment read detail's foreign keys that references a register reading's primary key:
A maintenance object represents a primary table and child tables that are maintained as a logical unit. Each maintenance object has a page maintenance application service (runtime program) responsible for manipulating and validating the primary record and related child records defined in its tables. When records related to a maintenance object are archived or purged, records in the primary table and related child tables are automatically archived/purged at the same time. The system examines the constraints defined on the maintenance object's tables to ensure this is done.
Unless your implementation has defined custom tables, you are not required to configure maintenance objects used in archiving and purging. All of the maintenance objects are populated when the system is installed. The information on maintenance objects is provided as background to make the archiving and purging functions easier to understand.
For example, the bill segment page is responsible for maintaining a CI_BSEG record along with its related CI_BSEG_READ records, CI_BSEG_CALC records, CI_BSEG_CALC_LN records, etc. Below is an illustration of the BILL SEG maintenance object. Notice that the tables are defined with roles of either Primary or Child. Also note that the constraint representing the parent-child relationship is also defined for each table.
More than one maintenance object may be involved in an archive or purge task. A maintenance object only specifies the child tables that are maintained as part of a page maintenance application service. Therefore, multiple maintenance objects may need to be archived or purged together to ensure that records in all parent-child relationships are archived or purged at the same time.
A database process (DB process) allows you to specify a group of maintenance objects that are processed together for a purpose. In addition, you specify the parent-child constraints that link child maintenance object tables with their parent maintenance object tables within the DB process.
The DB process type specifies the purpose. The DB process types used with the Archive Engine are Archive and Purge:
Let's say our DB process purpose is archiving bills that were more than four years old. Not only do you need to archive records in tables defined under the BILL maintenance object, you also need to archive the related records in tables defined under the BILL SEG maintenance object and the FT maintenance object. Note the linkage constraints specified for BILL SEG and FT.
Each maintenance object specified for a DB process represents a DB process instruction. DB processes instructions used for archive and purge are the metadata that background processes use to build the subset of production data eligible for archive or purge (see archive root objects). DB process instructions specify exclusion criteria or extra processing that is done when an archive or purge procedure is performed.
During an archive or purge procedure, background processes are executed to build the subset of production data to be archived or purged. We'll call this set of background processes the Archive Engine. When the Archive Engine runs, criteria algorithms specified on DB process instructions are executed. Criteria algorithms are supplied with the primary key value of a maintenance object's primary table. These algorithms simply return a Yes or No value depending on program logic that determines whether the object may be archived or purged. These algorithms are usually defined on a Primary DB process instruction, but there is no restriction. When criteria algorithms specified on Child DB process instructions return a No (do not archive/purge), none of the records associated with the Primary DB process instruction nor any of its children are archived or purged.
For example, an "Archive Bill" DB process includes an instruction algorithm to determine "Bill Archive Criteria". The instruction algorithm's program logic performs queries based on the primary key values of records on the CI_BILL table, and returns No (do not archive/purge) if any of the following conditions are met:
Age and State
Relationships
Another way to exclude records from being archived or purged is to set up table rules on a DB process instruction. A table rule's override condition is incorporated into the WHERE clause in the SQL statement that builds the subset of production data for archive or purge when the Archive Engine runs. Table rules may be specified on any DB process instruction for any table within that DB process instruction, but are generally specified only on a Primary DB process instruction's Primary table.
Imagine a table rule specified on the Primary DB process instruction for an "Archive Bill" DB process as follows: #CI_BILL.ACCT_ID <> '2846738204'. Specifying this table rule prevents the Archive Engine from archiving any bills for account 2846738204.
As their names imply, Archive Processing and Purge Processing algorithms perform extra processing based on program logic. These algorithms are used to resolve aggregate summaries, and may also be used in some cases to set special archive attributes on records where unresolved non-identifying relationships result from archiving data. As with criteria algorithms, the Archive Engine supplies processing algorithms with the primary key value of a maintenance object's primary table when archive or purge background processes are executed.
For example, imagine archiving financial transactions. In this case, when an FT is archived, the following logic should also occur:
A special processing algorithm specified on a Child DB process instruction for an "Archive Bill" DB process could perform this logic.
The archive engine is a conceptual metaphor that represents the framework used to archive or purge production data. We can think of the archive engine as a set of generic programs designed to move or delete any data from production.
An archive or purge procedure is a set of processes used to accomplish an archive or purge task. An archive or purge procedure consists of a set of four background processes that are executed in a specific order. Each background process is submitted separately, and has a specific function. An Archive or Purge DB process specifies a batch control that relates to the first background process that is executed. This is not to say that a different program is required for each Archive or Purge DB process, as there is one generic program that performs the first step of any archive or purge procedure.
For example:
The subsequent background processes are also generic programs that perform functions related to a step in any archive or purge task. The same programs are executed for Step 2, Step 3 and Step 4 regardless of the archive or purge DB process. While this concept is confusing, it may become clearer as we look at what each step does.
The following steps are performed for any archive or purge procedure. Remember that each step in an archive or purge procedure is a separately submitted batch process:
A utility called ArcSetup is provided to maximize performance. Run this as a pre-archive task with action type B. This utility generates the DDL for the tables that are associated with archive DB Processes resulting in the scripts Gen_Index.sql and Enable_Pkey.sql. It then drops indexes and disables primary key constraints for tables associated with archive DB processes.
When you submit the first step in an archive or purge procedure, the program attempts to build and store archive root objects. Archive root objects drive the subsequent steps in an archive or purge procedure. Archive root objects represent the subset of production data to be archived or purged. Archive root objects are transient, as they only exist during an archive or purge procedure. Archive root objects reference the primary key value of the Primary table of the maintenance object specified on a DB process instruction.
This step creates archive root objects for the maintenance object specified on the DB process' Primary DB process instruction. We'll call these Primary archive root objects.
Remember:
Apply Table Rules
The program applies table rules related to the Primary DB process instruction (table rules related to Child DB process instructions are applied later). A table rule's override instruction (WHERE clause) prevents archive root objects from being created unless the data meets the condition.
Execute Criteria Algorithms
As Primary archive root objects are being created, the program executes criteria algorithms specified on the Primary DB process instruction. The program passes the primary key values of the Primary table data of potential Primary archive root objects to the criteria algorithms. If a criteria algorithm returns a false (do not archive/purge), the program does not create an archive root object for the data.
