

[image: Oracle Corporation]

Oracle® Communications Services Gatekeeper

Accounts and SLAs Guide

Release 5.1

E37537-01

June 2013

Oracle Communications Services Gatekeeper Accounts and SLAs Guide, Release 5.1

E37537-01

Copyright © 2007, 2013, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.

Contents

Preface

	Audience
	Documentation Accessibility
	Related Documents

1 About SLAs and Accounts

	About SLAs
	System SLAs
	Custom SLAs

	About Accounts
	Accounts
	Account Groups
	Application Instances

	Associations Among SLA Types, Account Types, and Group Types
	Typical SLA and Account Workflow
	Using Partner Manager Portal to Manage SLAs and Accounts

2 Managing Application Instances

	Summary of Tasks Related to Application Instances
	States of Application Instances
	Web Services Security
	Password Encryption
	Reference: ApplicationInstances
	addApplicationInstance
	countApplicationInstances
	getApplicationInstance
	listApplicationInstances
	removeApplicationInstance
	setApplicationInstancePassword
	setApplicationInstanceProperties
	setApplicationInstanceReference
	setApplicationInstanceState

3 Managing Service Provider and Application Accounts

	Summary of Tasks Related to Accounts
	Application Accounts
	Service Provider Accounts

	States of Accounts
	Account Properties
	Account References
	Reference: Attributes and Operations for ApplicationAccounts
	addApplicationAccount
	addServiceProviderAccount
	countApplicationAccounts
	countServiceProviderAccounts
	getApplicationAccount
	getServiceProviderAccount
	listApplicationAccounts
	listServiceProviderAccounts
	removeApplicationAccount
	removeServiceProviderAccount
	setApplicationAccountGroup
	setApplicationAccountProperties
	setApplicationAccountReference
	setApplicationAccountState
	setServiceProviderAccountGroup
	setServiceProviderAccountProperties
	setServiceProviderAccountReference
	setServiceProviderAccountState

4 Managing Groups

	Summary of Tasks Related to Groups
	Application Groups
	Service Provider Groups

	Reference: Attributes and Operations for ApplicationGroups
	addApplicationGroup
	addServiceProviderGroup
	countApplicationGroups
	countServiceProviderGroups
	getApplicationGroup
	getServiceProviderGroup
	listApplicationGroups
	listServiceProviderGroups
	removeApplicationGroup
	removeServiceProviderGroup
	setApplicationGroupProperties
	setServiceProviderGroupProperties

5 Managing SLAs

	Introduction to SLA types
	Summary of Tasks Related to SLAs
	Service Provider and Application Group System SLAs
	Application Group SLAs
	Service Provider Group SLAs

	Node SLAs
	Global Node SLAs
	Service Provider Node SLAs

	Subscriber SLAs
	Custom SLAs
	Custom XSDs
	Custom Application Group SLAs
	Custom Service Provider Group SLAs
	Custom Global SLAs

	Reference: ApplicationSLAs
	countApplicationGroupsByType
	countApplicationGroupSlaTypes
	countApplicationSlaGroups
	countCustomSlaXSDDefinition
	countGlobalSlaTypes
	countServiceProviderGroupsByType
	countServiceProviderGroupSlaTypes
	countServiceProviderSlaGroups
	listApplicationGroupsByType
	listApplicationGroupSlaTypes
	listApplicationSlaGroups
	listCustomSlaXSDDefinition
	listGlobalSlaTypes
	listServiceProviderGroupsByType
	listServiceProviderGroupSlaTypes
	listServiceProviderSlaGroups
	loadApplicationGroupSla
	loadApplicationGroupSlaByType
	loadApplicationGroupSlaFromUrl
	loadApplicationGroupSlaFromUrlByType
	loadGlobalNodeSla
	loadGlobalNodeSlaFromUrl
	loadGlobalSlaByType
	loadGlobalSlaFromUrlByType
	loadServiceProviderGroupNodeSla
	loadServiceProviderGroupNodeSlaFromUrl

	loadServiceProviderGroupSla
	loadServiceProviderGroupSlaFromUrl
	loadServiceProviderGroupSlaFromUrlByType
	loadServiceProviderGroupSlaByType
	loadSubscriberSla
	loadSubscriberSlaFromUrl
	retrieveApplicationGroupSla
	retrieveApplicationGroupSlaByType
	retrieveCustomSlaXSDDefinition
	retrieveGlobalNodeSla
	retrieveGlobalSlaByType
	retrieveServiceProviderGroupNodeSla
	retrieveServiceProviderGroupSla
	retrieveServiceProviderGroupSlaByType
	retrieveSubscriberSla
	setupCustomSlaXSDDefinition
	setupCustomSlaXSDDefinitionFromUrl

6 Managing Sessions

	About Sessions
	Reference: ApplicationSessions
	Attribute: expiryTime
	Attribute: sessionRequired
	Attribute: validityTime

	countApplicationSessions
	destroySession
	destroyApplicationInstanceSession
	destroyApplicationSessions
	destroyServiceProviderSessions
	getApplicationInstanceSession
	getCurrentSession
	listApplicationSessions

7 Defining Service Provider Group and Application Group SLAs

	Structure of a Service Level Agreement
	<Sla>
	<serviceTypeContract>
	<serviceTypeName>
	<serviceContract>
	<composedServiceContract>
	<startDate>
	<endDate>
	<scs>
	<overrides>
	<override>
	<rate>
	<reqLimit>
	<timePeriod>
	<quota>
	<qtaLimit>
	<days>
	<limitExceedOK>
	<startDow>
	<endDow>
	<startTime>
	<endTime>
	<enforceAcrossGeoSites>

	Structure of a Contract
	<contract>
	<guarantee>
	<methodGuarantee>
	<methodNameGuarantee>
	<timePeriodGuarantee>
	<reqLimitGuarantee>
	<methodRestrictions>
	<methodRestriction>
	<methodName>
	<methodAccess>
	<blackListedMethod>
	<params>
	<methodParameters>
	<parameterName>
	<parameterValues> simple
	<parameterValues> complex
	<parameterValue>
	<acceptValues>
	<requestContext>
	<contextAttribute>
	<attributeName>
	<attributeValue>
	<resultRestrictions>
	Result Restrictions Example

	<resultRestriction>
	<parameterRemovalName>
	<parameterMatch>
	<filterMethod>

	Structure of a Composed Service Contract
	Composed Service Contracts
	Scope
	Multiple Composed Services
	Conflicting Enforcements
	Budget Implications
	Example Composed Service SLA

	<composedServiceName>
	<service>
	<method>

8 Defining Global Node and Service Provider Group Node SLAs

	Structure of a Node Service Level Agreement
	<Sla>

	Service Provider Group Node SLA
	<nodeContract>
	<nodeID>
	<nodeRestrictions>
	<nodeRestriction>

	Global Node SLA
	<globalContract>
	<globalRestrictions>
	<globalRestriction>
	<guaranteePercentage>

A Sample SLA

Preface

This document describes service provider and application provisioning for Oracle Communications Services Gatekeeper.

It covers:

	
An overview of the administration model

	
Managing service provider groups

	
Managing service provider accounts

	
Managing application groups

	
Managing application accounts

	
Managing application instances

Audience

The book is intended primarily for telecom operators who perform service provider and application provisioning tasks.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers have access to electronic support through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Related Documents

For more information, see the following documents in the Oracle Communications Services Gatekeeper set:

	
Alarm Handling Guide

	
Application Developer's Guide

	
Communication Service Guide

	
Concepts Guide

	
Installation Guide

	
Licensing Guide

	
Partner Relationship Management Guide

	
Platform Development Studio Developer's Guide

	
Platform Test Environment Guide

	
RESTful Application Developer's Guide

	
SDK User's Guide

	
Statement of Compliance

	
System Administrator's Guide

	
System Backup and Restore Guide

1 About SLAs and Accounts

Oracle Communications Services Gatekeeper uses Service Level Agreements (SLAs) to define and enforce access to Services Gatekeeper and to the underlying telecommunication network.

SLAs are associated with application service providers through a tiered system of accounts that are organized into account groups.

About SLAs

An SLA is an XML document that defines and enforces access to Services Gatekeeper or, in the case of node SLAs, to the underlying network nodes. The core element in an SLA is a contract element whose child elements specify the details of the access. Examples of these details are the dates in which access is permitted, the number of requests to be processed within a certain time period, and the denial of the use of certain methods or parameter values to an application.

You can load an SLA into a Services Gatekeeper system from the Administration Console console using the operations provided in the ApplicationSLAs section of the AccountService container service. See "Managing SLAs" for information about the AccountService operations to load and manage SLAs.

As an alternative, you can manage SLAs through external management systems integrated with Services Gatekeeper using the Oracle Communications Services Gatekeeper Partner Relationship Management interfaces. For information about the Partner Relationship Management interfaces, see the Oracle Communications Systems Gatekeeper Partner Relationship Management Guide. You can also manage SLAs programmatically using MBeans. For information about the ServicelevelAgreement MBean, see the Oracle Communications Services Gatekeeper OAM Java API Reference.

System SLAs

System SLAs have static XML Schema Documents (XSDs). The enforcement logic is already in place for these types of SLAs, except for the subscriber SLA, which requires custom subscriber policy logic. The following types of SLAs are system SLAs:

	
Service provider group SLA

	
Application group SLA

	
Service provider node SLA

	
Global node SLA

	
Subscriber SLA

Service provider group SLAs and application group SLAs define service provider and application access to Services Gatekeeper. See "Defining Service Provider Group and Application Group SLAs" for information about these types of SLAs and Appendix A for a complete example.

Node SLAs define access to the underlying network, either by service provider group or for Services Gatekeeper as a whole regardless of the service provider whose requests are being processed. See "Defining Global Node and Service Provider Group Node SLAs" for information about node SLAs.

Subscriber SLAs define subscriber policy and manage subscriber access. The implementor defines the subscriber policy logic using the Platform Development Studio. For more information, see the chapter on subscriber-centric policy in Oracle Communications Services Gatekeeper Platform Development Studio Developer's Guide.

Custom SLAs

Custom SLAs are enforced by customized logic for which the XSDs are developed using the Platform Development Studio. For information on custom SLAs and an example of one, see the chapter on custom service level agreements in Oracle Communications Services Gatekeeper Platform Development Studio Developer's Guide.

The following SLAs are custom SLAs:

	
Custom service provider group SLAs

	
Custom application group SLAs

	
Custom global SLAs

The custom logic that operates on data is provided in the SLAs and on data that comes with the request. The data in the SLA is formatted according to the SLA XSD, and the enforcement logic uses the Document Object Model (DOM) representation of the XSD to get the data in the SLA. The request can provide information such as application ID, application instance, service provider ID, application group ID, and service provider group ID.

Custom SLAs can be associated with application groups and service provider groups or be global. A custom global SLA is valid for all requests, regardless of which application group or service provider group the application that triggered the request.

About Accounts

Each service provider and application that uses the Services Gatekeeper application-facing interfaces must establish an account.

Service provider accounts, application accounts, and application instances have states that can be changed using the Administration console. This enables the administrator to take them out of service temporarily.

Accounts

There are two types of accounts:

	
Service Provider Account: Every service provider that has access to the operator's Services Gatekeeper facilities has a service provider account.

	
Application Account: Every application that has access to the operator's Services Gatekeeper facilities has an application account. Each application account is associated with a service provider account.

See "Managing Service Provider and Application Accounts" for information about creating and managing accounts.

Account Groups

For the purposes of SLA enforcement, accounts are organized into account groups. There are two types of account groups:

	
Service provider group

	
Application group

When you load an Application Group SLA or Service Provider Group SLA, you provide the identifier of the group with which the SLA is associated along with the SLA.

Following is an example of how a Services Gatekeeper administrator might use system SLAs to create three different service provider groups:

	
Bronze

	
Silver

	
Gold

Each of these service provider groups would be associated with different SLAs with different privileges regarding maximum throughput and Quality of Service (QoS parameters. When a new service provider is provisioned, the service provider is associated with the appropriate group based on, for example, the amount of network traffic the service provider is projected to generate. If the outcome is not what was predicted, the service provider account can be reassigned to another service provider group that has a different QoS parameter defined in its service provider SLA.

See "Managing Groups" for information about creating and managing groups.

Application Instances

In the context of SLAs in Services Gatekeeper, an application instance is an application service provider. Each application instance has a user name and password or certificate. Each application instance is associated with a service provider account / application account combination. An application instance must be in the ACTIVATED state to send traffic through Services Gatekeeper.

See "Managing Application Instances" for more information about creating and managing application instances.

Associations Among SLA Types, Account Types, and Group Types

Figure 1-1 illustrates the associations among the different account types, group types, and SLA types.

Figure 1-1 Service provider and application model with SLAs

[image: Description of Figure 1-1 follows]

Note the following relationships:

	
An application instance, which uniquely identifies an account, belongs to an application account and a service provider account.

	
An application account belongs to a service provider account and an application group.

	
A service provider account belongs to a service provider group. A service provider account can have zero or more application accounts associated with it.

	
An application group is associated with an application group SLA and zero or more custom application group SLAs.

	
A service provider group is associated with a service level agreement on the service provider-level and may also be associated with a service provider node SLA and zero or more custom service provider group SLAs.

	
Zero or more custom global SLAs can be defined,. These are not associated with any special group or account, but are valid for all accounts and groups

	
A global node SLA is not associated with any special group or account, but is valid for all accounts and groups.

IDs of service provider groups, application groups, application instances, and service provider accounts must be unique. The combination of service provider account and application account for an application instance must be unique.

The separation of accounts and groups provides a flexible way of defining service level agreements. Groups allow the Services Gatekeeper administrator to offer tiers of service at both the service provider and application level.

Application group SLAs and service provider group SLAs can be managed and enforced either locally in one site or across geo-redundant sites.

Typical SLA and Account Workflow

	
Create service provider and application groups that will correspond to the levels of service to be defined in the SLAs. See "Managing Groups" for more information.

	
Define the set of service classes, expressed as SLAs, at both the service provider group level and the application group level. See "Defining Service Provider Group and Application Group SLAs" for more information.

	
Define the set of node service classes, expressed as SLAs, at both the service provider node level and global node level. See "Defining Global Node and Service Provider Group Node SLAs" for more information.

	
Associate the service provider group SLAs and application group SLAs with the groups. See "Managing SLAs".

	
Load the global node SLA and service provider group node SLAs. See "Managing SLAs" for more information.

	
Create a service provider account and associate it with the appropriate service provider group. See "Managing Service Provider and Application Accounts" for more information.

	
Create an application account and associate it with the appropriate application group. See "Managing Service Provider and Application Accounts" for more information.

	
Create an application instance, see "Managing Application Instances" for more information.

	
Depending on which communication service is being used, provision communication service-specific data using the operation and management for relevant communication service.

	
Distribute the credentials to be used by the application to the service provider.

Using Partner Manager Portal to Manage SLAs and Accounts

Partner Manager Portal along with the companion application, Partner Portal act as "front-office" offerings provide a friendlier workflow, insulating you from the intricacies of Services Gatekeeper administration. Use the menu selections and/or input fields on well-defined pages of the two Portal applications to set up your SLAs and manage your service provider accounts.

Network operators and service provider managers use Partner Manager Portal to manage the following:

	
Service Provider accounts

	
Application accounts

	
Service provider group SLAs

	
Service provider group node SLAs

	
Global node SLAs

Network operators authorize service providers to act as partners with access to Partner Portal and create applications using these SLAs. For more information on how to use these two applications, see Oracle Communications Services Gatekeeper Partner Manager Portal Online Help and Oracle Communications Services Gatekeeper Partner Portal Online Help.

2 Managing Application Instances

This chapter describes how application instances are managed and provisioned in Services Gatekeeper:

	
Summary of Tasks Related to Application Instances

	
States of Application Instances

	
Web Services Security

	
Password Encryption

See "Reference: ApplicationInstances" for information about finding the operations in the Administration Console and for the name of the MBean.

Prior to registering application instances, service provider and application accounts must have been created. See "Managing Service Provider and Application Accounts"for more information.

Summary of Tasks Related to Application Instances

Table 2-1 lists the tasks related to application instances and the operations you use to perform those tasks.

Table 2-1 Tasks Related to Application Instances

	Task	Operation to Use
	
Get information about the number of application instances

	
countApplicationInstances

	
Add, remove and get information about an application instance

	
addApplicationInstance

removeApplicationInstance

getApplicationInstance

	
List registered application instances

	
listApplicationInstances

	
Define additional properties for an application instance

	
setApplicationInstancePassword

setApplicationInstanceProperties

setApplicationInstanceReference

setApplicationInstanceState

States of Application Instances

Application instances have states. Two states are possible:

	
ACTIVATED

	
DEACTIVATED

In ACTIVATED state, the application using this application instance ID is in normal operation.