Create Archive Root Instructions For Archive Root Objects
For each archive root object stored by this step, the program stores an archive root instruction that links the archive root object and its DB process instruction. An archive root instruction references the archive root object that caused it to be stored and that archive root object's Primary archive root object. At this time, the program is creating root instructions for the Primary DB process instruction; so a root instruction's Primary root object reference and Child root object reference are the same archive root object. When we examine how the program creates Child archive root objects, it becomes clear that archive root instructions provide a cross-reference of Primary and Child archive root objects that are processed together as a group.
The next step in an archiving procedure creates Child archive root objects for data related to Primary archive root objects with an initial status (archive root objects are added as initial in Step 1: Create Primary Archive Root Objects). Note that this background process processes archive root objects related to the specified Archive or Purge DB process. You specify the DB process as a parameter on the batch control.
For each Primary archive root object, the program creates Child archive root objects for data related to Child DB process instructions linked to the Archive or Purge DB process. As with the Primary archive root objects built in the previous step, Child archive root objects reference the primary key value of the Primary table of the maintenance object specified on the Child DB process instruction.
Apply Table Rules
It would be unusual to include a table rule on a Child DB process instruction. If they are specified on any of the Child DB process instructions, they prevent archive root objects from being created for the data related to Child DB process instructions unless the data meets the conditions specified on a table rule's override instruction (WHERE clause). This is unusual because you would most likely create dangling foreign key references by specifying table rules at this level. It may be better to try and prevent the applicable Primary archive root objects from being created in the first place.
Execute Criteria Algorithms
At this time, the program executes criteria algorithms related to the Child DB process instructions. As in the previous step, these criteria algorithms prevent archive root objects from being created. The difference is that if a criteria algorithm specified on a Child DB process instruction returns false (do not archive/purge), the program deletes all of the root objects related to the Primary archive root object. This is a fundamental difference between criteria algorithms and table rules specified at this level. Since the archive root objects are deleted, they will not be subject to further processing in subsequent steps. Again, criteria algorithms are generally specified on Primary DB process instructions.
Create Archive Root Instructions For Archive Root Objects
For each Child archive root object, the program stores an archive root instruction that links the archive root object and its DB process instruction. The root instruction references the archive root object that caused it to be stored and that archive root object's Primary root object. Once the program processes all of the child archive root objects, the archive root instructions provide a cross-reference of Primary and Child archive root objects that are processed together by subsequent steps.
This step in an archiving procedure performs a recursive integrity check on Primary archive root objects with a pending status (archive root objects were updated to pending in Step 2: Build Child Archive Root Objects). Again, this background process processes archive root objects related to the specified Archive or Purge DB process. You specify the DB process as a parameter on the batch control.
If any foreign key constraint specified on a table related to any of the maintenance objects associated with a given Primary archive root object or its children references the same table that the foreign key constraint is defined, the program performs a recursive integrity check.
If only one side of a recursive relationship is slated for archive or purge, the program deletes all of the archive root objects related to the root object in question (from the Primary root object down). In other words, this is an invalid condition and deleting the archive root objects prevents the corresponding data from being archived or purged by the last step.
If both sides of a recursive relationship are slated for archive or purge, the program updates the Primary archive root object references on all archive root instructions involved in the recursive relationship to match the current archive root object instruction's Primary archive root object. In other words, the archive root object cross-reference (archive root instruction) is updated so that all of the archive root objects involved in a recursive relationship are archived or purged together.
This is best explained by example:
Suppose that a DB process' purpose is to archive adjustments that are more than four years old.
The last step is the one that actually moves the production data into an archive environment, copies it to a flat file, or deletes it (in the case of purge). For step 4, you can select from two background processes: one that moves data to a target archive environment or one that calls an algorithm that moves the data to a flat file. If you archive to flat files, you can subsequently import the files into the archive environment using a database tool. The flat file method may provide better performance in some environments.
The AR-DCDT background process loops through the archive root instructions related to approved archive root objects (they were set to approved in Step 3: Recursive Integrity Check). The processing order is by Primary archive root object reference, from the lowest level Child archive root objects up to the Primary archive root object. The program issues a commit after each Primary archive root instruction has been processed. If a validation error occurs while processing an archive root instruction, the program deletes all of the archive root objects whose root instructions reference the same Primary archive root object.
This background process processes archive root objects related to the specified Archive or Purge DB process. You specify the DB process as a parameter on the batch control.
Execute Processing Algorithms
If there are processing algorithms associated with the archive root instruction being processed, both programs execute them before the data is deleted. These algorithms resolve foreign key references on production data that reference the subset of data to be archived. They may also resolve aggregate summaries (e.g. updating a summary adjustment to maintain a service agreement balance).
Delete Production Data and Root Object
Both programs handle the deletion of production data. Purge DB processes are handled differently than Archive DB processes.
For a purge:
For an archive:
The AR-DCDTF background process calls an algorithm that copies the data to a flat file then deletes it from the product environment. This background process selects the archive root instructions related to approved archive root objects (they were set to approved in Step 3: Recursive Integrity Check), groups them by their Primary root object, and calls the Archive Copy Data algorithm specified on the DB process instruction.
The algorithm copies the records to the path and file specified as parameters to the algorithm. We have provided sample algorithms for archiving meter read data to a file. If you want to use AR-DCDTF for other archive jobs, you must develop your own algorithms using ARCD-MR as an example. If a validation or other error occurs while writing to the flat file, the program stops execution. You must manually delete the flat files and restart the background process.
This background process processes archive root objects related to the specified Archive & Copy to File DB process. You specify the DB process as a parameter on the batch control.
Execute Processing Algorithms and Delete Production Data and Root Objects
After the flat files are written, the background process performs the following steps:
Run the ArcSetup utility as a post-archive task with action type A. This utility
This diagram shows the state transition for an archive root object. Note that archive root objects only persist during the execution of an archive procedure.
The topics in this section describe how to design and develop new archive and purge procedures.
When designing an archive or purge procedure, choose a primary maintenance object to archive. If you have added custom tables and maintenance objects, make sure they have been configured with all relevant constraints. When configuring DB processes, remember that parent records should be archived or purged with all of their children even when they cross maintenance object boundaries. Constraints linking maintenance objects are very important.
Since you want to process only a subset of production data, you need to determine exclusion criteria and put the logic into criteria algorithms or table rules. Remember the general rules for determining subsets of data to archive or purge:
Even though during a purge foreign key checking is performed in Step 4: Move or Delete Production Data, you may consider reducing the number of eligible Primary archive root objects created by Step 1: Create Primary Archive Root Objects with criteria algorithms to reduce overall processing time.
If any of the tables are involved in an aggregate summary, you may need to write a processing algorithm that inserts summary records to represent the deleted detail records. The logic for these programs depends heavily on the type of aggregate summary. Often you can avoid these situations by limiting the set of archived or purged data.
For example, if you were to choose to archive credit rating history records, use a criteria algorithm that returns false if the credit rating history is not expired. Since expired credit rating history records do not contribute to the aggregate summary, it is not necessary to develop a processing algorithm.
If you are archiving production data to flat files, you need to write the archive copy data algorithms that writes the archived data to flat files. If you intend to reload the flat files into an archive environment, your algorithms should be written to structure the flat files so that they can be easily imported using your DB tools.
This section describes the archive and purge DB processes that exist in the demonstration database. We have provided sample Archive and Purge DB processes for the most complex high-volume transaction data. It may be useful to copy these DB processes from the demonstration database. Refer to How To Copy Samples From The Demonstration Database.
Because of the logic in the criteria algorithms used to minimize the number of inter-database foreign key references, sample archive procedures should be performed in the order they appear in this document.
A database administrator must execute the environment registration utility, as administrative access is required. This utility is also used to deregister and reregister environments.
The EnvSetup registration script provides two options for archiving.
In earlier versions of the application framework, super views were created for most of the application objects in a given archiving database under the CISREAD archive schema.
These super views are a union view of production data and archived data. In current versions of the application framework, the registration scripts initially create synonyms for all application objects in the archive database pointing to the production schema using a CISREAD to CISREAD relationship. The super views are created only for archived database tables via the ArcSetup script. There is no other change in configuration for registration using this option.
In current versions of the application framework, the support for archiving has been extended to allow for two schemas within the same Oracle instance.
Since both Production and Archive schema’s data is being processed within the same Oracle instance, the configuration eliminates data processing over database link and improves performance for the archiving process. The following diagram illustrates the relationship between Production and Archive schemas.
Notice that the database relationship originating from the production CISUSER schema references the ARCUSER schema in the archive schema. A database relationship originating from the archive ARCREAD schema references the CISREAD in the production schema. Archive database processes that are run from the production environment move data into a given archive environment. When the process populates tables in an archive schema, the CISUSER to ARCUSER database relationship is used. So that archived data may be viewed along with production data in an archive environment, the ArcSetup script creates super views of archived tables by defining a union of the production database tables with a given archive environment’s corresponding database tables. These super views replace the "CI_" synonyms normally defined under the ARCREAD schema in the archive environment. When a user logs on to an archive environment and navigaytes around the system, the data presented is from the super views. To accomplish this, synonyms from ARCUSER in the archive environment database tables are unioned with the CISREAD production database synonyms over the ARCREAD to CISREAD database relationship. The super views are created only for the tables that are archived and ofcourse, they are read only.
Since most application objects in a given archiving schema access an archive environment’s data under its ARCREAD schema. This implies that an application server and web server must be installed and configured to reference the ARCREAD schema, not the ARCUSER schema. In order to move the data from production schema into archive schema and to view archived data along with production data, the registration utility generates required security grants for CISUSER and ARCREAD users.Oracle (EnvSetup)
The registration utility may be executed from any workstation configured to connect to both the production environment database and the supporting environment database.
In this example, we describe how to register an Archive environment. We'll call the production environment database "CCBPROD" and the Archive environment database "CCBARCH".
You may specify the following parameters on the command line. If parameters are not supplied, the registration utility prompts for them:
The ArcSetup utility is provided to configure pre-archive and post-archive tasks for an archive environment.
The utility performs the following tasks if the action type is "B":
The utility performs the following tasks if the action type is "A":
The utility may be executed from any workstation configured to connect to both the production environment database and the archiving environment database.
In this example, we describe how to setup an Archive environment. We'll call the production environment database "CCBPROD" and the Archive environment database "CCBARCH".
-d CCBPROD,manager,CISADM,CISREAD
-a B
-p CIARC_BI
-l {log file Name}
The demonstration database contains several sample Archive and Purge DB processes. The topics in this section describe how to copy the sample Archive and Purge DB processes from the demonstration database to the production environment. The following assumes that the demonstration environment has been registered as a Compare Source supporting environment in your production environment.
The demonstration database is installed in English only. If you work in a non-English language, you must execute the NEWLANG background process on the demonstration database before using it as a Compare Source supporting environment. If you work in a supported language, you should apply the language package to the demonstration database as well.
If you don't execute NEWLANG on the demonstration database, any objects copied from the demonstration database will not have language rows for the language in which you work and therefore you won't be able to see the information in the target environment.
You need to configure a DB process in your target environment that copies the sample archive and purge DB processes from the demonstration environment. This is confusing because you are configuring a DB process in one environment that copies DB processes from another.
First, set up batch controls to "copy sample archive/purge processes". Our suggestion is to duplicate the CL-COPDB batch control, as this is a system installed batch control that has the correct program name and batch parameters used to compare data between two environments. Make sure to populate the environment reference batch parameter with the environment reference of the demonstration environment.
Next, set up a DB process to "copy sample archive/purge processes". Our suggestion is to duplicate the CL-COPDB DB process, as this is a system installed DB process configured to copy other DB processes. For clarity make the name of the duplicated DB process match the name of the duplicated batch control. Also, make sure you change the override condition table rules on the Primary DB process instruction:
This assumes that you want to copy all of the DB processes prefixed with CI_ARC or CI_PUR to your target environment. You may replace the table rule's override instruction with a WHERE clause defining any desired DB processes you want to copy from the demonstration database.
When the background process that you set up by duplicating CL-COPDB batch control runs, it highlights differences between the "copy archive/purge process" DB processes in the demonstration environment database and your target environment database.
The first time you run this process, it creates root objects in your target environment database to indicate the copied DB processes will be added. You can use the Difference Query to review these root objects and approve or reject them.
Next duplicate the CL-APPCH batch control, as this is a system installed batch control that has the correct program name and batch parameters used to apply the changes of approved root objects created by the first batch process. Populate the identifier of the Compare DB process in the appropriate batch parameter.
After you've approved the root objects, submit the background process associated with the duplicated CL-APPCH DB process to add the DB processes to your target environment.
Since the financial archive processes must maintain aggregate summaries, an archive adjustment type is necessary. The sample archive processes reference the processing algorithm CI_ARPR-FT. This algorithm references adjustment type ARCADJ. Before executing an archive process for financial entities using the sample Archive DB processes, add the ARCADJ adjustment type as shown in the demonstration database.
Remember that the Archive Engine may be used to archive or purge data in environments other than production. While archiving from environments other than production may not make sense, purging from an archive environment has merit. Over time, the amount of data kept in an archive environment has the potential to mount. This is especially true if you archive fast growing tables on a regular basis.