In DEACTIVATED state, the application using this application instance ID is not allowed to send traffic through Oracle Communications Services Gatekeeper. The account is still valid and the state can be transitional by the Oracle Communications Services Gatekeeper Administrator using "setApplicationInstanceState".

Web Services Security

When Web Services Security is being used as authentication for the application instance, its credentials must be set up, as described in Table 2-2.

Table 2-2 Credential Mapping

	ApplicationInstance	UserNameToken	X.509	SAML
	
ApplicationInstanceName

	
userName

	
CN

	
CN

	
Password

	
password

	
Not applicable

	
Not applicable

In addition, if X.509 or SAML are being used, the certificates and private keys must be provisioned in the WebLogic Server keystore. For example, ImportPrivateKey utility can be used to load the key and digital certificate files into the keystore. See ImportPrivateKey in Oracle Fusion Middleware Command Reference for Oracle WebLogic Server at:

http://download.oracle.com/docs/cd/E15523_01/web.1111/e13749/utils.htm

for a description of ImportPrivateKey.

Password Encryption

Application instance passwords are encrypted using 3DES algorithm and stored in persistent storage. If no encryption key is configured, a default encryption key is used, but best practice to use your own key. It should be 24 Bytes.

To configure the encryption key, from the Administration Console:

	
Select Security realms > myrealm.

	
Click the Providers tab.

	
Click the Authentication tab.

	
Click WLNG Application Authenticator.

	
In the Settings for WLNG Application Authenticator screen, click the Configuration tab.

	
Click the Provider Specific tab.

	
In the Encryption Key field, enter your key.

	
In Please type again To confirm field, enter your key again for verification.

Reference: ApplicationInstances

All operations are reachable from:

	
Oracle Communications Services Gatekeeper Administration Console Managed Object: Container Services > AccountService > ApplicationInstances

	
MBean: com.bea.wlcp.wlng.account.management.ApplicationInstanceMBean

Following is a list of operations for management.

	
addApplicationInstance

	
countApplicationInstances

	
getApplicationInstance

	
listApplicationInstances

	
removeApplicationInstance

	
setApplicationInstancePassword

	
setApplicationInstanceProperties

	
setApplicationInstanceReference

	
setApplicationInstanceState

addApplicationInstance

The addApplicationInstance operation adds an application instance. Each instance is always connected to a service provider/application account combination.

Scope

Domain

Signature

addApplicationInstance(ApplicationInstanceName: String, Password: String, ApplicationIdentifier: String, ServiceProviderIdentifier: String, Reference: String)

Parameters

	ApplicationInstanceName
	
ID for the new application instance. Used by an application to authenticate. Must be unique.

	Password
	
Password for the application instance.

	ApplicationIdentifier
	
ID of the application account the application instance shall belong to.

	ServiceProviderIdentifier
	
ID of the service provider the application instance shall belong to.

	Reference
	
See "Account References"

Must be unique.

countApplicationInstances

The countApplicationInstances operation displays the number of registered application instances for a service provider/application account/application instance combinations. Can be filtered by state.

Scope

Domain

Signature

countApplicationInstances(ApplicationIdentifier: String, ServiceProviderIdentifier: String, State: String)

Parameters

	ApplicationIdentifier
	
ID of the application account.

Optional. Leave empty to match all.

	ServiceProviderIdentifier
	
ID of the service provider account.

Optional. Leave empty to match all.

	State
	
State of application instance.

Valid values:

Optional. Leave empty to match all.

	
ACTIVATED

	
DEACTIVATED

getApplicationInstance

The getApplicationInstance operation gets information about a registered application instance. The information includes:

	
ID of the application account to which the application instance belongs.

	
ID of the service provider account to which the application instance belongs.

	
State: See "States of Application Instances".

	
Reference: See "Account References".

	
Properties: See "Account Properties".

Scope

Domain

Signature

getApplicationInstance(ApplicationInstanceName: String)

Parameters

	ApplicationInstanceName
	
ID of the application instance to get information about.

listApplicationInstances

The listApplicationInstances operation displays a list of registered application instances for a specific service provider/application account/application instance state combination.

The list contains application instance IDs.

Scope

Domain

Signature

listApplicationInstances(ApplicationIdentifier: String, ServiceProviderIdentifier: String, State: String, Offset: int, Size: int)

Parameters

	ApplicationIdentifier
	
ID of the application account to list application instances for.

Optional. Leave empty to match all.

	ServiceProviderIdentifier
	
ID of the service provider account to list application instances for.

Optional. Leave empty to match all.

	State
	
State of application instance.

Valid values:

	
ACTIVATED

	
DEACTIVATED

Optional. Leave empty to match all.

	Offset
	
Offset in the list. Starts with 0 (zero)

	Size
	
Size of the list.

For no restrictions on the size of the list, use 0 (zero).

removeApplicationInstance

The removeApplicationInstance operation removes a registered application instance.

The account must be in DEACTIVATED state.

Scope

Domain

Signature

removeApplicationInstance(ApplicationInstanceName: String)

Parameters

	ApplicationInstanceName
	
ID of the application instance to remove.

setApplicationInstancePassword

The setApplicationInstancePassword operation defines a new password for an application instance.

Scope

Domain

Signature

setApplicationInstancePassword(ApplicationInstanceName: String, Password: String)

Parameters

	ApplicationInstanceName
	
ID of the application instance.

	Password
	
New password.

setApplicationInstanceProperties

The setApplicationInstanceProperties operation specifies properties for an application instance. See "Account Properties".

	
Note:

This application is applicable only when the MBean is accessed directly.

Scope

Domain

Signature

setApplicationInstanceProperties(ApplicationInstanceName: String, Properties: Set<Map.Entry<String, String>>)

Parameters

	ApplicationInstanceName
	
ID of the application instance to set properties for.

	Properties
	
See "Account Properties".

setApplicationInstanceReference

The setApplicationInstanceReference operation specifies a reference for an application instance. See "Account References".

Scope

Domain

Signature

setApplicationInstanceReference(ApplicationInstanceName: String, Reference: String)

Parameters

	ApplicationInstanceName
	
ID of the application instance to set the reference for.

	Reference
	
See "Account References".

setApplicationInstanceState

The setApplicationInstanceState operation performs a state transition for an application instance. See "States of Application Instances".

Scope

Domain

Signature

setApplicationInstanceState(ApplicationInstanceName: String, State: String)

Parameters

	ApplicationInstanceName
	
ID of the application instance to change state for.

	State
	
One of:

	
ACTIVATED

	
DEACTIVATED

See "States of Application Instances".

3 Managing Service Provider and Application Accounts

This chapter describes how service provider and application accounts are managed and provisioned. See the following sections:

	
Summary of Tasks Related to Accounts

	
States of Accounts

	
Account Properties

	
Account References

	
Reference: Attributes and Operations for ApplicationAccounts

See "Reference: Attributes and Operations for ApplicationAccounts" for information on finding the operations in the Administration Console and for the name of the MBean.

Before you register application accounts, service provider accounts (see "Service Provider Accounts") and application groups (see "Application Groups") must be created.

Before you can register service provider accounts, service provider groups must be created. See "Service Provider Groups" for more information.

Summary of Tasks Related to Accounts

The following is a summary of tasks related to accounts.

Application Accounts

Table 3-1 lists the tasks related to application accounts and the operations you use to perform those tasks.

Table 3-1 Tasks Related to Application Accounts

	Task	Operation to Use
	
Get information about the number of application accounts

	
countApplicationAccounts

	
Add, remove and get information about an application account

	
addApplicationAccount

removeApplicationAccount

getApplicationAccount

	
List registered application accounts

	
listApplicationAccounts

	
Define additional properties for an application account

	
setApplicationAccountGroup

setApplicationAccountProperties

setApplicationAccountReference

setApplicationAccountState

Service Provider Accounts

Table 3-2 lists the tasks related to service provider accounts and the operations you use to perform those tasks.

Table 3-2 Tasks Related to Service Provider Accounts

	Task	Operation to Use
	
Get information about the number of service provider accounts

	
countServiceProviderAccounts

	
Add, remove and get information about a service provider account

	
addServiceProviderAccount

removeServiceProviderAccount

getServiceProviderAccount

	
List registered service provider accounts

	
listServiceProviderAccounts

	
Define additional properties for a service provider account

	
setServiceProviderAccountGroup

setServiceProviderAccountProperties

setServiceProviderAccountReference

setServiceProviderAccountState

States of Accounts

To provide an easy way to take an application out-of-service temporarily, service provider and application accounts have associated states. States are also used by the Partner Relationship Management module to enforce workflow management.

Accounts can be in either one of the states described in Table 3-3:

Table 3-3 Account State Indicators

	Account State	Restriction on Application Belonging to Account
	
ACTIVATED

	
An application belonging to such an account is allowed to send requests to the application-facing interfaces exposed by Services Gatekeeper.

	
DEACTIVATED

	
An application belonging to such an account is not allowed to send requests to the application-facing interfaces exposed by Oracle Communications Services Gatekeeper.

State transition is provided using:

	
setApplicationAccountState

	
setServiceProviderAccountState

It is possible to filter on account state in all the following methods:

	
countApplicationAccounts

	
countServiceProviderAccounts

	
listApplicationAccounts

	
listServiceProviderAccounts

When an account is created using "addApplicationAccount" or "addServiceProviderAccount", state is always ACTIVATED.

Account Properties

An account can have a set of associated properties. These are generic key-value pairs.You cannot set these using the Administration Console, but you can use MBeans or the PRM Web Services.

The properties are displayed in the following operations:

	
getApplicationInstance

	
getApplicationAccount

	
getApplicationGroup

	
getServiceProviderAccount

	
getServiceProviderGroup

Account References

An account can have an associated reference. The reference is a form of alias or internal ID for the account. It is used to correlate the account with an operator-internal ID.

The references are defined as parameters in the following operations:

	
addApplicationInstance

	
setApplicationInstanceReference

	
setApplicationInstanceProperties

	
addApplicationAccount

	
setApplicationAccountReference

	
addServiceProviderAccount

	
setApplicationAccountReference

They are retrieved as part of the result of:

	
getApplicationInstance

	
getApplicationAccount

	
getServiceProviderAccount

Reference: Attributes and Operations for ApplicationAccounts

Managed object: Container Services > AccountService > ApplicationAccounts

MBean: com.bea.wlcp.wlng.account.management.ApplicationAccountMBean

Following is a list of operations for configuration and maintenance.

	
addApplicationAccount

	
addServiceProviderAccount

	
countApplicationAccounts

	
countServiceProviderAccounts

	
getApplicationAccount

	
getServiceProviderAccount

	
listApplicationAccounts

	
listServiceProviderAccounts

	
removeApplicationAccount

	
removeServiceProviderAccount

	
setApplicationAccountGroup

	
setApplicationAccountProperties

	
setApplicationAccountReference

	
setApplicationAccountState

	
setServiceProviderAccountGroup

	
setServiceProviderAccountProperties

	
setServiceProviderAccountReference

	
setServiceProviderAccountState

addApplicationAccount

The addApplicationAccount operation adds an application account.

Scope

Domain

Signature

addApplicationAccount(Application Identifier: String, Service Provider Identifier: String, Application Group Identifier: String, Reference: String)

Parameters

	Application Identifier
	
ID of the application account to add.

	Service Provider Identifier
	
ID of the service provider account to which the application account belongs.

	Application Group Identifier
	
ID of the application group to which the application account belongs.

	Reference
	
See "Account References".

addServiceProviderAccount

The addServiceProviderAccount operation adds a service provider account.

Scope

Domain

Signature

addServiceProviderAccount(Service Provider Identifier: String, Service Provider Group Identifier: String, Reference: String)

Parameters

	Service Provider Identifier
	
ID of the service provider account to add.

The account will not be created if this parameter is blank spaces.

	Service Provider Group Identifier
	
ID of the service provider group to which the service provider account belongs.

	Reference
	
See "Account References".

countApplicationAccounts

The countApplicationAccounts operation displays the number of registered application accounts. The display can be filtered on any combination of:

	
service provider account

	
application group

	
application account state.

Scope

Domain

Signature

countApplicationAccounts(serviceProviderIdentifier : String, applicationGroupIdentifier: String, state : String)

Parameters

	ServiceProviderIdentifier
	
ID of the service provider account.

Optional. Leave empty to match all.

	ApplicationGroupIdentifier
	
ID of the application group.

Optional. Leave empty to match all.

	State
	
State of application account. See "States of Accounts".

Valid values:

	
ACTIVATED

	
DEACTIVATED

Optional. Leave empty to match all.

countServiceProviderAccounts

The countServiceProviderAccounts operation displays the number of registered service provider accounts. Can be filtered on any combination of:

	
service provider group

	
service provider account state.

Scope

Domain

Signature

countServiceProviderAccounts(serviceProviderGroupIdentifier : String, state :String)

Parameters

	serviceProviderGroupIdentifier
	
ID of the service provider group.

Optional. Leave empty to match all.

	State
	
State of service provider account. See "States of Accounts".

Valid values:

	
ACTIVATED

	
DEACTIVATED

Optional. Leave empty to match all.

getApplicationAccount

The getApplicationAccount operation gets information about an application account. Because the application account is not necessarily unique across service provider accounts, you must also specify the relevant service provider account.

The information includes:

	
Application account ID.

	
ID of the service provider account to which the application account belongs.

	
State, see "States of Accounts".

	
Reference, see "Account References".

	
Properties, see Account Properties.

Scope

Domain

Signature

getApplicationAccount(Application Identifier: String, Service Provider Identifier: String)

Parameters

	Application Identifier
	
ID of the application account to get information about.

	Service Provider Identifier
	
ID of the service provider account to which the application account belongs.

getServiceProviderAccount

The getServiceProviderAccount operation gets information about a service provider account.

The retrieved information includes:

	
Service provider account ID.

	
State, see "States of Accounts".

	
Reference, see "Account References".

	
Properties, see "Account Properties".

Scope

Domain

Signature

getServiceProviderAccount(Service Provider Identifier: String)

Parameters

	Service Provider Identifier
	
ID of the service provider account.

listApplicationAccounts

The listApplicationAccounts operation displays a list of application accounts. The display can be filtered on any combination of:

	
service provider account.

	
application group.

	
state of application account.

The resultant list contains application account IDs.

Scope

Domain

Signature

listApplicationAccounts(ServiceProviderIdentifier: String, ApplicationGroupIdentifier : String, State: String, Offset: int, Size: int)

Parameters

	ServiceProviderIdentifier
	
ID of the service provider account.

Optional. Leave empty to match all.

	ApplicationGroupIdentifier
	
Application group ID.

Optional. Leave empty to match all.

	State
	
State of application account. See "States of Accounts"

Valid values:

	
ACTIVATED

	
DEACTIVATED

Optional. Leave empty to match all.

	Offset
	
Offset in the list. Starts with 0 (zero)

	Size
	
Size of the list.

For no restrictions on the size of the list, use 0 (zero).

listServiceProviderAccounts

The listServiceProviderAccounts operation displays a list of service provider accounts. Can be filtered on any combination of:

	
service provider group.

	
state of service provider account.

The resultant list contains service provider account IDs.

Scope

Domain

Signature

listServiceProviderAccounts(ServiceProviderGroupIdentifier: String, State: String, Offset: int, Size: int)

Parameters

	ServiceProviderGroupIdentifier
	
Service provider group ID.

Optional. Leave empty to match all.

	State
	
State of service provider account. See "States of Accounts"

Valid values:

	
ACTIVATED

	
DEACTIVATED

Optional. Leave empty to match all.

	Offset
	
Offset in the list. Starts with 0 (zero)

	Size
	
Size of the list.

For no restrictions on the size of the list, use 0 (zero).

removeApplicationAccount

The removeApplicationAccount operation removes an application account.

To be removed, the account must not have any associated application instances. The application account state must also be DEACTIVATED.

Because the application account is not necessarily unique across service provider accounts, you must also specify the relevant service provider account.

Scope

Domain

Signature

removeApplicationAccount(Application Identifier: String,Service Provider Identifier: String)

Parameters

	Application Identifier
	
ID of the application account to remove.

	Service Provider Identifier
	
ID of the service provider account the application account belongs to.

removeServiceProviderAccount

The removeServiceProviderAccount operation removes a service provider account.

To be removed, the service provider account must not have any associated application accounts and must be in the DEACTIVATED state.

Scope

Domain

Signature

removeServiceProviderAccount(Service Provider Identifier: String)

Parameters

	Service Provider Identifier
	
ID of the service provider account to remove.

setApplicationAccountGroup

The setApplicationAccountGroup operation sets the application account group for a particular application account/service provider account combination. Is also used to change to which group a combination belongs.

Scope

Domain

Signature

setApplicationAccountGroup(Application Identifier: String, Service Provider Identifier: String, Application Group Identifier: String)

Parameters

	Application Identifier
	
ID of the application account to be assigned.

	Service Provider Identifier
	
ID of the service provider account associated with the application account to be assigned.