Purging data from an archive environment is not really any different from purging from the production environment. In order to purge from an archive environment, you need to log into it under the CISUSR schema. This means a web server and application server must process data against this schema. This is not the same application server that processes data against the CISREAD schema, where view-only data is presented from the super views.
Once logged into the archive environment under the CISUSR schema, you execute a purge procedure to purge a subset of the archived data. You need to set up DB processes within the archive environment for purging the archived data.
Example - Purge From an Archive Environment
Let's say that for the last five years, you have archived pay event data that is two years old or older to an archive environment. Now you want to implement a purge of the pay event data in the archive environment that is four years old or older.
To perform the purge, you need to set up a batch control and a Purge DB process in the archive environment. The Purge DB process instructions for the pay event purge would look like this:
Proc Seq | Maintenance Object | Parent Seq | Constraint | Parent MO Table (from Constraint) |
---|---|---|---|---|
10 | Pay Event | - | - | - |
20 | Payment | 10 Pay Event | Pay Event Id | CI_PAY_EVENT |
30 | FT | 20 Payment | Sibling ID | CI_PAY_SEG |
PAY EVENT Maintenance Object Instruction Algorithm:
FT Maintenance Object Instruction Algorithm:
This section describes tools to facilitate detailed business configuration. The configuration tools allow you to extend both the front-end user interface as well as create and define specialized back-end services. Note that the tools described here are controlled completely by meta-data - no programming required!
This section provides an overview of business objects and describes how to maintain them.
The topics in this section describe background topics relevant to business objects.
The fundamental idea behind a business object is that it should closely match the end user's conception of an object (e.g.; the specific information used to define a customer). This is in marked contrast to an application developer's notion of an object (e.g.; the normalized database tables used to capture generic person information). The business object configuration tool described here is a bridge between the two notions; a business object maps the end user's concept of an object to the physical database structures, and services, used to maintain the information. In other words, a business object is typically a simplification of the maintenance object.
Another definition of a business object is a structure that allows an implementation to define a simpler view of a maintenance object. For example, a tax management COTS team can set up business objects for individual taxpayer, corporation, and partnership all as simpler views of the Person maintenance object. Yet another use of business objects is for managing market messages: separate business objects can be defined for a multitude of market messages, all of which belong to a single market message MO.
A business object has properties (AKA, elements). Properties such as "Social Security Number" and "Home Phone" are applicable to an individual taxpayer, whereas "Corporate Name" is applicable to a corporation. The structure of a business object is defined using an XML schema. The purpose of the schema is to describe the business object's properties and map them to the corresponding maintenance object fields.
Keep in mind that many maintenance objects have child table collections (e.g., a collection of phone numbers, or a collection of characteristics on an account) and therefore the definition of where a property resides can be sophisticated. For example, defining a business object property like "Name" requires the implementer to define:
Some maintenance objects allow data to be stored as an XML structure field (CLOB) with the entity. Business object properties may reside in the MO's XML extension. You will typically map business object properties to an MO XML extension when the property does not have to be exposed for SQL indexing or joining (e.g., most fields on a tax form or the elements in a market message).
Some business objects may have child tables that allow data to be stored as a CLOB. You can map to these CLOB fields in your schema.
XAI incoming messages and scripts support interaction with business objects. It is also possible to interact with business objects directly from a Java class.
A business object may define business rules that govern the behavior of entities of this type.
Any time a business entity is added, changed or deleted, the system detects and summarizes the list of changes that took place in that transaction and hands it over to Audit plug-ins associated with the business object. These plug-ins are executed after all the post-processing rules are executed. It is the responsibility of such algorithms to log the changes if and where appropriate, for example as a log entry or an entry in an audit trail table or an entry in the business event log
By default all elements of the business object are subject to auditing. You can however mark certain elements to be excluded from the auditing process using the noAudit schema attribute. Marking an element as not auditable will prevent it from ever appearing as a changed element in the business object's audit plug-in spot. Refer to the "Schema Tips" context sensitive zone associated with the Business Object maintenance page for more information on this attribute.
Refer to Business Object - Algorithms for more information on the various types of algorithms .
The system applies business object rules (schema based and algorithms) whenever a business object instance is added, changed or deleted. This is only possible when the call is made via the maintenance object service. For example, when made via business object interaction ("invoke BO"), the MO's maintenance page or XAI services that reference the BO or the MO service, etc. In addition the system must be able to determine the business object associated with the actual object being processed. To do that the Maintenance Object itself has to have a Determine BO algorithm plugged in. If the business object cannot be determined for a maintenance object instance business object rules are not applied.
Pre-Processing is special. The pre-processing algorithm plug-in spot is unique in that it only applies during a BO interaction. It is executed prior to any maintenance object processing. It means that when performing add, change or delete via the maintenance object service, the pre-processing plug-in is not executed.
A business object may inherit business rules from another business object by referencing the latter as its parent. A child business object can also have children, and so on. A parent's rules automatically apply to all of its children (no compilation - it's immediate). A child business object can always introduce rules of its own but never remove or bypass an inherited rule.
The following is an illustration of multiple levels of business object inheritance.
Notice how the "Business Customer" business object extends its parent rules to also enforce a credit history check on all types of customers associated with its child business objects.
Most types of business object system events allows for multiple algorithms to be executed. For example, you can have multiple Validation algorithms defined for a business object. For these, the system executes all algorithms at all levels in the inheritance chain starting from the highest-level parent business object moving on to lower levels.
Other types of system events allows for a single algorithm to be executed. For example, you can only have one Information algorithm to format the standard description of a business object instance. For these, the system executes the one at the level nearest to the business object currently being processed.
Many maintenance objects have a status column that holds the business entity's current state within its lifecycle. Rules that govern lifecycle state transition (e.g., what is its initial state, when can it transition to another state, etc.) and the behavior associated with each state are referred to as lifecycle rules. Older Maintenance Objects , such as To Do Entry, have predefined lifecycles whose rules are governed by the base-package and cannot be changed. The lifecycle of newer Maintenance Objects exists in business object meta-data and as such considered softly defined. This allows you to have completely different lifecycle rules for business objects belonging to the same maintenance object.
Here are examples of two business objects with different lifecycles that belong to the same maintenance object.
The topics that follow describe important lifecycle oriented concepts.
The boxes in the above diagram show the potential valid states a business entity of the above business object can be in. The lines between the boxes indicate the state transition rules. These rules govern the states it can move to while in a given state. For example, the above diagram indicates a high bill complaint that's in the Lodged state can be either Canceled or moved into the Preliminary Investigation state.