	Application Group Identifier
	
ID of the application group to which the combination is to be assigned.

setApplicationAccountProperties

The setApplicationAccountProperties operation specifies properties for an application account/service provider account combination. See "Account Properties".

	
Note:

Only applicable when accessing the MBean directly.

Scope

Domain

Signature

setApplicationAccountProperties(Application Identifier: String, Service Provider Identifier: String, Properties: Set<Map.Entry<String, String>>)

Parameters

	Application Identifier
	
ID of the application account whose properties are being set.

	Service Provider Identifier
	
ID of the service provider account to which the application account belongs.

	Properties
	
See "Account Properties".

setApplicationAccountReference

The setApplicationAccountReference operation specifies a reference for an application account/service provide account combinations. See "Account References".

Scope

Domain

Signature

setApplicationAccountReference(Application Identifier: String, Service Provider Identifier: String, Reference: String)

Parameters

	Application Identifier
	
ID of the application account whose reference is being set.

	Service Provider Identifier
	
ID of the service provider account to which the application account belongs.

	Reference
	
See "Account References".

setApplicationAccountState

The setApplicationAccountState operation performs a state transition for an application account/service provide account combination. See "States of Accounts".

Scope

Domain

Signature

setApplicationAccountReference(Application Identifier: String, Service Provider Identifier: String, State: String)

Parameters

	Application Identifier
	
ID of the application account whose state is to be changed.

	Service Provider Identifier
	
ID of the service provider account to which the application account belongs.

	State
	
One of:

	
ACTIVATED

	
DEACTIVATED

See "States of Accounts".

setServiceProviderAccountGroup

The setServiceProviderAccountGroup operation specifies to which service provider group a certain service provider account belongs. Can be used as well to change the group assignment.

Scope

Domain

Signature

setServiceProviderAccountGroup(Service Provider Identifier: String, Service Provider Group Identifier: String)

Parameters

	Service Provider Identifier
	
ID of the service provider account being assigned.

	Service Provider Group Identifier
	
ID of the service provider group to which the account is being assigned.

setServiceProviderAccountProperties

The setServiceProviderAccountProperties operation specifies properties for a service provider account. See "Account Properties".

	
Note:

Only applicable when accessing the MBean directly.

Scope

Domain

Signature

setServiceProviderAccountProperties(Service Provider Identifier: String, Properties: Set<Map.Entry<String, String>>)

Parameters

	Service Provider Identifier
	
ID of the service provider account whose properties are being set.

	Properties
	
See "Account Properties".

setServiceProviderAccountReference

The setServiceProviderAccountReference operation specifies a reference for a service provider account. See "Account References".

Scope

Domain

Signature

setServiceProviderAccountReference(Service Provider Identifier: String, Reference: String)

Parameters

	Service Provider Identifier
	
ID of the service provider account whose reference is being set.

	Reference
	
See "Account References".

setServiceProviderAccountState

The setServiceProviderAccountState operation performs a state transition for a service provider account. See "States of Accounts".

Scope

Domain

Signature

setServiceProviderAccountState(Service Provider Identifier: String, State: String)

Parameters

	Service Provider Identifier
	
ID of the service provider account whose state is being changed.

	State
	
One of:

	
ACTIVATED

	
DEACTIVATED

See "States of Accounts".

4 Managing Groups

This chapter describes how service provider and application groups are managed and provisioned. See the following sections:

	
Summary of Tasks Related to Groups

	
Reference: Attributes and Operations for ApplicationGroups

See "Reference: Attributes and Operations for ApplicationGroups" for information finding the operations in the Administration Console and for the name of the MBean.

Before you can register application and service provider groups, SLAs must be created. See "Defining Service Provider Group and Application Group SLAs".

Summary of Tasks Related to Groups

The following is a summary of tasks related to groups.

Application Groups

Table 4-1 describes the tasks related to application groups and the operations you use to perform those tasks.

Table 4-1 Tasks Related to Application Groups

	Task	Operation to Use
	
Get information about the number of application groups

	
countApplicationGroups

	
Add, remove and get information about an application group

	
addApplicationGroup

removeApplicationGroup

getApplicationGroup

	
List registered application groups

	
listApplicationGroups

	
Define additional properties for an application group

	
setApplicationGroupProperties

Service Provider Groups

Table 4-2 describes the tasks related to service provider groups and the operations you use to perform those tasks.

Table 4-2 Tasks Related to Service Provider Groups

	Task	Operation to Use
	
Get information about the number of service provider groups

	
countServiceProviderGroups

	
Add, remove and get information about a service provider group

	
addServiceProviderGroup

removeServiceProviderGroup

getServiceProviderGroup

	
List registered service provider groups

	
listServiceProviderGroups

	
Define additional properties for an service provider group

	
setServiceProviderGroupProperties

Reference: Attributes and Operations for ApplicationGroups

Managed object: Container Services > AccountService > ApplicationGroups

MBean: com.bea.wlcp.wlng.account.management.ApplicationGroupMBean

Following is a list of operations for configuration and maintenance.

	
addApplicationGroup

	
addServiceProviderGroup

	
countApplicationGroups

	
countServiceProviderGroups

	
getApplicationGroup

	
getServiceProviderGroup

	
listApplicationGroups

	
listServiceProviderGroups

	
removeApplicationGroup

	
removeServiceProviderGroup

	
setApplicationGroupProperties

	
setServiceProviderGroupProperties

addApplicationGroup

The addApplicationGroup operation adds a new application group.

Scope

Domain

Signature

addApplicationGroup(ApplicationGroupIdentifier: String)

Parameters

	ApplicationGroupIdentifier
	
Unique ID for the application group

addServiceProviderGroup

The addServiceProviderGroup operation adds a new service provider group.

Scope

Domain

Signature

addServiceProviderGroup(ServiceProviderGroupIdentifier: String)

Parameters

	ServiceProviderGroupIdentifier
	
Unique ID for the service provider group

countApplicationGroups

The countApplicationGroups operation displays the number of application groups.

Scope

Domain

Signature

countApplicationGroups()

countServiceProviderGroups

The countServiceProviderGroups operation displays the number of service provider groups.

Scope

Domain

Signature

countServiceProviderGroups()

getApplicationGroup

The getApplicationGroup operation displays information about an application group, including:

	
Application group description.

	
Properties; see "Account Properties" for more information.

Scope

Domain

Signature

getApplicationGroup(ApplicationGroupIdentifier: String)

Parameters

	ApplicationGroupIdentifier
	
ID of the application group whose description is desired.

getServiceProviderGroup

The getServiceProviderGroup operation displays information about a service provider group.

The information includes:

	
Service provider group description.

	
Properties; see "Account Properties" for more information.

Scope

Domain

Signature

getServiceProviderGroup(ServiceProviderGroupIdentifier: String)

Parameters

	ServiceProviderGroupIdentifier
	
ID of the service provider group for which to get information.

listApplicationGroups

The listApplicationGroups operation displays a list of application groups.

The resultant list contains application group IDs.

Scope

Domain

Signature

listApplicationGroups(Offset: int, Size: int)

Parameters

	Offset
	
Offset in the list. Starts with 0 (zero).

	Size
	
Size of the list.

For no restrictions on the size of the list, use 0 (zero).

listServiceProviderGroups

The listServiceProviderGroups operation displays a list of service provider groups.

The resultant list contains service provider group IDs.

Scope

Domain

Signature

listServiceProviderGroups(Offset: int, Size: int)

Parameters

	Offset
	
Offset in the list. Starts with 0 (zero).

	Size
	
Size of the list.

For no restrictions on the size of the list, use 0 (zero).

removeApplicationGroup

The removeApplicationGroup operation removes an existing application group. The group must not have any applications associated with it.

Scope

Domain

Signature

removeApplicationGroup(ApplicationGroupIdentifier: String)

Parameters

	ApplicationGroupIdentifier
	
ID for the application group.

removeServiceProviderGroup

The removeServiceProviderGroup operation removes an existing service provider group. The group must not have any service providers associated with it.

Scope

Domain

Signature

removeServiceProviderGroup(ServiceProviderGroupIdentifier: String)

Parameters

	ServiceProviderGroupIdentifier
	
ID for the service provider group.

setApplicationGroupProperties

The setApplicationGroupProperties operation specifies properties for an application group.

	
Note:

This operation is applicable only when the MBean is accessed directly.

Scope

Domain

Signature

setApplicationGroupProperties(ApplicationGroupIdentifier: String, Properties: Set<Map.Entry<String, String>>)

Parameters

	ApplicationGroupIdentifier
	
ID of the application group whose properties are to be set.

	Properties
	
See "Account Properties" for more information.

setServiceProviderGroupProperties

The setServiceProviderGroupProperties operation specifies properties for a service provider group.

	
Note:

This operation is applicable only when the MBean is accessed directly.

Scope

Domain

Signature

setServiceProviderGroupProperties(ServiceProviderGroupIdentifier: String, Properties: Set<Map.Entry<String, String>>)

Parameters

	ServiceProviderGroupIdentifier
	
ID of the service provider group whose properties are to be set.

	Properties
	
See "Account Properties" for more information.

5 Managing SLAs

This chapter describes how the different types of SLAs are managed and provisioned. See the following sections:

	
Introduction to SLA types

	
Summary of Tasks Related to SLAs

	
Service Provider and Application Group System SLAs

	
Node SLAs

	
Custom SLAs

	
Reference: ApplicationSLAs

Introduction to SLA types

See "Reference: ApplicationSLAs" for information on finding the operations in the Administration Console and for the name of the MBean.

There are two different kinds of SLAs:

	
System level SLAs

	
Custom SLAs

System level SLAs have static XSDs that are already defined in Services Gatekeeper, while custom SLAs provides the possibility to use a custom XSD. Any given service provider group or application group can have only one system SLA associated with it, while they can have many custom SLAs. Create custom SLAs when additional SLA enforcement logic is required that is not provided by default in Services Gatekeeper. The enforcement logic for a Custom SLA needs to be created. See Platform Development Studio Developer's Guide for information on how to develop Custom SLAs.

When SLAs are loaded into memory, they are stored in the SLA repository. SLAs can be loaded into the repository in two ways:

	
The contents of the SLA is provided as a parameter in the operation that loads the SLA.

	
The SLA is stored in a file and the URL to that file is provided as a parameter in the operation that loads the SLA.

SLAs are retrieved from the SLA repository using the retrieve operations.

The SLA loaded into the SLA repository is the one being enforced. Changes to the file after the SLA is loaded into the repository are not automatically reflected in the active version.

Table 5-1 outlines the different SLA types, the IDs and their scope.

Table 5-1 SLA Types

	SLA Type	ID(s)	Description
	
Application Group

	
application

system:geo_application

	
System SLA.

Defines how application can use Services Gatekeeper. See "Application Group SLAs" for a summary of related management operations.

For information on creating these SLAs, see "Defining Service Provider Group and Application Group SLAs".

The SLA type ID:

	
application indicates that the SLA is loaded to and enforced in the network tier cluster it is loaded.

	
system:geo_application indicates that the SLA is loaded to and enforced across all network tier clusters in a geo-redundant configuration.

	
Service Provider Group

	
service_provider

system:geo_service_provider

	
System SLA.

Defines how service providers can use Services Gatekeeper. See "Service Provider Group SLAs" for a summary of related management operations.

For information on creating these SLAs, see "Defining Service Provider Group and Application Group SLAs".

The SLA type ID:

	
service_provider indicates that the SLA is loaded to and enforced in the network tier cluster it is loaded.

	
system:geo_service_provider indicates that the SLA is loaded to and enforced across all network tier clusters in a geo-redundant configuration.

	
Global Node

	
global_node

	
System SLA.

Defines how Services Gatekeeper is allowed to use the underlying telecom network nodes. See "Global Node SLAs" for a summary of related management operations.

For information on creating these SLAs, see "Defining Service Provider Group and Application Group SLAs".

This SLA type is loaded and enforced locally in the network tier cluster it is loaded.

	
Service Provider Node

	
service_provider_node

	
System SLA.

Defines how Service Providers are allowed to use the underlying telecom network nodes. See "Service Provider Node SLAs".

For information on creating these SLAs, see "Defining Service Provider Group and Application Group SLAs".

This SLA type is loaded and enforced locally in the network tier cluster it is loaded.

	
Subscriber

	
subscr

	
System SLA.

Defines classes of application services that can be associated with subscribers in the context of Services Gatekeeper.

Using the Platform Development Studio, an operator or integrator may create a subscriber-centric policy mechanism. The specifics of this mechanism are covered in the “Subscriber-centric Policy” chapter in the Oracle Communications Services Gatekeeper Platform Development Studio Developer's Guide, a separate document in this set.

This SLA type is loaded and enforced locally in the network tier cluster on which it is loaded.

	
Custom

	
Defined at load time

	
Custom SLA.

A custom SLA is defined by an XSD, that must be created and loaded. A custom SLA type ID is associated with the XSD, and this type is the one being referenced when loading the custom SLAs.

In addition to the SLA, the enforcement logic that operates on the data in the SLA must be created. See the section Custom Service Level Agreements in Oracle Communications Services Gatekeeper Platform Development Studio Developer's Guide. Just like system SLAs, the custom SLAs are associated with service provider groups and application groups. In addition there is a custom global SLA, that does not take into consideration the originator of the request, but affects all requests.

SLAs of custom type are loaded and enforced locally in the network tier cluster it is loaded.

	
Note:

The prefix system is reserved, and should not be used by custom SLAs. For reasons of backwards compatibility, there is a set of SLA type without this prefix.

Summary of Tasks Related to SLAs

This provides a summary of tasks related to the management of SLAs.

Service Provider and Application Group System SLAs

The first group concerns Service Provider and Application Group System SLAs.

Application Group SLAs

Table 5-2 describes the tasks related to managing Application Group SLAs and the operations you use to perform those tasks.

Table 5-2 Tasks Related to Managing Application Group SLAs

	Task	Operation to Use
	
Associate Application Group with SLA

	
"loadApplicationGroupSlaByType"

loadApplicationGroupSlaFromUrlByType

Deprecated:

loadApplicationGroupSla

loadApplicationGroupSlaFromUrl

	
View Application Group SLA

	
retrieveApplicationGroupSlaByType

Deprecated:

retrieveApplicationGroupSla

Service Provider Group SLAs

Table 5-3 describes the tasks related to managing Service Provider Group SLAs and the operations you use to perform those tasks.

Table 5-3 Tasks Related to Managing Service Provider Group SLAs

	Task	Operation to Use
	
Associate Service Provider Group with SLA

	
loadServiceProviderGroupSlaByType

loadServiceProviderGroupSlaFromUrlByType

Deprecated:

loadServiceProviderGroupSla

loadServiceProviderGroupSlaFromUrl

	
View Service Provider Group SLA

	
retrieveServiceProviderGroupSlaByType

Deprecated:

retrieveServiceProviderGroupSla

Node SLAs

This group describes Node SLA management.

Global Node SLAs

Table 5-4 describes the tasks related to managing Global Node SLAs and the operations you use to perform those tasks.

Table 5-4 Tasks Related to Managing Global Node SLAs

	Task	Operation to Use
	
Associate Global Node with SLA

	
loadGlobalSlaByType

loadGlobalSlaFromUrlByType

Deprecated:

loadGlobalNodeSla

	
View Global Node SLA

	
retrieveGlobalSlaByType

Deprecated:

retrieveGlobalNodeSla

Service Provider Node SLAs

Table 5-5 describes the tasks related to Service Provider Node SLAs and the operations you use to perform those tasks.

Table 5-5 Tasks Related to Managing Service Provider Node SLAs

	Task	Operation to Use
	
Associate Service Provider Node with SLA

	
loadServiceProviderGroupSlaByType

loadServiceProviderGroupSlaFromUrlByType

Deprecated:

loadServiceProviderGroupNodeSla

loadServiceProviderGroupNodeSlaFromUrl

	
View Service Provider Node SLA

	
retrieveServiceProviderGroupSlaByType

Deprecated:

retrieveServiceProviderGroupNodeSla

Subscriber SLAs

Subscriber SLAs are a feature that can be developed using the Platform Development Studio. Table 5-6 describes the tasks related to managing Subscriber SLAs and the operations you use to perform those tasks.

Table 5-6 Tasks Related to Managing Subscriber SLAs

	Task	Operation to Use
	
Associate Subscriber with SLA

	
loadGlobalSlaByType

loadGlobalSlaFromUrlByType

Deprecated:

loadSubscriberSla

loadSubscriberSlaFromUrl

	
View Subscriber SLA

	
retrieveGlobalSlaByType

Deprecated:

retrieveSubscriberSla

Custom SLAs

Custom SLAs are a feature that can be developed using the Platform Development Studio. This section describes the management of Custom SLAs.

Custom XSDs

Table 5-7 describes the tasks related to managing Custom XSDs and the operations you use to perform those tasks.