When you set up a business object, you define both its valid states and the state transition rules.
When you set up lifecycle states, you must pick one as the initial state. The initial state is the state assigned to new entities associated with the business object. For example, the above high-bill complaint business object defines an initial state of Lodged, whereas the literature request one defines an initial state of Literature Sent.
You must also define which statuses are considered to be "final". Typically when an entity reaches a "final" state, its lifecycle is considered complete and no further processing is necessary.
For each state in a business object's lifecycle, you can define the following types of business rules.
You can define algorithms that execute before a business entity enters a given state. For example, you could develop an algorithm that requires a cancellation reason before an entity is allowed to enter the Canceled state.
You can also incorporate state auto-transitioning logic within this type of algorithms. Refer to auto-transition for more information.
You can define algorithms that execute when a business entity exists a given state. For example, you could develop an algorithm that clears out error messages when a given entity exits the Error state.
You can define algorithms to monitor a business entity while it is in a given state. This type of logic is typically used to check if the conditions necessary to transition the entity to another state exist (and, if so, transition it). For example, transition an entity to the Canceled state if it's been in the Error state too long. Another common use is to perform ancillary work while an entity is in a given state. For example, update statistics held on the object while it's in the Active state .
Monitor algorithms are invoked when a business entity first enters a state and periodically after that in batch. You have the option to defer the monitoring of a specific state until a specific monitoring batch job runs. You do so by associating the state with a specific monitoring process. In this case the system will only execute the monitoring rules of this state when that specific batch process runs. This may be useful for example in a market-messaging world where you do not want an inbound message processed when it is received; rather, you want to wait until a later point in time (maybe at the end of the day).
A monitor algorithm can carry out any business logic. In addition it can optionally tell the system to do either of the following:
If none of the above is requested the system keeps executing subsequent monitoring algorithms.
If a business object references a parent business object, it always inherits its lifecycle from the highest-level business object in the hierarchy. In other words, only the highest-level parent business object can define the lifecycle and the valid state transitions for each state. Child business objects, in all levels, may still extend the business rules for a given state by introducing their own state-specific algorithms.
The system executes all state-specific algorithms at all levels in the inheritance chain starting from the highest-level parent business object moving on to lower levels.
In a single transition from one state to another, the system first executes the Exit algorithms of the current state, transitions the entity to the new state, executes the Enter algorithms of the new state followed by its Monitor algorithms. At this point if a Monitor algorithm determines that the entity should be further automatically transitioned to another state the remaining monitoring algorithm defined for the current state are NOT executed and the system initiates yet another transition cycle.
Notice that an Enter algorithm can also tell the system to automatically transition the entity to another state. In this case the remaining Enter algorithm as well as all Monitor algorithms defined for the current state are NOT executed.
The following illustration provides an example of an auto-transition chain of events.
In this example a business entity is in a Pending state. While in that state a Monitor algorithm determines to auto-transition it to the Denied state. At this point the following takes place:
By default, any error encountered while transitioning a business entity from one state to another rolls back ALL changes leaving the entity in its original state.
When applicable, the Maintenance Object can be configured to always keep an entity in its last successful state rather than rolling all the way back to the original state. This practice is often referred to as "taking save-points". In case of an error, the entity is rolled back to the last successfully entered state and the error is logged on the maintenance object's log. Notice that with this approach no error is returned to the calling process, the error is just logged!
The logic to properly log the error is in a Transition Error Maintenance Object plug-in. The system considers a maintenance object to practice "save-points" when such an algorithm is plugged into it.
Even if the maintenance object practices "save-points", in case of an error the system will not keep an entity in the last successfully entered state if that state is either marked as transitory or one of its Enter algorithms has determined that the entity should proceed to a next state. The system will roll back to the first previous state that does not match these conditions.
The base package provides a periodic monitoring batch process for each maintenance object that supports soft state transition. The process periodically executes the monitoring algorithms associated with the current state of an entity, excluding states explicitly referencing a deferred monitoring batch process.
A deferred monitoring process works in the same way but only considers entities whose current state references this particular batch control as their monitor process. Deferred monitoring is only needed for certain states based on business requirements.
Your business rules will dictate the execution frequency of each monitoring process and the order in which they should be scheduled.
You can define a state as Transitory if you do not wish the business entity to ever exist in that particular state.
The following illustrates a lifecycle with a transitory Validate state.
In this example, the business entity is saved still not validated in the Pending state. At some point, the user is ready to submit the entity for validation and transitions it into a transitory state Validate whose Enter rules contain the validation logic. The responsibility of the transitory state's Enter algorithms is to decide if the entity is valid or in error and then transitions it into the appropriate final state. In this scenario, you may not ever want the business entity to exist in the Validate state.
Let's also assume that the maintenance object in this example is practicing " save-points" and requires the entity to be kept in its last successful state. If an error were to occur during the transition from Validate to the next state, the system would roll back the entity back to Pending, and not Validate even though the entity has successfully entered the Validate state. Refer to the Auto Transition section for more information.
Most Maintenance Objects that support soft lifecycle definition also have a log to hold significant events throughout a business entity's lifecycle. For example, log entries are created to record:
When a business entity is first created and when it transitions into a new state the system calls Transition algorithm(s) plugged in on the Maintenance Object to record these events. If the maintenance object supports a log these events can be captures as log entries.
You can define additional elements that are required before a business entity can enter a given state. For example, let's assume that a Cancel Reason must be defined before an object can enter the Canceled state. You do this by indicating that element as a Required Element state-specific option on the appropriate state on the business object.
Some states can be configured to require a user to provide a reason when an object enters the state.
For example, you might configure the Cancel state on the Field Activity BO so when you transition a field activity to the cancel state you must supply a reason such as "Customer Canceled" or "Wrong Address."" Reasons for entering a state are called status reasons. Maintenance objects that support status reasons have a status reason field defined as an option. When you create a business object based on that maintenance object you can then configure each state to prompt the user for a status reason. The status reason can be required or optional. The status reasons are defined using the Status Reason portal.
Every business object must reference an application service. When you link a business object to an application service, you are granting all users in the group access to its instances. You can prevent users from transitioning a business object into specific states by correlating each business object status with each application service action (and then don't give the user group rights to the related action).
The system checks if a user has access rights each time the application is invoked to add, change, delete, read, or transition a business object. However, if a business object invokes another business object, we assume that access was controlled by the initial business object invocation and we do not check access for other business objects that it invokes. In other words, access rights are only checked for the initial business object invoked in a service call.