Table 5-7 Tasks Related to Managing Custom XSDs

	Task	Operation to Use
	
Set up Custom XSD

	
setupCustomSlaXSDDefinition

setupCustomSlaXSDDefinitionFromUrl

	
View Custom XSD

	
retrieveCustomSlaXSDDefinition

	
Count Custom XSD

	
countCustomSlaXSDDefinition

	
List Custom XSD

	
listCustomSlaXSDDefinition

Custom Application Group SLAs

Table 5-8 describes the tasks related to managing Custom Application Group SLAs and the operations you use to perform those tasks.

Table 5-8 Tasks Related to Managing Custom Application Group SLAs

	Task	Operation to Use
	
Associate Custom Application Group with SLA

	
loadApplicationGroupSlaByType

loadApplicationGroupSlaFromUrlByType

	
View Custom Application Group SLA

	
retrieveApplicationGroupSlaByType

	
Count Custom Application Group SLA

	
countApplicationGroupsByType

	
List Custom Application Group SLA

	
listApplicationGroupsByType

Custom Service Provider Group SLAs

Table 5-9 describes the tasks related to managing Custom Service Provider Group SLAs and the operations you use to perform those tasks.

Table 5-9 Tasks Related to Managing Custom Service Provider Group SLAs

	Task	Operation to Use
	
Associate Custom Service Provider Group with SLA

	
loadServiceProviderGroupSlaByType

loadServiceProviderGroupSlaFromUrlByType

	
View Custom Service Provider Group SLA

	
retrieveServiceProviderGroupSlaByType

	
Count Custom Service Provider Group SLA

	
countServiceProviderGroupsByType

	
List Custom Service Provider Group SLA

	
listServiceProviderGroupSlaTypes

listServiceProviderGroupsByType

Custom Global SLAs

Table 5-10 describes the tasks related to managing Custom Global SLAs and the operations you use to perform those tasks.

Table 5-10 Tasks Related to Managing Custom Global SLAs

	Task	Operation to Use
	
Associate Custom Global with SLA

	
loadGlobalSlaByType

loadGlobalSlaFromUrlByType

	
View Custom Global SLA

	
retrieveGlobalSlaByType

	
Count Custom Global SLA

	
countGlobalSlaTypes

	
List Custom Global SLA

	
listGlobalSlaTypes

Reference: ApplicationSLAs

All operations are reachable from:

	
Services Gatekeeper Administration Console Managed Object: ApplicationSLAs

	
MBean: com.bea.wlcp.wlng.account.management.ServiceLevelAgreementMBean

Following is a list of operations for management:

	
countApplicationGroupsByType

	
countApplicationGroupSlaTypes

	
countApplicationSlaGroups

	
countCustomSlaXSDDefinition

	
countGlobalSlaTypes

	
countServiceProviderGroupsByType

	
countServiceProviderGroupSlaTypes

	
countServiceProviderSlaGroups

	
listApplicationGroupsByType

	
listApplicationGroupSlaTypes

	
listApplicationSlaGroups

	
listCustomSlaXSDDefinition

	
listGlobalSlaTypes

	
listServiceProviderGroupsByType

	
listServiceProviderGroupSlaTypes

	
listServiceProviderSlaGroups

	
loadApplicationGroupSla

	
loadApplicationGroupSlaByType

	
loadApplicationGroupSlaFromUrl

	
loadApplicationGroupSlaFromUrlByType

	
loadGlobalNodeSla

	
loadGlobalNodeSlaFromUrl

	
loadGlobalSlaByType

	
loadGlobalSlaFromUrlByType

	
loadServiceProviderGroupNodeSla

	
loadServiceProviderGroupNodeSlaFromUrl

	
loadServiceProviderGroupSla

	
loadServiceProviderGroupSlaFromUrl

	
loadServiceProviderGroupSlaFromUrlByType

	
loadServiceProviderGroupSlaByType

	
loadSubscriberSla

	
loadSubscriberSlaFromUrl

	
retrieveApplicationGroupSla

	
retrieveApplicationGroupSlaByType

	
retrieveCustomSlaXSDDefinition

	
retrieveGlobalNodeSla

	
retrieveGlobalSlaByType

	
retrieveServiceProviderGroupNodeSla

	
retrieveServiceProviderGroupSla

	
retrieveServiceProviderGroupSlaByType

	
retrieveSubscriberSla

	
setupCustomSlaXSDDefinition

	
setupCustomSlaXSDDefinitionFromUrl

countApplicationGroupsByType

The countApplicationGroupsByType operation displays the number of a application groups that are associated with a specific system SLA type or custom SLA type.

Scope

Domain

Signature

countApplicationGroupsByType(SlaType: String)

Parameters

	SlaType
	
The system SLA type or custom SLA type.

countApplicationGroupSlaTypes

The countApplicationGroupSlaTypes operation displays the number of system and custom SLA types for an application group.

Scope

Domain

Signature

countApplicationGroupSlaTypes(applicationGroupIdentifier: String)

Parameters

	applicationGroupIdentifier
	
The ID of the application group.

countApplicationSlaGroups

The countApplicationSlaGroups operation is deprecated. Use "countApplicationGroupsByType" with slaType application.

Information on countApplicationSlaGroups is provided here for backward-compatibility only.

This operation displays the number of registered application groups that have SLAs associated with them.

Scope

Domain

Signature

countApplicationSlaGroups()

countCustomSlaXSDDefinition

The countCustomSlaXSDDefintions operation displays the number of registered custom SLA types.

Scope

Domain

Signature

countCustomSlaXSDDefinitions()

countGlobalSlaTypes

The countGlobalSlaTypes operation displays the number of registered SLA types that have global scope.

Scope

Domain

Signature

countGlobalSlaTypes()

countServiceProviderGroupsByType

The countServiceProviderGroupsByType operation displays the number of service provider groups that are associated with a specific SLA type.

Scope

Domain

Signature

countServiceProviderGroupsByType(slaType: String)

Parameters

	slaType
	
The system SLA type or custom SLA type.

For custom SLAs, the SLA type was registered in "setupCustomSlaXSDDefinition".

countServiceProviderGroupSlaTypes

The countServiceProviderGroupsSlaTypes operation displays the number of system SLA types and custom SLA types for a service provider group.

Scope

Domain

Signature

countServiceProviderGroupSlaTypes(serviceProviderGroupIdentifier: String)

Parameters

	serviceProviderGroupIdentifier
	
The ID of the service provider group.

countServiceProviderSlaGroups

The countServiceProviderSlaGroups operation is deprecated. Use "countServiceProviderGroupsByType" with slaType service_provider.

The countServiceProviderSlaGroups operation displays the number of registered service provider groups that have SLAs associated with them.

Scope

Domain

Signature

countServiceProviderGroups()

listApplicationGroupsByType

The listApplicationGroupsByType operation displays a list of registered application groups that have a system level or custom SLA associated, filtered by the SLA type.

The list contains application group IDs.

Scope

Domain

Signature

listApplicationGroupsByType(slaType: String, Offset: int, Size: int)

Parameters

	slaType
	
The SLA type.

For custom SLAs, the SLA type was registered in "setupCustomSlaXSDDefinition".

For system level SLAs, see "SLA Types".

	Offset
	
Offset in the list. Starts with 0 (zero)

	Size
	
Size of the list.

For no restrictions on the size of the list, use 0 (zero).

listApplicationGroupSlaTypes

The listApplicationGroupSlaTypes operation displays a list of system and custom SLAs for an application group.

Scope

Domain

Signature

listApplicationGroupSlaTypes(applicationGroupIdentifier: String, Offset: int, Size: int)

Parameters

	applicationGroupIdentifier
	
The ID of the application group.

	Offset
	
Offset in the list. Starts with 0 (zero)

	Size
	
Size of the list.

For no restrictions on the size of the list, use 0 (zero).

listApplicationSlaGroups

The listApplicationSlaGroups operation displays a list of registered application groups that has application SLAs associated.

The list contains application group IDs.

Scope

Domain

Signature

listApplicationSlaGroups(Offset: int, Size: int)

Parameters

	Offset
	
Offset in the list. Starts with 0 (zero)

	Size
	
Size of the list.

For no restrictions on the size of the list, use 0 (zero).

listCustomSlaXSDDefinition

The listApplicationSlaGroups operation displays a list of registered custom SLA XSD.

The list contains custom SLA types.

Scope

Domain

Signature

listCustomSlaXSDDefinition(Offset: int, Size: int)

Parameters

	Offset
	
Offset in the list. Starts with 0 (zero)

	Size
	
Size of the list.

For no restrictions on the size of the list, use 0 (zero).

listGlobalSlaTypes

The listGlobalSlaTypes operation displays a list of system and custom global SLA types.

Scope

Domain

Signature

listGlobalSlaTypes(Offset: int, Size: int)

Parameters

	Offset
	
Offset in the list. Starts with 0 (zero)

	Size
	
Size of the list.

For no restrictions on the size of the list, use 0 (zero).

listServiceProviderGroupsByType

The listServiceProviderGroupsByType operation displays a list of registered service provider groups that have a system level or custom SLA associated, filtered by the SLA type.

The list contains service provider group IDs.

Scope

Domain

Signature

listServiceProviderGroupsByType(slaType: String, Offset: int, Size: int)

Parameters

	slaType
	
The SLA type.

For custom SLAs, the SLA type was registered in "setupCustomSlaXSDDefinition".

For system level SLAs, see "SLA Types".

	Offset
	
Offset in the list. Starts with 0 (zero)

	Size
	
Size of the list.

For no restrictions on the size of the list, use 0 (zero).

listServiceProviderGroupSlaTypes

The listServiceProviderGroupSlaTypes operation displays a list of system and custom SLA types defined for a service provider group.

Scope

Domain

Signature

listServiceProviderGroupSlaTypes(applicationGroupIdentifier: String, Offset: int, Size: int)

Parameters

	serviceProviderGroupIdentifier
	
The ID of the service provider group.

	Offset
	
Offset in the list. Starts with 0 (zero)

	Size
	
Size of the list.

For no restrictions on the size of the list, use 0 (zero).

listServiceProviderSlaGroups

The listServiceProviderSlaGroups operation is deprecated. Use "listServiceProviderGroupsByType" with slaType service_provider.

The listServiceProviderSlaGroups operation displays a list of registered service provider groups that has application SLAs associated.

The list contains service provider group IDs.

Scope

Domain

Signature

listServiceProviderSlaGroups(Offset: int, Size: int)

Parameters

	Offset
	
Offset in the list. Starts with 0 (zero)

	Size
	
Size of the list.

For no restrictions on the size of the list, use 0 (zero).

loadApplicationGroupSla

The loadApplicationGroupSla operation is deprecated. Use "loadApplicationGroupSlaByType" with slaType application.

The loadApplicationGroupSla operation associates an application group SLA with an application group using the contents of the SLA as a parameter.

Scope

Domain

Signature

loadApplicationGroupSla(ApplicationGroupIdentifier String, ServiceLevelAgreement: String)

Parameters

	ApplicationGroupIdentifier
	
Unique ID for the application group.

	ServiceLevelAgreement
	
Contents of an application group SLA.

loadApplicationGroupSlaByType

The loadApplicationGroupSlaByType operation associates a system or custom SLA with an application group using the contents of the SLA as a parameter.

Scope

Domain or all geo-redundant sites

Signature

loadApplicationGroupSlaByType(slaType: String, ApplicationGroupIdentifier : String, ServiceLevelAgreement: String)

Parameters

	slaType
	
The SLA type.

For custom SLAs, the SLA type was registered in "setupCustomSlaXSDDefinition".

For system level SLAs, see "SLA Types".

	ApplicationGroupIdentifier
	
Unique ID for the application group.

	ServiceLevelAgreement
	
Contents of the system level SLA or custom SLA. The content must be formatted according to the XSD associated with the SLA type.

loadApplicationGroupSlaFromUrl

The loadApplicationGroupSlaFromUrl operation is deprecated. Use "loadApplicationGroupSlaFromUrlByType" with slaType application.

The loadApplicationGroupSlaFromUrl operation associates an application group SLA with an application group using the URL to a file that contains the SLA.

Scope

Domain

Signature

loadApplicationGroupSlaFromUrl(ApplicationGroupIdentifier : String, ServiceLevelAgreementURL: String)

Parameters

	ApplicationGroupIdentifier
	
Unique ID for the application group.

	ServiceLevelAgreement URL
	
The URL to the SLA.

loadApplicationGroupSlaFromUrlByType

The loadApplicationGroupSlaFromUrlByType operation associates a system or custom SLA with an application group using the URL to a file that contains the SLA.

Scope

Domain or all geo-redundant sites

Signature

loadApplicationGroupSlaFromUrlByType(slaType: String, ApplicationGroupIdentifier : String, serviceLevelAgreementURL: String)

Parameters

	slaType
	
The SLA type.

For custom SLAs, the SLA type was registered in "setupCustomSlaXSDDefinition".

For system level SLAs, see "SLA Types".

	ApplicationGroupIdentifier
	
Unique ID for the application group.

	serviceLevelAgreementURL
	
The URL to the system level SLA or custom SLA. The content must be formatted according to the XSD associated with the SLA type.

loadGlobalNodeSla

The loadGlobalNodeSla operation is deprecated. Use "loadGlobalSlaByType" with slaType global_node.

The loadGlobalNodeSla operation loads the global node SLA using the contents of the SLA as a parameter.

Scope

Domain or all geo-redundant sites

Signature

loadGlobalNodeSla(ServiceLevelAgreement: String)

Parameters

	ServiceLevelAgreement
	
Contents of a global node SLA. The content must be formatted according to the XSD associated with the SLA type.

loadGlobalNodeSlaFromUrl

The loadGlobalNodeSlaFromUrl operation is deprecated. Use "loadGlobalSlaFromUrlByType" with slaType global_node.

The loadGlobalNodeSlaFromUrl operation loads a global node SLA using the URL to a file that contains the SLA as a parameter.

Scope

Domain

Signature

loadGlobalNodeSlaFromUrl(ServiceLevelAgreement: String)

Parameters

	ServiceLevelAgreement URL
	
The URL to the global node SLA. The content must be formatted according to the XSD associated with the SLA type.

loadGlobalSlaByType

The loadGlobalSlaByType operation loads a system level or custom global SLA.

Scope

Domain

Signature

loadGlobalSlaByType(ServiceLevelAgreement: String)

Parameters

	slaType
	
The SLA type.

For custom SLAs, the SLA type was registered in "setupCustomSlaXSDDefinition".

For system level SLAs, see "SLA Types".

	ServiceLevelAgreement
	
Contents of the global SLA. The content must be formatted according to the XSD associated with the SLA type.

loadGlobalSlaFromUrlByType

The loadGlobalSlaFromUrlByType operation loads a global SLA using the URL to a file that contains the SLA as a parameter.

Scope

Domain

Signature

loadGlobalSlaFromUrlByType(ServiceLevelAgreement: String)

Parameters

	slaType
	
The SLA type.

For custom SLAs, the SLA type was registered in "setupCustomSlaXSDDefinition".

For system level SLAs, see "SLA Types".

	ServiceLevelAgreement
	
The URL to the global SLA. The content must be formatted according to the XSD associated with the SLA type.

loadServiceProviderGroupNodeSla

The loadServiceProviderGroupNodeSla operation is deprecated. Use "loadServiceProviderGroupSlaByType" with slaType service_provider_node.

The loadServiceProviderGroupNodeSla operation associates a service provider group node SLA with a service provider group using the contents of the SLA a parameter.

Scope

Domain

Signature

loadServiceProviderGroupNodeSla(ServiceProviderGroupIdentifier : String, ServiceLevelAgreement: String)

Parameters

	ServiceProviderGroupIdentifier
	
Unique ID for the service provider group.

	ServiceLevelAgreement
	
The contents of the service provider group node SLA.

loadServiceProviderGroupNodeSlaFromUrl

The loadServiceProviderGroupSlaFromUrl operation is deprecated. Use "loadServiceProviderGroupSlaFromUrlByType" with slaType service_provider_node.

The loadServiceProviderGroupSlaFromUrl operation associates a service provider group node SLA with a service provider group using the URL to a file that contains the SLA. as a parameter.

Scope

Domain

Signature

loadServiceProviderGroupNodeSlaFromUrl(ServiceProviderGroupIdentifier : String, ServiceLevelAgreementUrl: String)

Parameters

	ServiceProviderGroupIdentifier
	
Unique ID for the service provider group.

	ServiceLevelAgreement URL
	
The URL to the SLA.

loadServiceProviderGroupSla

The loadServiceProviderGroupSla operation is deprecated. Use "loadServiceProviderGroupSlaByType" with slaType service_provider.

The loadServiceProviderGroupSla operation associates a service provider group SLA with a service provider group using the contents of the SLA as a parameter.

Scope

Domain

Signature

loadServiceProviderGroupSla(ServiceProviderGroupIdentifier: String, ServiceLevelAgreement: String)

Parameters

	ServiceProviderGroupIdentifier
	
Unique ID for the service provider group.

	ServiceLevelAgreement
	
Contents of a service provider group SLA. The content must be formatted according to the XSD associated with the SLA type.

loadServiceProviderGroupSlaFromUrl

The loadServiceProviderGroupSlaFromUrl operation is deprecated. Use "loadServiceProviderGroupSlaFromUrlByType" with slaType service_provider.

The loadServiceProviderGroupSlaFromUrl operation associates a service provider group SLA with a service provider group using the URL to a file that contains the SLA as a parameter.

Scope

Domain

Signature

loadServiceProviderGroupSlaFromUrl(ServiceProviderGroupIdentifier : String, ServiceLevelAgreementURL: String)

Parameters

	ServiceProviderGroupIdentifier
	
The ID of the service provider group.

	ServiceLevelAgreement URL
	
The URL to the SLA. The content must be formatted according to the XSD associated with the SLA type.

loadServiceProviderGroupSlaFromUrlByType

The loadServiceProviderGroupSlaFromUrlByType operation associates a system level or custom SLA with a service provider group using the URL to a file that contains the SLA as a parameter.

Scope

Domain or all geo-redundant sites

Signature

loadServiceProviderGroupSlaFromUrlByType(slaType: String, serviceProviderGroupIdentifier : String, serviceLevelAgreementURL: String)

Parameters

	slaType
	
The SLA type.

For custom SLAs, the SLA type was registered in "setupCustomSlaXSDDefinition".

For system level SLAs, see "SLA Types".

	serviceProviderGroupIdentifier
	
The ID for the service provider group.

	serviceLevelAgreementURL
	
The URL to the SLA. The content must be formatted according to the XSD associated with the SLA type.

loadServiceProviderGroupSlaByType

The loadServiceProviderGroupSlaByType operation associates a system level or custom SLA with a service provider group using the contents of the SLA as a parameter.

Scope

Domain or all geo-redundant sites

Signature

loadServiceProviderGroupSlaByType(slaType: String, serviceProviderGroupIdentifier : String, ServiceLevelAgreement: String)

Parameters

	slaType
	
The SLA type.

For custom SLAs, the SLA type was registered in "setupCustomSlaXSDDefinition".

For system level SLAs, see "SLA Types".

	serviceProviderGroupIdentifier
	
The ID for the service provider group.

	ServiceLevelAgreement
	
Contents of the system level SLA or custom SLA. The content must be formatted according to the XSD associated with the custom SLA type.

loadSubscriberSla

The loadSubscriberSla operation is deprecated. Use "loadGlobalSlaByType" with slaType subscr.

Loads the Subscriber SLA into the repository.

Scope

Domain

Signature

loadSubscriberSla(ServiceLevelAgreement: String)

Parameters

	ServiceLevelAgreement
	
The contents of a Subscriber SLA.

loadSubscriberSlaFromUrl

The loadSubscriberSlaFromUrl operation is deprecated. Use "loadGlobalSlaFromUrlByType" with slaType subscr.

The loadSubscriberSlaFromUrl operation loads the Subscriber SLA into the repository using a URL.

Scope

Domain

Signature

loadSubscriberSlaFromURL(ServiceLevelAgreementURL: String)

Parameters

	ServiceLevelAgreementURL
	
The URL for the Subscriber SLA

retrieveApplicationGroupSla

The retrieveApplicationGroupSla operation is deprecated. Use "retrieveApplicationGroupSlaByType" with slaType application.

The retrieveApplicationGroupSla operation retrieves an application group SLA.

Scope

Domain

Signature

retrieveApplicationGroupSla(ApplicationGroupIdentifier : String)

Parameters

	ApplicationGroupIdentifier
	
Unique ID for the service provider group.

retrieveApplicationGroupSlaByType

The retrieveApplicationGroupSlaByType operation retrieves a system level or custom SLA for an application group.

Scope

Domain

Signature

retrieveApplicationGroupSlaByType(slaType : String, ApplicationGroupIdentifier : String)

Parameters

	slaType
	
The SLA type.

For custom SLAs, the SLA type was registered in "setupCustomSlaXSDDefinition".

For system level SLAs, see "SLA Types".

	ApplicationGroupIdentifier
	
Unique ID for the application group.

retrieveCustomSlaXSDDefinition

The retrieveCustomSlaXSDDefinition operation retrieves the XSD that defines the custom SLA type.

Scope

Domain

Signature

retrieveCustomSlaXSDDefinition(slaType : String)

Parameters

	slaType
	
The name of the custom SLA type.

retrieveGlobalNodeSla

The retrieveGlobalNodeSla operation is deprecated. Use "retrieveGlobalSlaByType" with slaType global_node.

The retrieveGlobalNodeSla operation retrieves a global node SLA.

Scope

Domain

Signature

retrieveGlobalNodeSla()

retrieveGlobalSlaByType

The retrieveGlobalSlaByType operation retrieves a system level or custom global SLA.

Scope

Domain

Signature

retrieveGlobalSlaByType(slaType : String)

Parameters

	slaType
	
For custom SLAs, the SLA type was registered in "setupCustomSlaXSDDefinition".

For system level SLAs, see "SLA Types".

retrieveServiceProviderGroupNodeSla

The retrieveServiceProviderGroupNodeSla operation is deprecated. Use "retrieveServiceProviderGroupSlaByType" with slaType service_provider_node.

The retrieveServiceProviderGroupNodeSla operation retrieves an service provider group node SLA.

Scope

Domain

Signature

retrieveServiceProviderGroupNodeSla(ServiceProviderGroupIdentifier : String)

Parameters

	ServiceProviderGroupIdentifier
	
ID for the service provider group.

retrieveServiceProviderGroupSla

The retrieveServiceProviderGroupSla operation is deprecated. Use "retrieveServiceProviderGroupSlaByType" with slaType service_provider.

The retrieveServiceProviderGroupSla operation retrieves an service provider group SLA.

Scope

Domain

Signature

retrieveServiceProviderGroupSla(ServiceProviderGroupIdentifier : String)

Parameters

	ServiceProviderGroupIdentifier
	
ID for the service provider group.

retrieveServiceProviderGroupSlaByType

The retrieveServiceProviderGroupSlaByType operation retrieves a system level or custom SLA for a service provider group.

Scope

Domain

Signature

retrieveServiceProviderGroupSlaByType(slaType : String, serviceProviderGroupIdentifier : String)

Parameters

	slaType
	
The SLA type.

For custom SLAs, the SLA type was registered in "setupCustomSlaXSDDefinition".

For system level SLAs, see "SLA Types".

	serviceProviderGroupIdentifier
	
The ID for the service provider group.

retrieveSubscriberSla

The retrieveSubscriberSla operation is deprecated. Use "retrieveGlobalSlaByType" with slaType subscr.

The retrieveSubscriberSla operation returns the Subscriber SLA.

Scope

Domain

Signature

retrieveSubscriberSla()

setupCustomSlaXSDDefinition

The setupCustomSlaXSDDefinitionoperations sets up an XSD document defined as a custom Service Level Agreement type.

Scope

Domain

Signature

setupCustomSlaXSDDefinition(slaType : String, xsdDocument : String)

Parameters

	slaType
	
The named type of the custom SLA. Used when loading custom SLAs and when fetching the custom SLA in the enforcement logic for the custom SLA.

This parameter is case-sensitive.

	xsdDocument
	
The XSD document that describes the custom type.

setupCustomSlaXSDDefinitionFromUrl

The setupCustomSlaXSDDefinitionFromUrl operation sets up an XSD document defined as a custom Service Level Agreement type.

Scope

Domain

Signature

setupCustomSlaXSDDefinitionFromUrl(slaType : String, xsdDocumentURL : String)

Parameters

	slaType
	
The named type of the custom SLA. Used when loading custom SLAs and when fetching the custom SLA in the enforcement logic for the custom SLA.

This parameter is case-sensitive.

	xsdDocumentURL
	
The URL of the XSD document that describes the custom type.

6 Managing Sessions

This chapter describes how to configure the behavior of and manage ongoing sessions. See the following sections:

	
About Sessions

	
Reference: ApplicationSessions

See "Reference: ApplicationSessions" for information on where to find the operations in the Administration Console and the name of the MBean.

About Sessions

You can configure whether or not to use sessions between applications and Oracle Communications Services Gatekeeper. Sessions can be used for establishing site affinity when using geographical redundant sites.

The setting of "Attribute: sessionRequired" specifies whether sessions are used.

When using sessions, the application must get a session from the Session Web Service prior to using the other application-facing interfaces. The application must also provide the session ID in all requests to the application-facing interfaces, except for requests to the Session Web Service.

A session has a unique ID. A session, once established, can have two states:

	
ACTIVE

	
INVALID

After a session has been established, it is always in the ACTIVE state.

Table 6-1 describes the possible states for a session, the state into which it can transition from the current state, and the condition under which such a transition occurs.

Table 6-1 Session States and Conditions for Successful Transition

	Current Session State	Valid Transition State	Scenario in Which Transition Occurs
	
ACTIVE

	
INVALID

	
The age of the ACTIVE state of a session is older than a configurable time-interval. See "Attribute: validityTime".

	
ACTIVE

	
Not applicable

This is not a state but rather that the session is not current or does not exist.

	
A management user performs one of the following management operations:

	
destroySession

	
destroyApplicationInstanceSession

	
destroyApplicationSessions

	
destroyServiceProviderSessions

	
INVALID

	
Not applicable

This is not a state but rather that the session is not current or does not exist.

	
The age of the INVALID state of a session is older than a configurable time-interval. See "Attribute: expiryTime".

A management user performs one of the following management operations:

	
destroyApplicationInstanceSession

	
destroyApplicationSessions

	
destroySession

	
destroyServiceProviderSessions

Reference: ApplicationSessions

All operations are reachable from:

	
Oracle Communications Services Gatekeeper Administration Console Managed Object: Container Services > AccountService > ApplicationSessions

	
MBean: com.bea.wlcp.wlng.account.management.ApplicationSessionMBean

Following is a list of attributes and operations for ApplicationSessions:

	
Attribute: expiryTime

	
Attribute: sessionRequired

	
Attribute: validityTime

	
countApplicationSessions

	
destroyServiceProviderSessions

	
getApplicationInstanceSession

	
destroySession

	
destroyApplicationInstanceSession

	
destroyApplicationSessions

	
getCurrentSession

	
listApplicationSessions

Attribute: expiryTime

Scope: Domain

Unit: Minutes

Format: Integer

Specifies the expiry time of sessions.

See "About Sessions" for more information.

Attribute: sessionRequired

Scope: Domain

Unit: Not applicable

Format: Boolean

Specifies if sessions must be established prior to use the application-facing interfaces in Services Gatekeeper. See "About Sessions" for more information.

Attribute: validityTime

Scope: Domain

Unit: Minutes

Format: Integer

Specifies the validity time of sessions.

See "About Sessions" for more information.

countApplicationSessions

The countApplicationSessions operation displays the number of established sessions filtered on:

	
service provider account

	
application account

Scope

Domain

Signature

countApplicationSessions(ApplicationIdentifier: String, ServiceProviderIdentifier: String)

Parameters

	ApplicationIdentifier
	
ID of the application account.

Optional. Leave empty to match all.

	Service ProviderIdentifier
	
ID of the service provider account.

Optional. Leave empty to match all.

destroySession

The destroySession operation destroys an ongoing session using the ID of the session.

Scope

Domain

Signature

destroySession(SessionIdentifier: String)

Parameters

	SessionIdentifier
	
ID of the session to destroy.

destroyApplicationInstanceSession

The destroyApplicationInstanceSession operation destroys the ongoing session using the ID of the application instance that established the session.

Scope

Domain

Signature

destroyApplicationInstanceSession(ApplicationInstanceIdentifier: String)

Parameters

	ApplicationInstanceIdentifier
	
ID of the application instance that established the session.

destroyApplicationSessions

The destroyApplicationSessions operation destroys all on-going session established by applications associated with a specific service provider /application account combination.

Scope

Domain

Signature

destroyApplicationSessions(ApplicationIdentifier: String, ServiceProviderIdentifier: String)

Parameters

	ApplicationIdentifier
	
ID of the application account.

	ServiceProviderIdentifier
	
ID of the service provider account.

destroyServiceProviderSessions

The destroyServiceProviderSessions operation destroys all on-going session established by applications associated with a specific service provider account.

Scope

Domain

Signature

destroyServiceProviderSessions(ServiceProviderIdentifier: String)

Parameters

	ServiceProviderIdentifier
	
ID of the service provider account.

getApplicationInstanceSession

The getApplicationInstanceSession operation gets information about a session, active or invalid, using the ID of the application instance that established the session.

The information includes:

	
Session ID.

	
ID of the application instance that established the session.

	
Age, the time since the session was established. Given in minutes.

	
Validity indicator for the session:

	
true if ACTIVE

	
false if INVALID

Scope

Domain

Signature

getApplicationInstanceSession(ApplicationInstanceIdentifier: String)

Parameters

	ApplicationInstanceIdentifier
	
ID of the application instance.

getCurrentSession

The getCurrentSession operation gets information about a session, on-going or invalid, using the ID of the session.

The information includes:

	
Session ID.

	
ID of the application instance that established the session.

	
Age, the time since the session was established. Given in minutes.

	
Validity indicator for the session:

	
true if valid

	
false if invalid

Scope

Domain

Signature

getCurrentSession(SessionIdentifier: String)

Parameters

	SessionIdentifier
	
ID of the session to get information about.

listApplicationSessions

The listApplicationSessions operation displays a list of IDs for all sessions, ongoing or invalid, established by applications. Filters on:

	
service provider account

	
application account

Scope

Domain

Signature

listApplicationSessions(ApplicationIdentifier: String, ServiceProviderIdentifier: String, Offset: int, Size: int)

Parameters

	applicationIdentifier
	
ID of the application account.

Optional. Leave empty to match all.

	serviceProviderIdentifier
	
ID of the service provider account.

Optional. Leave empty to match all.

	Offset
	
Offset in the list. Starts with 0 (zero)

	Size
	
Size of the list.

For no restrictions on the size of the list, use 0 (zero).

7 Defining Service Provider Group and Application Group SLAs

An application's usage policies of Oracle Communications Services Gatekeeper are specified in Service Level Agreement (SLA) XML files. There is an SLA associated with the service provider group and one associated with the application group.

For more information on this administration model, see "About SLAs and Accounts"

For a sample of a complete SLA, see "Sample SLA".

This chapter describes the following topics:

	
Structure of a Service Level Agreement

	
Structure of a Contract

	
Structure of a Composed Service Contract

Structure of a Service Level Agreement

The xsds for the SLAs are in /sla_schema/ in Middleware_Home/ocsg_5.1/modules/com.bea.wlcp.wlng.account_5.1.0.0.jar:

	
app_sla_file.xsd is the application group SLA xsd.

	
sp_sla_file.xsd is and the service provider group SLA xsd.

An SLA contain can contain three different types of contracts:

	
<serviceContract>

	
<serviceTypeContract>

	
<composedServiceContract>

The SLA must contain at least one <serviceContract>. The <serviceTypeContract> and <composedServiceContract> elements are optional.

The <serviceTypeContract> element includes usage restrictions per service type. The <serviceContract> element defines restrictions on a more granular level: per interface and method. The <composedServiceContract> element defines usage restrictions that apply to multiple communication services.

It is possible to override parts of a <serviceContract> based on time-of-day and day-of-week. This is not possible in a <serviceTypeContract> or <composedServiceContract>.

Example 7-1 shows the service provider level SLA XML file's main structure.

	
Note:

If the SLA XML file has white space before the <?xml...> tag, the SLA will not load.

Example 7-1 Service Level Agreement Structure

<Sla [serviceProviderGroupID | applicationGroupID] ="<Group>"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="[sp_sla_file.xsd | app_sla_file.xsd]">
 <serviceTypeContract>
 <serviceTypeName></serviceTypeName>
 <startDate></startDate>
 <endDate></endDate>
 <rate></rate>
 <quota></quota>
 </serviceTypeContract>
 <serviceContract>
 <startDate></startDate>
 <endDate></endDate>
 <scs></scs>
 <contract>

 </contract>
 <overrides>
 <override>
 <startDate></startDate>
 <endDate></endDate>
 <startDow></startDow>
 <endDow></endDow>
 <startTime></startTime>
 <endTime></endTime>
 <contract>
 ...
 </contract>
 </override>
 </overrides>
 </serviceContract>
 <composedServiceContract>
 <composedServiceName></composedServiceName>
 <service>
 <serviceTypeName></serviceTypeName>
 <method>
 <scs></scs>
 <methodName></methodName>
 </method>
 </service>
 <service>
 <serviceTypeName></serviceTypeName>
 </service>
 <startDate></startDate>
 <endDate></endDate>
 <rate>
 <reqLimit></reqLimit>
 <timePeriod></timePeriod>
 </rate>
 <quota>
 <qtaLimit></qtaLimit>
 <days></days>
 <limitExceedOK></limitExceedOK>
 </quota>
 </composedServiceContract>
</Sla>

<Sla>

This element contains service contracts specifying the conditions under which a service provider or an application is allowed to access and use service capabilities.