In order to apply business object security the system must be able to determine the business object associated with the actual object being processed. To do that the Maintenance Object itself has to have a Determine BO algorithm plugged in. If this algorithm is not plugged in or it can not determine the BO on the MO, the system will NOT invoke any BO rules. If the business object can not be determined for a maintenance object instance, business object security is not checked. In this case the system checkS the user's access rights using standard maintenance object security.
The topics in this section describe how to maintain business objects.
Use this page to define basic information about a business object. Open this page using Admin Menu > Business Object.
Description of Page
Enter a unique Business Object name and Description. Use the Detailed Description to describe the purpose of this business object in detail. Owner indicates if this business object is owned by the base package or by your implementation (Customer Modification).
Enter the Maintenance Object that is used to maintain objects of this type.
Enter a Parent Business Object from which to inherit business rules.
Lifecycle Business Object is only displayed for child business objects, i.e. those that reference a parent business object. It displays the highest-level business object in the inheritance hierarchy. Refer to Inheriting Lifecycle for more information.
Application Service is the application service that is used to provide security for the business object. Refer to Granting Access To Business Objects for more information. The application service on the child business object must have the same valid actions as the application service on the parent business object.
Use Instance Control to allow or prevent new entities from referencing the business object.
Click the View MO hyperlink to view the maintenance object in the Maintenance Object Viewer. You may find it useful to leave the application viewer window open while defining your business object schema.
Click on the View Schema hyperlink to view the business object's expanded schema definition. Doing this opens the schema viewer window.
The options grid allows you to configure the business object to support extensible options. Select the Option Type drop-down to define its Value. Detailed Description may display additional information on the option type. Set the Sequence to 1 unless the option can have more than one value. Owner indicates if this option is owned by the base package or by your implementation (Customer Modification).
Where Used
Follow this link to open the data dictionary to view the tables that reference F1_BUS_OBJ.
Use this page to maintain a business object's schema. Open this page using Admin Menu > Business Object and then navigate to the Schema tab.
Description of Page
The contents of this section describe the zones that are available on this portal page.
The General Information zone displays main attributes of the business object.
Click on the View Schema hyperlink to view the business object's expanded schema definition. Doing this opens the schema viewer window.
The Schema Editor zone allows you to edit the business object's schema. The purpose of the schema is to describe the business object's properties and map them to corresponding maintenance object fields.
Use this page to maintain a business object's algorithms. Open this page using Admin Menu > Business Object and then navigate to the Algorithms tab.
Description of Page
The Algorithms grid contains algorithms that control important functions for entities defined by this business object. You must define the following for each algorithm:
The following table describes each System Event. Refer to A Business Object May Define Business Rules for more information about these system events.
System Event | Optional / Required | Description |
---|---|---|
Audit | Optional | Algorithms of this type may be used to audit certain changes made to business object instances. The system hands over to the algorithms a summary of all the elements that were changed throughout a specific call to update an object. Excluded from this processing are elements explicitly marked on the schema as requiring no audit. For each element its original value before the change as well as its new value are provided. It is the responsibility of the algorithms to record corresponding audit information. The system invokes all algorithms of this type defined on the business object's inheritance hierarchy. Refer to Business Object inheritance for more information. Click here to see the algorithm types available for this system event. |
Information | Optional | We use the term "Business Object Information" to describe the basic information that appears throughout the system to describe an entity defined by the business object. The data that appears in this information description is constructed using this algorithm. The system invokes a single algorithm of this type. If more than one algorithm is plugged-in the system invokes the one with the greatest sequence number found on the business object closest to the current business object in the inheritance hierarchy. Refer to Business Object inheritance for more information. Click here to see the algorithm types available for this system event. |
Post-Processing | Optional | Algorithms of this type may be used to perform additional business logic after a business object instance has been processed. The system invokes all algorithms of this type defined on the business object's inheritance hierarchy. Refer to Business Object inheritance for more information. Click here to see the algorithm types available for this system event. |
Pre-Processing | Optional | Algorithms of this type further populates a request to maintain a business object instance right before it is processed. The system invokes all algorithms of this type defined on the business object's inheritance hierarchy. Refer to Business Object inheritance for more information. Click here to see the algorithm types available for this system event. |
Validation | Optional | Algorithms of this type may be used to validate a business object instance when added, updated or deleted. The system invokes all algorithms of this type defined on the business object's inheritance hierarchy. Refer to Business Object inheritance for more information. Click here to see the algorithm types available for this system event. |
Use this page to maintain a business object's lifecycle oriented business rules and options. Open this page using Admin Menu > Business Object and then navigate to the Lifecycle tab.
Description of Page
The Status accordion contains an entry for every status in the object's lifecycle. The entry appears differently for a child business object as it can only extend its inherited lifecycle by introducing algorithms and options of its own.
Use Status to define the unique identifier of the status. This is NOT the status's description, it is simply the unique identifier used by the system. Only the highest-level business object can define lifecycle statuses. For a child business object the inherited status description is displayed allowing navigation to the corresponding entry on the business object defining the lifecycle.
Use Description to define the label of the status. This field is hidden for a child business object.
Use Access Mode to define the action associated with this status. Refer to Access Rights for the details of how to use this field to restrict which users can transition a business entity into this state. This field is hidden for a child business object.
Enter a Monitor Process to defer the monitoring of entities in this state until the specific batch process runs. Refer to Monitor Rules for more information. This field is hidden for a child business object.
The Status Reason drop-down indicates if users should be prompted to provide a specific reason when the business object enters this state. This field appears only if the Status Reason Field is an option on the business object's maintenance object. Valid values are blank, Optional, and Required. The default value is blank (users are not prompted to provide a status reason). See Maintaining Status Reasonsfor more information about status reasons.
Use Status Condition to define if this status is an Initial, Interim or Final state. Refer to One Initial State and Multiple Final States for more information about how this field is used. This field is hidden for a child business object.
Use Transitory State to indicate whether a business entity should ever exist in this state. Only Initial or Interim states can have a transitory state value of No. Refer to transitory states for more information. This field is hidden for a child business object.
Use Alert Flag to indicate that being in this state warrants an application alert. This may be used by custom logic to provide an alert to a user that entities exist in this state. This field is hidden for a child business object.
Use Display Sequence to define the relative order of this status for display purposes. For example when displayed on the status accordion and on the summary tab page. This field is hidden for a child business object.
Algorithms
The Algorithms grid contains algorithms that control important functions for a given status. You must define the following for each algorithm:
The following table describes each System Event.