The serviceProviderGroupID attribute specifies the service provider group to which the service provider belongs and for which group the SLA is valid. For SLAs on application level, the applicationGroupID attribute is used instead to specify the application group to which the application belongs and for which the SLA is valid.

The xmlns:xsi attribute contains processing information and should not be changed.

The xsi:noNamespaceSchemaLocation attribute points to the xsd for the service provider group SLA or the application group SLA, depending on which type of SLA it is:

	
app_sla_file.xsd is the application group SLA xsd

	
sp_sla_file.xsd is and the service provider group SLA xsd

The SLA for a a service provider group of application group can contain one or more of the following child elements:

	
<serviceTypeContract>

	
<serviceContract>

	
<<composedServiceContract>

<serviceTypeContract>

Parent: <Sla>

This element contains contractual data specifying the conditions under which a service provider or an application is allowed to access and use specific service types in Services Gatekeeper. One <serviceTypeContract> element is needed for each service type that a service provider or an application can access.

The data to be defined in the <serviceTypeContract> element for each interface is described below.

The <serviceTypeContract> element contains the following child elements:

	
<serviceTypeName>

	
<startDate>

	
<endDate>

	
<rate>

	
<quota>

<serviceTypeName>

Parent: <serviceTypeContract>, <service>

This element specifies the service type to which a <serviceTypeContract> or <service> applies. It specifies an identifier that defines the service type. Use the Plug-in Manager's listServiceType operation to get a list of the service type names. See section “Managing and Configuring the Plug-in Manager” in Oracle Communications Services Gatekeeper System Administrator's Guide for information on how to get a list of service types using the listServiceType operation.

For example, the service type for the interfaces for Parlay X 2.1 Short Messaging and RESTful Short Messaging interfaces is Sms.

There can be only one <serviceTypeContract> for a specified <serviceTypeName> element defined in the SLA for a group in the combined set of SLAs (the local SLA and the geo-redundant SLA). For example, if a geo-redundant service provider group SLA defines a <serviceContract> for the CallNotification service type, this service type not be defined in the local service provider group SLA.

Example 7-2 <serviceTypeContract> Element

...
<serviceTypeContract>
 <serviceTypeName>CallNotification</serviceTypeName>
 <startDate>2008-11-01</startDate>
 <endDate>2008-11-30</endDate>
 <rate>
 <reqLimit>25</reqLimit>
 <timePeriod>1000</timePeriod>
 </rate>
 <quota>
 <qtaLimit>250</qtaLimit>
 <days>1</days>
 <limitExceedOK>true</limitExceedOK>
 </quota>
</serviceTypeContract>
<serviceTypeContract>
 <serviceTypeName>Sms</serviceTypeName>
 <startDate>2008-11-01</startDate>
 <endDate>2008-11-30</endDate>
 <rate>
 <reqLimit>35</reqLimit>
 <timePeriod>1000</timePeriod>
 </rate>
 <quota>
 <qtaLimit>350</qtaLimit>
 <days>1</days>
 <limitExceedOK>true</limitExceedOK>
 </quota>
</serviceTypeContract>
...

<serviceContract>

Parent: <Sla>

This element contains contractual data specifying under which conditions a service provider or an application is allowed to access and use specific interfaces and methods in Services Gatekeeper. One <serviceContract> element is needed for each application-facing interface that a service provider or an application can access.

The <serviceContract> element contains the following child elements:

	
<startDate>

	
<endDate>

	
<scs>

	
<contract>

	
<overrides>

The <contract> element directly following the <scs> element contains the default restrictions.

To override these default restrictions, use a <contract> inside an <override> element.

See "Structure of a Contract" for details about the child elements contained within a <contract> element.

<composedServiceContract>

Parent: <Sla>

This element is defined all the services that comprise a composed service. The <composedServiceContract> element must contain at least one <service> element.

The <composedServiceContract> element contains the following child elements:

	
<composedServiceName>

	
<service>

	
<startDate>

	
<endDate>

	
<rate>

	
<quota>

See "Structure of a Composed Service Contract" for information about composed services and the <service> element.

<startDate>

Parent: <serviceTypeContract>, <serviceContract>, <composedServiceContract>, <override>, <nodeContract>, <globalContract>,

For a <serviceTypeContract>, <serviceContract> or <composedServiceContact>, this element specifies the date the application can start using the service capability.

For an <override>, it specifies the first date that the contract data in the <override> element is valid.

For a <nodeContact>, it specifies the date that the service provider can begin to access the network.

For a <globalContact>, it specifies the date that Services Gatekeeper can begin to access the network on behalf of any service provider.

Use format YYYY-MM-DD.

A later start date on the service provider level service contract overrides this date.

<endDate>

Parent: <serviceTypeContract>, <serviceContract>, <composedServiceContract>, <override>, <nodeContract>, <globalContract>

For a <serviceTypeContract>, <serviceContract> or <composedServiceContact>, this element specifies the last date the application can use the service capability.

For an <override>, it specifies the last date that the contract data in the <override> element is valid.

For a <nodeContact>, it specifies the last date that the service provider can access the network node.

For a <globalContact>, it specifies the last date that Services Gatekeeper can access the network on behalf of any service provider.

Use format YYYY-MM-DD.

An earlier end date on the service provider level service contract overrides this date.

<scs>

Parent: <serviceContract>, <method>

This element specifies the application-facing interface to which the service contract or composed service contract applies. The content is a Java representation of the Web Service Definition Language (WSDL) that defines the interface.

Use the Plug-in Manager's getServiceInfo operation to get a list of the application-facing interfaces. You need to pass the appropriate service type as a parameter to the getServiceInfo operation. You can obtain a list of service types with the Plug-in Manager's listServiceTypes operation. See section “Managing and Configuring the Plug-in Manager” in Oracle Communications Services Gatekeeper System Administrator's Guide for information on using the getServiceInfo and listServiceTypes operations.

Typically, the Java representation is expressed according to the pattern below:

package_name.standard indicator.plugin.interface_name_from_WSDL

For example, the Java representation of the interfaces for Parlay X 2.1 Short Messaging interfaces are:

	
com.bea.wlcp.wlng.px21.plugin.SendSmsPlugin

	
com.bea.wlcp.wlng.px21.plugin.ReceiveSmsPlugin

	
com.bea.wlcp.wlng.px21.plugin.SmsNotificationManagerPlugin

There can be only one <serviceContract> for a specified <scs> defined for a group in its combined set of SLAs (the local SLA and the geo-redundant SLA). For example, if the geo-redundant service provider group SLA defines a <serviceContract> for the com.bea.wlcp.wlng.px21.plugin.SendSmsPlugin interface, this interface can not be defined in the local service provider group SLA.

<overrides>

Parent: <serviceContract>

This element is a container of one or more <override> elements.

SLAs enforced across geo-redundant sites can not contain an <overrides> element.

<override>

Parent: <overrides>

The contract data specified within this element is used to override the default contractual data specified in the <contract> element that directly follows the <scs> element.

When an override occurs, only the restrictions specified in the <override> element are used. All restrictions specified in the default contract are disregarded if not they are not explicitly restated in the <override> element.

Each <override> element can contain the following child elements:

	
<startDate>: Specifies the start date that the contract data in the <override> element is valid. If omitted, the start date for the service contract is used.

	
<endDate>: Specifies the end date that the contract data in the <override> element is valid. If omitted, the end date for the service contract is used.

	
<startDow>: Specifies the starting weekday for which the contract data in the <override> element is valid.

	
<endDow>: Specifies the end weekday for which the contract data in the <override> element is valid. Use 1 for Sunday, 2 for Monday and so on. Optional if <startDow> is not specified.

	
<startTime>: Specifies the start time for which the contract data in the <override> element is valid.

	
<endTime>: Specifies the end time for which the contract data given within the <override> element is valid.

	
<contract>: Specifies the contract data that overrides the default contract data specified directly after the <scs> element. See Structure of a Contract for details about the elements contained within a <contract> element.

For an override to be active all of the following conditions must be true:

	
Today's date must be the same as or later than the start date.

	
Today's date must be earlier than end date (must not be the same date).

	
Current time must be between the start time and end time. If the end time is earlier than the start time, the time period spans midnight.

	
Current day of week must be between start day of week and end day of week or equal to start day of week or day of week. If end day of week is less than start day of week, the time period spans the weekend.

Since several <override> elements can be defined with different settings for the time periods for which the restrictions applies, make sure the time periods do not overlap. if time periods overlap, there is no guarantee which contract applies.

Example 7-3 <overrides> Element with Two <override> Children

<overrides>
 <override>
 <startDate>2008-11-01</startDate>
 <endDate>2008-11-30</endDate>
 <startDow>2</startDow>
 <endDow>2</endDow>
 <startTime>09:00:00</startTime>
 <endTime>10:00:00</endTime>
 <contract>
 ...
 </contract>
 </override>
 <override>
 <startDate>2008-12-01</startDate>
 <endDate>2008-12-30</endDate>
 <startDow>2</startDow>
 <endDow>2</endDow>
 <contract>
 ...
 </contract>
 </override>
</overrides>

<rate>

Parent: <serviceTypeContract>, <methodRestriction>, <composedServiceContract>

This element defines the maximum number of requests to be guaranteed over a short time period, measured in milliseconds.

The <rate> element contains the following child elements:

	
<reqLimit>

	
<timePeriod>

Overall performance can be adversely affected if the <reqLimit> is frequently exceeded, because requests rejected for exceeding the limit cannot be processed until the next <timePeriod> begins.

To minimize the chances of this type of delay occurring, define a rate with small time frames, in terms of minutes rather than hours. For example, 1000 requests per minute, as defined in Example 7-4

Example 7-4 Rate in Small Time Frames: Minute

<rate> <reqLimit>1000</reqLimit> <timePeriod>60000</timePeriod> </rate>

is similar in terms of throughput to 60,000 requests per hour as defined in Example 7-5.

Example 7-5 Rate in Large Time Frames: Hour

<rate> <reqLimit>60000</reqLimit> <timePeriod>3600000</timePeriod> </rate>

But for Example 7-4, the maximum number of possible rejected requests is much smaller for the one-minute <timePeriod> than for the one-hour <timePeriod> in Example 7-5. If you define a rate with a one-hour <timePeriod> and the <reqLimit> is reached in the first 10 minutes, all subsequent requests will be rejected for the rest of the hour.

The enforcement of rates set in SLAs is based on budgets that are set in the Budget service. For information about budgets, see "Managing and Configuring Budgets" in Oracle Communications Services Gatekeeper System Administrator's Guide.

<reqLimit>

Parent: <rate>, <nodeRestriction>, <globalRestriction>

This element specifies the maximum number of requests over the time period specified in the corresponding <timePeriod> element.

<timePeriod>

Parent: <rate>, <nodeRestriction>, <globalRestriction>

This element specifies the time period in which the corresponding <reqLimit> applies, in milliseconds.

<quota>

Parent: <serviceTypeContract>, <methodRestriction>, <composedServiceContract>

This element defines the maximum number of requests over a long period of time, measured in days.

The counters associated with the quota are reset at the beginning of each time period.

The <quota> element contains the following child elements:

	
<qtaLimit>

	
<days>

	
<limitExceedOK>

<qtaLimit>

Parent: <quota>

This element defines the maximum number of requests over the time period defined in the <days> element. Only one <qtaLimit> element can be specified per <quota> element.

<days>

Parent: <quota>

This element defines the time period to which the quota limit applies, specified in days. Only integers are valid.

The starting day (day 0) is the same day as the <startdate> element for the service contract. See <startDate>. Only one <days> element can be specified per <quota> element.

<limitExceedOK>

Parent: <quota>

This element specifies the action to take if the quota limit is exceeded. If true, the request will be allowed even if the quota is exceeded. If false, the request will be rejected. An alarm is always emitted if the limit is exceeded

<startDow>

Parent: <override>

Specifies the starting weekday for which the contract data given within the <override> element is valid. Use 1 for Sunday, 2 for Monday and so on. Optional.

<endDow>

Parent: <override>

Specifies the end weekday for which the contract data in the <override> element is valid. Use 1 for Sunday, 2 for Monday and so on. Optional if <startDow> is not specified

<startTime>

Parent: <override>

Specifies the start time for which the contract data given within the <override> element is valid. Use format hh:mm:ss, where hh can be 00–24. Optional.

<endTime>

Parent: <override>

Specifies the end weekday for which the contract data in the <override> element is valid. Use 1 for Sunday, 2 for Monday and so on. Optional if <startDow> is not specified.

<enforceAcrossGeoSites>

Parent: <serviceContract>

Deprecated.

This element specifies whether the SLA is enforced across geo-redundant sites.

	
Caution:

This element should not be used. Instead, use the loadGlobalNodeSlaByType operation to enforce an SLA across geo-redundant sites. If an SLA with the <enforceAcrossGeoSites> element set to true is loaded under the non-geographically redundant SLA type, exceptions are thrown and the SLA provisioning fails.

The previous behavior is maintained for backwards compatibility as described below.

Specify <enforceAcrossGeoSites>true<enforceAcrossGeoSites> if the SLA should be enforced across geo-redundant site, otherwise false. The default is false.

If set to true, the SLA cannot contain any <override> elements.

The decision of whether to enforce the SLA across geo-redundant sites is taken at load time using the SLA type parameter.

Optional element. If not used, the default is false.

Structure of a Contract

Example 7-6 illustrates the structure of the <contract> element in an SLA.

Example 7-6 Contract Structure

<contract>
 <guarantee>
 <methodGuarantee>
 <methodNameGuarantee></methodNameGuarantee>
 <reqLimitGuarantee></reqLimitGuarantee>
 <timePeriodGuarantee></timePeriodGuarantee>
 </methodGuarantee>
 </guarantee>
 <methodRestrictions>
 <methodRestriction>
 <methodName></methodName>
 <rate>
 <reqLimit></reqLimit>
 <timePeriod></timePeriod>
 </rate>
 <quota>
 <qtaLimit></qtaLimit>
 <days></days>
 <limitExceedOK></limitExceedOK>
 </quota>
 </methodRestriction>
 </methodRestrictions>
 <methodAccess>
 <blacklistedMethod>
 <methodName></methodName>
 </blacklistedMethod>
 </methodAccess>
 <requestContext>
 <contextAttribute>
 <attributeName></attributeName>
 <attributeValeu></attributeValue>
 </contextAttribute>
 </requestContext>
 <resultRestrictions>
 <resultRestriction>
 <methodName></methodName>
 <parameterRemovalName></parameterRemovalName>
 <parameterMatch>
 <parameterName></parameterName>
 <parameterValues></parameterValues>
 </parameterMatch>
 <filterMethod></filterMethod>
 </resultRestriction>
 </resultRestrictions>
</contract>

<contract>

Parent: <serviceContract>, <override>

This element includes all contract-specific data. There is one <contract> element for every <serviceContract> element and one for every <override> element.

The <contract> element can contain the following child elements:

	
<guarantee>

	
<methodRestrictions>

	
<methodAccess>

	
<params>

	
<requestContext>

	
<resultRestrictions>

<guarantee>

Parent: <contract>

This optional element specifies the number of method requests that the service provider or application is guaranteed during a specified time period. The time period is expressed in milliseconds.

Method requests from service providers and applications for which the method is tagged as guaranteed have precedence over requests from service providers and applications not having the method tagged as guaranteed.

Requests are given high priority if the request rate is below either the request rate specified in the service-provider-level SLA or the application-level SLA, whichever has the higher request rate. For example, if the service-provider-level SLA guarantees 30 requests per second and the application-level SLA guarantees 40 requests per second, the application level-SLA applies.

The <guarantee> element contains one or more <methodGuarantee> elements.

Each method specified by a <methodGuarantee> must have a corresponding <methodRestriction> element. The time period defined for a method must be identical in both the <guarantee> and <methodRestriction> elements.

<methodGuarantee>

Parent: <guarantee>

This element specifies a method for which high priority service is guaranteed. See <guarantee> for details.

The <methodGuarantee> element contains the following child elements:

	
<methodNameGuarantee>

	
<timePeriodGuarantee>

	
<reqLimitGuarantee>

The <methodGuarantee> element is ignored for mobile-originated traffic.

<methodNameGuarantee>

Parent: <methodGuarantee>

This element specifies the name of the method to have guaranteed precedence.

Use the Plug-in Manager's getServiceInfo operation to get a list of valid method names for a service type. You need to pass the appropriate service type as a parameter to the getServiceInfo operation.You can obtain a list of service types with the Plug-in Manager's listServiceTypes operation. See section “Managing and Configuring the Plug-in Manager” in Oracle Communications Services Gatekeeper System Administrator's Guide for information on using the getServiceInfo and listServiceTypes operations.

<timePeriodGuarantee>

Parent: <methodGuarantee>

This element specifies the length of time for which the guarantee is applied, in milliseconds.

<reqLimitGuarantee>

Parent: <methodGuarantee>

This element specifies the number of requests to be guaranteed over the time period specified in the corresponding <timeperiodGuarantee>.

<methodRestrictions>

Parent: <guarantee>

This optional element restricts the number of method requests that an application is allowed over a specified time period. A restriction over a short time period is called a rate. A rate typically spans a few seconds. A restriction over a longer time period is called a quota. A quota typically spans several days.

The <methodRestrictions> element contains one or more <methodRestriction> elements. One <methodRestriction> element is needed for each method for which usage should be restricted. Only one <methodRestrictions> element is allowed per contract.

The <methodRestrictions> element is ignored for mobile-originated traffic.

Example 7-7 shows a sample <methodRestrictions> element with restrictions for quotas and rates. It specifies the usage restrictions for the SendSms and SendSmsLogo methods. The usage restriction for the rate is 5 requests per second (5 requests divided by 1000 milliseconds). The usage restriction for the quota is 600 requests over a 3 day period.

Example 7-7 Method Restrictions Element

<methodRestrictions>
 <methodRestriction>
 <methodName>sendSms</methodName>
 <rate>
 <reqLimit>5</reqLimit>
 <timePeriod>1000</timePeriod>
 </rate>
 <quota>
 <qtaLimit>600</qtaLimit>
 <days>3</days>
 <limitExceedOK>true</limitExceedOK>
 </quota>
 </methodRestriction>
 <methodRestriction>
 <methodName>sendSmsLogo</methodName>
 <rate>
 <reqLimit>5</reqLimit>
 <timePeriod>1000</timePeriod>
 </rate>
 <quota>
 <qtaLimit>600</qtaLimit>
 <days>3</days>
 <limitExceedOK>true</limitExceedOK>
 </quota>
 </methodRestriction>
</methodRestrictions>

The most restrictive limit is always enforced, so if a restriction in a service-provider-level SLA is more restrictive than a restriction defined in an application-level SLA, the service-provider-level SLA is enforced.

If the application does not have any usage restrictions within the allowed methods, omit the <methodRestrictions> element.

<methodRestriction>

Parent: <methodRestrictions>

This element specifies restrictions on the usage of a method in the application-facing interface.

The <methodRestriction> element contains the following child elements:

	
<methodName>

	
<rate>

	
<quota>

<methodName>

Parent: <methodRestriction>, <blackListedMethod>, <methodParameters>, <resultRestriction>, <method>

This element specifies the name of the method to restrict.

Use the Plug-in Manager's getServiceInfo operation to get a list of valid method names for a service type. You need to pass the appropriate service type as a parameter to the getServiceInfo operation.You can obtain a list of service types with the Plug-in Manager's listServiceTypes operation. See section “Managing and Configuring the Plug-in Manager” in Oracle Communications Services Gatekeeper System Administrator's Guide for information on using the getServiceInfo and listServiceTypes operations.

<methodAccess>

Parent: <contract>

This optional element is used to block the application from accessing one or more methods in the service capability.

If the application is allowed to access all methods, omit the <methodAccess> element.

The <methodAccess> element contains the <blackListedMethod> child element.

<blackListedMethod>

Parent: <methodAccess>

This element contains one <methodName> child element.

It prohibits use of the method specified in its <methodName> child element.

Use a separate <blacklistedMethod> element for each method to block.

<params>

Parent: <contract>

This optional element is used both to allow and to prohibit certain parameters values provided by applications.

The <params> element contains zero (0) or more <methodParameters> elements.

Example 7-8 shows a <params> element that allows allowed parameter values A, B, and C for the sendMessage method. No other values for this parameter are allowed.

Example 7-8 <params> Element

<params>
 <methodParameters>
 <methodName>sendMessage</methodName>
 <parameterName>arg0.subject</parameterName>
 <parameterValues>A B C</parameterValues>
 <acceptValues>true</acceptValues>
 </methodParameters>
</params>

<methodParameters>

Parent: <params>

This optional element specifies method parameter values to allow or prohibit.

It contains the following child elements:

	
<methodName>

	
<parameterName>

	
<parameterValues> simple

	
<acceptValues>

<parameterName>

Parent: <methodParameters>, <parameterMatch>

This element specifies the name of the parameter whose values are to be allowed or prohibited. The content of this element is the Java representation of the parameter defined in the WSDL. The parameter representation is arg0.name_of_parameter_as_defined_in_WSDL.

You can use the Plug-in Manager's getServiceInfo operation to get a list of valid parameter names for the method. You need to pass the appropriate service type as a parameter to the getServiceInfo operation.You can obtain a list of service types with the Plug-in Manager's listServiceTypes operation. See section “Managing and Configuring the Plug-in Manager” in Oracle Communications Services Gatekeeper System Administrator's Guide for information on using the getServiceInfo and listServiceTypes operations.

Example 7-9 shows an example of the parameters that getServiceInfo returns for the sendMessage method for the MultimediaMessaging service type.

Example 7-9 Sample Output from getServiceInfo (type: MultimediaMessaging) for SendMessage

Interface: com.bea.wlcp.wlng.px21.plugin.SendMessagePlugin
 Method: sendMessage
 Arguments:
 java.net.URI arg0.addresses[]
 java.math.BigDecimal arg0.charging.amount
 java.lang.String arg0.charging.code
 java.lang.String arg0.charging.currency
 java.lang.String arg0.charging.description
 java.lang.String arg0.priority.value
 java.lang.String arg0.receiptRequest.correlator
 java.net.URI arg0.receiptRequest.endpoint
 java.lang.String arg0.receiptRequest.interfaceName
 java.lang.String arg0.senderAddress
 java.lang.String arg0.subject
 Return arguments:
 java.lang.String arg0.result

If the parameter is an array (for example, arg0.addresses[]), do not use the brackets in the SLA. For the example, the parameter name in the SLA should be:

<parameterName>arg0.addresses</parameterName>.

<parameterValues> simple

Parent: <methodParameters>

This element contains a list of parameter values to allow or prohibit, when contained in a <methodParameters> element. Multiple values can be defined, separated by white space.

If the SLA is regulating the Binary SMS Communication Service, UDH values must be specified in decimal, not hexadecimal, format. In the following example, any UDH with the values of 04, 05, 44, or 7F will be blocked:

<methodParameters>
 <methodName>sendBinarySms</methodName>
 <parameterName>arg0.binaryMessag[0].udh</parameterName>
 <parameterValues>4 5 68 127</parameterValues>
 <acceptValues>false</acceptValues>
</methodParameters>

<parameterValues> complex

Parent: <parameterMatch>

This element contains one or more <parameterValue> elements.

<parameterValue>

Parent:<parameterValues> complex

Each <parameterValue> element contains the value of the <parameterName> to match if this element is the grandchild of a <parameterMatch> element. The value can be expressed as a regular expression.

<acceptValues>

Parent: <methodParameters>

This element specifies whether the parameter values controlled by the containing <params> element are allowed or prohibited.

If <acceptValues> is true, the parameter values specified in the <parameterValues> element are allowed and all other values are prohibited. If false, the specified parameter values are prohibited and all other values are allowed

<requestContext>

Parent: <contract>

This optional element is used to send additional parameters, which may not be defined in the interface, to a plug-in. The concept is similar to parameter tunneling, except that the attribute-value pairs are defined in the SLA instead of being passed by the application. For more information see “Parameter Tunneling” in Oracle Communications Services Gatekeeper Platform Development Studio Developer's Guide.

The <requestContext> element contains one or more <contextAttribute> elements.

Example 7-10 shows a <requestContext> element that assigns values to two context attributes.

Example 7-10 <requestContext> Example

<requestContext>
 <contextAttribute>
 <attributeName>com.bea.wlcp.wlng.plugin.sms.testName1</attributeName>
 <attributeValue>testValue1</attributeValue>
 </contextAttribute>
 <contextAttribute>
 <attributeName>com.bea.wlcp.wlng.plugin.sms.testName2</attributeName>
 <attributeValue>testValue2</attributeValue>
 </contextAttribute>
</requestContext>

<contextAttribute>

Parent: <requestContext>

A <contextAttribute> element defines the attribute-value pairs to be sent to the plug-in.

This element contains the following one of each of the following child elements:

	
<attributeName>

	
<attributeValue>

A plug-in can retrieve the value specified in <attributeValue> using the name specified in <attributeName>. The plug-in must implement the functionality for fetching the value by name. For more information, see “Using Request Context Parameters in SLAs” in Oracle Communications Services Gatekeeper Platform Development Studio Developer's Guide.

See the “Tunneled Parameters” sections in the Communication Service Guide for descriptions of the context attributes that are applicable to your communication service. Note that not all communication services support tunneled parameters and context attributes.

<attributeName>

Parent: <contextAttribute>

This element contains the name that the plug-in uses to fetch the attribute.

<attributeValue>

Parent: <contextAttribute>

This element contains the value associated with the corresponding <attributeName> in the <contextAttribute> element.

<resultRestrictions>

Parent: <contract>

This optional element is used to filter results returned from application-initiated requests.

This element contains one or more <resultRestriction> elements.

Result Restrictions Example

Example 7-11 illustrates a results filter for the getData() method.

The getData() method returns an array of data, where data is a complex type consisting of the name-value pair:

	
dataName

	
dataValue

Example 7-11 <resultRestrictions> Element for Blacklisting Array Parameter Values

<resultRestrictions>
 <resultRestriction>
 <methodName>getData</methodName>
 <parameterRemovalName>result.data[].dataName</parameterRemovalName>
 <parameterMatch>
 <parameterName>result.data[].dataName</parameterName>
 <parameterValues>
 <parameterValue>ssn<parameterValue>
 <parameterValue>homephone<parameterValue>
 <parameterValues>
 </parameterMatch>
 <filterMethod>BLACK_LIST</filterMethod>
 </resultRestriction>
<resultRestrictions>

Assuming the result before the filter is applied is:

	
result.data[0].dataName = “cellphone”

	
result.data[0].dataValue =”415-555-1234”

	
result.data[1].dataName = “ssn”

	
result.data[1].dataValue =” 123 45 6789”

	
result.data[2].dataName = “homephone”

	
result.data[2].dataValue =”415-333-4444”

After applying the result filter, the result is:

	
result.data[0].dataName = “cellphone”

	
result.data[0].dataValue =”415-555-1234”

because <filterMethod> is BLACK_LIST and <parameterValues> filters out ssn and homephone. Those data items are removed from the result returned to the application.

If <filterMethod> had been WHITE_LIST, the result after applying the filter would be:

	
result.data[0].dataName = “ssn”

	
result.data[0].dataValue =”123 45 6789”

	
result.data[0].dataName = “homephone”

	
result.data[0].dataValue =”415-333-4444”

Only these parameters would match the filter that filters in the values in <parameterValues>.

If <parameterRemovalName> had been result.data instead of result.data[] the filtered result would be null in both cases, since both filters match. The absence of the [] means that all results starting from the result.data hierarchy should be removed, given that the filter matches the result.

<resultRestriction>

Parent: <resultRestrictions>

This element defines a result restriction.

The result restriction makes it possible to remove parameters returned from application-initiated requests.

The return parameter to which the restriction applies is expressed as a String representation of a Java class. Arrays are expressed using the [] notation directly following the parameter name. The notation format is:

	
arg0.result.name_of_parameter_as_defined_in_WSDL when the parameter is a single entity.

	
arg0.result[].name_of_parameter_as_defined_in_WSDL when the parameter is an array.

If the return parameter is a complex type, the hierarchy is expressed using dot notation. For example, if an array for the dateTime parameter is returned, the return value expressed in XML is:

<xsd:complexType name="SmsMessage">
 <xsd:sequence>
 <xsd:element name="message" type="xsd:string"/>
 <xsd:element name="senderAddress" type="xsd:anyURI"/>
 <xsd:element name="smsServiceActivationNumber" type="xsd:anyURI"/>
 <xsd:element name="dateTime" type="xsd:dateTime" minOccurs="0" maxOccurs="1"/>
 </xsd:sequence>
</xsd:complexType>

The String representation is:

arg0.result[].dateTime.firstDayOfWeek
arg0.result[].dateTime.lenient
arg0.result[].dateTime.minimalDaysInFirstWeek
arg0.result[].dateTime.time.date
arg0.result[].dateTime.time.hours
arg0.result[].dateTime.time.minutes
arg0.result[].dateTime.time.month
arg0.result[].dateTime.time.seconds
arg0.result[].dateTime.time.time
arg0.result[].dateTime.time.year
arg0.result[].dateTime.timeInMillis
arg0.result[].dateTime.timeZone.ID
arg0.result[].dateTime.timeZone.rawOffset
arg0.result[].message
arg0.result[].senderAddress
arg0.result[].smsServiceActivationNumber

The <resultRestriction> element contains the following child elements:

	
<methodName>: method for which to restrict the return parameter.

	
<parameterRemovalName>

	
<parameterMatch>: optional filter value to match

	
<filterMethod>: defines how the filter is applied

<parameterRemovalName>

Parent: <resultRestriction>

The <parameterRemovalName> element defines which part of a complex return parameter is affected by the restriction.

It is possible to specify a leaf or a node in the hierarchy of the parameter. When a node is specified, the node and all its siblings are removed.

If the <parameterRemovalName> element is:

<parameterRemovalName>arg0.result[].dateTime.timeZone.ID</parameterRemovalName>

only the timeZone.ID part of the result parameter is removed, because the element specifies a leaf.

If the <parameterRemovalName> element is:

<parameterRemovalName>arg0.result[].dateTime.time</parameterRemovalName>

all of the dateTime siblings are removed from the result parameters, because the element specifies a node. In this case, the following values would be removed:

	
arg0.result[].dateTime.time.date

	
arg0.result[].dateTime.time.hours

	
arg0.result[].dateTime.time.minutes

	
arg0.result[].dateTime.time.month

	
arg0.result[].dateTime.time.seconds

	
arg0.result[].dateTime.time.time

	
arg0.result[].dateTime.time.year

If the specified parameter is a Boolean, the parameter is not removed but set to false.

For information on how to get a list of valid parameter names for a method with a specific service type, follow the instructions for <methodName>.

<parameterMatch>

Parent:<resultRestriction>

This element is optional.

If <parameterMatch> is used, result filtering occurs only if the parameter defined in the <parameterName> child element has a value defined in one of its <parameterValue> child elements.

The <parameterMatch> element contains the following child elements:

	
<parameterName>: exactly one

	
<parameterValues> complex: exactly one

<filterMethod>

Parent: <resultRestriction>

This element defines how the filter defined in <parameterMatch> is applied.

The value is an enumeration. Valid values are:

	
BLACK_LIST

	
WHITE_LIST

If <filterMethod> is defined as BLACK_LIST, all parameters matching <parameterRemovalName> are removed if the request matches the filter.

If <filterMethod> is defined as WHITE_LIST, only the parameters matching <parameterRemovalName> are kept if the request matches the filter.

Structure of a Composed Service Contract

A composed service contract is enforced for a composed service.

A composed service is created by combining multiple communication services, all of which must be available and registered in Services Gatekeeper. You can then define and apply enforcements on the composed service, instead of defining identical enforcements separately for each service. A request of any one of the communication services that participate in the composed service is treated as a request of the composed service for the purposes of SLA enforcement.

A single SLA can contain composed service contracts as well as simple service contracts. A composed service contract is located at the same level in the SLA hierarchy as a service contract.

You can configure and test a composed service contract using the Platform Test Environment. See the discussion of composed service-level agreements in the Oracle Communications Services Gatekeeper Platform Test Environment Guide for more information.

Composed Service Contracts

You can define a composed service contract in an application group SLA or in a service provider group SLA.

The composed service contract is created when an SLA containing a <composedServiceContract> element is loaded using the loadApplicationGroupSlaByType or loadServiceProviderGroupSlaByType operations.

Scope

A composed service contract includes all the service types of its constituent communication services and all the request rate and quota restrictions that may be applied to those services under an individual service type contract.

A composed service contract can optionally be defined at the method level of granularity so that enforcement is implemented on only specified methods. If individual methods are not specified for a specific service in the composed service contract, enforcement is applied for all methods of the specified service.

Multiple Composed Services

A single SLA can contain multiple composed service contracts.

A single communication service can participate as a component in multiple composed service contracts. For example, one composed service named “Messaging” could be composed of the Short Messaging and Multimedia Messaging communication services, while another composed service named “LocationNotification”, defined in the same SLA, could be composed of the Short Messaging and Terminal Location communication services. In this case, the shared Short Messaging service would be subject to the enforcements of both composed service contracts.

Conflicting Enforcements

It is possible to specify different enforcements that affect a single service within a single SLA. If the enforcements in the multiple contracts are different, the more restrictive enforcement is applied to requests of the shared service. But because separate counters are maintained for each service within a composed service, requests of the non-shared service are not counted towards the limit of the shared service.