System Event | Optional / Required | Description |
---|---|---|
Enter | Optional | Algorithms of this type apply business rules when a business object instance enters a given state. The system invokes all algorithms of this type defined on the business object's inheritance hierarchy. Refer to Business Object Inheritance for more information. Click here to see the algorithm types available for this system event. |
Exit | Optional | Algorithms of this type apply business rules when a business object instance exits a given state. The system invokes all algorithms of this type defined on the business object's inheritance hierarchy. Refer to Business Object Inheritance for more information. Click here to see the algorithm types available for this system event. |
Monitor | Optional | Algorithms of this type monitor a business object instance while in a given state. Typically these are used to auto-transition it to another state. The system invokes all algorithms of this type defined on the business object's inheritance hierarchy. Refer to Business Object Inheritance for more information. Click here to see the algorithm types available for this system event. |
Next Statuses
Use the Next Statuses grid to define the valid statuses a business entity can transition into while it's in this state. This section is hidden for a child business object. Refer to Valid States versus State Transition Rules for more information. Please note the following about this grid:
Options
The options grid allows you to configure the business object status to support extensible options. Select the Option Type drop-down to define its Value. Detailed Description may display additional information on the option type. Set the Sequence to 1 unless the option can have more than one value. Owner indicates if this option is owned by the base package or by your implementation (Customer Modification).
This page summarizes business object information in a high level. Open this page using Admin Menu > Business Object and then navigate to the Summary tab.
Description of Page
The contents of this section describe the zones that are available on this portal page.
The General Information zone displays main attributes of the business object.
Click on the View Schema hyperlink to view the business object's expanded schema definition. Doing this opens the schema viewer window.
The Options zone summarizes business object and state specific options throughout the inheritance chain.
The Rules zone summarizes business object and state specific rules throughout the inheritance chain.
The Schema Usage Tree zone summarizes all cross-references to this schema. These may be other schemas, scripts, and XAI Inbound Services. For each type of referencing entity, the tree displays a summary node showing a total count of referencing items. The summary node appears if at least one referencing item exists. Expand the node to list the referencing items and use their description to navigate to their corresponding pages.
The Business Object Hierarchy zone displays in a tree view format the hierarchy of child business object associated with the current business object. It also shows the current business object's immediate parent business object.
Status Reasons define specific reasons for transitioning a business object to a specific status in the business object's lifecycle.
Each business object lifecycle status can be configured to prompt users for a status reason when transitioning to that status. For example, consider a business object with a status of "On Hold." You could define one or more status reasons for this status, and configure it to prompt users for a status reason whenever they transition the business object to the "On Hold" status.
Status Reasons are maintained on the Status Reason portal. Open this page using Admin > Status Reason .
The topics in this section describe the base-package zones that appear on the Status Reason portal.
The Business Objects with Status Reason List zone displays the business objects that have one or more statuses that can have status reasons defined.
Click the broadcast icon to open other zones that contain more information about the business object’s status reasons.
The Status Reasons zone contains display-only information about the business object’s status reasons.
In the same way that a business object is used to simplify a maintenance object, a business service can be used simplify a back-end service. The rating engine is a good example of a complex back-end service because it must satisfy a vast array of differing requirements. However, it is also true that the actual data required for a specific rating task can be quite simple. For example, if your script must calculate a simple cost per ton: you can pass the rating engine just a single service quantity and receive a calculated amount back.
Business services define alternative services to our internal services that are easier to work with. A Business Service provides a "simpler" data interface thus making interaction with the actual service easier. For example, it may flatten out complex collections and set up default values for other pieces of information (like a rate schedule).
As with the business object, the business service's interface to the internal service is defined using its schema. The schema maps the business service's elements to the corresponding elements in the internal service program's XML document. Keep in mind that many back-end services have child table collections (e.g., a collection of input service quantities, or a collection of output bill lines) and therefore the definition of where a business service property resides can be sophisticated. For example, defining a business service property like "Weight" requires the implementer to define:
XAI incoming messages and scripts support interaction with business services. You can also invoke a business service from a Java class.
The topics in this section describe how to maintain business services.
Use this page to define basic information about a Business Service. Open this page using Admin Menu > Business Service.
Description of Page
Enter a unique Business Service name and Description. Use the Detailed Description to describe the purpose of this business service in detail. Owner indicates if the business service is owned by the base package or by your implementation (Customer Modification).
Enter the internal Service Name being called when this business service is invoked.
Enter the Application Service that is used to provide security for the business service. The application service must have an Access Mode of Execute.
Click the View XML hyperlink to view the XML document used to pass data to and from the service in the Service XML Viewer. You may find it useful to leave the application viewer window open while defining your business service schema.
Click on the View Schema to view the business service's expanded schema definition. Doing this opens the schema viewer window.
Where Used
Follow this link to open the data dictionary to view the tables that reference F1_BUS_SVC.
Use this page to maintain a Business Service's schema and to see where the Business Service is used in the system. Open this page using Admin Menu > Business Service and then navigate to the Schema tab.
Description of Page
The contents of this section describe the zones that are available on this portal page.
The General Information zone displays main attributes of the business service.
The Schema Editor zone allows you to edit the business service's schema. The purpose of the schema is to map the business service's elements to the corresponding fields of the backend service program it rides on.
The Schema Usage Tree zone summarizes all cross-references to this schema. These may be other schemas, scripts, and XAI Inbound Services. For each type of referencing entity, the tree displays a summary node showing a total count of referencing items. The summary node appears if at least one referencing item exists. Expand the node to list the referencing items and use their description to navigate to their corresponding pages.
The User Interface (UI) map holds HTML to be rendered within portal zones and Business Process Assistant (BPA) scripts. UI maps allow your implementation to create input forms and output maps that closely match your customer's business practices. In other words, the UI Map is designed to facilitate the capture and display of your business objects and business services.
The UI map is a repository for a single HTML document paired with an XML schema where the schema defines the data that the HTML document displays and/or modifies. The UI Map HTML gives you the ability to craft the display by any method that an html document can support, including JavaScript and full CSS functionality.
Configuration tool support for UI Maps hinges around the ability to inject and extract an XML document from the HTML. For more information on the specialized support for HTML and JavaScript functionality - please refer to the HTML tips document (more on this below).
UI maps are typically crafted as output tables when used in conjunction with portal zones - please refer to Map Zones for more information. When referenced within BPA scripts, UI maps are typically crafted as forms for the capture and update of data.
Portal zones can reference a UI map for the zone header. They may also utilize a UI map to define their filter area. This type of UI map is not a complete HTML document, but is instead configured as a UI Map "fragment".
The topics in this section describe how to maintain UI Maps.
Use this page to define basic information about a user interface (UI) Map. Open this page using Admin Menu > UI Map.