For example, imagine an SLA that contains the following contracts, all of which include the Sms service:

	
a service contract for the Sms service that allows 40 requests per second

	
a Messaging composed service contract, composed of the Sms service and the Multimedia Messaging service, that allows 50 requests per second

	
a LocationNotification composed service contract, composed of the Sms service and the Terminal Location service, that allows 60 requests per second

The maximum number of requests to the Sms service will be 40 requests per second. But a request of one of the non-shared services, for example of the Multimedia messaging or Terminal Location service, does not count against this 40-request limit on the Sms service.

Budget Implications

All communication services in a composed service share the same budget restrictions in the composed service contract. Any request of the composed service triggers a decrease in the budget. If a request exceeds the budget restriction, subsequent requests of the composed service are denied. The result is that if one of the services in the composed SLA causes the budget of the composed SLA to be exceeded, requests from the other constituent services are denied.

Example Composed Service SLA

Example 7-12 shows an SLA that contains a simple service contract for the Short Messaging service and a composed service contract for a composed service named “Messaging.”

The Messaging composed service includes the sendSMS and sendSmsLogo operations in the ParlayX2.1 Short Messaging communication service and all of the operations that Services Gatekeeper supports in the ParlayX2.1 Multimedia Messaging communication service.

Example 7-12 Service Level Agreement with Composed Service Contract

<Sla xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" serviceProviderGroupID="default_sp_group" >
 <serviceContract>
 <startDate>2010-04-17</startDate>
 <endDate>2011-04-17</endDate>
 <scs>com.bea.wlcp.wlng.px21.plugin.SendSmsPlugin</scs>
 </serviceContract>
 <composedServiceContract>
 <composedServiceName>Messaging</composedServiceName>
 <service>
 <serviceTypeName>Sms</serviceTypeName>
 <method>
 <scs>com.bea.wlcp.wlng.px21.plugin.SendSmsPlugin</scs>
 <methodName>sendSMS</methodName>
 </method>
 <method>
 <scs>com.bea.wlcp.wlng.px21.plugin.SendSmsPlugin</scs>
 <methodName>sendSmsLogo</methodName>
 </method>
 </service>
 <service>
 <serviceTypeName>MultiMediaMessage</serviceTypeName>
 </service>
 <startDate>2010-04-17</startDate>
 <endDate>2011-04-17</endDate>
 <rate>
 <reqLimit>50</reqLimit>
 <timePeriod>50</timePeriod>
 </rate>
 <quota>
 <qtaLimit>100</qtaLimit>
 <days>1</days>
 <limitExceedOK>false</limitExceedOK>
 </quota>
 </composedServiceContract>
</Sla>

<composedServiceName>

Parent: <composedServiceContract>

This element describes the unique, user-defined name for the composed service.

<service>

Parent: <composedServiceContract>

This element defines a constituent communication service in the composed service. The service must be available and registered in Services Gatekeeper.

There must be at least one <service> element in a <composedServiceContract> element. Normally there are multiple <service> elements.

The <service> element contains the following child elements:

	
<serviceTypeName>

	
<method>

The service is identified by the <serviceTypeName> child element of the <service> element. The <serviceTypeName> element is required.

The <method> child element of the <service> element is optional.

<method>

Parent: <service>

This optional element, if used, specifies a method of the service to which the composed service contract's enforcements are applied. There can be multiple <method> child elements of a single <service> element.

If at least one <method> element is specified, only the specified method or methods participate in the composed service.

If there are no <method> elements contained in a <service> element, enforcement is applied to all of the service's methods.

The <method> element contains the following child elements:

	
<scs>

	
<methodName>

8 Defining Global Node and Service Provider Group Node SLAs

This chapter describes node SLAs, which define access to underlying network elements. These are different from the SLAs that define applications' use of Oracle Communications Services Gatekeeper described in "Defining Service Provider Group and Application Group SLAs".

There are two kinds of node SLAs:

	
Service provider group node SLAs define a specific service provider's access to the network.

	
Global node SLAs define Services Gatekeepers's access to the network regardless of service provider.

Structure of a Node Service Level Agreement

The node SLAs are written in XML. Global node SLAs and service provider group node SLAs are slightly different.

The schema for the global node SLA is in Middleware_Home/ocsg_5.1/modules/com.bea.wlcp.wlng.account_5.1.0.0.jar: sla_schema/global_node_sla_file.xsd.

The schema for the service provider group node SLA is in Middleware_Home/ocsg_5.1/modules/com.bea.wlcp.wlng.account_5.1.0.0.jar: sla_schema/sp_node_sla_file.xsd.

<Sla>

When used to define a node SLA, the <Sla> element contains one of the following:

	
zero or more <nodeContract> elements for a service provider group node SLA

	
zero or more <globalContract> elements for a global node SLA

The <nodeContract> and <globalContract> elements are mutually exclusive in one SLA instance. You cannot combine <nodeContract> and <globalContract> elements in the same <Sla>.

If the SLA is a service provider group node SLA, the serviceProviderGroupID attribute specifies the service provider group for which the SLA is valid.

If the SLA is a global node SLA, omit the serviceProviderGroupID attribute.

Service Provider Group Node SLA

The service provider group node SLA consists of an <Sla> element containing zero (0) or more <nodeContract> elements.

The serviceProviderGroupID attribute in the <Sla> element specifies the service provider group for which the SLA file is valid.

Example 8-1 shows the structure of a service provider group node SLA.

Example 8-1 Service Provider Group Node SLA Structure

<Sla serviceProviderGroupID="spGroup1"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="sp_node_sla_file.xsd">

<nodeContract>

 <!--Contract data for network node 1-->

 </nodeContract>

<nodeContract>

 <!--Contract data for network node 2-->

 </nodeContract>

<nodeContract>

 <!--Contract data for network node n-->

 </nodeContract>

</Sla>

<nodeContract>

Parent: <Sla>

The <nodeContract> element defines under which conditions Services Gatekeeper can access one or more network nodes on behalf of the service provider group specified in the <Sla> element.

The <nodeContract> element contains the following child elements:

	
<startDate>: one (1)

Specifies the date the service provider can start accessing the network node.

	
<endDate> one (1)

Specifies the last date that the service provider can accessing the network node.

	
<nodeID>: one (1)

	
<nodeRestrictions>: zero (0) or one (1)

Example 8-2 shows a <nodeContract> that limits access to node A to 10 requests per second (10 requests divided by 1000 milliseconds).

Example 8-2 <nodeContract> Element

<nodeContract>
 <startDate>2005-01-01</startDate>
 <endDate>2010-06-01</endDate>
 <nodeID>A</nodeID>
 <nodeRestrictions>
 <nodeRestriction>
 <reqLimit>10</reqLimit>
 <timePeriod>1000</timePeriod>
 </nodeRestriction>
 </nodeRestrictions>
</nodeContract>

<nodeID>

Parent: <nodeContract>

The <nodeID> element specifies the network node ID of the node for which a <nodeContract> controls access. The node ID is registered in the Plug-in Manager. A node ID can be assigned to one or more network nodes and the contract can therefore be valid for one or more nodes.

Use the Plug-in Manager's getPluginNodeId operation to get the node ID. See “Managing and Configuring the Plug-in Manager” in Oracle Communications Services Gatekeeper System Administrator's Guide for information the getPluginNodeId operation.

<nodeRestrictions>

Parent: <nodeContract>

The <nodeRestrictions> element contains zero or one <nodeRestriction> elements.

<nodeRestriction>

Parent: <nodeRestrictions>

The <nodeRestriction> element defines the restrictions imposed by the <nodeContract> in a service provider group node SLA.

This element contains the following child elements:

	
<reqLimit>: zero (0) or one (1)

	
<timePeriod>: zero (0) or one (1)

Global Node SLA

The global node SLA consists of an <Sla> element containing zero (0) or more <globalContract> elements.

For a global node SLA, there should be no serviceProviderGroupID attribute in the <Sla> element.

Example 8-3 shows the structure of a global node SLA.

Example 8-3 Global Node SLA Structure

<Sla xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="global_node_sla_file.xsd">

<globalContract>

 <!--Contract data for network node 1-->

 </globalContract>

<globalContract>

 <!--Contract data for network node 2-->

 </globalContract>

<globalContract>

 <!--Contract data for network node n-->

 </globalContract>

</Sla>

<globalContract>

Parent: <Sla>

The <globalContract> element defines the conditions under which Services Gatekeeper can access one or more network nodes, regardless of which service provider sent the request.

The <globalContract> element contains the following child elements

	
<startDate>: one (1)

Specifies the date that Services Gatekeeper can start accessing the network node.

	
<endDate>: one (1)

Specifies the last date that Services Gatekeeper can access the network node.

	
<nodeID>: one (1)

	
<<globalRestrictions>: zero (0) or one(1)

Example 8-4 shows a <globalContract> that limits Services Gatekeeper's access to node A to 10 requests per second (10 requests divided by 1000 milliseconds). Normal priority requests are passed to the node until the maximum request rate is reached.

Example 8-4 <globalContract> Element

<globalContract>
 <startDate>2005-01-01</startDate>
 <endDate>2010-06-01</endDate>
 <nodeID>A</nodeID>
 <globalRestrictions>
 <globalRestriction>
 <reqLimit>1000</reqLimit>
 <timePeriod>10000</timePeriod>
 <guaranteePercentage>50</guaranteePercentage>
 </globalRestriction>
 </globalRestrictions>
</globalContract>

<globalRestrictions>

Parent: <globalContract>

The <globalRestrictions> element contains zero or one <globalRestriction> elements.

<globalRestriction>

Parent: <globalRestrictions>

The <globalRestriction> element defines the restrictions imposed by the <globalContract> in a global node SLA.

This element contains the following child elements:

	
<reqLimit>: zero (0) or one (1)

	
<timePeriod>: zero (0) or one (1)

	
<guaranteePercentage>: zero (0) or one (1)

<guaranteePercentage>

Parent: <globalRestriction>

The <guaranteePercentage> element is used in a <globalRestriction> element in a global node contract.

It specifies the relative priority between requests marked as guaranteed (high priority) and normal priority requests. The integer value represents a percentage.

If set to 0, guaranteed requests and normal priority requests are treated equally, no matter whether they are guaranteed or normal priority. The value of 0 makes the priority of the requests irrelevant.

If set to 100, only guaranteed requests are passed on to the network node. No normal priority requests are allowed.

If set to 50, normal priority requests are passed on to the network node up to the point where the maximum request rate is reached. After that point, requests with normal priority are rejected.

Other values can be used to fine-tune how likely it is that requests of different priority are allowed. A higher value makes is more likely that normal priority requests will be rejected as traffic rate increases. A lower value makes it less likely that normal priority requests will be rejected.

The default value is 50.

A Sample SLA

The following is a complete sample SLA for the Parlay X 2.1 Short Messaging Communication service. It contains a <serviceContract>, a <serviceTypeContract>, and a <composedServiceContract>.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<Sla applicationGroupID="default_app_group" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:noNamespaceSchemaLocation="app_sla_file.xsd">
 <serviceContract>
 <startDate>2005-07-22</startDate>
 <endDate>9999-12-31</endDate>
 <scs>com.bea.wlcp.wlng.px21.plugin.SendSmsPlugin</scs>
 <contract>
 <guarantee>
 <methodGuarantee>
 <methodNameGuarantee>sendSmsLogo</methodNameGuarantee>
 <reqLimitGuarantee>10000</reqLimitGuarantee>
 <timePeriodGuarantee>80000</timePeriodGuarantee>
 </methodGuarantee>
 </guarantee>
 <methodRestrictions>
 <methodRestriction>
 <methodName>sendSms</methodName>
 <rate>
 <reqLimit>9000</reqLimit>
 <timePeriod>1000</timePeriod>
 </rate>
 <quota>
 <qtaLimit>900000</qtaLimit>
 <days>1</days>
 <limitExceedOK>false</limitExceedOK>
 </quota>
 </methodRestriction>
 </methodRestrictions>
 <params>
 <methodParameters>
 <methodName>sendSms</methodName>
 <parameterName>arg0.message</parameterName>
 <parameterValues>foo</parameterValues>
 <acceptValues>false</acceptValues>
 </methodParameters>
 </params>
 <methodAccess>
 <blacklistedMethod>
 <methodName>sendSmsLogo</methodName>
 </blacklistedMethod>
 </methodAccess>
 <requestContext>
 <contextAttribute>
 <attributeName>key1</attributeName>
 <attributeValue>value1</attributeValue>
 </contextAttribute>
 </requestContext>
 <resultRestrictions>
 <resultRestriction>
 <methodName>getSmsDeliveryStatus</methodName> <parameterRemovalName>arg0.requestIdentifier</parameterRemovalName>
 <parameterMatch>
 <parameterName>arg0.requestIdentifier</parameterName>
 <parameterValues>
 <parameterValue>demo</parameterValue>
 </parameterValues>
 </parameterMatch>
 <filterMethod>BLACK_LIST</filterMethod>
 </resultRestriction>
 </resultRestrictions>
 </contract>
 <overrides>
 <override>
 <startDate>2010-11-30</startDate>
 <endDate>2012-11-30</endDate>
 <startDow>2</startDow>
 <endDow>6</endDow>
 <contract>
 <guarantee>
 <methodGuarantee>
 <methodNameGuarantee>sendSms</methodNameGuarantee>
 <reqLimitGuarantee>1000</reqLimitGuarantee>
 <timePeriodGuarantee>40000</timePeriodGuarantee>
 </methodGuarantee>
 </guarantee>
 <methodRestrictions>
 <methodRestriction>
 <methodName>sendSms</methodName>
 <rate>
 <reqLimit>500</reqLimit>
 <timePeriod>1000</timePeriod>
 </rate>
 <quota>
 <qtaLimit>10000</qtaLimit>
 <days>1</days>
 <limitExceedOK>false</limitExceedOK>
 </quota>
 </methodRestriction>
 </methodRestrictions>
 <params>
 <methodParameters>
 <methodName>sendSms</methodName>
 <parameterName>arg0.message</parameterName>
 <parameterValues>foo2</parameterValues>
 <acceptValues>false</acceptValues>
 </methodParameters>
 </params>
 <methodAccess>
 <blacklistedMethod>
 <methodName>sendSmsLogo</methodName> </blacklistedMethod> <blacklistedMethod> <methodName>sendSmsRingtone</methodName> </blacklistedMethod> </methodAccess> <requestContext> <contextAttribute> <attributeName>key2</attributeName> <attributeValue>value2</attributeValue> </contextAttribute> </requestContext> <resultRestrictions> <resultRestriction> <methodName>getSmsDeliveryStatus</methodName> <parameterRemovalName>arg0.requestIdentifier</parameterRemovalName> <parameterMatch> <parameterName/> <parameterValues> <parameterValue>22</parameterValue> <parameterValue>33</parameterValue> </parameterValues> </parameterMatch> <filterMethod>WHITE_LIST</filterMethod> </resultRestriction> </resultRestrictions> </contract> </override> </overrides> </serviceContract> <serviceTypeContract> <serviceTypeName>Sms</serviceTypeName> <startDate>2010-11-30</startDate> <endDate>2010-11-30</endDate> <rate> <reqLimit>1000</reqLimit> <timePeriod>1000</timePeriod> </rate> <quota> <qtaLimit>90000</qtaLimit> <days>1</days> <limitExceedOK>false</limitExceedOK> </quota> </serviceTypeContract> <composedServiceContract> <composedServiceName>Messaging</composedServiceName> <service> <serviceTypeName>Sms</serviceTypeName> <method> <scs>com.bea.wlcp.wlng.px21.plugin.SendSmsPlugin</scs> <methodName>sendSMS</methodName> </method> </service> <service> <serviceTypeName>MultiMediaMessage</serviceTypeName> </service> <startDate>2010-04-17</startDate> <endDate>2011-04-17</endDate> <rate> <reqLimit>50</reqLimit> <timePeriod>50</timePeriod> </rate> <quota> <qtaLimit>100</qtaLimit> <days>1</days> <limitExceedOK>false</limitExceedOK> </quota> </composedServiceContract></Sla>

Oracle Legal Notices

Copyright Notice

Copyright © 1994-2014, Oracle and/or its affiliates. All rights reserved.

Trademark Notice

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.

License Restrictions Warranty/Consequential Damages Disclaimer

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

Warranty Disclaimer

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

Restricted Rights Notice

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.

Hazardous Applications Notice

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Third-Party Content, Products, and Services Disclaimer

This software or hardware and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.

Alpha and Beta Draft Documentation Notice

If this document is in preproduction status:

This documentation is in preproduction status and is intended for demonstration and preliminary use only. It may not be specific to the hardware on which you are using the software. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to this documentation and will not be responsible for any loss, costs, or damages incurred due to the use of this documentation.

[image: Oracle Logo]