Description of Page
Enter a unique Map name. Owner indicates if the UI map is owned by the base package or by your implementation (Customer Modification).
Use UI Map Type to indicate whether the map is a Complete HTML Document or an HTML Fragment. Portal zones can reference a UI map to describe a fragment of their HTML, for example the zone header or filter area. In this case the UI map is not a complete HTML document, but is instead configured as a UI Map "fragment".
Enter a Description. Use the Detailed Description to describe how this map is used in detail.
Click on the View Schema to view the UI map's expanded schema definition. Doing this opens the schema viewer window.
Use the Test UI Map hyperlink to render your html in a test window.
Where Used
Follow this link to open the data dictionary to view the tables that reference F1_MAP.
Use this page to maintain a UI Map's HTML and schema and to see where the UI Map is used in the system. Open this page using Admin Menu > UI Map and then navigate to the Schema tab.
Description of Page
The contents of this section describe the zones that are available on this portal page.
The General Information zone displays main attributes of the UI Map.
The HTML Editor zone allows you to edit the HTML document of the map.
The Schema Editor zone allows you to edit the data schema part of the map. The purpose of the schema is to describe the data elements being displayed by the map.
The Schema Usage Tree zone summarizes all cross-references to this schema. These may be other schemas, scripts, and XAI Inbound Services. For each type of referencing entity, the tree displays a summary node showing a total count of referencing items. The summary node appears if at least one referencing item exists. Expand the node to list the referencing items and use their description to navigate to their corresponding pages.
The Managed Content maintenance object is used to store content such as XSL files used to create vector charts, JavaScript include files, and CSS files. These files may then be maintained in the same manner as the HTML in UI Maps.
The topics in this section describe the Managed Content portal.
This page is used to define basic information about the content. Open this page using Admin > Managed Content.
Description of Page
Enter a unique name for the content in the Managed Content field.
Owner indicates if the content is owned by the base package or by your implementation.
Use Managed Content Type to indicate the type of content, for example, XSLT or Javascript.
Enter a Description.
Use the Detailed Description to describe in detail how this map is used.
This page is used to create and maintain the managed content. Open this page using Admin > Managed Content and then navigate to the Schema tab.
Description of Page
The General Information zone displays the main attributes of the content. The Editor zone allows you to edit the content.
The data area has no business purpose other than to provide a common schema location for re-used schema structures. It exists solely to help eliminate redundant element declaration. For example, if you have multiple schemas that share a common structure, you can set up a stand-alone data area schema for the common elements and then include it in each of the other schemas.
Be aware that a stand-alone data area can hold elements that are mapped to true fields. For example, you might have 50 different types of field activities and all might share a common set of elements to identify where and when the activity should take place. It would be wise to declare the elements that are common for all in a stand-alone data area and then include it in the 50 field activity business objects.
It's strongly recommended that you take advantage of stand-alone data areas to avoid redundant data definition!
The topics in this section describe how to maintain Data Areas.
Use this page to define basic information about a data area. Open this page using Admin Menu > Data Area.
Description of Page
Enter a unique Data Area name and Description. Use the Detailed Description to describe what this data area defines in detail. Owner indicates if the data area is owned by the base package or by your implementation (Customer Modification).
Click on the View Schema to view the data area's expanded schema definition. Doing this opens the schema viewer window.
To extend another data area, reference that data area in the Extended Data Area field. By extending a data area you can add additional elements to a base product data area.
Where Used
Follow this link to open the data dictionary to view the tables that reference F1_DATA_AREA.
Use this page to maintain a Data Area's schema and to see where the data area is used in the system. Open this page using Admin Menu > Data Area and then navigate to the Schema tab.
Description of Page
The contents of this section describe the zones that are available on this portal page.
The General Information zone displays the main attributes of the data area.
The Schema Editor zone allows you to edit the data area's schema. The purpose of the schema is to describe the structure and elements of the data area.
The Schema Usage Tree zone summarizes all cross-references to this schema. These may be other schemas, scripts, and XAI Inbound Services. For each type of referencing entity, the tree displays a summary node showing a total count of referencing items. The summary node appears if at least one referencing item exists. Expand the node to list the referencing items and use their description to navigate to their corresponding pages.
The schema viewer shows a tree-view presentation of a schema in its expanded form.
The schema illustrates the structure to be used when communicating with the schema's associated object. The following takes place when a schema is expanded:
Clicking on any node on the tree populates the text box on the top with the node's absolute XPath expression. You will find this feature very useful when writing scripts interacting with schema-based objects. Scripting often involves referencing elements in a schema-based XML document using their absolute XPath expression. You can use this feature on the schema viewer to obtain the XPath expression for an element and copy it over to your script.
Business Event Log may be viewed as a tool designed to capture any type of business event worth noting. You configure business objects to represent the various types of events your application calls for. The following type of details may be captured for each event:
One common type of event may be the audit of changes made to sensitive data, for example, tracking an address change. Whenever an entity associated with a business object is added, changed, or deleted the system summarizes the list of changes that took place in that transaction and hands them over to Audit business object algorithms to process. You may design such an algorithm to audit the changes as business event logs. Refer to a business object may define business rules for more information.
You can also allow users to initiate business event logs to capture important notes about a business entity by exposing a BPA Script to invoke the event's corresponding business object.
Bottom line is that any process can create a business event log by invoking the business object representing the appropriate type of event.
Where Used
Follow this link to open the data dictionary where you can view the tables that reference F1_BUS_EVT_LOG.
Fact is an optional configuration tool for simple workflow-type business messages or tasks. The base package does not provide a dedicated Fact user interface because fact is generic by design. Implementations configure their own user interface to visualize the desired custom business process. The topics in this section describe the generic Fact entity and how it can be customized.
The Fact maintenance object is a generic entity that can be configured to represent custom entities and support automated workflows for a variety of applications. Each fact references a business object to describe the type of entity it is. A status column on the fact may be used to capture its current state in the processing lifecycle controlled by its business object.
The maintenance object also supports a standard characteristic collection as well as a CLOB element to capture additional information.
Where Used
Follow this link to open the data dictionary where you can view the tables that reference F1_FACT
A fact's business object controls its contents, lifecycle and various other business rules:
The Fact maintenance object supports a log. Any significant event related to a Fact may be recorded on its log. The system automatically records a log record when the fact is created and when it transitions into a new state. In addition, any custom process or manual user activity can add log entries.
Refer to State Transitions Are Audited for more information on logging. For more information about the various configuration tools available, refer to Configuration Tools. For more information about user interfaces, refer to Configurable User Interface Features.